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SUMMARY

This thesis presents an experimental and theoretical study of the punching shear
strength of unbonded prestressed flat slabs at edge column junction. Six tests were
conducted under monotonic loading and two under cyclic loading. Themodels were
approximately 1000 x 1000 x 130 mm and prestressed in two directions byunbonded
tendons. The main parameters of study were:

a) Prestress level,

b) Column aspect ratio,

¢) Wind shear moment/wind shear, (Mw/Vw).
The following data were collected:

i) Load—deflection relationship,

it) Strain development in reinforcing bars and at the compressive face

of concrete

iii) Variation of force in prestressing bars.

For design of the models, the slab element was regarded as consisting of two outer
layers separated by an unreinforced concrete filling. The slab was analysed as an
elastic plate subjected to ultimate design loads. The moments (Mx"* My, Mxy) were
replaced by two equal and opposite forces acting at the mid—depth of the outer
layers. These forces were combined with inplane forces (Nx, Ny, Nxy) divided equally
between the two layers. Each layer was considered as a membrane element and

designed using Direct Design Method using Nielsen's yield criterion.

A 3—dimensional nonlinear finite element program based on 20 node isoparametric
brick element was developed. The constitutive laws of concrete proposed by Kotsovos
and embedded representation of unstressed steel were adopted. Shear transfer across

crack was allowed. Forces due to prestressing were included using the concept of



equivalent loads. Steel reinforcement including prestressing steel was modelled as

elastic—perfectly plastic material. 'Smeared' cracking model was used.

Finally, Comparative study was carried out between the experimental and the
theoretical results for the models tested by the author and by other investigators.
Comparison of the experimental and theoretical failure loads with that predicted by
the BS8110 and the ACI codes were included. It was concluded that the finite

element method can predict failure load and behaviour of the junctions satisfactorily.



NOTATIONS

Symbols used in the text are defined wherever they appear. But for convenience,

summary of those symbols is presented below as follows:

Chanter Two

critical cross-sectional area of concrete

As steel area

Aso ordinary steel area

Asp prestressed steel area

c side dimension for cubic column

Ct,C2 dimensions of the column

d effective depth of slab

dps effective depth of tendon profile

ex eccentricity of tendon in x-direction

ey eccentricity of tendon in y-direction

e the design compressive cylinder strength of concrete
ft split cylinder tensile strength of concrete

fep average compressive stress of concrete due to prestressing
1fcu cube strength of concrete

}cpu ultimate stregth of tendon

fy yield stress of steel

fpb proof stress of prestressing bars

h slab thickness

H compressive membrane force

J polar moment of inertia of critical section



Ip

Lx, Ly

yM

Px »Py
PG

POj

Pur

Purl
purt

PUp

vshear
vtorsion
vmax

Ve

ve

Vp

Vu

VQ

a multiple of (0.75d)

slab spans in X and Y-directions

moment transfered to the column

ultimate capacity ofcritical section for moment transfer
moment transfered to the column

fraction of moment transfered by torsion

moment per unit width at the critical section
prestressing forces per unit length in X and Y-directions
decompression load of prestressed slab

decompression load of slab prestressed in longitudinal

direct ion

Xi

only

punching strength of geometrically similar reinforced concrete

slab

*s 'Pur* but only *nlongitudinal direction

*s 'Pur' but only intransverse irection

punching strength of prestressed slab

length of critical perimeter

length of the perimeter which touches column faces
shear strength

shear stress due to pure shear

shear stress due to torsion

maximum shear strength in critical area

punching shear strength

permissible shear stress of concrete

vertical component of prestressing force crossing the critical

sect ion
design shear force

ultimate capacity of critical section for shear transfer

only



Vg
Veff

Vit

WpX

Wpy

(5C

ym

ps
pe

PpS

xii

shear force due to gravity loads

effective shear strength

shear force transfered to the column

uniformly distributed load to be balanced by prestressing
loads

upward load exerted by tendon in x-direction

upward load exerted by tendon in y-direction

side length of the perimeter parallel to the axis of bending
ratio of the longside to the shortside of the column
partial safety factor for concrete in shear

steel ratio

ordinary steel ratio

equivalent steel ratio

prestressed steel ratio

Chapter Three

Axt
Axb
Ayt
Ayb
[B]

[D]

feu

fep

ft

steel area at top layer in x-direction

steel area at bottom layer in x-direction

steel area at top layer in y-direction

steel area at bottom layer in y-direction

strain matrix

rigidity matrix

eccentricity of tensile reinforcement

cube strength of concrete

compressive stress of concrete due to prestressing
tensile stress of concrete

slab thickness



Nx > Ny

Nj

nc

nf

nu

nx > ny
nxt ,nyt
nxb >nyb
nxy
nxyt

nx

\AY

dW/dx

dW /dy

[6]

inplane force of slab
inplane force of slab
force

inplane shear

shape function at the 1i:~1 node

principle compressive membrane force
load capacity of unreinforced filling

ultimate compressive force

xiii

in X an Y-direction

in concrete

layer

in concrete

inplane forces in layer element in X and Y-directions
inplane forces in top layer in XandY-directions
inplane forces in bottomlayer in Xand Y-directions
inplane shear force

inplane shear force in top layer

design force in X-direction

design force in Y-direction

bending moment

bending moments

twisting moment

outer layers thickness

permissible shear stress of concrete

displacement in Z-direction

rotation about y-axis

rotation about x-axis

permissible compressive stress

yield stress of reinforcement

element nodal displacement

Chapter Four

[B]

strain matrix

in X and Y-directions

of concrete
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[D] rigidity matrix

[Dlc rigidity matrix for cracked concrete
[Dlx y X rigidity matrix in X,y,z space

E Young's modulus

cylinder compressive strength of concrete

fcu cube strength of concrete

[Fe] vector of element nodal force
[Fu] vector of residual force

Go initial value of shear modulus
11 first stress invariant

12 second stress invariant

13 third stress invariant

J2 second deviatoric stress invariant
Js third deviatoric stress invariant
[J] jacobian matrix

Ko initial value of bulk modulus

second bulk modulus

[K] stiffness matrix

£,m,n the direction cosines of a principal stress
[N] shape functions

[P] body force per unit volume

[P{] total equivalent nodal forces

t*i“conc equivalent nodal force carried by concrete

[Pjjsteel equivalent nodal force carried by steel
[q] applied surface loads

cylindrical coordinate system
[P] vector of external nodal forces

S loaded surface area
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CHAPTER ONE

INTRODUCTION

1.1 General

In the past few decades, reinforced and prestressed concrete flat slabs have been
widely used for various structural applications such as multi—story car parking, apartments,
long—span bridges and industrial buildings. Flat slab floors have many advantages over the
beam—slab floors. Simple formwork and reduced storey height are some major advantages.
Windows can extend right up to theunderside of the slab, and there are no beam to
obstruct the light and the circulation of air. Figure 1.1 shows a typicalplan of flat

slab—column structures used in multi—story buildings.

For designers of flat slab—column structures, punching shear failure of slab in the
vicinity of column or concentrated load is an important problem. Punching is critical when
the slab— column connection is subjected to moment as wellasshear forces. This is
particularly important at an edge column connections because of the reduction of critical
perimeter around the column and the presence of twisting moment. Unfortunately, very
few guide lines are available in some Codes of practice for designers of this type of
structures.For instance, in the British Code (BS8110) there is no information about
prestressed  flat slabs at all, and designers are referred to appropriate specialist

literatures”).

The majority of investigations which are reported on punching shear strength of
prestressed flat slabs have been done experimentally considering interior slab—column
connections”,26,27,40) yo tbe author's knowledge, no information is available on
nonlinear theoretical analysis of prestressed concrete slabs using 3- dimensional finite

element method.



1.2 Purpose of This Study

Lack of theoretical investigation on the general behaviour of prestressed flat slabs at
column connections was the main motivation for this work. This study was conducted in

the following order:

a)— Developing the 3—dimensional nonlinear finite element programme for the analysis
and prediction of the overall behaviour of prestressed flat slabs such as deflections, strains,

stresses and ultimate strength of the slab—column connections.

b)— Developing the two—dimensional finite element programme for designing of
prestressed concrete slabs using plate bending elements. This programme is capable of
handling both inplane and out—of—plane forces acting on the slab due to prestressing,
lateral and gravity loads. The detailed description of this method is presented in Chapter

three.

c)— Experimental and theoretical study of behaviour of unbonded prestressed flat slab at
edge column junction. In this connection both monotonic and cyclic loading conditions are

considered.

d)— Analysis of prestressed flat slab with interior column connection which have been
tested by other investigators and comparison of analytical results with their experimental

counterparts.



Figure 1.1 : Typical plan of Flat Slab-Column Structure.



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter, a brief review of the analysis and design of flat slab—column
junctions is presented. The experimental and theoretical works reported in literature
on the strength and behaviour of prestressed flat slab column connections are also
critically reviewed. Finally the design recommendations of BS8110 and ACI 318—83

are included.

2.2 Flat Slab Analysis

2.2.1 Reinforced Concrete Flat Slab
A flat slab floor is a reinforced concrete slab which is supported directly by
columns without use of supporting beams. The analysis of a flat slab structure may

be carried out by one of the following methods:

a) Frame Analysis

In this method the structure is idealized into a set of parallel
two—dimensional frames in each of two orthogonal directions through the structure.
Each frame consists of a series of columns spanned by equivalent beams. An
equivalent beam is an idealization of the slab strip so that the width of the beam on
each side of the column line equals to half of the distance to the adjacent parallel
row of columns.

t

The moment in these frames may be determined by either a method of

frame analysis or simplified method wusing shear and moment coefficients which are



suggested in some codes of practice (such as BS8110 ).

b) Yield line Analysis

Yield line analysis is a convenient method for calculating the collapse load of
reinforced concrete slabs. It is a plastic method of analysis of slab with yield lines
developing in the slab and changing the slab into a mechanism. The yield lines
divide the slab into rigid segments. At collapse each segments rotates about an axis
of rotation and the principle of virtual work is used to determine the collapse load
corresponding to any possible yield line pattern. In cases where there are more than
one possible yield line patterns, the smallest collapse load is taken as the ultimate

load capacity of the slab.

2.2.2 Design of Prestressed Flat Slabs

2.2.2.1 Load Balancing

Considering the internal panel of the two—way edge—supported slab shown in
Figure 2.1, the panel is supported on all sides by walls or beams and contains the
parabolic tendons in the both X and Y—directions. If the tendons are uniformly

spaced, the upward load which is exerted by the tendons to the slab will be

s Pxex

2.1
s Pyey

Wpy=
where : WpX and Wpy are upward loads exerted by the tendons.

Px and Py are prestressing forces per unit width in the X and Y directions.

ex and ey are the cable eccentricity in X and Y directions.



If vfc is assumed to be uniformly distributed applied load to be balanced by

prestressing loads, then

wb = wpx + wpy

The slab tendons may be distributed arbitrarily between X and Y—directions provided
that adequate additional tendons are placed in the column strips to balance the line
loads WpjjLjr and WpyLy as shown on the column lines in Figure 2.2. The column
line tendons have to be placed within the width of the slab in which the slab
tendons have reverse curvature. The downward load from slab tendons should be in
balance with the upward load exerted by column linetendons (Figure 2.3). These
tendons are frequently spread out over a width of slabas large as one half of the
shorter span of panel as shown in Figure 2.4. For example, in the slab shown in
Figure 2.4(a) the entire load to be balanced iscarried by slab tendons in the
X—direction, WpX = w” and Wpy = 0. This entire load is deposited as a line load
on the column lines in the Y-—direction and must be balanced by column line
tendons in this vicinity. This slab is in fact treated as aone—way slab spanning in
the X—direction and being supported by shallow, heavily stressed, slab strips on the

Y—direction column lines.

The two-way system shown in Figure 2.4(b) is more likely to perform better
under unbalanced loads, perticularly when Lx and Ly are  similar and thepanel is
roughly square. In practice, steel concentration over the supporting columns and
minimum spacing requirements make the distribution of tendons on the column lines
impossible. Figure 2.4(c) shows a more practicaland generally acceptable layout.
Approximately, 75% of the tendons in each direction are located in the column

strips, the remainder being uniformly spread across the middle strip regions”).



[ - Lx = short span

Figure 2.1

: Edge—supported slab panel

Figure 2.2 : Flat slab panel

>  beams or

walls underneath

the hatched strip of
slab must carry the
line load vv"LA".



tendon

(a) Post-tensioned flat slab

(b) Free—body diagram of slab after
IaA—

removal of tendon

tendon

(¢) Free—body diagram of tendon

Figure 2.3 : Force system between tendon and slab



LJ?2 Ly-LJ 2 LJ?2
column middle column
strip strip strip
(c) : Alternative tendon layout

Figure 2.4
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strip
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strip



If the tendon layout is such that the upward force on the slab is approximately
uniform, then at the balance load the slab has zero deflection and is subjected only
to uniform compression caused by axial prestress in each direction. Under unbalanced
loads, moments and shears are induced in the slab. To calculate these internal forces
one of the analysis methods (such as Frame analysis, code recommendations, finite

element analysis and so on) may be used.

Aalami(®) has reviewed the application of the load balancing in a broader
context as a comprehensive solution for analysing post—tensioned structures. He has
discussed terminology, concepts and current procedures used in the load—balancing
method and illustrated the application of this method in the analysis of

post—tensioned members with changes in thickness.

2.3 Punching Failure Mechanism

Punching failure of reinforced concrete flat slabs can be classified as either
flexural' or 'shear'. If the failure is initiated by the yielding of the reinforcement or
crushing of concrete, it is called 'flexural' punching failure. If it is initiated by
internal diagonal cracking, it is called 'shear' punching failure. In this section it is

intended to describe the mechanism of these punching failures.

2.3.1 Flexural punching Mechanism

In lightly reinforced slab—column specimens, it is more likely that the
reinforcements yield prior to punching and the yield pattern might approach the full
yield—Iline pattern as shown in Figure 2.5a. Conversely, in heavily reinforced slabs,
yielding becomes more localized and the failure mode approaches the compression

failure of concrete around the column (Figure 2.5¢). Thus depending on the ductility,



Full yield line pattern b) Partial yield failure mode

¢) Compression failure mode

Figure 2.5



Conical shell
Centre of under

rotation compression
a) Kinnunen/Nylander model

loading

Compiossive
membrane
forces

.
t column reaction

b) Load transfer through the slab to the column

column

¢) Diagonal shear crack around the column

Figure 2.6



the 'flexural' punching mechanism is something between the full yield—line  and

localized compression failure mechanism as shown in Figure 2.5b.

2.3.2 Shear punching mechanism

The widely accepted theoretical model for punching shear was proposed by
Kinnunen and Nylander(5>6) This /s based on the observation oftests on circular
slabs centrally supported by circular columns. In this model, radial segments of the
slab outside the crack are assumed to rotate as rigid bodies as shown in Figure 2.6a.
The basic idea is that the transmission of the applied loads to column through the
slab takes place as shown in Figure 2.6b (12,22) jhe main diagonal crack occurs in
the direction of the path of compression stresses in  the slab around the column
(Figure 2.6c). When the connection between the two parts of  theslab (above and
below the crack) is released due to cracking, then the lower part will rotate due to

the applied load as a rigid body at early stage of failure load. The final failure
occurs due to crushing of concrete at the compressive zone of the concrete shell.

2.4 Design of Flat Slab—column Junctions

2.4.1 Shear Strength with no Moment Transfer

In the design of prestressed flat slabs, shear strength wusually controls the
thickness of the slab particularly around the column or concentrated load. There are
two kinds of shear failure that may be critical. Thefirst is the beam type shear
failure which is based on the slab acting as a wide beam spaning between column
strips shown in Figure 2.7(a). The critical section is taken at the distance of (d)
,where 'd' is effective depth of slab

, from the column face and extended across the

entire width of the slab.

13



Another type of shear failure may happen in the vicinity of a column or
concentrated load. In this type, the failure surface may be a truncated cone or
pyramid around the column or loaded area as shown in Figure 2.7(b). This is called
punching shear failure and it often needs a critical consideration when determining

thickness of the flat slabs.

The critical sectionis assumed to be perpendicular to the plane of slab. The
shape of critical perimeter is taken (in some codes of practice)to be the same as
column or the loaded area while some other codes round off the corners of
perimeters around rectangular columns or loaded areas (Figure 2.8). In most of the
current codes of practice ( such as American and German Codes ), the critical
perimeter is considered at a distance (d/2) from the column faces or loaded

the British Code (BS8110) the critical perimeter is atthe distanceof (1.5d).

2.4.1.1 Recommendations of ACI—318—83f2)

a) Non—prestressed slab

In ACI—318—83, the punching shear stress of a flat slab without shear

reinforcement is given by the following equation:

Ve = ve x u xd 2.2

where vc is the permissible shear strength of concrete which is given by lesser of the

following equations:

ve =  ( 0.166 + 0.33/3Cc ) J f£

14

area.ln
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ve = (0337 f)

where: /3C = the ratio of the long side to the short side ofthe
column or loaded area.
f£ = the design compressive cylinder strength of concrete,
u =the length of critical perimeter taken at distance of d/2
from faces of the column or loaded area,
d = effective depth of slab

< =0.85 for shear

It is evident that in theabove expressions, the effect of flexural reinforcement on

the punching strength has not been taken into account.

b) Prestressed Flat Slab

For two—way prestressed flat slabs, the punching shear strength of the slab

without shear reinforcement is also given by equation 2.2. But the permissible shear

stress of concrete ,vc, is given by

Ve = 9 (029 y f£ + 03 fcp + Vp/ud ) 2.3
in which : o = 0.85 for shear
fcp = The average value of effective prestress at the critical area.
Vp = The vertical component of all effective prestressing forces

crossing the critical area.

fc should not be taken greater than 35 N/mm: and f(p in each direction should not

be less than 1 N/mm: nor greater than 3.5 N/mm2. Because the tendons at the
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critical section are fairly horizontal and the vertical component of the prestressing

force ,Vp, is small, it may be taken conservatively as zero.

2.4.1.2 British Code Recommendations (BS81101(1)

a) Non—prestressed Flat Slab

According to BS8110—1985, punching failure occurs on the inclined faces of a

truncated cone or pyramid depending on the shape of the loaded area. However, for

practical purposes it is satisfactory to consider rectangular failure perimeter as shown

in Figure 2.9. In this Code, the critical perimeter is at 1.5d from the loaded area

and punching shear strength of the slab is given by the following equation:

V= vexuxd 2.4

where ve = 0.79(fcu/25)''3 (I00Ajjud) s (400/d)l/4 / Tm

*cu = Cube strength of concrete
d = Effective depth of slab
u = Length of the critical perimeter taken at distance 1.5d from faces

of the column or loaded area
Ag = Area of all the tension reinforcement crossing the critical area
(CIRIA 110 , page 19)

7m = Partial safety factor for concrete in shear

The limitations are;
sm = 1-25

fcu } 40 N/mm~*



(100Aj/ud) >3.0

(400/d) < 1.0

In all cases with or without shearreinforcement, V should notexceed the maximum

shear capacity of slab given by the following equation;

("max”o”) > 0.8 J fcu or 5 N/mm2 [ whichever is smaller ]

where uQ is effective length ofthe perimeter which touches the loaded area.

If the shear stress exceeds vc , shear reinforcement should be provided. Design
procedure is to check the failure zone adjacent to a loaded area (zone 1) first, as
shown in Figure 2.10. If this zone does not require shear reinforcement thenno
further checks are required. Otherwise the successive zones (Figure 2.10) are checked

until a zone is reached which does not require shear reinforcement.

b) Prestressed Flat Slab

In BSSIIOH) no special recommendation is given concerning design of
prestressed concrete flat slabs. So the analysis and design of prestressed flat slabs
have been referred to specialist literature. So far only relevant reference for the

design of prestressed flat slabs is the recommendations of the Concrete Society(7>64)

2.4.1.3 Recommendations of The Concrete s.ciccy .64)

According to these recommendations, the  following two cases should be

considered to calculate the punching shear resistance of flat slab—column connections.



Case 1 — The shear strength of a section at a perimeter 0.75h from the column

face based on the tensile strength of concrete is given by equation:

V= vcxuxh 2.5

where vc: is given in Table 2.1

h : is the slab thickness.

The figures in Table 2.1 is calculated by the following equation:

ve = 0.67 J fiz + 0.8fcpft

where : ft = Tensile strength of concrete
fcp = Average prestress of concrete at the critical area
Case 2 — The shear strength of a section at the critical surface is calculated in

accordance with  BS8110 recommendations for non—prestressed flat slab except that

the values of permissible shear strength of concrete ,vc” may be calculated using

where
As — Ago W' AgpCipy/fy) 2.6
in which,
AgQ = cross—section area of ordinary steel crossing the critical
surface.
A~ = cross—section area of prestressing bars crossing the critical
surface.
fpU = proof stress of prestressing bars

fy = Yield stress of ordinary steel



TABLE 2.1 : Permissible shear strength of concrete in accordance with

the Concrete Society Recommendations (Ref. 7).

