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ABSTRACT

The development of tumours in mouse, as in humans, is a multiple genetic process. The 

molecular analysis of somatic mutations in tumours has led to the association of many 

oncogenes and tumour suppresser genes with a particular genetic events in 

tumourigenesis. However, the genes that control susceptibility to tumour formation are 

largely unknown. To identify these tumour susceptibility genes, genetic linkage analysis 

was carried out using DMBA-TPA two stage mouse skin carcinogenesis system.

Linkage analysis was first carried out in the FI backcross mice (FVB/N x C57BL/6J)F1 

x FVB/N). At least seven loci on chromosomes 1, 4, 6, 7, 9, 10 and 12 were found to be 

involved in skin tumour development. Particularly, the locus D4Mitl26 was associated 

with papilloma, while the locus D9Mit269 with both papilloma and carcinoma. 

Substantial contribution to tumour susceptibility also came from locus-locus interaction. 

The papilloma formation was influenced by the interaction of D4Mitl26-D12Mit203 

and D6Mitl4-D9Mit269, and the carcinoma formation was affected by the interaction of 

D7Mit83-D10Mitl34.

To confirm the loci identified in the backcross analysis, a further intensive studies on 

(FVB/N x C57BL/6J)F2 cross was carried out. In addition to the loci on chromosomes 

4, 6, 9 and 12, seven new loci on chromosomes 3, 5 ,10 ,11 ,15  and 16 were identified to 

be associated with papilloma formation. Significant contributions came from loci 

D6MM4, D10Mit248 and D12Mit68, as well as the interactions of DllMit99- 

D3Mit49, D10Mit248-D 16Mit51 and D16Mit64-D15Mitl89. The loci linked to 

carcinoma formation were found at loci D3Mit46, D8Mit211 and D12Nds2.

The results of these two linkage studies demonstrate that the susceptibility to skin 

tumour development is influenced by multiple genetic loci and their interactions. The 

fact, that the loci identified to be associated with papilloma and carcinoma are mostly 

different, implies that the development of papillomas and carcinomas is under different 

genetic controls.



CHAPTER 1

INTRODUCTION



1.1 Cancer as a multistep genetic process

A cancer manifests as a group of cells that proliferate outside of the normal framework 

of growth control. The familial nature of certain cancers (Ponder, 1990) and the 

mutagenic capability of many carcinogens (McCann et al., 1975; Ames, 1979) all 

support the view that cancer is, in essence, a genetic disease. However, the conversion 

of a normal cell to malignant cancer seldom occurs in a single step, and can not be 

attributed solely to the mutation of a single gene. Rather, there must be a series of 

changes in the properties of the collection of cells which make up the developing 

tumour (Bishop, 1988; Weinberg, 1989). The evidence for multiple steps in 

carcinogenesis comes from a range of observations, including clinical, epidemiological 

and laboratory experiments. That tumours evolve towards a more malignant phenotype 

is common clinical experience; the discrete morphological and histological stages of 

many cancers provide direct evidence for a multistep process towards malignancy, as 

does the successive emergence of more aneuploid subclones during tumour 

development (Heim et al., 1988). Studies of chemical carcinogenesis of mouse skin 

have established a three stage process consisting of initiation, promotion and 

progression towards tumour development (Slaga et al., 1986; DiGiovanni, 1992; Yuspa, 

1994). Knudson, Miller and others even proposed a three to seven ‘hits’ models after a 

thorough statistical study of the relationship of cancer incidence with age (Knudson, 

1971; Miller, 1980). These ‘hits’ represent sequential mutations of key growth- 

regulatory genes in a single cell and its progeny.

Over the past decade, studies of human and animal tumours have added a new 

dimension. Much of the research has focused on dissection of the process and 

characterisation of the mutations, and led to the discovery of two distinctive classes of 

genes: proto-oncogenes and tumour suppressor genes. Both classes are implicated in 

growth control, but contribute to malignancy in separate ways. The positively acting 

oncogenes can induce cell growth and are found to be activated in tumours, frequently 

as a result of mutation, gene amplification or chromosomal translocation. Tumour 

suppressor genes, in contrast, are associated with the negative regulation of cellular 

proliferation, and are frequently functionally inactivated or deleted in a wide variety of 

human and animal tumours.
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1.2 Oncogenes

1.2.1 The identification of oncogenes

The discovery of retroviral oncogenes is the first step towards understanding the 

molecular events underlying tumourigenesis and the function of genes crucial to these 

processes. Retroviruses are small viruses that carry up to 10 genes in a genome 

comprised of single-stranded RNA. They replicate through a proviral DNA intermediate 

which is integrated into chromosomal DNA of the infected host cells. The acutely 

transforming retroviruses, the prototype of which is Rous sarcoma virus (RSV), can 

rapidly induce tumours in animals and efficiently transform cells in culture. Analyses of 

these viruses lead to the identification of the very first oncogene, v-src, the transforming 

gene of the RSV virus (Varmus et a l, 1972). Since then, more than 20 different 

oncogenes (Table 1.1 A) have been identified in the genomes of more than forty acutely 

transforming viruses isolated from chickens, turkeys, mice, rats, cats and monkeys 

(Cooper, 1995).

However, detailed studies suggest these viral oncogenes are only responsible for cell 

transformation but play no part in retrovirus replication. In deed, most of these highly 

oncogenic virus strains are defective for replication and must be propagated by a helper 

virus that contains functional replicative genes (Varmus, 1988). The presence of 

oncogenes in a viral genome seems paradoxical. The answer to this puzzle lead to a 

significant discovery that these viral oncogenes have normal cellular counterparts: 

proto-oncogenes (Stehelin et a l, 1976). Elucidation of the life cycle of the retroviruses 

shows that it requires a reverse transcription step in which the viral RNA is transcribed 

into a proviral DNA by a RNA-dependent DNA polymerase, reverse transcriptase. The 

proviral DNA then integrates into the host genome (Baltimore, 1970; Temin and 

Mizutani, 1970). The proto-oncogene is captured by the retrovirus as a result of the 

inclusion of cellular RNA within a viral particle. This leads to the incorporation of the 

transduced cellular genes into viral genome and delivery of this novel unit into the host 

genome. These transduced cellular genes may either be placed under virally determined 

transcriptional control such as the viral long terminal repeat (LTR), and/oi sustain 

critical mutations such that the structure and function of the proteins are changed. As a 

consequence of such alterations, the transduced genes have acquired a new biological
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activity, the ability to induce cell transformation (Weiss et a l, 1985). Subsequent 

studies have demonstrated that nearly all retroviral oncogenes are altered versions of 

cellular proto-oncogenes.

The life cycle of retrovirus suggests that the site of provirus integration can be vital to 

tumourigenesis. The provirus can act as a mutagen whose insertion disrupts host gene 

expression in that region. Hayward et al. (1981) provided the first evidence to 

substantiate this mechanism of insertional mutagenesis. They demonstrated that the c- 

myc proto-oncogene was activated in over 80% of ALV-induced chicken bursal 

lymphomas. The powerful LTRs lead to elevated c-myc transcripts by acting as an 

enhancer. Insertional mutagenesis has been used prospectively to identify proto

oncogenes that are reproducible targets for proviral insertion in neoplasm (Nusse and 

Varmus, 1982). Some of these oncogenes have also been found in acutely transforming 

retroviruses or encode known growth factors, whereas others are novel oncogenes 

(Table 1.1B).

While research into the retroviral oncogenes continued, more direct methods of 

identifying oncogenic sequences in human genome were also developed. Gene transfer 

experiments show that about 10% to 20% of human tumours possess DNA sequences 

with transforming ability (Shih et a l, 1981), indicating the presence of biologically 

activated cellular oncogenes. Since there is little evidence that acutely transforming 

retroviruses isolated from animal tumours are involved in human neoplasms, gene 

transfer provides a new approach to detect active oncogenes in human tumours. Most 

oncogenes identified in this fashion are novel genes and often belong to ras and src 

families, though some of them, such as H-ras, src and fos, are already known from their 

homology with retroviral oncogenes (Table 1.1C). Characterisation of these oncogenes 

shows that they are activated either by point mutations or DNA rearrangements that 

occur spontaneously or in the process of gene transfer (Taparowsky et a l, 1982; Santos 

etal., 1982).

Oncogenes have also been identified through their association with chromosomal 

abnormalities. Consistent chromosome translocations have been recognised in a number 

of neoplastic diseases, particularly cancers of the haemopoietic system (Solomon et a l, 

1991). The reproducibility of tumour-specific genetic alterations suggests a new

4



A) Retroviral oncogenes

abl, erbA, fos, jun, myb, myc, raflm.il, H-ras, K-ras, src

B) Oncogenes activated by retroviral integration

fit-1, int-1, int-2, lek, pim-1, wnt-1, wnt-3, pvt/mis

C) Oncogenes identified by gene transfer

met, neu, N-ras, ret, cot, dbl, fgf-5, hst, mas, B-raf

D) Oncogenes identified by their association with chromosome abnormality

i) Oncogenes identified by chromosome translocation 

bcl-2, bcl-6, tal-1, bcr/abl

ii) Oncogenes identified by gene amplification 

N-myc, L-myc, erbB-2

Table 1.1 The identification of oncogenes (See The Oncogene and Tumour 
Supressor Gene Factsbook, Hesketh, 1997 for the majority of entries).

mechanism for oncogene activation: Chromosome translocation can lead to DNA 

rearrangements that result in inappropriate expression of the oncogenes. A well known 

example is Burkitt’s lymphoma. Translocations between chromosome 8 and 

chromosome 14 results in constitutive expression of c-myc, which is sufficient to 

activate c-myc as an oncogene (Adams et a l, 1983). Another well-known translocation 

is the formation of the Philadelphia chromosome in chronic myelocytic leukaemia. The 

translocation between chromosome 9 and 22 creates a BCR-ABL fusion protein, in 

which the tyrosine kinase activity of the viral oncogene protein ABL is enhanced and its 

substrate specificity altered (Shtivelman et a l, 1985; Lugo et a l, 1990). Continuing 

analyses of translocation breakpoints have lead to many additional oncogenes that are 

activated in human neoplasm, particularly leukaemia and lymphomas (Table 1.1D).

Another type of chromosome abnormality observed in tumours is related to gene 

amplification (Alitalo and Schwab, 1986). There are two different types of chromosome 

amplification: homogeneously staining region (HSR), which occurs as a contiguous 

element in a chromosome, and double minute chromosomes (DM), which are additional 

mini-chromosomes. Amplification of the copy number of a proto-oncogene would be

5



expected to increase its expression and possibly activate it as an oncogene. Although 

some oncogenes detected by this approach such as c-myc had previously been identified 

(Collins and Groudine, 1982), two other members of the myc gene family, L- and N-myc 

were first identified (Table 1.1D) (Schwab et a l, 1983; Nau et a l, 1985).

1.2.2 The function of oncogenes

Proto-oncogenes encode proteins that are involved in the regulation of cell proliferation 

and differentiation. They appear to function at various levels in signalling from the 

extracellular compartment to the nucleus. Oncogenes are classified primarily according 

to their functional role and position in pathways of signal transduction and 

subcategorised as growth factors, receptor or non-receptor tyrosine kinases, GTP- 

binding proteins, serine/threonine kinases, and nuclear proteins /transcription factors 

(Table 1.2). Through a cascade of direct interaction and phosphorylation events, an 

external signal is transmitted via specific receptor-ligand interactions and relayed 

through the cytoplasm to the nucleus, where transcription factors elicit a response by 

modulating gene expression (Tonks and Neel, 1996).

The involvement of proto-oncogenes in differentiation has also been well documented. 

During mouse embryonic and fetal development, some proto-oncogenes are expressed at 

high levels, whereas others appear and disappear in a temporal manner (Slamon and 

Cline, 1984). When individual mouse tissues are evaluated in a stage-specific manner, 

differential expression is even apparent. Expression of N-myc (Mugrauer et a l, 1988) is 

detected in the embryonic kidney specially in cells undergoing tubulogenesis or 

branching morphogenesis and expression of ret is limited to the branching epithelium 

(Schuchardt et a l, 1994). Thus, appropriate expression of a proto-oncogene during 

development can be critical to normal tissue differentiation.

In addition, the regulatory importance of the proto-oncogenes is also inferred from their 

conservation in evolution. Homologous ras sequences have been identified in 

Drosophila, yeast, mouse and human, and apparently function similarly as well (Santos 

and Nebreda, 1989). The redundancy of function found in families of certain oncogenes 

also provides assurance that their regulatory capabilities will be maintained within a 

cell. For example, the ras gene family is represented by three separate forms: H-ras, K-
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A) Growth factors

sis/PDGFR, int-2/FGF3, hst/FGF4, WNT1/WNT3

B) Tyrosine kinases

i) Receptor-like tyrosine kinases

erbB/EGFR, kit, met, neu/HER2, ret

ii) Non-receptor tyrosine kinases

Membrane associated: src, fgr, fyn, hck, tkl 

Cytoplasmic: abl, sck, fak, fes/Jps

C) GTP-binding proteins

H-ras, K-ras, N-ras, gsp, gip

D) Serine/threonine kinases

bcr, raf/mil, mos, pim-1

E) Transcription factors

erbAJTHR, fos, jun, myb, myc, tal-1

Table 1.2 Classifications of proto-oncogenes/oncogenes according to their 
functional roles in signal transduction (See The Oncogene and Tumour supressor Gene 
Factsbook, Hesketh, 1997 for the majority of entries).

ras and N-ras which differ significantly in their introns or noncoding regions, but differ 

little in the coding regions.

1.3 Tumour suppressor genes

Tumour development is a multi-stage process which requires multiple genetic 

alterations. Many of these changes lead to activation of the oncogenes. The activated 

oncogene generally behaves in a dominant manner, its growth promoting effects can be 

maintained in the presence of a normal proto-oncogene allele. However, given the fact 

that most genetic changes are actually deleterious, it is possible that loss of function may 

be more important to the development of malignancy than oncogene activation. These

7



genes make up another distinctive class of genes, tumour suppressor gene, which 

functions as a negative regulator of tumour development.

Evidence for existence of tumour suppressor genes is derived from somatic cell 

hybridisation experiments (Harris et a l , 1969). Extensive studies have established that 

most hybrids between normal and malignant cells are no longer tumourigenic. Such 

suppression implies normal cells contain genes that act as negative regulators of the 

neoplastic phenotype. This interpretation is strengthened by the fact that such hybrids 

frequently revert to the tumourigenic phenotype following loss of specific chromosomes 

of the normal cell (Evans et a l, 1982; Benedict et a l, 1984). Furthermore, for some 

tumours, malignancy can be suppressed by the introduction of a normal chromosome to 

replace the lost parts (Tanaka et a l, 1991). A second piece of evidence comes from 

studies of familial cancers. Many forms of cancer have a higher incidence in relatives of 

cancer patients than in the general population, suggesting the existence of an inherited 

component in their aetiology. Some familial cancers even show a pattern of Mendelian 

inheritance, the commonest pattern of autosomal dominant transmission (Ponder, 1990).

In fact, tumour suppressor genes were first identified in inherited cancer syndromes, 

primarily through studies of rare familial cancers such as hereditary retinoblastoma and 

Wilms’ tumour (Knudson, 1993). Since the isolation of the retinoblastoma (Rb) gene 

(Friend et a l, 1986; Fung et al., 1987; Lee et a l, 1987a), many more have been cloned 

(see Table 1.3). The family of tumour suppressor genes is composed of genes that 

encode proteins that are localised to different subcellular compartments and involved in 

a diverse functions including cell cycle regulation, check point control, transcriptional 

repression, signal transduction modulation, DNA repair, and apoptosis (see review in 

Knudson, 1993; Hind and Weinberg, 1994; Fearon, 1997; Ghebranious and Donehower, 

1998). The studies on tumour suppressor genes demonstrate that loss of their functions 

cause disturbance in cell proliferation, genomic stability, and cell death and lead to 

tumour development.

1.3.1 Tumour suppressor gene alterations in human cancers — The ‘two-hit’ model

The information presented in many comprehensive reviews of tumour suppressor genes 

clearly established that germ line mutation of tumour suppressor genes is associated
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with an inherited predisposition to a familial cancer syndromes, but somatic mutations 

are detected in more common sporadic forms of cancer. Knudson addressed the question 

of the relationship between the hereditary and sporadic forms of these tumours 

(Knudson, 1971). Based on statistical analysis of the frequency and age of tumour 

development of inherited and sporadic cases of retinoblastoma, he proposed that the 

development of retinoblastoma involves recessive genetic events causing inactivation of 

the same gene, the retinoblastoma (Rb) gene, in both hereditary and sporadic forms of 

disease. Since there are two copies of this gene in the normal cells, he reasoned that in 

hereditary cases, a mutated Rb allele is inherited, and consequently present in all cells of 

a carrier, inactivation of the remaining allele in a single cell of the retina would give rise 

to retinoblastoma. In the sporadic cases, two mutations in both alleles were proposed to 

occur sequentially in the somatic cells of the retina. By this scenario, cancer in affected 

families is inherited as a dominant trait because, having inherited one abnormal gene, 

the probability of a second event occurring is sufficiently higher. However, the disease 

itself at cellular level is recessive, with a single functional allele at a tumour suppressor 

locus such as Rb being sufficient at single cell level to prevent tumour development.

Knudson’s now famous ‘two-hit’ model has become engraved in the annals of cancer 

genetics. The model applies not only to retinoblastoma but also fits the epidemiological 

data for other familial cancers such as neuroblastoma, pheochromocytoma and Wilms’ 

tumour (Knudson and Strong, 1972a and 1972b). A broader version of this model can 

also be applied to cancers which require the accumulation of several more mutations 

before expression of the fully malignant phenotype. Colorectal carcinoma occurs in both 

familial and sporadic forms, but the epidemiological data suggest that accumulation of 

approximately six independent mutational events is required (Armitage and Doll, 1954). 

Fearon and Vogelstein (1990) demonstrated that an early, probably initial, requirement 

for the development of colon cancer in both familial and sporadic cases was inactivation 

of both copies of the APC  gene. Despite the requirement for further somatic mutations 

to occur stochastically before the emergence of colon carcinoma, inheritance of a single 

inactivated copy of APC  gene is sufficient to confer an increased risk of developing the 

disease, by initiating a chain of tumourigenic events (Kinzler and Vogelstein, 1996).
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1.3.2 Genetic mechanisms of tumour suppressor gene loss

Tumour suppressor genes are grouped together because they are all mutated to an 

inactive form in the course of tumourigenesis. There are many ways by which a gene 

can be rendered functionally silent. These include: 1) single point mutations which 

introduce stop codon, thus preventing translation of a full length protein; 2) mutations 

which affect promoter activity or cause aberrant splicing of the pre-mRNA; 3) 

methylation of the gene, preventing its recognition by the transcriptional machinery; and 

4) removal of all or part of the gene by chromosomal mechanisms such as non

disjunction, mitotic recombination or deletion. For the complete loss of tumour 

suppressor gene function, both copies present in diploid cells have to be inactivated, and 

this can occur by sequential events within developing tumour cells as shown in Figure

1.1 (Brown et a l , 1993). Of the mechanisms shown, loss by mitotic recombination or 

deletion has proved the most useful for detection of potential tumour suppressor genes 

in the genome, since comparison of the loss of heterozygosity (LOH) intervals in 

different tumours can narrow down the region of interest to a size where positional 

cloning approach can be attempted to isolate the gene (Collins, 1991). The application 

of these techniques has revealed the presence of putative tumour suppressor gene loci on 

almost every human chromosome (Lasko et al., 1991).

1.3.3 Tumour suppressor genes in inherited cancer syndromes

In addition to retinoblastoma, there are some other rare inherited cancer syndromes 

which have been the subject of intensive study. By a combination of linkage analysis in 

members of cancer families and LOH analysis in tumours of affected members, many of 

the genes responsible for these cancers have been located to a particular chromosomes 

and an increasing number of tumour suppressor genes have now been cloned (Table 

1.3).

1.3.3.1 Rb and retinoblastoma

One of the genetic highlights of the last decade is the identification of a gene involved in 

the formation of retinoblastoma. Retinoblastoma is a rare ocular tumour that affects 1 in 

20,000 children. There are two forms of the disease present: inherited and sporadic. In 

the former, tumours are seen affecting both eyes, where the latter is characterised by the 

appearance of single eye lesions. About 40% of all cases of retinoblastoma occur as a
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clear-cut, dominantly inherited Mendelian disorder, the remainder are sporadic 

(Knudson, 1993).

Knudson (1971) proposed that retinoblastoma was caused by two mutations. In inherited 

case, the first mutation is present in the germ line and the second mutation occurs 

somatically, resulting in tumour development. Although his hypothesis was based upon 

statistical modelling, it has received supports from cytogenetic and molecular studies 

which have subsequently led to the cloning of the Rb gene. It was first observed that 

about 5-10% of individuals who inherit retinoblastoma posed a constitutional deletion 

of part or all of chromosome 13ql4 (Yunis and Ramsay, 1978). This finding was 

strengthened by the finding that the esterase D (ESD) gene, which had been 

independently mapped to the same chromosome locus, was also deleted in both 

hereditary and sporadic retinoblastoma (Lee et al., 1987b ). Such deletion suggests that 

the first ‘hit’ produced a loss-of-function mutation of a gene located within the deleted 

regions. The presumption that the second hit would eliminate the other functional copy 

of the underlying gene was later confirmed by the use of restriction fragment-length 

polymorphisms (RFLPs) markers (Cavenee et al., 1983). Further studies by three 

independent groups eventually led to the identification of the first human tumour 

suppressor gene, the retinoblastoma gene (Friend et al., 1986; Fung et al., 1987; Lee et 

al, 1987a).

The Rb gene itself has been the subject of intense investigation since its discovery. The 

Rb gene encodes a 105 kD nuclear phosphoprotein ubiquitously expressed throughout 

the body, suggesting that RB play an important role in the maintenance of a broad range 

of tissues (see review in Weinberg, 1995). From biochemical studies, RB appears to 

function as an important regulator of the G1 checkpoint. It binds to members of the E2F 

family, transcription factors needed for transcription of S phase early gene, and prevent 

S phase entry. Hyper-phosphorylation of RB by Gl/S cyclin-dependent kinases (CDKs) 

releases E2F from RB-mediated repression and enables progression of the cell into S 

phase. RB mutations occur at high frequency in a variety of tumour types. In addition to 

retinoblastomas (Horowitz et al., 1989), RB mutations have been detected in many other 

sporadically arising tumours, including osteosarcomas, soft tissue sarcomas and 

carcinomas of the breast, lung, bladder and prostate, and some forms of leukaemia. (Lee 

etal., 1988; Bookstein eta l., 1990; Ishikawa etal., 1991; Chen et al., 1990). Frameshift
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and chain termination mutations, deletions of entire exons, and point mutations are 

common forms of mutation that result in loss of function of RB.

Rfr-deficient mice, on the other hand, revealed previously unknown cellular functions 

(Lee et al, 1992; Jacks et al, 1992; Clarke et al, 1992). Rfr-deficient mice die at the 

15th day of gestation largely because of the defects in hepatic erythropoiesis. In 

addition, widespread apoptosis and aberrant S phase entry is also observed in cells in the 

central and peripheral nervous system (Morgenbesser, 1994). Further studies 

demonstrate that this apoptosis is mediated largely by E2F-1 overexpression (Tsai et al,

1998). Mice that are heterozygous for the Rb gene show no signs of retinoblastoma or 

precursor lesions, but they can develop pituitary adenomas (Jacks et a l, 1992; Hu et a l, 

1994). These tumours consistently shows loss of heterozygosity of the wild-type Rb 

allele, consistent with Knudson’s ‘two hit’ hypothesis (Hu et a l, 1994).

1.3.3.2 p53 and Li-Fraumeni syndrome

Li-Fraumeni syndrome is a rare familial cancer syndrome with an incidence estimated at 

2-4 per 100 000 population. Families with this syndrome are characterised by the high 

incidence of a spectrum of tumours, including breast cancer, soft tissue sarcomas, brain 

tumours, leukaemia, and adrenocortical carcinomas (Knudson, 1993). It has been 

demonstrated that inactivating mutations of p53 gene are associated with a similar broad 

spectrum of non-inherited cancers (Nigro et al, 1989), suggesting that p53 gene might 

be responsible for this inherited cancer susceptibility. This was confirmed by the finding 

of germline p53 mutation in Li-Fraumeni syndrome families (Malkin et a l, 1990; 

Srivastava e ta l, 1990).

Interestingly, the p53 gene was originally discovered by its association with SV40 T 

antigen in SV40 transformed cells (Lane and Crawford, 1979; Sarnow et a l, 1982). The 

very early studies suggested that p53 could act primarily as a dominant oncogene 

(Eliyahu et a l, 1984). It was only in the late 1980s that investigators established that the 

transforming ability of p53 was resulted from mutations which behaved in a dominant 

negative manner by forming inactive oligomeric complexes between mutant and wild- 

type proteins (Hinds et a l, 1989; Herskowitz, 1987), suggesting the role of p53 as a 

tumour suppressor gene rather than an oncogene (Finlay et a l, 1989; Eliyahu et a l,
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1989). Subsequent studies have shown that deletions and inactivating mutations of the 

p53 gene is frequently deleted in a wide range of human tumours (Hollstein et al., 

1991). In fact, the mutations of the p53 gene contribute to approximately 50% of all 

human cancers as well as inherited Li-Fraumeni syndrome, making p53 the most 

common target for genetic alterations leading to human tumour development.

p53 is a ubiquitously expressed transcription factor which appears to be involved in 

diverse range of cellular functions and responses, including both activation and 

repression of transcription, regulation of protein translation, inhibition of DNA and 

RNA helicase activity, DNA repair, cell cycle arrest, and apoptosis (see review in Ko 

and Prives, 1996; Levine, 1997). Therefore, p53 may suppress tumourigenesis through 

multiple mechanisms. It has been shown that various cellular stresses, including DNA 

damage, hypoxia, ribonucleotide depletion, serum starvation, and aberrant oncogene 

activation, may induce stabilisation of p53 through phosphorylation, preventing it from 

binding to the mdm2 which facilitates its degradation (Prives, 1998). Stabilised p53 can 

induce either cell cycle arrest or apoptosis (Lane, 1992). The decision by p53 about 

whether to initiate an arrest or apoptotic program can be influenced by a variety of 

factors such as cell type, cytokine or growth factor concentrations, levels of p53, or the 

extent of DNA damage (Ko and Prives, 1996). The end result of the choice is to prevent 

the damaged DNA being replicated thus eliminate the potential oncogenic DNA lesions.

Given the importance of the p53 gene in maintaining genomic integrity, not surprisingly, 

in the absence of p53-mediated growth arrest and apoptosis genetic lesions can more 

readily lead to neoplastic transformation. The p53-deficient mice develop tumours at a 

very young age, and the p53 heterozygous mice are susceptible to tumour development 

(Donehower et al., 1992; Kemp et al., 1994). Thymic T-cell lymphomas are the most 

frequently arising tumours in the p53-deficient mice, but lymphomas of B-cell origin, 

soft tissue sarcomas, osteosarcomas, testicular teratomas, and other forms of tumour are 

also observed (Donehower et al., 1992; Purdie et al., 1994; Jacks et al., 1994). These 

tumour types observed in mice are signature tumours often seen in Li-Fraumeni families 

(Malkin, 1994).
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1.3.4 Caretaker and Gatekeeper genes

The notion that specific tumours of a familial cancer syndromes share mutations of 

critical genes with their sporadic forms was established decades ago. Most of the tumour 

suppressor genes are indeed mutated in both hereditary and sporadic tumours. However, 

recent examples of tumour suppressor gene mutations such as BRCA1 and BRCA2 in 

inherited breast cancers are absent in sporadic cases has serious shaken this concept. In 

addition, some tumour suppressor genes such as p53, RB, and APC are widely expressed 

and found mutated in many types of tumour, but predispose most strongly to only a 

limited spectrum of tumour types. Kinzler and Vogelstein (1997) addressed this issue 

with the classification of tumour suppressor genes as ‘gatekeepers’ and ‘caretakers’, a 

timely paradigm that is likely to guide the field of tumour suppressor genes as much as 

Knudson’s ‘two-hit’ hypothesis.

The concept of gatekeeper and caretaker genes is characterised by their distinct 

functions towards tumour suppression. Gatekeeper genes control cellular proliferation 

directly by inhibiting cell growth or promoting cell death. Inactivation of a gatekeeper 

gene manifests itself directly as a growth advantage to the affected cell. Each cell type 

has only one or few gatekeeper genes, and inactivation of a gatekeeper gene may be 

necessary for passing the genetic threshold of the neoplastic process in a given tissue. 

Therefore, Inactivation of gatekeepers is rate-limiting for the initiation of a tumour, and 

both the maternal and paternal copies must be altered for tumour development. 

Examples of gatekeeper genes include APC and (3-catenin in colon epithelial cells, Rb in 

retinal epithelial cells, NF1 in Schwann cells, and VHL in kidney cells.

In contrast, caretaker genes maintain the genomic integrity after DNA damage and 

recombination. Inactivation of a caretaker gene does not result directly in tumour 

initiation, but rather lead to genomic instabilities which enhance the probability of 

mutation in all genes, specially those in the gatekeeper pathway. Once such a tumour is 

initiated by inactivation of a gatekeeper gene, it may progress rapidly due to an 

accelerated rate of mutation in other genes that directly control cell growth or death. 

Mismatch DNA repair genes, such as MSH2 and MLH1, are caretaker genes, and 

abnormalities in these genes enhance genome instability and increase the risk of human 

colon cancer (Fishel et a l, 1993; Bronner et a l, 1994). More recently, breast cancer 

susceptibility genes, BRCA1 and BRCA2, have also been included in the list of caretaker
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genes due to recent findings of their involvement in DNA repair pathways via 

interaction with Rad51 (Sharan etal., 1997; Scully etal., 1997).

The interpretation of gatekeeper and caretaker is consistent with the finding that three or 

more additional somatic mutations are required to initiate neoplasia in the caretaker 

pathway, whereas only one additional somatic mutation is required to initiate neoplasia 

in the gatekeeper pathways. Because in inherited cancer syndromes of the caretaker 

type, in addition to the mutant caretaker gene inherited form an affected parent, the 

predisposed individuals still need at least three subsequent somatic mutation to initiate 

cancer: mutation of the normal caretaker allele followed by mutation of both gatekeeper 

genes. Thus, a predisposed individual with an inherited mutated allele of a caretaker 

gene is at lower risk of cancer when compared with an individual with a mutated 

gatekeeper allele. Importantly, mutations in caretaker genes would not be expected to 

occur in sporadic tumours since a single cell would need to acquire four independent 

mutations (two caretaker alleles plus two gatekeeper alleles) to become initiated. The 

odds of acquiring even three somatic mutations before a cell undergoes malignancy are 

slight, which probably explains why germ line mutations of BRCA genes account for 

almost 90% of inherited breast cancer cases, but somatic mutations of these genes are 

only rare event.

More recently, Kinzler and Vogelstein (1998) added one more category of tumour 

suppressor genes defect to their new theory, the ‘Landscape^ defect. The concept of 

landscaper defect was introduced by recent studies on Juvenile polyposis syndrome 

(JPS) and ulcerative colitis (UC). Patients with JPS and UC develop hamartomatous 

polyps in which the proliferation defective cells appear to be derived from the stroma. 

Consequently, the epithelial cells associated with polyps are more likely to undergo 

neoplastic transformation as a result of an altered terrain for epithelia cell growth. It has 

been demonstrated that germline mutations in PTEN or SMAD4 can lead to the 

development of the hamartomatous polyps (Howe et al., 1998; Olschwang et a l, 1998). 

However, somatic mutations of these two genes in colon cancer are infrequent events, 

the mutations more commonly occur in brain and pancreatic cancer.
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1.3.5 Identification of tumour susceptibility genes

The past decade has seen rapid progress towards the identification of genes involved in 

inherited predisposition to cancer. The genetic linkage analysis, by which one compares 

the inheritance pattern of a trait with the inheritance patterns of chromosomal regions, 

has been the mainstay of efforts although in some cases there are also contribution of 

cytogenetic clues. Major advances have been made in identifying genes which control 

familial predisposition to the development of certain tumour type in humans, these 

studies have been limited to relatively rare cases where susceptible individuals have 

inherited high penetrance genes (such as tumour suppressor genes) conferring 

substantial probability of diseases development. However, theoretical considerations 

have indicated that the majority of sporadic human cancers may also have an important 

hereditary component and much of the cancer incidence may be attributable to high 

frequency, low penetrance genes (such as the tumour modifier genes) tumour 

susceptibility gene present within the population. Because of the lack of clear cut 

familial inheritance pattern, and due to the complexities implicit in the genetic- 

environmental interactions which may lead to tumour development in predisposed 

individual, the identification of tumour susceptibility genes may be extremely difficult 

solely on the basis of human genetic studies.

Rodent systems offer a number of distinctive advantages for the detection of tumour 

susceptibility loci. A large number of inbred mouse strains are available which show 

enormous variation in susceptibility to the development of tumours of the lung, colon, 

skin, liver and lymphoid system after exposure to a variety of environmental agents, 

including chemicals, radiation and viruses (Demant, 1992). Selective breeding has 

consequently resulted in homozygosity at a number of tumour susceptibility or tumour 

resistance loci which are randomly distributed between different strains of mice. 

Classical genetic approaches can therefore be used to analyse segregation of such 

predisposition loci in backcross or intercross between susceptible and resistant strains. 

The development of large panel of microsatellite markers has further facilitated the 

identification of tumour susceptibility genes. Importantly, the multistage process of 

tumour development in mouse carcinogenesis is very similar to that seen in humans, and 

the genetic alterations detected in mouse tumours involve genes, such as ras, Rb, p53 

and p i 6, that are also the most commonly altered genes in human tumours. This 

underlying similarity in the biology of carcinogenesis in mice and in humans implies

18



that the genes that control susceptibility to mouse tumour development will also be 

relavant to the human situation.

Another major advance is the development of statistical methods that take account the 

fact that multiple genes make different quantitative contributions to the phenotype. The 

identification of the critical gene within a QTL is greatly facilitated by the availability of 

unlimited size of ‘families’ for linkage analysis, the use of selective mouse breeding to 

identify recombinant animals which may be used for further phenotypic analysis, and 

the development of congenic mice (Moen et a l , 1991). Thus far, a large number of 

mouse tumour susceptibility loci have been mapped that control the size, growth rate, or 

number of lesions that develop, or that can independently influence early or late stages 

of tumourigenesis (Table 1.4). The mapping may be further refined if the QTL harbours 

a tumour suppressor gene which exhibits LOH in tumours. Positional cloning and 

candidate gene approaches can then be used to identify the target genes.

1.4 Quantitative trait loci linkage mapping of cancer predisposition 

genes

The concept of genetic linkage was first recognised by Mendel, who noted that certain 

characteristics of his experimental plant tended to be co-inherited. The explanation for 

this phenomenon became clear once it was recognised that chromosomes contain the 

genetic material. Two traits were linked if the corresponding genes reside close together 

on the same chromosome. This leads to the idea of linkage analysis —  to trace and 

measure the co-segregation of disease allele in a family with genetic markers. If the 

marker and disease gene are linked, then a particular allele at the marker locus is likely 

to travel with the disease in a special family. In a different family, a different allele from 

the same marker locus may segregate with the disease gene. The distance between the 

marker locus and the disease gene can then be inferred by using information from 

putative recombination events during meiosis. Genetic distance is generally measured in 

centi-Morgans (cM), where 1 cM is approximately the distance between two loci that on 

average show 1% recombination (0=0.01). The recombination fraction (0) refers to the 

probability that a gamete produced by a parent is a recombinant between two loci (in 

this case, the marker locus and the disease gene). The extent of linkage is measured by
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Tumour Induction Locus Chromosome 
location (cM)

Reference

Colon cancer APC mutation Moml 4 (66.6) Dietrich et al., 1993
DMH and ENU Scc3 1 (101.5) van Wezel et al., 1996

Scc4 17 (47.4) van Wezel et al., 1996
Scc5 18 (25.0) van Wezel et al., 1996

DMH Sccl 2 (45.0) Moen et al., 1992
Scc2 2 (32.5) Moen et al., 1996
Ccsl 12 (38.0) Jacoby et al., 1994

Small intestine tumour ENU Ssicl 4 (64.0) Remond et al., 1995
Hepatomas DEN Hcfl 17 (19.0) Poole et al., 1996

Hcf2 1 (82.0) Poole et al., 1996
Hcrl 4 (44.5) Lee et al., 1995
Hcr2 10 (25.1) Lee et al., 1995

Urethane Hcs4 2 (99.0) Manenti et al., 1994
Hcs5 5 (49.0) Manenti et al., 1994
Hcsl 7 (24.0) Gariboldi et al., 1993b
Hcs2 8 (56.0) Gariboldi et al., 1993b
Hcs3 12 (59.0) Gariboldi et al., 1993b
Hcs6 19 (40.0) Manenti etal., 1994

Lung cancer ENU Sluc2 2 (38.0) Fijneman et al., 1996
Sluc3 6 (57.0) Fijneman et al., 1996
Sluc4 11 (40.0) Fijneman et al., 1996
Ltsl 17 (19.0) Fijneman et al., 1995
Pas3 19 (5.0) Devereux et al., 1994
Slucl 19 (47.0) Fijneman et al., 1996

Urethane Papgl 4 (49.6) Manenti et al., 1997
Par4 6 (3.0) Manenti et al., 1997
Pasl 6 (79.0) Gariboldi et al., 1993a
Pas4 9 (48.0) Festing et al., 1994
Pari 11 (53.5) Manenti et al., 1996
Par3 12(30.5) Pataer et al., 1997
Pas2 17 (19.1) Festing et al., 1994
Par2 18 (40.0) Manenti et al., 1997
Pas3 19 (15.0) Festing et al., 1994

Plasmacytoma Pristane Pctm 1 (80.0) Mock etal., 1993
Pets 4 (60.5) Mock et al., 1993
Pctrl 4 (46.0) Potter et al., 1994
Pctr2 4 (76.5) Potter et al., 1994

Pre B-cell Lymphoma Endogenous virus Foci 4 (38.9) Yamada et al., 1994
Esll 17 (47.4) Yamada etal., 1994
Msmrl 17 (22.0) Pataer etal., 1996
Msmr2 18 (32.0) Pataer et al., 1996

Thymic lymphoma MNU Tlagl 7 (47.0) Ange/ et al., 1993
Endogenous virus Tlsml 7 (66.0) Yamada et al., 1994

Skin tumour DMBA-TPA Skts4 5 (64.0) Mock et al., 1998
Spr3 5 (24.0) Nagase et al., 1995
Sprl 7 (27.0) Nagase et al., 1995
Spr2 7 (64.0) Nagase et al., 1995

MNNG-TPA Psll 9 (51.0) Angel et al., 1997

Table 1.4 Mouse tumour susceptibility loci.
Abbreviation: DEN: N,N-diethylnitrosamine; DMBA: 7,12-dimethyl-benzanthracene; 
DMH: 1,2-dimethylhydrazine; ENU: ethylnitrosourea; MNU: N-methyl-N-nitrosourea; 
MNNG: N-methyl-N’-nitro-N-nitrosoguanidine; TPA: 12-0-tetradecanoyl-phorbol-13- 
acetate
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formulation a ‘logarithm of the odds’ (LOD) scores: LOD(0) = logio[L(0)/L(l/2)]. The 

LOD(0) is the logarithm (base 10) of the likelihood ratio of the probability of the 

observed data given linkage at a certain recombination fraction 0 to the corresponding 

probability in the absence of linkage. The closer the marker is to the disease gene, the 

greater the extent of co-segregation (smaller 0) and the bigger the LOD score. A LOD 

score of 3 or more implies at least a 95% posterior probability of linkage (Ott, 1991).

1.4.1 Genetic markers and DNA polymorphism

As mentioned in previous section, linkage analysis test for co-segregation of disease 

trait within a family with a random marker. Ideally, the marker should be (i) highly 

polymorphic, so that pairs of individuals are likely to carry different alleles at each 

locus; (ii) abundant, so comprehensive marker coverage of the genome is achieved; (iii) 

neutral, with respect to the phenotypic effect of disease trait and reproductive fitness; 

and (iv) co-dominant, so all possible genotypes at a marker locus can be identified.

For many years, linkage mapping was seriously hampered by the lack of suitable 

markers. Cryptic protein variation, such as blood group antigens and electrophoretically 

distinguishable enzyme alleles, often satisfied the criteria of neutrality and co

dominance, but is neither sufficiently polymorphic nor abundantly to mark the entire 

genome. The most important breakthrough came in the late 1970s with the realisation 

that single base pair DNA polymorphisms could be recognised by restriction enzymes 

and resolved by electrophoresis, using a technique known as Southern blotting 

(Southern, 1975). This revolutionised the field by providing a much larger class of 

polymorphisms which were numerous throughout the genome and satisfied all essential 

criteria outlined above. These restriction fragment length polymorphisms (RFLPs) 

became the basis of many successful linkage studies in Mendelian disorders, including 

cancer syndromes such as retinoblastoma and familial adenomatous polyposis (Botstein 

e ta l , 1980).

Another major advance has been the development of DNA polymorphism based on 

repetitive sequences. These were first recognised by Jeffreys et a l (1986), who noted 

that certain short DNA sequences were randomly repeated and that the number of 

repeats were often highly variable between individuals. The variation in these
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minisatellite polymorphism (also known as variable number of tandem repeat or 

VNTRs) can also be detected by electrophoresis. The identification of microsatellite 

polymorphisms by Weber and May (1989). Microsatellites (also known as SSRs or 

SSLPs) are small blocks of randomly repeated DNA, in which the repeated element is 

usually a di-, tri-, or tetra- nucleotide sequence (e.g. [CA]n, [CAG]n, [AGAT]n) (Weber 

and May, 1989; Litt and Luty, 1989). The number of repeat elements in these block is 

often highly polymorphic, and shows simple Mendelian inheritance. Specific 

microsatellite loci can easily be defined by polymerase chain reaction (PCR) using 

oligonucleotide primers to the conserved sequences flanking the repeats, and length 

polymorphisms among individuals are identified by electrophoresis of the amplified 

products on agarose or polyacrylamide gels (Figure 1.2). Microsatellites are abundant 

and almost uniformly dispersed throughout the mammalian genome, thereby providing 

an enormous pool from which to derive markers. Their detection using PCR means 

linkage maps can be constructed more rapidly and efficiently than is possible using 

RFLP markers. Primarily through the efforts of a group of scientists at MIT and at 

Genethon, several thousand microsatellite markers have thus far been identified and 

mapped to the mouse and human genomes, respectively (Dietrich et a l , 1994a and 

1996; Copeland et al., 1993; Dib et a l , 1996). The availability of complete genome 

maps opens up the opportunity for new statistical approaches for detecting poly-genes in 

complex diseases.

