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Summary

SUMMARY

Herpes simplex virus type 1 (HSV-1) is a common human pathogen best known as the 

causative agent of ‘cold sores’ around the mouth. It initially infects cells at the periphery, 

however it often spreads to the sensory neurones where it establishes life-long latent 

infection and from which it can be reactivated periodically to cause recurrent episodes of 

disease. The immediate early (IE) protein Vmwl 10 of HSV-1 stimulates the onset of lytic 

infection as well as increases the efficiency of reactivation from latency. As such, it has 

been proposed that Vmwl 10 plays an important role in the balance between lytic and latent 

states of infection. The mechanisms by which Vmwl 10 functions are poorly defined. 

However, earlier work in which Vmwl 10 was shown to migrate to discrete nuclear 

structures called ND10, suggested that it exerts much of its effects through interactions 

with cellular proteins (Everett & Maul, 1994, Gelman & Silverstein, 1985, Maul et al., 

1993). Investigations searching for such interactions resulted in the identification of a 

novel member of the ubiquitin-specific protease (USP) family named HAUSP (herpes- 

associated-ubiquitin specific protease) which both strongly and specifically interacted with 

Vmwl 10 (Everett et a l,  1997, Meredith et al., 1995, Meredith et ah, 1994).

Studies described herein were initiated to improve the understanding of the role of 

HAUSP, both within the cell and for HSV-1 infection. In particular, experiments using a 

model USP enzyme assay confirmed that HAUSP was an enzymatically active member of 

the USP family. Furthermore, the presence of specific cysteine and histidine residues were 

shown to be essential for this activity.

Investigations into the effect of transient expression of HAUSP in eukaryotic cells were 

also carried out. These studies suggested firstly that levels of intracellular HAUSP may be 

tightly controlled and secondly that increases in HAUSP expression might be toxic for 

cells. They also implied localisation of HAUSP to the ND10 domains was limited by 

protein-protein interactions.

Work was also initiated to search for cellular proteins that interact with HAUSP. This 

resulted in the identification of strong and specific interactions between: the N-terminal 

region of HAUSP with cellular proteins of approximately lOOkD and 105kD; and 

sequences in the C-terminal half of HAUSP with a cellular protein of approximately 40kD. 

Immunoprecipitation analysis supported the interaction of wild type HAUSP with cellular 

proteins of approximately 40kD and 105kD. It was also revealed that of these cellular



Summary

proteins only the approximately 40kD cellular protein (which interacted with the C- 

terminus of HAUSP) was a substrate for proteasome-dependent degradation.

More direct investigations were also carried out to improve our understanding of the 

mechanics and functioning of the Vmwl 10/HAUSP interaction. In particular, a variety of 

GST ‘pull-down’ assays were designed and tested to define the region of HAUSP required 

for this interaction. Results of this work implied that regions of HAUSP spanning between 

residues 529-576 and 744-861, were necessary for binding to Vmwl 10. 

Immunoprecipitation analysis experiments supported the requirement of the 529-576 

region. Interestingly, this region is directly downstream of one of the two active site 

domains of HAUSP.

The effect of the presence of Vmwl 10 on the normal cellular activities of HAUSP was also 

tested. Surprisingly, Vmwl 10 did not appear to reduce the catalytic activity of HAUSP, or 

hinder HAUSP from interacting with the approximately 40kD cellular protein previously 

described.

Therefore, the specific functions of HAUSP in uninfected cells and during HSV-1 infection 

are yet to be fully characterised. However, the results presented in this thesis provide a 

solid foundation upon which future work leading to a deeper understanding of HAUSP 

functioning may be based.
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Chapter 1 Introduction

CHAPTER 1 INTRODUCTION

Research presented in this thesis concerns the interaction of the HSV-1 IE protein Vmwl 10 

with a cellular protein named HAUSP. As will be seen, this project has broad implications 

for both virus and cellular biology. Therefore, in order to reflect this, an introduction in 

which the wide ranging topics to which this project relates has been provided.

The first section focuses on general features of Herpesviridae biology and details the life 

cycle of HSV-1. As Vmwl 10 is a potent and general transactivator of HSV-1 gene 

expression, background on the regulation of HSV-1 gene expression is also provided. 

Following this, details relating to Vmwl 10 and its role in viral infection are given.

The subsequent sections describe cellular processes with which this project is concerned. 

In particular, as HAUSP is a novel member of the USP family, relevant background on the 

ubiquitin system and USP family are supplied. The concluding section concerns the effects 

of Vmwl 10 on the cell and includes an up to date understanding of its interaction with 

HAUSP.
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1A HSV-1 biology 

1A1 Herpesviridae

HSV-1 is a member of the Herpesviridae, a large family consisting of almost 100 known 

members derived from a wide range of hosts including horses, cattle, pigs, chickens and 

humans. In particular, eight distinct human herpesviruses have been identified: herpes 

simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), varicella zoster virus 

(VZV), human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), human herpesvirus 6 

(HHV-6), human herpesvirus 7 (HHV-7) and Kaposi’s sarcoma implicated herpesvirus 8 

(KSHV, HHV-8). Sequences of the genomes of these viruses can be found in Baer et al., 

1984, Cha et al., 1996, Chee et al., 1990, Dargan et al., 1997, Davison & Scott, 1986, 

Dolan et al., 1998, Gompels et a l,  1995, McGeoch et al., 1985, Nicholas, 1996, Renne et 

al., 1996. Details of these viruses are given in Table 1A1.

1A1.1 Herpesviridae classification

Herpesviruses are classified by the International Committee on the Taxonomy of Viruses as 

group one double stranded DNA viruses. Their classification is based on the structure of 

the virion (Dargan, 1986, Rixon, 1993).

1 A l. la  Conserved features of herpesvirus virion structure

Their are four main features that are conserved in the structure of herpesvirus virions:

• An electron opaque core which includes a linear double stranded genome of 100-230kb 

(Epstein, 1962a).

• An icosahedral capsid of approximately 125nm diameter surrounding the core, 

comprising 162 capsomers made of 150 hexons and 12 pentons (Wildy et al., 1960).

• An amorphous tegument or matrix in which the capsid ‘floats’ (Roizman & Furlong, 

1974).

• An outer envelope derived from the host cell nuclear membrane, that consists of a 

trilaminar lipid envelope containing viral glycoproteins (Spear & Roizman, 1972).

2
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Chapter 1 Introduction

l A l . l b  Sequence arrangements in herpesvirus DNAs

The sequence arrangement of the herpesvirus DNAs is one of their most interesting 

features. Variations in the arrangement of repeats, composed of unit sequences greater 

than lOObp, allows the herpesviruses to be divided into six groups (shown in Figure 

l Al . lb ,  designated A-F and explained therein). Within these groups it is possible to make 

further divisions. For example, group D genomes, like that of VZV, have two isomers, 

differing in the orientation of the unique sequence of the small component of the genome 

that is flanked by internal inverted repeat sequences. Group E genomes (which include the 

HSV and HCMV genomes) consist of four different isomers, which show variation in the 

orientations of the unique domains which flank either side of the internal inverted repeat 

sequences.

