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SUMMARY

This thesis presents a model to predict the environmental forces on a tension leg platform. 
The response of the platform and the loads in the mooring lines are also formulated.

In the first part, the loading model to predict the forces due to waves, wind and current is 
developed.

Chapter 2 introduces the frequency domain method used for the validation of the model.

Chapter 3 presents two models for the calculation of the first order wave forces. The first 
one is based on a simple Morison approach, combined with the strip theory.

The second model is based on analytical solutions of the diffraction and radiation wave 
potentials for an array of cylinders.

These two methods are compared and validated with the results of a 3D diffraction 
radiation code.

In chapter 4, two models for the calculation of second order wave loads (steady and 
slowly varying drift) are developed. They are based on two analytical solutions of the wave 
diffraction potential. The models are validated with the results of a diffraction radiation code.

Chapter 5 introduces the models to predict the wind and current forces. Different 
formulations of wind spectra are used. The influence of the current velocity profile is 
investigated.

In the second part, the loading model is used in time domain simulations to calculate the 
responses of the TLP and the forces in the tendons.

Chapter 6 presents the time domain model used in this study. Different non linearities 
such as the free surface effects and the coupling due to the mooring system are taken into 
account.

The effects of the non linearities are investigated for two TLP designs (Snorre and 
Heidrun).A comparison between a linear and a non linear model is also carried out for a 
whole range of wave frequencies.

Finally, the effects of the directionality of the environmental forces on the tendon forces 
are investigated.



CHAPTER 1: INTRODUCTION

1. CONCEPT AND HISTORY OF THE TENSION LEG PLATFORMS

Most of the oil resources in shallow waters are already in production. The offshore 
production is now looking at deeper oil fields. The fixed platform designs are not suitable 
for these kinds of fields. A new design has been developed over the recent years to address 
this problem. The tension leg platforms are a new type of platforms that enable oil 
production in deep seas.

TLPs are a quite recent design as Mercier's review [1.1] shows. The first concept was 
tested in 1973, off the coast of California. It was only a third scale model, known as TLP- 
XI. The three leg platform proved the feasibility of this kind of design.

The first operational TLP was launched in 1984. It has been developed by Conoco for 
the Hutton field (See Figure 1). Because of the innovative design, many problems rose. The 
lack of rules and recommendation turned the project into a very long and expensive one. 
However, a lot was learned from that first experience when the second TLP, Jolliet, was 
developed and installed in 1986 in the Gulf of Mexico. At the time, Jolliet was the deepest 
production platform, with a water depth of 536m. Three more TLPs were constructed 
afterwards. The Snorre TLP was installed in the North sea in 1992. In 1994, the Auger TLP 
broke the record of Jolliet with a water depth of 872m. Finally during the summer 1995, the 
Heidrun TLP, was installed.

Oil companies are currently considering the use of TLPs for the developments of the 
fields off the Shetlands. Although, FPSO systems will be use for the early production, Mini 
TLPs may be used during a later stage.

There are large differences between the design of these platforms. The Hutton TLP is 
based on six columns connected with rectangular hulls, whereas the other ones only have 
four legs. The Jolliet TLP is of relatively small dimensions. The Heidrun TLP has been 
designed with a concrete hull instead of the usual steel. It implies very large dimensions, a 
large draught and a low centre of gravity. For the Shetlands' fields, TLPs of very small size 
are considered. If a geometry of four large circular legs and small pontoons seems to have 
become a rule, many possibilities are still under investigation for the TLP design.

The TLPs present several advantages compared to other platforms. They can be installed 
in deeper water than the conventional fixed production platforms. They are also easier to 
decommission. This has not been seen as such an advantage in the earlier developments, but 
it is becoming an important issue. Due to their very low motions in heave, the TLP are more 
suitable for production than other compliant designs such as semi-submersibles.

Because TLPs are different from usual platforms, new problems have risen in their 
design. (See Natvig et al [1.2] Nielsen et al [1.3] on this subject). A lot of importance has to 
be brought to dynamic effects. They condition the design of the tendons that are the most
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critical part of the platform. The TLP natural periods avoid the range of the first order waves. 
The natural periods in the horizontal plane are about 100 seconds. They can then be excited 
by wind gusts and second order slowly varying waves.

In the vertical plane, the natural periods are about 2 seconds. The heave, roll and pitch 
motions are then excited by second order sum frequency waves, causing springing. These 
loads are much more difficult to calculate than the first order wave loads.

Another phenomenon that causes problems in the TLP design, is the ringing. It creates 
high frequency loads in the tendons, causing fatigue problems. The causes of ringing are not 
very well known yet. It seems to be related with steep waves causing an impact on the 
structure.

The TLP design presents a new challenge for the ocean engineers.

2. PREVIOUS WORK

Because of the novelty of the concept, a lot of research has been done on TLPs, during 
the recent years.

A lot of work has been concentrated on the determination of the second order wave loads 
and the corresponding response of the platform. Two different approaches have been used, 
an experimental one based on model testing [1.4] or a numerical one based on computer 
software [1.5]. The numerical methods are based on the Boundary Element Method (BEM)
[1.6]. This kind of program requires heavy computations, and takes a lot of time to run. No 
simple way is available at the moment to approximate the second order Quadratic Transfer 
Function (QTF).

The first order wave loads are simpler to calculate. The strip theory [1.7], using the 
Morison formula, could be applied since the structure consists of circular and rectangular 
cylinders. For more accurate results a Diffraction/Radiation code could be used.

Kim [1.8] has been developing recently another way to calculate first order wave loads on 
TLPs. It is based on analytical solutions of the first order diffraction and radiation potentials 
for an array of vertical circular cylinders.

This kind of method was first introduced by MacCamy and Fuchs [1.9]. They calculated 
an analytical solution of the first order diffraction potential for a bottom mounted cylinder.

In 1971, Garrett [1.10] extended the problem to a truncated cylinder.
Then, in 1984, Chakrabarti [1.11] used the solution proposed by MacCamy and Fuchs to 

calculate the steady drift on a fixed bottom mounted cylinder.
Eatock-Taylor et al [1.12] proposed a formulation of the steady drift for 2 cylinders.
A major step was taken by Linton and Evans [1.13] when they proposed a solution of the 

first order diffraction potential for an array of fixed cylinders. The solution was then used to 
deduce the first order forces, the steady drift, and the free surface.

This was then extended by Kim [1.14] and [1.15], to the radiation problem. He also 
proposed to use a series of approximations to use this method to calculate the first order 
wave forces, the added mass, the potential damping and the steady drift of a TLP. This 
method presents the advantages that it is much quicker than the Diffraction Radiation (D/R) 
codes and is more accurate than the Morison approach.

Extensions of the theory are currently under way to calculate the second order QTF’s and 
the drift damping.
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The wind effects also take an important place in the design of tension leg platforms. The 
wind gusts, in particular, are important in the vertical plane. Several methods are available to 
calculate them, from a simplified single point loading, to a multiple point loading [1.16]. 
There are also many wind gust spectra that can be chosen [1.17]. They are all very different 
in their formulation and give results with large variations [1.18].

All these methods are usually applied in frequency domain based studies. However, to 
take into account the non-linear effects, and to calculate the tendon loads, a time domain 
simulation is required [1.19].

One of the main non-linear effects, that should be investigated, is the non-linear stiffness 
of the mooring system of the TLP. Matsui et al [1.20] proposed a way to model, up to the 
second order, the interactions of the tendons and the hull for the calculation of the mooring 
stiffness.

The second main non-linearity is the free surface effects. These are supposed to be a main 
cause of the ringing phenomenon. For irregular seas, a stretching method has to be applied. 
Indeed, the Airy theory overestimates the wave kinematics in the wave crest region [1.21]. 
Rainey et al [1.22] proposed an original approach. They showed that the most common 
approach, the Wheeler stretching, is not suitable. Mekha et al [1.21] compared different 
stretching methods and reached to the same conclusion. A second order stretching method 
seemed more appropriate.

Natvig [1.23] proposed a simple time domain method to model the free surface effects. 
He used a very simple stretching method, but put the emphasis on the multiple effects of the 
free surface. In his model, he included force, added mass, and damping variations, but also 
wave slapping and a term depending on the time derivative of the added mass. From this, he 
was able to generate through a numerical simulation, a ringing event observed during 
experimental model tests.

3. OBJECTIVES

The main objective of this thesis is to analyse the dynamic response of a tension leg 
platform in extreme weather conditions. The motions in five degrees of freedom are studied - 
surge, sway, heave, pitch and roll.

The effects of the different environmental loads are investigated. This includes - the first 
order waves, the steady drift, the slowly varying waves, the steady wind, the wind gusts 
and the current.

The non-linear effects are also modelled and the forces in the tendons are calculated

The wave, wind and current are first modelled in the frequency domain. For this purpose 
the geometry of the Snorre TLP is used. The main characteristics of the TLP are given in 
Table 1.1.

The method developed by Kim is adapted, to calculate the first order wave forces, the 
added mass, the potential damping and the steady drift. The slowly varying drift is then 
deduced from the latter using Newman’s approximation. The whole method is compared and 
validated in the frequency domain with the results from a D/R code and a Morison approach.
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Both steady, and varying wind are modelled in the frequency domain. Different wind 

spectra are experimented for the calculation of the dynamic wind forces.
The current is also studied. Two different models are compared in terms of forces and 

displacements.

Having fully validated the prediction of the forces in the frequency domain, a time domain 
approach is developed. It simulates regular seas only. Several non-linearities are taken into 
account. The non-linear mooring stiffness due to the coupling of the hull and the tendons is 
formulated. The free surface effects are simulated following the model given by Natvig. The 
viscous damping, the drag forces, the large displacements of the TLP, and the coupling 
between the different motions are also accounted for.

The effects of each of these non-linearities on the displacements of the platform and on the 
tendon forces are studied. This study is first carried out for the Snorre TLP. Then, the 
Heidrun design is considered. The effects of the non linearities on the two TLPs are 
compared to see how the geometry influences the response and the tendon forces.

Then simulations are run with whole range of wave frequencies. The variation of the 
response and the tendon forces with the wave frequency is then analysed.

Finally, the influence of the direction of the environmental forces is investigated. The TLP 
responses and tendon forces are calculated for non collinear environmental forces.
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SNORRE TLP CHARACTERISTICS

Spacing between the columns centres 76  m
Columns diameter 2 5  m
Pontoon width 11.5 m
Pontoon height 1 1 . 5 m
Draught 37 .5  m
Total Mass 8.00E+07 kg
Tether pretension 2.25E+08 N
Roll moment of inertia 1.48E+11 N .m .sA2
Pitch moment of inertia 1.48E+11 N .m .sA2
Vertical position of CoG above free surface 13.5 m
Length of the mooring tethers 3 1 0  m
Section of the tethers 1 .157  m A2
Young modulus of the tethers 2.10E+11 N / m A2
Surge Stiffness 7.26E+05 N/m
Heave Stiffness 8.04E+08 N/m
Roll Stiffness 1.12E+12 N/m
Surge natural frequency 0 .06  rad /s
Heave natural frequency 2 .6  rad /s
Roll natural frequency 2 .2  rad /s

Table 1.1



CHAPTER 2: FREQUENCY DOMAIN METHOD

1. INTRODUCTION

This chapter introduces the frequency domain method. This method is used in the 
following three chapters to predict the displacements of the TLP, as a function of the 
environment forces.

The spectral approach and the concept of significant values are also presented here.

In the first part of the study, the frequency domain approach is used to validate wave 
force prediction techniques developed with three dimensional diffraction/radiation code 
results.

The frequency domain method has certain limitations. It cannot take the non-linear 
phenomena into account However, it is a simple way to calculate the displacements of the 
platform as a function of the forces. It is therefore suitable to validate theoretical calculations.

The other advantage of the frequency domain approach is its ability to study not only 
regular seas, but also irregular seas.

The time domain method, which takes non-linearities into account, is much more complex 
to develop.

There is not a simple way of applying the time domain based prediction tools to irregular 
seas.

The time domain simulation is only used in the last chapter to investigate the effect of the 
non-linearities in TLP motions.

2. THE FREQUENCY DOMAIN METHOD

The problem of the dynamic response of the TLP, is based on the equations of motion, 
given by Newton’s laws.



When these equations are applied to the TLP, it comes:

( M + Em . ] ) # M C] £ 3+ ([K J+  [Km]){X}={F} (2-2)

Where:

X: displacement vector of the platform

M: mass and inertia matrix

Ma: added mass matrix

C: damping matrix

Kh: hydrodynamic stiffness matrix

Kn,: mooring stiffness matrix

F: force vector

The expression of these different components of the equation is given in the following

relation between the unknown X and the forces applied to the TLP.

It is based on two main principles. The forces and motions are assumed to be harmonic, 
and it is assumed that the equation is linear.

Using a Fourier transformation, the equation can be expressed in term of frequency. This 
way, the displacements are derived from the forces using a simple transfer function.

section.

The frequency domain method gives a simple way to solve this equation, giving a direct

X(co)=F(co> Q(co) (2-3)

Where the transfer function Q can be written as:

1
(2-4)

In case of a steady force, Q becomes:

(2-5)

Since the equation is linear, the displacements due to each environmental force can be 
studied independently.
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The limitation of the method comes from the two main assumptions:

- harmonic forces and displacement

- linearity of the equation

It means that non-linearities such as the displacement of the platform, the coupling 
between the different degrees of freedom, the non-linearity of the mooring system, or the 
free surface effects cannot be taken into account. However, the effects of these non- 
linearities are studied later, in a time domain simulation.

The centre of the co-ordinate system is chosen at the centre of gravity of the TLP, and the 
x, y, and z axes correspond respectively to surge, sway and heave.

The formulation of the added mass matrix, the potential damping matrix, and the force 
vector are given in chapters 3,4, and 5, where effects of environmental forces are studied. 
The forces taken into account in this study are the ones due to waves, wind and current.

The wave forces studied are the first order wave forces (See Chapter 3), the second order 
steady and slowly varying drift (See Chapter 4), the steady and varying wind forces and the 
steady current force (See Chapter 5). The drag forces due to waves are not taken into 
account since they are small compared to the inertia forces on a structure with large cross- 
sectional members. Furthermore, they would have to be linearised for the frequency domain 
study. However, their effect is taken into account in the time domain simulation. The sum 
frequency force due to waves is not taken into account, because no simple theory exists to 
calculate them.

The study is carried out for five degrees of freedom: surge, sway, heave, roll and pitch. 
The original problem based on a 6x6 linear system, is simplified in a 5x5 system.

The displacement vector X then becomes:

3. MOTION EQUATION COEFFICIENTS

As stated before, the problem is based on the following motion equation:

(3-1)

{X}= X3 (3-2)
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the components corresponding respectively to surge, sway, heave, roll and pitch. 
The Mass-Inertia matrix can be written as:

M 0 0 0 0

0 M 0 0 0

0 0 M 0 0

0 0 0 Ix 0

0 0 0 0 Iy

[M] =

Where M is the mass of the TLP and Ix and Iy are the inertia about the x and y axis.

(3-3)

The damping matrix C can be split into two terms. The potential damping Cp (See 
chapter 3) and the viscous damping Cv.

[c]=[cp+cv(x)] (3-4)

The viscous damping is not linear since it depends on the squared velocity of the 
structure. This term is usually linearised using a first order expension of the sinus function. 
Another method is used here, the expression of the damping is calculated in the frequency 
domain, by using an iteration algorithm to solve the motion equation.

The viscous damping is usually bigger than the potential damping. It can be important 
for the surge motion, for which the first order waves and the slowly varying drift can excite 
the natural frequency.

The viscous damping matrix can be written as:

[cj = [cvij]
Where:

Cvii = 0  fori * j

Cv„ = |p ( 4 C l 1De + 2C L D pz)|x ,

Cv22= |p (4 C S yDt +2C5yDpz) |x ;

Cv33=^p(4C 52Dt +4C ;zDpx) |x 3

Cv44 — 2 P 

1
C v55 = - P

4C 'yDc Jz2 |z|dz + 2 CJyDpz J y 2|y|dy
-V- d - Z G

-Z c.

4 CdxDc Jz2|z|dz + 2 C^Dpz Jx2|x|dx
- d - Z r ,

X,

(3-5)

(3-6)
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Where: p: water density
Dc: column diameter 
d: draught
ZG: height of the centre of gravity
Dpx and Dpz: breadth and height of the pontoons
Lp: length of the pontoons
c 'j and c Si' drag coefficients of the columns and the pontoons in direction i.

Kh represents the hydrostatic stiffness matrix:

[K„] =

0 0 0 0 0

0 0 0 0 0

0 0 PgSwl 0 0

0 0 0 K h4 0

0 0 0 0 K h5

Where:

k h4 = P-gV„

kh5 =P-gV„

— . f y2dS -  BG
V 3w s*,

— . f x2dS -  BG
V  Jv v

v  w Swl

Where:

(3-7)

(3-8)

g: gravity acceleration
Swi: cross section of the TLP at the water level 
Vw: Wet volume
G: centre of gravity of the structure 
B: buoyancy centre

Km represents the linearised mooring stiffness matrix due to the tendons:

£ 0 0 0 0

0 Xc 0 0 0

0 0 A E /Ac 0 0

0 0 0 ^ f t -)2 0

0 0 0 0 e © 2
Where: T: pretension in the tendons 

Lc: tendon length.
A: total section of the tendons
E: Young module of the tendons
L: spacing between the columns (centre to centre)

(3-9)
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4. SPECTRAL ANALYSIS

In the frequency domain, the varying environmental effects are expressed in terms of 
energy spectra. These spectra give a relation between the amplitude of the phenomena and 
the frequency. For the waves for example, the wave amplitude is related to the energy 
spectrum Sw by the following relation:

Where vw is the wind varying velocity.

Different formulation of wave and wind spectra are available. They are related to the wind 
velocity or the sea state. These formulations can be found in chapters 4 and 5 where waves 
and wind forces are calculated respectively.

From these spectra, force spectra can be derived for the varying forces. For the first order 
waves for example:

A 2 =Sw(a>)da> (4-1)

Where A is the wave amplitude and co the frequency.

Similarly for the slowly varying wind:

V2 =Swtod(co)da> (4-2)

(4-3)

Where: SFiow- first order wave force spectrum 
Fiow: first order wave force

Similarly response spectra, corresponding to the displacement can be derived:

RSlow(a))=Sw( c o ) f ^ ^ l l  Q »  
V J

(4-4)

For the varying wind:

(4-5)
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From these spectra, one can determine two particular values useful for a design project- 
the significant value and the maximum value of the spectrum.

For a wave spectrum, the significant value, called , corresponds to the mean height of
the one-third of the highest waves. The maximum value represents the average value of 
the highest wave of the sea state. The same values can be defined for the response spectra.

In order to calculate these values, one must introduce the moment nin of order n of a 
spectrum S.

m n(S) = Jcon S(co)dco (4-6)

The wave height, and the motions of the TLP are supposed to follow a Rayleigh 
distribution (narrow banded spectrum).

