A THESIS ENTITLED

"STUDIES IN

NATURAL PRODUCTS"

Submitted to The University of Glasgow for the Degree of Master of Science In the Faculty of Science

by

Selma Dagli

Chemistry Department

23.03.1998

.

ProQuest Number: 13815388

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13815388

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

GLASGOW UNIVERSITY LIBRARY 11139 (copy 1)

ACKNOWLEDGEMENT

I am extremely grateful to my supervisor Prof. Joseph D. Connolly for his advice, enthusiasm and friendship throughout the period of this research. Further more, I would like to say that I am greatly indebted to him for not destituting me from his kind help and support during my hard times in Glasgow. I would also like to pay my regards to his spouse, Mrs.Effie Connolly, for her kindness and providing me a homely atmosphere.

I would like to express my thanks to the staff members of the Chemistry Department, especially to Dr. D.S.Rycroft and Jim Gall for NMR spectroscopy.

Furthermore I wish to thank The Ministry of Education of Turkey who provided me with this opportunity and supported me financially.

Finally I would like to express my sincere gratitude to my family and friends for their help and support.

"STUDIES IN NATURAL PRODUCTS"

SUMMARY

This thesis consists of four chapters. The first chapter gives a general introduction dealing with the nature of secondary metabolites and the skeletal types found in the *Hepaticae*. This is followed by an examination of the chemical constituents found in *Marsupella* species. Three amorphane (muurolane) type sesquiterpenoids were isolated from *Marsupella aquatica* and their structures shown to be $[1R^*, 6S^*, 10S^*]$ $2R^*, 3S^*$ -diacetoxyamorpha-4,7(11)-dien-8-one, $[1R^*, 6S^*, 10S^*]$ $2R^*, 3S^*$ -diacetoxy-7 ξ 11 ξ -epoxyamorph-4-en-8-one, and $[1R^*, 6S^*, 10S^*]$ $2S^*$ -acetoxyamorpha-4,7(11)-dien-8-one.

The third chapter consists of an investigation of the liverwort Nardia scalaris. Two compounds, *ent*-(14S)-kaur-16-en-14-yl hydrogen malonate and the longipinane sesquiterpenoid, marsupellone, were isolated.

The last chapter deals with a discussion of the Annonaceous acetogenins and some other chemical constituents found in *Annonaceous* species. A new acetogenin derivative which contains a γ -lactone ring and an ene-diyne chromophore was isolated for the first time from *Milliusa velutina*.

CONTENTS

	1 ago
Summary	
Chapter 1. General Introduction	1
1. Classification of Natural Products	
2. Hepaticeae	1
Constituents of Hepaticeae	
 Monoterpenoids 	3
Sesquiterpenoids	4
• Diterpenoids	6
• Triterpenoids	7
 Aromatics 	7
8. References	9
Chapter 2. Marsupella aquatica	
1. Introduction	13
2. Results and Discussion	13
3. General Experimental	18
4. Experimental	19
5. References	24
Chapter 3. Nardia scalaris	
1. Introduction	25
2. Results and Discussion	25
3. Experimental	28
4. References	33
Chapter 4. Miliusa velutina	
1. Introduction	34
2. Results and Discussion	38
3. Experimental	42
4. References	45

Page

CHAPTER ONE

GENERAL INTRODUCTION

GENERAL INTRODUCTION

Since last century chemists have been interested in the investigation of extracts obtained from natural sources. This interest has increased over the years with the development of separation and purification methods, such as column chromatography, g.c., t.l.c., h.p.l.c., paper chromatography, ion exchange, etc. Following the separation and purification of compounds, different spectroscopic techniques are used for structure elucidation, such as NMR (including two dimensional NMR spectroscopy ; COSY , HMBC , HSQC) , I.R. , UV and mass spectroscopy. The structural elucidation of complex molecules, often available in small amount, is greatly facilitated by these modern spectroscopic techniques. X-ray analysis and molecular force-field calculations are also readily available.

Traditionally, natural products are considered in two categories : primary and secondary metabolites. However the border between the two classes is somewhat vague in places. The former are the organic compounds which are characteristic of all living systems, such as carbohydrates, lipids, amino acids, peptides, proteins, nucleic acids, nucleosides and nucleotides whereas the secondary metabolites include phenols, quinones, terpenes, alkaloids, aromatics, etc. There is a considerable interest in plant secondary metabolites and many plants have been and are being investigated by chemists in the search for new structural types with useful biological activity.

HEPATICAE

On the evolutionary scale, bryophytes are placed in the lower plants and are taxonomically between the algae and the pteridophytes (ferns). Approximately 20,000 species of them are known¹. They are divided into three classes : Bryopsida or mosses (bryales), Hepaticae or liverworts and Anthocerotae or hornworts. While the hornworts comprise some 300 species the liverworts comprise 6,000 species worldwide. The mosses form the largest bryophyte class with 14,000 species. The liverworts are chemically the most interesting plants because, unlike mosses and hornworts, they have oil bodies in their cells, which contain large quantities of secondary metabolites.

The liverworts and mosses form two distinct classes within the Bryophyta. They

differ from each other in rhizoid structure, in the manner of development of sex organs and in the prevailing mode of growth and cell structure of their leaves.

The Hepaticae consists of plants with leaves ('leafy liverworts') or without leaves ('thalloid liverworts') with a unique life $cycle^2$. The family is divided into two subclasses and six orders by most authors²:

1. Jungermanniidae

- Calobryales
- Jungermanniales
- Metzgeriales

2. Marchantiidae

- Monocleales
- Marchantiales
- Sphaerocarpales

Although the Anthocerotales or hornworts and the Takakiales are sometimes classified within the Hepaticae, arguments have been put forward to place them in separate classes. Some features of the Anthocerotales seem to justify the placing of this order in a different subclass. The unusual character of this group had already been recognised by Leitgeb³ and Cavers⁴ and, as early as 1899, Howe⁵ put it in a different class under the name of Anthocerotae.

The general difference between the two sub-classes of the Hepaticae is the kind of habitat in which they grow. While the sub-class Jungermannidae typically represent the liverworts adapted to moist climates, the Marchantiidae, on the other hand, are those which grow in dry climatic regions.

As we mentioned above, the characteristic feature of the Hepaticae is their ability to elaborate large quantities of terpenoids and other metabolites which are stored in special cell organelles, called the oil bodies. Under the light microscope, the oil bodies appear as colourless, rarely brownish or bluish, organelles in the cytoplasm, varying from 2 to 20 μ m in length. In dried specimens they disintegrate. Several oil body types can be recognised, the most important ones are the homogenous oil body and the segmented oil body. The difference between them is that while homogenous oil bodies are made up of one lipid droplet surrounded by a membrane, the segmented oil bodies have several to numerous droplets bounded within the membrane as can be seen in figure 1.1

The distribution of the oil bodies varies. For example, within the subclass Jungermannidae, oil bodies occur in green, photosynthetic cells whereas in the subclass Marchantiidae, they are restricted to special 'oil cells' lacking chlorophyll.

Some characteristic features found in the secondary metabolites also led to a taxonomic classification. For instance, plant species which produce similar chemical constituents might have similar biosynthetic pathways and thus similar genes which encode enzymes. On the other hand, secondary metabolites may also depend on the stage of development of different plants and on environmental factors. Such factors complicate the issue of chemotaxonomy.

Many liverworts prefer wet, humus-rich habitats, such as damp rocks, the forest floor, swamps or marshes, or beside streams and pools and it is often troublesome to collect them in sufficient amounts for chemical research, due to their small size and their tendency to intermingle with other plants. Muller was the first person to investigate liverworts and to report the presence of sesquiterpenoids in the oil bodies in 1905⁶. Since 1956, chemists have shown great interest in the chemical constituents of liverworts¹.

MONOTERPENOIDS

Monoterpenoids are important in the perfumery and flavour industries and are responsible for the characteristic smell of many liverworts. They are mainly hydrocarbons and generally occur as complex mixtures with sesquiterpene hydrocarbons Monoterpenoids found in liverworts have been reported on the basis of detection with GC or GCMS¹ and have the same general structure as those found in spermatophytes. However, their optical activity has yet to be measured in the majority of taxa and only this can help to determine their absolute stereochemistry⁷.

(-)-Thujanol (1) and its epimer have been isolated by Connolly *et al*¹⁸ from the liverwort *Conocephalum conicum* together with α -terpineol (2) and terpineol (3). *Bazzania pompeana* and *Porella perrottetiana* contain camphor (4) while (+)-bornyl acetate (5) and (-)- β -sabinene (6) occur in *Wiesnerella denudata*¹. *Frullania*,

3

(3)

(2)

OAc

(4)

(6)

(8)

(5)

(7)

(9)

Jungermannia, Plagiochila and Porella species belonging to the Jungermanniales emit a turpentine-like odor and they contain α -pinene (7), β -pinene (8) and camphene (9).

SESQUITERPENOIDS

Sesquiterpenoids are defined as a group of C_{15} compounds and they are found in many forms of living systems of which higher plants are the principal member⁸. Although the study of sesquiterpenoids was begun in the early years of the nineteenth century, it was only after 1920 that serious progress was made. For many years it was known that certain essential oils developed a blue colour on distillation. Many sesquiterpenoids gave similar blue substances when dehydrogenated and the blue colour was attributed to the presence of a small group of hydrocarbons. The name "azulene" was given to the oils by Piesse in 1804⁹. Those azulenes which were first obtained from natural sources were given trival names. However as their identity with other hydrocarbons was established the superfluous names were discarded.

Some *Calypogeia* species contain characteristic blue oil bodies¹⁰. Two azulene derivatives, 1,4-dimethylazulene (10) and 4-methyl-1-methoxycarbonylazulene (11), have been isolated from *Calypogeia trichomanis*. Further investigation of the essential oil of the same liverwort gave 3,7-dimethyl-5-methoxycarbonylindene (12). While azulenes are often obtained as artefacts during isolation procedures, the azulenes in *Calypogeia* species occur naturally since the oil bodies in intact gametophytes show a blue colour and the solvents immediately become blue when the cultured cells are immersed in suitable solvents¹¹. Guaiazulene (13) was isolated from *Pellia* species. It was suggested that guaiazulene might be an artefact since azulenes were not detected in the ether extract of the same species, even by GC-MS analysis¹.

The skeleton of the gymnomitranes (barbatanes) was first reported by Connolly *et* al^{12} from the liverwort *Gymnomitrion obtusum*, a rich source of gymnomitranes, e.g. gymnomitrol (14). This type of skeleton is not found outwith the Hepaticae. Although the corresponding hydrocarbons α - and β -gymnomitrenes are widespread, oxygenated derivatives are much less common. Recently three derivatives of gymnomitrol have been reported from *Plagiochila trabeculata* by Toyota et al¹³. These are 9α -

٠

(11)

COOMe

(14)

(20)

(15) R= OAc; R'= H, OH
(16) R= O cinn; R'= H, OH
(17) R= OAc; R'= O
(18) R= H; R'= H, OH

hydroxygymnomitryl acetate (15), the corresponding cinnamate (16) and 9oxogymnomitryl acetate (17). From *Reboulia hemisphaerica*, a similar 9α -hydroxy derivative (18), lacking the bridge oxygen substituent, was reported by Becker et al¹⁴.

The herbertanes (19) have a carbon skeleton which is similar to the cuparanes (20). The difference lies in the position of the methyl on the six-membered ring. These two skeletal types are examples of the rare occurrence of aromatic sesquiterpenoids in nature. (R)-(-)-cuparene (21) was the first compound of this skeletal type to be reported and it was isolated from the liverwort *Bazzania pompeana* in 1971¹⁵. In 1972 Matsuo et al¹⁶ isolated δ -cuparenol (22) and cuparene (23) from the same liverwort. These two compounds have also been reported from *Marchantia polymorpha*¹⁷. R(-)- α -cuparenone (24)¹⁸ and the cyclocuparane structure, grimaldone (25), are the odoriferous compounds from *Mannia fragrans*¹⁹. The herbertanes form a small group of sesquiterpenoids found largely in liverworts²⁰. They have also been found in the fungi²¹. The first compound in this series (-)-herbertene (26) was isolated in 1981 from the leafy liverwort *Herbertus aduncus*²². Other compounds of this type molecule are (-)- α -herbertenol (27), (-)- β -herbertenol (28), (-)- α -formylherbertenol (29), (-)-herbertenediol (30) and (-)-herbertenolide (31) from *H. aduncus*^{20,23,24} and *H. subdentatus*²⁰.