1.4.2 Linkage mapping of quantitative trait loci

The past decade has seen rapid progress towards the genetics of inherited predisposition 

to cancer. A number of genes, whose germline mutations cause a highly penetrant 

familial predisposition to cancer have been identified via linkage analysis approaches 

(Fearon, 1997); the majority of these are genes involved in monogenic Mendelian 

diseases with simple patterns of inheritance (Lander and Schork, 1994). However, a 

complicating factor in genetic studies is that cancer is not a single disease, even when it 

arises in the same organ site. Rather, it is a collection of many diseases, some of which 

may even be multifactorial diseases. Most of them are influenced by more than one gene 

as well as environmental factor and thus do not exhibit a simple mode of inheritance 

(e.g. dominant, recessive, sex linked). The genetic dissection of such complex traits is 

much more difficult than the analysis of monogenic diseases because the genes
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Primer L AMPLIFIED REGION Primer R
Indi vi dual  A ^ ^ I

al l el e 1 -----------------------------C A C A C A C A C A C A C A ------------------------------

allele 2 -----------------------------C A C A C A C A C A C A C A C A C A -----------------------------------------

Primer L A M PLIFIED  R EG IO N  Primer R
Individual B ■ -------------

A B (A X B)Fl

L- and R-primed 
PCR products

+

F igu re 1.2 Gene mapping by analysis of microsatellite polymorphisms. Length 
polymorphism of a microsatellite marker, between individual A and B in this figure, is 
detected using polymerase chain reaction (PCR) with a set of primers to the conserved 
flanking region (primer L and R). The size and number of products identifies the 
genotype of individual. In this example, the PCR products of allele 1 are larger than 
allele 2, since the former has two additional CA repeats than the latter. Thus, individual 
A and B are homozygous for the allele 1 and 2, respectively. (AXB)Fl, which carries 
both A and B chromosomes, displays both parental PCR products.

influencing the multifactorial diseases may interact with each other and with 

environmental factors to create a statistical susceptibility (as opposed to conferring 

strict determination) to the disease, and these genes may neither be necessary nor 

sufficient for disease expression. Therefore, identifying and characterising these genes 

requires substantial resources, including very large collections of family data, highly 

informative genetic markers that span the genome and specifically developed statistical 

approaches that deal with complex traits. An effective approach for studying complex 

and polygenic form of disease is known as Quantitative trait loci (QTL) mapping.
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1.4.2.1 The general principles of QTL linkage analysis

The theory of QTL analysis was first described in 1923 by Sax (Sax, 1923), when he 

noted that seed size in bean (a complex trait) was associated with seed coat colour (a 

simple monogenic trait). This concept was further elaborated by Thoday (Thoday, 

1961), who suggested that if the segregation of simple inherited monogenes could be 

used to detect their linked QTLs, then it should eventually be possible to map and 

characterise all the QTLs involved in complex traits. Modern QTL mapping is 

essentially the fulfilment of this idea, with the key innovation being that defined 

sequence of DNA act as the linked monogenic markers. With the development of 

comprehensive DNA marker map (Dib et a l, 1996; Dietrich et a l, 1996), it is now 

possible to search for QTLs throughout the genomes. This has had the profound effect 

of moving the focus in studies of polygenic traits to questions about the chromosomal 

locations, gene actions, and biological roles of specific loci involved in complex 

phenotypes (Tanksley, 1993).

QTL analysis involves testing DNA markers throughout a genome for the likelihood 

they are associated with a QTL. Individuals are scored for their genotype at marker 

locus, and their phenotype for the quantitative trait of interest. For each marker locus, 

the individuals are split into classes according to the genotype. Mean and variance 

parameters are calculated and compared among classes. If there is a significant 

difference in phenotype among genotype classes, then we can infer the presence of a 

QTL linked to the marker (Figure 1.3).

1.4.2.2 Single marker analysis

The simplest approach for detecting QTL is to analyse one marker at a time. If a marker 

is tightly linked to the target gene, the marker and QTL alleles will be associated and as 

a consequence the genotypic means of the marker will be different. As the single marker 

analysis does not require a complete molecular marker map, it is often first employed in 

a molecular marker/quantitative genetic study (Edwards et a l, 1987; Winkleman and 

Hodgetts, 1992). The disadvantage of single marker analysis are: (i) The further a QTL 

is from the marker gene, the less likely it is to be detected statistically due to crossover 

events between the marker and QTL that result in misclassification. (ii) The magnitude 

of the effect of any detected QTL will normally be underestimated, due also to

24



Parent A Parent B

f t
QTL(a) ■  I QTL(a) 

marker(a) H I marker(a)
X

QTL(b)
marker(b)

QTL(b)
marker(b)

Individual #1

QTL(a)
marker(a)

T
FI

QTL(b)
marker(b)

I
F2 progeny

Individual #2 Individual #3

QTL(a)
marker(a)

QTL(a) Q TL(a)M  ■  QTL(b)
marker(a) marker(a)M u  marker(b)

Q T L (b)B  ■  QTL(b) 
m arker(b)H  I  marker(b)

C lassification  o f F2 progen ies w ith respect to m arker locus

f marker a/a \ f marker a/b \
V (QTL a/a) ) V (QTL a/b) )

marker b/b 
(QTL b/b)

P h en otyp e m eans  
o f su bgroup s X Y Z

* The QTL is detected if a significant difference is 

observed among the means of subpopulations X, Y and Z

Figure 1.3 Marker-aided detection of a QTL in a theoretical F2 population 
segregating for quantitative trait. Top portion of figure depicts region of chromosomes 
in parent A (in red) and parent B (in green) that contains a marker and a linked QTL. 
FI hybrid is heterozygous at both marker and QTL. F2 progeny segregate for 
recombinant chromosomes, but in most instances, genotype of linked marker accurately 
predicts the genotype for the QTL. Statistical comparisons of phenotypic means of the 
sub-populations (comprised of each of the three possible marker genotypes —  a/a, a/b, 
b/b) can permit detection of the linked QTL.
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recombination between the marker locus and the QTL. Both problems can be minimised 

when a large number of segregating markers which cover the entire genome are used. 

Under this condition, any potential QTL would be closely linked to at least one marker.

1.4.2.3 Interval mapping analysis

The effect of a QTL and its distance from the proxy marker are inter-related. A QTL of 

small effect lying close to the proxy marker may appear similar to that of a QTL of large 

effect located further from the marker, as judged by the phenotypic differences between 

marker genotype classes. With only a single marker, we can not use this approach to 

determine both the contribution of a QTL and its position. The difficulty of separately 

estimating the effect of a QTL and its position is resolved by the availability of complete 

marker maps and the use of analysis by interval mapping (Lander and Botstein, 1989). 

Instead of analysing the population one marker at a time, sets of linked markers are 

analysed simultaneously with regard to their relative position and their effects on 

quantitative traits. By using linked markers for analysis, it is possible to compensate for 

recombination between the markers and the QTL, increasing the probability 

ofstatistically detecting the QTL and also providing an unbiased estimate of the QTL 

effect on the character.

In many available software packages, MapMaker/QTL is the most widely used software 

(Lander et al., 1987). This method is usually implemented by choosing a given point in 

the genome and predicting the effect of a QTL at that position. The process is repeated 

at fixed positions through a chromosome and the position at which a QTL would 

explain most of the variance between marker classes is identified. The point is then the 

estimated position of the QTL, and the effect of the QTL is that estimated for this 

position.

The interval mapping method can work well when there is only one QTL on a 

chromosome. When there are several QTLs involved, however, the results can be 

misleading. The number of QTLs detected by linkage with markers is always an 

underestimate of the number of loci because QTLs identified by linkage to marker loci 

are not loci in the usually genetic sense but rather effective factors and may contain 

several loci affecting the trait. Therefore when a test reveals a QTL linked to a marker,
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the effect observed may be contributed by two or more close linked loci, not just one 

locus. The effect observed is, thus, the aggregate of the effects of these loci. 

Furthermore, the alleles at the linked loci may be in association or in dispersion. 

Consequently, the effects of each individual loci may be smaller (in case of association) 

or larger (in case of dispersion) than the observed aggregate effects. In extreme cases, 

two QTLs closely linked to each other may not be detected at all if in dispersion. The 

complete solution to this problem has yet to be resolved, but it can at least be partially 

ameliorated by explicitly testing alternative models which assume multiple QTLs.

1.4.2.4 Multiple QTLs mapping

Given the multistage nature of cancer, tumour development is likely to involve the 

contribution of multiple genetic loci. Some loci may be closely linked by location or by 

function. Therefore, two methods have been developed to fit the multiple-locus model, 

namely MQM (multiple QTL model or marker-QTL-marker) mapping and CIM 

(composite interval mapping) (Jansen 1993; Jiang and Zeng, 1995). The genetic 

concepts of these two methods are more or less identical, combining the interval 

mapping with regression analysis to dissect the effects of two or more linked QTLs. 

Like simple interval mapping, the test evaluates the possibility of a target QTL at 

multiple analysis points across each inter-marker interval. However, at each point it also 

includes the effects of other one or more background markers. The inclusion of the 

background markers makes the analysis more sensitive to the presence of a QTL in the 

target interval and help to separate the target QTL from other linked QTLs (Zeng, 1994).

1.4.3 Parametric and nonparametric analysis for QTL mapping

The use of markers to detect individual loci responsible for a QTL trait has been a 

powerful tool for the study of genetic variation. Many statistical methods have been 

developed to analyse mapping data for QTL traits. In principle, there are two linkage 

analysis methods, one is termed as the parametric method which involves testing 

whether the inheritance pattern fits a specific model for a trait-causing gene, and the 

other is the non-parametric method which involves testing whether the inheritance 

pattern deviates from expectation under independent assortment.
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All the parametric analysis methods share a common assumption that the phenotype 

follows a normal distribution with equal variance in both parental strains. However, 

many phenotypes of interest are, often, not normally distributed. Examples include 

counts generated by a Poisson process (such as number of tumours, which in many cases 

follows a negative binomial distribution) (Drinkwater and Klotz, 1981), truncated data 

(such as survival times in an experiment of limited duration), probabilities (such as 

chance of an epileptic seizure in a given trail), and qualitative data (such as severity 

grade assigned upon histological examination). Traditional QTL mapping methods can 

not be directly applied in such cases. The solution to this problem is to find a 

mathematical transformation that will convert the phenotypic data into an approximately 

normal distribution. An alternative approach is to apply non-parametric statistic test, a 

measure based on the rank of each trait value rather than the trait values itself (Kruglyak 

and Lander, 1995). This approach is a model free method and can be applied to any 

phenotypic distributions.

1.4.4 Power and precision of QTL mapping

Each QTL-detection experiment provides an estimate of the strength of a QTL. In some 

experiments, the QTL will be overestimated, in others underestimated. The power of a 

QTL-detection experiment, defined as the probability of detecting a QTL at a given 

level of statistical significance, depends on the strength of the QTL and the number of 

progeny in the population. If we consider the strength of the QTL in terms of fraction of 

the total trait variance that it explains, we can define three categories of QTLs. Those 

which explain over 20% of the variance are strong QTLs. Traits controlled by such 

QTLs can be considered almost Mendelian. Strong QTLs can be detected with a power 

greater than 80% even with the AxB/BxA set of recombinant inbred strains. At the other 

extreme, weak QTLs, which explain 1% or less of the trait variance, require at least a 

thousand progeny to detect them with high power. Detection of such QTLs is not 

routinely feasible. Between these extremes are moderate QTLs, which can be detected 

with crosses of reasonable size, but not necessarily at high power (Manly and Olson,

1999).

Since moderate QTLs span a wide range of strength, the interpretation of any 

experiment designed to detect such QTLs should include an estimate of the power of the
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experiment. Rebai et al. (1995), Darvasi (1998), and Lynch and Walsh (1998) provide 

estimates of power for QTL detection. The number of progeny required to detect a QTL 

is, generally speaking, proportional to the variance of the nongenetic (environmental) 

contributions and inversely proportional to the square of the strength of the QTL. In 

addition to the strength of the QTL and the size of the population, the power of a QTL- 

detection experiment depends on the type of cross, the dominance of the QTL alleles 

and marker spacing.

The ultimate goal of linkage mapping is to find the location of QTLs. Lander and 

Botstein (1989) proposed a simple rule for constructing confidence intervals for QTL 

position. This method use the LOD score for a QTL. According to them, the position of 

the maximum LOD score is taken as the position of the QTL, and the region in which 

the LOD score is within one LOD unit of the maximum is taken as a 96.8% confidence 

interval. The size of a confidence interval is expected to be inversely proportional to the 

number of progeny in the mapping population and inversely proportional to the square 

of the strength of the QTL (Darvasi, 1998). Therefore, the strength of the QTL is critical 

to establishing location. Strong QTLs can be located by a large backcross or intercross 

in small confidence interval; weak QTLs can be assigned to a chromosome but not 

located with much more precision (Darvasi et al., 1993). For moderate QTLs, precision 

is limited by the size of the population and the proportion of variance explained 

(Darvasi, 1998). Corresponding to the wide range of strength expected among QTLs, 

Lander and Kruglyak (1995) have proposed standards for detection that cover a wide 

range of significance. The suggestive level is defined as that a false positive result 

would be expected to occur one time at random in a genome scan; the significant level 

corresponds to a probability of 0.05 times in a genome scan. In the case of backcross 

studies, the LOD scores of the two threshold levels (suggestive and significant) would 

be 1.9 and 3.3; In the case of intercross studies, the LOD scores would be 2.0 and 3.4.

1.4.5 From QTL to gene

The ultimate achievement of QTL mapping will be the molecular cloning of the 

underlying genes. Once a QTL implicated in a cancer predisposition syndrome has been 

mapped by linkage analysis, candidate genes from the region can be identified by 

positional cloning strategies (Collins, 1991). Positional cloning usually requires that
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map position of the locus of interest is known to within 1 cM interval, which is 

approximately the size of genomic inserts that can be contained in currently available 

cloning vectors. Thus high resolution QTL mapping is needed to refine the region. 

Linkage disequilibrium and cytogenetic analysis, as well as LOH and homozygous 

deletions studies, can then be used to locate the candidate locus more precisely 

(Goddard et a l , 1996; Fearon et al., 1990). Ultimately, sequence based analysis of the 

candidate genes remains the gold standard for identifying mutant alleles. To establish 

the authenticity of the candidate gene, the mutant alleles must be shown not only to 

segregate with cancer predisposition but to be causally involved in cancer development 

through functional studies. Analysis of LOH and homozygous deletions can also be used 

independently to identify tumour suppressor gene loci.

In addition to positional cloning strategies, other investigative approaches have also 

been applied successfully to the search for cancer genes. The most common one is the 

candidate gene approach. This approach depends on linkage analysis for gene mapping 

and subsequently sequence analysis for detection of germline mutations in known 

oncogenes, tumour suppressor genes, or genes that involves in critical cellular pathways, 

in the implicated chromosomal region (Mulligan et al., 1993; Hofstra et a l, 1994; Fishel 

e ta l,  1993; Hussussian etal., 1994).

1.5 Mouse skin carcinogenesis

1.5.1 Mouse skin carcinogenesis —  a multistage process

Chemical carcinogenesis in mouse skin has been extensively studied and represents one 

of the most well-defined in vivo models of experimental carcinogenesis. It has 

contributed significantly to our current understanding of the multistage nature of 

carcinogenesis. Studies on this model have led to the operational definitions of 

initiation, promotion and progression (Figure 1.4) (Slaga, 1989; DiGiovanni, 1992; 

Yuspa, 1994 and 1998).

The sequential application of a sub-threshold dose of a carcinogen (initiation stage) 

followed by repetitive treatment with a non-carcinogenic promoter (promotion stage) 

will effectively induce skin tumours. A proportion of these papillomas then undergo
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Figure 1.4 Summary of genetic events and candidate genes in multistage skin 
carcinogenesis based on a linear malignant progression model.

further genetic changes and progress to squamous carcinomas. The final event in this 

model system involves conversion of squamous cell carcinomas to highly invasive 

undifferentiated spindle carcinomas (Klein-Szanto et al., 1989).

1.5.2 Genetic events in mouse skin carcinogenesis

The genetic studies on the molecular level have led to the identification of a number of 

sequential genetic alterations that are associated with initiation, promotion and 

progression (Brown et al., 1993).

1.5.2.1 Initiation

Initiation is generally accomplished by topical application of a single sub-carcinogenic 

dose of a skin carcinogen, such as 7,12-dimethyl-benzanthracene (DMBA). The 

treatment produces a subtle change in the phenotype of keratinocyte although it is 

unrecognisable in the context of the intact epidermis. These initiated cells can remain 

dormant in the skin for a considerable period until activated by the promoter, such as 

12-O-tetradecanoyl-phorbol-13-acetate (TPA). This indicates that the alterations caused 

by initiators are persistent and irreversible (Loehrke et al., 1983).
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Important insights into the genetic alterations associated with the tumour initiation have 

emerged from the identification of mutations in the H-ras oncogene in skin tumours 

(Balmain et a l, 1984; Harper et al., 1987). It has been shown that nearly all benign 

papillomas and malignant carcinomas induced by DMBA initiation and TPA promotion 

exhibit mutational activation of H-ras proto-oncogene by an A to T transversion at 

codon 61 (Quintanilla et a l, 1986). Subsequent studies demonstrated that the type of 

mutation was dependent on the chemical initiator and independent of the promoter, 

suggesting that the initiator has a direct effect on H-ras (Bizub et a l, 1986; Brown et 

a l, 1990). Nelson et a l (1992) proved later that the mutation of H-ras oncogene can be 

detected before the emergence of visible tumours. Furthermore, infection of mouse skin 

by an activated viral H-ras oncogene can serve as the initiating event in two stage 

carcinogenesis (Brown e ta l,  1986).

1.5.2.2 Promotion

The promotion stage is characterised by selective and sustained hyperplasia leading to 

the specific expansion of the initiated cells into benign papillomas (Yuspa and Poirier, 

1988; Slaga, 1989; DiGiovanni, 1992). It is well known that most tumour promoters do 

not bind covalently to DNA and are not mutagenic, but they bring about a number of 

important epigenetic changes (Yuspa et a l, 1982). However, the range of cellular and 

biochemical changes which tumour promoters can induce is so large that it is difficult to 

identify those which are responsible for their ability to promote tumour formation. 

Nevertheless, it is possible that the clonal outgrowth of initiated cells presumably 

reflects some subtle alteration in their response to tumour promoters.

The most potent promoters of mouse skin are the phorbol esters such as 12-0- 

tetradecanoyl-phorbol-13-acetate (TPA). The transcription of many genes can be 

affected by TPA, several of which have obvious connection with the regulation of 

growth and differentiation. It has been known that TPA can active protein kinase C 

(PKC) and induce differentiation of normal keratinocytes (Yuspa et a l, 1980 and 1982; 

Dlugosz and Yuspa, 1993). Initiated keratinocytes are resistant to terminal 

differentiation induced by activators of PKC (Hennings et a l, 1987; Yuspa et a l, 1983; 

Hennings et a l, 1990a), and the differential response of normal and initiated cells 

favours the growth of the neoplastic subpopulation, enhancing clonal outgrowth and
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producing papillomas. The ornithine decarboxylase gene (ODC) which is a growth 

related enzyme is also upregulated in epidermis upon TPA treatment (Imamoto et a l, 

1992; Lichti et al., 1981; Verma et al., 1988). Mice overexpressing a human ODC gene 

were shown to be sensitive to two stage skin carcinogenesis (Halmekyto et al., 1992). 

TPA can also induce transforming growth factor a  (TGF-a) mRNA and protein 

expression (Imamoto et al., 1991). TGF-a is a major autocrine controlling growth in 

epidermal cells, and elevated levels of TGF-a have been detected in squamous tumours 

from human and mouse (Kiguchi et al., 1995; Reiss et al., 1991). TGF-a has also been 

shown to synergise with activated H-ras in tumourigenicity studies (Finzi et al., 1988). 

The expression of c-fos, c-myc and c-jun proto-oncogene, which modulates transcription 

of genes involved in cell proliferation, is also found elevated following administration 

of TPA (Lamph et al., 1988; Skouv et al., 1986).

1.5.2.3 Progression

The skin tumour progression stage is characterised by a high level of genetic instability 

that leads to a number of chromosomal alterations. This is generally a spontaneous 

process that is not enhanced by most exogenous tumour promoters, but can be enhanced 

and accelerated by exposing animals bearing papillomas to a mutagen (Hennings et al., 

1983; Hennings e ta l , 1990b; O’Connell e ta l,  1986).

The progression stage can be further subdivided into premalignant progression and 

malignant conversion. Premalignant progression of a papilloma involves repeat episodes 

of selection and clonal outgrowth of cells which have acquired a growth advantage, 

usually as a result of further genetic changes (Yuspa, 1994). A number of genetic 

changes have been found associated with premalignant progression of mouse skin 

papillomas. Cytogenetic and molecular studies have demonstrated frequent trisomy of 

chromosome 7 and chromosome 6 in papillomas (Aldaz et al., 1989; Kemp et al., 

1993). The critical gene on mouse chromosome 7 appears to be the H-ras gene itself, 

since the trisomy invariably duplicated the chromosome carrying the mutant H-ras allele 

(Kemp et a l, 1993; Bremner and Balmain, 1990). Cyclin D l, which is also located in 

the distal region of mouse chromosome 7, is another gene found amplified in chemically 

induced mouse skin tumours (Bianchi et a l, 1993). Recently, Robles et a l (1998) have 

shown that cyclin D l is a critical target for oncogenic ras in mouse skin. The

33



development of papillomas is significantly reduced in cyclin Dl-deficent mice. The 

target gene on chromosome 6 is unknown, but several candidate genes have been 

identified, including raf-1, TGF-a and K-ras.

Malignant conversion of benign tumours is a relatively rare event with around 5-10% of 

papillomas progressing to carcinomas. However, this transition can be increased by 

treating papillomas with mutagens (Hennings et al., 1983; O’Connell et al., 1986). 

Several studies have shown that spontaneous malignant conversion does not appear to 

be stochastic in nature, and that not all papillomas have an equal probability of 

progressing to carcinomas. Discrete subsets of papillomas have been identified which 

display an increased risk of progression (Brown et al., 1990; Hennings et al., 1985). 

More recently, differences in phenotypic markers such as TGF-p, integrin and 

keratin 13 expression have been used to distinguish between high and low risk of 

papillomas at early stage (Glick et al., 1993; Tennenbaum et a l, 1993; Gimenez-Conti 

et a l, 1990). Several genetic alterations have been associated with malignant 

conversion. Loss of the normal H-ras allele is often observed in carcinomas which 

contain a mutant H-ras gene (Bremner and Balmain, 1990). Mutations in the p53 

tumour suppressor gene, which are rarely found in papillomas, are frequently detected in 

carcinomas (Burn et al., 1991; Ruggeri et al., 1991). Loss of heterozygosity (LOH) on 

mouse chromosome 11, on which the tumour suppressor gene p53 is located, is also 

detected in malignant skin tumours (Burns et al., 1991). Mice lack of functional p53 do 

not show any alteration in the incidence or growth rate of benign papillomas, but 

tumours have a greatly elevated rate of malignant progression. This suggests that p53 

play an important role in late tumour progression, rather than early initiation or 

promotion stage (Kemp e ta l,  1993).

A further advanced stage in mouse skin carcinogenesis is the progression of squamous 

carcinoma to spindle carcinoma, in which the markers of epithelial differentiation are 

lost (Klein-Szanto et al 1989; Navarro et al., 1991; Diaz-Guerra et al., 1992). The 

squamous to spindle conversion is associated with an increase in the ratio of mutant to 

normal H-ras gene, and has been demonstrated, in cell fusion experiment, to be a 

recessive event (Buchman et al., 1991). LOH on mouse chromosomes 4, on which 

pl6INK4a (MTS1) tumour suppressor gene is located, is also associated with late 

progression stage (Linardopoulos etal., 1995).
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1.5.3 Genetic susceptibility in mouse skin carcinogenesis

The genetic susceptibility to chemical carcinogens has been studied in the mouse skin 

model for many years. Early work by Boutwell et al (1974) showed that the response of 

the skin to chemical carcinogens is strongly influenced by the genetic background of the 

host. For example, SENCAR, FVB and DBA/2 are relatively susceptible to two-stage 

carcinogenesis, whereas C57BL/6 and BALB/c are relatively resistant (Naito and 

DiGiovanni, 1989; Ashman et al., 1982; Hennings et al., 1993). Although the 

differences in susceptibility among various stocks and strains of mice is related to the 

carcinogens and promoters used, as well as the protocols for treatment, the mechanisms 

involved in predisposition are not fully understood. Studies carried out by Naito and 

DiGiovanni (1989) showed that although some differences can be attributed to 

initiation, the major contribution to tumour susceptibility appears to be at the level of 

tumour promotion. Using a cross between DBA/2, a strain susceptible to promotion 

with phorbol esters, and C56BL/6J which is resistant, they established that susceptibility 

to promotion in the model is inherited as an autosomal incomplete dominance (Naito et 

al, 1988). Further studies using recombinant inbred strains have better defined their 

genetic model postulating that a minimum of three loci, two dominant and one 

recessive, control susceptibility to tumour promotion (DiGiovanni et a l, 1991; 

DiGiovanni et al, 1992). Using intraspecific crosses between outbred Mus spretus and 

inbred Mus musculus, Nagase et al (1995) have identified three susceptibility loci 

(Sprl-3), two on chromosome 7 that control the development of skin tumours at 

promotion stage and one on chromosome 5 that takes effect at both promotion and 

progression stages. Recently, two loci which involve in skin tumour development have 

also been identified in two inbred strains (Skts4 in SENCARA/Pt and Psll in DBA/2) 

by two separate groups, they are located on chromosome 5 and 9, respectively (Angel et 

al, 1997; Mock e ta l, 1998).

1.6 Aim-linkage analysis of predisposition loci to mouse skin tumour

The rodent model we have chosen for our studies on tumour predisposition is the 

classical two-stage (DMBA-TPA) mouse skin chemical carcinogenesis system which 

represents a realistic model for cancer development in humans (Yuspa, 1994). To date, 

genetic loci identified in different crosses are mostly different, implying the presence of
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different genetic control in different mouse strains. As we know that different strains of 

mice share the same biological pathways as well as genetic alterations during skin 

tumour development (Yuspa, 1994; Naito and DiGiovanni, 1989), do they have 

common genetic loci, susceptible or resistant, that control the predisposition to tumour? 

To address this issue, we have conducted linkage analysis in genetic crosses between 

two inbred strains, the sensitive FVB/N mice and resistant C57BL/6J mice (Hennings et 

a l , 1993; Naito etal., 1988; DiGiovanni, 1992).

The FVB/N strain was developed in the 1970s by inbreeding the Fv-lb allele for 

sensitivity to the B strain of Friend leukaemia virus. Because of its superfecundity, large 

prominent pronuclei in fertilised zygotes and large litter size, FVB/N mouse has been 

widely utilised for transgenic analysis (Taketo et a l , 1991). The widespread use of 

FVB/N mice for the establishment of transgenic lines containing active oncogenes make 

it an important host for study of carcinogenesis. In addition, FVB/N mice are not only 

highly susceptible to carcinogen induced skin tumours, but also have higher malignant 

conversion rate than any other mouse strain (Hennings et a l , 1993). In contrast, 

C57BL/6 mice, which are the most widely used inbred mouse strain for chemical 

induced carcinogenesis studies, are relatively resistant to skin tumour development by 

the DMBA-TPA model of two stage carcinogenesis (Naito et a l , 1988).

To detect the genetic loci that control the skin tumour development in mice, particularly 

those involved in malignancy progression, we carried out two-stage carcinogenesis in 

mice from FVB6F1XFVB/N backcross (F1BX) and FVB6F1 intercross (FVB6F2). The 

whole genome scan was then performed with mouse microsatellite markers to examine 

the genotypes of experiment mice. The linkage of genetic loci to tumour susceptibility 

were detected by QTL linkage analysis at three different levels. The association of these 

loci with tumour development were further investigate by analysing their genetic 

alteration in tumours derived from FVB6F1 mice.
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CHAPTER 2

MATERIALS AND METHODS



2.1 Materials

2.1.1 Chemicals, reagents and enzymes

All chemicals were of AnalaR grade and were obtained from BDH chemicals Ltd., 

Poole, Dorset or Sigma Chemical Co. Ltd., Poole, Dorset except those obtained from 

the suppliers listed below.

Bioline, London

BioTaq DNA Polymerase and buffer

Boehringer Mannheim UK Ltd.. Lewes. East Sussex 

Proteinase K

Molecular weight DNA marker VIII

J. Burrough (FAD') Ltd., Witham. Essex 

Ethanol

FMC, Rockland, ME 

NuSieve 3:1 agarose 

MetaPhor agarose

Life Technologies Ltd.. Paisley 

Restriction Enzymes 

Proteinase K 

Taq DNA polymerase 

lOObp DNA ladder

Phenol:chloroform:isoamyl alcohol (25:24:1, v/v )

Pharmacia Ltd.. Milton Keynes. Buckinghamshire 

Ultrapure dNTP set 2’ Deoxynucleoside 5’ Triphosphate
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Promega. Madison. WI

Taq DNA polymerase

dNTP set (dGTP, dATP, dTTP and dCTP)

Novex Experimental Technology. San Diego, CA 

20% TBE precast polyacrylamide gel

Severn Biotech, Kidderminster 

Acrylamide (40% stock, 19:1)

2.1.2 General plasticware

Advanced Biotechnologies Ltd.. Surrey 

PCR reaction tubes 

96-well Thermo-Fast PCR plate 

48-well Thermo-Fast PCR plate 

Adhesive sealing film for microtiter plate

Beckman Instrument Inc.. Fullerton, CA 

96-well deep well plate

Adhesive aluminium sealing film for 96-well plate

Griener Labortechnik Ltd., Durslev 

Eppendorf tube 

Filter pitette tip

Labsvstems, Basingstoke 

Pipette tip

Aerosol-resistant filter tip

2.1.3 Websites for the databases

Genome Data Base (GDB): 

http://www.gdb.org
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Mouse Genome Informatics (MGI), including Mouse Genome Database (MGB) and 

Gene Expression Database (GXD):

http://www.informatics.jax.org

National Center for Biotechnology Information (NCBI): 

http://www.ncbi.nlm.nih.gov

National Human Genome Research Institute (NHGRI): 

http://www.nhgri.nih.gov

Whitehead Institute/MIT Center for Genome research: 

http ://www-genome. wi. mi t. edu

2.1.4 Mouse microsatellite marker

Research Genetics. Huntsville. AL 

Mouse MapPairs™ microsatellite markers

Total of 247 mouse microsatellite markers used for genotyping of the mice, as well as 

the tumours from the FI mice. The list of these markers and their chromosome locations 

are shown in Table A l.

2.2 Animals

2.2.1 Sources

Two inbred mouse strains, FVB/N and C57BL/6J, were used in the animal experiment. 

They were originally obtained from Harlan UK Limited. Mice were bred and maintained 

in Beatson Animal Resource Facility for the experiments. All experiments were carried 

out following the UKCCCR Guidelines, Animal Scientific Procedure Act (1986), and 

local Beatson Animal Welfare Committee Guidelines for use of animals in neoplasia. In 

general, mice were kept in the metal-wired cages with free access to food (Teklad rodent 

diet, Harlan UK Ltd.) and drinking water in an air-conditioned room (24+2°C) with 12 

hour light/dark cycles.
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2.2.2 Tumour induction

The mice used for tumour induction were generally eight weeks old. The back of the 

mice were carefully shaved with a surgical clipper 24 hours before each chemical 

treatment. All the chemicals were applied topically to the shaved area in 0.2 ml acetone. 

Mice were initiated with 25pg of DMBA (9,10-dimethyl-l,2-benzanthracene) and 

promoted with 20 nmol (12.5 pg) TPA (12-0-tetradecanoyl-phorbol-13-acetate) one 

week later. Promotion was conducted twice weekly for 20 weeks. Mouse skin tumours 

were evaluated and scored once a week for the presence of papillomas and carcinomas.

2.2.3 Tumour data score and record

The papilloma is a cauliflower-like structure with either a narrow or broad base 

consisting of a series of folds united to the underlying skin by one or few common 

stalks. When a papilloma of diameter > 1 mm was noted and found to be persistent for 

one week, the first date of observation was recorded and the actual number of 

papillomas were recorded as the papilloma data.

The carcinoma is usually an endophytic growth of atypical epithelial cells which invades 

the dermis and subcutaneous tissue. Most frequently, an induration of the subepidermal 

tissues with a swelling appearing on a limited area of the base of a papilloma or a 

ulcerated lesion showing a thickening and swelling of the edge of the ulcer indicate the 

formation of a carcinoma. A carcinoma was recorded according to their morphological 

changes, and subsequently confirmed by the histological examination. A dichotomous 

score system was used to record the carcinoma data. When one or more carcinomas 

were diagnostic, it was scored one; otherwise it was scored zero.

The dorsal skin of mice was inspected for the presence of papillomas and carcinomas 

visually once a week for 60 weeks period. The mouse was removed from the experiment 

when the total papilloma burden exceeded 10% of its body weight or when the diameter 

of a carcinoma exceeded 10 mm. The mouse was then sacrificed and all papillomas and 

carcinomas were collected. A small section of the tumour was fixed in 5% formalin and 

processed for H&E staining while the rest was frozen for further molecular analysis.
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2.3 Histology

Tumour sections were fixed in 5% formalin at 4°C for 24 hours before processed for 

conventional paraffin sections and haematoxylin-eosin (H&E) staining. The stained 

specimens were then examined under light microscopy. Generally, in animal cells, 

nuclei stained blue and cytoplasm stained pink or red.

2.4 DNA preparation

2.4.1 Preparation of genomic DNA from mouse tail

Mouse tail biopsy of no longer than 1 cm was cut and transferred to a 1.5 ml eppendorf 

tube containing 500 pi lysis buffer (100 mM Tris-HCl pH 8.5, 5mM EDTA, 200 mM 

NaCl, 0.2% SDS, and 100 pg/ml proteinase K). The tail was then digested at 55°C for 

several hours or overnight. Following lysis completion, the sample was spun in an 

eppendorf centrifuge for 10 minutes to remove hair and tissue residue. The supernatant 

containing genomic DNA was then transferred to a fresh tube. One volume of 

isopropanol was added and the sample was mixed gently until viscosity completely 

disappeared. The sample was kept at -20°C for 10 minutes to allow the precipitation 

completed. The sample was then spun again for 5 minutes. The DNA pellets were 

briefly air-dried and resuspended in 200 pi TE (10 mM Tris-HCl, 0.1 mM EDTA, pH 

7.5). The DNA sample was stored at 4°C.

2.4.2 Preparation of genomic DNA from frozen tumour or tissue

Frozen tumour or tissue sample was ground to powder using a mortar and pestle, which 

was pre-cooled with liquid nitrogen (N2). The sample was transferred to a 2 ml 

eppendorf tube containing 500 pi lysis buffer (as described in 2.4.1.), and digested 

overnight at 55°C on a rotating tube rack. The cell lysate was mixed with one volume of 

phenol: chloroform: isoamyl alcohol (25:24:1, v/v) and rotated for 15 minutes at room 

temperature, and then centrifuged at 2000 rpm for 10 minutes to separate the aqueous 

and organic phases. The top aqueous layer which contained genomic DNA was 

transferred into a fresh tube. The phenol/chloroform extraction procedure was repeated 

once to obtain cleaner supernatant. The genomic DNA was precipitated with one
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volume of isopropanol, and spooled onto a disposable pipette tip. The DNA was rinsed 

in 70% v/v ethanol and air-dried briefly before dispersed into 500 pi TE pH 7.5. The 

DNA sample was stored at 4°C.

2.4.3 Quantitation of nucleic acid concentrations

Nuclei acids were quantified by spectrophotometric determination of their UV light 

absorbency. 5 pi sample was added to 495 pi de-ionised water and the absorbency of the 

solution measured at 260 nm and 280 nm in a quartz cuvette, using de-ionised water as a 

blank control. The concentration of the solution was calculated using de Beer’s law on 

the basis that an optical density of 1.0 at 260 nm corresponds to a concentration of 50 

pg/ml for double-stranded DNA, 40 pg/ml for RNA and 33 pg/ml for single-stranded 

oligonucleotides. Pure preparation of DNA and RNA has a ratio of A2 6 0/A2 8 0  reading 

between 1.8 and 20.

2.5 Polymerase chain reaction (PCR)

2.5.1 General PCR

PCR reactions were performed in 50 pi reaction mixture containing 100 ng template 

DNA, 0.2 pM forward and reverse PCR primers, 200 pM 4dNTPs, 10 mM Tris-HCl 

pH8.8, 50 mM KC1, 1.5 mM MgCl2 and 1 unit of Taq Polymerase. All PCR reactions 

were carried out on an automatic thermocycler (Perkin Elmer 9600, Applied Biosystem 

or PTC-200, MJ Research) using the following cycling conditions: initial denaturation at 

94°C for 2 minutes, followed by 30 cycles of denaturing at 94°C for 30 seconds, 

annealing at 55°C for 30 seconds and extension at 72°C for 40 seconds. A final 

extension step was added at 72°C for 3 minutes. PCR products were separated on either 

agarose or polyacrylamide gel.

2.5.2 Genotyping using mouse tail DNA

Genotyping was conducted by mouse microsatellite PCR using mouse tail DNA. PCR 

reactions were carried out as described in 2.5.1 with slight modification. The PCR 

reactions were performed in individual tubes on 96-well or 48-well thermo-fast
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microtiter plates. 50 ng of tail DNA and 0.2uM of Mouse MapPairs™ were used in 15 

pi reaction mixture. To achieve the best condition of PCR amplification, the 

concentration of MgCl2 was ranged from 1.5 mM to 3 mM, and the annealing 

temperature varied from 50°C to 60°C according to the Tm values of paired PCR 

primers. 35 cycles of PCR amplification programme was generally applied.

The PCR products were analysed by agarose or polyacrylamide gel electrophoresis 

depending on their size difference. Generally, the PCR products were between 100-300 

bp in size. When the difference was more than 8  bp, 4% (w/v) NuSieve 3:1 agarose gel 

was used for the analysis. When size difference was less than 8  bp, higher resolution 

was needed, thus 3-4% (w/v) MetaPhor agarose gel or 12-15% (w/v) non-denaturing 

polyacrylamide gel were used.

2.5.3 Genotyping using tumour DNA

50 ng template DNA from paired normal tissue (spleen or kidney) and tumour 

(papilloma and carcinoma) was used in each PCR reaction with standard reaction 

conditions (see section 2.5.1 and 2.5.2). 25-30 cycles of PCR amplification was 

determined to be in the linear part of the amplification process (i.e. before product 

saturation), permitting the assumption that the ratio of the optical densities arising from 

two allele would be the same for both normal and tumour DNA samples if no LOH 

occurs. PCR products were separated on either 4% NuSieve 3:1 agarose gel, or 12-15% 

(w/v) non-denaturing polyacrylamide gel. Allele loss was determined by computed 

density analysis.

2.6 Nuclei acid analysis

2.6.1 Digestion of DNA with restriction endonucleases

DNA was digested using restriction enzymes in the appropriate reaction buffers for 1-3 

hours under conditions specified by the suppliers. Generally, 1 p,g DNA was digested in 

a total volume of 20 pi reaction mixture with 1-5 units of restriction endonucleases.
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2.6.2 Agarose gel electrophoresis

Agarose gel electrophoresis was performed using a horizontal apparatus. Gel for 

analysing PCR products and restriction enzyme digestion fragments was made from 1- 

2% (w/v) agarose and cast in IX TAE buffer (40 mM Tris-HCl pH 7.8, 20 mM sodium 

acetate, 1 mM EDTA). Gel for genotyping and tumour LOH studies was made from 4% 

(w/v) NuSieve 3:1 agarose and cast in 0.5X TBE buffer (90 mM Tris-HCl, 90 mM boric 

acid, 2.5 mM EDTA, pH 8.3).

Gel was submerged in IX TAE (or 0.5X TBE) buffer and DNA samples were loaded 

with gel loading buffer (0.25% w/v bromophenol blue, 0.25% w/v xylene cyanol FF, 

30% v/v glycerol) into the w ells.. The appropriate molecular weight DNA markers were 

also loaded into wells. TAE gel was run at 2V/cm, low melting point agarose gel at 40- 

50 volts and TBE gel at 5V/cm until the bands were sufficiently resolved. Ethidium 

bromide was added to the gel at a final concentration of 0.5 pg/ml. DNA was stained 

with ethidium bromide and visualised under ultraviolet light.

2.6.3 Fast running protocols for high resolution in MetaPhor agarose gels

For typical genotyping, the 4% (w/v) NuSieve 3:1 agarose gels were electrophoresed for 

3-4 hours to obtain a resolution of 8 % size difference with DNA between 100 and 500 

bp. To decrease the electrophoretic time and achieve higher resolution (4%), MetaPhor 

agarose gel was used in the fast running method.

Fast running protocol was performed using a horizontal submarine gel apparatus with 

recirculator-chiller water bath. 4% w/v MetaPhor agarose gel was cast in IX TBE 

buffer. The solidified gel was kept at 4°C for 30 minutes before submerged in 0.5 X 

TBE buffer at 20°C. The DNA samples were loaded with gel loading buffer and 

separated at the voltage of 17V/cm. The electrophoresis was run at constant 20°C for 1- 

1.5 hours with running buffer in circulation.

2.6.4 Non-denaturing polyacrylamide gel electrophoresis

For non-denaturing polyacrylamide gel, a 40% w/v stock solution of acrylamide (ratio of 

acrylamide to N,N’methyl-bisacrylamide of 29:1) was diluted to give a 12% or 15% w/v 

gel forming solution in 1 X TBE buffer. The solution was polymerised by the addition
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of 240 pi 10% (w/v) ammonium persulphate and 24 pi TEMED per 40 ml of gel. The 

solution was poured between two glass plates separated by 1  mm spacers and allowed to 

set at room temperature for at least 1 hour. The DNA samples were then loaded with gel 

loading buffer and the electrophoresis was run at a constant 125 volts for 16-20 hours at 

room temperature. The DNA bands were visualised with silver staining.

2.6.5 SSCP-mutation analysis

20% TBE precast polyacrylamide gel (Novex Experimental Technology) was used for 

SSCP-mutation analysis. 50 ng of DNA from tumour or normal tissue was subject to 

PCR reaction as described above (section 2.5.3). 5 pi PCR product was mixed with stop 

buffer (95% v/v formamide, 200 mM EDTA pH 8.0, 0.01% w/v bromphenol blue and 

xylene cyanol FF) and denatured at 95°C for 5 minutes. The denatured DNA sample was 

loaded into cold 2 0 % precast polyacrylamide gel and the electrophoresis was run at a 

constant 200 volts for 18 hours with running buffer (1.25X TBE) in circulation at 8 °C. 

The DNA fragments were visualised with silver staining.

2.6.6 Silver staining of polyacrylamide gels

After electrophoresis, polyacrylamide gel was merged in fixation buffer (10% v/v 

ethanol, 0.5% v/v acetic acid) for 10 minutes with gentle shaking at room temperature, 

and then merged in 6  mM AgNC>3 for 15 minutes. The gel was rinsed twice with 

distilled water and then merged in the developer buffer (375 mM NaOH, 0.15% 

formaldehyde v/v). When the DNA bands were clearly visible, the gel was transferred to 

stop solution (70 mM Na2 C0 3 ) for 10 minutes. After the silver staining procedure, the 

polyacrylamide gel was dried under vacuum or sealed in a plastic bag. The gel was then 

kept in the dark for long-term storage.