This assumption is true if

Using this assumption, the significant and maximum values of a spectrum can be 
calculated as follows:

For the wave spectrum:

HX = 4Vmo(S„)

H = 2max V21nN w +
JU nW , Vmo(s . )

(4-8)

Where:
Nw: the number of waves appearing during the sea state (about a thousand for a 
three hour storm).
7^=0.5772 is the Euler constant



For the response spectra the significant and maximum values are given by:
2.8

X/  = 21/m 0(R S j

Vmo(RS j
(4-9)

Where:

T is the sea state duration

T„ = 2k
m o(R Sj
m

(4-10)

is the average upcrossing period
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CHAPTER 3: FIRST ORDER WAVES

1. INTRODUCTION

Mainly, two methods may be used to calculate the forces due to first order waves on a 
large offshore structure, the Morison equation or Green functions through a diffraction 
radiation code.

The Morison equation has the advantage of being simple and of giving results quickly, 
needing few calculations from the computer. The major inconvenience of the formula is that 
it gives only a rough approximation of the loads.

The radiation codes give more precise results but require extensive computational time and 
are slow. The time factor is an important one if the loads have to be calculated in the time 
domain.

The other drawback of this method is that a mesh has to be generated for the special 
geometry of the platform. At the initial design stage, generating a new mesh every time the 
geometry is changed is not feasible.

A third method can be applied in the case of geometries based on vertical circular 
cylinders. This method uses analytical solutions of the first order diffraction and radiation 
potentials.

The Morison approach and the analytical method are developed for a TLP geometry in 
section 2 and section 3 to calculate the wave loads. The results based on the Morison 
approach and the analytical method are compared with those obtained from a diffraction 
radiation code in section 4.



MORISON APPROACH

Section 2.1 describes the calculation of the forces due to the waves. Section 2.2 presents 
the calculation of the added mass. The potential damping is not calculated with this method.

2.1. FORCES

The forces are calculated in the co-ordinate system (G,x,y,z), but the wave potential is 
written in the co-ordinate system (0,x,y,z). The origin O corresponds to the projection 
of the centre of gravity G, along the z axis, on the mean water level.

Following Airy theory, the first order waves are represented by a sinusoidal shape. 
The potential representing first order waves is given as:

(j> = —  ek 2 sin(kX -  cot) (2.1-1)
GO

Where:

kX = kcosax  + k sin ay  (2.1-2)

k = —  (2.1-3)
g

A: wave amplitude 
co: wave frequency 
a: wave propagation angle

We assume here that the water depth is infinite. This assumption can be made because 
TLPs are moored in deep waters.

This formula is given for a regular sea. For irregular seas, we suppose that we have an 
infinite sum of regular waves with different frequencies and amplitudes. The potential 
becomes a sum of sinus:

<t> = Y ^ e M sin(kiX -® it) (2.1-4)
i CO :

Since the equations are linear, each frequency is independent of the other. So we can 
write the equation with only one frequency, like for a regular sea.
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The acceleration of the waves, aw is defined as:

d (2.1-5)a

or:

a ^  = A© 2 cosaekzsin(kX-©t)

a ^  = A© 2 sin a  ekz sin(kX -  ©t) ^

a wz = -  A© 2 ekz cos(kX -  ©t)

The wave forces are written using the Morison formula describing hydrodynamic 
forces on cylinders.

Where: Fx is the force in the x direction for unit length cylinder of section S and 
diameter Dc.
awx and Uwx are respectively the acceleration and the velocity of the waves in 
the x direction.
Cm and Cd are the inertia and drag coefficients, 
p is the water density.

As stated before, the second part of the equation, called the drag term, is neglected 
since it is small compared to the first one.

The formula is applied for each pontoon and column, and the sum is considered to be 
the total force applied on the TLP.

2 .1.1. Columns

By integrating the force over the draught d of the TLP columns we get:

(2.1-7)

F* = P C 7 D 'A gcosa(l-e~ kd)£ sin (k x i - wt)
i=l

(2.1-8)

Where: kx j = k cos a  Xci + k sin a  Yci

Xci and Yci are the co-ordinate of the centre of the four columns.

(2.1-9)

Similarly:

f ;  = p C‘m J  D J Ag sin a  (l -  e~td ) £  sin(kxi -  cot)
i=l

(2 .1- 10)
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The vertical component of the force can not be found using the Morison formula. 
It is calculated by integrating the pressure over the base of the column, it corresponds
to the Froude Krylov force. The pressure is simply calculated at the centre of the
bottom of the column, and multiplied by the section. These approximations should 
give a correct result since:

- the diffraction effects are small in this region

- the dimension of the column is small compared to the length of the
waves having an effect at that depth.

The pressure is given by the following formula:

P = - P ^  (2 .1-H)ot

The vertical force on the columns:

Fz‘ = p -D ^ A g e 'kd̂ co s(k x i - a t )  (2.1-12)
4 i=l

Where all the symbols have been previously defined.

The moment in roll and pitch are given by a combination of the loads in the 
horizontal and vertical planes:

0

M ‘ = j y p d S - j ‘( z - Z G)F ‘ dz = M1 + M 2
base -d

0 , (2.1-13)
M ' = J ( z - Z g)F ‘ d S - Jxpdz = M3 + M 4

- d  base

Where ZG is the height of the centre of gravity above the water level.

M, = pAg^-D* e"kd ^  Yci cos(kxi - o t )  (2.1-14)
4 i=i

M 2 = -pAco2 CI j  D2 sin a  ( £  e"kd -  p -  (l -  e_kd) -  ̂  (1 -  e'kd) ]. £  sin(kx; -  tot)

(2.1-15)
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M3 = pAco2 —D2 c o sa f— e2 /->c ^ t 2̂

(2.1-16)

M4 = -pA g-jD 2 e'“ 2 x =i cos(kXj -<ot)
4  i-1i=l

(2.1-17)

2.1.2. Pontoons

For the integration of the forces, the pontoons of length Lp are divided into N 
consecutive cylinders of length Lp/N. The Morison formula is applied on each of 
them, and the total force on the pontoons is equal to the sum of the forces on the 
strips.

The horizontal forces act only on two pontoons, so the total component of the 
force on the pontoons in x direction is:

(2.1-18)

Where is the inertia coefficient for the rectangular pontoons of height Dpz and 
width Dpx. 

and:

F* = pAffl2 C' DpllDp2 cosa e

(2.1-19)
kx;, = kcosa

For the y direction:

Where:

kx;, = kcosa
(2 .1-21)

kx 'a = kcosa
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Similarly, the vertical forces on the pontoons can be written as:

4 N-l

E? = -pAco2 C^DpxDpz e-kd £  2  cos(kxij -  cot)
j= 1 i=0

Where all the symbols have been previously defined. 
For the moments:

M* = |y F z dl -  J ( z - Z a)Fydx = M ,+ M ;

- v
W-L

M J=  J ( z - Z 0 )Fx d y - ^ xFz dl = M 3 + M„
- L . /

Where:

M, = -pAco2 CL D „D „e"kd —1 r  m px pz

f  L ^ N_1 
■ f  l(c o s (k x i3 - oot)- cos(kxi4 -c

i=0

L. iL.^l

M 2 =
f  D A 
d  P-  + Z

V j
Fpy

m 3 =  - d - ^ + Z J F ;

M4 =pAco2 CLDp4Dp2e-kd9 -h
N
[L i N_1
- y j Z  (cos^ i, -cot)-cos(kxi2 -  cot))

(2.1-22)

(2.1-23)

0)+

(2.1-24)

(2.1-25)

(2.1-26)

(2.1-27)



2.2. ADDED MASS

The added mass and the potential damping correspond to the forces applied on the TLP 
by the radiation potential. The added mass is an important factor since it is directly linked 
to the natural frequency calculation.

However, the potential damping is not as important. In fact, its value is very small 
compared to the viscous damping.

Only the added mass is calculated here. The potential damping is considered as equal to 
zero.

The added mass is calculated following the method given by Hooft [3.1]. The added 
mass is calculated separately on the columns and the pontoons. The total added mass is 
obtained as the sum of the added mass of each separate element. The interaction between 
the different elements of the structure is neglected.

2.2.1. Columns

For a circular cylinder of unit length, the added mass in surge or sway direction is 
given by the following formula:

In the vertical direction, the added mass can be neglected since it is very small 
compared to the mass of the structure:

(2.2- 1)

The surge or sway added mass for four columns:

M:„ = M;y = 4 p j D c2d (2.2-2)

(2.2-3)

For the roll and pitch motions:

M ^  = M ^ = 4Pj D 2 }z 2dz = i p WD2(d  + ZG)3 - Z j )  (2.2-4)
^  _ J 7

The moment calculation is carried out for an angular motion about the centre of 
gravity G.
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2.2.2. Pontoons

For the rectangular pontoons, the added mass is found by the same formula, only 
using a shape coefficient K*. The value of this coefficient can be found in tables given 
in reference [3.2].

M .= p K ,^ D j  (2.2-5)

In horizontal directions, only two pontoons are taken into account, the added mass 
of the pontoons whose axes are parallel to the direction of oscillations is neglected:

’V 2ML = = 2 K, p n I - f  I Lp (2.2-6)

Where Ki is the shape coefficient of the pontoons in the horizontal directions.

For the heave, with four pontoons:

MJj = 4 K 2p n
(  D (2.2-7)

Where K2 is the shape coefficient of the pontoons in the vertical direction.

For the roll and pitch:

ML. = = p | i ^  + K, D’ L „ [ d - ^ -  + Z0
3 1 pz pl  2 GJ

(2 .2-8)

Where Lp is the length of the pontoons.
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3. ANALYTICAL METHOD

3.1. INTRODUCTION

An analytical method derived in this section is an alternative way to calculate the loads 
on a TLP. It is based on analytic solutions of oncoming, diffraction and radiation 
potentials of the first order waves on vertical circular cylinders. The columns of the TLP 
are considered as circular cylinders.

In order to calculate the loads on the pontoons, the Morison formula is used. This 
should yield acceptable results since the pontoons have a deep draught.

The method is here applied to a TLP configuration but it can be applied to any structure 
based on circular columns.

The method is based on the work developed by Linton and Evans [3.3] and Kim [3.4].
Linton and Evans give the analytical solution of the diffraction potential for an array of 

circular cylinders. Kim has extended the solution to the radiation problem.

The analytical solutions are correct for complete cylinders extending from the sea bed 
to the water surface. Kim has demonstrated that the solutions are still valid if applied to 
cylinders of deep draught (See references [3.4] and [3.5]). Nevertheless, the theory can 
only predict the forces in the horizontal plane. In order to obtain the forces applied to the 
columns in heave, Kim proposed to use the Froude Krylov approximation.

An alternative method is used in this study to calculate vertical forces. The results in 
heave are obtained using an analytical solution for one truncated circular cylinder (See 
Garrett [3.6]). This solution can be used to obtain the wave forces, damping and added 
mass. The influence of the columns on each other is neglected.

This theory can be extended to calculate the second order drift (See Chapter 4), and the 
diffracted free surface (See Chapter 6).

The first part presents the method used in the horizontal plane for the diffraction and 
the radiation problems.

In the second part, the vertical forces due to diffraction and radiation are formulated.
In the final part, the problem in roll and pitch is solved.



3.2. HORIZONTAL PLANE

In the following section, the potentials are assumed to take the following form:

y, Z , t )  = Re(cp(x, 7 ,7) 6' “* ) (3.2-1)

3.2.1. Diffraction

The potentials are expressed in N different polar co-ordinate systems (r^G^z),
whose origins are on the mean free surface and at the centre of the N different vertical 
circular cylinders extending from the sea bed to the mean free surface.

To simplify, the expressions of the potentials, we write:

cp(x, y, z) = <|>(x, y)f(z) (3.2-2)

Where:

x ieA coshk(z + H)
f(z) = —s f l . --------*------ }-  (3.2-3)

© coshkH

Where:
H: water depth 
A: wave amplitude 
co: wave frequency 
k: real solution of:

. 2
ktanh(kH)=—  (3.2-4)

g

In the jth  co-ordinate system, the potential of the incoming wave becomes:

= (3.2-5)
n=-oo

Where:
j    ik (Xg .cos a+Yej . sin a )
1 . - e
Xcj and Ycj are the co-ordinates of the centre of the jth  column in the 
global co-ordinate system, 
a: wave angle
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Similarly, the diffraction potential is written:

(3.2-6)

Where:

7 i _ M k )
" H'„(kaj)

Jn and Hn are respectively the Bessel functions of the first and third kind 
of order n.
a j: radius of the jth  cylinder

jth  cylinder kth cylinder

ak

x 
—►

The forces on an array of N vertical circular cylinders are given by the incident and 
the diffraction potentials. So the total potential is written as:

4> = 2 > i + + JD (3-2-7)
j=i

Using Grafs addition theorem for Bessel functions, and applying the boundary 
condition:

-7^- = 0 on rk = ak, k = l,2,..,N (3.2-8)
drk

we obtain the following infinite system of linear equations:

N +00

a 1 + Z Z a ; z ;  (k R jk) =  - 7 k e - < ^ )
2  — > (3.2-9)

k = l,..,N  -  00 < m < +00
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Using this result, the potential on the jth  cylinder becomes: 

2i -  A[
*(ai.e i)= — r— E — r - ^ ei”9i (3.2-10)

K> s )  K k a j i ^ r . ^ )

In order to find the coefficients AJn, the infinite system is truncated to an N(2M+1) 
system of linear equations:

N M

A* + Z  2  a ;  Z \ ei(" ^ H _ ( k R jk)=  - 4
(3.2-11)

k = 1,.., N -  M < m < +M

In order to obtain enough accuracy, the value of M should be taken between 6 and 
12. The choice of M depends on the geometry and on the frequency. M should be 
increased for columns close to each other, and for high frequency.

The first order force on the jth  cylinder is given by integrating the pressure over 
the surface of the cylinder:

Fj = Re(xj e~'“')  (3.2-12)

Where:

® f  COS 0
X '= -ip o ) Jf(z)dzJ^(aJ,e i) ^ . n J . d 0 J (3.2-13)

Where d is the draught of the cylinder

The upper elements of a bracketed pair refer to the force in the x-direction and the 
lower elements to that in the y-direction.

Evaluating the integral gives:

2pgA  sh kH -sh  k (H -d )
X ‘ = -

U/ chkH

r
Ai, Uij

V j
(3.2-14)
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3.2.2. Radiation

The added mass and the potential damping are given by integrating the radiation 
potential over the surface of the cylinders.

We need first to express the radiation potential for an array of N cylinders.

For convenience, the radiation potential is written as a summation of normalised 
radiation potentials in each mode.

6

= (3.2-15)
k=l

Where £k is the displacement in the direction k.

cpj corresponding to a radiation potential for a unit velocity in direction i for the jth  
cylinder is given by:

e“0j

Where:

fo(z)=

(3.2-16)

coshk0(z+ H ) 
cosh kfth

f AA cosk,(z+H) 
coskjh

ko and ki are respectively the solutions of:

2 2 

k 0 tanh(k0H)= —  k, tan(ktH) =
S §

As previously, we use the Grafs addition theorem and the boundary condition to 
find the following infinite system of equations:

Cm + Z  £  C' Hn_„(k0Rjt)=  R ^ g '(h )  (3.2-17)
j=i n=-« r lnlk0a jl 
*k v  '

N -K° Tf /l_  „ \

S  Z U ,  e-” " K„.„ (k,Rjlt)=  R ^ gj (H> (3.2-18)
j-1 n--co R -n \ ^ l ^ j  J

N -wo

ml ^

*k

Lk +

Where: k = l,. . ,N  - oo < m < +00 1 < 1 < +00
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and:

R*. = —5t , for i = 1mi ^  ±l,m (surge)

-mi c RL = ----- 6 ±l,m for i = 2 (sway)

.,  , 4 cosh knH (sinh knH -  sinh kn(H -  d)) 
go(H) = ----------\  XT • uoi TT ------ “  fori = 1,22k0H + sinh 2k0H

^  /rT>v 4 cos kjH (sin kjH -  sin k} (H -  d)) 
'  2k,H + sin2k,H

for i = 1,2

Where 5^ is the Kronecker function, and In and Kn are respectively the modified 
Bessel functions of the first and second order of order n.

In order to determine the coefficients and L1̂ , we need to truncate the system 
at n=M and 1=L to obtain L+l sets of N(2M+1) systems of equations. Values of M=6 
and L=8 give a good accuracy for the results.

The expression of the potential on the kth cylinder is given by:

<Pi(akA ,z ) =  £  f . ( z K  +£fi(z)<Pd, e‘iiiek
1=1

Where:

(Pm =
H„(k0ak)  J „ (k0at ) k J»(k0ak)n V 0 k J  l , nV a 'Oa k /  , ^ i  ( \ j \ p  k >,P \ n -Ou k /

H ;(k0ak)  i ; (k 0ak)J S(A } " J ;(k 0at )

(3.2-19)

(3.2-20)

(Pnli = T  
ki

Kn(k,ak)  I„ (k,ak)' I„(k,ak)
K ;(k,ak)  Ii(k,ak)J 8 |(  > ” i;(k ,a t )

(3.2-21)

The added mass Ma and the damping C in mode i are given by the following 
formula:

M »ij+ i- f - = p J <Pinj ds 
CD J  J 

Sb

(3.2-22)

Where nj is the component in the direction j of the vector normal to the wet surface
Sb-
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After integration, the added mass and the damping on the kth cylinder, in mode i 
are given by:

7C ̂  ak p for i = 1,2
n=±l 1 = 1

Where: Cj = 1 and c2 = in7i

_  sinh k0H -sinh  k0(H -d )  „ .
Q, = ------- ^ ^ f o r  i = l,2

k0 cosh k0H

_ sin k .H -sin k .(H -d )  „ .Q. = ------ !----------- ^ f o r  l = 1,2
k, cos kjH

The previous analysis is exact for H=d, i.e. in the case of complete cylinders. We 
have assumed that the theory can be applied to deep draught cylinders with a good 
approximation. This point is discussed later in section 4.

3.3. VERTICAL PLANE

The previous analysis cannot be applied to predict heave forces. Since the theory has 
been developed for circular cylinders extending from the sea bed, it cannot be used to 
calculate the forces in heave.

Kim [3.4] is proposing to use the Froude Krylov approximation for the calculation of 
the heave forces.

A more accurate method is used here. Analytical solutions of the diffraction and 
radiation potentials for one truncated cylinder have been developed by Garrett [3.6]. The 
solutions are applied independently to the four columns of the TLP. The diffraction due 
to the interaction between the columns is not taken into account, but one can expect it to 
be small on the bottom of deep draught cylinders.

The radiation problem is solved by the same method, in order to calculate added mass 
and potential damping. The same assumption concerning the interaction between the 
columns has to be made. This may have more influence in radiation than in diffraction.

The validity of both resolutions is discussed in section 4.

The vertical forces on the pontoons are calculated with the Morison formula.



3.3.1. Diffraction

We now use a polar co-ordinate system, whose origin is the projection on sea bed 
along the z axis, of the centre of the cylinder (See sketch below).

The domain is divided into two areas.

