i
UNIVERSITY

of
GLASGOW

Computing Science
Ph.D. Thesis

On the Formal Specification and Derivation
of Relational Database Applications

Roberto Souto Maior de Barros

Submitted for the degree of

Doctor of Philosophy

(© 1994, Roberto S. M. de Barros

%"

! " #3% $

* *
0 , - /)
O) +')
|
4- 1 *() 5
] 6 + *(]]
% , 7 Illll_
lllll_
% , O 0'(

Mo
(D06

GLASGOW
UHIVERSITY
LIBRARY

On the Formal Specification and Derivation
of Relational Database Applications
by
Roberto Souto Maior de Barros

Submitted to the Department of Computing Science
on 25th November, 1994
for the degree of
Doctor of Philosophy

Abstract

The development of database applications is usually carried out informally. The
derivation of database programs directly from formal specifications is a well known and
unsolved problem. Most of the previous work in the area either tried to solve the problem
too generally or was restricted to some trivial aspects, for example deriving the database
structure and/or simple operations.

This thesis describes an extension to the traditional database design process aimed at
formalizing the development of (relational) database applications. Specifically, it gives
a complete description of a general method for the specification of relational database
applications using Z, as well as a comprehensive description of a set of rules on how to
derive database programs from specifications which result from using the method.

The method prescribes how to specify all the important aspects of relational database
applications, which includes the definition of relations, the specification of constraints,
and querying and updating of relations, including error handling. It also addresses more
advanced features such as transactions, sorting of results, aggregate functions, etc.

However difficult in general, deriving relational database applications directly from
Z specifications written according to the method is not arduous. With appropriate
tool support, writing formal specifications according to the method and deriving the
corresponding relational database programs can be straightforward. Moreover, it should
produce code which is standardized and thus easier to understand and maintain.

An intrinsic part of the thesis is a prototype which was built to support the method.
It provides a syntactic editor for the method and partially implements the mapping for a
specific Relational Database Management System (RDBMS), namely the DBPL system.

Thesis Supervisor: Ray C. Welland
Title: Senior Lecturer in Computing Science

ii

To
My wife Roberta,
my son Robertinho,
and my parents

Gelson and Carminha.

Acknowledgments

It is a pleasure to acknowledge the contributions of all the people who somehow helped
me to complete this Ph.D.

Firstly, I would like to thank my supervisor, Ray Welland, for his support to my
research and for his encouragement during the difficult times. In addition, [am specially
indebted for his taking over the task of supervising my work when David Harper left
the department for a new job in Aberdeen. Also, I appreciate his effort in convincing
the examiners to keep the changes to a minimum. Finally, I thank him for being such a
friendly and informal person.

I would also like to thank David Harper for accepting me as a research student here
in Glasgow and for supervising me during the first two years. In particular, I am grateful
for his warm welcome when I first arrived in Glasgow and for taking me as a friend.

I am also in debt to Kieran Clenaghan for bringing the Synthesizer Generator to my
attention, as it turned out to be a great tool which tremendously enhanced the horizon
of the practical results of my research.

Alex Gray, Kieran Clenaghan, and David Watt, as members of the examination
committee, provided many interesting corrections and suggestions to improve this thesis.

My office mates Campbell Fraser and Alex Bunkenburg provided a most friendly and
relaxed atmosphere in G161, making the last two years much more enjoyable than the
previous two.

A special thanks to my Brazilian friend Hermano Moura for taking me as a guest in
his home and for helping me with all sorts of things when I first came to Glasgow.

I also acknowledge the financial support that allowed me to carry out the research
described in this thesis. This was provided by CAPES (Brazilian Federal Agency for
Postgraduate Education) and by UFPE (Federal University of Pernambuco). In addition,
I could not forget that both Ray Welland and David Harper provided funds which allowed
me to attend several conferences and workshops throughout these four years.

Finally, my gratitude and love to my wife Roberta for giving up her job to come to
Scotland with me and for all her support, patience, and love.

Roberto S. M. de Barros

iv

Contents

1 Introduction

1.1 Motivation
1.2 Scope e e e e e e e
1.3 Contributions
1.4 Organization e e e e e e e e e
2 Overview
2.1 Databasedesign Ce e
2.1.1 Traditional databasedesign
2.1.2 Enhancing the database design process.
2.2 Motivation for using relational databases.
23 Formalmethodsand Z
2.3.1 What are formal methods?
2.3.2 Classifying formal methods
2.3.3 MotivationforusingZ
2.4 The method and specific database aspects
2.4.1 Transactions (recovery and concurrency)
2.4.2 Security e e e
2.4.3 Integrityo
2.4.4 Normalization e
2.4.5 Performance
2.4.6 Distribution L o
2.5 Motivation for using DBPL
2.6 Conclusion
3 Literature Survey
3.1 The specification of applications usingZ
3.2 The derivation of applications
3.3 The formal specification of database applications
3.4 The derivation of database transactions
3.41 The work of Pastorand Olivé
3.4.2 The work of Sheard and Stemple
3.4.3 The work of Steinberg, Faley, and Chinn
3.44 The work of Xjaolei Qian
3.4.5 The Hamburgwork
3.5 Conclusion e

11
14
14
14
15
16
17
17
17
18
18
18
18
18
19

Contents vi
4 The specification method 30
4.1 The database structure and constraints 30
4.2 The database Operations 34
4.3 The advanced features 42
4.4 The extended operations for error handling 48
4.5 Guidelines on how to use themethod 50
4.5.1 Guidelines for the first specification 50

4.5.2 Guidelines for extending the specification 51

4.6 Conclusion e 52

8 The operators 53
5.1 Primary and candidate key operator, 53
5.2 The FOREIGN_KEY operator v v, 54
5.3 Null valueoperators, 54
5.4 Update and delete operators 56
5.5 Thesortingoperator 57
5.6 Aggregate function operators 58
5.7 Composite attribute operators. 0L 61
5.8 Foreign key transitive closure 62
5.9 Conclusion e 63

6 The company database example 64
6.1 The chosen transactions 65
6.2 The database structure. 65
6.3 The database constraints 66
6.4 The relational database structure 67
6.5 Common basic operations 70
6.6 The transactions and their basic operations 73
6.6.1 Transaction Selary_dept 73

6.6.2 Transaction Move_empls_proj 76

6.6.3 Transaction Set_empls_dept_proj 79

6.6.4 Transaction Empl_supervised_sorted_salary 83

6.6.5 Transaction Weighted_salary_proj 85

6.6.6 Transaction Fire_selected_empls 87

6.7 Conclusion 88

7 The mapping 89
7.1 Mapping the database structures and constraints 89
7.2 Mapping the database operations 95
7.3 Mapping the advanced features L. 103
7.4 The extended operations for error handling 107
7.5 Conclusion e 108