1A 1.1c Sub-families of herpesviruses

The members of the Herpesviridae themselves have been further classified into three sub­

families a , p and yon  the basis of their biological properties (Roizman et al., 1981). The 

alpha (a) sub-family are characterised by their short lytic cycle, less than 24hr in tissue 

culture, and their establishment of latency in sensory neurones. The classification of the 

beta (p) sub-family is defined by their longer lytic life cycle and slow development of 

cytopathology in tissue culture. The gamma (y) group are distinguished by their ability to 

infect B or T lymphocytes and replicate in lymphoblastoid cells in vitro.

1A2 HSV-1 biology

HSV-1, an alpha herpesvirus, was the first human herpesvirus to be discovered and is one 

of the most intensively investigated of all viruses (reviewed by Roizman & Sears, 1996, 

Subak-Sharpe & Dargan, 1998, Wagner, 1994). It is a common human pathogen which 

attains a life-long latent state in sensory neurones after initial infection at the periphery.

HSV-1 is responsible for the common ‘cold sore’, however it is now been established as 

the causative agent of 30-50% of genital lesions (Kinghom, 1993). Although infection 

with HSV-1 does not, for the most part, cause a life threatening disease, its ability to 

remain latent in the host for life and cause subsequent episodes of reactivation underlines 

its evolutionary success. Indeed, this is reflected in its high distribution: 70-90% of people 

in the developing countries are infected by early adolescence and 60% of adults in 

developed countries are infected by their thirties.
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Interest in this virus also comes from its use as a model to study translocation of proteins, 

synaptic connections in the nervous system, membrane structure, gene regulation, as well 

as many other biological problems, both for general cell biology and for virus research. Its 

potential use as a vector for gene therapy has also led to a heightened interest in recent 

years.

1A2.1 HSV-1 genome

The HSV-1 genome consists of a linear double stranded molecule (Becker et al., 1968). 

The wild type HSV-1 17 Syn+ strain has a genome size of 152kb (McGeoch et al., 1988, 

McGeoch et al., 1986, Perry & McGeoch, 1988) with a high G+C content (68%).

It is composed of two covalently linked components consisting of two blocks of unique 

sequences, the unique long sequence Ul and unique short sequence Us, interrupted by an 

internal inverted repeat region and terminated by sequences encoding repeats (see Figure 

l A l . l b  part E).

The HSV-1 genome encodes at least 76 genes, the long unique sequence Ul encodes 59 of 

these genes, while the Us sequence encodes 13 genes. The repeated sequences encode two 

copies of four genes.

1A2.2 The HSV-1 virion structure and composition

The HSV-1 virion, like all herpesviruses, is composed of an outer envelope, an amorphous 

tegument and an inner icosahedral capsid, shown in Figure 1 A2.2.

lA2.2a The capsid

The large 152kb DNA genome folds itself into a liquid crystalline form within the lOOnm 

capsid. The capsid comprises 162 capsomers, of which 150 are hexameric and 12 are 

pentameric. The hexamers are located on the faces and edges of the capsid and the 

pentamers are at the vertices (Baker et al., 1990, Booy et al., 1991, Schrag et al., 1989).

1 A2.2b The tegument

Viral structural components which have not been assigned to the envelope or capsid are 

designated as tegument proteins (Rixon, 1993). The tegument is thought to comprise

4



Figure 1 A2.2: E lec tron m icrograph  o f  a HSV-1 virion.
The m icrograph  show s the characteristic features o f  a herpesvirus vir ion; 
the envelope conta in ing  the viral glycoproteins, the central inner capsid 
(~ 125nm in d iam eter)  and the tegum ent be tw een  these structures. The 
photograph is show n  w ith  perm iss ion  o f  Dr.F .R ixon.
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twenty distinct structural proteins of various functions that are thought to influence the 

process of infection.

lA2.2c The envelope

The outer surface of the virion is comprised of a trilaminar lipid envelope (Epstein, 1962b) 

derived from cellular membranes (Armstrong et al., 1961, Morgan et al., 1968). The exact 

dimensions of the envelope vary depending on the method of visualisation, however its 

nominal diameter varies between 170-200nm. It contains about eleven viral glycoproteins 

(reviewed by Spear, 1993), some of which are important for the process of fusion of the 

virion envelope with that of host cell membranes.

1 A2.3 The lytic life cycle

The process by which viruses enter the cell, replicate and are released from the cell is 

termed the lytic life cycle which comprises a number of stages. The initial stage is 

attachment to the cell surface receptors, followed by fusion of the envelope with the plasma 

membrane. This is rapidly followed by transport of the capsid to the nuclear pores where 

DNA is released into the nucleus. The DNA is then transcribed and replicated, which 

enables virion production. Finally, the mature virions are released from the cell. The 

effects of these processes result in cell death.

1 A2.3a Entry of HSV-1 into the cell

The first step in the infection is adsorption of the HSV-1 virions to the cell surface 

(reviewed in Shieh & Spear, 1994, Spear, 1993). From the eleven genes encoding the 

HSV-1 glycoproteins (gB, gC gD, gE, gG, gH, gl, gJ, gK, gL and gM), no one protein has 

been found to be solely responsible for attachment to the cell surface. Although, both gB 

and gC have been shown to be the most prominent glycoproteins involved.

The most important cell receptor identified for the process of attachment of HSV-1 to the 

cell surface appears to be heparan sulphate. However, it is likely that other receptors are 

also involved. Furthermore, the factors which define the species and cell type specificity of 

HSV-1 have not been identified.

After the initial adsorption of the virion to the cell surface the next stage is penetration into 

the cell, this involves the fusion of the envelope with the cell membrane. Again a number 

of glycoproteins are involved in this process including: gD which is the most intensively

5
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investigated; gH and gL, which form a heterodimer; and gB (reviewed by Spear, 1993). 

The cell receptor initially thought to be responsible for penetration of the virus into the cell 

was the mannose-6-phosphate receptor (Brunetti et al., 1995, Brunetti et al., 1994). 

However, more recent work suggests other receptors, named herpes entry mediators HveA, 

HveB, and HveC, are also important for this function (Geraghty et al., 1998, Montgomery 

et al., 1997, Warner et al., 1998, Whitbeck et al., 1997).

1 A2.3b Release of DNA into the nucleus and initiation of infection

After entry into the cell, the capsids are transported to nuclear pores in a process thought to 

be mediated by the cell cytoskeleton (Kristensson et al., 1986). The parental DNA is then 

released into the nucleus through the pores in a process that requires a viral function 

(Batterson et al., 1983, Tognon et al., 1981). It then circularises to form an episome.