Concrete Grade (¢cu)

25 30 40
fep
N/mm?2 N/mm?2 N/mm?2 N/mm?2

10 105 110 1-25
1-5 115 1*%20 1-35
20 1*25 1-30 145
2-5 1-30 1*40 1-55
3-0 1-40 1-50 165
3-5 145 1-55 170

* ) fcp = average compression stress of concrete due to prestressing
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Perimeter Perimeter

Perimeter

Figure 2.9 : Definition of shear perimeter for typical cases,

ip = A multiple of 0.75d (d is effective depth of slab)
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for shaded zone

Notional failure
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The figures show the location of successive perimeters and
failure zones. A typical failure zone (zone 3) is shown
NZone 1 shaded together with the notional failure associated with
x Zone 2 the zone.

'Zone 3
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M, K w* "o 2 v,
Figure 2.10 : Punching shear zone according to the British Code

(BS8110 -  1985).



2.4.2 Shear Strength with Moment Transfer

2.4.2.1 Moment and Shear Transfer Mechanism

Figure 2.11 shows a flat slab at an edge column connection. Moment is
transferred from the slab to the column partly by means of bending moment at the

front face of the column, and partly by twisting moment at the side faces of the

column(18,19,42,47)

The Calculation of ultimate stress of the connection can be carried out in two
stages. First the proportion of the forces transferred by the front face ( bending
moment ) and side faces of column (twisting moment ) mustbe known. Then the
ultimate strength of the connection is calculated summing upthe pure shear and

twisting shear resistance.

The existing knowledge about the strength of slab—column connections
transferring moment has been reviewed by ACI—ASCE Committee 426(8) and by
Hawkins(9). Available methods for predicting the ultimate strength of theconnection

may be divided into the following four groups:

1) Analysis based on a linear variation of shear stress.

2) Analysis based on thin plate theory.

3) Beam analogy method.

4) Finite element method.

2.4.2.2 Linear Variation in Shear Stress

This method was first introduced by D Stasio and V Buren(”) in 1960.



Figure 2.12 shows the model suggested by them for internal and edge column
connections. In this method it is assumed that the distribution of shear stress around
the connection is sum of two parts. The first part which is caused by pure shear
force transferred to the column as a uniform shear stress field and the second part
which is caused by twisting moment ( a fraction of the moment transferred to the
column ), is a linear shear stress field. Therefore, summing up the two shear stress

fields as shown in Figure 2.12, the total shear stress will be:

v = vshear + vtorsion
A\ YM
v(X) = - + (x) 2.7
A J
where : A = Area of critical section.

V = pure gravity load transferred to the slab

J = Polar moment of inertia of the critical section given in Figures
2.13a to 2.13d.

7M = A fraction of total moment ,M, transferred by torsion,

x = A distance from the centre of rotation to the point at which

stress is being calculated.

and 7 = 1

1+ (2/3) J (¢~dVCchd)

According to ACI—318—83(2), e moment—shear interaction relationship of equation
(2.7) for an interior column connection is shown in Figure 2.14. Which is a linear

interaction between V/Vo and yM/Mo where;

vo = vc X A
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MO = vc x [2J/CC, mm d) ]

where, A = 2d(ci+c2t2d)
vc= permissible shear stress of concrete
c¢,= Column side perpendicular to moment direction

c¢2= Column side parallel to moment direction

The stress diagrams on Figure 2.14 also show idealized shear stress distributions for
the different points along the line 'ab'. The line 'cd' represents the possible
limitation imposed by the flexural reinforcement. That 1is, before 7M reaches Mo

there is a possibility for flexural reinforcement to yield and consequently the slab fails

in flexural mode.

Test results”) indicated that the behaviour of specimens is not far from the
above idealization. Hawkins et. al.(9) have shown that the measured shear strength of
specimens lie along curve such as 'amnl For a concrete of 21 N/mm2 cube strength,
that curve lies progressively further outside the envelope 'acd' as the reinforcement
ratio within lines 1.5h either side of the column increases to above 0.8%. The

reverse is true as the ratio decreases below o .8 %.

The British Code BS8110, was also based on the approach of 'linear variation
in shear stress' proposed by Regan(40). The BS8110 specifies the critical section at a
distance of 1.5d from the column perimeter and it has square corners whether the
column is square or circular (Figure 2.8). The detailed information about the

recommendations of ACI—318 83 and BS8110 will be discussed in a later section.

2.4.2.3 Thin Plate Method

Method of analysis based on elastic thin plate theory has been proposed by



Mast(13). The loading and boundary conditions of the flat plate used by Mast are
shown in Figure 2.15 . Shear and moment distribution predicted for the above plate
at a section 0.05L (L is the span) are compared in Figure 2.16 with the distributions

appropriate for equation 2 ..

The distribution of stresses both transverse and parallel to the direction of the
applied moment in this method are nonlinear. It is evident that the flexural moment
Mx calculated from equation 2.7 are much higher than that given by thin plate
method and the contribution of the torsional moment Myx is underestimated by the

straight line shear distribution hypothesis.

Mast found that, in contrast to the assumptions made in ACI Code 318—71
formulation, the relative participation of torsional , flexural and shear stresses to
moment transfer varied with the shape, size of the column, dimensions and boundary
conditions of the plate. He also found that, for square columns the stresses calculated
from his theoretical method and that predicted from the linear—stress method
(equation 2.7) give similar results. But for columns for which their aspect ratio in

the direction of unbalanced moment is greater than 1.0, flexural plate theory gave

better agreement with the experiments than the linear—stress method.

Long et al(14,15) developed a theoretical method of analysis for the calculation
of the punching load of a column—flat slab connection with two—way reinforcement
without shear reinforcement based on elastic thin—plate theory. They idealized the
problem as an axi—symmetric slab—column specimen having a column radius equal to
0.6 times the side length of square column. An octahedral shear stress criterion of
failure was used to find the corresponding failure stresses. It was assumed that the
initial modulus of elasticity remains approximately constant up to ultimate load.

Distribution of bending stresses in the compressive zone of the slab was linear.






(a) Uniform shear stress (b) shear stress (torsional) due

due to axial force,V to applied bending moment , M

(¢) Net shear stress around the critical perimeter

Figure 2.12 . Theory of linear variation in shear stress



b*C2+ d

(a) For internal column

bsC:2 *7d/2

(b)

Figure 2.13

For corner column

29

Concrete area of critical section

Ac * 2(a ¢ b)d

Modulus of critical section:

where

c *c

Concrete area of critical section:

Ac « (a + b)d

Modulus of critical section:

£ = fad(a + 4b) + d3(a + b)/a /6

* [a2d(a + 4b) + d3(a * b)J/ 6(a ¢ 2b)|

where
¢ * a2/ [2(a ¢ b)
¢ «a(a + 2b)/ [2(a ¢ b)]

:Section properties for shear stress calculations

(ACI 318-83)



loncrete area of critical section

Ac - (a ¥ 2b)d

Modulus of critical section:

(c) For edge column (bending parallel to edge)

Concrete area of critical section:

Ac * (2a ¢ b)d

Modulus of critical section:

| * |2ad(8 + 2b) ¢ d3(2a + b)/al/6

—r * J2a2d(a ¢ 2b) ¢ d3(2a * b)j/ 6(a ¢

wtiere
¢ * a2/(2a + b)
¢' » a(a ¢ b)/(2a ¢ b)

(d) for edge column (bending perpendicular to edge)

Figure 2.13 : (continued)



Figure 2.14

H o<h

Moment-shear interaction relationship for interior

column connections.
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VL

Figure 2.15

uL

: Loading and boundary conditions for flat slab.
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y -41.3 M/L:

(a) Distribution of shear forces

3 M/L

equation (2.7)

1-59 M/L

Mast

m 1.59 M/L

(b) Distribution of moments

Figure 2.16 : Comparison between the linear distribution and the elastic

thin plate theory”13) at a section 0.05L (L is the span) from

the centre of an interior column.



The wvalues of radial and circumferential bending moments were found from
thin plate ¢neoryo ~). jn order to calculate the column load which would cause
failure, a criterion of failure for concrete in compression depending on the ratio of
octahedral shear stress and octahedral normal stress was used. Their procedure gave
good predictions of the strength measured by Moe, Kinnunen and some other

investigators”3).

Punching shear failure in slabs unreinforced in shear, tends to be brittle and
the nature of punching failure does not require the yield line to develop throughout
the slab when punching failure occurs. Therefore, adopting the elastic theory solution

to predict punching failure load may not be unreasonable.

2.4.2.4 Beam Analogy Method

In this method which was introduced by Hawkins"2®), the slab is assumed to
be connected to the column through a series of stub beam elements. The elements at
the front and rear face of the column (FI and F2) are called flexural elements and
side elements (Tl and T2) are called torsional elements as shown in Figure 2.15.
This method was developed by H. Akiyama and N M Hawkins(®) for incorporating
the effects of bond slip and torsional actions into the model and for interconnecting
the torsion and flexural elements so that compatibility conditions were satisfied at

their connections to the surrounding slab.

For calculation of the wultimate strength of slab—column connections
transferring unbalanced moment, the following assumptions are made:
a)— The shear forces caused by the gravity load are evenly distributed around the

column.

b)— The moment caused by lateral load is transfered to the columnfirst through



the: flexural element and after the flexural element looses its rigidity through its
attainment of its flexural capacity, that moment is transfered through the torsional

element.
¢)— A connection can be regarded as having failed when the front or rear side of

the torsional elements reaches its ultimate strength.

Table 2.3 compares the experimental results with those predicted by theoretical

method.

2.4.2.5 Finite Element Method

Finite element procedure can be used to calculate and more accurately assess
thestrength ofslab—column connections”). Elnounu(28) developed a
three—dimensional finite element method for nonlinear stress analysis of reinforced
concrete structures. This programme was used by eimnounu(23) anfj Bari(24) to predict
the ultimate load of shear wall-slab connections. As far as the author is aware no
one has used the three-dimensional finite element to analyse prestressed slabs. This

aspect will be pursued in the later sectionsof this work.

2.4.2 ¢ American Code Recommendations (ACT 318—83*

a) Non—prestressed Flat Slab

When both shear ,V, andunbalanced moment ,M, are transfered from the

slab tothe column, ACI 318—83 suggests that themaximum shear stress on the

critical section ,vmax, may be calculated from equation 2.7:

vmax = --------- + CAB 2 -8



Table 2.3

No. of Type of
tests si1ab-coiumn
connect ion

7 Interior

8 interior

2 Exterior: moment
parallel to the edge

3 Exterior: moment
parallel to the edge

3 Exterior: moment
normal to the edge

5 Exterior: moment
normal to the edge

3 corner

2 corner

Mpred ~

Shear

relnforcement

used

No

Yes

No

Yes

No

Yes

No

Yes

Predicted moment transfer capacity

mean

w*

Mpred 1 Mtest

standard
devi at ion

0.07

0.07

0.06

0.05

0.09

0.07

0.07

0.00



slab

general view

flexural element

slab

connecting element

torsional elenent

(b) stiffness model

Figure 2.17 : Stiffness model for interior column connections.



containing no shear reinforcement is

The ACI 318—83 design requirement for slabs
as

that the vmax does not exceed a permissible shear stress vc carried by concrete,

mentioned in section 2.4.1.1.

b) Prestressed Flat Slab

The equation forthe calculation of punching shear resistance of

non—prestressed flat slab is used for prestressed flat slab and the concrete permissible

shear stress ,vc, was given in section 2.4.1.1.

2.4.2.7 British Code Recommendations (BS81101

a) Non—prestressed Flat Slab

The effective shear strength required of a flat slab at internal column

connections at the critical section is given as:

1.5M
2.9

The side length of the perimeter considered parallel to the axis of

where: X =
bending as shown in Figure 2.16 and that is equal to the column side
plus a multiple of 1.5d depending on which zone is being considered
for calculation of Veff (Figure 2.10).
M = The design moment transmitted from the slab to the column.
V = The design shear force transfered to the column.

In theabsence of calculations, for internal columns in braced structures with
approximately equal spans, it will be satisfactory to take Veff from the following



equation:

Veff = 1.15 V

where V is calculated on the assumption that the maximum design load is applied to

all panels adjacent to the column considered.

At edge and corner column connections where bending about an axis parallel
to the free edge is being considered, as shown in Figure 2.19, the effective shear

strength is calculated from:

Veff = 125 V 2.10

For edge column connections when bending about an axis perpendicular to the free
edge is being considered, the effective shear strength should be calculated using the

following equation:

Veff = 1.25V F e————— 2.11

Alternatively, Veff may be taken as 1.4 V for approximately equal spans. The

permissible shear strength of concrete is given in Table 3.9 in BS8110")*

b) Prestressed Flat Slab(65)

In the case of moment transfer, the equation for non—prestressed flat slab shear
strength calculation is also applicable to predict the shear strength of prestressed flat

slab—column connections. The only difference is that, the permissible shear stress is

dependent on the area of total steel crossing the critical perimeter and account

should be taken of both prestressing and reinforcing bars as shown in equation 2.6 in



Span being considered

Perimeter being

Moment
transferred
to column

(a) Bending moments diagram for
load case being considered

Support
reaction

Ib) Shear force diagram for load case being considered

Figure 2.18 : Shear and moment diagram at

slab—column connection.



Corner

column
kiff =1.251/
see 3.7.6 3)
,Use equation 26
/' or for approximately
equal spans =10V
(see 3.7.6.3)
Edge
column mrerncl
. column
Use equation 25
or, for approximately
7t,, =1.251/ equal spans, 'v =1-151/
(see 3.7.6.3) (see 37 62)
Figure 2.19

. Effective shear strength of flat slab-column connections

at different situations according to BS8110—1985.



section 2.4.1.2.

2.5 Previous Works on Prestressed Flat Slabs

During the recent decades, a few experimental investigations have been done
on prestressed concrete flat slabs at internal column connections. In the following

sections a brief review of these works is given.

25,1 S W Smith and N H Burn”25)

In 1974 Smith and Burns published the test results of three post—tensioned flat
plate specimens with free edges and a single column stub in the centre. The test
data was obtained on shear capacity, flexural strength and general behaviour in
column connection area. The test results were compared with the previous flat slab
test results and the ACI Building Code (318—71). In this comparison the observed
flexural strength was greater than the strength predicted by ACI 318—71 for all the
specimens. The reason for this difference may be that the flexural capacity was
improved by bending in two—way action, while the ACI code equation is based on
beam theory. Shear strength from these tests were slightly above the values predicted

by ACI—ASCE Commitee 423 Recommendations given by:

vu(ASCE) = °-3 J fc °-3 fcp & (vp/ud) 2-13
where, fCp = Axial prestress in the slab.
Vp = Sum of the vertical components of all prestressing tendons

crossing the critical section for shear.

The average value of the ratio [ “u(tesi)f*u(ASCE) ] was 0-98.



2.52 N M Hawking?®)

In 1981 Hawkins published an investigation on six full—scale unbonded

post—tensioned concrete flat slab—column subassemblage and concluded that:

1)— The moment transfer capacity of prestressed concrete slab at interior column
connections can be evaluated using the procedures of ACI 318—77. All reinforcement
, bonded or unbonded, within (3d-*- C|) are effective for transferring the portion of

moment which is transfered by bending.

2)— For all kinds of slab—column connections, shear stress on a critical section

located at (d/2) from the column perimeter is calculated from the formulae:

v ™
V(AB) = + e CAB 2.14(a)
A J
or
v ™
MCD) = ~ CCD 2.14(b)
A J
where and CQJ) are defined in Figure 2.14. For the interior column connection

[V(AB)I is always greater than |v(cj})|. But for the exterior column connection
transfering moment normal to the discontinuous edge, the centroid of the critical
section lies further from the slab edge than the centroid of the column so that
Iv(CD)l can te greater than when M is large. In this case, the bonded
reinforcement detailed so that it can act as torsional reinforcement , should be

provided at the discontinuous edge when the shear stress given by equation 2.14(b)

exceeds 0.17 v  N/mm2.

3)— Tendons bundled through the column are an effective means of increasing the

moment transfer strength of slab at interior column connections.



2.5.3 S O Franklin and A E Long*)

In 1982, Franklin and Long presented the results of tests on seven unbonded
post—tensioned flat slabs with internal columns. The main parameters in these tests
were the level of eccentricity and slab boundary conditions. The experimental failure
loads were compared with those predicted by the relevant British and American
design recommendations (recommendations of the Concrete Society(”) and ACI—ASCE

423<29) ).

They found that the average ratio of (Vtest / V”ci) is 1.41 and that of (Vtest
/ Vq$) is 1.36 with Standard Deviation of 0.15 and 0.07 respectively.Accordingly,
they concluded that the ACI—ASCE 423(29) design method and the Concrete
Society?2) approach significantly underestimate the failure 1load of all the models.
They also reported that the increase in tendon stress at the failure load wasnormally
within 12% of the initial tendon stress and extra bonded reinforcement is required at

all critical locations to ensure that the structure has sufficient strength and ductility.

Later on, Franklin , Cleland and veng0) presented a theoretical method for
predicting the wultimate punching capacity of post—tensioned slabs at internal
connections subjected to a pure gravity load. This method is based on flexural
criterion of failure in which punching is assumed to occur when the slab moment at
the column face causes rupture of the concrete compression zone. From previous test
results(22> 30, 31) they came to realize that the flexural strength can be expected to
have a considerable effect on the punching strength because the slab—column

connection is a location of both maximum shear and bending moment.

They(30) mentioned considerable experimental evidence to prove that the slab

moment at the column face is a critical moment for punching failure. Therefore for



pure gravity loading the relationship between the vertical load (Vf) and the slab

moment per unit width at the critical section (m) was proposed to be:

Vi = k1 mu 2.15

where kj is dependent on the slab boundary conditions and the ratio C/L ( column
described in References (66). For

dimension to slab span) and its calculation is

= 0.04 to 0.12), k1 is given by

normal range of column size to slab span ratio (c/L

kl = 6 + 32c/L - (6—16c/L)(pfy/fc)0e5

'mu' is the resistance moment per unit width at the critical section which can be
taken as:

mu = ps fy d2 (1.0 - 0.6 =-———-——- ) 2.16
f

Pety
mu = Pe fy d2 ( 1-° “ °-6 - ) 217
ﬁcu
where pe is equivalent reinforcement ratio given by:
*pb  dps
2.18

Pe ~ Ps Pps
fy d

where : ps = Ratio of ordinary reinforcement at the critical cross—section

to the area of concrete.

ppS = Ratio of prestressing steel to the critical cross—section

areca of concrete,

fpb = Tensile stress in tendon at slab failure.



fy = Yield stress of ordinary bonded reinforcement*
dpS = Effective depth of tendon profile,

d = Effective depth of ordinary reinforcement.

Combining equation 2.15 and 2.17 the punching capacity can be obtained and a

comparison of this method with experimental tests is shown in Figure 2.20.

In order to achieve good agreement with all the relevant test results, Franklin
et. al.(30) took the enhancing effect of compressive membrane action into account.
The relationship between the vertical load (vf) and the slab moment per unit width
at the critical section (mu) after incorporating the effect of compressive membrane

force is given by:

where H, the compressive membrane force, is given by:

R2 - (0.125L)2

H= —: (ft+ ~p )h
R2 + (0.125L)2
where ; ft = split cylinder tensile strength of concrete.
“cp = initial stress at centroidal axis due to prestress.
L = slab span
R = outer radius of thick cylinder (formoredetails see Ref. 27).
h = overall slab depth

and TO, thenormal force in the reinforcement can be taken as:

TO — Pe fy ~



The ultimate flexural punching load predicted by equation 2.19 are compared with

test results in Figure 2 .21.

In 1987 Rankin and vong(rs,67)> jn addition to the flexural method for predicting
the punching capacity of prestressed concrete flat slabs, proposed a method for the
prediction based on internal diagonal cracking prior to the development of yielding of
the reinforcement or crushing of the concrete. This 1is called ‘'shear punching'

capacity of the internal slab—column junctions ,VS, and given by:

Vs = 1.66 J fe (¢ + d)d(100ps)°-25 2.20
where : ¢ = Length of column side
d = Average effective depth to tensile reinforcement
fc = Cylinder compressive strength of concrete (taken as 80% of

cube compressive strength)

ps = Reinforcement ratio

For the prestressed slabs 'ps' should be replaced by 'pe' given by:

Pe = Ps 4 Pps”pe’y)

in which : fpe = Effective prestress in unbonded tendon

fy = Yield stress reinforcement

The enhanced shear punching strength can be found by taking into account the
increase in the depth of the concrete compression zone due to the compressive
membrane action. Rankin and Long proposed that, effect of the increase in the

compression zone 1is equivalent to considering a higher reinforcement index (0> =
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psfy/fc) given by the following expression:

@ = 0.660)0,6

Hence, by substitution of the equivalent reinforcement index in the expression for the
shear punching strength of the slab, the enhanced shear punching strength of a full

panel specimen is given by:

Vs = 2.66 J f£ (¢ + d)doy--15 221

Therefore, in order to predict the punching strength of the internal flat slab—column
junction both the flexural punching strength and shear punching strength are

calculated and the lesser of these two values is the predicted ultimate load.

