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To my Mother, Father and Sister



Summary

This thesis is concerned with wave propagation in equal mass plasmas. Equal mass plasmas have
two components, both of the same mass but with opposite charges, and consequently they have
a symmetry which is not present in the more usual electron-ion plasmas. This symmetry can be
expected to lead both to a modification of results derived for electron-ion plasma, causing some
phenomena to change, others to disappear and new phenomena to arise. With respect to the

problem of wave propagation this is certainly the case.

Equal mass plasmas are important in the laboratory and in astrophysics. In chapter one we briefly
introduce the problem, firstly setting the scene by describing the ‘Plasma Universe’ and then
introducing equal mass plasmas and mentioning a few molecular plasmas of this type. Chapter one

is concluded with a review of the work done on electron-positron plasmas in astrophysics.

Chapter two derives the equations needed to undertake the study of wave propagation in plasmas.
We start from the most general description of the plasma as one point in ' Space and go on to
derive the standard fluid equations. As we are dealing with an equal mass plasma, where both

components are equally important, we derive the equations for a general multi-species plasma.

In chapter three the problem of linear wave propagation in an equal mass plasma is tackled. We
show that the special symmetry of equal mass plasmas simplifies the problem immensely, and that
the well known phenomena of Faraday rotation and whistler wave modes are absent from the equal
mass plasma. Dispersion relations are derived for the plasma in the cold and warm cases and the

extension of equal mass symmetry to kinetic theory is discussed.

Chapter four extends the work of chapter three to electron-positron plasmas. We discuss the validity
of the models studied, the first of which considers the effect of the plasma being at a relativistic
temperature (k7" > mcc?). We then extend this model to incorporate, in a simple fashion, the
effects of particle annihilation and creation in the plasma. In both cases we find that Faraday

rotation is absent.

In chapter five nonlinear plasma physics is introduced and its importance emphasised. We describe
the solution of electrostatic plasma oscillations in a plasma of cold electrons and stationary ions.
A numerical simulation is undertaken of the same problem for cold equal mass plasmas and, in
stark contrast to the electron-ion case, a fundamental instability is found. A quasilinear analytic

solution is found for the problem which corresponds well to the numerical results.

Finally, in chapter six, we discuss extensions of the work in this thesis, in particular the generalisa-
tion of chapter five to warm plasmas. We also pose some related problems concerning equal mass

and electron-positron plasmas.



The original work of this thesis is contained in chapters three to five. Chapter three has been
published in Journal of Plasma Physics, chapter five has been submitted to Journal of Plasma

Physics and chapter four is being developed for publication.
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I wish I could write you a melody so plain

That could hold you dear lady from going insane
That could ease you and cool you and cease the pain
Of your useless and pointless knowledge

Bob Dylan, Tombstone Blues

At the moment of scientific thought when a generalisation turns into a prediction — and that pre-
diction is triunphantly verified through experience — at that moment, human thought is supplied
with its proudest and most justified satisfaction!

Leon Trotsky, Dialectical Materialism and Science

He gave man speech, and speech created thought,
Which is the measure of the universe;
And Science struck the thrones of earth and heaven.

Percy Bysshe Shelly, Prometheous Unbound
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It took me a year to find out it could have been done iin a week

William Henry Bragg (panphrassed)

In Nature’s infinite book of secrecy
A little I can read
Williarm Shakespeare, Anthony & Cleopdral.iii, 10

Chapter 1
Introduction

1.1 Plasma Physics and the Plasma Universe

The study of the nature and properties of ionised gases is a wide ranging and varied field.It enccom-
passes elegant, abstract theories; large scale numericail simulations; wide-ranging extraeriesttrial
observations (and since 1959 in-situ measurements) amd both large and small Earth bownd expper-
iments. However all these multifarious pursuits fall umder the general title of Plasma lhysicss, as

does the work of this thesis.

The importance of plasma physics is twofold. Firstly t:here is the laboratory plasma, th studly of
which holds the promise of a plentiful energy supply from nuclear fusion. Secondly tlere is; the
study of the universe in which we as human beings exiist. It is known that 99.9999% (by voluime)
of the observable universe is in a plasma state. Thuss to study the universe is to stuly plassma
physics. This fact is becoming more and more inescapaible as we learn more about the stucturre of
the universe — which is‘inhomogeneous and filled withi currents. These new views of tle univrerse
have led to a fascinating and powerful challenge to ortthodox astronomy and cosmology Tae ifact
that the universe is inhomogeneous is a problem for bigg bang cosmologies. If the CoBE ‘estltss are
interpreted as the radiation signature of the big bang, tthen no known mechanism could hive cawmsed
the observed universe to form since the big bang (Lerneer 1992). By contrast a plasma unveise ((see
Alfvén 1990) will automatically produce inhomogeneitties. Everywhere that we have seit prolbes,
field aligned ‘Birkeland’ currents have been found. We: know that there are magnetic fidds omi the
interstellar, galactic and intergalactic scales (which mwst be produced by currents of sime foorm)
and so it is postulated that Birkeland currents exist om these scales too. Once a currentis lowing
the double-layer instability produces field aligned elecctric fields and the strong currerts lowing
in this region produce an azimuthal magnetic field wtich compresses the plasma. As ilfvém: has

stated, the plasma universe is inhomogeneous and filatmentary, and this is just what weobserwe.
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Astronomers and cosmologists are also saddled with mysterious ideas of ‘dark matter’. In order to
get the big bang to produce sensible results at least ten times more material than we observe has
to exist in the universe. This material is also needed (although in varying quantities) to explain the
motion of galaxies. As we cannot see it, it has been denoted ‘dark’. However in a plasma universe,
there are electromagnetic forces acting between the large currents in galaxies and as such there is
no problem with ‘plasma’ galactic dynamics (see Peratt 1986, who also explains much concerning

the evolution of radio galaxies.)

In these fields, and many others, plasma physics is playing a key role in a new understanding of the
universe. With the continuing evolution of supercomputers, opening up new regimes to simulation
study, plasma dynamics are seen to be key to galactic and supergalactic motions. The ‘Plasma

Universe’ is definitely expanding.

1.2 Equal Mass Plasmas

The concern of this thesis is the propagation of waves in equal mass plasmas. An equal mass plasma
(as the name suggests) is composed of two components with the same mass and opposite charge.
This is in contrast to the situation found in most of plasma physics where the plasma is dominated
by electrons and much heavier ions. (Even protons are 1836 times heavier than electrons. Thus, an
electron scattering off a proton is roughly equivalent to a pedestrian being scattered by an Intercity

125.)

This great difference in mass between the two components of the plasma leads to a distinction
between different regimes of wave propagation — normally only one component plays a significant
role, i.e. high frequency electromagnetic waves where the electron motion is important or low
frequency sound waves where the ion motion is important. Even if the dynamics of both components
are included, usually one component yields the dominant behaviour and the other contributes
only secondary effects. In an equal mass plasma the situation is fundamentally different. Both
components have the same mass so that the dynamics of both are equally important to the whole
plasma. However, equal mass plasmas have a symmetry associated with them which is not present
in the electron-ion plasma, and this might be exploited to make the understanding of these plasmas

easier — in fact we shall demonstrate (particularly in chapters three and four) that this happens.

It might seem that equal mass plasmas are an abstract area of study. This is not so. The most
obvious plasma which might be equal mass is that of a particle-anti-particle plasma. This would ob-
viously fulfill the criterion of being equal mass, and indeed electron-positron plasmas have received
considerable attention from the astrophysical community (see the short review below). However,
this is not the only occurrence of equal mass plasmas. Certain molecular plasmas can be equal

mass as well.



If a plasma is formed from positive and negative ions then a nearly equal mass plasma can be
formed, differing in mass by only twice the weight of the electron, i.e. the HYH~ plasma formed
at Kyoto University (Itatani 1992). The plasma formed when a laser beam ablates the surface of a
Uranium target is also nearly equal mass, being formed not of Ut and e~, but of U02+ and UO3 .
This plasma is of particular interest as it has been proposed that high intensity lasers might be

used to stimulate fission in a Uranium target (Boyer et al 1988, Murnane et al. 1989).

Even if a molecular plasma is not exactly equal mass then the study of equal mass plasmas will
give some clues as to the behaviour of the plasma, providing in a sense another view point on the
problem. One view point is that of the electron-ion plasma with no symmetry, but simplified by
the fact that one plasma species can be ignored. The other will be the equal mass plasma, whgre
no species can be ignored but there is a simplifying symmetry. If the real plasma is almost equal
mass then both species must be considered but the symmetry is broken. Clearly this is a harder

problem so the intuition gained from the equal mass plasma will be important.

1.3 Electron-Positron Plasmas

As was mentioned above, electron-positron plasmas have received considerable attention from the
astrophysical community. This has generated a considerable number of papers aimed principally
at understanding the particle nature of such plasmas, not at elucidating their plasma properties.
However, they do provide a framework in which to set the present work (particularly chapter four)

so a brief review is in order.

The positron was first detected by Carl Anderson in 1932, but the era of astrophysical electron-
positron physics was opened up only in 1970 with the detection of a 511keV annihilation line from
the galactic centre by MacCallum & Leventhal (1983) (electrons and positrons have a rest mass of
511keV and form two gamma rays at this energy when they annihilate). This gave indications of
large numbers of pairs — large enough to have a significant effect upon the plasma in which they

were generated.

Although this was the first observational evidence for electron-positron plasmas, there were theo-
retical arguments that pointed to the existence, and importance, of these plasmas. Sturrock (1971)
showed that the electric fields formed around pulsars were strong enough to accelerate particles
to MeV energies and that these particles would produce cascades of electron-positron pairs. The
importance of these pairs was underlined by Cordes (1983) who pointed out that the radio emis-
sion of pulsars cannot be understood without pair production in the pulsar atmosphere. It was
therefore thought that the annihilation line detected at the galactic centre might be formed from
intense radiation produced by material infalling upon a black hole (Lingenfelter & Ramaty 1983),

although there is now some doubt as to whether a black hole does indeed lie at the galactic centre
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(Phinney 1988). (The fact that positrons are there is undisputed.)

From the 1970’s it was noted that compact nonthermal radio sources had very low linear polar-
ization (Jones & O’Dell 1977). Wardle (1977) observed that Faraday rotation was virtually absent
in such sources. Jones & O’Dell argued that this put a severe limit on the number of cold (non-
relativistic) electrons in such sources (Faraday rotation varies as 1/v). However, it was realised,
from symmetry considerations, that an electron-positron plasma would produce the same effect
(Nordelinger 1978). Nordelinger and Kundt & Gopal-Krishna (1980) showed that such plasmas

could exist without immediately annihilating.

The fact that electron-positron plasmas might exist in compact radio sources prompted theorists
to examine the properties of such a system. Burns & Lovelace (1982) considered a beam of pairs
produced by the accretion disk dynamo formed around a supermassive black hole (~ 3 x 108 Mp).
This dynamo generates a current of 10!8A and the relativistic electron beam which forms it can
produce copious quantities of pairs by scattering from low energy photons. These pairs emerge in
a vortex funnel which could be the source of the extragalactic jets observed in certain galaxies (see
review by Begelman et al. 1984), which can also exhibit the low Faraday rotation found in compact
radio sources. (There are problems though with using this mechanism to explain the annihilation

line in the galactic centre (Lightman et al. 1987).)

Further work on this problem was done by Zdziarski (1988) who considered, in some detail, the
electron-positron cascade produced by the impact of high energy electrons and gamma-rays upon
low energy background photons. It was realised that the pair creation and annihilation which would
occur would modify the gamma-ray spectrum, softening it by absorbing high energy gamma-rays

through pair production.

Although a lot of work was now being done on pair production by particle and photon sources, a
more abstract interest in relativistic plasmas had been shown before this time. Bisnovatyi-Kogan
et al. (1971) considered the equilibria of a ‘thin’ electron-positron plasma, i.e. one which was less
than one optical depth thick to gamma-rays.tf They found that the ‘thin’ plasma had a maximum
temperature, T, = kT/m.c? = 41. Beyond this point, pair creation would runaway, denying the
plasma an equilibrium. This work was extended by a number of authors: Laing (1979); Lightman
& Band (1981); Lightman (1982); Takahara & Kusunose (1983). In particular, Lightman extended

the work of Bisnovatyi-Kogan et al. to a finite sized plasma and showed that electron-positron

Although the calculation could be done for an optically thick system quite easily using statistical
mechanics (indeed Chapman (1936) had done so) it was felt that this calculation would not be
appropriate to astrophysics as the objects under consideration did not radiate like blackbodies and

could not therefore be in thermal equilibrium.



plasmas develop a negative specific heat above a critical temperature; after this point further
heating produces more pairs and the net energy per particle drops. If this process continues, so
many pairs are produced that the plasma becomes optically thick to radiation and a thermal
equilibrium is formed. Takahara & Kusunose considered the effect of magnetic fields on the plasma

and found that critical maximum temperature decreases when a field is present.

There is an important point to be made about the above papers. Exclusively they concentrate
upon the particle effects of the addition of e~e* pairs. This in itself is a very difficult and highly
nonlinear problem, so perhaps it is not surprising that none of them consider the plasma which
is formed as a plasma, i.e. being able to sustain waves and other collective phenomena. Indeed
the absence of Faraday rotation in electron-positron plasmas, though intuitively realised in by
Nordelinger (1978) was not proven for equal mass plasmas until Stewart & Laing (1992) with the

result being extended to electron-positron plasmas in this thesis (see chapter four).

Holcomb & Tajima (1989) were the the first to start to consider the actual plasma which is formed
by electron and positrons. In doing so they considered the electron-positron plasma which is formed
in the early big bang universe (assuming the big bang took place, see §1.1) and for a short time
dominates the matter component of the universe (from t &~ 0.1s —= 15). They studied linear wave
propagation in such plasmas to see how primordial magnetic fields might be generated. Tajima &
Taniuti (1990) went on to study nonlinear waves in the same context and in this case the untapped
potential of the subject was immediately revealed. When they considered the nonlinear interaction
of the plasma with photons they discovered new soliton solutions for acoustic waves which are not

present in electron-ion plasmas.

We are still at the beginning of the study of electron-positron plasmas as plasmas, and it is
noticeable that in the above papers which did consider the plasma physics of electron-positron
plasmas, very simple situations were envisaged — uniform plasmas where annihilation could be
ignored. This is in contrast to the complexities of the equilibria found when considering all the
processes which go to actually forming such plasmas, but it is necessary, as the problem of plasma

physics in such complex situations is very hard indeed.

In this thesis we shall adopt similar assumptions to those of Holcomb, Tajima & Taniuti in order
to simplify the problem, though in chapter four we shall relax some of these criteria. In addition,
we shall consider only equal mass plasmas in chapters three and five (ignoring relativity and
annihilation), but it is still hoped that this will be a useful contribution to the continuing studies

of electron-positron plasmas.



Et harum scientarum porta et clavis est Mathematica
Mathematics is the door and the key to the sciences

Roger Bacon, Opus Majus part 4

Chapter 2
Derivation Of Fluid Equations

2.1 T Space and Liouville’s Equation

The starting point for the derivation of any of the equations of plasma physics must be an exact
description of the plasma. Therefore, we begin with a plasma of N particles distributed among S
species, each species s containing N (s) particles. The ezactstate of the plasma at time ¢ is described
by F[X{, X2, ..., X{V(l),le, ...,Xév(z), ...,Xé-v(s),t], i.e. one point in 6N dimensional phase space
(or T space). Each X ; is the set of position and velocity coordinates of the ith particle of species
Jj, le. X; = (r;,v;)

To attempt to solve the equations for a plasma in such microscopic detail is impossible (involving
3N equations of motion for velocity in 6N other variables) so we instead start from a distribution

of state probabilities, p, such that
p(XLx2, ., xNO x1 o xNO ) xFO) yaxt..axYS) (2.1)

is the probability that the plasma is in state [(X{, X] +dX}),..., (Xév(s),Xi-v(s) + ngr(s))] at
time t. As we shall at no time require to identify individual particles then we shall consider only
distributions which are symmetric with respect to particle exchange within each species.

Normalisation requires that

//.../pdxll...dxg’(” =1. (2:2)

Now according to Liouville’s equation, the system conserves volume in T' space, i.e.

5 N(s)

5 N(s)
+E a' ,)+ZZ (pa,)— (2.3)

s=1 i=1 s=1 i=1

As we are dealing with forces such that the acceleration a only depends on velocity through v x B

we can rewrite Liouville’s equation as

3P+iiv‘.ﬁ+iiai.ﬂ—o (2.4)
ot *oor & $oovi '



Ensemble averages are defined in the usual way,

QX1 .., xY®)) ://.../pQ(X},..., xYax!. .ax Y. (2.5)

Given that the exact n particle distribution function of species s is

S n
FrXD, XD XM =3 36X, — XD 5(s" - 5) (2.6)

s'=14=1

then the average n particle distribution function is

n N(s h n n
& (X(l)""’x("))‘(zv(sg )n)'/ / / p(XE, o, XG0, XD, X, x4t x )

dxl.dxNCDaxp+t dxN©) (2.7)
We have of course used the symmetry of p and we have also assumed that the values of X1 to
X ™) do not overlap.

Similarly we define the combined distribution functions for n(s) particles of species s, n(s’) particles

of species s’ as

a(s) en(s N(s)! N(s’
Cf®, 207) = (N(2) — n)l (N(s') —n)'// /

dX}. .dxNCDaxn@+1 gxNe-DgxnOt gx N (2.8)

2.2 BBGKY Hierarchy

The Liouville equation governed the evolution of p. To find the equivalent equation for f} we
multiply the Liouville equation by N(s)!/(N(s) — n)! and then integrate with respect to all dX's

except dX}...dX". Assuming that the acceleration of each particle a} can be written

S
ai=Y Y a”, (2.9)

where af;j', is the acceleration of particle 7 of species s produced by particle j species s’ (0 if s = &'
and j = 7). a‘ is taken to be the acceleration caused by external fields and a, ,» where s’ #5is 0.