Uncoating of the virion on entry to the cell also causes release of tegument proteins such as 

VP 16 (encoded by UL48) and the virion host shut off protein vhs (encoded by UL41) that 

help initiate infection. In particular, vhs activates an RNase activity that indiscriminately 

degrades mRNA, resulting in degradation of cellular mRNA (Kwong & Frenkel, 1987, 

Kwong et al., 1988, Schek & Bachenheimer, 1985). Although viral mRNA is also 

targeted, its rate of synthesis is greater than v/w-induced degradation. VP 16 is an important 

transactivator that enhances the transcription of the IE class of HSV-1 genes and hence 

promotes infection where only low numbers of virus particles are present (described in 

detail in Section lA2.5c).

lA2.3c HSV-1 gene expression

Transcription of all herpesvirus genes is controlled by the DNA dependent RNA 

polymerase II and is temporally regulated. This temporal regulation means the HSV-1 

genes can be divided into three main kinetic classes classified as: immediate early (IE), 

early (E) and late (L) genes (Clements et al., 1977); or a , P, and y genes (Honess & 

Roizman, 1974, Honess & Roizman, 1975). Late genes can be further subdivided into 

leaky late and true late genes. Leaky late genes are ones whose expression is induced at 

low levels before DNA replication, but require DNA replication for the maximal level of 

transcription to occur. True late genes are ones whose expression is only induced 

following the onset of replication.

6
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Although basal transcription of HSV-1 genes occurs by the pre-existing transcription 

apparatus of the cell, viral factors are necessary for regulating the levels of transcription 

(Ben-Zeev & Becker, 1977, Costanzo et al., 1977). The regulation of HSV-1 gene 

expression will be described in greater depth later in Section 1 A2.5.

Messenger RNAs are post-transcriptionally modified by the normal mechanisms of 

capping, methylation and polyadenylation. They are then translated on bound and free 

ribosomes. Some viral proteins are modified post-translationally and examples exist where 

proteins are cleaved, phosphorylated, sulphated and poly(ADP) ribosylated, (reviewed in 

Roizman & Sears, 1996).

lA2.3d HSV-1 DNA replication

DNA replication is the next stage in infection, which occurs by the rolling circle 

mechanism, (reviewed by Roizman & Sears, 1996). Initiation occurs at one of three 

origins of replication in the HSV-1 genome, by interaction with the ORI binding protein 

UL9. A helicase/primase complex, made up from UL5, UL8 and UL52, associates with the 

origin to create an initiation ‘bubble’ (which requires the hydrolysis of ATP). This 

initiation ‘bubble’ then associates with the polymerase UL30/UL42 DNA-binding protein 

complex. This triggers DNA synthesis to occur continuously along one strand and 

discontinuously on the other strand. The growth of the DNA fork is maintained by the 

major DNA-binding protein UL29. This results in the production of head to tail 

concatemers that accumulate in the nucleus in ‘replication compartments’ (deBruyn Kops 

& Knipe, 1994, Quinlan et al., 1984). Other important HSV-1 viral proteins involved in 

DNA replication include: proteins required for nucleic acid metabolism (thymidine kinase 

(UL23), ribonucleotide reductase (UL39 and UL40) and dUTPase (UL50)) and proteins 

which have the potential for participating in a DNA repair function (uracil-DNA 

glycosylase (UL2) and alkaline exonuclease (UL12)).

lA2.3e Virion assembly

Production of viral DNA enhances the expression of L genes whose products primarily 

consist of structural proteins. As a consequence of their synthesis, patches form on the 

inner surface of the nuclear membrane consisting of viral glycoproteins, other membrane 

associated proteins and the tegument proteins, including VP16 and vhs.
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The next stage is capsid assembly and DNA packaging (reviewed by Rixon, 1993). The 

major capsid protein VP5 (UL19) and other proteins encoded by the genes UL18, UL38, 

UL26, UL26.5 and UL35, assemble into immature capsids within the nucleus. These 

consist of an outer icosahedral shell, made from VP5 (UL19), VP19C (UL38), VP23 

(UL18), and VP26 (UL35), and an internal scaffold made from VP22a (UL26.5) and the 

product of the UL26 gene.

The UL26 gene product has proteolytic activity which cleaves the preVP22a, which 

connects the scaffold to the capsid shell, to VP22a, which is no longer connected to the 

capsid shell, and therefore causes release of the internal scaffold from the capsid shell.

Viral DNA is packaged within the capsid, by cleavage of the concatemeric viral DNA, with 

the aid of the products of several other genes including UL6, UL12, UL15, UL25, UL28 

UL32 and UL33.

Packaging of viral DNA and removal of the internal scaffold are thought to occur 

simultaneously, resulting in the production of the mature virion. Along with the immature 

and mature capsids, empty capsids have also been identified. These are thought to be 

generated from abortive packaging events.

1 A2.3f Envelopment of virions and their egress from the infected cell

After packaging of the DNA the capsids are more compact and are enveloped by the 

patches on the inner nuclear membrane. Using electron microscopy, ‘fingers’ of nuclear 

membrane, in which the mature capsids are contained, have been observed to extend into 

the cytoplasm. The virions then accumulate in the endoplasmic reticulum and transverse 

the Golgi apparatus and the trans Golgi network to the extracellular space.

lA2.3g Cvtopathology

The production of infectious progeny invariably causes cell death after completion of the 

approximately 18hr lytic cycle. Structural changes seen during infection include the 

degradation of the nucleolus, and the condensation and margination of host chromatin at 

the nuclear membrane. This is followed by the duplication and folding of the nuclear 

membrane. Furthermore, certain mutant viruses can cause infected cells to fuse with 

neighbouring cells forming polykaryocytes (reviewed by Roizman & Sears, 1996).
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1 A2.4 HSV-1 Latent state

HSV-1 is not only capable of productive infection in host epithelial cells but can also 

latently infect sensory neurones (reviewed in Steiner & Kennedy, 1995, Wagner, 1994). It 

is the ability of HSV-1 to establish, maintain and reactivate, from this latent state that 

enables it to maintain a life long infection in its host.

lA2.4a Definition

Latent infection is defined as the presence of the viral genome in cells without the 

production of virus particles, but which has retained the capacity to reactivate and hence 

resume replication and cause recurrent disease.

lA2.4b Establishment, maintenance and reactivation of HSV-1 latency

HSV-1 latency has been a topic of intensive investigation for many years. However, there 

is still much controversy and debate surrounding the central issues. Therefore, a review of 

this field would be outside the scope of this thesis and as such only a brief overview of the 

various aspects of HSV-1 latency has been provided.

• Establishment

Following entry of HSV-1 to the peripheral epithelial cells, virus particles (most likely the 

capsids alone) may be attached to the axonal terminals of sensory neurones, usually the 

trigeminal ganglia, and transported by fast retrograde flow to the cell bodies (Cook & 

Stevens, 1973, Kristensson et al., 1986). Once in the ganglia, either viral replication 

occurs with the generation of progeny virus, or latent infection is established. The 

molecular mechanisms by which one of these options is chosen have yet to be elucidated. 