2.54 P E Regan(40)

In 1985, Regan reported fifteen tests on flat slabs post—tensioned in one
direction intended to represent the regions around intermediate column supports of
prestressed slab bridge. The results of tests were used to develop a design equation

as follows:

a)— For a slab prestressed in one direction

For a slab prestressed in only the longitudinal direction, the prestress can
influence only the resistance of the parts of the critical perimeter perpendicular to

the tendons. Therefore, the predicted punching shear strength of the slab is given by:

Pup — Pur Pol (Purl®ur) 2.22



where PUp is the punching strength of prestressed slab
Pur is the punching strength of geometrically similar reinforced concrete slab.
PUrl is equal to Pur only in longitudinal direction.
PQ is the decompression load of the prestressed slab, that is the load

corresponding to zero stress at the extreme fibre tensioned in longitudinal

direction by the external loading.

b)—For a slab prestressed in two directions

Equation 2.21 can be extended to treat slabs prestressed in two directions:

Aup = Mur 'L MolMurltur) + Not(Murttur) 2.23

where, Purl = 0.27 (500/di)l/4 O00pfeu)1/3 [2dl(ct + 3dt) ]
Purt = 0.27 (500/dt) /4 (100pfcu)1/3 [2dt(cj + 3dw]
pur = purl ' purt
cj, ¢t = side dimensions of loaded area in longitudinal and
transverse directions respectively.
dj, dt = effective depths of slab in longitudinal and transverse

directions respectively.

P = ratio of reinforcement which is given by:
AN T —+ AN p
p S —
ud
d = effective depth of slab which is defined by:
d =

Agffy + ~pfQ2



where fo 2 is 0.2% proof stress of prestressed reinforcement. The subscripts r and p
refer to the ordinary and prestressed reinforcement respectively. A"~ and are

corresponding steel area.

For slabs with equalreinforcement and equal prestressingin both directions

subjected to equal orthogonal bending, equation 2.23 reduces to

PUp = Pur + PO 2.24

where PQ is the decompression load of the prestressed slab.

Comparison between the punching strength predicted by this procedure for
slabs prestressed in one directionand the result of the tests and also with those of
tests which were carried out by Nylander et al are shown in Figure 2.22(a). The
calculated strengths were approximately equal to mean of experimental strengths. The

average ratios of Pexp”~cal were 0-97 , 1.05 and 0.99 for the bonded slabs, DT

Series and EL Series(40) respectively.

Punching strength predicted by equation 2.21 for the slabs prestressed in two
directions were compared with the results of experimental studies carried out by
Pralong et al, Grow and Vanderbilt, Shehata , Gerber and Burns. The agreement
between calculated and experimental punching strength was generally good even

though the tendons were unbonded in most of the cases [Figure 2.22(a)].

2-5.5 V G Johannes and C S Alexandei™4")

In 1983, Johannes and Alexander used a numerical method for the material
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and geometric nonlinear analysis of reinforced and prestressed concrete slabs including
the time dependent effects due to load history, temperature history, creep and
shrinkage. The procedure was based on two—dimensional finite element method using
layer element. A flat triangular shell finite element was used. The element consists of
the s« degree of freedom for inplane displacement combined with the nine degree of
freedom for plate bending element. The reinforced concrete composite section is
assumed to be made up by a system of concrete layers and 'equivalent smeared' steel
layers. Each layer is assumed to be in a state of plane stress and the material
matrix was obtained by summing the contribution from each layer. Stress—strain
curves for the material are shown in Figure 2.23. A comparison between the test and

analytical load- deflection curves of the prestressed slab is shown in Figure 2.24.

2.6 Comparative Study of Different Design Equations

Concerning the causes for punching shear failure, there are various views and
wide divergencies between different empirical formula. Codes of Practice also wuse
empirical expressions in terms of nominal shear stresses. Codes of practice differ in
the definitions of critical perimeters and in the expressions used to define the

permissible stress of concrete, vc.

In this section, the variation in the prediction of ultimate shear strength by
different design equations will be studied. One parameter is varied keeping all other
parameters constant as shown in Tables 2.2(a) and 2.2(b). Five design equations
2.2), (2.4), (2.5), (2.19 or 2.21) and (2.23) have Dbeen considered in this
comparative study for predicting pure shear strength without any moment transfer and

two equations (2.8) and (2.9) for predicting shear strength with moment transfer.
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2.6.1 The equations for gravity load (without moment transfer)

ACIL: V= (029 s f + 0.3fcpud + Vp 2.2
where & = o .sfcu
BS8110: V = 0.79(fcu/25) 1/3 (100Ag/ud)3 (400/d)1/4 ud 2.4
Con. Soc. V ve X u X h 2.5
Long: Vf = (1 + H/2TO0) klPefyd> (1.0 - 0.6pefy/fcu) 2.19
Vs = 2.6 J ff(c + d)du>c-15 2.21

Long's procedure for the prediction of the ultimate punching load is to calculate both
the 'flexural' punching (vf) and the 'shear' punching (Vs) capacities then whichever

is lesser is the ultimate punching load.

Regan: v = Pur + Po J[(Purj/Pur) + "“ot*urt™ur) 2.23

Calculations were done for fcu varying from 25 to 55 N/mm”. From figure 2.25
it is clear that all the equations except that proposed by Long et al (Eq. 2.19 or
2.21), predict approximately the same rate of increase in ultimate punching shear
strength with concrete cube strength ,fcu. 'V' from Long's formula is insignificantly
affected by variation of fcu.

In Figure 2.26, the average compressive axial stress of concrete due to
prestressing ,fcp, varies from 1 to s N/mm” keeping all other parameters constant.
'V' in ACI—83 (Eq. 2.3)is directly dependent on 'fcp'but the other equations are

dependent onthe prestressing steel area 'A ~'. Assuming the prestress in service equals



to 0.55fpU , prestressing force ,Fp, will be

Fp — O.SSfpyAjp

Assuming uniform distribution of prestress, we have:

~ep — 0*55fpyAgp/AQ = @& "puPsp 2.13
where: fpu = ultimate strength of prestressing steel
Psp = the prestressing steel ratio
assuming fpu = 1800 N/mm” , from equation 2.13 we have:

psp = 0.10% fcp 2.14

Having got fcp, the corresponding psp was used in equations 2.4, 2.5, 2.19, 2.21 and

2.23 to calculate the punching capacity.

Figure 2.27shows the variation of punching shear strength of prestressed slab
due to variation of effective depth of slab, d. The influence of this parameter on all
the equations is nearly the same except for the equation proposed by Long. In this
equation, the increase rate of prediction of punching shear strength is slightly more

than the others.

In shear strength study due to pure gravity loads without moment transfer, it is
assumed that ,for simplicity, the column sides are equal (e.g. ¢, = c2 = «c¢). Figure
2.28 shows the wvariation of punching shear strength predicted due to variation of ,c,
and indicates that the rate of increase in prediction of punching shear strength s

nearly the same for all equations except that proposed by Long. For example, the



TABLE 2.2 (aL Parameters for pure

Figures

2.25

2.26

2.27

2.28

2.29

Main Parameter

studied

fcu (N/mm?2)

fcp (N/mm?2)

d (mm)

¢ (mm)

shear equations

Other Parameters
kept constant

200 mm

fep = 2.0 N/mm2 , d =
= 0.3%

¢c = 300 mm , ps

40 N/mm2 , d = 200 mm
0.3%

fcu =
¢c = 300 mm , ps =

fcu = 20 N/mm2 , ¢ = 300 mm
f = 2.0 N/'mm2 , ps = 0.3%
fcu = 40 N/mm2 , d = 200 mm
fG = 2.0 N/mm2 , ps = 0.3%
fcu = 40 N/mm2 , ¢ = 300 mm
fcp = 2.0 N/mm2 »d = 200 mm
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shear strength predicted by Regan and ACI- 83 with ¢ = 250 mm are the same, but
with ¢ = 400 mm the Long's prediction is 13% more than that predicted by

ACI- 83.

In Figure 2.29, the variations of shear strength due to ordinary steel ratio ,pSp,
at the failure surface are shown. As is clear, Long's equation (Eq. 2.19) and Regan's
equation are affected significantly and the equation of BS8110 is slightly affected by

this parameter.

2.6.2 The equations for moment transfer

ACI: V=V + CAB 2.8

BS8110: V= V+

In Figures 2.30 to 2.35,variation of punching shear strength with moment
transfer is shown. In this connection, the design equations of BS8110 (Eq. 2.9) and
ACI—83 (Eq. 2.9) are compared. From Figures 2.30, 2.33 and 2.34 it is clear that,
the effect of parameters fcu, (M/Vd) and d on the prediction of the ultimate shear
strength in the both equations are the same, where M is the unbalanced moment and
V is ultimate shear strength of the junction. The difference between the two
equations (from the prestressing point of view) comes from the manner of
consideration of 'f(Cp' and 'Psp' *n prediction of the punching shear strength. The

British Code ,BS8110, takes 'pSp' into account whereas the ACI—83 considers 'fCp'

for predicting ultimate shear strength of prestressed flat slabs.

From Figures (2.25) to (2.35), in most of the cases the ACI—83 Code equations

give higher values than that of the British Code ,BS8110. ;



TABLE 2.2 (b): Parameters for shear equations with moment transfer

Figures Main Parameter Other Parameters
studied kept constant
2.30 fcu (N/mm2) fCp = 2.0 N/mm2 , d = 200 mm

c2 = 300 mm , ps = 0.3%
M/Vd =1.0 , c,/e2 = 1.0

2.31 fcp (N/mm?2) fcu — 40 N/mm2 , d = 200 mm
c2 = 300 mm , ps = 0.3%
M/Vd = 1.0 , ¢,/c2 = 1.0

2.32 c,/ca fcu = 20 N/mm2 , c2 = 300 mm
f = 2.0 N/mm2 , d = 200 mm
M/Vd = 1.0 , ps = 0.3%

2.33 M/Vd fcu = 40 N/mm2 , d = 200 mm
f = 2.0 N/'mm2 , ps = 0.3%
c2 = 300. , ci/c2 = 1.0

2.34 d (mm) fcu = 40 N/mm2 , c2 = 300 mm
faqp = 2.0 N/mm2 * Psp = 0-2%
M7Vd= 1.0 , ct/c2 = 1.0

2.35 Ps fcu = 40 N/mm” , ¢c2 = 300 mm

f = 2.0 N/mrn”®, d = 200 mm
M/Vd = 1.0 , ci/c2 = 1.0
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2.6.3 Further Investigation on the Codes Equations

Equations 2.8 and 2.9 need more comparison between them about the
parameters effective on the critical perimeters. If the two equations are written in the

unique form, we will have:

1.5M
VBS = V + e 9
X
where : X = G + 3d (for the first critical perimeter)
1.5M
and VACI = V +  comeeeee 58
X
1.5]
where X = e
7ac AB

1 + 0.67 J (c,* d)/(c2+d)
A = 2d(cl+ c2+ 2d)

J/Cab =[d(ci+d)(ci1+3c2+4d) + d3]/ 3

c,, c2 and were defined in Figure 2.12 and dis effectivedepthof slab. Figure
2.36 shows the variation of (X/c2) due to (c”d) and (c2/d) for both the equations

keeping d as a constant value.

2.7 Critical Review of Previous Works

From sections 2.4 and 2.5 it is clear that afew investigations have been carried
out regarding behaviour of prestressed concrete flat slab at column connections and
majority of them are based on experimental study rather than theoretical one. Those
investigators who have developed theoretical procedure to predict the strength of

prestressed slab—column connections have utilized a non—prestressed slab procedure
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as a basis but included the prestressing effect in the definition of nominal shear

stress of concrete at critical perimeter around the column.

British Code (BS8110) does not give any guidelines on this subject and
designers are advised to refer to specialist literature”1). This lack of information
specially in theoretical aspects was one of the reasons for carrying out the theoretical
investigation on prestressed flat slabs based on three—dimensional finite element
procedure in this study. Details of the procedure for design and analysis will be given

in chapters Three and Four respectively.

2.8 Behaviour of Flat Slab—Column Connections Under Cyclic Loading

Islam and Park(4~) studied experimentally the behaviour of interior flat

slab—column connections. Four of the eight models, were subjected to cyclic loading

conditions (combination of gravity and seismic type of loading). A number of

specimens tested contained various arrangements of shearreinforcement. The statically

applied cyclic loading which caused reversals of unbalanced bending moment was
of

achieved by applying an upward load at one”the sides of the slab and a downward

load at the opposite side. The column was axially loaded while concrete blocks were

suspended from the slab to simulate a uniformly distributed gravity load.

They summarized the following conclusions from the tests on  slab—column

connections transfering shear and unbalanced moment;

a)— The slab—column connections without any shear reinforcment had little
ductility and  failure occurred suddenly by diagonaltension cracking and splitting of

the concrete along the barsin the top of the slab on the critical side of the

column



b)— The wuse ofcranked (bent up) bars in the slab as shear reinforcement
resulted in an increase in the strength of the connection, but did not cause an

increase in the ductility.

¢)— The use of a structural shearhead resulted in an increase in the strength of

the connection, but only a limited increase in the ductility.

d)— The use ofclosed stirrups in the slab around those slabbars that pass
through the column resulted in an increase in the strength and a substantial increase
in the ductility of the connection when subjected to cyclic unbalanced moments. The
closed stirrups resulted in more ductilebehaviour at large deflections than a structural
steel shearhead. Two-legged closed stirrups were found to be as effective as
four—Ilegged closed stirrups at each column face. Such shear reinforcement would be
suitable for slab—column connections in earthquake resistant structures when ductile

behaviour is essential.

Ahmadi and Gilbert"®) presented an investigation into the behaviour of
reinforced concrete flat slab at edge column connections subjected to a combination
of cyclic lateral loads and normal gravity loads. Eight 1/3 scale models were tested to
study the behaviour of the connections at both the service and the ultimate load
stages. The parameters of study were column aspect ratio, percentage of
reinforcement in slab and size of structural shearhead reinforcement. The typical plan
and boundary conditions for experimental models are shown in Figure 2.37. They(50)
adopted a static mode for lateral load application which comprised a predetermined
sequence of displacement intervals. A typical cyclic loading programme is shown in
Figure 2.38.

It was concluded that increasing the column aspect ratio in the direction of

moment transfer proved to be an effective means of enhancing the ultimate lateral



load capacity. 60% increase in the ultimate load capacity was achieved by changing
the aspect ratio from 1.5 to 2.0. However, increasing the dimension of the column
parallel to the free edge by 50%, resulted in a lateral load capacity of only 13%.
Variation of the deflection versus the lateral load for models 6 and 7 is shown in

Figure 2.39.

Some investigators ,e.g. DerbaK51), have utilized analytical methods of
slab—column connections for monotonic loading to predict the strength of the
connections under cyclic loading. Derbal reported a review of those analytical

procedures and wused it to calculate moment and shear capacity of seven edge

column—slab connections.

Akiyama and Hawkins”) utilized the results of the series of experimental
investigations on flat slab—column subassemblages subjected to inelastic reversed cyclic
lateral loads to develop general beam analogy model for the prediction of strength

and behaviour of flat slab concrete structures subjected to lateral loads.

The analytical model”) was calibrated through comparisons with experimental
results of nine interior flat slab—column connections tested at the University of
Washington. In addition , a comparison was made between the predicted and
experimental results for all the slab—column connections tested at the University of
Washington. Those tests included eight interior, thirteen exterior and five corner
column—slab connections. Average ratio of the predicted moment transfer capacity to
the test results is shown in Table 2.3.

The predictions are in good agreement with experimental results. The stiffness
predicted for test specimens were also compared with the test results as characterized
by the rotation between the slab edge deformation and the applied lateral load. The

stiffness prediction was in comparatively good agreement with the test results.
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Table 2.3

No.of
tests

Apred

Type of
s lab-co lumn
connect ion

Interior

Interior

Exterior: moment

parallel to the edge

Exterior: moment

parallel to the edge

Exterior: moment

normal to the edge

Exterior: moment

normal to the edge

corner

corner

Shear
re inforcement
used

Yes

Yes

No

Yes

No

Yes

Predicted moment transfer capacity

mean

s
Mpred ; Mtest

standard
devi at ion

0.07

0.07

0.06

0.05

0.09

0.07

0.07

0.00



CHAPTER THREE

DESIGN METHOD FOR PRESTRESSED CONCRETE FLAT SLAB

3.1 Introduction

A structure and its components must satisfy a number of different limit states or
design requirements such as:
1. Under the worst loading, the structure should be safe.
2. During normal working conditions deformation of the structure must not
be excessive.
The limit state concept involves identification of the various factors that affect the
suitability of a structure to fulfil the purpose of the design. Each of these factors is
called a limit state and if any of them is not satisfied, then the structure is deemed

to have "failed". The two principal limit states for most structures are:

a)— Serviceability Limit States

There are several serviceability limit states, but the two most important are:
i) Deflection: The deflection of the structure under the service load
must not be excessive,
ii) Cracking: Excessive cracking must not take place because the cracks
may permit water into the concrete, leading to corrosion of the steel

reinforcement.

b)*“ Ultimate Limit State
The most important of the ultimate limit states is 'strength'. The structure

must be able to withstand with an acceptable factor ofsafety the collapse load. For



most prestressed concrete structures, design is carried out considering the serviceability
limit state of cracking or deflection, and then the ultimate strength limit state is
checked. Reinforced concrete design, by contrast, is usually based on the ultimate
strength limit state, with later checks on the serviceability limit states. In this study
because the wultimate punching strength of experimental specimens was the main
concern, the ultimate strength limit state procedure was used. The method used to

design the models will be described in section 3.4.

3.2 Analysis of Prestressed Flat Slab

In the analysis of prestressed concrete flat slabs, the prestressing forces are
replaced by external loads calculated on the bases of 'equivalent load' concept. Figure
3.1 shows the prestressed concrete members involving different cases of prestressing
and their equivalent loads.

Having replaced the prestressing loads by equivalent loads, the slab is designed

for ultimate load conditions.

3.3 Design For Ultimate Limit State

In the theory of plasticity any solution to the wultimate load has to satisfy the

following conditions of classical plasticity:

1) The Equilibrium Condition: The internal stresses must be in equilibrium with the
externally applied loads.

2) The Yield Condition: The yield criteria defining the strength of the slab section
must nowhere be exceeded.

3) The Mechanism Condition: Under the ultimate load, sufficient plastic regions must

exist to transform the structure into a mechanism.
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In classical plasticity problems, the solution for ultimate load is obtained for a
given structure. However in the case of reinforced and prestressed concrete structures,
the very conditions for ultimate loads solution can be used to design (i.e. determining

the required reinforcement) for a given structure. This can be done as follows;

3.3.1 The Equilibrium Condition

To satisfy this condition, stresses must be in equilibrium with external loads. A
set of stress in equilibrium can be obtained using say finite element method. Owing
to its simplicity, elastic stresses at ultimate load can be calculated although any other
material law can be used. The object is to obtain a set of stresses in equilibrium not

the correct one.

3.3.2 The Yield Condition

The yield condition defines the combination of stresses (Nx, Ny, NXy and Mx,
My, MXy) necessary to cause plastic flow at a point. At present there is no a
general yield criterion which 1is wusable for a combination of moment and inplane
forces. Therefore, in this work the combination of inplane and flexural forces is

treated as follows.

3.3.2.1 Combination of Bending and inplane stresses

In Figure 3.2 a typical element of slab subjected toa combination of inplane
and flexural forces is shown. Normal forces are taken as positive corresponding to
tension. The element is regarded as consisting of two outer layers separated by an
unreinforced concrete filling as shown in Figure 3.3 and from now on this is termed

as 'Sandwich Element'. In this study, the contribution of the unreinforced concrete



filling in carrying compressive stressis ignored. Consideration of the share of the

filling in the compressive capacity ofthe section was discussed in reference (55).
The moments Mx, My and Mxy and the inplane forces Nx Ny and Nxy,
acting at the mid-depth of theelement (Figure 3.2) are transferred to the

mid—depth of each layer (Figure 3.5) in the following manner:

a)— For the Tor Laver

Nx Mx
nxt =
Z
t
Y 2
Nxy Mxy
*th

b)— For the Bottom Laver

Nx Mx
nxb —

2 Z
nyb —

2

N xy NliIxy
nxyb

where Z is the distance between the centers of the two layers as shown in Figure

3.5.