1 The domain referred as inferior below the cylinder:

0 < z < Zb and 0 < r < Rc

2 The domain referred as exterior:

0 < z < H and R c < r < +oo

Where Zb is the z co-ordinate of the bottom of the cylinder, Rc the cylinder radius, 
and H the water depth.

z

Free Surface H

0 0

0
Sea Bed R, r

The incident potential is written as:

(Pi = “

(3.3-1)

Where:

ko is defined by: co2 = gk0 tanh(k0H)
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The diffraction potentials are: 

For the exterior domain:

cpe = 2]cos(m0) A„, cosh(ko 4 Hm(kor) + j r  Am cos(k„z)Km(k„r) (3.3-2)
m=0 V COSh(k0H) n=l J

For the interior domain:

cp1 = 2 ^cos(m0 )
m=0

BmO + Z B™ C0S(A„ z)lm (K j ) (3.3-3)

Where kn is defined by: a>2 = -gkn tan(knH)
nand is defined by: Xn = —

The global potential is given by:

in the exterior domain: cp = cpz + (pe 

in the inferior domain: cp = cp1

(3.3-4)

(3.3-5)

The following matching conditions for R = Rc determine the coefficients and
Br

for m = 0,o°:

<PL=<Pl» + <P« 0 < Z < Z ,

0 < Z < Z ,

(3.3-6)

To simplify the mathematical development, we rewrite the potentials redifining 
and as a™ and b^:

(p'(Rc,0,z)= ^ co s(m e j ][>™ f»(z)
m=0 ‘n=0

(3.3-7)

oo f °° '
<P'(Rce ,z)=  Z C0 S(m9) [ Z a™.a »»fn(Z)

m=0 ^n=0 -
(3.3-8)



Wta,:
IJ cosh2(k0z)dz IJ cos2 (knz)dz

- k H»(koR<) -  _ k K'.(k. R. )
a - " - k"H „(k 0Rc) ”  * K .(k ,R t )“mO 0

And

<P‘(R«,0, z) = 2  bn»g«(z) (3.3-9)
m=0 ^ n = 0  '

<P.‘,(Rc,0 ,z )=  Z C0 S(m9) f 2 b»»P™Sn(z)j (3.3-10)
m=0 ^ n = 0  '

Where: go(z)=-j== g„(z)=
COS(A.2)

fcos2(X,11z)dz

ft = —  B =Xrm O  d  H mn n t  A  -r\ \
c m \  n c)

If we write the first matching condition as:

zb zb z.

l«p!»-gp(z)dz = j<Pm-gp(z)d z + j <Pt o gp(2)dz m = 0,o> (3.3-11)
0 0 0

due to the orthogonality of the functions gn , we obtain the following linear system:

{B} = [BA].{A} + {D,} (3.3-12)

Where:

{ A }  =  ( a mO»a m l> *--> a m N ,)  { ^ }  =  ( ^ m 0 J  ^ m l  > " •  > ^ m N b )

[B A ]pn = | f«(2) g p ( Z) dz

{ ° i } p  = C ta J fo ( z ) g p(z).dz



If we apply the same method to the second matching condition:

J  <Pm.,-fp(Z)dZ = J  <.,-fp(Z)dZ -  J  W fp(Z)dZ (3.3-13)

due to the orthogonality of the functions fn , we have:

{a } = [a b ].{b }+{d 3} (3.3-14)

Where: [AB]op = % B A ] pn {D3} =
mp

j ; ( k 0R c)
J„(k 0R c)

0 ... 0

Combining the two systems we get:

[ i-b a .a b ]{ b }  = [ba].{d 3}+ {d,} (3.3-15)

Where I is the identity matrix.

By solving this system, we get the coefficients bmn for n = 0,Nb. The system has 
to be solved for each value of m. When the heave motion is considered, the 
coefficients b0n are needed only. For a good accuracy, one should take values of Na 
and Nb equal to 50.

The force in heave is given by integrating the pressure on the base of the column:

Fz = Re(z e '” ‘)  

Where:
271 Rc

Z = ip© J  J(pm=0 (r, Zb )r drd0
0 0

After integration, it comes:

(  R 2 n R
n=l

(3.3-16)

(3.3-17)

(3.3-18)

This gives the force for one cylinder. If we want the force for an array of N 
cylinders, we have to recalculate the coefficients bmn for each column, taking into 
account the phase of the waves at the bottom of each cylinder. This is done by
multiplying the incident potential by the following factor, ^  = eDt#(xinC0‘a+'^”na)^
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The forces on the columns are then added together in order to obtain the total force 
on the structure.

3.3.2. Radiation 

For heave the radiation potentials for a unit velocity, are given by: 

exterior domain:

(3.3-19)

inferior domain:

* ( ’■«)- b is, (j ) a
(  T1 \  

z 2 - - (3.3-20)

By applying the same method as for the diffraction, one can find the coefficients a’t 
and b’n corresponding to the following boundary conditions:

cpi (Re,z) = (p*(Rc,z) O Z z ZZt, 

<pi(Rc,z)=(|>'(Rc.z) 0 < z < Zb
(3.3-21)

The added mass and the damping are given by the following formula:

(3.3-22)
Base

After integration, it becomes: 

.C . .  {. . R. 'M ^ + i  — =2jtp| 
CD

b'
1 1 

> /z :+ 4zt
R2z 2 -__L

c b J
v y

+ (M s
(̂ nRc)J

(3.3-23)

The added mass and damping correspond here to one truncated cylinder. They 
should be multiplied by the number of column to obtain the total added mass and 
damping.
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3.4. ROLL AND PITCH

By combining the loads in surge, sway and heave, the moment in roll and pitch can be 
calculated.

3.4.1. Diffraction

The moments on the cylinders are given by the following formula:

Mo. = J (zPny - y P n.)dS = J z p n yd S -  J y p n 2dS
Surface Side Bottom

m g ,=  J (x p n 2 - z p n x)dS= J x p n 2 d S - J z p n xdS
(3.4-1)

Surface Bottom Side

Where n = (n x, ny, nz)  is the vector normal to the cylinder surface and p the local 
pressure.

The moment on the array of cylinders can be written as:

M(t)= Re((Mtkk + Mbo[[om)e“'“ )

First, we integrate the pressure on the side of the jth cylinder:

2pgA k d s h k (H -d ) -c h k h + c h  k ( H - d )

(3.4-2)

Msid* ( V
M U. -K k3Hr(kaj) chkH

f
Ad, a ;

V y

(3.4-3)
f its* :-;:c

This gives the moment in the local co-ordinate system. In order to calculate the 
moment in the general co-ordinate system, the following formula is used:

I o b \

M/p= M /o+ P O x F (3.4-4)

The moment due to the pressure on the bottom of the jth cylinder can be written
as:

M JBottoir^

M jBottom^

= lpcorca.
Bi0aj

D=i
+ £ ( - 1) Y - h ( K  a,)

-s in (a )
cos(a)

(3.4-5)

The same formula as previously is used to obtain the moment in the general co­
ordinate system.



3.4.2. Radiation

The added mass is calculated with the strip theory.
The potential damping is taken equal to zero. The damping is of insignificant 

influence on the roll and pitch motions since the natural period is far out of the range 
of frequencies where the waves occur most frequently.

3.5. PONTOONS

The equation derived in the previous sections are for an array of cylinders. We have to 
consider now how to take the pontoons into account.

Since the pontoons have a deep draught, the forces on the pontoons can be calculated 
by the Morison formula.

So by using Morison formulation to obtain the forces, we get a reasonable 
approximation.

The interaction between the pontoons and the columns is neglected. However, 
Berhault et al [3.9] have shown that these interactions are small compared to the other 
forces and can be neglected.

In the same manner, the added mass is calculated using the strip theory and the 
potential damping is taken equal to zero.

The formulations of the forces and the added mass for the pontoons are described in 
section 2 of this chapter.
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4. VALIDATION

To validate the program based on the Morison formulation and the analytical solutions 
developed in the previous sections, a comparison is made with a 3D diffraction radiation 
code. The comparison is made in terms of forces, added mass, damping and displacements.

The comparisons of the forces added mass and damping are carried out for four different 
geometries. The first three are used only with the analytical method to validate the different 
assumptions made during theoretical developments. The fourth one is used with both 
methods, the analytical solution and the Morison approach.

- Geometry 1 is a simple truncated cylinder of 25 meters of diameter. It is used 
to validate the program for the vertical potentials, since the theory gives a 
complete analytical solution for this case. The mesh used for the diffraction 
radiation code can be seen in Figure 3.1.

- Geometry 2 is an array of 4 bottom mounted cylinders. The spacing between 
the cylinders corresponds to the position of the columns of the Snorre TLP 
(See below). The column height and thus the water depth has been chosen as 
150m. It is used to validate the program for the horizontal potentials, since the 
theory gives a complete analytical solution for this case. The mesh is 
presented in Figure 3.2.

Disposition of the 4 cylinders

25m 76m

V \
76m

Geometry 3 is an array of 4 truncated cylinders. The draught (37.5m) and the 
water depth (340m) correspond to those of the Snorre TLP. The geometry is 
identical to the Snorre TLP, neglecting the pontoons.
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It is used to validate the following approximations of the analytical 
method:

For the horizontal motions, the theory can be extended from bottom 
mounted cylinders to deep draught cylinders.

For the vertical motions, the interaction between the cylinders can be 
neglected.

The corresponding mesh is presented in Figure 3.3.

- Geometry 4 is the whole Snorre TLP, columns plus pontoons. For the 
analytical method, it is used to check that the pontoons have little influence in 
waves compared to the columns therefore the use of Morison formulation and 
strip method lead to little inaccuracy.
It is also used to compare the final results on a complete TLP obtained from 
true Morison approach, the analytical method, and the diffraction radiation 
code.
The results on the Snorre TLP were calculated by Dr Hoi-Sang Chan, of the 
Department of Naval Architecture and Ocean Engineering at Glasgow 
University.

Once the forces, the added mass and the potential damping found from each theory, the 
displacements of the Snorre TLP are calculated in the frequency domain.

The validation is first carried out for surge and sway forces and motions, then for heave 
forces and motions, and finally for roll and pitch forces and motions. All these calculations 
use head seas with unit amplitude waves.

The last section presents calculations carried out for directional seas to complete the 
validation.

4.1. SURGE AND SWAY FORCES AND MOTIONS

The validation is first carried out for the diffraction problem, to check the forces. In 
addition the solution of the radiation problem was validated by using different methods 
and the results were compared, checking the added mass and the potential damping. 
Finally, the displacements of the Snorre TLP were calculated.

4.1.1. Diffraction

Figure 3.4 compares the first order surge forces for the geometry 2 obtained from 
the analytical solutions and the D/R code. We have a good agreement between the two 
results. For higher frequencies, a better correlation can be reached by going further in 
the summation of the Bessel function series in analytical solutions.
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Figure 3.5 presents the same results on geometry 3. The agreement is still good and 
the same remark applies for high frequencies. It can be assumed that the theory based 
on bottom mounted cylinders can be extended to deep draught cylinders.

Finally the pontoons are taken into account using geometry 4. The results are 
shown in Figure 3.6. Agreement between the analytical method and the D/R code 
results are good. It is reasonable to calculate the forces on the pontoons with Morison 
formula. The influence of the pontoons is small compared to one of the columns and 
the error induced by the empirical formula is still quite low.

The Morison formulation does not give as a good agreement with the D/R code. It 
tends to overestimate the loads in high frequencies.

4.1.2. Radiation

Figures 3.7 and 3.8 show comparisons for the surge added mass and damping for 
the geometry 2. Good correlations between the results obtained from the analytical 
method and the D/R code validate the program.

The results for geometry 3 are shown in Figure 3.9 and 3.10. The agreement is still 
good. Thus, the radiation theory as well as the diffraction theory, can be extended 
from bottom mounted cylinders to deep draught cylinders.

Figure 3.11 presents the added mass comparison for geometry 4. The added mass 
from the pontoons calculated with strip theory was added to the results obtained from 
the analytical theory for the columns. The figure shows an error of approximately 12% 
between the two results. One should note that this error decreases to 6% of the value of 
the mass plus the added mass.

The value obtained from the strip theory value is also plotted. It is a straight line, 
since it does not take into account the variation with the frequency. However, the result 
gives quite a good mean value of the added mass.

Similarly, Figure 3.12 shows the potential damping for geometry 4. In this case the 
potential damping from the pontoons is simply neglected. This assumption is explained 
by the fact that the viscous damping is predominant on this part of the structure.

The correlation is good for low frequencies. The maximum values at 0.9 rad/s show 
a large difference between the two results. However, since the natural period is about 
0.1 rad/s this difference will not have significant effect on the surge response values.

4.1.3. Displacements

The surge response results, obtained from the different theories, are very similar 
(See Figure 3.13). The only difference appears around the natural frequency (Between 
0.05 and 0.1 rad/s). In this region the high values of the transfer function amplify the 
differences between the force results.

If we take a closer look at that region (Figure 3.14), we can see that the analytical 
solution also has a slightly higher natural frequency than the Morison formulation.
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The values of the response at the natural frequency are really high because the 
viscous damping was not taken into account.

Figure 3.15 shows the motion response values at about the natural frequency with 
or without the viscous damping. It can be seen that the viscous damping has a very 
large influence and that it is largely more important than the potential damping in this 
region.

4.2. HEAVE FORCES AND MOTIONS

4.2.1. Diffraction

Figure 3.16 presents a comparison of the results for the heave force on a truncated 
cylinder (geometry 1). We have a good agreement between the D/R code and the 
correct analytical solution.

Figure 3.17 shows the forces on geometry 3. The force due to the analytical 
solution takes into account the phasing of the waves but not the interaction between the 
columns. Nevertheless, the correlation is good. As expected, for the force calculation 
in heave, the interaction between the different columns can be neglected.

In Figure 3.18 the force in heave for the geometry 4 is presented.
The results obtained from the analytical method and the D/R code correlate well. As 

with the forces in the horizontal plane, in heave, the forces on the pontoons can be 
taken into account with the Morison formula.

The Morison approach agrees well also for the force calculation in Heave. We 
notice that the solution given by the R/D code is shifted to the left compared with the 
two other results. This is due to the interaction between the columns which is not taken 
into account by the two other methods.

We can notice that the simple solution given by the Morison approach compares 
really well with the more complicated formulation used by the analytical method.

4.2.2. Radiation

Figure 3.19 shows the added mass in heave for geometry 1. The correlation is 
roughly good. The values are slightly different but the trends match well.

In Figure 3.20, the added mass is presented for geometry 3. The results indicate 
that, the interaction between the cylinders cannot be neglected for low frequency 
waves. The maximum error is about 40% for 0.1 rad/s.

However one has to note that the added mass is small compared to the mass in 
heave. When the mass of the platform is added, the error drops down to 6.5%.

Figure 3.21 presents the added mass for geometry 4. The shapes of the two curves 
given by the analytical solution and the D/R code results match well, but the values are 
quite different. The difference between the two sets of results is about 20%.
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It should be noted that this error compared to the sum of the added mass and the 
structural mass is only 7.5%. This induces an error of 3.6% in the heave natural 
frequency calculation. Thus, approximating the added mass of the pontoons by the 
strip theory and neglecting the interaction between the columns gives a result of 
reasonable accuracy.

The added mass calculated with the strip theory, gives a really low value compared 
to the other two methods. This is due to the fact that the added mass of the columns 
has been neglected. Once again, this has to be related to the fact that the value of the 
added mass is small compared to the mass of the structure.

The potential damping for a single truncated cylinder, presented in Figure 3.22, 
shows quite different results from one theory to the other. Indeed, the analytical 
solution gives smaller values.

From Figure 3.23, we can see that for geometry 3, the potential dampings are 
completely different in term of values. Obviously, the interaction between the columns 
has significant importance for the damping.

Finally, in Figure 3.24, we can see that for the complete TLP the potential damping 
is completely different from the analytical theory to the D/R code. The interaction 
between the columns and between the columns and the pontoons cannot be neglected 
for the calculation of the potential damping in heave.

The potential damping in heave will be taken as zero for the rest of the study. This 
can be justified by the fact that the damping is important only for frequencies around 
the natural period. For the heave motion, the natural frequency (around 2.5 rad/s) is 
not in the range of frequencies where the first order waves are significant

Thus taking the damping as zero should lead to a small error when calculating the 
motions of the TLP as described in the next section.

4.2.3. Displacements

For the Morison approach and the analytical solution, the displacements are 
calculated with a damping equal to zero. Nevertheless, the results agree well with D/R 
code (See Figure 3.25) . In fact, the damping has no influence in heave. The large 
variations of added mass values do not have much influence on the response of the 
TLP either. As stated before the added mass is small compared to the mass. 
Furthermore, the mooring stiffness, because of its high value, is largely predominant 
for the transfer function calculation, in the wave frequency range.

This high value is also the reason of the low values of the displacement in heave.
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4.3. ROLL AND PITCH

4.3.1. Diffraction

Figure 3.26 presents the moments on geometry 2. Only the moment due to the 
horizontal forces is used in this case. The results from the analytical theory and the D/R 
code show good agreement, validating the theory.

On geometry 3, the bottom correction due to the vertical forces was added to the 
moment calculation. The agreement is mainly good (See Figure 3.27). There are small 
differences for low frequencies. This can be explained by the fact that in this range of 
frequencies the approximation on deep draught cylinders is not fully verified. Indeed, 
low frequency waves have a slower decay with depth and their influence at deep 
draught cannot be fully neglected. In the case of the moment, the error is amplified by 
the moment arm. However, the error is still small, and the approximation of the 
moment is good.

Figure 3.28 presents the moment in pitch for the complete TLP (geometry 4). The 
agreement is good between the D/R code and the analytical theory whereas the Morison 
formulation tends to overestimate the moments for higher frequencies.

4.3.2. Radiation

The added mass comparison is presented in Figure 3.29. Since the added mass for 
the analytical solution is calculated with the strip theory, the values obtained are not 
dependent of the frequency. However, the correlation is good, the maximum error 
being 4.2% of the added mass and 1.6% of the sum of the added mass and the inertia.

The damping approximation is very rough since the analytical solution assumes that 
the potential damping is zero. However, the potential damping has little significance at 
frequencies far from the natural frequency. For roll and pitch motions, the natural 
frequency of the Snorre TLP is about 2 rad/s, above the excitation frequency of any 
loading considered in this study.

4.3.3. Displacements

The D/R code and the analytical solution give very similar results (Figure 3.30). 
The Morison formulation overestimates the displacement in higher frequencies. This is 
clearly correlated with the same phenomenon already observed for the moment. The 
large difference in the damping for the two formulations does not seem to pose any 
problem.

It should be noticed that the amplitude of the motions is very small with a maximum 
of 0.023 degrees.



4.4. DIRECTIONAL SEAS

To test the validity of the program, in directional seas, the forces and the displacements 
have been calculated on geometry 4, with a 22.5° and a 45° heading sea.

The forces and the displacements show a good agreement in Figure 3.31 to 3.34. The 
same remarks as for head seas apply. In heave, the D/R code results are shifted to the left, 
due to the interaction between the columns. In roll and pitch small differences appear 
between the D/R code and the analytical theory for the low frequency region. The 
moments are overestimated by the Morison formula for high frequencies.

However, the results are mainly good and are validated both for head and directional 
seas.