8 The prototype 109
8.1 Design and implementation strategy 109
8.1.1 Designdecisions, 110

8.1.2 Customizing the mapping process. 110

8.1.3 Toolsupport 111

Contents vii
8.2 Implementation problems 112
8.2.1 Relationinclusion, 112

8.2.2 Extended project operations. 112

8.2.3 Sortingofresults 114

8.2.4 Type of the primary key attributes 115

8.3 Current status of the implementation 116
8.4 Prototyping with the synthesizer generator 120
8.41 Theabstractsyntax00...... 120

84.2 Unmparsingrules 121

8.4.3 Template transformations 121

8.4.4 Theuseofattributes. 122

8.4.5 The concrete syntax for text editing 123

8.4.6 Using views to generatecode 124

8.4.7 Otherfeatures, 125

85 Conclusion e e e 125

9 Conclusion 126
9.1 Themethod e 126
9.2 Themapping 127
9.3 The prototype. e 128
9.4 The specification of database transactionsinZ 128
9.5 Furtherwork 129
9.6 Finalremark 130

A Simplification of a precondition 131
B Selected SSL code 135
B.1 Abstractsyntax e e e e e e e e e 135
B.2 Attribute definitions o oL oo 137
B.3 Unparsingrules 140
B.4 Concrete input syntax for text editing 143
B.5 Template transformationrules. 145
B.6 Lexical syntax declarations 145
B.7 View definitions e e 146
Bibliography 149
Index 159

List of Figures

2.1
2.2

6.1

8.1
8.2
8.3

Traditional Database Design Process 9
Proposed Database Design Process 12
Entity-Relationship diagram 66
The prototype - specification window -part1 117
The prototype - specification window -part 2 118
The prototype - DBPL database structure window 119

viil

Chapter 1

Introduction

This thesis is about the utilization of formal techniques for the development of relational
database applications. In particular, this thesis argues that the formal specification
and derivation of relational database programs can be made reasonably simple by the
provision of appropriate methods and tool support.

1.1 Motivation

Having worked in the formal specification area for a number of years, my attention was
mainly devoted to the application of formal methods in the development of real life
software. In particular, my M.Sc. thesis [1] involved the formal specification of a large
system, namely UFPE’s Student Records Control System.

In addition, it is unlikely that a generic comprehensive solution to the problem of
deriving real applications will be proposed in the near future. Hence, it was advisable to
restrict the scope of the research to some well understood domain. The database area,
and especially the relational database model, seemed to be the perfect target for the
utilization of formal methods in this context.

Also, traditional database design processes [2] have typically put much more emphasis
on the design of database structures than on the applications that will run against these
structures. Because the design of database structures has received much more attention,
it is now well understood and established. For instance, the application of formal and/or
semi-formal techniques as well as tools during these phases is now common.

In this thesis, the specification of the database structure is done in Z [3, 4] and
envisages the use of tool support.

However, the design of database transactions has hardly received any attention in
the traditional database design process and is almost always very informal. Usually, it
progresses from a very high level specification of transaction requirements directly to
code. Thus, the effectiveness of this approach is very dependent on the programmers’
experience and on the amount of testing done.

As a result, the requirements of transactions are frequently underspecified and the
specifications are often inconsistent with the users requirements, mainly due to lack of
precision. The implementations are, therefore, likely to be subject to error. A formal
approach demands precision. Hence, it can force designers to consider details which

Introduction 2

might otherwise be overlooked. This should increase confidence in the correctness of the
implementation.

Since formal methods have already been successfully applied to a number of areas,
including the design of programming languages, hardware, etc., and in particular to the
design of the structure of the database, it should be possible to apply formal methods
to the design of database transactions with the same benefits.

So, the more general objective of this thesis is to formalize the design of database
transactions (applications), especially for the relational model [5, 6], in a way that it can
be used by practitioners in the development of real world applications. More specifically,
this thesis proposes a new structure for the database design process, which extends
the traditional approach with a number of phases specifically aimed at formalizing the
development of (relational) database transactions.

1.2 Scope

A common problem regarding the application of formal methods to real problems is
that beginners usually find writing formal specifications difficult. They need support in
the form of primitives, methods, etc. to guide them. A critical first part of this work
addressed this problem and involved the development of a method aimed at formalizing
the design of relational database transactions.

In particular, the method provides a number of rules which prescribe how to specify
all the important aspects of relational database applications using Z. These include
the definition of relations, the specification of constraints, and querying and updating of
relations, including error handling. More advanced features such as transactions, sorting
of results, aggregate functions, etc. are also addressed.

Pre-defined operators! are used in most parts of the specification in order to make
it simpler to write and understand. These operators capture specific aspects of the rela-
tional model, e.g. keys, nulls, etc., and some aspects of operations like delete and update.

In the main, the version of Z used in this thesis is the accepted standard [3]. Some
extensions are introduced when necessary but they are avoided as much as possible.

It is worth emphasizing that the method is for the specification of relational database
applications. So, the aim is not to specify either the Relational Model or the operators
of the Relational Algebra (or Calculus). In addition, because it is intended to make the
use of formal methods more available to practitioners, all aspects of the method need to
be as simple as possible.

The other major problem investigated by this work is the derivation of database
programs directly from formal specifications. Although some work has already been
published, the utilization of formal or semi-formal techniques for the generation of real
life database applications has not been seriously attempted yet.

A common drawback in some of the previous attempts has been to try to solve the
problem too generally by not restricting it to applications based on a specific database
model, or rather trying to refine a wide variety of application programs.

1The term ‘operators’ is used to refer to Z generic definitions throughout the thesis.

Introduction 3

Another frequent mistake has been to overlook the vital need to specify constraints
and to verify they are satisfied at all times, so that the consistency of the database is
guaranteed at all times. This is normally done by only addressing the correct behaviour
of simple atomic operations and usually leaves the false impression that deriving database
applications is fairly straightforward.

On the other hand, experts on the database area tend to think the automatic deriva-
tion of real database applications is too difficult, especially because the programs must
guarantee the constraints are satisfied.

The approach described in this thesis is restricted to the specification and reification
of relational database applications. Furthermore, it also considers all relevant kinds of
constraints as well as more complicated transactions.

Specifically, the thesis partially describes a generic mapping aimed at generating
relational database programs directly from formal specifications written according to
the method. The mapping addresses the problems involved in such a translation and is
independent of any particular database system and/or language.

This thesis also involved a substantial piece of implementation work. Specifically,
a prototype tool was developed. It aims to support the method and instantiate the
mapping for a particular Relational Database Management System (RDBMS), namely
the DBPL [7, 8, 9] system which was developed at the University of Hamburg.