S-3.2.2 The Yield Criterion

The applied inplane forces nx, ny and nxy in the element (Figure 3.9) are to



Figure 3.2

: A typical element of slab

Figure 3.3 : Sandwich Element
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Unreinforced filling

Bottom layer



(a) (b)

nt = N/2 + M/Z

> nb = N2 - M/Z

(©

Figure 3.4 : Combination of bending and inplane forces



Xyt

nxt

nxyb

nxb

Figure 3.5

Figure 3.6

: Typical layer element
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be resisted by a combination of concrete and reinforcing steel. The sign convention
adopted here is positive for tension. The following basic simplifying assumptions are

accepted.

1)— The reinforcing bars are perfectly plastic and yield at a tensile stress of 'fy' as

shown in Figure 3.7.

2)— The yield criterion for concrete is as shown in Figure 3.8. Concrete is assumed
to be perfectly plastic and concrete compressive stress is uniformly distributed in the

compression zone. The tensile strength of concrete is neglected.

3)— The reinforcement is assumed to be positioned symmetrically with reference to

the middle surface of the section and to be in two orthogonal directions.

4)— The reinforcement is conservatively assumed to carry only uniaxial stress in the
original bar directions. This means kinking and dowel action of the bars in resisting

shear is neglected.

5)— The bar spacing is assumed to be small in comparison with the overall structure
dimension so that reinforcement can be considered in terms of area per unit length

rather than as individual bars.

The total stresses are resisted by concrete and steel as follows;

(a)~ Concrete

Assuming a, and a 2 represent principal stresses in concrete and o'l > ¢ 2

from Figure 3.10(b) the concrete resistance is given as:
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<XC = 0O,bcos26 + cr2sin26

<7iSin20 -m a 2cos2G 3.1

ayc

rXyC _ (o', — cr2)s'mdcos0

where 6 is orientation of o', to the x—axis.

(b)- Steel
Assuming that the area of reinforcing steel and associated yield stresses in the
two orthogonal directions (x and y) are represented by (Ax , Ay) and (fx , fy)

respectively, the steel resistance in the x and y—directions from Figure 3.10(c) is

given by:
oxs = Axfx/t
°ys ~ Ayfy/t
Xys = 0.0

where t is the thickness of the element.

Equating applied forces and resistant stresses of the element in Figure 3.10 we

have:
ax = °xc + °xs
°y = °yc + °ys 33
Txy = Txyc + Txys
or
nX = ., - t*0'c0s20 -+ t-0"sin2# + Ay £x
o = = t-o',sin2” + t-02c0s20 + Ay-fy 3.4
Ky — t-TXy = (o', — o"tsinflcosfl

Considering o', as a tensile stress, and since concrete cannot carry any tension we set

the value of o', = QQ Then Equations 3.4 give:



nx = t-(72sin20 wm Axfx

ny = t-a2c0s20 + Ay*y

nXy = —t-cr2sinOcos0
using the notations : nX = Axfx and n?’ = Ayfy , we have
n* - nx = —t<72sin20
n* - ny = ter2co0s20 3.5
nXy = —tocsin Ocos0

eliminating 0 from Equations 3.5, gives:

(nx nx)(ny ny) — nXy?2 3.6

fr 2

(nx nx) (ny — ny) =

This equation is Nielsen's yield criterion for the element subjected to inplane forces

nx, ny and nXy.

3.3.2.3 Calculation of Optimum Steel Required

Having calculated nx , ny and nXy, the nx* and ny* must be obtained so as
not to violate the yield condition as given by Nielsen criterion (equation 3.6). In this

connection, there are four different cases to be considered as follows:

~se I « Both nx* and ny* > 0
In this case the sum of (nx* + ny*) in the element along the cracked line |,

as shown in Figure 3.10, is made a minimum. Hence from equation 3.6
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ny ny nxy" * (nx nx)

(ny* + nx*) = nx* + ny nxy2 I (nx* - nx)

For minimizing the expression of (nx* + ny*), we require:

d(nx* + ny*) / a(nx*) = 0

i.e. 1 “ nxy2 / (nx* ~ nx)2 = 0
or
(nx nX) = *InXyl 3.7
According to the yield criterion, (nx*¥ — nx) > 0 in every point of the element.
Hence;
nx — nx Inxy]| 3.8

In a similar manner:

ny* = ny + |nxy| 39

Equation 3.8 and 3.9 are valid when nx* and ny* are positive only. That is,

nx A~ Inxyl

ny * [nxy |

From equations 3.8 and 3.9 it is clear that

nx =0. if nx = — |nxy]|

ny* =0 . if nx = — |nxy|



substituting the above values into equations 3.4 results in:

tan0 =1 so d = 45°

and nxy = ~ (T2tsinOcosO0 = —cr2t/2

Then the principal compressive force in the concrete ,nc, is equal to:

nc - ter2 = —2|nxy| 3.10

Case 2 : nx* > 0 and ny* < 0

Equation 3.8 and 3.9 are no longer valid when ny* < 0 , i.e. , when nx <

- |nXy|. In this case reinforcement is only required in the X-—direction. Therefore,

in equation 3.6 considering ny* = 0 then nx* will be:

nx = nx - nXy" / ny 3.11

Also from equations 3.5 the principal compressive force in concrete is:

nc — w72 — nx + nxy” / nx 3.12

Case 3 nx* < 0 and ny* > 0

In a similar manner which was used in Case 2, the following equation can be

obtained:

fnx* = 0

y ny*¥ = ny — nxy2 / nx 3.13

and

nc = ny +nxy2 / ny 3.14
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Case 4 : nx* < 0 and ny* < 0
If both nx* and ny* are negative and nxny ” nxy2 , no reinforcement is
required.
nx' = 8
ny* = 0 3.15

From equations 3.5 the principle compressive force of concrete is given by:

nc = 0.5 (nx mweny) — 0.5 J (nx m ny)2 mm 4nXy2 3.16

These four cases discussed above are summarized in Figure 3.8 and the formula

indicated in each corresponding part of the diagram apply to the case in question.
After the calculation of ultimate design inplane forces for each of the

above—mentioned cases, the required cross—sectional area of reinforcement in the X

and the Y—direction for each layer of the element of slab is obtained as follows:

For the top layer:

Axt = oyt

Ayt = nyt "s 3.17(a)
For the bottom laver:

Axb “ nxb s

Ayb — nyb /fs 3.17(b)
where : fs = Yield stress of reinforcement

Therefore, using the equations 3.7 to 3.16 to calculate steel required will satisfy the
yield condition because the yield criterion is nowhere violated throughout the slab.

Note that in the above design procedure:
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nc > S-(7C and nxy > 0.5 S*rC

in order not to isolate the yield condition for concrete,

where : S = thickness of the outer layers

cre permissible compressive stress of concrete

ne = principal compressive force acting on the outer layer.

nXy = shear force acting on the outer layer

3.3.3 Mechanism Condition

When the equilibrium and yield conditions are satisfied, the necessary
resistance is made equal to the calculated stresses at every point in the slab. So it is
anticipated that all the parts of slab will attain their ultimate strength under the
ultimate design load. Consequently, with minimum redistribution, every point will yield

at the ultimate load, thus converting the slab into a mechanism.

3.3.4 Ductility Demand

In classical plasticity it is assumed that the material has infinite ductility.
Unfortunately reinforced concrete is a material with limited ductility. In using a
method based on a classical plasticity, attention has to be paid to minimizing ductility
demand. In Direct Design Method because of the fact that the minimum
redistribution is needed to achieve failure of the slab in this method, the demand for
ductility which depends on the difference between the first and the last yield in the
slab will decrease. This has the additional advantage that crackwidth will not create a
serious problem at serviceability stage. The steps involved in applying Direct Design

Method are as follows:
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The prestressing forces are replaced by the equivalent loads and combined with

external ultimate design loads.

The elastic distribution of moments (Mx, My, Mxy ) and inplane forces (Nx,
Ny, Nxy ) are determined by two- dimensional finite element computer

programme (Figure 3.12).

The slab element is regarded as consisting of two outer layers separated by an
unreinforced concrete filling. The bending moments (Mx, My) and twisting
moment (Mxy) are replaced by two equal and opposite forces acting at the
mid—depth of outer layers as shown in Figure 3.4a. These forces are combined
with the inplane forces (Nx, Ny, Nxy) divided equally between the two layers
(Figure 3.4b). Each layer is considered as a membrane element subjected to

inplane forces nx, ny and nxy only.

Having got nx, ny and nxy, the ultimate design forces nx* and ny* are

calculated for both top and bottom layers using Nielsen's criterion formula”)

The required amount of unstressed steel in each layer, corresponding to nx*
and ny*, is obtained (section 3.4). In this connection, prestressing steel is treated
as an ordinary steel with an equivalent yield stress equal to the difference
between its 0.2% proof stress and effective prestress. Additional unstressed steel

over and above that provided by prestressing steel is provided as required.
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Figure 3.7 : yield strength of steel bar in tension
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Figure 3.8 : Yield criterion for concrete.
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Figure 3.9

: In-plane normal and shear stresses on the layer element.
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Ayfy/t 0’,sin20 we a 2c0s520
t — L *- (0’

VA4 (0}

, - 0’*sinOcosfl

(T sin 20

Axfx/t

+

cos26 +

1 Tir

(a) Steel resistance .
b) Concrete resistance

(¢) Applied stress

Figure 3.10 : Equilibrium of element under inplane forces.



Figure 3.11

: Design formula for any combination of inplane forces.

In Xy
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Read Data , such as: design loads,
prestressing equivalent loads and
other specifications

Form Stiffness Matrix [K ]

Form Design Load Vector [R]

Calculate the Nodal Displacements

Calculate Bending and Twisting Moments (M x, My, M xy)
and Inplane Forces (Nx, Ny, Nxy)

Calculate Layer Inplane Forces (nx, ny, nxy) for Top
and Bottom Layers due to Combination of Moments (Mx,
My, mxy) and Element Inplane Forces (nx, Ny, Nxy)

Compute the Layer Design Inplane Forces (nx*, ny%*)
For Top and Bottom Layers

Calculate Amount of Steel Required
to resist nx* and ny* in each Layer

Figure 3.12 : Flow-Chart of the 2—Dimensional
Finite Element Program



3.4 Design of Slabs in The Experimental Models in this Study

3.4.1 General

It has been mentioned earlier that one of the aims of the present work is to
study the strength of unbonded prestressed concrete flat slab at edge column junction.
The first step was to analyse typical multi-story buildings to obtain the range of
lateral loads acting on a typical slab—edge column connections. For this purpose it
was assumed that the building would be built in the Glasgow area with the maximum
basic wind speed of 51 meter per second (according to the recommendations of
CP3(56)) From this speed the equivalent static wind loading is calculated. For a
ten- story flat slab—column building with floor to floor height of 3m and bay width
of 5 m , the value of maximum 'wind' shear ranges from about 12 to 100 KN
depending on the height. Therefore, this range of load was taken into consideration

in designing the experimental models.

3.4.2 Procedure Adopted for the Design of The Experimental Models

Since the experimental study is about the ultimate strength of the slab at edge
column connection which is a local failure around the column, no attempt was made
to duplicate the actual size boundary conditions in the models tested. Therefore an
isolated part of an edge column connection as shown in Figure 3.14 (the shaded
part) was selected to conduct the experimental study. A typical experimental model is

shown in Figure 3.15.

A two—dimensional finite element computer programme for the linear plate
bending analysis was developed to consider the combination of bending and prestress
equivalent loads and was used for the design of the models. For this purpose, use

was made of symmetry so that only one—half of the slab needed to be analysed



using 8 - node isoparametric element and 16 -element mesh as shown in Figure 3.16.

The boundary conditions used were as follows:

At all nodes along the column boundary ,abgf, will be:

f W =0
1 3W/ax = 0
I aw/ay = o

and at all nodes along the line 'be' will be:

aw/ay = 0
where W = displacement in z—direction
aw/3x = rotation about y—axis
aW/dy = rotation about x—axis

Since we are interested in the local behaviour of the slab at edge column connection,

violation of the boundary conditions of real slab was of minor importance.

For the design lateral loads, themaximum wind shear wasknown but its
distribution along the line'AB' which produceduniformdisplacement wasneeded. In
the case of flat slab—shear wall junction, Bari(24) has shown that the linear

distribution shown in Figure 3.17 causes uniform displacement along the line 'AB"
Figure 3.18 shows the displacement obtained for model MSI. The maximum

difference was 2% of the maximum value.

At all the 'Gauss’ points ofelements, the computer program calculated the
moment triad (mx, my , mxy and inplane forces triad (xnx , Ny , ~Nxy) due to

the combination of prestress and design loads. The values of nx* and ny* were



evaluated at the 'Gauss' points of each outer layer element according to the rules
given in section 3.5.2. The unstressed steel required to resist these forces at ultimate

conditions was calculated using the recommendations of 'BS8110"

The effective concrete shear stress ,vc, was calculated for each model and

compared with the allowable shear stress ,va, given by:

va = 0.67 J(fiz + 0.8 fcp f,)

where ft = 0.24 J fcu

fCp = average compressive concrete stress due to prestressing

Because the effective shear stress in the critical area around the column didn't
exceed the allowable concrete shear stress ,va, therefore, shear reinforcement was not

necessary.

3.4.3 Strain and Rigidity Matrix for Combined Loads

As previously mentioned, a two—dimensional finite element method based on
elastic analysis of the bending plate was developed to consider inplane loads due to
prestressing equivalent loads. In this section the combined form of the strain and the
rigidity matrix used to obtain the moment triad (m x , my , m xy) and inplane forces

triad (nx , Ny , ~Nxy) is presented in the centre of each element of the slab.

3-4.3.1 Strain Matrix

For bending element

The strains within the bending elements can be expressed in terms of the



Figure 3.14 : Typical Plan of Flat Slab-Column Structure

Figure 3.15 : An Isometric View of Typical Experimental Model.
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Figure 3.16 : Typical mesh and column boundary conditions.



Figure 3.17 : Distribution of lateral load to simulate uniform

displacement along the line 'AB'
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Figure 3.18 : Deflection along the line 'AB' in model MSI.
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element nodal displacements as:

[e]= [ B 1[¢] 3.25

where [B] is the strain matrix generally composed of derivatives of shape functions,

and [ s ] is element nodal displacements.

For plate bending elements in two- dimensional linear analysis, the

strain-displacement relationship from theory of elasticity may be written as:

dNj
0 0
VAx dx
dN!
0 0
dy
. dNj
N
M i - 1AXxy 0 - ant
dy ay
dNj
- Nj 0
7xz dx J
E dN j
H —_ 0 - Ni
A ! dy

where Nj is the shape function at the i1 node at which the nodal displacements are

W, and oyj.

ii))— For membrane element

dN
€X dx 0
. dN
= = 0
Mi cy ay
dNj dNj

7xy dx

i o



jiil) Combination of Bending and Membrane Strain Matrix

For the element subjected to combination of bending and inplane forces, the

strain — displacement relationship will be as follows:

dN j
rx 0 dx 0 W
0 0 dN|
dy
dNj .
0 ! . dNi 1 0
txy dy ay 1
dNj
M i - Txz - dx - Ni 0 1
dNj
Yyz 0 - Nj [
dNf
ex dx 0
v a dN, *
fy ay
dNi dNf
Yxy A
i y dx

3.4.3.2 Rigidity Matrix

The general form of the stress—strain relationship may be written as follows:

M = [Dp]M 3.29

where [D ] is called 'elasticity matrix' or 'rigidity matrix'

Subtituting equation 3.25 into 3.29 results in

M = [DI][BI][s] 3.30

a)~ The Rigidity Matrix [D] for bending element assuming isotropy is:



Et
12(1-r2)

rE ts
12(1 —v2)

[D]b-

7PEts
12(1 —2)
Ets
12(1-72)
(1-QEts
24(1-K2)

Et
2.4(1+0

Et
2.4(1+0

b)- The Rigidity Matrix [»] for membrane element is

1-j>2

?7E
[D]m '

c)- The Rigidity Matrix [D] for an element

inplane forces

follows:

vZ

1 -T2

2(1+0

is formed by combination of [D]*

subjected to bending and

and [D]m as
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CHAPTER FOUR

FINITE ELEMENT ANALYSIS

11 1 Introduction

Developments in the finite element method over the last two decades is one of the
ost significant achievements in the history of engineering. This analysis technique is now
ed regularly by engineers in the solution of various problems in the context of structural

engineering. Using this technique, investigators in many fields of engineering have moved
to areas such as nonlinear applications and modelling of complex material behaviour. In
the case of reinforced concrete, all nonlinear aspects such as cracking, tension stiffening,
nonlinear multiaxial material properties, creep, shrinkage and other parameters which
previously were ignored or treated in a very approximate manner, can now be considered

rationally by the finite element method

The application of finite element to nonlinear problems increases the numerical work
aslcompared with linear problems. However, development of high speed computers which
meet this need have insured that adequate capability is now available. In this chapter, the
three—dimensional finite element approach for the analysis of reinforced concrete
slab—column connections is presented. The theoretical results and comparison with their

experimental counterpart will be shown in Chapter Eight.

*92 Finite Element Formulation of Slab

L Since the finite element analysis is a well known standard procedure, it is not
nec® ary to describe it in detail in this study. But in order to define terms for their

applications a brief review of the method will be presented.



421 /~neral Procedure and Discretisation bv Finite Elements

In any continuum, the actual number of degrees of freedom is infinite and an exact
analysis of a structure is impossible using a method of discretisation. For any numerical
approach it is assumed that the behaviour of the continuum can be represented by a finite
number of unknowns. In the finite element method the continuum is divided into a series
of elements which are connected together at a finite number of points known as nodal

points. This process is called 'discretisation'.

For structural applications, the governing equilibrium equations can be obtained by
(minimizing the total potential energy of the system. The total potential energy can be

expressed as:

= 0.5 Jv [erlT[e]dv - Jv [S|T[pldv - Js [6]T[q]ds -

4.1)

where [cr] and [e] are the stress and strain vectors respectively, [5] the displacement at
any point, [p] the body force per unit volume, [q]the applied surface tractions, [co] is the
applied line load and Qj is the concentrated load. Integrations are carried over the volume
'v' of the structure and loaded surface area 's'. The first term on the right hand side of
equation 4.1 represents the internal strain energy and the second to fifth terms are the

work contributions of the external forces [p], [q], [w] and Qj respectively.

In the finite element displacement method, the displacement is assumed to have

un&iown values only at the nodal points so that the variation within any element is

described in terms of the nodal values by means of interpolation functions. Thus

[e] = [N][3e] 4.2
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where [N ] is the set of interpolation functions termed as shape functions and [se] is the
vector of nodal displacements of the element. The strains within the element can be

expressed in terms of the element nodal displacement as:

[«]- [BIl{e] 4.3

where [B] is the strain matrix generally composed of derivatives of shape functions.
Finally, the stress may be related to the strains by use of an elasticity matrix [D ] as

follows:

[<.]= [D][f]= [DI[B][ se] 4.4

The total potential energy of the continuum will be the sum of the energy contributions

of the individual elements. Thus

mT= 1 Te 4.5

I where xe represents the total potential energy of an element 'e' which, using equation

j 4.1, can be written as;

*¢ = 0.5 Jve t«]T[B]T[D][ seldv _ [+¢]T[N]T[p]dv _

Ise [«e]T[N]T[qlds - Jfe [5e]T[N]T[u]d« -  E[¢e]T[N]TQ. (4.6)

where ve is the element volume, se is the loaded element surface area and £e is the
loaded line on the element face. Performance of minimisation for element 'e' with respect

t® the element nodal displacement [ Se ] results in;

d7re

TT = Jve ([B]T[D][BDI[jeldv - |ve [N]T[pldv - |se [N]T[qlds -
06¢€

f,,e [N]T[u]ld« - I [N]TQj

= [Ke] [se] - [Fe] 4.7)



where

[Fe] = Jve [N]T[pldv + Jse [N]T[q]lds + Jfe [N]T[«]d4 + I [N]TQi (4.8)

are the equivalent nodal forces, and

[Ke] = Jve [B]T[D][B]dv (4.9)

is termed the 'element stiffness matrix'. The summation of the terms in equation 4.7 over
all the elements, when equatedto zero, results in asystem ofequilibrium equations for
the complete continuum. These equations arethen  solvedby any standard technique to
yield the nodal displacements. The strains and therefore the stresses within each element
can be calculated from the displacements using equations 4.3 and 4.4. In this study the

'Frontal solution technique' described in section 4.5.5 was used.