However, such a decision is thought to occur early in the interaction between virus and 

cell, before high levels of expression of IE genes. Cellular factors are thought to play an 

important role in this decision. If induction of the lytic phase fails, the first step in the 

establishment of latency is probably the circularisation of the viral DNA, which makes it 

refractory to degradation. In this manner viral DNA is maintained in the non-dividing, 

termnally differentiated, neural cells.
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• Maintenance

During latent infection the only detectable viral gene expression is that of a major class of 

transcripts called the latency associated transcripts or LATs (reviewed in Block & Hill, 

1997). These transcripts were first detected by northern blotting analysis and in situ 

hybridisation (Deatly et al., 1987, Stevens et al., 1987), subsequent detection by PCR 

studies have also suggested that these are by far the most abundant transcripts produced 

during latency (Kosz-Vnenchak et al., 1993, Kramer & Coen, 1995).

• LATs

Transcription of LATs occurs from a promoter located in the repeat sequence bounding the 

Ul region of the genome, and in the opposite orientation from Vmwl 10 and ICP34.5. The 

relative positions within the HSV-1 genome of sequences encoding transcripts of LAT, 

Vmwl 10 and ICP34.5 are shown Figure 1 A2.4b.

The LATs that are detected during lytic infection are all 2.0kb species, whereas during 

latency a 2.0kb species as well as a 1.45/1.5kb species can be detected. These are found 

mainly in the nucleus in an non-polyadenylated state (Wagner, 1994, Wagner et al., 1995). 

Furthermore, evidence exists that LATs are non-linear lariats, which would explain their 

stability (Rodahl & Haarr, 1997, Wu et ah, 1996). They are abundant, 40,000-100,000 

copies can be detected per latently infected neurone. It has been proposed that the 1.45- 

2.0kb LATs are derived from the processing of a larger 8.3kb precursor (Devi-Rao et al., 

1991, Farrell et a l., 1991). However, detection of this 8.3kb precursor and 6.0kb splice 

product by methods other than in situ hybridisation has proved difficult.

The biological role of the LATs is debatable. There are three popular theories that describe 

their significance. The first is that they encode a functional protein that may be important 

for the reactivation process. However, although open reading frames (ORFs) exist in this 

region, detailed examination of the DNA sequence does not support a protein coding role, 

since predicted codon usage is not characteristic of most regions of HSV protein coding 

DNA. Also, sequences of different HSV-1 strains show frame shifting differences in these 

ORFs of the LAT region.

The second theory is that as these transcripts are antisense in part to IE1 (the gene encoding 

Vmwl 10), they may regulate latency by acting as antisense inhibitors of Vmwl 10 gene 

expression. However, recently using a rabbit in vivo system it was shown that insertion of
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Figure 1 A2.4b: Diagram illustrating the relative positions of sequences within the 
HSV-1 genome encoding the Vmwl 10, ICP34.5 and LAT transcripts.
A schematic diagram of the HSV-1 genome is provided. The Vmwl 10/LAT region 
is present in the repeat region bounding UL- The horizontal lines drawn underneath 
represent the relative positions of sequences within the Vmwl 10/LAT region which 
encode: the Vmwl 10 transcript; the ICP34.5 transcript; part of the Vmwl 75 transcript; 
the 8.3kb minor LAT transcript; the 2kb major LAT transcript; and the 1.45/1.5kb LAT 
transcript (only produced during latent infection). The 2kb LAT is derived from the 
8.3kb LAT by splicing at the splice donor (SD) and splice acceptor (SA) sites shown. 
The numbers represent positions in the genome of the HSV-1 17 Syn+ virus strain. The 
arrow direction represents the direction in which the sequences are transcribed. The ‘ a ’  

sign represents sequences which are spliced out to produce the appropriate transcript.
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the first 1.5kb of LAT, which do not encode sequences antisense to Vmwl 10, into the 

glycoprotein C locus of a LAT null mutant restored the normal spontaneous reactivation 

efficiency (Pemg et al., 1996). Therefore belief in the validity of this theory has been 

reduced.

The last theory is that LATs have no biological significance and could be ‘selfish’ RNA in 

the sense that they accumulate with no reason other than for their own survival. However, 

it seems unlikely that such a high concentration of specific RNA would be produced with 

no meaning.

• Reactivation

HSV-1 reactivation in humans, with resultant cold sores, can be induced by local stimuli 

such as: injury to tissues innervated by the neurones carrying the latent infection, or by 

systemic conditions including: exposure to ultraviolet radiation (sunlight), stress and 

possibly hormonal irregularities (Hill, 1985). As recurrent infection does not result in 

permanent sensory loss or any other neurological deficit in the affected dermatomes 

(Gominak et al., 1990), it is proposed that reactivation does not lead to significant 

destruction of latently infected neurones, in contrast to the situation of the lytic infection.

1 A2.4c In vivo models

Our limited understanding of latency has mainly been derived from studies using HSV-1 in 

experimental animals. Subsequently, human tissue has also been used to try and verify the 

earlier results. Most animal models stem from a similar general approach (Fraser et al., 

1984), comprising of inoculating at a peripheral site (e.g. cornea, pinna of the ear, footpad, 

etc.), which results in the transportation of the virus particles to the respective sensory 

ganglia and to the central nervous system where viral replication takes place. Once 

replication stops the animal tissues may then be studied for various aspects of the latent 

state. However, when interpreting data from such models it should be remembered that all 

animal models differ from human infection. Furthermore, different animal models are used 

by independent research teams and as such the results generated are not directly 

comparable.
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1 A2.4d In vitro models

An alternative method of studying HSV-1 latency is by use of an in vitro latency system 

(reviewed in Rock, 1993, Stevens, 1989). Examples of such systems are provided in 

Section 1B2.4, in which the role of Vmwl 10 in HSV-1 latency is discussed.

1A2.5 Regulation of HSV-1 gene expression

HSV-1 has proven a useful tool to study various aspects of herpesvirus and general gene 

expression and regulation (reviewed in Everett, 1987b, Roizman & Sears, 1996). HSV-1 

gene expression is regulated by both cis and trans-acting factors. The cis-acting factors are 

present in the HSV-1 genome and trans-acting factors are largely derived from the cell’s 

synthetic machinery, with RNA polymerase II being responsible for the basal 

transcriptional regulation of HSV-1 genes. However viral trans-acting factors also play a 

crucial role.

1 A2.5a Transcription of HSV-1 genes by RNA polymerase II

RNA polymerase II is present in the nucleoplasm of eukaryotic cells and is responsible for 

the synthesis of cellular mRNA precursors. Promoters recognised by RNA polymerase II 

consist of a series of elements or modules, in general: the TATA box (or TATA element), 

and one or more of a variety of upstream elements such as the CAAT box and the GC box.

The TATA box specifies the start point of transcription and the upstream elements bind 

regulatory transcription factors. For example, the GC box functions as binding sites for the 

Spl transcription factor. Promoters are usually made of a mixture of these modules, no 

one element being consistently present.