The prototype is composed of a syntactic editor for the method and a built-in tool
which translates the specifications to database commands. Since it is only a prototype,
it does not cover the complete method. For instance, the syntactic editor accepts a large
subset of all possible specifications which are correct according to the method, even
though many of the incorrect ones are not rejected.

In addition, the implementation of the mapping for the generation of relational
database applications to be run in the DBPL system is also partial. Nevertheless, the
prototype produces appropriate pieces of code from a reasonably large subset of the
operations, advanced features, and error handling schemas described in the method.

The prototype was developed using the Synthesizer Generator [10, 11], which is a
powerful tool for implementing language-based editors and allows for the generation of
syntactic editors fairly quickly. The implementation of the mapping was carried out
using the view facility of the Synthesizer Generator.

1.3 Contributions

This thesis comprises three major pieces of work. In the first part, a general method for
the specification of relational database applications using Z is provided. The primary
contributions of the method are:

e It allows for an abstract specification of the applications to be developed, focusing
on the important aspects of the relational model and applications, without regard
to the fact that some features may not be supported by specific RDBMSs and
query languages. It provides the formal basis in terms of which applications can
be specified, verified (using formal reasoning), and implemented (reified).

Introduction 4

e Using the method ought to help database designers and programmers in finding
ambiguities and deficiencies in the requirements specification. Therefore, it should
help practitioners in the development of real world applications. Furthermore,
it should improve the system documentation and the quality of the application
programs which should contain fewer errors. Notice that database designers and
programmers constitute the users of the method.

e When implementing database systems without having previously specified them,
programmers tend to concentrate only on the correct behaviour of the operations
and overlook possible errors. The method also deals with the specification of the
behaviour of the system when errors occur and prescribes how to get all possible
errors. A summary of all possible errors for the more common operations might
be added to the method in the future. In addition, the user may be discharged
from proving a number of theorems about relational database applications because
general theorems, with their proofs, ought to be added to the method in the future.

e Given that one of the difficulties of specifying a system formally is the choice of
an appropriate level of abstraction, the use of a method should also lead the users
to choose a suitable level of abstraction.

e The method allows for the standardization of the specifications. Thus, it provides
a formal starting point for the investigation of the generation of relational database
programs directly from formal specifications.

e Adopting the method also enables the utilization of modularization, reasoning,
and refinement techniques. These might also be added to the method in the future
and should contribute for improvements in the quality of the programs since it
could lead to many errors being detected before the implementation (reification).
Furthermore, these could reduce the costs of testing and maintenance.

e Ultimately, the method could be seen as the missing bridge to make the use of
formal specification techniques more accessible to developers of real world software
and, in particular, relational database applications.

The second part of the research described in this thesis investigates the derivation
of relational database programs directly from formal specifications written according to
the method and presents a simple mapping. The main contributions of the mapping are:

o It discusses the problems involved in the derivation of relational database programs
directly from formal specifications without binding the investigation to any specific
database system or language. In other words, the mapping is general and should
be applicable to many RDBMSs.

e The investigation is restricted to applications based on the relational model, which
means it does not try to refine too wide a variety of applications.

e The mapping is not restricted to the correct behaviour of simple atomic operations.
On the contrary, it considers all the relevant kinds of constraints as well as more
complicated transactions.

Introduction 5

e In general, there is more than one way of writing correct database commands to
implement particular operations. The utilization of the mapping allows for the
standardization of the database operations contained in the application programs,
which ought to lead to programs being easier to understand. As a consequence,
the costs of testing and maintenance might be reduced.

Finally, the third part of this work concerns the prototype tool built to support the
method and implement the mapping. The main reasons for building such a prototype
were:

e To show that the specification of relational database applications using the method
and the construction of the corresponding database programs can be reasonably
straightforward if appropriate tool support is provided.

e To provide evidence that the syntax and semantics of the method are sound and
that it is possible to build a full scale syntactic editor to support the method.

e To demonstrate that the mapping can be adapted to specific RDBMSs, that it is
possible to derive database programs automatically, at least for a large number of
applications, and that building a tool to implement the mapping for a particular
RDBMS is not too difficult.

1.4 Organization

This thesis is divided into four parts. The first part, which comprises this and the
following two chapters, introduces the work and puts it in context. The principal part
of this work is then described in the next five chapters, i.e. Chapters 4 to 8. Next is
Chapter 9, which closes the main body of the thesis. Finally, two appendices complement
the presentation. The contents of the remaining chapters are summarized below.
Chapter 2 reviews the traditional database design process and proposes an extension
aimed at formalizing the design of (relational) database transactions. In addition, it
justifies the several decisions made in the directions of the research, explaining why the
investigation was restricted to relational database applications, why Z was chosen for
the specifications, why DBPL was chosen for the implementation of the prototype, etc.
In Chapter 3 the existing use of formal methods techniques for the specification
and derivation of applications is surveyed. The scope of the survey is restricted to the
formal specification of real, large scale applications using Z, and to the specification and
derivation of database applications. The emphasis is specifically put on the derivation
of relational database transactions from formal specifications. Some of the approaches
are described in somewhat more detail and their strengths and weaknesses discussed.
Chapter 4 presents the latest description of the method. It starts by presenting
rules for the specification of the database structure, i.e. domains, relations and their
attributes, candidate and foreign keys, as well as other constraints to be guaranteed.
The specification of basic operations over the database are covered next, which includes
operations such as select, project, join, insert, delete, and update. These are followed
by the specification of more advanced features, which includes transactions, sorting of

Introduction 6

results, aggregate functions, composite attributes, and views. Then, it addresses the
extension of the applications (transactions) to capture error handling, using two different
approaches. The chapter is concluded with the presentation of a number of guidelines
on how to use the method realistically.

Chapter 5 presents the formal definition (specification) of the operators used in the
specifications written according to the method. These pre-defined operators, informally
introduced within the description of the method, capture specific aspects of the relational
model, such as nulls and candidate and foreign keys, as well as some specific aspects
of update and delete operations. Other operators are provided to simplify the use of
some advanced features such as sorting of results, aggregate functions, and composite
attributes.

In Chapter 6, a complete example is specified using the method. It starts with an
informal description of the chosen transactions. The database structure affected by the
transactions is then captured by an Entity-Relationship (ER) diagram. Next, natural
language descriptions of the database constraints that must be guaranteed are presented.
After that, the relational database structure is formally specified. The specification of
common basic operations follow. Finally, the chosen transactions are specified and this
includes the calculation of the preconditions and error handling.