4.2.2 Element Type

The selection of the element type is always related to the type of problems to be
solved. As three—dimensional nonlinear analysis is the main concern of the analytical part
of this study, the 20—noded isoparametric brick element”) >as illustrated in Figure 4.1,
is used throughout this work to represent concrete. Reinforcing steel is simulated by bars
embedded inside the concrete element at their actual locations in the structure without
imposing any restrictions on the mesh choice. The mathematical derivations of the stiffness

contribution of these bars can be found in Reference (58,59).

This element was chosen to consider the effect of the six stress components ax, ay,
;az> rxy, TyZ, rzx as shown in Figure 4.2. Each nodal point has three degrees of

freedom, that is:

movement in x—direction= u

>

movement in y—direction= v , and

movement in z—direction= w
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Each eclement has its own local coordinate system (£ f)(Figure 4.1), with the origin at

the centre of element such that each local coordinate ranges from —i to +1 only.

4 2.3 Shane Functions

Shape functions are interpolation functions which describe the variation of the

displacement within the element in terms of the nodal displacement

“« £ [N<] 4.1C

where Nj is the shape function at the ith node at which the nodal displacement is ¢j.

The efficiency of any particular element type will depend on how well the shape
functions are capable of representing the true displacement field. The isoparametric family
are a group of elements in which the shape functions are used to define the geometry as
well as the displacement field. For three dimensional applications, the displacements field
at a particular local coordinate (£,17,f) are u(£,77,f), v(£,77.f), W(£,77,f) and are defined
using three displacements degrees of freedom Uj, vj, Wj at each of the twenty nodes and a

quadratic interpolation scheme.

The coordinate values x(£,77,f), y(£,r),t) and z(£,77,f) at any point ($,17,f) within

the element may be defined by the expressions:

20
x(£,T7,0 = I N $,170) . Xj
i=1
20
y(£,?27,0 = X N f) .yj (4.11)
i=1
20
Z(S,»?2,0 = 1 N ($,77,0 . zj

i) are the coordinates of node ** and Nj(£,7,f) are three dimensional



(a) Local coordinates (b) Cartesian coordinates

Figure (4.1) : 20-Noded isoparametric brick element

Figure (4.2) : Cartesian stress components



quadratic shape functions. In the present work, such shape functions

nodes were obtained from Reference(s7) as follows:

For corner nodes £j = = 1 gi = = 1 = + 1
= (I+20) (1+W ) (1+1fj) (££j + nmrji + rrj - 2)
For mid-side node £j = £ 0 rlj = £ 1 = + 1

Nj(£,i2,f) = 7 (1"£2)(Ianri) (1+ffj)

For mid-side node £j = =1 = £ 0 = = 1

Ni«,ij,0 - | (1+ftiXi-ijZxi+rf,)

For mid-side node £| = = 1 = = 1 f. = + 0

Ni(M ,0 - i (+gg£i)(1+izTi)(1-r2)

of each of the twenty

(4.12)

(4.13)

(4.14)

(4.15)

Each of the twenty shape functions has a value of unity at the node to which it is

related and zero at the other nodes.

To calculate the displacements u(£,r;,f), v(£,r/,T) and w(£,T7,f) at any point within

the element, expressions similar to (4.10) may be written as follows:

20

u(£,1,D - E N( (£,Tj,r) - Uj
i=1
20

vis, 7Ty = 1 Nj (£,*?,0 - Vi
i-1
20

WM ,0 - 1 Nj (£,%?,0  Wf

(4 16)
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4 2.4 strain Matrix

In three dimensional small displacement analysis, the strain- displacement relationship

may be written as:

ex = du/dx

ey = "“v/dy

ez = dw/az

7Xy = “u/ay + ~v/ax (4.17)
7yz = dv/*z + *wl/dy

7zx = dw/ dx + “ul/dz

in which ex , £y, ez are the normal strain components and 7Xy, 7yz, yzx are the shear

strain components. Equations 4.17 may be written in matrix form as follows:

ex a/ax 0 0
cy 0 a/ay 0
oz 0 0 a/az s
?xy a/ay a/ax 0 ’
Tyz 0 d/dz a/ay
72x a/az 0 a/ax
Jising the finite element idealisation we can write
aNj/ax 0 0
0 aNj/dy 0
0 0 aNj/az W
M - 2£
i-1 aNj/ay aNj/ax 0 (4.19)
0 aNj/dz aNj/ay
aNj/az 0 aNj/ax
simply
20

t «i =V (4.20)



where [Bj] is the 6 x 3 strain matrix in  equation 4.19 which contains the cartesian
derivatives of the shape functions. Since theshape functions Nj are defined in terms of
the local coordinates of the element a transformation from local to global
coordinates is required to obtain the [B] matrix in equation 4.19. This is done through

the well known Jacobian matrix which is written as:

ax/dg dy/a$ az/af

J = ax/drj dy/drj az/arj (4.21)
ax/ar dy/ar az/ar
thus
aN,- aNj aNj
S f " Xi a* .yi a$ 1
aNi aNj aNj (4.22)
3T /Xi drj °Y! ar?  *Zi
aN,- aNj aNj
ar Vi aT1'2!

the inverse of the jacobian matrix will be

21 ar? ar
ax ax dX
-1 aNj aNj ar (423)
ay ay ay
aNj aNj ar
az az dZ

therefore the cartesian derivatives are given by



4 2.5 Stress—Strain Relationship

For linear analysis of uncracked concrete, and in the absence

strains, the stress—strain relationship may be written in the form of

where [D ] is the elasticity matrix which takes the form

(1 -0 (l-o
14 0 0
(1-0
1 0 0 0
A E (1-0
" (1+r)(1-2r) (1-20 . 0 (4.26)
2(1-0
Symmetry (1-20 0
2(1-0
(1-20
2(1-0

where 'E' is the Young’s modulus of elasticity, and V is
nonlinearity as considered in this workis only the material nonlinearity and all changes
material properties enter through the changes in elasticity matrix [D]. This will

discussed later in section 4.4.4.3.

4.2.6 Numerical Integration

The element stiffness matrix ,[Ke ], to equation 4.9 is given by:

[Ke] = Jve [B]T[D][B]

Since it is difficult to carry out the integration analytically, some form of

integration should be specified. In this study, 3>6X3 ¢ ...s-Lengender quadrature

of initial stresses and

Poission’s ratio. The concrete

in

be

rules



have been used as shown in Figure 4.3.

4 2.7 Principal Stresses

From equation 4.25 there are six cartesian stress components at each Gauss points

that can be evaluated, namely:

10 — ([ Cx, (ry. az, TXy. 1yz. 72X ] (4.27)

Considering uncracked material, there exist three planes on which the shear stresses are

zero. These planes are called 'principal planes'. The stresses normal to these planes are

called principal stresses. The value of such principal stresses , cj, may be obtained by

solving the following cubic equation”).

O - IaCR + L " L = o (4.28)

in which I|, I and Is are the stress invariants, which may be expressed as follows:

Il = ax + <+ a: (4.29)
2 ~ [°x°y + “y*z + °z°x + T'xy gzyz " gzzxj (4.30)
Is = determinant of the stress tensor

Ox Txy Tzx

Tyx ay Tyz (4.31)

Tzx 7zy <2z

Th
e principal directions which determine the principal planes can be expressed by their

resPective directions cosines such that:

i = cos(0Xj) , mj = cos(oyj) , nj = cos(0zj) (4.32)
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where oxi >0yi an<* 0zi are the and&es between the principal direction (i) and x , y and

z-axsis respectively. Thus the direction cosines of a«\ are lj, , nj; those for o2 are

jo m2, n2 and those for o3 are L, ms, ns.

The method to evaluate these direction cosines is explained in details elsewhere(”)

and is briefly presented here. Denoting

A = B = - C = (4.33)
Tyz °T °i Txz az~ °i Txz 7yz

it can be shown that the three direction cosines can be expressed as:

li m* n{
= R (4.34)
A B C
where R is a non—zero constant to be determined. The subsidiary trigonometric condition:

lj2 e« m + n* =1 (4.35)
gives R as
1
R = (4.36)
J A2+B2+C:
then j = a.R , mj = B.R and nj = C.R 4.37)

4.3 Steel Modelling

4.3.1 Modelling Methods
In developing a finite element mo . + for a reinforced concrete member, at least t e
following three alternative representations of the reinforcement have been used.
a)— distributed (or smeared )
b)— discrete
¢)— embedded

For a distributed representation as shown in Figure 4.4a, ctppl is assumed to be

(T3 I 13

| - a



only in the direction of the original bars. The equivalent thickness of the steel layers in
any direction is proportional to the corresponding ratio of steel in that particular direction

in the element. Perfect bond is assumed between the concrete and steel.

A discrete representation of the reinforcement, using one dimensional element
(Figure 4.4b), has been widely wused. Axial force members are assumed to be
pin- connected with three degrees of freedom at the nodal points. The one dimensional
reinforcement element is superimposed on a three—dimensional finite element mesh
representing concrete at nodal points. A serious disadvantage of this representation,
however, is that the location of reinforcement often dictates the size of concrete mesh.
This may result in slender elements where the reinforcing bars are too close together or
increases the number of elements which consequently increases the cost of computer

analysis.

An embedded representation is shown in Figure 4.4c. In this method the reinforcing
bar is considered as an axial member embedded into the isoparametric element such that
its strains are consistent with those of the element. In other words, perfect bond is
assumed between concrete and steel. The concept of embedded representation of
reinforcing bars was first presented for plane stress, strain and axisymmetric analysis~), it
allows an isoparametric element to include as many bars as possible and the bars can be
placed in positions corresponding to those in the real structure without imposing any

restrictions on mesh size.

In this study, reinforcing bars are embedded in the 20— noded isoparametric brick
dement used for concrete. The basic two—dimensional theoretical formulation presented by
Phillips and Zienkiewicz(63), was extended for three-dimensional elem ent~) 1in a similar
banner. The derivation requires that bars are restricted to lie along the local coordinate
axes the basic element as shown in Figure 4.5. The details of the theoretical derivation

of bar element stiffness can be found in References (23.65).
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Figure (4.3) : Location of Gauss points for the 3x3x3
integration rule; those for the 2x2x2 and

4x4x4 rules follow the same order

Reinforcement

A A A A A _*»X

Figure (4.4-a) : Distributed representation of steel
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Axial Elements

Flexural Elements

Figure (4.4-b) : Discrete representation of steel

Reinforcement

Figure (4.4-c) : Embedded representation of steel

Figure (4.5) : Embedded bars within the 20-noded

isoparametric brick element



4 3.2 Characteristic Properties of Unstressed Steel

A typical stress—strain curve for reinforcing steel is shown in Figure 4.5. For
simplicity in design and analysis calculations, it is often necessary to idealize the steel
stress- strain curve. These different idealizations”) which are shown in Figure 4.6, can
be used depending on the accuracy required. For each idealization, it is necessary to
determine experimentally the values of stresses and strains at the onset of yield, strain
hardening and the ultimate tensile strength. In the present study, the ‘elastic—perfectly

plastic' approximation is adopted (Figure 4.6a).

4.4 Concrete Modelling

44.1 Introduction

To achieve an adequate mathematical modelling of non—linear reinforced concrete

behaviour by finite elements, there shouldbe enough knowledge about the following

aspects:
a)- Elastic and inelastic behaviour of concrete.
b)- Behaviour of steel reinforcement

c)~ Bond—slip phenomenon between concrete and reinforcement.

Now- a—days more and more experimental knowledge of reinforced concrete regarding the
deformational behaviour and strength is becoming available and consequently the
above- mentioned subjects are becoming clear. Having obtained such experimental data, it
must te transformed into sets of mathematical formulae, adequately describing the basic
characteristics of reinforced concrete to beused in the analysis. These mathematical
formulae are normally called 'constitutive laws of concrete'. In recent years a lot of work
~ave keen carried out on this matter resulting in different models being offered for the
escr'Pti°n of the behaviour of concrete under different stress states such as nonlinear
astt’ elastic—plastic, endochronic, etc. These achievements were summarized and

icallY evaluated by Chen and Ting(69).
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y
an 9
(a) Elastic-perfectly plastic approximation
f,
y
tan 9
(b) Trilinear approximation
f,
y

tan 9

(c) Complete curve

Figure 4.6 : Idealizations for the stress-strain curve
for steel in tension or compression.



In this study, concrete properties were modelled based on 'Kotsovos(70,71)
constitutive law of concrete' whose feature will be discussed later. As cracking of concrete
is the major cause of nonlinearity in most reinforced concrete structures, a separate three
dimensional 'smeared cracking' model is developed and incorporated in the finite element
programme. This will be discussed in section 4.4.4. Forces due to prestressing were
included using the concept of equivalent loads. Steel reinforcement including prestressing
steel was modelled as elastic—perfectly plastic material and shear transfer on cracked

concrete faces was allowed.

4.4.2 Kotsovos' Constitutive Laws of Concrete

In recent decades, a comprehensive programme”® +72,73) Of investigation into the
behaviour of concrete under complex states of stress was carried out at Imperial College
of London. The testing techniques used to obtain this data, have been validated by
comparing them with those obtained in an international co—operative programme of
research into the effect of testing techniques and apparatus upon the behaviour of
concrete. After analysing the results, Kotsovos et ai(70,71) provided the mathematical
expressions for deformational as well as strength properties of concrete suitable for
nonlinear computer based methods to analyse concrete structures. These expressions were
successfully implemented in the computer programme by Elnounu~), then were utilized

by Bari(24) ancj subsequently used in the present work. A brief description of the model

will be given in the following sections. References (23,70,71,72,73) give detailed description

with verification of the model against experimental results.

State of Stress at a Point

For the construction of constitutive equations for concrete, the geometrical
presentation of the stress state at a point is very useful. Since the stress tensor ay has

independent components, it is possible to consider these components as positional

°rdinates in a six—dimensional space. However, it is too difficult to deal with in this



study. The simplest alternative is to take the three principal stresses (72, a3 suc” that

al > a2 > a3 as co_ ordinates and represents the stress state at a point in the
three dimensional stress space. This orthogonal co-ordinate system al\, (2, (73 can be
transformed into a cylindrical co—ordinate system ¢, r, 0 such that 'q' coincides with the
space diagonal (ct! = (72 = <43) of the original system, V and '0' are the radius and
rotational variables respectively on the plane perpendicular to the axis 'q'" as shown in

Figure 4.7. The two systems are related by the following equations:

=
|

(ecrl  + (72 wm73)1J 3

—
I

(@ _ @2+ @(@2¢ @2+ (3 - (7)2]0-5 s 3 (4.38)
cos 6 = (ai + (712 —2@3) / (vJ o)
and
The variables *q and'r' define the hydrostaticTdeviatoric components of  stress state
respectively, whereas the variable '0'defines the direction of the deviatoric component on
the octahedral plane as shown in Figure 4.7 and varies from:
0= o0° forci = (12 > (13

0 =60° for @i > (72 = (T3

The hydrostatic and deviatoric components can also be expressed in terms of the normal

(°oct) anf* shear (roct) octahedral stresses which are defined as follows:

7 " (2 “m 03

°bet = = qly 3 4.39)
3

Toct = 1/[37 (0-f- » )2 + {°2~ a3)2 + (a3~°T)2] = X,J 3

Similarly, the normal (eoct) and shear (Yoct) octahedral strains are defined as follows:

4.40
'oct — [(ei_ 62)2 wm ((2— e3)2 (/3- elr2]°°5 ~ 3
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(a)

deviatoric

plane
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Figure (4.7) : Cylindrical coordinate system



where q, e2> e3 are the principal strains.

The mathematical formulae reported here for the deformational and strength
properties are applicable to a range of concretes with wuniaxial cylinder compressive
strength (f*) varying from about 15 to 65 N/mrn”.

For the deformational properties, use has been made of the secant bulk (Ks) and

secant shear (Gs) moduli expressed as follows:

°oct

3 eoct
(4.41)
Toct

2 Toct

f
44.2.2 Deformational Properties

The deformational behaviour of concrete under increasing stress can be completely
described”"®) by the relationships between:
(a)— hydrostatic stress ,(roct, and volumetric strain ,eo h,
(b)— deviatoric stress ,roct, and deviatoric strain ,7oct,
(c)— deviatoric stress ,roct, and volumetric strain ,eocj,(under deviatoric stress)

(Note that for metals, eocj is notaffected by roct but this may not be so for other

materials)

~oct ~ eoh anc* Toct — Toct relationships can be described by the mechanical

properties of the modeK"O) a5 follows:

- - <
415 1 _. Tor e 2.0
1 + A (2acl)
C (4.42)

for 27 Noao

I+ 200107 A-2b (b-DA (",f1)

1 (4.43)
a1

Vi R —

1 +C (~£i)

I



where Ko and Go (in KN/mm?2) are the initial values of the moduli Ks and Gs, and A,

b C. d are parameters which depend on the material properties such that

KK = 11.0 + 0.0032 <
G = 9.224 + 0.136 &L + 3.296 x 1015 (8.273)
A =0.516 for f' A31.7 Nmm: , or

0.516

for f4 > 31.7 N/mm:
1.0 + 0.0027(f~ - 31.7)2-397
b = 2.0 + 1.81 x 10"s f~ (4 -431)
(4.44)
C =3.573 for fI ~31.7 N/mm: , or
3.573

for fl1 > 31.7 N/mm
1.0+ 0.0134 (fe -31.7)1-414

d = 2.12 + 0.0183 f* for 4 >31.7 N/mm:

= 2.7 for 4 ~31.7 N/mm

In order to evaluate the effect of internal stresses on deformation, use is made of
the artificial concept that the volumetric strain (eocj) under deviatoric stress is due to the

hydrostatic component of such stresses so that

‘mt = s €ocj 4.45
tile 7oct ~ “od relationship was expressed”) in a non—dimensionalised form as follows:
alnt/*¢c “ M (roct / f')dl (4.46)
whe re
M -
(4.47)
1 + d2 (“oct / ~c)d3
and k 4.0
(4.47)
1.0 + 1.087 (f* -15.0)0-22
dl = 1-0 for 4 ~ 31.7 N/mm2 , or

« 0.3124 + 0.0217 f{~ for &~ > 31.7 N/mm:



d2 = o0.222 + 0.01086 f' - o0.000122f" /ox
c c (4.48)

ds = - 2.415 for & 2~ 31.7 N/mm:

2

, or

= - 3.5308 + 0.0352 f, for f* >31.7 Nmm

The hydrostatic component (qnt) is equivalent to three

principal stresses, ol =

= (¢~ = <Jint, and its effect on deformation will be the deformational response of the

model under these principal stresses.
Equations 4.42 and 4.43 when used with equation 4.41

strain will be

eoct = eoh eod

4.42.3 Strength Properties of Concrete

, the total octahedral normal

The strength of concrete under multiaxial stresses is a function of the state of stress

consisting of six components. Based on an analysis of strength data, Kotsovos*71) derived

mathematical expressions to describe the strength properties

triaxial stress states which can be presented as follows:

m  ;o0¢ IS the value of roct at the ultimate strength level for

I" Toc is the value of roct at the ultimate strength level for

lhe value of rOf at the ultimate strength level for any values

of concrete under biaxial or

6 o degree;

6 = 60 degree;

6 such that

AANon < 60 degrees, may be given by the following expression:

A A 270c(Toc~Toe)cosg+Toc(2Toe~Toc) t4 (Toc 7o0e)cos e+ Toe oc %°e| *

M 7“oc - 70e) cos20 + (roc - 2Toc)2
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This expression describes in the deviatoric plane a smooth convex curve with tangents
perpendicular to the directions of Toeand roc at 0 = Oand 0 = 60 degrees respectively
(see Figure 4.8). If isotropic material behaviour isassumed, equation 4.50 may be used to
define a six—fold symmetric ultimate strength surface, provided the variations of roe and

Toc with caoct are established.

Figure 4.9 shows the normalized combinations of octahedral stresses (with respect to
the uniaxial cylinder compressive strength (f*.)) at the ultimate strength level obtained from
triaxial tests(7*). The envelopes in this Figure are considered to describe adequately the
strength  of mostconcretes likely to be encountered in practiced), Amathematical

description of the above strength envelopes was obtained”) as follows:

rocffe = 0.944 [(<0/fy + 0.05]0.7 24

Toel/ft — 0633 [(<yfy + 0.05] 0-85 7 451

Equation  4.51 represents twoopen ended convexenvelopes whose slope tends to
become equal tothat of the space diagonal as noct tendsto infinity. These expressions
together with equation 4.SO are used in this work to define an ultimate strength surface
which conforms with the generallyaccepted”) shape requirements suchas six—fold
symmetry, convexity with respect to the space diagonal, and open ended shape which

tends to become cylindrical as co tends to infinity.

r'~-3 Failure Criteria of Concrete

|4.4.3.1 Introduction

Criteria such as yielding, initiation of cracking, load carrying capacity and extent of
formation are generally used to define failure. But failure is defined in this study as the
mate load—carrying capacity of a test specimen. In general, concrete failures can be

e into two types: tensile type and compressive type. Tensile and compressive type of
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failures are generally characterised by brittleness and ductility, respectively. With respect to
the present definition of failure, tensile type of failure is defined by the formation of
major cracks and the loss of the tensile strength normal to the crack direction. In the
case of compression type of failure many small cracks develop and the concrete element

loses its strength completely.