2.7 Methods for statistical and QTL linkage analysis

2.7.1 The tumour data analysis

The tumour response was measured in terms of latency, tumour incidence, and 

papilloma frequency and distribution.

46



Tumour latency represents the time (weeks) between the start of chemical treatment and 

the appearance of the first papilloma. It was plotted with the cumulative percentage of 

mice with papillomas versus different time points (week) after the initiation treatment. 

Most of the papillomas were developed during the first 20 weeks. After week 25, only a 

few papillomas were developed. Thus, the time point was cut at week25.

Tumour incidence represents the number of tumours developed on a mouse. The 

papilloma incidence was plotted with the average number of papillomas per mouse 

versus different time points (weeks) after the initiation treatment. The time point was 

cut at week 30 because by this time point the development of papillomas had reached 

the peak. Afterwards, the average number of papillomas starts to drop artificially due to 

the loss of mice with higher number of papillomas. Because of the application of the 

dichotomous score system, the carcinoma incidence was represented by the cumulative 

percentage of mice with carcinomas instead of the average number of carcinomas.

The frequency of papillomas indicates the percentage of mice with the same number of 

papillomas. The distribution of papillomas was the spectrum of the frequency of 

different number of papillomas.

2.7.2 Methods for QTL linkage analysis

2.7.2.1 Single marker analysis

Single marker analysis tests the association between genotypes and phenotypes at each 

marker locus. The incidences of mouse skin tumour in each genotypic groups of mice 

(homozygous and heterozygous) were calculated and the differences between each 

groups analysed by statistical methods. When the difference is proved statistically 

significant (p < 0.05), the linkage of marker locus to tumour development is established.

The papilloma incidence at week 19 was chosen as the papilloma phenotypic data. In 

F1BX backcross, the Mann-Whitney U test was used to compare the differences of the 

average number of papillomas in the homozygous and heterozygous groups. In FVB6F2 

cross, a 2x3 contingency of crosstable and the chi-square test were used for the 

comparison of the differences of the frequency of three genotypic subpopulations
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(homozygous for FVB/N, homozygous for C57BL/6J and heterozygous) in the resistant 

and sensitive groups.

For the analysis of carcinoma data, the Kaplan-Meier test was used to compare the 

differences of the carcinoma incidence in the two (F1BX) or three (FVB6F2) genotypic 

subpopulations.

2.12,2 Interval mapping analysis

The interval mapping analysis was performed with MapMaker program package. The 

genetic map was constructed using the MapMaker/Exp program (Lander et al., 1987; 

Lincoln et al., 1992a). The marker locus order was determined by minimising the 

number of recombination events among the allele distribution patterns of microsatellite 

markers across the chromosome. Genetic distances between marker loci were computed 

using Haldane’s mapping function.

The linkage between skin tumour susceptibility (considered a quantitative genetic trait) 

and genetic loci was detected using MapMaker/QTL program (Lincoln et al. 1992b). 

The extent of linkage was measured by a three point interval analysis formulating a 

LOD score. The LOD score was the logarithm of the likelihood ratio comparing the 

hypothesis of linkage (the maximum likelihood estimates of recombination probabilities 

0 = recombinants r / total number n) with the hypothesis of free recombination (0=0.5), 

LOD(0) = logio [L(0)/L(l/2)]. A LOD>1.9 is widely accepted as indicating of a 

suggestive linkage, whist a LOD>3.3 indicates a significant linkage.

The same as the single marker analysis, the papilloma incidence at week 19 was chosen 

as the papilloma data. The carcinoma incidence at week 46 was chosen as the carcinoma 

data. Since it has been shown that the skin tumour data often follows a negative bi

nominal distribution (Drinkwater and Klotz, 1981), the tumour data was transformed 

with a root square mathematical conversion to improve the fit to a normal distribution, 

or alternatively was analysed utilising a non-parametric test, for the linkage analysis.
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2.1.23 Multiple stepwise regression analysis

In F1BX, the number of papillomas was regressed against genotypes using linear model

n
y  = tb + 2  f a  + e1=1

where y  is the number of papillomas, |Xo is the mean of the papilloma number, xt is the 

vector of linear predictors such as sex, genotype and interactions with other markers at 

the z'th marker, Pi is the vector of coefficient to be estimated, and e represents a random 

environmental deviation. The genotype took the value 1 for homozygous for FVB/N and 

0 for heterozygous. Sex took the value 1 for a male and 0 for a female. The interaction 

of homozygote took the value 1  and that of heterozygote took the value 2 .

In FVB6F2, the number of papillomas was regressed against genotypes using logistic 

model

In [p/(l-p)] = 2  + e
i- 1

where p  is the probability of being resistant or sensitive (groups). The genotype took the 

value 1 for homozygous for FVB/N, 0 for heterozygous, and -1 for homozygous for 

C57BL/6J. The phenotype took the value 0 for resistant group and -1 for the sensitive 

group.

The genetic loci involved in carcinoma development was analysed using Cox 

regression. This is a multivariate analysis method that considers the influence of 

carcinoma latency and the survival time, in addition to the effects of sex, genotype of 

the marker and the interactions between markers.
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CHAPTER 3

GENETIC CONTROL OF SKIN 

TUMOUR SUSCEPTIBILITY IN 

(FVB/N x C57BL/6J)F1 x FVB/N 

BACKCROSS MICE



Carcinogenesis in mouse skin has been studied for many years and represents a good 

model system for the identification of genetic loci predisposing to tumour development. 

A large number of inbred mouse strains are available that show enormous variation in 

their susceptibility to the development of skin tumour after exposure to a variety of 

environmental agents, including chemicals, radiation and viruses (Demant, 1992). 

Specific crosses between susceptible and resistant mouse strains have consequently 

resulted in the segregation and recombination of a number of tumour susceptibility or 

resistance loci that are randomly distributed between different inbred strains. Classical 

genetic approaches, therefore, can be used to identify and map these predisposition loci. 

In addition, the development of a large panel of microsatellite markers and major 

advances in methodology of statistical analysis have further facilitated the linkage 

mapping of tumour susceptibility genes in the mouse.

The inbred strains FVB/N and C57BL/6J have extreme opposite responses to carcinogen 

induced skin tumours. FVB/N mice are highly sensitive (Hennings et al., 1993), 

whereas C57BL/6J mice are very resistant (Naito et al., 1988). Previous experiments 

have shown large variation in response to carcinogen treatment in their FI hybrids and 

F2 offspring, indicating that the tumour susceptibility loci are well segregated between 

these two parental strains. Thus, FVB/N and C57BL/6J strains have been chosen for 

study of genetic linkage to tumour predisposition. (FVB/N x C57BL/6J)F1 x FVB/N 

backcross (F1BX) and (FVB/N x C57BL/6J)F1 intercross (FVB6F2) mice were 

generated and used in a DMBA-TPA two stage carcinogen experiment. The 

development of skin tumours was observed and segregation of genetic loci subsequently 

mapped with mouse microsatellite markers. Statistical analysis was then used to identify 

the genetic loci linked to the development of skin tumour.

3.1 Initiation and progression of mouse skin tumour

Carcinogenesis experiments were carried out on eight-week old mice. Mice were 

initiated with one dose of 25 [xg DMBA and one week later promoted with 20 nmol 

TPA twice a week for 20 consecutive weeks. The development of skin tumours was 

observed and scored weekly for 60 weeks. Papillomas started to appear on the surface of 

the skin as a small pink wart, which was usually soft and had a diameter of 1 - 2  mm in
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size. Some warts remained soft, others hardened, the apex becoming horny and usually 

consisting of minute excrescence. Some warts continued to grow and became 

pedunculated papillomas; others had a broader base and became less protruding flat 

papillomas. At this stage, the growing papilloma was still a benign tumour with an 

intact basal layer (Figure 3.IB). Some of the papillomas continued to progress and 

converted to malignant squamous cell carcinomas with clear changes in morphology 

(usually one-sided hyperaemic swelling at the base of the tumour), as well as in 

histology (Figure 3.1C). Occasionally, squamous cell carcinomas progressed further to 

invasive spindle cell carcinomas (Figure 3.ID).

3.2 Papilloma development in FVB/N, C57BL/6J and their FI hybrids

An initial carcinogenesis experiment was carried out on the two parental strains FVB/N 

and C57BL/6J and their FI hybrids. 32 female FVB/N, 21 female C57BL/6J and 32 

female (FVB/N x C57BL/6J)F1 mice (FVB6F1) were treated with DMBA and TPA as 

described in 2.2.2. The development of papillomas was observed, the actual papilloma 

number was recorded weekly for 60 weeks and presented in Table A2 (FVB/N), A3 

(C57BL/6J) and A4 (FVB6F1) (see Appendix).

FVB/N mice were highly susceptible to carcinogen treatment. The first papilloma was 

observed only six weeks after the start of treatment. By week 13, all mice had developed 

papillomas (Figure 3.2). The papilloma number reached maximum at week 20 with 

14.6±1.0 papillomas per mouse (21 surviving mice) (Figure 3.3). Afterwards, the 

number decreased due to the sacrifice of mice with high yield of papillomas (Section 

2.2.2). The profile of papilloma distribution indicated that all FVB/N mice had more 

than two papillomas, with 23 papillomas as the highest number (Figure 3.4A). 

Moreover, 42% of mice developed between 12 and 15 papillomas, 23% of mice had 

more than 16 papillomas and only 6 % of mice developed less than 5 papillomas (Figure 

3.4A).

In contrast, C57BL/6J mice displayed a marked resistance to tumour development. The 

first papilloma did not appeared until week 18 (Figure 3.2). Over 76% of mice were 

completely free of papillomas (Figure 3.2), whilst the remainder developed only a single
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Figure 3.2 The latency of papilloma development in FVB/N, C57BL/6J and 
FVB6F1 mice. The cumulative percentage of mice with papillomas is plotted 
versus time (weeks) after initiation.

+  FVB/N 
C57BL/6J 
FVB6F112  -

x
ft.
<S

10 -

ft.
<ft.

5 10 20 25 3015

WEEKS

Figure 3.3 The average number of papillomas per mouse in FVB/N, C57BL/6J 
and FVB6F1 mice. Due to sacrifice of mice, the average number of papillomas 
per mouse showed a decrease at certain time points.
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papilloma (Figure 3.4B). The average papilloma number per mouse was 0.56±0.15 (at 

week 27,18 surviving mice) (Figure 3.3).

Compared with two progenitor strains, FI hybrid mice exhibited an intermediate 

response. With regards to latency of papilloma formation, FI hybrid mice demonstrated 

a phenotype closer to that of the FVB/N parent. The first papilloma occurred at week 9, 

only three weeks later than FVB/N mice but nine weeks earlier than C56BL/6J mice 

(Figure 3.2). By week 22, the papilloma positive population reached to the highest level 

at 94 percent (Figure 3.2). In terms of papilloma incidence, however, FI hybrids 

displayed an intermediate phenotype (Figure 3.3). The highest papilloma number per 

mouse was 6.5±0.7 (at week 31, 23 surviving mice), compared with 14.6±1.0 in FVB/N 

mice and 0.56±0.15 in C57BL/6J mice (Figure 3.3). 69% of FI hybrids had between 2 

and 7 papillomas, whereas only 7% of mice were as sensitive as FVB/N with more than 

12 papillomas and 21% of mice behaved like C57BL/6J with less than one papilloma 

(Figure 3.4C).

Taken together, these results clearly demonstrate the relative sensitivity of the FVB/N 

strain and resistance of the C57BL/6J strain to DMBA-TPA induced skin tumours. 

Analysis of papilloma development in FI hybrids indicated that the latency of papilloma 

was inherited as an incomplete dominant trait. The papilloma incidence, however, was 

inherited in a co-dominant manner. This result suggests that the papilloma latency and 

incidence are likely to be under different genetic controls.

3.3 Skin tumour development in (FVB/N x C57BL/6J)F1 x FVB/N 

backcross mice

3.3.1 Mouse breeding strategy

The breeding scheme for (FVB/N x C57BL/6J)F1 x FVB/N backcross (F1BX) mice was 

illustrated in Figure 3.5. In brief, four mating pairs were set up for the generation of FI 

hybrids (FVB/N x C57BL/6J and their reciprocal C57BL/6J x FVB/N). Eight female 

FVB6F1 hybrids (four from each group) were then mated with male FVB/N mice, the 

sensitive parental strain, to produce the F1BX mice. A total of 34 female and 31 male 

mice were produced and subsequently used for the carcinogenesis experiment.
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Figure 3.5 Breeding schemes used to generate (FVB/N x C57BL/6J)FI x FVB/N 
backcross mice (F1BX). For comparison, only one pair of chromosomes (i.e. 
chromosome 7) are shown for each parent. FVB/N alleles are indicated by green; 
C57BL/6J alleles are indicated by red. Note that there are two different subtypes of 
genotypes, homozygous to FVB/N allele and heterozygous, in F1BX mice.
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3.3.2 Tumour latency

Carcinogenesis experiment were carried out on a total of 65 F1BX mice as described in 

Section 2.2.2. The development of papillomas was observed and the papilloma 

incidence was recorded once a week over a 60 weeks period.

The female F1BX mice had a tumour latency intermediate to that of the FVB/N and FI 

hybrid mice (Figure 3.6). The first papilloma occurred at week 8  in F1BX mice, one 

week earlier than in FI hybrids but two weeks later than in FVB/N parental mice. The 

tumour positive population in F1BX increased very quickly and reached the maximum 

within eight weeks. A total of 97% of female F1BX mice, compared with 94% in FI 

hybrids and 100% in FVB/N mice developed skin tumours during the 60 weeks 

observation period. Thus, it seems that the increased genetic composition of FVB/N 

strain in F1BX mice did reduced the latency of tumour formation. This result implies 

that susceptibility to tumour latency in F1BX is inherited as an incomplete dominant 

trait.

Previous data has suggested that the c locus on chromosome 7, where the coat colour 

associated gene tyrosinase is located, is linked to the development of mouse skin 

tumour (Nagase et al., 1995). Therefore, analysis was also carried out to examine the 

linkage between coat colour and tumour susceptibility. The FVB/N mice are albino, the 

C57BL/6J mice are black, and the FI hybrids are agouti in colour. The F1BX mice, 

therefore, can have two different coat colours, albino (homozygous for FVB/N allele at 

c locus) and agouti (heterozygous at c locus). Analysis of coat colour versus tumour 

latency indicated that there was little difference between agouti and albino F1BX mice 

(Figure 3.7). The first tumour in agouti mice appeared at week 9, just one week later 

than in albino mice. Their tumour positive populations increased at similar rates and 

reached the maximum at similar time points. A total of 94% agouti mice developed skin 

tumour, slightly higher than in albino mice which was 8 8 %. These results suggest that 

there is no association between tumour latency and coat colour in F1BX mice.

However, the tumour latency was associated with gender factor. Female F1BX mice 

were more sensitive to tumour induction than the males (Figure 3.8). Although the first 

tumour in female mice occurred just one week earlier than in male mice, the tumour 

positive population of female mice increased more rapidly than male mice. At week 15,
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Figure 3.6 The tumour latency in FVB/N, C57BL/6J, FVB6F1 and F1BX 
mice. Only data of female F1BX mice were used because all the parental and 
FI mice were female. The cumulative percentage of mice with skin tumour is 
plotted versus time (weeks) after initiation.
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Figure 3.7 Comparison of tumour latency of agouti and albino coat colour 
groups in F1BX mice. The cumulative percentage of mice with skin tumour is 
plotted versus time (weeks) after initiation.
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Figure 3.8 Comparison of tumour latency between female and male F1BX 
mice. The cumulative percentage of mice with skin tumour is plotted versus 
time (weeks) after initiation.
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Figure 3.9 The average number of papillomas per mouse in FVB/N, 
C57BL/6J, FVB6F1 and F1BX mice. Only data of female F1BX mice were 
used because all the parental and FI mice were female. Due to sacrifice of 
mice with higher number of papillomas, the average numbers of papilloma 
showed a decrease at certain time points.
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more than 97% of female mice had already developed skin tumours, while only 6 8 % of 

male mice were tumour positive. Even though the figure eventually reached 84% in 

male mice at week 24, this was still lower than that in the females, indicating that that 

gender factor did have a significant influence on tumour latency.

3.3.3 Papilloma incidence

The actual number of papillomas for each individual F1BX mouse was scored once a 

week for 60 weeks. The data presented here is the calculated papilloma incidence whilst 

the raw data is presented in Table A5 (see Appendix).

As shown in Figure 3.9, the female F1BX mice had an intermediate phenotype, the 

papilloma incidence was higher than the FI hybrids but lower than the FVB/N parental 

mice. At week 30, the average number of papilloma in F1BX was 9.7±0.5, compared to 

6.5±0.7 in FI and 11.9±0.7 in FVB/N mice. But, before week 18 the response of F1BX 

mice were so close to the parental FVB/N mice that the average papilloma numbers in 

these two groups increased at a similar rate. However analysis of papilloma distribution 

revealed that they were actually quite different (Figure 3.10). In F1BX more than 50% 

of mice had between 4 to 10 papillomas, while the majority of FVB/N mice had more 

than 12 papillomas. Compared to FI and FVB/N mice, it is evident that as the genomic 

makeup of sensitive parent FVB/N increased the papilloma incidence in F1BX mice 

increased as well. This indicates that the development of papillomas in F1BX is 

transmitted in a co-dominant manner.

The association of papilloma incidence with coat colour and gender was also examined. 

Analysis of coat colour indicated that there was little difference between agouti and 

albino F1BX mice (Figure 3.11). Their profiles nearly overlapped. However, a gender 

difference was detected. The female F1BX mice were more sensitive to tumour 

induction than the males. At week 20, the average papilloma number was 9.5±1.0 in 

female mice, twice that of the male mice (4.1±0.8) (Figure 3.12). Detailed analysis 

suggested that the gender differences were more significant in agouti mice (p=0 .0 0 0 2 ) 

than in albino mice (p=0.1). The agouti male mice were most resistant to carcinogenesis 

with a mean of 2.9±0.9 papillomas (15 survival mice), whilst the agouti female mice 

were most susceptible (11.1±1.6 papillomas per mouse, 14 survival mice) (data not
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Figure 3.11 Comparison of the average number of papillomas per mouse 
between F1BX mice with agouti and albino coat colours. Because of the loss 
of mice, the average number of papillomas decreased at certain time points.

16

14 F1BX-FEMAI.E

F1BX-MALE

12

10

8

6

4

2

0

0 5 10 15 20 25 30

WEEKS

Figure 3.12 Comparison of the average number of papillomas per mouse 
between male and female F1BX mice. Due to the loss of mice, the average 
number of papillomas decreased at certain time points.
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Figure 3.13 Carcinoma incidence in FVB6F1 and FIBX mice. Because 
carcinomas were scored as a dichotomous trait, the percentage of mice with 
carcinomas instead of the average number of carcinomas was used.

shown), indicating that the papilloma incidence was influenced by gender, as well as 

coat colour related genetic loci.

3.3.4 Carcinoma incidence

As indicated in chapter 2 (section 2.2.2), a dichotomous system was applied in scoring 

carcinomas regardless of the actual number of carcinomas that each individual mouse 

developed. Therefore, the carcinoma incidence in FIBX mice was presented as the 

number of carcinoma positive mice over time points.

The carcinoma incidence in FIBX mice was very similar to that in FI hybrids (Figure 

3.13). In both groups, the first carcinoma was recorded at week 18 and their carcinoma 

positive populations increased at a similar rate. Thus, despite a reduced 

C57BL/6J:FVB/N (resistance versus sensitivity) ratio in the genomic makeup, the 

altered genomic composition had little effect on the carcinoma incidence, implying that 

the susceptibility to carcinomas was inherited as an dominant trait.
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The association of carcinoma development with coat colour and gender was also 

examined. Significant difference in the carcinoma incidence was detected between 

albino and agouti mice (p=0.005) (Figure 3.14). Around 51.4% of albino mice 

developed carcinomas, compared with 38.7% in agouti mice, suggesting that the 

carcinoma development was linked to coat colour. However, no gender difference was 

observed in carcinoma formation. Considering the marked gender difference in 

papilloma incidence, it was surprising that the carcinoma incidence was so similar in 

female and male FIBX mice (41.2% and 46.9%, respectively). These results imply that 

the development of papilloma and carcinoma are likely affected by different genetic 

loci. While the susceptibility to papillomas was influenced by gender factor, the 

susceptibility to carcinomas was inherited as an autosomal trait.

3.4 Genomic mapping of FI backcross mice

3.4.1 Polymorphism of microsatellite markers

As one of the most widely studied strains, many microsatellite loci have been 

characterised for the C57BL/6J strain. However, little information is available for the 

FVB/N strain. Thus, it was necessary to obtain a panel of microsatellite markers that are 

polymorphic between FVB/N and C57BL/6J strains and distributed throughout the 

genome. Microsatellite markers that are polymorphic for most of the inbred strains were 

selected from the mouse genome database and the size of the microsatellite PCR 

products for the FVB/N and C57BL/6J strains were determined.

An example of a test PCR result is shown in Figure 3.15. Four markers, D4Mit59, 

D4Mit61, D4Mit48 and D4Mit63, were tested using genomic DNA isolated from 

FVB/N, C57BL/6J and FI hybrid mice. Size differences between two parental PCR 

products were detected at markers D4Mit59 and D4Mit48. Therefore, these two markers 

were polymorphic and suitable for genomic mapping.

In total, more than 700 mouse microsatellite markers were examined. 17% were found 

to be polymorphic between the FVB/N and C57BL/6J strains using high resolution 

agarose gels capable of separating DNA fragment with more than 6 bp difference. When 

polyacrylamide gels which separate DNA fragments with lbp difference were used the
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Figure 3.14 Comparison of carcinoma development by coat colour (A) and 
gender (B) in FI BX mice.
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percentage of polymorphic markers increased to 41%. These polymorphic markers were 

well distributed throughout all 19 autosomes as well as X-chromosome, and 

subsequently used for genomic mapping (see Table Al).

3.4.2 Genomic mapping of FI backcross mice

Genomic mapping was carried out to examine the genotype of individual FIBX mice. 

Theoretically, there are only two genotypes of FIBX mice. Homozygous mice have two 

copies of FVB/N allele, therefore produce only one PCR product; Heterozygous mice 

have one FVB/N allele and one C57BL/6J allele, thus two different sizes of PCR 

products will be amplified. Examples of genotyping with markers D15Mit26 and 

DllMit288 are presented in Figure 3.16. At locus D15Mit26, 10 mice showed single 

PCR band, therefore were homozygous; the other 6 mice displayed two PCR bands, thus 

were heterozygous. Similarly, at locus DllMit288, 15 mice were homozygous with two 

lower PCR bands and 11 mice were heterozygous with four PCR bands.

Genomic mapping was performed in two steps. First, 45 FIBX mice were mapped with 

150 markers and the data analysed to detect markers showing association with skin 

tumours. Then, the chromosomes with potential linkage were mapped more intensively. 

A total of 204 microsatellite markers were used in the genomic mapping. These markers 

constructed a genetic map spanning 1314.0 centimorgans (cM) and covered 96.2% of 

the genome, with an average distance of 8.7 cM between markers. The result of more 

than 20,000 genotypes of FIBX mice are listed in Table A6 (see Appendix).

3.5 Genetic linkage of susceptibility loci to skin tumour in FI 

backcross mice

Genetic linkage to skin tumour formation was analysed at three levels using three 

different methods. The linkage analysis started with single marker analysis which tests 

the association between phenotype and the genotype of each individual marker locus. 

Interval mapping is the second level of linkage analysis (Lander and Botstein, 1989). 

This method evaluates the association between phenotype and the expected contribution 

of a target QTL at multiple analysis point between each pair of adjacent marker loci. It
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Figure 3.15 PCR analysis of polymorphic microsatellite markers on chromosome 4 
with genomic DNA isolated from two parental strains of mice, FVB/N (F) and 
C57BLV6J (B), and their FVB6F1 hybrid (H). M: lOObp ladder DNA molecular weight 
marker.
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Figure 3.16 Microsatellite PCR analysis of genotypes of FIBX mice. The gel shows 
representative examples of genetic mapping in FIBX mice. There are two subtypes of 
genotypes, homozygous with two FVB/N alleles (indicated by dashed arrow) and 
heterozygous with one FVB/N allele and one C57BL/6J allele (indicated by solid 
arrow). M: 100 bp ladder DNA molecular weight marker. For marker D15Mit26, PCR 
products were examined by 4% NuSeive agarose gel; for marker D llM it288 , PCR 
products were separated by 6% polyacrylamide gel, thus multiple PCR bands were 
detected.
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require prior construction of a marker genetic map. The third level of analysis, multi

locus regression, estimates the possibility of a target QTL at multiple analysis points 

across each inter-marker interval, including the effect of their interactions.

3.5.1 Single marker linkage analysis

Single marker analysis tests the association between phenotype and the genotype of 

marker locus. Since this test considers each marker locus separately, it does not require 

the marker loci to be mapped relative to each other. The incidences of mouse skin 

tumours in two genotypic groups mice (homozygous and heterozygous) were calculated 

and the differences analysed by statistical methods. When a statistically significant 

difference is detected, the linkage of marker locus to tumour development is established.

3.5.1.1 Genetic linkage of susceptibility loci to papilloma development

The average papilloma number was calculated in the two groups of FIBX mice 

(homozygous and heterozygous) for each marker. The difference between these two 

groups was then compared using the Mann-Whitney U test with 95% confidence 

interval.

The papilloma development was found to link to markers on chromosomes 4, 6, 9, and 

12 (Table 3.1). The most significant linkage was detected in the central and distal region 

of chromosome 4 between D4MIT45 and D4MIT42, particularly at D4Mitl26 

(p=0.00025), D4MIT205, D4MIT14, D4MIT33 and D4MIT42 (/?=0.004). At these loci, 

heterozygous mice had lower papilloma incidence than mice homozygous for FVB/N 

allele, indicating that the C57BL/6J allele functioned as a resistant allele to papilloma 

formation. Significant association with papilloma formation was also detected in the 

central region of chromosome 9, especially at loci D9MIT269 (p=0.005) and D9MIT196 

(/?=0.008). Mice heterozygous at these loci had fewer papillomas than homozygous 

mice, suggesting that the resistance was inherited from C57BL/6J allele. Similarly, 

C57BL/6J allele on the proximal (D12Mit 10 and D12Ndsll) and central regions of 

chromosome 12 (between D12Mit203 and D12Mit231) was associated with resistant to 

papilloma formation. In contrast, the presence of C57BL/6J alleles on chromosome 6 

was linked to increased papilloma susceptibility. Mice heterozygous at loci D6Mit59 

and D6Mitl4 developed more papillomas than homozygous mice. In addition, the
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Marker Locus (cM) Number of mice Number of papillomas 
per mouse

p (M-W)

BF FF BF FF
D4MIT45 42.50 29 36 4.59 8.06 0.026
D4MIT175 49.60 29 36 4.76 7.92 0.036
D4N DS2 55.60 29 36 4.55 8.08 0.029
D4MIT12 57.50 29 36 4.55 8.08 0.029
D4MIT40 59.00 32 33 4.88 8.09 0.016
D4MIT16 59.10 30 35 4.60 8.14 0.019
D4MIT72 59.90 30 35 4.60 8.14 0.019
D4MIT203 60.00 29 36 4.59 8.06 0.033
D4MIT148 66.00 27 38 4.70 7.79 0.024
D4MIT170 66.60 27 38 4.63 7.84 0.021
D4MIT126 71.00 28 37 4.79 7.81 0.00025
D4MIT205 76.60 31 34 5.68 7.26 0.004
D4MIT14 78.50 31 34 5.68 7.26 0.004
D4MIT33 79.00 31 34 5.68 7.26 0.004
D4MIT42 81.00 31 34 5.68 7.26 0.004
D9MIT163 33.00 27 38 5.63 7.13 0.022
D9MIT74 41.00 28 37 5.71 7.11 0.022
D9MIT269 43.00 28 37 5.25 7.46 0.005
D9MIT196 48.00 30 34 5.60 7.29 0.008
D9MIT182 55.00 30 35 5.67 7.23 0.027
D9MIT19 71.00 32 33 5.56 7.42 0.020
D12MIT10 6.00 17 26 5.29 7.27 0.033
D 1 2 N D S 1 1 6.00 26 39 4.77 7.67 0.019
D12MIT20 37.00 23 42 5.22 7.21 0.015

~ D12MIT23 48.00 26 39 5.81 6.97 0.043

D6MIT59 67.00 32 33 7.28 5.76 0.048
D6MIT14 74.00 29 36 7.90 5.39 0.010

Male Female Male Female
SEX 31 34 3.06 9.65 1 . 2 x l 0 ' 6

Table 3.1 The result of single marker linkage analysis of susceptibility to papilloma 
development in FIBX mice. Locations of marker locus in cM are the relative map 
locations from the centromere and map distances are determined from the report of 
mouse chromosome committee in the mouse genome database. BF, heterozygous with 
one C57BL/6J allele and one FVB/N allele; FF, homozygous with two copies of FVB/N 
allele. The number of mice and average number of papillomas for each genotype were 
compared and analysed with Mann-Whitney U test with significant level at /?=0.05. Of 
204 markers analysed only markers with p  value less than 0.05 were listed. Markers 
with p  value less than 0.01 were highlighted and considered as the location of genes 
that influence susceptibility to the development of papillomas.
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gender difference in papilloma formation was indeed significant (p= 1.2xl0'6). Female 

mice had three times the number of papillomas than male mice.

Taken together, the inheritance of C57BL/6J alleles on chromosome 4, 9 and 12 was 

linked to resistance to papilloma formation, however the presence of C57BL/6J alleles 

on chromosome 6 was associated with increased papilloma incidence. The segregation 

of these counter-acting C57BL/6J alleles in FIBX mice, therefore, resulted in variation 

of the papilloma incidence in individual FIBX mice. The fact that the FIBX mice 

exhibited an intermediate phenotype between the two parental strains implies that none 

of these loci has a prominent effects on tumour development. Moreover, consistent with 

the earlier analysis, papilloma development in FIBX mice was also associated with 

gender.

3.5.1.2 Genetic linkage of susceptibility loci to carcinoma development

The method used to analyse genetic linkage to carcinoma development differed from 

that used to analyse papilloma formation because a dichotomous trait rather than a linear 

related trait was used to score carcinomas. Differences in carcinoma incidences between 

two genotypic groups was compared using the Kaplan-Meier test with 95% confidence 

intervals.

The carcinoma development in FIBX mice was linked to markers on chromosomes 3, 7, 

9 and 10 (Table 3.2). The most significant linkage was detected at loci on the central 

region of chromosome 9 between D9MIT97 and D9MIT196, particularly at D9Mitl63 

(p=0.008), D9MIT74 (p=0.009), and D9MIT269 (p=0.0002). Mice heterozygous at 

these loci had lower carcinoma incidence than homozygous mice, indicating that the 

C57BL/6J alleles carried loci resistant to carcinoma formation. Significant linkage was 

also obtained at loci D3MIT46 (p=0.006), D10MIT134 (p=0.008), as well as the central 

region of chromosome 7 (between loci D7Mit83 and D7Mit220). Mice that inherited the 

C57BL/6J alleles at any of these loci developed fewer carcinomas. Hence, the presence 

of C57BL/6J alleles at loci on chromosome 3, 7, 9, and 10 all conferred resistance to 

carcinoma development in FIBX mice.
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Marker Locus (cM) Percentage of mice with carcinomas p (K-M)

BF FF
D3MIT46 13.80 44.1 74.2 0.006
D7MIT83 26.50 48.4 67.6 0.016

D7MIT319 37.00 51.6 67.6 0.045

D7MIT32 46.40 48.4 67.6 0.045

D7MIT96 50.30 46.7 68.6 0.019

D7MIT281 52.00 47.6 70.8 0.015

D7MIT220 52.40 47.6 70.8 0.015

D9MIT97 29.00 52.4 66.7 0.025

D9MIT163 33.00 48.1 65.8 0.008
D9MIT31 35.00 52.4 66.7 0.025

D9MIT259 38.00 54.5 65.2 0.042

D9MIT74 41.00 50.0 64.9 0.009
D9MIT269 43.00 46.4 67.6 0.0002
D9MIT196 48.00 50.0 65.7 0.020

D10MIT134 59.00 55.6 62.1 0.008

Agouti Albino

COAT COLOUR 48.4 67.6 0.019

Male Female

SEX 64.5 52.9 0.028

Table 3.2 The result of single marker linkage analysis of susceptibility to carcinoma 
development in FIBX mice. Locations of marker locus in cM are the relative map 
locations from the centromere and map distances are determined from the report of 
mouse chromosome committee in the mouse genome database. BF, heterozygous with 
one C57BL/6J allele and one FVB/N allele; FF, homozygous with two copies of FVB/N 
allele. The number of mice with and without carcinomas for each genotype were 
compared using Kaplan-Meier test with significant level of /?=0.05. Of 204 markers 
analysed only markers with p value less than 0.05 are listed. Markers with p value less 
than 0.01 are highlighted and considered as the location of genes that influence
susceptibility to the development of carcinomas.

In addition, the association of carcinoma incidence with coat colour and gender in FIBX 

mice was also examined. Consistent with earlier analysis, albino mice were more 

sensitive than agouti mice (/?=0.019), and male mice had higher carcinoma incidence 

than female mice (p=0.028) (Table 3.2). Thus, carcinoma formation was also linked to 

the coat colour and gender.
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3.5.2 Interval mapping linkage analysis

The most widely used interval mapping method is MapMaker, a computer program 

package designed specially for genetic linkage detection (Lander and Botstein, 1989). It 

consists of two programs. MapMaker/EXP constructs a marker genetic map and 

calculates the distance between two adjacent marker loci on the chromosome; and 

MapMaker/QTL evaluates the effect of marker locus and examines the linkage by a 

three point interval analysis. The result is presented in the form of LOD (logarithm of 

the odds) score. A LOD^1.9 is considered to indicate a suggestive linkage and LODs=3.3 

a for significant linkage.

3.5.2.1 Genetic linkage to papilloma development

The result of Mapmaker/QTL analysis shows that the loci on chromosomes 1, 4 and 9 

were linked to papilloma formation (Figure 3.17). Two adjacent regions on the distal 

and central part of chromosome 4 were associated with papilloma formation. The major 

region resided in a 12cM interval between D4Mitl70 and D4Mitl90 with a peak LOD 

score of 3.7 at D4Mitl26. The minor region was a 18cM interval between D4Mit45 and 

D4Mit224 with 2.6 as the highest LOD=2.6 score at D4Mit40. Linkage to papilloma 

formation was also detected on the central region of chromosome 9. In this broad area 

which spanned nearly 40cM from D9Mitl54 to D9Mitl9, two peak LOD scores were 

evaluated as 2.8 at D9Mit269 and 2.6 at D9Mitl96. The distal region of chromosome 1 

was also linked to papilloma development. In a 20cM interval between DlMit93 and 

DIMit 34, the highest LOD score of 2.63 was obtained at DlMitl02.

3.5.2.2 Genetic linkage to carcinoma development

The linkage analysis revealed that carcinoma development was linked to two regions on 

chromosomes 7 and 9, respectively (Figure 3.17). The region on chromosome 9 resided 

in a 22cM interval between D9Mitl63 and D9Mitl82. The highest LOD score was 3.18 

at D9Mit259. Interestingly the same region was also associated with papilloma 

development (Section 3.5.2.1). Carcinoma formation was also linked to the distal region 

of chromosome 7. In a 20cM interval between D7Mit319 and D7Mitl05, the highest 

LOD score of 2.14 was obtained at D7Mit220. Therefore, it appears that the 

development of carcinomas is also controlled by more than one genetic loci.
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3.5.3 Multiple loci stepwise regression analysis

Data from earlier linkage analysis shows that the tumour development is associated with 

multiple genetic loci. It is possible that the interactions between these loci are also likely 

to have a significant effect to tumour formation. Thus, it is necessary to include the 

contributions of locus-locus interactions in the linkage analysis. Multi-locus stepwise 

regression analysis was used to estimate the possibility of a target QTL at multiple 

analysis points across each inter-marker interval inclusion of the effect of their 

interactions. The data was analysed in two steps. The first step was to evaluate the 

individual effect of each marker locus. The second step was to estimate the overall 

contribution of every locus including the interactive effects.

3.5.3.1 Linear regression analysis of genetic linkage to papilloma development

Genetic linkage to papilloma formation in FIBX mice was analysed by the linear 

regression method. As shown in Table 3.3, a gender factor exerted profound influences 

on papilloma formation (pcl.OxlO16). Female mice had three times the papilloma 

incidence of male mice (Table 3.3).

When the individual effects of marker locus was evaluated, significant linkage was 

found at D4Mitl26 (p=8.2xl0'6), D9Mit269 (p=7.4xl0'5), and DlMit318 (p=2.9xl0'4) 

(Table 3.3A). Mice carrying the C57BL/6J alleles at loci D4Mitl26 and D9Mit269 were 

more resistant to papilloma formation. However, the inheritance of the C57BL/6J allele 

at DlMit318 increased susceptibility to papilloma induction in FIBX mice.

When the contribution of interactions were taken into account, two more marker loci, 

D12Mit203 and D6Mitl4, were identified (Table 3.3B). Their influences on papilloma 

formation were highly significant when they interacted with other loci. The major 

interactions were between D12Mit203 and D4Mitl26 (p=6.9xl010), D6Mitl4 and 

D9Mit269 (p=1.0xl09), and D6Mitl4 and DlMit318 (p=5.0xl0‘5). Within an 

interaction the effect of one locus depends on the genotype of the other locus. The effect 

of D4Mitl26 was small when its interacting locus D12Mit203 was heterozygous, but 

increased when homozygous for FVB/N allele (Table 3.3B). Thus, mice homozygous 

for FVB/N allele at both loci were more sensitive to papilloma induction than any other 

combination. Similarly, the interaction between two sensitive C57BL/6J alleles at loci
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A

MARKER LOCUS (cM) PAPILLOMA INCIDENCE* p**
BF FF

SEX 3.06/31M 9.65/34F < 1.0 x 1 0 16
D4MIT126 71.0 4.79/28 7.81/37 8.2 x 10'6
D9MIT269 43.0 5.25/28 7.46/37 7.4 x 10"5
D1MIT318 18.5 6.86/36 6.07/29 2.9 x 10'4

B
MARKER PAPILLOMA INCIDENCE*

SEX 3.06/31M 9.65/34F < 1.0 x 10'16
D12MIT203 (37.0  cM)

BF FF
D4MIT126 BF 5.80 /10 4.22/18 6.9 x 10'10
(71.0  cM) FF 4.77/13 9.46/24

D6MIT14 (74.0  cM)
BF FF

D9MIT269 BF 7.17 /12 3.81/16 1.0 x 10’9
(43.0  cM) FF 8.41/17 6.65/20

D6MIT14 (74.0  cM)
BF FF

D1MIT318 BF 9.11/18 4.61/18 5.0 x 10"5
(18.5 cM) FF 5.91/11 6.17/18

*Number of papillomas per mouse/Total number of mice. BF, heterozygous with one C57BL/6J 
allele and one FVB/N allele; FF, homozygous with two copies of FVB/N allele.
* * Multi-point significant levels.

Table 3.3 The result of multi-locus linear regression analysis of linkage to papilloma 
development in FIBX mice. Only markers with significant linkage are listed in the 
table. A: Multi-locus stepwise linear regression without locus-locus interactions. B: 
Multi-locus stepwise linear regression with locus-locus interaction. Figures in bold 
indicate the effect of interactions on a particular genotypes at two interacting loci.

D6Mitl4 and DlMit318 resulted in super-sensitivity, as mice heterozygous at both loci 

had the highest papilloma incidence. The interaction between D9Mit269 and D6Mitl4 

was, however, different (Table 3.3B). Mice heterozygous at D9Mit269 but homozygous 

at D6Mitl4 were more resistant to papilloma development compared with mice of the 

other three genotypes. Therefore, the interacting alleles switched from inter-strain 

(between two FVB alleles or two C57BL/6J alleles) to intra-strain (between one FVB/N 

allele and one C57BL/6J allele). The interaction between resistant C57BL/6J allele at 

D9Mit269 and resistant FVB/N allele at D6Mitl4 produced super-resistance.
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3.5.3.2 Cox regression analysis of genetic linkage to carcinoma development

The Cox regression was used to detect the linkage to carcinoma development because of 

the application of a dichotomous trait in carcinomas incidence. Significant linkage was 

detected in three loci, D9Mit269 (/?=6.0xl0'4), D10Mitl34 (p=4.0xl0'3) and D7Mit83 

(p=5.5xl0'3) (Table 3.4). Mice carrying C57BL/6J allele at these loci developed fewer 

carcinomas. When the contribution of loci interactions was included in linkage analysis, 

no additional markers were identified (Table 3.4B). The D9Mit269 locus appeared to 

affect carcinoma incidence independently, whilst D7Mit83 was found to interact with 

D10Mitl34, and the interaction between them showed significant effect on carcinoma 

formation (/?=6.9xl0'5). Mice heterozygous at both loci were more resistant than the 

other three genotypes. Hence, the interaction between two resistant C57BL/6J alleles at 

both loci resulted in super-resistance to carcinoma development.

Due to the difference in detecting power, different markers were detected when using 

different linkage analysis methods. However, this does not mean that a different genetic 

loci was detected. For example, loci D9Mitl96 and D9Mit269 were both linked to 

papilloma formation when they were analysed using the single marker method and the 

interval MapMaker method. Since they are located within 5 cM distance, it is possible 

that they refer to the same target gene. Therefore, when data was analysed using the 

regression method, only marker D9Mit269 was detected. Similarly, the marker loci 

D9Mitl63 and D9Mit259 detected in carcinoma linkage analysis also refer to the same 

locus as D9Mit269, as well as the loci D7Mit220 and D7Mit83. However, the distance 

between loci DlMit318 and DlM itl02 are more than 40 cM. Therefore, they are 

unlikely to correspond to the same gene.

3.5.4 Summary of genetic loci susceptible to skin tumour in FIBX mice

The genetic linkage of susceptibility to skin tumour in (FVB x C57BL)F1 x FVB 

backcross mice (FIBX) was analysed with three different methods at three different 

levels. In addition to gender factor, the most significant contribution to the variation of 

papilloma incidence was detected at loci D4Mitl26 and D9Mit269. Three more loci on 

chromosomes 4, 6, and 12 were also linked to papilloma development. The most 

significant linkage to carcinoma formation was detected at locus D9Mit269, while two 

more loci on chromosomes 7 and 10 were also found to be associated with carcinoma
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A

MARKER LOCUS (cM) CARCINOMA INCIDENCE* p i |( S|S

BF FF
D9MIT269 43.0 13/28 (46.4) 25/37 (67.6) 6.0 x 10'4
D10MIT134 59.0 20/36 (55.6) 18/29 (62.1) 4.0 x 10'3
D7MIT83 26.5 15/31 (48.4) 23/34 (67.6) 5.5 x 10'3

B
MARKER CARCINOMA INCIDENCE* pt|s Hs
D9MIT269  
(43.0  cM)

BF FF
3.3 x 10'313/28 (46.4) 25/37 (67.6)

D10MIT134 (59.0  cM)

6.9 x 10'5
BF FF

D7MIT83 BF 
(26.5 cM) FF

7/18 (38.9)  
13/18 (72.2)

8/13 (61.5)  
10/16 (62.5)

*Number of mice with carcinomas/Total number of mice (per cent of carcinoma incidence). BF, 
heterozygous with one C57BL/6J allele and one FVB/N allele; FF, homozygous with two copies of 
FVB/N allele.
* * Multi-point significant levels.