After integration we have

0: 63 r’as z"la: n °6Cfa’s
f Z v 6f1 +ZZ ’. af +E/ (n+1) f dX +1+ZZ/ (av, )=0.

i=13j=0 s'#s i=1
(2.10)



The first term of Liouville’s equation gives rise to the term 9f7 /8t, and the next two terms arise
from the boundary conditions that p — 0 as x — 0o and as v — oo respectively. In the second
last term the summations from j = n+1to j = N for s' = s are considered, and as (for a fixed
value of i) the symmetry properties of p make the integral constant, we can evaluate each of the j
terms for j = n + 1. There are N(s) — n — 1 such terms, so this yields the correct normalisation
for f?*!. In a similar way for each of the other species each individual particle j gives the same
integral for each value of ¢ because of the symmetry of p and so can all be evaluated for j = 1
leaving the combined distribution function in the integral.

The set of equations (2.10) are known as the BBGKY hierarchy after their development by Bo-
goliubov, Born, Green, Kirkwood and Yvon. These equations form a set of N coupled integro-
differential equations and are therefore just as hard to solve as our original Liouville equation.
Their value lies in the fact that we now have a series of equations which, after making a suitable
approximation, we can truncate. Hopefully this will leave us with a reduced set of equations - a

set which we can solve.

2.3 Truncating The Series - The Vlasov Equation

The simplest way to truncate the BBGKY hierarchy is to consider the particles to be non-inter-
acting. Then all af,j', = 0, except for ajo, corresponding to external forces, and the integral terms

disappear leaving a solution corresponding to uncorrelated particles, viz.

r=T]rixi (2.11)
1=1
S N(s) ]
p=T] I FHexise (2.12)

s=1 i=1

But this approach is clearly inappropriate when considering plasmas — the particles exert elec-
tromagnetic forces on each other and, due to the long-range nature of these forces, each particle
affects, and is affected by, many others{. However, simple considerations of Debye Length and
charge shielding lead to the conclusion the kinetic energy of each plasma particle is much greater
than its potential energy$, and so it may be appropriate to regard the plasma particles as uncor-

related to some extent and introduce a scheme of successive approximation to equations (2.10).

These long-range forces rule out an alternative approach which was adopted by Boltzmann. He
considered a gas of hard spheres and derived the famous Boltzmann Kinetic equation for a neutral

gas.
This criteria is true for ideal plasmas, i.e. those with a large number of plasma particles in the

Debye sphere. There are some plasmas which are nonideal, such as inertial confinement plasmas
and, surprisingly, the plasma in the centre of the Sun. Strictly speaking the approximations we

make do not apply to these plasmas, though in fact many of the final results will be valid.
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Let us now consider the electromagnetic forces which the particles in the plasma experience. A
plasma particle of species s, having charge ¢, and mass m, suffers acceleration from external fields

Eo and Bo of

ai’ = L [y +vi x By), (2.13)
ms

S

and acceleration due to other plasma particles of

'y

iJ qs {7 o
al = E[&:', + vi{ x B}, ]- (2.14)
8'1, and B’ ., are the electric and magnetic fields produced by particle j at the position of particle
i, i.e.
i _ s ry — ),

L) = .’ §! 215
. 47rco Irz 1.:l| ( )

g¥ = Hods vl X (r - 1'.7,')

- R : 3
MooAm )

(2.16)

We are making a hidden assumption in (2.15) and (2.16). To be exact we should account for
the finite speed of light, and hence propagation of electromagnetic forces, by considering retarded
potentials where the field at time ¢ exerted by particles a distance r away is calculated according
to the plasma state at a time t — r/c. To disregard this effect is to consider a plasma where the
timescale of the phenomena examined is much greater than the light travel time across that portion
of the plasma which is influencing (and/or being influenced) by that phenomena. In general this
means that the Debye Length times the frequency should be less than the speed of light.

We now proceed by pulverising each of the particles in the plasma. That is to say we let N(s) — oo
while holding N(s)g, and N(s)m, constant. Thus ;I is constant. This means that f = O(N(s)"),
af,o, is constant and that a’:;, = O(N(s)~1). Therefore the third term of (2.10) is one order of
magnitude less than the rest of the terms (excepting j = 0, the external force term) and can be

discarded. Then the truncated set of BBGKY equations is,

afs {0 6f, (41 6fa ac f‘n,fl
Py el Gy [ e T3 [, 2AE A <o
(2.17)

Seeking a solution which can be expressed in terms of uncorrelated particles, i.e. (2.11) and (2.12)

holding, it is easy to see that all the equations will hold if

1 1 1 1
B 13 BLCC) ot [atlixixa+ T [al b)) S =0, @ay)
s s'#s



le.
or® af’ ,.8f’ _
ot +v~?r—+a ov

where we have now dropped the unnecessary sub and superscripts to arrive at The Viasov Equation.

0, (2.19)

This is one of the most useful equations in plasma physics and describes the evolution of a plasma

under external fields and including smoothed self-consistent plasma, fields,

S

a'(r,v) = %(Eo +v x Bo) + / -rq—r:- [S,r +vx B,r]f},(r,r, Vs )dryidv,. (2.20)
1 (]

s'=

(€s and B, are the fields produced by particles of species s’ at the (r,v), i.e. (2.15) and (2.16)

with rf =r and r), = ry;vl, = v,).

2.4 The Fluid Equations

The Vlasov equation ignores the close collisions between particles but other than that it is an
excellent description of the plasma. In a sense it is too good, still containing too much information
for the tractable analysis of the waves we wish to study. For this reason we continue the process
of simplification, this time with the aim of removing much of the information contained in the
velocity space portion of the Vlasov equation.

By taking velocity moments of the Vlasov equation we move from six dimensional space plus time,
(r,v,t), to three dimensional Cartesian space plus time, (r,t). Of course, we expect that the set
of equations we derive will not be closed, but instead form a chain of linked equations, in much
the same way as the BBGKY hierarchy did when it was derived from the full plasma distribution
function (although the BBGKY chain did eventually close at Liouville’s equation). However, we
might hope that a suitable truncation of the set of equations might give a realistic yet tractable
theory to work with.

Firstly we shall renormalise the Vlasov equation so that

n,(r,t):/f,(r,v,t)dv (2.21)

is the density of species s in real space. This leads to a sensible redefinition of our ensemble average

as

(@)(x,t) = ni’/f,(r,v,t)Q(r,v,t)dv. (2.22)

i.e. an average in v space defined at each point in r space, so that the plasma fluid velocity, (v),

is defined as

v, = i‘/v‘f,,(r,v,t)dv. (2.23)

n

10



Our zeroth moment in velocity space is simply the integral of (2.19) over dv, i.e.

601 ) o; 03
8? dv+/ f’ dv +/ ¢ f" dv = (2.24)
This yields
on, 0 _
W + ‘a_;(navs) =0, (225)

The Continuity Equation for species s. The first term arrives from ol by definition, the second by
the fact that the spatial derivative in 02 is independent of the integral and can be taken outside
it. The terms from o3 disappear because of boundary conditions that f; — 0 as v — oo.

The continuity equation reflects the fact that the number of particles of each species is constant.
When we deal with annihilation in e*e~ plasmas we shall modify this equation accordingly.

Next we multiply by v and once again integrate the Vlasov equation:

02 ©3
/ f" dv+/ f’ dv+/ % dv =0, (2.26)
giving
i)
(n,v,) +5 (n, (vv)s) = an,, (2.27)

The Momentum Equation for species s. Here the first term arises from ¢1 by taking the time
derivative outside the integral. The second term is similar, this time the spatial derivative being
taken out of o2 to leave the ensemble average of vv. In the acceleration term on the RHS of (2.27)
we have had to define a new acceleration term a. This arises from the complex definition of a’ from

equation (2.20) which when inserted into term o3 of (2.26) gives

[ (Eo +v x Bg) + z / gs [Es +v x By] f1i (r,:,v,/)dr,:dv,] %% dv. (2.28)

s'=1

Integration by parts of the terms involving electric fields is straightforward but the integration of

the terms v x B requires more care. For the external magnetic field integration we have

v(v x By) gv’ dv

Because of the nature of the v x B term we can include it inside the velocity space integral, i.e.

(2.29)

& [0 [(v x Bo) ] av. (2.30)

m, ov

Then integrating by parts gives

11



q—S Vs X Bo)
my

(2.31)

Similar considerations apply to the acceleration terms integrated over each species in (2.28) and

lead to our new acceleration term

a=— [EO + v, X BO] + E /_' [ga' + v, x By ]fa (rs’vvs )dra'dva’ (232)

J’—

Of course, it would not be much of a simplification to derive a set of fluid equations for each species
but to leave complicated integrations in phase space as the means of deriving the acceleration. We
need to simplify this acceleration term further.

This is done by performing the integrals over velocity space in each of the terms &,» and B,.. This

yields a final version of the acceleration term as

a X B], (2.33)
where E and B have been defined as
E=E d 34
°+3Z:1/41r60 |r—r,:|3 Ts! (2.34)
B=B I‘OQ:’ Vg X (l‘ - l‘_,l)
o+ Z N A (2.35)
8'=1 s!

For our purposes the first two moments over velocity space are sufficient. As expected, the first
equation (governing n,) involves n,v, and the equation for momentum involves the energy tensor
ns{vv),. Were we to continue taking moments, the next equation would govern energy evolution
inside the plasma and would involve the rank 3 heat tensor (vvv},. If we are to truncate the series
after two equations then it is the term (vv), in the momentum equation which we must find an

approximation to.

2.5 The Momentum Equation

The first case that we might consider is where the plasma is cold. Then all the plasma particles

move at the average species velocity v,,

fa(r,v,t) = ny(r,t)8[v — v,]. (2.36)

Then the term (vv)s becomes v,v,. Hence

%(n,v,) + %(n,v,v,) = an,. (2.37)

12



If we multiply the continuity equation, (2.25), by v, and expand the derivatives in (2.37) the

equation becomes

3V; +( i)v —
5 Ve gy Ve = ans. (2.38)

This is the momentum equation for a cold plasma.
The next case to consider, one more realistic than the last, is a warm plasma. Here we do allow
the particles to have a thermal spread but we assume that the distribution function is isotropic

around v, in velocity space. This means that considering

UpUz Ugly UgU,
(vv) = VyUz  Uyly VYU, (2.39)
VUz  UzUy VU,

we can see that all the off diagonal terms must vanish. For the diagonal terms we make a change

of variable to v/ = v — v,. In this frame each of the terms is equal to the thermal velocity +T so

that

(v'v') = (v )1, (2.40)

where I is the unit tensor. Thus (vv) becomes

(vw)y = (v + V)V +V)) = v,v, + —%I, (2.41)

s L]
where P, is the isotropic pressure of species s, defined as P, = n,m,(vT)2.

Then the momentum equation for a warm plasma is

0 0 1 0P, _
Et-(n,,v,) + . (nsvsvs) + o an,. ' (2.42)

Or using the continuity equation in a way similar to above

ov, (‘ 0 1 0P, (2.43)

—('97+ .E)vaza—n,m, Or

2.6 Maxwell’s Equations

We have now arrived at the form of the plasma equations needed for the study of plasma waves in
the fluid approximation. The equation of continuity (2.25) will be used throughout, together with
the appropriate momentum equation: (2.38) for the cold plasma, (2.43) for the warm plasma or
(2.27) when we discuss the symmetries of general distributions in chapter three.

However, no study of plasma physics could be undertaken without Mazwell’s Equations, which

give the correct mathematical description of electromagnetic fields.

13



BE_pt

*=Z (2.44)
%:_ -0 (2.45)
.g;xm+%_?=o (2.46)
% x B — folloaa—lt3 = poj (2.47)

All the symbols have their usual meaning, p; is the charge density and j is the total current density.
When we derived the fluid equations we used E and B fields which were derived from Coulomb’s
law and the Biot-Savart law. These gave difficult integral equations for the electric and magnetic
fields in the plasma ((2.34), (2.35)). It is far easier to find the Plasma E and B fields from Maxwell’s
equations. Maxwell’s equations (or the Mazwell, Heaviside, Hertz equations (Peratt 1992)) give the
resulting electric and magnetic fields as the plasma develops different charge and current densities

in its structure. It is in this context that we shall employ them, noting that for a muti-species fluid

plasma
S
Pt = Eqsns; (2~48)
s=1
S
= E qsNsVs. (2.49)
s=1
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Chapter 3
Linear Waves In Equal Mass Plasmas

3.1 Introduction

In this chapter the study of the normal wave modes of an infinite homogeneous equal mass plasma
is undertaken. The plasma is considered to be in the fluid approximation, so it can be described
by a continuity equation and a momentum equation. The mathematical techniques that we will
use in this chapter and in chapter four will be those of Fourier analysis and linearisation. These
are both very well known techniques and hardly need any exposition here. Briefly however we note
the following.

As the plasma is infinite and homogeneous the problem is simplified. An infinite spatial extent
removes the need to tackle boundary conditions and homogeneity means that for linear waves
there are no zero order derivatives in the problem.

Fourier analysis (see e.g. Bracewell 1986) involves transforming from (r,t) space to (k,w) space

using the transformation

W(k,w) = / / U(r, ) exp(i(wt — k - 1)) drdt. (3.1)

The reverse transformation is

U(r,t) = (2%)4// ¥'(k,w) exp(i(wt — k - r)) dkdw. (3.2)

The value of the Fourier transformation is that it can change differential equatioris into algebraic
ones. However, these algebraic equations will form an infinite hierarchy unless the equations in
(r,t) space are linear. Consequently the Fourier transform is much more useful if applied to linear

equations.

Linearisation is a simple, but powerful, mathematical technique. It has been applied to a wide va-
riety of problems and its use in solving for the normal wave modes in plasmas is well known (Clem-
mow & Dougherty 1969, Nicholson 1983, Stix 1962). Its essence is that if we have an equilibrium
in a complex set of equations, and we disturb this equilibrium by a small (formally infinitesemal)
amount, then we can derive a set of equations for the perturbing quantities which are linear. This
happens because the equilibrium quantities are constant (and are thus just parameters), and the

products of perturbing quantities are of second order and can be ignored.

Notation and Figures
In the analysis to follow it will become convenient to label the waves in an equal mass plasma

according to the electric field associated with each wave. We shall use the symbol II to refer to a
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wave. I, Iy or II, will refer to a wave with an electric field E;, Ey or E, respectively. II;, will

refer to a wave with an associated field in the z — z plane.

In all the figures for chapter three frequency is normalised to w, and wave number to ko, where

k‘o = c/w,,.

3.2 Dispersion Relation For A Magnetised Plasma

The starting point for the derivation of the dispersion relation are Maxwell’s equations for the curl
of E and B.
0 0B

5 XEt—5-=0 (2.46)

8. JE .
o x B — €oplo—5 = Hoj (2.47)

The first step is to perturb these these equations from equilibrium, allowing for a zero order
homogeneous magnetic field By but for no zero order electric field or currents. Denoting the

perturbed magnetic field as B; these equations then become

8 6B,

-a—l:XE+7—0, (33)
0 OE .
o < B, - €obo—y = Hal, (3.4)

where E and j now represent perturbed quantities.
We now proceed with a Fourier analysis, all perturbed quantities being assumed to vary as
exp (i(wt — k -r)). This gives
-kxE+wB; =0, - (3.5)
-k x B1 —wfoyoE = [,toj (36)

It is convenient to introduce a dimensionless form of the wave vector

=X (37)
W
and having done this we can use (3.5) to eliminate B; in (3.6) to give
ij .
=-——E. 8
n x (n x E) s (3-8)

It is convenient, though far from essential, to define a coordinate system in which to work. The
usual choice is to direct By along the z axis and to confine k (the direction of propagation) to the

z — z plane, making an angle of # with the 2 axis (figure 3.1). Then (3.8) becomes
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1 —-n2cos?0 0 n2 cos@sin @ .
0 1-n? 0 E-2 =g (3.9)
n?cosf@sinf 0 1-—n2sin?0

This equation will hold in all cases (we have only used Maxwell’s equations to derive it) but we

still require to find the response current from our plasma, and so turn to our fluid equations.

3.3 The Cold Plasma

To analyse wave propagation in a cold plasma we start with the cold plasma momentum equation,

at Jr

Linearising, with no zero order velocity terms, and employing a Fourier analysis as before, yields

o (v. .i)v' — an’. (2.98)

iwv, = 7‘7’1'—(13 +v, x By). (3.10)

Adopting the stated coordinate system, this equation can be rearranged to give the velocity com-
ponents for each species. Then using (2.49) to sum over each species, we obtain the current in the

plasma,

5. ¢2n, (in, + Q,E'y)

jz'= 2 _ .2
= m, 02 —w
S 2 .
. gn, ([WwE, ~Q,E, 311
=y (Ma G0
S .
_ igin, E,
J: = Z mew

where Q, = ¢,By/m, is the gyro frequency for species s. Note that the usual convention of defining
© > 0 is not adopted here, instead 2, has the same sign as the charge of species s.

Equations (3.11) can be written in terms of a conductivity tensor so that

j=o-E, (3.12)
where
Tw (1} 0
R s
o= Z :n —wzf.).nz w"fﬂf 0 (313)
s=1 s 0 0 i

Recalling then the dispersion relation, (3.9), we can rewrite the dispersion relation for a cold plasma

as
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e-E=0. (3.14)
¢ is the dielectric tensor,

S .3
> 2 cos2 fsin? @

S 2
1— 3 ==y —n®cos?d
s=1 ‘

twi Y,
-t n
T
5, iwn 5. w2
€= -2 oty 1-Y ot -7’ 0 : (3.15)
s=1 ’ s=1 ’
n? cos? @sin? 6 0 1-3 %: — n*sin?g
s=1
The plasma frequency of species s has been defined as w, where
2
w? = lls (3.16).
ms€g

Eigensolutions of (3.14) exist when the determinant of the matrix forming the dielectric tensor is

Z€ro.