4.4.3.2 Concrete Compressive Failure Criteria

In this work, it is assumed that concrete suffers a crushing type of failure if:
(a)- the failure surface presented in section 4.4.2.3 is violated, or
(b)- the maximum principal compressive strain is greater than a specified value (which is
taken as 0.0035 according to BS8110)

Condition (a) holds for isotropic (uncracked) concrete material, and it is found that
condition (b) will never be satisfied prior to condition (a) as long as the material is
isotropic. But when a crack exists, condition (a) is not applicable thus only condition (b)
is valid.

After crushing, the current stresses drop sharply to zero and the concrete is assumed

jto lose its resistance completely to further deformation. Therefore the rigidity matrix [D ]

will be zero.

p-4.3.3 Concrete Tensile Failure Criteria

In this study, it is assumed that concrete will suffer a cracking type of failure if:
(a)~ the failure surface presented in section 4.4.2.3 is violated, or
[b) the maximum tensile principal stress exceeds a specified value. A value equals 2 is
Pproximately the value on the failure surface for uniaxial tensile stress state (ft is ultimate

tensile strength of concrete).

Condition (a) holds for isotropic (uncracked) concrete material. Under multiaxial

state, condition (b) will never be satisfied prior to condition (a) as long as the



material is uncracked. When at least one crack exists at any point due to condition (a),

only condition (b) is applicable tocheck against a second or a third crack.

Once a crack has formed, the tensile stress across the crack drops sharplyto zero
and the resistance of the material against further deformation normal to the crack
direction is reduced to zero. However, material parallel to the crack is assumed to carry
stress according to the wuniaxial or biaxial conditions prevailing parallel to the crack.

Further details of cracks handling will be discussed later in this chapter.

4.4.4 Modelling of Concrete Cracking

4.4.4.1 Introduction

Cracking of concrete isa major factor contributing to nonlinear behaviour of
reinforced concrete structures. Early studies on modelling of reinforced concrete nonlinear
behaviour resulted in two methods of representing the cracking of concrete. The first
approach , termed discrete crack representationr), uses a predefined discrete crack
[system. The major disadvantage of this method .however,is that the topology of the
structure has to be continuously altered as cracking progresses and previous knowledge of
the crack pattern might be necessary. There is also a lack of generality in the possible
crack directions as these are dictated by element boundaries rather than the resulting

principal stresses or strains.

The second approach, known as the smeared crack modeK”), assumes that the
cracked concrete remains a continuum. This implies that an infinite number of parallel
racks occur at a specific point if a certain cracking criterion is satisfied. By using the

eared cracking approach the problem of changing the topology of the structure with
mrack nm . . T . . .
propagation is overcome. Moreover the initiation, orientation and propagation of

at the sampling points are independent of the mesh adopted. Figure 4.10 illustrates

T lh backing models as applied to the two dimensional analysis.



The selection of which cracking model to use depends largely upon the purpose of
the finite element study undertaken and the nature of the output desired(24) Generally, if
the overall load—displacement behaviour, without regarding to local stresses and realistic
crack patterns is desired, the smeared crack representation is probably the best choice. If,
on the other hand, detailed local behaviour is of prime importance, adoption of the
discrete cracking model is useful. The element type, size and grid pattern have significant
effects on both the models. The smeared crack approach is the most commonly used
because it is easy to implement. Further details on this aspect can be found in References
(63,69).

In this study, the overall structural behaviour is of particular importance.
Furthermore, the efficient 20—noded isoparametric brick element is used to represent
concrete with embedded bars to simulate the reinforcing steel at its exact locations in the

structure. Therefore, the smeared crack simulation is adopted.

4442 Smeared Cracking Model

The main feature of the present cracking model may be summarized as follows:
a)- cracking in one, two and three direction is allowed
b)— cracks are allowed to open or close during the load increment
c¢)~ no tension stiffening but shear retention is allowed.

d)— variable crack direction is permitted.

In the three dimensional stress space defined by c2 and a3} cracks might occur
normal to any of the three principal stresses (Figure 4.11). It is possible for any point to
cracked in more than one direction. Up to three cracks at a point are allowed in this
na'ysis provided that they are orthogonal to one another. Once a crack occurs, its
rection in the cartesian xyz space is fixed and retained as such in all subsequent loading,
this method , matrix [D ] is modified such that the modulus of elasticity 'E' of the
Cfete % reduced to zero in the direction normal to the crack. Further, a reduced shear

wls 'G' is assumed on the cracked plane to account for aggregate interlocking.



|
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Because of the fact that shear stress is allowed to act at the cracked surfaces, this

procedure allows tensile stress to build up on surface other than the crack direction.

Because of the fact that shear stress is allowed on the cracked planes, for later
stages of loading, the principal stress direction changes from the previous one. Gupta and
Akbar(33) reported in the analysis of reinforced concrete, that the direction of initial and
final cracks do not coincide. In this analysis, instead of fixing the direction of the first
crack once it develops , the crack direction is monitored for every iteration in  every
increment. If the crack rotates by more than + 10% from its previous direction, that
direction is changed and the new correct direction 1is fixed, until the direction again

changes by + 10% in further iterations.

In order to improvethe realism of the present cracking model, the possibility of
crack closing is considered. This behaviour may take place due to the redistribution of
stresses during an iteration or upon further loading. In the present work, the possibility of
cracking of any sampling point is re—examined within each iteration until the numerical
solution converges within the permissible limits of convergence. After convergence, the
direction ofany cracking is fixed. The fictitious principal strain normal to the crack
Adirection is monitored to assess the state of the cracks in the cracked concrete. If this
train h& a negative value, then the crack is assumed to close and the modulus of

I
elasticity normal to the crack is restored back to initial value 'E\

A Algidity Matrix for Crack Analysis

ft has been reported earlier in this work that the triaxial rigidity matrix for
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Figure (4.10) Discrete and smeared cracking models



0y (a) Crack in direction 1

cy crack.inc. ¥
(only normal stress
is set to zero).

(b) Crack in direction 2

(¢) crack in direction 3

Figure (4.11) : Types of cracks in concrete



uncracked isotropic concrete is

(1-0 (1-0
L -0 ‘ 0
E(l-1) 1 0 0 0
(i +tk)(i-2v)
(1-20
2(1-0 0 0 (4.52)
Symmetry (1-2Q
2(1-0
(1-20
2(1-0

In principal stress space,and with reference to the adopted cracking criterion, if the

concrete is cracked in direction 1 (Figure 4.11a) the rigidity matrix will be:
0 0 0 0 0 0
422 d23 0 0 0
d33 0 0 0
(4.53)
0o C 0 0
Symmet ry
dss 0
0G
corresponding values in the [D] matrix and (@3
fact
or’ 0 < @ ~ 1. Shear retention factor will be dealt with in section 4.4.5. 'G' is the
shear . . . . e
modulus of the material, its value will be the value obtained from the constitutive
la

WS . .
Prior to cracking.

ft the concrete is cracked in direction 2 (Figure 4.11b), the rigidity matrix will be




D1l dl13 0
0 0
d33 0
Symmetr
[ Dc 1 2 Y Y pe

PC

66

(4.54)

and H{ it is said to be cracked in direction 3 (Figure 4.11c) the rigidity matrix will be

Dn Di2 0 0
d22 0 0
0 0
S t
I Dc ] 3 ymmet ry q44

Depending on the stress situation, cracks may occur

single Gauss point. In this case combinations between

necessary as follows:

PC

in more

[Declj,

PC

[De 2

then D matrix is given by

0 0 0 0
0 0 0
d33 0
[ Dc 31,2 Symmetry PC

pc

PC

ancl

(4.55)

than one direction at

[*¢cB m S

(4.56)
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b) If crack occurred in direction 2 and 3, then D matrix is given by

Dn 0 0 0 0 0
0 0 0 0 0
0 0 0 0
D ]2,3 = Symmet ry (4.57)
fic 0 0
0C 0
(3G
in direction 3 and | | then D matrix is given
0 0 0 0 0 0
d22 0 0 0 0
0 0 0 0
I Dc 13,1 = Symmet ry (4.58)
0C 0 0
(3G 0

3G

occurred in all three principal directions it

cracked point is incapable of resisting any stress. Therefore,

4.59

Spending on the number of cracks which occur at a Gauss point at a particular level of

fading, the appropriate rigidity matrix will be evaluated at that Gauss point and for

SimPlifying the discussion it will be merely termed hereafter as [Dc] and used in the
Valuation of the stiffness matrix.

The rigidity matrix [Dc ] is defined with respect to the directions of principal

eSSes at Gauss point under consideration. To enable its use in global x, y, z space,

Process of transformation must follow using the procedure described in Reference (34) as



follows:
[ Dc Ix.yz = TITf]T [ Dc ][ Tf ] (4.60)

where [T e] is the transformation matrix for strain tensor which takes the following

form:
«12 mi2 nl 2 *imi mini ni«i
‘g’g m * 27 AR m2n2 n2~2
*32  m32 n32 *3m3 m3n3 n3*3
2 2m3m2 2n2n2 (M m2+A2ml) (min2+m2ni) (n172+n271)
274173 2m2m3  2n2n3  (£2m3+#*3m2) (m2n3+m3n2) (n273+n3£2)
28321 2m3n2  2p3p]  (C3m2+°2m3) (M3nitmin3)  (nesisaiea
where mj, n”, are the direction cosines of the first principal stress, * ma2« n2 are

those for the second principal stress, and £3, ms, o3 are for the third principal stress.
The three principal directions are orthogonal to each other. This may be assured by

satisfying the following set of equation"®);

+ mi mz + nln2 = ®
%9 %3 + m2m3 + n2n3 = 0 (4.62)
*3%] + m3ml + n3ni = 0

The three principal directions at a point can vary during loading before cracking is
'mtiated, but they are fixed if at least two cracks exist at the point. One crack fixes only

One P~cipal direction but constrains the other two to be perpendicular to the crack.

The process described earlier in section 4.2.7 for the calculation of the principal
Iresses in three dimensional analysis applies to the case when the direction of one or
Ore principal stress is not constrained. Once a crack occurs due to principal stress , say
1 this stress will be set to zero and the crack plane must be perpendicular to the

ection of this principal stress. In subsequent load cycles, the direction of crack will be



fixed and a two—dimensional analysis on the crack plane will be followed to evaluate the
values and directions of the other two principal stresses. Section 4.5.6 explains the
procedure followed for this purpose.

If the material cracks in two directions, all the principal directions will be fixed ,

and values of the 'offending' principal stresses will be set to zero.

44.5 Modelling of Shear Transfer Across Cracks

After cracking of concrete two main mechanism develop through which shear is

transferred from the weak cracked section to the surrounding sound concrete, namely:

a)- aggregate interlocking on the two adjacent surfaces,

b)— dowel action of any reinforcing bars crossing these cracks.
The two mechanism are interrelated and several factors govern their relative contribution
towards the total shear transferred. The main known factors are (1)—crack spacing,
(2)- presence of reinforcement crossing the cracks, (3)—bar size, (4)—total number of bars
crossing, (5)—bar orientation relative to the crack direction, (s)— aggregate size and

roughness, (7)—concrete strength, (s)—crack width and (9)—mode of failure.

The mechanisms of shear transfer have been investigated experimentally and several
analytical expressions have been suggested. In the finite element modelling, however, these
expressions cannot be used directly. In the smeared cracking approach the shear transfer is
modelled through the so-called 'shear retention factor',3, which varies between 1 and o

and is defined as

3= G'/G 4.63

“here G' is the reduced shear modulus for cracked concrete and G is the shear modulus
Or the uncracked concrete. Many investigators” ,63,35) have used a constant value for /3,
value of which was normally determined by trying several reduction factors and finally

losing the value that gave predictions closes to the experimental results of the problem



in question. Others(36,37) wuseci a gradually decreasing value for 0, following either linear

or nonlinear curves. For example, Al—wmanaaizs) proposed the following equations for

two-dimensional analysis:

6 =1 for @ < *to (f°r uncracked concrete)

B= 04 eto/em for q > cto 4.64

where: el is the maximum principal tensile strain,
eto is the cracking tensile strain which was taken as o0.0002,

em is the average of the three principal strains at a cracked point.

In both cases it seems that the shear retention factor has been used more as a numerical
device to obtain good results to match experimental data than as a real physical

phenomenon. This seems inevitable because of the following reasons:

1)- The actual contribution of the shear transfer mechanisms , i.e., aggregate interlocking
and dowel action is not precisely known yet.
2)- More experimental data and also a unification of the existing data is needed.
3)- Even if all that is done ,the treatment of shear transfer with all its components is
still uncertain to produce a single finite element model to suit all stress states at one
stroke.
4)~ Because of the variation of the reinforced concrete behaviour under different loading
conditions, the shear transfer 1is interrelated to other aspects of reinforced concrete
behaviour such as tension stiffening and bond—slip behaviour.

In nonlinear finite element analysis, numerical factors such as convergence tolerance,
maximum number of iterations, number of increments, etc., also affect results obtained

usng whatever shear retention model is used””-

In the present work, irrespective of the number of cracks at the single Gauss point

c°nstant shear retention factor of 0.30 is used for all the cracks at that point.



4.5 elution of Nonlinear Problems

4.5.1 Introduction

A nonlinear structural problem must obey the basic laws of continuum mechanics.
Equilibrium, compatibility and boundary conditions are automatically satisfied in the
displacement finite element technique. Common nodes and appropriate interpolation
functions ensure continuity and compatibility of displacements along element boundaries, and
polynominal shape functions ensure continuity and single valued displacements internally.
Therefore it becomes necessary only to enforce that nonlinear constitutive relations are

correctly satisfied whilst at the same time preserving the equilibrium of the structure.

There can be several causes of nonlinear behaviour in the structure, which can be
divided into three categories:
a) Material nonlinearity
b) Geometric nonlinearity
¢) Mixed material and geometric nonlinearity
Stress—strain relations are the major source of nonlinearity. These can vary from
short—term nonlinear relationships between stress and strain such as plasticity, cracking,

nonlinear elasticity, etc. to time dependent effects such as creep and shrinkage.

Only nonlinearity caused by short—term nonlinear behaviour of concrete and steel is
considered in this study. A nonlinear solution is obtained by solving a series of linear
problem such that the appropriate nonlinear conditions are satisfied at any stage to a
specified degree of accuracy. This technique is required because contrary to linear
epuations there is no general method which uniquely solves nonlinear equations. In fact it
Is usually impossible to obtain explicit form of these equations in the first place. One way

achieving this goal is to ensure that at any loading stage, the solution results in stresses
(sistent which the displacement field and satisfying the given constitutive equations,

hese stresses will be statically equivalent to the set of internal nodal forces which should



be in equilibrium with the externally applied loads. In general, these equivalent nodal
forces are not equal to the applied forces and the difference between the external and
internal forces are termed "residual forces". These residuals must removed by repeatedly
applying them on the structure until an acceptable tolerance on the remaining residual

forces is achieved.

4.5.2 Numerical Techniques for Nonlinear Analysis

The solution of nonlinear problems by the finite element method are usually
attempted by one of the following basic techniques:
a) Incremental method
b) Iterative method
¢) Incremental—Iterative (mixed procedure)
where the nonlinearity occurs in the stiffness matrix [K] which, in the case of
short- term  behaviour of reinforced concrete, is a function of mnonlinear material

properties.

The general method of each procedure is similar. For cases where only the material

behaviour is nonlinear, the relationship between stress and strain is assumed to be as

follows:

fi<r,e) = 0 4.66

The element stiffness matrix is a function of the material properties and can be written as:

[K] = K(r e 4.47

e external nodal forces [R ] are related to the nodal displacement [ 5] through the

"lement stiffness and can be expressed by:

[R] = [K][s] 4.68



which on inversion becomes:

(51 = [KJ-1 [R] 4.69
or [s] = [K(<r,e)]-1 [R] 4.70
This derivation illustrates the basic nonlinear relationship between [6¢] and [R] , due to
the influence of the material laws on [K ].
Equation 4.70 1is solved by successive linear approximations, the three methods

mentioned above are now briefly discussed. Further details are given in References (36,57).

4.5.2.1 Incremental Method

The basis of the incremental method is the subdivision of the total applied load
vector into smaller increments, which do not usually need to be equal. During each load
increment, equation 4.69 is assumed to be linear ,i.e., a fixed value of [K] is assumed
using material data existing at the end of the previous increment. Nodal displacement can
be obtained from each increment and these are added to the previous accumulated
displacement. The process is repeated until the total load is reached. No account is taken
of the force redistribution during the application of the incremental load (i.e., no iteration

processes exist to restore equilibrium).

*e5.2.2 Iterative Method

In this method, the full load is applied in one increment. Stresses are evaluated at
that load according to the material law. Then the equivalent nodal force are computed
These may not be in equilibrium with the externally applied loads. The unbalanced nodal
forces [Fu] ,i.e., the difference between the external and internal forces, is calculated.
These wunbalanced forces are then wused to compute an additional increment of
'sPlacement, and hence new stresses, which give a new set of equivalent nodal forces.

Is process is repeated wuntil equilibrium is approximated to some acceptable degree.



When this stage is reached the total displacement is taken as the sum of the accumulated

displacements from each iteration.

45.2.3 Mixed Method (Incremental—Iterative')

The mixed method utilizes a combination of the incremental and iterative schemes.
In this case the load is applied in increments but after each increment successive iterations
are performed until equilibrium is achieved to the acceptable level of accuracy. Because
the mixed method combines the advantage of both the incremental and iterative procedures
and tends to minimize the disadvantages of each, the method 1is widely used. The
additional computational effort is justified by the fact that the iterative part of the
procedure permits one to assess the quality of the approximate equilibrium at each stage.
Further discussions on the merits and demerits of each technique can be found in

Reference (34,57).

4.52.4 Method Used in This Work

A modified version of mixed procedure is used in the present work. The modified
'Newton—R aphson' approach is wused to evaluate the stiffnesses. The stiffnesses are
evaluated using a secant rigidity matrix and it was found that varying the stiffness at the
second iteration in each increment results in the 'cheapest' solution. For the calculation of
the unbalanced nodal forces, a modification of the initial stress method is used, termed
the method of 'residual forces'(35,38) basic technique is that, at any stage, a load
system equivalent to the total stress level is evaluated and checked against the applied
fading system. The difference between the two will result in a set of residuals that are a
moasure of lack of equilibrium. These residuals are then applied to the structure to restore
epuilibrium. The process is then continued to dissipate the out—of—balance forces (or the

residuals) to a sufficiently small value. Thus for equilibrium it is required that:



[Fu] = Jv [B]T[<r]ldv - [R] = o 4.71)
where [ o] are the actual stresses depending on the constitutive law being used, [R] is

external load vector, [Fu ] is the residual forces.

45 ; Convergence Criterion

In this study, the convergence process is based on a force convergence criterion
because it is a direct measure of equilibrium between the internal and external forces. The

convergence is monitored using the following expression:
0.5

X 100 7~ Toler( 10% ) 4.72)
N 2 0.5

where: N is the total number of nodal pointsin the system,
r 1is the iteration number,
Fui is the residual force at node i, and

R is the total external applied load at node i.

~e4 Analysis Termination Criterion

The programme must have some means of detecting thecollapse of thestructure.
ne failure of the structure takes place when no further loading can be sustained. An
dlowable maximum deflection can be wused as acriterion to stop the analysisat failure.
empirical expression can be used to detect maximum deflection, but obviously this

ecck great care and no one expression can fit all situations.

The maximum iterations can beused for this purpose. When a specified number of

aiions has been performed without achieving convergence, the structure isdeemed to

have faji-j
lea and the failure load can then be estimated. It must be mentioned here that



this criterion is not always sufficient to indicate the failure of the structure but it can be
satisfied when severe discontinuity due to extensive cracking occurs or in the event of
large displacement. It may also occur when large load increments are used or very tight
convergence tolerances are specified. However, if realistic maximum number of iterations is

used and the solution does not converge then this can be realistic indicationof failure.

