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Preface

The work described in this thesis was performed while the author was a research student in 

the Department of Physics and Astronomy in the University of Glasgow and in receipt of a 

PPARC (formerly SERC) research studentship. The work concerns the study of the large 

scale structure of the universe and in particular, the use of distance estimates to galaxies 

to derive information about the motion of the galaxies and hence the processes that led to 

their formation.

The P o t e n t  analysis of Bertschinger and Dekel (1989) is implemented and adapted to min­

imise the systematic errors introduced by inaccurate distance estimates. Also, the estimates 

themselves are improved by a new calibration technique. Finally, and most importantly, 

the various techniques developed are applied to a set of actual data and the results analysed 

in the light of the careful and detailed testing performed as the methods were devised and 

compared. In this way, a methodology is developed for reconstructing maps of the local 

velocity and density fields which should lead to better results that can be confidently used 

to constrain and inform theories of structure formation and the origin of the universe.

There are, of course, far too many people to thank, and I hope that all those I cannot thank 

here will realise that it is not because I do not appreciate all their help and support but 

because they are less likely to beat me up than those I do mention. Foremost among the 

dangerous is Keith, whose constant stream of abuse has been an education in itself -  I can 

only hope I gave as good as I got. Also my thanks to everyone else who has been forced 

to share an office with me -  Giota for her patience and enthusiasm and Aidan for trying 

not to apologise too often. I must also thank Norman for, well, for helping with DTgX and 

wearing a hat and enthusing about Macs and just being generally taller than everybody



else. Looking back, I cannot pass by Lyndsay Fletcher and David Alexander, who welcomed 

me into the group with archetypal Glasgow hospitality made the first few months here more 

pleasant than I could possibly have hoped.

However, in spite of all the pleasure and help that everyone in the department has given me 

(especially Daphne -  I will never look at a photocopier in quite the same way again) none 

of this would have been possible without constant pestering and advice from three people. 

First is Gavin Starks. He is without a doubt the friendliest musician turned astronomer 

turned musician turned computer administrator turned astronomer that I have ever met 

and without the constant distraction of his music and his (slightly bizarre) sense of humour, 

the last three years would have been much less interesting (albeit spent with slightly more 

sleep).

Then there is Martin Hendry. It seems slightly odd that the person whose desk I stole when 

I arrived here should be so central to my work but his enthusiasm, experience, contacts, 

help and above all, belief in the work and the joy that can come of it, have given spice to 

everything we have done together.

Finally, no acknowledgements would be complete without my supervisor, John “F.L.” Sim­

mons. His amazingly broad knowledge, enthusiasm and patience have been an inspiration 

and his home-baked bread has been uniformly delicious. I can only say that I consider 

myself extremely lucky to have been under his wing, even if it has meant learning some 

statistics, and his influence has extended far beyond astrophysics and into the realms of 

film, art and literature. Thank you for everything.

My three years here have been very good ones. I have made a number of friends (and 

surprisingly few enemies) and I have learnt some valuable lessons. If I have taken nothing 

else from Glasgow, you can all be sure that I will carry my passport with me, whenever I 

travel!



Summary

In this thesis I will be examining the study of the large scale structure of the universe. In 

particular, I will be looking at the role of peculiar motions of galaxies -  ie motions that 

deviate from the uniform Hubble expansion of the universe. The study of these motions 

holds much promise for cosmology, but there are considerable problems with measuring and 

mapping them, a number of which I will be addressing in the course of this work.

However, I will start in chapter 1 by giving a brief introduction to the theory behind the 

formation of structure in the universe and the current state of our knowledge about its form 

and history. The framework provided by the Big Bang theory of the origins of the universe, 

has withstood a number of observational tests with remarkable success and this has enabled 

cosmologists to extend and refine the theory. This enlarged model can also be tested by 

observations and in its success or failure, improve our understanding and narrow the limits 

of future research.

In chapter 2, therefore, I will describe one of the most powerful set of observational tools -

the measurement of the local velocity and density fields. Inherent in the Big Bang theory,

and almost any other reasonable explanation of the universe, is the idea of formation and

evolution of structure. The velocity and density fields tell us about the current state of

that evolution and, therefore, will set very strong constraints on any theory. However, 
♦

as I will show, the measurement and analysis of such fields is a complicated and difficult 

business. In particular, many methods rely on estimation of the distances to galaxies and 

this estimation is subject to very large errors. In the latter half of the chapter, I will be 

considering this problem and looking at some of the most popular distance estimators and 

some of the systematic errors or biases that they can introduce to field recoveries.

The most commonly used estimators (Tully-Fisher and Dn-cr techniques) rely on a strong



correlation between two observable properties of each galaxy -  one that varies with distance 

and another that is distance-independent. Therefore, by using the distance-independent 

quantity to estimate the absolute values of the dependent observable, the distance can be 

estimated. However, one of the major problems with such distance estimation techniques 

is calibration -  exactly how are the two parameters of the chosen relation correlated? In 

chapter 3 I will describe a new method of calibration that attem pts to combine a number 

of clusters of galaxies together into one large cluster that can then be used as a calibration 

yardstick. This is an extension of the standard technique where a single cluster is used. 

While describing this technique, I will also demonstrate its efficacy with several carefully 

devised tests tha t will show clearly how it improves over the single-cluster approach.

Given a set of distance estimates, we now wish to derive some information about the local 

velocity field. One very successful method for doing this is described in chapter 4 - the 

P o t e n t  method (Bertschinger and Dekel, 1989). With this technique, expansion of the 

universe is removed from the velocity field by comparing the recession velocities of galaxies 

with their estimated distances and the resultant smoothed peculiar velocity field recovered 

under the assumption of potential flow. I will describe my implementation of the method and 

go on to test it with a variety of different forms of distance estimator thereby demonstrating 

the large biases that can result (especially the so-called Malmquist bias). Although a number 

of “corrections” for this bias already exist, I will show that none are ideal and when applied 

in the wrong situation or without a full understanding of the properties of the chosen 

distance estimator, the results can be far worse than with no correction at all. Chapter 5, 

therefore, is concerned with a number of techniques I have developed during the course of 

this thesis to improve on this situation.

The first of these attem pts to minimise the problems by performing as much of the ana­

lysis as possible in redshift-space, thereby avoiding much of the use of distance estimates. 

However, although successful for simple tests, this proves to be inadequate when confronted 

with a realistically complicated situation. More successful is an iterative technique based 

around Monte Carlo error estimates that gradually adjusts an estimate of the velocity field 

until its recovery (with biases) matches the recovery with the actual data. This method has 

the particular advantage of making no assumptions about the causes of the various biases, 

but simply tries to estimate their effect and remove them. The results are noticeably better



than any other method in all the tests performed. Finally in this chapter, an attack is 

made upon the random errors in P ot en t  recoveries. The method is adapted so that areas 

particularly sparse in galaxies are avoided except where absolutely necessary. The results, 

however, are inconclusive although the method clearly warrants further study.

After this, in chapter 6 we come to the core of the thesis. Here the techniques described and 

tested during the previous chapters are applied to a collection of actual data and the results 

analysed. The results compare well to other published data, and the confidence gained from 

the rigorous testing performed enables a higher level of confidence in the results than has 

been possible up to now. Therefore, even though a full analysis is beyond the scope of this 

thesis, I am able to use a simple technique to place limits on the density parameter of the 

universe, Qo. Namely, Do is seen to be greater than 0.3 at a 2cr confidence level.

Finally, in chapter 7, I will examine the future directions of the work -  in particular how 

the improvements to P o t e n t  and distance calibration can be refined and applied to larger 

data sets to get much more stringent information about the nature of the universe.
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Chapter 1

The Large Scale Structure o f the  

U niverse

If you can look into the seeds of time,

And say which grain will grow and which will not,

Speak then to me, who neither beg nor fear 

Your favours nor your hate.

Macbeth h iii

1.1 T h esis  O utline

In this thesis, I will be examing the role of peculiar velocity and density fields of the local 

universe in the study of Large Scale Structure. In particular, I will concentrated on the use 

of redshift-independent distance estimates in methods such as P o t e n t  (Bertschinger et al., 

1990) to rederive these fields. An appreciation of the statistical properties of the distance 

estimates and how they interact with the reconstruction method is very im portant if large, 

unrecognised systematic errors are to be avoided, and I will examine such errors closely.

In chapter 4, this will be shown to be particularly important when using the various forms 

of “Malmquist Correction” (eg Lynden-Bell et al. (1988) and Landy and Szalay (1992)). 

These corrections attem pt to modify the distance estimates in such a way tha t the errors

1



CHAPTER 1. THE.LARGE SCALE STRUCTURE OF THE UNIVERSE 2

introduced by smoothing data in estimated distance space are removed. However, the cor­

rections will obviously depend on the distribution of galaxies and some assumption must 

be made. For the Homogeneous Malmquist correction (HMC), the assumption is that the 

underlying distribution of galaxies is homogeneous whereas for the General or Inhomogen- 

eous correction (IMC), the radial distribution of observed galaxies is modelled by the radial 

distribution of estimated distances (ie p(w) = p(d>) where lj is the log of the distance).

Clearly, there is a fundamental difference in these assumptions -  one relates to the distribu­

tion of objects in the real universe, whereas the other has this distribution convolved with 

some selection function. This difference is the main motivation behind the choice of ‘raw’ 

distance estimate. It has been shown (eg Hendry and Simmons, 1994) that when the selec­

tion of galaxies is not considered, the estimator should be ‘directly’ calibrated such as the 

DTF estimator. On the other hand, corrections based on observed distributions should be 

applied to ‘inverse’ estimators (eg ITF). Simple tests in this thesis on the P o t e n t  method 

show the basic validity of this approach, but for realistic distributions of galaxies, the as­

sumption in all the corrections considered here that the main effects are purely radial is no 

longer valid and the corrections begin to loose effectiveness. Also, other biases in POTENT 

become important such as sampling gradient bias which is related to the actual velocity 

field as well as the distance errors and galaxy distribution. Given these problems, I propose 

a number of alternatives to the orthodox P o t en t  procedure which are developed using a 

carefully designed Monte Carlo procedure to test the effect of distance errors and galaxy 

distributions on the recoveries (chapter 5).

This first of these methods involves removing some of the dependence on distance estim­

ates by performing the smoothing in redshift space. There is some evidence from the tests 

performed in this chapter that this approach does significantly reduce Malmquist-like bi­

ases but, unfortunately, the transition from redshift to real space introduces noise into the 

recoveries for all except the most trivial velocity fields.

The second technique, however, shows much more promise. The aim with this is to move 

away from the details of the cause of the biases and the exact form they take, and instead 

simply treat them as some unknown systematic errors to be removed. This is done by 

imposing a known velocity field onto the galaxy catalogue and estimating the bias of this 

field using a Monte Carlo run. The imposed velocity field is then changed to a best-guess
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estimate of the actual velocity field and the process iterated towards a solution. This rather 

unimaginatively titled ‘Iterative Monte Carlo Correction Technique’ will be seen to be a 

considerable improvement on any other in all the tests performed, largely because, since 

it makes no assumptions about the form of the bias, it can happily cope with non-radial 

Malmquist effects and sampling gradient biases. It should even correct for unknown biases. 

This is clearly a technique with considerable potential.

Finally, an attem pt is made to reduce the random errors in the P o t e n t  field recoveries. 

This is done by utilising a lit tie-appreciated aspect of the P o t en t  smoothing method. Al­

though P o t e n t  only requires the radial component of the peculiar velocity field from the 

smoothing, it can actually provide estimates of the non-radial components as well since it 

effectively fits to a three-dimensional bulk flow within the smoothing window. The idea 

behind the Max-flow method (sect. 5.3) is to perform the P o t e n t  integral over mildly non- 

radial paths that avoid areas particularly sparse in galaxies. Unfortunately, because of the 

rather arbitrary weighting given to each path and the need in this crude implementation 

to impose a regular grid on the field, the net results, rather than improving the recoveries 

actually make the velocity and density fields more noisy. Nevertheless, the basic applicab­

ility of the technique is clearly demonstrated and in sect. 7.1 I will outline some possible 

improvements.

Of course, no m atter how good the technique adopted is, it relies heavily on the quality of 

the distance estimates and, equally importantly, on accurate knowledge of tha t quality. In 

chapter 3, therefore, I consider the calibration of distance estimators to get both relative and 

absolute distances. It is clear that calibration using a single cluster is prone to large errors 

in the slope and zero-point of the relationship, probably enough to make it impossible to 

distinguish betw een‘direct’ and ‘inverse’ estimators. Also, the tempting approach of choos­

ing a particularly ‘tigh t’ cluster is a dangerous one since this is obviously a selection effect 

which could have large, unseen consequences. I, therefore, explore and extend the approach 

proposed by Lattimer (1993) where several clusters are carefully combined to form a single 

large cluster with a subsequent decrease in the slope and zero-point errors. Tests showed 

tha t this method could substantially improve ‘inverse’ estimates, but improvements in ‘dir­

ect’ calibration were less clear-cut. Nevertheless, since the iterative Monte Carlo correction
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method can, in theory, be applied to any sensible distance estimates, ‘inverse’ estimates are 

perfectly adequate and have, indeed, some aesthetic advantages (see sect. 5.2.4).

Absolute distances are then derived by assuming that there is no systematic deviation from 

Hubble flow when averaged over the entire survey volume. The distance scale can then be 

set to minimise the scatter about a Hubble recession velocity.

The final stage of the thesis, therefore, is to apply all the techniques described and tested 

in chapters 2 to 5 to a set of genuine galaxy catalogues. This is done in chapter 6. The 

Mathewson et al. (1992) and Burstein (1990) catalogues were used with a large part of 

the Mathewson data set replaced with improved data provided by Salucci (1994). Also, 

a number of the Burstein galaxies are removed for a variety of reasons. The velocity and 

density fields are then reconstructed from this carefully selected and calibrated catalogue 

using most of the PoTENT-like methods described previously. The results are, in general, 

consistent with the tests and also with other results obtained by other groups. Given the 

improvement displayed by the iterative corrections previously, this is taken as the “best 

guess” . When compared to the most recent results from the P o t en t  collaboration (Dekel, 

1994) a number of significant differences are seen. In particular, the “Great A ttractor” is 

far less prominent in my result. The interpretation of this is complicated by the different 

data sets used and a detailed analysis will have to wait until the Burstein Mark III data  set 

is available, but this is a clear indication of the dangers of the biases in P o t e n t .

Given these reservations, however, it is still possible to get useful information even from 

the results of the limited catalogue assembled here. As an example, in section 6.5, a simple 

technique devised by Dekel and Rees (1993) is used to get a lower bound on the density 

factor Qo• Treating the errors conservatively and working as close to the origin as possible 

to minimise the problems, this analysis gives the limit of ft > 0.3 at the 2a level.

However, before getting down to the nitty-gritty of velocity and density fields, in the rest 

of this chapter I will give a introduction to the study of large scale structure.
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1.2 O bserving th e U niverse

The study of the large scale structure of the universe (LSS) forms the backbone of our 

attem pts to examine the origins and nature of the universe around us. However, despite 

the preoccupation with cosmology throughout the recorded history of humanity, it is only in 

the last century that we have been able to confidently observe beyond the narrow confines 

of our own galaxy.

The study of extragalactic astronomy really began in the 1920s when Edwin Hubble was 

observing the distribution of “nebulae” (other galaxies) both over the sky and as a function 

of their apparent magnitude. He was able, somewhat tentatively, to conclude that the 

distribution of objects did not seem to fall off rapidly and was at least broadly consistent 

with a homogeneous distribution of objects out to the limits of his survey (Hubble, 1926). 

Two years later, Hubble published further results relating the estimated distances to clusters 

of galaxies (using the apparent magnitude of the fifth brightest member) to their recession 

velocity or redshift. The simple linear relationship that he discovered has become known 

as Hubble’s Law and it was soon realised that, although seemingly indicative of some 

cataclysmic event centred on our humble galaxy throwing m atter away from us, because of 

its linear nature, it could also have a much less egocentric interpretation. If the universe 

were expanding uniformly, then any observer would perceive the same recession.

The stage was set, therefore, for the study of LSS. Hubble’s observations gave the first 

indications of a homogeneous, expanding universe and the earlier appearance of General 

Relativity provided the mathematical framework to attem pt to model this. I will return to 

this mathematical description in sect. 1.3, but first there are several more constraints that 

observations have been able to impose.

1 .2 .1  T h e  H o m o g en eo u s  U n iv erse

Hubble’s original results extended only fraction of the distance available with modern tele­

scopes and recording devices. However, the most extended surveys now available such as 

those of high redshift QSOs and radio galaxies show a high degree of isotropy. Perhaps even 

more significant is the discovery of the Cosmic Microwave Background Radiation (CMBR).

The CMBR was first detected by Penzias and Wilson in 1965. They were using a radio
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Figure 1.1: A section the local universe from de Lapparent et al. (1991). A thin slice of the 
universe was considered centred on Coma with the distances given by the redshifts of the 
galaxies.

horn at Bell Laboratories in Holmdel, New Jersey and developing techniques to calibrate 

the antenna to previously unknown levels of accuracy. However, they discovered a constant 

background noise in all directions on the sky which would not disappear no m atter how 

well they prepared the horn. Its isotropy seemed to remove the possibility of a solar or 

galactic origin, so it was clear that here was an important cosmological measurement. In 

fact, at the same time, a group at Princeton led by Robert Dicke were studying possible 

observational consequences of the Big Bang theory and predicted the presence of just such 

background which should form a black-body spectrum of a few Kelvin (see sect. 1.3.1 for 

more details). Further experiments from balloon based instruments and, notably, the COBE 

satellite confirmed the black-body nature of the spectrum to extraordinary accuracy and 

fixed the temperature to 2.735 K (Mather et al., 1990). In addition, the isotropy of the 

radiation remains secure down to 1 part in 105 (Wright et al., 1992). However, not all 

observations are so smooth.

1.2.2 Observed Structure

Figure 1.1 shows one of the first clear measurements of large scale clustering of galaxies. A 

magnitude limited sample of galaxies from a thin slice of the sky is shown with the distance
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being given by the redshift. As can be seen, there is considerable ‘clumping’ including some 

very large structure such as the Great Wall stretching off both sides of the slice and the 

“CfA Man” in the centre. More recent redshift surveys including IRAS (Strauss et al., 

1990) and QDOT (Efstathiou et al., 1990) have spread over the entire sky and to much 

greater depths and the scale of structure grows with the surveys to encompass clusters and 

superclusters of galaxies and extensive voids.

There is also some much more immediate evidence for structure in the universe. The density 

within a galaxy is about 105 times the average density of the universe and on very small 

scales we have humans with a density of about 1025 times more than that! We therefore 

have the contrast between high levels of structure on small to medium scales giving way to 

an extraordinary level of homogeneity on very large scales (greater than about 100 Mpc). 

Reconciling these two extremes is the major task in the study of LSS today.

1.3 T h e Standard C osm ological M od el

Before we can look at the theory for structure formation, we need to set up a mathematical 

basis -  a cosmological model. To do so, we take three basic ingredients:

1. An assumption of Homogeneity and Isotropy (the Cosmological Principle).

2. The observed expansion of the universe.

3. Einsteins field equations (General Relativity).

The model is created by solving 3 with the constraints imposed by 1 and 2. Einstein’s field 

equations can be written in the form

- - 1
Raft 9aft — C ap — 87T G Tap T A Qaft (I'-O

where R is the Ricci tensor1 Gaft is the Einstein tensor, Tap is the stress-energy tensor

and A is the cosmological constant which will be taken to be zero from here onwards unless

otherwise stated. Also, gap is the metric for the spacetime and must have spatial sections

tha t are homogeneous and isotropic if the cosmological principle is to be satisfied. The

*1 will be using the convention that greek indices (or, ft etc) will vary from 0 to 3 whereas roman indices 
(i, j etc) will cover only the spatial indices 1 to 3.
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most general metric with these properties is the Robertson-Walker (RW) metric with the 

line element

ds2 = dt2 -  R2(t) |  "I" f2 (^2 + s*n2 ̂  ^ 2) |  (1‘2)
with c — 1 and x = {r, 9,0} is a comoving coordinate and the metric convention is goo = 1, 

sign(^i) =  — 1. R is the scale factor of the universe and incorporates the expansion, k takes 

the values -1, 0 or 1 and is used to denote the form of the curvature of the spacetime. From 

this metric the non-zero components of the Ricci tensor can be derived (eg Narlikar (1993) 

chapter 4), then we just need to calculate Tap.

From the symmetries of the metric we know that Tap must be diagonal and from the 

assumption of isotropy, all the spatial parts must be equal. One simple solution of this form 

is the perfect fluid

T ^  = (p + p ) u V  - p g ^  (1.3)

where p is the energy density, p the pressure and is the four-velocity of a fluid element. 

It follows from the Bianchi identities, = 0, that.

= 0 (1.4)

For the perfect fluid in (1.3), this gives

d(pR3) = - p  rf(R3) (1.5)

the first law of thermodynamics. Of course, p and p can always be related by some value u> 

(ie p = u>p), and assuming that this value is time independent we have

p oc R_3(1+w) (1-6)

For example, for radiation we know tha t p =  3p so p ex R-4 and for m atter, p 0 giving 

p oc R-3 . Another interesting case is when p = —p. This occurs when the universe is 

dominated by vacuum energy and p oc const. In general, we shall see tha t in the early 

stages of the universe, radiation dominates whereas at later times, m atter domination takes 

over. An inflationary regime occurs whenever vacuum energy dominates. I will not be 

considering inflation in any detail, but a brief outline is given in sect. 1.3.2.

We now have all of the tools we need to solve Einstein’s equations. The 0 — 0 component 

gives the Friedmann equation.
R2 k 8ir
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and each i — i component gives

2 |  +  l ‘ +  ^  =  - 8,rG'P ( x-8)

From these two equations, an expression for the acceleration of the scale factor R can be 

obtained

f  =  - f  <?(/> + 3p). (1.9)

We know that currently, the universe is expanding (ie Ro > 0 where the subscript 0 indicates 

the present value so po is the present energy density etc.). Therefore, if in the past, p +  3p 

was positive, then at some time (usually taken as t = 0) R must have been zero. This 

clearly corresponds to the Big Bang and is an unavoidable singularity in the model. Close 

to  the moment of the singularity, classical GR cannot describe the state of the universe, 

but at sufficiently late times (which are not that late at all!) we can describe much of what 

should have been happening.

To do this in a useful way, we need to have a limited number of parameters to look at. Two 

such values which are very useful and should be fairly readily measurable in the current 

epoch are the Hubble parameter H  and the density parameter Q, (together with their present 

values Ho and fio).

=  i H0 = 100 ho km s’ 1 M pc"1 (1.10)

n  = * s 8T o  (1-U )

where pc is the critical density such that

k = +1 =>• fl > 1 Closed Universe

k = 0 =>  D = 1 Flat Universe

k =  — 1 =>- ft < 1 Open Universe (1.12)

1.3.1 A B rief H istory of the Universe

Figure 1.2 gives a schematic outline of the various stages in the evolution of the universe 

from moments after the Big Bang up to the present epoch.
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Figure 1.2: A schematic history of the Universe as given by Big Bang theory.
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T he Planck Epoch: t < 10 43 sec, T > 1019 GeV

This is the limiting epoch for classical GR. For times earlier than this, a quantum theory 

of gravity is needed.

T he G U T Era: up to t ~  10"34 sec, T  ~  1015 GeV

After the Planck epoch, we enter the realm of the Grand Unified Theories (GUTs) of 

particle physics. Here, the universe is a hot soup of relativistic particles such as quarks 

and leptons and at sufficient temperature for the fundamental forces excluding gravity to 

be indistinguishable (hence unification theories). However, as the temperature drops below 

~  1015 GeV, this unification breaks and there is a phase transition. It is at this point that 

an inflationary stage might occur (see sect. 1.3.2).

The Electroweak Era: up to / ~  10-12 sec, T  ~  103 GeV

Another phase transition occurs at ~  103 GeV when the electromagnetic and nuclear weak 

forces separate. Soon after this quarks begin to bind together to form baryons and mesons. 

This is known as the Quark-Hadron transition.

Prim ordial N ucleosynthesis: 10-2 < t < 102 sec, T ~  10 to 0.1 MeV

The era of Primordial Nucleosynthesis provides the earliest direct test of the standard Big 

Bang theory. As the temperature falls below the nuclear binding energy, atoms (or rather 

nuclei) begin to form. The details of the process are beyond the scope of this thesis, but 

the theory predicts specific relative abundances of the light elements and imposes an upper 

limit on PLb ~ the fraction of the critical density made up from baryonic m atter.

M atter Dom ination: t ~  1012 sec, T  ~  10 eV 

We saw in eqn. (1.6) tha t for our model,

Prad R

P m atter  ^  R
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so, even with radiation dominating the energy density at early times, there will eventually 

come an epoch when m atter dominates. This regime marks the beginning of the actual 

formation of structure.

Decoupling: t ~  1013 sec, T  ~  1 eV

Very soon after matter domination, the temperature finally falls below the atomic binding 

energy of the light elements created during the nucleosynthesis phase. However, as the atoms 

form, the interaction between photons and the previously charged particles is effectively cut 

off and the radiation decouples from the matter. This leaves two distinct ‘soups’: one of light 

elements such as H, D (Deuterium), 3He, 4He and 7Li, and another of free flowing photons. 

The photons continue unhindered and gradually lose energy by gravitational redshift in the 

expanding universe. It is these photons that form the CMBR having ‘cooled’ from their 

decoupling temperature of about 3000K to the 2.7K observed today. Note tha t this epoch is 

very important in the process of structure formation and its apparently coincidental position 

so close to m atter dominance is still a source of some speculation.

U p to the present: t ~  1018 sec, T  = 2.735K

After decoupling, the business of structure formation really gets under way with galaxies 

forming at about t = 109 years.

So, that is a basic outline of Big Bang theory. In general it has proved to be remarkably 

resilient, with the discovery of the CMBR setting it up firmly as the theory to beat. However, 

there have been problems associated with some aspects of the theory and a number of 

variants and adjustments have been proposed. Again, the details of all these are beyond 

the scope of this introduction, but it is interesting and instructive to glance briefly at one 

of them to get some feel for the sort of changes tha t are envisaged.

1 .3 .2  In fla tion

Three of the main questions raised by the standard Big Bang model are the Horizon, 

Flatness and Monopole problems. The horizon problem arises from the very property that
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enabled us to develop the standard model -  the isotropy and homogeneity of the large scale 

universe. Why is it so smooth? In particular, how can this be consistent with the finite 

velocity of light? Ignoring the perhaps somewhat contrived solution that the universe was 

created homogeneous, let us assume that some physical process acted to smooth out the 

cosmos at some early time. As this time, the maximum scale of any physical interaction 

will be the particle horizon which is limited by the finite age of the universe and velocity of 

light. When brought forward to the current epoch, this region of the universe will be very 

much smaller than the current horizon. In fact, it could be as little as 1 metre! (eg Narlikar 

(1993) chapter 6 or Kolb and Turner (1990) chapter 8 ). This would mean tha t we could 

not really expect to see homogeneity on any reasonable cosmological scale.

The flatness problem arises because of the evolution of the curvature of the universe. At 

the present time, the curvature is such that fio is pretty close to 1 (certainly not as much as 

5 or less than 0.05 anyway). However, in order have such values at our epoch, f I must have 

been much closer to 1 at any earlier epoch (for example, the GUT era). To demonstrate 

this, recall the Friedmann equation (1.7). If this is rewritten in terms of Q, we can obtain 

the following:

—  = (H — 1.) —  (1.13)

Taking R oc t1!2 a  T ~ l and substituting for values at the current epoch where appropriate, 

we see

(fi -  1) =  4 (fi0 -  1) Ho to U  for k =  ±1 (1.14)

So, for typical values for the GUT era,

Slo„r - l « 1 0 - 53 (Sl0 - l )  (1.15)

Therefore, an fio ~  1 universe is a surprising coincidence that requires very little deviation 

from O = 1 at early epochs. This level of “fine tuning” is uncomfortable when not backed 

up by any strong reasoning and requires some addition to the standard theory.