Transcription by RNA polymerase II is also affected by the presence of enhancer elements. 

These sites are often located at great distances, usually more than lOOObp up- or 

downstream, and can function in either orientation. They are thought to bind transcription 

factor(s), enabling looping of the DNA and interaction with the transcription factors bound 

to the promoter elements. In this manner gene expression is activated.

The initiation of transcription by RNA polymerase II involves several stages. The first 

stage is the binding of TFIID, made up from the TATA binding protein (TBP) and TBP- 

associated factors (TAFs), to the TATA element. The next stages are the binding of TFDA 

and TFIIB, then RNA polymerase n , to which TFIIF is bound, which results in the
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formation of the minimal transcription initiation complex. This is followed by the binding 

of TFIBE, TFIIH and TFIU to the complex which forms the complete initiation complex. 

As explained, the basal transcription rate can be modulated by the presence of other 

regulatory factors bound to promoter or enhancer elements.

lA2.5b HSV-1 cis-acting elements

Most HSV-1 promoters are recognisable as eukaryotic polymerase II promoters with 

obvious ‘TATA’ box homologies 20-25 bases upstream of the mRNA cap sites (reviewed 

in Wagner, 1994). However, the promoters differ in complexity depending on the kinetic 

class of gene to which they belong.

IE promoters are the most complex, consisting of three components. An IE specific 

regulatory region, consisting of multiple copies of ‘TAATGARAT’ consensus sequence, is 

found at sites distal to and extending up to several hundred bases upstream of the IE 

mRNA start site. In the proximal promoter region are regulatory sequences similar to 

‘CAAT’ box and cellular transcription factor (such as Spl) binding sites, which occur at 

positions analogous to those seen in cellular promoters. Finally, these are followed by the 

‘TATA’ box component.

In general, the E gene promoters are the next most complex, with the same outline as IE 

promoters, but excluding the IE specific regulatory region.

The L gene promoters are generally the simplest consisting in some cases of only 20-25 

bases (for strict late gene promoters), containing only the ‘TATA’ box and cap site region.

1 A2.5c Transcriptional regulation

Transcription of the five IE genes, encoding Vmwl2, Vmw63, Vmw68, Vmwl 10 and 

Vmwl75, is induced by the HSV-1 virion tegument protein VP16, also called aTIF. It is 

65kD phosphoprotein that is a component of the tegument. It is composed of two regions 

of functional significance: the N-terminal which is responsible for DNA and protein 

interactions, while the C-terminal is responsible for the transactivation function. The 

mechanism by which it functions has been very well characterised and is reviewed in Flint 

& Shenk, 1997, Roizman & Sears, 1996, Wagner, 1994.

VP16 does not directly bind to the ‘TAATGARAT’ sequence, rather its specificity for this 

sequence is conferred by its association with the cellular, sequence-specific, transcription
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factor Oct-1. Furthermore, in order for VP 16 to recognise Oct-1 it first needs to interact 

with another cellular factor named host cell factor (HCF, C l, VCAF, or CFF). Interaction 

with HCF is thought to cause a conformational change in VP 16 that enables it to bind the 

Oct-1 DNA complex.

Four of the five IE proteins accumulate in the nucleus and promote the efficient expression 

of E and L genes.

Vmwl75, also called ICP4, acts as the most prominent HSV-1 transcriptional activator 

essential for both E and L gene expression (DeLuca & Schaffer, 1985, Everett, 1984, 

Gelman & Silverstein, 1985, O'Hare & Hayward, 1985a, Preston, 1979, Quinlan & Knipe, 

1985, Watson & Clements, 1980). It also acts as a repressor towards the expression of its 

own gene, that of Vmwl 10 and that of transcripts expressed from the LAT promoter 

(Batchelor & O'Hare, 1990, DeLuca & Schaffer, 1985, Everett & Orr, 1991, O'Hare & 

Hayward, 1985b). The mechanism of action by which Vmwl75 regulates the expression 

of these genes is not fully understood. However, based on observations of its interactions 

in vitro with the TATA binding protein and the basal transcription factor TFBOB, it has been 

postulated that Vmwl75 may assist in the formation of transcription pre-initiation 

complexes in viral promoters (Smith et al., 1993).

Vmwl 10 is a potent and promiscuous activator of the expression of all classes of HSV-1 

genes. This activation function appears to be partially dependent on the presence of 

V m w l75. Details relating to this function of Vmwl 10 are discussed in greater depth in 

Section 1B2.2.

Vmw63 has an essential role in the regulation of HSV-1 gene expression, most notably 

being required for progression of viral infection into the late phase (McCarthy et al., 1989, 

Rice & Knipe, 1990, Sacks et al., 1985). It is a complex protein which is thought to 

mediate its regulatory effects at both the transcriptional and post-transcriptional level.

Vmw68 is a regulatory protein important for the optimal production of Vmwl 10 and a 

subset of L proteins. Recent work in which an association has been identified, in spatially 

defined structures, between Vmw68, Vmwl75, RNA polymerase n, newly synthesised 

progeny viral DNA and a nucleolar protein, (EAP or L22), known to be associated with 

ribosomes and to bind small RNAs, has strengthened support for the role of Vmw68 in L 

gene expression (Leopardi et al., 1997).
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1B Vmw110 

1B1 The IE1 gene and gene products

1B1.1 The IE1 gene

The IE1 protein Vmwl 10, also called ICPO, or IE110, is encoded by the diploid IE1 (RL2 

or a0) gene, which is present in the repeated sequences that flank the U l region of the vims 

genome (Perry et a l,  1986). The IE1 gene is adjacent to sequences encoding the ICP34.5 

transcript in the same orientation and partially overlaps sequences which encode the LATs 

in the anti-sense orientation (Figure lA2.4b).

The promoter controlling the expression of Vmwl 10 contains all the common features of 

an IE promoter, (Section lA2.5b). Additionally, the promoter also includes a Vmwl75 

binding site (Faber & Wilcox, 1986, Kristie & Roizman, 1986). The binding of Vmwl75 

to this site has been implicated in the repression of Vmwl 10 expression in transfection 

assays (Everett & Orr, 1991, Gelman & Silverstein, 1987a, Gelman & Silverstein, 1987b, 

Resnick et al., 1989). However, the relevance of these results is unclear as Vmwl 10 has 

been found to accumulate throughout viral infection in tissue culture (Everett & Orr, 1991, 

Harris-Hamilton & Bachenheimer, 1985, Weinheimer & McKnight, 1987). Results from 

sequence analysis revealed the gene to be about 3.6kb in size, consisting of three exons and 

two introns (Perry et al., 1986).

1B1.2 Alternative splicing of IE1 transcripts

The presence of introns is an unusual property for a HSV-1 gene. In fact, Vmwl 10 is one 

of only four HSV-1 genes which contain introns and whose pre-mRNAs require splicing in 

order to produce the final protein product.