Table 3.4 The result of multi-locus cox regression analysis of linkage to 
carcinoma development in FIBX mice. Only markers with significant linkage are 
listed in the table. A: Multi-locus stepwise Cox regression without locus-locus 
interactions. B: Multi-locus stepwise Cox regression with locus-locus interaction.

development. Locus-locus interactions also exerted profound effects on tumour 

formation. The interactions of D4Mitl26-D12Mit203, D9Mit269-D6Mitl4, and 

DlMit318-D6Mitl4 had major influences on papilloma formation, whereas the 

interaction of D7Mit83-D10Mitl34 made significant contribution to carcinoma 

formation. These results indicate that the development of papilloma and carcinoma are 

affected by multiple genetic loci. It is particularly interesting to note that, whist most 

loci were associated to either papillomas or carcinomas, only locus D9Mit269 was 

involved in both stages. This suggests that although there are some common regulating 

factors, the development of papillomas and carcinomas is largely under different genetic 

control.
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CHAPTER 4

GENETIC CONTROL OF SKIN 

TUMOUR SUSCEPTIBILITY IN 

(FVB/N x C57BL/6J)F2 MICE



In (FVB/N x C57BL/6J)F1 x FVB backcross mice, the C57BL/6J allele is segregated 

between different loci, whereas the FVB/N allele is present at every genetic loci. Thus, 

the variation in tumour incidence reflects only the effects of C57BL/6J allele at different 

loci. It is impossible to evaluate the association of FVB/N alleles with tumour 

formation. To be able to examine the effects of both FVB/N and C57BL/6J alleles, 

segregation of both the FVB/N and C57BL/6J alleles is required. Therefore, the linkage 

study was expanded to include (FVB/N x C57BL/6J)F1 intercross (FVB6F2) mice.

4.1 Mouse breeding strategy

The breeding scheme for F2 mice is illustrated in Figure 4.1. In brief, four female 

FVB/N mice and male C57BL/6J mice were mated to produce FVB6F1 hybrid mice. 

Ten mating pairs of FI hybrids were then set up for continuous breeding to generate 

FVB6F2 mice. A total of 367 female FVB6F2 mice were raised and subsequently used 

for the carcinogenesis study.

4.2 Mouse skin tumour development in (FVB/N x C57BL/6J)F2 mice

4.2.1 Mouse skin tumour induction

The tumour induction experiment was carried out as described in Section 2.2.2. In brief, 

FVB6F2 mice were treated with a single dose of 25 mg DMBA and one week later with 

20 nmol TPA twice a week for 20 consecutive weeks. The development of papillomas 

and carcinomas was observed and scored once a week for 60 weeks. The tumour data is 

presented in Table A7 (see Appendix).

4.2.2 Tumour latency

The tumour latency in FVB6F2 mice is quite similar to that in FI and FIBX mice 

(Figure 4.2). The first tumour (papilloma) in FVB6F2 mice was observed at week 8. 

Three weeks later (at week 11), more than half of the mice had developed skin tumours. 

The tumour positive population reached a maximum of 96% at week 23. Compared with
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Figure 4.1 Breeding schemes used to generate FVB6F2 mice. For comparison, only 
one pair of chromosomes (i.e. chromosome 7) is shown for each parent. FVB/N alleles 
are indicated by green; C57BLV6J alleles are indicated by red. Note that there are three 
different subtypes of genotype in F2 mice.
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Figure 4.2 The latency of skin tumour development in two parental strains, 
FVB/N and C56BL/6J, and their FVB6F1, FIBX and FVB6F2 mice. Only data 
of female FIBX mice were used because all the other four groups of mice are 
female.

120

Vi
<5 1(H) -

-
<a .x
S

80 -

40 -
Z
yx

20  -

10 20 250 5 15

WEEKS

Figure 4.3 Comparison of the tumour latency of three coat colour groups in 
FVB6F2 mice, albino, agouti and black.
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the two parental strains, FVB6F2 mice behaved similarly to the sensitive FVB/N parent, 

indicating the dominance of FVB/N alleles in tumour latency in FVB6F2 mice.

Further analysis was carried out to examine the association of coat colour with tumour 

latency. There were three coat colours in F2 progeny, albino, agouti, and black. Thus, 

mice were divided into three colour groups and tumour latency of each groups examined 

(Figure 4.3). As in FIBX study, all three colour groups of FVB6F2 mice also had very 

similar tumour latency. The first tumour appeared at the same time (week 8). Their 

tumour positive populations increased at similar rates and reached the maximum at 

similar time points. The highest level was 94% in albino mice, 97% in agouti mice and 

95% in black mice. These results suggest that loci associated with coat colours had little 

influence on the tumour latency in FVB6F2 mice.

4.2.3 Papilloma incidence

The average papilloma number in FVB6F2 mice at different time points is displayed in 

Figure 4.4. The papilloma incidence in FVB6F2 mice was rather similar to that in the 

female FIBX mice, much higher than that in FI mice. And the same as the FIBX mice, 

it was in fact very close to the sensitive parental FVB/N mice, particularly during the 

chemical treatment period. At week 20, the papilloma development reached a maximum 

with an average of 10.4±0.4 papillomas (330 surviving mice). The average numbers 

decreased about ten weeks later due to the sacrifice of mice with high yield of 

papillomas (see section 2.2.2).

However, analysis of papilloma distribution revealed the differences between these three 

groups of mice (Figure 4.5). The distribution of papilloma number in FVB6F2 was the 

broadest of all different groups, including the parental FVB/N mice, ranging from 0 to 

as many as 42 papillomas. 12% of mice were, as C57BL/6J, highly resistant with less 

than one papilloma; another 12% of mice were even more sensitive than FVB/N, 

responding with more than 23 papillomas; and 32% of mice behaved like FI hybrids 

with less than 5 papillomas.

Taken together, although the overall genomic makeup of the susceptible FVB/N alleles 

is higher in FIBX mice than in FVB6F2 mice, the FVB6F2 mice exhibited a phenotype
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Figure 4.4 The average number of papillomas per mouse in parental mice 
FVB/N and C57BLV6J, and their FVB6F1, F IBX and FVB6F2 mice. All data 
were from female mice.

similar to that in FIBX mice. When compared to the FVB6F1 mice which had exactly 

the same ratio of FVB/N:C57BL/6J in the genome, the FVB6F2 mice, however, had 

higher papilloma incidence. One possible explanation is the existence of recessive 

C57BL/6J susceptibility loci. In the C57BLV6J parental mice, the effects of papilloma 

susceptibility loci can not be recognised because the effects of papilloma resistant loci 

are larger, thus the overall phenotype is resistant. However, in the absence of stronger 

dominant resistant loci as a result of the segregation events that occurred in FVB6F2 

mice, the effects of the C57BL/6J susceptibility loci, in addition to the FVB/N 

susceptibility loci, made some FVB6F2 mice even more susceptible than the FVB/N 

parental mice.

The influence of coat colour in papilloma formation was also examined. As shown in 

Figure 4.6, all three colour groups had a similar pattern of papilloma development. The 

number of papilloma increased quickly at early stages until they reached the maximum 

level at around week 20. However, the average papilloma number in albino mice was 

clearly less than that in agouti and black mice which had a similar papilloma incidence.
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Figure 4.6 Comparison of average papilloma numbers of three different coat 
colours in FVB6F2 mice.

At week 20, the average papilloma number was 9.5±0.9 (78 surviving mice) in albino 

mice, compared with 11.2±0.6 (189 surviving mice) in agouti mice and 1 1.0±1.0 (63 

surviving mice) in black mice. The distribution and frequency of papillomas showed 

that the albino group had a narrower spectrum than the other two colour groups (Figure 

4.7). Only 8.6% of albino mice had more than 23 papillomas, while this was 13% in 

agouti mice and 10% in black mice. Moreover, the majority of albino mice had 0-5 

papillomas, compared with 3-8 papillomas in agouti and black mice. These results 

suggest that the albino FVB6F2 mice were more resistant to papilloma induction than 

the agouti and black mice. It is in consistent with the data of F1BX backcross. 

Although the overall papilloma incidence was similar between agouti and albino F1BX 

mice, the female albino F1BX mice were more resistant than the agouti female mice. 

Taken together, these results imply that papilloma development in the (FVB/N x 

C57BL/6J) crosses is associated with coat colour related genetic loci.
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Figure 4.7 Comparison of the distribution and frequency of papillomas at week 20 
by different coat colours in FVB6F2 mice.
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4.2.4 Carcinoma incidence

Due to the application of a dichotomous scoring system, the carcinoma incidence in F2 

mice, as in F1BX mice, was presented in format of carcinoma positive population, 

regardless of the actual number of carcinomas that each individual mice developed.

As shown in Figure 4.8, the carcinoma formation in F2 mice was similar to that in 

F1BX mice. The first carcinoma in F2 mice was observed at week 17, one week earlier 

than that in F1BX mice. The population of carcinoma positive mice increased steadily 

until the end of the 60 week observation period. A maximum of 45% of F2 mice, 

compared with 44% in F1BX, developed carcinomas. However, there were some 

differences between F2 and FI hybrid mice. Particularly during week 19-26 and week 

43-55, fewer F2 mice than FI hybrid mice developed carcinomas, though the difference 

is not significant. This result indicates that the carcinoma development is likely to be 

inherited as a dominant trait.

The association of coat colour with carcinoma incidence was also examined (Figure 

4.9). At early stages, the carcinoma positive populations in all three colour groups 

increased steadily to about 20% and little difference was observed. After week 35, 

however, differences began to appear and became greater towards the end of observation 

period. It appeared that black mice were more resistant to carcinoma formation than 

agouti and albino mice. At week 50, 34% of black mice developed carcinomas, 

compared with 41% in albino and 43% in agouti mice. These results suggest that 

carcinoma development in F2 mice is also associated with coat colours.

Taken together, the data shows that F2 mice exhibit different responses to papilloma and 

carcinoma formation. Compared to FI mice, the F2 mice had a higher papilloma 

incidence, but a similar carcinoma incidence. This implies that the development of 

papillomas and carcinomas are probably under different genetic control. Moreover, the 

fact that albino mice were the most resistant to papillomas whilst black mice were the 

most resistant to carcinomas further confirms the involvement of different genetic loci 

in the development of papillomas and carcinomas. It is possible that some loci are 

involved in the development of both papilloma and carcinomas, whilst others are only 

associated with either papilloma or carcinoma formation.
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Figure 4.9 Comparison of carcinoma incidence in three coat colour 
groups (albino, agouti and black) in FVB6F2 mice.
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4.3 Genetic mapping of (FVB/N x C57BL/6J)F2 mice

Genetic mapping was carried out to examine the genotypes of individual F2 mice. There 

are total three possible genotypes: homozygous for FVB/N alleles, homozygous for 

C57BL/6J alleles and heterozygous with one FVB/N allele and one C57BL/6J allele. 

The heterozygous mice will have two PCR products of different sizes, whereas mice 

homozygous for FVB/N or C57BL/6J with two identical alleles will only have one PCR 

product amplified. Examples of genotyping of 16 F2 mice at loci D5Mit43 and 

D13Mitl7 are shown in Figure 4.10.

Despite technological improvement in the speed and accuracy with which molecular 

markers can be assayed, it can still be expensive and time consuming to analyse a large 

population. Lander and Botstein have shown that, in the context of a cross between 

divergent lines, most of the evidence on the existence of QTLs for a trait comes from the 

highest and lowest performing individuals (Lander and Botstein 1989). Therefore, to 

obtain the maximum information but reduce the number of individuals needed to be 

genotyped in marker-QTL linkage analysis, a modified approach termed ‘selective 

genotyping’ was used in genomic mapping of FVB6F2 mice (Darvasi and Soller, 1992; 

Risch and Zang, 1995). F2 mice were separated into three groups, resistant, mediate and 

sensitive groups. The resistant group consisted of 147 mice which had less than 7 

papillomas; the sensitive group was made up by 125 mice which had more than 12 

papillomas; the remaining mice became the mediate groups. Only mice belonging to the 

two extreme groups were genotyped. A panel of 128 microsatellite markers and more 

than 45,000 PCR reactions were used in the genomic mapping. They constructed a 

genetic linkage map spanning 1213.8 cM and covered 88.9% of the genome, the average 

distance between markers being 9.4 cM. The genotypes of F2 mice is presented in Table 

A8 (see Appendix).

4.4 Linkage of genetic loci to skin tumour in FVB6F2 mice

The linkage analysis in F2 mice was also performed using three different methods, 

namely single marker analysis, interval mapping and multi-locus regression analysis. 

Since only mice from two extreme groups were genotyped in the selective genotyping
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approach, non-parametric statistical methods were applied to analyse the difference in 

allele frequency between two groups.

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D5Mit43 m mn  FVB/N
C57BL/6J

D13Mitl7 • S S S ^ S ^ S S B S m S S C57BL/6J
FVB/N

Figure 4.10 PCR microsatellite analysis of genotypes of FVB6F2 mice with marker 
D5Mit43 and D 13Mit 17. The gels show representative examples of genetic mapping in 
16 F2 mice. There are three subtypes of genotypes, homozygous with two FVB/N 
alleles (indicated with discontinued arrow), homozygous with two C57BL/6J alleles 
(indicated with solid arrow) and heterozygous with one FVB/N allele and one 
C57BL/6J allele. Therefore, the homozygous mice will have one DNA band and the 
heterozygous mice will have two DNA bands. M: DNA molecular weight marker VI.

4.4.1 Single m arker linkage analysis

As one of the simplest approach in linkage analysis, the single marker method was first 

used to detect QTLs. The allele frequencies of the sensitive and resistant groups at each 

marker locus were calculated and the differences were compared using a non- 

parametric statistical method. If the difference is statistically significant, it is inferred 

that a QTL controlling the character of interest is located near the marker.

4.4.1.1 Linkage to papilloma development

Genetic association with papilloma development was examined. The allele frequency of 

the resistant and sensitive groups was analysed using a crosstable (2X3 contingency) 

method and the difference was measured by the chi-square test with 95% confidence 

intervals.
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Marker Locus (cM) Number of mice 
(resistant group)

Number of mice 
(sensitive group) P

BB BF FF BB BF FF
D6MIT30 48.50 24 85 38 34 73 18 0.0179
D6MIT254 57.10 30 79 38 39 66 20 0.0454

D6MIT59 67.00 30 79 38 42 63 20 0.0217
D6MIT14 74.00 29 77 41 44 62 19 0.0040

D10MIT248 7.00 50 77 20 25 60 40 0.0005
D11MIT217 19.00 47 78 22 21 66 38 0.0012
D U M I T 2 3 28.10 46 75 26 24 64 37 0.0185
D11MIT30 39.80 53 72 22 29 60 36 0.0075
D11MIT38 49.00 51 73 23 29 59 37 0.0107

D11MIT99 65.00 54 72 21 27 64 34 0.0044
D11MIT254 71.00 49 79 19 32 58 35 0.0074

D 1 2 N D S 1 1 6.00 50 70 27 28 60 37 0.0333
D12MIT2 19.00 53 71 23 27 63 35 0.0079

D12MIT68 28.00 54 69 24 22 74 29 0.0020
D12MIT149 37.00 50 69 28 22 74 29 0.0093
D16MIT110 21.00 42 72 33 22 53 50 0.0043
D16MIT4 27.30 38 77 32 19 56 50 0.0026
D16MIT64 38.00 45 67 35 23 51 51 0.0051
D16MIT50 53.50 43 72 32 27 51 47 0.0153

Table 4.1 The result of single marker linkage analysis of susceptibility to papilloma 
development in FVB6F2 mice. Locations of marker locus in cM are the relative map 
locations from the centromere and map distances are determined from the report of 
mouse chromosome committee in the mouse genome database. BB, homozygous with 
two copies of C57BL/6J alleles; BF, heterozygous with one C57BL/6J allele and one 
FVB/N allele; FF, homozygous with two copies of FVB/N allele. The number of mice 
of each genotype in resistant and sensitive groups were compared and analysed by chi- 
square test with significant level at /?=0.05. Of 128 markers analysed only markers with 
p  value less than 0.05 were listed. Markers with p  value less than 0.01 were highlighted 
and considered as the location of genes that influence the susceptibility to the 
development of papillomas.

The papilloma development was linked to markers on chromosomes 6, 10, 11, 12 and 

16 (Table 4.1). The most significant linkage was detected at locus D10Mit248 

(p=0.0005). The frequency of FVB/N homozygous alleles was higher in the sensitive 

group but lower in the resistant group. Similarly, the frequency of C57BL/6J 

homozygous alleles was lower in the sensitive group but higher in the resistant group. 

Thus, at locus D10Mit248, the FVB/N allele was susceptible and the C57BL/6J was
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resistant to papilloma formation. The linkage was also detected in the central region of 

chromosome 16 between D16MitllO and D16Mit64, particularly at D16MitllO 

(p=0.0043), D16Mit4 (p=0.0026) and D16Mit64 (p=0.0051), and the central region of 

chromosome 12 between D12Mit2 and D12Mitl49 especially at locus D12Mit68 

(p=0.002). Furthermore, nearly the whole of chromosome 11 was connected to 

papilloma formation, with the most significant linkage measured at DllM it217 

(p=0.0012) and DllM it99 (p=0.0044). At these loci, the FVB/N allele was associated 

with susceptibility and the C57BL/6J allele was linked to tumour resistance. However, 

the effects of the two parental alleles at the distal region of chromosome 6 between 

D6Mit30 and D6Mitl4 were reversed. At D6Mitl4 (p=0.004), there were more FVB/N 

homozygous mice in the resistant group and more C57BL/6J homozygous mice in the 

sensitive group. Thus, the presence of the FVB/N allele on chromosome 6 was linked to 

resistance to papillomas, while the inheritance of the C57BL/6J allele was associated 

with susceptibility to papilloma development.

4.4.1.2 Linkage to carcinoma development

The method used for carcinoma linkage analysis differed from that of papilloma linkage 

analysis because a dichotomous trait rather than a linear related trait was used to score 

carcinomas. Difference in carcinoma formation of each genotypes was analysed using 

the Kaplan-Meier test with 95% confidence intervals.

The carcinoma development in F2 mice was linked to markers on chromosomes 3, 6, 8, 

10, and 16 (Table 4.2). The most significant linkage was detected at locus D3Mit62 

(p=0.0003). At this locus, 54.1% of C57BL/6J homozygous mice developed 

carcinomas, compared with 45.7% in FVB/N homozygous mice and 47.6% in 

heterozygous mice. Thus, mice carrying a FVB/N allele, including homozygotes with 

two copies of FVB/N alleles and heterozygotes with one FVB/N allele and one 

C57BL/6J allele, were more resistant to carcinoma formation than mice homozygous for 

C57BL/6J allele. Similarly, FVB/N allele on the distal region of chromosome 6, 

particularly at locus D6Mitl4 (p=0.006), was linked to carcinoma resistance. A resistant 

locus was also identified on chromosome 16 between D16Mit64 and D16Mit50. 

However, it was the presence of C57BL/6J alleles at these loci that reduced the 

probability of developing carcinomas.
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Marker Locus (cM) Percentage of mice with carcinomas p (K-M)

BB FB FF
D3MIT62 4.60 54.1 47.6 45.7 0.0003
D6MIT59 67.00 57.7 43.8 47.5 0 .022

D6MIT14 74.00 58.4 44.8 44.4 0.006
D16M IT64 38.00 43.8 48.0 52.9 0.028

D16MIT50 53.50 44.0 46.2 56.3 0.017

D8MIT211 49.00 37.1 52.0 56.2 0.003
D8MIT215 59.00 35.4 53.4 53.3 0.006
D10M IT42 44.00 41.6 49.3 54.4 0.048

D10M IT134 59.00 43.2 50.3 50.0 0 .019

Table 4.2 The result of single marker linkage analysis of susceptibility to 
carcinoma development in FVB6F2 mice. Locations of marker locus in cM are the 
relative map locations from the centromere and map distances are determined from the 
report of mouse chromosome committee in the mouse genome database. BB, 
homozygous with two copies of C57BL/6J alleles; BF, heterozygous with one 
C57BL/6J allele and one FVB/N allele; FF, homozygous with two copies of FVB/N 
alleles. The percentage of mice with carcinomas for each genotype were compared and 
analysed using Kaplan-Meier test with significant level at /?=0.05. Of 128 markers 
analysed only markers with p  value less than 0.05 were listed. Markers with p  value less 
than 0.01 were highlighted and considered as the location of genes that influence the 
susceptibility to the development of carcinomas.

Significant linkage was also detected at D8Mit211 (p=0.0003) and D8Mit215 

(p=0.0006). Mice inheriting the FVB/N allele at these two loci were more sensitive to 

carcinoma formation than mice homozygous for the C57BL/6J allele. Similarly, the 

FVB/N allele at loci D10Mit42 and D10Mitl34 were also linked to higher carcinoma 

incidence. Hence, the presence of the FVB/N alleles on chromosomes 8 and 10 were 

associated with susceptibility to carcinoma development.

4.4.2 Interval mapping analysis

Once a potential linkage was detected in the single marker analysis, more loci on the 

same chromosome were genotyped, and the data was analysed using the interval 

mapping method to obtain a more accurate evaluation of the position and the effect of 

underlying QTL. The MapMaker program package was used for an automatic analysis. 

MapMaker/EXP was used to construct a genetic map and calculate the distance of two
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adjacent marker loci; MapMaker/QTL was used to detect the linkage by a three point 

interval analysis and evaluate the effect of each loci. The results are presented in the 

format of LOD score. A LOD2 T . 9  is widely accepted as indicating a suggestive linkage 

and LOD^3.3 as indicating a significant linkage.

4.4.2.1 Linkage to papilloma development

Linkage to papilloma development was detected on chromosomes 10, 11 and 12 (Figure 

4.11). The most significant linkage was detected on the proximal region of chromosome 

10 in a 20 cM interval between D10Mit248 and D10Mit44. The highest LOD score was 

5.61 at D10Mit248 (Figure 4.11A). A second region linked to papilloma development 

was found in a 30 cM interval from D12Ndsll to D12Mitl49 with a peak LOD score of 

3.74 at D12Mit68 (Figure 4.1 IB). Linkage to papilloma development was also obtained 

on the central-distal region of chromosome 11 between DllM it30 and DllMit254. Two 

highest LOD scores were measured 3.62 between DllM it38 and DllM it99 and 3.43 

between DllM it30 and DllMit38, all reached to the significant levels (Figure 4.11C).

4.4.2.2 Linkage analysis of carcinoma development

The most significant linkage to carcinoma development was detected on the central 

region of chromosome 8 (Figure 4.1 ID). In a 27 cM interval between D8Mit8 and 

D8Mit215, the highest LOD score of 3.35 was obtained between D8Mit211 and 

D8Mit215, just above the significant levels.

4.4.3 Multi-locus stepwise regression analysis

As we mentioned earlier, the tumour development is likely to involve the contribution of 

multiple genetic loci, and many of these loci are interactive. Therefore, a third level 

analysis was necessary to detect the contribution of locus-locus interactions. There are 

mainly two classes of interactions, dominant and additive. When the phenotype of 

heterozygote is the same as that of one of the homozygotes, it is characterised as a 

dominant gene action; when the phenotype of heterozygote is exactly intermediate 

between that of two homozygotes, it is characterised as an additive gene action. In 

addition to interactions between loci, the interactions between two parental alleles can 

also be measured to specify the degree of dominance because the presence of all three
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genotypes at each locus in a F2 cross. At locus underlying quantitative variation, the 

gene action could range from completely recessive to completely dominance, even over

dominance (heterozygotes exceed either of parental homozygotes).

The regression analysis was performed in two steps. The first step was to evaluate the 

effect of each individual locus. The second step was to estimate the contributions of 

every individual locus as well as the interaction between loci and alleles. A p  value of 

1.0 x 10'4 is generally considered as indicating a significant linkage and a p  value of 3.4 

x 10' as indicating a suggestive linkage.

4.4.3.1 Logistic regression analysis of linkage to papilloma development

The logistic regression test was used to examine the allele frequency within and between 

two extreme groups and evaluate the effect of individual locus as well as the 

contribution of interactions to the development of papillomas in FVB6F2 mice.

The most significant linkage to papilloma development was detected at locus D12Mit68 

(/7=0.000034). The C57BL/6J allele at this locus conferred resistance to papillomas. Six 

more markers were also found to be significantly associated with papilloma formation 

when the contribution of individual loci was evaluated (Table 4.3A). Linkage of 

papillomas resistance from C57BL/6J alleles was identified at loci D4Mitl75 

(p=0.0014), D10Mit248 (p=0.0002), DllM it99 (p=0.0007), and D16Mit64 (p=0.0008). 

Loci D5Mit233 (/?=0.0013) and D6Mitl4 (p=0.0017) were also associated with the
I

development of papillomas. However, the resistant effects were contributed from 

FVB/N alleles at these two loci.

When locus-locus interactions were taken into account, locus D6Mitl4 was the only 

locus that acted independently and the resistant effect was contributed from the FVB/N 

allele. Moreover, nine pair of interacting loci were also detected to have a significant 

effect on papilloma formation (Table 4.3B). The most significant contribution came 

from DllM it99 x D3Mit49 (p=3.6xl0'6), D10Mit248 x D16Mit51 (p=1.9xl0'5), and 

D16Mit64 x D15Mitl89(/?=4.3xl0"6). The interactions between two parental alleles at 

the paired loci resulted in the unusually high or low number of mice. For example, (34 

mice) which were homozygous for C57BL/6J at D10Mit248 and heterozygous at
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A

Markers Locus (cM) Coefficient P
D4MIT175 49.60 -0.656 1.4xl0'3
D10M IT248 7.00 -0.804 2.0xl0’4
D11MIT99 65.00 -0.803 7.0xl0'4
D12MIT68 28.00 -1.058 3.4xl0'5
D16MIT64 38.00 -0.649 8.0xl0'4
D5MIT233 29.00 0.816 1.3xl0'3
D6MIT14 74.00 0.744 1.7xl0'3

B
Marker Interactions Coefficient P
D6MIT14 2.501 1.0x10’4
D12MIT68 X D6MIT59 Horn x Het -3.140 l.OxlO’4
D12MIT2 X D9MIT207 Het x Het -2.075 4.0x1 O’4
D l lM I T 9 9  X D3MIT49 Het x Het -3 .019 3.6xl0'6
D10M IT248 X D15MIT26 Horn x Horn -3.864 2.0x10‘4
D10M IT248 X D16MIT51 Het x Horn -3.290 1.9xl0'5
D16MIT64 X D15MIT56 Horn x Het -5.099 l.OxlO'4
D16MIT64 X D15M IT189 Het x Het -5.117 4.3xl0'6
D4MIT175 X D5MIT43 Horn x Het 2.824 l.OxlO'4

Het x Horn 2.948 l.OxlO'4

Table 4.3 Multi-locus stepwise logistic regression analysis of linkage to papilloma 
development in FVB6F2 mice. A. Multi-locus stepwise logistic regression analysis 
excluding any interactions B. Multi-locus stepwise logistic regression analysis 
including interaction between loci and alleles. The coefficient value indicated the 
degree of interaction between two parental alleles at individual locus or two alleles 
from different loci. A positive coefficient value indicates a resistant effect; a negative 
coefficient value implicates susceptibility to papilloma formation.

D16MIT51
BB FB FF Total

BB 10 34 6 50
Resistant group FB 23 37 17 77

D10MIT248 FF 4 9 7 20
Total 37 80 30 147
BB 6 11 8 25

Sensitive group FB 11 26 23 60
D10MIT248 BB 12 23 5 40

Total 29 60 36 125

Table 4.4 The effect of interaction between loci D10Mit248 and D16Mit51 in FVB6F2 
mice. The number in bold indicates the genotypes of abnormal allele frequency.
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D16Mit51 in resistant groups, and a high number of mice (23 mice) which were 

heterozygous at D10Mit248 and homozygous for FVB/N at D16Mit51 in sensitive 

groups (Table 4.4). Similarly, unusual higher or lower number of mice of particular 

genotype were also discovered due to the interactions between two parental alleles at 

two interactive loci in the other eight pairs. Interestingly, neither loci D9Mit207 nor 

D12Mit2 (Table 4.3B) had profound contribution to papilloma formation when they 

acted alone. However, the synergistic interactions between parental alleles at the two 

loci had significant influence on papilloma development.

4.4.3.2 Cox regression analysis of susceptibility to carcinoma development

Multi-locus cox regression method was used to detect the genetic linkage to carcinoma 

formation in F2 mice. The results are presented in Table 4.5. Three loci, D3Mit46 

(p=0.0001), D8Mit211 (p=0.000029) and D12Nds2 (p=0.0001) were linked to 

carcinoma development when the locus-locus interactions were not considered. The 

FVB/N alleles at loci D3Mit46 and D12Nds2 were associated with resistance to 

carcinoma, while the C57BL/6J allele at locus D8Mit211 was the resistance allele. 

When the locus-locus interactions were included in the analysis, however, none of the 

contribution from interaction were statistically significant.

4.4.4 Summary of genetic linkage to skin tumour development

The genetic linkage to skin tumour formation in F2 was analysed with three different 

methods, namely single marker analysis, interval QTL analysis and multi-locus 

regression analysis. Consistent with the analysis in F1BX, both papilloma and 

carcinoma development were indeed controlled by multiple genetic loci from both 

parental strains.

The data from all three analysis showed that papilloma development was linked to loci 

on chromosomes 6, 10, 11, 12 and 16. While the FVB/N allele on chromosome 6 was 

associated with lower papilloma incidence, its presence on the other four chromosomes 

increased the probability of papilloma formation. In another words, C57B1/6J alleles on 

chromosomes 10, 11, 12 and 16 were the resistant alleles. Moreover, the results of 

regression analysis indicated that loci on chromosomes 3, 4, 5, 9, and 15 were also 

involved in papilloma formation in means of interactions with other loci.
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M arkers Locus (cM) C oefficient (p)
D3M IT46 13.80 0.669 l.O x lO '4
D12NDS2 55.00 0.571 l.O x lO '4
D 8M IT211 49.00 -0.637 2 .9 x l0 '5

Table 4.5 Multi-locus stepwise Cox regression analysis of linkage to carcinoma 
development in FVB6F2 mice. The coefficient value indicated the degree of interactions 
between two parental alleles at individual locus. A positive coefficient value indicated 
resistant effect; A negative coefficient value implicated susceptibility to papilloma 
formation.

The carcinoma development in F2 mice was linked to loci on chromosomes 3 and 8. 

Mice carrying the FVB/N allele on chromosome 3 had lower carcinoma incidence, 

while those mice inheriting the FVB/N allele on chromosome 8 were susceptible to 

carcinoma formation. The resistant allele on chromosome 8 was C57BL/6J allele. Loci 

on chromosomes 6, 10, 12 and 16 may also involved in carcinoma formation even 

though they were only detected in one of the analysis methods. However, no significant 

locus-locus interactions were identified.
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CHAPTER 5

THE LOH STUDY OF SKIN 

TUMOURS IN 

(FVB/N x C57BL/6J)F1 MICE



The development of highly polymorphic genetic markers and progress in sophisticated 

statistical methods have made genetic linkage analysis a popular approach to identify the 

genetic loci that underlie complex traits. In addition, the advances of mapping 

techniques make it possible to detect genetic alterations which take place during tumour 

development in somatic cells and also germline mutations which can cause 

predisposition to the development of tumours (Knudson, 1993). This tumour mapping 

approach is particularly efficient in identifying loci that harbour genes conferring 

resistance to tumour development because they are likely to be deleted or mutated in 

most tumours.

5.1 Genomic mapping of skin tumours

PCR reactions were carried out using genomic DNA from papillomas (and carcinomas), 

in parallel with their corresponding tail DNA as controls. Most polymorphic 

microsatellite markers used in the linkage mapping were also used in the tumour 

mapping. A total of 16 papillomas and 12 carcinomas from 16 FVB6F1 mice (namely 

H1-H16) were used in the analysis. Marker loci with higher percentage of allelic losses 

or amplifications were considered as the location of genetic loci (genes) involved in the 

development of skin tumours.

Figure 5.1 shows an example of allelic analysis of tumours (papillomas and carcinomas) 

from four FVB6F1 mice (H9-H12) at locus D4Mitl24. Compared with the two parental 

allelic amplifications in normal tissue, all four papilloma samples exhibited two equally 

amplified PCR products. But, unbalanced amplifications were observed in all four 

carcinoma samples. While the upper band (corespondent to C57BL/6J allele) of 

carcinoma H9 and H10 was only slightly stronger than the lower band (corespondent to 

FVB/N allele), the C57BL/6J band of carcinoma H ll  and H12 was far stronger than the 

FVB/N band. There are two possible explanations for the cause of allelic imbalance. 

One is that the difference in the quantity of amplified PCR products reflects the 

difference in the copy numbers of parental alleles resulted from the genetic alteration 

events taking place in the tumours. In another words, the allelic imbalance reflects an 

equal amplification of unequal copy number of parental alleles, thus is bona fide allelic 

imbalance. The reduplication could be just a part of the chromosome, or the

102



H9 H10 H l l H12 Control

N P C N P C N P C N P C F B

Figure 5.1 Allelotype analysis of papillomas and carcinomas from four 
FVB6F1 mice (H9-H12) at marker locus D 4M itl24. PCR analysis were 
performed using the genomic DNAs isolated from the tails (N), papillomas (P) 
and carcinomas (C). The control samples were from FVB/N (F) and C57BL/6J 
(B) which showed the sizes of the PCR products of the two parental alleles.

whole chromosome which gave rise to the formation of chromosome trisomy (Aldaz el 

al., 1989; Bremner and Balmain, 1990). Under the former circumstance, the allelic 

imbalance would only be shown at limited regional markers loci; under the latter 

circumstance, the allelic imbalance would be detected at marker loci throughout the 

whole chromosome. The allelic imbalance may also be interpreted as loss of 

heterozygosity (LOH) but obscured by the heterogeneity of tumour cells (thus 

uncompleted losses of FVB/N allele) or, in some cases, contamination with DNA from 

normal tissue. In both cases, the amplification of one allele would be far less than 

another. In the case genotyping at locus D 4M itl24, the allelic imbalances shown in 

carcinomas H9 and H10 probably reflect reduplication of the C57BL76J allele, while 

the allelic imbalances shown in carcinomas HI 1 and H12 are likely due to the loss of 

the FVB/N allele in these tumours.

5.2 Genomic alterations on chromosome 4

Mouse chromosome 4 has figured prominently in the findings of several mouse QTL 

linkage mapping and tumour LOH studies based upon a variety of established 

carcinogen induced tumour models, and a number of candidate tumour suppressor loci 

have been localised on it (Herzog et al., 1994; Santos et al., 1996; Aldaz et al., 1996).
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LOH of chromosome 4 has already been detected in spindle carcinomas form the 

Spr/NIH hybrid mice (Kemp et al., 1993), implying that alteration of this chromosome 

is an important genetic event in the advantage stage of skin tumour development. To 

investigate the involvement of chromosome 4 in the skin tumours in FVB6F1 mice, the 

genomic DNA of papilloma and carcinoma samples were genotyped using ten markers 

on chromosome 4 to examine the genomic changes on this chromosome (Figure 5.2).

Of sixteen papillomas examined, only three showed allelic imbalance at loci on the 

distal region of chromosome 4. Two papillomas (H5 and H8) showed preferential 

amplification of C57BL/6J allele at both loci D4Mitl60 and D4Mit42, whereas one 

papilloma H10 displayed allelic imbalance at locus D4Mitl60, also in favour of 

C57BL/6J allele. Since the other eight loci on chromosome 4 all had normal 

amplification, it was unlikely that there was any major alteration affecting the whole 

chromosome. It is possible that only the distal part of C57B1/6J chromosome was 

reduplicated in some of the papilloma cells.

In contrast, genetic alteration happened more frequently in carcinomas (Figure 5.2). 

Nine carcinoma samples exhibited some degree of LOH and allelic imbalance on 

chromosome 4, and as in papillomas all the alterations in carcinomas were in favour of 

retention of the C57BL/6J allele. Compared with the allelic amplification in normal 

tissues, five carcinoma samples (HI, 2, 8, 9, 10) showed reduplication of the distal part 

of C57BL/6J alleles, whilst allelic imbalances occurred at all ten loci in carcinomas H3, 

H ll  and H12 and at nine loci in carcinoma H7. As the genomic amplification was 

consistent throughout chromosome 4, it is likely that the whole chromosome from the 

C57BL/6J parent was reduplicated and gave rise to chromosome 4 trisomy in tumour 

cells. Moreover, complete or partial loss of the FVB/N alleles was also observed. 

Extensive LOH was detected in carcinoma H I2, the FVB/N allele was deleted at eight 

distal loci on chromosome 4, though in carcinomas H3, H9 and H ll  LOH was restricted 

to the distal loci, D4Mitl60 and D4Mit42, while. Of ten loci examined, marker locus 

D4Mitl60 had the highest incidence of allelic alteration, preferential amplification was 

observed in 75% of carcinomas. Other most frequently altered loci were D4Mitl24, 

D4Mitl58 and D4Mit42, 58% of carcinomas showed allelic imbalances and LOH.
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The data from tumour genotyping showed that genetic alterations in papillomas were 

limited to the distal part of chromosome 4. As papillomas progressed to carcinomas, it 

became more frequent and extended to the central region and beyond. Moreover, genetic 

events were also intensified from allelic imbalance in papillomas to LOH in carcinomas, 

particularly in the distal region of chromosome 4. Therefore, it seems a reasonable 

proposition that genetic loci on the distal region of chromosome 4 are involved 

throughout the whole process of skin tumour development, from the early papilloma 

stages to the late carcinoma stages. Furthermore, the fact that a higher incidence of 

genetic alterations on the central region of chromosome 4 was only observed in 

carcinoma suggests that genetic loci in this region were only involved in advanced 

carcinoma stages. These results are in consistent with the data of earlier QTL linkage 

analysis in which the same two regions were identified although they were mainly 

linked to the development of papillomas.

5.3 Genomic alterations on chromosome 7

The involvement of mouse chromosome 7 in skin tumour was proposed when studies by 

two groups showed that trisomy of chromosome 7 frequently occurred in both 

papillomas and carcinomas (Aldaz et al., 1989; Bremner and Balmain, 1990). Further 

analysis has demonstrated that loss of heterozygosity (LOH) of mouse chromosome 7 is 

also a consistent feature in malignant carcinomas (Bremner and Balmain, 1990; Bianchi 

et al., 1990 and 1991). To investigate that contribution of chromosome 7 to the 

development of skin tumours in FVB6F1 mice, genotyping was carried out using 

genomic DNA extracted from 16 papillomas and 12 carcinomas of 16 FVB6F1 mice 

(H1-H16), in parallel with their corresponding tail DNA samples.

As shown in Figure 5.3, 88% of the papillomas showed allelic imbalances and LOH at 

loci on chromosome 7. Of fourteen papillomas which showed allelic imbalance, six had 

preferential amplification of the FVB/N allele and the other eight were in favour of the 

C57BL/6J allele amplification. While most papillomas displayed allelic imbalance at 

just one or two loci, extensive genetic alteration was also observed in four of fourteen 

papillomas. Papilloma H13 and H14 had allelic imbalance at four loci, and papillomas 

H10 and H12 at all five loci examined. The co-ordinated preferential amplification of
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one particular allele throughout the whole chromosome and the ratio between FVB/N 

and C57BL/6J in these four papilloma samples indicated that chromosome 7 was 

trisomic in these papillomas. Most of the allelic imbalances took place in the central part 

of chromosome 7, with the highest incidence, 63%, observed at locus D7Mitl05, 

followed by 44% at loci D7Mit96 and D7Mit62, implying that genetic loci from this 

region were probably involved in the papilloma formation. LOH (loss of FVB/N allele) 

was also observed in one papilloma, H10.

Consistent with previous reports (Bremner and Balmain, 1990; Bianchi et ah, 1990 and 

1991), allelic imbalances and LOH were also detected in all carcinoma samples 

throughout chromosome 7. Five carcinomas showed FVB/N allele amplification and 

C57BL/6J allele loss; the other seven displayed amplification of the C57BL/6J allele 

and loss of the FVB/N allele. The co-ordination of preferential allele amplification in 

these tumours also indicated the presence of chromosome 7 trisomy in carcinomas. 

Moreover, seven of twelve of carcinomas exhibited extensive genetic alterations (at 

more than three loci). The highest incidence of allele imbalances, 75%, was observed at 

locus D7Mit96, followed by 67% at D7Mitl05 and 58% at D7Mit62. Even the least 

frequent genetic alterations had reached 42% at locus D7Mit83.

The data presented here indicates that a broad region of the central part of chromosome 

7 is involved in the whole process of skin tumour development. As papillomas progress 

to carcinomas, the incidence of genetic alterations increased. It is interesting to notice 

that, in papillomas and carcinomas, any genetic events at two proximal loci D7Mit83 

and D7Mit297 were always coupled with alterations at the other three distal loci 

D7Mit62, D7Mit96 and D7Mitl05, but not vice versa. This result implies that the genes 

close to the latter three loci may play more important roles in the tumour formation. 

Moreover these three loci had also been identified in the earlier linkage analysis, thus 

further confirming their association to the skin tumour development.

It has been shown that H-ras plays an important role in the development of skin 

tumours. Nearly all papillomas and carcinomas induced by DMBA-TPA exhibit 

mutation of H-ras gene by an A to T transversion at codon 61 (Quintanilla et al., 1986). 

Moreover, reduplication of chromosome 7 does not take place randomly, it is always the 

one carrying the mutated H-ras gene that is duplicated (Bremner and Balmain, 1990;

108



Bianchi et al., 1990). Unfortunately, due to the lack of polymorphic markers at the l i 

ras gene locus, we were unable to differentiate the two parental alleles (FVB/N and 

C57BL/6J). Therefore, we did not know whether the amplified chromosome was the one 

that carried the mutated H-ras gene. However, we did detect a mutation of the H-ras 

gene at codon 61 of in all the skin tumour samples.

5.4 Genetic alteration on other chromosomes

Genetic alterations in skin tumours induced by DMBA-TPA were also examined with 

microsatellite markers on other autosomal chromosomes. 16 papillomas and 12 

carcinomas from 16 FVB6F1 mice were used to examine the allelic alteration. Of 8,000 

genotyping with more than 100 microsatellite markers, only the marker loci with 

consistent genetic alteration are summarised in Table 5.1.