3.4 The Cold Equal Mass Plasma

The expression for the dielectric tensor, (3.15), is quite general and its solutions, |¢| = 0, are well
known for electron-ion plasmas (Stix 1962, Clemmow & Dougherty 1969). We now study the form
of the solution for an equal mass plasma - two components each of mass m and of charge +gq.
Summing over equal mass components 011, 022 and o33 take on simple forms. However, both o2
and o) are zero due to the charge/mass symmetry. This is a considerable simplification, yielding

the dispersion relation for an equal mass plasma as

2

1—;;—”;%5—-71%0520 0 n?sin @ cosf
0 1— s — 0 = 0. (3.17)
2
n?sinfcosé@ 0 1—§§—nzsin20

The term wy, is the plasma frequency of the whole equal mass plasma and Q2 is the square of gyro

frequency of each component, viz.

2 2ng?

s (3.18)
22
Q2 = q—m—";ﬂ (3.19)

Mathematically the extra symmetry of the plasma has removed terms €;2 and e2;. Physically this
means that a harmonic electric field in the z direction produces only a current j;, but j, = 0.
Similarly for a field E, we find that j; = 0. Thus the gyro motion of the plasma does not cause

currents to flow.
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Taking a specific example to illustrate, consider an oscillating driving field E.. Then from the

equation of motion (3.10) it is seen that

—ig
Vp = E(E: + ’UyBo), (320)
0 Bov,
v, = 2k, (3.21)
with solutions
) -1
_ —iqE, q’B?
vy = —C (1 -t (3.22)

(3.23)

Yy : quzu% (1 - qzngz)—!'
m2w m2w
Recalling that all these solutions are harmonic as €*(“*~XT) we can see that positively charged
particles oscillate, in the = direction, with phase /2 behind E,, whereas the phase of the negative
particles is 7/2 ahead. However, the extra factor of ¢ in the solution for v, means that whatever the
charge of the particles they are in phase with the driving field. Hence the current, j, = g,v,, flows
in the opposite direction for each component and no net current flow exists parallel to the harmonic

field. This is illustrated schematically in figure 3.2 for both equal mass and electron-proton plasmas.

We now look at the special cases of propagation parallel and perpendicular to the magnetic field.

Parallel Solutions

For parallel propagation, 8 = 0, hence |¢| = 0 becomes

w?

l—m—__%ﬂ'—nz 0 0
0 1_35“_:%_5_"2 0 =0. ‘ (3.24)
0 0 1-%

2 w)
n=1- m (325)
for waves II; and II,, and
w?= w: (3.26)

for the solution II,.

Equation (3.26) is the usual electrostatic plasma oscillation along (and hence unaffected by) the
magnetic field.

Equation (3.25) can be rewritten as
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2 2
2 _ ¥ o
k —ﬁ<1_w2_pgz)' (3:27)

The resonance (k = 00) at w = Q and the cut off (k = 0) at w? = w? + Q? allows us to see the
main features of the graph which is plotted in figure 3.3.

At low frequencies the dispersion relation is

nfrl+ 2 (3.28)

so that

2 1.2

2 vik
2 /o2
14+v3/c

where v3 = B2/popm is the squared Alfvén speed, pp, being the plasma mass density. Thus, the

w ~ vik?, (3.29)

lower portion of the dispersion relation is the transverse Alfvén wave. (So called as the field is
compressed perpendicular to the direction of propagation.)

The upper portion of the dispersion relation is easily identified by noting that for high frequencies
w & kc, which is just the expected transverse electromagnetic wave.

If Q =0, i.e. Bp =0, we have no Alfvén wave and the TEM cut off is at wp, as expected.

Faraday Rotation and Whistler Waves
One of the most instructive ways of examining the special properties of an equal mass plasma is
with reference to the more usual electron-ion plasma (Stix 1962, Clemmow & Dougherty 1969,

Nicholson 1983). For the case of parallel propagation the solutions to the dispersion relation are

given by
a—n? 18 0
-i8 a-n% 0|=0. (3.30)
0 0 v

The coefficients of a, 8 and 7 are given by summing over plasma species in (3.15). Using an e~ p*

plasma to illustrate we have,

w?_ W2+ '
a=l-——t —— _”QZ+, (3.31)
e~ P
wz_ Qc_ w2+Qp+
b= am 2 oz, (3.32)
. “"3" w2+
7:1—-?—%. (3.33)

The solution y = 0 is just the same electrostatic oscillation of the plasma as was equation (3.26),

but the solution of the 2 x 2 matrix gives two distinct solutions,
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nf=azp. (3.34)

Obviously these waves consist of oscillations which combine # and y electric field vectors, and
substituting the solutions into the dispersion relation reveals that the solution a + 3 is right hand
circularly polarised, and the solution o — f is left hand circularly polarised. The disappearance
of the 8 term in the equal mass plasma has allowed us to work with modes which are linearly
polarised, although circularly polarised modes could equally well be constructed.

A sketch of the solutions of (3.34) is shown in figure 3.4. Two portions of the graph are important.
The first, labelled (A) shows the so-called whistler wave. It is in this region that both the phase
and group velocity of the R.C.P. component increase with frequency. A glance at figure 3.3 reveals
that both the phase and group velocity of the equal mass plasma decrease with frequency from
w = 0 — Q. Thus the whistler wave is absent. Differentiation of (3.25) confirms this.

The second area of interest, labeled (B) in figure 3.4, lies at higher frequencies. Here the split
between the circularly polarised modes gives rise to Faraday rotation. This is the rotation, in
space, of the plane of polarisation of a linearly polarised wave. An equal mass plasma has no such
splittings and consequently Faraday rotation does not occur in these plasmas. This phenomena has
already been noted in connection with ete~ plasmas (Nordelinger 1978). In §3.7 we shall discuss
under what conditions anisotropic distribution functions of an equal mass plas.ma will maintain

~ this property.

Perpendicular Solutions

For perpendicular propagation (8 = 7/2) the dispersion relation has solutions given by

1= it 0 0
0  1-g2m-n2 0 |=0 (3.35)
0 0 1- % —n?
The determinant is again trivial, yielding solutions
wl=w?+Q? (3.36)
for I,
2 wp
nelo—te (3:37)
for II, (the same solution as in the parallel case) and finally
2
2_1_%
n‘=1- o - (3.38)



for II,.

Equation (3.36) represents a non-propagating oscillation, with the electromagnetic force being
enhanced by the gyro motion so that the oscillation is of a higher frequency than the normal
plasma frequency oscillation.

The solutions for II, have been discussed previously.

Finally, the II, result, equation (3.38), is easily recognised as a transverse electromagnetic wave.
Since it involves particle motion along the magnetic field, we are then left with the unmagnetised
result.

These results are summarised in figure 3.5.

General Propagation
Examining the dispersion relation (3.17) for general angles of propagation it can be seen that the
solutions of || = 0 can be reduced from a 3 x 3 determinant toa 1 x 1 and a 2 x 2.

The singular matrix solution, €22 = 0, gives rise to a wave II, with dispersion relation

2

&
e e (339)

n“=1-
which has already been discussed. For this wave E and k (and hence B; are all perpendicular,
which allows us to identify this wave as a transverse electromagnetic wave at high frequencies
and a transverse (or fast) Alfvén wave at low frequencies. The other two solutions come from the

determinant of the remaining 2 x 2 matrix :

2

1— w 2 29 2 29sin2 0
ot — n° cos n ::)s sin -0 (3.40)
n? cos?@sin? 9 1——% —n%cos?

This represents a wave Il;,.
Writing A = | — w?/(w? — Q%) and B = 1 — w?/w? 50 as to best illustrate the symmetries of the

solution we then have

n? = AB
" Asin?0 + Bcos?8’
Note that this becomes n? = A at § = 0 and n? = B at § = x/2.

(3.41)

Examining a plot of the dispersion relation from (3.41) (shown in figure 3.6) it can be seen that
the Alfvén wave, which exists at 8 = 0, drops off in speed as # is increased and finally disappears at
0 = = /2. This wave is of course the shear, or slow, Alfvén wave. Noticing that for low frequencies

B> A, (3.41) becomes (for angles suitably far from 7 /2)

24
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cos? @

(3.42)

Using the low frequency approximation for A, (3.29), this becomes
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w = vakcosh, (3.43)

the expected result for the shear Alfvén wave.
The two resonances in the dispersion relation obviously occur when Asin? + B cos? § = 0. Inserting

the expressions for A and B this becomes

1
wl, = 3 (92 + w}% +(Q* + wg - 2Q2w3 cos 20)1/2) ) (3.44)

which gives the extent of the stop bands for all angles.
If the equilibrium field is weak, such that w, > Q, (3.44)takes on a simpler form through ignoring

the term ©* and making a binomial expansion of the square root:

2
w2, & % (92 +wltw] (1 - % cos 20)) , (3.45)
P

so that the upper and lower resonant frequencies become

w? =w? +Q%sin’0, (3.46)

upper res
2 — 02 2
Wipwer res = S¥° cos® 6. (3.47)

As previously noted, the wave combines electric fields in the z and 2 directions. The dot product
of E and k is 4show171 ifl ﬁ/gu;'e 37 From this it is obvious that the angle between E and k is
not a constant, so the high frequency waves arising from this solution can be identified as a form
of extraordinary electromagnetic mode, in which the electric field vector is not perpendicular to
the direction of propagation. (We have seen though that in the case of propagation paraliel and

perpendicular to the field equal mass symmetry means that k L E.)

CMA Diagram For Equal Mass Plasmas

The CMA (Clemmow-Mullaly-Allis) diagram is a way of classifying the waves which exist inside a
cold plasma. With the two free parameters of the plasma, density and magnetisation, represented
on the axes w, /w and ©/w respectively, the surface of the diagram represents all the possible states
of a uniform cold plasma. All the solutions which we have found so far (e.g. transverse Alfvén waves)
exist only for certain frequencies, and on the CMA plot these frequencies are represented as the
areas between different bounding surfaces — calculated from the dispersion relation. For the equal
mass plasma the two quantities A and B form the bounding surfaces : A = 0, A = oo, B = 0.
Within these regibns normalised wave vectors can be plotted. It can be shown (Allis, quoted in
Stix 1962) that the wave vector surfaces (essentially surfaces of refractive index) are topologically

invariant inside any of the boundary regions, whence the value of the CMA diagram in summarising
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the properties of a cold plasma. (It is also possible to plot group velocity surfaces, though more

care must be taken (Walker 1977).)

The CMA diagram for the equal mass plasma is shown in figure 3.8. As can be seen there are five

distinct regions to the plasma.

(a) Alfvén Wave Region: here both fast and slow Alfvén waves exist.

(b) Highly Magnetised Region: here the fast Alfvén wave still exists, but the slow one has become
more electromagnetic in character.

(c¢) Transition Region: frequencies above wy, and Q2 but below \/(wg +97?). The fast Alfvén wave is
cut off, but a semi-transverse EM wave can still be transmitted as long as the particle motion
is mainly along Z, minimising the influence of the magnetic field.

(d) High Frequency EM Region: ordinary and extraordinary electromagnetic waves propagate in
this region.

(c) Stop Region: below w, but above Q. No waves propagate in this region.

3.5 Warm Equal Mass Plasmas

We now extend our treatment of plasma waves to a warm equal mass plasma. Thus our momentum

equation is now

v s] 1 8P

We have temporarily dropped the species subscripts for clarity.
As previously we linearise these equations, additionally letting P = Py + P;, where P is an

equilibrium pressure and P; is a perturbation. This, after Fourier analysing, gives

iwv = L(E + v x Bg) + — Pik. (3.48)
m nom

Now, assuming our plasma to behave as an ideal gas, we can state that for adiabatic changes
P, = ykpTn,, where v is the ratio of specific heats, T is the temperature of the species and kp is

Boltzmann’s constant. From the continuity equation we easily see that

ny = Dok V (3.49)
w
Thus
iwv = L(E+vxBo)+ Bk . v) (3.50)
m mw

The resulting equations for the velocity components can be solved in the same way as for the cold
plasma, although the expressions are more complex. With the aid of computer algebra (Reduce

3.3) this difficulty is overcome and results in the following
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_ q(Eq(ia%k2w cos? 0 — iw3) + E,Q(a%k? cos? § — w?) + E,(—ia’k%w sin 6 cos §)) )
- m(w2(w? — Q2) + a2k2(Q2 cos? § — w?)) ’
Y _ (EzQ(—a%k? cos? 0 + w?) + Ey(ia%k’w — iw3) + E,Q(a%k?sin § cos )
v m(w?(w? — N2) + a2k?(Q2 cos? § — w?)) ’
_ q(E;(—ia®k? cos Osin 8) + E,Q(a%k? cos Osin 0) + E, (ia?k*w sin? 6 + iQ%w — iw?))

Uy

v m(w?(w? — $12) + a2k2(Q2 cos? 0 — w?)) )
(8.51)
where the adiabatic sound speed has been introduced:
a’= M (3.52)
m

We move straight on to the equal mass case, and also note that we consider both species to be at
the same temperature. This is not a further restriction over those already inherent in using the
warm plasma model. To see why this is the case consider the transfer of momentum in a collision
between two particles of masses m; and m,. The momentum transfer is proportional to m;/m,
so that it is much easier to transfer momentum between particles of similar masses than between
those of widely different mass. With electron-ion plasmas this means that each species in the
plasma can reach self-equilibrium in a far shorter time than it takes for the whole plasma to reach
a true equilibrium (Laing 1981), so it is natural at this point to develop a theory with unequal
temperatures for the species. Conversely, in an equal mass plasma, the transfer of momentum
between species is as easy as the transfer of momentum among an individual species, so that all
equilibrium timescales are the same. The equal mass plasma therefore reaches a global equilibrium
in the same time as each species could reach a self-equilibrium and so it is natural to make both
species temperatures equal.

Looking in detail at equations (3.51) we see that vy, = vs,.(Ez, EyQ, E;). Thus the dependence
of v, and v, upon E; is factored by 2 which cancels when summed over different equal mass
components. Similarly v, = vy(E;Q, Ey, E,Q) and the dependence on E; and E, cancels in the

equal mass sum. The current in a warm equal mass plasma is thus

2ing3w

i= m(w2(w3—(12)+a2k2(Q? cos? —w?))
a?k2cos? @ — w? 0 —a%k? cosfsind
x 0 a’k? — w? 0 -E (3.53)

—a’k? cosfsinf 0 a’k?sin?0 + Q2 — w?
which has the same symmetries as the cold case.

Turning to the dispersion relation (3.15) and using (3.53) we find

1-0(w?-a’k?cos? §)-n? cos? ¢ 0 cos 0 sin 6(n?—0a%k?)
0 1-0(w?-a%k?)-n? 0 -E=0, (3.54)
cos 8 sin 8(n?—©a%k?) 0 1-9(w?-02-a%k?sin? §)—n?sin? ¢
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where

w2

- 2
©= w2(w? — Q2) + a?k?(02 cos? § — w?)

(3.55)

As with the cold equal mass plasma we shall first look at propagation parallel and perpendicular

to the field before going on to look at general angles of propagation.

Parallel Solutions

The dispersion relation (3.54) for 6 = 0 is

1 — O¢(w? — a2k?) — n? 0 0
0 1 — Qg(w? — a%k?) — n? 0 =0, (3.56)
0 0 1 - Op(w? — 0?)

where ©q is given by substitution of § = 0 into (3.55).

Of course the determinant equation is trivial and yields the following solutions:

2

o2 _ 2 3.25
@i " (3.25)
for waves II; and I, and
wp
1- (@? - a%k?) =0 (3.57)

for a wave II,.

That the solutions of (3.56) for waves II; and II, are those found for a cold plasma is just what
we should expect. This is because for z and y electric fields, the particles move in the =z — y plane,
thus k is perpendicular to v and no pressure force is felt.

The solution (3.57) for II, is somewhat altered from the cold plasma case and can be written

w? = w? + a?k? (3.58)

This is of course the electrostatic Langmuir wave (with k parallel to both E and Bg) found in all

plasmas. These dispersion curves are shown in figure 3.9.

Perpendicular Solutions

With # = 7 /2 the dispersion relation becomes

1- 0,/ 0 0
0 1= Oy 2(w? — a%k?) — n? 0 =0, (3.59)
0 0 1— Op/5(w? — Q% — a®k?) — n?

with
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2
Or/2 = “> : (3.60)
w?(w? — Q2 — a?k?)

Again the symmetry of the plasma reveals itself in three distinct solutions :

s S (3.61)

for waves Il ;,

9 wi(w? — a’k?)

n“=1- (W — 7 a7FY) (3.62)
for waves I, and
2
w
n?=1- w—’; (3.38)

for waves 11 ,.

Taking the II, wave first we find the normal transverse electromagnetic wave that existed in the
cold plasma. Here of course the particle motion is confined to the 2z direction and is thus unaffected
by the magnetic field, so that k L v and no density perturbation occurs to produce a pressure
force.

Equation (3.62) can be seen to split into two parts, an Alfvén-sound wave (discussed further below)
and an electromagnetic wave,

Equation (3.61) can be rewritten as

w?= wg + Q2 + a%k?. (3.63)

These waves correspond to upper hybrid waves found in electron-ion plasmas, the upper hybrid
frequency just reducing to /(w2 + Q2) for an equal mass plasma. These waves can be seen as the
magnetised analogue of Langmuir waves and are electrostatic (k || E).

These results are summarised in figure 3.10.