The final of the three problems involves the Grand Unified Theories. It is an unavoidable 

result of the symmetry breaking in these theories that at least one magnetic monopole is 

produced within each horizon. However, not only are they not currently detected, but given 

their high stability and large mass (typically ~  1016 GeV), their combined density should 

be far in excess of pc.
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So, we have three apparent discrepancies with the standard theory -  how do we go about 

solving them? It is clear that, to some extent, the problems share a similarity in their 

dependence on scale. Therefore, some suitable adjustment of the scale of the universe 

might be a way forward. Such an approach is Inflation proposed by Alan Guth (1981).

Inflation occurs at the breakdown of the GUT symmetry. At this point, the state of low­

est energy (or vacuum state) changes and if the true vacuum energy is not immediately 

obtained, we have a situation with a finite, positive vacuum energy density. This will 

dominate the total energy density and lead to the situation mentioned earlier where p is in­

dependent of the scale factor R. We then get a de Sitter phase with the universe expanding 

exponentially, R(i) oc exp(H t), until the true vacuum is reached.

The net result of this massive increase in R is highly fortuitous for the three problems 

outlined above. After inflation, the observable horizon is a very small fraction of the horizon 

pre-inflation so even at the present epoch, there is a time when the entire observable universe 

was causally connected. The monopole problem is dealt with in the same way. There should 

only be a few monopoles per pre-inflation horizon, so there would be at most a handful in 

the entire observable universe today. Finally, the flatness problem is solved since no m atter 

what the spatial curvature before inflation, the radius R after inflation will be much greater 

than the horizon scale, giving an extremely flat universe. In fact, inflation can be considered 

as predicting Qo = 1, and any other result will be a considerable hurdle to overcome.

Thus we see how the concept of inflation helps to explain some of the problems with the 

standard Big Bang model. For a much more detailed description of inflation in a number 

of its flavours, see Narlikar and Padmanabhan (1991).

1 .3 .3  From  H o m o g en e ity  to  S tru ctu re

On the very large scale, therefore, we have a remarkably smooth universe and a highly 

successful model. The presence of the CMBR and its smooth, black-body nature give 

enough weight to the model to ensure longevity and many of the problems with the details 

can be overcome with testable ‘fixes’ such as inflation.

However, as it stands, the Big Bang model does very little to explain the smaller scale 

distribution of mass - how and when do galaxies form? and why does the particular hierarchy
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of clusters and superclusters that we observe come about? To answer these questions, or at 

least to attem pt to, we need another extension to the theory.

1.4 S tructure Form ation in th e  U niverse

The problem of the formation of galaxies and other large scale structures in the universe 

at the current epoch is one of the most vexed problems in cosmology today. Although the 

observational evidence is greater than in most areas, or perhaps because of this, there is little 

or no consensus about the processes involved. Even if one restricts oneself to the big bang 

cosmology outlined above, there are many unanswered fundamental questions. However, by 

making some reasonable assumptions and some perhaps slightly less reasonable but essential 

ones, it is possible to derive a sequence of events that could be expected to lead to structures 

similar to those we see around us, and also predict some observable properties that can be 

used to refine or if necessary rewrite or discard the theory.

One such theory, usually considered the Standard Model of structure formation, is the 

evolution of density fluctuations by gravitational instability (GI). Here, small “early” fluc­

tuations are amplified by self-gravity to form individual structures. The basis, therefore, is 

the evolution of such fluctuations with time in the expanding universe.

1 .4 .1  Jea n s In s ta b ility  in an E x p an d in g  F lu id

The development of Jeans, or gravitational, instabilities involves solving the Eulerian equa­

tions of motion for small perturbations of the underlying state of the m atter. So, given the 

usual Newtonian equations

|  +  V-(pv) = 0

d'v 1 ■
—  + (v.V )v + -V p  +  V $  = 0 
at p

V2$ = 4tt Gp (1.16)

where $  is the gravitational potential, we can choose a suitable base solution and perturb

it. The simplest base is static (vo = 0) and spatially uniform (po = const, po = const) with

perturbations:

A = Ao + Ax (1.17)
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where X  = {p , p, v, $}

(Note that the ‘O’ subscript now refers to the unperturbed value rather than the value at 

the current epoch). We will assume, for simplicity, that the equation of state relating the 

pressure and density has no spatial variation implying a sound speed vs given by

v 2s =  ^  (1.18)
Pi

Using this simplifying term, the solutions of the equations of motion to first order in the 

perturbations are
d p i

aT  + f t ,v 'Vl = 0 

^  =  o
Ot po

V 2$ i  =  AirGpi (1.19)

However, the simple static base we have assumed is not suitable for an expanding universe.

For a suitable expanding fluid, our unperturbed base is given by

Po =  P o { t o ) R ' \  v ° =  ^ r ,  V $ 0 =  ^ n G p 0 r  (1.20)

Again solving to first order, we now obtain

l i t  +  3 l pl + i ( r -v ) / ’1 + P o V -V i  =  0

dvi R R , v 2
+ U'Vl +  ^ (r -V )Vl +  — Vpi +  V * i  =  0

Ot it it po

V 2$! =  AirGpi (1 .2 1 )

It is convenient to express the density fluctuation as a contrast to the underlying density 

such tha t 6 = p i / p o . This, together with Vi and 3>i can then be expressed in fourier 

components

^ ” 1 d3r (1 .2 2 ). k.r
- i -

R(i)J
X (r , t) = (27t) 3 J  Xk(t) exp 

where X  = {6, Vi, $ i} .

One further useful adjustment is to divide the perturbed velocity field into its rotational 

(v_l) and irrotational components (v||) components such that

V1 = VJ. +  V|| (1.23)
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The equations (1.21), expressed in terms of the fourier components of the field then show 

that

v i  a  R_1(£) (1*24)

In other words, the rotational modes decay with time so it is reasonable to assume that, 

if no more rotational modes are created, the velocity field will eventually become entirely 

irrotational. This will have significant and useful consequences for the velocity field recovery 

methods described in this thesis.

But to return to the evolution of the density fluctuations. One of the perturbed equations 

of motion that can be derived from (1 .21 ) describes the time development of <!>k

-  AirGp^J 6k = 0 (1.25)

It is clear from this that an important factor in the evolution of density perturbations is 

whether v2k2/R 2 is greater or less than AnGpo. We therefore define the Jeans Wavenumber

k2j  =  4irGpoB,2/v ]  (1.26)

where k = |k|. When k >  k j the perturbations oscillate as a sound wave with a gradually 

decreasing amplitude. However, when k <C k j, there are growing modes to the solution and 

the density fluctuation can grow and lead on to the formation of structures.

The physical basis for this is simple. The development of the fluctuation is a contest between 

the self-gravity of the system trying to collapse into a dense region and the pressure and 

expansion of the universe holding the collapse back. Below a certain scale, the fluctuation 

does not contain sufficient mass to overcome the pressure and expansion forces, but above 

the scale defined by the Jeans wavenumber, the self-gravity begins to dominate and the 

density contrast increases.

W hat we need to consider, therefore, is the evolution of the Jeans scale. (This is often 

expressed as a mass (the Jeans mass) which is defined as the mass contained within a

sphere of of radius 7r /k j) . As we follow this parameter through the various epochs of the

big bang history, we should be able to get a handle on how and when the structure formed 

and also see how the model can be tested and constrained by observations.
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1 .4 .2  F orm in g  th e  P ertu rb a tio n s

The analysis so far has considered the evolution of some small fluctuations that were created 

at some earlier time. However, there is no consensus exactly when these could be formed in 

the real universe. One possibility is that they are formed before the Planck era, but as this 

is exactly the region where our current understanding of physics breaks down, it seems a 

little convenient to stuff all the problems into this period, and it is also difficult to see why 

any particular set of initial conditions that deviate from homogeneity should be preferred 

over any other. Another, more comfortable option is during the early phase transitions (for 

example inflation or cosmic string theories). However, whenever they are formed exactly, 

it is sufficient for our purposes to say that it is very early (certainly less that t ~  10-34  

seconds).

We also need to be able to describe the form of the perturbations, both at this initial 

epoch and at later stages. The normal way of doing this is through the power spectrum 

of the fluctuations P (k). In doing this, it is implicitly assumed that the nature of the 

fluctuations is not a function of position, but only of scale, however, this is a perfectly 

reasonable assumption and is certainly preferable to trying to follow the growth of individual 

perturbations over all space! Using this spectrum, we can set the initial conditions at some 

early epoch to be a particular form. Given that the processes that form this are unknown, 

it is necessary to parametrise the relation, for example as a power law

P (k) = A kn (1.27)

where A can be fixed from observations. Obviously, for a general spectrum, n should be 

a function of k, but without any reason to do this, it is convenient to keep it constant. 

In fact, the most commonly used spectrum has n = 1 (the Harrison-ZeUdovich spectrum) 

which corresponds to having the gravitational energy equally distributed over all scales. 

Inflationary models can also favour a spectrum of this form.

1 .4 .3  F lu c tu a tio n s  b efore  D eco u p lin g

When we look at very early times, we see that the universe is radiation dominated and that 

m atter is coupled to the radiation. This means that the sound speed is just u3 =  | .  The
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corresponding Jeans wavenumber is

kj = 3 x 4irGpR2 (1.28)

Which expressed in physical coordinates is

k-W  = X  = (12*G/>)1/2 (1.29)

The mass in baryonic m atter contained within this is

M j” T ' b  ( s i ) ’ <130)
However, the to tal baryonic mass within the horizon is

Ayr
M h o R b =  -g-  p B t  (1*31)

M j„  (1.32)

Clearly, the all fluctuations sufficiently large to grow are larger than the horizon. In order to 

examine such fluctuations properly, the Newtonian analysis given above is insufficient and 

we need to employ a fully general relativistic theory. However, for our qualitative survey, a 

simpler approach will suffice.

First, it is im portant to realise that there are two types of perturbations to consider. The 

first -  ‘ Adiabatic’ or curvature fluctuations -  are straightforward fluctuations in the density

dp ^  0. However, it is also possible to have fluctuations where 6p =  0, but the equation of

state varies spatially, for example by varying the relative contributions to p from photons 

and m atter. These are called Isocurvature fluctuations. When a fluctuation is sub-horizon

sized, the isocurvature form becomes an adiabatic fluctuation as the m atter redistributes

itself, but when they are super-horizon sized, causality prevents this from happening and 

the two types must be considered separately.

For adiabatic fluctuations, consider the simple case of a flat FRW universe. The Friedmann 

equation (1.7) gives

H 2 = \ * G p 0 (1.33)

For another region with the same expansion rate, but a slightly higher density p\ we have

E-* = Gpx ~  (1.34)
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The density contrast between the two models is, therefore,

R—2
S oc  ( 1.3 5 )

P
which means that

R2 oc t Radiation Dominated
S oc <|

I R oc t2/ 3 M atter Dominated 

Isocurvature fluctuations do not evolve when super-horizon sized.

1 .4 .4  S u b -h orizon  S ized  P er tu rb a tio n s

Eventually, the perturbations enter the horizon and cease growing. Isocurvature fluctuations 

evolve into simple density contrasts and everything happily sits there and expands with the 

universe. However, as we approach decoupling, things begin to change. The first thing that 

happens is that the fluctuations begin to be damped.

Collisional or Silk Dam ping

As the universe nears decoupling, the photon mean free path A7 becomes very long and 

photons can ‘drag’ the charged baryons out of overdense regions into underdense ones, thus 

damping the fluctuations, A crude analysis of can show the scale of this effect.

Consider the random walk of a photon

/A r \2 _  AfA7(<)
(Ar )  ( }

In the total time up to decoupling, the diffusion length of the photon is given by
f t d . e e  \

=  I  W dt (L37>

Also, since A7 is until quite close to decoupling, we can assume that universe is m atter 

dominated and R rsj (t X 10 17)2/ 3 where t is in seconds (Kolb and Turner, 1990 page 354). 

Therefore, A | is of the order of the photon diffusion length at the epoch of recombination, 

and this defines a scale (the Silk mass) below which fluctuations are erased at decoupling.

So far, structures are not forming particularly well. Although some super-horizon sized 

fluctuations have grown for a period, they grow at best oc t and small scale fluctuations are 

wiped out at recombination. However, after this epoch, there is a dramatic change.
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1 .4 .5  P o s t-d e c o u p lin g  S tru ctu re  E v o lu tio n

The big change occurs because, since m atter is no longer tied to the photons, v% /  1/3. This 

means that the pressure drops precipitously and M j b  plunges inside the horizon. We can,

so all perturbations greater than the Jeans mass, which now lies comfortably within the

perturbations. W hat happens as 6 grows, particularly when it reaches ~  1? Then the 

fluctuation begins to break away from the expansion of the universe and we need a new, 

non-linear approach.

1 .4 .6  N o n -lin ea r  E v o lu tio n

Unfortunately, the non-linear regime of structure formation, when 6 > 1 and the fluctu­

ations break away from the expansion of the universe completely is very difficult to treat 

analytically. Indeed, to produce anything reasonably like real structures such as galaxies 

can only be achieved numerically such as through large N-body simulations. However, some 

techniques do exist from probing some way into the non-linear arena, the foremost being 

the Zel’dovich Approximation.

T he Zel’dovich A pproxim ation

therefore, use a Newtonian analysis to describe the further evolution of the perturbations. 

Recall from eqn. (1.25) that

(1.38)

If we assume that k <C k j and a k = 0 FRW universe, we have

(1.39)

which has a growing mode solution of the form

£k+W oc i2/3 (1.40)

horizon, continue to grow, albeit slowly. However, our analysis so far has assumed small

The Zel’dovich approximation (Zel’dovich, 1970) is a way of following the growing mode of 

fluctuations some way beyond the 6 = 1 barrier without the need for an impossibly complex
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non-linear approach. The approximation starts by phrasing the problem in Lagrangian 

coordinates q where q labels some fluid element by its position at some ‘initial’ time. This 

is related to the more customary Eulerian coordinates r  at some time t by a displacement 

function V

r  = R(t)[q + V (q ,t)]  (1.41)

The approximation comes in expressing V  as a combination of a purely spatial function and 

a purely time dependent one:

x = ^  = q + D {t)^(  q) (1.42)

Then, from simple mass conservation,

^  = 0 1 1 1 1 1 "' ^  

where | | . . .  || represents the determinant of the Jacobian transformation. Given the eigen­

values of the matrix in the Jacobian Ai, A2 and A3 , the density can be written as

p (r ,t )=  (1.44)

Taking, without loss of generality Ai > A2 > A3, we see tha t as D (t) grows, the density 

becomes infinite as D \\  —► 00 . The density fluctuation is, therefore, forming a 2-dimensional 

sheet called a Zel’dovich pancake. However, when the approximation reaches this stage, it 

breaks down as orbits begin to cross. At this point, the Lagrangian coordinates are no longer 

valid as they do not uniquely determine a particular fluid element. The approximation fails 

to account for the interaction between the particles crossing and they continue apparently 

undisturbed (see fig 1.3). One very successful extension to the Zel’dovich approximation is 

also shown in the figure. In the Adhesion approximation, a viscosity is introduced which 

has the effect of “sticking” particles together as they cross. However, sufficiently outside 

the pancake region, the viscosity is negligible, so the pure Zel’dovich result is obtained.

Between them, the Zel’dovich approximation and its adhesion extension provide a highly 

successful quasi-linear treatm ent of fluctuation evolution up to a 6 of several. In addition, it 

can be used along with other techniques (such as the truncated Z el’dovich, see Sathyaprakash 

et al. (1994)) as an input to N-body simulations to significantly increase efficiency. However, 

beyond 6 ~  5 to 10, the approximation is too dogged by orbit crossings on small scales to 

be useful and it becomes the realm of the number-crunchers.
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Actual orbits Zeldovich Adhesion

Figure 1.3: The effect of the Zel’dovich and adhesion approximations on two particles 
crossing orbits. The actual behaviour is shown on the left with the Zel’dovich approximation 
all but ignoring the orbit crossing and the adhesion approach effectively replacing the two 
particles with one large particle.

1 .4 .7  D ark  M a tte r

Throughout the analysis in this section, we have been assuming that the universe is com­

posed exclusively of photons and baryonic m atter. However, primordial nucleosynthesis 

puts severe constraints on ULb  (the fraction of the critical density in baryonic form). In 

fact, Q,b  < 0.15. However, we have also seen that inflation predicts 0, = 1, so how can we 

reconcile this seeming disparity? The only way would seem to be Dark Matter. This is, in 

general, non-baryonic m atter which interacts weakly or not at all with other constituents 

except by gravity (hence dark). There are a number of possible candidates, no one of which 

has any overwhelming case for priority, but as far as our argument is concerned, they can 

be divided into two camps -  Hot and Cold dark m atter where the distinction is simply that 

hot m atter is relativistic.

H ot D ark M atter (H D M )

The main hot dark m atter candidates are massive neutrinos. These have a severe effect 

on short wavelength fluctuations because, being collisionless, they can readily diffuse from 

overdense into underdense regions, thus damping the fluctuations (note the distinction 

between this collisionless damping and Silk damping). The effect of this is to cut off all 

perturbations below Ac ~  40(mM/30eV)_1 Mpc where is the mass of the neutrino.

The first structures to form, therefore, are of this size -  roughly a supercluster -  and the
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final non-linear collapse of these objects must have occurred relatively recently (z  < 4 ). 

The good news is that numerical simulations of HDM universes show structure remarkably 

like observed (eg fig. 1.1). However, galaxies form far too late to be consistent with the 

observation of radio galaxies out to 0 > 1 to 2 .

HDM, therefore, has problems with its top-down nature of structure formation, and is likely 

to drop out of contention. However, the discovery of a 30 eV neutrino species could easily 

revive its chances!

Cold D ark M atter (C D M )

Cold dark m atter candidates are the products of particle theories such as Axions, and none 

have been detected as yet. However, their effect on structure formation is convenient for the 

standard model and CDM has, until recently, been the fore-runner in the dark m atter race. 

Because they are not collisionless like HDM, CDM particles do not damp out the small scale 

fluctuations. In addition, not being charged particles, fluctuations in the dark m atter can 

survive the Silk damping effect as the photons do not drag the non-baryons around. Finally, 

quite large fluctuations can exist at decoupling and not be imprinted on the CMBR which 

the baryons can then ‘fall into’. This, in contrast to the HDM top-down approach, gives 

a bottom-up scenario with galaxies forming quite early and grouping together to form the 

larger clusters and then superclusters. Unfortunately, the amount of galaxy clustering in 

CDM simulations can only be made to match observations with LIqIi ~  0 .2 , which stretches 

Ho uncomfortably for an fl =  1 inflationary universe.

M ixed Dark M atter (M D M )

The most recent attem pts to solve these problems involve a judicious combination of Hot 

and Cold m atter -  Mixed Dark Matter. The idea is to combine the attractive properties of 

both scenarios while avoiding their shortfalls. So far, the results seem to be attractive (cf 

Pogosyan (1993) and Davis et al. (1992)), but the extra parameter of the relative abund­

ances of HDM and CDM perhaps leaves things a little too unconstrained for testing what 

is, fundamentally, a model based on a number of assumptions with no direct corroboration.

This is something that may well be resolved over the next few years as there are more
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observational constraints such as measurements of detailed, small scale fluctuations on the 

CMBR and advances in experimental particle physics, but at present is still very much an 

open issue.

The study of LSS, therefore, is an active and exciting one with many things uncertain, but 

the possibility of significant advances in the near future. One area of research that has borne 

fruit over the past decade and promises to go on doing so is the study of the velocity fields 

produced by the flow of galaxies and other matter in the universe at the current epoch. 

This area forms the core of my work for this thesis.



Chapter 2

Velocity Field Reconstruction

If the dull substance of my flesh were thought,

Injurious distance should not stop my way.

Sonnet X L IV

The observational study of LSS is, naturally, limited to objects and events very near to time 

t0. Even the study of the CMBR is strongly influenced by relatively recent events such as 

possible distortions produced by gravitational waves rather than initial fluctuations, and 

the main sources of information -  galaxies and quasars -  are by their very nature from the 

very late, highly non-linear phase of structure formation. Therefore, the problem facing 

cosmologists is one of initial conditions. To understand the universe we need to know the 

quantity and form of any dark matter, we need to know something of the very early spectrum 

of fluctuations and so on. These early parameters will remain forever unobservable directly, 

and it is unlikely that we could reverse the flow of structure formation and recover them from 

the present structure due to the quantity of filtering that has occurred. However, particle 

and cosmological theory have combined together to provide a wealth of possibilities all of 

which can, or at least should, make predictions about the state of observable systems. In 

this way, the theoretical models can be refined or rejected as appropriate, and our knowledge 

of the origins and nature of the universe improved.

26
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2.1 T h e P ecu liar V elocity  F ield  and its  M easu rem en t

The most obvious probe of the current state of structure in the universe is the distribution 

of galaxies, both on the sky (2-dimensional surveys) and through space (3-dimensional 

surveys such as that shown in fig. 1.1). However, such positional surveys do not exhaust 

the available information. As well as positional information forming a density field, the 

motions of the galaxies give rise to a velocity field. The most obvious aspect of this is the 

universal expansion, but when this is removed there can remain significant motions. These 

motions form the Peculiar Velocity Field.

One im portant reason for wishing to measure this field is because the peculiar velocities 

act to distort the distribution of galaxies in redshift space when compared to real space. 

For example, the redshift map of a cluster of galaxies will be elongated along the line of 

sight due to random motions within the cluster leading to “Finger of God” effects and on a 

large scale it is not unreasonable to suppose that large mass concentrations associated with 

superclusters, for example, might lead to some form of infall from neighbouring regions, 

further distorting the redshift picture. However, peculiar velocities are far more useful as 

direct probes of the dynamical state of the universe.

One particular problem tha t plagues the analysis of redshift surveys is cosmological biasing. 

From a survey, one is observing not the density contrast 6 as one would wish, but the 

distribution of luminous m atter. To resolve this ambiguity, some knowledge of how the 

luminous m atter is related to the dark (or “how light traces mass” ) is needed, but this is 

still totally unknown. The normal assumption, more for its simplicity in the lack of any 

further information than any other reason, is that there is a universal relationship governed 

by a single parameter b such that

= b S  (2-^- ^ J luTTl
where [Sn/n]ium is the galaxy number density contrast. However, even if the biasing para­

meter is fit to  during some recovery process, the rather ad hoc form of the relationship is 

far from satisfactory. However, the motions of the galaxies are gravitationally induced and 

dependent only on the mass field. Therefore, if some way can be found to map the velocity 

field, this will help to understand the density field and the biasing itself.
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2 .1 .1  A n  O b serv a tio n a l H is to r y  o f P ecu lia r  V e lo c it ie s

The earliest firm measurements of systematic deviations from quiet Hubble flow were by 

Rubin et al. (1973). They used apparent magnitude to estimate the distances to a selection 

of spiral galaxies in the redshift range 3500 km s -1  to 6500 km s-1 . These distances were 

then compared to the redshifts to estimate the radial peculiar velocities of the galaxies 

and the variation across the sky considered. They found a systematic variation which was 

consistent with a Local Group motion of 450 ±  125 km s -1  towards I = 163°, b = —11°. 

This large value was considerably above expectations and several other groups attem pted 

to  reproduce the results with very little success (see, for example, Hart and Davies, 1982 or 

de Vaucouleurs and Peters, 1984). However, studies of the microwave background indicated 

a considerable dipole motion even when corrected for E arth ’s solar system and internal 

galactic motions. Although the magnitude of this dipole was of a similar scale to the Rubin 

result, the direction was significantly different: I =  269°, b =  28°. Therefore, given that 

both results are correct, a fairly complex model of local motions starts to emerge.

The first major attem pt to map the local velocity field was performed by Lynden-Bell et al. 

(1988) in a highly influential paper. The team prepared a survey of more than 400 elliptical 

galaxies out to z ~  8000 km s-1  with redshift and photometric data were available. They 

estimated the distances to the galaxies using the Dn-<j relation (see sect. 2.2.1 for more 

details of such techniques) and from these results estimated the radial component of the 

peculiar velocity of each galaxy.

To analyse this data, they constructed a parametric velocity field model tha t incorporated 

ideas from all the previous studies and attem pted to fit the data using maximum-likelihood 

techniques. This ‘best-fit’ model involved a large mass concentration at about 4000 km s -1  

in the I =  307°, 6 =  9° direction which is known as the Great A ttractor. In order to 

reproduce the large 500+ km s -1  motion of the local group the to tal mass of this attracto r 

must be in the region of 5 x 1016 M®.

These results, and in particular the Lynden-Bell et al. survey, were the beginnings of a 

thriving field of study. However, the reliance of the conclusions on the velocity model 

gave the impetus to search for other techniques as free as possible from initial assumptions 

whether it be through more complicated models or, ideally, from a model-free standpoint.
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This approach has been made possible by the huge increase in the size of redshift surveys 

due to improved observational techniques and equipment, and has led to a dramatic increase 

in the use (and, no doubt, abuse) of velocity fields.

2 .1 .2  V e lo c ity  F ie ld  R eco n stru c tio n  From  R ed sh ift  S u rveys  

IR A S  tech n iq u es

The most generally used technique for a relatively model-independent velocity field recovery 

from redshift data was devised for surveys based on the IRAS catalogue of infra-red sources. 

There were two initial surveys. The Strauss et al., 1990 catalogue consists of all extra- 

galactic sources in the catalogue with a 60//m flux greater than 1.2 Jansky -  a total of 

more than 2500 objects up to ~  3000 km s-1 . The QDOT survey of Efstathiou et al., 

1990 also contains of the order of 2000 galaxies, but extends down to 0.6 Jansky (about 

7000 km s-1 ) with one in six galaxies selected at random. Since then, catalogues have 

increased dramatically in size but the techniques for analysing velocity fields remain largely 

unaltered.

That technique is iterative in nature. Under the assumption of a quiet Hubble regime 

where the redshift and real space distributions are identical, the number density contrast 

is calculated smoothed on some suitable scale (on the order of 1000 km s-1 ). The scale is 

chosen so that the density contrast, S, can be assumed to be not much more than 1 and 

linear theory can be used to calculate the velocity field. In this regime, the velocity field is 

simply proportional to the “gravitational acceleration” g,

Y = _m (2.2)
3 H D 5  3HD  R v '

where f(D )  is some function of that can be well approximated by (see Peebles (1980)).

f(Q )  = ft0-6 (2.3)

Solving the Eulerian equations of motion ( 1 .21 ) it can be found that

v (r) =  j  f(£l) H ~ l G R p c J  f̂ ( r ) d V  (2.4)

The peculiar velocities recovered by this method can then be used to correct the distance

estimates from the redshifts and the process repeated iteratively.
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There are, however, two problems with this process. The integral in (2.4) should be over 

all space but is, naturally, limited to the survey volume and secondly, the cosmological bias 

parameter b enters into the expression for S. It is, therefore, necessary to determine it, 

or rather the factor (3 = 6/ / ( f i ) ,  as part of the iteration process. This is a useful way of 

estimating the value of /3, but it would perhaps be preferable to have a method that was 

not based on the assumption of 6 as a universal parameter, so that that assumption could 

be checked. I will return to this later.

Spherical Harmonic Reconstruction

Another approach to velocity and density reconstruction is described in Fisher et al. (1994) 

(see also Hoffman, 1993 and Scharf et al., 1992). Here, the distribution of galaxies is 

expanded as a set of spherical harmonics and radial Bessel functions. Given a value of (3 

and applying linear theory they attempt to correct for redshift distortions due to peculiar 

motions. This is an inversion procedure and the application of a “Wiener Filter” helps to 

deal with incomplete sky coverage and noise giving a minimum variance estimate of the 

harmonics of the real space distribution. From this, if wished, the peculiar velocities can 

be calculated.1

W avelet A nalysis

A related approach is proposed by Rauzy et al., 1993. They represent the velocity field as a 

wavelet transform, thereby providing a natural form of smoothing on any chosen scale and 

also allowing easy analysis of the scale dependence of structure. Unlike the other methods 

in this section, they require distance estimates to the galaxies (see below) and there are 

problems moving from the uneven distribution of galaxies to the regular ‘support’ required 

by the wavelet form (Rauzy et al., 1994b), but the elegant and useful result is likely to more 

than compensate for the effort required to overcome these problems.