In general, allelic reduplication was the most frequent genetic events that took place in 

the skin tumours, whereas LOH rarely happened and was mostly detected in the 

carcinomas. Moreover, the frequency of genetic alterations was higher in carcinomas 

than in papillomas. The highest percentage of allelic imbalance in papillomas, 25%, was 

observed at locus D6Mit268, while it was 75% in carcinomas which was obtained at 

D12Mit231. Higher incidence of allelic imbalance was also observed on other 

chromosomes. On chromosome 6 (D6Mitl4), chromosome 9 (D9Mit269), chromosome 

10 (D10Mit248), and chromosome 16 (D16Mit64), more than 12.5% of papillomas had 

genomic alterations; on Chromosome 1 (DlMit318), chromosome 12 (D12Mit231), 

chromosome 15 (D15Mitl89), and chromosome 18 (D18Mit94), more than 40% of 

carcinomas showed allelic imbalances. At locus D6Mit268 on chromosome 6, higher 

incidence of allelic imbalance was found both in papillomas and carcinomas.

5.5 Summary of tumour LOH analysis

Genetic alterations in papillomas and carcinomas induced by carcinogen DMBA-TPA 

were examined with microsatellite markers spanning all autosomal chromosomes. The 

data presented here shows that the frequency of genetic alterations was higher in
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M arkers Locus (cM) Incidence of a lle lic  im balances *
Papillom as_________ C arcinom as

D lM it318 18.50 1/16 ( 6.3%) 5/12 (41.7% )
D3M it62 4.60 1/16 ( 6.3%) 2/12 (16.7% )
D6M it268 15.50 4/16 (25.0% ) 6/12 (50.0% )
D 6M itl4 74.00 2/16 (12.5% ) 4/12 (33.3% )
D 9M it269 43.00 2/16 (12.5% ) 3/12 (25.0% )
D10M it248 7.00 3/16 (18.8% ) 4/12 (33.3% )
D llM it9 9 65.00 1/16 ( 6.3%) 2/12 (16.7% )
D12M it231 48.00 1/16 ( 6.3%) 9/12 (75.0% )
D 15M itl89 48.50 1/16 ( 6.3%) 5/12 (41.7% )
D16M it64 38.00 2/16 (12.5% ) 2/12 (16.7% )
D 17M itl76 22.50 1/16 ( 6.3%) 2/12 (16.7% )
D18M it94 17.00 1/16 ( 6.3%) 6/12 (50.0% )

* Number of samples with allelic imbalances/total number of samples (percentage of incidence)

Table 5.1 The result of allelic analysis of skin tumours in FVB6F1 mice. The 
location of markers is the distance from centromere according to Mouse Genome 
Database. Markers with higher incidence of allelic imbalances were printed in bold. 
Note only marker locus with genetic alterations are listed in the table.

carcinomas than in papillomas. The most frequent genetic event that took place in 

papillomas and carcinomas was allelic reduplication. It was observed on nearly all 

chromosomes, particularly on chromosomes 4, 6, 7 and 10 in papillomas and 

chromosomes 1, 4, 6, 7, 12, 15, and 18 in carcinomas higher incidence of allelic 

imbalance was observed. This result is in consistent with the data discussed in previous 

two chapters, thus, further confirming the results of genetic linkage analysis. Moreover, 

consistent with previous studies, our data also demonstrated the presence of trisomies of 

chromosomes 4 and 7 in the papillomas and carcinomas. Loss of heterozygosity (LOH) 

was a rare event and mostly took place in carcinomas. High incidence of extensive LOH 

was only detected on two chromosomes, 4 and 7. Moreover, extensive allelic imbalance 

was also detected on these two chromosomes in both papillomas and carcinomas. These 

results suggest that genes on these two chromosomes may play important roles in the 

development of skin tumours.

110



CHAPTER 6

DISCUSSION



The aim of this study is to define the genetic basis of tumour susceptibility. We have 

chosen mouse skin carcinogenesis as the model system and utilised the genetic mapping 

approach to identify the genetic loci that affect susceptibility to skin tumours. The 

results of QTL linkage analysis in the F1BX and FVB6F2 crosses between the sensitive 

FVB/N and resistant C57BL/6J strains shows that the genetic loci on several mouse 

chromosomes, particularly chromosomes 4, 6, 9, 12, are associated with skin tumour 

formation. Confirmation of the involvement of these loci in tumour development is 

demonstrated in studies of tumours derived from the FVB6F1 mice.

6.1 Mouse as model organism for study of tumour susceptibility genes

Cancer is a genetic disease which requires the involvement of multiple genetic factors. 

Linkage analysis has been the mainstay of efforts to identify the genes that can affect 

susceptibility to tumour development. As this approach usually requires large multi

generation families with clear inheritance pattern, studies are mainly limited to the 

relatively rare cancer families in which multiple members develop a particular form of 

tumour. Most genes identified by this approach are highly penetrant, such that 

individuals carrying mutated alleles through inheritance have a substantial probability of 

disease development. However, for the high frequency, low penetrance genes that are 

thought to affect the development of the vast majority of sporadic human cancers, it is 

extremely difficult to identify these genes by the classic human linkage analysis due to 

the lack of clear cut inheritance pattern.

The mouse offers distinctive advantages as a model system for identification of these 

low penetrance tumour susceptibility genes. A large number of mouse strains are 

available that, as a result of inbreeding or selective breeding, show enormous variation 

in their susceptibility to tumour development in certain tissues. Crossing of resistant and 

sensitive strains can give valuable information about the pattern of inheritance, as well 

as providing indications of the number of genes involved and their approximate 

locations in the genome. The unlimited number of ‘family members’ available for 

linkage analysis and advanced QTL linkage analysis methods greatly enhance the 

probability of finding multiple loci associated with a particular tumour. Moreover, the 

breakthrough in molecular genetic techniques has enable us to manipulate the mouse
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germline to generate transgenic and knockout mice, thus, further facilitating the study of 

tumour susceptibility genes. Importantly, mice exposed to carcinogens develop tumours 

by a multistep process very similar to that seen in humans. The genetic alterations 

detected in mouse tumours involve genes such as Ras, Rb, p53 and pl6Ink4a , that are 

also the most commonly altered genes in human tumours (Knudson, 1993; Jacks, 1996; 

Ghebranious and Donehower, 1998). This underlying similarity in the biology of 

carcinogenesis in mouse and human implies that the genes which control susceptibility 

to mouse tumour development are also likely to be relevant to humans.

6.2 Multiple genetic loci control in skin tumour development

Analysis of the crosses between the sensitive FVB/N and resistant C57BL/6J strains 

showed that the FI mice displayed a phenotype almost intermediate between the two 

parental strains. This indicates that the susceptibility to papillomas is inherited in a co

dominant manner. A similar inheritance pattern has also been observed by another group 

in the study of a cross between BABL/c (resistant) and SENCAR (sensitive) strains 

(Stern et a l, 1995). However, data from other genetic crosses suggest a different 

patterns of inheritance. In the study of the cross between Mus spretus (resistant) and 

NIH (sensitive) strains, the FI mice were similar to the resistant parental Mus spretus 

mice and completely resistant to papillomas, indicating that the resistance was inherited 

as a dominant trait (Nagase et al., 1995). The susceptibility to papillomas can also be 

inherited in an incomplete dominant pattern, as Naito observed in the FI cross between 

C57BL/6 (resistant) and DBA/2 (sensitive) strains (Naito et a l, 1988). Such variation in 

inheritance patterns implies that the genes conferring the resistance (or susceptibility) in 

these resistant (or sensitive) strains are likely to be different. In different crosses the 

major dominant or recessive loci responsible for the phenotype of the FI mice are likely 

to vary, resulting in different inheritance patterns. Hence, the susceptibility to the 

development of skin tumours in mice are likely to be controlled by multiple genetic loci.

Evidence of the involvement of multiple genetic loci also came from the studies of the 

F1BX and FVB6F2 mice. In terms of papilloma incidence, the phenotypes were clearly 

different in these two groups as the average number of papillomas was higher in the 

FVB6F2 mice than in the F1BX mice. In terms of the latency of papillomas, the
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responses of the two groups of mice were, however, very similar despite the differences 

in their genomic background. Thus, it appears that different loci control the latency and 

incidence of the papillomas. Furthermore, data from the FVB6F2 cross shows that more 

than 15% of the mice developed extremely large numbers of papillomas (see Figure 

4.5). Such high tumour incidence implies that susceptibility alleles are not only present 

in the sensitive strain (FVB/N), but are also likely to exist in the resistant strain 

(C57BL/6J). In the parental mice, the effects of susceptibility alleles in the resistant 

strain can not be observed because of the dominant effects of the resistant genes. 

However, in some of the F2 mice, these susceptibility alleles are segregated from the 

resistant genes and combined with the susceptibility alleles from the FVB/N strain, thus, 

increasing the overall sensitivity to papilloma formation. In a similar fashion, it is also 

possible that there are some FVB/N resistant alleles conferring resistance in the 

FVB6F2 mice. However, it is impossible to examine the additive effects of these 

resistant genes as resistant mice do not develop any papillomas.

The strongest evidence to support the involvement of multiple loci in skin tumour 

formation comes from linkage analysis. Previous studies of skin tumourigenesis by 

other groups have identified five loci that are associated with tumour development 

(Nagase et a l , 1995; Angel et a l , 1997; Mock et a l , 1998). Several more loci, from 

both the FVB/N and C57BL/6J alleles, have been identified in our linkage studies. 

Analysis of the F1BX cross shows that there are at least five loci involved in papilloma 

development. The C57BL/6J alleles at the loci D4Mitl26 and D9Mit269, and DlMit318 

and D12Mit203 are associated with resistance, while the locus D6Mitl4 is associated 

with sensitivity, to papilloma development. Analysis of the FVB6F2 cross has also 

identified several loci, particularly D6Mitl4, D10Mit248, DllMit99, D12Mit68, 

D15Mitl89 and D16Mit64. The FVB/N alleles at D6Mitl4 locus confers resistance, 

whereas the FVB/N alleles at the other loci confer susceptibility to tumour development 

mostly through interactions with other loci. The data from carcinomas further confirms 

this notion that skin tumour development is controlled by multiple genetic loci. Analysis 

of the F1BX cross shows that three loci, D7Mi83, D9Mit269 and D10Mitl34, are 

associated with carcinoma formation. The F1BX mice carrying C57BL/6J alleles at 

these loci are resistant. In the FVB6F2 two more loci are identified. The FVB/N alleles 

at locus D3Mit46 confers resistance and locus D8Mit211 susceptibility to the 

development of carcinomas.
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Cancer is a genetic disease arising from an accumulation of genetic alterations that may 

facilitate the cell transformation and outgrowth. Therefore, the notion of multiple 

genetic control discussed above should not be restricted to skin tumours. Indeed, linkage 

studies of carcinogenesis in other mouse models such as colon, liver, lung, and 

lymphomas have also identified many loci which affect tumour development (see Table

1.4 for loci and references). Among these loci, some are only found in a particular type 

of tumour, therefore, may act in a tissue-specific manner; others are often detected in 

multiple tumour models, suggesting their involvement in tumour development through a 

common mechanism.

6.3 The development of papillomas and carcinomas are under 

different genetic control

Skin tumour progression takes place in a number of steps, passing through benign 

papillomas to malignant carcinomas. However, not all papillomas will progress to 

carcinomas, some papillomas remain at the benign tumour stage. Based on this 

observation, Yuspa (1994) has categorised the papillomas into two classes: Tow risk’ 

papillomas which are likely to remain as a benign tumour, and ‘high risk’ papillomas 

which have a high probability of undergoing malignant progression and becoming 

carcinomas (Figure 6.1). It is, however, not clear whether the high risk papillomas are 

developed from the low risk papillomas or under an independent genetic pathway. If the 

progression from low risk papillomas to high risk papillomas and then carcinomas is 

purely linear, a gene which influences papilloma formation should also affect carcinoma 

formation. Our data suggest that this is not the case. Data from tumour incidence shows 

that in the three crosses (FVB6F1, F1BX and FVB6F2) the papilloma incidences are 

different but the carcinoma incidences are surprisingly similar. Furthermore, mice with 

large numbers of papillomas did not have a higher probability of developing 

carcinomas. Hence, our data support the notion that the development of papillomas and 

carcinomas are regulated by different genetic pathways. Further evidence comes from 

studies of the SENCAR strain and its derived inbred lines SSIN in which the genetic 

elements controlling the development of papillomas and carcinomas can be segregated 

during selection and inbreeding (Gimenez-Conti et a l , 1992).
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Normal Epidermis Low risk 
Papillomas

High risk 
Papillomas Carcinomas

B

Normal Epidermis

Low risk 
Papillomas

High risk 
Papillomas

Carcinomas

Figure 6.1 Genetic models for tumour development in multi-step skin 
carcinogenesis. Model A: Linear model; Model B: divergent pathway model.

This notion is also supported by the linkage studies. If the progression pathway is linear, 

it would be expected that any locus that confers resistance to papillomas should also 

inhibit the development of carcinomas. The loci that were detected, however, appear to 

exert their effects predominantly at one stage of carcinogenesis. Analyses of the F1BX 

and FVB6F2 crosses show that the loci identified can be divided into three groups: 1) 

loci that are only associated with papilloma formation; 2) loci that are only associated 

with carcinoma formation; and 3) loci that are involved in the development of both 

papillomas and carcinomas. A similar conclusion has also been formulated by Nagase et 

al (1995). Using crosses between Mus spretus (resistant) and NIH (sensitive) strains 

they have identified three susceptibility loci, two on chromosome 7 that appear to 

control papilloma formation and one on chromosome 5 that affects the development of 

papillomas and carcinomas. Hence, we conclude that the development of benign and 

malignant tumours are largely under independent genetic control.

6.4 Different response of male and female mice to skin tumour 

induction

In our carcinogenesis studies, we found that the female F1BX mice developed nearly 

twice more papillomas with shorter latency than the male mice. A similar response has 

also been observed in the FVB6F2 cross (data not shown). Since these experiment were 

not originally designed to study the sex difference, only female FVB/N, C57BL/6J and 

FI mice were used in the experiments. It is, unfortunately, not clear if such a
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phenomenon is also present in the FI and two parental strains of mice. Nevertheless, 

this study clearly demonstrates a significant sex difference in skin tumour development.

A substantial amount of effort has been expended by many research groups in an 

attempt to understand the genetic basis of strain variation in the sensitivity to skin 

tumours induced by carcinogens (Naito and DiGiovanni, 1989; DiGiovanni, 1995; 

Yuspa, 1994). However, none of the studies has focused on a sex difference. The genes 

responsible for the sex difference is still unknown. The previous study by Nagase et a l 

has detected a locus on chromosome 7 at which the Mus spretus allele confers resistant 

to papilloma development in female but not in male mice. However, the absence of a 

sex difference in papilloma incidence in their study implies that it may not be the locus 

responsible for the sex difference, or this locus may confer a sex difference but its effect 

may not be sufficient to result in a significant sex difference. Nevertheless, the fact that 

this locus is not identified in our linkage analysis means it is not responsible for the sex 

difference in our crosses. Moreover, as Mus spretus separate from Mus musculus 

approximately a million years ago, it is possible that this locus is specific to Mus 

spretus, no allelic variation is present in the two parental strains.

As the linkage analysis failed to detect any loci on the X chromosome, it is likely that 

the gene(s) conferring sex difference is an autosomal gene(s) which is regulated 

differentially in male and female mice. Among the genes known to be involved in 

mouse skin carcinogenesis, the Glutathione S-transferase (GST) pi gene has been found 

to have a sexually dimorphic expression pattern in the mouse (Hatayama et a l, 1993; 

Bammler et a l, 1994). It is transcribed at significantly higher levels in male mice than in 

females. GSTs are a superfamily of enzymes, responsible for the detoxification of a 

wide range of environmental chemicals and carcinogens, including the carcinogenic 

metabolite of polycyclic aromatic hydrocarbons such as DMBA (Hayes and Pulford, 

1995; Romert et a l, 1989). Elevated levels of GSTs have been associated with 

malignant transformation and with experimental drug resistance, especially pi-class 

GSTs (Schecter et a l, 1992; Hayes and Pulford, 1995). Over-expression of GST pi has 

been associated with carcinogenesis and the development of many different human 

tumours, including lung, colon, testis, ovary, bladder, oral and kidney (Strange et a l, 

1998; Henderson et a l, 1998a). Studies of lung tumour carcinogenesis have 

demonstrated that the GST pi protein is responsible for the sex difference in
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susceptibility to tumour formation in the CD-I mice (Sharma et al., 1997). Recently, 

Henderson et al. (1998b) have found that GST pi-deficient mice have increased 

papilloma incidence, indicating that the GST pi protein plays an important role in 

resistance to skin tumourigenesis. It is however unclear whether the GST pi protein 

confers sex difference in FVB6F2 and F1BX mice. Further analysis is required to 

investigate if altered expression levels of GST pi protein could influence the 

susceptibility to papilloma development.

Although the locus where the GST pi genes located is not identified in our linkage 

analysis, we have detect a locus (the Skt4 locus) on the distal region of chromosome 9 

on which the alpha class of GST proteins is localised. Although the majority of human 

tumours and tumour cell lines express significant amounts of class pi GSTs, 

overexpression of class alpha isoenzymes is also often observed (Morel et al., 1994; 

Eickelmann et a l , 1995; Den Boer et al., 1999). Therefore, the alpha class GST proteins 

may, similarly to the pi class GSTs, also have a resistant effect on skin tumour 

development. Further studies are certainly needed to understand the roles that GST 

alpha may play in skin carcinogenesis.

6.5 Selective QTL mapping in the FVB6F2 mice

The detection of QTLs requires a large sample size to attain reasonable power (Soller 

and Genizi, 1967). Despite technological improvement in the speed and accuracy with 

which molecular markers can be assayed, it can still be expensive and time consuming 

to analyse a large population. Lander and Botstein (1989) point out that, in the context 

of a cross between divergent lines, the most of the evidence on the existence of QTLs 

for a trait comes from the highest and lowest performing individuals. Genotyping only 

50% of the population (the top and bottom 25%) can give more than 90% of the 

information that would be obtained from genotyping the whole population. To reduce 

the number of individuals needed to be genotyped in a QTL linkage study, a modified 

approach termed selective genotyping has been proposed (Lander and Botstein, 1989; 

Darvasi and Soller, 1992; Risch and Zhang, 1995). This approach starts with a large 

segregation population, but only the individuals from the high and low phenotypic 

extremes are analysed. Obviously, whole genome scanning of all mice (367 FVB6F2
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mice in total) needs enormous time and effort. Because the majority of these mice 

exhibit an intermediate phenotype, we employed a selective mapping approach to 

analyse those mice that were highly sensitive or highly resistant to tumour induction.

The major benefit of the selective mapping approach lies in the saving of time and 

resources in genomic mapping. Given the same number of individuals genotyped in total 

population analysis versus selective analysis, the statistical power of QTL detection will 

be greater for the latter (Lander and Botstein, 1989). However, while it is more efficient 

at detecting linkage between marker loci and QTLs, it is less efficient in determining 

individual QTL effects. As individuals with extreme phenotypes tend to have either a 

large number of positive or negative alleles at all QTLs, there is a deficiency of 

individuals with a mixture of positive and negative alleles, which confounds the ability 

to individually measure the effects of QTLs (Allison et al., 1998).

6.6 The advantage of multiple linkage analyses

The genetic mapping approach has proven to be a powerful tool in the identification of 

tumour susceptibility loci which affect the development of tumours of the lung, colon, 

skin, liver and lymphoid system (Balmain and Nagase, 1998). Many statistical methods 

have been developed to extract all available inheritance information from experimental 

data and to test for inheritance of chromosomal regions with QTL traits. To obtain an 

unbiased and relatively complete result, we have chosen three different methods, namely 

single marker analysis, interval mapping and multi-locus regression analysis, to analyse 

the mapping data at three levels of increasing complexity.

All three methods have unique strengths or situations in which they are particularly 

useful in detecting and localising loci that contribute to quantitative traits. The single 

marker method is generally considered the very first step in data analysis because it tests 

each marker locus separately and is very sensitive in detecting the presence of QTLs 

with major or dominant effects on tumour incidence. However, the effect of a QTL and 

its distance from the proxy marker locus are inter-related. A QTL of small effect lying 

close to the proxy marker may appear similar to that of a QTL of large effect located 

further from the marker, as judged by the phenotypic differences between marker
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genotype classes. With only a single marker, it is impossible to determine both the 

contribution of a QTL and its position. This problem can be resolved by the availability 

of complete marker maps and analysis by the interval mapping method (Lander and 

Botstein, 1989). This method gives much more accurate parameter estimates of the 

effect of a target QTL than the single marker analysis, although it requires prior 

construction of a marker genetic map, and the genotyping makers have to be well 

distributed throughout the chromosomes and the whole genome.

The first two methods work well when there is only a single QTL with a considerable 

contribution. However, it can be misleading when several QTLs are involved, 

particularly when the effect of a QTL depends on the phenotypes of its interacting QTL. 

Therefore, a third level of linkage analysis, termed multiple regression analysis, is 

required. The inclusion of the background markers makes the analysis more sensitive to 

the presence of a QTL in the target interval and helps to separate the target QTL from 

other linked QTLs (Jansen and Stam, 1994; Zeng, 1994). For instance, regression 

analysis shows that D12Mit203 can interact with D4Mitl26. The effect of D4Mitl26 is 

significant whatever the phenotype of D12Mit203, thus, D4Mitl26 is detected by all 

three methods. The contribution of D12Mit203 is, however, largely dependent on the 

phenotype of D4Mitl26. It can only reach to the significant level when the D4Mitl26 

locus is homozygous for the FVB/N alleles. When the effect of D12Mit203 was 

measured independently, it did not reach the significant level required for the interval 

mapping method, thus, was not detected. However, it can be detected by the more 

sensitive single marker analysis method. Therefore, we are certain that D12Mit203 is 

involved in papilloma development.

It is not surprising to note that linkage mapping in the F1BX and FVB6F2 crosses 

detected distinct set of QTLs. Some loci are the same or closely located, whilst others 

are completely different. The development of skin tumours requires the involvement of 

multiple genetic loci, and each individual locus is different in its strength and 

dominance. As every linkage analysis method has its limitation in its ability to locate 

and estimate the value of QTLs, it is impossible to detect all QTLs involved in one 

experiment. Moreover, the power of a QTL-detection experiment is also affected by 

many factors, including the strength of the QTL, the dominance of the QTL alleles, the 

type of cross, the size of the population, and the marker spacing (Lynch and Walsh,
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1998). For instance, for additive QTLs, an F2 is more powerful than a backcross, but for 

dominant QTLs a backcross can be twice as powerful as an F2 (Darvasi, 1998). 

Therefore, it is quite possible that distinct sets of QTLs are detected in the F1BX and 

FVB6F2 crosses because each analysis will detect a different proportion of total QTLs. 

Even for the QTLs that are detected in both crosses, the differences in precision of 

location could result in the highest LOD scores being assigned to different markers. The 

linkage analysis data shows that D12Mit203 is involved in papilloma formation in the 

F1BX mice, whereas in the FVB6F2 mice the D12Mit68 locus is detected. Because the 

D12Mit203 locus is about 9 cM distal to the D12Mit68 locus and within the suggestive 

interval, it is likely that both loci correspond to the same gene.

6.7 Candidate genes for the susceptibility/resistance loci in skin 

carcinogenesis

6.7.1 Candidate genes on chromosome 4

The involvement of mouse chromosome 4 in mouse skin carcinogenesis was first 

highlighted during a genotype analysis of skin tumours from FI hybrid mice (Kemp et 

a l, 1993). The loss of all or part of the Mus spretus chromosome 4 was detected in 

carcinomas. Analysis of three (one squamous and two spindle) carcinoma cell lines 

derived from (Spr x CBA) FI mice showed that they were all trisomic for chromosome 

4 (Liddell, 1995). Further analysis of carcinoma cell lines has also demonstrated LOH 

on the central region of chromosome 4 (Linardopoulos et a l , 1995). The data presented 

here has enable us to confirm the presence of two putative tumour susceptibility loci, 

Sktl and Skt2, on chromosome 4 that confer the resistance to mouse skin carcinogenesis.

Sktl resides on the central region of mouse chromosome 4 with D4Mitl75 (49.60 cM) 

as the closet marker. Mice carrying the C57BL/6J alleles at this locus are more resistant 

to papillomas formation. Evidence for a tumour suppressor gene located in this region 

has also been indicated by studies of many other types of mouse tumours, including 

liver tumour (Lee GH et a l , 1995), plastomacytoma (Potter et a l, 1994), lung cancer 

(Hegi et a l, 1994; Herzog et a l, 1994), and thymic lymphoma (Santos et a l, 1996; 

Zhuang et a l, 1996). Moreover, the human syntenic regions to Sktl, chromosome 9p21-
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22 and lp31-32 (Abbott et a l, 1992), are also frequently deleted in head and neck 

carcinomas (van der Riet et a l, 1994), melanomas (Fountain et a l, 1992), bladder 

carcinomas (Cairns et a l, 1995), lung carcinomas (Olopade et a l, 1993), acute 

lymphocytic leukaemia (Iolascon et a l, 1997), and breast cancer (Bieche et a l, 1994).

Many cancer related genes, including the interferon genes and the oncogenes Jun and 

Myc (Ceci et a l, 1989; Abbott et a l, 1992), are located within this region. Thus it is 

difficult to propose a candidate tumour suppressor gene for this locus. Recently, the p i  8 

(Cdkn2c) gene, which encodes a protein belonging to a family of cyclin-dependent 

kinase (CDK) inhibitors, has been mapped to human chromosome lp32 (Guan et a l, 

1994; Hirai et a l, 1995). pl8 protein binds directly to the CDK4 or CDK6 and inhibits 

their promotion effects on the transition from G1 to S phases of the cell cycle, thus is a 

good candidate for the Sktl locus. Interestingly, the other two members of the same 

CDK inhibitor family, p l6  (INK4a/Cdkn2a) and p i 5 (lNK4b/Cdkn2b) genes, are located 

just 7 cM proximal to the Sktl region (Serrano et a l, 1993; Hannon and Beach, 1994; 

Quelle et a l, 1995). They, too, play an important role in the regulation of cell cycle 

(Serrano et a l, 1996; Sherr and Roberts, 1995). It has been demonstrated that p l5  and 

p i 6 genes are frequently inactivated and deleted in a wide variety of human tumours 

(Kamb et a l, 1994; Nobori et a l, 1994; Hebert et a l, 1994), as well as mouse tumours 

including mouse skin tumours (Gause et a l, 1997; Linardopoulos et a l, 1995; Obata et 

a l, 1997). Therefore, Sktl could be the domain of three structurally related mouse cell- 

cycle regulatory genes p i 5, p i 6 and p i8 . Extensive deletions of the Sktl region on 

chromosome 4 may cause the functional defect of multiple CDK inhibitors and lead to 

deregulated cell proliferation and transformation.

The second tumour susceptibility locus on chromosome 4, Skt2, is localised to the distal 

part of the chromosome. The most closely linked marker is D4Mitl26 (71.0 cM). 

Linkage analysis in the F1BX cross shows that the Skt2 locus has a major effect on 

papilloma development. Mice carrying C56BL/6J alleles were much more resistant than 

mice homozygous for FVB/N alleles. Further analysis of the FVB6F2 data indicates that 

it also has a profound effect on mice with high papilloma incidence. Genetic alterations 

in tumours from the FVB6F1 mice were also detected in this region although it was 

more frequent in carcinomas than in papillomas. This region is syntenic to human 

chromosome lp35-36, which is often deleted in many different types of tumours
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including colon cancer (Bardi et a l, 1993), breast cancer (Nagai et a l, 1995), hepatoma 

(Yeh et a l, 1994), and neuroblastoma (White et a l, 1995).

Linkage analysis in other mouse tumour models has also identified several tumour 

susceptibility loci close to the Skt2 region, such as Moml (Dietrich et a l, 1993) and 

Ssicl (Remond et a l, 1995) in colon cancer, Pctr2 in plastomacytoma (Potter et a l,

1994), and loci in thymic lymphoma (Santos et a l, 1996; Zhuang et a l, 1996). The 

Moml locus which is just 5 cM proximal of the Skt2 locus is particularly interesting. 

The Moml (Modifier of Min) locus was the first modifier locus identified which affects 

intestinal neoplasia in the study of genetic background effects on Min-mice (multiple 

intestinal neoplasia). A positional cloning study suggested a secretory phospholipase 2a 

(Pla2g2a) as the candidate gene for this locus (Dietrich et a l, 1993; MacPhee et a l,

1995). Confirmation of the Pla2g2a gene as the Moml gene came from the 

demonstration that all sensitive strains had a mutation in the Pla2g2a gene while the 

gene was intact in resistant strains (Cormier et a l, 1997). Since there are some 

similarities in the process of intestinal and skin tumour development (Yuspa, 1994), it 

might be possible that Moml also affects the development of skin tumours, and the mice 

susceptible to skin tumourigenesis should be expected to carry a mutated Pla2g2a gene. 

However, our data show that this is not the case. We have found that C57BL/6J mice, 

which are resistant to skin tumour formation, actually carry a mutated Pla2g2a gene, 

while the sensitive FVB/N mice, however, have a normal Pla2g2a gene (data not 

shown). Therefore, the Pla2g2a gene is unlikely to be the candidate gene for the Skt2 

locus.

There are many other genes located in the Skt2 region that can be considered a potential 

candidate. One is the p73 tumour suppressor gene which is localised to human 

chromosome lp36, a syntenic with the Skt2 region (Kaghad et a l, 1997; Jost et a l, 

1997). The p73 protein shows significant amino acid sequence and functional 

similarities to p53. It can activate the transcription of p53-responsive genes and inhibit 

cell growth in ap53-like manner by inducing cell cycle arrest and apoptosis (Jost et a l, 

1997). Loss of the p53 gene and normal p53 function has been widely reported in mouse 

and human skin tumours (Burn et a l, 1991; Kemp et a l, 1993; Basset-Seguin et a l,

1994). Deletions of the p73 gene have also been reported in many human cancers 

(Ichimiya et a l, 1999; Mai et a l, 1998).
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Several more cancer related genes have also been mapped to the distal region of 

chromosome 4 (Mock et al., 1997). The CDC2L1 gene, the mouse homologue of human 

p34cdc2-related PITSLRE protein kinase gene complex, shows a function consistent 

with those of tumour suppressors (Lahti et al., 1995; Nelson et al., 1999; Dave et al.,

1999). The RIZ gene encodes a zinc finger protein that can bind to the RB tumour 

suppressor and function as a negative regulator of tumourigenesis in breast cancer, 

neuroblastoma and lung cancer (Xie et al., 1997; He et al., 1998). They are also the 

potential candidates for the Skt2 locus.

6.7.2 Candidate genes on mouse chromosome 7

The involvement of mouse chromosome 7 in skin tumours was first proposed in 1989. 

Studies from two groups have shown that trisomy of chromosome 7 is a frequent event 

at both the papilloma and carcinoma stages (Aldaz et al., 1989; Bremner and Balmain,

1990). Moreover, the duplication of chromosome 7 is not random, but always involves 

the one which carries the mutated H-ras gene (Bremner and Balmain, 1990; Bianchi et 

al., 1990), indicating that signal transduction through the H-ras pathway plays an 

important role in the development of skin tumours. Further analysis has demonstrated 

that LOH of chromosome 7 is also a consistent feature in malignant carcinomas 

(Bremner and Balmain, 1990; Bianchi etal., 1990 and 1991).

Consistent with previous results, chromosome 7 trisomy, as well as LOH, was also 

demonstrated in our tumour studies. However, due to the lack of polymorphism in the 

H-ras gene locus between the two parental strains, it was impossible to identify which 

parental allele was duplicated. Nevertheless, the mutation of H-ras gene has been 

detected in all papillomas and carcinomas (data not shown). Linkage analysis has 

localised a carcinoma resistance locus Skt3 to the distal region of chromosome 7, where 

most of the genetic alterations are found.

Interestingly, a previous study by Nagase et al. (1995) using (Spr x NIH) cross has 

already identified two resistance loci, Sprl and Spr2, on chromosome 7. These two loci 

are located in the two border regions (proximal and distal, respectively) of the Skt3 

locus. However, in contrast to Skt3 which influences the carcinoma development, both
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Spr loci appear to confer resistance to papilloma development. Therefore, they may 

represent different genes with effects on different stages of skin tumour formation.

The localisation of the Skt3 locus to a region near the Hbb locus is particularly 

intriguing because this region of mouse chromosome 7 (Brilliant et a l , 1997) shows 

conservation of synteny with the human chromosome l lp l5  region, which putatively 

contains a tumour suppressor affecting Wilm’s tumour, rhabdomyosarcomas, gliomas 

and neuroectodermal tumour, (Besnard-Guerin e ta l ,  1996; Sonoda et al., 1995; Fults et 

a l , 1992). Several other loci that influence tumour susceptibility to oral cavity tumours, 

hepatoma and thymic lymphoma in mice are also located in the same region on 

chromosome 7 (Held et a l, 1994; Angel et a l, 1993; Yuan et a l, 1997).

Several genes residing in this region can be considered as potential candidates for the 

Skt3 locus. One possible gene is the p57(Kip2) gene, a member of cyclin-dependent 

kinase (CDK) inhibitor family (Brilliant et a l, 1997; Lee MH et a l, 1995). It has been 

demonstrated that mouse p57(Kip2) can control the cell cycle progression from G1 to S 

phase by functioning as a strong inhibitor of several G1 cyclin/CDK complexes 

(Matsuoka et a l, 1995; Lee MH et a l, 1995). Recently, studies carried out by 

Rodriguez-Puebla et a l (1998a and 1998b) indicate that p57Kip2 plays a key role in 

regulating proliferation in the epidermis. Another gene of interest encodes the protein 

kinase C (PKC), which is involved in skin tumour promotion. PKC plays an important 

role in the regulation of keratinocyte differentiation (Nishizuka, 1986; Yuspa, 1994). 

The phorbol ester promoters such as TPA can activate PKC and accelerate 

differentiation of normal keratinocytes, but not carcinogen-initiated keratinocytes 

(Hennings et a l, 1987; Dlugosz and Yuspa, 1993). Hence, alterations in this enzyme 

family are likely to contribute to skin tumourigenesis.

Several more genes which play an important role in skin carcinogenesis have also been 

mapped to chromosome 7, particularly H-ras and cyclin D1 (Brilliant et a l, 1997). 

Mutation of the H-ras gene has been identified as the initiation event (Balmain and 

Brown, 1988). The H-ras mutation can be detected in almost all papillomas and 

carcinomas, even in initiated skin prior to the emergence of tumours (Nelson et a l, 

1992). Amplification or over-expression of the mutated H-ras gene is also associated 

with tumour promotion and progression (Quintanilla et a l, 1986; Bizub et a l, 1986).
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The Cyclin D1 protein plays an important role in cell cycle regulation. Overexpression 

of the cyclin D1 protein has been observed in most advanced papillomas and 

carcinomas, as well as in some early papillomas (Bianchi et a l , 1993; Robles and Conti, 

1995 ). The deficiency of cyclin D1 in mice, on the other hand, can result in up to an 

80% decrease in the development of squamous tumours (Robles et al., 1998). This is 

consistent with the observation that amplification of chromosome 7 is detected in most 

papillomas and carcinomas whereas loss of chromosome 7 is mainly seen in malignant 

carcinomas.

6.7.3 Mouse chromosome 9

Evidence of tumour suppressor loci on mouse chromosome 9 first came from the studies 

of tumours in transgenic mice (Dietrich et a l, 1994b). A genome-wide LOH analysis of 

end-stage insulinomas and metastatic carcinoid tumours led to the identification of the 

Loh-1 locus on the central region of chromosome 9. Further analysis of islet cell 

tumours at different stages from the same transgenic model has also demonstrated the 

loss of the central region of chromosome 9 in advanced carcinomas (Parangi et a l,

1995). This region shares synteny with human chromosome 3p21, which is also a hot 

spot for LOH in a wide variety of human tumour types (Lasko et a l, 1991). Moreover, 

linkage studies using recombinant congenic mouse strains has detected the Rapop2 

locus, proximal to the Loh-1 locus, which is associated with radiation-induced apoptosis 

in the thymus and colon (Mori et a l, 1995 and 1998). The same region has also been 

found to be associated with skin tumour susceptibility in SENCAR/Pt and DBA/2 

mouse strains (Psll locus) (Angel et a l, 1997; Mock et a l, 1998). The Skt4 locus, 

identified in our linkage study on the central region of mouse chromosome 9, confers 

resistance to the development of papillomas and carcinomas. D9Mit269 (43.0 cM) is the 

central marker for this locus.

Several interesting genes can be considered as the candidate genes, of which the genes 

encoding alpha class glutathione S-transferases (GST) is particularly interesting (Imai,

1997). As mentioned earlier, the GST pi proteins have been shown to confer resistance 

to skin tumourigenesis (Henderson et a l, 1998b). As the expression of GST alpha is 

also altered in a variety of human tumours and tumour cell lines (Eickelmann et a l, 

1995; Den Boer et a l, 1999), it may also play an important role in skin tumourigenesis.
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Another gene, the transforming growth factor p type II receptor (Tgfbr2), is also 

noteworthy. TGFp plays an important role in differentiation processes and in the 

regulation of cell proliferation (Roberts et al., 1990; Alexandrow and Moses, 1995). 

TGFp is implicated in epithelial carcinogenesis due to its various effects on epithelial 

cells. It is a potent epithelial growth inhibitor and can alter the differentiative properties 

of keratinocytes (Masui et al, 1986; Sellheyer et al., 1993). The expression pattern of 

TGFp in various epithelial derived tumours has been implicated as having a negative or 

positive effect on tumourigenesis (Cui et al., 1996). The expression of TGFp is elevated 

in response to the tumour promoter TPA (Akhurst et a l,  1988; Fowlis et al.,1992), but 

disappears during the progression to carcinomas due to its growth inhibitory activities 

(Glick et al., 1993; Cui et a l, 1994). But TGFp can also stimulate malignant 

progression by its immunosuppressive activities or by enhancing angiogenesis (Glick et 

al., 1994; Welch et a l, 1990). TGFp conveys its signals via two TGFp receptors, type I 

and type II (Derynck, 1994). Mutations of the receptors can interrupt the signal 

transduction pathways (Carcamo et al., 1995). For example, inactivation or altered 

expression of TGFp receptor II have been reported in some human tumours and tumour 

cell lines, as well as in mouse skin tumours (Markowitz, et al., 1995; Garrigue-Antar et 

al., 1995). The altered expression of TGFp receptor II is also detected in skin 

tumourigenesis (Cui e ta l,  1995).

The mouse homologue for the human ATM gene, located just proximal to the Skt4 

locus, could also be a good candidate gene. ATM, the gene mutated in the inherited 

human disease ataxia telangiectasia, is a member of a family of kinases involved in 

DNA metabolism and cell-cycle checkpoint control (Hoekstra, 1997). It is a key 

regulator of multiple signalling cascades which respond to DNA strand breaks induced 

by damaging agents or by normal processes, such as meiosis and recombination. These 

responses involve the activation of cell cycle checkpoints, DNA repair and apoptosis 

(Xu et al., 1996; Rotman and Shiloh, 1998). The roles of ATM in maintaining the 

integrity of the genome also make it a potential candidate gene.

6.7.4 Mouse chromosome 8

Skt5, an lOcM interval in the distal region of mouse chromosome 8, shows significant 

linkage to carcinoma development in the FVB6F2. Mice with FVB/N alleles at
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D8Mit211 had higher carcinoma incidence than C57BL/6J homozygous mice. Tumour 

studies also detected LOH at the Skt5 in carcinomas, but not in papillomas, suggesting 

that the gene at the Skt5 locus is involved in the late stage of carcinoma development. 

The same region is also the location of the genetic loci detected in the liver tumours 

(Gariboldi et a l, 1993b; Davis et a l, 1994). In addition, its human syntenic region, 

chromosome 16q22-24, is often deleted in many types of tumour, such as prostate 

cancer, breast cancer and ovarian cancer (Carter et a l, 1990; Sato et a l,  1990 and

1991).

The genes of interest in this locus are the cluster of cadherin genes, particularly the E- 

cadherin (Cdhl) gene (Ceci and Mills, 1997). E-cadherin is a Ca2+-dependent 

intercellular adhesion molecule which plays a central role in the regulation of 

keratinocyte intercellular contact junctions as well as in the epidermal morphogenesis 

and maintenance of skin structure (Wheelock and Jensen, 1992). Down-regulation of E- 

cadherin has been demonstrated during tumour progression in a wide variety of 

epithelial carcinomas (Birchmeier and Behrens, 1994; Takeichi, 1993), including mouse 

skin carcinomas (Navarro et a l, 1991; Ruggeri et a l, 1992). The loss of E-cadherin can 

cause the impairment of junction integrity of epithelial cells and lead to the loss of cell

cell adhesion. As a consequence, tumour cells obtain increased mobility and 

invasiveness (Birchmeier and Behrens, 1994).

6.7.5 Mouse chromosome 6
I

It is well known that the trisomy of chromosomes 6 and 7 are a consistent feature at the 

early stage of mouse skin carcinogenesis (Aldaz et a l, 1989; Kemp et a l, 1993). 

Although it is clear that the duplication of chromosome 7 is to amplify the mutated l i 

ras gene, the reason behind chromosome 6 trisomy is still unknown. Although previous 

studies in mouse liver and lung tumours have identified several loci on the proximal and 

distal regions of mouse chromosome 6 (Zenklusen et a l, 1997; Fijneman et a l, 1996; 

Gariboldi et a l, 1993a), no locus has yet been found in skin tumours. The data 

presented here enable us to demonstrate the presence of a susceptibility locus, Skt6, on 

mouse chromosome 6 that is involved in the development of papillomas. This locus is 

located on the distal region of chromosome 6 (D6Mitl4, 74.0 cM), overlapping the lung 

cancer susceptibility loci (Gariboldi et a l, 1993a).
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Several genes located in this region are involved in the regulation of cell cycle and 

signal transduction pathway, such as K-ras2, cyclin D2 and fibroblast growth factor 6 

(Fgf6), thus can be considered as the candidate genes (Elliott and Moore, 1997). 

Recently, the p27Kipl gene (cdnlb) has been mapped to human chromosome 12pl3 

(Polyak et a l , 1994a; Martin et a l , 1995), which is syntenic to the Skt6 locus and often 

deleted in ovarian cancer and leukaemia (Cave et a l, 1995; Hatta et a l, 1997). The 

p27Kipl gene encodes a cyclin-dependent kinase inhibitor which binds to and inhibits 

the activity of cyclin-CDK complexes, thus blocks cell cycle progression (Polyak et a l, 

1994b). Its importance in regulating cell growth is emphasised by the fact that p27Kipl 

activity responses to a variety of growth inhibitory signals, including cell-cell contact, 

treatment with TGFp, mitogens, cyclic AMP, and the growth-inhibitory drug rapamycin 

(Sherr and Robert, 1995). Abnormal low levels of expression and inactivating mutations 

of the p27Kipl gene are frequently detected in many human tumours (Esposito et a l, 

1997; Tsihlias et a l, 1998). The fact that p27 nullizygous and p27 heterozygous mice 

are predisposed to tumours in multiple tissues when treated with gamma-irradiation or 

carcinogens has also confirmed its roles in tumour suppression (Fero et a l, 1996 and

1998). p27Kipl deficiency also resulted in an increased growth rate of benign 

papillomas and slightly accelerated conversion to carcinomas during skin carcinogenesis 

(Philipp et a l, 1999). Therefore, p27Kipl is also a good candidate gene for the Skt6 

locus on chromosome 6.