General Propagation

The symmetries of the equal mass plasma cause the dispersion relation for the warm plasma to
have the same form as for the cold case (i.e. o12 = 021 = 023 = 032 = 0). Thus the solutions to
(3.54) reduce once more from a 3 x 3 determinant toa 1 x 1and a 2 x 2.

Considering firstly the 1 x 1 determinant, which gives solutions for II; waves, we find

c.ug(w2 - azk"’)

n=1-
wt — w2(Q? — a2k?) + a2k2Q2 cos? 6§

(3.64)
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This is a dispersion relation which is quadratic in k%, and solutions for various angles are plotted
in figure 3.11, where we see that the electromagnetic wave exists at all angles (as expected) and
that the Alfvén and sound waves exhibit various degrees of coupling, from 6 = 0, where they are
separate, to 6 = 7/2 where they form one single wave. This is a result of the compressional Alfvén
wave producing no density perturbation at § = 0 (because the induced gyro motion along % is still
perpendicular to k — hence the absence of a sound wave), but as # swings round to /2 a density
perturbation arises and the Alfvén wave begins to couple to the sound wave via the VP force.
Notice that we have shown the ‘sound wave’ w? = a?k? at § = 0. Although this wave does not
exist physically its dispersion relation is an asymptote for the Alfvén-sound wave as 8 — 0.

Turning to the 2 x 2 determinant (1633 — €31€13 = 0) this becomes

(1 — O(w? — a%k? cos? §) — n? cos? 0)(1 — O(w? — Q2 — a2k?sin® §) — n?sin? §)—
cos® fsin? 8(n? — ©a%k?)? = 0 (3.65)

Using (3.55) for © this becomes a cubic polynomial in k2. The dispersion relation is plotted in
figure 3.12 for various angles 4.

The figure can be seen at low frequencies to exhibit a similar Alfvén-sound wave behaviour already
discussed for the II, solution (again we plot the asymptotic solution w? = a2k? at 8 = 0). At higher
frequencies we see the extraordinary electromagnetic wave found for cold plasmas and in addition

a spectrum of electrostatic waves which can exist at any angle.

3.6 Collisional Effects In A Warm Equal Mass Plasma

The final fluid model that we study for the equal mass plasma is one which incorporates the effect
of collisions. This must be done phenomenologically, as the Vlasov equation (2.19), from which we
derived the fluid equations, ignores ‘collisions’ (or more correctly ignores close coulomb interactions
between two particles in the plasma). Despite this rather ad hoc approach the warm plasma model
with collisions is very useful. Theoretically we wish to show that the special symmetry found in
the equal mass plasma is not destroyed by the inclusion of a collision term.

The phenomenological collision term which we adopt is one which takes the form of momentum
dissipation arising from a ‘frictional’ force between two fluid elements. Included in the momentum

equation for the warm plasma it gives

av, 9 4 1 8P, &
Ty + (Vs . _3;) v, = ;:(E + v, x B) — m—aT - Z Vs, (Vs — Vyr). (3.66)

s'=1

Vs, is the ‘collision frequency’ between species s and s’. Various models can be adopted for the
form of this term (it can be a function of both v, and v,/) but we are not interested in these

specifics, rather in how an equation of the form (3.66) behaves for an equal mass plasma.
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The analysis of equation (3.66) proceeds exactly as for the warm and cold equal mass plasmas:
we first linearise and then take a Fourier transform. However, now the equations of motion are

coupled via the collision term:

;2
Wwvy = q—+(E +vy xBg)+ ilc(k cvy)—v(vye —vo)

m “ (3.67)
Wwv. = %(E +v_ x Bg)+ %k(k v.)=—v(ve —vy)

These are the six coupled equations to be solved for the six velocity components of the plasma:
v+ & v_. Physically we have not changed the equations much, but algebraically the additional
collision term is far from trivial and the resultant equations are very unwieldy. It is almost essential
to use computer algebra to solve these equations — to tackle them by hand is practically impossible.
After analysis by Reduce 3.3 the velocity components are obtained. These expressions are long ( 20
A4 pages) and not particularly useful, so we do not give them, however, we find that the extra
symmetry of the problem is not destroyed by the presence of a collision term: the dependences of
vz,; on E, and of vy, on E; , are still all factored by Q. So the dispersion relation takes on the

same form as before:

€1 0 es
0 €2 0 ]-E=0 (3.68)
€37 0 €33

But now the non-zero ¢ terms take on an uglier cast:

€1 =1— w;‘,’ [ak*(2vw cos? @ — iQ2 cos? 0 + iw? cos? §)
+ a?k?(4iv’w? + 200%w cos? 8 — (4 + cos? B)
+2iQ%w? cos? 6 — (1 + cos? 8)iw?)

+ (iw® + 4’ — iQ%w* — 4ivPw? — QW) +E — n? cos? 6,

, (3.69)
€13 =€31 = cos Osin (n” — a’k’w? [a®k? (iw? + 20w — iQ® cos® §)
+ w?(iw? - 2w +iQ?)] =+ E),
(3.70)
€22 =1 — w2 [a*k*(iw? + 2uw — iQ? cos? §)
+ a?k?(—2iw? — 60w + iw?? + iw?Q2(1 + cos? 8) + 20w?)
+ (iw® + 4wy — Q% — 4iw'? — 20Q%W3)] + = — n?
(3.71)
€33 =1 — w? [a*k* cos® O sin’ O(iw? + 2vw — iQ?)
+ aZk%(4iv? + (2 + 2cos? 0)Q%w — (4 + 2sin® O)ww?
— iQ% cos? 0 + 2iQ%w? — i(1 + sin? §)w?)
+ (iw® + 4vw® — 2iQ%0* — 4iw? — Q%P + iQ%W?)] + E — n?sin? 6,
(3.72)
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where the factor Z is equal to

atk(iw? + ww® — 2i0%? cos? § — Q2w cos? § + iQ* cos? )

+a?k2w(—iw® — buw? + 8iv2w® + Q%3 cos? 8 + 4°w? + 3(1 + cos? 0)vQ2w?
—2i(1 + cos? 0)Q2w? — iQ%w cos? § — v cos? 6)
+w3(iw® + brw? — 12203 — 2i0%0° — 81/3&12 - 8vQ%w? 4 8 Q% + i%w + 200%).

(3.73)
Solutions For Waves II,
This class of solutions is obtained by setting €22 = 0. It yields a third order polynomial in k2. The
extra solution turns out to be a repeated root of the sound wave solution and the full solution is
broadly the same as for a warm plasma. The solution is shown in figure 3.13. As all the waves are
damped there is no ambiguity between R(k), which is always positive, and J(k), which is always
negative (lying to the left of the w axis). To plot these solutions we have used a simple Coulomb
collision term (Nicholson 1983) of the form

_ 8mnglnA

, (3.74)

mivd,
where A is the Coulomb logarithm and vr is the thermal speed.

As the damping is proportional to vy 3 in figure 3.13 the temperature is lower than for the dispersion
relations shown in the warm plasma section. The characteristic damping behaviour is more evident
as the collision frequency is the same order as the gyro and plasma frequencies. Broadly, the
solutions are the same as found in the warm plasma model. The second sound wave solution is
seen to be more heavily damped than the first, thus it might be less important for wave propagation,

but more so for heating.

Solutions For Waves II,

The second class of solutions is derived from the dispersion relation by setting e;1€33 — €13€a1 = 0.
A fifth order polynomial in k2 results. On plotting the solutions the two new roots are found, as
before, to be repeated sound wave solutions. As before, it is more instructive to look at damping
when the collision frequency is high and this is shown in figure 3.14. The features of the warm
plasma are carried over with the inclusioh of damping. The plot shows that of the two additional
sound wave solutions, one is almost an exact double root of the original sound wave and the other

is a more heavily damped wave.

3.7 Equal Mass Symmetry in General Distributions

The three fluid models studied so far all show an extra symmetry inherent in an equal mass

plasma. Mathematically this takes the form of the disappearance of terms €3, €21, €32 and €33
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in the dielectric tensor. This has enabled us to characterise waves into two general classes, those
with an associated y electric field, II, and those with an associated electric field-in the zz plane,
II;.. It has also removed the important phenomena of Faraday rotation from the plasma. However,
real plasmas are not fluids and are more accurately modelled by considering kinetic theory. Can
we expect our equal mass symmetries to carry over to kinetic description? In fact, we can make

progress simply by studying the open form of the plasma momentum equation (2.27).

0 i}
—a—t(n,v,) + W (n,(vv),) = ang,, (2.27)

As noted before, this equation is open. The term (vv) relates it to the energy equation and thence to
the rest of the infinite heirarchy of fluid equations. As our symmetry involves the dielectric tensor,
derived from the momentum equation, it is sufficient to work with this term only — but to make
no assumplions regarding the term involving (vv). This ensures that the additional information
concerning the plasma distribution function can come into play.

To restate the problem, the open momentum equations for an equal mass plasma are

%(nivi) + % (ng(vv)y) = ang. (3.75)

If the dispersion relation derived from these equations — making no assumptions regarding (vv) —

has €15 = €27 = €33 = €23 = 0, then equal mass symmetry will persist.

Derivation of Symmetry Conditions
Fourier analysing and then linearising equations (3.75) we derive
wvy — iatn, + = q—ino(E + vy X Byp), (3.76)
m
where we have written k - (vv): = a*. We now calculate j = no(g4+v+ + g—v-) and examine the

appropriate terms in o. The set of linear equations for vy were solved with the aid of computer

algebra (Reduce 3.3) and the results for the relevant components for o are shown below.

012 x Bok.k(ay af + afa;) + Bok(ay +a}) +k.(a;af —azaf)+ (af —a7)

(3.77)
021 xBok, k(o af —ata) + Bok(a —af)
+k:(a;a;+a;a:)+k,(a;aj'+a;a;)+(a;+a3’) 118
013 xBk,k*(a; af —a; af) + B3k*(a; — a}) + Biksk*(a7 o} + oy of) ¢19
+ B3k, K.2(a;a;" +a;a,)+ Bgnz(a; + a;’) + Bok,k(a; ot —ata])
+ Bok(a; — af) + kz(o of + oy af)+ k,(a;a;" + a;'a;) + (a; +a;) 519)
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032 x Bik?(a; — af ) + Bokzk(ay af +aj af)+ kz(e; af —azat) +(a; —af)

(3.80)
We have written £ = |g|/imw. To interpret equations (3.77)-(3.80) we shall look for solutions
which do not invlove special cases of By or k, but instead rely on cancellation between the «
terms. Examining each of the equations in turn we see that they are all equal to zero on the same

criterion :

of = o] af =—ag ot =of. (3.81)

y

Recalling that & = k - (vv) and requiring that our criterion should not involve k, this translates

into conditions on the values of the components of (vv):

(vsvy)s = — (vavy)-, (3.82)
(vs0) 4 = — (v21y)—, (3.83)
(vvs)s =(vav2) -, (3.84)
(vevs) s =(vev:)-, . (3.85)
(v:s) 4 ={v;0:)-, (3.86)

with no restriction on the values of (vyvy)+.

Now we must also bear in mind that our plasma was initially in equilibrium. This means two things
for us. Firstly that we have no zero order velocity components: (v)4+ = 0; and secondly that the
distribution function must be symmetric about the magnetic field: fi = fi(vi,v)). The second of
these conditions has a profound impact on the moment criteria above. It means that (vzvy), (v, vy)
and (v,v,) must all be identically equal to zero. Thus the ‘equal mass’ criteria is automatically

satisfied for (3.82), (3.83) and (3.85)and we need only concern ourselves with (3.84) and (3.86).

Interpretation of Criteria
To interpret the requirements of our symmetry criteria we must first understand the nature of the
term that they refer to in the momentum equation, %ni (vv)s. On multiplying by m we see that

the term in question is actually

D niPy. (3.87)
Or

where P is the pressure tensor. Linearising and Fourier analysising this becomes

nlk -P (388)
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This term contributes forces that arise from pressure inside the plasma, and in examining the
mathematical constraints on this term we look physically at the form that the pressure force must
take for our equal mass symmetry to be preserved. _

Our requirement can easily be related to our previous discussion concerning the disappearance of
currents induced by gyro motion. Recall that the gyro motion produced currents which cancelled
when summed over equal mass components, so that no current flowed along y when an E; field
was applied and vice versa. Now, when the plasma is perturbed, pressure forces come into play,
and if the symmetry of the plasma is to be preserved these too must ensure that no current flows

along ¥ when an E, field was applied (and vice versa).

Allowed Distributions

The requirements of (3.84) and (3.86) are, as we stated above, related to the pressure forces inside
the plasma. We require for the two components of the plasma to have the same pressure force
along %X and Z. This means that the plasma components must have the same temperature along
the magnetic field and across it, but that these temperatures may be different. In addition our
symmetry conditions stated that the plasma must have no zero order velocity and be symmetric
around the magnetic field. In figure 3.15 we show an example of a distribution which will satisfy
these criteria.

It is the case however, that even if some of these conditions are not met, and that waves may
start to couple if the equal mass symmetry is broken, Faraday rotation will not reappear. This
is a specific effect related to the behaviour of the circularly polarized modes of a normal plasma
arising from the charge/mass asymmetry of eléctron-ion plasmas - our plasma will always retain
its charge/mass symmetry even if it loses the wave decoupling effect and so it will never exhibit

Faraday rotation.
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Figure 3.1. Coordinate system.

0

©

Figure 3.2. Orbits of particles in a harmonic electric field Ex: (a) negative equal mass particles; (b)
positive equal mass particles; (c) positive heavy ions. The arrow indicates the current jy produced

at phase T in the orbit. Note the cancellation of currents in the equal mass case.
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Figure 3.3. Dispersion relation for a cold equal mass plasma with waves propagating along the

magnetic field.

) (0= k‘

1<) > 1 ________
0 A
Figure 3.4. Schematic drawing of the dispersion relation for an electron/ion plasma: N —* RCP
waves; , LCP waves.
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Figure 3.5. Dispersion relation for a cold equal mass plasma with waves propagating perpendic-

ular to the magnetic field: ,ny; , IT*.
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Figure 3.6. Dispersion relation for waves IIXZ in a cold equal mass plasma: A — 0
tt/ 63 ,tt/ 33 ,tt/ 2.
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Figure 3.7. Angle between direction of propagation and electric field vector for nx2 waves at

various angles to the magnetic field: L 112 , /6, — — , K/4 ;e , /35—
St/6.
B=0
q
v
Figure 3.8. CMA diagram for equal mass plasmas:----—---—-- B Ily.
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Figure 3.9. Dispersion relation for wave propagation parallel to the field in a warm equal mass

plasma. The sound speed is 0.07c.

20

5 10 15

Wk,

Figure 3.10. Dispersion relation for wave propagation perpendicular to the field in a warm equal

mass plasma. The sound speed is 0.07c.
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Figure 3.11. Dispersion relation for Ily waves propagating at various angles to the magnetic field.

The sound speed is 0.07¢c:------—-—- ,0=0; ,1/6; , /33 , tt/2.
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Figure 3.12. Dispersion relation for IIX* waves propagating at various angles to the magnetic

s

field. The sound speed is 0.07¢c:--------—--- L6 =0; L,/ 6; , 7t/3; , Tt/2.
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Figure 3.13. Dispersion relation for Ily waves propagating at 45° to the magnetic field, incorpo-

rating the effects of collisions. The sound speed is 0.007c:
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Figure 3.14. Dispersion relation for 11** waves propagating at 45° to the magnetic field, incorpo-

rating the effects of collisions. The sound speed is 0.007c:
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Figure 3.15. A 3-D view of a distribution function satisfying the conditions for equal mass symme-
try. Both species have the same distribution - a Maxwellian modified to have different temeratures

along the field and across it.
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Chapter 4
Linear Waves In Electron-Positron Plasmas

4.1 Introduction

In chapter one it was seen that plasmas of electrons and positrons are of particular interest to the
astrophysical community. It is obvious that these will be equal mass plasmas and that consequently
some of the results of chapter three will be embodied within these plasmas. However, other physics
must be included as well - most obviously we would expect annihilation and creation processes to be
going on within the plasma and, if the plasma is to be in equlibrium, that the plasma temperatures

will most likely be relativistic.

The extra physics that we shall include will obviously complicate our results. In this respect the
results of chapter three will be useful — although they themselves will not be directly applicable to
ete™ plasmas they will be an important stepping stone in understanding the results we obtain. This
is particularly true of the results including annihilation and creation effects, where the algebraic
complexity of the equations is considerable. In particular, we might expect that the important
result of the disappearance of Faraday rotation and whistler waves will be preserved. Recall from
our short review of electron-ion plasmas that this arose from the appearance of nonzero terms in
the dielectric tensor (€12 & €21) and that the absence of these terms led to an absence of the effect
in equal mass plasmas. If these terms are also absent from the ete~ plasma dispersion relation
then Faraday rotation and whistler waves will not occur. In addition, should the plasma exhibit

the symmetry demonstrated throughout chapter three, i.e. a dielectric tensor of the form

en 0 a3
0 €22 0 ) (41)
€s1 0 33
then the splitting of waves into two classes, II, and II;;, will still occur (with the attendant
simplifications of the solutions — both in algebra and ease of interpretation).
If the plasma temperature is high and the density is diffuse, then annihilation timescales will be
far longer than the plasma period and the gyro period — the relevant periods for wave propagation;
and this means that from the point of view of wave propagation we can ignore annihilation and

creation (this will simplify the equations enormously).

Lightman (1983) gives the annihilation time for electron-positron pair annihilation as

P2

2copngInT (4.2)

tdﬂﬂ ~
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Where T is the thermal Lorentz v factort (which we will write as I' to avoid confusion with the
ratio of specific heats of an ideal gas) and o7 is the Thompson cross section. This equation is valid
when ' > 1.