Chapter 7 describes the mapping aimed at the derivation of database programs from
specifications written according to the method. The exposition of the mapping follows
basically the same order used in the presentation of the method in order to make its
understanding easier. Thus, it starts with the rules for the mapping of the database
structures and constraints, which are followed by the mapping of the database operations,
the advanced features, and the extensions to capture error handling, respectively.

Chapter 8 describes the prototype system which was built to support the method
and implement the mapping. It provides some details about the problems of adapting
the mapping for a particular RDBMS. It also discusses the strategy used to build the
prototype as well as a number of design decisions that have been made regarding the
functionality and implementation of the prototype. In addition, the chapter presents a
quick introduction to the Synthesizer Generator, the tool used to build the prototype.

In Chapter 9 the overall conclusions reached by the research are presented. It starts
with a summary of the work done and devotes special attention to the benefits of the
method, the mapping, and the prototype. The chapter is closed with suggestions for
future extensions and further work.

Finally, the appendices are presented. The first one exhibits the simplification of the
precondition of a transaction involving many subtransactions and potentially affecting
many of the specified constraints. The second appendix presents selected parts of the
Synthesizer Specification Language (SSL) code written to build the prototype.

|

Chapter 2

Overview

This chapter provides an overview of the work and its context.

It starts with a review of the traditional database design process and proposes an
extension aimed at formalizing the design of (relational) database transactions.

In addition, this chapter justifies the several decisions made in the directions of the
research, explaining why the investigation was restricted to relational database appli-
cations, why 7Z was chosen for the specifications, and why DBPL was chosen for the
implementation of the prototype. This chapter also provides a concise introduction to
formal methods and formal specifications as well as a classification of formal methods.

2.1 Database design

Traditional database design processes [2] have typically put much more emphasis on the
design of database structures than on the design of the transactions that will run against
these structures. In fact, the design of the structure of the database is usually seen as a
prerequisite for the development of the applications that will run against it.

In addition, database structures are much more static than the applications and,
in many cases, much more difficult to modify. Specifically, changing the structure of a
non-relational database invariably means that a number of applications must be changed
too. However, this need not be true in the case of relational databases.

For instance, adding a new attribute to one of the relations in a relational database
application does not mean that all application programs reading the changed relation
need to be changed. On the contrary, in most existing relational systems only the
programs that manipulate the new attribute need to be changed. On non-relational
platforms, all programs that access the changed relation usually have to be changed.
Even though the actual changes are frequently limited to updating the record structure
associated with the changed entity (file), it usually involves changing and recompiling a
considerable number of programs.

Because of these, database designers usually make their best effort to achieve a
consistent database structure before the development of the applications is begun. For
instance, formal (or semi-formal) techniques as well as tools are usually applied to the
design of database structures, as opposed to the development of database applications
which is almost always very informal.

Overview 8

A legitimate question that might be asked is then: “Why does only the database
structure receive the appropriate attention?”. Also, “Why do database applications not
receive the same attention?”. Apart from the fact that the applications are much more
dynamic than the structures and, therefore, need to be changed more frequently, a couple
of other reasons contribute to this state of affairs.

To start with, many database designers and programmers underestimate the cost
and difficulty of maintaining the applications and regard this activity as a simple one
because modifying the structures is more difficult. In fact, maintaining programs directly
on the code without updating the corresponding documentation (specifications) is a quite
common practice among professional programmers. These are usually sceptical about
the importance of the systems documentation.

Also, users of computer systems (either database or non-database systems) are used
to low standards in software development and, generally, are likely to accept errors as
normal or even inevitable. Fixing errors quickly is usually enough to keep end users
satisfied.

In this section the traditional database design process is reviewed and an extension
aimed at formalizing the design of (relational) database transactions is proposed.

Because the design of database structures has received much more attention, it is
now well understood and established. For instance, the use of formal (or semi-formal)
techniques as well as tools during these phases are now very common. Therefore, there
is no intention to propose any major changes or contribution in these phases of the
database design process.

2.1.1 Traditional database design

Figure 2.1 summarizes the traditional database design process. Because the design of
database transactions has hardly received any attention, almost all phases in the process
refer to the design of database structures. For completeness, a brief description of each
phase is added.

Requirements

This phase refers to the specification of requirements that all potential users of the
database may have. Users must be repeatedly interviewed because, in general, there is
no guarantee that the specifications will meet the user requirements.

The inputs are informal statements written in natural language, produced from the
interviews with the users.

The outputs are usually separated into two groups: data requirements and processing
requirements. The first of them, data requirements, refer to which data is needed in the
database.

Processing requirements refer to how data is to be processed. These usually include
the specification of the inputs and outputs, functionality, frequency of execution, and
desired performance of transactions that are to be run against the database. Even
though a number of transactions is not normally known at this time, i.e., before the
implementation, the more important ones are usually known in advance.

Overview 9

Requirements
Specification

Conceptual
DB Design

Logical
DB Design

Implementation
B Design

Physical
DB Design

Figure 2.1: Traditional Database Design Process

The outputs of this phase are frequently written using a requirements specification
language, e.g. SSADM [12], SADT [13, 14], SAMM [15], HIPO [16], DFDs [17], etc.
Restricted versions of natural language are sometimes used as well, especially for the
specification of processing requirements.

Although (semi-)formal techniques are usually applied, it is worth repeating that
users need to be interviewed repeatedly because, in general, there is no guarantee that
the specifications will meet the users requirements. For this reason, this phase is really
very important and can be quite time consuming. Even though processing requirements
are also collected during this phase, the emphasis is usually much more devoted to the
data requirements.

Conceptual DB design

In this phase, a data model independent database schema (the conceptual schema) is
specified using a very high level data model, e.g. ER [18], EER [19], RM/T [20], etc.
It usually involves the specification and integration (merging) of the users’ views of
the database.

The inputs for this phase are the data requirements of the previous phase. The
output is the database conceptual schema.

Overview 10

Logical DB design

During this phase the conceptual schema and external views are translated to the generic
data model of the target DBMS. In the specific case of the relational model, the logical
database design also includes the normalization of relations [5, pp. 525-560]. In addition,
any limitations the target DBMS may impose on the data model are usually not taken
into account.

The inputs are the conceptual schema (last phase) and the structure and limitations
imposed by the chosen data model. The output is the database logical schema. In the
case of the relational model, the result is typically the database structure written in an
SQL-like [21] language.

Formal generic mappings from the conceptual schema based on the ER model to
the relational, hierarchic, and network models are already established [22, pp. 309-409].
Similar mappings from conceptual design specifications written in a formal specifica-
tion language to corresponding data model dependent formal specifications should be
straightforward. Moreover, it should be possible to refine the high level specification of
transactions into corresponding data model dependent (but still abstract) specifications.