Pinguisanes are widely distributed in liverworts and occur in the Lejeuneaceae, Porellaceae, Ptilidiaceae, Lepidolaenaceae of the Jungermanniales and Aneuraceae of the Metzgeriales²⁵. The first pinguisane sesquiterpenoid was the ketone pinguisone (32) which was isolated from the liverwort Aneura pinguis in 1969 by Benesova et al²⁶. The pinguisane skeleton is unique and difficult to rationalise simply in terms of the Isoprene Rule. Investigations of Frullanoides densifolia and Trocholejeunea sandvicensis²⁷ have provided several new pinguisane derivatives. F. densifolia produced two new rearranged pinguisane sesquiterpenoids, spirodensifolin A (33) and spirodensifolin B (34), together with a new pinguisane-type alcohol, isonaviculol (35). Pinguisanes occur with different oxygenation patterns. For example, dehydropinguisanin (36), dehydropinguisenol (37) and pinguisenal (38) were isolated from Tricholejeunea sandvicensis²⁸.

The spirovetivanes are found in vetiver oil²⁹ and also occur as phytoalexins in

(26) R₁=R₂=R₃=H (27) R₁=OH, R₂=R₃=H (28) R₁=R₂=H, R₃=OH (30) R₁=R₂=OH, R₃=H

(31)

(33)

(32)

(34)

(36)

OHC

(37)

(38)

0

infected potatoes³⁰. α -Spirovetivene (39) and its β -isomer have been found in *Scapania* maxima and *Scapania robusta*³¹.

Bicyclogermacranes are found in higher plants^{32,33}. (-)-Bicyclogermacra-1(10),4diene (40) is widespread in liverworts and some other representatives of this type have been reported. Those are *ent*-3 β -acetoxybicyclogermacra-1(10), 4-diene (41) which occurs in the extracts of *Plagiochila yokogurensis*, *Pedinophyllum truncatum* and *Scapania ampliata*¹ and bicyclogermacra-1(10),4-dien-13-al (42) isolated from *Conocephalum conicum*³⁴.

Cadinanes are found in some species of Jungermanniales, Marchantiales and Metzgeriales¹. Conocephalum conicum contains δ -cadinene (43)³⁵. Andersen *et al*³⁶ have reported the presence of (-)- γ -cadinene (44) in *Scapania undulata*. Three more new cadinane derivatives, (+)-4-muurolen-6 α -ol (45), scapanol (46) and ent-T-muurolol (47) were isolated from Belgian *Scapania undulata*³⁷.

DITERPENOIDS

Only certain genera of liverworts produce diterpenoids. Labdane, pimarane and kaurane diterpenoids thus far isolated from the Hepaticae belong to the *ent*-series while higher plants produce both normal and ent-labdanes, pimaranes and kauranes. The first diterpenoid isolated from liverworts was *ent*-16 β -hydroxykaurane (48) from *Anthelia julacea* and *A. juratzkana* by Huneck and Velve in 1970³⁸.

The sacculatane-type diterpenoids have a widespread occurrence in liverworts and have been found in *Trichocoleopsis*, *Pellia*, *Porella* and *Makinoa* species¹. Sacculatal (49) and isosacculatal (50) were isolated from the liverwort *Trichocoleopsis sacculata* by Asakawa and Takemoto³⁹, the first report of this skeletal type. Sacculaplagin (51)⁴⁰ and sacculaporellin (52)⁴¹, two hemiacetals, were isolated from the liverworts *Plagiochila acanthophylla* and *Porella perrottetiana*.

The kaurene skeleton is commonly found in Nature and *ent*-kauranes occur in higher plants. Liverworts produce only the *ent*-form¹. *Ent*-18-hydroxykauren-15-one (53) and *ent*-(16R)-18-hydroxykauran-15-one (54) were isolated from *Porella densifolia*

(47)

(52)

(54) 16,17-dihydro

(53)

(55) R=Ac (56) R=H

(57) $R_1=O R_2=H$, β -OH (58) $R_1=O R_2=H$, β -OH 16,17 didehydro

by Matsuo et al⁴². Four *ent*-kaurene derivatives (55-58) were found in *Solenostoma triste* by Connolly et al⁴³.

Labdanes are the most common terpenoids found in liverworts. The first representative of this skeletal type, *ent*-manool (59), was isolated from *Jungermannia* torticalyx by Matsuo et al⁴⁴. The liverwort Scapania undulata afforded scapanin A (60) and B (61)⁴⁵.

Pimaranes occur quite rarely in liverworts. (-)-Thermarol (62), *ent*-pimara-8(14),15-dien-19-oic acid (63) and *ent*-pimara-8(14),15-dien-19-ol (64) from the liverwort *Jungermannia thermarum*, are the first representatives of this species⁴⁶. However, subsequently the 'normal' isopimarane, (-)-sandaracopimaric acid (65) was found in the liverwort *Mastigophora diclados*⁴⁷.

The sphenolobane skeleton was first reported in the marine organism sponge, *Pseudolarix kaempferi*⁴⁸. The only occurrence of the sphenolobane skeleton found in liverworts is in the liverwort *Anastrophyllum minutum (Sphenolobus minutus)*⁴⁹, e.g. (66).

TRITERPENOIDS

Triterpenoids are found rarely in liverworts. While cycloartenol (67) has been found in both *Mylia taylorii*⁵⁰ and *Lophozia ventricosa*⁵¹, cycloart-23-ene-3 β , 25-diol (68) has been found in *Plagiochila kahsiana* (*P. peculiaris*)⁵². Another triterpenoid, α -zeorin (69), has been isolated from *Reboulia hemisphaerica*¹⁴ and *Plagiochasma rupestre*⁵³.

AROMATICS

The main types of aromatic compounds found in liverworts are bibenzyls and bisbibenzyls. The bibenzyls are the most characteristic and many of them are biologically active. Lunularic acid (70), a growth inhibitor, isolated from the liverwort *Lunularia cruciata* in 1969⁵⁴, is the first representative of the bibenzyl type. It occurs widely and has been reported in 76 species of the Hepaticae^{1,55}. Many variations of the basic bibenzyl unit^{1,56} have been published e.g. the interesting cyclohexenone, 4 (-p-methoxyphenethyl)-cyclohex-2-en-1-one (71) from *Plagiochila longispina*⁵⁷ and a new bibenzyl cannabinoid derivative (72) from *Radula perrottetii*⁵⁸. Another variation is the cyclopropanochroman

7

(61)

(63) R= CO₂H (64) R= CH₂OH

(60)

(62)

(65)

(67)

(68)

(70)

(71)

(73)

(74)

(75)

(76)

(77)

type e.g. radulanins I (73) from the liverwort Radula javanica⁵⁹.

Bisbibenzyls are two bibenzyl units joined by ether and biphenyl linkages. These compounds are unique to the liverworts and are exemplified by perrottetin E-11⁻-methyl ether (74) from *Pellia endiviifolia*⁶⁰, and isoplagin A (75) from *Plagiochila fruticosa*.

Flavonoids are widely distributed in the Hepaticae, particularly in the Marchantiales⁶¹. Most of the flavonoids found in the Hepaticae are flavonoid glycosides, except for a few flavonoid aglycones found in *Corsinia*⁶² and *Frullania* species^{63, 64, 65}. Apigenin (76) and luteolin (77) glycosides are the most common flavonoids.

REFERENCES

1. Asakawa, Y. (1982), *Progress in the Chemistry of Organic Natural Products*, vol.42 (Hertz, W., Grisebach, H. and Kirby, G.W., eds), Springer-Verlag. pp.1

2. S.R. Gradstein (1990) in Bryophytes : Their Chemistry and Chemical Taxonomy (Zinsmeister H.D. and Mues R. eds), Oxford University Press, pp.3-8.

3. Leitgeb, H. (1879), Untersuchungen uber die Lebermoose, heft 2 : Die Anthoceroteen, Graz.

4. Cavers, F. (1911), "Interrelationship of the Bryophyta", New Phytol., repr. no. 4, Cambridge, 203 pp.

5. Howe, M.A., (1899), Mem. Torrey Bot. Club, 7, 1.

6. K. Muller, Hoppe-Seyler's Z. Physiol.Chem., 1905, 45, 299.

7. Suire, C. and Asakawa, Y. (1979), In "Chemotaxonomy of Bryophytes : A Survey "Bryophyte Systematics" (G.C.S. Clarke and J.G. Duckett eds.), pp. 448-477.

8. Roberts, J.S., The Sesquiterpenoids, In "Chemistry of Terpenes and Terpenoids" edited by A.A. Newman (1972), pp. 88-146.

9. P. de Mayo, Mono- and Sesquiterpenoids, In "The Chemistry of Natural Products vol. 2" by K.W. Bentley (1959), pp. 180-244.

10. Asakawa, Y. (1982), Progress in the Chemistry of Organic Natural Products, vol.42 (W.Herz, H.Grisebach and G.W.Kirby eds.) Springer-Verlag. pp.28.

11. Takeda, R. and K.Katoh, (1981), Planta 151, 525-30.

12. Connolly, J.D., Harding, A.E. and Thorton, I.M.S. (1972), J.C.S. Chem. Commun., 24, 1320-1.

13. Toyota, M., Nagashima, F. and Asakawa, Y. (1988), Phytochemistry, 27, 2161-2164.

14. Morais Rui, M.S.C., Harrison, L.J. and Becker, H. (1988), J. Chem. Res. (S), 380.

15. Matsuo, A., Nakayama, M., Ishida, Y. and Hayashi, S., Z. Naturforsch. B, (1971), 26(1), 32-3.

16. Matsuo, A., Nakayama, M. and Hayashi, S. (1972), Chemistry Letters, 341.

17. Hopkins, B.J. and Perold, G.W. (1974), J. Chem. Soc. Perkin Trans. 1, 32.

18. Connolly, J.D., (1990), in *Bryophytes*: *Their Chemistry and Chemical Taxonomy*, (Zinsmeister H.D. and Mues R. eds), Oxford University Press, pp. 41-58.

19. Huneck, S., Connolly, J.D., Freer, A.A. and Rycroft, D.S. (1988), *Phytochemistry*, 27, 1405.

20. Asakawa, Y., Matsuda, R., Schofield, W.B. and Gradstein, S.R., (1982), *Phytochemistry*, **21**, 2471.

21. Kajimoto, T., Yamashita, M., Imamura, Y., Takahashi, K., Nohura, T. and Shibatu, M., (1989), *Chem. Lett.*, 527.

22. Matsuo, A., Yuki, S. and Nakayama, M., (1981), J.C.S. Chem. Comm., 864.

23. Matsuo, A., Yuki, S., Nakayama, M. and Hayashi, S., (1982), Chem. Lett., 463.

24. Matsuo, A., Yuki, S. and Nakayama, M., (1986), J.C.S. Perkin Trans. 1, 701.

25. Gradstein, S.R., Asakawa, Y., Mues, R. and Klein, R., (1988), J. Hattori Bot. Lab., 64, 159.

26. Benesova, V., Samek, Z., Herout, V. and Sorm, F., (1969), Coll. Czech. Chem. Commun., 34, 582.

27. Tory, M., Arbiyanti, H., Taira, Z. and Asakawa, Y., (1993), Phytochemistry, 32, 335.

28. Asakawa, Y., Toyota, M., Kano, M. and Takemoto, T. (1980), *Phytochemistry*, 19, 2651.

29. Andersen, N.H., Falcone, M.S. and Syrdal, D.D., (1970), Tetrahedron Lett., 1759.

30. Katsui, N., Matsunaga, A., Kitahara, H., Yagihashi, F., Murai, A., Masamune, T. and Sato N., (1977), *Bull. Chem. Soc. Japan*, **50**, 1217.

31. Wu, L.-C. (1990) in *Bryophytes* : *Their Chemistry and Chemical Taxonomy*, (Zinsmeister H.D. and Mues R. eds), Oxford University Press, pp.71-82.

32. Nishimura, K., Shinoda N.and Hirose Y., (1969), Tetrahedron Lett., 3097.

33. Nishimura, K., Horibe, I. and Tori, K., (1973), Tetrahedron, 29, 271.

34. Toyota, M., Nagashima, F., Fukuyama, Y., Honda, S. and Asakawa, Y., (1988), *Phytochemistry*, 27, 3317.

35. Andersen, N.H., Ohta, Y., Liu, C.B., Kramer Jr, C.M., Allison, K. and Huneck, S. (1977), *Phytochemistry*, **16**, 1727.

36. Andersen, N.H., Bissonette, P., Liu, C.B., Shunk, B., Ohta, Y., Tseng, C-L.W., Moore, A. and Huneck, S., (1977), *Phytochemistry*, **16**, 1731.