This means that the ratio of the plasma frequency to the annihilation frequency is
2np¢? InT
Wp — noq cornpin , (43)
Wann Fmeo nl'?

wp 1022 I'-3/2
Wenn  Vng InT~

Thus we must satisfy the approximate criterion ng < 10** to be able to ignore annihilation.

or

(4.4)

How does this compare to the densities of electrons and positrons in thermal equilibﬁum’? It is quite
straightforward to use statistical mechanics to evaluate the equilibrium densities and Chapman

(1936) derives the result that the pair density in thermal equilibrium is

32xc3m3 _
n =——h3—TfeXP(—T. Y,
=7 x 10 T2 exp(~T,!) (4.5)

Where T, = kT/m.c?. This means that at 7. = 1 the pair density is 8 orders of magnitude smaller
than the maximum density allowable for ignoring annihilation. Thus we are well justified in treating
wave propagation without considering annihilation. (Note though that strictly speaking equation
(4.2) is only correct if I' > 1, which is clearly not the case when T, = 1. However, it will not be
too far from the correct value and given that we have 8 orders of magnitude to spare in density
we can still be confident in our result.)

Equation (4.5) assumed a plasma in thermal equilibrium with its radiation field. Such a plasma
would emit like a blackbody and, as Lightman (1982) points out, “There exist no objects of
astronomical size that have relativistic temperatures and emit like blackbodies — the energy re-
quirements would be prodigious.” Lightman goes on to consider a different class of equilibria, that
of ‘effectively thin’ plasmas (which we discussed in chapter one). This finite plasma is optically
thin to radiation of pair producing energies — it is not a true thermal equilibrium, the plasma loses

energy from escaping radiation, but it is a more realistic model of the electron-positron plasmas

1 Defined as the ensemble average of T, i.e.
JE 52
V1—v?/c?
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found in nature. These equilibria are controlled (in part) by a seed number of electron-proton pairs,
but it is found that it is possible to have equilibria which are mass dominated by electron-positron
pairs — thus justifying ignoring the protons in the plasma. And, if the seed density is low enough,
then we should be able to satisfy the criterion of equation (4.4).

Even if the models we study prove not to be physically reasonable then when we have more
advanced models, containing all the physics required, our understanding of the results will be
greatly helped by models which are simpler and easier to interpret.. To this end we shall first study
wayves in an infinite homogeneous electron-positron plasma including relativistic effects but ignoring
annihilation. Later we shall consider annihilation and creation, but we will retain our simplistic

infinite homogeneous plasma.

Figures
In all the figures for chapter four frequency is normalised to w, and wave number to ko, where

ko = c/w,.

4.2 Relativistic Electron-Positron Plasmas

To deal fully with relativistic effects, special relativity must be employed. However, to do plasma
physics in a 4-vector form is very complicated (a glance at the energy-momentum tensor reveals
Jjust how difficult fluids are to deal with, never mind plasma fluids). The main task of relativity is
however, to explain the invariance of physics in different reference frames. At the present time we
are not interested in doing this; to be able to explain the waves propagating in the plasma frame
would be sufficient for our purposes. Therefore, we can stay with a Cartesian frame in 3-dimensions
and simply use a modified momentum equation to describe the plasma. This is the momentum
equation used by Tajima & Taniuti (1990) and it accounts for relativistic effects by including a T
factor.in the first term of the momentum equation. }

d(I'nymov,) oP,
T = gn,[E +v, x B] - o

(4.6)

Dispersion Relation
We now proceed to subject equation (4.6) to the analysis developed in chapter three, i.e. lineari-
sation and Fourier analysis. In linearising the equation we can neglect changes in I' because the

fluid velocity has no zero order component. This gives,

To see why this is, imagine a box full of gas at a relativistic temperature, and of rest mass M.
While the box is stationary the fluid velocity is zero. If we try to move the box with a force F' we
must impart momentum to relativistic particles, so the effective mass of the box is MT and the

acceleration will be F/MT.
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iwngmoel'vy — kP14 = nyqy [E + vy X Bo]. (4.7)
Now, as the equation of state of the plasma is the same as in the nonrelativistic warm plasma we
can carry the result from the continuity equation across, i.e.

ngk-v

(349)

n =
w

Now, again assuming adiabatic changes, P, = ykgT'n; we can write the momentum equation as
; 1""zk(k Vi) + =2E +vi x Q (4.8)
Vi = — . —_— , .
WVt w + Tmo + +
where we have chosen to define a relativistic sound speed and a synchrotron frequency:

2 _ 7k8T _ q+Bo
=Ty BT

(4.9)

The procedure for solving these sets of linear equations is exactly the same as that employed in

chapter three. Again we use Reduce 3.3 to find the solutions, which are of the form,

vin Qiviz i3
Qivr vz Qivaz | - E, (4.10)
vay Qivaz  vas

Vi =

Dle

where

v = ia%k®w cos? 0 — iw®  vyp = a%k?cos?0 —w? i3 = —ia?k?w cosfsin g
vay = —a’k? cos? 6 + w? V9o = iatkw — iwd va3 = a’k? cosfsin b (4.11)
va; = —ia’k?wcosfsind vy = —a?k?cosfsinf  wvaz = ia’k®wsin? 0 + wWwQ? — W3

A =T'my(w?(w? — Q%) + a®k?*(Q% cos? § — w?)). - (4.12)

Of course we notice immediately the factoring of the four terms in equation (4.10) by Q4 , which

means that when we sum over our two species to obtain the current in the plasma we have,

= nog(ve —vo) =

iow a?k? cos? 0 — w? 0 —a?k® cosfsin
% 0 a?k? — w2 0 ‘E, (4.13)
—a2k? cos fsin b 0 a?k?sin? 0 + Q2 — w2
where
' A
= ngmo’ (4.14)
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and the plasma frequency of our relativistic plasma has been defined as

2
2 _ 2nog
p FmoCQ

w

(4.15)

Obviously Maxwell’s equations are the same for our relativistic plasma, so that the current need

only be combined with equation (3.9) to yield the dispersion relation as,

1-(w?—-a%k? cos? 9)/A' —n? cos? 6 0 cos 0sin 8(n?+a%k?/A")
0 1-(w?-a%k?)/a" —n? 0 -E=0
cos8sinf(n?—a’k?/A") 0 1—(w?—0%a2k? sin? 0)/A —n7sin? §

(4.16)
Most importantly we see the symmetry associated with equal mass plasmas (€12 = €21 = €23 =
€32 = 0) is maintained — this means the disappearance of Faraday rotation and whistler waves and .
the splitting of waves into two classes associated with fields E, and E, + E,. This result is in
accordance with the observations of very low Faraday rotation in extragalactic sources (Jones &

O’Dell 1977) where it is believed that electron-positron plasmas might exist (see chapter one).

Dispersion Relation For Waves II,
The solutions for waves with an electric field Ey are found by setting €22 = 0 in equation (4.16).

The dispersion relation for these waves is thus,

k*a?c?(w? — Q2 cos? 0) + k?w?(a?Q? cos? § — a®w? + a?wZ + c?Q? — Pw?) + wi(w? - Q% - W})
w?(k2a2(Q2 cos? 0 — w?) + w?(w? — 02))

=0. (4.17)

This is not the most transparent of equations, but it is possible to take high and low frequency
limits to see what its solutions might be.

At high frequencies we have an approximate dispersion relation,

k*a%c? - k*w?(c? + a?) + wt

i =0. (4.18)
The numerator is a quadratic equation in w? with solutions
wi=1k%2, W =k%?, (4.19)

i.e. an electromagnetic wave and a sound wave.

When 8 is far from x/2 the dispersion relation takes the following form at low frequencies,

wi(Q? + w2) — k2w?(a?Q? cos? 0 + a’w? + 2Q?) + k*a2c?Q? cos? 6
w?(k2a?Q2 cos? 6 — w202?)

=0. (4.20)
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Again there is a quadratic numerator in w? so that the solutions are,

) k?(a?Q? cos? 0 + a’w} + 2Q?) + \/Ic‘*(azﬂ2 cos? § + a?w? + c2Q%)? — 4k*a2¢2Q% (22 + w})
w? = .
2(wZ+Q?)

(4.21)
Unfortunately the discriminant of this equation does not factor to give a perfect square, unless

cosf = 1. So let us set § = 0 and continue. In this case the two solutions become,

. k2
TWtel

Of course, the first of these two solutions is a sound wave and is spurious. At § = 0k L v so that no

w? = k?a?, w (4.22)
pressure force is produced. The solution appears in this analysis as we neglected the denominator,
which would have cancelled out the sound wave solution.

The second solution corresponds to Alfvén waves in a relativistic plasma. To see this, notice that

it has the same properties as the nonrelativistic Alfvén wave in a cold plasma (equation (3.29)) in

that if the plasma is of low density or high field (such that > w,) the dispersion relation is,

w? ~ k2. (4.23)

And if the plasma is of high density or low field (such that Q <« wp) we have,

k2c2Q?  k202B2¢ .

2 0¢€0 252

~ = = vk 4.24
w? 2'mgng vats (4.24)

where, as before, v4 = BZ/uopm is the squared Alfvén speed, p,,, being the plasma mass density
(now including a relativistic I').

If 6 = /2 another low frequency analysis can be done. In this case the dispersion relation is,

kta2c? 4 kz(azwf, +c2Q?) —w2(Q2 + wg) _

e AR 0 (425)
so that,
wi(Q? + “’3) =k%a%c? + kZ(azw;‘,’ +c2Q?). (4.26)
If we apply a high density/low magnetisation criterion then
w? x k%a?, (4.27)

i.e. a sound wave. Conversely if the high magnetisation/low density condition is applicable then

w? x k%, (4.28)



so that an electomagnetic wave exists. Notice that in both cases there is no Alfvén wave.

In figure 4.1 a plot of equation (4.17) is shown for various angles. In this case w, = 22 and @ > v4.
At high frequencies the electromagnetic wave and the sound wave exist — in accordance with our
high frequency analysis. At low frequencies the sound wave also exists in addition to an Alfvén
wave, which drops in speed as 8 swings round from 0 and disappears at 7/2 (as expected from the
low frequency #/2 analysis).

In figure 4.2 equation (4.17) is plotted, this time for @ = 5w,. Again, at high frequencies the
expected electromagnetic and sound waves exist. At low frequencies the Alfvén wave exhibits the
same behaviour as before, (notice at § = 0 it is practically w? = k2¢? as predicted) dropping
to zero at 8 = /2. The ‘sound wave’ at low frequencies is seen to have a dispersion relation
w? ~ k2c?, again in accordance with our low frequency § = /2 predictions, but at other angles
this relationship also seems to hold. The fact that the sound wave has this curious low frequency
dispersion relation reveals the true nature of this low frequency wave to be magnetosonic. Thus,
when a > v, its low frequency dispersion is w? =~ k2a2, however in figure 4.2, where a < v4 its
dispersion relation is n w? & k%c? - but when w, < 2 then v4 = ¢, so that the dispersion relation

; : 2 o 2,2
is really just w® ~ k*vj.

Dispersion Relation For Waves I,
To find the dispersion relations for waves with fields E, + E, we must return to equation (4.16)

and set €11€33 — €13€31 = 0. This gives the unpleasant equation for II,, waves as
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[k6a4c2 (w* = 202%w? cos® § + Q* + cos* 6)
+ k4a? (ws(—ch —a?)
+ w"(czwg +22Q% + a2w}2, + 2¢2Q2 cos? 0 + 2a20? cos? 6)
+w?(—a®Q* cos? 9 - azﬂzw"‘,’ cos? § — 2¢2Q% cos® 9 — 2c2Q2w3 cos? )
+ 2c294w3 cos* 0)
+ k%w? (w6(62 + 2a?%)

192202 002 — 92202 — 20202 — 96202 _ 02,2
+w*(—2a*Q% cos® 0 — 2a*Q* — 3a*wy ~ 2¢°Q° - c*wy) (4.29)
+w?(2a%Q* cos? 6 + 20292(.03 cos? @

+ 0292w;‘: cos? 0 + Qazﬂzw;‘: + azw; + 2Q* + *QW2)
- (a294w§ cos? 0 + azﬂzw; cos? @ + 029440;‘: cos? 0))
+w? (—w® 4+ w(202 + 22) ~ W3R + 3% + op?) + Q4W? + Q7)) ]
+( k*atw?(—w? + 20207 cos? § — Q* cos? §)
+ 2k2a%w (W — Q%W2(1 + cos? 0) + Q* cos? §) + wb(—w? 4+ 20%w% — Q")) =0

It is obvious from (4.29) that even a limiting frequency analysis would not make the solutions of
this equation more transparent. However, looking at the dielectric tensor (equation (4.16)), when
the wave vector is parallel or perpendicular to the magnetic field (§ = 0, 7/2) the 2x 2 determinant
solutions factor into two 1 x 1 determinantst, i.e. the waves have decoupled into one wave with a
field E, and one with a field E, rather than two waves both with a combined field. The solutions
to the dispersion relation are now just €;; = 0 and e33 = 0, and it is possible to make a frequency
limit analysis of these equations.

Taking propagation parallel to the field first, the equation €;; = 0 for waves II,; is,

ka%c?(w? - 9%) + k2w?(a2Q? — a%w? + a%w? + ?Q? — c?w?) + Wi (W? - Q% - W))

w2(k2a2(Q? — w?) + w?(w? — 02)) =0. (430

This is the same equation as for waves II,, (4.17), with 6 set to 0. So the results of analysing
this equation at high frequencies will be the same, viz. a sound wave and an electromagnetic wave
(equation (4.19)), although the sound wave is not a real solution (k L v, again it appears.a.s we
ignored the numerator).

At low frequencies we will get the same results as the low frequency analysis at § = 0 for II, waves,

equations (4.22), an Alfvén wave and a spurious sound wave.

1 This happens because ¢;3 and €3; are both factored by cosfsin 8.
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Turning to the solutions to ¢33 = 0, at @ = 0 these are very simple,

k2a? —w? + Wl

2 =0, (4.31)

with the solution,

w? = w;;’ + k2a?, (4.32)

a relativistic Langmuir wave. There are no solutions for w < wp.

For wave propagation perpendicular to the magnetic field the II, dispersion relation is simple,

k2?2 4+ Q2 — W2+ w;‘,’

= 4.
k2aZ + Q2 — o2 0, (4.33)
with a solution corresponding to an upper hybrid wave,
w? = k%a? + Q% + w2, | (4.34)

The solution for II, waves at § = 7/2 is,

w? — wi(w? + Q2 + k2a? 4+ k2c?) + Q22 + k2 (a%w? + c2Q?) + ka?c?

=0. 4,
w?(w? — QF — k2q?) 0 (4.35)
At high frequencies a quadratic in w? results,
w? —w?(k%a? + k%c?) + kz(azw: +c2Q% + k%a®c?) = 0, (4.36)
with solutions,
k2c? 4+ k%a% + \/Ic“a4 + ket — 2k%a?c? — 4k?a%w? — 4k2c2Q02
wl= . (4.37)

2
The discriminant will be a perfect square if we assume (not unreasonably) that at high frequencies
the wavelengths of the waves will be very short. This will mean that k%a?, k%¢? > w?,©? and then

the solutions are just

w? =k, w?=1k%d?, (4.19)

an electromagnetic wave and a sound wave (just what we would expect).

At low frequencies the dispersion relation is linear in w?:

2 _ k2 (a®w? + c?Q?) + Q%!
w?+ Q2

w

(4.38)

To proceed further we might wish to assume that the plasma has w, > €. In this case the dispersion

relation is
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w? = k%a? + Q2. (4.39)

But this predicts w > £, in contradiction to our low frequency assumption. Similarly, if we were

to assume that Q > w then we have a dispersion relation

w? = k2a® + w?, (4.40)

where obviously w > w,, again in contradiction to the low frequency assumption. However, we might
tentatively conclude that the failure of our analysis predicts that there will be no low frequency

waves for II, at 6 = /2. But we will have to return to the full dispersion relation to confirm this.

Figure 4.3 shows the dispersion relation (4.29) plotted when w, = 2Q at # = 0. All the predicted
waves are seen to exist: Alfvén, Langmuir, electromagnetic. In figure 4.4 (4.29) is plotted for
Q = bw,, and again all the expected waves exist.

Figure 4.5 shows (4.29) plotted when w, = 2Q at § = n/2. The predicted electromagnetic and
sound waves exist at high frequencies, along with the electrostatic upper hybrid wave. However,
below Q no wave exists, as we expected from our low frequency analysis. In figure 4.6 (4.29) is
plotted when € = 5w, at § = 7/2. The electromagnetic wave exists above wy, (this is a II, wave,
plasma motion along the field and so unaffected by it in both cases). The upper hybrid wave is
also present, as is the sound wave. Again there are no low frequency waves.

Figure 4.7 shows the dispersion relation for various angles when w, = 2Q. At high frequencies
there is a sound wave, an electromagnetic wave and an electrostatic wave (very similar in form to
the warm equal mass plasma of chapter three). At low frequencies there is an Alfvén wave which
dies as § — 7/2 and coupling produces a magnetosonic wave at low frequencies which resonates
at the same frequency as the Alfvén wave. In 4.8 the plot is for @ = 5w,. Essentially the same
behaviour is observed as in the previous graph, but notice that between w, and Q the mid angle
magnetosonic waves lie close to w = k¢, confirming their nature. (This is similar to the behaviour

of the II, waves.)

4.3 Annihilation And Creation In Electron-Positron Plasmas

We noted at the start of the chapter that there were situations where it might be possible to ignore
annihilation and creation inside the plasma. However, a mixed plasma of particle—anti-particle pairs
cannot avoid annihilation for ever, and so it would seem relevant to extend our analysis to include
some measure of annihilation and creation effects. Such processes are complex and highly nonlinear,
with many reactions needing to be considered. However, for the purposes of wave propagation we
should bear a few facts in mind which will enable us to make a simplified analysis. Principally

waves will propagate on a fast timescale and as such the long term evolution and equilibrium of
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the plasma (see chapter one) need not concern us. Also, as the waves we have been considering are
of infinitesimal amplitude, we can linearise all the relevant equations.