Finally, it seems reasonable to bLelieve that mapping a well designed ER schema to
the relational model should result in relations already normalized. However, this is only
possible if all types of dependencies, i.e. functional, multivalued, and join dependencies,
are represented in the ER diagram. Anyway, automated tools for normalizing relations
are already available [23, 24].

Implementation DB design

After an specific DBMS is chosen to be used in the actual implementation, the structure
of the database is implemented using its Data Description Language (DDL). Sometimes,
because a number of DBMSs include physical parameters in their DDLs, this phase is
carried out in parallel with the physical database design (next phase). This is usually
not the case of relational DBMSs though.

The input to this phase is the logical database schema. Accordingly, the output is
the implemented database structure.

Physical DB design

Finally, appropriate storage structures and access paths for each of the elements of the
database are defined in order to achieve good performance. The application programs
are usually run to monitor the required performance of the more important transactions
thus helping in this phase.

The inputs are the implemented database structure and the constraints, frequencies
" of execution, and desired performances of transactions. The outputs are the storage
structures and access paths.

Overview 11

Optional phases

In the specific case of very large databases, extra phases are sometimes considered in
such a process. This usually includes:

Distribution: If the database is not to be managed centrally, than it is necessary to
decide which data is to be stored at what location, which is usually based on the
results of the transaction design. It may also be the case that different DBMSs are
to be used in different sites.

Bench Marking: This refers to the generation of test data and prototype applications
in order to aid in measuring the performance of the database before the real data
is loaded. Also, the applications used in these tests may be a subset of the appli-
cations and/or partial implementations of some of the operations (transactions).

2.1.2 Enhancing the database design process

It has already been mentioned that transactions have hardly received any attention in
the traditional database design process. As a result, the design of database transactions
is almost always very informal and usually progresses from a very high level specification
of transaction requirements directly to code. Thus, the effectiveness of this approach is
very dependent on the programmers’ experience and on the amount of testing done.

It is believed there is no good reason for this state of affairs. So, the design of database
transactions should also be formalized. Moreover, it should be possible to formalize it
in much the same levels of abstraction in which the structures were formalized.

This thesis proposes a new structure for the database design process which extends
the traditional approach with a number of phases specifically aimed at formalizing the
development of (relational) database transactions. Figure 2.2 summarizes the proposed
structure. Thicker boxes and lines refer to the proposed (or modified) phases and their
corresponding inputs and outputs respectively. A brief description of each proposed or
modified phase is again provided.

Conceptual specification of transactions

This refers to the formal specification of database transactions at a very high level of
abstraction. The specifications should be DBMS independent and possibly data model
independent as well. There is no specific method (or language) established yet. Even
though there is a need for such a method, identifying what this might be is not the
subject of this research.

In spite of that, it is reckoned that for each transaction such a method would have
to specify at least (1) What the inputs and outputs are, (2) what the entities and
relationships changed are, (3) for each changed entity or relationship, which attributes
are changed, and (4) for each changed attribute, what the changes are.

The inputs are the processing requirements whereas the outputs are the conceptual
specifications of the transactions.

Overview 12

Database Structures Database Applications

Data Processing
Requirements Requirements

_— ~

Conceptual
(D:gngzgitura‘I » Specificationof |e
g Transactions
Y
. Logical
DEO ::;'gn »| Specification of
transactions
} Modularization]
| | Reasoning
| L Refinement |
! ,
Imlnge"l‘Deeltiztri\on - Reification

Physical - Application
DB Design Programs

Figure 2.2: Proposed Database Design Process

Logical DB design

As already mentioned, there is no intention to do any contribution to the design of
database structures. The main interest here is to be able to specify the transactions
that are to be run against the database. Even so, a small change in this phase is
proposed. It is aimed at making the logical specification of transactions (next phase)
slightly easier.

Basically, instead of using an SQL-like language, the logical database schema is
expected to be generated in Z [3, 4], the formal specification language used to specify
the transactions at the logical level.

Modifying available tools for logical database design to generate a Z version of the
logical database schema should not be too difficult. While such modified tools are not

Overview 13

yet available, it might be that generating the Z version of the logical database schema
based on a simple translation from the traditional SQL-like specifications would be the
best approach.

A number of reasons have been taken into account in the decision of having a Z
version of the database structure. Firstly, in a mixed mode, SQL-like specifications of
the database structure would not mix well with the Z specifications of transactions.
Actually, the Z specifications would be incomplete if the declaration parts were omitted.
Secondly, it would be more difficult to reason about such specifications. Finally, this
would not be appropriate if the database were not to be implemented in an SQL system.

To tackle the first two problems, the syntax and semantics of what would be a new
specification language would have to be provided. In my opinion, this is not necessary
because restricting an appropriate existing language by means of a method seems more
adequate and simpler.

Logical specification of transactions

During this phase, a data model dependent, but DBMS independent, formal specification
of database transactions would be written using a formal specification language. More
specifically, a general method for the specification of relational database transactions
has been developed. It prescribes how to specify all the important aspects of such
transactions using Z.

The use of modularization and reasoning techniques during this phase might make
the understanding of the specifications and the proof of desired properties easier.

In addition, these should make more effective the process of identifying errors and
ambiguities in the specifications, as well as inconsistencies between the requirements and
the specifications, before the implementation (reification) is carried out.

As a consequence, revisions in the previous phases should follow and, therefore, the
design (requirements) of database transactions ought to receive at least as much attention
as the design of the database structure. As a result, the quality of the programs should
be improved and the costs of testing and maintenance reduced.

The inputs are the logical database schema (Z version) and the conceptual specifica-
tion of transactions. The outputs are the logical specifications of transactions.

Reification of transactions

Application programs that implement the specification of database transactions could be
semi-automatically generated in this phase. The approach is to investigate all problems
that might arise in such a process, using a specific RDBMS and query/host language
(or 4GL) as example. This process should also lead to changes (improvements) in the
method used for the logical specification of transactions.

The inputs are the logical specification of transactions from the previous phase,
information about which features of the relational model are supported by the chosen
RDBMS, and which query/host language or 4GL is to be used. The outputs are the
application programs.

Overview 14

2.2 Motivation for using relational databases

The research described in this thesis was restricted to the relational model. This model
seemed particularly useful for my purposes for the following reasons:

o The specification method developed is reasonably simple and does not enforce any
constraints on either the real implementation of relations or the choice of a specific
database system and language.

e The proof of properties about such specifications, though not investigated in detail,
seems to be fairly easy, involving only first order logic and set theory.

e The very high-level nature of its query languages means it seems likely that the
refinement step is not necessary in this case. Moreover, the reification process did
not seem to be arduous.