’ Heavens and Taylor, 1994 also apply spherical harmonics to the study of redshift distortions, but here 
the aim is to estim ate /? and not to map the fields.
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2.2  G alaxy  D ista n ce  E stim a tio n

Most of the methods described above infer the peculiar velocity field given only information 

about the radial motion of the galaxies involved. However, if we can determine the actual 

distance to a galaxy in some redshift independent way, we can use this to find at least the 

radial component of the velocity vr directly

vT — cz — H qt (2-5)

This is information that can clearly help to considerably enhance our understanding of the 

velocity field, but how do we go about estimating distances to galaxies?

Let us consider one very simple distance estimator. One readily determined observational 

property of a galaxy is its apparent magnitude m  which is related to the absolute magnitude 

M  of the galaxy by2

log10 r =  0 .2 (m -  M  -  25) (2.6)

where r is in Mpc. However, if we assume tha t the galaxy is drawn from some population

of galaxies with their absolute magnitudes randomly distributed about some mean Mo we

can estimate the distance to the galaxy:

Cj =  log r  =  0 .2 (m  — Mo — 25) (2-7)

Before continuing, we should note tha t this equation introduces a number of notational

points. Firstly, up to now we have been using a bold typeface to indicate vectors (eg r).

However, it is convenient when discussing these statistical problems to use the standard 

statistical notation where a bold character indicates a statistical variable -  one drawn from 

a distribution. I will, therefore, subsequently use the r notation to distinguish vectors. In 

addition, estimators of some quantity or param eter will have a ‘h a t’ (eg a;).

Since M  is sampled from the luminosity function, both it and m  should be considered s ta t­

istical variables. In the limiting case where the entire population of galaxies is observable, 

it is clear that

E {lo\ujoi M q) — uq (2.8)

2 From here I will always be using logarithms in base 10 unless otherwise stated, so the subscript will be 
dropped.
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where E  denotes the expectation value averaged over the population. However, in reality 

there is a definite limit on the magnitude level that can be observed and galaxies whose 

apparent magnitude fall foul of this limit will be selected out of the sample. With the 

average now taken over this reduced population, we see that P (M |ro , Mo) 7  ̂ Mo, and hence 

that

E(r\ro, M0) 7̂  r0 and E (lo\uj0, M0) 7̂  oj0 (2.9)

Thus these estimators of both ro and u 0 are, in the statistical sense of the word, biased. 

This problem plagues estimators based around only magnitude (see Hendry and Simmons, 

1990) but the judicious use of a second observable can significantly improve the situation.

2 .2 .1  E stim a to rs  U sin g  T w o O b servab les

We will again consider a simple case. Let us take one observable that is distance dependent 

and subject to selection problems, m, and its absolute counterpart M . In addition, a second 

observable, P , is available but this has no selection problems and is not distance dependent 

(for example, line width). If M  and P  are highly correlated, the observed value P  can 

be used to estimate a value for M , ie M . This can then be used in place of Mo in (2.7) 

to give an improved estimate of u 0. An example of such an estimator is the Tully-Fisher 

(TF) estimator which uses magnitude and line width or the Dn-<r relation between apparent 

diameter and velocity dispersion.

With these relations, the correlation between M  and P  is usually found by some kind of 

linear regression. For example, for log distance uj0 ,

m — M = 5u>o — 25 (2.10)

M  can be estimated by assuming a linear relationship between M  and P  such that

M  = £ (M |P )  = aP  -  b (2.11)

where a and b are constants. Then, Cj for a TF estimator takes the form

Cj = 0.2(m -  aP  -  b -  25) (2.12)

In general Cj is still a biased estimator. In Hendry and Simmons (1994), however, it is shown

that if the selection function is only dependent on apparent magnitude and not on P , then
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Figure 2.1: These two diagrams demonstrate the effect of selection on two choices of regres­
sion line through the parameter distribution. Both diagrams show an example distribution 
of galaxies taken, for simplicity, to all be at the same distance. On the left, there is no se­
lection and the two regression lines M |P  corresponding to u>DTF and P |M  for &IXF are clear. 
On the right, however, a sharp cutoff in apparent magnitude has been imposed, removing 
the shaded region from the distribution. Now, although the P |M  line is unchanged, the 
M |P  line is strongly effected.

cj is unbiased for all coo, provided that a and b in eqns. (2 .11) and (2 .12) are derived from 

a regression of P  on M , the so-called ‘Inverse Tully Fisher’ (ITF) relation. The estimator, 

u’dtf? corresponding to a ‘Direct’ regression of M  on P  is, on the other hand, biased for all 

cjq. This can be seen for a simple case in fig. 2.1. Here, a sharp magnitude cutoff has been 

imposed (such as one would find for a magnitude limited survey) on a group of galaxies 

at the same distance (eg a cluster). The ITF estimates are unaffected by the magnitude 

selection, but the DTF estimates become biased. This is because, although in both cases 

the parameters <jp and p differ from the intrinsic values, the slope of the ITF regression 

is ayi/cr-pp which is unaffected. Note that, although in the unselected case the regressions 

are different and will give different estimates of distance for a given galaxy, they are both 

unbiased. The unbiased property of the ITF relation under selection was first pointed out 

by Schechter (Schechter, 1980), and has been generally recognised in the literature, although 

few discussions have approached the subject in a fully rigorous manner.
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2 .2 .2  C a lib ra tin g  and U sin g  D is ta n c e  E stim a to rs

We can, therefore, devise a variety of distance estimators to galaxies each with its own 

identifiable statistical properties. As we shall see later, which properties are desirable will 

vary from situation to situation, but we will almost always want to reduce the bias and 

variance as much as possible. Therefore, we will only be considering estimators that make 

use of at least two observables.

The next stage in the process, having chosen an estimator, is to calibrate the relation for 

a given galaxy survey. To do this, we need to know the values of a number of parameters. 

For simplicity and clarity we will choose the intrinsic joint distribution of M  and P  to 

be a bivariate normal. We will then need Mo and Po which mark the ‘centre’ of the 

distribution shown in fig. 2.1 and aM and crP, the dispersions. Finally we need to know p, 

the correlation coefficient of the distribution. From these we can calculate the parameters 

of the two estimators outlined above (as well as any of a number of others -  see Hendry 

(1992) for some examples).

Assuming a sharp magnitude cut-off, both estimators take the form

5o> = (m  — m L) — A (P  — Po) (2.13)

where m L is the magnitude limit and A is the slope of the regression given by

A -^DTF — (TP
A itf =  (2.14)

oPp

Given these parameters, therefore, we can proceed with estimating the distances of all the 

galaxies in our sample. However, we obviously do not know them a priori, so they too must 

be estimated from the catalogue.

This is not a trivial task as the observable m  is distance dependent and we would need to 

know the distance to all the galaxies in advance in order to get the distribution of M  and P! 

However, one way out of this is to find a subset of the galaxies that can be safely assumed 

to be at the same distance -  a cluster. For these galaxies, the distribution of p (m ,P )  will 

have the same form as p(M , P ) and Po, <3> and p can easily be determined. From these

we can calculate relative distance between galaxies, for example expressing all distances in
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terms of the Virgo distance, but to get absolute distance we need to find a value for Mo. 

This is one of the weakest links in the chain for distance estimation, but if a reasonable 

absolute distance can be determined to just one cluster -  for example by cepheid distances 

or redshifts corrected for peculiar motions by some velocity model -  then this can be used 

to set all the others. Note that an incorrect zero-point derived in this way will lead to an 

effective error on the Hubble constant in eqn. (2.5): in other words a spurious outflow or 

inflow.

I mentioned above that different forms of distance estimator can be chosen to provide 

different selections of properties. Clearly if an estimator is available with very small errors 

of any type (systematic or random), then this is the best one to choose for the majority of 

situations! However, even with the best data, TF estimators typically have errors of 15% to 

20% and the exact form of estimator can become very significant. Again, a simple example 

will serve to demonstrate this.

I have shown tha t the ITF estimator is unbiased in tha t it has the property F?(a>ITF|u;o) = ^o- 

However, if we wish to determine the value of Hq (a very common sport among cosmologists) 

we might assume tha t peculiar velocities are negligible and simply use the expression Ho = 

cz/ t and average over some catalogue of galaxies. But clearly, just because u>ITF is unbiased, 

there is no reason to suppose tha t r  =  10U'ITF will be. Therefore, in order to obtain an 

unbiased estimate of Ho, we need to correct for the bias introduced into r. Assuming that 

the distribution p (M ,P )  is a bivariate normal, a;ITF will have gaussian errors with some 

variance a 2 and it can easily be shown tha t distance estimates of the form

r =  10“ ^ loge 10)°’2 10^TP (2.15)

will be unbiased and give an unbiased estimate of Ho.

Clearly, considerable care is needed when using estimators with such large errors. The above 

effect would be negligible for errors of ~  1%, but becomes quite im portant up at the 10% 

level when the bias in Ho can become comparable to the random errors for any reasonable 

catalogue of galaxies. Unfortunately, not all problems are as easy to solve as this example.
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2 .2 .3  M a lm q u ist B ias

Consider a further example. We wish to study the radial components of the peculiar ve­

locity in a particular direction on the sky. In fact, these velocities are negligible, but the 

distribution of galaxies is highly clumped at about 5000 km s-1 . An ITF like distance es­

tim ator is used to give unbiased distance estimates to each galaxy and vy is calculated using 

a relation like eqn. (2.5). To further simplify the problem, we will assume that there is no 

selection and all galaxies out to 10000 km s-1  are observed. The distribution of estim-
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Figure 2.2: A comparison of the distribution of estimated distances (error 15%) and the 
intrinsic distribution of galaxies. Galaxies are divided among bins of 500 km s -1  width. 
The two distributions show very good agreement.

ated distances is compared to the underlying distribution in fig. 2.2. As would be expected 

from unbiased distances, there is good agreement: a slight increase in the variance of the 

distribution due to the distance errors, but no appreciable shift in the mean. However we 

are not particularly interested in the distances themselves, only in what they can tell us 

about the peculiar velocity field. Given the large errors in the distance estimates (about 

15%), it is necessary to perform some averaging on vy: this is done by binning the galaxies 

into a series of radial bins. The results of this process is shown in fig. 2.3. Here we can see
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Figure 2.3: The estimated peculiar velocities of the galaxies in fig. 2.2 are averaged in radial 
bins. There is a marked difference between the derived peculiar velocities when the binning 
is by estimated or real distance.

the insidious effect of Malmquist bias (cf. Hendry et ah, 1993b). Although when we bin 

by the true distances we recover the expected Hubble flow, when the galaxies are grouped 

according to apparent position, there is a large infall seen towards the centre of the galaxy 

clump. For r < 5000 km s-1 , the majority of galaxies have been scattered down from the 

clump and have an average vy towards the centroid, and the opposite for r > 5000 km s-1 .

We therefore have large systematic errors introduced that are strongly dependent not just 

on the properties of the distance estimator, but also the underlying distribution of galaxies 

that the sample is drawn from, which is obviously-unknown. One approach to dealing with 

these biases is to attem pt to derive a distance estimator with properties tha t counteract 

those of the Malmquist bias -  Malmquist Corrected distance estimates.

In interpolating a peculiar velocity from galaxies appearing in the catalogue to  a given 

spatial point with radial coordinate s, the essential effect of the windowing is to pick out 

the galaxy whose estimated position is nearest to the prescribed point. This galaxy’s actual 

distance could be radically different, and will, as we have seen, depend on the true spatial
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distribution of galaxies. By requiring that on average the actual radial coordinate of the 

galaxy deemed to be closest to the grid point equals s one would ensure also that on average 

the correct peculiar velocity would be ascribed to s. Expressed mathematically we require

£ (ro |r  = 5) = s (2.16)

or for work involving log distances

E (u 0\u -  u s) = u s (2.17)

Note that this definition is not the definition of an unbiased estimator (E’(rlro) =  ro) and

the frequent use of the term “unbiased” in connection with this property in the literature 

has led to considerable confusion and even acrimony. However, in the situation described 

above and many others that frequently occur in the study of Large Scale Structure, it is 

preferable to unbiased estimates. The important point, as ever, is to be consistent and to 

ensure that the choice of estimator matches the demands of the problem.

But enough sermonising. How do we derive an estimator with this property? The expect­

ation value in (2.17) is calculated as

E (u 0\u) = j  u 0p(ujo\u))duo (2.18)

where p(uo|u>) is the probability density function (pdf) of u>o given the estimated value u>. 

This is an unknown, of course, but we can use Bayes’ theorem to derive an expression for 

it,
p ^ M p O * )  ( 2 19)

H 01 1 Jp (u \u0)p(uo)dwo K '

where p(a;|u;o) is the distribution function of some distance estimator and p(u>0) is the

actual distribution of those galaxies that are observed (ie the actual distribution of galaxies 

convolved with a selection function). Note that implicit in this definition is the assumption 

tha t the observed galaxy distribution is a function of distance only and has no angular 

dependence. I will return to this assumption later.

Therefore, if we have some “raw” distance estimator of a known form we have p(u)|u;o) 

and if we can estimate the distribution function p(u>o) sufficiently well, we can calculate a 

correction for the distance estimates



CHAPTER 2. VELOCITY FIELD RECONSTRUCTION 39

In general, it would seem to be sensible to keep the form of the uncorrected distance 

estimator as simple as possible, so the ITF estimator with its unbiased nature and simple 

gaussian form (when the joint distribution of M  and P  is bivariate normal) would seem to 

be a good choice.

The function p(u;o) is known in Bayesian statistics as the prior, and the results of the 

analysis can be very sensitive to it -  a poor estimate of it will give poor results. However, 

we are in danger of entering a circular problem as this distribution, in a sense, is what we 

need our distance estimates for!

One approach that is frequently used was first applied during the velocity field work of 

Lynden-Bell et ah (1988) mentioned above. They proposed approximating the distribution 

of galaxies as uniform. The form of p(u>o) is then a simple power law because of the increase 

in the volume within a unit solid angle with distance. However, the form of the selection 

function -S^o) is still unknown and we really require the true distribution of observed 

objects, ie

Pobs{pJo) — Puniverseiy^o) S{UJo ) ( 2 .2 1 )

Here, the different properties of the DTF estimator come to the rescue. It can be shown 

(Hendry et ah, 1994) that when using this biased estimator, the selection function effectively 

cancels with the bias. Therefore, the correction can be applied to u>DTF with the underlying 

distribution of galaxies pUmWse(wo) or to d;ITF with the selected function p0bs{^o)-

This correction is know as the Homogeneous Malmquist Correction (HMC) and has been 

much applied. However, the assumption of a homogeneous universe is not really a good 

one on these scales (if it were, there would be no peculiar velocities to measure) so Landy

and Szalay (1992) proposed a different approach which they termed the General Malmquist

Correction (now more frequently known as the Inhomogeneous Malmquist Correction or 

IMC).

W ith this correction, the prior is approximated by the distribution of estimated distances

p(w0) = p(^) (2.22)

This assumption will clearly only be reasonable if u> is unbiased and has random errors of a 

size less than the scale of any features you wish to include. In fact this is not as restrictive 

as it may seem as the distribution is smoothed on quite a large scale before the correction
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is applied to prevent small random fluctuations giving large spurious corrections, so the 

d)ITp is in fact quite reasonable. In addition, the derivation of the correction is based on the 

assumption of gaussian errors in u>, so the ITF is again the best candidate (cf. Simmons, 

1993).

A more significant problem is the lack of any form angular dependence, but the noise in the 

distribution p(^o) becomes severe if the catalogue is split up into lots of “cones” . This effect 

will be examined further in sect. 4.2.1. Note also that if the universal distribution of galaxies 

were known, for example from the analysis of a large redshift survey, the IMC formalism 

could easily be adapted to use the DTF estimator and another correction obtained. Again, 

I will return to this later in the thesis.



Chapter 3

Calibration of D istance Estim ators

Linger your patience on; and we’ll digest 

The abuse of distance.

Henry II:Prologue

Thus far, I have generally considered only the problems of distance estimators caused by 

the intrinsic scatter in whatever relation is used. However, the calibration of tha t relation 

will also be subject to errors which must be taken into account.

3.1 A  S im ple C alibration M eth od

The purpose of calibration is to determine the slope and zero point of the distance estimator. 

This is done by estimating the parameters of the p (M ,P )  distribution (ie aM, p etc). 

However, because we only know the apparent value of any distance dependent quantities and 

not its absolute counterpart, we need to use a cluster of galaxies to perform the calibration 

on since, as the galaxies can all be considered to be at the same distance,

m  -  (m) = M  -  M0 (3.1)

where ( .. .)  denotes the average over the cluster. Of course, this is not the only method. 

Han and Mould (1990) and (1992) simultaneously fit to the distance relation and a model 

velocity field which is used to correct the redshifts of the galaxies. However, by using a 

cluster the need for a model field is removed. Given estimates of the distribution parameters,

41
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Figure 3.1: The distribution of M  and P  for four of the larger clusters in the Mathewson 
et al. (1992) catalogue. M  is the magnitude (given here as apparent magnitude since all 
the galaxies are assumed to be at the same distance) and P  is the log of the linewidth.

relative distances between all of the galaxies can be estimated, but for absolute distances, 

a calibration distance must be chosen. This is frequently done by choosing a reasonably 

nearby cluster where observational errors can be expected to be relatively small, and using 

a velocity field model in conjunction with the redshift to fix an absolute distance. Clearly, 

there are problems with this form of approach, particularly since we wish to avoid velocity 

models, but before considering the absolute calibration, I would like to look at the parameter 

estimation to see if there can be some way in which it can be improved.

3 .1 .1  C a lib ra tion  from  C o m p o site  C lu sters

Figure 3.1 shows four possible candidates for a calibrating cluster. They are four of the 

larger clusters from the Mathewson et al. (1992) catalogue. The relationship between M  

and P  is very clear for all four clusters, but none of them contain enough observed galaxies



C H APTER 3. CALIBRATION OF DISTANCE ESTIMATORS 43

to really determine the parameters of the distribution with any confidence. However, of the 

four, the Fornax relationship has the highest correlation coefficient, and therefore looks the 

tightest, and this is indeed the cluster chosen for the original calibration. The formal errors 

in the distances using this form of calibration are quite good, but it is dangerous to rely 

on them. By choosing the cluster because of the tightness of the distribution one is clearly 

introducing an unpleasant selection effect. As the tightest, Fornax must be, in some way, 

unusual and even if this does not strongly effect the slope of the distance estimator, it will 

lead to a significant under-estimate of the resultant distance errors since

0"m|p =  \ / l  — P2 (3*2)

Perhaps even more importantly, with only 14 galaxies, the calibration will be very uncertain 

and sampling errors on the calibration slope and zero point introduced in this way would 

be very difficult to determine (Hendry and Simmons, 1994).

W hat is needed, therefore, is a calibration technique that can bring together the information 

from a number of clusters thereby both increasing the number of galaxies under considera­

tion and avoiding any dangerous ad hoc choices.

The technique I have adopted was first developed by Lattimer and Hendry (see Lattimer, 

1993 and Lattimer et al., 1994) and I have since joined them in extending it. (A similar 

approach is considered by Willick et al. (1994) and Young et al. (1993)). The basic idea of 

the method is to choose a set of clusters (for example all those with greater than, say, 10 

galaxies) and ‘slide’ them together to form one larger cluster. W ithout selection, this would 

be a trivial task since one would just need to match up the mean apparent magnitudes, 

(m ), of each cluster. But selection complicates the procedure since the observed mean is 

biased with respect to the underlying mean, ie:

£ ((m )) ± m 0 (3.3)

where mo is the apparent magnitude of a galaxy with absolute magnitude Mo at the distance 

of the cluster, ie mo = M q — 5a;cjust — 25.
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C o rre c tin g  (m) for M ag n itu d e  Selection

If the distribution p (M |P ) is assumed to be gaussian, it can be seen (Hendry, 1994) that 

for a cluster,

exp
(m) = m 0 -

_1 f mr.-mg \ 
2  \  < ? m  )

(3.4)

where $(:r) is the cumulative normal distribution. Therefore, an iterative procedure can be 

devised to get a good estimate mo. Starting with the mean of the actual cluster distribution 

(m )0, we obtain, after n iterations,

» p [ 4 ( = ^ ) 2]
<m)» «  =  <m>° +  (3-5)

which will, hopefully, converge to a good estimate of rriQ.

Unfortunately, crM is also biased by magnitude selection. It is possible to incorporate 

a second iterative component to allow for determination of this value as well, but this 

is considerably more complicated. An alternative is to use the maximum value from all 

of the clusters. This will probably be the closest to the true value since selection will 

always decrease the estimates and is likely to be a good approximation, particularly if some 

relatively nearby clusters are included. This is the procedure I have chosen to use.

C re a tin g  th e  C om posite  C lu s te r

We now have, in effect, four ways of combining a set of clusters together to form a single 

composite. We can match all the (m )’s either with or without applying the iterative correc­

tion above, and we can also choose to match all the (P ) ’s if we wish. These four options are 

shown schematically in fig. 3.2. The obvious choice is to leave the distance independent P  

unchanged and match the corrected (m )’s, and indeed for DTF-style calibration, this is the 

only sensible choice. However, for an ITF-like P  on M  regression, it can be seen from the 

diagrams that matching both uncorrected (m) and (P) should also produce an unbiased 

regression. Indeed, this might give some improvement. For the fully corrected situation 

(bottom  left), there will be a tendency for the majority of the data to be cramped into the 

bottom  of the distribution. This should not affect the M  on P  regression unduly, but the 

P  on M  slope, although not subject to any systematic errors, will be badly constrained
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Figure 3.2: A schematic representation of the various ways in which an individual cluster 
can be added to the composite. T he ellipse represents the actual param eter d istribution 
and the shaded area, the contribution from some cluster subject to  m agnitude selection. 
On the left hand side, both  diagrams have ju s t  (m ) m atched to  the mean whereas on the 
right bo th  (m ) and (P )  are slid. T he difference between the upper and lower diagram s is 
th a t  in the la tte r ,  (m ) is corrected for m agnitude selection.
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and perhaps quite noisy. It is, therefore, worth considering the ostensibly inaccurate but 

potentially useful uncorrected (m) and (P) match for the ITF regression.

3 .1 .2  T estin g  th e  C o m p o site  C lu ster  C a lib ra tion  P ro ced u re

There are a number of motivations behind the testing of this calibration technique. Obvi­

ously, we need to ensure that the method works, but there are a number of other reasons. 

First of all, how large an improvement can be expected in comparison to calibration from an 

individual cluster and what kind of balance should be struck between the number of clusters 

used and the size each cluster? Also, it is interesting to look at the trend as magnitude 

selection is decreased and, finally, we wish to determine which composition procedure is 

most effective for ITF-like estimates.

W ith these aims in mind, I will employ a Monte Carlo method. Using an actual catalogue 

(I chose the Mathewson data set) I obtain estimates for the distribution parameters. Then, 

assuming tha t all galaxies in a cluster are indeed at exactly the same distance and, for 

simplicity, using the average redshift to each cluster as that distance, I create a series of 

mock clusters like the actual ones but with M  and P  drawn from a known distribution with 

a chosen level of magnitude selection imposed as normal. The regression information for 

a single cluster is then calculated and the various techniques used to create and calibrate 

composite clusters. The procedure is then repeated a number of times and the results 

averaged. Note that the slopes and zero points should be calculated for each individual 

realisation and then averaged, not derived from the averaged distribution parameters.

Figure 3.3 shows results for calibration from a single cluster (‘Fornax’). Although there is 

no apparent bias in either the slope or the zero point of the determinations, the random 

errors are larger than the distinction between DTF and ITF. In the next chapter, I will show 

how sensitive to that distinction methods (such as P o t e n t ) for reconstructing the peculiar 

velocity and density fields are. So, these errors are clearly far too large for the distance 

estimates to be profitably used in such methods. By contrast, fig. 3.4 shows much smaller 

deviations, but a very large bias in the determination of DTF characteristics. This is not 

surprising since this graph is for clusters created by matching uncorrected (m) -  top left in 

fig. 3.2. (For this and all the following figures I have taken the situation where all clusters
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Figure 3.3: The results of the Monte Carlo tests of the calibration of both DTF and ITF style 
distance estimators using a single cluster. The chosen cluster was the ‘Fornax’ equivalent 
for each mock catalogue. The upper graph shows the average slope and the lower graph 
the average zero point for a variety of different magnitude selections. The actual values 
are shown as horizontal lines. The error bars are one standard deviation from the Monte 
Carlos.



Ze
ro

 
Po

in
t 

(E
rro

rs 
are

 
St

d.
 D

ev
. 

of 
MC

 
Ru

ns
) 

Sl
op

e 
(E

rro
rs 

are
 

St
d.

 D
ev

. 
of 

MC
 

R
un

s)

CHAPTER 3. CALIBRATION OF DISTANCE ESTIMATORS 48

-3

-4

DTF R egression 
ITF R egression 

Actual DTF Slope 
Actual ITF Slope

-6

-8

-9

-10

{........i....... i...... J
H------------- 1-----------1---------h

34

32

30

28

i  t—  i I

26

24

22

20

DTF R egression  
ITF R egression  

Actual DTF Zero Pt. 
Actual ITF Zero Pt.

18
12 13 14 15 16

Magnitude limit
17 18

Figure 3.4: Test results for composite clusters created by matching (m) without correction 
for magnitude selection.



CH APTER 3. CALIBRATION OF DISTANCE ESTIMATORS 49

with more than 10 galaxies in the Mathewson catalogue are included in the calibration). The 

ITF calibration is much better with no apparent problems with the slope at all although 

there is evidence of a slight bias in the zero points for more extreme magnitude limits. 

Again, this is exactly as expected. Since uncorrected (m )’s are used, the DTF calibration 

is severely affected by magnitude selection. However, the ITF slope is unaffected by this 

(sect. 2.2.1) and the only systematic effect is on the zero point due to the displacement of 

(P ) relative to its true value (fig. 3.2).

Moving on to fig. 3.5 we have a very pleasing result. This is for the upper right case in 

fig. 3.2 -  (m) and (P) matching. As hoped, the ITF regression is unbiased even up to 

extreme magnitude limits and the noise is dramatically better than the single cluster case.

One would expect the determination from matching (P) and a corrected (m) to be biased 

for both cases, and indeed it is (although this uninteresting case is not included here). 

However, we have yet to find a suitable calibration for DTF estimators and we also need 

to check tha t matching by corrected (m) is indeed noisy for ITF as expected. This is 

demonstrated in fig. 3.6. The random errors are even more unpleasant than expected, but 

there is another, more severe problem. In spite of the correction for magnitude selection, 

the DTF determination still shows a definite, if relatively small, bias. This is mainly 

because the correction is imperfect due to errors in crM and the small sample size of each 

individual cluster. However, even for extreme magnitude limits of about 13 (remember that 

the actual Mathewson selection limit is nearer 15) the bias is comparable to or less than the 

random errors in the single cluster determination. Nevertheless, it is a significant problem 

as can been seen in fig. 3.7. The single cluster calibration is contrasted with the composite. 

Although the single cluster determinations are biased, this is to be expected from DTF 

estimates with magnitude selection. The nature of this bias is such that it makes DTF 

estimates suitable for Malmquist corrections when the intrinsic distribution of galaxies is 

used to define the correction. However, the “improved” calibration estimates are biased 

differently, thereby losing the properties needed of a useful DTF estimator.

For comparison, fig. 3.8 shows the equivalent situation for ITF estimates, but using the 

(m ) and (P ) composite cluster calibration. Here, both determinations are unbiased, but 

improved estimates have marginally smaller errors. Even more importantly, although an 

improvement of even a few percent is highly significant, the formal errors on the distance
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Figure 3.7: Average estimated distances are compared to true distances for DTF estimation 
in the Monte Carlo tests with a magnitude selection limit of m L =  14. On the left are the 
results for calibration using a single cluster and on the right for a composite cluster created 
by matching selection corrected (m ). One in twenty randomly selected galaxies have one 
std. dev. error bars and the y = x line is drawn in to ‘guide the eye’.

estimate will be more accurate since the larger cluster will be less prone to underestimates 

of &m i dp and p.