37. Nagashima, F., Suda, K. and Asakawa, Y., (1994), Phytochemistry, 37, 1323.

38. Huneck, S. and Vevle, O., (1970), Z. Naturforsch., 25B, 227.

39. Asakawa, Y. and Takemoto, T., (1977), Tetrahedron Lett., 2, 1407.

40. Hashimoto, T., Tori, M. and Asakawa, Y., (1987), Tetrahedron Lett., 28, 6293.

41. Asakawa, Y., Toyota, M. and Ueda, (1990), Phytochemistry, 29, 2165.

42. Matsuo, A., Uto, S., Nakayama, M. and Hayashi, S., (1977), *Chemistry Letters*, 327.

43. Connolly, J.D., and Thorton, I.M.S., (1973), J. Chem. Soc. Perkin 1, 736.

44. Matsuo, A., Nakayama, M., Ono, J. and Hayashi, S., Z. Naturforsch. B, (1972), 27(11), 1437-8.

45. Connolly, J.D, Rycroft, D.S., Huneck, S., Harrison, L.J., Joseph, R., Phillips, W.R., Ferguson, G. and Parvez, G., (1986), J. Chem. Res. (S), 162.

46. Matsuo, A., Uto, S., Nakayama, M., Hayashi, S. and Yamasaki, K., (1976), *Tetrahedron Lett.*, 28, 2451.

47. Chau, P. and Wu, C.-L., (1987), Proc. Nat. Sci. Counc. A, 11, 124.

48. Zhou, B.N., Ying, B.P., Song, G.Q., Chen, Z.X., Han, J. and Yan, Y.F., (1983), *Planta Medica*, 47, 35.

49. Beyer, J., Becker H., Toyota, M. and Asakawa, Y., (1987), Phytochemistry, 26, 1085.

50. Takaoka, D., Matsuo, A. and Hayashi, S., (1987), Phytochemistry, 26, 429.

51. Huneck, S., Janicke, S. and Schmidt, J., (1984), Pharmazie, 39, 784.

52. Asakawa, Y., Lin, X., Kondo, K. and Fukuyama, Y., (1991), Phytochemistry, 30, 4019.

53. Connolly, J.D., Rycroft, D.S., Harrison, L.J. and Becker, H., (1992), J. Chem. Res. (S), 74.

54. Valio, I.F.M., Burdon, R.S. and Schwabe, W.U., Nature, (1969), 223, 1176.

55. Gorham, J., (1977), Phytochemistry, 16, 249.

56. Gorham, J., (1990), In Bryophytes : Their Chemistry and Chemical Taxonomy, (Zinsmeister H.D. and Mues R.eds), Oxford University Press, pp.171-200.

57. Siegel, U., Mues, R., Doing, R. and Eicher, T., (1991), Phytochemistry, 30, 3643.

58. Toyota, M., Kinugawa, T. and Asakawa, Y. (1994), Phytochemistry, 37, 859.

59. Asakawa, Y., Kondo, K. and Tori, M., (1991), Phytochemistry, 30, 325.

60. Hashimoto, T., Suzuki, H., Tory, M. and Asakawa, Y., (1991), *Phytochemistry*, 30, 1523

61. Asakawa, Y. (1982), Progress in the Chemistry of Organic Natural Products, vol.42 (eds. W.Herz, H.Grisebach and G.W.Kirby) Springer-Verlag. pp.154-173.

62. Reznik, H. and Wiermann, R, (1966), Naturwissenschaften, 53, 230.

63. Asakawa, Y., Matsuda, R., Toyota, S., Hattori, S.and Ourisson, G., (1981), *Phytochemistry*, **20**, 2187.

64. Asakawa, Y, Tokunaga, N., Takemoto, T., Hattori, S., Mizutani, M. and Suire, C., (1980) : Chemosystematics of Bryophytes 4. The Distribution of Terpenoids and Aromatic Compounds in Hepaticae and Anthocerotae, J. Hattori Bot. Lab., 47, 153.

65. Asakawa, Y, Uemoto, M, Tanikawa, K. and Aratani, T., (1976) : Sesquiterpenes of Frullania . 20th Symposium on Chemistry of Terpenes, Essential Oils and Aromatics. Akita, Japan, Symposium Papers, P.42.

CHAPTER TWO

Marsupella aquatica

INTRODUCTION

The liverwort *Marsupella aquatica* is very common on rocks in hill streams. It differs from the species *M. emarginata* in a number of small points. It grows taller (3-8 cm), is dull blackish green rather than red brown in colour, and has the leaves more channelled in form and less deeply bifid¹. *Marsupella* species are rich sources of longipinane-type sesquiterpenoids which are significant chemical markers of the Marsupellaceae².

The compounds isolated previously from the species *M. aquatica* include, gymnomitr-8(12)-en-9 β -ol (1)³, 9,11 α ,14-triacetoxymarsupellone (2), 9,11 β ,14 triacetoxymarsupellone (3) and 9,14-diacetoxymarsupellone (4)⁴, (-)-*ent*-12 α acetoxylongipin-2(10)-en-3-one (5)⁵, and lemnalol⁶ (6). The related species *M. emarginata* contains the *ent*-longipinane 9-acetoxymarsupellol (7)⁷, eremophila-9,11-dien-8 α -ol (8)⁸ and the three gymnomitranes (9)-(11)⁹.

RESULTS AND DISCUSSION

Marsupella aquatica was collected in a burn near Inverary. It was dried, powdered and eluted with diethyl ether. The crude extract was subjected to flash chromatography followed by preparative TLC. Three new amorphane/muurolane type sesquiterpenoids (12)-(14) were obtained and their structures assigned on the basis of their spectroscopic properties.

The major constituent (12), present in fractions eluted with 40% ether in light petroleum, was obtained as an oil, following purification by preparative TLC (eluent 35% ether in petrol). The molecular formula $C_{19}H_{26}O_5$ was readily apparent from the ¹³C NMR spectrum (Table-1) which revealed the presence of six methyl groups (including two acetates), one methylene group, six methine carbons (including two secondary oxygenbearing carbons and a vinyl carbon), a trisubstituted and a tetrasubstituted double bond, two acetate carbonyls and a ketonic carbonyl. The molecule is thus bicarbocyclic. The IR spectrum confirmed the acetates [1746 cm⁻¹], and suggested the presence of an unsaturated ketone [1686, 1615 cm⁻¹]. This suggestion was supported by a UV absorption band at 248 nm [ϵ 7000]. The ¹H NMR spectrum (Table-1.) showed *inter alia*

(1)

(2) R = H, α -OAc (3) R = H, β -OAc (4) R = H, H

(5)

(6)

(7)

(8)

(9) R = CH₂OH
(10) R = CO₂H
(11) R = CHO

a secondary methyl group, three deshielded methines, two of which overlapped, arising from the two secondary acetates and the vinyl proton, and four sharp methyl signals between 2.1 and 1.8 ppm. Two of these methyl signals must belong to the acetates while the other two must arise from vinyl methyls with little or no coupling. The assignment of the proton resonances was aided by double resonance experiments and by NOE difference experiments. The problem of the overlap of signals was resolved by changing the solvent from deuteriochloroform to deuteriobenzene. This resulted in a clear separation of the three deshielded methine resonances which were readily identified by decoupling experiments. Irradiation of H-2 [$\delta_{\rm H}$ 5.30, t, J 3.8 Hz] resulted in the collapse of H-3 [$\delta_{\rm H}$ 5.66, brd, J 3.6 Hz] to a broad singlet. The other coupling is to H-1 which lies underneath the acetate signals as can be seen in the 2D direct C/H correlation spectrum. H-3 is allylic and couples to the vinyl methyl, 3H-15, the vinyl proton H-5 and the other allylic proton H-6. All the couplings are small and therefore it is not immediately apparent which double bond carbon bears the methyl group 3H-15. A strong NOE from H-3 to 3H-15 readily resolved this problem. Irradiation of the hidden resonance for H-1 resulted in loss of the couplings from H-2 and H-6, thus completing the part structure (A). A small coupling with H-3 was also apparent, indicating their W geometry (see below).

A further coupling of H-1 to the methine proton H-10 [$\delta_{\rm H}$ 2.58, obscured m] which is partly obscured by one of the methylene protons (2H-9), enables part structure (A) to be extended. Irradiation of H-10 and the methylene proton results in collapse of the other methylene signal and the secondary methyl resonance. The methylene protons have no further couplings and the large J_{gem} (15.6 Hz) suggests a situation α to a carbonyl

group. Thus we arrive at part structure (B). A tetrasubstituted double bond bearing two methyl groups remains to be placed to complete the structure. There are two possibilities (C) and (D). The former (C) is preferred since in the long range 2D C/H spectrum the methyls are mutually correlated as well as showing correlations to C-7 and C-11. Correlation between the methyls in structure (D) would represent unusual ${}^{4}J_{CH}$ couplings. Other long range correlations which support structure (C) are 3H-15 to C-3, C-4 and C-5, 3H-14 to C-9, C-10 and C-1, and H-5 to C-3 and C-15. Surprisingly, no correlations were observed from H-1, H-2, H-3, H-6 and H-10. Structure (C) has a cadinane type skeleton with acetates attached to C-2 and C-3. Conjugation of the isopropylidene group at C-7 with the ketone carbonyl causes considerable deshielding of the two methyl singlets 3H-12 and 3H-13 [$\delta_{\rm H}$ 2.03, 1.82 respectively in CDCl₃].

(C)

(D)

The relative stereochemistry of (12) was deduced from NOE difference experiments (Table-2). These can be summarised as follows : irradiation of H-3 afforded NOEs at H-2 and the vinyl methyl group 3H-15 ; irradiation of H-6 gave NOEs at H-5, H-1, H-2 and the methyl 3H-13 (confirmed in the deuteriobenzene experiment). Thus the protons attached to C-1, C-2, C-3 and C-6 must all lie on the same side (arbitrarily chosen as the β face) of the molecule, and the AB ring junction must be cis. The small couplings observed for the system H-1, H-2 and H-3 are consistent with this conclusion. Irradiation of H-10 gave NOEs at the secondary methyl group and also at the equatorial proton of the C-9 methylene group while irradiation of the secondary methyl group resulted in NOEs at H-10, H-1 and 2H-9. Thus the secondary methyl group is also β . The stereochemical findings are indicated in (12) and the NOEs are summarised in (E). As expected irradiation of 3H-12 had little effect other than enhancing the intensity of its geminal neighbour 3H-13. Irradiation of the latter afforded a strong NOE at H-6 and a weaker one at H-5. The absolute configuration of (12) remains to be determined. The *cis* ring fusion in this compound places it in the amorphane or muurolane group of sesquiterpenoids rather than the cadinane group. Amorphanes and muurolanes are usually distinguished by the relative configuration at C-7, which is missing in the case of (12). A reasonable systematic name for (12) is $(1R^*, 6S^*, 10S^*)-2R^*, 3S^*$ -diacetoxyamorpha-4,7(11)-dien-8-one.

(E)

The second compound, the epoxide (13), was obtained from the same fractions as (12). Its spectroscopic properties were very similar to those of (12). In the ¹H NMR spectrum (Table-3) the most obvious difference was the upfield shift of two methyl groups

[the sharp vinyl methyls of (12)] to 1.42 and 1.15 ppm and separation of the resonances for H-2 [$\delta_{\rm H}$ 5.18, dd, J 4.8, 3.7 Hz], H-3 [$\delta_{\rm H}$ 5.45, brd, J 4.2 Hz] and H-5 [$\delta_{\rm H}$ 5.58, brs]. As above, double irradiation experiments readily identified the various protons. The ¹³C NMR spectrum (Table-3) revealed the loss of the tetrasubstituted double bond of (12) and its replacement by two tertiary carbons at 64.6 and 71.03 ppm, indicative of an epoxide. Thus (13) is a 7,11-epoxide of (12). NOE difference experiments (Table-4) support the same relative stereochemistry. The assignment of the *cis* fusion of the rings and the configuration of the secondary methyl group follow readily from NOEs to H-2, H-6 and 3H-14 on irradiation of 3H-13 afforded a large NOE (*ca* 11%) at H-6, it is perhaps more likely that the epoxide is α . The proposed stereochemistry is indicated in (13). Compound (13) is therefore [1R^{*}, 6S^{*}, 10S^{*}]-2R^{*}, 3S^{*}-diacetoxy-7\xi, 11\xi-epoxyamorph-4en-8-one. The epoxide (13) may be an artefact formed by air oxidation of the enone (12).

The third compound (14) was obtained from column fractions eluted with 25% ether and light petroleum. It was purified by preparative TLC. It is very similar to compound (12), but has only one acetate group. Its molecular formula $C_{17}H_{24}O_3$ was deduced from the ¹³C NMR spectrum (Table-5). In the ¹H NMR (Table-5) spectrum, the secondary acetate methine appeared at δ_H 5.18 as a ddd (J 9.7, 7.4, 3.6 Hz). This suggested that the acetate is attached to C-1, with a methylene group at C-2 and leads to structure (14) for this compound. NOE difference experiments (Table-6) confirmed structure (14) and the proton NMR assignments shown in the Table-5. The ¹³C resonances have been assigned by analogy with (12).