5. CONCLUSION

The present study shows that the analytical solution presents a good alternative to solve 
the first order diffraction and radiation problems on a TLP.

It compares well with a D/R code results both for head seas and directional seas. The 
differences in the results for the radiation problem in heave do not have much importance on 
the response calculations.

The Morison approach gives reasonable results too, especially for low frequencies, but 
the analytical solution is more precise.

Furthermore the analytical method is much faster than the D/R code. Indeed about a 
minute is needed to solve the first order diffraction and radiation problems for a range of 20 
frequencies. On a similar machine (DEC Alpha), the D/R code requires about 10 hours of 
CPU time to carry out the calculation.

The analytical method can also be extended to calculate the steady drift and the diffracted 
free surface. This is explained in chapters 4 and 6.

For all these reasons, the analytical method will be preferred to the two others to calculate 
the wave loads in the time domain explained in Chapter 6.
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4.1

CHAPTER 4: SECOND ORDER WAVES

1. INTRODUCTION

This chapter describes the forces due to second order waves, and the corresponding 
motion responses of the TLP.

The steady drift force is calculated using analytical solutions. From the formulation of the 
steady drift, the difference frequency forces are deduced using Newman’s approximation.

The sum frequency forces are not calculated since no simple theory is fully available for 
the moment

In the first section, the theories underlying the calculation of the steady drift forces and 
their extension to the slowly varying drift forces, are presented. Two different analytical 
methods are used to calculate the second order forces.

In the second part, the results from both theories are validated and compared with a D/R 
code.

2. THEORY

2.1. STEADY DRIFT

The steady drift forces depend only on the first order potential. In the force 
calculations, the structural members (circular cylinders) are considered as fixed. The 
radiation potential is not accounted for. In this case the steady drift force is given by:

(2.1- 1)

Where:
ro: waterline 
Sb: wet surface
n0 : vector normal to the surface

T |^: free surface elevation due to first order theory

: first order potential 
T: wave period



Two theories are investigated. The first one uses the expression of the first order 
diffraction potential for a single circular cylinder. The force is then multiplied by the 
number of columns in order to obtain the total force.

The second theory is based on the first order diffraction potential for an array of 
vertical circular cylinders, developed in the previous chapter.

The second method is obviously more precise. However, the first one presents the 
advantage of being easier to develop needing simpler mathematical equations.

2.1.1. Single cylinder

The formulation is based on the extension of the work of MacCamy and Fuchs
[4.1] by Chakrabarti [4.2].

The forces and moments, about Ox and Oy respectively, are calculated from the 
first order diffraction potential for a fixed bottom mounted cylinder.

F dx +  i F dy = 1 +
2kH \  (4pgA2 Rc _

it2 (kR J   ̂ r  ' Sinh(2kH)j (JtR J
n(n + l ) _ lY

|H '(kR e)| |H'ntl(lcRe)| 

(2.1-2)

M , = (2.1-3)

My =Re(M ,,) (2.1-4)

Where:

-2ipgA2
''h 2 1

jtkR Sinh(2kH)
T “ i ? ( Cosh(2kH) - 1 ) +

^ x f -  Y -  -  (Cosh(2kH)-1)|
H'n(kRc)H;;,(kRe)

(2.1-5)

Where:
A: wave amplitude 
k: wave number 
a: wave angle 
H: water depth 
Rc: cylinder radius
Hn: first kind Hankel function of order n
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In order to find the forces on the complete TLP the following assumptions are 
made:

- the columns are supposed to be bottom mounted. This is explained 
by the very fast decay of the potential with depth. The drift forces 
act mainly around the free surface level.

- The forces on the pontoons are neglected since no simple theory is 
available to predict the drift forces on pontoons. This assumption is 
also based on the decay of the potential. The drift has little influence 
on the deep draught pontoons.

The two previous assumptions are valid for surge and sway, but may
be questionable in pitch and roll due to the moment arm.

- The cylinder is supposed to be fixed and only the diffraction 
potential is used.

- The interactions between the columns are neglected. To find the 
forces acting on the TLP, the force is simply multiplied by the 
number of columns.

- The steady drift in heave is not calculated since we consider bottom 
mounted cylinders. However, the steady drift force is small in heave 
and can be taken as zero.

This method can be simplified if one is only interested in the horizontal forces. The 
surge and sway forces can be written as:

4pg A2 R (
1 +

2 k H n(n + 1)
-1

n (kR c)3 I  S inh(2kH )J„0^(kR c)J J |H;(kRef | h ;+1
(2.1-6)

Where R is the drift coefficient that can be approximated by Rapp:

R =
n(n + l ) _ i

*2(kRc) n=ok (kRc) J |H;(kR„)| |H;+l(kRc)|
|2 app ^

(2.1-7)

This approximation is valid for kRc smaller than 0.5, which corresponds, in the 
case of the Snorre TLP (Rc=12.5m), to co < 0.6rad/s.

This approach is appealing for early design stage since the drift can be calculated 
without having to deal with series of Bessel functions. It works only in the horizontal 
plane, but roll and pitch are not so important. Indeed the main action of the second



order forces appears when the slowly varying drift excites the low natural frequencies 
in surge and sway.

The validity of this approximation is discussed in section 3.

2.1.2. Array of cylinders

The first order diffraction potential developed in the previous chapter can be 
combined with Equation 2.1-1 to find the drift force on an array of bottom mounted 
vertical circular cylinders.

The theoretical developments can be found in references [4.3] and [4.4].

The force and moment on one column are given by:

c  pgA R
F d x + l F d , = ----------------!

n ( k R j
2 D ( , 2kH 

1 +
V Sinh(2kH) J J

(  ,  V '

n(n + l)_  

(kRc)2 .
An

My =Re(M d)

H :(kRc)Hr+1(kRc)

(2. 1-8)

(2.1-9)

(2.1-10)

Where:

2pgA:
jtkRSinh(2kH ) ±

•jp-(Cosh(2 kH)_ 0  

n(n +1) T H2 1

(kRc)

a „ a ;+1
h : (kRc )H^j (kRc) 

(2.1-11)
Where An is the first order potential coefficient (See chapter 3).

Similar assumptions to the single body case are made:

- The columns are supposed to be bottom mounted.

- The pontoons are neglected.

- The cylinders are supposed to be fixed and only the diffraction 
potential is used.

- The steady drift force in heave is equal to zero.

This time the interaction between the columns is fully taken into account
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2.1.3. Displacement

From the forces, the displacement in irregular seas can be calculated using the 
following formula:

X, = - L J  Sw (co)M ^dco  (2.1-12)
0

Where Sw is the Pierson Moskowitz wave spectrum related to the wind velocity, Kj 
is the total system stiffness in the direction i and A is the wave amplitude.

The wave spectrum is given by:

S.(co)=
«pmg

CO5
(2.1-13)

Where:
Uj9_5 is the wind velocity 19.5 meters above the sea level 
GCpm and ppm arc two adimensional coefficients:

O t p , ,  = 8.1 10'3 Ppm =0.74

2.2. SLOWLY VARYING DR TFT

The following method to calculate the slowly varying drift forces and displacements is 
developed by Molin in reference [4.5].

The slowly varying drift can be deduced from the drift force using Newman’s 
approximation:

F®(co1,CD2)= F d(co1) (2.2-1)

Since the steady drift in heave is chosen as zero, the slowly varying force in that 
direction is equal to zero too. However, the slowly varying drift is only important at low 
frequencies. It has an effect mainly on surge and sway where it can excite the natural 
frequencies. In heave, roll and pitch, the effects are small.

The response spectrum in direction i is calculated from the following formula:

RSsvdi(co)= 8jsw(n)Sw(co + n)Q?(co) F~‘ 1kt’*0+M^dn
o H 0>FJJ.

(2.2-2)



Where Qj is the transfer function in direction i (See Chapter 2). and are the 
wave amplitudes corresponding to frequencies p and co+p respectively.

This becomes, using Newman's approximation:

R S^co) = 8j Sw(|i)Sw(<B +n)Qf(®)^rr^d|x
0

(2.2-3)

From this spectrum, significant values of the response can be obtained (See chapter

The Newman's approximation is applied to both analytical methods and to the D/R 
code to obtain the slowly varying forces and the displacement.

These are compared in the next chapter.

This chapter covers the validation of the previously developed theories.
First the drift coefficient approximation is tested.
Then, the validation of the steady drift force predictions is carried out. The assumptions 

used by both methods are discussed through a comparison with D/R code results. Both 
forces and steady displacements are compared.

Finally, the comparison is extended to the slowly varying forces and displacements.

Unless otherwise is stated, the figures presented in this section correspond to results for 
head seas.

3.1. DRIFT COEFFICIENT APPROXIMATION

Figure 4.1 compares the drift coefficient R with its approximation Rapp defined in 
equation 2.1-7. It shows a very good agreement for frequencies below 0.6 rad/s. 
However, for higher frequencies, Rapp diverge completely and cannot be used at all.

The steady drift force can be calculated accurately with the approximation for a range 
of frequencies between 0 and 0.6 rad/s.

2):

(2.2-4)

3. VALIDATION
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If the displacement in irregular seas has to be calculated, the following formula should 
be applied:

The value of the upper limit of the integral, UL, is theoretically infinity. In a computer 
calculation, it has to be chosen to ensure acceptable convergence.

Figure 4.2 shows the values of the steady drift response calculated with the exact 
analytical theory for different values of the upper limit. The curves correspond to sea 
states due to 20m/s and 50m/s winds.

For both sea states, the convergence of the integral is reached for a value of UL above 
1 rad/s.

The approximation could only be used with a maximum value of 0.6 rad/s for the 
upper limit. The frequency range is not wide enough to get a good numerical 
convergence.

The same problem appears for the slowly varying drift response spectra:

Figures 4.3 and 4.4 show the response spectra for different values of the upper limit 
UL in the case of wind speed of 20 m/s and 50 m/s respectively.

A good convergence is reached for the value of UL of about 1 rad/s.

Calculating both steady drift displacement and slowly varying drift response with an 
upper limit value of 0.6 rad/s would largely underestimate the second order effects (by a 
factor varying from two to four, depending on the sea state).

The approximation cannot be applied properly for the TLP design and one has to 
consider the use of the exact coefficient R.

3.2. STEADY DRIFT

For the validation of the steady drift, the D/R code has been run with three different 
geometries:

(3.1-1)

ix p (a \
RSivdt(w) = 8 J s w(h)Sw(co+ n)Q ;[(co)_2i_dn

0 A
(3.1-2)

- Geometry 1: an array of bottom mounted cylinders. This should give 
a validation for the analytical solution for an array of cylinders. This 
is used also to see the effects of the interaction between the cylinders 
when comparing with the analytical solution for a single cylinder.
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- Geometry 2: an array of truncated cylinders, corresponding to the 
design of the Snorre TLP without the pontoons. The assumption 
over the depth of the cylinders is tested. The value of the drift force 
in heave is checked.

- Geometry 3: the complete Snorre TLP, with the pontoons. The 
effects of the pontoons are studied.

During the calculations with the D/R code, the TLP was considered as fixed, thus as 
the analytical solutions, it does not take into account the movements of the structure. 
Only the diffraction potential is used in the drift force calculation.

The steady drift forces and displacements calculated with the two analytical theories, 
and with the D/R code for the three different geometries are compared for surge, heave 
and pitch.

The computations have been carried out for a head sea and unit amplitude waves, 
except in the last part which validates the theory for directional seas.

3.2.1. Surge

Figure 4.5 presents the results for the surge forces calculated using the two 
analytical solutions, and the D/R code on geometry 1.

The solution for a single cylinder gives values of the same order as the other two 
but clearly present differences because it does not take into account the interaction 
between the cylinders.

The results from the analytical solution and the D/R code match well, validating 
the program.

Figure 4.6 presents the steady drift force in surge calculated from:

- D/R Code on geometry 2

- D/R Code on geometry 1

- Analytical solution for an array of 4 cylinders

The three sets of results match very well, proving that we can calculate the force 
on bottom mounted cylinders and extend the result to truncated cylinders.

Finally, in Figure 4.7, the analytical solution for an array of cylinders is compared 
with the results of D/R Code on Geometry 3.
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The main difference appears in the high frequency region where the pontoons seem 
to have the larger influence. However, the overall results are quite well correlated.

Figure 4.8 shows the steady displacement in irregular seas due to drift as a 
function of the wind velocity. It compares the two analytical solutions and the R/D 
code results for geometry 2.

The results match well except for high velocity winds. However, the steady 
displacement in this range is largely dominated by the displacement due to the wind. 
The error can be neglected since it is small compared to the total steady displacement.

3.2.2. Heave

Figure 4.9 presents the heave force for the complete TLP calculated by the D/R 
Code. The value of the force does not exceed 35 kN. The corresponding value of the 
displacement in regular sea is about 25.10*6.

In irregular sea, the displacement is about 0.025m for a 50m/s. This is very small 
when compared to the displacement due to the first order waves equal to 0.66 m.

This effect also appears to be very small when compared to the vertical offset of 
the platform when a full coupling of the tendon/TLP system is considered. The 
explanation of this effect can be found in the last chapter of the thesis.

The steady drift in heave is very small and its effects can be neglected.

3.2.3. Pitch

Figure 4.10 presents the steady drift in pitch calculated with the two analytical 
theories and the R/D code for geometry 1.

The results do not show as good agreement as in surge. The values of the moment 
are rather low. Indeed, the moment arm is small since the forces mainly act at the 
water level.

As in surge, the results of predictions for a single cylinder do not present the same 
shape, although magnitudes are of the same order.

In Figure 4.11, the analytical theory for an array of cylinders is compared with the 
results from the D/R code for geometries 2 and 3.

The results agree quite well for frequencies between 0.5 and 0.9 rad/s. For lower 
frequencies, the pontoons seem to have some effects on the moment. In fact, low 
frequency waves go deeper into the sea, and create relatively more loads on the 
pontoons. In the case of the moment, the effect is amplified by the moment arm.

The steady displacements created for irregular seas show few differences when 
calculated using different theories (See Figure 4.12). The larger differences appear for 
high velocity wind. However, for such values, the steady displacement in pitch due to 
waves is small compared to the steady displacement due to the wind.



4.10
3.2.4. Directionality

The formulations derived in this study and the D/R code take into account the 
directionality of the waves. To validate the wave angle dependence, the steady drift 
forces have been compared with the D/R code results in the case of 22.5° and 45° 
heading seas.

The results are presented in Figures 4.13 and 4.14. The agreement is as good as for 
head seas.

For the array of cylinders, surge and sway are giving good results. The heave force 
can be neglected since very small. The results in roll and pitch present a good 
approximation despite a small difference at lower frequencies.

For the single cylinder theory, the forces and moments are similar in magnitude, but 
not in shape, because of the interaction between the columns.

3.3. SLOWLY VARYING DRIFT

Since the quadratic transfer functions (QTF) for the difference frequency forces are not 
calculated by the D/R code, the Newman’s approximation is also used for the calculation 
of the slowly varying drift utilising the steady drift force calculated by the program.

Geometry 2 has been preferred to the complete TLP for computational reasons. The 
D/R code was giving problems for low frequency calculations for the complete TLP. 
Furthermore, due to the fact that 50 different frequencies were required, a lot of time was 
saved by using a simpler mesh.

The integration given in equation 2.2-3 was carried out for a range of frequencies from 
0.02 to 1 rad/s with a frequency step of 0.02 rad/s.

3.3.1. Surge

Figure 4.15 presents the response spectra due to the slowly varying drift forces 
calculated using three different methods, for the wind velocity of 50 m/s.

The responses, calculated with the analytical theory for an array of cylinders and the 
R/D code, show good agreement.

The solution for a single cylinder presents a lower peak at the natural frequency, 
underestimating the response.

Figure 4.16 presents the significant values of the responses for a range of wind 
speeds from 5 m/s to 50 m/s. We have a good agreement between the analytical 
solution for an array of cylinders and the results of the D/R code.

The solution for the single cylinder yields underestimate of the significant response 
for high velocity winds.



3.3.2. Heave

The slowly varying drift force and response in heave are taken as zero by both 
analytical solutions.

The R/D code gives a significant response of 0.04 m for 50 m/s wind. Since this is 
very small compared to the displacement due to other forces, it can be considered as 
zero.

3.3.3. Pitch

Figure 4.17 and 4.18 present the responses due to slowly varying drift forces for 
the wind speed of 50 m/s and the significant values of the displacement for different 
wind velocities.

The agreement is quite good between the analytical theory for an array of cylinders 
and the R/D code results for geometry 2.

As in surge, the analytical solution for a single cylinder tends to underestimate the 
displacements.

However, one should note that the values are very small, and that the slowly 
varying drift do not have much incidence on the pitch displacement.

4. CONCLUSION

The application of the analytical solution of the first order potential for an array of bottom 
mounted cylinders to the calculation of the steady drift, and the slowly varying drift has been 
presented here. This theory gives results that compare well with results from a D/R code.

The analytical theory presents a great advantage in terms of computation time, especially 
for the slowly varying drift that requires to cover a large range of frequencies with a small 
step, in order to calculate the integral with accuracy.

The theory based on the solution for a single column does not give such a good 
agreement. The method underestimates the movement of the TLP. However, the method is 
simpler to apply than the second analytical solution, and can give a quick estimation of the 
drift force. This estimation is important in the case of TLP's since the drift should not be 
neglected in the horizontal plane.

However, when this theory is applied, the exact drift coefficient should be used. The 
approximated coefficient, which avoids the calculation of the series of Bessel function, 
cannot be applied. The range of validity of the approximation is too small to calculate 
correctly the steady drift displacement or the slowly varying drift response.

One should note that the steady drift is mainly important for low velocity winds. For high 
velocity winds, the steady wind force is predominant.



For a TLP, the slowly varying drift is important mainly in the horizontal plane, where it 
can excite the natural frequencies. In heave and pitch, because of the high stiffness of the 
tendons, the natural frequencies are in the high frequency range, and cannot be excited by 
the slowly varying drift. Thus the slowly varying forces have very little effect on the 
response of the system in these directions.
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CHAPTER 5: WIND AND CURRENT

1. INTRODUCTION

Apart from the waves, two other environmental effects produce loading on offshore 
structures, the wind and the current. Their action should not be neglected since they can be 
rather important.

The wind loading can be decomposed into two components - a steady part and a slowly 
varying part. The steady wind force creates a steady offset of the structure. The varying 
force produces low frequency displacements. The second part is smaller in term of force 
amplitude. However, it could be important for TLP’s in term of displacements, since it can 
excite the natural frequencies in surge and sway.

The current is quite a complicated phenomenon. A simplified formulation is used here. 
The current is considered as the results of tides, displacement of large volumes of water, and 
storm surge, surface effect due to the wind.

The first part introduces the wind effects on the TLP. Both steady and varying winds are 
accounted for. The forces and the displacements are calculated.

In the second part, the current effects are studied. The two different representations of the 
current that are used to calculate the forces and the displacements are compared.

2. WIND

In the first part of the study, the steady and varying force formulations are derived. They 
are then used to determine both steady and slowly varying displacements.

Five different wind spectrum formulations are presented to calculate the dynamic 
response. The displacement values are predicted using each of them and the results are 
compared. The aim is to determine the most suitable spectrum formulation for offshore 
structures.