Basically, what distinguishes relational database applications from other applications
is that the former are designed in terms of a much higher-level data model. In the
relational model, all files are relations (in the mathematical sense) which limits the
possible operations that may be executed against the database and allow them to refer
to sets of tuples (records) instead of a single record at a time.

Another very important aspect concerning the relational model is that it permits
what is called data independence, i.e., application programs that use the database are
not dependent on the physical structure of data. So, regardless of how the chosen DBMS
implements relations and what structures may be used to improve the performance of the
applications, the programs are not changed because they directly manipulate “logical”
relations.

In addition, database applications (not only relational) are developed on top of a
DBMS which controls the database. The DBMS makes database application programs
simpler by doing many controls that, in non-database environments, have to be done by
the programs.

Finally, it is important to notice that the formal specification of database applications
does not need to be much different from those of other applications. On the contrary,
specifications written according to the method can possibly be used to specify non-DB
applications, perhaps with slight modifications.

2.3 Formal methods and Z

This section presents a concise introduction to formal methods and formal specifications,
as well as a classification of formal methods. More extensive introductions have been
published [25, 26]. In addition, this section summarizes the reasons why Z was chosen
to be the formal specification language adopted in this work.

2.3.1 What are formal methods?

The term Formal Methods has been used to mean a number of different activities in the
development of software systems. These include the formal specification of the intended

Overview 15

functionality of the systems; the use of formal reasoning to prove properties of the
systems, possibly before the implementation is developed; the derivation of a correct
implementation in the sense that it is guaranteed to preserve all the properties of the
specifications; etc.

However, all these interpretations share a common aspect this being they all imply the
use of mathematical (formal) notations. Frequently, these notations are (or should be)
complemented with techniques and/or guidelines aimed at permitting a more systematic
application of the mathematical notations and/or making their use simpler.

Usually, the use of formal methods includes at least the formal specification of the
intended software. Formal specifications are specifications written in formal specification
languages, i.e. languages which have well defined and precise syntax and semantics. The
need for a formal semantics implies that the meaning of specifications expressed in the
language are not ambiguous.

It is generally accepted that the utilization of formal techniques in the development
of real application systems provides some useful benefits, as it helps to avoid ambiguity
or vagueness and, thus, to provide a better interface for precise communication of ideas
between the designer (specifier) and the programmer, as well as between the designer
and the end users. Also, it ought to help to reduce maintenance costs, since more of
the errors in a system should be discovered before it is implemented, and to detect and
correct errors and anomalies in the documentation of such systems.

Hall [27] has pointed out that “From an economic point of view, the most important
part of a formal development is the system specification”, and also that formal methods
“work largely by making you think very hard about the system you propose to build”. In
a sense, by simply writing formal specifications the users are forcing themselves to be
more rigorous.

2.3.2 Classifying formal methods

Formal methods are usually classified according to the semantic foundation of the spec-
ification languages they use. The two main approaches are known as the model-oriented
approach and the property-oriented approach. Duce and Fielding [28] provide a detailed
comparison of the two.

In the model-oriented approach, the specification and the design are explicit abstract
models of the system to be developed. The specification language provides well defined
primitives which permit the construction of a mathematical model in terms of abstract
data structures such as sets, relations, functions, etc.

The more established model-oriented formal specification methods are Z [3, 4] and
VDM [29, 30]. Others include RAISE [31], HOL [32], CSP [33], and CCS [34].

On the other hand, in the property-oriented approach the specifications describe the
behaviour of the system in terms of the constraints that must be satisfied, without the
design of any specific models. The specifications are axioms which define the relations
among the operations, and the properties are the result of the logic manipulation of the
axioms. Examples of property-oriented formal methods include OBJ [35], Larch [36],
Clear [37], and ANNA [38].

Overview 16

2.3.3 Motivation for using Z

Most of the work published on the formal specification of databases uses algebraic [39]
(property-oriented) specification languages [40]. Even so, it seems that model-oriented
specification languages are more appropriate to specify database transactions, especially
because of the convenient notion of state. Moreover, it is possible to write property-like
specifications using a model-oriented language like Z, if desired.

After deciding for model-oriented languages, it is necessary to decide which of the
two more established ones (Z and VDM) is more appropriate.

In general, Z and VDM are languages based on first order logic and set theory,
and allow for very abstract specifications. Modularization techniques for improving the
understanding of large specifications were also proposed for both [41, 42]. In particular,
the Document/Chapters extension to modularize Z specifications [41] also allows the
specification of abstract data types using the same style adopted in property-oriented
languages.

On the one hand, the schema calculus of Z allows for the incremental presentation
of specifications by including other schemas and/or linking schemas with propositional
connectives. Also, its notation seems slightly better to write and understand than that of
VDM for it uses the standard mathematical symbols as much as possible and encourages
the use of informal prose merged with the formal text.

On the other hand, VDM has a better structure for the transformation of the
specifications into implementations because it is necessary to write the preconditions
and postconditions of the specifications explicitly. Also, its proof obligations together
with explicit preconditions and postconditions make reasoning about specifications more
straightforward than in Z.

Even though they have many points in common, Hoare [43] has suggested that Z
and VDM should be used for different purposes. According to him, Z would be more
suitable when the aim is the specification of the systems only. On the other hand, VDM
would be more suitable when the aim is the implementation.

The author is not convinced about such a suggestion and believes both can be used
interchangeably without much problem. Also, I notice that, in many cases, the choice for
one or the other is merely a matter of convenience, e.g. the existence of people already
trained in one of the formalisms but not in the other.

The main differences between Z and VDM are discussed by Hayes, Jones, and
Nicholls [44].

The formal specification language chosen to be used in the research described in this
thesis is Z, for the following reasons:

e It is model-oriented. As already mentioned, model-oriented specification languages
seem to be more appropriate to specify database transactions, especially because
of the convenient notion of state. Moreover, it has been claimed that, in general,
human beings tend to find model-oriented methods easier to understand than their
property-oriented counterparts [45, 46, 47].

e It is an established language which has been under development for over a decade
and is currently being standardized. An extensive literature is also available and

Overview 17

includes a user manual [3], a number of introductory textbooks [4, 48, 49], a book
on its semantics [50], a collection of case studies [51], and a book aimed at helping
people who understand the basics of Z to become Z users [52]. In addition, Z is
probably the most widely used formal specification language and has been adopted
in many projects both in academia an in industry [27].

e Regarding the level of abstraction of the specifications, Z is a very flexible language
and permits the adoption of different levels of abstraction, even within the same
specification document. This gives the specifier the necessary freedom to adopt
the most appropriate level of abstraction for each part of the specification.

e My previous experience of using Z and a Z-like language [1, 53] meant I had a
great deal of confidence that Z could be used to specify database applications and,
in particular, relational applications with good results. Moreover, choosing Z also
meant there would be no need to spend time on learning another language.

e The existence of a large users group which promotes annual workshop meetings.