In conclusion, it can be confidently stated that the composite cluster calibration method 

shows significant improvement when used appropriately for ITF-like distance estimation 

techniques. However, DTF estimates are far more sensitive to magnitude selection and the 

improvement, if any, is less significant. However, there are possibilities for improvement. A 

large part of the problem arises from the sparseness of each individual cluster making the 

determination of the selection correction very noisy. Therefore, by limiting the procedure to 

only the very richest clusters, some of the bias would be lost -  traded for a slightly noisier 

determination. This kind of fine tuning will depend on the details of the application, and will 

obviously vary from catalogue to catalogue, but tests such as the one given here could help 

to determine the ‘best’ compromise. However, for the purpose of this thesis, I do not intend 

to use DTF estimators to any great extent since, as I shall show, the best determinations 

are to be found using methods that are based around ITF estimators. Therefore, I will not
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Figure 3.8: As fig. 3.7, but for ITF estimates. Here, the composite cluster is produced by 
matching (m ) and (P).

pursue this further at this stage. It is also very im portant to remember tha t the chosen 

method for combining cluster is, strictly speaking, wrong. It is purely a convenient effect of 

the particular distribution of M  and P  chosen and has little justification beyond the success 

of the numerical tests. Any other distribution would have to be similarly tested and may 

not be so successful.

Another point that should really be taken into consideration is the radial extent of clusters. 

All of the work in this chapter has assumed that all the galaxies in each cluster are at the 

same distance, but given the angular extent of some clusters on the sky, this is perhaps 

an unreasonable assumption. This problem has been approached by Willick et al. (1994) 

and will be tackled in some detail in a forthcoming paper (Rauzy et al., 1994a), but for 

the purposes of this thesis, I shall assume any effect is small, at least for reasonably distant 

clusters.
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3 .2  A b so lu te  D ista n ces

Given the result of the calibration, we can estimate relative distances between galaxies, but 

for peculiar velocity applications, absolute distances are essential. All tha t is really needed 

for this is a reliable distance to any galaxy or cluster, preferably one close enough so that 

the error in its relative distance is small. However, such a measure is difficult to come by. 

One frequently used method is to correct the redshift of a cluster for some peculiar velocity 

model (eg Mathewson et al., 1992), but even aside from the limitations of a model based 

approach, any model will be for averaged or smoothed flows and it is unreliable to apply 

it to an individual tracer. Also, if that one cluster should have a particularly poor relative 

distance determination, the error will feed through to affect the entire sample.

However, if a particular catalogue has sufficient sky coverage, there is an alternative. If we 

assume tha t, over the entire survey volume, peculiar velocities can be considered as forming 

a random distribution with zero mean about the Hubble expansion, we can set the absolute 

calibration to be that which minimises the residuals about the observed redshifts. In other 

words, fit a line through the distribution of r  and z and adjust the absolute scaling until 

the slope of the line is 1. Of course, if the survey covers only a small part of the sky, 

it is unreasonable to suppose there will be no overall systematic deviations from Hubble 

flow, but averaged over a significant proportion of the sky and to  a reasonable depth, the 

assumption is likely to be valid.

One advantage of the method is that we are free to choose the weighting of the fit in such 

a way as to take into account everything that we know about the distance estimates. For 

example, as in the weighting of points in the P o t e n t  smoothing procedure (sec. 4.1.3, 

eqn. 4.14) each galaxy or cluster can be weighted its estimated error with the addition of 

some ‘field variance’ to prevent over-weighting of nearby points. Indeed, this is the weighting 

procedure I adopt to give maximum consistency between the calibration procedure and 

P o t e n t .

Of course, given that DTF estimates should in fact be biased, this technique is perhaps not 

entirely suitable. However, the same is true for the standard calibration technique since 

fixing to the true distance of a galaxy or cluster is not really what is needed. However, the 

weighting procedure gives the most emphasis to relatively local galaxies and large clusters
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where the bias should be negligible anyway and certainly any errors introduced by inaccurate 

absolute calibration because of failing to take any DTF bias into account will be small 

compared to the intrinsic errors of the distance estimates and, of course, the DTF bias 

itself. Again, if one wishes to use DTF estimators for any serious work, these points must 

be considered, but I shall not pursue them further in this thesis.

By using this technique, I avoid the problems associated with velocity models and also do 

not give excessive emphasis to any one relative distance determination. In addition, since 

the line-fitting has two parameters (slope and zero point) but the absolute calibration is 

achieved by adjusting the slope, the zero point can be used as a crude check on the method. 

Since we would, obviously, expect the relation to pass very close to the origin, a significantly 

non-zero intercept is a clear indicator that something is not working -  perhaps because of 

a particularly bad calibration or perhaps because of significant systematic deviations from 

Hubble flow even when averaged over the entire survey. In this sort of situation, the 

procedure can be carefully re-examined and cause of the problem found, or if necessary, 

the catalogue discarded. This may seem rather harsh, but I will show how prone many 

methods are to systematic errors even with idealised distance estimates -  the addition of 

highly unreliable distances would probably be more than they could take!

It is clear, therefore, that distance estimation of galaxies is a delicate problem with the 

large uncertainties in the estimates making their analysis and use tricky and fraught with 

unseen perils. However, with care these problems can be overcome, or at least their impact 

kept to a minimum, and we can use the estimates to considerably enhance our knowledge 

of the peculiar velocity and density fields. We have already seen how the model fitting of 

Lynden-Bell et al. (1988) opened the door to mapping the field, but more recently another, 

model independent method has been developed that makes full use of distance estimation. 

This is the P o t e n t  method and it forms the basis of much of my work for this thesis.



Chapter 4

The Potent M ethod

The potent poison quite o’er-crows my spirit 

Hamlet V:ii

The P o t e n t  method for peculiar velocity field reconstruction was devised by Bertschinger 

and Dekel (1989) and has subsequently been developed and applied to galaxy catalogues 

(Bertschinger et al., 1990, Dekel et al., 1990, Nusser et al., 1991, Dekel et al., 1993). 

However, the basic method has remained unchanged, with only details of the implementation 

adjusted.

4.1 O rthodox P o ten t

As mentioned in chapter 2, the method makes use of extra information provided by redshift 

independent distance estimates to galaxies to get an estimate of the radial component of 

the peculiar velocity of each galaxy:

v r =  cz — H0r (4.1)

(From here onwards, I will take redshifts, distances and velocities all in units of km s-1 , 

giving c = Ho = 1). However, unlike most previous methods, these estimates are not 

used to fit some parametric model velocity field, but a ‘model-independent’ recovery is 

found. In fact, there is a model inherent in the P o t e n t  procedure, but it is much less 

restrictive than any reasonable parametric velocity field. The basis of this flexible model is

56
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the assumption that, above some unknown but fairly small scale, the velocity field can be 

accurately represented by a potential 4>v(r), ie

v(r) — — V4>v(r) (4-2)

W hat is the basis for this assumption? We have seen in sect. 1.4.1 that in an expanding 

FRW universe, the growing mode is irrotational in linear theory (see eqn. (1.24)). Therefore,

any rotational components will have been lost by the present epoch and, from the Kelvin

circulation theorem we know that an initially irrotational field will remain that way until 

orbit crossing occurs. However, if the field is averaged or smoothed on some suitably large 

scale, we need only consider linear or quasi-linear evolution and can assume that orbit 

crossing has not occurred. The value of this scale is not known, but is likely to be less than 

~  1000 km s-1 , so smoothing on scales greater than this should be sufficient.

This potential $v  can, therefore, be calculated at any point r by a path integral from the 

origin to r

$ v (r) = -  [" v (s )-d s  (4.3)
J o

Of course, the choice of path is arbitrary and by selecting a radial path, we obtain the 

following:

$ v (r} = — f  vT{r' , 6, <f>)dr' (4-4)
Jo

which involves only the radial component of the peculiar velocity. Using this equation, the 

potential can be derived at any point and the full, three-dimensional peculiar velocity field 

recovered by (4.2). However, there is an obvious complication. The integration in eqn. (4.4) 

requires vr at all points along the radial path. However, the estimates v r are only known at 

the positions of galaxies — some form of smoothing is clearly needed.

4.1.1 The Sm oothing Procedure

The purpose of the smoothing in P o t e n t  is twofold. Of course, it is necessary in order 

to perform the integration, but some level of smoothing is also required to maintain the 

potential flow condition over regions where mixing has occurred. In practice, it is the 

former motivation which dominates as catalogues typically have separations between nearest 

neighbour galaxies of up to 2000 km s-1 . In addition, the errors on the estimates of the



CHAPTER 4. THE  P O T E N T  METHOD 58

peculiar velocities are very large (frequently greater than 100% for galaxies more distant 

than ~  3000 km s-1 ) and in order to obtain a reasonable signal-to-noise, we really require 

several galaxies within each smoothing volume. A typical smoothing radius, therefore, is 

> 1000 km s-1 , sufficient to ensure an irrotational field.

The smoothing procedure itself, is quite a complicated one. The complication arises from 

the fact that the averaging is over radial components at different angular positions. The 

solution fixed upon by Dekel et al. (1990) is to use a Tensor window function that uses a 

maximum likelihood technique to fit to a bulk flow solution within each window.

From Dekel et al. (1990), equation 9 gives

1 Ngal - r « 1 2
L i f )  =  ~ 2  ? *‘) ( 4 < 5 )

i

where:

L{r) is the ‘Likelihood function’,

W (r ,r t) is a window function, 

r is some position vector,

r t is the estimated position vector of galaxy i out of Ngai, 

vr; is the estimated radial peculiar velocity of galaxy i.

Writing — W (r,  and v(r) = vaea where the ea form a coordinate basis,

L(r) =  -  pt- • vaea 2 (4.6)
t,Of

= (4-7)
t,Of

where r ia is the a  component of at r. We will now assume summation over repeated 

greek indices.

Maximising L (f)  with respect to va gives
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therefore

Y^WiVrifip = Y ^ W i f iavarip (4.11)
i i

putting WiVTirij3 = dp and J2i ^i^ia^ip = E ap, we have

»“ =  d ff iE -1) ^  (4.12)

Therefore, we have va , which is the maximum likelihood bulk flow velocity within the 

window W ( f ,  r t-). It should be noted that this is, in fact, all three components of the 

peculiar velocity at this point. However, in the orthodox P o t e n t  method, only the radial 

component of va is used. We will introduce an alternative tha t makes use of all three 

components in sect. 5.3.

The next stage in the procedure is to choose a form for the window function W,-. However, 

before this can be done, we need some knowledge of the errors in the P o t e n t  method.

4 .1 .2  E rrors in  P o te n t

There are two main sources of error in P o t e n t . Firstly, as we have already seen, the 

estimates of the distances to galaxies and, by eqn. (4.1), v r are subject to very large errors. 

In addition, the galaxies in the catalogue sample space in a sparse and non-uniform way, 

both because of intrinsic fluctuations in the number density of galaxies in the Universe (eg. 

the Great Wall) and selection effects in the survey (eg. the Zone of Avoidance). Because of 

the nature of the smoothing procedure these two problems combine together to produce very 

complicated errors, both systematic and random. The main goal of the implementation of 

the P o t e n t  method, and of the other techniques in this thesis, is to minimise these errors.

T h e  T re a tm e n t o f D is tan ce  E s tim a to rs  in  P o te n t

W h e th e r  or n o t a  d ista n c e  e s t im a to r  is b ia sed  is  n o t th e  cru cia l q u estio n  w h en  a tte m p tin g  

to  correct for b ia s in  P o t e n t . W h a t  is im p o r ta n t  is to  c o n str u c t an  u n b ia sed  sm o o th e d  

p ecu lia r  v e lo c ity  field . POTENT a t te m p ts  to  co n stru c t an  u n b ia sed  p ecu lia r  v e lo c ity  field  in  

th e  fo llo w in g  sense:

One assumes an underlying smoothed peculiar velocity field (taken to be potential) and 

effective density distribution that is determined by some selection function and underlying
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density distribution of galaxies.

1. This field is sampled at n points and the galaxies taken to be at these points corres­

ponding to the actual distances (rio, r 20> r30i •••> rno)

2. Errors are added to these distances. A smoothed initial radial peculiar velocity field 

is derived using the tensor window function.

3. Hence, one obtains a potential velocity field by radial integration.

If this smoothed recovered potential velocity field is the same as the input potential velocity 

field when it is averaged over all realisations of (rjo, 7*20, 7‘3o..rno) and of the distance errors, 

it is unbiased.

In the Appendix of Dekel et al. (1990) an attem pt is made to prove that if one applies 

a homogeneous Malmquist correction to the raw distance estimates then one does obtain 

a peculiar velocity field which is almost unbiased. Essentially their analysis proceeds by 

expressing the bias of the recovered velocity field as a function of the errors, et-, in the galaxy 

distance estimates, and depends upon making several Taylor expansions in 6; and discarding 

terms of order 3 and above. If the distance errors are large, as they will be at large true 

distances, this procedure will break down. Dekel et al. employ Monte Carlo simulations to 

back up their analytic treatment.

It is instructive to examine why the application of Malmquist corrections appears to work 

for the P o t e n t  analysis. In this respect, the important factor is the window function. In 

interpolating a peculiar velocity from galaxies appearing in the catalogue to a given spatial 

point with radial coordinate s, one is effectively binning by estimated distance. As was seen 

in sect. 2.2.3, this is exactly the situation where Malmquist corrections can be expected to 

be useful. Of course this will strictly only be valid if galaxies are not too sparse, and if the 

gradient of velocity field is not too large, or the effective radius of the window function is 

not too wide.

A ssum ptions for M alm quist C orrections

Both the homogeneous and inhomogeneous Malmquist corrections are computed by apply­

ing Bayes’ theorem to obtain Cj and both derivations assume that the probability density
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function, p(u>|u>o), is a normal distribution, and that u  is unbiased. Lynden-Bell et al. (1988) 

assume the prior distribution, p(uo), of true log distance to correspond to a homogeneous 

distribution of galaxies. Landy and Szalay (1992), on the other hand, estimate p(u;o) by 

constructing a spline fit to the histogram of log distance estimates for the galaxies in the 

survey, thus in principle taking into account inhomogeneities in the galaxy distribution. Due 

to the sparseness of surveys, however, it is usually necessary to average the distribution of 

galaxies over large solid angles, if not all, of the sky. Therefore, the effects of clustering may 

still go largely unaccounted for (c.f. Newsam et al. (1994) and Newsam et al. (1992)).

A more serious problem with the IMC, however, stems from the use of u>DTF. In Hendry 

and Simmons, 1994 it is shown that this will result in an incorrect Malmquist Correction 

due to the bias of u>DTF. In general, if p(u>o) is constructed from the observed distribution 

of log distance estimates then one must apply the IMC to the ITF estimator. See also 

the discussion in Teerikorpi (1993) and Feast (1994), where the same conclusion is reached. 

Malmquist corrections derived from caDTF will be valid only when p(u?o) is equal to the 

intrinsic distribution of true log distance -  an approximation to which one might obtain 

from, for example, a deeper redshift survey (c.f. Hudson, 1993; Dekel, 1994). As a special 

case of this result, note that the homogeneous Malmquist correction (HMC) applied to 

u>DTF will be valid provided that the intrinsic distribution of galaxies is homogeneous. This 

will frequently be a reasonable assumption but is difficult to test. W hat is certainly clear, 

however, is that applying the Inhomogeneous Malmquist Correction (IMC) as derived by 

Landy and Szalay to u)DTF will be completely inappropriate, since the prior distribution 

obtained from a histogram of raw log distance estimates will not correspond to the intrinsic, 

but rather to the observed, true log distance distribution.

Sam pling Gradient Biases

Malmquist bias is not, unfortunately, the last of the bias problems in P o t e n t . Another 

significant error comes from Sampling Gradient Biases. These are caused by information 

from areas with a high density of observed galaxies ‘leaching’ into areas with a lower density. 

This is a problem because the assumption of a potential for the velocity field applies to the 

underlying velocity field smoothed by a spherical window weighted by the mass. However, 

in the P o t e n t  procedure, the smoothed field is weighted by the number density of objects
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rii = n(fi)  and the selection function S{ = S(ri). This can be partly corrected for by 

eliminating the n S  weighting entirely to give a volume weighted solution, but full correction 

would depend on knowledge of the underlying mass field which is the final aim of the entire 

procedure.1

4 .1 .3  C h o ice  o f  P o te n t  W in d o w  F u n ctio n

The aim of the selection of a window function is to minimise the bias and variance of the 

recovered radial peculiar velocity field whilst keeping the amount of smoothing as low as 

possible. In practice, there is something of a conflict between these goals and the final 

choice must be a compromise. Dekel et al. (1990) propose three different forms of window, 

and it is these that I have been using. The simplest form is the ‘biased’ window WB:

W B(r, fi) = - i  exp
\r — r,-

(4.13)
2 R l

where R v is the window radius and of is the weighting for the i th galaxy. It might seem 

preferable to have constant weights in order to  maintain a uniform average and keep the

sampling gradient bias low, but in order to minise the variance, we would wish to give less

weight to galaxies with larger errors. For this window, variance minimisation is the prime 

requirement, so for a galaxy with an error r tA, the weighting function has the form:

<r? =  r?A 2 +  a\  (4.14)

with o\  included as a ‘field variance’ to exclude the effect of intrinsic fluctuations in the 

velocity field and, in practice, to prevent excessive weight being given to nearby galaxies. 

A value of Of = 150km s-1 is adopted as recommended by Dekel et al. (1990).

Although simple and quite effective in keeping down the noise in recovered radial velocities, 

the ‘biased’ window function is exactly that — it is very prone to sampling gradient biases. 

These can be minimised by weighting by ( n ^ - ) -1 if the slight increase in variance is a 

good trade-off. In practice, ( n ^ ) -1 is unknown, but it can be approximated by a suitable 

‘volume’ for each galaxy for example

Vi = R l(  Fi) (4.15)

1This is another example of problems incurred because of a poorly known prior. However, in this case 
the sensitivity to the prior in not too acute and the errors introduced can be kept under control.
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where R ^ r i )  is the distance from i to the fourth nearest neighbour galaxy. This weighting 

gives rise to the ‘fixed’ window Wp:

WF(f,r i)  = —L exp
r -  r,
2 R l

(4.16)

This window is, in fact, the one used in most of the P o t e n t  analyses and will be the one 

I shall be concentrating on. However, there is one other window proposed by Dekel et al. 

(1990) that has some interesting properties.

This window, the ‘variable’ window function Wy, unlike the other functions, does not have 

one fixed window radius but varies in size to give high resolution in areas where the catalogue 

is well-sampled, but smoothing on much larger scales in regions with few galaxies in order 

to keep the variance within reasonable limits.

Vi
W y(f,r;) =  —4 exp

<7„-

\r — ri
(4.17)

2 R l(r )

The choice of R%(r) is somewhat arbitrary, but from “trial and error” with Monte Carlo 

simulations, Dekel et al. (1990) chose R w(r) = -fts(r)> the distance from the position r to the 

fifth nearest galaxy in the sample. In this way, the quality of data in well sampled regions can 

be considerably improved without significant loss in the less abundant areas. However, the 

variable radius and subsequent increase in the complexity of the error analysis make results 

obtained this window very difficult to analyse. In particular, comparison with theoretical 

models or results from another technique becomes very tricky since the smoothing effects 

must be as similar as possible to enable sensible comparison. In the majority of situations, 

therefore, the fixed window is the most appropriate.

4 .1 .4  D e n s ity  F ie ld  recovery

As a result of the smoothing and line integrals, we have a smoothed velocity potential 4>y 

from which we can derive the full three-dimensional peculiar velocity field using eqn. (4.2). 

However, what we are really interested in is the distribution of m atter. This is particularly 

true with P o t e n t  since the velocity field is dynamical in origin and makes no assumptions 

about the way in which light traces mass. Comparison with other studies can, therefore, help 

to give constraints on the cosmological bias parameter (see sect. 2.1). We would therefore 

like a method that enables us to calculate a density field from the peculiar velocity data.
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Such a method is described in Nusser et al. (1991) and is outlined below. This is the 

method adopted by Dekel et al. (1993) and I have, therefore, also implemented it.

Consider the evolution of the universe as a pressureless gravitating fluid against the standard 

(FRW) cosmological background (refer back to chapter 1 for details). The pressure can be 

neglected since our result from P o t e n t  is for the case where particle orbits have not 

crossed. Using the peculiar velocity v, the peculiar gravitational potential 4>g and the 

density contrast 6 in comoving coordinates we obtain the three usual equations of state — 

the continuity equation,

Note that both FT, the Hubble parameter, and D, the cosmological density param eter, 

are time varying. Using (4.20) to remove the potential from the divergence of (4.19) and 

recalling tha t, since the velocity field is assumed to be vorticity-free,

6 + V • v +  V • (<5u) = 0 (4.18)

the Euler equation,

v + 2H v  +  (u • V)v = — V4»g (4.19)

and the Poisson field equation,

V2$ g = I h 2D6 2
(4.20)

(4.21)

we obtain

E v  ■ v) +  2H V  ■ v +  i v V  = ~ ^ H 2S16 (4.22)

For simplicity, let us first consider the linear approximation neglecting all terms involving 

Sv or v2.

6 +  2H6 -  j-H2Q6 = 0 (4.23)

We are only interested in the growing mode of this 6 oc D+(t) which is usually expressed in 

terms of the function /(D )

(4.24)

Equation (4.23) can then be written as

6 = - ( H f ) ~ ' V  ■ v (4.25)

which depends only on the local velocity.
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However, when we move to the second order solution, not only does the solution become 

much more complicated, it also loses its local nature and requires integrals over a large 

volume (Nusser et al. (1991), Peebles (1980)). This is unfortunate as P o t e n t  is essentially 

local in nature and limited by the size of the catalogue, but it still requires something 

beyond the linear regime as fluctuations with S > 1 are not uncommon even smoothed on 

1000+ km s-1 scales. Nusser et al. (1991) therefore proposed the use of the quasi-linear 

Zel’dovich approximation (Zel’dovich, 1970). This approximation is normally considered in 

Lagrangian space, where the coordinates q are the initial comoving positions of particles 

(ie a coordinate is ‘labelled’ by a particle). The displacement of a particle from its initial 

position after some time t is then given by x(q, t )—q where x is the Eulerian coordinate of the 

particle. The Zel’dovich approximation consists of writing this displacement as a product 

of a purely spatial perturbation function ift(q) and a separate, universal time-dependent 

function D(t).

t ) - q  = D(t)ift(q) (4.26)

Because this is only an approximation, care must be taken over its use. In particular,

Nusser et al. (1991) found that when employed in eqn. (4.22), equivalent to conserving

momentum, the final result was identical to the linear approximation. However, when used

in the continuity equation (4.18) — mass conservation — the following result was obtained

S(x) = -  1 (4.27)

where I  is the identity matrix and || . . .  || denotes the Jacobian determinant. Tests showed 

that this approximation was remarkably good (Nusser et al., 1991), and has since been used 

in P o t e n t .

4 .1 .5  N u m e r ica l Im p lem en ta tio n

So far I have considered P o t e n t  in terms of continuous fields. However, for implementation 

on a computer, it is necessary to discretise onto grids etc. In this brief section, I will describe 

the details of the actual implementation of P o t e n t .

Three forms of grid are used within P o t e n t .  The simplest one is a spherical grid with 

N r shells centred on the origin and equally spaced out to some maximum distance. These
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shells are sub-divided into N$ latitude circles and longitude circles. This grid simplifies 

the calculation of 4>v(r) since all points on the grid lie on one of the N$N$ radial lines and 

peculiar velocities can be calculated along the grid lines to give three orthogonal components 

at each point. However, there is an excess of points towards the poles of the grid and it is 

easier to perform analysis on a cubic, cartesian grid. More recently, therefore, this simple 

grid has been replaced by one with N^s'mO longitude circles and the potential 4>v(r) is 

interpolated onto a cubic grid using Cloud-in-Cell interpolation (Hockney and Eastwood, 

1981) and all other calculations are performed on this grid (Dekel et al., 1993).

The integration of eqn. (4.4) is approximated by fitting a Chebyshev polynomial to the 

smoothed radial velocity field along each radial line and integrating the entire line in one 

go (Press et al., 1992).2 The resultant potential field is interpolated onto a spherical grid as 

described above and the derivatives for the calculation of both v(r) and 6(r) are evaluated 

on cubic splines fit through the grid points (Press et al., 1992).

4 .2  T estin g  P o ten t

In this section, I will be examining the extent to which the biases outlined above are still 

a problem after the correction procedures have been applied. To do this I use a Monte 

Carlo technique that differs from that in the original P o t e n t  analysis (Dekel et al., 1990). 

There, they chose a two-level process with averaging performed over the distribution of 

objects and the distribution of distance errors. However, I am interested in the effect of 

a particular distribution of objects (for example, a galaxy catalogue) and so the first level 

of averaging is dropped. As well as simplifying the procedure this also removes the Monte 

Carlo bias tha t complicates the analysis in Dekel et al., 1990. Other than this, however, my 

analysis is kept as similar to theirs as possible, for example by choosing the same window 

size (1200 km s-1 ) and using the volume weighted, fixed window function W p ^ r ,) .

I perform two sets of tests. Both involve Monte Carlo realisations of P o t e n t  velocity field 

recoveries. The first set of results are for an idealised situation. The underlying velocity field 

is quiet Hubble flow, and galaxies are drawn randomly from an homogeneous universe with

2This approach was compared to a more rigorous, but much more intensive integration method using 
Simpsons rule, but no significant difference in the results was found.
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complete sky coverage. Since it is impossible to create a numerical sample with truly infinite 

depth, galaxies are created homogeneously within a sphere. This sphere is centered around 

the Milky Way and its radius is such that a galaxy whose absolute magnitude is Mo +  3am 

is just visible where am is the standard deviation of the intrinsic luminosity function. To 

generate estimated distances to these galaxies, M  and P  are sampled from a bivariate 

normal distribution and subjected to magnitude selection. If the galaxy is unobservable, it 

is completely discarded. For each observable galaxy, M  and P are then used to estimate 

the distance using DTF and ITF estimators and a variety of Malmquist corrections. We 

take typical values of the distribution parameters obtained for the Dn-cr and Tully-Fisher 

relation tha t give a log distance error of about 15%. Note tha t by doing this I am assuming 

tha t the calibration procedure has provided the exact slope and zero point and th a t all 

the errors are due to the intrinsic scatter in the relation. This is partly for simplicity, but 

mainly because I wish to isolate these effects from those produced by calibration errors. 

A number of P o t e n t  realisations for each method are calculated and the average used to 

show the biases. This test is designed to show the effect of the various distance estimation 

and correction techniques in what is, in some sense, a ‘best case’ situation. The use of 

quiet Hubble flow will ensure that no sampling gradient biases are introduced and the 

homogeneous universe is ideal for testing the assumptions of the Malmquist corrections.

The second set of tests are for a more realistic situation. Quiet Hubble flow is replaced with 

a more complex peculiar velocity field involving a large void and an a ttracto r region. Also, 

the galaxies are positioned much more realistically.

This realistic distribution is generated as follows. I position a galaxy at each point in the 

combined data of Mathewson et al. (1992) and Burstein (1990)3 (see fig. 4.1). For simplicity, 

I neglect the improvement in the distance estimates that can be found for clusters by 

combining estimates from all the galaxies in the cluster. However, in order to avoid “finger 

of God” type effects, one galaxy is chosen at random from each cluster. Again, M  and P  

are drawn from the same bivariate normal and the same selection applied. However, if the 

galaxy is found to be unobservable, M  and P are regenerated and the process repeated

3The Burstein Mark II data is a combination of a number of other catalogues with some otherwise 
unpublished data. The catalogues include elliptical galaxies from Lynden-Bell et al. (1988), Lucey and 
Carter (1988) and Dressier and Faber (1990) and spirals from Aaronson et al. (1982), (1986), (1989), 
Bothun et al. (1984) and de Vaucouleurs and Peters (1984). The Mark II catalogue replaces the Mark I 
catalogue (Burstein et al., 1987) which was found to contain a number of errors.
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Figure 4.1: An Aitoff projection of the galaxies used as the sample for the more realistic 
Monte Carlo realisations. Coordinates are galactic longitude and latitude. In particular, 
note the large void centered around longitude 90° where the Mathewson sample is particu­
larly sparse.

until the galaxy is ‘observed’. In this way, given that the distribution parameters (<7m, P 

etc) are reasonable, I can create a series of mock catalogues that have a spatial distribution 

somewhat like tha t of a genuine catalogue and with each galaxy sampled from an appropriate 

region of the luminosity function.