The relative stereochemistry of (14) is the same as that of (12). Irradiation of H-6 gives NOEs at H-1 and H-2 thus confirming the *cis* ring junction. NOEs from 3H-14 to both the C-9 methylene protons are consistent with the β -configuration of 3H-14. Thus compound (14) is $[1R^*, 6S^*, 10S^*]-2S^*$ -acetoxyamorpha-4,7(11)-dien-8-one.

The Marsupella compounds are an addition to the small group of amorphane (muurolane) sesquiterpenoids to be isolated from liverworts. The longifolane sesquiterpenoids normally associated with Marsupella species were not detected.

(12)

(13)

(14)

GENERAL EXPERIMENTAL

Nuclear Magnetic Resonance Spectra (NMR) were recorded on Bruker WP 200 SY, AM 200 SY (¹H at 200.132 MHz and ¹³C at 50.32 MHz) and AM 360 (¹H at 360 MHz and ¹³C at 90 MHz) and 500 MHz spectrometers. HSQC and HMBC experiments are inverse detected versions of 2D direct and 2D long-range carbon-proton correlation experiments respectively.

Spectra were recorded for CHCl₃ relative to δ_H 7.25 and CDCl₃ relative to δ_C 77.0 and chemical shifts are reported in ppm. Coupling constants (J) in Hz are given in parenthesis in the tabulated ¹H NMR data. Signals indicated 'm' are unresolved or overlapped multiplets. ¹H and ¹³C signal assignments are based on general chemical shift rules and comparison with published data for similar compounds. More definitive ¹H NMR assignments were made by NOE difference and homo-decoupling experiments.

Dried and powdered material was extracted with diethyl ether or methanol. The crude extracts were fractionated by column chromatography over silica gel G_{254} . Eluents used for silica gel column chromatography were increasing percentages of diethyl ether or ethyl acetate in light petroleum. Each of the crude fractions was further purified on TLC by using 0.75 mm thick preparative plates over silica gel GF₂₅₄. Eluents for TLC were increasing percentages of diethyl ether or ethyl acetate in light petroleum. Compounds on TLC and analytical plates were visualised using UV light or iodine vapour. Solvents were evaporated using a Buchi Rotavapor and water aspirator.

High resolution mass spectrometry was used to determine the masses of the compounds.

EXPERIMENTAL

The plant material was collected from a burn beside the Inverary road, approximately one mile west of Arrochar. It was identified by Prof. J.D. Connolly and Dr. D.S. Rycroft. A reference sample is deposited with Dr. Rycroft in the Department of Chemistry, University of Glasgow.

Dried and powdered plant material (1 kg) extracted with diethyl ether by percolation over several hours. The crude extract (3.94 g) showed several spots on analytical TLC (UV). It was then subjected to flash chromatography using a column of silica gel G_{254} and increasing percentages of petroleum ether-diethyl ether as eluent. Compounds from the separated fractions were isolated and purified by preparative thin layer chromatography on silica gel GF_{254} . Purified compounds were subjected to spectroscopic analysis.
[1R^{*}, 6S^{*}, 10S^{*}] 2R^{*}, 3S^{*}-diacetoxyamorpha-4,7(11)-dien-8-one (12), C₁₉H₂₆O₅,m/z 334 (M⁺), 274 (M⁺-CH₃CO₂H), 214 (M⁺-2CH₃CO₂H) colourless oil, λ_{max} 248 nm (log ε = 3.84), IR; 1746, 1686, 1615 cm⁻¹, [α]_D-90.2 (c. 1.1 in CHCl₃). ¹³C and ¹H NMR data in Table -1.

[1R^{*}, 6S^{*}, 10S^{*}] 2R^{*},3S^{*}-diacetoxy-7ξ 11ξ-epoxyamorph-4-en-8-one (13), C₁₉H₂₆O₆, colourless oil.

¹³C and ¹H NMR data in Table -3.

[1R^{*}, 6S^{*}, 10S^{*}] 2S^{*}-acetoxyamorpha-4,7(11)-dien-8-one (14), C₁₇H₂₄O₃, m/z 276

(M⁺), 216 (M⁺-CH₃CO₂H), colourless oil, λ ; 246 nm (log ϵ = 3.77), IR; 1727 cm⁻¹, [α _D-

150.5 (c. 3.5 in CHCl₃).

¹³C and ¹H NMR data in Table -5.

	¹³ C	H	Multiplicities	¹³ C	H ¹ H	Multiplicities
	δ (ppm)	δ (ppm)	(J, Hz)	δ(ppm) (C ₆ D ₆)	δ(ppm) (C ₆ D ₆)	(J, Hz)
1	28.3	2.55	m	42.46	1.82	obscure
2	72.78	5.23	overlapped with 5	72.91	5.30	t (3.8)
3	680	5.47	brd (4.7)	68.10	5.66	brd (3.6)
4	131.3			131.59		
5	129.42	5.23	overlapped with 2	129.60	5.03	brs
6	42.28	3.7	m	42.00	3.41	brs
7	133.62			134.0		
8	203.20			201.02		
9	50.41	2.42	dd (14.8 & 4.37)		2.55	dd (15.6, 11.5)
9`		&2	under acetate signals		&1.96	
10	41.78	2	under acetate signals	28.37	2.58	obscure
11	143.7			142.7		
12	23.12	2.03		21.70	1.48	S
13	22.02	1.82		23.22	2.18	S
14	19.78	1.04	d (6.55)	22.00	1.01	d (6.4)

Table-1¹³C and ¹H shifts of (12)

15	20.88	1.63	ddd (2.38, 1.9, 0.28)	19.76	1.50	brs
16	170.62			169.94		
17	21.07	2.05	S		1.85	S
18	170.05			169.32		
19	21.84	2.03	S		1.80	S

Table-2 NOEDIFF Correlations of (12)

Irradiation	Enhancement
H-3	H-2, 3H-15
H-5	H-6, 3H-15
H-6	H-5, H-1, H-2, 3H-15
H-10	H-9 _(eq) , 3H-14
H-9 _(eq)	H-10
3H-12	H-13
3H-13	H-12, H-6, H-5
3H-15	H-5, H-3
3H-14	H-10, H-1, 2H-9

	¹³ C (δ ppm)	¹ Η (δ ppm)	Multiplicities (J, Hz)
1	42.58*	2.23	brt
2	72.55	5.18	dd (4.8, 3.7)
3	68.16	5.45	brd (4.2)
4	132.95		
5	124.48	5.58	brs
6	43.06*	2.72	overlapping with 10
7	71.03		
8	206.0		
9 _(eq)	50.12	2.45 &	dd (13.9, 4.1)
9`		2.2	hidden under acetate signals.
10	29.77	2.72	overlapping with 6
11	64.6		
12	20.81	1.47	S
13	19.75	1.2	S
14	19.8	1.14	d (6.5)
15	20.0	1.66	brd (1.7)
16	170.45		
17	21.3	2.05	s
18	170.0		
19	21.0	2.1	s

Table-3 ¹³C and ¹H shifts of (13)

* May be interchanged

Table-4 NOEDIFF Correlations of (13)

Irradiation	Enhancement
H-5	H-6, 3H-15
H-3	H-2, 3H-15
H-2	H-3, H-6, H-1
$H-9_{(eq)}$	H-10
H-1	H-6, H-2, 3H-14
3H-15	H-3, H-5
3H-12	H-6, H-13
3H-14	H-10, H-1, 2H-9

	¹³ C δ (ppm)	¹ Η δ (ppm)	Multiplicities (J, Hz)
1	41.3	ca. 2.1	m
2	73.4	5.18	ddd (9.7, 7.4, 3.6)
3	31.8	2.19	brd (7.1)
4	132.8		
5	123.7	4.96	brs
6	42.5	3.73	m
7	132.8		
8	203.4		
9	49.81	2.41	dd (14.6, 4.9)
10	26.9	2.22	m
11	143.9		
12	23.19	2.02	S
13	22.2*	1.8	S
14	22.2*	1.03	d(6.7)
15	22.8*	1.65	S
16	170.6		
17	21.39	2.06	S

Table-5 13 C and 1 H shifts of (14)

May be interchanged

Table-6 NOEDIFF Correlations of (14)

Irradiati	Enhancements
on	
H-2	H-6, H-3, H-1
H-5	H-6, H-13, 3H-15
H-6	H-5, H-2, H-1, 3H-13
H-9 _(eq)	H-10, H-9`
3H-12	3H-13
3H-13	H-6, H-5, 3H-12
3H-15	H-5, H-3
3H-14	H-10, 2H-9

REFERENCES

- 1. British Mosses and Liverworts, by Watson, E.V., (1968), 439-440.
- 2. Nagashima, F., Ishimaru, A. and Asakawa, Y., (1994), Phytochemistry, 37, 1767-1768.
- 3. Nagashima, F., Ishimaru, A. and Asakawa, Y., (1994), Phytochemistry, 37, 777-779.

4. Nagashima, F., Ohi, Y., Nagai, T., Tori, M., Asakawa, Y. and Huneck, S., *Phytochemistry*, 1993, 33, 1445-1448.

- 5. Connolly, J.D., Rycroft, D.S., Huneck, S. and Matsuo, A., (1982), *Phytochemistry*, 21, 143-145.
- 6. Kikuchi, H., Tsukitani, Y., Yamada, Y., Iguchi, K., Drexler, S.A. and Clardy, J., (1982), *Tetrahedron Lett.*, 23, 1063.
- 7. Nagashima, F., Ishimaru, A. and Asakawa, Y., (1994), Phytochemistry, 37, 1767-1768
- 8. Connolly, J.D., Rycroft, D.S., Harrison, L.J. and Becker, H., (1992), *Phytochemistry*, 31, 4027-4028.
- 9. Matsuo, A., Nozaki, H., Yano, K., Uto, S., Nakayama, M. and Huneck, S., (1990), *Phytochemistry*, 29, 1921-1924.

CHAPTER THREE

Nardia scalaris

INTRODUCTION

The liverwort *Nardia scalaris* is typically low-growing and nearly prostrate¹. The almost unbranched stems of this species are short (1-3 cm). They forms rather extensive patches, of a yellowish-green to red-brown colour, and grow on gravelly banks, ledges, moors and in the mountains. It is the commonest entire-leafed liverwort found in Britain¹. The distribution of the species of the genus *Nardia* (six species known world-wide)², which is in the group of the Jungermanniaideae, has been reported in the Atlas of the Bryophytes³.

In an early investigation of Nardia scalaris, Benes et $al^{4,5}$ isolated an ent-kaurane diterpenoid (1) and (+)-21 α -methoxyserrat-14-en-3-one (2).

In a later study Connolly *et al*⁶ isolated an acidic diterpenoid. It was characterised as its methyl ester, methyl *ent*-kaur-16-en-14-yl malonate (3). They have also found the derived ketone (4). The same diterpenoid has been reported by Langenbahn *et al*² with compound (5).

The related species N. succulenta contains, in addition to the simple kaurene derivatives ent-kaur-16-en-15 β -ol⁷, ent-(16R)-kauran-15-one and ent-kaur-16-en-15-one⁸, a wide range of terpenoid malonates and half-malonates. Langenbahn et al² isolated compounds (6) and (7) from the acidic fraction from N. succulenta. They also reported compounds (8), (9), (10) and (11) from neutral fractions of the same liverwort.

Similar terpenoid esters were found in *N. scalaris* by the same authors² and were recognised as derivatives of *ent*-kaurene alcohols with the functional group predominantly at C-14, though derivatives with functionalization at C-15 were also observed². Compounds (12), (13), (14), (15) and (16) have been reported from the fraction of *N. scalaris*² while the neutral fractions afforded the compounds (17), (18A) and (18B).

RESULTS AND DISCUSSION

In a continuation of the chemical investigation of *Nardia scalaris*, we have isolated a diterpenoid which has been shown by chemical and spectroscopic methods to be *ent*-(14S)-kaur-16-en-14-yl hydrogen malonate (19), which was previously characterised as its

(1)

OCOCH₂COOH

(5)

(7)

(6)

(8)

0

(11)

(12)

(17)

(20)

methyl ester (3) by Connolly *et al*⁶. The compound was isolated from the acidic fraction of *Nardia scalaris* whose analytical plate eluted with diethyl ether revealed the presence of one spot. Its ¹³C NMR spectrum suggested the molecular formula $C_{23}H_{34}O_4$ which is also supported by the mass spectrum (m/z=374).