Annihilation and creation are expressed mathematically in the continuity equation, so that we
might write,

on Ongv
_é_tﬁ + ;r £ = ve(ng,no) —va(ng,n_), (4.41)

where v represents the creation of pairs and v4 the annihilation. Note that we have allowed for
vc,a to be functions of the local densities of electrons and positrons. In practice they will also
be functions of the local spectrum of photons, but we shall assume that the perturbations in the
plasma will be so small that the effect on the local photon spectrum can be ignored. There is no
contradiction in assuming the perturbation to affect the electron and positron densities but to be
too small to effect the photons if we also assume that the plasma is optically thin to high energy
photons. If there is then any disturbance in the photon spectrum, it will be communicated at the
speed of light across the whole wave and the perturbation in the spectrum will be at least of second
order — and hence ignorable. As we noted at the beginning of this chapter (and in chapter one)
electron-positron plasmas might well be expected to be thin to such radiation, so this assumption
would be justified.

What exact form should we take for v, 47 To the lowest order in the fine structure constant, the

following processes exist which create pairs,

7+7—>e++e_, (4.42)
v+et set4et +e, (4.43)
et tet mef fef et e, (4.44)

i.e. pair creation by photon collisions with other photons, photon collisions with electrons or
positrons, or electron and positron collisions with electrons or positrons.
Again to the lowest order in the fine structure constant, there is only one annihilation process

which is relevant,

et +e” =7+, (4.45)

i.e. two body pair annihilation.

What form do these reactions take when linearised? The creation rate v¢ is

Ve = VCyy + Vevye(Ng + n2) + Veee(ngy +n2)(ngy +n2). (4.46)
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VCyy is the rate of reaction (4.42) and vc,e is the rate of (4.43) (notice it is proportional to the
densities) and vc.. is the rate of (4.44) (proportional to densities squared). When linearised this

becomes

VC =VCyy + Veye(nos + no— + niy +n1-) + Vcee(noyNoy + 21040

+ no-no— + 2(ngeni— + noyniy + no-—n1— + ng_n14)). (4.47)

For the processes of annihilation we write

VA = Vgangn_, (448)

where v 45 is the rate of two body annihilation, and then linearise,

Vp = VAg(no+Tlo_ + no4ni- + no_n1+). (449)

Now we assume that the rates of zero order creation and annihilation balance, so that the net rate

of particle creation is

Veve(N14 + n1-) + 2Vcee (no+n1- + no4n14 +no-n1- + no- n1+)

- VAg(no+n1_ + no_n1+). (450)

But all the terms we have are linear in ny4 + nj_, so we can define v such that

vc —va = —v(niy +n1o). (4.51)

In fact it is obvious that no matter which annihilation and creation reactions are considered, once
they are linearised they will be factored by ny4 + n;_ and can be included in the above definition

of v. Thus we can consider a generic continuity equation (albiet with a complex parameter v) of

the form
iwnyy —ingrk vy = —v(nyyp +nq). (4.52)

Dispersion Relation

Solving the linearised continuity equation (4.52) gives,

inprwk - vy tv(nork-vy —no_k-v.)
w(2v + w) '

nit+ =

(4.53)
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As we wish our results to be applicable to astrophysical situations then it is appropriate to adopt

the relativistic model of the plasma momentum equation discussed in §4.2.

d(T'n,mov,) _ OP,
T_qn,[E+v,xB]— 3 (4.6)

Linearised in the same way as the previous section, this gives

iumomgl"vi - ikPli = ﬂi(]t[E + Vi X Bo] (4 . 7)

We now have to substitute the more complex solution for n; 4+ into this equation. Of course, the real
problem is the same as occurred in chapter three when we considered a collisional model (§3.6).
Instead of two sets of three equations for the plasma species velocities we now have one set of
six equations as the solution of the continuity equation involves both v, and v_. However, the
mathematical techniques have not changed and the extra algebraic difficulties can be overcome
again through the use of computer algebra (Reduce 3.3).

The solutions to the velocity equations are long and complex (~30 A4 pages). They do not reveal
much information so thay are omitted. It is the case however, that the dependence of v;+ on Ey
is factored by €, and similarly the dependence of v+ on Ey, vyx on E; and vyx on E, are also
factored by 2. This means that both the conductivity tensor and the dielectric tensor have the
same form as was found throughout chapter three, and that Faraday rotation disappears and the

waves will split into two classes of solution. The dielectric tensor is

€1 0 a3
e=| 0 €2 0 |-E, (4.54)

where the nonzero components are,

€1 =1- [k‘;a"wﬁ cos? 0(44.:5 — Givwt — w3(12u2 + Q% cos? 6)
+ ivw? (812 + 602 cos? 8) + 1202Q%w cos? § — 8iv3Q? cos? §)
+ kzazwf,u(—ws(l + cos? ) + ivw® (6 + 8 cos? 0) + w?(120% + 202 cos? §
+ 2407 cos® 0) — ivw® cos? 6(149% + 320%) — 12w cos? 6(36Q2 + 1617)
+ 40i3Q%w cos? 0 + 160202 cos? 6)
+ wiwd (W — Bivw® — w(QF + 240%) + i (8022 + 320°) + V2w? (2407 + 1617)

- 320 Q%w — 161Q%)] + = — n2cos? 6
(4.55)
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€22 =1 — [k*awZ(w® — 6ivw? — w3(Q? cos® 6 + 1202)
+ 1w (692 cos? 0 + 8v?) + 1202Q%w cos? 6 — 8i3Q? cos? )
+ k2a?wlw(—2w° + 14ivw® + w*(Q? + Q2 cos? 0 + 36v%) — i (6Q? + 802 cos® 6 + 400%)
— 1221292 + 2492 cos? 0 + 1602) + iPw(8Q? + 3202 cos? §) + 161202 cos? 8)+
(.‘:;‘:(‘33((...’6 - 8ivw® —wi(Q? + 240°) + i (807 + 320%) 4+ 12w 2 (2407 + 1617)

- 320°Q% — 161Q?)] + E — n?
(4.56)
ea3 =1 — [k*a*w2(w® sin® 6 — 6ivw* sin® 6 + w3(Q? cos? § + Q? cos® § — 12v% sin’ 6)

+ ivw?(8v% sin? 6 + 6Q2 cos? 0 + 602 cos* 0) + 12v2Q%w cos? §sin? § — 8iv>Q? cos? fsin? 6 ,
+ lc2a2w,:;(u7(cos2 8 — 2) + ivw’(14 — 8 cos? ) + w5(2Q% + 3607 — 241 cos? 0)

+ 1w (202 cos? 0 — 1402 + 3202 cos? 0 + w3(1202Q2 cos? 8 — 361202

— Q% cos? 8 — 160 sin? ) + ww?(4002Q? 4 6% cos? § — 240°Q% cos? §)

+ v2Q%w (1612 5in% 8 + 12Q2 cos? §) — 8i13Q* cos? 0)] =+ = — n?sin? §

(4.57)
€13 = €31 =cos fsin f( [k“a"wﬁ(—ws + 6ivw?
+w3(120% 4+ Q2 cos? §) — ivw? (817 + 692 cos? 8) — 120°Q%w cos? 8
+ 8i°Q% cos? §) + kzazwgw (w® — 8ivw® — w(Q? + 2402) 4 in3(8Q7% + 3207)
+ 17w?(2492 + 160%) — 32i°Q%w — 1617Q?)]+E + n?) (w58)

Where the factor Z is equal to

= =k%a* [w7 — 6ivw® — w¥ (1207 + 2Q? cos? ) + ivw*(12Q7 cos? 6 + 81%)

+ w? cos? 8(24v?Q? + 02 cos? §) — ivQ%w? cos? (1617 + 6Q2 cos? 0)

— 1202Q% cos* 0 + 8i12Q* cos* 0] + 2k%a%w [ — W+ Tivw” + w802 + Q% cos? 6 + 187)

— W’ (TQ% + TQ% cos? 0 + 200%) — w*(Q* cos? 8 + 18v20% + 18°Q% cos® 6 + 8v*)

+ i3 (719 cos? 0 + 2002Q2 + 200%Q2 cos? §) + 22w (1802 cos? § + 812 cos? 6 + 81/2]

+w? [ws — 8ivw” — w8(20% + 240?) + WS (1602 + 3202) 4+ W (Q* + 48,%Q7% + 1617)

— (BN + 647) — 207407 + 327) + 820 + 16040%).

(4.59)

This dispersion relation is the most complex studied so far; clearly it is impossible to attempt to
gain algebraic insight into the behaviour of the equations as they stand. Even a limiting frequency
analysis is not a great deal of use — either all the information about damping is lost and we are
left with results similar to those in §6.2 or a slightly simplified, but still intractable equation, is

derived and still no algebraic insight is possible. Clearly we should now proceed graphically and
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attempt to interpret the plots of the dispersion relations.

Solutions For Waves II,

In figure 4.9 the dispersion relation is plotted corresponding to the solution €23 = 0. In this case
wp = 2Q = 2v and 8 = 7w /4t. R(k) is plotted on the left of the y-axis, I(k) to the right. The real
part of the solutions accord with the waves which we found when we studied relativistic effects
without annihilation: the electromagnetic wave, sound wave, magnetosonic wave and Alfvén wave
are all present. However, there is one additional solution - at low frequencies there is a wave which
has a dispersion curve close to the sound wave and resonates at the same frequency as the Alfvén
wave. Above the synchrotron frequency the new solution appears again, becoming rather like the
sound wave in character at high frequencies. An important point to make is that this wave is (in
both cases) essentially undamped. The Alfvén wave and sound wave are heavily damped. This is
because they involve the density perturbations which cause annihilation and creation — and this
absorbs energy from the wave. The new solutions cannot involve significant density perturbations
as their damping is of the order of 10717 (i.e. Y(k)/R(k) = O(10~'7). This is to be compared with
the Alfvén wave or the sound wave: S(k)/R(k) = O(10~!) and with the electromagnetic wave:
Q(k)/R(k) = O(10~3)). This wave would appear to be something of a problem to understand. It
would seem at first that it must involve no density perturbations — otherwise it would be damped.
But the fact that at high frequencies it has a sound wave dispersion seems to indicate that it
must have density perturbations associated with its propagation. However, it is possible to have a
density perturbation without damping if we look at the form of the continuity equation (4.52). It is
linear in ny + n_, so that if the perturbations in n; and n_ are out of phase then no annihilation
will occur — hence the wave will remain undamped. One thing which remains to be investigated is
whether this wave is physical or not.

The damping is shown on a larger scale in figure 4.10, the damping of each wave being identified.
In figure 4.11 the dispersion relation for II, waves is plotted for w, = v = /4, again at 0 = 7/4.
All of the waves found in §6.2 exist again, and have the same behaviour in ®(k). The new solution
is also present, with the same cut off, resonance and high frequency behaviour as before, and the

damping is still negligible.

Solutions For Waves II,,
The solutions for the second class of waves, corresponding to fields F; + E, and found from

€11€33 — €13€31 = 0, is shown in figure 4.12. Here w, = 2Q = 2v and § = 7 /4. Once again the

This is almost certainly an unrealistically high damping rate. It is chosen, not for realism, but to
give a general understanding of the behaviour of the equations under study. It is much easier to

interpret the graphs if the damping is high.
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solutions found when damping was not considered correspond to the R(k) dispersion relations
for the sound wave, the magnetosonic wave, the Alfvén wave, the electromagnetic wave and the
electrostatic wave. However, the dispersion relation is 5th order in k2 and two new solutions arise.
At low frequencies one of the new solutions is a second root to the sound wave. The other has
a dispersion curve above that of both the sound wave and the Alfvén wave. This wave is almost
undamped (S(k)/R(k) = O(1071%)) as is the Alfvén wave (S(k)/R(k) = O(10~'*)). The sound
wave is strongly damped (S(k)/R(k) = O(1)), revealing that it is associated with a strong in
phase density perturbation. At high frequencies the new solutions reveal themselves as a continued
double root to the sound wave and another solution which closely follows the sound wave dispersion
curve. The electromagnetic and electrostatic waves are lightly damped as is the new solution
close to the sound wave (all have (J(k)/R(k) = O(10~%)). The sound wave is heavily damped
(S(k)/R(k) = O(1071)).

In figure 4.13 the dispersion relation is plotted for w, = v = Q/4, § = x/4. Again similar waves
exist to those found in the previous figure. The double root magnetosonic wave still exists at low
frequencies, and is heavily damped throughout (3(k)/®(k) = O(1)). The Alfvén wave and the
other new solution also exist here and they are very lightly damped (S(k)/R(k) = O(10714)). At
high frequencies the electromagnetic wave is lightly damped (S(k)/R(k) = O(10~1?)), as is the
electrostatic wave (I(k)/R(k) = O(10~11)). Also lightly damped is the new partner wave to the
sound wave (S(k)/R(k) = O(10~1!)), but the double root sound wave itself is heavily damped
(S(k)/R(k) = O(10°1)).
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Figure 4.1. Dispersion relation of Ily waves in an ete plasma, T = 10 and uip = 2D:

, 0= 0]-—-—-—-- JOUOR 5 X L tt) 3 gm———, 1t/ 2.
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Figure 4.2. Dispersion relation of lly waves in an e+e plasma, T= 3 and 5uwp = D:

, 6= 0; R L - s TE/3 5 e , Tt/2.
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Figure 4.3. Dispersion relation of Ilr* waves parallel to the magnetic field in an e+e plasma,

T = 10 and up = 2Q.
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Figure 4.4. Dispersion relation of n XJ waves parallel to the magnetic field in an ete plasma,

T = 3 and 5ur — Q.
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Figure 4.5. Dispersion relation of IIX* waves perpendicular to the magnetic field in an e+e

plasma, I'= 10 and up = 2f2.

lo

Figure 4.6. Dispersion relation of 11** waves perpendicular to the magnetic field in an e+e

plasma, 7 = 3 and bup = Q.
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Figure 4.7. Dispersion relation of IIx* waves at various angles in an e+e plasma, = 10 and

uip = 2Q: ,0=0;—— L7165 ,tt/ 33 v-n/2.
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Figure 4.8. Dispersion relation of nxi waves at various angles in an ete plasma, = 3 and

swep = O: ,0=0; 1 p— s T3 5 v , TH2.



Figure 4.9. Dispersion relation of ny waves at 0 = 45° to the field in an ete plasma with

annihilation, 7 = 10 and wp = 2v = 2Q.

Figure 4.10. Dispersion relation of ny waves at 6 — 45° to the field in an e+e plasma with

annihilation, T = 10 and up = 2v = 2fi. The scale on the left of the £ axis has been expanded.
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New Solutio:

Figure 4.11. Dispersion relation of Ily waves at 9 = 45° to the field in an ete plasma with

annihilation, T = 3 and 5L/ = bis = Q.

Electromagnetic,

Sound

Figure 4.12. Dispersion relation of IIT. waves at 6 = 45° to the field in an e+e plasma with

annihilation, T = 10 and up = 2v = 2d.
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New Solution

Electrostatic

Figure 4.13. Dispersion relation of waves at 6 = 45° to the field in an ete plasma with

annihilation, T = 3 and 2wp = 2u = Q.
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While natural science up to the end of the last century was predominantly collecting science, a
science of finished things, in our century it is essentially a classifying science, a science of pro-
cesses, of the origin and development of these things and of the interconnection which binds all
these processes into one great whole.

Fredrich Engels, Thesis on Feuerbach

Chapter 5
Nonlinear Waves In Equal Mass Plasmas

5.1 Nonlinear Physics

Over the past 15 years there has been a paradigm change in our understanding of the natural
world. In all scientific disciplines — chemistry, biology, mathematics and physics — new ideas about
nonlinear systems have come to the fore and are playing a key role in understanding nat;lre. These
ideas (loosely grouped under the flag of ‘chaos’, but more accurately termed nonlinear dynamics)
are concerned with understanding the behaviour of nonlinear systems — the type of systems of
which the real world is primarily composed.

The simplest of nonlinear systems are now known to exhibit fantastically complex behaviour and,
most importantly, given the initial conditions of the system, we will not be able to predict its
motion for all time, so sensitive is it to these conditions. However, the fact that simple systems
with low degrees of freedom (e.g. the ‘standard map’, z,41 = 4Az,(1 — z,); (Feignbaum 1980,
May 1976) or the Hefion Attractor; (Herion 1976)) exhibit complex behaviours means that perhaps
systems with complex observed behaviours are actually controlled by essentially simple systems
of equations (or at least their qualitative behaviour can be modeled by a much simplified system,
e.g. Lorenz’s (Lorenz 1963) famous ‘butterfly’ attractor which reproduces the complex behaviour
of weather systems after a seemingly absurd truncation of the Navier-Stokes equations).

In plasma physics one of the most important lessons we should learn is that often the linear and
nonlinear behaviours of a system are very different. The forced simple pendulum is a case in
point (Baker & Gollub 1990). As we are almost invariably dealing with equations which are highly
nonlinear, we should expect nonlinear effects to be of great importance, and indeed, they have had
a substantial impact upon the field (Infeld & Rowlands 1990, Sagdeev et al 1988). In view of this
we shall now go on to start the study of nonlinear effects in equal mass plasmas, and we shall start

with the most basic plasma phenomena — electrostatic oscillations.
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5.2 Electrostatic Plasma Waves in Electron-Ion Plasmas

One of the simplest cases of nonlinear plasma theory is that of the problem of one dimensional
electrostatic waves inside an electron-ion plasma. For such waves inside a plasma with infinitely

massive ions, the electron motion is described by the following equations,

On.  0(neve)

3 £ 0, (5.1)
dv, Ove  —e
W +vcg = EE) (52)
JdE e
B = e—o(no —ne). (5.3)

The linear solution to these equations is trivial and was first found by Langmuir & Tonks (1929)

_ / e2ng
wo = Moo ) (5'4)

i.e. The plasma frequency oscillation — the most fundamental and important parameter in plasma

who derived the result that

physics.