2.1. WIND FORCES

The lift force due to the wind is very small and is neglected, only the drag force is 
considered.
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The wind velocity can be divided into two parts:

V =V  + vw  w w

Where:
Vw is the mean wind speed
vw is the fluctuating wind speed, representing the wind gusts. 

The drag force due to the wind in the x direction is calculated as follows:

F „  = jP .C dA, (V. + v„)2 cos2 p

Where:
pa is the air density 
Q  is the drag coefficient
Ax is projection area exposed to wind in x direction 
p is direction of the wind

The force can also be divided in 2 parts:

The mean wind force:

—  1  ,
F = —p ChA cos Bw j  2 '  * d x  w  r

and the fluctuating wind force:

fw, = P,CdAI Vw VWC0S2P

(2.1-1)

(2.1-2)

(2.1-3)

(2.1-4)

(2.1-5)

The term consisting of —p,CdAj v2 cos2P is neglected since it is very small 

compared to the others ( 2vwVw »  v2 ).
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The wind velocity changes with the height z, the following formula can be used to 
describe these variations:

Vw(z) = Vw(lO )(^ J  (2.1-6)

Where Vw(10) is the wind speed at 10m above the sea level.

To calculate the wind force, the loads should be integrated over the height of the 
structure to take the height variation into account.

The wind forces in the horizontal plane can be calculated as:

F«x= {p.C dDsycos2 p jV w2(z)dz
0

H,_
fwx = P.CjD^ cos2 p J  Vw(z)vw(z)dz

0

Fwy= 4 p .C dD„ sin2 p Jv j(z )  dz
^ 0

H «_
f»y = P.CjD^ sin2 p |V w(z)vw(z)dz

0

Where:
Hs: height of the structure
Dsx and D^: length of the structure in x and y directions 

Since no lift force is considered the force in heave is equal to 0.

^  = 0 fW2 = 0 (2.1-11)

The moments about the centre of gravity G are given by the following formula:

M wx = - |p , C dD„ sin2 P J ( z - ZG) V2(z)dz (2.1-12)
1 0

H‘ _
m»x = -P .C dD„ sin2p | ( z - Z G)Vw(z)v„(z)dz (2.1-13)

(2.1-7)

(2.1-8)

(2.1-9)

(2 .1- 10)
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M wy = “ P.CjDjy cos2 p |  ( z -  ZG) V^(z)dz
** A0

(2.1-14)

=P,CdDsy cos2 P J(z~  ZG) Vw(z) v w(z)dz (2.1-15)
0

In the program, the integral is evaluated by dividing the structure into strips of small 
height where the wind velocity is assumed to be constant. The force on every strip is 
then added to obtain the total force.

2.2. DISPLACEMENT

2.2.1. Steady Displacement

The steady wind force induces a steady offset. The steady offset in the direction i is 
calculated as follows:

As for the waves, the relation between the amplitude of the velocity and the 
frequency is given by a spectrum.

(2.2-1)

Where Kj is the total stiffness of the system TLP/tendons in the direction i.

2.2.2. Fluctuating Wind Motion 

Since every load is considered harmonic, the varying wind velocity can be written
as:

vw = |vw | sin cot (2.2-2)

| v » f  = Swi» d c o (2.2-3)

Using the above equation, the response spectra can be calculated:

RSwi(®) = Swil>d(co) Q?(®)£(®) (2.2-4)
vvwy



Where fai is the aerodynamic admittance function which is introduced by Simiu et al 
[5.1]. It takes into account the departure from perfectly correlated flow:

l + ^ IA
VW(10)

(2.2-5)

Indeed, the formulation developed for the wind assumes a perfectly correlated flow. 
The wind field is supposed to be the same on every point of the structure. This is 
hardly the case in reality. One simple way to account for the variations of the perfectly 
correlated flow is to introduce the admittance fa. A multiple point loading approach 
(See Kareem et al [5.2]) would give more accurate results. However, the method is 
quite complicated and does not present any real advantages in the case of a simplified 
geometry of the deck. This method should be used during the final design stage, when 
the geometry of the deck is well known and when more accurate results are needed.

2.3. WIND SPECTRA

Several wind spectrum formulations have been developed over the years. They are all 
based on wind measurements. However, some of them have been derived for civil 
engineering applications, and are based on measurements over land.

They may not be fully representative of the wind at sea, but they are used frequently in 
the design of offshore structures. One reason is that they were the only ones available at 
one time. However, new spectra have been developed recently, based on measurements at 
sea.

The response spectra of the varying wind are calculated with five different spectra and 
the results are compared in order to determine which one would be the more appropriate.

These spectra are:

- the Harris wind spectrum

- the Davenport wind spectrum

- the Kaimal wind spectrum

- the Ochi-Shin wind spectrum

- the Slettringen wind spectrum
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2.3.1. The Harris wind spectrum

This spectrum has been derived by Harris [5.3] from land based data, but is widely 
used for the prediction of wind response of offshore structures.

f  = cd / 2% is the varying wind frequency

2.3.2. The Davenport wind spectrum

This spectrum has been developed by Davenport [5.4] for land structures, and is 
considered to represent wind at sea not so well. In particular, the energy at low 
frequencies is underestimated.

However, a number of designers in the offshore industry still use it.

(2.3-1)

Where:
Lh = 1200m at sea
k  = 8-KT4 + 6.4-l<rsVw(lO)

'Davenport (2.3-2)

Where all the symbols have already been defined.

2.3.3. The Kaimal wind spectrum

This spectrum is very revelant since it has been derived by Kaimal [5.5] from sea 
based data:

^K aim al ( ^ ) (2.3-3)

Where:

Unlike the others this spectrum is function of the height z. z is taken as the centre 
of the surface exposed to wind.



2.3.4. The Ochi-Shin wind spectrum

This spectrum is based on data measured over a sea-way. It has been developed 
recently. The formulation has been given by Ochi and Shin [5.6] in 1988.

Like the Kaimal formulation, the spectrum is a function of the height z. The first 
part of the spectrum (for f’ < 0.003) is just an artificial extension of the spectrum since 
wind velocities cannot be measured for such low frequencies.

2.3.5. The Slettringen wind spectrum

This is the more recent of the wind spectrum presented here. It has been developed 
from measurement taken at sea offshore Norway. This spectrum should be considered 
for offshore structures designed for the North Sea.

It is given as a reference by the NPD [5.7].

K V M 0 ) f  
S(f) = 583 for 0 < f '<  0.003

0.003 < f '<  0.1 (2.3-4)

Where:

(2.3-5)

Where:
n = 0.468



2.4. RESULTS

To calculate the wind forces, a simplified geometry of the deck has been adopted. The 
geometry considered for the wind calculation is presented below.

The geometrical idealisation of the deck shown above yields an approximate offset due 
to the wind.

The response spectra calculated with the different wind spectrum formulation are also 
compared.

Following the API recommendations [5.8], the drag coefficients are taken as 0.5 for 
the columns and 1.5 for the deck.

The area is divided into horizontal strips and the forces are computed on each of them 
taking into account the variation of the wind velocity with the height. (See section 2.1). 

For the calculations carried out below, a zero degree heading wind has been chosen.

2.4.1. Steady response

Table 5.1 gives the steady wind displacement, in surge and pitch as a function of 
the wind velocity.

For high velocity winds, the surge steady displacement due to wind largely 
dominates the displacement due to the steady drift and the current. For lower velocity, 
the force due to the wind is rather small compare to the two other phenomena. The 
steady wind has to be calculated carefully in extreme weather conditions since it is the 
more important steady phenomenon.

In pitch, the importance of the wind is less significant. This is largely due to the 
high level of the centre of gravity of the Snorre TLP, which decreases the moment 
arm. One should note that in the case of the moments, the effects of the wind and the 
steady drift and the current cancel each other.

Geometry of the surface exposed to wind

101m

Columns

J  15m

«----- ►
25m
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2.4.2. Dynamic response

The different wind gust spectra are plotted in Figures 5.1 and 5.2 for the mean wind 
speed of 20 and 50 m/s. Whilst they show a very good agreement at high frequencies, 
they present very large differences in terms of shape and values for low frequencies.

One should look closely at the region between 0.04 and 0.1 rad/s. Indeed, it is this 
part of the spectra that excite the natural frequencies in the horizontal plane, and 
produces the bigger displacements of the TLP.

The Ochi-Shin spectrum gives very high response values compared to those 
obtained from other spectra. The Slettringen spectrum presents a similar shape. This 
spectrum can reach high values at low frequencies, but is comparable to the Kaimal 
spectrum for higher frequencies.

The Harris spectrum and the Kaimal spectrum present quite similar shapes, 
although the latter yields smaller response values.

The Davenport spectrum is the only spectrum which approaches zero at low 
frequencies. It seems to underestimate the energy carried by the wind at low 
frequencies.

One should note, in Figure 5.2, the flat region of the Ochi-Shin spectrum. This part 
does not represent any physical phenomenon. In this region, the frequencies are too 
low to obtain any reliable measurements. Therefore the spectrum has been extended 
arbitrarily by a straight line. This implies that we are not able to model the actual wind 
energy distribution in the low frequency region which is important for accurate 
prediction of the motion response due to dynamic wind. The differences experienced 
due to the use of different wind spectra become more predominant as the wind velocity 
increases.

Figures 5.3 and 5.4 present the surge response spectra of the TLP due to dynamic 
wind forces. It is very clear from these figures that the main response appears at the 
natural frequency (0.06 rad/s). The difference between the response clearly increases 
as the wind velocity increases. Higher response values are obtained from the Ochi- 
Shin and the Slettringen spectra.

These figures can be correlated with Table 5.2 that presents the significant values of 
the response spectra for different wind velocities. The spectra present different 
behaviour depending on the wind velocity. The Ochi-Shin spectrum always gives the 
highest motion responses. However, the Slettringen spectrum gives smaller motion 
responses than the Harris spectrum for low wind velocities. Whereas for the wind 
speed greater than 20 m/s, die Slettringen spectrum yields larger response values. A 
similar kind of behaviour can be observed between the Kaimal and Davenport spectra. 
The Kaimal spectrum gives higher response values for high velocity winds.

The differences in term of significant values found in this study are large for high 
velocity wind, but they can be correlated with the calculations canied out by Wichers 
[5.9]. From the calculation of wind loads on a tanker, Wichers found a factor of 1.5 
between the significant values of the response calculated with the Ochi-Shin and the 
Harris spectra, for 30 m/s mean wind.

Figures 5.5 and 5.6 show the pitch response spectra. The dynamic wind does not 
have the same importance for pitch response predictions as it has for surge response.
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The natural frequency is in the high frequency region (over 2 rad/s), and is not 
excited by the dynamic wind. The response is then quite small.

Table 5.3 presents the significant pitch response values. They vary from one 
spectrum to another, but not in such an extend as in surge.

Finally, one should note that the significant motion response values due to dynamic 
wind are of the same order of magnitude as the displacement values of the steady 
wind. They can even be bigger in surge for high wind velocities. Thus, the dynamic 
wind response cannot be neglected in predicting the behaviour of compliant structures 
such as a TLP.

The choice of a correct wind spectrum is not easy, due to significant differences 
between the different models. However, since the dynamic wind behaviour is poorly 
modelled, conservative models should be used. In this case, the Ochi-Shin and 
Slettringen spectra appear to be an appropriate choice. Furthermore, they are the 
more recently developed spectra, and are based on sea measurements.

3. CURRENT

The current is a complicated phenomenon. A series of simplifications is used to model 
the current. The current occurs as the result of the tide and storm surge. The velocity profile 
is considered, constant in time. Thus, only the steady drag forces are taken into account, 
and the current loads can be calculated independently from the wave forces.

Two simplified geometries of the velocity profile are used and the displacement values 
obtained using two different current profiles are compared. The first geometry is based on a 
velocity profile constant over the water depth, and the second is based on a velocity profile 
varying over the water depth which approximates the effects of the storm surge and the 
tides. These current profile definitions are given in the guidance notes of the Department of 
Energy [5.10].

3.1. CONSTANT VELOCITY PROFILE

The current force in the x direction is calculated as follows:

Where:

= r P C d Ax.U*cos20

U c = U t + U S: constant current velocity.
Ut : mean tidal current velocity 
Us: mean storm surge current velocity 
Cd: drag coefficient 
0: direction of current
Ax: surface exposed to current in x direction 
p: water density

(3.1-1)
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Similarly, for the y direction 

1
Fc, = 2'pCd Ay. U, sin 0 (3.1-2)

There is no component of the force in the vertical direction z.

F = 0  (3.1-3)

The moments in roll and pitch are:

M „ = (Z G- Z B)Fcy (3.1-4)

M cy= -(Z G- Z B)F„ (3.1-5)

Where:
ZB: Z co-ordinate of the buoyancy centre. 
Zq: Z co-ordinate of centre of gravity G.

3.2. VARYING VELOCITY PROFILE

The varying current velocity profile is the sum of the profiles of the storm surge 
current and the tidal current The resulting form of the profile is presented in the sketch 
below. The storm surge current due to wind, presents a higher velocity near the free 
surface. The tidal current velocity decreases near the bottom of the sea. This formulation 
of the current is not directly related to the physic of the problem, it is an empirical 
formulation based on measurements at sea.

Current Velocity Profile:

Free Surface

w .

H

—I

I

h’

0.5 H

Sea Bed



3-2.1. Tidal current 

The tidal current velocity profile is defined by reference [5.10] as follows:

s
032 H

U, for 0 ^ s ^ 0 3 H
(3.2-1)

U,(s)= 107U, for 0 .5H <s<H

Where:
Ut(s): the velocity of the tidal current at a height s above the sea-bed

Ut : depth-averaged speed of the tidal current 
H: water depth

3.2.2. Storm surge current 

The storm surge current velocity profile is defined by reference [5.10] as follows:

Ut(s)= U s for 0 S s < h'

Where:
Us (s): storm surge current velocity at a height s above the sea-bed 

U s: depth-averaged velocity of the storm surge current

(3.2-2)

h -  H -1 0 (U W - U s)  height above the sea-bed at which the current
profile changes slope 

Uw = 0.03xWind speed

In the case of Us > Uw, the velocity profile becomes:

Us(s)= U s for 0 < s < H (3.2-3)

In order to keep the value of the depth averaged velocity constant, the following 
multiplying factor has to be introduced throughout the bilinear profile.
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3.2.3. Forces

Due to the varying current profile, the formulation of the forces becomes:

Fcx = ~ p  Cd cos2 0 J(Ut(s)+Us(s)Jdy ds (3.2-5)

Fcy = -i-pCd sin2 0 J(Ut(s)+ Us(s))2dxds (3.2-6)

(3.2-7)

M „ = - i p C dsin20 J ( s - H - Z G)(ut(s)+Us(s))2dxds (3.2-8)

= -p C d cos2 e|(s -  H -  ZG)(Ut(s) + Us(s))2dy ds 
2 .

(3.2-9)

In order to calculate the above integration, the method used for the wind force 
formulations, is used. The structure exposed to the current is divided into small strips 
where the velocity is assumed to be constant. The total force is obtained by summing 
the forces on all the strips.

3.3. STEADY RESPONSE

Since the current velocity is constant in time, the displacement in the direction i is 
given by the following formula:

Where Kj is the total stiffness of the system.

3.4. DISCUSSION OF THE RESULTS

Table 5.4 and 5.5 show the steady displacements in surge and roll induced by the 
current at seven different locations in the North Sea (see Figure 5.7). For these locations, 
the following data are obtained from measurements at sea:

- U t the average tidal current velocity over the water depth

K:
(3.3-1)
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-U s the average storm surge current velocity over the water depth 

-U wd the hourly mean wind velocity

The results are given using methods based on a constant velocity profile, and a 
varying velocity profile.

The constant current velocity is the sum of the average velocity over the water depth 
of the tidal current and the storm surge current.

The direction of the current is taken as zero degree for all the computations.

3.4.1. Surge

Two different current profile definitions yield displacements which differ from each 
other from 26.5% to 6.43%. The following explains why the correlation between the 
two methods varies so much.

The tidal velocity can be written as:

u = u, + ucur t (3.4-1)

U t = U t + AUt (3.4-2)

Where:
AUt = 0.07 Ut

Similarly, the storm surge velocity becomes:

US= U S+AUS (3.4-3)

Where:

h '= H -1 0 (U w - U . )

We neglect the factor:

5 ( U „ - U ,)2 V  
H-U ,

since HW.US» 5 . ( U W- U S)2
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If we neglect the second order term, the force becomes:

Fc = Fc +AFt +AFs (3.4-4)

Where:

AFt = p C dAx (Us +U t)AUt

AFs = pCdAxs(Us + U t)AUt

(3.4-5)

(3.4-6)

Where:
Ax is the total area exposed to current

Axs is the area exposed to the modified profile of storm surge current, 
depending on variable h\

Table 5.4 gives the values of displacements due to AFt and AFS

AF, AFAX = —-L AXS = —L (3.4-7)
K, K,

These values are also compared with the displacement due to varying profile 
cunrent, and expressed as a percentage:

AXt AXS
x ~  311(1 ~vp vp

Where Xvp is the displacement due to the varying profile current.

The column called “verification” gives the value Xcp + AXt + AXS, where Xcp is
the displacement due to the constant profile current. The correlation with the 
displacement due to the varying profile current is good. The values are a little higher 
than Xyp because the correcting factor is neglected in the storm surge profile.

Large variations between the results given by the two current profiles are not due to 
the tidal current. Indeed, the largest displacement AXt, occurring at location 3, 
corresponds with a small difference between the two computations.

The differences between the results given by the two methods, are mainly due to the 
storm surge current. These differences seem to be correlated with the factor
Uw -  IT s which is used to calculate the height h’ over which the storm surge current 
has a greater velocity profile. High values of the factor give large differences between 
the results of the two methods.

However, the biggest variations are observed when the response of the TLP to the 
current is at the smallest value. In these cases, the displacement due to the current is



relatively small compared to the displacement due to the wind. Thus, the error is finally 
small when compared to the total steady displacement. The two profiles do not give 
such a big difference in terms of total steady surge displacement

3.4.2. Pitch

The same comparison has been carried out for pitch. The results can be seen in 
Table 5.5. The difference between the two methods varies from 19% to 15%. The 
variation between the two methods is not so much due to the storm surge. Indeed, the 
variation due to the tide is now quite important because it takes place at a larger water 
depth where the moment arm is larger. The steady displacements in pitch are small due 
to the high stiffness of the system. However, in pitch, the current has the largest 
contribution to the steady displacement compared to the wave drift and wind.

This is due to the particular geometry of the Snorre TLP. Because of its high centre 
of gravity (13.5 m above the sea level), which gives a large moment arm.

4. CONCLUSION

Wind and current load calculations for a TLP structure have been presented in this 
chapter.

The steady wind calculations can easily be carried out. However, the modelling of 
dynamic wind is more complex. The choice of a wind gust spectrum requires a careful 
consideration. Indeed, the spectrum formulations are all very different and give large 
variations in the results from one to another. Three main reasons lead to the choice of the 
Ochi-Shin or the Slettringen spectra. They give more conservative results. They were 
derived from recent measurements and finally, the measurements were obtained at sea.