In its ¹³C NMR spectrum (Table-1), it has exomethylene carbons [δ_{C} 151.9 (C-16) and 105.5 (C-17)], a hydrogen malonyl residue [δ_{C} 167.0 (C-21), 41.8 (C-22), 170.5 (C-23)], a secondary oxygen bearing carbon [δ_{C} 81.6 (C-14)], a methine carbon [δ_{C} 49.0 (C-13)], three tertiary methyl carbons [δ_{C} 33.6 (C-18), 21.5 (C-19) and 17.9 (C-20)] together with three tetrasubstituted carbons, two methines and eight methylene groups. These data suggested that the compound was a tetracyclic diterpenoid of the kaurene class and comparison with literature values confirmed this⁶.

Its ¹H NMR spectrum (Table-1) shows the exomethylene protons at $\delta_{\rm H}$ 4.83 (brs, 2H-17), the methylene protons of the hydrogen malonyl residue at $\delta_{\rm H}$ 3.40 (s, 2H-22), a methine at $\delta_{\rm H}$ 2.68 (brs H-13), a hydrogen on the oxygen-bearing carbon at $\delta_{\rm H}$ 5.41 (brs, H-14) and three tertiary methyls at $\delta_{\rm H}$ 0.79 (s, 3H-18), 0.82 (s, 3H-19) and 1.05 (s, 3H-20). The IR spectrum revealed the presence of a carboxylic acid at 1733 cm⁻¹ (carbonyl) and a broad band at 3370 cm⁻¹ due to the O-H stretching vibration. The compound was subjected to an exchange experiment with D₂O to identify the carboxylic acid proton. However, the exchange occurred at the α -position [$\delta_{\rm H}$ 3.40 (2H-22)] of the malonic acid.

It seemed likely that the secondary ester function was attached to C-14⁶. Support for this assignment was obtained from the NOE difference experiments (Table-2) ; irradiation of H-13 resulted in a NOE at H-14, while irradiation of H-14 gave a reasonable NOE at H-13 (1.5 %) and a substantial NOE at Me-20 (3.5 %). Irradiation of the exomethylene protons (H-17) gave an enhancement of H-13. Irradiation of Me-20 caused a 5 % increase in the intensity of H-14, thus confirming the position of attachment of the malonate and the configuration at C-14. Irradiation of Me-20 also identified Me-19. Thus the compound is *ent*-(14S)-kaur-16-en-14-yl hydrogen malonate (**19**). This compound has already been reported from the same liverwort by Langenbahn *et al*² The neutral fraction of the same liverwort afforded an *ent*-longipinane type sesquiterpenoid, $C_{15}H_{22}O$ (m/z 218), which was isolated by means of combination of column and preparative thin layer chromatography on silica gel. The spectroscopic data revealed that the compound was a tricyclic α , β -unsaturated sesquiterpene ketone with a ketone group conjugated with an exocyclic methylene [1707 cm⁻¹, 1626 cm⁻¹; δ_H 4.93, and δ_H 5.86, (2H-10), both d, J 1.65 Hz.], a methylene adjacent to the carbonyl group [δ_H 2.70, and δ_H 2.48 (2H-4), both dd, J 18.9 and 2.6 Hz.], three methines [δ_H 1.36 (H-7), s; δ_H 2.28 (H-5), dt, J 6.8 and 3.1 Hz.; δ_H 2.81 (H-1), d, J 6.8 Hz.], and three tertiary methyls [δ_H 0.76 (3H-9), s, and 0.91 (3H-14 and 3H-15), both s].

The ¹³C NMR spectrum in deuteriobenzene (Table-3) revealed the presence of three methyl groups [δ_C 23.5 (C-9) ; δ_C 28.3 and 28.0 (C-14 and C-15)], four methylenes [δ_C 45.2 (C-4) ; δ_C 41.6 (C-12) ; δ_C 40.0 (C-8) ; δ_C 22.0 (C-11)], an exomethylene group [δ_C 151.5 (C-2) ; δ_C 115.4 (C-10)], a carbonyl [δ_C 199.4 (C-3)], three methine carbons [δ_C 59.6 (C-7) ; δ_C 48.0 (C-1) ; δ_C 37.7 (C-5)], and two tetrasubstituted carbons [δ_C 43.0 (C-6) ; δ_C 33.5 (C-13)].

In deuteriobenzene solution, three well resolved methyl resonances were observed [$\delta_{\rm H}$ 0.60 (3H-9), s, $\delta_{\rm H}$ 0.70 (3H-14), s and $\delta_{\rm H}$ 0.76 (3H-15), s] and there was less overlap of the methylene protons. Changes in chemical shift were also observed for some of the other resonances, e.g. the exomethylene protons [$\delta_{\rm H}$ 6.11 and $\delta_{\rm H}$ 4.67 (2H-10), both d, J 1.95 Hz], the methylene adjacent to the carbonyl group [$\delta_{\rm H}$ 2.29 and $\delta_{\rm H}$ 2.53 (2H-14), both dd, J 18.8 and 4.2 Hz] and the methine protons [$\delta_{\rm H}$ 2.53 (H-1), d, J 6.92 Hz, $\delta_{\rm H}$ 1.77 (H-5), dt, J 6.78 and 2.58 Hz, and $\delta_{\rm H}$ 1.16 (H-7), s]. With the exception of one of the exomethylene protons (which is deshielded by 0.25 ppm), the above protons are shielded in deuteriobenzene relative to deuteriochloroform and must therefore lie "behind" and relatively close to the carbonyl group⁹.

Initially the spectroscopic properties suggested the part structure (A). The IR band at 1707 cm⁻¹ seemed consistent with such a proposal. However, it soon became apparent that this part structure was not tenable. In the HMBC spectrum (in C_6D_6) (Table-4), the highest field methyl correlates with both the H₁ methine carbon at 48.3 ppm

and the H₅ methine carbon at 38.5 ppm. Thus both of these carbons must be three bonds away from the methyl proton. The methine singlet H₇ correlates with the exomethylene quaternary carbon. This must be a ³J_{CH} since H₁ is already occupying the allylic position. NOE experiments (Table-6) provided further evidence against part structure (A). Irradiation of the methyl at highest field gave a substantial NOE (3 %) at one of the methylene protons ($\delta_{\rm H}$ 2.53) adjacent to the carbonyl group. Irradiation of the methyl at $\delta_{\rm H}$ 0.76 gave NOEs at H₅ (3 %) and H₇ (4 %), while irradiation of the third methyl at $\delta_{\rm H}$ 0.70 resulted in NOEs at H₁ (2.2 %) and H₇ (3.5 %). These results can be rationalised by having a longipinane skeleton as in (B) with the three methines attached to the cyclobutane ring. H₁ and H₅ are not vicinal but four bonds apart and their coupling of 6.5 Hz arises from a ⁴J_{HH} coupling with ideal W geometry. The dihedral angles between "H₇ and H₁" and "H₇ and H₅" are 90° and hence no coupling is observed. Thus structure (20) was assigned to this sesquiterpenoid. Unfortunately it is a known compound, marsupellone, isolated by Matsuo *et al*⁹ from the liverwort *Marsupella emarginata* in 1979

EXPERIMENTAL

Plant material was collected at the edge of a small road in Dartmoor, Devon, and identified by Dr D.S. Rycroft. Dried and powdered material (44.96 gr) gave a crude extract (1.28 gr) on extraction with methanol. Ether and aqueous NaCl were added to the crude methanol extract and, on separation, this mixture gave 461.5 mg crude ether extract. The crude ether extract was then separated into acid and neutral fractions by

extraction with dilute Na_2CO_3 . Evaporating the ether layer gave the neutral fraction (312 mg). After acidification, the aqueous part was again subjected to an extraction with diethyl ether to give an acidic fraction (74.5 mg).

The acidic fraction, which seemed to be pure from its analytical plate, was examined by NMR spectroscopy techniques. However the analytical plate of the neutral extract showed a few spots, one of them major. Purification was done by preparative thin layer chromatography on silica gel GF_{254} . As eluent, 10% ethyl acetate and light petroleum ether were used. From the preparative plate, the major band afforded a colourless oil (15 mg) which was subjected to spectroscopic analysis.

After evaporation, the major band we gained was 15 mg. Afterwards, the purified compound was subjected to spectroscopic analysis.

ent-(14S)-kaur-16-en-14-yl-hydrogen malonate (19) : 58.1 mg, $C_{23}H_{34}O_4$, m/z 374, IR ; 1733, 3370 cm⁻¹.

¹³C and ¹H NMR data in Table-1.

Marsupellone (20) : 15 mg, $C_{15}H_{22}O$, m/z 218, IR ; 1707, 1626 cm⁻¹.

¹³C and ¹H NMR data in Table-3.

	δ _C	δ _Η	Multiplicities (J, Hz)
	(ppm)	(ppm)	
1	40.2		
2	18.6		
3	41.8		
4	33.2		
5	56.1		
6	19.7		
7	33.1		
8	48.3		
9	59.0		
10	39.2		
11	17.2		

Table-1¹³C and ¹H shifts of (19)

12	32.7		
13	49.0	2.68	brs
14	81.6	5.41	brs
15	45.5		
16	151.9		
17	105.5	4.83	brs
18	33.6	0.79	S
19	21.5	0.82	S
20	17.9	1.05	S
21	167.0		
22	40.8	3.40	S
23	170.5		

Table-2 NOEDIFF correlations of (19)

,

Irradi ation	Enhancements
3H-19	3H-20
3H-20	H-14, 3H-19
H-13	H-14
2H-17	H-13
H-14	H-13, 3H-20

Table-3 ¹³C and ¹H shifts of (20)

	¹³ C δ (ppm)	¹ H δ (ppm)	Multiplicities J (Hz)	$1^{13}C$ δ (ppm) (C ₆ D ₆)	1 H δ (ppm) (CeDe)	Multiplicities J (Hz)
1	47.0	2.81	d (6.8)	48.0	2.53	d (6.92)
2	150.5			151.5		
3	201.2			199.4		
4	44.7	2.70	dd (18.9,	45.2	2.29	dd (18.8, 4.2)
4`		2.48	2.6)		2.53	
5	37.2	2.28	dt (6.8, 3.1)	37.7	1.77	dt (6.78, 2.58)
6	42.5			43.0		

7	59.2	1.36	S	59.6	1.16	S
8	39.4			40.0		
9	23.1	0.76	S	23.5	0.60	S
10	115.6	5.86	d (1.65)	115.4	6.11	d (1.95)
10`		4.93			4.67	
11	21.4			22.0		
12	41.1			41.6		
13	33.1			33.5		
14	27.5*	0.91	S	28.0*	0.70	S
15	27.8*	0.91	S	28.3*	0.76	S

* May be interchanged

Table-4 HMBC of (20) in C_6D_6

δ _C (ppm)	C	Туре	H
47.6	1	methine	2H-10, H-5
151.5	2		2H-10, H-7
199.4	3	carbonyl	2H-10, H-1, 2H-4, H-5
45.2	4	methylene	
37.7	5	methine	H-1, 2H-4
43.0	6		2H-4, H-7
59.6	7	methine	2H-4, 3H-14, 3H-15, (2H-8)
40.0	8	methylene	H-7, 3H-14, 3H-15
23.5	9		H-1, H-5
115.4	10		H-1
22.0	11		
41.6	12	methylene	2H-8, 3H-9
33.5	13		3H-14, 3H-15
27.9	14		
28.3	15		

С	δ _H (ppm)	No
1	2.81	1 H
4	2.70 and 2.48	2H
5	2.28	1H
7	1.36	1H
8		2H
9	0.76	3H
10	5.86 and 4.93	2H
11		2H
12		2H
14	0.91	3H
15	0.91	3H

Table-5 HSQC of (20) in C_6D_6

Table-6 NOEDIFF Correlations of (20) in C_6D_6

Irradiation	Enhancements
H-10`	H-10
H-10	H-10`, H-1
H-1	H-10
H-4	H-4`, H-5, 3H-9
H-4`	H-5, H-7, H-1, H-4
H-5	H-7
H-7	H-5, H-1, 3H-14, 3H-15
Methyl at 0.70	H-1, H-7
Methyl at 0.76	H-5, H-7
3H-9	H-4, H-5, 2H-8

REFERENCES

1. British Mosses and Liverworts by Watson, E.V., (1968), pp. 437-439.

2. Langenbahn, U., Burkhardt, G. and Becker H., Phytochemistry, 1993, 33, 1173-1179.

3. Hill, M.O., Preston, C.D. and Smith, A.J.E., in Atlas of the Bryophytes of Britain and Ireland, (1991), vol-1, The British Bryological Society.

4. Benes, I., Vanek, T. and Budesinsky, M., Coll. Czech. Chem. Comm., 1982, 47, 1873-1877.

5. Benes, I., Vanek, T., Budesinsky, M. and Herout, V., Phytochemistry, 1981, 20, 2591-2592.

6. Connolly, J.D., Rycroft, D.S., Harrison, L.J and Phillips, W.R., Journal of Chemical Research-S, 1984, No. 3, 94-95.

7. Wehrli, F.W. and Nishida, T. (1979), *Progress in the Chemistry of Organic Natural Products*, vol.36, (Hertz, W., Grisebach, H. and Kirby, G.W., eds), Springer-Verlag, pp.71.