6.8 Final thoughts

Using two-stage mouse skin carcinogenesis as a model system, we have carried out 

genetic linkage studies to identify the genetic loci that control susceptibility to skin 

tumour development. To our knowledge, it is the first time that two different crosses, a 

backcross (F1BX) and an intercross (FVB6F2), have been used in the same linkage 

study. The combined detecting powers of both crosses give a more accurate result, 

because the intercross is more powerful for additive loci detection while the backcross is 

better for detecting the C57BL/6J dominant loci (Darvasi, 1998). Ideally, a further third 

cross of that backcrosses the FI to the resistant strain C57BL/6J ( (FVB/N x 

C57BL/6J)F1 x C57BL/6J) would give a better estimation of the FVB/N dominant loci, 

thus generate a complete set of genetic loci which affect tumour formation with different
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patterns of dominance. In addition, we have also employed three different statistical 

methods to analyse the mapping data at three different levels. The combined analyses 

effectively compensate for the limitations and eliminate the systematic errors in each 

individual analysis, and give an unbiased and accurate result.

The genetic linkage approaches employed in this study have permitted the identification 

of the loci that influence susceptibility to skin tumour development. Most loci detected 

are new in skin carcinogenesis, though others have already been identified in other 

forms of cancers and some have been detected previously in skin tumourigenesis in 

other crosses. Points that can be draw from this study are: 1) the genetic linkage 

mapping approach can be a powerful tool in identifying the genes involved in the 

development of skin tumours; 2) the fact that several loci are identified in many types of 

tumours indicates that the genes identified via linkage approach are in some respects 

different from the known tumour suppressor genes. The germline mutations of these 

genes can influence the development of many types of tumour but can not be the 

determinative factor, whilst the germline mutation of tumour suppressor genes can cause 

tumour development but only limited to certain forms of hereditary cancer; 3) the genes 

which are detected in many types of tumours are likely to be involved in a common 

mechanism controlling the cell growth and differentiation. Genes of this type may 

include those associated with cell cycle control, signal transduction pathways, or 

apoptosis. Any mutation in these genes may alter the control of cell proliferation and 

could result in cell transformation or malignant conversion. Identification of these genes 

can greatly help understanding the genetic mechanism of tumour susceptibility.

The ultimate aim of such studies is to clone the gene and characterise its function in 

mouse skin tumour development. Once the position of a locus is determined, candidate 

gene from this region can be identified by positional cloning (Collins, 1991). However, 

the interval of genetic loci identified in our linkage study is relatively large and needs to 

be refined to less than 1 cM before a positional cloning approach can be attempted. The 

skin tumour samples from the FI, F1BX and F2 mice in our linkage study can certainly 

provide much valuable information. LOH and homozygous deletion studies as well as 

cytogenetic analysis can all be used to define the minimal deleted regions that contains 

the gene conferring resistance to tumour formation. Mutational analysis and newly 

developed microarray techniques can be used to examine mutations or differential
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expression of known genes within the interval of interest, in tumours and normal tissue, 

and regard it as a starting point to determine the candidate gene and its roles in 

tumourigenesis (Schena et a l , 1995; DeRisi et a l , 1996). Moreover, the linkage 

mapping approach can also be used to obtain a refined and more precise location of the 

target locus. Higher resolution can also be achieved by using a larger population and a 

higher density of genetic markers around the tumour susceptibility locus, or selectively 

establishing inbred recombinant congenic lines (Moen et al., 1991) or advanced 

intercross lines (Darvasi and Soller, 1995).
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Table Al Mouse microsatellite markers used in the genetic linkage mapping.

MARKER LOCUS MARKER LOCUS MARKER LOCUS MARKER LOCUS
D1MIT3 11.0 D4MIT126 71.0 D8MIT121 67.0 D13MIT17 8.0
D1MIT318 18.0 D4MIT160 76.0 D9MIT42 8.0 D13MIT16 10.0
D1MIT213 25.0 D4MIT205 76.0 D9MIT205 18.0 D13MIT117 19.0
D1MIT76 32.0 D4MIT14 78.0 D9MIT285 21.0 D13MIT10 31.0
D1MIT303 34.0 D4MIT226 78.0 D9MIT328 23.0 D13MIT41 43.0
D1MIT46 43.0 D4MIT59 78.0 D9MIT191 26.0 D13MIT193 47.0
D1MIT8 52.0 D4MIT190 79.0 D9MIT154 27.0 D13MIT75 59.0
D1MIT10 56.0 D4MIT33 79.0 D9MIT97 29.0 D13MIT151 71.0
D1MIT93 64.0 D4MIT42 81.0 D9MTT162 30.0 D14MIT109 3.0
D1MIT30 70.0 D5MIT346 1.0 D9MIT102 31.0 D14MIT133 10.0
D1MIT102 73.0 D5MIT73 11.0 D9MIT163 33.0 D14MIT101 17.0
D1MIT34 81.0 D5MIT76 20.0 D9MIT207 33.0 D14MIT203 28.0
D1MIT36 92.0 D5MIT233 29.0 D9MIT31 35.0 D14MIT160 40.0
D1MIT206 95.0 D5MIT113 42.0 D9MIT208 36.0 D14MIT75 54.0
D1MIT362 106.0 D5MIT7 45.0 D9MIT259 38.0 D15MIT11 10.0
D2MIT6 9.0 D5MIT23 54.0 D9MIT74 41.0 D15MIT56 14.0
D2MIT7 28.0 D5MIT24 60.0 D9MIT269 43.0 D15MIT24 15.0
D2MIT14 48.0 D5MTT370 70.0 D9MIT11 48.0 D15MIT26 29.0
D2MIT15 50.0 D5MIT168 80.0 D9MIT196 48.0 D15MIT92 35.0
D2MIT252 53.0 D5MIT43 89.0 D9MIT10 49.0 D15MIT3 39.0
D2MIT58 60.0 D6MIT138 0.68 D9MIT182 55.0 D15MIT189 48.0
D2MIT398 61.0 D6MIT268 15.0 D9MIT347 56.0 D15MIT171 54.0
D2MIT260 83.0 D6MIT274 20.5 D9MIT116 61.0 D15MIT217 57.0
D2MIT285 86.0 D6MIT74 20.5 D9MIT212 61.0 D15MIT35 61.0
D2MIT343 86.0 D6MIT277 27.0 D9MIT18 71.0 D15MIT15 64.0
D2MIT48 87.0 D6MIT188 32.0 D9MIT19 71.0 D16MIT154 3.0
D2MIT148 105.0 D6MTT70 34.0 D10MIT248 7.0 D16MIT87 4.0
D3MIT62 4.0 D6MIT261 37.0 D10MIT17 16.0 D16MIT110 21.0
D3MIT46 13.0 D6MIT67 41.0 D10MIT44 27.0 D16MIT4 27.0
D3MIT63 22.0 D6MIT36 46.0 D 10M m 5 32.0 D16MIT171 36.0
D3MIT6 23.0 D6NDS5 46.0 D10MIT42 44.0 D16MIT64 38.0
D3MIT209 33.0 D6MIT30 48.0 D10MIT11 48.0 D16MIT114 41.0
D3MIT49 41.0 D6MIT254 57.0 D10MIT134 59.0 D16MIT50 53.0
D3MIT77 49.0 D6MIT25 65.0 D10MIT233 62.0 D16MIT189 55.0
D3MIT107 55.0 D6MIT59 67.0 D10MIT271 70.0 D16MIT70 57.0
D3MIT14 64.0 D6MIT14 74.0 D11MIT150 2.0 D16MIT51 66.0
D3MIT17 71.0 D7MIT178 0.0 D11MIT306 12.0 D17MIT197 9.65
D3MIT44 78.0 D7MIT57 4.0 D11MIT217 19.0 D17MIT13 18.95
D3MIT116 84.0 D7MIT25 16.0 D11MIT130 20.0 D17MIT176 22.0
D3MIT19 87.0 D7MIT83 26.0 D11MIT23 28.0 D17MIT10 24.0
D4MIT264 1.0 D7MIT297 27.0 D11MIT30 39.0 D17MIT7 32.0
D4MIT41 10.0 D7MIT181 37.0 D11MIT116 44.0 D17MIT119 38.0
D4MIT17 31.0 D7MIT319 37.0 D11MIT38 49.0 D17MIT38 45.0
D4MIT178 35.0 D7MIT234 44.0 D11MIT288 55.0 D17MIT128 48.0
D4MIT45 42.0 D7MIT62 44.0 D11MIT99 65.0 D17MIT56 54.0
D4MIT175 49.0 D7MIT32 46.0 D11MIT254 71.0 D18MIT94 17.0
D4NDS2 55.0 D7M1T321 48.0 D12M mO 6.0 D18MIT177 20.0
D4MIT57 56.0 D7MIT96 50.0 D12NDS11 6.0 D18MIT58 24.0
D4MIT37 56.0 D7MIT281 52.0 D12MIT136 13.0 D18MIT124 32.0
D4MIT124 57.0 D7MIT220 52.0 D12MIT46 16.0 D18MIT50 41.0
D4MIT12 57.0 D7MIT284 57.0 D12MIT2 19.0 D18MIT7 47.0
D4MIT40 59.0 D7MIT8 60.0 D12MIT112 22.0 D18MIT44 55.0
D4MIT16 59.0 D7MIT105 63.0 D12MIT68 28.0 D19MIT29 4.0
D4MIT72 59.0 D7MIT259 72.0 D12MIT52 32.0 D19MIT41 16.0
D4MIT203 60.0 D8MIT95 8.0 D12MIT149 37.0 D19MIT46 24.0
D4MIT224 60.0 D8MIT4 14.0 D12MIT203 37.0 D19MIT13 33.0
D4MIT71 61.0 D8MIT190 21.0 D12MIT231 48.0 D19MIT53 43.0
D4MIT148 66.0 D8MIT8 32.0 D12MIT233 52.0 D19MIT10 47.0
D4MIT54 66.0 D8MIT45 40.0 D12NDS2 55.0 D19MIT29 51.0
D4MIT170 66.0 D8MIT211 49.0 DXMIT114 0.0 D19MIT1 52.0
D4MIT158 67.0 D8MIT186 59.0 DXMIT166 16.0 D19MIT71 54.0
D4MIT312 69.0 D8MIT215 59.0 DXMIT186 73.0

NT: The location of each marker (the distance from the centromere in cM) is from chromosome 
committee report in the database of Mouse Genome Informatics (http://www.informatics.jax.org).
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Table AS The raw data of papilloma incidence in F1BX mice.

MOUSE ID COLOUR* SEX** W8 W9 W10 W l l W12 WI3 W14 W 15 W16 W17 W18
BX1 A M 0 0 0 - 0 0 1 1 1 1 1

BX2 W M 0 0 0 - 0 3 5 6 6 6 6

BX3 W M 0 0 0 - 1 1 2 3 3 3 4

BX4 w M 0 0 0 - 0 0 1 1 1 1 1

BX5 A F 0 0 7 - 9 13 13 14 17 24 24

BX6 A F 0 0 1 - 3 6 7 7 7 9 11

BX7 W F 0 2 3 - 4 8 7 10 12 15 15

BX8 W F 1 1 1 - 2 2 3 4 4 6 7

BX9 A F 0 0 0 - 4 8 7 12 12 14 18

BXIO A M 0 0 0 - 0 0 1 1 1 1 1

BX11 A M 0 0 0 - 0 0 1 2 2 2 2

BX12 A M 0 0 0 - 0 0 0 1 1 1 1
BX13 W M 0 1 1 - 1 1 2 2 2 2 2

BX14 W M 0 0 0 - 0 0 0 1 2 4 4

BX15 W M 0 0 0 - 2 3 6 6 6 6 6

BX16 W M 0 0 0 - 1 1 1 1 2 4 7

BX18 A F 0 0 0 - 0 1 4 4 4 4 4

BX19 W F 0 0 0 - 0 0 0 0 0 0 0

BX20 W F 0 0 2 - 2 3 5 7 7 7 9

BX21 A M 0 0 0 - 1 2 5 5 6 6 7

BX22 A M 0 0 1 - 2 4 8 8 8 8 8

BX23 A M 0 0 0 - 0 0 0 0 1 1 2

BX24 A M 0 0 0 - 0 0 0 0 0 0 0

BX25 W M 0 0 0 - 2 2 4 6 6 5 7

BX26 W M 0 0 0 - 0 0 0

BX27 A F 0 0 0 - 0 5 12 14 14 14 15

BX28 A F 0 0 0 - 0 0 3 3 3 3 3
BX29 W F 0 0 0 - 0 0 0 1 2 4 6

BX30 W F 0 1 1 - 6 6 8 8 8 9 11

BX31 W F 0 0 1 - 8 10 10 10 10 10 10

BX32 A M 0 0 0 - 0 0 0 0 0 0 0

BX34 W M 0 0 0 - 1 2 4 4 5 7 9

BX36 A F 0 0 0 - 0 4 7 8 9 12 16

BX37 A F 0 1 1 - 1 1 4 4 6 9 9

BX38 A F 0 4 5 - 7 7 7 7 7 7 9

BX39 A F 0 0 0 - 0 0 1 2 2 2 3

BX40 W F 0 0 0 - 1 2 6 7 7 6 9

BX41 W F 0 0 0 - 2 3 4 4 5 5 5

BX42 A M 0 0 1 - 1 1 1 1 1 1 1

BX44 W M 0 0 0 0 0 0 0 0 0 0

BX46 W M 0 0 0 - 1 2 4 4 4 5 9

BX47 A F 0 0 0 - 7 7 10 10 10 11 12

BX49 A F 0 1 1 - 6 6 8 9 11 15 15

BX50 W F 0 0 0 - 0 0 2 2 2 4 6

BX51 W F 0 0 1 - 2 6 7 7 7 7 7

BXS2 A M 0 0 0 - 0 0 0 0 0 0 0

BX57 A F 0 0 1 - 4 4 5 7 7 10 14

BX58 A F 0 0 2 - 2 2 5 5 6 9 8

BX59 W F 1 1 1 - 3 3 4 4 4 5 5

BX60 W F 0 0 2 - 3 3 5 6 6 6 5

BX61 W F 0 0 0 - 1 3 3 3 5 8 8

BX63 A M 0 - 0 0 0 0 0 0 0 0 0

BX64 A M 0 - 0 0 0 0 0 0 0 0 0

BX65 W M 0 - 0 0 0 0 0 0 0

BX66 W M 0 - 0 0 0 0 0 0 0 0 0

BX67 W M 0 - 1 1 1 1 1 1 1 1 1

BX68 W M 0 - 0 0 0 0 0 0 0 0 0

BX69 W M 0 - 0 0 1 1 1 1 2 2 2

BX70 A F 0 - 1 4 9 9 9 12 14 14 13

BX71 A F 0 - 1 1 2 2 2 3 3 4 5

BX72 W F 0 - 1 4 4 10 10 11 16 16 18

BX73 W F 0 - 1 1 4 4 4 4 4 4 5

BX74 W F 0 - 2 2 8 7 6 5 6 6 6

BX75 W F 0 - 4 4 8 11 12 15 17 17 17

BX76 A M 0 - 0 2 2 3 4 6 6 7 7

BX77 A M 0 - 0 0 2 2 2 4 7 7 7
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MOUSE ID W19 W20 W21 W22 W23 W24 W2S W26 W27 W28 W29 W30 W31 W32

BXl 2 2 2 3 3 4 4 4 4 4 4 4 4 4

BX2 8 11 12 11 10 11 11 11 11 11 11 11 9 8

BX3 4 5 5 5 4 4 2 3 3 4 4 4 5 7

BX4 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BX5
BX6 11 10 9 10 10 11 11 13

BX7 16 21 20 20 19 19 19 19 19 20 19 17 14 13

BX8 7 7 7 7 6 9 11 14 8 5 3

BX9 20 20 20 19 17 16 15 16 18 19 19 19 20 20

BXl 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

BXl  1 2 4 5 6 7 8 9 2 3 6 6 6 4

BX12 1 1 1 1 1 1 1 1 1 2 2 2 3 3

BX13 4 4 4 4 4 5 5 4 4 2 2 2 2 1

BX14 4 4 4 4 4 3 4 5 5 5 5 4 4 5

BX15 8 8 8 8 7 9 8 8 8 8

BXl 6 7 9 9 9 8 10 11 13 13 15 15 14 13

BXl 8 4 5 5 5 4 6 6 6 7 8 9

BXl 9 0 0 0 0 0 0 0 0 0 1 1

BX20 9 10 10 11 12 14 13 14 14 14 17

BX21 7 7 7 7 8 7 10 9 9 10 10 10 10 10

BX22 8 9 8 8 7 8 8 7 6 6

BX23 2 2 2 2 2 2 2 3 1 2 2 2 2

BX24 0 0 1 1 1 1 2 3 2 2 2 2 3 3

BX25 9 8

BX26
BX27 15 15

BX28 5 4 4 4 5 4 4 4 4 5 5 5 5 6

BX29 6 7 8 8 8 8 7 8 7

BX30 13 13 12

BX31 10 8 8 6 7 8 7 7 8

BX32 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BX34 9 15 14 15 16 16 18 20 20 21 20 18 16 16

BX36 20 20 20 22 25 23 22 19 21 24 27

BX37 9 7 7 8 9 8 8 8 8 9 9 9 9 10

BX38 9 10 10

BX39 4 3 3 3 2 2 1 2 2 4 4 5 6 6

BX40 8 7 7 7 7 7 6 7 5 5 5 3 3 3

BX41 5 4 4 5 7 7 7

BX42 1 1 1 1 1 1 1 1 1 0 0 0 0 0

BX44 0 0 0 0 0 0 0 1 2 3 3 2 2 3

BX46 10 10 11 13 14 15 15 15

BX47
BX49 19 20 20 20 21 20

BX50 7 8 9 9 9 9 9 11 8 9 9

BX51 7 6 7 7 6 4 4 4 4 6 6 4 5

BX52 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BXS7 14 14 14 14 12 14 14 16 16 16 16 15 15 17

BX58 9 10 11 12 13 13 13 13 13 13 13 13 13 16

BXS9 6 8 7 7 6 6 7 7 7 7

BX60 5 5 3 4 5 6 7 7 7 7 7 7 8

BX61 8 9 8 8 6 4 5 6 6 6

BX63 0 0 0 0 0 1 1 1 1 2 2 2 3 3

BX64 1 1 2 3 3 3 3 5 6 7 9 11 11 11

BX65
BX66 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BX67 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BX68 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BX69 2 2 2 2 5 7 7 8 8 7 7

BX70 13 13 12 10 10 10 10 10 10 10 10 10 12 12

BX71 5 5 4 4 5 5 5 5 5 6 6 8 8 8

BX72 17 17 15 11 12 16

BX73 5 5 5 5 6 7 7 8 8 9 9 11 11 11

BX74 4 4 4 4 5 5 5 3 4 4

BX75 17

BX76 7 9 9 9 10 10 10 8 8 8 8 8

BX77 7 8 8 9 9 9 9 8 8 8 8 8 8 6
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IOUSE ID W33 W34 W35 W36 W37 W38 W39 W40 W41 W 42 W43 W44 W45 W46

BXl 4 4 3 3 3 3 4 4 4 4 4 4 5 4

BX2 8

BX3
BX4 1 1 1 1 1 1 1 2 2 2 2 2 2 3

BX5
BX6
BX7
BX8
BX9 22 20 19 17 17

BX10 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BXl 1
BX12 3 3 3 3 4 4 3 3 4 4 3 4 3 3

BX13 1 1 1 1 1 1 1

BX14 5 5 4 4 6 6 7 7 5 7 6 6 7 7

BX15
BX16
BX18
BX19
BX20
BX21 10 9 8 8

BX22
BX23
BX24 3 3 4 4 5 5 5 6 4 2 2 1 1

BX25
BX26
BX27
BX28 6

BX29
BX30
BX31
BX32 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BX34 16 16 16 16 16 20 21

BX36
BX37 10 10 9 9 9 8 7 6 5 5 4 3 3 3

BX38
BX39 6 5 3 3 3 3 3

BX40 4 4 3 3 3 2 3 3 3 2

BX41
BX42 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BX44 3 3 2 2 3 3 3 3 3 3 3 4 4

BX46
BX47
BX49
BX50
BX51 i
BX52 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BXS7 17 17 14 14 12 11 14 13 11

BX58 16 14 14 14 16 15 14 14 13 9

BXS9
BX60
BX61
BX63 3 2 2 3 2 2 3 3 5 5 6 6 6 7

BX64 10 10 9 9 8 7 8 8 9 9 7 8 10 8

BX65
BX66 1 1 1 1 1 1 1

BX67 1 1 1 1 1 1 1 1 1 1 1

BX68 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BX69
BX70 10 10 11 8 8

BX71 6 6 6 6 6 8 8 9

BX72
BX73 9 11 12 11 11 11 12 12 11 11 11 11 10 12

BX74
BX75
BX76
BX77 6 6 7 7 6 6 5
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MOUSE ID W47 W48 W49 W50 W51 W52 W53 WS4 W55 W56 W57 W58 W59 W60
BXl  
BX2 
BX3 
BX4 
BX5 
BX6 
BX7 
BX8 
BX9 

BX10 
BX11 
BX12 
BX13 
BX14 
BXl 5 
BXl 6 
BX18 
BX19 
BX20 
BX21 
BX22 
BX23 
BX24 
BX25 
BX26 
BX27 
BX28 
BX29 
BX30 
BX31 
BX32 
BX34 
BX36 
BX37 
BX38 
BX39 
BX40 
BX41 
BX42 
BX44 
BX46 
BX47 
BX49 
BX50 
BX51 
BX52 
BX57 
BX58 
BX59 
BX60 
BX61 
BX63 
BX64 
BX65 
BX66 
BX67 
BX68 
BX69 
BX70 
BX71 
BX72 
BX73 
BX74 
BX75 
BX76 
BX77

0 0

10 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 4 3 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

*M ouse coat colour. A  is agouti and W  is albino; ** F is fem ale and M  is male; - m issing data

166



Table A6 The genotypes of F1BX mice. A, homozygous to FVB/N alleles; H, heterozygous.

MARKERS BXl BX2 BX3 BX4 BX5 BX6 BX7 BX8 BX9 BX10 BXl  1 BX12 BX13 BX14 BX15 BX16 BXl
D1MIT10 H H A A A A H H H A A H A A H H H
D1MIT102 A A H A H H H H H A A H A A A H H
D1MIT206
D1MIT21 3 H H A H A A A H H A A A H A H H H
D1MIT3 H H A H A A A H H H H A H H H H A
D1MIT318 H H A H A A A H H H H A H H H H A
D1MIT34
D1MIT362 A A H A H H H H H H A H A A A H H
D1MIT46 H H A H A A A H H A A A A A H H H
D1MIT76 H H A H A A A H H A A A H A H H H
D1MIT8 H H A H A A H H H A A A A A H H H
D1MIT93 H H A A H H H H H A A H A A A H H
D2MIT14 H A H A H A H H A A A A A H H A A
D2MIT148 A H H H H A A H A H A H H A H A A
D2MIT1S H A H A H A H H A A A A A H H A A
D2MIT252
D2MIT260
D2MIT285 H H H H H A H H A A A A H A H A A
D2MIT343
D2MIT398
D2MIT58 H A H H H A H H A A A A H A H A A
D2MIT6 H H H A A A H A A A A A A H H A H
D2MIT7 H H H A A A H A A A A A A H H A H
D3MIT107
D3MIT116 H H H A A H A H A H A H H H H A A
D3MIT14 H H H A A H A H H H A H H H A A A
D3MIT17
D3MIT19 H H H A A H A H A H A H H H H A A
D3MIT209
D3MIT44 H H H A A H A H H H A H H H H A A
D3MIT46 H H A A H H A A H H A H H A A A A
D3MIT6
D3MIT62 H H H A H H A A H H A H H A H A A
D3MIT77
D4MIT12 H A A A A A A A H A H H A A A H H
D4MIT124
D4MIT126 H A A A A A A A A A H A A A A H H
D4MIT14 H A H A H A A A A A H A A A A H H
D4MIT148 H A A A A A A A A A H A A A A H H
D4MIT16 H A A A A A A A H A H H A A A H H
D4MIT17 H A A A A H A H H A H H A H H H H
D4MIT170 H A A A A A A A A A H A A A A H H
D4MIT175 H A A A A A A H H A H H A A H H H
D4MIT178 iH A A A A H A H H A H H A H H H H
D4MIT190
D4MIT203 H A A A A A A A H A H H A A A H H
D4MIT205 H A H A H A A A A A H A A A A H H
D4MIT224 H A A A A A A A H A H A A A A H H
D4MIT226
D4MIT264 H A A H A H H H H H A A A H H H H
D4MIT33 H A H A H A A A A A H A A A A H H
D4MIT37 H A A A A A A A H A H H A A H H H
D4MIT40 H A A A A A A A H A H H A A A H H
D4MIT41 H A A H A H H H H H A H A H H H H
D4MIT42 H A H A H A A A A A H A A A A H H
D4MIT4S H A A A A H A H H A H H A A H H H
D4MIT54
D4MIT57 H A A A A A A A H A H H A A H H H
D4MIT72 H A A A A A A A H A H H A A A H H
D4NDS2 H A A A A A A A H A H H A A A H H
D5MIT113
D5MIT168
D5MIT23 H H A H H A H A A H H A A A A A H
D5MIT233 H H A A H A H A A H H A A A A A H
D5MIT346 H H H A H A A A H H H A A A A H H
DSMIT370 H H A H H A H H A A H A A A A A H
DSMIT7 H H A H H A H A A H H A A A A A H
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D5MIT73
D5MIT76
D6MIT138
D6MIT14
D6MIT25
D6MIT254
D6MIT261
D6MIT268
D6MIT274
D6MIT277
D6MIT30
D6MIT59
D6MIT67
D6MIT70
D6NDS5
D7MIT105
D7MIT178
D7MIT181
D7MIT220
D7MIT234
D7MIT25
D7MIT259
D7MIT281
D7MIT284
D7MIT297
D7MIT319
D7MIT32
D7MIT321
D7MIT57
D7MIT8
D7MIT83
D7MIT96
D8MIT121
D8MIT186
D8MIT190
D8MIT211
D8MIT4
D8MIT45
D8MIT8
D8MIT95
D9MIT10
D9MIT116
D9MIT154
D9MIT163
D9MIT182
D9MIT19
D9MIT191
D9MIT196
D9MIT205
D9MIT208
D9MIT259
D9MIT269
D9MIT285
D9MIT31
D9MIT42
D9MIT74
D9MIT97
D10MIT11
D10MIT134
D10MIT1S
D10MIT17
D10MIT248
D10MIT271
D10MIT42
D10MIT44
D11MIT116
D11MIT130
D11MIT150
D11MIT23
D11MIT254

H H H A H A H A H H H A A A A H H
H H H A H A H A A H H A A A A A H
H H A H A H H A H H A H A A H A A
A H H A A H A A H A H A A A H H A

H H H H A H H A H H H H H H H A H

A H H A A H A A H H H A H H H A H
A H H A A H A A H H H A A H H H A

A H H A A H A A A H H A H H H A H
A A H A H H A A H H H H A A A A H
H H A A H H H A H H A H A H A H H

H H A A H H A A H H A H A H A A H

A H H A A H H A A H H H H H H A H

H H A A H H A A H H H H A A A A H
A H A A H H A A H H H H A A A A H

A H H A H H A A H H H H A A A A H
A H A A H H A A H H H H A H A A H
A H A A H H A A H H H H A A A A H
A A H A A H H A H A H A H H A H H

A A H A A H H A A A A A H A A H H
A H H H A H A A A A A H H A H H H

A A H H A H A A A A A H H A H H H

A A A H A A A A H A A H A A A A A
H A H H A A A A H H A H A A A A A
H A H H A A H A A H A H A H A A A

H A A H A A A A H H A H A A A A A
A H A H A A A A H A H H H H A A A

H A A H A A A A H H A H A A A A A

H A A H A A A A H H A H A A A A A

H H H H H A H A H H A H H H A A H

A A H H A H H A H A A H H H A A H
H H H H H A H A H H A H H H A A H
H H H H H A H A H A A H H H A A H
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D1IMIT288 H H A A H A A H A A H H H A A H A
D11MIT30
D11MIT306
D11MIT99 H H A A H A A H A A H H H A A H A
D12MIT10
D12MIT112 A A A H A A A A A H H A A A H A H
D12MIT136 A A A H A A A A A H H A A A H A H
D12MIT203 A A A H A A A A A H A A A A H A H
D12MIT231 A A H H H A A A A H A A A A H A H
D12MIT233
D12MIT46
D12MIT52
D12MIT68 A A A H A A A A A H H A A A H A H
D12NDS11 H A A H A A A A A H H A A A H A H
D12NDS2
D13MIT10
D13MIT117 A A A A H H A H H A H A H H H A A
D13MIT151 H H H A H H A H A H A A H H H A A
D13MIT16
D13MIT193
D13MIT41 A H A A H H A H H H H A H H H A A
D13MIT75 H H A A H H A H H H A A H H H A A
D14MIT101
D14MIT109
D14MIT133
D14MIT160
D14MIT203 A A A A H H A H H H A A A H A H H
D14MIT75 A A A A H H A H H H A A A A A H H
D15MIT11 A A A A A A H H A H H A H A H H A
D15MIT171
D15MIT189
D15MIT24
D15MIT26 A A A A H A H A H H H A A A H A A
D15MIT3
D15MIT35 A H A H H H A A H H A A A A H A H
D16MIT110 A A H H A A A H H H A H H A H H H
D16MIT154
D16MIT171 H A H H A A A H H A A H A A A H A
D16MIT189 H A H H A A A H H A A H A H A H A
D16MIT4 A A H H A A A H H H A H H A H H H
D16MITS1
D16MIT87
D17MIT119
D17MIT128
D17MIT13
D17MIT176 A H A A A H H H A A H A H H A A A
D17MIT197 H H H A A H H H A H H H H H A A A
D17MIT38
D17MIT56
D17MIT7
D18MIT124
D18MIT177
D18MIT44 H A H A H H H H A H A A H A H A H
D18MITS0
D18MIT58
D18MIT7 H A H A H H H H A H A A H A H A H
D18M1T94
D19MIT1
D19MIT10 A A A H A A A A H H H A A A H A A
D19MIT29 A A A H A H H A A H H A A A H A H
D19MIT41 A A A H A H H A A H H A A A H A A
D19MIT46A
D19MIT46B
D19MIT53
D19MIT71 A H A H A A A H H H H A A H A H A
DXMIT114 B B B B A A A A A A A A A A A A A
DXMIT166 B B B A A A A A A A A A A A A A A
DXMIT186 B B A B H A H H H A A A A B A B A
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MARKERS BX19 BX20 BX21 BX22 BX23 BX24 BX25 BX27 BX28 BX29 BX30 BX31 BX32 BX34 BX36 BX3
D1MIT10 H A A A A H H A A A H H A H A A
D1MIT102 H H A A A A H H A A H H A H A A
D1MIT206 A A A A H A A H A A H A A
D1MIT213 A H A A A H H H A A A H A H A A
D1MIT3 A H A A A H H H A A A H H H H A
D1MIT318 A H A A A H H H A A A H H H H A
D1MIT34 A A A H H A H A A H A A
D1MIT362 H H A A A A A H A A H A H H H A
D1MIT46 H A A A A H H A A A A H A H A A
D1MIT76 H A A A A H H A A A A H A H A A
D1MIT8 H A A A A H H A A A H H A H A A
D1MIT93 H A A A A H H A A A H H A H A A
D2MIT14 H H A A A A A A A A H A H H A A
D2MIT148 A H H H A H A H H H A A H H A H
D2MIT15 H H A A A A A A A A H A H H A A
D2MIT252 A A A A A A A H A H H A A
D2MIT260 A A H A A H A A A H H A H
D2MIT285 A H A A A H A H H A A A H H A H
D2MIT343 H A H A H H A A A H H A H
D2MIT398 A A A A A A H A H H A A
D2MIT58 H H A A A A A A A A H A H H A A
D2MIT6 H H A A A A A A A A H H H H A A
D2MIT7 H H A A A A A A A A H H H H A A
D3MIT107 H H A A H H A H A H H H A
D3MIT116 H A H H H A A H H A H A H H H A
D3MIT14 H A H H H A A H H A H A H H H A
D3MIT17 H H A A H H A H A H H H H
D3MIT19 H A H H H A A H H A H A H H H A
D3MIT209 H H H A H H H H H H H H H
D3MIT44 H A H H H A A H H A H A H H H A
D3MIT46 H H A H H H A H A H H H H H H H
D3MIT6 H H H A H A H H H H H H H
D3MIT62 H H A H H H A A H H H A H H H
D3MIT77 H H A A H H H H A H H H H
D4MIT12 H A A A H H A A A H A A H H H A
D4MIT124 A H H A A A H A A H H H A
D4MIT126 H A A A A H A A H H A A H A H A
D4MIT14 H A A A A H A A H H A A H A H A
D4MIT148 H A A A A H A A A H A A H H H A
D4MIT16 H A A A H H A A A H A A H H H A
D4MIT17 H A A A H A A H A H H A H H A A
D4MIT170 H A A A A H A A H H A A H H H A
D4MIT175 H A A A H H A A A H A A H H H A
D4MIT178 H A A A H A A H A H H A H H A A
D4MIT190 A A H A A H H A A H A H A
D4MIT203 H A A A H H A A A H A A H H H A
D4MIT205 H A A A A H A A H H A A H A H A
D4MIT224 H A A A H H A A A H A A H H H A
D4MIT226 A A H A A H H A A H A H A
D4MIT264 A A A A A A A H A H H H H A A A
D4MIT33 H A A A A H A A H H A A H A H A
D4MIT37 H A A A H H A A A H A A H H H A
D4MIT40 H A A A H H A H H H A A H H H A
D4MIT41 A A A A H A A H A H H H H A A A
D4MIT42 H A A A A H A A H H A A H A H A
D4MIT45 H A A A H H A A A H A A H H A A
D4MIT54 A A H A A A H A A H H H A
D4MIT57 H A A A H H A A A H A A H H H A
D4MIT72 H A A A H H A A A H A A H H H A
D4NDS2 H A A A H H A A A H A A H H H A
D5MIT113 H H H A A A A A H A H H H
D5MIT168 A H H A A A A A H A H H H
D5MIT23 A A H A H H A A A A A H A H H H
D5MIT233 A A H H H H A H A H A H A H H H
DSMIT346 A A H H H H A H A H A H A A H A
D5MIT370 A A H A H H A A A A A H A H H H
D5MIT7 A A H A H H A A A A A H A H H H
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D5MIT73 A A H H H H A H A H A H A H H A
D5MIT76 A A H H H H A H A H A H A H H H
D6MIT138 A A A H H H A A A H A H H H H H
D6MIT14 H H A H H A H H A A H A H H H A
D6MIT25 H H H H H A A H A H H H A
D6MIT254 H H H H H A A H A H H H A
D6MIT261 H H H A H A H H H H H H H
D6MIT268 A A A H H H A H A H H H H H H H
D6MIT274 H H H A H A H H A H H H H
D6MIT277 H H H A H A H H H H H H H
D6MIT30 H H H H H H H H A A H A H H H A
D6MIT59 H H A H H H H H A A H A H H H A
D6MIT67 H H H A H A H H A H H H H
D6MIT70 H H H A H A H H H H H H H
D6NDS5 H H H H H H H H A H H A H H H H
D7MIT105 A A H H H H A H H A A H H A A H
D7MIT178 H A A H H A A A A A H A A A H H
D7MIT181 H H H A H A A A A H A H H
D7MIT220 H H H A H H A A A H A H H
D7MIT234 H H H A H A A A A H A H H
D7MIT25 A A A H H H A A A A A A A A H H
D7MIT259 H H H H H H H H H H A A H
D7MIT281 H H H A H H A A A H A H H
D7MIT284 A H H H H H A H A H H H H H H H
D7MIT297 H H H A A A A A A H A H H
D7MIT319 A A H H H H A H A A A A H A H H
D7MIT32 A A H H H H A H H A A A H A H H
D7MIT321 H H H A H H A A A H A H H
D7MIT57 H H A A A A A H A A A H H
D7MIT8 A A H H H H A H H A A H H A A H
D7MIT83 A A A H H H A A A A A A H A H H
D7MIT96 A A H H H H A H H A A A H A H H
D8MIT121 H H A H A H A H H H H A A A A A
D8MIT186 H A H A H H H H A A A A A
D8MIT190 H H H H H A H A A A H H H
D8MIT211 H H A H H H A H H H A A A A A H
D8MIT4 H H A H H H H H A H A A A H H H
D8MIT45 H H H H H H H A A A H A H
D8MIT8 H H A H H H H H H H A A A H H H
D8MIT95 H H H H H A H A A A H H H
D9MIT10 A A H H H H A A A A A A H
D9MIT116 A A A H H H A A A A A A A
D9MIT1S4 A A H H H H A A A H A A H
D9MIT163 H H H A A H H H H A A A H A A H
D9MIT182 H H A A A A H H H A A A A A A A
D9MIT19 H H A A A A H H H A A A A A H A
D9MIT191 A A H H H H A A A H A A H
D9MIT196 H H A A A H H H H A A A A A A H
D9MIT205 H H H A A H H H H A A A H A A H
D9MIT208 A A H H H H A A A A A A H
D9MIT259 A A H H H H A A A H A A H
D9MIT269 H H A A A H H H H A A A H A A H
D9MIT285 A A H H H H A A A H A A H
D9MIT31 A A H H H H A A A H A A H
D9MIT42 A A H H H H A A A H A H H
D9MIT74 H H A A A H H H H A A A A A A H
D9MIT97 A A H H H H A A A H A A H
D10MIT11 A H H A A H H H A A H H A
D10MIT134 A A H A H H A A H H H A A H H H
D10MIT15 A H H A A H H H A A H A A
D10MIT17 A H H A A H H H A A H H H
D10MIT248 A A H A H H A A H H H A A A A A
D10MIT271 A A A A H H A H H H H A A H H H
D10MIT42 A A H A H H A A H H H A A H A A
D10MIT44 A A H H H A A A H H H H A
D11MIT116 A H H H A A A H A A H H A
D11MIT130 A H H A A A A H H A H A H
D11MIT150 A H H A A A A H A A A A H
D11MIT23 H H A A H H A A A A H H A H H H
D11MIT254 A H H A H H H H A H H A A H H A

171



D11MIT288 A H H A
D11MIT30 A
D11MIT306 A
D11MIT99 A H H A
D12MIT10 A
D12MIT112 A A H A
D12MIT136 A A H A
D12MIT203 A A H A
D12MIT231 A A H A
D12MIT233 A
D12MIT46 A
D12MIT52 A
D12MIT68 A A H A
D12NDS11 A A H A
D12NDS2 A
D13MIT10 H
D13MIT117 H A H H
D13MIT151 H A A H
D13MIT16 H
D13MIT193 H
D13MIT41 H A H H
D13MIT7S H A A H
D14MIT101 H
D14MIT109 H
D14MIT133 H
D14MIT160 H
D14MIT203 H H A H
D14MIT75 H A H H
D15MIT11 A H A A
D15MIT171 A
D15MIT189 A
D15MIT24 A
D15MIT26 A H A A
D15MIT3 A
D15MIT35 H A A A
D16MIT110 H H H A
D16MIT154 A
D16MIT171 A H H A
D16MIT189 A A H A
D16MIT4 A H H A
D16MIT51 A
D16MIT87 A
D17MIT119 A
D17MIT128 A
D17MIT13 A
D17MITI76 A H A A
D17MIT197 A H A A
D17MIT38 A
D17MIT56 A
D17MIT7 A
D18MIT124 A
D18MIT177 H
D18MIT44 A A H A
D18MIT50 A
D18MIT58 H
D18MIT7 A A H A
D18MIT94 H
D19MIT1 A
D19MIT10 H A A A
D19MIT29 H A A H
D19MIT41 H A A A
D19MIT46A A
D19MIT46B A
D19MIT53 A
D19MIT71 A A A A
DXMIT114 H A A B
DXMIT166 H A A B
DXMIT186 H H B A

H H H H A H
H H H A A A
H H A A A A
H H H H A H
A H A A A A
A H A A A A
A H A A A A
A H A A A H
A H A A A H
A A H H H
A H A A A A
A H A A A A
A H A A A A
A H A A A A
A H A H H H
H H H A H H
H H H A H H
H H A H H H
H H H A H H

H H H H
H H H A H H
H H A H H H
A A A A A H
A A A A H H
A A A A A H
A A A H A H
A A A H A H
A H H H A A
H H A A A H
H H A A A A
H H A A A A
H H A A A A
H H A A A A
H H A A A A
A A H H A A
H H A A A A
H H A A H A
H H A A A A
H A A A A A
H H A A A A
H A H A A A
H H A A H A
H A A A A H
H A A A A H
H A A A A H
H A A A A H
H A A A A H
A A A A A H
A A H A A H
H A A A A H
A A A A H H
A A A A H H
A A A A H A
A A A A H H
A A A A H H
A A A A H A
A A H A H H
H A H A A H
A A H A A H
A H H A H A
A A H A H A
A A H A H H
H A A H A A
A A H A A H
H A H A A H
A A B A H H
A B B H H H
A A A A A H