As plasma frequency oscillations are so important it was not surprising that they were one of the

first plasma wave problems to be tackled nonlinearly. The first approach, by Sturrock (1957), was

to expand the equations in terms of a small parameter €. Adopting the linear solution as his zero

order solution he analysed the transfer of energy between different modes of the oscillations. In

particular he found that in the 1-D case, when averaged over time, no dispersion occurred.

The exact solution to the 1-D electron plasma problem followed not far behind Sturrock’s ap-

proximate solution. Konyukov (1960) was able to solve equations (5.1)-(5.3) by transforming to

Lagrangian coordinates, and a similar analysis was performed by Davidson & Schram (1968) in

the following way.}

Firstly we supplement equations (5.1)-(5.3) with the # component of the V x B Maxwell equation,
0F 1,

E = -—e—o]. (5.5)

Although this equation is not necessary — equations (5.1)-(5.3) describe the plasma completely ~

it is a useful addition when we apply the following change of variables:

T=t, (5.6)

t The equations for nonlinear electron plasma oscillations can also be solved by using stream functions

(Kalman 1960).
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X=z —/ ve(x, 7')dr’. 5.7
0

From these relations it is easy to see that the space and time derivatives transform in the following

way:

d T 9 1o
'—ax -_ [1""/0 axvc(XvTI)dT] axl (5'8)
9

a T 6 / / ! 6
-a? - E - ve(er) [1 +/0 a_xvc(XrT )dT] a—x' (59)

Now, the great advantage of Lagrangian variables is that they follow each individual fluid element.

This means that the convective derivative is simply

7] 9 0
E‘f“vea _-6_1-' (510)

Thus, in terms of the new variables the momentum equation just becomes

Ove(x,7) _ e
= —'m—eE(X,T), (5.11)

with the continuity equation transforming to

i) T ,
5 {ne(x,r) [1 +/0 a—xve(x, r')dr ] } =0. (5.12)
The value of introducing the V x B equation is now seen as we can write
7] 9 engv,
— —| = 2= 5.13
[6t t+ve 3.1:] E € (5:13)

i.e.

a_E _ enOvC(X) T)

5.14
or € (5.14)
From equations (5.11) and (5.14) it is evident that the equation for v, has the form of a simple

harmonic oscillator,

0%ve(x, 7)

512 +w?ve(x,7) = 0. (5.15)

Now x has appeared as a parameter in a linear equation for ve(x, 7). This means that the general

solution to equations (5.11) to (5.14) are

ve(x, T) = V(x) cosweT + we X(X)sinwer, (5.16)
E(x,7) = % (weV(x)sinw,r — w2X(x)coswer), (5.17)
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and

ne(x: 0)
ne(x, 7) = . (5.18)
[1 + iéyaixﬁ sinw,t + %&’Q(l — COSwW,T)
V(x) and X(x) can be found from the initial velocity and electric field profiles:
—e
V(x) = ve(x,0), X(x) = —=E(x,0). (5.19)
mew?
Also X (x) is related to the initial density (n.(x,0)) through Poisson’s equation at 7 = 0:
X (x) _ ne(x,0)
B - me 1. (5.20)
The transformation equations can be expressed in terms of V and X,
r=t, z=x+ V“EX) sinw.r + X (x)(1 — cosw.T). (5.21)
e -

However, to make the transformation from Lagrangian back to Eulerian via. equation (5.21) re-
quires the specification of the initial conditions V(x) and X(x). This usually means having to solve
a transcendental equation, however, it is obvious from the Lagrangian solutions to the problem
that coherent oscillations at frequency w. are maintained over the region of the initial perturbation.

Davidson (1972) gives an example of the inversion to Eulerian variables, but we shall not do so.

5.3 Electrostatic Plasna Waves in Equal Mass Plasmas : Numerical Simulation

As plasma frequency oscillations are of such a fundamental nature it is of interest to see what the
behaviour of these waves is inside an equal mass plasma. Having established that the equations
can be solved exactly for an electron plasma the first thing to do is to see if the same methods can
be applied to an equal mass plasma.

The equations for equal mass plasma oscillations are almost exactly the same as for the electron

plasma, but include the dynamics of both plasma components:

Ong | d(ngvy) _

ot oz ’ (5.22)
Ove  Ovi gz

T + vt 5z = mE, (5.23)

OF e

'53—: = 6—0'(71+ - Tl_). (524)

It is the inclusion of the dynamics of the second plasma component that invalidates the approach
adopted for the electron plasma. A Lagrangian transformation can be made, but as we have two
fluid components we need two changes of variable and hence separate variables describe the evolu-

tion of the positive and negative species. However, when we calculate the field we need to know the
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densities of both species at one point in space. Hence we must relate both of our sets of Lagrangian
variables to each other. This can only be done by transforming back to Eulerian coordinates and
thus the benefits accrued from transformation are lost.

If we try to adopt the alternative approach of Kalman (using stream functions) a similar problem
arises. Two stream functions are needed and a reverse transformation needs to be done to calculate
the electric field.

Having failed to get an exact solution we must try another approach. The most obvious method is

to numerically integrate equations (5.22)-(5.24).

Numerical Integration
The numerical integration of the 1-D electrostatic equal mass equations is straight forward enough.

For simple first order Euler integration our equations would become,

(n+(z’t) - n—(z’t)) + (n+(x + lat) - n—(z + 1,t))A.‘L'

E(z +1,t) = E(z,t) + 5 , (5.25)
vi (e, + 1) = va (2,04
[:i:E(x,t) — va(z, )22 1";;:*(” - 1")] At, (5.26)
na(z,t+1) = na(z,1) - [n(x,t)”*(’” + l’t)m;:*(” —LY,
o(z, 1) EEF l’t;;:*(z - l’t)] At, (5.27)

where (z+1,1) refers to the variable evaluated at position £+ Az etc. and we have set all constants
(q,rﬂ,eo) equal to 1.

Writing the equations in this order makes the most sense in terms of numerical integration and
physical intuition. Differences in density cause an electric field. This field causes forces to act which
change the velocity of the plasma fluids. The velocity of the plasma causes the density to change.
The numerical integration consists of two distinct steps; firstly the spatial integration of n4 to
determine the field, then the temporal integration of n and v.

Although a first order Euler integration method is very simple it can be unstable (Tajima 1971)
so we would like to improve on this technique. It would seem at first glance that these equations
would be suitably integrated by the leap frog method — evaluating E and n at time ¢, then finding
v at t+1,, then E and n at time ¢t + 1 etc. However, the evolution of v involves not only n (through
E) but also v itself. The equation for n is similarly a function of n. This means that we are better
using the predictor-corrector method.

The principal problem of the Euler method is that while we wish to integrate our equation by
stepping from ¢t to t + 1, it only evaluates the variables on the RHS of the finite differenced

equations at time ¢. Figure 5.1 illustrates the problem. The predictor-corrector method overcomes
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this difficulty by using the first order Euler scheme to make a prediction of n(z,t+1) and v(z,t+1)
(called npreg(x,t+1) and vpreq(2,24 1)). Then we evaluate the time centred values of the variables
by averaging, i.e. n(z,t +'/) = (n(z,t) + nprea(z,t + 1))/2. Finally we use these time centred

variables to evaluate the final corrected values of n(z,t + 1) and v(z,t + 1), i.e.

ve(z + 1,1 +15) —ve(z — 1, +14)
+
2Az

ng(z + 1,1 +15) —ni(z — 1, +14)
2Az

and similarly for vy. This makes this method of integration more accurate and stable than the

ni(z,t+1) = ng(a,t) — [n(x,t +14)

v(z,t +1/) ] At, (5.28)

first order Euler.

Because our equations are spatial in extent, it is difficult to calculate the amplification matrix
(with five variables across a spatial mesh of size M the amplification matrix would be 5M x 5M).
However, there is one simple check which can be used to see if our numerical integration is stable.
The equations we are using do not conserve energy explicitly — only implicitly. If we calculate
the energy of the plasma during the numerical simulations it should be constant, and if it is we
can have confidence in our results. There is another check that we can employ. Analytic results
are available for the electron-ion plasma oscillation. Our numerical experiment must be able to

duplicate these analytic results.

Numerical Integration of Electron-Ion Plasma

Equations (5.1)-(5.3) were integrated using the predictor-corrector method described above with
periodic boundary conditions. In figure 5.2 the results of the simulation are shown. As can be
seen, the initial sinusoidal wave form is highly distorted when it evolves towards ¢ =! /T, with
electrostatic forces bunching the electrons and forming a peak density of 5.5. The exact solution
(given by Davidson 1972) also predicts a peak density of 5.5. In addition it can be seen that the
wave is harmonic with a period w, = 1 so that the results of the exact solution have been duplicated
by our numerical simulation.

Finally in figure 5.3 we plot the total plasma energy as a function of time though the simulation
run. As can be seen it is very steady, fluctuating only by 0.0125%. In figure 5.4 we plot the energy
as found from a simulation which uses the first order Euler method to integrate the equations.
The improvement in energy conservation is impressive — the Euler integration leads to a secular

increase of 1.8% in the plasma energy, clearly an undesirable feature.

Numerical Integration of Equal Mass Plasma
Utilising the predictor corrector method again, figure 5.5 shows the evolution of the negative density
component of an electrostatic wave in an equal mass plasma when a perturbation 0.1 is applied. It

is seen immediately that the character of the evolution is qualitatively different from the evolution
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of the electron plasma. Instead of steady oscillations, the plasma oscillates to higher and higher
peaks — and eventually these peaks become so high that they are finer than the mesh spacing of
the program and the simulation breaks down. If we look at the evolution of the positive density

component of our plasma (figure 5.6) then what is happening becomes clear.

When the electrons in the electron-ion plasma are bunched together by electrostatic forces there
exists a heavy neutralising background which pulls down the electron fluid and restores the original
sinusoidal shape. In the equal mass plasma a similar sort of evolution exists ~ each component
suffers electrostatic bunching and forms a density peak (as the perturbation of the plasma is small,
the peak is much smaller than that of the electrons in figure 5.2, where the perturbation was 0.45.
If this large a perturbation is applied to the equal mass plasma it goes unstable in under half a
plasma period.) However, in this case there is no heavy background. Instead, the other species
is also light, so that although the ‘spiking’ species is pulled down by electrostatic attraction, the
‘neutralising’ species is pulled up. And the simulation shows that it is pulled up into an even higher
spike, because the electric field, being an integral over density, is concentrated in the centre of the
denisty perturbation. This higher spike is now ‘neutralised’ by the original spiking component and
in doing so is pulled up, in the same way as before, into an even higher spike. This process continues
ad infinitum until the mesh limit of the simulation is reached. A graph of the electric field evolution
is shown in figure 5.7. This clearly shows the evolution of the field from a smooth sinusoid to a
sharp — almost step — function in the density peaks.

These results are so different from the electron plasma that some concern must be held regarding
them; however, if we graph the energy of the plasma (figure 5.8) it is clear that the simulation is
stable — the energy rises slightly towards the end of the simulation when the density spikes are
very high, but even then the energy growth is only 0.002%. Although the plasma is being forced
into higher and higher spikes, the density differences (which lead to electric fields) stay roughly
constant, and so there is no increase in energy. This fact — together with the excellent duplication
of the electron-ion plasma results — must lead us to have confidence in the simulation results.

It is obvious from figures 5.5 and 5.6 that the density distribution of the positive and negative
plasma components are symmetrical. This can be proved from the evolution equations (5.22) to
(5.24). In the simulations = varied over the range [0, 27) so consider the following two coordinate

changes:

X=z—m, X' =m—z. (5.29)
Thus X = —X’. Now consider a solution of the type
p(X) = p-(X');  va(X) = —v_(X"), (5.30)
i.e. a symmetry solution with positive and negative densities being reflections in z = .
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The density equation then becomes

Op+(X) | (s (X)vs(X)) _

ot 0X
:\(ap.a(tx') _ a(n-()g;f-(x')) -0,
=>a,o_a(tX') 4 a(n_()g’)):-(x')) -0 (5.31)
And the momentum equation becomes
%X_) +v+(X)8—"(;“3((—X—) = E(X),
N _au_a(tx') +o(xn 2= a(X ) _ E(X),
_i’.”;a(t?ﬂ oo (X)Lt 6(X') ~E(X'),
v_a(tX') + o (X a(X) E(X). (5.32)

These transforms show that if the solution (5.30) holds at one point in time then it will hold for
all time. Thus, if our initial conditions satisfy (5.30) then we only need examine one component of
the plasma to find the evolution of the whole plasma. Simply reflecting the density in £ = 7 will
give the density distribution of the other plasma component.

Although a density perturbation of 10% is much smaller than the 45% applied to the electron
plasma, it is very much in the nonlinear regime. We wish to know whether enhancement of the
density spikes occurs when the plasma perturbation is very much smaller. To this end figure 5.9
shows the evolution of electron density when the initial perturbation is 1%.

As can be seen the same process is occurring. The initial perturbation of 1% has grown to 5.4% after
6 plasma periods. The energy of the simulated plasma is again almost constant (figure 5.10shows

it constant to 0.0002

Fourier Analysis

The nonlinear evolution of the equal mass plasma can be seen in terms of the plasma acquiring
finer and finer spatial detail. If we were to Fourier analyse the plasma density in space, then as
we start with a sinusoidal perturbation at t = 0, only one Fourier component would be non-zero.
However, as the plasma evolves, higher and higher Fourier modes are being excited.

The Fourier analysis can be done on the original equations (5.22)-(5.24). Before we do this it is

convenient to introduce a perturbation density p4, i.e.

P+ = Ng — Np. (533)
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(In the numerical simulations ng = 1.)
We now take a Fourier analysis in space only. As all the quantities we are dealing with are real,
then for any quantity ¥ the Fourier terms will be Hermitian (i.e. ¥*¥ = c.c.¥~*, Bracewell 1986).

Our equations now become

dl’i ok Ik Lk
7 + 3kvi = _1k[p:i:) 'Ui], (5.34)
dvk .
S 3 BF = —iklo, o], (5.35)
ikEF = pt — pk . (5.36)

We have introduced the notation [®*, ¥¥] to stand for the following convolution

[@%, ¥¥] =) " whigk-tt, (5.37)
k1l

In this form the troublesome nonlinear terms are now the convolution terms. Without them the

problem is (obviously) linear, with a general solution

Eo = Aeiwrt 4 Afe—iwnt (5.38)

pos = :!:% (Ae“"" + A’fe-‘w»’) +C, (5.39)
_ _"ﬁg _ Aaiwyt _ At —iwyt

vox = 2(Ae' ateient), (5.40)

where the k superscript has been dropped for ease of notation, but it should be remembered in the
following that we are talking of Fourier amplitudes, not of physical quantities.

It is easy to numerically integrate equations (5.34)-(5.36) directly, again using a predictor-corrector
technique. When this is done for an initial perturbation of 0.1 then the results (figure 5.11) are
seen to be the same as those derived from Eulerian variables (figure 5.5), further increasing our
confidence in the results of the simulations. If we now plot the amplitude of the first few Fourier

components (figure 5.12) then the excitation of higher and higher Fourier modes is clear.

5.4 Electrostatic Plasma Waves in Equal Mass Plasmas : Quasilinear Analysis

We have seen that it is not possible to solve the equations for electrostatic waves exactly. However,
having Fourier analysed the equations it is possible to make a quasilinear analysis of the plasma
evolution.

The basis of this analysis will be to assume that the amplitude of the plasma oscillation is small (or
at least is small when we apply this analysis). Looking then at our Fourier equations (5.34)-(5.36)
we see that all terms are of first order in amplitude except for the convolution terms — these are

second order. If we can assume that the amplitudes are small, then to first order, we can ignore the
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convolution terms. This leads to the linear solution (5.38)-(5.40). Then to second order we have

the following equations:

d H
’;;* +ikvyy = —ik[pos, vos], (5.41)
dv .
dlti FE = —l[k’vo:k,v&h], (542)
tkEy = pr1y — p1-- (5-43)

We are aiming to derive the next order of solutions (p;+ etc.) by considering only the convolutions
of linear solutions. As we know these solutions, we are able to evaluate the convolution terms

explicitly to give

Wit 4 ikors = 208 (_ra, ajeriort — [kal, )+ (64, AT+ kAT, ATle2r), (5.4)
2
Dit £ gy = 22 (10, Aletort - [kat, 4] - [k, M) + [kl At (5.45)

tkEy = p14 — p1-. (5.43)

Notice that the terms inside the linear convolution have split into two types: those which are

harmonic in time and those which are constant. Let us treat the harmonic and secular terms

separately (p14+ = prs+ + ps4).

d;;t +ikopy = 1k:’p (_[kA,A]eZiw,t + [kAt,At]e—z"w't), (5.46)
2

d”"* FE, = TP ([kA Ale?wst 4 (kAT Atje-2iwst ) , (5.47)

ikE}, = Ph4+ — Ph-- (548)

Differentiate (5.46) w.r.t t and then substitute for dvj4 /dt from (5.47),

2

2 3k
Cone | g, -

dt?