8. Matsuo, A., Kodoma, J., Nakayama, M. and Hayashi, S., *Phytochemistry*, 1977, 16, 489.

9. Matsuo, A., Uto, S., Sakuda, K., Uchio, Y., Nakayama, M. and Hayashi, S., (1979), Chemistry Letters, 73-76.

CHAPTER FOUR

Miliusa velutina

INTRODUCTION

The Annonaceae form a large family of aromatic trees, shrubs or climbers, which are widely distributed in tropical and sub-tropical regions of both hemispheres¹. It consists of about one hundred and thirty genera and two thousand three hundred species². They are widely distributed in the tropics, mainly at low elevations in moist forest areas. Asia and Australasia are the centre of the distribution of the Annonaceae^{3,4} with about fifty one genera (approximately 950 species). In Africa and Madagascar there are forty genera with approximately 450 species, whereas on the American continent there are about thirty eight genera (740 species).

Annonaceous plants are well recognised by the alternate, extipulate leaves, mostly trimerous flowers, numerous and often truncate free stamens, free carpels and seeds with ruminate endosperm^{5,6,7,8}. They are characterized by a great many archaic and extremely pirimitive features^{1,4,7}. These include the occurrence of secretory cells in the leaf parenchyma, the almost universal occurrence of solitary or clustered crystals in the epidermis of the leaf, simple perforations of the vessels and the absence of external glands. There are also some significant anatomical characters of the wood and flowers⁹.

The Annonaceae are closely related to the Magnoliaceae and the Eupomatiaceae (the latter have sometimes been included in the Annonaceae). They can be distinguised from the Magnoliaceae by the absence of stipules, reduced, whorled perianth, dorsal microsporangia and ruminate endosperm, and from the Eupomatiaceae by the absence of diaphragms composed of stone-cells in the pith, by the bast not being stratified, and by the presence of typical bordered pits in the wood parenchyma in the latter.

The Annonaceae family is of appreciable economic importance as a source of edible fruits, e.g. West Indian custard apple, the North American pawpaw (*Asimina*), sweetsop, cherimoya and ilama (*Annona*)⁸. The genus *Annona* is the most important source of edible fruits and in Africa, some species of this genus are also used for medicinal purposes¹⁰. The barks of annonaceous plants are usually aromatic, astringent and stimulant and the inner layer of the bark is a source of useful fibre¹¹. The woods of some Annonaceous plants have been employed for alcohol production¹². Some of the individual alkaloidal and non-alkaloidal constituents of the Annonaceae are also pharmacologically

34

interesting [e.g. diterpenoids with antibacterial¹³ and antitumour¹⁴ activity; oliveroline with antiparkinsonian properties¹⁵; liriodenine with antitumour, antibacterial and antifungal properties^{16,17}].

Due to their occurrence in inaccessible low elevation rain forest areas, a relatively small amount of phytochemical work has been carried out on the Annonaceae in comparison with many other plant families of similar size. Some phytochemical information is available on only about 33% of genera and 7% of recognised species¹⁸.

Biogenetically, the family is capable of producing a wide range of interesting secondary plant metabolites (e.g. terpenoids, flavonoids, indolosesquiterpenes, cyclohexane derivatives, aromatic compounds, acetogenins etc.) and is now the focus of much interest by phytochemists.

The Annonaceae produces various structural types of monoterpenoids. 1,8 Cineole (1) and cuminyl aldehyde (2) have been isolated from the oils of *Xylopia aethiopica*^{19,20,21}, while *Annona squamosa* afforded the monoterpenes borneol (3), limonene (4) and trans-ocimene (5)^{22,23}. An interesting benzylated monoterpene (6) has been isolated from *Uvaria*. *Cananga odorata* is a rich source of linalool (7)²⁴.

Several sesquiterpenes have been isolated from the genera *Cananga*, *Xylopia*, *Cymbopetalum*, *Annona* and *Artabotrys*. Farnesol (8), occurs in the volatile oils of *Cananga odorata*²⁴ and yingzhaosu A (9) and yingzhaosu B (10), two unusual monocyclic sesquiterpenes, in *Artabotrys uncinatus* root^{25,26}. A tetracyclic sesquiterpane, ishwarane (11), was isolated from *Cymbopetalum pendulifolium*²⁷. *Annona* species have also been found to contain other sesquiterpenes, e.g. β -caryophyllene (12) from *Annona* squamosa²⁸.

The diterpenoids present in the Annonaceae appear to be a major feature of the chemistry of the genera *Xylopia* and *Annona*, e.g. (13-18), and only one diterpenoid, polyalthic acid (16), from *Polyalthia fragrans*, has been reported from other genera²⁹. About thirty kaurane, trachylobane, kolavane and labdane diterpenoids have been reported^{18,30}.

The occurrence of triterpenoids in the Annonaceae has not been widely investigated. Sitosterol has frequently been isolated from various species in the family¹⁸.

(1)

(3)

(4)

(5)

(7)

(9)

(10)

(11)

(12)

(21) R=H (27) R=Me

(20)

(22) R=Me (23) R=H

(24) R₁=R₂=H (25) R₁=Me, R₂=H (28) R₁=H, R₂=OMe

(31)

(34) R=H

(36) R=Me

(39) $R = OMe, R_1 = H$ (40) $R = H, R_1 = OMe$ (41) $R = R_1 = OMe$ (42) $R = -CH = CH_2$ (43) $R = -CH(CH_2OH)OCH_2Me$ (44) R = -CHO

(45)

Several pentacyclic triterpenes have been reported, mostly from the genus Uvaria and friedelin (19) has been isolated from the leaves of Annona squamosa³¹. The tetracyclic triterpenoid polycarpol (20) was discovered by Cavé *et al*³² simultaneously in the barks of Greenwayodendron (Polyalthia) oliveri and Meocarpidium lepidotum. Later it was found to be present in several other species.

Flavonoids are one of the most widespread and numerous groups of naturally occurring compounds³³. Among the genera of the Annonaceae, *Uvaria* is a particularly important source of flavanones and dihydrochalcones. The African species, *Monanthotaxis (Popowia) cauliflora,* has been found to be a good source of simple flavonoids. From the stem bark of this species, 5,7,8-trimethoxyflavanone (21); 5,6,7-trimethoxyflavone (22); 5-hydroxy-6, 7-dimethoxyflavone (23) and three chalcones (24), (25) and (26) have been isolated. Kanakugin (27) and kanakugiol (28) have been recorded from the ripe fruit of this species³⁴.

C-methyl and C-formyl flavonoids have been reported from the Asian species Unona (desmos) lawii. They include three flavones : unonal (29), unonal-7-methyl ether (30) and isounonal $(31)^{35}$, three flavonones : lawinal (32), desmethoxy matteucinol (33) and desmethoxy matteucinol-7-methyl ether (34)³⁶, and two dibenzomethanes : (35) and (36)^{35,37}. Flavonoids have also been reported from Cananga^{38,39}, Annona⁴⁰ and Pachypodanthium⁴¹.

The chemistry of non-flavonoid aromatic compounds isolated from Annonaceae is very heterogeneous. Compounds range from simple benzyl derivatives to more complex structures such as the neolignan (37) from *Duguetia surinamensis* or the cyclohexene derivative (38) from *Uvaria catocarpa*⁴². Benzyl or benzoyl derivatives, together with highly oxidized cyclohexane derivatives, appear to be very common in the chemistry of the genus *Uvaria*.

Several propenyl benzene and vinyl benzene derivatives have been recorded from annonaceous plants. Asarone (39), *trans*-isoelemicin (40) and *trans*-isomyristicin (41) have been isolated from the bark of *Guatteria gaumeri*⁴³, and 2,4,5-trimethoxy-styrene (42) from *Pachypodanthium confine*⁴⁴, *P. staudtii*^{45,46} and *Duguetia eximia*⁴⁷. An

aromatic compound, pachysontol (43), has been found by Bevalot *et al*⁴⁶ in *P. staudtii* and asaraldehyde (44) has been reported from *Guatteria gaumeri*⁴³ and *P. staudtii*.

Apart from those compounds mentioned above, the Annonaceae family is the subject of considerable interest because of the presence of the acetogenins, a group of compounds with a range of useful biological properties such as cytotoxic, antitumoral, antiparasitic, pesticidal, antimicrobial and immunosuppresive activities. The field of investigation of acetogenins expanded greatly with the number of isolated and reported acetogenins increasing rapidly⁴⁸. In 1990⁴⁹ thirty one and in 1993⁵⁰ sixty one acetogenins were described as part of two reviews and now they number more than 160⁴⁸.

Annonaceous acetogenins constitute a series of C-35/C-37 natural products of polyketide origin derived from fatty acids. Their structure is characterised by a long alkyl chain bearing a terminal unsaturated γ -methyl- γ -lactone (sometimes rearranged to a γ -lactone containing an acetonyl group α to the lactone carbonyl), one, two or three tetrahydrofuran rings and some oxygenated substituents along the chain, particularly α to a tetrahyrofuran, and in some cases double bonds and/or epoxides⁴⁸:

The first annonaceous acetogenin, uvaricin (45), a new antitumor agent was isolated by Jolad *et al*⁵¹ from the roots of *Uvaria acuminata* (Annonaceae) in 1982. Uvaricin is a fatty acid lactone which contained a number of original structural characteristics, particularly a bis-tetrahydrofuran pattern flanked by hydroxyls and a terminal unsaturated lactone. Dabrah and Sneden^{52,53} and Cortes *et al*⁵⁴, two years later, described four new products presenting the same structural characteristics. These products found in species belonging to the family of the Annonaceae formed a new class of natural compounds called acetogenins. In 1991, two more acetogenins, molvizarin (46) and motrilin (47), were reported by Cortes *et al*⁵⁵.

Classification of the acetogenins of the Annonaceae is done according to the number and arrangement of the tetrahydrofuran rings along the alkyl chain as proposed by Cave *et al*⁴⁸.

The first isolated acetogenin, uvaricin (45), was stated to be a new antitumour agent⁵¹. Since then many studies have appeared describing cytotoxic, antitumour, antiparasitic, pesticidal, antimicrobial, antifungal and immunosuppressive properties of various acetogenins. For instance, molvizarin (46) and motrilin (47) exhibited cytotoxic activity. There are some other cytotoxic acetogenins from the seeds of *Annona muricata* such as annonacin (48), annonacinone (49)^{56,57} and murisolin (50)^{58,59}. The acetogenins senegalene (51), squamocin (52) and molvizarin (46) from *Annona senegalensis*^{60,61} and ulacins from *Rollina ulei*⁶² exhibit antiparasitic activity. Pesticidal activity of acetogenins can be seen in annonin (53)⁶⁴, bullatacin (54)^{65,63}, asimicin (55)^{49,66}, squamocin (52)⁶⁷, goniothalamicin (56)^{49,68} and sylvaticin (57)⁶⁹. Oils of some *Annona* seeds are traditionally used to get rid of lice in the scalp⁶⁷, as for example, the ground seeds of *Annona reticulata* in Vietnam⁷⁰. In some countries of South America, ground bark or seeds of some species of Annonaceae are spread on soils as pesticides⁴⁸. Interesting immunosuppressive activity has been observed in the acetogenins isolated from *Annona muricata*⁷¹.

RESULTS AND DISCUSSION

In the present work, extraction of *Miliusa velutina* afforded a complex oily mixture. Flash chromatography and extensive preparative TLC failed to yield pure compounds. However spectroscopic analysis of fractions enabled us to identify some of the structural features present in these compounds. The IR spectrum of later fractions showed characteristic absorptions of γ -lactone (1764 cm⁻¹, C=O), free and intramolecularly bonded hydroxyl bands at 3606 cm⁻¹ and 3446 cm⁻¹, respectively, a disubstituted acetylenic stretch at 2232 cm⁻¹ and olefinic CH stretches at 3026 cm⁻¹ and 3010 cm⁻¹. The UV spectrum was indicative of an ene-diyne chromophore [λ_{max} 283 (ϵ 3228), 267 (3980), 253 (3060), 239 (3048) nm and strong end absorption]. The lack of both strong IR absorption at 1750 cm⁻¹ and a UV absorption maximum at around 215.5 nm indicated that the γ -lactone ring is not α,β -unsaturated. The spectroscopic properties

(48)

(49)

(50)

(51)

(60)

of the earlier fractions indicated the presence of the same γ -lactone system but absence of the ene-diyne chromophore.