4.5.5 The Frontal Solution Technique

In the nonlinear stress analysis using finite elements, using elements with large
number of degrees of freedom improves accuracy. However, this inevitably results in a
large set of simultaneous equations to be solved repeatedly, thus creating high demand for
computer storage. In this work, a version of the frontal solution modified by Hinton and
Owen(53), is used. The main feature of the frontal solution technique is that, it assembles
the equations and eliminates the variables at the same time. This means that the total
stiffness matrix of the structure is never formed as such, since the reduced equations
corresponding to the eliminated variables are stored in core in a temporary array called a
buffer area(38). soon as thjs array is fuii® the information is then transferred to disc.

This process results in a considerable efficiency in the way core storage is handled.

4-5.6 Computational Procedure

Consider the analysis at a particular iteration i, the displacements are calculated

according to equation 4.70 using the appropriate rigidity matrix [D ]x>y,z-

(1) For every stress sampling point, evaluate the incremental values of strains [Aej] and

stresses [ Acrj ] using the appropriate rigidity matrix [D]x,y,z-

(2) Check whether the sampling point under consideration has suffered from a compressive

rushing situation in any of the previous load cycle, if so step (s) will be executed.



(3) Check whether this sampling point has suffered from a tensile cracking situation in any

of the previous load cycles, if so step (7) will be executed.

(4) Using the stress- strain relationships describing the concrete material law, evaluate the

total actual stresses in concrete [ C/] which correspond to the calculated total strains.

[ ei | = [ *i-i ] + [ Aej ]

VS A <M -1 ] + [ Dx,y,z 1 [ 1
(5) Check for concrete compressive failure criteriaviolation. If violated, all the stress
components at this Gauss point will be set to =zero in this iteration and in all the
subsequent load cycles: [oj] = 0. The components of the rigidity matrix will also be set

to zero for stiffness calculations in all the subsequent load cycles.

[Dk.y.z = 0.0

(6) Check for concrete tensile failure criteria. If violated a crack will occur, thus a new

rigidity matrix will be formulated according to the number and directions of the

cracks.

(77 If a crack previously occured in one direction it is necessary to check for further

cracking as follows:

For the previous load cycle, the principal stresses o0j, o2, ~3 had the direction
cosines (+” mi”" A A and * respectively. These directions are

'

med here as x', y', z' as shown in Figure 4.12.

Ib)- ¢

n the present load cycle, these direction cosines which were obtained from the

s load cycle were used in stiffness calculation to evaluate the new stress vector [a ]
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with regard to the appropriate rigidity matrix [Dc ].

¢) Now for principal stress calculation in cracked material, the new stress vector /[a]

will be transformed from X, y, z space to [o’l] in x\ y\ z' space by:

[*«]= [T<r]M 4.73

where [T"] is the transformation matrix for stress vector(34) which takes the following

form

ei2 mi 2 nl > «im i ml nl nl™l

n22 ne 2 1132 Q2m2 ne 1»2 n2z»2

A3,  mB2 n3: A3m3 013113 n3"3
[TEE) - Ayny mMm:  pl,, (£:me+feml)  (menz+menl)  (nA”2+4matl)

«1«3 m2m3 n2n3 (A2 m3+A3m2 (1112113+01302) (02734037 2)

m3ml n3nl  (Esnntitig) (o1301+10303)  (n371+n1”"3)

new transformed stress tensor,will be (see figure 4,11)

wiy = [ u'x ay a'z  ;xy 7'yz Tox AT (4.75)

and if for instance a crack is caused by <r|, the value of cr'x will be set to zero {1 -
7X). and to evaluate the new values of cr2, and «'3 we are dealing with a two

dimensional problem of which the active stress components are a'y, a'z and r'yZ, thus

(Jy+ c1Z
4 5 . < = + (7yZ>2 (4.76)

2ryz

tan 2Q (4.77)
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* J

Figure (4.12) : Principal stresses in global axes

Figure (4.13) . The angle of the new principal stress direction



I

where « is the angle by which the directions of «'2, v '3 deviated from y', z' axes in the

event of the crack caused by a| (Figure 4.13).

d)- Having got the angle «, and knowing the direction cosines of x\ y', z' axes with
respect to the global x, y, z space , we need to calculate the direction cosines of a2,
0-3 which are (£'2, m'2> »n'2 and (£'s, m”, n”), such that their plane remains

perpendicular to the already fixed direction of «! which caused the crack in our example.

This can be done as follows:

if [« = [Allet]
and  /a"] = [C][o-]
then [a"] = [C][A]lcr]
where [A] and [C] are the appropriate transformation matrices. The product [C][A]

will contain all the required direction cosines of the new principal stresses contained in

[<T"].

e)- These nine values of direction cosines will be the ones to be used in the next load
cycle for stiffness and new stress vector calculation, and values of the principal stresses
a2>7'3 will be used to check against the cracking criterion because crj was set to zero
(in this example). If the cracking criterion is violated further cracks will occur and the

aPpropriate rigidity matrix [Dc ] must be used.

(s) Evaluate the equivalent nodal forces contributed by concrete element

frilcone. = Jv [®]M[°T]¢V
9) Add the equivalent nodal forces contributed by concrete element to those contributed
y steel reinforcement to get the total equivalent nodal forces of the element,[P]]

tM) — tailcone. [“ikteel

) Check the convergence.
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CHAPTER FIVE

EXPERIMENTAL SETUP, MATERIALS AND INSTRUMENTATION

5.1 Introduction

This chapter describes in detail the experimental set up which has been
designed and constructed to study the strength and behaviour of a series of
unbonded prestressed concrete flat slab at edge column junction wunder the
monotonic and reversed cyclic loading. The experimental work is divided into two

test series as follows:

a)— Main test series which consists of six models, MSI to MSs.
b)— Reversed cyclic loading series which consists of two models,

RCS7 and RCSs.

The detailed description of these models and their behaviour will be described in
Chapters six and seven. In this chapter the materials used for the construction of
the models and their properties are described. The instruments employed for
measurements of the strains and deflections during the test, as well as the test

procedure, are also explained.

5.2 Material Used

5.2.1 Concrete

The concrete mix consisted of rapid hardening portland cement and 1omm

uncrushed aggregate. A mix proportion of 1 : 16 : 2.0 was used for an average



cube strength of 45 N/mm” at 7 days. After having mixed these materials for
about two minutes in a dry state, water was added such that the water cement
ratio was 0.45. Six 100 mm cube and four 150mm X 300mm cylinders were cast
with each specimen. The cubes were used todetermine the cube strength, two
cylinders for the split tensile strengthand remaining cylinders to determine  the
Young's modulus and the compressive strength of the cylinder. For each model

about 550 Kg concrete in 7 or s batches was used.

5.2.2 Reinforcing Steel

High yield deformed and hot rolled bars of diameter s, s and 10 mm were
used as reinforcement. Random samples were cut from the batches of steel bars
for all the different diameters and were tested in Tinius Olsen Universal Class A
testing machine. Typical stress—strain curves for each diameter obtained from the
testing machine are shown in Figures 5.1 to 5.5. Since the yield point for all the
bars was not well defined, the yield stress of the bar was taken as the stress at
which a line parallel to the initial slope of the curve fromo.2% proof strain
intersects the curve. The yield strain was calculated as shown in Figure 5.1. The

properties of 'unstressed' and prestressed steel bars are presented in Table 5.1.

5.3 Preparation of Specimens

5-3.1 Strain Gauging on Steel

The first step towards specimen preparation  wasthe fabrication of
reinforcement and mounting of the steel strain gauges at selected positions on the
reinforcing bar. For fixing strain gauges on steel, the bar surface at the required

location was filed and smoothened with sand paper. Care was taken not to
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Table 5.1 : Properties of Steel Reinforcement

Bar Size Yield Strees Yield Strain Young's Modulus
N/mm?2 KN/mm?2
6 580 0.0029 200.6
8 539 0.0030 180.0
10 520 0.0027 188.9

Properties of Prestressine Bars

5 1513 0.0081 186.8

7 1380 0.0072 191.7



remove a considerable area of steel during this operation. The surface was then
cleaned with M—prep neutralizer to remove dirt and grease. To cement the strain
gauge and terminal strip on the bar, M—bond 200 adhesive was used. For gauge
protection against moisture and mechanical damage during casting and testing,
protective coating white M-—coat D and epoxy resin were applied on the gauges
and terminals. A final resistance check was carried out by a voltmeter for each

strain gauge.

5.3.2 Formwork and Reinforcing Cage

The formwork of the models was made of 18mm thick coated plywood
sheet and 50 x 50 mm timber battens were used to reinforce the corners. To
achieve flexibility and reuse of the formwork, slab and column dimensions were
adjusted on a plywood sheet of 1300 X 1300 mm.All formwork was oiled for
easy removal. First the column reinforcement was properly positioned in the
formwork and then the slab reinforcing cage was placed. The nylon tubes of 12
mm diameter were threaded through the holes prepared infour sides of the
formwork and fixed together to keep them in their positions. Then the tendons
were threaded through the nylon tubes. The tendons in the X—direction (Figure
5.6) were straight with the maximum eccentricity of 30 mm at the edge
containing the column as shown in Figure 5.6 section A—A. The eccentricity was
ensured by position of the holes. Furthermore, these tendons were supported from
the column and slab reinforcing cages to remain in a straight line. In the
Y—direction the tendons were curved as shown in Figure 5.6 section B—B. These
tendons were tied up to the tendons which passed through the column head in
the X—direction. Figure 5.7a shows the formwork and reinforcing cage of the

slab and column. In Figure 5.7b the model is ready to receive concrete.



5.3.3 Casting and Curing

Casting was normally done in seven to eight batches of concrete, depending
on the size of the model. The lower portion of the column was cast first and
then the slab was cast and finally the upper portion of column was cast. The
specimen was compacted using 25mm internal poker vibrator. The cubes and
cylinders mentioned in section 5.2.1 were compacted by means of a vibrating
table. A 20mm diameter steel rod was used for providing a hole in the column
used for fixing the column to the floor (Figure 5.10). Similar diameter plastic
tubes were used to provide holes in the slab for loading purpose (see section
5.4.3.3). At the end of the day all the tubes and the rod were removed from

the concrete.

After casting, the model and the control cubes and cylinders were covered
in wet hessian and cured under damp environment for the first three days. The
specimen was then removed from the formwork for final curing under laboratory
conditions until the time of testing. The three cubes and the two cylinders were

kept in the curing room in water and the remaining were kept with the model.

5.3.4 Demec Gauges and Strain Gauges on Concrete Surface

The specimen was painted white in order to enable clear tracing of cracks.
Demec gauges were glued to the top concrete surface. On the bottom compressive
face 30 mm long strain gauges were fixed at marked positions as shown in
Figure 5.8. For fixing the strain gauges, the concrete surface was firstly cleaned
and smoothened by grinding, using a grinding stone and then smoothened by fine
emery paper. Carbon tetrachloride was used to remove the grease and dirt. a

thin coating of Adhesive and Hardner mixture was applied to the cleaned surface
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Figure 5.7a : Photograph showing reinforcing cage and unbonded

prestressing arrangement.

Figure 5.7b : Photograph showing the bars and tubes for making hole

in the column and slab, model is ready to cast.
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Figure 5.8 : Locations of strain—gauges on the surface

concrete.



and the straingauge was stuck on it by firmly pressing with the thumb for about
two minutes. After a few hours, the wires were soldered to the gauges and
terminals. Protective coating (white M—Coat D) was then applied to the strain
gauges. The specimen was then installed in position as described in the following

section.

5.4 Experimental Set—u»

The test specimensconsist of a rectangular column stub supporting a
horizontal flat slab. The overall shape of the typical model is shown in Figure
5.9. A three dimensionalsteel rig wasused to hold the model in position. The
supporting system and the loading frame used for testing the models under both

gravity and lateral loads is discussed in the following sections.

5.4.1 Supporting Arrangement

The steel rig was used to support the model against rotation due to
application of lateral load as shown in Figures 5.10 and S5.11a. The model had a
vertical hole in the column. Through this hole the model was clamped to the
"laboratory floor" using a 12mm diameter prestressing strand. To avoid horizontal
slipping of column ends, two additional support system were designed torestrain
the top and bottom ends of the column against horizontal movement during the
application of lateral (wind) load as shown in Figures 5.10, Sections a4 — a and

B—B , and S5.11c.

For the cyclic loading series, when thelateral load was applied in an
upward direction, the model started to rotate about the back edge of the column

'GH1 (see Figure5.9) and the previous supporting system was found to be



ineffective in resisting the upward rigid body movement of the model. That is, in
the case of downward loading the shear force is directly transferred to the rigid
floor by column stub, but in the case of upward loading this shear force is
transferred to the 'rigid floor' by means of the 'rig' as shown in Figure S5.12.
Because the 'rig' was not strong enough for this kind of loading, it started to
rotate about its bottom end. Therefore, to strengthen the 'rig', another hollow
section beam wasused and the model was helddown by that transverse beam

using two 12mm high strength prestressing strands. Figure S5.11b shows the

supporting arrangement used for the models of cyclic loading series.

5.4.2 Prestressing Arrangement

The experimental models were 1050 x 1000 x 130 mm flat slab with an
edge column junction as shown in Figure 5.9. The model was prestressed in the
longitudinal and transverse directions using unbonded tendons. In each model ten
unbonded tendons were used in the longitudinal direction (X—dir.) and seven
tendons in transverse direction (Y—dir.). The distance between the tendons was
100 mm centre to centre for model MSI and 70 mm for the remaining models.
Before casting the model, nylon tubes of about 1.5 m in length and 12 mm
diameter were threaded through the holes made in formwork at appropriate
positions. Then the tendons were threaded through the nylon tubes and connected
together and also to formwork to make a firm network against any movement due

to vibration of concrete.

5.4.3 Loading Arrangement

5.4.3.1 Prestressing Loads

After the model was fixed by 'rig' and supporting system, and all wires



related to strain-gauges were connected to the data logger , all strains, stresses
and deflection readings are set to zero. Then both ends of each tendon were

fixed on the concrete in the following order:

Stressing End: This consists of a plate, a load cell to monitor prestressing in the
tendon, an additional plate and the grip respectively as shown in Figure 5.13a.

The load cell used is described in section 5.5.1.

Fixed End: This consists of a plate, a load cell, a ballbearing, a nut- bolt

system, an additional plate and the grip respectively as shown in Figure 5.13a.

All the equipment is put together for each type of end condition so that at
each side of the model the two types of 'anchorages' alternated as shown in
Figure 5.13b. The prestressing load is applied by turning the nut gradually by
spanner in increments up to the desired level of prestressing before the

application of any gravity or lateral load.

5.4.3.2 Gravity Load

In the first model, the gravity load was applied to each side of the model
at three points by tightening the nuts on the three rods as shown in Figure 5.14.
One end of the rod was anchored to a beam which had been anchored to the
floor of the laboratory and the other end to the topsurface of theslab.For
each bar, a load cell of 50"N capacity was usedto monitor the applied gravity
load. But after each increment of lateral loading, the gravity load  would be

adjusted to maintain its value.

After early stages of lateral loading, due to the deformation caused by

application of the lateral load, high tensile force occurred in the bars beside the
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Figure 5.9 : An isometric view of a typical model
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Figure 5.10 (continued)
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Figure 5.11a : Supporting arrangements used for monotonic loading
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Figure 5.11b: Supporting arrangements used for cyclic loading

Figure S.11c: Supporting system for column (bottom end) against

horizontal movement.
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applied load

a) Downward loading

applied load

reaction

applied load

b) Upward loading

Figure 5.12 : Load transfer from the slab to the 'laboratory' floor.
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Figure 5.13a

Figure 5.13b



column whereas in the bars near the loaded edge the tensile force dropped to
zero. Adjusting the six gravity point loads at each lateral load increment was
time-consuming and monitoring of seven loads [6(gravity) + 1(lateral)]
simultaneously was not possible. Using the available data logger, it was possible to
monitor only fourreadings simultaneously. In order to solve this problem, each
gravity load at one side of the model was connected to its counterpart at the
other side by small jacks.In this way instead of applying and adjusting six
separate gravity loads by hand, it is done by three jacks which makes it possible
to monitor all the jacks [3(gravity) + I(lateral)] as well. Figure 5.15 shows the

gravity loading arrangement for models MS2 to MS6.

5.4.3.3 Lateral Load

In this investigation, the lateral load is simulated by a uniform displacement
of the edge AB of the slab shown in Figure 5.9. This was achieved for the
models, loaded monotonically to failure, by means of the loading frame which
consisted of two 150 x 150 x 10 mm square hollow section, strengthened by
welding 12 mm thick plates. The upper beam rested on the edge of the slab
while the lower beam was supported by the upper beam by means of two
threaded steel rods of 35 mm diameter mild steel, one on each side of the
beams, as shownin Figure 5.16. The frame waspulled down by a manually
operated hydraulic jack of 500 KN capacity as shown in Photograph 5.17. The

load was measured by a load cell.

For the models which where tested for reversed cyclic loading, the
downward and upward loadwas applied by a slightly modified loading frame as
shown in Figure 5.18. An additional steel frame was designed and constructed to

carry the downward reaction of the hydraulic jack when the frame was pulled up



Load cell
Column nut
Slab
Floor
410 300 135 165 ioo
1210 mm

150 x 10

Section A—A

Figure 5.14 : Gravity and lateral loading arrangements.
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Figure 5.15 : Gravity loading arrangements.
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35 mm effective diameter bars

50 mm dia. bar

Rigid Floor Load cell

Jack

Figure 5.16 : Lateral loading arrangements
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Figure 5.17 : Lateral loading arrangements for models MSI to MS6

Figure 5.18 : Lateral loading arrangements for cyclic loading models.



by another additional steel rod of S0mm diameter. The lower end of this rod was

fixed to the top beam at its centre.

Both the top and bottom beams were placed on the slab edge using plaster
for bedding and connected to each other by the same tworods of 35 mm
diameter. Two 500 KN load cells, one at the bottom of the 'laboratory' floor
and the other at top of the portal frame, were used to measure the amount of

lateral load applied to the model.

5.5 Instrumentation

All the models were instrumented to measure loads, deflections and strains.
Models of the cyclic loading test series were additionally instrumented to measure

the relative rotation of the slab with respect to the column.

5.5.1 Measurement of Prestressing Loads

The prestressing load of each bar was monitored by means of two load
cells located at the ends of the bar as shownin Figure s.::. These load cells
were manufactured in the laboratory of The Civil Engineering Department,
University of Glasgow using 'Full Poisson Bridge' wccnoa(ss) for measurement of
axial loads. The load cell was manufactured from a cylindrical steel tube of
40mm and 30mm outside and inside diameters respectively and 80mm length.
Figure s.:1» shows the arrangement of strain—gauges. There are four
strain—gauges, two of them parallel to axis of the cylinder and the other two are
perpendicular to the cylinder axis. The parallel strain—gauges must be symmetric
about the cylinder axis. This load cell was calibrated by the loading machine

from 1 to 40 KN in 1 KNincrement. The accuracy of the load cell was within



the range of *1.0%.

5.5.2 Measurement of the Applied Loads

The applied lateral load was monitored by means of a compression load
cell of 500 KN capacity for model MSI to MS6. An additional load cell of the
same capacity was used for cyclic loading models RCS7 and RCS8. Gravity loads
were monitored by means of six 50 KN capacity load cells attached to each of

the six bars used for gravity loading as shown in Figures 5.14 and 5.20.

5.5.3 Measurement of Vertical Displacement

Deflections were measured at various points of the slab as shown in Figure
521 by means of electrical displacement transducers. A supporting frame of
'Handy Angles' was made and the transducers were fixed to it at the required
points. To facilitate the recording of results, linear voltage displacement
transducers (LVDT) were used in conjunction with an automatic data storing and
processing data logger, which recorded directly the displacement in mm to an

accuracy of 0.01 mm.

In the cyclic loading models, two transducers were installed on the top
surface of slab to measure upward / downward deflections. In addition to the
deflection , the rotation of the slab relative to the column was also measured.
This was done by measuring of horizontal displacement at points A and B which
were one slab thickness above and below the slab as shown in Figure 5.22. The
transducers one above and one below the slab were mounted on two steel plates
attached to the slab as shown in Figures 5.22 and 5.23. Using the notations 6%

and for horizontal displacements of points A and B, the relative rotation is



calculated by:

6A + 6B
tan 8 =

3t

where 6 is the relative rotation (Figure 5.19a).

5.5.4 Measurement of Strains

Electrical resistance strain gauges were used to measure the tensile strain in
steel and surface compressive strain on concrete. The strain gauges which were
used to measure tensile strain of bars were named 'student' EA—06—240LZ—120
and the strain gauges used for concrete were 30 mm long with the elongation
capacity of = 6% and a gauge factor of 2.16 = 1% at a temperature of 75°F.
Their internal resistance was 120 * 0.3% °hms Figure 5.24 shows the positions

of steel strain—gauges in the experimental models.