H A A H H A
H H A H H A
H A A A A H
H A A H H A
A H H A H
A H A A A H
A H A A A H
A H A A A A
A H A A A A

H A A A A
A H A A A H
A H A A A A
A H A A A A
A H H A A H
A A A A A A
H H H A H A
H H H A H A
A H H A A A

H H A H A
H H H A H A
H H H A H A
A H H A A A
A A H H A H
H H H H H H
H A H H H H
A A H A A H
A A H A A H
A A H A A H
A H A A H H
A A H H H A
A A H H H H
A A H A H H
A A H A H H
A A H H H H
A A H H H A
H H H A A H
H H H H A H
A H H A A H
A H A A A H
A H H A A H
A H A A A H
H H H H A H
A A H H H A
A A H H H A
A A H H H A
A A H H H A
A A H H H H
A A H H H A
A A A H H A
A A H H H A
H A H H A A
H A H H A H
H A H A A A
H A H H A A
H A H H A H
H A H H A A
H H H H A H
H A H H A H
H A H H A H
A H A A H A
H H A H H A
H A A H H H
A H A H H A
H A A H A H
H A H H A H
A H B B H H
A H B B H A
A H A A H H
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MARKERS BX38 BX39 BX40 BX41 BX42 BX44 BX46 BX47 BX49 BX50 BX51 BX52 BX57 BX58 BX59 BX60
D1MIT10 H H A H H A A A A A A A H H A A
D1MIT102 H A A A H A A A A A A A A H A A
D1MIT206 H A A A H H H A A H A H A H A A
D1MIT213 H H A H H A H A A A A A H H A H
D1MIT3 H A A H H A H A A A A A H H A H
D1MIT318 H A A H H A H A A A A A H H A H
D1MIT34 H A A A H A H A A H A A A H A A
D1MIT362 H A A A A H H A A H A H A A A H
D1MIT46 H H A H H A A A A A A A H H A A
D1MIT76 H H A H H A A A A A A A H H A A
D1MIT8 H H A H H A A A A A A A H H A A
D1MIT93 H A A H H A A A A A A A H H A A
D2MIT14 A A H H A A H H H A H A H A A A
D2MIT148 A A A A A H A A A A H A A A A A
D2MIT1S A A H H A A H H H A H A H A A A
D2MIT252 H A H H A A H H H A H A H A A A
D2MIT260 H A A A A A H H H A H A H A A A
D2MIT285 H A A A A A H H H A H A H A A A
D2MIT343 H A A A A H A A A A H A A A A A
D2MIT398 H A A A A A H H A H A H A A A
D2MIT58 H A H H A A H H H A H A H A A A
D2MIT6 A H H A A A H A H A H H H A A A
D2MIT7 A H H A A A H A H A H H H A A A
D3MIT107 A H H A H A H A A A H A A A A H
D3MIT116 A H H H H H H A A A A A A A A H
D3MIT14 A H H A H H H A A A A A A A A H
D3MIT17 A H H A H H H A A A A A A A A H
D3MIT19 A H H H H H H A A A A A A A A H
D3MIT209 A H A A H A H H A A H H A A A A
D3MIT44 A H H H H H H A A A A A A A A H
D3MIT46 A A A A H A H A A A H H A A A A
D3MIT6 A A A A H A H H A A H H A A A A
D3MIT62 A A A H H A H A A A A H A A H A
D3MIT77 A H H A H A H H A A H A A A A H
D4MIT12 A A A H H H H H A A A H A A H H
D4MIT124 A A A H H H H H A A A H A A H H
D4MIT126 A A A H H A A H H H H A A A A H
D4MIT14 A A A H H A A H H H H A H A A H
D4MIT148 A A A H H A H H H H A H A A A H
D4MIT16 A A A H H H H H A H A H A A H H
D4MIT17 A A A H A H H A A A A H A H H H
D4MIT170 A A A H H A H H H H A H A A A H
D4MIT175 A A A H A H H A A A A H A H H H
D4MIT178 A A A H A H H A A A A H A H H H
D4MIT190 ' A A A H H A A H H H H A H A A H
D4MIT203 A A A H H H H H A H A H A A A H
D4MIT205 A A A H H A A H H H H A H A A H
D4MIT224 A A A H H H H H H H A H A A A H
D4MIT226 A A A H H A A H H H H A H A A H
D4MIT264 H H A A A A H H A H A H A H H H
D4MIT33 A A A H H A A H H H H A H A A H
D4MIT37 A A A H A H H A A A A H A A H H
D4MIT40 A A A H H H H H A H A H A A H H
D4MIT41 H A A H A H H A A H A H A H H H
D4MIT42 A A A H H A A H H H H A H A A H
D4MIT45 A A A H A H H A A A A H A H H H
D4MITS4 A A A H H A H H H H A H A A A H
D4MIT57 A A A H A H H A A A A H A A H H
D4MIT72 A A A H H H H H A H A H A A H H
D4NDS2 A A A H H H H H A A A H A A H H
D5MIT113 A A H A A A H H A A H H H H H H
D5MIT168 A H H H A A H A A A H H A H A H
D5MIT23 A A H A A A H H A A H H H H A H
D5MIT233 A A H A A A A H A A H H H H H H
D5MIT346 A H A A A H A A H A A H H A H A
D5MIT370 A A H H A A H H A A H H A H A H
D5MIT7 A A H A A A H H A A H H H H A H
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D5MIT73 A A A A A A A H H A A H H H H A
D5MIT76 A A A A A A A H A A A H H H H A
D6MIT138 A A A A H A A H H H H A H H A A
D6MIT14 A A A A A H A A H A A H A H A A
D6MIT25 A A A A A H A A H A A H A H A A
D6MIT2S4 A A A H A H A A H A A H A H A A
D6MIT261 A A A H A H A A H A A H A H A A
D6MIT268 A A A H H A A H H H H A H H A A
D6MIT274 A A A H A H A A H A A H A H A A
D6MIT277 A A A H H H A A H H H A H H H A
D6MIT30 A A A H A H A A H A A H A H A A
D6MIT59 A A A A A H A A H A A H A H A A
D6MIT67 A A A H A H A A H A A H A H A A
D6MIT70 A A A H A H A A H A A A A H A A
D6NDS5 A A A H A H A A H A A H A H A A
D7MIT105 A A A A H H A A A A A H H H A A
D7MIT178 H H H H H H H H A A H A H A H A
D7MIT181 H H A A H A A H H A A H H H A A
D7MIT220 H H A A H A A A H A A H H H A A
D7MIT234 H H A A H A A H H A A H H H A A
D7MIT25 H H H H H H H H A A H A H A H A
D7MIT259 A A A A H A A A A A A H H H A A
D7MIT281 H H A A H A A A H A A H H H A A
D7MIT284 A A A H H H A A H H H A A H A A
D7MIT297 H H H A H A A H H A A A H H H A
D7MIT319 H H A A H A A H H A A H H H A A
D7MIT32 H H A A H A A H H A A H H H A A
D7MIT321 H H A A H A A A H A A H H H A A
D7MIT57 H H H H H H H H A A H A H A H A
D7MIT8 A A A A H A A A A A A H H H A A
D7MIT83 H H H A H H A H A A H A H H H A
D7MIT96 H H A A H A A A H A A H H H A A
D8MIT121 A H H A H A A A H H A H H H A H
D8MIT186 A H H A H A A H H H A H H H A H
D8MIT190 A A H H H H A H H H H H H H A A
D8MIT211 A H H A H H A H H H A H H H A H
D8MIT4 A A H H H H A H H H H H H H A A
D8MIT45 A H H H H H A H H H A H H H A H
D8MIT8 A A H H H H A H H H H H H H A A
D8MIT95 A A H H H H A H H H H H H H A A
D9MIT10 A A A H H H H A A H A H H H H H
D9MIT116 A A A H H H H A A H H H H H H H
D9MIT154 A A A H A H H A A H A H H H H A
D9MIT163 A A A H H H H A A H A H H H H A
D9MIT182 A A A H H H H A A H H H H H H H
D9MIT19 A A H H H H H A A H H H H H H H
D9MIT191 A A A H A H H A A H A H H H H A
D9MIT196 A A A H H H H A A H A H H H H H
D9MIT205 A A A A A H H A A H A H H H H A
D9MIT208 A A A H H H H A A H A H H H H H
D9M1T259 A A A H H H H A A H A H H H H A
D9MIT269 A A A H H H H A A H A H H H H A
D9MIT285 A A A A A H H A A H A H H H A
D9MIT31 A A A H H H H A A H A H H H H A
D9MIT42 A A A A A H H A A H A H H H H A
D9MIT74 A A A H H H H A A H A H H H H H
D9MIT97 A A A H H H H A A H A H H H H A
D10MIT11 A A H A H H H H A A H A A H A H
D10MIT134 A A H A H H H H A A A H A A H A
D10MIT15 A A H A H H A A A A H A A H A H
D10MIT17 A A H A H H H H A A H A A H A H
D10MIT248 A H H A A H A A A A A H A H A H
D10MIT271 A A H A H A H H A A H A A H A H
D10MIT42 A A H A H H H H A A H A A H A H
D10MIT44 H A A H H A H A A A A A H H A H
D11MIT116 A A A A H A A A A H H A H A A A
D11MIT130 A H A A H A A A A H H H H A A A
D11MIT150 A H H H H A A A H H H H H H A A
D11MIT23 A H A A H A A A A H H A H A A A
D11MIT254 A A A H H H A A A H H A H A A A
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D11MIT288 A A A A H A A
D11MIT30 A A A A H A A
D11MIT306 A H H A H A A
D11MIT99 A A A A H H A
D12MIT10 A H H H A A A
D12MIT112 A H H H A A A
D12MIT136 A H H H A A A
D12MIT203 A H H H A H A
D12MIT231 A H H H A H A
D12MIT233 A H A H A H A
D12MIT46 A H H H A A A
D12MITS2 A H H H A H A
D12MIT68 A H H H A H A
D12NDS11 A H H H A A A
D12NDS2 A H A H A H H
D13MIT10 A A A A H A A
D13MIT117 A A A A H A A
D13MIT151 H H A A H A A
D13MIT16 A A A A H A A
D13MIT193 H A A A H A A
D13MIT41 H A A A H A A
D13MIT75 H A A A H A A
D14MIT101 H H A A H H A
D14MIT109 A H A A H H A
D14MIT133 H H A A H H A
D14MIT160 H A A A H H A
D14MIT203 H A A A H H A
D14MIT75 H A A A H H A
D15MIT11 H A H A A A A
D15MIT171 H H A A A A
D15MIT189 H A H A A A A
D15MIT24 H A H A A A A
D15MIT26 H A H A A A A
D15MIT3 H A H A A A A
D15MIT35 H H A A A A A
D16MIT110 A H H A A A H
D16MIT154 A H H A H A A
D16MIT171 A H H A H A H
D16MIT189 A H H A H A H
D16MIT4 A H H A A A H
D16MIT51 H H H A H A H
D16MIT87 A H H A H A A
D17MIT119 H H A H A A H
D17MIT128 H H A H H A H
D17MIT13 H H A H H A H
D17MIT176 H H A H H A H
D17MIT197 H H A A H A H
D17MIT38 H H A H A A H
D17MIT56 H H A H A A H
D17MIT7 H H A H A A H
D18MIT124 A H H A H A H
D18MIT177 A H H H H A H
D18MIT44 A H H A H A H
D18MIT50 A H H A H A H
D18MIT58 A H H A H A H
D18MIT7 A H H A H A H
D18MIT94 A H H H H A H
D19MIT1 A H A A H A H
D19MIT10 A H A A H A H
D19MIT29 A H A H A A A
D19MIT41 A H A H A A H
D19MIT46A A H A A H A H
D19MIT46B A H H H H A H
D19MITS3 A H A A H A H
D19MIT71 A H H A H A H
DXM IT114 H H H A A B B
DXMIT166 H H H H A B A
DXMIT186 A H A A A A B

A A H H A H A A A
A A H H A H A A A
A H H H H H H A A
A A H H A H A A A
A H A A H A H H H
H H A A H A A H H
A H A A H A H H H
H H A A H A A H A
H H A A H A H H A
H H A A H A A H A
H H A A H A A H H
H H A A H A A H A
H H A A H A A H A
A H A A H A H H H
H H A A H A A H A
A A A A A A A H A
A A A A A A H H A
A H A H A A A H A
A A H A H A H A A
A H A H A A A H A
A H A H A A A H A
A H A H A A A H A
A A A A A A A H A
A A A H H A A H A
A A A H A A A H A
A A A H A A A A A
A A A A A A A H A
A A A H A A A A A
A H H H A H H H H
A H H A H A A H H
A H H A H A A H H
A H A H A H H H H
A H A H A H H H H
A H A A A A A H H
A H H A H A A H H
A A H H A A H A A
A H H H A A H A A
A A H A A A H A A
A A H A A A A H A
A A H H A A H A A
A A H A A H A H H
A H H H A A H A A
H H H A A H H A A
H H H A A A H A A
H H H A A A H A A
H H H A A A H A A
H H H H A A H A A
H H H A A H H A A
A H H A A H H H A
H H H A A H H A A
H H H A H H H A A
H H H A H H H A H
A A H A H H H A A
H H H H A A
H H H A H H H A H
H A H A H H H A A
H H H A H H A H
A H H H A A A H A
A H H H A A A A A
H H A H H A H A A
H H H H H A H A A
A H H H A A H A A
A A A H H A H A H
A H H H A A A A A
A H H H A A A H A
H H A H A H H H A
H H A H A A H A A
H H A A A H H H H
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MARKE RS  BX61 BX63 BX64 BX65 BX66 BX67 BX68 BX69 BX70 BX71 BX72 BX73 BX74 BX75 BX76 BX77
D1MIT10 H A A A A A H H H A H H A H A H
D1MIT102 H A A A H A A H H H H H A A A H
D1MIT206 H A H A H A A A H H A H A A A H
D1MIT213 H A A A A A H H H A H H H H H H
D1MIT3 H A A A A A H H A H A H H H H H
D1MIT318 H A A A A A H H A H H H H H H H
D1MIT34 H A A A H A A A A H H H A A A H
D1MIT362 H A H A H A A A H H A H A A H A
D1MIT46 H A A A A A H H H A H H H H A H
D1MIT76 H A A A A A H H H A H H H H A H
D1MIT8 H A A A A A H H H A H H H H A H
D1MIT93 H A A A A A A H H H H H A H A H
D2MIT14 A H H H A A A H H A A H H A A A
D2MIT148 H H A A H A H A H H A H A A A A
D2MIT15 A H H H A A A H H A A H A H A A
D2MIT252 A H H A A A H H H A H H A A A
D2MIT260 A H H A H A A A H H A H A A A A
D2MIT285 H H H A H A A A H H A H A A A A
D2MIT343 H H H A H A H A H H A H A A A A
D2MIT398 A H H A A A A H A H H A A A
D2MIT58 A H H A A A A H H H A H H A A A
D2MIT6 A H A H H H H H H A A A A A A A
D2MIT7 A H H H A H H H H A A A A A A A
D3MIT107 A H A H A H A H H A H A H H A A
D3MIT116 A A A H A H H H A H H A H H A H
D3MIT14 A A A H A H A H H H H A H H A H
D3MIT17 A A A H A H H H A H H A A H A H
D3MIT19 A A H H A H H H A H H A H H A H
D3MIT209 A H A H H H A H H A H A A H A A
D3MIT44 A A A H A H H H H H H A H H A H
D3MIT46 A H A H H H H A H H H A A H A A
D3MIT6 A H A H H H H A H A H A A H A A
D3MIT62 A H A H A H A A H H H A A H A A
D3MIT77 A H A H H H A H H A H A H H A A
D4MIT12 H A H H A H A H A A A H H A A H
D4MIT124 H A H H A H A H A A A H H A A H
D4MIT126 H A H H H H H H A H A H H H A A
D4MIT14 H A H H H H H H A H A H H H A A
D4MIT148 H A H H A H H H A A A H H A A H
D4MIT16 H A H H A H A H A A A H H A A H
D4MIT17 H A H H A H A A A A A H H A A H
D4MIT170 H A H H A H H H A A A A H A A H
D4MIT175 H A H H A H A A A A A H H A A H
D4MIT178 H A H H A H A A A A A H H A A H
D4MIT190 H A H H H H H H A H A H H H A A
D4MIT203 H A H H A H A H A A A H H A A H
D4MIT205 H A H H H H H H A H A H H H A A
D4MIT224 H A H H A H A H A A A H H A A H
D4MIT226 H A H H H H H H A H A H H H A A
D4MIT264 A A H A A H A A A H H A A A A A
D4MIT33 H A H H H H H H A H A H H H A A
D4MIT37 H A H H A H A H A A A H H A A H
D4MIT40 H A H H A H A H A A A H H A A H
D4MIT41 A A H A A H A A A A H H A A A H
D4MIT42 H A H H H H H H A H A H H H A A
D4MIT45 H A H H A H A A A A A H H A A H
D4MIT54 H A H H A H H H A A A H H A A H
D4MIT57 H A H H A H A H A A A H H A A H
D4MIT72 H A H H A H A H A A A H H A A H
D4NDS2 H A H H A H A H A A A H H A A H
D5MIT113 A H H A A A H H H A A A A H H A
D5MIT168 H A A A H A A H H H A H H H H A
D5MIT23 A H H A A A A H H H A A A H H A
D5MIT233 A H H A A A H H H A A A A H H A
D5MIT346 A H H H A A H H H A A A A A A H
D5MIT370 H H H A A A A H H H A A A H H A
D5MIT7 A H H A A A H H H A A A A H H A
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D5MIT73 A H H H
D5MIT76 A H H H
D6MIT138 H H A H
D6MIT14 H A A A
D6MIT25 H A A A
D6MIT254 H A A H
D6MIT261 H H H H
D6MIT268 H H H H
D6MIT274 H H A H
D6MIT277 H H H H
D6MIT30 H A A H
D6MIT59 H A A A
D6MIT67 H H A H
D6MIT70 H H H H
D6NDS5 H A A H
D7MIT105 A H H A
D7M IT178 A H H A
D7MIT181 A H H A
D7MIT220 A H H A
D7MIT234 A H H A
D7MIT25 A H H A
D7MIT259 A H A A
D7MIT281 A H H A
D7MIT284 H H H H
D7MIT297 A H H A
D7MIT319 A H H A
D7MIT32 A H H A
D7MIT321 A H H A
D7MIT57 A H H A
D7MIT8 A H H A
D7MIT83 A H H A
D7MIT96 A H H A
D8MIT121 A A A H
D8MIT186 A A A H
D8MIT190 A H A H
D8MIT211 A A A H
D8MIT4 A H A H
D8MIT45 A A A H
D8MIT8 A H A H
D8MIT95 A H A H
D9MIT10 H A A H
D9MIT116 H A A H
D9MIT154 A A A A
D9MIT163 A A A A
D9MIT182 H A A H
D9MIT19 H H A H
D9MIT191 A A A A
D9MIT196 H A A H
D9MIT205 A A A A
D9MIT208 H A A H
D9MIT259 A A A A
D9MIT269 A A A A
D9MIT285 A A A A
D9MIT31 A A A A
D9MIT42 A A A A
D9MIT74 A A A A
D9MIT97 A A A A
D10MIT11 H A A
D10MIT134 H H A A
D10MIT15 A A A H
D10MIT17 H A A H
D10MIT248 A H A H
D10MIT271 H H A H
D10MIT42 A A A H
D10MIT44 H A A A
D11MIT116 A A H A
D11MIT130 A A A A
D11MIT150 A A A A
D11MIT23 A A A A
D11MIT254 H A H A

A A H H H A
A A H H H A
A H A A H H
A H A A H H
H A H
H A A A H H
H H A A H H
H H A A H H

A A A H H
H H A A H H
H A A A H H
H A A A H H

A A A H H
H H A A H H
H A A A H H
H A A A H H
H A H A A H
A A A A H H
A A A A H H
A A A A H H
H A A A A H
H A A A H H
A A A A H H
H H A A H H
A A A A A H
A A A A H H
A A A A H H
A A A A H H
H A A A A H
H A A A H H
A A A A A H
A A A A H H
H A H H H A
H A H H H A
H A H H H A
H A H H H A
H A H H H A
H A H H H A
H A H H H A
H A H A H A
H A H A H H
H A H A H H
H A H A A H
H A H A A H
H A H A H H
H A A A H H
H A H A A H
H A H A H H
A H A A A H
H A H A H H
H A H A H H
H A H A A H
A A H A A H
H A H A A H
A A H A A H
H A H A H H
H A H A A H
H H A A H
H H H A A A
H H A A A H
H H A A A H
A H A A A H
H H A A A H
H H A A A H
A A H H A H
H A H H H A
A A H H H A
A A H H H A
H A H H H A
H H H H A A

A A A H A A
A A A H A A
H A H A A A
H A H H A H
H A H H A H
H A H H A H
H A H H A A
H A H H A A
H A H H A A
H A H H A A
H A H H A H
H A H H A H
H A H H A A
H A H H A A
H A H H A H
A A A A H H
H H H H A A
A A A A H H
A A A A H H
A A A A H H
H H A H A A
A A H A H H
A A A A H H
H A H H A A
A H A A H H
A A A A H H
A A A A H H
A A A A H H
H H H H A A
A A A A H H
A H A H A H
A A A A H H
A A H A H A
A A H A H A
A A A A H A
A A A A H A
A A A A H A
A A A A H A
A A A A H A
A A H A H A
H A H A A A
H A H A A A
H H H A A A
H H H A A A
H A H A A A
A A H A A A
H H H A A A
H A H A A A
H H H A A A
H A H A A A
H H H A A A
H H H A A A
H H H A A A
H H H A A A
H H H H A A
H A H A A A
H H H A A A
H A A H A H
H H A A H A
H A A H A H
H A A H A H
H A A A H H
H A H H H A
H A A H A H
A H H H H H
H H H H A H
H H H H H H
H H A H H H
H H H H H H
A H H H A H
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D11MIT288 A A H A H H H H A A H H H H A H
D11MIT30 A A A A H A H H H A H H H H A H
D11MIT306 A A A A A A H H H A H H A H H H
D11MIT99 A A H A H H H H A A H H H H A H
D12MIT10 A A A H H A A H H A A H A A A
D12MIT112 A A A H H A A H H H A A H A A H
D12MIT136 A A A H H A A H H H A A H A A H
D12MIT203 A H A H A A A A H H A H H A A H
D12MIT231 H H A H A A A A A H A H H A A H
D12MIT233 H H A H A A A A A H A H H A A H
D12MIT46 A A A H H A A H H H A A H A A H
D12MIT52 A H A H A A A H H H A H H A A H
D12MIT68 A A A H A A A H H H A A H A A H
D12NDS11 A A A H H A A H H H A A H A A H
D12NDS2 H H A A A A A A A H A H H A A H
D13MIT10 H A H A H H A A H H H A A H A A
D13MIT117 H A H A H H A H H H H A A H A A
D13MIT151 H A H H A H A A H A H H A A H A
D13MIT16 A A H A H H A H H H H A A H A H
D13MIT193 H H H H A H A A H A H H A A H A
D13MIT41 H H H A H H A A H H H A A H H A
D13MIT75 H A H H A H A A H A H H A A H A
D14MIT101 H A H H H A H A H H H H A H A H
D14MIT109 H H H H H A H A H A H A H H A H
D14MIT133 H A H H H A H A H A H H A H A H
D14MIT160 H A H A H A H H A H H H A H A A
D14MIT203 H A H H H A H H A H H H A H A H
D14MIT75 H A H A H A H H A H H H A H H A
D15MIT11 H A H H A H H H H H H H H H H H
D15MIT171 A H A A A A A H H A H H A A H A
D15MIT189 A H A H A A A H H A H H A A H A
D15MIT24 H H H H A A H H H A H H A A H H
D15MIT26 H H H H A A H H H A H H A A H H
D15MIT3 H H H H A A H H H A H H A A H H
D15MIT35 A H A A A A A A H A H A H A A A
D16MIT110 A A H A H A A H H A A A H A A A
D16MIT154 A H H H H H A H H A A A A H A H
D16MIT171 A A H A H A A H H A A A H A H A
D16MIT189 H A H A H A A A A A A A H A H A
D16MIT4 A A H A H A A H H A A A H A H A
D16MIT51 H A H A H A A A A A A A H A H A
D16MIT87 A H H H H H A H H A A A A H A H
D17MIT119 A A H H H A H H A H A A A A A H
D17MIT128 A A H H H H H H A H H A A A A A
D17MIT13 A A H H H H H H A H H A A A A A
D17MIT176 A A H H H H H H A H H A A A A A
D17MIT197 A A A H A H H H H H H A A A A A
D17MIT38 A A H H H A H A A H A A H A A H
D17MIT56 A A H H A A H A A H A A H A A H
D17MIT7 A A H H H A H H A H H A A A A A
D18MIT124 H H H A A H H H A H H A A A H A
D18MIT177 H A H A A H H H A H H A A A H A
D18MIT44 H H H A A H H H A H H A A A A H
D18MIT50 H H H A A H H H A H A A A A A
D18MIT58 H H H A H H A H H A A A
D18MIT7 H H H A A H H H A H H A A A A A
D18MIT94 H A H A A H H H A H H A A A H A
D19MIT1 H A A H A H H H H H A A A H A H
D19MIT10 H A A H A H H H A H A H A H A H
D19MIT29 A H A H H H H A A H A A A H A A
D19MIT41 A A A H A H H A A H A H A H A H
D19MIT46A A A A H A H H H A H A H A H A H
D19MIT46B H A A A H A A H H H A H H H H A
D19MIT53 H A A H A H H H A H A H A H A H
D19MIT71 H A A H A H H H H H A A A A A H
DXMIT114 A B A B A A A A A A H A H H A A
DXMIT166 H A B A B A A B A A H H H H A A
DXMIT186 A B A B A A B A H H H A A H B A
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Table A7 The raw data of papilloma incidence in FVB6F2 mice.

M. ID *CC **SEX W8 W9 W10 W l l W12 W13 W14 W15 W16 W17 W18 W19 W20 W21 W22 W23
FBI A F 0 1 1 5 6 9 14 16 16 15 16 21 20 18 15
FB2 W F 0 0 0 1 2 4 5 6 5 4 8 6 8 8 6
FB3 A F 1 2 2 2 4 6 11 16 16 19 18 19 21 24 24
FB4 B F 0 0 0 0 0 0 0 1 5 5 6 3 0 0 0
FB5 A F 0 1 1 1 3 5 9 11 12 15 18 22 21 21 19
FB6 A F 0 0 0 0 1 2 3 3 3 3 4 6 6 6 5
FB7 A F 0 0 0 0 0 0 0 0 0 0 2 2 3 3 2
FB8 A F 0 0 0 0 1 1 1 1 3 3 2 3 2 3 3
FB9 A F 2 1 4 8 11 10 18 25 25 31 33 32 23 21 18

FB10 A F 0 0 0 0 0 1 1 1 1 1 4 5 7 8 8
FB11 A F 0 0 0 0 2 2 2 2 3 3 4 5 5 5 5
FB13 A F 3 3 6 6 16 20 26 26 29 29 31 30 30 28 26
FB14 A F 0 0 0 0 2 4 3 7 8 6 7 9 8 8 6
FB15 B F 0 0 0 1 5 4 9 9 11 10 8 10 9 9 9
FB16 A F 0 0 0 0 4 4 5 3 3 3 4 3 3 4 4
FB17 W F 0 2 2 3 4 7 10 12 12 17 19 20 24 27 27
FB18 A F 0 0 0 0 5 5 5 8 7 8 12 12 12 13 15
FB20 A F 0 0 0 0 5 5 13 17 17 22 31 32 32 32 32
FB21 A F 0 0 0 0 0 0 0 1 1 1 2 2 2 2 2
FB23 A F 1 0 1 1 1 2 8 7 7 9 9 8 10 8 8
FB24 A F 0 0 0 1 4 3 3 6 7 8 11 12 11 12 14
FB25 W F 1 1 1 1 2 2 6 7 7 7 15 17 12 13 16
FB26 B F 0 2 2 3 3 3 6 6 9 10 16 17 18 18 18
FB27 B F 0 0 0 1 1 1 3 3 4 7 7 8 5 5 5
FB28 A F 0 0 0 0 2 1 3 4 5 5 6 6 6 9 11
FB29 A F 0 0 0 0 0 1 2 1 1 2 2 2 8 8 8
FB30 B F 1 1 1 1 2 2 6 7 7 11 12 14 16 15 15
FB31 A F 0 1 2 4 13 18 18 21 26 29 29 29 21 18 16
FB32 B F 0 0 0 0 0 0 0 0 0 1 1 1 3 4 4
FB34 A F 0 0 0 0 2 2 3 2 4 4 4 4 3 2 1
FB35 A F 0 0 0 1 3 2 6 8 8 12 17 14 14 15 15
FB37 A F 0 0 0 0 4 4 5 5 6 5 8 7 6 6 8
FB38 A F 0 0 0 3 6 10 17 18 19 20 21 18 22 21 16
FB39 B F 0 1 1 4 10 10 11 18 25 24 26 26 16 12 11
FB41 B F 0 0 0 0 2 1 3 3 5 4 3 3 5 6 5
FB42 B F 1 1 2 2 4 6 12 13 16 20 27 27 26 22 24
FB43 A F 0 0 1 1 4 6 11 10 14 14 26 25 28 31 35
FB44 B F 0 0 0 0 1 4 10 7 12 11 10 12 8 4 4
FB45 B F 0 0 0 0 1 1 1 2 2 2 4 4 5 5 5
FB46 A F 0 0 0 0 5 5 12 15 15 15 17 16 19 19 19
FB47
FB48

A
W

F
F

2
0

5
0

7
0

9
0

20
0

24
0

34
2

36
2

39
1

39
1

36
1

29
2

25
3 2 3

FB49 A F 0 0 0 0 6 6 17 18 17 20 21 21 26 24 22
FB50 B F 0 0 0 0 0 0 0 1 1 1 1 0 2 2 2
FB51
FB52

W
A

F
F

0
0

2
0

2
0

2
0

18
0

25
0 1 1 3 4 9 8 3 1 1

FB53 A F 1 1 2 2 1 0 2 3 3 3 4 4 3 4 3
FB54 W F 0 1 1 1 3 4 10 13 16 18 23 23 26 26 26
FB55 W F 1 0 0 0 4 2 7 7 7 7 7 3 3 3 3
FB56 A F 1 1 1 1 2 2 3 5 5 6 9 8 5 5 5
FB57 B F 0 0 0 0 2 2 5 5 9 10 13 12 11 13 12
FB58 A F 0 0 1 1 4 4 3 3 3 1 2 1 1 1 0
FB59 B F 0 0 0 0 0 2 6 6 6 11 9 11 10 10 11
FB60 W F 1 1 1 1 2 2 4 4 4 6 8 5 4 3 2
FB61 B F 0 0 0 0 0 0 1 3 3 3 10 10 13 10 13
FB62
FB63

B
A

F
F

0
1

0
3

0
4

0
5

0
12

0
17 33 34 34 34 37 33 33 31 29

FB64 B F 0 0 0 0 2 2 7 6 4 4 3 3 5 1 1
FB65 A F 0 0 2 2 3 5 15 15 18 22 24 25 24 22 20
FB66 A F 0 0 0 0 8 8 12 12 11 11 11 10 10 6 7
FB67 A F 0 0 0 2 2 3 10 9 7 9 13 11 12 9 9
FB68 W F 0 0 0 0 0 0 0 0 2 4 8 8 10 10 12
FB69 A F 0 0 0 8 1 1 2 2 2 4 6 6 7 7 7
FB70 B F 0 0 1 1 2 2 4 4 5 5 5 5 8 8 9
FB71 W F 0 0 0 1 3 6 13 21 21 24 19 22 13 17 20
FB72 A F 0 0 0 3 6 6 9 10 10 10 13 13 17 17 18
FB73 A F 0 0 0 0 0 0 3 4 4 7 8 6 9 9 9
FB74 A F 2 2 2 2 7 7 13 13 19 20 26 27 31 31 28
FB75 A F 0 0 0 0 0 0 2 4 4 5 6 6 4 3 6
FB76 B F 0 0 0 0 2 2 2 6 8 6 3 3 2 2 2
FB77 W F 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
FB78 B F 1 2 1 1 3 4 11 14 13 11 9 9 10 7 8
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FB79 A F 0 0 0 0 0 0 0 0 3 4 5 6 6 6 7
FB80 A F 1 2 5 5 15 21 31 39 42 44 42 39 36 26 32
FB81 B F 0 0 0 0 2 4 6 7 6 7 8 6 8 9 9
FB82 A F 0 0 0 0 0 0 0 0 0
FB83 A F 1 2 2 3 3 4 10 8 9 15 15 15 18 20 18
FB84 A F 0 0 0 0 2 6 14 13 13 16 14 14 16 15 16
FB85 W F 0 0 0 0 2 2 2 2 0 2 2 1 1 0 0
FB86 W F 0 0 0 1 3 3 7 10 8 10 12 11 11 10 8
FB87 w F 0 1 2 3 6 6 6 8 14 12 12 8 7 6 6
FB88 A F 0 1 2 2 5 5 7 9 10 11 14 15 17 17 22
FB89 A F 0 0 0 1 2 4 9 9 9 11 11 10 12 15 18
FB90 W F 0 1 2 3 9 9 25 25 24 25 28 24 23 21 24
FB91 W F 0 0 0 0 0 0 1 1 1 1 2 2 2 2 3
FB92 A F 0 1 2 5 10 10 14 13 13 14 13 11 14 16 14
FB93 W F 0 0 0 0 3 5 10 11 14 17 19 16 10 10 15
FB94 W F 0 1 2 2 2 7 20 20 21 19 18 14 16 12
FB95 W F 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
FB96 B F 1 1 1 4 11 12 21 19 24 25 29 28 23 20 18
FB97 W F 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1
FB98 A F 0 1 1 2 6 6 11 10 12 15 18 25 23 22 21
FB99 W F 0 0 0 0 3 4 6 5 5 7 8 5 8 8 8

FB100 A F 0 0 1 2 1 1 2 2 3 3 4 3 3 4 4
FB101 W F 0 1 2 3 5 6 12 13 12 15 12 11 11 12 10
FB102 B F 1 1 1 1 3 3 6 6 5
FB103 W F 0 0 1 1 1 1 2 3 3 3 4 4 5 5 5
FB104 A F 1 1 2 2 8 10 14 16 16 17 17 17 19 21 17
FB105 W F 0 0 0 0 0 2 3 5 8 7 10 9 10 8 8
FB106 A F 1 1 1 2 6 7 11 12 12 14 17 16 16 16 16
FB107 A F 0 0 0 1 3 3 10 14 12 12 12 17 16 14 15
FB109 A F 0 0 1 2 3 4 9 12 12 12 14 12 15 15 16
FBI 10 B F 0 0 0 1 4 5 12 12 13 10 10 11 11 11 11
FBI 11 A F 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
FB112 B F 0 0 0 0 2 2 2 3 3 3 6 7 6 4 6
FB113 A F 0 0 0 0 0 1 0 1 2 0 0 2 1 2 3 3
FB114 A F 0 0 1 1 2 6 7 11 14 25 30 37 26 31 31 32
FB115 A F 1 3 2 6 6 15 15
FB116 A F 0 0 0 0 0 1 2 2 2 3 6 7 7 7 7 7
FB117 A F 0 0 0 0 1 1 3 5 4 7 11 15 17 16 17 17
FBI 18 A F 1 0 1 5 7 15 16 16 18 18 28 30 30 30 30 30
FB119 A F 0 0 1 2 2 6 8
FB120 A F 0 0 2 4 3 5 6 5 5 7 9 10 10 15 16 16
FB121 A F 0 0 0 0 2 3 7 7 6 7 6 6 5 7 7 5
FB122 W F 0 ] 1 4 5 6 6 7 7 11 10 13 14 14 14 15
FB 123 A F 0 0 0 0 0 4 4 5 9 8 10 7 9 10 11 12
FB124 A F 0 0 2 4 6 6 7 10 12 11 11 10 8 7 7 6
FB125 A F 0 0 0 1 1 3 6 5 5 5 4 4 4 5 7 7
FB126 A F 0 0 3 8 8 19 19 19 18 14 17 20 18 16 17 17
FB127 A F 2 4 8 10 9 14 16 17 15 16 20 19 18 16 18 18
FB128 A F 0 0 1 1 2 5 7 11 19 18 18 23 24 24 26 26
FB129 W F 0 0 1 1 1 3 3 3 2 2 2 3 3 3 4 4
FB130 W F 0 0 0 0 0 1 0 0 1 2 2 4 4 4 7 7
FB131 B F 0 0 1 4 5 8 8 11 10 11 13 15 12 14 14 14
FB132 B F 0 0 0 0 1 1 1 1 2 2 3 2 2 3 4 5
FB133 A F 0 0 1 2 5 9 9 9 14 15 19 23 20 19 21 21
FB134 A F 0 0 0 0 0 0 0 0 0 1 1 1 3 3 3 3
FB135 A F 0 0 0 1 1 5 6 5 6 8 8 8 8 8 8 10
FB 136 A F 0 0 0 0 0 0 1 1 2 2 3 4 5 6 8 11
FB137 A F 0 1 2 2 4 5 6 8 13 13 15 19 17 11 12 14
FB 138 A F 0 0 0 0 0 1 0 2 2 2 2 3 3 4 4 4