2.4 The method and specific database aspects

Real database applications involve many specific aspects which are usually not considered
in the development of more traditional file-based applications. This section lists some
of these aspects and explains how they relate to the research described in this thesis.
More specifically, it explains how specifications written according to the method deal
with such aspects.

2.4.1 Transactions (recovery and concurrency)

The method provides for the specification of transactions, i.e. a group of operations that
are to be executed as a unit.

Should any of the components of a transaction fail, the transaction must fail and
the database must remain unchanged (recover). Specifications written according to the
method capture this behaviour. Most RDBMSs allow for the definition of transactions,
but the way they are implemented depends on the RDBMS chosen.

Regarding aspects of concurrency, in general these should not be specified as part of
the application programs. This is also a DBMS task and depends on other applications
as well. Thus, the method does not address such aspects.

Usually, only one application is allowed to write in a specific relation (or tuple) at
a time, although many can read it. In most systems, the DBMS automatically controls
this in order to guarantee the integrity of the database, although in some systems the
Database Administrator (DBA) has to specify what relations should be locked by some
applications.

2.4.2 Security

Security may be described as the protection of data against unauthorized users. One
method of restricting access to parts of the database is to use views. The method

Overview 18

provides for the specification of views, i.e. horizontal/vertical subsets of relations, join
subsets of data, and update restrictions on attributes.

Identifying individual users/groups and relating specific users to views are beyond
the scope of the method. This is normally not specified as part of the applications either.

The method does not address the updatability of views either as this is, in its own
right, a whole area of research [54]. In general, it is not even possible to decide whether
some views are updatable or not [55]. Moreover, it is not always clear what the semantics
of updates of specific views should be.

2.4.3 Integrity

This refers to the accuracy/validity of data. Integrity constraints are usually expressed
as conditions that should be true at the start and end of a transaction and, possibly,
compensating actions for when the constraints are violated. These are both covered by
the specification method.

Since no system currently provides adequate integrity support [5, pp. 429], a number
of implementation alternatives for each type of constraint are discussed in Chapter 7,
the mapping of applications from specifications written according to the method.

2.4.4 Normalization

The method proposed in this thesis only requires the relations to be in first normal form
(INF), though they are generally expected to be in Boyce/Codd Normal Form (BCNF).

2.4.5 Performance

In relational database systems, the physical design of the database structure is usually
totally independent of the applications. The utilization of structures/techniques such
as indexes, clustering, hashing, etc. to guarantee good performance for one or more
applications does not mean the applications have to be changed.

Although physical design is a very important task, it is worth emphasizing that, in
relational database systems, the application programs are independent of the physical
structure. For this reason, the method does not address such aspects either.

2.4.6 Distribution

This refers to databases not managed centrally. The method does not consider this
aspect because application programs should be independent of distribution strategies.
A database could even be distributed after its implementation and, even so, application
programs should not need to be changed.

2.5 Motivation for using DBPL

As already mentioned, the relational database system chosen to be the target system in
the construction of the prototype tool is the DBPL system, which is an academic tool
developed at the University of Hamburg, Germany.

Overview 19

The DBPL system extends the programming language Modula-2 [56, 57] with a new
persistent data type called relation and high-level relational expressions based on the
predicate calculus.

The main reasons for adopting DBPL were:

e The new type relation and the corresponding access expressions are well integrated
with the Modula-2 language to form the database programming language DBPL.
As a consequence, it avoids the impedance mismatch which is common in the case
of query languages such as SQL [21] being embedded in programming languages
such as C or COBOL.

e The DBPL system implements a bigger subset of the theoretical relational model
than most systems currently available. For this reason, in my assessment, from
the systems available in the University of Glasgow it was the most well-suited to
my purposes.

e Finally, because DBPL is an academic tool, it would be much easier to contact the
developers and ask questions, which increased the chances of using the full capa-
bilities of the system without spending too much time reading extensive manuals.

2.6 Conclusion

This chapter provided an overview of the research described in this thesis and put it in
context. In addition, the chapter provided justifications for the several design decisions
that have been necessary throughout the Ph.D. work.

The following chapter then surveys the existing literature on the utilization of formal
methods techniques for the specification and derivation of applications and, in particular,
relational database transactions.

Chapter 3

Literature Survey

This chapter presents a literature survey of the existing use of formal methods techniques
for the specification and derivation of applications.

The scope of this survey is restricted to the formal specification of real, large-scale
applications using Z, and to the specification and derivation of database applications.
The emphasis is specifically put on the derivation of relational database transactions
from formal specifications. Some of the approaches are described in somewhat more
detail and their strengths and weaknesses are discussed.

3.1 The specification of applications using Z

This section covers the use of Z for the formal specification phase in the development
of real applications. Unfortunately, the application of formal methods techniques in
industry is still rather limited. Pointers to papers which discuss why this is so are also
provided at the end of the section.

The most well-known and, probably, the largest and longest running industrial
project to use Z is a joint project between IBM (UK) Laboratories at Hursley and
the Programming Research Group at Oxford University Computing Laboratory which
started in 1981 and is referred to as the CICS project.

The CICS project included the specification of several parts of IBM’s transaction
processing system CICS. Summaries of how Z was used in the restructure of IBM CICS
are presented in [58, 59, 60]. Some of the CICS subsystems already specified in the
project are: the CICS Application Programming Interface [61, 62], The CICS exception
handling [63], the CICS temporary storage [64], and the CICS message system [65].

Other reported real projects using Z include:

e The development of a new computer control system for a real medical device,
namely a cyclotron based clinical neutron therapy system, which is used for cancer
treatments at the University of Washington, Seattle. The functionality of the
system has been specified using a framework for the formal specification of safety-
critical control systems in Z. The framework and an example specification are
described in a paper by Jacky [66].

20

Literature Survey 21

e The development of a formal security policy model for the NATO Air Command
and Control System (ACCS). The project included the use of Z for the formal
specification of the system together with informal validation of an appropriate
subset of the specifications based on more traditional methods. An industrial
report by Boswell [67] summarizes the results.

e The specification of British Rail’s signalling rules as part of a requirements speci-
fication document for a railway interlocking system. The specification was written
in Z by a small team from Praxis Systems for British Rail’s Network SouthEast
(now Railtrack) and their experience is reported by King [68].

e The development of a transaction processing mechanism for a relational DBMS
called SWORD [69]. The mechanism is for controlling multi-transactions access
to the database without any explicit locking of data. The project is reported by
Smith and Keighley [70] and included the Z specification of the mechanism.