A multiple point loading method for the wind load calculations could be considered for 
more precise results.

The study has shown that the wind effects on a TLP should not be neglected. In extreme 
weather conditions, the mean wind is responsible for the largest part of the offset of the 
structure.

In the same weather conditions, the varying wind loading creates a high surge response. 
The dynamic wind response is, at least, as important as the steady response.

In surge, the geometry of the current profile does not seem to be really important
The differences are larger in pitch. In the case of the Snorre platform, the steady response 

in pitch is dominated by the current load. This is purely due to die geometry of the TLP. The 
centre of gravity being high above the water level, the current forces yield large pitching 
moments due to a large moment arm.

In other geometrical forms, it is very likely to have a steady pitch displacement dominated 
by the wind effects. The steady wave drift is not likely to produce large moments, because 
forces mainly act near the free surface level.
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CHAPTER 6: TIME DOMAIN STUDY IN REGULAR WAVES

1. INTRODUCTION

The main environmental effects have been modelled and tested in the frequency domain. 
The simplicity of the method allows quick calculations and is ideal for validation. However, 
if one wants to take into account non-linearities and to calculate the loads in the mooring 
lines, he has to carry out the study in the time domain. Thus, the model developed for the 
frequency domain is converted into the time domain. The equations of motion controlling the 
movements of the platform do not have to be linear, and the loads are not considered as 
harmonic. The differential equations are solved numerically for every time step. This kind of 
method is more complicated to implement and it requires high computational time.

The method presented here has been developed for a regular sea only. Due to the non- 
linearities, the extension to irregular seas is more complicated than in the frequency domain. 
This model is helpful to try to understand the effects of the different non-linearities and to 
check their relative importance. An extension to an irregular sea may be carried out later but 
is out of the scope of this study.

This chapter is divided into 5 sections. First, the principle of the time domain method is 
explained.

Then, a mathematical model to predict the non linear forces and motions in time domain is 
developed.

Finally, in section 4, four separate analyses are carried out. First, the effects of different 
non-linearities introduced in the model are investigated in terms of responses and tendon 
forces using the Snorre design.

The same study is carried out using the Heidrun TLP. The influence of the geometry of a 
platform on non linear responses is investigated by comparing the results obtained from the 
Heidrun analysis with those obtained from the Snorre analysis. The results are rather 
different since Heidrun is a much larger structure. In particular, its response in pitch as 
expected is different due to a lower centre of gravity.

Then, the response characteristics of Snorre and the forces in its tendons are investigated 
for a range of different regular sea states. For each of these sea states, the linear and non 
linear models are compared.

Finally, the influence of directionality of the environmental forces is investigated. The 
response values and the tendon forces are calculated for non collinear wave, wind and 
current. The aim of this part of the study is to investigate the worst weather conditions in 
term of loading in the tendon lines.



TIME DOMAIN ANALYSIS

The time domain analysis, developed to calculate the motions of the TLP and the forces 
the tendons, can be described in three steps as summarised in the following diagram.

time t

Forces

Responses

Tendon Force

+dt

Tendon
Stiffness

Motion
Equation

Forces
Calculations

For the instant t:

1. Different forces acting on the platform are calculated at time t.

2. Response values are deduced from the differential motion equations:

«  = « • )  (2-0

The equations are solved numerically using a predictor corrector method. The 
expension of equation 2.1 in the case of a TLP is described in section 3.

3. Displacements are used to calculate the forces in the tendons.
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Once these three calculations have been carried out for the instant t, the program goes 
through the same process again for the instant t+dt.

The final results of the analysis are produced in the form of time histories. For a more 
practical interpretation, the time series form of the results were processed through 
Fourier analysis and the response and force values are presented in the frequency 
domain. This process also enables us to identify super-harmonics corresponding to high 
order responses.

3. MATHEMATICAL MODELLING

This chapter introduces the formulation of the problem in the time domain.
The environmental loads considered are almost the same as in the frequency domain:

- First order waves

- Second order drift

- Steady wind

- Steady current

However, the slowly varying wind is not accounted for. Since the sea is taken as regular, 
the effects of the slowly varying drift do not appear in the model.

The model description is divided into two sections. The first presents the linear part of 
the model, which corresponds to the frequency domain model. A first formulation of the 
tendon forces is also described. It corresponds to a linear stiffness.

The second part describes different non-linearities that are included in the model. The 
physical effects are explained and the developments of mathematical models are detailed.

An alternative formulation of the tendon forces based on a non-linear stiffness of the 
mooring system is also given.

3.1. LINEAR MODEL 

In the linear model the motion equation can be written as:

([M] + [Ma(«.)]){x} + [Cp(o)]{x} + ([Km] + [Kh]){x} = {F(t)} (3.1-1)

Where:
M: mass-inertia matrix.
Ma: added mass matrix.
Cp: potential damping matrix.
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Km and Kh: the mooring and hydrostatic stiffness matrices.
F(t): linear force vector applied to the structure.
X, Xand X: acceleration, velocity and displacement vectors of the 
structure.

The coefficients such as mass and stiffness are defined in the frequency domain.
The first order wave forces, added mass and potential damping are calculated at the 

wave frequency, using the analytical solutions developed in Chapter 3.3.

In the frequency domain, each force was studied separately. This is not the case in the 
time domain. The force vector F includes all the forces applied to the structure. In the 
linear model, it corresponds to the time dependent forces such as the wave exciting 
force, as well as the steady forces due to the drift, the current, and the wind.

In the linear model, the mooring system is considered as one linear spring. Since the 
set down is neglected the elongation of the tendons is given by:

dL = — —  (3.1-2)
COSOL

Thus, the force in the tendons becomes:

.p ^  AE Z „  i ^FT=,d=T + - ------------  (3.1-3)
Lc cosac

Where a c is the cable angle given by:

r
ol =  arctan

V

Vx;+Y:
L .+ Z

(3.1-4)

And:
X, Y, Z: displacements in surge, sway and heave 
A: total section of the tendons 
E: Young modulus of the tendons 
Lc: length of the tendons 
T: initial pretension

3.2. DEFINITION OF NON-LINEARITIES

Several non-linearities are added to the first linear model:

- the viscous damping: this factor is due to the resistance water during 
oscillations of the structure.



- the stiffness of the tendons: the mooring system is not linear because of the 
coupling between the different motion of the platform. For example, the 
surge displacements create a set down in heave.

- the drag force: this force which is due to the viscous effects is quadratic and 
will create a force of higher order.

- the coupling of the movements of the platform: due to the rotations of the 
platform, the different motions are coupled together.

- the effects of the free surface: The forces and coefficients are normally 
calculated up to the mean water level. In order to investigate the non 
linearities due to free surface effects, the integration is carried up to the free 
surface level. This may have some importance in the case of steep waves.

- the effect of the motions of the structure on the wave load prediction. In the 
linear model, the TLP is supposed to be fixed in formulating the wave 
forces. In the non linear model, the wave forces are not calculated at a fixed 
reference position anymore, but at the actual position of the TLP.

3 .2 .1 . Viscous damping

The viscous damping is the only non-linearity that was taken into account in the 
frequency domain study through an iteration process (see Chapter 2). In the time 
domain, its expression is straight forward. The quadratic term is directly included in 
the equation:

(jM> [M.(co)]){x}f (jCp(co)]+ CK»L KX>= {F(0}
(3.2-1)

3.2.2. Stiffness of the tendons

In the frequency domain, the tendons were considered as one linear spring. In the 
time domain, it is possible to model the stiffness of the tendons and their coupling with 
the TLP in a more precise way.

In the equations of motion, the linear mooring stiffness is replaced by the restoring 
forces Fm-

(jM]+ [M.(co)$x}f ([Cp(a>)]+ [Cv]-j]x|}Xx> [Kh]{X}= £(t)}+ {FM(t,X)j
(3.2-2)

The following method describes the calculation of these restoring forces induced by 
the mooring system on the TLP. The coupling between the tendons and the TLP is 
fully taken into account



A formulation of the forces in the tendons is also given.
6.6

The assumptions made are:

- The tendons have an elastic behaviour.

- The hydrodynamic effects on the tendons are neglected.

- The tendons are massless.

1. Calculation of the movements at the connection point C between the TLP and the 
tendons, in the co-ordinate system centered on G, centre of gravity.

The displacement is different at the bottom of each column. Thus, the system is 
modelled with four non-linear springs.

In the following, we consider the system formed by one column and one of the 
springs representing the tendons.

2. Change of co-ordinate system

(3.2-3)

Where:

Cos Qy 0 Sin Cly
Tq = SinGySinQx CosQx -SinQ xC osny 

-Sin Hy Cos Hx Sin Ox Cos Qx Cos Qy
(3.2-4)

Xc: displacement at point C
Xq: displacement at point G centre of gravity of the platform
Xc: co-ordinates of the point C
n x, Qyi displacements in roll and pitch respectively

To simplify the problem, a new co-ordinate system (Co, x', y', z) is considered. It is 
chosen so that the vertical axis remains the same and the displacement along y' is 
equal to 0. C0 is the original position of the point C. (See sketch below).
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The angle pc between the axis X and X  is given by: 

pc = arctan
K.XJ

The displacement in the new co-ordinate system then becomes: 

c CosPc

The restoring forces in surge and sway are given by:

M̂x — ^Mx' C0Spc 
F My = FMx'S inPc

3. Restoring Forces

The following sketch shows the geometry of the mooring system 
representation of the forces applied to the tendons.

X \ Fmz-T/4 f

Sea Bed

t -
(T/4+dT)

Oc /
" y  F mx’

Tendon /

(3.2-5)

(3.2-6)

(3.2-7)

and a



From the geometry of the system we have:

X'
Sin a ,  =

L ,+ d L

Cosa = r i ~ ~ jr  (3.2-8)
Lc +dL

x:Tana, =
’• L . + Z e

Where dL is the elongation of the tendons. 

The equilibrium of the forces gives:

Fw = - g + d T j s i n a c
,  \  (3.2-9)

F- - f = - ( T +dT) Cosa=

Where T is the original pretension and dT is the variation of the pretension. 

Assuming that the tendons have an elastic behaviour:

A F
dT = — dL (3.2-10)

4L,

Where: A: total sectional area of the tendons
E: Young Modulus of the tendons

From Equation 3.2-8, we can calculate the angle of the cable:

a ,  = arctan
U e + Z f

and the elongation of the tendons:

(3.2-11)

dL = L‘ + Z‘ - L  (3.2-12)
Cosa,
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Then, the forces become:

F =Mx
_1
4

J_
4

^  AE JT T +  dL
Lc J

(  AE ^T + — dL 
I  Lc ,

x:
Lc +dL

T
Cosar + — 

c 4

(3.2-13)

Using Equation 3.2-7, the restoring forces in surge and sway become:

F =Mx

F =My

AE 
T + — dL

T +

Lt

AE

x:

\
dL

Lc +dL

x:
L +dL

CosP(

Sinpe
(3.2-14)

The restoring moments in roll and pitch are given by:

■̂ Mx — X: Lmz Zc F ^  
^My = Zc Fj^ — Xc Fj^

(3.2-15)

The force in the tendons is simply given by:

T AEdL
Fiend = “  +4 4LC

Where dL is calculated in Equation 3.2-12.

(3.2-16)

3.2.3. Drag Force

The drag forces were neglected in the frequency domain study. These forces can be 
linearised, but since the inertia forces are predominant, the drag forces are not of great 
interest.

However, in the time domain, it is possible to take into account the drag forces to 
study the high order excitations.

The effects of current and waves can be combined in the following drag force 
equation:

Fd=^pCdDc r |Uo. +Uwme|(ucnr + U wta.)dz (3.2-17)

Where Ucu, and Uwave are the current and wave velocities.
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The drag force is calculated using the following coefficients:. 

C$x = Ccdy = 0.6 CSZ = 0.82

CS x = CSy = C§z =  2

3.2.4. Coupling between the different modes of motion of the platform

The rotation of the platform in roll and pitch induces coupling between the 
different motions of the TLP.

This effect is modelled by a force added to the right hand side of the motion 
equation.

The motion equation becomes:

([M] + [M, (co )]){X} + ([Cp (co)] + [Cv ] {|X|}){X} + [Kh ] {X} = (F(t)} + {fm (t. X)} +

fc(t)}  + {Feoup(t,X)}

(3.2-18)

Where FcoUp represents the coupling between the different modes of motion and is 
written as:

nyz 
-nxz 

-nyx+nxY
0
0

(3.2-19)

Where X, Y, Z, Qx,Q y are the velocities of the TLP in surge, sway, heave, roll, 
and pitch respectively.

3.2.5. Free surface effects

In the frequency domain, the water level is taken as the mean water level, 
neglecting the effects of the free surface. In the case of steep waves, significant 
changes can appear if the water level is taken as the free surface level.

The free surface has an effect on the calculation of several forces and coefficients 
of the motion equation. Its effects are large and complex.

The solution proposed here is based on a simple model proposed by Natvig [6.1]. 
Only the non-linear terms that he found significant are taken into account. With this 
model, he was able to simulate numerically a ringing phenomenon that he recorded 
during model testing.
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The non-linear terms accounted for are:

- the diffraction force correction

- the drag force correction

- the added mass correction

- the potential and viscous damping correction 

The free surface also creates the following terms:

- the derivative of the added mass

- the wave slapping

The first four terms represent the difference between the value of these forces and 
coefficients when they are calculated up the free surface level instead of the mean 
water level.

The fifth one is due to the fact that the added mass becomes time dependent when 
calculated taking into account the free surface.

The last one represents the force due to the impact of waves on the structure.

These effects are expressed as forces added to the right hand side of the motion 
equation.

([M] + [M » ]){ X }  + ( [ C » ]  + [Cv] {|X|}){X} + [Kh] {X} = {F(t)} + {Fm(t, X)} + (Fd(t)} +

{Fcoup(t,x)} + {FfceOT(t,X>x)} 
(3.2-20)

Where:

= A fU . + AFdraB -  AFM, -  AFCp -  AF& + AF^ + AFsllp (3.2-21)

First, the free surface level has to be calculated. For that purpose, the first order 
diffraction potential is used. Its formulation is given in chapter 3. The effects of the 
pontoons and the movement of the TLP are neglected.

3.2.5.1. Diffracted free surface 

The free surface is given by:

1 dO
ri = ---------

g dt
(3.2-22)

ẑ=0
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Where O = Oi + <X>D is the sum of the incident and the diffracted potentials. 
Around the jth column the potential <D becomes:

Where:

7t k R c w 0t i ,H ; ( k R c)

t<7\ = ~i A g c°sh(k(z + H)) 
( J  co cosh(kH)

and:
k: wave number 
co: wave frequency 
A: wave amplitude 
H: water depth 
Rc: the column radius
Hn: the Hankel function of the first kind of order n 
AnJ: the diffraction coefficient

The free surface around the ith column becomes:

(3.2-23)

(3.2-24)

^ , 6 ; )  = Re -2iA j ,  A j -ioXe 1 e (3.2-25)

For the free surface corrections, the average of the free surface around the 
column is used, this mean value is given by:

i 271
rjJ =  f riJ(Rc)0,')Rc d0, = Re

2tcR j v c '> ‘ Jc o

-2iA Aj, 
,7tk R 0 H j(k R c)

(3.2-26)

3.2.5.2. Diffraction force corrections

The force correction represents the difference between the force expressed up 
to the mean water level and the force expressed up to the free surface level. This 
force is positive if the free surface is above the mean water level and negative if 
below. Only the forces on the columns are subject to the variation of free surface. 
The forces on the pontoons remain the same.

The correction is implemented using the diffraction potential already used to 
formulate the forces on the columns.

A F In=ni.x = Re| j [  j - p — dZ R . COS0d0 (3.2-27)
J  J
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The correction terms come as:

AFcifx = Re
v
f

= Re

AF^z = 0

-2 ip g A  Sinh(k(ri + H ))- SinhkH 
k2Hj(kRc) Cosh kH (Ai, -  Aj)

-2 p g A  Sinh(k(ri + H ))-S inhkH . .
k2Hj(kRe) CoshkH ' + ' '

= Re

AM ^y = Re

. 2P/^A xQz(Ait+A A  e' kH,'(kRc) ' •* i;

~2 l PgA Qz(Aj , - A i )  e‘ 
kH((kRc) ' '

+ Z„AF'Inertia y

- Z GAF'

(3.2-28)

Where:

Qz = k2 Cosh(kH)
(kr[ Sinh k(r| + H) -  Cosh k(r| + H) + Cosh kH)

(3.2-29)

This formulation is based on the assumption that the wave particle kinematics 
can be defined in the free surface zone as defined in the rest of the fluid. This gives 
a good approximation for regular seas. Nevertheless, in the free surface zone, a 
stretching formula should be applied since the velocity and acceleration values in 
the wave crest are overestimated.

3.2.5.3. Drag force corrections

The corrections for the drag force are calculated following the same principles. 
They are:

1 11
^Drag = ~  P Cd D c J  |u Waves + |(UWavcs + UCulTcnt) dz 

Z 0

A M ^  = ~ PCd D j | U w_  + U Cmalt|(UWave + U CmJ ( Z G-z)d z

(3.2-30)



3.2.5.4. Added mass corrections

The use of radiation potentials to calculate the variations in added mass for each 
time step is very time consuming.

Instead, the strip theory formulation of the added mass is used, where the added 
mass coefficient is directly deduced from the result of the analytical theory:

Where: Dc: column diameter 
d: draught
Cm: frequency dependent added mass coefficient for the columns 

deduced from the radiation potential.

This way the correction can be expressed as:

The same principle is used to calculate the potential damping corrections. From 
the analytical solution, we now derive the frequency dependent coefficient Cpd.

(3.2-31)

(3.2-32)

3.2.5.5. Potential and viscous damping corrections

(3.2-33)

Since the potential damping is taken as zero for heave, pitch and roll motions, the 
corrections only occur in surge and sway motions:
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The corrections for the viscous damping follow the same principle as the drag 
forces. It becomes:

A F o „ = !p C 4D.rjJX

AF&y = 2 PCi  Dc11 

AFc. = 0

X

Y

AM0vs= |p C dDc r i ( | - Z 0

AM0vy= - i p C dDci i [ ^ - Z 0

* - Z . n . a

a a

(3.2-35)

3.2.5.6. Derivative of the added mass

Due to the free surface corrections, the added mass becomes time dependent. 
Thus, a new term appears, the derivative of the added mass with respect to time.

According to Natvig [6.1], it has a major importance for modelling the ringing 
phenomenon. It comes:

AF. W = - C »
7iD? dn ( X s

M,

AF,-, = 0M , z

4 dt

7i D^ drjAF x = -C m(co) 
* .£ ]  ^  ’ 4 dt

i - Z . (3.2-36)

3.2.5.7. Wave slapping

This force represents the impact force of the wave crests on the structure. For 
cylinders, it can be written as:

AF w  = ^ C s C » p D e Ar,(Uw_  - x )5

AFsllp2 = 0

AF
Slap1

M V t j
l )

— -  Z„ AF
' 2 “ £ )  (3 2 -3?) 