FB139 A F 0 1 1 6 10 26 32 38
FB140 W F 0 1 1 1 1 4 7 8 10 16 16 12 12
FB141 B F 0 0 0 0 1 3 3 5 5 6 5 2 3
FB142 B F 0 0 0 0 0 4 5 5 4 5 7 11 9 8 9 9
FB143 A F 0 0 0 1 1 2 2 4 5 6 6 10 11 11 11 11
FB 144 A F 0 0 2 6 5 13 18 22 24 24 31 31 34 32 32 30
FB145 A F 0 1 1 1 2 3
FB146 A F 0 1 1 5 5 15 19 19 18 22 27 26 25 24 24 22
FB147 A F 0 0 0 0 1 8 8 11 14 21 25 28 27 28 29 29
FB148 A F 0 0 0 0 0 7 8 8 9 8 8 12 12 9 10 11
FB149 W F 0 0 0 2 3 5 9 11 17 21 22 21 23 20 22 19
FB150 W F 0 0 0 0 1
FB151 W F 0 0 1 1 5 6 6 6 7 13 14 15 13 17 16 16
FB153 A F 0 0 2 3 7 8 11 9 9 5 5 5 5 3 3
FB154 A F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FB15S A F 1 7 14 15 25 25 25 27
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FB156 A F 0 0 2 6 11 11 12 12 9 13 12 6 6 6 6
FB157 A F 0 3 2 2 4 4 4 5 3 4 3 2 2 1 1
FB159 W F 0 1 1 1 1 5 5 3 3 3 1 3 3 2 2
FB160 W F 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
FB161 W F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FB162 B F 0 0 0 0 0 0 1 1 0 0 0 0 0 0
FB163 A F 0 0 0 1 1 1 2 2 1 1 2 1 1 1 1
FB164 A F 0 0 0 0 0 2 1 1 1 0 0 2 2 3 2
FB 165 A F 0 1 1 2 4 5 6 8 14 12 14 10 9 9 10
FB166 A F 1 1 3 2 7 8 10 10 10
FB167 A F 0 0 1 2 5 4 4 4 4 3 4 2 1 1 1
FB168 W F 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FB169 W F 0 0 0 0 2 2 3 3 5 4 4 5 5 5 3
FB170 W F 0 1 2 3 10 15 13 17 28 30 37 33 33 33
FB171 B F 2 6 8 10 15 14 14 15 15 14 13 13 13 13
FB172 B F 0 0 1 1 3 3 3 3 3 3 3 2 4 3 3
FB173 A F 0 3 3 3 8 10 10 10 11 11 9 9 7 5
FB174 A F 0 6 6 10 17 19 21 24 16 11 6 6 5 6 7
FB176 A F 0 1 1 5 12 14 16 18 19 21 20 21 17 13 10
FB177 A F 0 1 2 3 8 8 9 11 10 13 16 16 16 17 17
FB178 W F 0 0 0 0 0 0 1 1 2 2 2 2 3 3 3
FB179 W F 0 1 4 5 8 8 10 10 13 16 18 16 16 15 15
FB180 B F 0 1 3 6 12 14 14 16 16 17 22 20 20 19 18
FB181 B F 0 1 2 4 13 17 22 27 28 37 42 36 32 35 35
FB182 B F 0 0 0 2 1 1 3 7 11 9 13 14 17 21 21
FB183 A F 0 0 1 1 1 3 4 4 3 3 3 4 6 6 6
FB184 A F 0 0 0 0 0 1 1 4 6 11 13 13 15 17 18
FB185 W F 0 0 1 1 3 9 12 15 20 23 23 23 23 20 18
FB186 A F 0 0 1 2 2 3 4 8 17 17 18 20 26 26 26
FB 187 B F 0 0 1 1 1 1 1 2 3 3 3 3 4 4 3
FB188 A F 1 1 1 1 1 1 3 4 3 3 3 4 4 4 4
FB189 W F 0 0 1 1 2
FB190 W F 0 0 0 0 0 4 8 14 17 17 17 19 21 21 24
FB191 A F 0 0 1 2 2 5 7 4 6 7 7 8 8 9 9
FB192 A F 0 1 0 1 1 1 2 2 2 2 3 3 3 4 5
FB193 A F 0 0 0 0 0 1 1 2 4 5 4 4 4 4 4
FB194 A F 0 0 0 1 0 2 1 1 2 1 4 7 8 8 10
FB195 A F 0 0 1 2 2 2 3 4 4 5 6 9 9 11 12
FB196 A F 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3
FB 199 A F 0 0 1 1 1 1 1 3 2 4 4 5 5 6 7
FB200 W F 0 0 0 0 0 0 0 1 1 1 2 2 4 4 4
FB201 W F 0 0 0 0 0 2 2 4 5 6 11 11 14 14 14
FB202 B F 0 0 1 1 1 4 5 6 6 6 6 6 6 8 8
FB203 B F 1 2 4 4 5 5 8 11 13 14 14 14 15 15 14
FB204 A F 3 5 6 5 5 3 3 7 8 8 8 7
FB205 A F 1 1 1 2 3 3 4 4 4 5 5 6 7 8 8
FB206 A F 0 0 0 1 1 1 2 3 7 8 7 8 8 9 9
FB207 A F 0 0 0 0 0 0 0 0 0 1 1 1 5 5 5
FB208 W F 1 1 1 1 3 5 5 6 5 7 5 5 7 9 9
FB209 W F 0 2 3 3 6 9 9 17 12 13 13 13 13 8
FB211 w F 0 0 1 1 4 5 8 14 16 15 15 15 5 5 1
FB212 B F 0 0 1 4 5 8 8 11 11 14 16 18 20 25 25
FB213 B F 0 0 1 1 2 3 3 3 3 3 7 8 13 16 20
FB214 A F 0 0 1 0 0 1 0 1 1 1 0 0 2 2 2
FB216 A F 0 0 0 1 1 1 2 2 3 3 2 2 2 2 2
FB217 A F 0 1 1 1 1 2 1 2 2 4 4 6 8 8 8
FB218 A F 0 1 2 2 2 5 5 9 8 10 13 14 15 13 12
FB219 A F 0 0 0 0 0 1 2 2 2 1 1 1 2 2 2
FB220 A F 1 4 10 10 10 8 8 8 5 5 4 4 4 3
FB221 W F 0 0 0 0 0 1 1 1 1 1 3 4 7 8 8
FB222 B F 0 1 1 3 4 5 8 11 12 13 13 13 16 16 14
FB223 B F 0 0 0 0 0 1 2 5 4 5 6 6 7 7 7
FB224 B F 0 0 1 1 2 2 4 4 4 4 5 5 5 5 4
FB225 A F 0 0 0 0 0 0 1 2 2 4 4 4 4 3 4
FB226 A F 0 0 0 0 0 1 1 1 2 2 2 2 2 2 4
FB227 A F 1 3 3 5 7 8 10 15 12 12 12 12 11 9
FB228 W F 0 0 2 2 2 3 7 8 8 9 10 10 10 11 12
FB229 W F 1 4 5 5 6 7 7 6 4 4 2 2 3 3 3
FB230 B F 0 2 2 1 1 3 3 8 9 7 8 8 7 6 6
FB231 A F 0 3 5 4 6 9 9 9 9 8 11 13 11 13 13
FB233 A F 0 3 0 4 5 6 15 18 16 18 20 21 21 21 21
FB234 A F 0 1 1 1 1 1 2 2 3 3 4 4 7 7 7
FB235 A F 0 0 0 0 0 0 0 0 0 0 3 2 2 3 3
FB236 A F 0 0 0 1 1 3 3 3 5 8 8 11 15 17 17
FB237 A F 0 0 0 0 0 1 3 2 3 4 3 3
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FB238 W F 0 0 0 0 2 2 5 8 10 8 8 8 8 8 9
FB239 w F 1 3 3 4 5 11 13 13 17 17 16 17 17 15 16
FB240 B F 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
FB242 A F 0 2 3 5 7 9 11 12 10 13 13 12 7 8
FB243 A F 0 1 1 3 4 3 9 9 9 11 11 11 11 11 9
FB245 A F 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
FB246 W F 0 1 1 2 6 13 18 19 22 26 26 26 25 24 20
FB247 W F 0 0 0 0 0 0 0 0 0 1 2 2 2 1
FB248 W F 0 0 1 2 2 6 12 14 16 18 19 20 20 21 21
FB249 W F 0 4 4 4 4 8 13 10 13 14 14 14
FB251 w F 0 0 0 0 1 2 3 2 3 4 4 4 5 5
FB252 B F 0 0 0 1 2 8 10 11 16 15 17 20 20 21 21
FB253 A F 1 3 4 11 12 16 22 22 15 15 10 9 5 3
FB254 A F 0 0 2 3 5 10 26 22 23 26 27 27 32 34 34
FB25S A F 0 0 0 0 3 4 8 10 9 11 13 14 14 16 15
FB256 A F 0 0 0 0 0 0 0 0 0 0 0 1 1 1
FB257 W F 0 0 0 1 3 6 9 11 10 11 10 10 14 14 12
FB258 W F 0 0 2 8 9 17 19 19 17 22 24
FB259 W F 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
FB260 B F 0 0 2 3 3 11 16 14 14 19 15 15 10 9 5
FB261 B F 0 0 0 0 1 0 0 1 1 2 2 2 2 3 3
FB262 A F 0 0 0 0 0 0 0 0 0 2 3 3 5 5 4
FB263 A F 1 3 8 17 17 25 24 27 21 23 23 17 10 7
FB264 A F 0 0 1 2 1 1 5 8 8 10 11 11 12 12 13
FB265 A F 0 0 0 0 0 0 3 6 5 6 6 6 7 8 8
FB266 A F 0 2 3 6 5 7 8 10 11 7 7 4 2 3 4
FB267 W F 0 0 0 0 1 1 1 3 4 5 6 7 7 8 8
FB268 W F 1 5 9 9 6 9 17 15 13 10 12 10 10 10
FB269 W F 0 0 0 0 0 1 1 1 1 1 1 1 3 3 3
FB270 B F 1 5 10 12 14 19 17 15 13 13 13 14 15 11 11
FB271 B F 0 0 0 0 0 0 0 0 2 4 5 5 6 8 9
FB272 A F 0 0 2 7 8 9 9 12 14 14 17 17 17 15 14
FB273 A F 0 1 4 6 4 12 8 2 1 3 1 1
FB274 W F 0 0 0 0 2 4 6 6 8 9 8 8 8 9 9
FB27S W F 0 0 0 0 1 5 8 8 9 6 4 2 4 4 4
FB276 W F 0 0 0 1 1 1 2 2 3 5 5 4 5 5 5
FB277 B F 0 0 0 0 5 7 8 8 9 11 15 16 16 18 18 18
FB278 B F 0 0 0 0 0 1 1 1 1 2 3 3 2 2 1 1
FB279 A F 0 2 3 6 9 8 10 12 12 10 12 12
FB280 A F 0 0 1 4 8 9 15 20 20
FB281 A F 6 7 8 7 16 19 21 16 16 18 18 18 16 20 16 16
FB282 A F 0 0 1 3 3 5 9 9 10 12 14 17 17 18 18 23
FB283 A F 1 2 4 8 13 14 16 18 20 22 22 25 25 22 22 21
FB284 A F 0 0 1 1 1 2 3 3 4 4 4 4 3 4 4 4
FB285 A F 1 0 0 0 1 1 3 3 5 6 6 6 6
FB286 W F 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1
FB287 B F 0 1 1 3 4 5 6 10 14 14 14 16 16 18 18 18
FB288 A F 0 0 1 1 8 15 23 23 25 26 29 31 31 31 31 31
FB289 A F 0 0 0 1 3 3 7 9 12 14 18 23 27 27 27 27
FB290 A F 0 0 0 0 0 0 0 0 1 1 1 2 2 4 5 8
FB291 A F 0 1 6 9 10 16 16 20 22
FB292 A F 0 0 1 1 7 7 6 7 7
FB293 A F 0 0 1 2 1 2 2 2 2
FB294 A F 0 0 0 1 2 3 5 5 5 6 7 7 7 6 6 6
FB295 W F 0 0 2 4 9 11 11 11 11 12 7 4 2 2 2 3
FB296 W F 0 0 0 0 0 0 2 4 5 5 9 13 15 16 16 18
FB297 B F 0 0 2 2 6 12 16 16 16 18 18 18 18 20 20 20
FB299 A F 0 0 3 4 9 12 12 12 12 12 13 12 12 13 12 12
FB300 A F 0 0 0 1 1 2 3 4 4 5 5 6 6 9 9 9
FB301 A F 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 1
FB302 A F 0 0 3 5 8 9 12 12 12 12 12 13 12 14 12 11
FB303 A F 0 2 6 11 23 21 21 21 22 22 21 22 18 14 16 17
FB304 W F 0 0 4 6 7 12 7 7 10 10 10 14 12 15 15 16
FB305 W F 3 3 6 8 15 15 16 17 17 17 17 18 16 19 21 21
FB306 w F 0 0 0 0 0 0 1 1 1 1 2 3 3 3 3 4
FB307 A F 0 0 2 5 5 7 8 9 12 14 14 15 17 16 17 15
FB308 A F 0 0 0 0 1 1 1 2 4 5 8
FB309 A F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
FB310 A F 1 2 2 8 10 11 14 14 14
FB312 B F 0 1 12 18 31 30 30 30 30 29 29 26 23 18 19 15
FB313 B F 0 0 0 2 2 2 2 2 2 3 3 3 3 3 3 3
FB314 W F 0 1 2 3 6 9 12 12 12 12 13 15 15 15 15 15
FB315 W F 3 3 8 13 21 31 31 31 31
FB316 B F 0 0 0 0 0 3 5 4 5 4 5 8 4 6 6 5
FB317 B F 1 1 2 2 2 6 6 7 7 8 8 11
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FB318 B F 0 0 0 0 0 1
FB320 A F 0 1 6 10 10 18
FB321 A F 1 2 3 3 2 5
FB322 A F 0 0 2 2 1 1
FB323 A F 1 1 2 3 8 9
FB324 A F 2 3 4 7 15 13
FB325 W F 0 0 3 3 5 8
FB326 A F 0 0 0 0 0 0
FB327 A F 0 0 7 7 14 17
FB328 A F 0 0 0 0 0 0
FB329 A F 0 0 0 0 6 8
FB330 A F 0 0 1 3 8 6
FB331 A F 0 1 1 2 0 2
FB332 A F 0 1 1 7 13 19
FB333 A F 0 0 0 0 1 1
FB334 W F 0 0 0 0 0 0
FB335 W F 0 0 2 5 10 8
FB336 w F 0 0 0 2 6 7
FB337 B F 1 3 4 5 15 18
FB338 A F 0 0 1 2 5 5
FB339 B F 0 1 6 8 13 18
FB340 B F 0 1 2 3 9 9
FB341 A F 0 1 6 11 19 20
FB344 B F 0 0 0 1 3 1
FB345 W F 0 0 0 4 4 4
FB346 W F 1 2 3 5 5 11
FB347 A F 0 0 0 0 1 3
FB348 A F 0 1 0 1 4 3
FB349 B F 0 0 0 0 0 2
FB350 A F 0 0 0 0 0 7
FB351 A F 0 0 0 0 0 0
FB352 W F 0 0 2 3 8 7
FB353 A F 0 0 2 3 6 14
FB354 W F 0 0 0 1 1 1
FB355 W F 0 2 4 5 9 8
FB356 A F 0 1 3 6 17 18
FB357 A F 0 0 0 1 4 4
FB3S8 A F 0 2 1 4 7 12
FB359 A F 0 0 4 6 13 13
FB360 A F 0 1 7 14 16 19
FB361 W F 0 0 0 2 4 4
FB362 A F 0 0 0 0 0 0
FB363 A F 0 0 1 2 4 3
FB364 A F 0 0 0 2 3 4
FB365 W F 0 2 2 4 5 7
FB366 B F 0 1 8 13 16 12
FB367 A F 1 3 4 10 16 18
FB368 B F 0 0 1 1 1 2
FB369 A F 0 1 1 2 7 9
FB370 A F 0 0 2 0 2 2
FB371 W F 0 0 0 0 2 3
FB372 A F 0 0 0 0 1 4
FB373 A F 0 0 3 2 6 6
FB374 W F 0 3 4 6 9 12
FB376 A F 0 0 0 3 3 7
FB377 A F 0 0 0 0 0 0
FB378 W M 0 0 2 4 6 6
FB379 W M 0 0 0 3 4 6
FB380 W M 0 0 0 0 0 0
FB381 W M 0 0 0 0 2 2
FB382 W M 0 0 0 0 0 0
FB383 B M 0 1 4 6 10 15
FB384 B M 0 0 0 2 2 3
FB385 A M 0 1 1 1 2 2
FB386 A M 0 0 0 0 0 0
FB387 A M 1 1 0 1 3 3
FB388 W M 0 3 2 10 23 23
FB389 B M 0 0 0 0 0 1
FB390 W M 0 0 0 0 0 0
FB391 A M 0 0 0 0 0 0
FB392 A M 0 0 0 0 0 0
FB393 A M 0 0 0 2 3 3
FB394 A M 0 0 1 5 7 9
FB395 A M 0 0 0 0 0 0
FB396 A M 0 0 0 0 0 0

2 7 7 7 8 12 12 15 16 18
17 18 18 15 12
6 6 7 7 9 9 9 12 12 14
1 1 1 1 1 1 1 1 1 1
11 15 16 18 20 23 23 23 20 20
18 20 22 21 21 22 18 13 14 14
9 9 13 18 22 25 25 28 28 28
1 3 3 3 4 6 7 9 8 8
17 27 27 27 27 14 14 13 12 10
0 0 0 0 0 1 1 1 1 1
11 13 16 18 18 21 21 21 19 19
6 7 8 8 8 10 8 10 8 8
3 2 4 6 6 7 8 8 8 9
18 23 24 24 25 30 30 33 30 30
2 2 2 3 3 8 6 7 6 6
0 0 0 0 0 0 0 2 2 2
9 7 6 7 4 4
3 3 4 4 2 2
20 20 20 21 21 20 18 18 20 20
5 6 6 6 7 11 11 9 9 9
16 17 17 17 15 15
13 16 16 16 18 18 16 13 8 7
27 27 27 27 27 26 23 26 26 26
0 1 0 0 0 0
8 9 8 11 11 12 12 12
6 9 10 10 10 12 12 12 12 12
2 3 3 4 4 4 3 2 1 1
3 2 2 2 3 3 3 3 3 3
5 8 8 9 11 12 12 12 12 12
8 9 8 8 8 8 8
0 1 1 1 1 1 1 1 1 1
9 13 12 11 10 9
15 17 17 18 20 22 22 20 21 21
1 1 1
7 7 7 6 4 4
25 28.
2 3 3 3 3 3
7 13 16 16 16 21 21 21 21 21
21 22 22 20 20 18 16 16 16 15
23 23 23 21 21 19 15 13 13 13
4 8 10 14 14 14 12 12
0 0 0 0 1 1 1 1 1 1
5 6 7 7 7 7 7 10 10 10
4 4 4 3 4 7 7 10 10 13
7 11 11 11 11 14 14 14 14 14
8 10 7
24 25 25 24 27 30 30 30 30 29
3 3 4 6 6 7 7 9 7 7
10 11 13 12 10 9 8 8
2 2 2 0 0 0
3 3 3 1 0 0
4 4 5 5 5 5 6 6 5 4
9 9 11 12 14 15 14 14 15 15
13 13 13 15 16 16 15 13 13 12
8 15 15 15 15 17 17 17 17 17
0 0 0 2 3 5 5 5 5 6
7 10 12 11 12 7 7 7 7 5
10 11 13 14 14 14 14 14 14 14
0 2 2 1 1 1 2 2 2 1
2 3 3 4 4 5 5 5 4 5
0 0 0 0 0 0 0 1 1 1
16 18 20 22 21 20 20 18 17 15
5 5 5 5 6 6 6 6 6 5
2 3 4 6 6 6 6 8 11 11
0 0 0 0 1 1 1 1 2 3
2 3 4 4 4 6 8 8 9 9
24 21 21 24 28 28 28 30 31 34
1 1 1 1 2 2 2 2 1 3
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 4 4 5 5
2 2 2 2 2 3 7 9 9 8
3 2 2 1
9 9 9 7 6 6
1 3 5 7 7 7 9 9 9 10
0 0 0 0 0 1 2 2 2 2
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FB397 A M 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2

FB398 A M 0 1 1 1 2 2 3 3 3 4 6 8 9 9 9 9

FB399 W M 0 0 0 0 3 3 3 3 3 3 3 3 4 4 3 3

FB401 B M 0 0 0 1 3 3 3 3 4 4 4 4 4 3 3 3

FB402 A M 0 0 0 0 0 0 0 0 0 0 2 2 5 5 5 4

FB403 A M 0 1 1 3 4 5 5 6 8 8 8 11 11 10 9 12

FB404 W M 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1

FB405 W M 0 0 1 0 0 0 0 1 1 2 4 4 4 4 4 4

FB406 A M 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

FB407 A F 0 0 0 0 3 5 5 4 5 5 4 5 5 2 1

FB408 W F 0 0 0 0 1 1 2 3 3 4 4 4 5 4 4

FB409 A F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FB410 A F 0 0 1 1 1 4 4 8 9 9 8 8 10 10 12

FB411 W F 0 0 0 0 0 0 2 2 2 2 3 3 5 7 7

FB412 A F 0 0 0 2 5 7 9 11 11 11 11 11 11 11 13

FB413 B F 0 0 0 0 0 2 5 5 6 10 11 11 16 18 20

FB414 A F 0 0 0 0 0 1 4 4 7 10 15 15 15 15 14

FB415 B F 1 3 4 13 7 12 18 22 29 29 29 29

FB416 B F 0 4 8 15 18 22 25 28 28 28 28 28 24 20 15

FB417 A F 0 0 0 1 1 0 0 2 1 1 3 3 4 5 5

FB418 B F 2 5 5 12 14 14 18 21

FB419 A F 0 1 2 5 5 5 5 5 3 4 3 2 4 4 4

FB420 B F 4 7 9 20 22 20 18 19

M.ID W24 W25 W26 W27 W28 W29 W30 W31 W32 W33 W34 W35 W36 W37 VV38 W39 W40 W41 W42
FBI 19 18 18 18 18 18 18 17 17 17 17 16 16 16
FB2 7 6 6 6 4 4 4 4 4 4 4 5 5 5 5 5 5 4 4

FB3 24 24 24 20 23 23

FB4
FB5 21 21 21 21 21 19 19 17 17 17 16 16 16

FB6 5 5 5 4 5 5 5 5 5 5 5 5 3 4 4 4 4 4 4

FB7 2 2 2 2 2 2

FB8 3 3 3 3 4 3 2 2 1 1 1 1 1 1 1 1 1 1 2

FB9 17 13 10

FBI 0 9 9 9 9 9 8 8 10 9 9 9 9 10 10 12 12 12 12 10

FBI 1 5 5 4 4 4 4 3 3 4 4 4 2 2 1 1 0 1 0 0

FB13 27 29 28 28 27 29 24 23 23 22

FB14 5 5 4 4 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

FB15 9 6 5 4 4 4 4 4 4 4 4 4 3 3 4 3 3 3 3

FB16 4 4 3 3 3 3 3 4 3 3 3

FB17 26 25 23 20 17 16 16 15 15 15 14 15 14 15 15 14 15 15 13

FB18 15 16 16 14 13 11 9 8 5 4 4 3 2 4

FB20 32 31 30 29 27 25 26 25 25 25 24 24 24

FB21 2 2 2 2 2 3 3 3 3 3 3 3 2 2 2 2 2 2 2

FB23 8 8 7

FB24 14 14 12 11 10 7 6 6 6 6 4 4 2 1 1 0 0 0 0

FB25 16 16 16 16 16 16 16 17 16 16 16 15 14

FB26 16 15 15 15 15 13 13 12 11 11 10 11

FB27 6 , 7 7 9 8 8 8 8 8 8 8 8 6 3 3 5 5 5 5

FB28 10 12 12 11 12 12 12 12 11 11 9 9 8 9 9 10 9 9 9

FB29 8 ! 8 8 9 9 8 8 9 9 9 8 8 8 10 9 7 8 7 7

FB30 15 ,15 13 13 12 10 9 9 7 7 6 6 7 7 7 7 7 7 7

FB31 16 16 17 16 15 13 12

FB32 3 3

FB34 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FB35 15 16 16 15 15 15 15 11 13 14 11

FB37 7 7 7 8 8 8 8 8 8 8 8 9 8 8

FB38 18 18 18 18 17 15 15 17 16 15 15 15 15

FB39 11 10

FB41 6 6 6 8 8 7 6 7 6 6 6 6 5 4 4 4 4 4 5

FB42 25 25 25 25 25 23 24 23 23 23 21 20 17 15 15 15 15 13 13

FB43 35 35

FB44 4

FB45 5 5 6 6 6 6 6 6 6 6

FB46 19 21 21 21 21 19 21 21 22 22 19 16 16

FB47
FB48 3 6 6 6 6 5 4 4 3 3 3 2 2 3 3 3 3 2 2

FB49 19 19 16

FB50 2 2 2 2 3 3 3 3 3 3 3 3 3 2 2 3 3 3 2

FB51
FB52 1 1 1 1

FB53 3

FB54 28 28

FB55 1

FB56 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4

FB57 12 12 12 12 11 10 10
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FB58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FB59 11 12 12 13 13 11 12 10 10 10 10 11 9 8 8 9 8 8 8
FB60 2 2
FB61 13 16 16 15 13 14 14 14 12 12 12 9 7 7 7 7 6
FB62
FB63 29 29 29 29 29 29 29 29
FB64 1 1
FB65 21 22 23 23 23 24 24 24 22 22 22 22 22 23 23 22 20 20 20
FB66 3 2 2 2 3 3
FB67 7 7 6 2
FB68 11 9 9 9 9 9 8 8 7 7 6 6 5 5
FB69 7 6 6
FB70 9 9 9 9 9 9 7
FB71 21 20 20 20 19 18 18 17 17 18 18 18 18 17
FB72 18 18 18 19 19 19 19 19 19 19
FB73 9 9 9 9 8 8 8 8 8 8 7 6 5
FB74 30 29 30 29 30 30 30 30 30 30 30 30 30
FB7S 6 6 6 6 6 5 4 4 3 3 3 3 3 2 2 2 2 2 2
FB76 2 2
FB77 1 1 1 0
FB78 7 8 8 7 6 5 5 4 3 3
FB79 7 7 7 9 9 11 11 11 11 11 10 9 9 9
FB80 33 31 31 27 26 24
FB81 11 10 12 13 15 15
FB82
FB83 20 20 19 19 17 16 16 16 16 16 16 16 16 13 10
FB84 17 18 18 17 17 17 17 14 13 13
FB85 2 2 1 0
FB86 7 6 6 5 5 4 4 4 4 4 3 3 3 4 4 4 4 3 2
FB87 7 6 6
FB88 22 22 22 22 22 22
FB89 18 18 18 16 16 14 13 13 13 13 13 12 10 8 8
FB90 27 27 27 27 27 24 28 28 26 25 25 25 25 25 25 25
FB91 3 4 4 5 6 5 5 5 4 4 4 4 4 4 5 4 3 3 3
FB92 14 14 14 14 14 16 15 15 14 15 14 14 14
FB93 15 15 14 12 11 9 9 8 6 6 5 5 5
FB94
FB95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FB96 18 20 20 18 17 17
FB97 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
FB98 22 22 23 23 23 22 23 23 23 23 21 21 21 21 21 21
FB99 8 7 7 7 7 7 7 7 7 7 7 7 7 8 7 7 7 7 7

FB100 4 4 4 7 6 6 6 6 6 5 5 5 5 5 5 5 5
FBI 01 10 10 9 9 8 8 6 6 4 4 5
FB102
FB103 6 6 7 7 7 7 7 7 7 7 5
FB104 17 17 16 15 13
FB10S 8 8 8 7 7 7 7 7 7 7 7 8 6 6 5 6 6 6 5
FB 106 17 17
FB107 15 15 15 14 12 12 12 12 12 12 12 12 13 13
FB109 16 16 16 16 14 14
FBI 10 11 12 13 14 12 10 10 12 10 10 12 12 11 9 8 6 9 6 5
FBI 11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
FBI 12 8 12 12 15 15 15 15 14 14 14 15 13 11 11 11 9 9 9 9
FBI 13 4 4 4 2 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3
FBI 14 34 36 39 38 38 39 39 39 37 34 38 35 35 35 35 35 34 30 28
FB115
FB116 7 8 8 8 8 8 8 8 8 8 8 8 8
FBI 17 16 13 14 14 14
FBI 18 28 28 28 25 22 22 23 23 20 18 19 18 18 18 18 16 16 16 16
FB119
FB 120 16 16 15
FB121 3 2
FB122 18 18 17 18 18 17 17 17 15 15 15 15 15 15 12 14 14 14 15
FB123 12 11 10 10 10 8 9 8 8 8 7 9 10 10 6 6 5 5 5
FB124 6 6 6 6 6 6 6 6 6 6 6 5 6 5 5
FB125 7 6 7 6 6 6 6 6 4 5 4 4 4 2 2 2 2 2 2
FB126 17 16 16 15 14 14 14 14 14
FB127 18 18 17
FB128 26 26 26 24 26 18 16 16 20 20 18 18 18 15 10 7
FB129 5 5 5 5 4 4 4 4 3 2 2 2 2 1 1 1 1 1 1
FB130 7 6 4 3 4 4 4 4 4 2 3 3 2
FB131 14 14 14 14 14 14 14 14 14 13 13 13 13 13
FB132 6 6 5 5 4 4 4 4 4 3 3 3 3 2 3 2 2 2 2
FB133 18
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FB134 3 4 4 4 4 5 5 5 4 4 4 4 4 2 2 2 2 2 2
FB135 9 8 8 8 6 5 5 5 5 5 4 3 3 2 2 2 2 2 1
FB136 11 11 12 12 13 12 12 12 11 11 10 10
FB137 14 14 13 10 12 12 10 10 7 7 6 6 6 5 5 3 3
FB138 4 4 4 4 3 2 2 2 2 2 3 3 2 2 2 2 2 2 2
FB139
FB140
FB141
FB142 9 8 8 8 7 4 2 2 2 2 2 2 2 2 2 2 2 2 2
FB143 13 14 14 13 13 13 15 15 15 16 16 14 14 14 14
FB144 30 29 28 28 28 28 28 28
FB145
FB146 22 22 22 22 22 23 23 23 21 21 19 15 15 13 12 12
FB 147 29 29 29 29 29 26 21 21 12 11 11
FB148 8
FB149 17
FB150
FB151
FB1S3
FB1S4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FB155
FB156 5 5
FB157 1
FB1S9 2 2 2 2 2 3 3 3 3 3 3 2 2 2 2 2 2 2 2
FB 160 0 0
FB161 0 0
FB162
FB163
FB 164 2 2 2 2 3 3 3 3 3 3 3 3 3
FB165 10 10 12 13 14 13 13 13 12 12 10 10 10 9 9 8 6 6 5
FB166
FB167 1 0
FB 168
FB169 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
FB170
FB171
FB172 3 3 3 3 3 3 2 2 3 3 3 3 3 4 4 4 4 4 4
FB173
FB174 5 6
FB176
FB177 18 20 20 20 20 20 20 20 20 19 20 18 15 14 15 12 11 10
FB178 4 6 6 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6
FB179 12 11 11 9 9 9 9 9 9 9 9 9
FB180 16 16 16 15 14 14 10 10 8 8 6
FB181 35 34 34 34 32 30 30 29 27
FB182 21 21 15 15 15 12 5 4 4
FB183 5 4 5 5 5 5 4 4 3 3 3 3 3 3
FB184 18 19 18 18 15 15 15 15 16 14 13 11 9 9 8 7 5 8 9
FB185 19 15 15 15 15 14 15 12 12
FB186 26 26 26 24 24 25 24 20 19 17 17 18 18 18 15 17 17 17
FB187 4 4 4 4 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2
FB188 4 4 4 4 4 4 2 3 2 2 1 2 2 2 2 2 1 1 1
FB189
FB190 24 24 22 22 21 21 21 20 20 16
FB191 13 12 12 13 13 12 11 11 12 12 12 11 10 8 8 8 7
FB192 4 4 4 4 4 4 4 4 4 4 3 4 2
FB193 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
FB 194 10 10 8 8 8 8 8 7 6 6 6 6 5 5 5 5 5 5 5
FB 195 12 13 12 12 11 12 12 12 12 10 10 8 7 8 8 8 9 8 8
FB196 3 3 3 3 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2
FB199 7 7 7 7 7 7 7 7 8 7 9 8 8 8 8 8 8 8
FB200 4 4 4 4 4 4 4 4 4 4
FB201 13 13 12 12 12 11 11 11 11 11
FB202 8 8 5 5 5 5 5 3 3 4 3 3 2 1
FB203 12 17 12 10 8 8
FB204
FB205 8 8 6 5 5 4 4 3 4 2 2 2 2 2 2 2 2 2 2
FB206 9 9 8 8 8 8 8 8 6 6 6
FB207 5 5 4 4 4 4 5 5 2 2 2 2 2 2 2 2 2 2 2
FB208 8 8 9 9 10 10 9 9 9 7 8 6 6 5 6 5 4 4 4
FB209
FB211
FB212 25 25 25 25 25 26 26 24 24 25
FB213 20 23 23 23 23 23 22 21 20 18 16 13 14 13 13 13 13 13 11
FB214 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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FB216 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
FB217 8 8 7 7 7 9 9 6 6 4 4 5 4 4 4 4 4 4
FB218 12 12 10 10 9 9 8 7 7 6 6 6 6 5 5 5 5 5
FB219 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
FB220
FB221 8 8 8 8 8 8 6 6 6
FB222 13 14 13 12 12 11 10 12 12
FB223 7 7 5 6 6 6 6 6 7 6 7 7 8 8 8 8 8 8
FB224 4 5 4 4 4 5 5 4 4 4 4 4 4 3 3 3 3 3
FB225 4 4 4 4 4 3 3 3 3 3 4 4 3 3 3 3 3 3
FB226 5 5 4 4 4 3 3 4 4 2 3 3 3 3 3 3 3 3
FB227
FB228 13 13 11 12 11 12 11 11 12 11 9 7 7 7 7 7
FB229 3 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2
FB230 6 6 5 5 5 5
FB231 15 14 12 14 15 14 15 13 11 10 11 11 11 12 12 12 8 9
FB233 21 21 21 21 21 22 22 22 22 20 18 17 17 17 14 12 12 11
FB234 7 5 6 6 6 6 6 6 6 6 6
FB23S 4 4 4 4 4 4 5 4 4
FB236 17 17 17 17 17 18 18 18 17 14 14 14 12 11 10 10 10 10
FB237
FB238 9 8 6 6 5 5 5 5 5 5 5 5 5 5 5 3 3 3
FB239 15
FB240 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2
FB242
FB243 8 8 6 6 5 5 5 6 6 4 4 4 4 4 2 2 2 2
FB245 1 1 1 1 1 1 1 1 1
FB246 19 18 16 17 17 18 17 18 18
FB247
FB248 21 22 22 22 22 21 20 18 18
FB249
FB251
FB252 21 21 21 21 21 21 21 21 21 18 14
FB253
FB254 37 38 38 38 37 36 32 32 32 29 29 28 29 28 26 26 26 26
FB255 15 12 12 13 13 13 11 13 11 11
FB256
FB2S7 13 11 7 7 6 5 5 5
FB258
FB259 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
FB260 5 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
FB261 3 5 5 3
FB262 3 2 2 1 1 1
FB263
FB264 13 13 11 11 11 11 11 10 9 8 8 9 8 6 6
FB265 7 7 6 6 6 6 6 6 4 3
FB266 5 5 5 5 5 3 3 2 2
FB267 8 8 8 9 9 10 11 11 13 13
FB268
FB269 4 4 4 4 4 4 4 4 4 4
FB270 11
FB271 9 9 8 8 8 8 8 8 8
FB272 15 15 14 13 13 13 13 13 14 14 12 11 11 11 10 11 11 8
FB273
FB274 9 8 5 5 4 3 4 5 5 5 3 4 4 4 4 4 4 4
FB275 4 5 2 2 2 2 2 3 3 3
FB276 5 5 3 3 3 2 3 4 2 2 2 2 2 2
FB277 20 20 19 18 18 19 18 18 19 19 19 19 19 19 20 20 20
FB278 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
FB279
FB280
FB281 16 13 10 8 7
FB282 23 23 23 23 19 15 14 14 14 14 14 12 12 12 12 12 12 11
FB283 21
FB284 5 5 6 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4
FB285
FB286 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1
FB287 19 19 18 16 13 11 11 11 12 11 10 5 7 6 6 6 6 6
FB288 31 27 25 22 22 22 22 22 20 15 12 14
FB289 27 27
FB290 10 10 10 12 12 12 12 12 12 12 12 12 12 10 10 11 11 11
FB291
FB292
FB293
FB294 6 6 9 7 9 8 7 7 7 7 7 6 3 1 1
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FB295 3 3 3 3 2
FB296 19 18 20 19 19
FB297 20 19 19 15 14
FB299 12 12 11 11 8
FB300 9 11 11 11 11
FB301 1 0 0 0 0
FB302 11 11 10 10 10
FB303 16 16 17 17 17
FB304 16 19 19 21 18
FB305 20 19 20 20 18
FB306 4 4 5 5 5
FB307 16 16 16 16 16
FB308
FB309
FB310
FB312
FB313
FB314
FB315
FB316
FB317
FB318
FB320
FB321
FB322
FB323
FB324
FB325
FB326
FB327
FB328
FB329
FB330
FB331
FB332
FB333
FB334
FB335
FB336
FB337
FB338
FB339
FB340
FB341
FB344
FB345
FB346
FB347
FB348
FB349
FB3S0
FB3S1
FB352
FB353
FB354
FB355
FB356
FB357
FB358
FB359
FB360
FB361
FB362
FB363
FB364
FB365
FB366
FB367
FB368
FB369
FB370
FB371
FB372
FB373
FB374

16
3
15

6

18

14
1
19
13
29
8
7 
1 
18
8 
9 
29 
6 
2

20
9

7
26

11

1

22

16 15
2 2
15 14

5 5

19 20

15 15
1 1
17 19
14 14
29 29

1
18
5 
13 
29
6 
3

21
9

7
26

12

1
19
5
13
27
4
3

6
24

3 2
12 12

2 2 

22 24

12
13

16
1

14

16
1

18
14
29
9

1
19
4
13
24
5 
2

21 21

7
24

11
13

16
1

14

20 20

14
1

13
14 
25 
9

1
15 
5

14
24
5
2

21
7

7
19

10 10  10

2 2 2 

24 24

12
13

2 2 2 2 2 2 3 3 3 3 2 2 2 2
17 14 10 11 5

8 8 8 8 8
9 10 11 11 10 7 7 6 4 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 8 10 9 8 8 8 8 11 10 7 7 7 7
17 14 14 14 14 14 14 11 11 6 5 7 7
19 19 19
18 18 16 12 12 12 14 13 12
4 3 3 3 3 3 3 3 3 3 3 3 3 3
16 14 14 13 12 10 9

16 16 13 14 13 13 13 13 8 7 7
1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 13 13 13 12

4 4 3 3 4 3 3

11 8 9 8 6
1 1 1 1 1 1 0 0 0 0 0 0 0 0

14 13
15 14 16 14 16 16
25 25 25 23 19 19 20 19 19 19
7 7 7 7 7 7 7 6 6 6 6 5 6 6

1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 12 11 13 12 10 8 5 5 1 1
5 4 4 4 3 3 2 3 3 3 2 2 2 2
14 14 12 12 12 12 9 9 8
21 19 19 18 16 13 11

2 2 3 3 3 3 3 3 3 3

19 19 19 16 14 12 13 11 11 10 9 5 8 8
7 6 6 6 7 6 5 6 6 6 6 6 6 6

6 4 4 3 4 2 2 2 2 2 1 1 1 2
15 18 18 17 15 16 15 14 14 14 14 14

10 10 10 8 8 6 6 6 5 5

2 1 1 1 1 1 1 1 1 1 1 1 1 1
12 12 7 4 3 2

11
13

11
13

11
15

10
15 15 15 14 13 13 14 15 13 13 13

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 10 10 10 10 8 8 7 7 7 7 8 8 7 7 7 5 7 6
13 16 15 16 16 15 12 12 12 10 10 10 10 10 10 9 9 10 10
14 12 12 12 10 10 9

29 27 23 21 21
7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6

4 3 2 2 3 3 3 3
15 15 16 14 14 12 12 12 11 11 9 11 10 6
12 12 10 10 8 6 7 6 5 5 6 3 3 4 4 4 4 3 4
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FB376 17 15 17 17 17 17 14 13 14 12 13 12 12 12 11
FB377 6 7 7 7 7 7 8 7 6 6 6 4 6 6 4 4 4 4 5
FB378 5 3
FB379 13 11 10 10 10 10 9 9 10 9 9 9 9 9 10 10
FB380 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
FB381 3 4 2 2 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
FB382 1 1 1 1 3 3 2 2 1 1 1 1 1 0 0 1 1 1 1
FB383
FB384 3 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
FB385 11 11 11 11 11 10 12 11 11 11 11 10 10
FB386 4 2 4 4 4 3 2 4 3 2 2 2 2 1 1 1 1 1 1
FB387 9 7 8 9 9 9 11 11 11 10 9 7 6 6 6 6 6
FB388 35 33 30 25 23 17 14 9 10 7 4 4 4 4 3 4 3
FB389 3 2 2 2 3 3 2 2 1 0 1 1 1 1 1 0 1 0 0
FB390 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FB391 4 1 1 2 2 1 1 2 1 1 1 1 1 1 1 0 0 0 0
FB392 6 5 5 5 4 5 3 3 4 4 3 4 4 4 4 4 4 4 4
FB393
FB394
FB395 8 6 5 5 4 2 2 2 2 1 2 1 1 1 1 1 1 1 1
FB396 2 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0
FB397 2 3 3 3 7 6 6 5 4 4 4 4 4 3
FB398 8 8 7 7 8 9 9 9 8 6 7 7 7 7 6
FB399 3 2
FB401 3 2 2 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0
FB402 3 2 2 1 3 4 3 3 2 2 3 3 3 3 3 2 1 0 0
FB403 11 8 5 6 6 6 6 5 5 4 5 5 5 5 5 3 2 2 2
FB404 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1
FB405 4 4 3 3 3 3 5 4 5 5 7 7 6 6 5
FB406 1 0 0 0 0 1 1 1 0 0 2 2 2 2 1 1 1 2 2
FB407 1
FB408 4 4 3 4 4 4 5 5 4 4 4 4 4 4 4 4 4 3 3
FB409 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FB410 12 12 12 12 12 13 13 12 13 13 13 12 12 12 10 10 10 11 11
FB411 7 9 9 9 9 8 9 9 9 9 9 8 8 9 8 8 8 6 6
FB412 12 11 11 11
FB413 22 22 22 21 21 23 23 23 23 23 23 23 23 20 2.0 17 17 16 16
FB414 15 15 14 14 14 12 10 10 10 9 9 9 10 9 8 9
FB415
FB416
FB417
FB418
FB419 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
FB420

M.ID W 43 W44 W45 W46 W47 W48 W49 W50 W51 W52 W53 W54 W55 W56 W57 VV58 W59 W 60
FBI
FB2 4
FB3
FB4
FB5
FB6 3 3 3 3 3 3 3 3 3 3  
FB7
FB8 2 2
FB9

FB10 11 8 7 6 5 6 6 5 6 5 5 5 5
FBI  1 O O O O O O O O O O O O O O O O O O
FB13
FB14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
FB15 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1
FB16
FB17 13 13 13 13 13 13 13 13 12
FB18
FB20
FB21 1 1 1 1 1 2  2 2 1
FB23
FB24 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1  1 1 1
FB25
FB26
FB27 5 5 5 5 6 6 6 6 6 6 6 5 5 5 5 5 5 5
FB28 9 9 9 9 9 8 8
FB29
FB30 6 6 6 6 6 6 6 5 6 5 5 5 6 6 6
FB31
FB32
FB34 O O O O O O O O O O O O O O O O O O
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FB35 
FB37 
FB38 
FB39 
FB41 
FB42 
FB43 
FB44 
FB45 
FB46 
FB47 
FB48 
FB49 
FB50 
FB51 
FB52 
FB53 
FB54 
FB55 
FBS6 
FB57 
FB58 
FB59 
FB60 
FB61 
FB62 
FB63 
FB64 
FB65 
FB66 
FB67 
FB68 
FB69 
FB70 
FB71 
FB72 
FB73 
FB74 
FB75 
FB76 
FB77 
FB78 
FB79 
FB80 
FB81 
FB82 
FB83 
FB84 
FB85 
FB86 
FB87 
FB88 
FB89 
FB90 
FB91 
FB92 
FB93 
FB94 
FB95 
FB96 
FB97 
FB98 
FB99 

FB100 
FB 101 
FB102 
FB103 
FB104 
FB105 
FB106 
FB107 
FB109 
FB110 
FB111 
FB 112

5 5
12

2 2 2 2 2 2 2 1 2 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 3 2 2 2 2 2

5 6 6

2 2 2
9 9 8

1 1

6 5

2 2
3 4

0 0

O O O O O O O O O O O O O O O O O O  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

7 7 7 7
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FBI 13 
FB114 
FBI 15 
FBI 16 
FBI 17 
FB118 
FB119 
FB120 
FB121 
FB122 
FB123 
FB124 
FB125 
FB126 
FB127 
FB 128 
FB129 
FB130 
FB131 
FB 132 
FB133 
FB134 
FB 135 
FB136 
FB 137 
FB138 
FB139 
FB140 
FB141 
FB142 
FB143 
FB144 
FB145 
FB146 
FB147 
FB148 
FB149 
FB150 
FB 151 
FB 153 
FB154 
FB 155 
FB156 
FB 157 
FB 159 
FB160 
FB161 
FB 162 
FB163 
FB164 
FB 165 
FB166 
FB167 
FB 168 
FB 169 
FB170 
FB171 
FB 172 
FB173 
FB174 
FB176 
FB177 
FB178 
FB179 
FB 180 
FB181 
FB182 
FB183 
FB184 
FB185 
FB 186 
FB187 
FB188 
FB189 
FB190

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  

26 24 23

16 16 16 16 16 14 15

15 15 15 15 15 14 13 11 12 10

5 5 5 4 4 4 3

3 3 3 3 3 3 3

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 1

2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 3 2 2

O O O O O O O O O O O O O O O O O O

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3

3 3 2 2 2 2 1  1 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

6 6 6

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
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FB191 
FB192 
FB193 
FB194 
FB 195 
FB196 
FB199 
FB200 
FB201 
FB202 
FB203 
FB204 
FB205 
FB206 
FB207 
FB208 
FB209 
FB211 
FB212 
FB213 
FB214 
FB216 
FB217 
FB218 
FB219 
FB220 
FB221 
FB222 
FB223 
FB224 
FB225 
FB226 
FB227 
FB228 
FB229 
FB230 
FB231 
FB233 
FB234 
FB235 
FB236 
FB237 
FB238 
FB239 
FB240 
FB242 
FB243 
FB245 
FB246 
FB247 
FB248 
FB249 
FB251 
FB252 
FB253 
FB254 
FB255 
FB256  
FB257 
FB258 
FB259 
FB260 
FB261 
FB262 
FB263 
FB264 
FB265 
FB266 
FB267 
FB268 
FB269 
FB270 
FB271 
FB272 
FB273

3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 6 5 5 5 5 5

00 8 8 8 8 8 8 8 6 6 6 6
2 2 2 2 1 1 1 1 1 1 1 1 1

2 2 2 2 3 3 2

2 2 3 2 2 2 3 3 3 3 3 3 3 3

11 1 1 9 9 8 8 8 8 8 8 8 6 6 5 6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1
4 3 4 4 3 3 3 3 3 3 3 2 2 2 2
5 5 5 6

3 3 3 3 3 2 2 2 2 2 2 3

7 7 7 7 7 7 6
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3

7

11

9 9 10 8

3 5 4 4

2 1 1 1

1 2  2 2

8 9 10 10 9 8 7 6

4 4 5 5

1 1 1 1 0 0 0 0 0 0 0 0 0 0
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FB274
FB27S
FB276
FB277
FB278
FB279
FB280
FB281
FB282
FB283
FB284
FB285
FB286
FB287
FB288
FB289
FB290
FB291
FB292
FB293
FB294
FB295
FB296
FB297
FB299
FB300
FB301
FB302
FB303
FB304
FB305
FB306
FB307
FB308
FB309
FB310
FB312
FB313
FB314
FB31S
FB316
FB317
FB318
FB320
FB321
FB322
FB323
FB324
FB325
FB326
FB327
FB328
FB329
FB330
FB331
FB332
FB333
FB334
FB33S
FB336
FB337
FB338
FB339
FB340
FB341
FB344
FB345
FB346
FB347
FB348
FB349
FB350
FB351
FB3S2
FB353

0 0 0 0 0 0 0 0

10 10 10 10

4 4 4 4 4

1 1 1
7 7 7

0 0 0

3 3

8 10 10 
6 6 6

0 0 0 0 0 0

1 1 1 1 1 1 1  
6 6 6 6 6 4 6

0 0

2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O O O O O O O O O O O O O O O O O O

6 6 6 6 6 6 6 6 6 6 6 7 6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 1 1 2 2 2

7 6 7 7 6 6 6 6 6 6 5 5

6 6 6 6 6 6 5 6 6 3 3

193



FB354
FB35S
FB3S6
FB3S7
FB358
FB3S9
FB360
FB361
FB362
FB363
FB364
FB365
FB366
FB367
FB368
FB369
FB370
FB371
FB372
FB373
FB374
FB376
FB377
FB378
FB379
FB380
FB381
FB382
FB383
FB384
FB385
FB386
FB387
FB388
FB389
FB390
FB391
FB392
FB393
FB394
FB395
FB396
FB397
FB398
FB399
FB401
FB402
FB403
FB404
FB405
FB406
FB407
FB408
FB409
FB410
FB411
FB412
FB413
FB414
FB415
FB416
FB417
FB418
FB419
FB420

6 6 6 6 6 6 6 6 6 6 7 7 7

4 4 4 3 3 4 4 3 2 2 3 2 1

4 3 3 4 4 4 4 4 4 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 ] 1 1 1 0 0 0 0 0 0 0 0 0 0

4 4 4 4 4 3 4 4 4 3 4 4 4 4 4 4 4 4

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2 2 1 0 0 0 0 0 0

1 1 1 2 2 2 2 1 1

1 1 2 2 2 2 2 2 2

3

0 0 0 1 1 1 1 1 1

9 8

6 5 5 5 5 5 5 5 5

14 14 14

* M ouse coat colour. A  for agouti, B  for black and W for albino; ** F  is fem ale and M is male
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