The field I have chosen to use for these tests is formed by creating a potential consisting of 

two large spherically symmetric gaussian fluctuations, one positive, centered around (4000, 

0), and one negative at (-2000, 2000). The velocities are then constructed as in eqn. (4.2) 

and these velocities used to assign redshifts to the galaxies. When comparisons are made to 

P o t e n t  results, it is necessary to smooth the field with a gaussian window of 1200 k m s-1 . 

This is the radius of the window used in the P o t e n t  realisations (Dekel et al., 1993) 

and enables easier and more accurate comparison. Figure 4.2 shows a slice through this 

smoothed field.
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Figure 4.2: A slice through the centre of the velocity field used. The void and attractor 
regions are modelled by deriving the field from a potential which contains a large gaussian 
well and a wider gaussian peak. Note that this graph actually shows the field smoothed 
with a gaussian window of 1200 km s-1 radius to enable direct comparison to the P O T E N T  

results.
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Figure 4.3: Bias as a function of distance for P o t e n t  recoveries of quiet Hubble flow with 
galaxies drawn from an homogeneous universe. The DTF estimator has been used on its 
own, with an homogeneous Malmquist correction and with an inhomogeneous correction. 
The distance estimator has an error in log distance of about 15%.

4 .2 .1  M o n te  C arlo P o te n t  v e lo c ity  field  recoveries

The results of the first, simpler test are shown in Figures 4.3 and 4.4. Since I am dealing 

with such a simplified galaxy sample and velocity field, all the bias is in the radial direction 

and is the same along all radial lines. These graphs show this bias as a function of distance. 

The need for some form of correction is clear, particularly for the DTF estimator, as are 

the dangers of an inappropriate correction -  for example, the homogeneous Malmquist 

correction applied to the ITF estimator which is far worse than using the uncorrected 

distances. Slightly surprising is the good recovery from the inhomogeneous correction when 

applied to DTF typfe estimates. However, we know that the biased, non-gaussian nature of 

the distance estimator violates some basic assumptions of the correction and such a complex 

form of bias from such a simple sample distribution does not augur well for more realistic 

galaxy surveys. Figure 4.5 highlights this. Here the M  and P  distribution parameters have 

been changed to give only 10% log distance errors. Suddenly the inhomogeneously corrected 

recovery is dramatically worsened showing that the good results with 15% errors were just
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Figure 4.5: Bias as a function of distance for P o t e n t  recoveries as in fig. 4.3. Again, DTF 
estimators are used, but this time they have only 10% log distance errors.
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a lucky coincidence.

I have found that such cancellations are quite common in my Monte Carlo tests. Because of 

the many sources of systematic errors in P o t e n t , circumstances are bound to occur where 

two or more biases approximately cancel out. It is only by rigorously performing tests for 

a large variety of distances estimators and errors, galaxy distributions, velocity fields and 

so on, tha t such coincidences can be recognised and the true advantages and problems of 

any method brought to light. Too few tests may well make inappropriate methods seem 

attractive. Considerable care needs to be taken to avoid falling into traps of this sort.

The best recoveries, therefore, are as expected. Since we are drawing from an homogeneous 

universe, the homogeneous correction is indeed effective when used with the direct regres­

sion line estimator and the recovery from an ITF type estimator with an inhomogeneous 

correction is equally good (fig. 4.4).

So, the theory holds out well for this situation and the corrections, when properly applied, 

seem to be adequate. However, we need to consider the effect of inhomogeneities in the 

universe, incomplete samples and more complex velocity fields.

I perform the second, more realistic test on the same distance estimation techniques de­

scribed above. The results of these tests are shown in fig. 4.6. For clarity, in fig. 4.7 the 

actual smoothed field has been subtracted from the Monte Carlo recoveries to give just the 

bias. As expected, the inhomogeneous correction provides an improvement over the ‘raw’ 

ITF recovery, although not a particularly substantial one. However, again, the inhomogen- 

eously corrected DTF is quite good and surprisingly, the ‘raw ’ DTF recovery is the best 

of the lot and the homogeneous correction makes it far worse. Since we know that in the 

idealised case exactly the opposite is true, the DTF recovery must be another “lucky” coin­

cidence. These coincidences come about because of the complexity of the biases in P o t e n t : 

Malmquist type biases come out of the smoothing, the distance estimates themselves can 

be intrinsically biased, inhomogeneous galaxy distributions lead to pollution or sampling 

gradient biases and so on. The interaction between all the errors is complicated and un­

predictable. Although the chances of a fortunate cancellation exist, they cannot be relied 

upon and the chance of an unrecognised bias getting through the correction procedure is 

high. One such bias can be seen in all four recoveries. In the lower right hand quadrant of 

the figures there is a large inward bias. This is caused by a large gap in the coverage of the
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Figure 4.6: Monte Carlo P o t e n t  recoveries of test velocity field shown in Fig. 4.2 using 
four different methods of distance estimation. In graphs (a) and (b), ‘raw’ DTF and ITF 
distance estimates are used. Graphs (c) and (d) have homogeneous corrections applied to 
the two ‘raw’ estimators and in (e) and (f), the inhomogeneous corrections have been used.
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Mathewson et al. (1992) data set and it appears to shift the void to considerable greater 

distances in all cases. In fact, the situation is not quite as bad as it may seem as areas such 

as these have relatively large random errors and are usually discarded from the recovery 

before any analysis is done, but the danger remains.

The problems with the homogeneous correction with both ‘raw’ estimators are twofold. 

Firstly, the assumption of an homogeneous sample implied when ITF estimates are used 

is clearly not valid (see fig. 4.1) and the universe is probably not homogeneous enough on 

these scales to enable us to use the DTF. However, these effects are not sufficient to account 

for the large spurious inflows seen here. These are due to the modelling of the selection 

effects in the Monte Carlo simulations. Since I have a combination of two data sets and they 

are being used solely to provide realistic spatial distributions rather than actual data to be 

processed, the choice of magnitude cut-off and the sharpness of that cut-off will not exactly 

match the real data. Therefore, even if the real universe were homogeneous on these scales, 

the universe of the fake surveys will not be, since they are forced to reproduce the same 

sample distribution with different selection criteria. This is, therefore, an artifact of the 

Monte Carlo technique rather than the Malmquist corrections used, but the magnitude of 

the effect in P o t e n t  recoveries should be taken as a warning both for the design of Monte 

Carlo type tests and for the use of the homogeneous correction when the homogeneity 

requirement is suspect.

Coned Inhom ogeneous M alm quist Corrections

One possible improvement to the standard IMC is a coned version where the sky is divided 

up into a number of solid angle cones and the correction calculated separately for each 

one. However, with the current size of galaxy catalogues with redshift independent distance 

estimates, this is not very effective. For example, in fig. 4.8 another set of Monte Carlos 

have been performed on the same catalogue as the previous tests but with quiet Hubble flow 

imposed to remove and sampling gradient biases. The graph on the left shows the effect of 

an unconed IMC correction applied to ITF estimates. On the right, a separate IMC has 

been calculated for each galaxy by averaging the radial distribution over all the galaxies 

in a cone centred on the chosen galaxy and wide enough to contain 200 others. Given the 

sample contains less than 2000 galaxies, this would seem to be a reasonable sub-sample
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Figure 4.8: Two slices through Monte Carlo recoveries of quiet Hubble flow using P o t e n t  

on realisticly inhomogeneous data. Graph (a) shows the effect of applying IMC to ITF 
estimates. Graph (b) has an inhomogeneous correction calculated separately for each galaxy 
using a cone centered around it wide enough to contain 200 other galaxies.

to use, but as can be seen, the biases increase because of noise in the estimate p(u>o). If 

the number of galaxies in each cone is increased, the correction does not differ significantly 

from the unconed correction, if decreased, the noise because worse. Therefore, without a 

significant advance in the size of catalogues, this approach is unlikely to yield particularly 

useful results.

It is clear from these tests that even with careful choice of window function and corrected 

distance estimates, the P o t e n t  method is susceptible to serious systematic errors which 

can go unnoticed and lead to dangerously erroneous analysis. The aim of the work in 

this thesis is to try to develop alternative methods of velocity field recovery or improved 

correction techniques. Simultaneously, I will be attempting to devise careful tests for the 

various methods to ensure that their regions of validity are well defined and all areas of any 

recovery can be used or discarded in confidence.



Chapter 5

A dapting and Improving Potent

Sure, all’s effectless; yet nothing we’ll omit 

That bears recovery’s name.

Pericles -  Prince of Tyre V:i

The main area of potential improvement in P o t e n t  is clearly in the correction of Malmquist 

bias. In particular, there is the need for some form of correction or procedure that can 

properly take into account the full three-dimensional distribution of galaxies.

5.1 R ed sh ift P o ten t

It is im portant to remember that as well as distance estimates, P o t e n t  obviously requires 

redshifts of galaxies. So far we have only used them to determine v r , but we have already 

seen tha t, even without any independent galaxy distance estimates, the redshift distribution 

of galaxies can provide considerable information about the peculiar velocity field. Also, in 

comparison to even the,very best distance estimation techniques, redshifts are effectively 

error free. Given this, any technique that can replace some of the reliance on r  with redshift 

information is likely to provide scope for improvement.

First of all, where exactly is r used in P o t e n t ? Its main use is to estimate v r as in 

eqn. (4.1). However, it is also needed to position galaxies during the smoothing procedure 

and it is at this stage that Malmquist biases arise. The idea behind Redshift Potent (or

77
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Z - P o t e n t ) is t o  perform  as m uch  o f  th e  analysis  as p ossib le  in redshift  sp a ce  ra th er  than  

e s t im a t e d  d is tan ce  space.

It would be very convenient to perform the entire process without ever having to leave 

redshift space, but the assumption of a potential velocity field will not be valid, so the 

integration over the smoothed radial velocity field (4.4) must be done in real space. However, 

prior to this, the assumption of a potential is not utilised. We can, therefore, proceed as 

follows (a sipiilar procedure has been proposed by Stebbins, 1993).

5.1.1 The Z-Potent Procedure

The first stage is unchanged. A radial peculiar velocity is estimated for each galaxy i by

Vn- = Zi -  Ti (5.1)

However, instead of associating the galaxy with a particular position in “estimate space” , 

r  =  {r, 9, (f>}, I use the position of the galaxy in redshift space, z  =  {z, 9, 4>}. (Note that, 

although z, 9 and 4> are actually estimates, their errors are negligibly small). These

velocities are then smoothed in redshift space by minimising the likelihood function:

1 Ngal
L(z)  =  - -  W ( z , Z i ) [ \ Ti -  Zi • v ( z ) ] 2 (5.2)

i

(cf eqn. (4.5)). The result of this procedure is as before as smoothed peculiar velocity field 

but of the form

v r(z) e e  vy(r(z)) (5.3)

where r(z) = z  — v r (5-4)

Each radial line can, therefore, be converted froih redshift space'to real space before integ­

ration of eqn. (4.4) and the P o t en t  procedure continue as normal.

There are two possible problems with this approach. Firstly, each radial line in redshift 

space must be extended below the origin and beyond the maximum extent of the recovery 

so tha t (5.4) is defined all along the radial path in real space. This is easily done. The 

second problem is more significant.
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Take some region along a radial line za to zb where

dvr
  <T 1 r <T* \  -L , ~ \  ~adz
d vr
—  > 1, za < z < zb
dz

There will, therefore, be a region in real space between ra = za — v r(za) and rb = zb — v r(zb) 

where more than one vy is associated with each point. This is clearly un-physical and comes 

about because there is no longer a one-to-one correspondence between real and redshift 

spaces (so-called triple-value regions). Unfortunately, there is no simple solution to this 

problem and the radial integral must be truncated when such a situation occurs. However, 

this occurrence is also an indication that we are moving out of the linear regime of structure 

formation and into a area where we might expect the assumption of a potential to fall down, 

so such regions should perhaps not be included in a P o t e n t  analysis anyway.

5 .1 .2  T estin g  Z -P oten t

As usual, I shall start with a simple test by imposing quiet Hubble flow on an homogeneous 

universe. The results of this test are shown in fig. 5.1. There is a clear improvement in the 

results with the smoothing performed in redshift space, both in the systematic errors and 

the standard deviation, particularly within ~  5000 km s-1 . However, in fig. 5.2, there is a 

different story.

Here, the Hubble flow field has been kept, but the Mathewson and Burstein catalogues are 

again used to give a realistic distribution of galaxies. Over most of the field, the two results 

are comparable with perhaps a slight preference towards the Z -P o t e n t  results. However, 

for two of the shells, the errors in the redshift based recovery become enormous. This is 

because of the troublesome void in the catalogue that keeps recurring. As can be seen from 

fig. 5.3 (a), on the edge of this area there is a large region with the results undefined and 

some large, clearly erroneous velocities at ~  (2000, 500). However, when the final field is 

smoothed slightly to remove this ugly area, the results are very different (fig. 5.3 b). The 

averaged errors for this case are shown in fig. 5.4 and again, the Z -P o t e n t  recovery is the 

best result (albeit only slightly).

Of course, such ad-hoc smoothing because the field does not look attractive is far from 

satisfactory! However, in cases of this type, where a particular region is clearly invalid, it
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Figure 5.1: Average error and standard deviations are shown for the recovered velocit­
ies of quiet Hubble flow in an homogeneous universe for conventional P o t e n t  applied to 
inhomogeneously Malmquist corrected ITF estimates and Z - P o t e n t  applied to ‘raw’ ITF 
estimates, both techniques designed to minimise Malmquist biases. The velocities have been 
binned into ten radial shells. Note that the Z - P o t e n t  results have been shifted slightly to 
the right for clarity.

can alternatively be discarded, also yielding similar results. And, again, the question needs 

to be posed tha t, if such an error did not show up in a conventional P o t e n t  analysis, would 

our assumption of a potential still hold and the result still be valid?

5 .2  M on te Carlo B ias C orrection

Although attractive, the Z - P o t e n t  method is still not an ideal solution, partly because of 

the areas where it is invalid, but also because it only addresses Malmquist-like biases, and 

not any other forms of systematic error such as sampling gradient biases. One approach I 

have adopted for dealing with this type of bias is to take a step back from the details of 

how particular errors arise, and treat them all jointly as a systematic error tha t needs to 

be calculated and corrected. I therefore wish to use PO T E N T  itself to find these errors, for 

example using Monte Carlo recoveries similar to the ones shown in fig. 4.7, and then simply
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Figure 5.2: As figure 5.1 but with QHF imposed on the positions of the Mathewson et al. 
(1992) and Burstein (1990) galaxy data sets.
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Figure 5.4: As figure 5.2 but with the Z -P o t en t  recovery smoothed slightly (see fig. 5.3).

subtract them from the actual recovery. This technique was first described in Newsam et al. 

(1993a) and was extended in Newsam et al. (1993b).

To do this, I divide the systematic errors into two classes; those that do not depend on the 

underlying velocity field and those that do. For example, the Malmquist bias is independent 

of the velocity field, but sampling gradient biases have a strong dependence. The former 

can be dealt with under the assumption of any velocity field (I take quiet Hubble flow for 

simplicity), but the latter requires some means of iterating towards a solution. Before I get 

to this, however, a Monte Carlo method must be carefully chosen.

5 .2 .1  M o n te  C a r lo  p ro c e d u re

I need a procedure that uses the distribution of galaxies given by the data set but can 

impose some chosen velocity field onto them. I also need to be sure that the details of the 

distance estimator and selection of galaxies are consistent with those that went into forming 

the original sample. Finally, I need to be certain tha t no systematic errors are introduced 

by the procedure itself, so that the results can be confidently treated as a correction.
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I therefore use the following method.

1. Create a mock universe of observable galaxies by assigning some definite position ff 

to each galaxy in a catalogue observed at some r. (For simplicity, this is done by 

ff =  r  for all galaxies. However, it may be better in some cases to use the redshift as 

a position for more distant galaxies).

2. Imposing some velocity field ff(ff), assign a redshift Zf to each galaxy such that

Z[ = vrf -  r{ (5.5)

3. For the example of an estimator based on two observables M  and P , assign an M

and a P  to each galaxy. These will be randomly sampled from a distribution whose

parameters are estimated from the original data set.

4. Impose selection on each galaxy and, if unobservable, go back to step 3.

5. Get estimates of distances to galaxies ff.

6. Use ff and Z{ in P o t e n t  to get a recovered velocity field.

7. Repeat steps 3 to 6 a suitable number of times and average the resulting velocity field.

This will result in a good approximation to the systematic errors introduced by P o t e n t  

when acting on a particular velocity field with a particular galaxy catalogue. The iterative 

process involves modifying the imposed velocity field ff(ff) at each stage and, hopefully, 

converging it towards the underlying smoothed field.

5 .2 .2  A p p lica tio n  o f  ite r a tiv e  correction s

The basis of the iteration is to use the Monte Carlo results of some ‘guess’ velocity field to 

give a next guess that is a little bit closer to the underlying v.

I shall call the first guess field uf^ .  I then apply the Monte Carlo procedure to obtain an 

estimate of the systematic errors bv(r) this field produces. For simplicity of notation, I will 

call this Monte Carlo velocity field where the bar denotes the average including all 

biases. Thus

b{^° \ f )  = v ^ ° \ r )  — v{i0\ f )  (5-6)
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The next iteration could then be found by removing these biases from the single P o t e n t  

recovery of the original catalogue. However, this recovery is noisy and using it as the basis 

of an underlying velocity field in the iterative scheme will try and force the method to fit 

the noise. In order to avoid this, it is necessary to perform a Monte Carlo on the ‘raw’ 

data by scattering the distances as above, but using the actual redshifts from the catalogue

to define the imposed velocity field. This will give us an averaged field vT8LV/(r) which well

approximates the combination of systematic errors from P o t e n t  and the real smoothed 

velocity field.

One then obtains the next iteration velocity field:

£f(1) = ffraw -  £f(0) (5.7)

The Monte Carlo procedure can then be repeated so that, in general, to obtain the velocity 

field for iteration n,

#f(n) = 3raw -  6f(n-1) (5.8)

5 .2 .3  C on vergen ce  cr iter ia

Convergence will have occurred when, within some tolerance,

v /n) «  vraw (5.9)

However, exactly how to define the comparison of the two fields is not simple. The simplest 

approach would be to do a point by point comparison of the two grids and average all the 

values obtained. Unfortunately, this approach has two problems. Firstly, some areas of the 

P o t e n t  recovery will be extremely noisy (particularly at large distances) and to get the 

residual noise in the Monte Carlos down to really acceptable levels would be prohibitively 

time consuming. In addition, the large gaps in galaxy surveys, whether they are due to 

actual voids or incomplete sky coverage, give areas where there is little or no information 

about the velocity field. Since the correction method acts by adjusting the redshifts of 

the galaxies it is using, where these galaxies are sparse very little effect can be achieved. 

However, if the convergence criteria gives too much weight to these regions, they may 

prevent the tolerance level being reached and the corrections will ‘over-shoot’. In practice, 

areas which are subject to these problems are discarded before any analysis of the P o t e n t
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results is performed, so we would wish to minimise their effect on the convergence criteria 

without making any ad hoc decisions about ‘good’ and ‘bad’ areas of the field.

This is done in two simple ways. Firstly, instead of comparing at grid points, I interpolate 

the fields to the ‘fixed’ positions of the galaxies and perform the comparison there. In this 

way, most weight is put on densely sampled regions where the recovery is likely to be most 

useful. Also, the error of the uraw recovery is calculated and used to weight the comparison 

at every point, again making the correction best where it is needed. This weighted average 

is used as the value of the current iteration, and when it drops below some tolerance (usually 

in the tens of km s-1 ), the process is stopped.

5 .2 .4  T ests  o f  I te r a tiv e  M on te  C arlo C orrection s

The tests in this section are for direct comparison to the second, more realistic set of results 

in sec. 4.2. Therefore, the underlying velocity field is the same, as are the distribution of 

galaxies and the parameters used to create the data for the distance estimates. Although 

the method can, in theory, be used with any number of different distance estimators, I have 

chosen to use an ITF estimator. There is no overwhelming reason why this is the best 

estimator to use, but since it is unbiased, it will not introduce any systematic errors of its 

own, thereby perhaps speeding up convergence. In addition, its gaussian nature makes it 

easy to perform analysis on.

For the tests shown in this section, I used a convergence tolerance of 50 km s-1 where the 

convergence criteria is as described in sec. 5.2.3. In order to ensure tha t residual noise in 

the Monte Carlo averages was not significant at this level, each Monte Carlo recovery used 

200 P o t e n t  realisations of the velocity field. This is almost certainly over-kill, but it is 

im portant to be sure that the tests are as free from confusion as possible.

All tha t remains to be decided, therefore, is the choice of the initial guess field I

choose quiet Hubble flow partly because it has no features that might pose unreasonable 

constraints on the recovery method, and also, since all peculiar velocities are zero, there 

are no sampling gradient biases in the recovery of quiet Hubble flow. This means that 

the bias of the initial recovery b ^ ° \ f )  is due solely to the effects of smoothing over the 

galaxy distribution distorted by distance errors. Therefore, this bias can be used as a form
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Figure 5.5: Average P o ten t  recovery of field given in fig. 4.2 using Monte Carlo iterative 
correction method. Graph (a) is from the final corrected recovery and (b) is its bias.

of Malmquist correction that takes into account all the inhomogeneities in the sample and 

makes no assumptions about the form of the distance estimator. If this is all that is required, 

the process can be stopped there. (In Hendry et al. (1993a), the effect of this correction 

on the problem of the “Zone of Avoidance” is considered and a significant improvement is 

shown).

The usual slice through the final velocity field is shown in fig. 5.5 together with its bias. The 

recovery is considerably better than any of the previous results in sec. 4.2. Just how much 

better can be seen in fig. 5.6. Here, the various averaged recovered velocity fields have been 

interpolated onto a cubic grid truncated to the 8000 km s-1 sphere. The grid spacing is 

chosen to be 500 km s-1 for comparison with the P o t e n t 90 results of Dekel et al. (1993). 

Then, I simply compare the velocity at each grid point with the actual smoothed velocity 

field and average all the errors. The weighted comparison uses the variance of the P o t en t  

recovery to weight each point. With both comparisons the Monte Carlo correction is better, 

considerably so without the weighting.

In fig. 5 .7 ,1 perform the same comparisons with each iteration of the Monte Carlo correction. 

The fourth iteration is the one I used since this is the one where the convergence level 

dropped below 50 km s-1 (shown by the thick line in the figure). However, it is clear that 

the best iteration is the second one, if only by a small margin. This is caused in part by
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Figure 5.6: A comparison of the various methods. For the purposes of the comparison, the 
Monte Carlo recoveries shown in previous figures are interpolated on to cubic grids with 
grid spacing of 500 km s-1 . The shaded bars show the average errors of a simple point 
by point comparison of these interpolated fields with the actual smoothed velocity field. 
The hollow bars are the same comparison with each point weighted by the variance of the 
P o t e n t  recovery at that point.

Uncorrected 

1 iteration

2 iterations

3 Iterations
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Point by point comparison —  
Weighted by variance I I 
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Figure 5.7: The average biases of the Monte Carlo correction technique at each iteration. 
As with fig. 5.6, the shaded bars show the average of a point by point comparison of the 
recovered average field with the smoothed real field on a cubic grid. For the hollow bars, 
the comparison was weighted at each point by the variance of the P o t e n t  recovery. The 
thick line shows the level of the convergence criteria value as described in sec. 5.2.3.
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corrections in the sparse regions over-shooting since the limited number of galaxies gives 

the correction very little to work with and so it continually tries to remove the same bias. 

But the small residual bias in the final iteration (fig. 5.5) even in the very sparse region 

mention earlier (fig. 4.1) shows tha t this is a relatively small effect, and something else is 

needed to account for the seeming divergence. To understand what, we need to recall that 

the convergence level was calculated using a comparison involving uraw(f?)- This is only 

an estimate of the combination of systematic errors from P o t e n t  and the real smoothed 

velocity field. The fact tha t the method is as successful as it is, is a testam ent to the fact 

tha t it is a fairly good estimate, but down at the levels of tens of km s-1 which we are 

considering, this assumption must fall down. Therefore, if convergence levels this low are 

really required, then some means of improving this estimate will need to be found. However, 

most of the work is clearly done in the first two or three iterations, so convergence levels of 

~  100 km s-1 would really be more useful, and would considerably reduce the computational 

overhead. Also, there is no reason to expect to method to converge at all. All th a t can be 

realistically hoped for is asymptotic convergence, so trying to force the method to do too 

much may well cause the recovery to diverge (as seen in fig. 5.7).

5.3 P o te n t and M ax-flow  A lgorith m s

So far in this chapter, I have only considered the systematic errors from P o t e n t  because 

of their insidious effect. However, the random errors in the solution are in many ways an 

even bigger problem. Unlike biases, they can clearly not be ‘corrected for’, and where they 

are large, there is no option but to discard large slabs of the recovered velocity field.

The main area of attack on random errors is the smoothing procedure (sec. 4.1.3) where 

the errors in v r are averaged out over large volumes. However, in sparser regions, the 

smoothing windows have to become uncomfortably large and for the sparse and non-uniform 

distribution of galaxies in a real catalogue, this can be a major consideration and lead either 

to unreasonably large smoothing windows tha t mask any useful information, or very noisy 

recovered fields. Recall, though, that the smoothing procedure of eqn. (4.5) is actually 

fitting to a bulk flow and although the conventional P o t e n t  method only makes use of the 

radial component of this fit, both the transverse components are also estimated (Simmons
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Figure 5.8: Best fit vectorial velocity at given point P. In (a), galaxies A and B lie on a ray. 
Redshifts provide no information on transverse component of velocity at P. In (b), galaxies 
lie on an arc. Both, transverse and radial components are determined.

Y

Radial Path

Optimal Path

Figure 5.9: The optimal path minimises the error of the velocity potential, and will be 
pulled towards regions of high galaxy number density.
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et al. (1993a), Simmons et al. (1993b)). Of course there are reasons to suppose the radial 

component will be more accurately determined than the transverse (9,<f>) components since 

the redshifts are essentially telling us the radial components. This can be easily seen from

the observed galaxies are positioned along a ray it is evident that the radial component of 

the initial smoothed velocity field is well determined, but there is no information regarding 

the transverse component. Hence the error on the transverse component will be large. In 

case (b) where the galaxies are transversally positioned, the transverse as well as radial 

component will be reasonably well determined. The larger the angle, a , between the lines 

of sight to the two galaxies, the better determined will be the transverse component, v q . 

However, even if the error on the radial component were a factor of ten smaller than on 

the transverse, it is still possible to gain advantage by taking non-radial paths. Figure 5.9 

schematically depicts such a situation.

5 .3 .1  E rrors on th e  R ad ia l and T ran sverse C o m p o n en ts

Dekel et al. (1990) obtain the initial smoothed velocity field, u(r), at arbitrary spatial point 

r, by minimising

simplified picture given in fig. 5.8 where only two galaxies are considered. In case (a) where

71

where r; is the position vector of the ith galaxy, and there are a total of n galaxies in the 

survey, ey(rj) is the unit vector in the radial direction to the ith galaxy at position r,-. 

W{r,  ?,-) is the weighting or window function that determines the relative importance of the 

ith galaxy as in sec. 4.1.3.

Writing

v(r) = vrer(f)  + veee(f) + v ^ e ^ r ) (5.11)

and

K r  =  er ( r ) . e r ( r i )

4 r =  e^(f).eV(ri)

s 0r =  e e ( r ) - e r ( f i )

(5.12)
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and for expediency W l -  W (r, r t-), minimisation yields
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(5.13)

which can be written

AV = b (5.14)

V  is simply the vector of components of the smoothed velocity. (Compare this to the 

simplified approach given in sec. 4.1.1). Evidently the inversion of this equation yields all 

three components of the initial smoothed velocity field.