Craigen et al. [71] summarize an extensive survey and analysis of the use of formal
methods in the development of twelve industrial applications [72]. In addition, the
authors discuss the methods and styles of industrial usage in these applications and
provide a number of recommendations aimed at making formal methods more palatable
to people from industry. Some of those applications have used Z.

Another extensive survey is presented by Austin and Parkin [73]. It comprises a
literature survey and the analysis of questionnaires returned by 126 organizations, mainly
in the UK.

A very good paper by Hall [27] presents a comprehensive overview of the so-called
myths which help to prevent a wider acceptance of formal methods in industry, and
disputes them all one by one, refuting most of them. One of these myths refers to formal
methods not being used on real large-scale software, which the author refutes by listing
a few references. A recent paper by Bowen and Hinchey [74] revisited the subject and
discussed another set of those myths.

The problem of marketing formal methods in order to achieve a wider acceptance in
industry is discussed by Weber-Wulff [75]. The author discusses a number of problems
affecting formal methods, “from the point of view of the industrial programmer”, and
presents simple suggestions aimed at helping to convince people from industry to invest
time and money in learning and applying formal methods.

3.2 The derivation of applications

This section briefly examines the problem of deriving implementation programs from
formal specifications without restricting the scope to the database field.

The formal derivation of programs from specifications written in a formal language
is usually called refinement. This process is often seen as comprising two distinct phases
called data refinement and operation refinement respectively. In short, data refinement
refers to the refinement of the data structures whereas operation refinement refers to the
refinement of the operations that manipulate the structures.

Literature Survey 22

In the most common approaches, refinement is defined as the application of formal
techniques to map (refine) a given formal specification into another specification which
satisfies the former but is more concrete in the sense that it is closer to the target
programming language. This process is then successively applied and stops when all the
features of the specification language are substituted by equivalent constructions of the
implementation programming language.

In each of these steps, a number of proof obligations must be discharged. These are
essentially the proof that the more concrete specifications indeed satisfy all the properties
of the more abstract ones.

There are several similar approaches to this general idea of refinement. Some of the
most well known were proposed by Morris [76], by Morgan [77, 78], and by Back [79].
These are all based on extensions to Dijkstra’s guarded command language [80].

This theory of refinement has very much been the subject of continuing research
for several years. There are whole books written or being written about refinement as
well as many research papers published in conference proceedings and research journals.
There is even an annual workshop totally dedicated to refinement, with the proceedings
being published by Springer-Verlag in the Workshops in Computing series.

Nevertheless, many of the central ideas have been around for a long time and, as far
as I can see, there is still a long way to go before real, large-scale, generic software can
be automatically generated by refinement. Furthermore, I am not convinced that the
refinement of programs based on an unlimited platform will ever be feasible.

On the other hand, it is possible that, in the future, the programming languages will
efficiently support all the abstract data structures provided by the formal specification
languages and will provide much more expressive means of manipulating these structures.

Until this time comes, the derivation of generic programs will probably be limited to
the generation of prototypes to be run in systems supporting more advanced features,
albeit not being implemented efficiently.

An example of this approach is an experiment described by O’Neill [81, 82]. Specifi-
cally, he used the view facility of the synthesizer generator to extend an existing syntactic
editor for VDM-SL with a translator which automatically generates Standard ML [83]
code from the VDM specifications.

3.3 The formal specification of database applications

This sections surveys the utilization of formal notations in the specification of database
systems, languages, and applications. In my opinion, most of the work done in the area
can be described as specification exercises rather than work aimed at making contribution
to the database field. These are the approaches examined in this section.

More specifically, several people have specified database models (e.g. the relational
model), specific database systems, and database operations (e.g. the operators of the
relational algebra [84]). Others have addressed the specification of the correct behaviour
of database transactions. However, only a few have covered at least an extensive subset
of all features needed in the specification of real database applications so far. In these
approaches, the resulting specifications are usually used as input for the derivation of

Literature Survey 23

database programs that implement the transactions using a specific DBMS. Hence, the
material on these approaches is postponed to Section 3.4.

Samson and Wakelin [40] present a comprehensive survey about the use of algebraic
methods to specify databases. They compare quite a number of approaches according
to the features covered and enumerate some not normally covered by such methods.
According to them, the relational model per se and the relational algebra are not normally
formally specified, although “few ideas can be more familiar to the database community
than the operators of the relational algebra”. However, if the aim is the specification of
applications, it is not absolutely necessary to formally specify either the relational model
or the relational algebra. They also claim domains and reification, are not adequately
addressed and, in most cases, not addressed at all. They also criticize the solutions for
the specification of state, but this is applicable to algebraic specifications only.

In [85] Wong and Samsom present the specification of a relational database called
PRECI, which is based in abstract data types. According to them, one of the strengths
of their work is the fact that their specifications may serve as a prototype, for they
present a partial implementation written in HOPE [86]. They also claim “the HOPE
implementation provides an ideal vehicle for the investigation of new attribute types
(domains)”, but they address neither how this investigation works nor why it is ideal.

Another rather different experiment using a specific DBMS is presented by Fitzgerald
and Jones [87]. They use the VDM specification language, referred to as Meta IV in
the paper, to modularize the specification of a specific database system called NDB [88].
However, their emphasis is on the modularization techniques used to separate the VDM
specifications into modules. The description of the DBMS is merely the chosen example
of a realistic specification task.

The approach adopted by Turner and Lowden [89] is to use formal semantics as a
means of specifying relational query languages. The authors describe a formal semantic
framework for specifying database query languages and use it to specify the semantics
of older versions of SQL and QUEL [90] and of a variant of the relational calculus [91].
Again, their aim is not to specify database applications but database query languages.

An interesting though unpublished exercise is described by Sufrin and Hughes [92].
They use an old version of Z to give specifications of the operators of the relational
algebra. However, there are some problems. Firstly, the definition of relations depends
on a set of all possible names of attributes of relations, because they define relations as
a collection of functions from the relation to the attributes. Secondly, they do not cover
important aspects of the relational model, such as primary and foreign keys. Finally,
joins are not specified conveniently, being based on all attributes with common names.
To specify more general joins, it is necessary to define a number of extra functions to
rename attributes.

One reasonably common characteristic in several approaches to the specification of
databases is that the author(s) usually do not worry about whether the specifications
are “easy” to write and understand and, consequently, whether they are going to be used
in the development of real databases or not. Samsom and Wakelin [40] even (using their
own words) “dare to say” some authors choose the database application area to display
their “mathematical virtuosity” and, in most cases, “the results are not of interest to