5.5.5 Crack Width

Crack width was measured by means of a hand—held crack width

microscope measuring to 0.05Smm. For large cracks near the ultimate failure load

of the slab, a crack width ruler was also used.

5.6 Installation of The Specimen

The procedure used for installation was as follows:

a)— For monotonic loading models

(1)— Position the model with the help of plaster in marked place on the
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strain—gau
Axial strain- gauge

Axial strain
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strain—gauge

Figure 5.19 : Positions of strain—gauges on cylinderical steel

as a load cell.



@ models

depends

60

+
0
0
E
C
(1]
+ o« Gravi ty &
C
load %
%

+

Lateral load
H-I"M "1-+++-r4-T“+-rd4"r+-+-+-1-++ + +

Figure 5.20 : Locations of gravity and lateral loads.

—
[ou—y

H-—1
60 440 gno

Figure 5.21 : Locations of displacement transducers.



r
B
—+— A T A
64 +
3t
column 3t
-L B/ B
6B
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Figure 5.23 : Photograph shows the two transducers, one above and
another one below the slab—column connection to

measure relative rotation of the slab with respect to

the column.
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5.24 : Locations of strain—gauges on steel bars.
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(2)—
(3)-

(4)-

(5)—

(6)—

(N—

®)—

'laboratory' floor.

Anchor the column by means of steel strands.

Apply plaster to the laterally loaded edge and position the loading beam.
Connect the top beam to the bottom beam by threaded steel bars.
Position the 50 mm diameter steel rod vertically up through the 'laboratory'
floor and connect to the bottom loading beam.

Position load cells and hydraulic jacks through the vertical rod and

then tightening the nuts.

Position the six 12mm diameter threaded steel rods with plates and nuts
and 50 KN load cells for gravity loading.

Position the steel angle frame with dial gauges in appropriate

position.

Connect the load cells, transducers and strain—gauges to the datalogger

for continuous measurements of the various quantities

b)— For cyclic loading models

In addition to the eight steps mentioned above, the following additional steps

are specific to cyclic loading tests:

0)—

Place the steel portal frame ,as shown in Figure 5.10, in position

and anchor it to the 'laboratory' floor.

(10)— Position the transverse beam on the 'rig' and tightening the prestressing

strands.

(11)— Connect the vertical steel rod passing through the portal frame to the

5.7

top loading beam.

Test Procedure For Monotonic Loading

Zero readings were taken of all the load cells, transducers and strain gauges



before starting the test. First of all the prestressing loads were applied, gradually
by turning the nuts against the bolts by means of two spanners. The load was
applied in four increments up to the desired value of prestressing level. The
amount of prestressing load in each tendon was monitored on the screen ofthe
'data logger'. For all the tendons the applied load was recorded in each load
increments. Further more , deflections of the slab and strains in 'unstressed' steel
due to prestressing were recorded as well. Then the gravity loads were applied in
two equal increments and after thatthe lateral load was applied in 5 *

increments until the failure of the model.

The gravity load was constantly monitored and maintained at its ultimate
value as far as it was practical while lateral load was applied. The reason for the
adjustment is that the deflection of the slab due to lateral load alters gravity
load. Therefore, the gravity loads were readjusted to the desired value after each
lateral load application. In each lateralload increment, all values of deflections,
strains, applied loads and prestressing forces intendons were recorded and
monitored. Care was taken to see that the applied load was not causing any
eccentricity and consequent twisting of the model. Loading was continued until
failure was notedby either a continuous drop of applied load value or a sudden

fall of that value accompanied by a physically noticeable failure.

During loading, crack propagation was closely monitored and traced on the
slab. The corresponding load increment was recorded at the tip of each crack.
The total duration of a test for monotonic loading was at least 8 hours depending

on the total number of load increments applied.

5.8 Test Procedure For Cyclic Loading

In cyclic loading models, application of the gravity loads was eliminated



because their adjustment needed a lot of time and effort. Especially upward
lateral loading proved more difficult to adjust because of the location and
proximity of the lateral and gravity loads which byapplying the lateral load

would release the gravity load.

In this series the procedure of prestressing was the same as that in
monotonic loading models. The application of downwardlateral load first was
started by means of a hydraulic jack of 500 KN capacity up to 50% of the
design load. Then the jack was released and upward loading was applied by
another hydraulic jack of the same capacity as the previous one until it reached
the same level on the downward loading. This process was repeated for all cycles.
In each cycle the loading Ilevel was increased by 2 KN until failure of the

models.

5.9 Precautions Taken

The prestressing bars were unbonded. Therefore if a bar broke during
loading, the bars would fly out the model and would be a source of great
danger. Therefore, great care was taken to provide a safe area around the slab

in order to protect technicians involved in these experimental tests.



CHAPTER SIX

EXPERIMENTAL STUDY

(( PART 1))

MONOTONIC LOADING BEHAVIOUR OF THE UNBONDED PRESTRESSED

FLAT SLAB AT EDGE COLUMN JUNCTION

6.1 Introduction

For load transfer between aflat slab and a column , conditions at the
slab—column connection are critical for determining the  strength and stiffness of the
flat—slab structure. This is particularly true at an edge column junction because of the
reduction of the critical perimeter around the column and the presence of twisting
moments. Since the punching failure of an edge column—slab junction is a local
failure and takes place in the vicinity of an edge column , the region around the
column shown hatched in Figure 6.1 1is the area of interest in this study. Therefore an
isolated edge column—slab joint as shown in Figure 6.2 was selected to investigate

strength and overall behaviour of this type of connection.

In this chapter details of six unbonded prestressed reinforced concrete flat slabs
at the edge column junction tested under monotonic loading condition are reported.
The general plan of these models is shown in figure 6.3.

Since the distribution of shear stress due to lateral loads , as discussed in
Chapter Two ,is not uniform, this shear will hereafter be called uneven shear and the
m°ment due to lateral loads will be called as unbalanced moment. Unbalanced moment

results from unequal consecutive slab spans, edge column and lateral loads.
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62 Object of Tests

The main object of experimental study are as follows:
i)-Experimental investigation of punchingshear strength and overall behaviour of

unbonded prestressed flat slabs at an edge column junction.

ii)-  Verify the wvalidity of using the direct design method in prestressed flat slab

design.

iii)— Verify the wvalidity of the three dimensional finite element analysis modified for
prediction of ultimate strength and overall behaviour of flat slab at an edge column

junction by comparison the results of analysis and tests.

For this purpose, the following aspects are noted during the experimental investigation,
a) Load—deflection relationship.
b) Load—strain relationship in unstressed steel bar and concrete around the column
¢) Stress variation in prestressing bars.
d) Crack pattern and crack propagation.

e) Ultimate load and mode of failure.

6-3 Parameters of Study

The parameters which are involved in the strength of unbonded prestressed flat
slab at edge column connections are shown in  Table 6.1. Considering the position of
the holes in the 'laboratory' floor which determined the dimensions of the models, four

parameters which were most appropriate for this study were chosen for investigation as

Allows:

1) Level of prestress.



2) Column aspect ratio (Cx / Cy ).
3) Ratio of wind shear moment to wind shear (Mw / Vw ).
4) Resistance of the junction under the reversed cyclic loads.

The explanation of parameters are as follows:

6.3.1 Level of Prestress

Level of prestress is the average compressive stresses of the concrete due to
prestressing forces. The maximum value of this level is equal to 0.2fcu ( fcu is the
cube strength of concrete) as shown in Figure 6.4. Three models MSI , MS2 and MS3
were designed for the level of 1.5 , 2.3 and 4.8 N/mm2 respectively to study the

effect of this parameter on the strength of the connection

6.3.2 Column Aspect Ratio

Transmission of moment Mx between the slab and column takes place by means
of bending moment (M”) at the front face of the column and twisting moment (M") at
both sides of the column as shown in Figure 6.5. Under the same conditions of
prestressing and slab dimensions , the amount of bending and twisting moment depends
on the side dimension of the column , Cy and Cx respectively. Therefore any change
in the column aspect ratio (Cx/Cy) will change the ratio of bending and twisting
moment. As a result, the ultimate load—carrying capacity and the failure mode of the
models are affected by this parameter. Consequently three models (MSS , MS3 and
MS6) with the column aspect ratio of 1.33 , 1.67 and 2.0 respectively are considered
in order to study the effect of this parameter on behaviour and punching strength of

fte slab—column connections.

AN Dimensions of Models



IN
»

I p— o
gl o

Y%

Figure (6.1): Plan of typical flat slab structure

vg= gravity loads

Vw= shear due to

wind loads

Figure (6.2): An isometric view of a typical model with shear
forces due to lateral and gravity loads.
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Figure (6.3) : Plan of a typical model
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Figure(6-5): Moment transmission from slab to edge column,
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Figure(6-6): Correction of displacement due to lateral load

against column deformation.



TASLE

Parameters involved in strength of prestressed

flat slab at edge column junction

Loading Dimens ions Material
Concrete Steel
Bending Shear
level of slab thickness — strength amount of steel

prestress ing

cyclic column size
loading
column aspect creep distribut ion
of
rat io
steel bars
shrinkage
Mg = gravity moment
Vg = gravity shear
Mw = lateral load moment ( wind moment)

V\v *= = = shear ( wind shear)

*) These marked parameters were chosen to investigate in

this

study
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Table

Parameters

Co lumn

Mode 1 dimens ions
No.

cy
MSI 250 150
MS 2 250 150
MS3 250 150
MS4 250 150
MS 5 300 150

MsS6 200 150

RCS7 250 150

RCS8 250 150

Involved

of prestress

of wind shear moment

- (Mw/V w)

cyclic loading

1000

1050

1050

1050

1050

1050

1050

aspect ratio = (Cx/Cy)

Slab

dimensions
Ly
1000
1000
1000
1000
1000
1000
1000

1000

to wind shear

Table 6.2 : Dimensions and design loads of models

Design

load

t (KN)
130 48
130 58
130 66
130 85
130 76
130 63
130 38
130 31

Models Involved
MSI, MS2, MS3
MS3 ,MS5 ,MS6O

MS3 , MS4

RCS7 , RCs8
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| toe.'

concrete for

N/mm2

Bar Bar
dia. cCross

sect ion

mm mm?2
5 19.6
5 19.6
7 38.5
7 38.5
7 38.5
7 38.5
7 38.5
7 38.5

the prestressing bar

the bar due

jtac, fmehini f« 4.
Table 6.4 Properties of
Model No. of fcu
No days N/mm2
MSI 43 67.5
MS2 35 57.5
MS 3 79 56.0
MS4 39 60.7
MS5 62 56.0
Ms6 76 53.1
RCS7 186 59.2
RCs8 205 60.3
Table 6.5 Prestressing details
Mode 1 Nylon Tube
Ne inside outside
dia. dia.
mm mm
MSI 7.5 10
MS2 7.5 10
MS3 7.5 10
MS4 9 12.5
MS 5 9 12.5
MS 6 9 12.5
RCS7 9 12.5
RCs8 9 12.5
*) fpU=Ultimate stress of
*) fpe=Effeetive stress in

””d

[

each model

Ec

N/mm?2

21.0
18.0
18.2
22.8
21.3
20.5

23.7

ipu

N/mm2

1780
1780
1623
1623
1623
1623
1623

1623

*

fpe

N/mm?2

1020

1121

1090

1090

1098

1116

1116

to prestress

average

prestress

N/mm?2



Since the punching failure is a local failure and is related to the stresses
adjacent to the column, boundary conditions of the flat slab structure have not been
taken into consideration. Therefore, tests were conducted on flat slab specimens which
were isolated from a multiple panel flat slab structure with free edges as shown in
Figure 6.1. Table 6.2 gives the dimensions of the models. The width (Ly= 1000 mm)
and thickness (t =130 mm) were kept constant but the length (1) was varied in
model MS4 so as to vary the ratio of wind shear moment to wind shear. All the slabs
were cast integrally with a column- slab projecting both above and below the slab as
shown in Figure 6.2. The column was rectangular with side dimensions of C*= 250
mm and Cy = 150 mm. Only in models MS5 and MS6did Cx change to 300 mm
and 200 mm respectively in orderto study the column aspect ratio parameter. The

column stub was reinforced with four 25 mm and two 12 mm bars.

6.5 Design of Experimental Models

In all the models the steel required was calculated using the 2—dimensional
finite element program  described in Chapter 3. In this connection, prestressing steel is
treated as ordinary steel with an equivalent yield stress equal to the difference between
its 0.2% proof stress and effective prestress as shown in Table 6.5. Additional ordinary
steel over and above that provided by the prestressing steel was provided as required by
subtracting the equivalent steel due to prestress from the total steel required by the
design requirements. In addition, according to ACI—ASCE 423 recommendations , the
amount of ordinary steel bar passing through the column head should not be less than
0-15 percent of cross sectional area of column strip. Therefore , in all models two
8mm bars passing through the column head in both directions were used. According to

design requirements no shear reinforcement was needed.

6" lest Programme

The experimental programme is divided into two parts:



I) Main Test Series ( or MS ).

II) Reverse Cyclic Loading Series ( or RCS )

The main test series consists of six models. Three models MSI ,MS2 and MS3
were tested to study theeffect of the prestressing level on the punching strength of the
junctions. Models MS3, MS4, MSS5 and MS6 were tested to investigate remaining

parameter shown in Table 6.3.

The reverse cyclic loading series consists of two models RCS7 and RCS8. They
were designed to study the effect ofrepeated and reversed lateral loads due to wind
and earthquake on the behaviour and strength ofunbonded prestressed flat slab at edge
column junctions. The detailed description of themodels of this series will be given in

chapter seven.

In model MS3, some cracks developed at the rear face of the column during the
application of lateral load especially near theultimate load. Since the deflection
readings of the slab are affected by the deformation of the column, the measured
displacements in models MS4 — MS6 were corrected for column deformation from dial
gauge readings taken at two positions on the column side as shown in Figure 6.6. The

correction for column deformation was calculated as follows.

It is assumed that the wvariation of strain at a horizontal section of the column is

linear. Therefore, referring to Figure 6.6:

61 mm 52 5j — 5,
The correction, = o + X Le
2 D
where : 5i and <® = the measured displacements at the column side at points

(1) and (2),



D = the distance between the two points (1) and (2)

anfj Lc = shown in Figure 6.6.

The various experimental data and the results on the behaviour of the models

are presented for each model in the following order:

a) Sketch showing dimensions and details of the model,
b) Prestressing and 'unstressed' reinforcement details.
c¢) Load—deflection curve.

d) Load—strain curve for "unstressed" steel bar.

e) Load—strain curve for concrete.

f) Variation of stress in prestressing bars.

g) Crack pattern

6.7 Main Test Series

6.7.1 Model MSI

Figure 6.7 shows the plan of model MSI. It was designed for a gravity load of
18 KN and a lateral load of30 KN. The model was prestressed in two orthogonal
directions by seventeen tendons, ten in the windward direction (called X—direction) and
seven tendons in the transverse direction (called Y-—direction). The spacing of tendons
in both the directions was 100 mm centre to centre as shown in Figure 6.8. The
prestressing bar used was of Smm diameter with the ultimate stress of 1780 N/mm?2.
The profile in X—direction was linear with 30mm eccentricity at the column side of
the slab and it was parabolicin Y—direction with the eccentricity at the centre as
shown in the cross section A—A of Figure 6.9. The tendons passed through 10mm
diameter plastic tubes which were firmly fixed to the formwork. All tendons were

tensioned up to 58% of their ultimate strength in both the directions. Figure 6.10



shows the arrangement of bonded reinforcing bars in the slab and the column of the
model. Figure 6.15 shows the locations of strain-gauges on the ordinary steel bars and

concrete and shows the positions of transducers.

Behaviour of Model MSI

No hairline cracks were observed after the application of prestressing forces in X
and Y directions. At 69% of design load, the first crack was initiated on the top
surface of the slab in front of the column as shown in Figure 6.11a. At 77% of design
load, cracks extended towards both sides of the slab as shown in  Figure 6.11b. At
87% of design load, new cracks appeared on the slab from front corners of the column
to the rear side of the slab at various angles in the range of between 0.0 and 45
degrees as shown in figure 6.11d and simultaneously shear cracksinitiated at the rear
surface of the slab as shown in Figure 6.11c. Finally, failure of the slab took place
with large shear cracks atthe rear side of the slab at an applied load of 59 KN

corresponding to 115% of the design load.

The crack patternonthe tension side of the slab after failure is shown in
Figure 6.12. As can be seen, cracking was confined to the region around the junction.
The diagonal shear failure cracks on the rear side of the slab are clearly visible in
photograph of Figure 6.13. Due to the difficulty in observing cracks on the compressive
side of the slab during testing, only the final crack pattern was obtained as shown in

Figure 6.14.

Figures 6.16a, 6.16b and 6.16c show the experimental load—deflection curves.
Note that, on the vertical axis, the ratio of applied loads to the design load of the
siab is plotted. Figures 6.17a and6.17b show the curves for tensile strains in ordinary
reinforcing bars in windward and transverse directions respectively. As can be seen in

Figure 6.17a, two bars passing through the column reached 80% of the yield strain and
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Figure(6—12): Crack pattern on the tensile side of model MSI
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Figure(6—14): Crack pattern on bottom side of model MSI
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in the transverse direction only one bar at a point next to the column reached 60% of
the yield strain.  This result indicated that exceptatthe vicinity of the column, large
strain in steel was not recorded. Accordingly, in all the following models the positions
of strain gauges were chosen as near as possibletothe column faces. The curves for

compressive strain of concrete on the bottom surface ofthe slab are shown in Figure

6.18.

Load cell measurements located at the endsof prestressing bars indicated
insignificant variations of stress in all bars except those which passed through the
column strip in  X—direction as shown in Figure 6.19. The maximum value of these
variations is about 19% of the initial prestressing force of the tendons which was

recorded in the tendons passing through the column head.

6.7.2 Model MS2

Figure 6.20 shows the plan of model MS2. It was designed for a gravity load of
18 KN and a lateral load of 40 KN. The prestress level in this model was different
from that in MSI in two aspects. Firstly the effective stress of the prestressing bar was
increased to 63% of its wultimate strength and secondly the distance between the
prestressing bars was reduced to 70mm concentrating them near thecolumn in a
narrow band as shown in Figure 6.21. The number of tendons was the same as that of
model MSI in both directions. Theaverage prestressing level in the X and
directions was 2.3 N/mm2. The layout of ordinary steel required is shown in Figure

6.22. Figure 6.27 shows the exact location of transducers and strain—gauges used for

unstressed steel bars and concrete.

“toiour of Model MS2

No hairline cracks were observed after the application of the prestressing forces
*]
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in X and Y-directions. At 76% of the design load, the first flexural crack on the slab
was observed at the front corner of the column as shown in Figure 6.23a. At 93% of
design load, cracks extended in the transverse direction and new flexural cracks appeared
on the slab in front of the column as shown in Figure 6.23b. Also at this stage of
loading a hairline diagonal shear cracks initiated at the rear side of slab as shown in
Figure 6.23c. Finally, failure of the slab took place with the large diagonal shear cracks
at the rear side of the slab at an applied load of 64.5 KN corresponding to 111% of

the design load. Just like model MSI the failure of this model was punching.

Figure 6.24 shows the crack pattern on the tension side of the slab after the
failure took place. It is obvious thatthere are justa few hairline cracks around the
column and the remainder part of the slab was uncracked. The diagonal shear failure
cracks on the rear side of the slab are clearly visible in Figure 6.25. The crack pattern
on the compressive surface of the slab is shown in Figure 6.26. From the experimental
load—deflection curves shown in Figures 6—28a, 6.28b and 6.28c , the considerable
reduction of the slope after 75% of the design load indicates that the first crack

initiated at this stage of loading as mentioned above.

Figures 6.29a and 6.29b show the tensile strain curves for the ordinary steel bars
which  passed through the column head inX and Y—directions respectively. In
direction one of the strain gauges was damaged at 84% of the design load but the
companion gauge reached yield strain at failure load. The curves of compressive strain
°f concrete on the Dbottom surface of the slab are shown in  Figure 6.30. In
direction the maximum compressive strain of 77% of the yield strain took place at
the point PI and in Y-—direction no significant amount of the compressive strain was

recorded.

Figures 6.31a and 6.31b show the variations of stresses in all the prestressing bars

In X~ direction. The maximum amount of these variations is 14% of the initial force of
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(2) 76% (b) 93%

(¢) 93%
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1"Ure (6.23) : Cracks initiation duringYtesting of model MS2 at

different percentages of the design load.



Figure (6.24): Crack pattern on the tensile side of model MS2

Figure (6.25): Failure surface at rear side of model Mms2
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Figure (6.26): Crack pattern on bottom side of model MS2.
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