Since the estimated distances of galaxies are subject to error there will be a corresponding 

error on v(f).  Let us write the initial smooth peculiar velocity field obtained from one 

realisation as

v (f) = v(r) +  6v(f)  (5.15)

Here, for simplicity, we shall assume that all biases in the estimated velocity have been 

removed, so that on average, over many realisations, the estimated velocity yields the 

smoothed velocity field achieved when no noise is present, but using the same window 

function and redshifts.

In their analysis, Dekel et al. (1990) (see their appendix A) carry out a linear error analysis 

in which they derive a bias and variance on the radial component vT of v{f)  at an arbitrary 

spatial point. Of course the errors on the estimated components v r(r) ,v^(r), and v#(r) are 

not statistically independent.

Furthermore, the errors on the estimated velocity at different spatial points will also be cor­

related, typically over a distance scale determined by the diameter of the window function. 

This analysis can easily be generalised to the vectorial case. Since we have assumed that

the bias has been removed from vr(f) so that E(Svr(f')) = 0, we can write the covariance

as

E(Sv i(r)Svj(s))  = Rij(r,  s) (5.16)
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where E denotes expected value. The velocity error autocorrelation function, R i j ( r , s ), will 

depend on the window function, number density, the dispersion of the distance estimator 

and also to some extent on the input peculiar velocities. My main purpose during this thesis 

is to demonstrate the viability of the method and I shall not attem pt to model accurately 

Rij(r,s) .

5 .3 .2  O p tim a l P a th s

The estimated potential, 3>(r), of the peculiar velocity field is given by the path integral

$(r)  = — v(s).ds (5-17)

It is im portant to note that the error, arises only from the error, 6v(s) in the estimated

initial peculiar velocity. The radius vector of the path is not a statistical variable, but is,

once the path has been chosen, strictly determined. The error on the potential is therefore 

given by

8&(r) = — 8v(s).ds (5.18)

I shall take the optimal path for obtaining the potential of the velocity field at position r 

to be that path for which the variance of the line integral is minimised.

If we assume that v  is unbiased so that E{8\)  = 0 at every spatial point, s , then evidently

E(6&) = 0 (5.19)

The variance of is given by

E(6&(r))2 =  E 8v(s).ds j> 8v(i).dtj

= [  [  xj '(v) dpdv (5.20)
Jo Jo

where the path has been parametrised

x l = x\[i) ,  0 < < a (5.21)

and

A , )  = %  (5-22)
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Thus the optimal path will be given by

6 I f  Rij(s[fj,), t{v)) x 1'(p) x i \ v )  dfidv = 0 (5.23)
Jo  Jo

In the case where the autocorrelation function is a delta function, ie

Rij(s ,i)  = S3( s -  t)ai j(s)  (5.24)

Equation (5.23) simply defines a geodesic on a Riemannian space with crty as its metric 

tensor. Generally, however, we can expect components of the initial smoothed field at 

different spatial points to be correlated, and the correlation length to be of the same order 

of magnitude as the effective radius of the window function.

Although eqn. (5.23) is very interesting from a mathematical viewpoint, I have not pro­

ceeded further along those lines. In practice we do not know the form of the autocorrelation 

function, and it could be best approximated by numerical simulations. A more natural way 

to proceed is to use finite element methods.

5 .3 .3  D ijk s tr a ’s A lg o r ith m

We wish to calculate the ‘best’ velocity potential, from which the peculiar velocity field may 

be obtained by taking the gradient. This requires determining the potential $  at regular 

grid points, at least in regions of space where the galaxies are sufficiently dense for the 

reconstruction to be meaningful.

Suppose we have N  gridpoints at which we wish to evaluate the potential of the velocity 

field. Let us assume that the error in moving between the ath and the bth gridpoint is well 

defined and known for all a and 6. This ‘error length’, which I shall call an arcweight, should 

depend on the number density of galaxies in the joint neighbourhood of both gridpoints, the 

distance between the gridpoints and the distance of both from the origin. I take the potential 

to be zero at the first gridpoint (our galaxy), and so wish to find the path along which the 

to tal error is least. At first sight it might appear that this is an NP-complete problem (i.e. 

only soluble exponentially and therefore impractical on even the largest computers. For a 

fuller description NP-complete and related problems, see the reference below). Luckily this 

is not the case. Dijkstra’s algorithm (cf Papadimitriou and Steiglitz, 1982) finds the exact



CHAPTER 5. ADAPTING AND IMPROVING  P O T E N T 94

Figure 5.10: Shortest path from 0  to P, indicated by arrows, can be obtained using Dijk­
s tra ’s algorithm.

and global solution to this problem in a number of steps that is bounded above by TV2. This

algorithm is one of a class of Max-flow algorithms used in network theory.

Description o f  Dijkstra’s Algorithm

Figure 5.10 gives a schematic representations of a network of nodes (gridpoints). We write 

the set of nodes as

N  =  { n i , n 2, n 3, . . . , n j v }  (5.25)

The arcweight between each pair of nodes has been calculated according to some prescrip­

tion. Let the arcweight between node na and node rib he cab- We shall assume tha t cab = Cba5 

although this is not strictly necessary for what follows. A path will be determined by its 

nodes. Thus the path naina2na3nai . . . naM has M  nodes and total arcweight or pathlength

caia2a3...aAf =  caja2 + ca2a3 +  • • • +  c a .M - i & M  (5.26)

Clearly we may also write

caia2a3...ajtf — caia2a3...aA(f_1 T caM-iaM (5.27)

The problem is to find the path from node n\ to every other node na that minimises the 

sum of arcweights.

Suppose that at some stage we have a set M  of nodes to which we have established the 

minimum pathlength. Let the remaining nodes form the set P (see Fig. 5.11). Define sm(p)
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Figure 5.11: Illustration of Dijkstra’s algorithm. M  is set of nodes for which optimal paths 
from 77ii have been found. N is the set of all nodes and P = N — M.

to be the shortest pathlength from 7ii to p that uses only intermediate nodes in M . This 

must also be the shortest path from n\ to p. Now choose from the set of nodes P the 

node p for which the path length is shortest, and add it to the set M  and repeat until 

until the set M  contains all the nodes. This algorithm is similar, both in principle and in 

implementation, to the Minimal Spanning Tree, already used in statistical analyses of large 

scale structure (Barrow et al., 1985).

5 .3 .4  A p p lica t io n  o f  D ijk stra ’s A lg o r ith m  to  P o ten t

The main problem in applying this method to P o t e n t  is how to establish the arcweights 

between nodes. The arguments I present here are largely heuristic. Errors between two 

nodes (gridpoints) can be expected to be determined predominantly by the number density 

of galaxies in the mutual neighbourhood of the two nodes. The higher the galaxy number 

density the smaller the error. Radial components of the initial peculiar velocity field will 

probably have lower errors than the transverse components, but we might expect the two 

transverse components to have the same errors. If we take the gridpoints n and m  to be 

separated by more than the correlation length of the autocorrelation function, then we can 

assume that 6v(m) and Sv(n) are uncorrelated. Hence it would be reasonable to take

£ ( « i ( r ) ) 2 =  ^ £ ( i t ; ab .A x ab)2

= 5 ^ £ (i» iab % a b ) AxabAx£b (5.28)
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where na and n& are consecutive nodes along the path of integration, A xab the separation 

between these two gridpoints, and 6v{ab is the error in the ith component of the initial 

smoothed peculiar velocity evaluated at the midpoint of the segment. Since the variance of 

the distance estimator increases with radial distance squared, we shall take the arcweight 

to also scale with r 2. To simplify, we disallow arcs between gridpoints more than three 

gridlengths away, and assume that

(jfQ — @T<t> ~  &4>9 — 9 and cr,.,. — k gqq — k (5.29)

where k is some parameter.

Thus we shall take cab to be of the form

cab =  na r 2((A r)2 +  k2r2(sin2 6(A<f>)2 +  (A0)2)) (5.30)

The value of k in the above equation essentially tells one the errors on the transverse

components of the initial field compared with the radial. This will obviously depend on

the window function. It will also depend on the actual peculiar velocity field. Very rough 

simulations indicate that for simple peculiar velocity fields the transverse components will 

be poorly recovered, and consequently k will be large, typically between 5 and 10. However, 

as the quality of the data is improved, k could drop as low as 2 or 3.

A map of some values of k for a typical recovery are shown in fig. 5.12. This map is obtained

by imposing quiet Hubble flow onto a catalogue of galaxies (see sect. 4.2) and applying the 

P o t e n t  smoothing procedure on its own to recover the velocity field. Each grid point is 

then assigned a value of k according to the magnitude of the transverse errors with respect 

to the radial ones and the fc-field smoothed slightly (using a spherical gaussian window of 

300 km s-1 radius). Some areas clearly have very large A;, but in general, values of around 10 

are common, and for much of the slice -  particularly in regions with higher galaxy density

such as the lower left corner, k is considerably less than 10.

na is used to used to control the number of steps in any path. In general, a  can be varied 

from 0 (no preference) to about —9 (large numbers of steps strongly preferred).

As before, I have taken a spatial distribution of galaxies to be given by the Mathewson survey 

(Mathewson et al., 1992) combined with the Burstein Mark II compilation (Burstein, 1990) 

-  see fig. 4.1. Two peculiar velocity fields are taken corresponding to quiet Hubble flow and
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Figure 5.12: The graph show a slice though a typical set of k values. P o t e n t  smoothing 
is performed on a mock catalogue based on the Mathewson and Burstein data  sets but 
with quiet Hubble flow imposed. The contours (logarithmically spaced) show the value 
of k (relative errors in radial to transverse components - see eqn (5.30)) at a number of 
gridpoints. Contours with k < 10 are dashed and the k = 1 and k = 10 contours are drawn 
with thicker lines.
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Figure 5.13: Some optimal paths with positions of galaxies indicated by dots. Paths in 
figure (a) have low density weighting and most are almost radial. In figure (b), paths have 
high density weighting and are non-radial.

uniform streaming. Galaxy distances are subjected to distance errors, and the minimum 

length paths found using arcweights of the form in eqn. (5.30) to define the line integral in 

eqn. (5.17), and hence the velocity potential. Figures 5.13 and 5.14 shows the optimal paths 

for two different heuristic arcweight functions, and their corresponding rederived velocity 

fields.

For both fields it turns out that the optimal paths are almost radial. This is not very 

surprising since the smoothing uses such a wide window function that variations in galaxy 

number density have little effect on causing the optimal path to deviate from the radial. 

By insisting on arcweights that are heavily dependent on density, and for which k ~  1 one 

can achieve significantly non-radial paths. However, in these cases the recovered potential 

velocity field is noisy and bears little resemblance to the input field.

Nevertheless, the method does offer some hope. Because k is, in general, lower in high 

number density regions and close to the origin -  areas which are given higher weighting 

by the procedure anyway -  a value of k ~  4 will be reasonable and should produce some 

improvement in the low density areas without affecting the regions with an already adequate 

recovery. In this way, although there may be very little change, one can be confident that 

any changes are for the better.
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Figure 5.14: Potential velocities derived from optimal paths obtained for different density 
weightings (a) and ratios of transverse to radial errors (k ). The solid arrows are the velocities 
for a  =  0 and k = 9. Dashed arrows for a  = - 4  and k =  5. Galaxy number density is 
projected onto the plane.
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5.4  C om parison  o f D en sity  Field R ecoveries

So far, I have been considering only the recovery of velocity fields using P o t e n t . However, 

one of the main aims of the method is to produce a map of the density field (see sec. 4.1.4). 

It might be reasonable to assume that methods that produce good (unbiased) velocity 

fields will also lead to good density recoveries, but this is not necessarily the case and it is 

im portant to test the assumption and, if necessary, develop alternative procedures.

I wish to develop a test that examines the different methods without interference from 

the question of validity of the various assumptions inherent in the P o t e n t  procedure. In 

particular, I want to be sure that assumptions of a potential velocity field and no significant 

non-linear density evolution are always valid. I therefore start from a velocity potential 

and derive the velocity field to impose directly from this. The density field can then be 

calculated using the quasi-linear scheme of Nusser et al. (1991) that is adopted by P o t e n t  

and this can be compared directly to the results obtained by the various methods.

The final necessity is a selection of galaxies to appear in a mock catalogue. I am going to 

be performing Monte Carlo tests, and as before, I wish to use a set of observable galaxies 

as a basis with the distances scattered for each iteration of the Monte Carlo procedure. 

However, I now need to produce an underlying distribution of galaxies tha t is consistent 

with the density field of the “universe” . This is done as follows

1. The cumulative density field, pcxim, is calculated for a large volume centred on the 

origin and scaled such that the maximum cumulative density is 1 and the minimum 0.

2. ‘Galaxies’ are dropped uniformly and randomly through out the volume and each 

assigned a random value r  between 0 and 1. Only those with r( fi)  < pCum(^i) are 

retained, thus giving an underlying distribution of galaxies consistent with the density 

field.

3. Finally, the catalogue of galaxies is created by assigning an M  and P  to each galaxy 

and imposing selection.

In this way, the real positions of a catalogue of galaxies can be produced consistent with the 

underlying density field. Note that the catalogue will be considerably less clustered than 

an actual survey because of the non-linear evolution that has led to the galaxies in the real
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universe. Nevertheless, it should be sufficient to distinguish between the various methods 

given a suitable varied velocity potential.

5.4.1 The Test M odel

I choose a simple but quite demanding model field. The potential consists of two large 

gaussian fluctuations -  one at (—4000, 0, 0) km s-1 producing infall and a larger ‘void’ at 

(5000, —2000, 0) km s-1 . The velocity and density fields produced by this potential are 

shown in fig. 5.21 as three perpendicular slices through the origin (X  = 0, Y  =  0 and 

Z  = 0). As before, this figure shows not the underlying fields but the field smoothed on 

the same scale as the P o t e n t  recoveries (ie 1200 km s-1 ). However, the density field is not 

derived from the unsmoothed velocity field and then smoothed, but derived directly from 

the smoothed velocities. This is analogous to the P o t e n t  procedure since the smoothing 

there is also over velocities and, as shown in Rauzy et al. (1994b), it is im portant to compare 

with the correct version as they can be significantly different1.

5.4.2 Test R esults

The Monte Carlo procedure is that same as that used before and described in sec. 4.2 with 

the luminosity parameters and imposed velocity field, obviously, being those used to create 

the galaxy sample. Before looking at the density recoveries, I shall examine the velocity 

fields produced by a variety of methods to check that the conclusions of the earlier tests are 

still valid.

Figure 5.15 shows the bias of the recoveries in radial shells for ‘raw’ ITF distances and 

homogeneously and inhomogeneously Malmquist corrected distances. Each data-point is 

obtained by averaging the biases of all the grid points that fall into a particular spherical 

shell. The error bars, therefore, are not a measure of the random errors, but an indication 

of the variation of systematic errors within each shell.

Clearly, the HMC is inappropriate, particularly at large distances as expected. However,

there is very little to choose between the ‘raw’ and inhomogeneously corrected recoveries

1This problem will be particularly acute when comparing kinematically derived density maps to  those 
based on sm oothed number densities such as the P o t e n t 9 0  analysis of Dekel et al. (1993). However, in my 
simple case, consistency is all that is required.
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Figure 5.15: The biases in the velocity field recovery for ITF estimates with no correction, 
HMC and IMC. The biases are found from the Monte Carlo average and binned into radial 
shells. Note that the error bars do not indicate the size of the random errors of the recoveries, 
but one standard deviation of the biases within the shell.

-  only the reduced range of biases makes the corrected distances more appropriate and 

neither recovery would seem to be particularly good, at least from this simple analysis.

One possible correction that I have not considered so far is a Malmquist correction based 

on some independent determination of the number density of galaxies (for example from an 

IRAS survey). Of course, since the selection function of such a survey will be very different 

from the catalogue of distances estimates, and perhaps neither of them very well known, 

one would hope to be able to estimate the underlying smoothed galaxy density and apply 

it to DTF-like estimates (see sec. 2.2.3). Such a procedure has a number of advantages -  

the increased number of galaxies and much deeper surveying of redshift-only catalogues will 

reduce the noise on the radial distribution function, and non-radial inhomogeneities can be 

included -  but there are other problems since the density field is not trivial to determine 

and the population of objects may well be drawn from a significantly different distribution
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Figure 5.16: As fig. 5.15 but for Z -P o t en t  and Malmquist corrections based on the true 
underlying density.

(eg IRAS galaxies are, naturally, infra-red selected). I will test the method here by using the 

actual smoothed density field, thereby bypassing these problems and getting to the heart 

of the method.

The results for this are shown in fig. 5.16. For comparison, the density Malmquist corrections 

have been applied to DTF and (inappropriately) ITF estimates. Surprisingly, the results 

are not tha t good. Again, there is little to choose between appropriate and inappropriate 

corrections and the Z - P o t e n t  recovery also shown on the graph is in many ways preferable 

to both. (Although this is partly because the areas towards the centres of the void and 

‘a ttracto r’ regions are discarded from the recovery since dwTfdz  > 1 -  see the maps in 

sec. 5.4.4). This poor correction will be partly connected with the fact that I am using the 

mass density rather than the galaxy number density, but because of the absence of non­

linear evolution in the model and the fact that no cosmological biasing has been introduced, 

this is not enough to explain all of the problem. As significant is the fact that many of the 

assumptions behind the applicability of Malmquist corrections are being stretched. Errors
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Figure 5.17: As fig. 5.15 but for various stages of the iterative correction procedure.

in the distance estimates are not small, and the smoothing scale is significant even compared 

to the entire recovery volume.

Nevertheless, for a more clumped distribution of galaxies with significant non-radial in­

homogeneities, the density correction method is likely to be more applicable than a simple 

IMC, as long as the problems mentioned above are carefully addressed. However, as long 

as smoothing volumes remain large and errors are significantly above 10%, Malmquist cor­

rections in Potent of any type must be treated with considerable caution.

The final figure in this section shows the results of the Iterative Monte Carlo correction 

procedure (5.17). The results are shown at three stages. After iteration 0 (when quiet 

Hubble flow is imposed), no sampling gradient bias has been addressed, but a correction 

has been found for Malmquist-like biases. Even at this stage, the improvement over the 

previous methods is considerable. Iteration 1, the first with the actual redshifts used to 

define the velocity field shows a slight improvement again and it is at this stage that the 

convergence tolerance of 200 km s-1 was reached. However, for demonstration purposes,
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Figure 5.18: The biases in the density field recovery for ITF estimates with no correction, 
HMC and IMC as in fig. 5.18.

the process was continued for another iteration. There is very little distinction between the 

three stages implying that Malmquist-like effects account for the majority of the systematic 

errors. This is not surprising given the relatively homogeneous distribution of galaxies which 

will give little cause for sampling gradient bias, but even the little there is, is tackled in 

iteration 1. In iteration 2, one might expect the procedure to over-correct in some regions, 

but again because of the small sampling gradient biases, this is not a large effect.

5 .4 .3  T est  D e n s i ty  R ecoveries

The velocity recoveries, therefore, are consistent with the results already obtained with IMC 

applied to ITF a marginal improvement over the other simple corrections, but the iterative 

process providing by far the best results. Is the same true of the reconstructed density 

fields?

Figures 5.18, 5.19 and 5.20 show the biases for the density recoveries in the same form as
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Figure 5.19: As fig. 5.16 but for the density recovery.

the velocity biases. Again the inhomogeneously corrected ITF estimates give marginally 

the best recovery of the ‘simple’ corrections, although there is a large bias near the origin. 

The density model based Malmquist corrections are poor although they now show some 

improvement over the Z - P o t e n t  recovery -  again because of the large invalid areas in the 

resultant Z - P o t e n t  fields. Finally, the iteratively corrected recoveries are excellent with 

the biases kept small over the entire range and the majority of the correction again being 

done in the first iteration.

So, the assumption of a ‘good’ velocity field recovery giving a ‘good’ density field appears 

to be justified. However, before continuing on to look at the problems associated with real 

data  in the next chapter, it is interesting to look at some of the maps of the velocity and 

density fields recovered during these tests.

5 .4 .4  R eco v ered  V e lo c ity  and  D e n s i ty  M ap s

As well as the statistical properties of the fields, we want P o t e n t  to provide accurate
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Figure 5.20: As fig. 5.17 but for the density recovery.

maps of the local velocity and density structure. Three slices though such a map of the 

imposed model are shown in fig. 5.21. Recall that this is, in fact, the model with the 

velocities smoothed on the same scale as the P o t e n t  recoveries. The void and attractor 

regions can be clearly see and since the top slice is Z  = 0, it includes the centres of both 

features. The first two sets of recoveries (remember that these are Monte Carlo averages) 

in figures 5.22 and 5.23 show the equivalent slices for the ‘raw’ ITF estimates and the 

inhomogeneously corrected ones respectively. The universal radial outflow from the origin 

in the ITF recovery is clear producing the origin centred void in the X  =  0 density field and 

shifting and distorting the genuine features. The IMC corrected recovery is, however, better 

with the centres of the void and attractor well determined and only small spurious velocities 

in the X  = 0 slice. However, away from the features, there are still considerable flows and 

the density fluctuations of the void and attractor lack the tight, compact form of the model. 

This is characteristic of sampling gradient bias as well as uncorrected Malmquist-like biases. 

However, neither recovery is unrecognisable!
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Figure 5.21: The smoothed velocity and density fields on three perpendicular slices through 
the model for density reconstruction tests. The velocity field has been smoothed by a 
gaussian window of radius 1200 km s-1 and the density derived from this using the quasi- 
linear method of Nusser et al. (1991). Negative density contours are dashed, positive solid 
and the 6 = 0 contour thicker. Contour spacing is 6 = 0.2.
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Figure 5.22: The recovery of the model field in fig. 5.21 using uncorrected ITF distance
estimates.
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Figure 5.23: The recovery of the model field in fig. 5.21 using ITF distance estimates with
an IMC applied.
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Figure 5.24: The recovery of the model field in fig. 5.21 using ITF distance estimates with
a Malmquist correction based on the true density field.
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Figure 5.25: The recovery of the model field in fig. 5.21 using DTF distance estimates with
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By contrast, fig. 5.24 has considerable distortion. These are the maps for ITF estimates 

corrected according to the underlying density and the inapplicability of such a correction to 

ITF estimates is clear. The correction is better when applied to DTF estimates (fig. 5.25), 

but there are still major problems with the shape of the features and the radial distortion.

Figure 5.26 is for the Z - P o t e n t  recovery. This is not really ideal for direct comparison 

to the other recoveries as intricacies in the Monte Carlo method mean that the smoothing 

process is slightly different, leaving the rather noisy edged density field. However, the 

problems caused by such large features can easily be seen in the undefined areas towards 

the centres of the void and attractor. Also, these areas tend to lead to distortion in the 

remaining field stretching them out in one direction and shifting the centres. Obviously, 

such large features would not be likely to be found in reality, particularly so close to the 

origin, but the Z - P o t e n t  method shows some serious shortcomings and should only be 

used with care and any undefined areas of the recovery carefully considered.

Finally, figures 5.27 and 5.28 show the state of the Monte Carlo corrections after the zeroth 

(quiet Hubble flow imposed) and first iterations respectively. At the first stage, the maps 

are already very like the imposed field with very few residual biases and very tight features 

unlike the IMC recovery. However, the height of the density peak falls a little short and 

the void is not as deep as it should be. This is corrected by the next iteration which is 

strikingly like the original.

I hope I have now made it clear in this chapter that errors, and particularly systematic errors 

in PoTENT-like techniques, are a serious but not insurmountable problem. Obviously some 

technique like the iterative Monte Carlo corrections is extremely effective and when added 

to the slight improvement in random errors that the Max-flow procedures can bring should 

provide an extremely effective tool. However, the computational intensity of the method is 

a drawback, and for sirtipler analyses, a carefully applied Malmquist correction, perhaps in 

comparison with a Z - P o t e n t  recovery, can also yield useful results. The im portant point 

here is to understand exactly when the corrections are applicable and how they should be 

applied.

The final stage of this thesis, therefore, is to apply these techniques to genuine galaxy 

observations and so, hopefully, draw some conclusions about the distribution of m atter in
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Figure 5.26: The recovery of the model field in fig. 5.21 using the Z -P o t e n t  method applied 
to ITF distance estimates.
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Figure 5.27: The recovery of the model field after the zeroth iteration of the Monte Carlo
correction procedure..
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the local universe. Before this can be done, however, some thought needs to be given to the 

treatm ent and calibration of data.



Chapter 6

Application to Real D ata

The charm dissolves apace,

And as the morning steals upon the night,

Melting the darkness, so their rising senses 

Begin to chase the ignorant fumes that mantle 

Their clearer reason.

The Tempest V:i

In this chapter I will be applying the techniques described in the previous chapters to 

a selection of galaxy catalogues. The catalogues (provided by Mathewson et al. (1992), 

Burstein (1990) and Salucci (1994)) are calibrated using the procedures given in chapter 3 

and carefully analysed. At this stage, a number of galaxies are removed because of possible 

errors. Then, with this new combination of data, the PoTENT-like techniques are applied 

and the results compared, together with several further tests to check the sensitivity of the 

results to the data.

It is not the aim of this thesis to perform a detailed analysis of the results, (for example 

by comparison to an IRAS based density recovery such as in Dekel et al. (1993)) but to 

demonstrate the applicability of the actual methods. However, a very simple technique 

(Dekel and Rees, 1993) is employed in sect. 6.5 to at least get a good lower limit on Oo and 

demonstrate the possibilities that accurate recoveries can offer.

118
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6.1 C om parison  to  P o ten t9 0

However, first I would like to  perform one final test of my P o t e n t  implementation to check 

tha t it is comparable to tha t of Bertschinger and Dekel (1989) and Dekel et al. (1993). I 

have done this by applying directly the data used in the P o t e n t 90 analysis of Dekel et al. 

(1993). This consists of nearly 1000 galaxies forming about 500 objects. They use DTF 

distance estimates and attem pt to correct for Malmquist bias by applying an homogeneous 

Malmquist correction.

Of course, we have seen tha t such an approach is far from ideal, but by following their ap­

proach as closely as possible, I can ensure that the P o t e n t  method as I have implemented 

it is comparable to this orthodox one and be confident tha t any differences produced by ap­

plying more accurate methods are a result of those improvements and not of a fundamental 

difference in the underlying recovery implementation.

Figure 6.1 shows the results of this final test. The original P o t e n t 90 density field slices are 

given in fig. 6.2 for comparison In general the comparison is very good. The slice through the 

Super-galactic plane (Z =0) shows the long density ramp up towards the “Great A ttractor” 

region and the ‘N orth’ and ‘South’ density peaks of the Y slice are accurately reproduced. 

However, there is a significant discrepancy showing up as a large positive density contrast 

at around (0, —5000, 0). This structure is not present at all in the P o t e n t 90 maps and is 

perhaps a cause for some concern.

Of course, since it is right on the edge of the survey where the errors are large, and far 

stronger than any other density feature, it should not be taken seriously as a genuine 

feature of the universe. However, it is disconcerting that the same method applied to the 

same data-set can produce such a difference. Nevertheless, since the rest of the recovery is 

so similar, it is unlikely tha t there is a fundamental problem with the implementation of 

P o t e n t . W hat is more likely is tha t an error has crept into the data at some stage. To 

test this hypothesis, I simply repeat the P o t e n t  procedure several times but with one of 

the galaxies in the vicinity of the spurious feature randomly removed (the ‘vicinity’ can be 

safely described as within ~  2 window radii of the centre of the feature).

In fact this part of the survey -  although not among the very sparse regions as defined in 

the P o t e n t 90 comparison -  contains only a few galaxies and of these only the two closest
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Figure 6.1: The orthodox P o ten t  recovery using the P o t e n t 90 data-set. Three slices
through the velocity and density fields are shown for direct comparison to the ‘P ’ panels of
figures 2a-c in Dekel et al. (1993) (reproduced in fig. 6.2).
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Figure 6.2: The P o t e n t90 density recoveries for the three slices given in fig. 6.1. These 
are reproduced from the ‘P ’ panels of figures 2a-c in Dekel et al. (1993). (Note that the 
Y  = 0 panel is oriented differently and viewed from the opposite side than the equivalent 
slice in fig. 6.1)
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Figure 6.3: The Super-galactic plane slices for three P o t en t  recoveries with the P o t e n t 90 
data slightly modified. At the top, galaxy E409-G012 has been removed from the survey. In 
the middle, a cluster object (containing just 2 galaxies -  N80 and N83) has been removed 
and at the bottom, both objects are deleted from the sample.
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make any noticeable difference, as might be expected. The ‘culprit’ can be clearly seen in 

fig. 6.3. When E409-G012 is removed, there is a considerable improvement. The same is 

not true for the two member cluster (N80/N83) in spite of the extra weight given to it in 

P o t e n t  and the fact that its distance from the anomaly is comparable.