([kA, Ale?wst 4 kAl At]e‘zi“’v‘) . (5.49)

Now substitute for Ej from (5.48) to get equations for ppy:

a2 3kw?
dl?zl+ + (Pt — pr-) = __a ([kA Ale?r* + [kal, Af]e_m’t) (5.50)
d?pp_ :

—z ~ (P —pn-) = —F ([kA, Ale?ert 4 [kAT,Af]e"‘”") : (5.51)

We now introduce new variables 1, and ¢5, where

Yh =Pht +Phey  Oh = Phy — Ph—- (5.52)
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From (5.50) and (5.51) we find equations governing % and ¢:

d*¢n _ 2kw) iw — 2w
S= (64, Alert + [kat, at)e2 »t) , (5.53)
d*¢n
W = —2¢h. (554)
The equation for ¢4 is just a harmonic oscillator and recalling that here w, = v/2 we see that the
solution is just
61 = Bpert + Blemiont, (5.55)

The equation for %5 also has a straightforward solution,

Yn = —g ([kA,A]e""""" + [kAT,AT]e-z““»‘) + Cht + Dy. (5.56)
By, Ch and D, are all arbitrary constants. We can see that i, and ¢, both contain harmonic
components. In addition, there is the possibility of secular growth in 1, through the term Cjt.
However, as this involves an arbitary constant controlling the growth rate it cannot be a satisfactory
explanation for the behaviour of the equal mass plasma.
These solutions can be substituted back into (5.48) to find E) and then (5.47) for vps (pn4 and
ph— are trivially found from (5.52)):

En =~ (Bae™* + Blemr") (5.57)

)

k
one = 22 ((ka, Aletrt + [kal, Alle=2er) £ 22 (Beiort - Ble) 1D} (5.58)
Notice that E) is purely harmonic and, as we have no flow velocities in the plasma, Dj must also

be zero so that va4 is also purely harmonic.

Now we return to (5.46)-(5.48), but this time we consider the secular terms:

et 1 iko,y = 2225 (164, 4T) - [kat, 4) (559)

dv, iw2
AL E, = _-’—‘;2 (ea, a1 + k4t 41) , (5.60)
tkEy, = psy — ps—. (5.61)

Now we differentiate (5.59) and substitute in (5.60):

2

Post | kg, = k%" ([kA,AT] + [kA'f,A]) . (5.62)

dt?

Now substitute for E, to give
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d%p, kw?
dl;2+ + (p.v+ - Ps—) = Tp ([kA, At] + [kAt, A]) s (5,63)

d2 o k 2
2=~ (per = pum) = =2 (b4, A1 4 k4t 4)). (5.64)

Again it is useful to change variables, this time to 1, and ¢, defined in the same way as before:

¢a = ps4+ + ps— ¢a = Ps+ = Ps—. (565)

This gives the following equation for ¢,

d*¢
77 = 2 (5.66)
with solution
¢, = Byert + Ble—iwst, (5.67)
The equation for ¢, is
d’g, _ kop H 4 (et
=2 ([kA,A ]+ [kA ,A]), (5.68)

and as the RHS of this equation is constant, the solutions are

k 2
bo = =L ((ka, al]+ kal, 4)) &+ Ct 4+ D,. (5.69)
The equation for ¢, is once again purely harmonic and means that the solutions for F, and v,+

are

B, = _-l‘; (B,e‘“»' . Bje-‘“»') , (5.70)

. 2 .
vys = F2 (B.eirt — Bleiert) - -’% (k4,41 + (eat, 4)) ¢+ D;. (5.71)

Now a key difference between these solutions and the ones found for the harmonic quasilinear terms
is that this time we have predicted a secular growth in the second order variables. 1, has a term
in t> and v,4+ has a term in ¢ (E, is still purely harmonic). The fact that E, remains harmonic
accords with an intuitive view of the numerical results — E sharpens around the density peaks but
does not itself grow in amplitude.

Combining the harmonic and secular parts of the solution gives us the final values of the second

order quantities. These are
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2
Y=t + ¢ = ]%’” ([kA,Af] + [kAf,A]) t2—
g (1k4, Ale?«r* + (kAT aTle=2) + Ct + D, (5.72)
¢ = ¢+ ¢, = Bert 4+ Bleivst, (5.73)
5 2
vig = —“"TP (lea, A} + kaf, 4)) t 5 2z (Beiert — Blemient) 4
2 (164, Ale?ert + [kat, atje-2int) 4 D, (5.74)

By = - (Baeir' + B,f,e-‘w»') . (5.75)
We have altered the constants of integration suitably and retain the change of density variables.

Comparison of Quasilinear Theory and Numerical Experiment

We have derived the second order behaviour of the plasma and predicted that ¢ and vy4 have
secular growth terms. This seems to be intuitively reasonable, given the behaviour of the plasma.
However we wish now to compare the quantitative predictions of the theory with the actual values

found in the experiment.

As our analysis relied upon the amplitude being small, it makes sense to first compare our results to
the case when p = 0.01. Having applied an initial sinusoidal perturbation our initial amplitudes are
A = 020.0057 in Fourier components +1. Thus the second order components which are stimulated

are =2, and ¥ should be real and v; imaginary. We shall look at k = 2 in particular.

Figu‘re 5.13 shows the theoretical and numerical values of R(¢) on the same graph. The fit is
excellent in the early part of the simulation and is fairly close even towards the end. The secular
increase at ¢ is found as well as the harmonic component at frequency 2w,. After 7 plasma periods
the actual growth is slightly larger that the predicted value, but this is what we should expect
as other Fourier components are stimulated and these start to couple to affect the growth of the

k = 2 mode.

Figure 5.14 shows $(v;_) — theoretical and numerical. Again the fit is good — especially early in the
simulation. The linear growth is found and so is the harmonic frequency of 2w,. The experimental
growth is, however, slightly faster than the quasilinear theory suggests; again this is due to the

stimulation of higher modes.

We now move to the case where the plasma is disturbed by an initial perturbation of 0.1. We should
be somewhat suspicious of the assumptions that were made in the derivation of the quasilinear
results here — a perturbation of 10% is not really small and certainly not infinitesemal. However

examining figure 5.15 (where the theoretical and numerical values of R(3) are plotted) we see that
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even in this case the fit is reasonable. The divergence from theory and experiment is naturally faster

as it is easier for the plasma to stimulate higher frequency modes with a large initial perturbation.

Figure 5.16 plots the values of J(v;1-) for the 0.1 perturbation. The linear fit is again good close
to t = 0, but diverges as ¢ increases, and the harmonic component is in this case larger than

quasilinear theory would suggest.

5.5 Conclusions

Overall, the quasilinear theory has been a success — as far as it goes. We have been able to predict
correctly the form of the secular growth (¢ for ¢ and ¢ for v;) and find a good quantitative fit
with the numerical experiments when the amplitude is low (0.01) and a reasonable fit when the
amplitude is higher (0.1). The main problem, though, is that although we can model the behaviour
of the components stimulated by the initial linear solutions, the fact that the growth of these
components is secular means that they soon become as large as the original perturbation. Then
higher and higher components are stimulated (see figure 5.12) and these couple back to affect the
growth of the quasilinear components. Unfortunately no better analytic solution has been found”

and in this region we are forced to rely upon numerical simulation.

The subsequent evolution of the plasma — with the density spikes growing to higher and higher
values — will not occur in a real plasma. The reason for this is that there is no pressure term in the
cold plasma model which we used in our simulations. Even if the assumption of zero pressure was
valid at the beginning of the plasma evolution, eventually the plasma density gradient becomes so
high that to continue to ignore pressure is wrong. We shall discuss the extension of the work to

warm plasmas in chapter six.
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t t+ 1 t At

Figure 5.1. The mean value theorem says there is a t such that

Ot + At) = <) + At
at

The Euler method uses i = 0. The predictor-corrector method uses i = 4¢/2. If 4> is smooth over

At this a very good guess and improves the performance of the integration.

Figure 5.2. Electron density in a plasma with infinitely heavy ions. The initial perturbation is a

sinusoid with ampiltude 6n = 0.45 and the peak density is 5.5.
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Figure 5.3. The total plasma energy during the simulation shown in figure 5.2.
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Figure 5.4. The total plasma energy during a similar simulation to figure 5.2 but using the Euler

method of integration. Energy is not well conserved with this integration technique.
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Figure 5.5. Negative component density in a cold equal mass plasma during electrostatic oscilla-

tions. Initial conditions were sinusoidal density perturbations of £0.1 to each component.
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Figure 5.6. Positive component density in the equal mass plasma for the same simulation as figure
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Figure 5.7. Electric field strength in a cold equal mass plasma during electrostatic oscillations.

Initial conditions as figure 5.5.
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Figure 5.8. Total plasma energy during the simulation shown in figures 5.5-5.7.
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Figure 5.9. Negative component density in a cold equal mass plasma during electrostatic oscilla-

tions. Initial conditions were sinusoidal density perturbations of £0.01 to each component.

mo-m o) , «
W(0)
2.5
1.5
0.5
0 1 2 3 4 5 TP

Figure 5.10. Total plasma energy during the simulation shown in figure 5.9
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Figure 5.11. Negative component density in a cold equal mass plasma during electrostatic os-
cillations found from integration of spatialy Fourier analysed equations. Initial conditions were
sinusoidal density perturbations of £0.1 to each component. These results are the same as found

in figure 5.5.
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Figure 5.12. First 10 Fourier component amplitudes (4k4 k) of negative density after density

perturbation of £0.1 to each component.
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Figure 5.13. V2 (V* f°r £k = 2, not ip squared) when plasma is perturbed by £ = +1 density

perturbations of £0.01:-—-—-——- , Quasilinear theory;---------- , numerical experiment.

Figure 5.14. t= (> for £ = 2, not squared) when plasma is perturbed by & = +1 density

perturbations of £0.01:--------—- , Quasilinear theory;---------- , numerical experiment.

86



Figure 5.15. xp2 (p for k = 2, not xp squared) when plasma is perturbed by £ = £1 density

perturbations of £0.1:---------- , Quasilinear theory;---------—-- , numerical experiment.

Figure 5.16. v2 (v_ for k — 2, not v_ squared) when plasma is perturbed by & — £1 density

perturbations of £0.1:-------——- ,  Quasilinear theory;-----—--—- , numerical experiment.
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One thing I have learned in a long life: that all our science, measured against reality, is primitive

and childlike — yet it is the most precious thing we have.

Albert Einstein

History itself is an actual part of natural history, of nature’s development into man. Natural sci-
ence will in time include the science of man as the science of man will include natural science:

there will be one science.

Karl Marx

Chapter 6
Future Work

6.1 Normal Wave Modes in Inhomogeneous and Hot Plasmas

The aim of this thesis has been to investigate wave propagation in equal mass plasmas. In chapter
three we discussed the normal wave modes that exist inside an infinite, homogeneous equal mass
plasma. We found that the symmetry of the plasma simplifies the problem immensely and we
derived analytic expressions for linear waves in cold and warm plasmas. We also discussed which
plasmas with a nonisotropic distribution function would exhibit the same symmerties as the fluid

models studied.

As was mentioned in chapter one, we are at the beginning of the study of equal mass plasmas.
It was therefore necessary to examine the plasma under the simplifying assumptions of chapter
three before proceeding further: however, many of those assumptions can be - indeed should be -
relaxed. Real plasmas are not infinite, nor are they homogeneous. One of the most difficult areas
of research in plasma physics is to determine self-consistently the wave modes of a plasma which
is not homogeneous (Diver & Laing 1990; Diver, Laing & Sellar 1990). It would be interesting to
see what effect the symmetry of the equal mass plasma has upon this problem. In addition, if the
study'of molecular equal mass plasma devices is to continue, then a study of the edge effects of

such plasmas should be made.

The studies which we undertook also concentrated upon fluid models of the plasma. This is clearly
a limitation, as many interesting plasma effects only happen when the velocity space structure of
a plasma is accounted for by using kinetic theory (e.g. Landau damping). As the general theory of
kinetic wave propagation is very difficult, the symmetry of the equal mass plasma can be expected

to provide some help in making analytic progress.
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In chapter four we studied linear waves in electron-positron plasmas, under much the same stric-
tures as chapter three. Faraday rotation was seen to be absent in the models we studied, which
incorporated relativistic effects and simplistic annihilation and creation. One thing which remained
to be done was to investigate the physicality of one of the waves found when annihilation and cre-

ation were incorporated into the model.

All the extensions mentioned above apply both to the study of equal mass plasmas and to electron-
positron (and other particle-anti-particle) plasmas. The study of the kinetic theory of waves would
seem to be particularly appropriate to these plasmas, which are of course at relativistic temper-
atures and which are unlikely to have distribution functions which are in thermal equilibrium. In
this case we might wish to build upon the work of Gould (1980), who studied a kinetic theory
of relativistic plasmas to derive relaxation times but who did not really consider plasma phenom-
ena. We might also hope to start to use some of the electron-positron plasma equilibria found by
many authors (see §1.3) as a starting point for really starting to tackle plasma physics problems

in astrophyical objects.

An additional, and very important piece of physics, to be included in the proper study of the
electron-positron plasma is that of the interaction of the plasma with radiation. In chapter four
we ignored radiation, and this is clearly incorrect. In a relativistic plasma there are photons with
as much energy and momentum as the electrons and positrons, so they must be very important.
Tajima & Taniuti (1990) cope with this by coupling the equation of state of the fluid to the
radiation field — perhaps in their early universe scenario when everything is in equilibrium this is
valid, but further examination is needed of the ‘thin’ equilibria present in astrophysical situations,

and proper account must be taken of the actual radiation spectrum inside the plasma.

Of course, wave propagation is not the be all and end all of plasma physics and there are many
interesting phenomena which should be investigated for equal mass plasmas. Transport theory is
just one area where the symmetry of the equal mass plasma is important (Abdul-Russak & Laing
1992) and the derivation of transport coefficients is essential if full studies of inhomogeneous,

confined equal mass plasmas is to be undertaken.

6.2 Nonlinear Waves

For the author, it is in the area of nonlinear dynamics that the most interesting work is being done
in physics today, and it is here that he expects the unique properties of the equal mass plasma
to show themselves most vividly. In chapter five we started the study of nonlinear waves in equal
mass plasmas by looking at nonlinear electrostatic waves. We found a fundamental instability in
the case of the cold plasma, with a simple sinusoidal perturbation developing into a highly peaked

distribution. This result was strikingly different from the electron-ion plasma and demonstrated
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that there are rich possibilities for the study of nonlinear waves in such plasmas. There is a simple
question to be asked of the work in chapter five: what happens to electrostatic plasma oscillations
when pressure is included in the dynamics? If our results are to have any relevance to electron-
positron plasmas then it is vital to answer this question, and the author is presently studying the
effects of pressure upon these plasma waves. The problem becomes much harder in this case, as
the waves now travel (they are nonlinear Langmuir waves) but a simple argument can be made to
show that they could be important, even in a hot plasma.

The energy contained in an electrostatic wave is

Wg = / %egEzda:, (6.1)

and the increase in thermal energy in a pressure wave is

Wr = /ch(nT— noTo)d.’l: = /(n“’n;’ — DnokpTodz. (62)

We have assumed adiabatic compression when calculating the thermal energy in the second ex-
pression. Now let us consider a perturbation which has a spatial extent Al and involves an aver-
age density difference between the plasma components of ngé. The electric field is approximately

gnobAl/ep so that the electrostatic and thermal energies are roughly

_ Al§2¢%ad

Wg e (6.3)
Y

Wr = (% - 1) nokpToAl (6.4)
(]

After a time the plasma will try to equipartition its energy between the two forms, so that equating

Wg with Wr we find

nv §126%n0¢® 402270 :

In the last step we substituted ¢ = e. Notice that this ratio scales with the plasma parameters
as no/Tp — so that a cold dense plasma is more likely to exhibit density enhancement than a hot
diffuse one.

The big unknown in the equations (6.5) is the scale length of the perturbation Al. A reasonable
guess might be the vacuum wavelength of light at the plasma frequency — certainly acoustic waves
are unlikely to have a shorter wavelength than this. This would give Al as

472c2meq

2
AI — 2n0q2 1) (66)

so that
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¥ 2,262
("_ _1) Z drtcom (6.7)

ng kBTo

If we put in numbers appropriate to an electron-positron plasma then this becomes

nY 101142

Ng To

We have taken m = m, (relativistic mass increase would help the density perturbation, so we

are being conservative here). This means that for density perturbations of 0.1 we would expect
the density enhancement to be important for To0(10°) — just the temperature of a relativistic
electron-positron plasma.

There are a number of comments to be made. Qur criterion has no density dependence: however,
more energy is required to perturb a high density plasma than a low density one so perhaps é
might depend upon no. We ignored relativistic mass increase and probably underestimated the
scale of the perturbation, and both these factors might allow a higher temperature threshold for
the demonstration of enhancements of density. However, we have made no allowance for the fact
that these ‘waves will travel, which might smooth out the density perturbation, leading to a lowering
of the temperature threshold.

Whatever, it would seem that further work should be undertaken towards understanding these

waves and seeing where they might be relevant in astophysics.

The above is of course just one small corner of the field of nonlinear waves and there are many
other possibilities for study. Recall that it was when studying nonlinear waves in electron-positron
plasmas that Tajima & Taniuti (1990) discovered new wave modes not present in electron-ion
plasmas. There may be other nonlinear wave modes which are also present in equal mass plasmas
which are not found in electron-ion plasmas. This of course also applies to nonlinear modes from
kinetic theory — BGK modes for example. It is easy to construct these modes but what impact an

equal mass plasma might have upon their stability is an important question.

Finally, there is the extremely difficult project of unifying the approaches of those studying the
equilibria of electron-positron plasmas and the study of the plasma physics of these plasmas.
We should remember that the collective effects exhibited by a plasma have a profound impact
upon its global structures and equilibrium. Therefore, to try to constuct equilibria for a plasma
yet to ignore the fact that it is a plasma is to miss out the essential physics of the situation.
(The control of instabilities in tokamaks can be seen as a case in point here.) However, despite the
enormous difficulties of this approach, the continuing development of computer power and advances

in nonlinear plasma physics should let us attempt this project in the not too distant future.
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I’m closin’ the book

On the pages of the text
And I don’t really care
What happens next

I’'m just going

I’'m going

I’m gone
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