Acetylation of a portion (5 g) of the extract in the usual way, followed by flash chromatography, afforded a range of fractions. After multiple elution preparative TLC, several bands were obtained, one of which proved to be pure as judged by its ¹H and ¹³C NMR spectra (Table 1). Finally, the analysis of its COSY, HMBC, and HSQC spectra led us to the structure (**58**).

The compound was isolated from the fraction eluted with 40% ether and light petroleum. Its ¹³C NMR spectrum showed that there are 25 carbon atoms in the structure and indicated a molecular formula of $C_{25}H_{34}O_4$. Although at first no satisfactory mass spectral data were obtained, the mass spectrum of the same compound obtained from a later fraction (60% ether and light petroleum) supported the molecular formula derived from the ¹³C NMR spectrum. Its ¹³C NMR spectrum (Table-1) revealed the presence of a methyl group (acetate), five methine carbons [including a terminal vinyl group], four acetylene carbons, thirteen methylene groups (including a terminal vinyl group and an oxygen bearing carbon) and two carbonyls, one of which is the acetate.

The IR spectrum revealed the presence of the γ -lactone (1764 cm⁻¹) and acetylenic absorption as discussed above. The ene-diyne chromophore was also present [λ_{max} 283 (ϵ 3228), 267 (3980), 253 (3060), 239 (3048) nm]. The ¹H NMR spectrum (Table-1) showed signals for a primary acetate group 2H-23 [δ_{H} 4.29 (dd, 12.1 and 3.4 Hz); 4.15 (dd, 12.1 and 5.4 Hz)] coupled to a methine hydrogen on a carbon bearing oxygen [δ_{H} 4.75 (ddt, 8.4, 4.8 and 4.9 Hz)]. The COSY spectrum readily revealed that this methine is coupled to a methylene group 2H-21 [δ_{H} 2.25 and 2.1 (both m)] which in turn is coupled to a methine H-2 [δ_{H} 2.68 (dq, 5.3 and 9.0 Hz)]. The COSY spectrum indicated that the H-2 is also coupled to the methylene group 2H-3 [δ_{H} 1.88 and 1.5 (both m)] which probably forms part a methylene chain. Evidence from the HMBC spectrum confirms that the above coupled system belongs to a γ -lactone ring as shown in part structure (A).

Thus the lactone carbonyl carbon has ${}^{3}J_{CH}$ correlations from H-22, 2H-21 and 2H-3, and a ${}^{2}J_{CH}$ correlation from H-2 while the acetate carbonyl carbon correlates with 2H-23 and the acetate methyl protons. The carbons with directly attached protons were assigned using an HSQC experiment (Table-3).

The ¹H NMR and COSY spectra also show the presence of a terminal vinyl group $[\delta_{\rm H} 5.08 \text{ (brd, } 17.0 \text{ Hz}), 5.01 \text{ (brd, } 10.3 \text{ Hz}) \text{ and } 5.85 \text{ (ddt, } 17.0, 10.3 \text{ and } 6.5 \text{ Hz})]$ coupled to a methylene group 2H-18 $[\delta_{\rm H} 2.20 \text{ (q, } 7.4 \text{ Hz})]$. This in turn is coupled to an allylic methylene group 2H-17 $[\delta_{\rm H} 2.49 \text{ (brq, } 7.4 \text{ Hz})]$ associated with a cis-disubstituted double bond $[\delta_{\rm H} 6.1 \text{ (H-16)}, \text{ dt, } 10.8 \text{ and } 7.4 \text{ Hz}; \delta_{\rm H} 5.5 \text{ (H-15)}, \text{ brd, } 10.8 \text{ Hz}]$. H-15 shows no further vicinal coupling . This information leads to a second part structure **(B)**.

The HMBC spectrum (Table-2) confirmed part structure (**B**). The C-18 methylene protons correlated with C-19, C-20, C-17 and C-16, while the C-17 methylenes correlated with C-19 and C-18, both the olefinic carbons C-16, C-15 and one of the acetylenic carbons C-12, *via* a long-range correlation through the double bond. Thus the acetylenes $[\delta_{\rm H} 78.38 \ (\text{C}-13); 65.10 \ (\text{C}-14); 84.96 \ (\text{C}-11); 71.85 \ (\text{C}-12)]$ are conjugated with the disubstituted double bond as indicated previously by the ene-diyne UV chromophore and the lack of further vicinal coupling of H-15 (brd). In the HMBC spectrum, H-16 correlates with C-14 and C-13 while H-15 correlates with all the ethynyl carbons. The correlation of H-15 with C-11 represents a ⁵J_{CH} across the conjugated system.

The other end of the conjugated system was readily revealed by inspection of the COSY and HMBC spectra. H-15 showed long range correlation ($^{7}J_{CH}$) with a methylene group 2H-10 at δ_{H} 2.35 (t, 6.98 Hz) which is clearly coupled to a second methylene 2H-9 at δ_{H} 1.56 (quintet, 7.69 Hz). These methylene protons show some remarkable

long-range correlations (up to ${}^{8}J_{CH}$) in the HMBC spectrum with 2H-10 correlating with all the carbons of the conjugated system. Correlations to C-12 were observed from the C-9 methylene protons. These results lead to part structure (C)

(C)

The two part structures (A) and (C) incorporate all the functionality of the natural product, leaving only the five overlapping methylene groups in the ¹H NMR spectrum to be accommodated. The COSY spectrum shows that both the C-9 and the C-3 methylene are further coupled in the methylene envelope and so the part structures can be joined as shown in (58) to complete the structure.

The *Miliusa* compound (58) differs from the compounds normally classified as "acetogenins" in several respects. It has a smaller alkyl chain which lacks oxygenation and there is no unsaturation in the lactone ring. It represents a further addition to the wide range of unsaturated fatty acid derivatives which contain isolated or conjugated acetylenic units. The ene-diyne chromophore occurs widely, often with both the Z and the E forms present. For example, the acids (59) and (60) have been isolated from the root bark and/or the seed oil of *Paramacrolobium caeruleum*, *Exocarpus cupressiformis* and other species^{72,73}. The compound which bears the closest relationship to (58) is sapranthin

(61)⁷⁴ from the bark of *Sapranthus palanga* (Annonaceae)). It is a C_{21} molecule, lacks the primary hydroxyl group but is oxygenated on the lactone ring. The ¹H NMR, ¹³C NMR, COSY, HMBC and HSQC spectra of compound (58) can be seen at the end of the chapter.

EXPERIMENTAL

The plant material was obtained from Bangladesh. A reference sample of the plant is deposited in the herbarium of the University of Dhaka. The dried powdered bark (1.1 kg) was extracted with diethyl ether to give a crude extract (22 g) as a mobile oil. Preliminary analytical TLC showed the presence of several compounds which absorbed strongly in the UV, accompanied by less polar compounds which lacked UV absorption. A portion of the extract (10g) was subjected to flash chromatography using increasing concentrations of ether in light petroleum as eluent. Fractions with similar TLC profiles were combined. Extensive preparative TLC failed to yield pure compounds though spectroscopic analysis of the fractions enabled us to identify some of the structural features present these compounds. In time it also became apparent that some of the compounds were not stable in air.

A portion of the extract (5g) was subjected to acetylation in the usual way. The compounds in the acetylated extract were separated by flash chromatography on a column of silica gel G_{254} by using the same eluent. Compounds from separated fractions were purified by preparative thin layer chromatography (TLC) on silica gel GF_{254} . Further purification was done by using High Pressure Liquid Chromatgraphy (HPLC). Eluents for TLC were increasing percentages of diethyl ether in light petroleum. From the multiple elution preparative TC, several bands were obtained and one of which proved to be pure as judged by its ¹H and ¹³C NMR spectra. The compound was analysed by COSY, HSQC and HMBC NMR experiments, which were done on a 500 MHz Brucker instrument. Compound (58) was obtained as an oil (m/z 398)

Compounds were visualised by using UV light or iodine vapour. Solvents were evaporated using a Buchi Rotavapor. The purified compounds were subjected to spectroscopic analysis. The ¹³C and ¹H NMR chemical shifts and the direct and long-

range carbon-proton correlations of (58) are given below (the numbers refer to decending order of the carbon chemical shifts) :

	¹³ C δ(ppm)	¹ Η δ(ppm)	Multiplicities (J, Hz)
1	178.78		
2	39.02	2.68	dq (5.25, 9.04)
3	31.00	1.88	m
3`		ca 1.5	m
4	29.15 [*]	ca 1.3	
5	29.15 [*]		
6	28.90 [*]	ca 1.4	
7	28.7 1 [*]		
8	27.15*		
9	28.14	1.56	q (7.69)
10	19.54	2.35	t (6.98)
11	84.96		
12	71.85		
13	78.38		
14	65.10		
15	108.55	5.50	brd (10.8)
16	146.60	6.10	dt (10.8, 7.4)
17	29.82	2.49	brq (7.41)
18	32.78	2.20	q (7.39)
19	137.55	5.85	ddt (17.0, 10.3, 6.5)
20	115.13	5.08	brd (17.0)
20`		5.01	brd (10.3)
21	30.02	2.25 & 2.1	m
22	77.23	4.75	ddt (8.4, 4.8, 4.9)
23	65.49	4.29	dd (12.1, 3.4)
23`		4.15	dd (12.1, 5.4)
24	170.54		
25	20.73	2.12	S

TABLE-1 ¹³C and ¹H shifts of (58)

May be interchanged
δ _C (ppm)	C	Туре	H
178.78	1	carbonyl	22, 2, 21, 21`, 3, 3`
39.02	2	methine	22, 21, 21`, 3, 3`
31.00	3	methylene	2, 21, 21`
84.96	11	acetylene	17, 15
71.85	12	acetylene	15
78.38	13	acetylene	16, 15
65.10	14	acetylene	16, 15, 17
108.55	15	vinyl	16, 17, 10
146.60	16	vinyl	17, 10, 18
29.82	17	methylene	16, 19, 15, 18, 14
32.78	18	methylene	16, 19, 20, 17
137.55	19	vinyl	17, 18, 20
115.13	20	vinyl	18
30.02	21	methylene	22, 23, 23`, 2
77.23	22	methine	23, 23`, 2, 21, 21`
65.49	23	methylene	21, 21`
170.54	24	carbonyl	23, 23`, 25
20.73	25	acetate	

TABLE-2 HMBC Correlations of (58)

TABLE-3 HSQC Correlations of (58)

	С	δ _H (ppm)	No.
39.02	2	2.68	1H
31.00	3	1.88 and 1.5	2H
108.55	15	5.50	1H
146.60	16	6.10	1H
29.82	17	2.49	2H
32.78	18	2.20	2H
137.55	19	5.85	1H
115.13	20	5.08 and 5.01	2H
30.02	21	2.25 and 2.1	2H
77.23	22	4.75	1H
65.49	23	4.29 and 4.15	2H
20.73	25	2.12	3H

REFERENCES

1. Phytochemical Studies on Some African Annonaceae by Muhammad Ilias, (1984), PhD Thesis (Strathclyde University), 1-19.

2. Walker, J.W., (1971), Contrib. Gray Herbarium, 202, 1.

3. Fries, R.E., (1959), Annonaceae in Die Naturlichen Pflanzen-familien, (Engler, A. and Prantl, K., eds.), 2nd edn., 17, a II, 1. Dunker and Humblot, Berlin.

4. Takhtajan, A., (1969), Flowering Plants, Origin and Dispersal, p.50, 69, 83. Oliver & Boyd, Edinburgh.

5. Keay, R.W.J., (1954), Annonaceae in Flora of West Tropical Africa, (Hutchinson, J. and Dalziel, J.M., eds.) 2nd edn., 1, 34-54, Crown Agents, London.

6. Le Thomas, A., (1969), Annonaceae in Flore du Gabon, (Aubreville, A., ed.), 16, 1. Museum National D'Histoire Naturelle, Paris.

7. Hutchinson, J., (1973), The Families of Flowering Plants, 1-25, Univ. Press, Oxford.

8. Heywood, V.H., (1993), Flowering Plants of the World, Univ. Press, Oxford.

9. Eames, A.J., (1961), Morphology of the Angiosperms, 393, McGraw-Hill, New York.

10. Irvine, R.F, (1961), Woody plants of Ghana, 1-20, Oxford University Press, Oxford.

11. Hutchinson, J., (1964), The Genera of Flowering Plants, 1, 71-108, Univ. Press, Oxford.

12. Savard, J. and Epsil, L., (1951), Centre Tech. Forestier Trop. Nogent Sur Marne, pub. no. 3, p. 7.

13. Boakye-Yiadom, K., Fiagbe, N.I.Y., and Ayim, J.S.K., (1977), Lloydia, 40, 543.

14. Adesogan, E.K., and Durodola, J.I., (1976), Phytochemistry, 15, 1311.

15. Quevauviller, A., and Hamonniere, M., (1977) C. R. Acad. Sci. Ser. D., 284, 93.

16. Warthen, D., Gooden, E.L., and Jacobson, M. (1969), J. Pharm. Sci., 58, 673.

17. Hufford, C.D., Shama, A.S. and Oguntimein, B.O., (1980b), J. Pharm. Sci., 69, 1180.

18. Leboeuf, M., Cavé, A., Bhaumik, P.K., Mukjerjee, B., and Mukjerjee, R., (1982), *Phytochemistry*, **21**, 2783.

19. Talalaj, S., (1967), W. Afr. Pharm., 8, 72, per. Chem. Abstr., 66: 40668t. 20. Ogan, A.U., (1971), Phytochemistry, 10, 2823.