The danger of sparsely sample areas is very clear from this. The addition of just one galaxy 

can make a considerable difference and the errors will not always be as easy to spot as was 

the case here. It is, therefore, very important to ensure that the recovery in any such area is 

safe before using it in any analysis. This can be done using simple tests such as the selective 

removal of galaxies shown here and if the recoveries do not show any particular sensitivity 

to any one galaxy then analysis can continue with much more confidence1.

Apart from this reservation, the comparison is certainly successful. Given the discrepancies 

that are bound to occur between two implementations, particularly in the numerical details 

of the smoothing and interpolation procedures, it would be unreasonable to expect an exact 

match, but the size and position of features are very similar and it is be assumed that the 

methods are essentially the same.

6.2  T he G alaxy C ata logues

Since the Dekel et al. (1993) P o t en t  work, there has been a considerable improvement in 

both quantity and, to a certain extent, quality of galaxy observations suitable for distance 

estimation. In particular, the large catalogue produced by Mathewson et al. (1992) has 

provided significantly greater coverage over a large section of the sky. I will be using these 

new data in addition to a re-calibrated version of the Burstein (1990) data used in the 

P o t e n t 90 comparison above.

The Mathewson et al. (1992) data contains information on a total of 1354 spiral galaxies, 

including 20 clusters. Although a considerable quantity of data for each galaxy is available, 

I will only be using the redshift (corrected to the CMBR, rest frame) and the corrected I- 

band magnitudes together with the line width factor (corresponding to to maximum rotation

1Of course, it is entirely possible that it is the interaction between two or more galaxies that produces an 
error, but even in this case, the removal of one of them should indicate that there is a problem. However, 
exactly which galaxy would be more difficult to determine and there is no way of knowing if the unmodified 
result is, in fact, any worse! The only safe solution is to discard sensitive areas from any analysis completely.
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Figure 6.4: AitofF projections of the positions of galaxies in the various catalogues in galactic 
coordinates. For the Mathewson et al. (1992) data set, the filled circles denote clusters and 
the crosses, field galaxies, Note that coverage is roughly half the sky, not including the 
“Zone of Avoidance” of the galactic plane. The Burstein spiral galaxies are more evenly 
distributed. Again, filled circles are clusters. The crosses are the “good” field galaxies and 
the smaller, open circles, the “fair” galaxies. Finally, the Burstein ellipticals are divided 
into clusters (filled circles), clusters with only one observed member (open circles) and field 
galaxies (crosses).

velocity) to define a Tully-Fisher relation.

The Burstein (1990) data is the Burstein Mark II combined catalogue (see sect. 4.2 for a 

full fist of the sources). It contains a mixture of elliptical and spiral galaxies with a number 

of clusters. The ellipticals will have their distances estimated using a Dn-<r relation and 

the spirals all have H band magnitudes and fine widths given by half of the full HI profile 

velocity width -  again suitable for a TF relation. The exception to this is the de Vaucouleurs 

and Peters (1984) spiral galaxy catalogue. These are provided with blue-band TF distance 

moduli with an estimated error of 26%. This is somewhat larger than even the ellipticals 

with Dn-<7 estimates and I will not be using these data.
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As can be seen in fig. 6.4, the overall sky coverage of the three surveys is very good and 

there are a significant number of clusters which all help to pull down the errors in P o t e n t  

because of the added certainty in their distance estimates. However, the Mathewson galax­

ies, covering as they do only about half the sky, may give rise to some significant sampling 

gradient biases. Nevertheless, they offer a considerable improvement over the rather sparse 

Burstein data and should enable some interesting maps to be produced.

However, not all of this data are entirely suitable. I have already chosen not to include the 

de Vaucouleurs and Peters (1984) galaxies and the “fair” spirals in the Burstein catalogue are 

known to be potentially unreliable and cannot, therefore, be used for something as sensitive 

as P o t e n t . In addition, there are possible problems with the use of field ellipticals with 

a calibration based on cluster galaxies. Ellipticals appear to be quite sensitive to their 

environment and therefore, field and cluster galaxies may well form distinct populations. I 

will return to this problem during the calibration procedure.

Im proved M athew son Galaxies

The line-width (P) measure adopted for the Mathewson data set is given by the maximum 

rotation velocity observed for the galactic disk. However, Salucci (1994) have expressed 

some doubt about the applicability of this measure, in part because in many cases in the 

Mathewson catalogue the rotation curves are still rising at the edge of the available data, 

but also because the physics of the system would imply that other measures might provide 

better correlation.

The important point is that the rotation velocity at a given radius is related not to the 

magnitude directly but to the mass contained within that radius. If dark m atter is not sig­

nificant or is distributed in exactly the same way as the luminous m atter, this distinction is 

not important. However, Persic and Salucci (1988) show that there is considerable evidence 

for a distribution of dark m atter that is very different from the luminous m atter and forms 

a large ‘halo’ with the luminous bulge and disk embedded within it. It is this tha t gives 

rise to the fairly flat rotation curves of spirals.

In addition, Persic and Salucci go on to demonstrate that the dark to luminous mass 

ratio within the disk radius is correlated to the luminousity, thereby showing the physical
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significance of the Tully-Fisher relation. With this in mind, Persic and Salucci (1990) and 

Salucci (1994) suggest an alternative P  parameter. Instead of using the maximum Pmax? 

they measure it for a fixed fraction of the optical radius of the galaxy,

Recently, these measurements have been made for a large section of the Mathewson data  for 

a = {0.2, 0.4, 0.6, 0.8, 1, 1.2} giving six possible relations (although not all of the galaxies 

have values for all six radii). Ideally, one would wish to use the luminosity within the 

radius of the Frot determination, but without this information, there is still going to be an 

improvement from the use of a consistent P  parameter even with the overall magnitude, 

especially if all six of the relations can be used and the resultant distance estimates averaged.

In addition to this re-parameterisation of the line-width, small corrections have been made 

to a number of the reddening corrections for the apparent magnitudes to remove a slight 

dependence on inclination angle. Combined, these factors give an improved set of data  

for about 860 of the Mathewson galaxies (including several in every cluster) and, where 

possible, I will be using this data.

6.2.1 Calibration of the Catalogues

The calibration technique I have used is the one described in chapter 3 (see sect. 3.1.1) 

using a composite of several clusters to estimate the distribution parameters. In this sec­

tion, I will follow the process through for the Mathewson data and also consider the use 

of the derived parameters in the Monte Carlo correction procedure. As well as the indir­

ect (ITF) calibration, I will also outline the differences in the procedure for direct (DTF) 

estimates. Although I do not intend to use them for any final maps because of the flaws de­

scribed earlier, it might be interesting to mimic the P o t e n t 90 procedure with the enlarged 

catalogue and improved calibration procedure to see how much difference can be seen.

In spite of the reservations given above, it is unlikely tha t the calibration of the Mathewson 

data would be improved by the removal of all the galaxies with corrected data provided by 

Salucci (1994). The significantly reduced number of galaxies would dramatically increase 

the l / \ [ N  noise in both the calibration and the absolute distance determination. I have, 

therefore, decided to calibrate the entire data set but then replace all those galaxies which 

appear in the improved data. In this way, although there will be small systematic errors in
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the calibration, they should remain far smaller than the random errors and not significantly 

affect the final maps.

The first stage in the calibration procedure is to estimate <7m- This is needed for the absolute 

magnitude corrections when creating the composite cluster for DTF estimates and will also 

be useful during the Monte Carlo corrections. Because magnitude selection will always tend 

to decrease aM, it is calculated for all clusters with more than 5 observed galaxies and the 

largest value adopted. In fact, this occurs for cluster 1223-39, a pleasingly nearby one, 

which has aM ~  1.63.

Using this value and an apparent magnitude limit of 15, the direct, M  on P  regression can 

be calculated with each cluster corrected for magnitude selection. For both this and the P  

on M  calibration, I use all clusters with at least 10 observed members and fix the calibration 

to the Fornax cluster. This is an arbitrary decision since the absolute distance calibration 

will be done using the entire sample, however, it can do no harm to use a reasonably nearby 

and quite large cluster to fix everything to. The ITF calibration is performed similarly but 

with (P) and an uncorrected (m) matched in accordance with the results of chapter 3. 

Once this is done, the distance to each galaxy can be estimated relative to the distance to 

Fornax (ie r FORNAx = 1)- Then, the absolute distances can be set as in sect. 3.2. At this 

point, we have an im portant check on the status of the calibration. If the intercept of the 

absolute calibration regression line is significantly away from the origin, then there is clearly 

something wrong with the calibration. However, for both the DTF and ITF calibrations, 

the shift is negligible (less than 100 km s-1 ).

D istribution  Param eter C orrection

The distance estimates are now ready for use. Cluster distances can be derived by averaging 

the distances of all the individual galaxies with the formal error decreased accordingly and 

any Malmquist corrections etc applied. However, for the Monte Carlo correction procedure 

and any other Monte Carlos (for example, for estimating the errors in the maps), we need 

to know the full p(M , P) distribution parameters. We could, of course, just use those from 

the composite clusters but, although the slope and zero point of the calibration relations are 

‘unbiased’, the individual parameters (p , <rM, d> etc.) will be strongly effected by magnitude
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selection and will biased individually. We would like to be able to correct for this.

Unfortunately, because we have combined a number of clusters to get the calibrating cluster, 

the selection function appears in a highly complicated form. Even if we can assume a sharp 

apparent magnitude cut-off, this will affect each individual cluster differently and the final 

combination will be vary hard to model. This makes an analytic correction difficult if not 

unfeasible. However, it is probable that the Monte Carlos are not particularly sensitive 

to the distribution parameters. Therefore, we can try some very simple corrections and 

see how much they affect the recoveries when compared to results using uncorrected para­

meters. If they turn out to be different, then there is no choice but to develop a decent 

correction procedure, but if there is no apparent sensitivity then there is no need to do this 

and the crude corrections, or indeed no corrections at all, can be used. In particular, if 

any differences are much less than the random errors in the P o t e n t  recoveries, then any 

additional correction would be wasted effort.

Recall that we already have a ‘corrected’ aM which was found by simply taking the maximum 

from the individual clusters. We can also obtain an improved in the same way2 . We 

can also assume tha t p is not too biased since it does not vary much from cluster to cluster 

(at least in comparison to aM and d>). All that remains, therefore, are Mo (from rho) and

Po.

We can see that

E(m\uj = u>o) = m 0 +  b (6.1)

where mo is the actual mean apparent magnitude for galaxies at log distance uq and b is 

some bias brought about by magnitude selection. This bias will always be negative since 

the selection will tend to remove high magnitude galaxies. Therefore, a very simple first 

approximation might be to take a ‘corrected’ estimate mo given by

ih0 = mo + ~ &CM) (6.2)

where the c denotes the uncorrected value from the composite cluster calibration. Similarly 

for Po- Of course, these modifications are very crude and should certainly not be used if 

any sensitivity is shown. However, they do have the advantage of extreme simplicity and if 

in the test which will be seen in sect. 6.3.3, no sensitivity is seen, then they can be accepted.

2In fact, for each catalogue, the appropriate frM and <rP were found using same cluster -  a heartening 
result
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C alibration o f  th e Im proved M athew son D ata

The calibration of all the Burstein data proceeds much as for the Mathewson catalogue. 

However, for the improved Mathewson data, we now have up to six V,.0t param eters for 

each galaxy. Therefore, the calibration process if performed six times with all galaxies that 

have the appropriate V̂.0t value included in each. Note tha t since each calibration will have 

a different absolute scaling, the calibration galaxy will have a number of different distances. 

This may seem counter-productive, but it is in fact exactly what is wanted. There is nothing 

special about the calibrating cluster -  its choice is arbitrary. Therefore, it is unreasonable to 

impose a fixed distance on this one cluster (effectively assuming that its distance estimates 

have zero error). By calibrating each relation separately, this ‘special treatm ent’ is avoided.

All of the individual estimates for each galaxy can then be averaged, weighted by the error 

estimates for each relationship. However, unlike the clusters, we cannot reduce the formal 

error by y / f f  since all the relations will be correlated. Although it is in theory possible to 

estimate the correlation from the data, this is far from pleasant. I have therefore taken the 

“worst-case” situation of using the best of the individual error estimates for each galaxy. 

Although this is not perfect it should be adequate for weighting in P o t e n t  and is unlikely 

to effect the accuracy of the Monte Carlo determinations sufficiently to make to additional 

work worthwhile.

6 .2 .2  F orm a tio n  o f  th e  F in a l C a ta lo g u e

All that now remains is to combine all the separate calibrated samples into one catalogue. 

The first thing to check, therefore, is whether there is any overlap between the samples. 

Each galaxy must only be included once or the distance errors will give rise to a “Finger of 

God” effect, thereby distorting the derived velocity field. I check this by assuming tha t the 

angular position and redshift of each galaxy is well determined and looking closely at any 

galaxies that are within a degree or two of each other and not separated by more than a few 

hundred km s-1 in redshift space. However, even with these large bins, no overlap between 

the Mathewson and Burstein spirals is found (clearly, there will be no overlap between the 

spirals and the ellipticals). If a number of matching galaxies had been found, it would have 

been possible to use them as a test for systematic differences between the estimates from
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each catalogue, but without them, there is very little that can be done simply. The best 

solution, therefore, will have to be to trust the calibration procedure and simply stick all 

the surveys together.

However, there is a problem with the ellipticals. When performing the absolute calibration, 

the intercept deviates significantly from the origin. However, when the field ellipticals are 

removed the deviation is not so severe, although it is still greater than for either of the 

spiral calibrations. This later point is unsurprising because of the large errors in Dn-<r 

estimates and the relatively small sample, but the distortion produced by the field galaxies 

is more significant. As has already been mentioned, there are good reasons to suppose that 

field ellipticals are physically different from their field counterparts because of the differing 

environments. This effect, therefore, may well be due to the inapplicability of a calibration 

based on cluster galaxies to the field. Whatever the cause, the only safe course of action is 

to discard the field ellipticals from the final catalogue.

We are, therefore, left with the following: 1147 objects in the Mathewson sample, of which 

20 are clusters. All of the clusters have ‘improved’ distances as do 717 of the field galaxies. 

In addition, there are 241 Burstein spiral objects (17 clusters) and 133 ellipticals (all of 

them clusters of course, but only 77 of them with more than 1 observed member. In future, 

I will refer to the single galaxies as field ellipticals for convenience as this is their effective 

role in P o t e n t ) . The combined distribution of all of these objects is shown in fig. 6 .5 .

6.3  T h e M aps

In this section, we finally get around to some actual maps of the local Universe. All the 

recoveries shown here are for the same basic P o t e n t  configuration. The spherical grid used 

has 25 radial shells out to 10000 km s-1 , 35 latitudinal rings and 70 sin# longitudinal rings 

where 9 is the latitude. The potential is calculated on this grid and linearly interpolated 

onto a cubic grid with grid points spaced at 500 km s-1 intervals and the velocity and density 

calculated using this mesh. Note that the Max-flow methods perform the entire calculation 

on the cubic grid. The window chosen, as before, is the ‘Volume Weighted’ window and the 

smoothing radius is 1200 km s-1 .

Because of the nature of this section, there are a considerable number of figures. However,
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Figure 6.5: An Aitoff projection of the positions of galaxies in the final catalogue, again 
using galactic coordinates. As in fig. 6.4, the filled circles denote clusters and the crosses, 
field galaxies.

all are positioned so that they appear as close as possible to their first reference in the text 

and they will always appear after tha t reference. Also, the form of each set of maps is 

the same except where specifically noted, so that comparison can be easily made. This is 

im portant since, unlike the previous maps in this thesis, I obviously do not now have the 

actual fields to compare to, so the analysis must be an “eyeball” one. Nevertheless, as shall 

be seen, even in this rather crude way, the different effects of the various methods can be 

clearly seen and by comparison to the tests already given, ‘good’ and ‘bad’ features can be 

recognised.

For reference, fig. 6.6 shows the estimated errors on the slices through the recovery tha t I 

will be using for the forthcoming results. Note the irregular spacing of the contours and 

the large areas of the field that are reasonably well recovered. Although these estimates 

are only for the recovery using uncorrected ITF estimates, they will be used as the mask 

for all the other schemes since this will make cross-comparison easier, but in general the
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Figure 6.6: Estimates of the errors in the density recoveries of Potent using the data set 
described in sect. 6.2. The errors are estimated during a Potent Monte Carlo realisation 
of the new data set using uncorrected ITF distance estimates. Three slices are shown, all 
passing through the origin with Z  = 0 the Super-galactic plane. Contours join equal values 
of as with dashed contours spaced at as =  0.1 intervals up to 1, solid contours at as = 1 
up to 10 and thick contours at as = 10 intervals on from there.

errors will be different for each technique and should be estimated for each recovery before 

performing any analysis. In general, though, all the maps in this section will be cut off at 

the as = 0.6 contour and also truncated to 8000 km s-1 . The la tter limit is to avoid any 

possible edge effects and the former to remove any areas that are too noisy to be of any 

interest. However, this limit is somewhat on the generous side for any actual analysis (eg 

sect. 6.5) and many other factors should be taken into account before defining an analysis 

volume (see Dekel et al. (1993) for a good example of masking off the unreliable parts of 

a recovery). The limit is chosen here to  give us plenty of information to use for “eyeball” 

comparison, but it must be remembered that many areas, particularly near the edge of the 

field have significantly larger errors.

6 .3 .1  C o m p a r iso n  to  P o te n t9 0  u sin g  th e  N e w  C a lib ra tio n

Figure 6.7 has the results for the only use in this section of DTF estimates. In spite of the 

reservations expressed earlier about the problems with calibrating DTF-like estimators, the 

uncertainties introduced will not affect the basic features of the recovery and it is interesting 

to  see compare the result of the expanded data set and different calibration technique has
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Figure 6.7: Velocity and density maps for three slices through the origin of the basic P o t e n t  

recovery using DTF estimates with an homogeneous Malmquist correction applied. In this 
and all the following maps, the Z  =  0 slice is the Super-galactic plane and the maps have 
been truncated to 8000 km s-1 . In addition, all regions with as > 0.6 have been removed 
(see fig. 6.6). Density contours are at 0.1 intervals with negative contours dashed, positive 
contours solid and the zero contour thicker.
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to  the POTENT90 recovery in fig. 6.1.

Obviously, there are significant differences. Most of the features appear to have ‘deepened’ 

and there are some new features. Also, the velocity recovery for the Y  = 0 slice has very 

large velocities coming in from the edge of the recovery giving rise to  prominent voids and 

attractors. These effects do not appear in any other recovery, and have all the hallmarks of 

a large bias, probably due to the inapplicability of the correction to such an inhomogeneous 

catalogue. In fact, there are other areas where the velocities seem to show a strong bias, 

for example the radial infall at the edge of each of the slices (especially the X  = 0 map). 

However, generally, the results are certainly comparable -  I am clearly not doing anything 

fundamentally different here.

6 .3 .2  P o te n t  R eco v er ies  u sin g  an IT F  E stim a to r

We have seen, however, that in general the best recoveries from a simple Malmquist correc­

tion are found when an inhomogeneous corrections is made to galaxies with ITF-like distance 

estimates. This result is shown in figure 6.8. The first thing tha t springs out of these maps 

are the m ajor differences from the previous results. Although some of the features are still 

recognisable (for example, the ‘Great A ttractor’ (hereafter GA) at about ( —4000, 1000) on 

the Super-galactic slice) there are as many tha t are totally new. In addition, there seems 

to have been a downward shift of the overall density.

Although dramatic, these changes are not entirely unexpected. In particular, the density 

shift is easily explained. It was seen above tha t the poor correction given by the HMC led 

to an apparent infall towards the origin at the edge of the recoveries. When interpreted 

as genuine peculiar velocities, this will give the impression of a large density concentration 

in the vicinity of the origin. However, this will have been at worst reduced and possibly 

removed by the inhomogeneous correction. This effect can be seen directly in the velocity 

fields. The apparent infall at the back-side of the GA has gone as have the apparently 

erroneous velocities on the Y  slice.

Interestingly, the uncorrected estimates are not radically different and certainly not as far 

removed as the DTF with HMC (see fig. 6.9). In fact, the differences are actually quite 

subtle in comparison to the expected errors. This might seem rather surprising given the
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Figure 6.8: As fig. 6.7 but for ITF estimators with an IMC applied.
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other results in this thesis. However, in this data set, there are a considerable number of 

clusters. W ith the weighting in P o t e n t , these are given considerable influence but because 

the estimates of their errors are reduced by y/~N, their Malmquist corrections are small. 

Therefore, standard Malmquist corrections which treat only radial effects will not alter the 

result significantly.

Sam ple Size Sensitiv ity

The sensitivity of the maps to sample size is shown in figure 6.10. Here, about one in 

six objects (galaxies or clusters) are removed randomly from the catalogue and P o t e n t  

applied to the remaining galaxies. Note that this is similar to the “Jack-knife” techniques 

to test for robustness. Uncorrected ITF estimates are used so tha t we are definitely testing 

the sensitivity of P o t e n t  and not the Malmquist corrections, so these results should be 

compared to fig. 6.9. The differences are not large and seem to stay well within the estimated 

errors, so there is no obvious sensitivity even with this large fraction of the galaxies removed.

Nevertheless, non-radial inhomogeneities and sampling gradient biases have not been ad­

dressed at all yet. For tha t we need the Iterative Monte Carlo correction scheme.

6 .3 .3  P o te n t  R e su lts  w ith  I te r a t iv e  M o n te  C arlo  C o rrec tio n s

The method was performed on the ITF estimated distances with the ‘corrected’ distribution 

parameters described in sect. 6.2.1. The convergence limit was set to 150 km s-1 to prevent 

‘over-shooting’ but the recovery was continued for an extra iteration for comparison. To 

reduce the computational overhead and disk usage, the P o t e n t  recoveries were performed 

on a coarser grid than was used for the previous results and the final bias estimates inter­

polated onto the fine mesh before being removed from the recovery in fig. 6.9. Also, since 

the “improved” Mathewson data of Salucci (1994) has up to six different estimates for each 

galaxy, the Monte Carlo procedure needs to be slightly modified. It would, of course, be 

possible to calculate all the V^ot values for each galaxy and average the estimates as in the 

raw data, but it is im portant to remember tha t the loo t’s for a particular galaxy are correl­

ated in some non-trivial way. Evaluation of the correlation would be time-consuming and, 

since all we need here is a reasonable distance estimate, largely unnecessary. The approach
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Figure 6.10: As fig. 6.9 but with about one in six objects randomly removed from the 
catalogue.
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I have adopted instead is to use the estimated variance of each galaxy distance estimate in 

conjunction with the other known distribution parameters (ie p and &m ) to calculate an 

effective t ip .  This is then used to scatter the galaxy as normal. In clusters, however, since 

the galaxies are not related except by position, a separate estimate can be found for each 

galaxy and the results averaged as in the original data.

In fact, with this tolerance, convergence was reached after iteration 1. (Remember tha t the 

zeroth iteration has quiet Hubble flow imposed. Iteration 1 is the first with the field from 

the actual data used). The final result is shown in figure 6.11. Again, there are no major 

differences from the IMC recovery, but the changes tha t there are are significant. As with 

the tests (sect. 5.4.4), the density features have been tightened and enhanced, counteracting 

the effect of sampling gradient biases. Also, some residual Malmquist bias infall appears to 

have been removed, though only in selected regions -  behind the GA, for example, there is 

now no evidence at all of any back-infall, although the errors in this region are large and 

no conclusions can be sensibly drawn from this. Nevertheless, in spite of the good coverage 

of clusters, there is evidence here of uncorrected Malmquist biases and significant sampling 

gradient biases in the IMC recovery. Having said tha t, if only the general features of the 

maps are required, and not details of the size of fluctuations, inhomogeneously corrected 

ITF estimates would seem to be adequate.

In figure 6.12, the progress of the Monte Carlo correction procedure is shown iteration 

by iteration. Maps for the Super-galactic plane (Z  = 0) slice are shown for the zeroth 

iteration (quiet Hubble flow imposed), first (convergence tolerance of 150 km s-1 reached) 

and second (convergence tolerance drops below 100 km s-1 ). As with the tests, most of 

the correction is done during the first iteration since most of the bias in the recovery is 

Malmquist-like. However, the differences between the 0 ^  and l s  ̂ iterations show the 

non-negligible sampling gradient biases that have softened the density features in the other 

recoveries. By iteration 2, the convergence tolerance has dropped to the level where residual 

noise in the Monte Carlo recoveries might become significant. We might expect some over­

correction since there method will be attempting to fit to the noise, but there is no strong 

sign of this. Again, this can be partly put down to the influence of clusters in P o t e n t  which 

will tend to stablise the results because of their relatively small errors and high weighting 

(see eqn. (4.14)).
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Figure 6.11: As fig. 6.7 but for the result of the iterative Monte Carlo correction method 
(convergence reached after iteration 1).
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Figure 6.12: The three sets of maps here are similar to fig. 6.7, but show the Super-galactic 
slice for the three iterations of the Monte Carlo correction procedure. The Zeroth iteration 
at the top, the first (when the convergence tolerance was reached) in the middle and the 
second at the bottom. The recoveries are very similar since most of the bias correction is 
done during the zeroth iteration.
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Figure 6.13: As fig. 6.11, but with the distribution parameters taken directly from the 
calibration used to scatter the galaxies during the Monte Carlos rather than the partially 
corrected ones described in sect. 6.2.1.
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Finally for this section, in figure 6.13 I show the results of a different set of iterative cor­

rections, this time using the uncorrected, “crude” distribution parameters rather than the 

partially corrected ones devised in sect. 6.2.1. If the method were sensitive to the parameter 

estimates, this result would be significantly different from the previous maps (fig. 6.11), but 

there are no obvious changes. Therefore, it is reasonable to conclude th a t we do not need 

to worry unduly about the quality of the parameter estimates and tha t the rather ad hoc 

corrections used in sect. 6.2.1 are more than adequate. Of course, this sort of test should 

be performed for each new catalogue just in case.

The iteratively corrected maps of fig. 6.11 are, therefore, the most reliable and it is these 

that I will be using in the analysis of sect. 6.5. However, a number of other methods have 

been described in this thesis and these have also been performed upon the real data.

6.4  R esu lts  using Z -P oten t, M ax-flow  and O thers

The first of these other methods to be applied is Z - P o t e n t  -  a P o t e n t  analysis in redshift 

space (see section 5.1). The aim behind this method is to minimise Malmquist-like errors by 

performing the smoothing process in redshift space where distance errors are negligible. The 

initial tests showed that the method was certainly applicable but because of the difficulties 

of moving from redshift to real space where there are large velocity gradients, the recoveries 

had a tendency to produce rather noisy density fields.

Both these trends are shown in the results in fig. 6.14. Although there is evidence of good 

Malmquist correction (the velocity fields resemble the Monte Carlo corrected fields), the 

noise is far greater, particularly in the density recoveries. Therefore, although perhaps 

of some interest in the future with larger galaxy samples, or with a modified smoothing 

procedure, Z - P o t e n t  is currently of little practical use.

M ax-flow M ethods

The same appears to be true of the Max-flow results where, as described in section 5.3, non- 

radial integrals are performed in an attem pt to avoid areas particularly sparse in galaxies. 