Interestingly, alternative splicing of the IE1 pre-mRNA transcript results in the production 

of at least two protein products. The first, better established protein product is thought to 

be generated as a result of removal of both introns. However, a second product has also 

been detected in HSV-1 infection, its abundance varying with cell type (Everett et al., 

1993b). The size of this truncated Vmwl 10 product could best be explained by the 

retention of the in-frame stop codon in the second intron, which would produce a 262- 

residue protein. Consistent with this result, it was found that the production of the protein 

was dependent on the presence of second intron sequences in the viral genome. The
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significance of this alternatively spliced truncated Vmwl 10 protein has not been fully 

understood, but a potential role has been listed further in the text.

1B1.3 Interesting features of the primary amino acid sequence of 
Vmw110

The IE1 gene is predicted to encode a protein of 775 residues, a high proportion of which 

encode alanine, proline, glycine and arginine residues. This is probably the result of the 

IE1 gene having a high GC content (75.4%).

Small clusters of acidic and basic residues span the protein. For the most part these have 

proved functionally redundant. However, a highly basic region, spanning residues 501- 

506, has been implicated in nuclear localisation of Vmwl 10 (Section 1B3.3) and serine- 

rich domain between residues 554-591, is thought to be the target site for phosphorylation 

of Vmwl 10.

A cysteine rich region, between residues 106 and 150, similar to that found in ‘metal finger 

binding domains’, was first discovered during characterisation of Vmwl 10 by Perry et al., 

1986. High sequence homology, as well as the conservation of cysteine and histidine 

residues within this region, has been observed between Vmwl 10 and the corresponding 

proteins of other alpha herpesviruses including HSV-2, equine herpes virus type 1, VZV, 

bovine herpes virus type 1 and pseudorabies virus (Cheung, 1989, Perry et al., 1986, 

Telford et al., 1992, Wirth et al., 1992). This motif has been identified as a member of the 

RING finger family. The properties of this motif and its functional significance are 

discussed in greater detail later.

The only other highly conserved region spans residues 604-767. This region retains 80- 

85% homology to the equivalent region of the corresponding protein of HSV-2. However, 

no significant homology has been retained between this region of HSV-1 Vmwl 10 and the 

corresponding proteins from other herpesviruses, which implies that this region is 

important for a function specific to herpes simplex viruses. Interestingly, this region has 

been shown to be of importance for the multimerisation of Vmwl 10 and for binding to 

HAUSP, details of which are discussed later.
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1B1.4 Post-translational modifications of Vmw110

The predicted molecular weight of the IE1 gene product is 78,452Da. However, the 

molecular weight observed for Vmwl 10 derived from HSV-1 infected cell extracts on an 

SDS-polyacrylamide gel has been calculated to be 110,000Da (Honess & Roizman, 1974). 

This discrepancy between the predicted and experimentally observed molecular weights 

may be explained by post-translational modifications made to the polypeptide. The most 

well established modification is the phosphorylation of Vmwl 10, which is predicted to 

take place on the previously described serine rich region and in part, at least, the UL13 

HSV-1 viral protein kinase is thought to be responsible for this (Ackermann et al., 1984, 

Ogle et al., 1997). In addition, it has been shown that Vmwl 10 can be nicotidylated in 

vitro.

1B1.5 Multimerisation of Vmwl 10

Vmwl 10 purified from the baculovirus expression system demonstrated that it exists as a 

multimer in solution (Everett et al., 1991). This was later supported by work in which 

Vmwl 10 was derived from HeLa cells infected with a recombinant adenovirus which 

expressed Vmwl 10 (Chen et al., 1992).

1B2 Role of Vmw110 in HSV-1 infection

1B2.1 Role of Vmw110 in virus growth

The production of HSV-1 mutants with lesions in Vmwl 10 led to a breakthrough in the 

understanding of the role of Vmwl 10 for viral growth (Sacks & Schaffer, 1987, Stow & 

Stow, 1986). Most significantly it was found that Vmwl 10 is not essential for growth of 

HSV-1 in the majority of cell lines.

The first such mutant to be produced was d ll403, which contains a 2kb deletion within 

both T R l  and I R l  copies of the Vmwl 10 gene, and encodes a polypeptide consisting of the 

original N-terminal 105 amino acids, followed by 56 amino acids specified by a reading 

frame not used by Vmwl 10 (Stow & Stow, 1986). The effect of deleting the same region 

from a plasmid encoding Vmwl 10 resulted in the loss of its transactivation function. 

Surprisingly, no significant differences were observed between viral polypeptide synthesis, 

DNA replication, or DNA encapsidation, in cells infected with either: the wild type HSV-1,
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or dll403 virus, at high multiplicities of infection (moi). Furthermore, infection with either 

virus produced similar particle numbers.

However, at low moi the plaque forming efficiency of d ll403 varied dependent on the cell 

type, with Vero cells and HFL cells displaying significantly lower plaquing efficiencies 

compared to BHK cells. Interestingly these differences were not observed at high moi. 

These results implied firstly that Vmwl 10 has a cell-type dependent effect, being required 

to differing degrees in different cell types and secondly a multiplicity dependent effect, 

being required at low moi.

Similar conclusions were reached by Schaffer’s group who isolated two Vmwl 10 mutant 

viruses: dlX3.1, which contains a 3.1kb deletion in both IE1 genes, which results in the 

removal of the majority of the transcriptional regulatory region, as well as the 5’ coding 

sequences, and dlX0.7, which contains a 700bp deletion in the transcriptional regulatory 

region of both copies of the gene (Sacks & Schaffer, 1987).

Although Vmwl 10 is not essential for virus growth, the observation that dll403, dlX0.7 

and dlX3.1 mutants had a high particle/pfu ratio implies that Vmwl 10 is required at low 

moi to stimulate the onset of lytic infection. This idea was supported by the observation 

that the dlX3.1 and dlX0.7 viruses form plaques 15-50 fold better on a cell line which 

contains integrated copies of the IE1 gene.

These results are consistent with later observations that deletion of the IE1 genes caused 

significant reduction in de novo synthesis of infectious virus, following transfection of cells 

with the mutant HSV-1 DNA (Cai & Schaffer, 1989).

A cellular activity expressed after release from growth arrest has been observed which can 

compensate for the loss of Vmwl 10, in both non-neuronal cells (Vero cells) and neuronal 

cells (NB41A3) (Cai & Schaffer, 1991, Ralph et al., 1994). The observation that release 

from growth arrest led to the activation of IE, but not E, or L gene expression, may explain 

how the necessity for Vmwl 10 is by-passed. This implies that the requirement for 

Vmwl 10 is also cell cycle dependent.

Additionally, an activity specified by the osteosarcoma cell line U20S can substitute 

functionally for Vmwl 10 (Yao & Schaffer, 1995). This U20S specified cellular activity 

can stimulate the plating and replication efficiencies of Vmwl 10 deletion mutants, and de 

novo synthesis of infectious virus after transfection with Vmwl 10-null mutant HSV-1
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DNA. It has been suggested that the cellular activity specified by U20S that overcomes 

the requirement for Vmwl 10, does so by activating a common pathway. This may involve 

the fact that normal cell cycle regulation is disrupted in U20S cells.