21. Karawya, M.S., Wahab, S.M.A., and Hifnawy, M.S., (1977), Planta Med., 37, 57.

22. Luz, O.B., (1977), Phill. J. Sci., 106, 37.

23. Rao, R.V.K., Murty, N. and Rao, J.V.L.N., (1978), Indian J. Pharm. Sci., 40, 70.

24. Duve, R.N., Vithalbhai, C.L. and Smith, R.M., (1975), Int. Flavours Food Addit., 6, 341, per. Chem. Abstr., (1976) 84 : 126637t (1975)

25. Liang, X.T., Yu, D.Q., and Pan, W.D., (1979a), Hua Hsuch Hsuch Pao, 37, 231.

26. Liang, X.T., Yu, D.Q., Wu, W.L., and Deng, H.C., (1979b), Hua Hsuch Hsuch Pao, 37, 215.

27. Teng, L.C. and Debradeleben, J.F., (1971), Experientia, 27, 14.

28. Bohlman, F. and Rao, N., (1973), Chem. Ber., 106, 841.

29. Gopinath, K.W., Govindachari, T.R., Parthasarathy, P.C. and Viswanathan, N.,(1961), *Helv. Chim. Acta*, 44, 1040-9.

30. a). Hasan, C.M., Healey, T.M., and Waterman, P.G., (1982), *Phytochemistry*, 21, 1365.

b). Hasan, C.M., Healey, T.M., and Waterman, P.G., (1982), *Phytochemistry*, **21**, 177.

31. Bhaumik, P.K., Mukherjee, B., Juneau, J.P., Bhacca, N.S. and Mukherjee, R., (1979), *Phytochemistry*, **18**, 1584.

32. Cavé, A, Guinaudeau, H., Leboeuf, M., Ramahatra, A., and Razafindrazaku, J., (1978), *Planta Medica*, 33, 243.

33. Harborne, J.B., (1980), *Encyclopedia of Plant Physiology*, **8**, 185, Springer-Verlag, Berlin.

34. a). Waterman, P.G. and Pootakahm, K., (1979), *Planta Medica*, 35, 366.
b). Waterman, P.G. and Pootakahm, K., (1979), *Planta Medica*, 37, 247.

35. Joshi, B.S., and Gawad, D.H., (1976), Indian J. Chem., 14, 9.

36. Joshi, B.S., and Gawad, D.H., (1974), Indian J. Chem, 12, 1033.

37. Chopin, J., Hauteville, M, Joshi, B.S., and Gawad, D.H., (1978), *Phytochemistry*, 17, 332.

38. Siv, Y.Y., (1971), Trav. Lab. Matière Med. Pharm. Gal. Fac. Pharm., 56, 87, Paris.

39. Siv, Y.Y., and Paris, R.R., (1972), Planta Med. Phytother., 6, 299.

40. Hegenauer, R., (1964), Chemotaxonomie der Pflanzen, 3, 116-123, Birkhauser, Basel.

41. Cavé, A., Bouquet, A., and Paris, R.R., (1973), C. R. Acad. Sci. Ser. D., 276, 1899.

42. Hollands, R., Becher, D., Gaudemer, A., Polonsky, J., and Ricroch, N., (1968), *Tetrahedron*, 24, 1633-1650.

43. Enqiquez, R.G., Chavez, M.A, and Jouregui, F., (1980), Phytochemistry, 19, 2024.

44. Bevalot, F., Leboeuf, M., Bouquet, A., and Cavé, A., (1976), *Planta Med. Phytother*, 10, 179.

45. Waterman, P.G., (1976), Phytochemistry, 15, 347.

46. Bevalot, F., Leboeuf, M., and Cavé, A., (1978), C. R. Acad. Sci. Ser. C., 286, 405.

47. Gottlieb, O.R., Magalhaes, A.F., Aderbal, F., Magalhaes, E.G., Maia, J.G.S., Marsaioli, A.J., (1978), *Phytochemistry*, 17, 837-8.

48. Cavé, A., Figadère, B., Laurens, A., and Cortes, D.; *Progress in the Chemistry of Organic Natural Products*, Hertz, W. ed., Springer-Verlag, New York, (1996), **70**, 81-288.

49. Rupprecht, J.K., Hui, Y.-H., and Mclaughlin, J.L., (1990), J. Nat. Prod., 53, 237-278.

50. Fang, X.-P., Rieser, M.J., Gu, Z.-M., Zhao, G.-X., and Mclaughlin, J.L., (1993) : Annonaceous Acetogenins : an updated review, *Phtochem. Anal.*, 4, 27-48 ; Annonaceous Acetogenins : an updated review, Appendices. *Phytochem. Anal.*, 4, 49-67.

51. Jolad, S.D., Hoffmann, J.J., Schram, K.H., Cole, J.R., Tempesta, M.S., Kriek, G.R., and Bates, R.B., (1982), *J. Org. Chem.*, **47**, 3151-3153.

52. Dabrah, T.T., and Sneden, A.T., (1984), J. Nat. Prod., 47, 652-657.

53. Dabrah, T.T., and Sneden, A.T. (1984), Phytochemistry, 23, 2013-2016.

54. Cortes, D., Rios, J.L., Villar, A., and Valverde, S., (1984), *Tetrahedron Lett.*, 25, 3199-3202.

55. Cortes, D., Myint, S.H., and Hocquemiller, R., (1991), Tetrahedron, 47, 8195.

56. Cortes, D., Myint, S.H., Laurens, A., Hocquemiller, R., Leboeuf, M., and Cavé, A., (1991), Can. J. Chem., 69, 8-11.

57. Reiser, M.J., Fang, X.-P., Rupprecht, J.K., Hui, Y.-H., Smith, D.L., and Mclaughlin, J.L., (1993), *Planta Med.*, **59**, 91-92.

58. Yang, R.-Z., Wu, S.-J., Xu, R.-S., Qin, G.-W., and Fan, D.-J., (1995) Chem. Abstracts, 122 : 209773m (1995).

59. Myint, S.H., Laurens, A., Hocquemiller, R., Cavé, A., Davoust, D., and Cortes, D., (1990), *Heterocycles*, **31**, 861-867.

60. Sahpaz, S., Laurens, A., Hocquemiller, R, Cavé, A., and Cortes, D., (1994), Can. J. Chem., 72, 1533-1536.

61. Sahpaz, S., Bories, C., Loiseau, P.M., Cortes, D, Hocquemiller, R., Laurens, A., and Cavé, A., (1994), *Planta Med.*, 60, 538-540.

62. Laprévote, O., Roblot, F., Hocquemiller, R, Cavé, A., Charles, B., and Tabet, J.-C., (1991), *Phytochemistry*, **30**, 2721-2727.

63. Ahammadsahib, K.I., Hollingworth, R.M., McGovren, J.P., Hui, Y.-H., and McLaughlin, J.L., (1993), *Life Sciences*, 53, 1113-1120.

64. Londershausen, M., Leicht, W., Lieb, F., Moeschler, H., and Weiss, H., (1991), *Pestic. Sci.*, 33, 427-438.

65. Hui, Y.-H., Rupprecht, J.K, Liu, Y.M., Anderson, J.E., Smith, D.L., Chang, C.-J., and McLaughlin J.L., (1989), J. Nat. Prod., 52, 463-477.

66. Ratnayake, S., Rupprecht, J.K., Potter, W.M., and McLaughlin, J.L., (1992), J. Economic Entomol, 85, 2353-2356.

67. Fujimoto, J., Eguchi, T., Kakinuma, K., Ikedawa, N., Sahai, M. and Gupta, Y.K., (1988), *Chem. Pharm. Bull.*, **36**, 4802.

68. Alkofahi, A., Rupprecht, J.K., Liu, Y.-M., Chang, C.-J., Smith, D.L., and McLaughlin, J.L., (1990), *Experientia*, **46**, 539-541.

69. Mikolajczak, K.J., Madrigal, R.V., Rupprecht, J.K., Hui, Y.-H., Liu, Y.-M., Smith, D.L., and McLaughlin, J.L., (1990), *Experientia*, 46, 324-327.

70. Vu Thi Tam: Étude chimique et biologique des acétogénines des graines d'Annona reticulata, Annonaceae. Doctorat de l'Université Paris-Sud, Châtenay-Malabry (1995).

71. Laurens, A., Dutartre, P., Hocquemiller, R., and Cavé, A. : Immunomodulating Activity of Annonacin Isolated from *Annona muricata* Seeds. Communication to the 18th International IUPAC Symposium on the Chemistry of Natural Products, Strasbourg, France, 30 August-4 September (1992)

72. Patil, A.D., Chan, J.A., Flamberg-L. P., Mayer, R.J. and Westley, J.W., (1989), J. Nat. Prod., 52, 153.

73. Nadioo, L.A.C., Drewes, S.E., Staden, J.V. and Hutchings, A., (1992), *Phytochemistry*, **31**, 3929.

74. Etse, J.T., and Waterman, P.G., (1986), Phytochemistry, 25, 1903.

1D NMR plot parameters CX 30.00 cm F1P 7.500 ppm F1 3750.98 HZ F2P 0.500 ppm F2 0.500 ppm F2 0.500 ppm H2CM 115.69700 HZ/cm 6009.615 Hz 0.733596 Hz 0.5816244 sec 90.5 83.200 usec 10.50 usec 300.0 K 1.0000000 sec 500.1330008 MHz 1H 2.00 dB
 F2 - Acquisition Parameters

 Date
 970327

 Time
 17.14

 Time
 17.14

 TNSTRUM
 spect

 PROBHD
 5 mm Multinu

 PULPROG
 6 mm Multinu

 PULPROG
 6 mm Multinu

 PULPROG
 6 mm Multinu

 SMH
 6009.615 Hz

 OS
 0

 SMH
 6009.615 Hz

 AG
 0.739596 Hz

 AG
 0.739596 Hz

 AG
 90.50 Usec

 AG
 90.50 Usec

 CD
 10.50 Usec

 CE
 90.65 No

 CE
 90.7300 Usec

 PL
 1.0000000 Sec

 PL
 500.133000 MHz

 NUC1
 500.133000 Mz
 F2 - Processing parameters SI 500.1300000 MHz MDW no SSB 0.00 Hz CB 0.00 Hz CB 0.00 Hz CB 0.00 Hz 500.1300000 MHz 0 0 0.00 Hz 1.00 Current Data Parameters NAME F60_3 EXPNO 1 PROCNO 1 1.0 1.5 2.0 4.4440 2.5 3.0 3.5 4.0 F60_3 1 1 v jmn (58)4.5 H-NMR Spectrum of 5.0 0281.1 5.5 6.0 M 6.5 7.0 E dd [engedn]

27.00 cm 20.00 cm 50.00 cm 5.504 ppm 5.504 ppm 3302.95 Hz 3302.95 Hz 0.592 ppm 296.05 Hz 0.592 ppm 296.05 Hz 0.3034 ppm/cm 0.30040 ppm/cm F2 - Processing parameters 500.130000 MHz 50.130000 MHz 0 0 0.00 Hz 1.40 Acquisition Parameters F1 - Acquisition parameters Current Data Parameters F60_3 F1 - Processing parameters 1024 3004.808 Hz 0.733596 Hz 0.6816244 sec 20 NMH plot parameters 512 500.1316 MHz 5.868770 Hz 6.008 ppm 500.1297564 MHz SINE 0.00 Hz 970327 17.56 spect 5 mm Multinu cosygp 4096 CDC13 F2 -NAME EXPRID PRDCND ND0 10 SFD1 FLDRES SK CX2 CX1 F2PL0 F2PL0 F2PHI F2PHI F1L0 F1PL0 F1PL0 F1PL0 F1PHI F1HI F1HI F1HI F1HI F1HU SI NOW mdd w 3 1.0 ų 1.5 8 Ø 2.0 8 5 ۵ 8 1 .. 4R 5.5 s 6 0 . . 3.0 3.5 ٠ 4.0 00 00 . 1 . 4.5 . 8 8 Ø 2.0 8 COSY Spectrum of (58) 5.5 6.0 0 e 0 # ÷ ١ maa M Y