Figure 6.15 shows the Super-galactic plane slice for three different Max-flow runs distin­

guished by different weighting schemes. In graph (a), the paths are only midly non-radial
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Figure 6.14: A s  fig. 6.7, b u t  for Z - P o t e n t .
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Figure 6.15: As fig. 6.12, but for several Max-flow analyses with different path weightings. 
See the text for the details of the weighting schemes. Note that uncorrected ITF distance 
estimates have been used for all the recoveries.
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since the density weighting is low (a  = —1) and the transverse errors assumed to  be much 

larger than the radial ones (k = 9). For (b) and (c), the paths are allowed to become 

progressively more non-radial. However, even for the virtually radial paths, the result is 

noiser than the orthodox P o t e n t  recovery (fig. 6.9) and the result gets worse for less radial 

paths. This is a particularly disappointing result since the method was designed to decrease 

noise, but is, again, consistent with the results of the tests already performed. Much of the 

problem is due to the rather ad hoc weighting scheme used and the need to adhere to  a 

cubic grid when creating the paths. Several alternative courses of action will be discussed 

in sect 7.1, but for now we must take comfort from the fact tha t at least no new biases 

appear to be introduced!

M ultip le D istance Estim ators

Finally, I have obtained one last set of results using a simple technique not described as 

yet. It is im portant to remember that there is nothing particularly fundamental about 

any given distance estimation technique. All that a distance estimate is, effectively, is a 

number associated with a galaxy which one hopes provides useful information about the 

distance -  the im portant point is to understand the statistical properties of the estimator 

and use it appropriately. Also, recall that distance estimates are used twice in P o t e n t : 

once to position the galaxies for smoothing and once to estimate the radial peculiar velocity 

of each galaxy. So far we have always used the same distance estimator to do both, but 

there is no reason why this has to be the case. In fact, the properties required by the two 

processes are very different. When positioning the galaxies we wish to minimise Malmquist- 

like biases, hence the use of Malmquist corrections, but when estimating v>, we really want 

the unbiased properties of the uncorrected ITF estimates. Obviously, when smoothed on 

scales such as that found in P o t e n t , the differences are not likely to be large which is why 

I have not considered this until now, but predominantly as a reminder of the im portance of 

understanding estimator properties, I have run P o t e n t  using inhomogeneously corrected 

ITF estimates to position galaxies and uncorrected estimates to find v r. The results are 

shown in figure 6.16. As expected, there are no large differences from the IMC recovery of 

fig. 6.8. However, the small differences are all positive. Density enhancements have been 

increased slightly in line with the iterative correction results and the velocities have also
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Figure 6.16: As fig. 6.8, but with inhomogeneously corrected ITF estimates used to position 
galaxies and uncorrected estimates used to find v>.
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increased slightly in appropriate areas. Nevertheless the changes are, in all cases, less than 

the estimated errors and are not significant. Therefore, there is clearly nothing to worry 

about when applying corrected estimates to estimate v r, but it must be remembered tha t 

this approach is in some sense inappropriate.

R em oval o f  R esidual H ubble Flow

One thing tha t is striking about most of the density maps in this chapter is that the 

average density contrast 6 appears to be negative, which is unlikely to be the case in the 

real universe. One possible cause of this is some residual Hubble Flow remaining in the 

field. Such a linear radial flow out from the origin in the velocity field would give rise to 

a zero-point shift downwards in the density maps. One might, therefore, decide to enforce 

an average 6 of 0 by an appropriate rescaling of the densities. Some examples of this are 

shown in fig. 6.17. Here, the density recoveries of figures 6.9, 6.8 and 6.11 have been scaled 

such that the average S (6) within the regions of the recovery where a§ < 0.4 is zero. (Note 

tha t these maps have all areas with o$ > 0.4 removed and are, hence, slightly different from 

the previous Z  — 0 slices). The velocity maps have then had an appropriate linear outflow 

removed.

This form of correction immediately makes the maps more convincing. However, it is dan­

gerous to apply such methods without very careful thought. There was no evidence in the 

tests of chapter 5 of a residual bias of this type which would imply tha t the problem comes 

from the calibration. However, the zero-point shifts required to obtain these results are 

noticeably different for each map and, indeed, for the Homogeneously Malmquist correc­

ted DTF estimates (fig. 6.7) the correction would have to be negative -  equivalent to the 

removal of a residual infall. Perhaps the difference between DTF and ITF based results 

is still understandable in terms of the differing calibrations, but the contrast between, for 

example, Malmquist corrected ITF estimates (with a shift of 6 = 0.26) and the iteratively 

corrected results (0.46) cannot be explained in this way since the same estimates have been 

used. Therefore, other biases are probably responsible for much of the effect and there is no 

reason to suppose that these would have the linear, radial form of Hubble flow. In addition, 

there will always be the question of whether the volume averaged over is sufficiently large for 

the assumption that <5 = 0. Therefore, for the remainder of the thesis I will not employ any
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Figure 6.17: The Supergalactic (Z  =  0) density slices are reproduced here for three of the 
previous sets of maps. However, here the zero-point level of the density contrast 6 has been 
set so tha t the average density contrast within a particular volume is zero. Such a zero-point 
shift is equivalent to a linear radial velocity flow from or towards the origin, ie. residual 
Hubble flow and the equivalent flow has been removed from the velocity maps. The volume 
chosen was all areas where < 0.4 and the plotted areas reflect this selection (with an 
additional cut off at a radius of 8000 km s-1 ).
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co rrectio n s o f  th is  so r t. H ow ever, th ere  is a  clear in d ica tio n  th a t  th e  a b so lu te  ca lib r a tio n  o f  

th e  d ista n c e  e s tim a te s  u sed  here m a y  n o t b e en tire ly  a p p ro p r ia te  for P oT E N T -lik e m e th o d s  

an d  th is  m u st b e  ta ck led  in  th e  n ear fu tu re .

6.4.1 Comparison to R ecent R esults

Figure 6.18 has a comparison between the Monte Carlo corrected density field on the Super- 

galactic slice and the results from the P o t e n t  collaborations’ preliminary results using the 

Burstein Mark III data (Dekel, 1994). The basic agreement between the two is very good 

with all the features recognisable. However, there are some significant differences in the 

form of those features. The Great A ttractor is much more pronounced in the Dekel (1994) 

map and the Perseus-Pisces and Great Wall features are much more extended. By contrast, 

the Southern Wall is much less noticeable and the void next to it has been partly lost 

in my recovery. Unfortunately, interpretation of these differences is difficult. Although 

the bias minimisation techniques adopted here are probably more effective, particularly 

when dealing with sampling gradient biases, the Mark III catalogue is considerably larger, 

particularly in the GA and PP directions. It is, therefore, difficult to isolate what has been 

caused by inappropriate or ineffective bias correction, and what is simply a mark of different 

catalogues. Taking the example of the GA, we have seen the the iterative bias corrections 

have tended to reduce the size of the backside infall to the GA and hence the prominence 

of the associated density feature. However, the data coverage is poor in this region in my 

catalogue, and it is dangerous to draw conclusions that far out in the recovery. 

Nevertheless, the dramatic difference in importance of the GA is perplexing and it will be 

interesting to see how the calibration and bias-minimisation techniques used here fare when 

applied to the Mark III data when it becomes available (see sect. 7.1). This is particularly 

im portant since the selection effects in the Mark III data set are very complicated. Several 

of the surveys included in it have very small sky coverage but good sampling (eg Willick 

(1994)) and this will produce Malmquist biases that have a strong non-radial dependence 

as well as considerable sampling gradient bias.
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Figure 6.18: Density contrast maps for the Super-galactic slice. The upper figure is taken 
from Dekel (1994) and is the preliminary result from applying P o t e n t  to the Burstein 
Mark III data  set. The lower figure is the iterative Monte Carlo corrected result from the 
previous section. Several features are labelled. ‘LG’ is the Local Group, ‘GA’ the Great 
A ttractor, ‘P P ’ is the Perseus-Pisces super cluster and ‘GW ’ and ‘SW’ and the Great and 
Southern Wall features respectively. Shapley and a large local void are also indicated.
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6.5  E stim a tin g  Qq

Interesting though these maps are in their own right, one of the prime motivations behind 

their derivation is to enable us to  make reliable estimates of cosmological param eters and 

in particular the density factor Do- Many techniques have been developed to  do this, many 

of them involving a comparison between a PoTENT-like recovery tha t is independent of 

cosmological biasing and an IRAS-based recovery such as those outlined in sect. 2.1 .2 .

In fact, most of these recoveries do not estimate Do directly, but the value (3 =  f{D )Jb  

where b is the cosmological biasing parameter and linear biasing is assumed (see sect. 2.1). 

In the linear regime, mass density and galaxy number density are directly related. If we 

define 6C as the P o t e n t  density contrast calculated assuming Qo = 1 then 6 oc f ~ 1(D)Sc. 

Also, the linear biasing relation gives 6 = b^Sg  where 6g is the galaxy density contrast. 

Therefore, clearly,

Sc =  (3Sg (6 .3)

in the linear regime. Therefore, by taking the smoothed galaxy density from a large redshift 

survey (suitably corrected for peculiar motions and any selection effects) to get Sg, j3 can be 

estimated by comparison to the P o t e n t  density field. Of course, the details of the method 

are considerably complicated by the uncertainties in the P o t e n t  density and so on, but 

a number of groups have performed this sort of comparison. Dekel et al. (1993)  use the 

P o t e n t 9 0  results and the 1.9 Jy IRAS survey to get (3j =  1.3lo!e5 (Note the ‘J ’ subscript. 

This is because the biasing parameter b may well vary depending on the population of 

objects considered therefore the value of (3 given here is for infra-red selected galaxies). 

Other analyses include Kaiser et al. (1991) who obtain (3j = 0.9to!is and Roth (1993)  -  

/3i =  0.6 ±  0.2. Work is also underway to obtain (3o for optical galaxies (eg Hudson, 1993).

An alternative approach which does not require a redshift survey and does estimate Do not 

(3, involves an analysis of the probability distribution function (PDF) of the density field. 

If one assumes that the initial fluctuations that led to the present day structures formed 

a gaussian random field, then the one-point PDF of the smoothed S field becomes skewed 

early in the quasi-linear regime but the skewness has only a very weak dependence on D 

(Dekel (1994) ,  Bouchet and Juszkiewicz (1993) ,  Juszkiewicz et al. (1993)) .  However, the 

skewness V -v has a strong f(D )  dependence but is otherwise similar in form to the skewness
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of S. A measurement of these skewness’ can, therefore, lead to an estimate of Do, although 

the procedure is quite complex (Bernardeau, 1993).

Such analyses are beyond the scope of the work in this thesis, but it would be a shame to 

leave without at least getting some kind of limit on Do- Fortunately, Dekel and Rees (1993) 

have devised a simple method to do just that.

6 .5 .1  L im its  on  D0 from  U n d er -d e n s it ie s

The technique is based around the quasi-linear density reconstruction method used in P O ­

TEN T and described in sect. 4.1.4 (Nusser et al., 1991). The recovery takes the form

-  1 (6.4)

where I  is the identity matrix, /  =  /(D ) «  D0,6 and | | . . .  || denotes the Jacobian determin­

ant. Note tha t this has a dependence on D. So far I have followed the approach of Dekel

et al. (1993) and defined a “P o t e n t  density” which effectively assumes Do = 1, but this is, 

of course, ad hoc and purely for convenience. Because (6.4) is only an approximation to the 

full non-linear evolution and, indeed, is only really valid up to 6 of a few, the recovery must 

be treated with care, but Dekel and Rees (1993) have shown tha t under most circumstances, 

6C > 8 in regions where the density contrast is negative, though only by a small amount.

Another im portant result of the 6C approximation is that it is entirely feasible to get Sc < —1. 

However, recall that

S(x) =  -  1 (6.5)
P

where p is the average density. Therefore, <$(£) < — 1 implies p{x) < 0 -  negative mass. 

Such a situation is clearly unphysical and, where errors in the recovery cannot account for 

it, the adopted value of Do is clearly wrong.

So how does Sc vary with Do? For a given velocity field, decreasing Do will tend to enhance 

density peaks and deepen voids since a larger density contrast is needed to produce the 

observed motions purely by gravitational instability. Therefore, unphysical densities imply 

a higher value of Do-

Therefore, the process adopted by Dekel and Rees (1993) and reproduced here is to  take the 

velocity field reconstructed by P o t e n t  and reduce Do in the density reconstruction until

6c{x) =
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the negative densities become significant above the errors. This then gives a lower limit on

d .

Of course, there are many limitations to the technique. Because the analysis is limited to 

regions with negative <5C, and in practice to a few selected voids, much of the information 

in the recovery is going unused. Also, only lower limits can be obtained, and the possibility 

of errors means that those limits must be treated conservatively. Nevertheless, aside from 

simplicity, the technique has some very useful properties. Based as it is purely on a Potent 

recovery, and not involving an IRAS-like reconstruction for comparison, many assumptions 

can be avoided (for example, the non-local form of the cosmological biasing param eter 6). 

Also, no assumptions need to be made concerning the form of the initial fluctuations that 

led to structure that we see today (see chapter 1) relying entirely on the very reasonable 

assumption of formation by gravitational instability. Interestingly, the result is also reason­

ably independent of A, the cosmological constant (Dekel and Rees, 1993). Although /(D ) 

does, in fact, have some small A dependence, the D0,6 approximation is generally a good 

one (Peebles, 1980 and 1993).

The most im portant part of the process is in the careful choice of the low density region to 

study. For obvious reasons, Dekel and Rees chose a void region about 3000 k m s-1 from the 

origin. However, we only have estimates of the random errors from Monte Carlo simulations 

and the systematic errors can still be quite large in void regions where, naturally there are 

fewer galaxies. I have decided to use the region immediately about the origin of the iterative 

Monte Carlo recovery. As well as being very well sampled, the errors in this region are very 

low and it is likely that the biases are also very small, particularly with the new corrections. 

This will then increase confidence in the limits produced.

Figure 6.19 show the results for Do = {0.3, 0.35, 0.4, 0.5). In addition, the a$ =  0.1, 0.2 

and 0.3 contours are shown. Note that these contours are for the Do = 1 Monte Carlo 

recovery. One would expect the errors to be slightly larger for Do < 1, but they will take 

the same form and the im portant point is that the errors are very small near the origin.

The results are very interesting. Although at Do = 0.5 there are negative density regions, 

none are significant above the noise but for Do = 0.35 and certainly Do =  0.3, the result 

around the origin is certainly significant. In fact, even conservatively, Do = 0.3 can be ruled
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Figure 6.19: A particular slice through the local density maps is shown for four assumed 
values of Do. As before, contours are spaced at 6 = 0.1 intervals with negative contours 
dashed and the zero contour thickened. However, for 6 < — 1, the contours again become 
solid and have ‘ticks’ pointing the in “downhill” direction (ie increasingly negative density). 
The maps are truncated at a$ = 0.4 and the ‘dot and dash’ contours show a$ = 0.1, 0.2 
and 0.3.
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out at the 2a level. Also, even for Ho = 0.4, the area in the top left of the maps has large 

negative density which would appear to be well above the noise level. However, because of 

the (albeit small) risk of residual biases in this area, this must be treated with caution.

Overall, therefore, even with this simple analysis, it is possible to conclude tha t Ho = 0.3 is 

ruled out at a reasonable confidence level and Ho < 0.35 is certainly suspicious! Of course, 

these results are intended as a guide only -  a more detailed analysis of the errors in the 

deeper void regions would probably give better, more stringent limits -  but the potential 

benefits of cosmological bias independent density recoveries is clearly demonstrated.



Chapter 7

Conclusions and Future Work

The scientific approach to the examination of phenomena 

is a defence against the pure emotion of fear. 

‘Rosencrantz and Guildenstern are Dead’ -  Tom Stoppard

7.1 W h ere to  go from  H ere

Although the results of chapter 6 are quite pleasing, there is still much to  be done in all the 

areas covered in this thesis.

Iterative M onte Carlo Corrections

On the face of it, the iterative bias correction technique is very successful, but there is 

still scope for experimentation and perhaps improvement. One significant problem is the 

tendency for the correction to ‘over-shoot’ in some regions and it is also difficult to decide on 

a good convergence tolerance. These problems occur because the correction is, in a sense, 

too rapid and does not directly take into account the large variation in the magnitude 

of the biases it is trying to correct. In areas where the bias is small, there is evidence 

from the tests that the correction is quickly found and the method converges, but in areas 

with large bias, too much is being done at each step and over-correction can easily result. 

One possible solution to this problem is to  inhibit the corrections slightly and prevent too

157
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much being done at any one stage, particularly after the zeroth iteration. Any particularly 

large biases detected after the Malmquist-like biases have been removed are likely to  be 

excessive and some kind of ‘resistance to change’ could be put into the system to prevent 

this happening. This is a common part of many numerical techniques tha t involve some 

form of learning or iteration and has proved highly successful (for example, artificial Neural 

Networks (McCullogh and P itts, 1943) or Simulated Annealing (Press et al., 1992)).

Another aspect of the method that should be clarified is the sensitivity of the results to  the 

‘fixed’ positions of the galaxies in the Monte Carlo simulations. Currently, the estimated 

distances are used, but if significant sensitivity is found, it might well be better to use the 

redshift, at least for more distance objects, or some weighted average of the two. This is, 

again, something that only numerical tests can confirm.

Of course, even without these modifications the correction is the preferred technique, but 

with most of the interesting regions of the recovered field (ie voids and attractors) being 

those areas which are most sensitive to biases, anything tha t offers some hope for improve­

ments must be considered.

Finally, it would be interesting to see how the approach that gave rise to the corrections 

could be applied to other areas where complicated systematic errors are a problem.

M ax-flow  M ethods and N on-radial Path  Integrals

As has been frequently asserted during the course of the thesis, the rather poor performance 

of the Max-flow approach to P o t e n t  while certainly disappointing is not too much of a 

surprise and is certainly not the last word on the technique. The two basic problems with 

the current, initial implementation are the adherence to a cubic grid when defining the 

paths and the ad hoc weighting scheme. The latter is the easiest to improve upon. Recall 

that the weighting depends upon two parameters, a  which indicates the relative weight 

given to high and low density errors, and k which is an estimate of the relative size of the 

errors in the non-radial velocity components as opposed to the radial components as they 

are derive by the smoothing. The im portant point, as is clearly demonstrated in fig. 5.12, 

is that the assumption of a global value for k is far too simplistic. Instead, what needs to 

be done is to estimate k at all points in the field using the P o t e n t  smoothing itself and
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use these values when choosing paths.

Moving away from a regular cubic grid is more problematical. One possibility would be 

to try to choose some other fixed grid that is more representative of the data, for example 

by randomly positioning grid points in such a way as correlate with the number density of 

galaxies in the sample. This would give a slightly more ‘natural’ set of paths for Dijkstra’s 

algorithm to choose between and would probably lead to some improvement. However, a 

much better approach would be to remove the need for a grid altogether and simply follow 

some path of ‘least action’ to wherever we wish to define a value for $ , the velocity potential. 

This is, clearly, a major change in the emphasis of the technique and will be difficult to 

achieve in a computationally efficient way, but it should be possible to, at the very least, 

design tests to see whether the effort would be worthwhile.

One final, much simpler possibility that could be combined with any of the above improve­

ments, is simply to average the results of integrals along many different paths (perhaps 

with some judiciously chosen weighting). This can also help to minimise the affect of any 

necessary ad hoc parameter choices (for example, a) since the results with a range of values 

can be averaged.

Therefore, despite the apparent failure of the application of Max-flow algorithms to P o ­

t e n t , the future is actually quite rosy and there is the possibility of significant improvement.

R edshift Space Potent

Unfortunately, the problems with Z - P o t e n t  are quite fundamental to the method. The 

only real possibilities for improvement would involve combining it with an adaptation of 

the non-radial path integrals which would be designed to avoid areas with large velocity 

gradients. However, these are often the areas of most interest (attractors) and the exper­

ience with the Max-flow approach indicates tha t non-radial paths must be treated with 

considerable care. Therefore, without the intercession of some blinding insight, Z - P o t e n t  

will probably remain a rather impractical curiosity.
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C alibration Techniques

One technique that is clearly lacking from this work is a reasonable calibration technique for 

DTF-like estimators. This is likely to come from an improvement in the way tha t individual 

clusters are combined to  form a large calibration cluster, for example by an iterative scheme 

tha t corrects the estimate aM which is used by the (m) correction. Also, consideration needs 

to be given to the radial extent of clusters (Rauzy et al., 1994a).

Another area where some simple iteration may prove useful is in the absolute calibration. In 

spite of the checks inherent in the method, the absolute calibration of distances is something 

of a weak link in the estimation process. However, one possibility is to use a P o t e n t  

reconstruction of the velocity field to correct the redshifts of galaxies as they are used 

in the absolute calibration. There is considerable danger here of circular corrections and 

feedback in the iteration, but used with care, large improvements could be obtained for 

very little effort. It would even be possible to deal with catalogues tha t have large average 

peculiar motions (for example, narrow surveys such as that of Willick (1994)).

Other areas of calibration are also ripe for improvement (Willick et al., 1994). In particular, 

there is the possibility of using three or more observables for each galaxy rather than the two 

normally considered. This has already been approached by Hendry and Simmons (1994) 

where the Tully-Fisher-like approach is extended to include extra distance independent or 

dependent observables. The next stage is to apply these techniques to some catalogues and 

carefully analyse the improvement.

Of course, the more observables tha t are introduced, the more difficult it becomes to under­

stand the physical significance of the relations and to clarify exactly what correlates with 

what. It is not essential to have this sort of information as long as the estimates can be 

shown to be an improvement, but if one is willing to disregard the physical significance of 

any relationships and simply use them as a tool for estimating distances then a number of 

other possibilities are opened. One tha t has been making a slow but steady in-road into a 

number of areas of astronomy is the use of Artificial Neural Networks (ANNS) (eg Macph- 

erson (1994), Miller (1993), Naim (1994) and references therein). The essence of an ANN 

approach is to make as few initial assumptions as possible and allow the network to learn its 

own way around a problem. The possibilities for distance estimation of this technique are
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intriguing. An ANN could be set up to accept a large number of param eters (observables) 

for a particular galaxy and, learning by example, discover any relationships between the 

observables that it can and use these to give, as an end product, an estimated distance, 

perhaps together with estimates of the error. There are several advantages to  this approach. 

There is no need make any prior assumptions about relationships (although any knowledge 

can be used to pre-process the data) and and as little or as much data  as is available for 

each galaxy can be used. Most importantly, the internal relationships between observables 

can be highly non-linear which, even if previously understood, would be very difficult to 

deal with analytically.

There are also disadvantages. It is always difficult to trust a purely numerical result, 

particularly one like this where the assumptions which would need to be put into any 

testing data  would colour the interpretation of the results. For example, when creating 

mock-catalogues for testing, relationships would need to be assumed between observables 

which would have to be of a reasonably simple form and would be unlikely to stretch an 

ANN as much as the real universe. Nevertheless, careful design of tests (including purely 

random observables) would minimise this problem. Perhaps more im portant is the difficulty 

in reproducing the results in a consistent way and combining various catalogues, each with 

their own small systematic variations and observables (naturally, this is a problem with 

conventional techniques as well, but might be worsened by an ANN approach).

Nevertheless, if a significant improvement in distance estimates can be shown, and the suc­

cess in other areas indicates that substantial improvements might be possible (eg Macph- 

erson (1994) and Storrie-Lombardi et al. (1992)), then the ends would surely justify the 

means.

Im proved M alm quist C orrections

One significant recent change in the correction of Malmquist biases th a t has not been con­

sidered in this thesis is the use of separate catalogues to estimate the distribution of objects 

for the correction rather than the IMC approach of using the uncorrected distance estimates 

themselves. This is of interest since a large redshift catalogue with deeper sampling and 

many more objects can be used to estimate the underlying distribution of galaxies (Hudson,
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1994). This should then allow some form of correction for transverse biases and not just 

radial ones. Naturally, since the intrinsic distribution of galaxies is used, the corrections 

should be applied to DTF estimates.

There are many potential problems with this method. Some are fairly obvious: although 

the redshift survey will be deeper than the survey that the estimates will be drawn from, 

the magnitude selection will not be insignificant. Also, the redshifts must be corrected in 

some way for distortion by peculiar velocities before the number density is calculated.

Other problems are perhaps less obvious though potentially more im portant. Gould (1993) 

demonstrated that it is im portant for Malmquist correction that the distance dependent 

observable used in the TF-like relationship should be the same as that used for selection. 

For example, galaxies selected according to measurements in a B magnitude catalogue would 

not be properly corrected if I or R band magnitudes were used for distance estimates. The 

use of redshift surveys introduces a related problem. In, for example, an IRAS catalogue, 

one is looking at the distribution of infra-red selected galaxies, whereas selection for distance 

catalogues is usually done in the optical. Therefore, one is actually looking at two different 

populations of objects, and there could be doubts about the applicability of the IRAS 

number density as a basis for the Malmquist corrections. It is, therefore, im portant to 

quantify exactly how large an effect can be expected from this sort of error and, if significant, 

what can be done about it.

In addition, there are some other aspects of this form of correction that should be considered. 

The number density must, obviously, be a smoothed parameter. However, the choice of the 

smoothing scale is bound to be somewhat arbitrary. Should one choose, for example, the 

same scale as the P o t e n t  recoveries that you will be deriving or not? Again, the effect 

may be a small one, but it is difficult to be sure without good numerical tests.

Finally, there are selection effects in catalogues other than distance dependent ones (eg 

magnitude selection). The Zone of Avoidance is an obvious example, but there are many 

others (lack of telescope time in one hemisphere, selective ‘narrow’ surveys and so on). 

Even where one survey is totally consistent and has good coverage, deriving Malmquist 

corrections when combining tha t with a second catalogue will be a complicated process. 

For example, say we have one survey tha t selects one galaxy in ten down to 15^  magnitude 

and another that limits itself to just one w steradians but includes half of all the galaxies.
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Clearly, these will produce very different Malmquist like effects, particularly if combined 

together, but it is unclear how the density-based Malmquist corrections should be adapted 

to compensate.

All of these points can and should be addressed, since the potential of the technique is 

considerable. The testing procedures developed for this thesis will be the ideal tool for 

verifying any conclusions.

Larger C atalogues

All of this work is, of course, pointless unless it can be applied to get some useful information 

about the universe. Therefore, the primary aim must be to obtain as large a set of reliable 

data  as possible (including the Burstein Mark III data) and reconstruct good, bias-free, 

quiet velocity and density fields.1

Then the way is open to apply a number of techniques such as those outlined in section 6.5 

to estimate cosmological parameters such as fio and Ho. W ith these, strong constraints 

can be placed on cosmological models and our understanding of the universe (potentially) 

improved considerably.

7.2  C onclud ing  R em arks

The study of large scale motions and density features is clearly a powerful tool in the 

understanding of the formation of structure and the processes behind it. However, as I 

have, demonstrated in this thesis, there are considerable problems to be overcome before 

we can look at a recovery of the local density contrast and say confidently tha t we are seeing 

the universe. The insidious nature of the systematic errors in procedures such as P o t e n t  

and the difficulty of interpreting fluctuations that near the non-linear regime are major 

stumbling blocks. Nevertheless, the main message of this work, as I see it, is th a t although 

the problems are large, we do have the tools to overcome them. W ith the iterative bias 

corrections introduced here we have a technique that will help to improve our certainty in 

the results we do get. The improvements in surveys and, perhaps even more importantly, 

in the calibration and use of distance estimators will lead in the near future to deeper and 

b a ilin g  that, I will have to make do with corrected POTENT recoveries.
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clearer maps of the velocity and density fields.

Even in this thesis, with only a sub-set of the data currently available and a very simple 

analysis, the density parameter 12o can be confidently limited to be greater than 0.3 -  

significantly above the f^baryon limit imposed by primordial nucleosynthesis. Therefore, 

with the improvements in techniques and data proposed above and the application of a 

more sophisticated analysis, we can ensure a significant advance in our knowledge of Do 

and a number of other fundamental parameters of the universe.

Perhaps some would consider the motivation behind this thesis a little negative, aiming 

as it does to emphasise the problems of biases and noise in velocity field recoveries, but 

I hope I have made it clear that the end result of this approach is exactly the opposite. 

By appreciating the extent of the problem we can attem pt to solve it and, significantly, be 

confident when and to what extent we have done so. Such an understanding can only be 

good for the study of structure and cosmology.
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