Where:
Cs= 1.151: slamming coefficient (See below)
Cm: added mass coefficient, introduced here to take into account the 

interaction between the columns 
Dc: diameter of the columns 
Arp slope of the diffracted wave across the column
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Uwaves- diffracted velocity of the waves

The above empirical formula is given by Faltinsen [6.2]. The coefficient Cs is 
deduced from the experimental work carried out by Campbell et al [6.3] for 
horizontal cylinders.

The slope of the wave, Ar|, is calculated by the difference of elevation between 
the front and the rear of the column.

The introduction of the coefficient Cm is not necessary, since the interaction of 
the columns is already taken into account in the diffracted wave velocity.

A full study of the effect of slamming on a TLP structure may be interesting. 
However, this is out of the scope of this thesis. We will use this simple formula, 
that can be easily used in the time domain.

3.2.6. The effects of the displacement of the structure

So far, the wave forces have been formulated assuming that the TLP is fixed. This 
assumption may not be acceptable for the large amplitude motions. In the case of 
TLP, this means that the surge and sway motions should be taken into account in 
formulating the wave excitation forces and moments. Displacements in heave, roll and 
pitch are very small and their influence is neglected.

Large amplitude motions are considered to modify the formulation of:

- first order forces

- drag forces

- free surface

The differential equation becomes:

([M] + [ M » ] ) {  x )  + ( [ C » ]  + [Q]{|4}){*} + [*»]{*} = {F(/, A)} + {Fjt, A)} +

{Fd(t, X)) + A)} + {Fficor{t, X, A)}

(3.2-38)

The non-linear terms slow down the time domain program considerably since the 
first order forces should be recalculated for every time step. If the structure is 
considered as stationary, the spatial dependent part of the force can be calculated 
once for all. Then, the only calculation required to obtain the forces at time t, is the 
multiplication of the force amplitudes by sin cot.

One should note that the steady drift formulation has not been modified. One could 
also take into account the displacement of the structure in the formulation of the 
steady drift forces. However, the whole calculation would have been slowed down 
even more. Furthermore, this would not change the results significantly. Indeed, we 
are considering extreme weather conditions, where the wind clearly dominates all 
other steady forces.
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4. TIME DOMAIN ANALYSIS

Four different analyses have been carried out with the time domain program.

The first one studies the effects of each non linearity on the motions and tendon loads of 
the Snorre TLP.

The second analysis studies similar effects using the Heidrun design. The effects of 
different geometries on the non linearities are investigated.

In the third study, the time domain program is run for a whole range of wave frequencies. 
The aim is to investigate the influence of the different components of an irregular sea state.

For each frequency, a comparison between the linear and the non linear model is carried 
out.

Finally, in the last part, the effects of the directionality of the environmental forces are 
studied in terms of displacements and tendon loads.

The last two analyses are carried out with the Snorre design.

4.1. EFFECTS OF NON LINEARITIES ON THE SNORRE TLP

The simulation is carried out for a regular head sea. The wave frequency and the wave 
amplitude are taken as 0.2 rad/s and 13.52 m.

Wind and current are collinear with the waves and their velocities are respectively 
40 m/s and 0.6 m/s.

Nine different tests are run during this study.

Test 0 uses the linear model described in the previous section. This was done to 
establish a reference during the analysis of the non linearities.

The six following tests are carried out with one of the six non linearities at a time.

Test 1 introduces the non linear stiffness of the mooring system.

Test 2 is carried out with the viscous damping.

Test 3 takes into account the coupling between the motions of the TLP.

Test 4 applies the drag forces on the structure.

Test 5 considers the free surface effects.
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Test 6 takes into account the large amplitude motions of the TLP in force 

calculations.

Finally the last two tests combine the different non linearities:

Test 7 is run for a model which takes into account every non linearities except for 
the large amplitude motions of the TLP

Test 8 is the same as test 7, but includes the non linearities due to the displacement 
of the platform.

Test 7 is important because when the non-linear simulations based on the large 
amplitude motion model are run, computational time required becomes excessive. If the 
displacements of the structure could be neglected, a lot of computation time could be 
saved.

During the analysis, the time history of the responses and the loads are transformed to 
the frequency domain using a fast Fourier transform (FFT).

The responses and the forces are then divided into four components:

- The steady response/force (offset or pretension)

- The first order response/force corresponding to the response occurring at the 
wave frequency (here, 0.2 rad/s).

- The second order response/force taking place at twice the wave frequency 
(0.4 rad/s).

- The third order response/force at three times the wave frequency (0.6 rad/s)

The results of the different tests are given in Table 6.1. The results presented here are 
in three degrees of freedom - surge, heave and pitch. The loads in the up-stream and 
down-stream tendons are also included.

4.1.1. Test 0: Linear Model

This test corresponds to a frequency domain analysis where no non linearities are 
taken into account. The response has only two components, a steady one 
corresponding to the steady forces, and a first order one corresponding to the harmonic 
wave forces.

The time history and the FFT of the responses and tendon forces can be seen in 
Figures 6.1 and 6.2.
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4.1.2. Test 1: Non Linear Mooring Model

This test presents large differences in the motion responses and the tendon forces 
from test 0. (See Figures 6.3 and 6.4)

The displacement in surge is only slightly changed. A second response can be 
noticed but it is still very small compared to the first order response (1%).

Large changes can be seen in heave. Due to the set down, a large offset is present. 
The first order response is increased by 80%. Finally, a large second order excitation 
appears. These three values are of the same order of magnitude.

The response in pitch is also affected. The steady response is largely increased, but 
is still quite small compared to the first order response. The first order response is 
increased by about 30%. Finally, a second order response can be observed, it 
corresponds to about 10% of the first order response.

Due to a new formulation of the tendon loads, an asymmetry now appears between 
the forces in the up-stream and down-stream tendons.

The maximum pretension value represents a 7% increase over the linear pretension. 
Similarly, the maximum first order force is 11% higher than the prediction of the linear 
model.

A second order response is also visible in the frequency plot of the response. It 
corresponds to 5% of the first order response. However, it remains quite small 
considering the large second order responses both in heave and pitch.

4.1.3. Test 2; Viscous Damping

The viscous damping has an insignificant effect on the response of the TLP. The 
only noticeable difference with the linear model is a smaller first order surge response 
(about 2% difference).

Being far from the natural frequency, it is expected that the damping would have no 
effect on TLP responses.

4.1.4. Test 3: Motion Coupling

The coupling has no significant effect neither on the displacement of the TLP nor on 
the tendon forces.

This is due to the very small value of the rotational velocity, because of the high 
value of the stiffness in roll and pitch.
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4.1.5. Test 4: Drag Force

The drag forces induce some changes in the steady responses and first order 
response of the TLP. The surge offset increases by 15%, whereas the pitch steady 
response decreases by 54%. This however remains quite small compared to the overall 
response. The first order responses are also increased, 1.5% in surge and heave and 
6% in pitch.

The higher order response induced by the drag force appears at three times the wave 
frequency (See Figure 6.5). Nevertheless, they are very small compared to the first 
order response.

The effect on the tendons is small too. The induced third order force is only 4% of 
the first order load.

The effects of the drag forces on the tendons are underestimated by the linear 
mooring model that does not take into account the rotation of the TLP.

4.1.6. Test 5: Free Surface Effects

The main influence of the free surface effects appears in pitch. The amplitude of the 
first and steady response are slightly decreased. More important is the presence of 
super-harmonics (See Figure 6.6). The second order response is significant (about 
10% of the first order displacement), whereas the third order response is still very 
small.

As stated before, the linear mooring model does not take the rotation into account 
for the calculation of the forces in the tendons. Thus, the free surface effects have to be 
coupled with the non linear mooring model to fully account for their effects on the 
tendons.

4.1.7. Test 6: Displacements of the TLP

Heave is left unchanged, and surge shows very little difference.
In pitch a second order response appears (Figure 6.7), but remains small. The 

offset is reduced by 15%.

This effect has to be coupled with the non linear mooring model to see significant 
changes in the tendon loads.

4.1.8. Test 7: Fully Non Linear Model ("except displacements!

The time history and the FFT of the responses are presented in Figure 6.8.

Insignificant changes appear in the surge response.

The heave response is very similar to the one observed in test 1, with a steady, a 
first order, and a second order response of the same order of magnitude. However, the 
first order response is about 20% higher.



6.21

The pitch response is also very similar to test 1. The second order is quite 
important corresponding to about 18% of the first order response.

The values of the pretension are close to the one observed in test 1.
Larger differences in the values of the first order forces between the upstream and 

downstream tendons can be observed. This is due to the changes in the pitch steady 
offset.

The second order effects are also larger (See Figure 6.9), this is due to the second 
order responses in pitch due to the free surface effects. These responses represent 
respectively 6% and 7.5% of the first order responses in the down-stream and up­
stream tendons.

4.1.9. Test 8: Fully Non Linear Model (including displacements')

Figure 6.10 shows that the responses are very similar to the ones of test 7. The 
main changes are a 10% rise in the surge offset, and the first order heave response.

Insignificant changes are noticeable in the tendon forces (See Figure 6.11).

4.1.10. Conclusion

A graphic presentation of table 6.1 is presented in Figures 6.12 to 6.17. The 3D 
charts represent each of the four components of the response for the nine tests.

Figure 6.12 shows that the surge response is hardly modified by the non 
linearities.

The bigger difference appears in the offset of the platform, but the effects of the 
drag force and the non linear mooring model cancel each other.

Figure 6.13 clearly shows that the non linear mooring model completely changes 
the heave response of the TLP. This effect is by far the most important one.

Figure 6.14 shows how the pitch response is affected by the non linear mooring 
model, and how the free surface effects, the displacements of the TLP, and to a lower 
extend, the drag force create super-harmonics.

Figures 6.15 and 6.16 present the forces in the down-stream and the up-stream 
tendons. The forces are mainly changed by the non linear mooring model.

A larger pretension can be observed in the up-stream tendon. A larger first order 
force appears in the down-stream tendon. The non linearities also induce super- 
harmonics at two and three times the wave frequency.

Finally, Figure 6.17 shows the asymmetry of the forces in the tendons for tests 1, 
7 and 8. The tendon force resulting from the linear model is given as a reference.

From this analysis, it clearly appears that the most important effect on both the TLP 
responses and the forces in the tendons is the non linear model of the mooring system.
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It produces a very different heave response, and induces an asymmetry in the 
tendon loading.

The drag forces, by increasing the values of the steady offset in surge and pitch, 
also have an effect on this asymmetry of tendon forces.

The free surface effects to a lower extend are also important since they create 
second order responses both in pitch response and in tendon loading.

The effects of the displacement are also noticeable but are nevertheless quite small 
and may be neglected if computation time savings are needed.

4.2. EFFECTS OF NON LINEARITIES ON THE HEIDRUN TLP

In this section, the same study as before is carried out for the Heidrun TLP. Since this 
TLP is rather different from Snorre, it is interesting to know if the non linearities have 
the same effects on the two platforms, or if noticeable changes can be observed.

Heidrun is much bigger structure. Its main characteristics can be found in table 6.2. 
Due to its concrete hull, the columns are bigger, and the draught is larger. The behaviour 
in pitch may also change due to the position of the centre of gravity that is much lower 
than on the Snorre TLP.

The same nine tests are carried out on the new geometry. The results are presented in 
table 6.3, under the same format. The sea state conditions also remain the same.

4.2.1. Test 0: Linear Model

The comparison of the displacements of Snorre and Heidrun shows that the 
responses are of the same order.

Figures 6.18 and 6.19 show a comparison of the distribution of the responses 
between the different frequency components for the two TLPs. Each component of 
the response (steady, first, second and third order) is given as a percentage of the 
overall response. The surge responses are about the same. The steady offset of the 
pitch motion for Heidrun is more important than for Snorre.

The tendon forces are greater for the Heidrun design, however the distribution of 
the loads between pretension and first order response is the same. (See Figure 6.20)

4.2.2. Test 1: Non Linear Mooring Model

Insignificant changes appear in surge compare to test 0, as it was observed in the 
case of Snorre. (See Figure 6.21)

In heave, the response has the same characteristics as for Snorre: a large offset and 
second order response. Figure 6.22 shows the distribution of the response between 
the different frequencies. It compares well with the results obtained for Snorre despite 
a smaller second order response.
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The response in pitch is a little different from the response of Snorre. The offset is 

bigger whereas the second order effects are not as important. (See figure 6.23)
However, the same overall effects are observed, an increase in the offset, the first 

order and the second order response.

The tendon forces compare also well. (See Figures 6.24 and 6.25). The second 
order forces are smaller but the difference is minimal compared to the overall loading.

4.2.3. Test 2 and 3: Viscous Damping and Motion Coupling

As with Snorre, these two non linearities have very little effect on the response of 
Heidrun or on the forces induced in its tendons.

4.2.4. Test 4: Drag Force

As with Snorre, the surge offset is increased by about 15% and the heave motion is 
left unchanged.

The main difference with the Snorre response appears at the third order pitch 
motion. It does not increase up to the same extend.

However, in both cases this component is very small compared to the overall 
response. (See Figure 6.26)

The non linear mooring model would have to be applied to see any significant 
changes in the tendon forces.

4.2.5. Test 5: Free Surface Effects

The only significant effects appear in pitch. The pitch offset is increased, whereas it 
decreases in the case of Snorre. This is due to the position of the centre of gravity.

The effects on the first and second order response remain the same (a small 
increase).

As with the linear model, the main difference is a larger contribution of the offset in 
the pitch response of Heidrun. (See Figure 6.27).

The contribution of the second and third order effects are the same for both 
platforms.

4.2.6. Test 6: Displacements of the TLP

As before, the main differences appear in pitch. The relative second order response 
induced by the non linearity is smaller for Heidrun than it is for Snorre. (See 
Figure 6.28).
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4.2.7. Test 7: Fully Non Linear Model (except displacements)

Figure 6.29 shows that in surge, the distribution of the response is very similar. 
The super-harmonics are very small. The results on Heidrun show a slightly larger 
contribution of the offset.

In heave (See Figure 6.30) the main difference appears in the second order 
response. It is smaller for the Heidrun design. However, the responses are quite 
similar.

The bigger difference between the responses of the two TLPs appears in pitch 
(Figure 6.31). The Heidrun response presents a larger offset and smaller super- 
harmonics.

In terms of tendon forces, the results are quite similar, although Heidrun has a 
larger offset and smaller second and third order components. (See Figures 6.32 and 
6.33).

The asymmetries between the up-stream and down-stream tendons present 
significant differences. The difference of pretension between the two sets of tendons is 
about 15% of the total pretension for Heidrun. For Snorre, the same value is about 
7%.

In terms of first order forces, the asymmetry is about 9.5% for Heidrun and 19% 
for Snorre.

These effects can be directly linked with the difference in the pitch response, where 
the steady offset is larger for Heidrun and the first order response is larger for Snorre.

4.2.8. Test 8: Fully Non Linear Model (including displacements!

Figures 6.34 to 6.38 show that the configuration observed in test 7 is not changed 
significantly by effects of the displacements. The same remarks still apply on the TLP 
responses and the tendon forces.

4.3. EFFECTS OF THE WAVE CHARACTERISTICS ON THE SNORRE TLP

In this section, the influence of different waves on the response of Snorre and on its 
tendon forces is investigated. Each wave is considered with a heading of zero degrees. 
The wind and the current are collinear with the waves. Their respective velocities are 
taken as 40 m/s and 0.6 m/s.

First, a set of waves is generated. They are characterised by a frequency and an 
amplitude. The relation between these two values is based on a Pierson Moskowitz 
spectrum for a 40 m/s wind velocity.

A = ^S(co ) dco (4.3-1)
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Where A is the wave amplitude and S the Pierson Moskowitz wave spectrum, do has 
been taken as 0.05 rad/s.

Figure 6.39 shows the wave amplitudes plotted as a function of the frequency.

Two time domain simulations are carried out for each wave. One using the linear 
model (same as test 0 in the previous analyses). The second simulation used the same 
non linear model as described in test 7. The displacements of the TLP are not taken into 
account in the force calculations because the computations require too much time. 
However, it as been observed before that these effects are relatively small.

Tables 6.4 and 6.5 present the results of these two analyses. The wave frequency 
varies from 0.15 rad/s to 0.7 rad/s. For each wave the surge, heave and pitch responses 
as well as the tendon forces are given in terms of frequency components.

4.3.1. Surge Response

Figure 6.40 presents the predictions of the linear and non linear models for the 
surge offset.

The linear model gives a constant offset. The small fluctuations are due to 
numerical imprecision during the Fourier transform.

The value of the offset calculated with the non linear model varies significantly for 
frequencies between 0.15 and 0.4 rad/s. This range corresponds to the waves of 
largest amplitudes. For smaller waves, however, the value remains more or less 
constant. This value is about 13% higher than the prediction of the linear model.

Figure 6.41 shows that the results of the two models for the first order surge 
response are very similar.

4.3.2. Heave Response

Three components are important in the heave response, the offset, the first and the 
second order responses.

Since no steady force is present in heave, the heave offset calculated with the linear 
model is equal to zero. (See Figure 6.42).

However, the non linear model takes the set down effect into account and thus 
gives an offset in heave. Its value reaches a maximum of 33 cm for the highest wave. 
Then it decreases to a constant value of 12.5 cm.

Figure 6.43 shows that the non linear model gives higher values of the first order 
response in heave. This difference is amplified for the largest waves. The maximum 
difference between the two predictions is about 30 cm for a 0.25 rad/s wave.

At twice the wave frequency, the linear model predicts no response. However, the 
non linear model shows significant values for the highest waves. This response rapidly 
decreases as the amplitude of waves is reduced. (See Figure 6.44)
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4.3.3. Pitch Response

The offset calculated with the non linear model is bigger than the value predicted 
by the linear model (See Figure 6.45). The behaviour of the offset is similar to what 
has been observed in surge. The linear model predicts a constant offset over the range 
of frequencies. Whereas the value calculated by the non linear model varies for the 
highest waves, and is constant for the smallest ones.

For the first order pitch response, the two models give close results. Only a small 
difference can be observed in the low frequency range. (See Figure 6.46)

4.3.4. Tendon Forces

An important remark that has been made before in the comparison of the two 
models, is that the non linear model do not predict the same load in every tendon.

One tendon force is plotted for the linear model whereas the forces in both the 
upstream and the downstream tendons are plotted for the non linear model in the 
Figures 6.47 and 6.48.

Figure 6.47 presents the results of the two models in terms of pretension.
The value is directly linked to the values of the offset of the platforms. The linear 

model gives a constant pretension whereas the non linear results show a variation in 
the pretension for the larger waves.

The variations between the two sets of results are quite significant. Compared to 
the linear model results, the pretension is 3% smaller in the down stream tendon and 
5% larger in the up-stream tendon.

The values of the first order tendon forces are presented in Figure 6.48. Once 
again, the two models show significant differences. For the highest waves, the linear 
model predicts a force that is close to the up-stream tendon force. But at lower 
frequency, the linear model underestimates the forces both in the up-stream and the 
down-stream tendons. At 0.4 rad/s, the difference reaches a maximum of 18.5 Mega- 
Newtons.