Similarly, activation by nerve growth factor (NGF) and fibroblast growth factor (FGF) of 

the PC 12 neuronal cell line has been found to enhance HSV-1 gene expression, and 

replication, of Vmwl 10 deletion mutants (Jordan et al., 1998). As such, further 

investigation into the properties of the U20S cell line, and the pathways activated by NGF 

and FGF in PC 12 cells, may lead to a better understanding of the pathways that are 

influenced by Vmwl 10.

1B2.2 Role of Vmw110 in transactivation of HSV-1 gene expression

V m w llO ’s role in HSV-1 infection was first indicated by the discovery that it acts as a 

potent transactivator of gene expression in transfection assays (Everett, 1984, Gelman & 

Silverstein, 1985, O'Hare & Hayward, 1985a, Quinlan & Knipe, 1985). These assays 

involved cotransfecting a plasmid encoding Vmwl 10, alongside a plasmid encoding a 

reporter gene under the control of the promoter of choice. Promoter activity was then 

detected either by the direct quantification of RNA, or in cases where the reporter gene 

encoded the chloramphenicol acetyl transferase (CAT) protein, the activity of this enzyme 

was measured.

This established that Vmwl 10 transactivates expression from all three classes of HSV-1 

genes (Everett, 1984, Everett, 1986, Gelman & Silverstein, 1985, Mavromara-Nazos et al., 

1986, O'Hare & Hayward, 1985a, O'Hare & Hayward, 1985b, Quinlan & Knipe, 1985, 

Sekulovich et al., 1988, Shapira et al., 1987). Moreover, its transactivation function was 

not limited to HSV-1 promoters, rather it appeared to be of a non-specific nature. This was 

confirmed by the activation of a variety of heterologous promoters including the SV40 

early promoter (Everett, 1988b, O'Hare & Hayward, 1985a), the HIV long terminal repeat 

(Mosca et al., 1987), the rabbit (3-globin promoter (Everett, 1985) and the human e-globin 

promoter (Everett, 1985).

Interestingly, when plasmids encoding Vmwl 10 and Vmwl75 were cotransfected the level 

of activation was much greater than the cumulative effect of these activators being 

transfected separately (Everett, 1984, Gelman & Silverstein, 1986, Quinlan & Knipe, 1985, 

Shapira et al., 1987).
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This work led to the conclusion that Vmwl 10 is a potent and promiscuous activator of both 

viral and cellular gene expression and can function either alone or in synergy with 

Vmwl75.

Inspection of the promoters sensitive to Vmwl 10 did not result in the identification of a 

consensus site and the only conserved feature was the presence of the basic RNA 

polymerase II promoter motifs. This implies that Vmwl 10 is unlikely to act via direct 

DNA binding. The finding that Vmwl 10 did not form a complex with DNA in solution 

supports this idea (Everett et al., 1991). This is consistent with the observation of its non­

specific transactivation function. As yet the exact mechanism by which Vmwl 10 activates 

gene expression from such a wide variety of promoters is unclear.

1B2.3 Role of truncated Vmw110 in transrepression

The effect of 262 residue truncated Vmwl 10, described earlier in Section IB 1.2, on HSV-1 

gene expression has also been tested (Weber & Wigdahl, 1992). Transfection of a plasmid 

expressing this truncated Vmwl 10 protein, resulted in a strong dominant and general 

inhibitory effect on gene expression, inhibiting activation not only by Vmwl 10 but also by 

Vmwl75 and VP16.

1B2.4 Role of Vmw110 in HSV-1 latency

• Implications of Vmwl 10’s role in latency based on in vitro models

The first indication that Vmwl 10 was important for processes involved in latency came 

from in vitro latency studies. The model used involved infecting human foetal lung (HFL) 

cells with HSV-2 at 42°C, a temperature which prevents the onset of lytic infection. 

Superinfection of these HFL monolayers with wild type HSV-1 virus resulted in the 

reactivation of the quiescent/latent HSV-2 genomes. However, superinfection with a 

Vmwl 10 deletion mutant did not result in the reactivation of the virus (Russell et al.,

1987).

As the Vmwl 10 deletion mutant also incorporated the loss of large sections of LAT, it was 

unclear from these results whether the failure of the HSV-1 mutant to reactivate latent 

genomes was due to the loss of Vmwl 10, or LAT encoding sequences. In addition, it was 

uncertain whether Vmwl 10 acted alone or in synergy with other viral protein(s). These 

questions were in part answered by a later study which found that latent viral genomes
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were reactivated by superinfection with recombinant adenoviruses expressing Vmwl 10 

(Harris et al., 1989).

A recent study, using a different in vitro latency system, supported and added to these 

earlier findings. This study used an in vitro neuronal model of latency, in which primary 

sympathetic neuronal cultures were inoculated with HSV-1, genomes which were 

maintained in a latent/quiescent state could then be reactivated by depriving the cultures of 

nerve growth factor (NGF) (Wilcox et al., 1997, Wilcox et al., 1987). Using this system, it 

was shown that Vmwl 10 deletion mutants reactivated with delayed kinetics and burst sizes 

compared to those of wild type HSV-1. This system was also used to monitor the 

efficiency of establishment of latency. This revealed that the efficiency of establishment of 

latency was decreased by at least 10 fold for Vmwl 10 mutants as compared to wild type 

HSV-1. Moreover, it was demonstrated that the ability of a Vmwl 10 deletion mutant to 

establish latency and reactivation, could be restored by the provision of a recombinant 

adenovirus expressing Vmwl 10. Collectively the results of in vitro latency models 

strongly suggest an important role for Vmwl 10 in the establishment of the HSV-1 latent 

state.

• Implications of Vmwl 10’s role in latency based on in vivo models

Using in vivo latency systems no clear definition of Vmwl 10’s role in HSV-1 latency has 

been established. This is due to the problems associated with in vivo models, such as 

comparing results from studies using different systems. For example, an investigation 

using a mouse footpad model implied that Vmwl 10 was dispensable for the establishment, 

maintenance and reactivation, from the latent state (Clements & Stow, 1989). This is in 

contradiction to a study using the mouse ocular model, which demonstrated that the three 

Vmwl 10 deletion mutants, dL1403, dLX0.7 and dLX3.1, which could replicate in the eye 

and ganglia (although with reduced efficiency), varied in their ability to establish and 

reactivate from the latent state (Leib et al., 1989). They concluded that Vmwl 10 does play 

a role in the establishment and reactivation of latency.

The question of the role of LAT encoding sequences, which were in part deleted from these 

Vmwl 10 deletion mutants, was partially answered by a subsequent study (Cai et al., 1993). 