Finally, one should note that the asymmetry of the forces decreases when the 
waves become smaller.

4.4. EFFECTS OF THE DIRECTIONALITY OF THE ENVIRONMENTAL 
FORCES

So far, the environmental forces have always been taken as collinear, and only head 
seas have been considered.

In this section, the influence of the direction of the three environmental forces on the 
Snorre TLP is investigated.

Several tests have been carried out with the time domain program for four different 
wave, wind and current angles - 0, 45, 90 and 135 degrees.
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The sea state is represented by a regular wave of 13.52 m amplitude and 0.2 rad/s 
frequency. The wind and current velocities are respectively 40 m/s and 0.6 m/s.

The time domain program uses the same non linear model as in the previous section. 
All the non linear terms implemented in the developed model are used except for the 
displacements of the platform because of computational time limitations.

Table 6.6 presents the results in terms of responses and tendon forces for different 
combinations of the loading.

The displacements are given in five degrees of freedom in terms of steady offset and 
first order response. For heave, the second order response is also included.

The loads in the four tendons are given in terms of pretension and first order force.

The numbering of the tendons (1 to 4) corresponds to following geometry:

The row labelled "Fo-Fl", represents the difference between the pretension and the 
first order force amplitude. The closer this coefficient comes to zero, the closer the 
tendons are to become slack. This value is referred to as the slackness coefficient later in 
the analysis.

Finally, the last three rows of the table give the total pretension in the four tendons, 
the mean value of the first order force in the four tendons, and the mean value of the 
slackness coefficient over the four tendons.

4.4.1. Tendon Force Model Analysis

In order to understand the loading in the tendon, it is useful to relate the tendon 
force to the offset and the first order responses of the TLP.

The offset at the tendon connection (point C) is given by the following relation:

y

x
■>

(4.4-1)

Where xog is the offset at the centre of gravity 
Xc is the position of point C 
n 0 is the steady rotation



In the same way, the first order displacement is given by:

xic ~ xig + x (x c + xoc  ̂ (4.4-2)

which becomes after developments:

xic = xig ^1  ^  xog 4* ^ (Xc 4" ^ (4.4-3)

The pretension in the tendons can be written as:

=T0 + K- L0C (4.4-4)

Where: To is the original pretension
K is the linear stiffness vector equal to:

K =
%

%

%

(4.4-5)

Similarly, the first order force becomes:

= K-xlc (4.4-6)

More details regarding these developments, can be found in reference [6.4].

From this analysis, it appears that the asymmetry in the pretension and first order 
force are due to the second term of equations 4.4-1 and 4.4-3.

The pretension is directly related with the value of the offset. The offset is mainly 
due to the steady wind force. We will then be looking for a relation between wind 
direction and pretension.

The influence of the offset in the value of the first order force is small. Thus, the 
first order force is mainly related to the wave inertia force. The heading of the wave 
should be the most important factor for the first order forces in the tendons.

4.4.2. Pretension

The total pretension in the four tendons remains more or less the same in each of the 
tests carried out in this study. The main differences appear in the distribution of the 
loads among the different tendons.
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The pretension values are almost constant in tendons 1 and 3. They correspond to 

the down-stream and up-stream tendons in terms of wind loading.

Tendons 2 and 4 show more significant variations. As expected, they are directly 
related to the wind angle. The pretension is maximum (= 62 MN) in tendon 4 and 
minimum in tendon 1 (58 MN) for a 0 degree wind heading.

For a 90 degree wind angle, we observe an inversion of the forces, about 62 MN 
in tendon 1 and 58 MN in tendon 4.

For 45 degrees, the loads in both tendons are equal (about 60 MN).

4.4.3. First Order Force

The mean values of the first order tendon force show insignificant changes with the 
angle of the environmental forces.

However, the distribution of the loads in the different tendons changes. They are 
directly related to the wave angle.

Tendon 1 and 3 have roughly constant values for 0 and 90 degrees heading seas - 
about 47 MN for tendon 1 and 39 MN for tendon 3.

For quartering seas, this value increases by 6% and 7.5% in tendons 1 and 3 
respectively.

However, this effects is compensated by a decrease in the loads of tendons 2 
and 4.

4.4.4. Slackness Coefficient

The mean value of this coefficient over the four tendons is very similar in every test.
Yet, the slackness coefficient varies significantly from one tendon to another, 

depending on the wave angle.

The smaller values appear for quartering seas in the down-stream tendon. This 
corresponds to tendon 1 for a 45 degree wave and tendon 4 for a 135 degree wave.

4.4.5. Conclusion

The overall tendon loads do not vary significantly depending on the angle of the 
wave, wind and current.

Yet significant differences, in the forces can be observed between the different 
tendons. The loads in the tendons are related to only one of the environmental forces.
The pretension is sensitive mainly to the wind angle. Similarly, the first order forces 
changes significantly only with the direction of the waves.

What has been called the slackness coefficient, the difference between the 
pretension and the amplitude of the first order force, shows a minimum in the down­
stream tendon for quartering seas.
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TLP RESPONSE: TIME DOMAIN SIMULATION
Snorre TLP Amplitudes 3.52m Frequency=0.2rad/s Head sea

Linear Non Linear 
S tiffn ess

Viscous
Damping

Acceleration
Coupling Drag Forces Free Surface 

Effects Displacement All Effects 
(-Disp) All Effects

Motion Frequency Test 0 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8

O ffset 8.01 6.81 7.996 8.01 9.22 8.27 8.39 7.97 8.82

Surge 0.2 rad/s 15.96 16.04 15.53 15.98 16.209 16.02 15.95 15.61 15.7

Response (m) 0.4 rad/s 2.38E-02 1.82E-01 2.12E-02 2.38E-02 2.87E-02 7.83E-02 1.31E-01 1.45E-01 5.43E-02

0.6 rad/s 1.04E-02 1 09E-02 8.87E-02 1 04E-02 3.56E-02 1.41E-02 1.14E-02 4.97E-02 5.15E-02

O ffset 0.000 -0.320 0.000 0.000 0.000 0.000 0.000 -0 .332 -0.356

Heave 0.2 rad/s 0.204 0.367 0.204 0.204 0.207 0.204 0.204 0.437 0.48

Response (m) 0.4 rad/s 6.03E-04 0.245 6.03E-04 7.17E-04 6.09E-04 6.04E-04 6.03E-04 0.234 0.236

0.6 rad/s 3.02E-04 5.82E-03 3.02E-04 2.10E-04 7.46E-03 3.02E-04 3.02E-04 7.59E-03 8.30E-03

O ffset 5.26E-05 3.16E-04 5.26E-05 5.22E-05 2.44E-05 5.00E-05 4.46E-05 2.77E-04 2.91 E-04

Pitch 0.2 rad/s 1.64E-03 2.16E-03 1.64E-03 1.64E-03 1.73E-03 1.60E-03 1.64E-03 2.10E-03 2.12E-03

Response (rad) 0.4 rad/s 2.66E-06 2.13E-04 2.61 E-06 3.40E-06 3.26E-06 1.65E-04 7.80E-05 3.69E-04 2.89E-04

0.6 rad/s 3.23E-06 5.34E-06 1.37E-06 1.65E-06 5.11E-05 3.67E-05 5.20E-06 5.35E-05 5.69E-05

Force O ffset 5.85E+07 5.78E+07 5.85E+07 5.85E+07 5.85E+07 5.85E+07 5.85E+07 5.82E+07 ,  5.82E+07

in 0.2 rad/s 3.99E+07 4.22E+07 3.99E+07 3.99E+07 4.05E+07 4.00E+07 3.99E+07 4.73E+07 4.76E+07

Tendon 1 (N) 0.4 rad/s 1.19E+05 1.99E+06 1.20E+05 1.35E+05 1.35E+05 1.20E+05 1.20E+05 2.93E+06 2.36E+06

(Down-Stream) 0.6 rad/s 8.28E+04 1.04E+05 B.53E+04 5.59E+04 1.59E+06 8.29E+05 8.20E+04 1.81 E+06 1.89E+06

Force O ffset 5.85E+07 6.25E+07 5.85E+07 5.85E+07 5.85E+07 5.85E+07 5.85E+07 6.23E+07 6.25E+07

in 0.2 rad/s 3.99E+07 4.42E+07 3.99E+07 3.99E+07 4.05Ef07 4.00E+07 3.99E+07 3.92E+07 3.88E-f07

Tendon 3 (N) 0.4 rad/s 1.19E+05 1.85E+06 1.20E+05 1.35E+05 1.35E+05 1 20E+05 1.20E+05 2.93E+06 2.47E+06

(Up-Stream) 0.6 rad/s 8.28E+04 1.14E+05 8.53E+04 5.59E+04 159E+06 8.29E+05 8.20E+04 1.42E+06 1.37E+06

Table 6.1
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HEIDRUN "TIP CHARACTERISTICS

Spacing between the columns centres 8 0  m
Columns diameter 31 m
Pontoon width 15 .9 5  m
Pontoon height 1 3 m
Draught 77 .3  m
Total Mass 2 .52E +08 kg
Tether pretension 3.63E +08 N
Roll moment of inertia 2 .40E + 12 N.m .sA2
Pitch moment of inertia 2 .40E + 12 N.m .sA2
Vertical position of CoG above free surface -1 8 .9 8  m
Length of the mooring tethers 2 6 8 .6  m
Section of the tethers 2 .0 6  m A2
Young modulus of the tethers 2 .1 3 E + 1 1 N / m A2
Surge Stiffness 1.35E+06 N /m
Heave Stiffness 1.65E+09 N/m
Roll Stiffness 2 .62E + 12 N/m
Surge natural frequency 4 .80E -02  rad/s
Heave natural frequency 2 . 12  rad/s
Roll natural frequency 1.89 rad/s

Table 6.2
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TLP RESPONSE: TIME DOMAIN SIMULATION
Heidrun TLP Amplitude=13.52m Frequency=0.2rad/s Head sea

Linear Non Linear 
S tiffness

Viscous
Damping

Acceleration
Coupling Drag Forces Free Surface 

Effects Displacement All Effects 
(-Disp) All Effects

Motion Frequency Test 0 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8

O ffset 7.47 6.86 7.438 7.47 8.63 7.76 7.77 8.62 9.2

Surge 0.2 rad/s 13.97 13.99 13.88 13.97 14.04 13.99 13.95 13.92 13.96

Response (m) 0.4 rad/s 4.06E-02 6.53E-02 4.05E-02 4.06E-02 3.70E-02 4.01 E-02 1.05E-01 7.59E-02 3.31 E-02

0.6 rad/s 2.24E-02 2.17E-02 2.93E-02 2.24E-02 3.05E-02 1.97E-02 1.98E-02 1.80E-02 1.58E-02

O ffset 0.000 -0.272 0.000 0.000 0.000 0.000 0.000 -0 .314 -0.334

Heave 0.2 rad/s 0.145 0.362 0.145 0.145 0.146 0.145 0.145 0.460 0.494

Response (m) 0.4 rad/s 4.19E-04 0.166 4.19E-04 4 .11E-04 4.27E-04 4.19E-04 4.19E-04 0.164 0.166

0.6 rad/s 1.36E-04 1.59E-03 1.35E-04 1.36E-04 3.08E-03 1.36E-04 1.36E-04 3.45E-03 3.15E-03

O ffset 1.67E-04 3.92E-04 1.66E-04 1.67E-04 1.52E-04 1.70E-04 1.64E-04 4.31 E-04 4.43E-04

Pitch 0.2 rad/s 1.27E-03 1.70E-03 1.27E-03 1.27E-03 1.30E-03 1.24E-03 1.26E-03 1.65E-03 1.64E-03

Response (rad) 0.4 rad/s 5.97E-06 1.26E-04 5.99E-06 5.98E-06 6.05E-06 1.50E-04 1.48E-05 3.72E-05 7.59E-05

0.6 rad/s 3.00E-06 4.58E-06 3.00E-06 3.00E-06 2.34E-05 2.79E-05 3.76E-06 3 .1 1E-05 2.35E-05

Force O ffset 9.42E+07 8.99E+07 9.42E+07 9.42E+07 9.42E+07 9.42E+07 9.42E+07 8.97E+07 8.97E+07

in 0.2 rad/s 5.88E+07 6.29E+07 5.88E+07 5.88E+07 5.91 E+07 5.88E+07 5.88E+07 6.79E+07 6.86E+07

Tendon 1 (N) 0.4 rad/s 6.14E+05 1.88E+06 6.14E+05 6.14E+05 6.45E+05 6.14E+05 6.14E+05 8.07E+05 1.56E+06

(Down-Stream) 0.6 rad/s 3.84E+05 4.30E+05 3.86E+05 3.84E+05 1.56E+06 3.84E+05 3.83 E+05 2.00E+06 1.84E+06

Force O ffset 942E+07 1.03E+08 9.42E+07 9.42E+07 9.42E+07 9.42E+07 9.42E+07 1.04E+08 1.04E+08

i n 0.2 rad/s 5.B8E+07 6.74E+07 5.88E+07 5.88E+07 5.91 E+07 5.88E+07 5.88E+07 6.17E+07 6.07E+07

Tendon 3 (N) 0.4 rad/s 6.14E+05 2.45E+06 6.14E+05 6.14E+05 6.45E+05 6.14E+05 6.14E+05 1.22E+06 1.47E+06

(UD-Stream) 0.6 rad/s 3.84E+05 3.28E+05 3.86E+05 3.84E+05 1.56E+06 3.84E+05 3.83E+05 1.13E+06 1.30E+06

Table 6.3
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UNEAR SURGE RESPONSE
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NON UNEAR MOORING MODEL SURGE 
RESPONSE
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NON LINEAR MOORING MODEL DOWN 
STREAM TENDON FORCES
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DRAG FORCE MODEL PITCH RESPONSE
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TEST 7: SURGE RESPONSE
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TEST 7: DOWNSTREAM TENDON FORCES
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FULLY NON UNEAR: SURGE RESPONSE
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FULLY NON LINEAR MODEL: 
DOWN-STREAM TENDON FORCES
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7.1

CHAPTER 7: CONCLUSION AND POSSIBLE FUTURE 
DEVELOPMENTS

This thesis presents a prediction model to calculate the environmental forces on a tension 
leg platform. After validation, this model is used in a time domain program to calculate the 
displacements of the structure, and the forces in the tendon lines.

1. WAVE MODEL

The wave force model based on analytical solutions is a particularly useful contribution. It 
gives more accurate results than the conventional Morison approach and can be extended to 
calculate the steady drift.

It is not as precise as a diffraction radiation code, but it is much faster, and does not 
require mesh generation.

It can be of great help, for the early design stage of a TLP. A computer program based on 
this model has been developed which gives results with reasonable precision, and allows fast 
calculations. It is very helpful to carry out a parametric study. The input data can be changed 
easily, and a new calculation can be run in a few minutes.

With some minor modifications to the program, it can be used to calculate other important 
values for the design of a TLP. For example, it would be relatively easy, to calculate the 
diffracted free surface under the deck of the platform. It is also possible to calculate local 
loads on the columns for a structural design study.

In a recent paper, Kim et al [7.1] presented the latest developments in predicting the wave 
forces on circular cylinders. He proposes a method to calculate the drift damping, the 
difference and the sum frequency QTFs. The method has not been fully tested yet, in 
particular the sum frequency problem.

However, this method could be very appropriate for the TLP study since the second order 
poses problems in the dynamic responses of the TLP. At the moment, it is almost impossible 
to include the influence of the second order forces in design since the programs available to 
carry out these computations are very complicated and require enormous computational 
facilities.

2. WIND AND CURRENT MODEL

The wind force calculations show that the wind forces play an important role in the steady 
surge displacement of the TLP. This is particularly important because they cause a set down 
of the TLP in heave. The set down has to be taken into account for the design of the deck 
height.



The varying wind has also an important effect in surge since it can excite the TLP at its 
natural frequency. However, a precise calculation of this force is quite difficult due to the 
uncertainties in the description of the wind. Wind spectra give a representation of the energy 
carried by the fluctuating wind over a range of frequencies. In the frequency range around 
the surge natural frequency of the TLP, the wind gusts energy is not very well known, and 
the different wind spectra developed until now are not completely satisfactory for design.

The dynamic responses of the platform vary largely from one wind spectrum formulation 
to the other, both in terms of response spectra or significant values.

The prediction model developed in this thesis for the wind is very simple. It could be 
improved in several ways. A non correlated flow could be considered by using a multiple 
loading method. The geometry of the deck has been crudely represented as a rectangular 
box. A more suitable geometry could be taken into account. The variation of the wind 
velocity with the altitude could also be implemented more carefully specially in the Ochi- 
Shin, Kaimal and Slettringen wind spectrum formulations.

However, the more urgent improvement concerning slowly varying wind calculations 
would be a better modelling of the wind gusts in the low frequency region.

In this study, the influence of the current has also been investigated. The analysis shows 
that taking a constant or varying velocity profile does not make significant changes in the 
results.

However, the current loading is important for the calculation of the steady rotations of the 
TLP. This has a direct influence on the asymmetry of the forces in the tendons. High 
velocity currents can also have a significant influence on the surge offset and thus on the set 
down of the TLP.

Some uncertainties remain in the current force calculations. The influence of the wind on 
the storm surge current for example. For the moment, only empirical formulae are available. 
The influence of the current on the waves could also be investigated. The waves could 
become steeper and the free surface effects could be increased by high velocity currents.

3. TIME DOMAIN MODEL

The time domain model presents two advantages over the frequency domain study.
It can be used to calculate the loads in the tendons that are one of the main important 

design parameters for a TLP. It also enables us to include non linearities in the prediction 
model.

The analysis carried out here shows that the most important non linearity is the non linear 
behaviour of the mooring system. It radically changes the response of the platform in heave. 
It enables us to evaluate the set down. In terms of tendon forces, it gives higher values of the 
pretension and the first order forces. It introduces some asymmetry between the different 
tendons. Finally, it shows second order effects that could play some role in springing.

The analysis on the influence of the directionality of the environmental forces shows that 
the loads and responses are not very sensitive to the directionality. However, it should be 
noticed that all the effects have not been taken into account. In particular, directionality of the 
waves seems to play an important role in the ringing phenomenon. The sum-frequency



forces are also expected to vary with the wave direction. Thus, the direction of the sea does 
not have significant influence on the steady and first order forces of the tendons, but higher 
order forces and responses should be investigated.

The time domain model developed here, could be improved. An irregular sea state could 
be taken into account Then, the slowly varying drift could be added to the model, as well as 
the slowly varying wind.

This would imply careful modifications in the free surface effect calculations. Indeed the 
Airy theory would overestimate the kinematics in the wave crests. A suitable stretching 
formula would have to be used. Yet the Wheeler stretching formula is said to pose problems 
too. An alternative would be to use a non linear wave crest model such as the Longuet 
Higgins model.

A more careful study could also be carried out on the slapping effects on the TLP. At the 
moment, the model implemented to predict slapping forces is indeed very simplistic.

Finally, if the sum frequency QTFs can be approximated, it would be useful to implement 
them in the time domain program to see their effects. They would induce super-harmonic 
responses in heave and pitch, and more importantly the springing effect on the tendon forces 
could be calculated.
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