This study showed that the ability of mutant viruses to produce graded levels of 

transactivating activity correlated well with the ability of these viruses to replicate in 

mouse eyes and ganglia, during the establishment of latency. They also demonstrated that
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insertion of a single copy of the Vmwl 10 gene into the genome of the Vmwl 10 and LAT 

double mutant led to restoration in the ability of the virus to replicate in eyes and ganglia, 

and reactivate from latency. This suggests a distinct role of Vmwl 10 from LAT in the 

establishment and reactivation processes of latency.

1B3 Vmwl 10 functional domains

Mutational analysis combined with functional studies of Vmwl 10 have revealed the 

presence of four main functional regions (Figure 1B3). These consist of the N-terminal 

RING finger domain, a nuclear localisation domain, a C-terminal interaction domain and a 

C-terminal multimerisation domain. A description of these domains and their importance 

for HSV-1 viral growth, regulation of gene expression and latency is provided below, with 

the exception of the C-terminal interaction domain. This latter domain represents the 

region of Vmwl 10 required for interaction with HAUSP. Details concerning this domain 

are included in Sections 1E4 and 1E5, in which the interaction of Vmwl 10 with HAUSP is 

discussed. The significance of these domains for the effects of Vmwl 10 on the cell are 

detailed later in this introduction (Sections 1D1.4 and 1D2).

1B3.1 RING finger domain

Vmwl 10 is a member of the RING finger family of proteins, defined by the presence of a 

cysteine/histidine-rich, zinc chelating domain, known as the RING finger domain. This 

motif lies between residues 116-156 (Freemont et al., 1991, Perry et al., 1986) and can be 

described as: Cys-x2-Cys-X(9 -3 9 )-Cys-X(i.3 )-His-X(2 -3 )-Cys-X2 -Cys-X(4 .4 8)-Cys-X2 -Cys, where x 

can be any amino acid. The structures of two members of the RING finger family: the 

immediate early EHV-1 protein from equine herpesvirus and the proto-oncoprotein PML, 

have been solved by ‘H 1’nuclear magnetic resonance (NMR) methods (Barlow et al., 1994, 

Borden et al., 1995, Everett et al., 1993a).

RING finger family

Proteins containing the conserved RING finger are derived from an evolutionarily wide 

spectrum of origin including plants, fungi, vertebrates and viruses (Freemont et al., 1991). 

This broad conservation suggests a fundamental biological significance for this domain. 

However, no single molecular function has been ascribed to the RING finger, and proteins 

which contain this motif are extremely varied in their biological roles. Examples exist of 

RING finger proteins being required for regulation of gene expression, inhibition of
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Chapter 1 Introduction

apoptosis and DNA repair (Freemont, 1993). Nonetheless, evidence is now accumulating 

that the RING finger is associated with protein-protein interactions (Saurin et al., 1996).

• Role of RING finger domain for transactivation function of Vmw 110

Plasmids encoding deletion or insertion mutants of the Vmwl 10 RING finger domain, 

were tested in transfection studies. The results of these assays demonstrated that the RING 

finger domain was essential for the activation of HSV-1 genes by Vmwl 10 (Cai & 

Schaffer, 1989, Chen et al., 1991, Everett, 1987a, Everett, 1988a). Furthermore, recent 

mutational analysis studies have resulted in the identification of precise residues within the 

RING finger domain responsible for this effect (Everett et al., 1995, Lium & Silverstein, 

1997).

• Role of RING finger domain in viral growth

The construction and characterisation of HSV-1 mutants demonstrated that removal of the 

RING finger was as deleterious for viral growth as complete deletion of the IE-1 gene (Cai 

& Schaffer, 1989, Everett, 1989). Furthermore, residues identified as being essential for 

the transactivation function of Vmwl 10 were also shown to be necessary for viral growth 

(Everett et al., 1995, Lium & Silverstein, 1997).

• Role of RING finger domain in HSV-1 latency

Studies using the in vitro latency system (Section 1B2.4) suggested that the RING finger 

domain is essential for the role of Vmwl 10 in reactivation from latency (Harris et al., 

1989). In particular, these investigations showed that reactivation of HSV-2 from a 

quiescent state could not be induced by superinfection with a mutant of HSV-1 from which 

the RING finger domain had been deleted, unlike its wild type counterpart, even though its 

replicating efficiency was unchanged.

1B3.2 Multimerisation domain

Physical studies of Vmwl 10 have suggested that it forms multimers in solution (Chen et 

a l,  1992, Everett et al., 1991), (Section 1B1.5). An extensive characterisation of this 

domain was carried out using four independent experimental systems: colocalisation in 

DNA-transfected cells; cross-linking; immunoprecipitation analysis; and far western- 

blotting studies, using in vitro translated polypeptides, and Escherichia coli (E.coli)
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glutathione S-transferase (GST) fusion proteins (Ciufo et al., 1994). These experiments 

highlighted a region between residues 617-712 as being required for fully efficient 

multimerisation, with sequences approximately 60 residues either side also contributing.

A subsequent study confirmed these findings and further defined residues required for 

multimerisation to lie between 633-775 (Meredith et al., 1995). In particular, a purified C- 

terminal fragment of Vmwl 10 encoding residues 633-775 was shown to form a multimeric 

species. These results were confirmed by comparison of the sedimentation behaviour of 

wild type and C-terminal deletion mutants of Vmwl 10 expressed in virus-infected cells.

• Role of multimerisation domain for the transactivation function of Vmwl 10

Mutants of the Vmwl 10 multimerisation domain were tested in transient transfection and 

infection studies to investigate the significance of this region for the transactivation 

function of Vmwl 10. Collectively, these studies demonstrated that the multimerisation 

domain was important for the ability of Vmwl 10 to transactivate HSV-1 promoters, more 

so in the presence of Vmwl75 than in its absence (Chen et al., 1991, Chen & Silverstein, 

1992, Everett, 1987a, Everett, 1988a). However, the level of requirement of the 

multimerisation domain varied depending on promoter type, cell type and transfection 

conditions.

• Role of the multimerisation domain in viral growth

The construction and characterisation of HSV-1 mutants demonstrated that deletion of the 

Vmwl 10 C-terminal residues 680-720 or 723-767, required for multimerisation, was 

almost as deleterious for viral growth as complete deletion of the IE-1 gene (Everett, 1989).

• Role of the multimerisation domain in HSV-1 latency

Deletion of the sequence encoding residues 680-720 of Vmwl 10 from HSV-1 did not alter 

the ability of superinfection by the virus to reactivate quiescent HSV-2 genomes in an in 

vitro latency system (Harris et al., 1989). However, the whole multimerisation domain had 

not been removed in this mutant, therefore the true significance of Vmwl 10 

multimerisation for the reactivation process is yet to be determined.
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1B3.3 Nuclear localisation sequence (NLS)

A highly basic region encoded by residues 501-506, which is similar to the SV40 large T 

antigen nuclear localisation motif, has been implicated in nuclear localisation of Vmwl 10. 

This is based on the observation that deletion of this region results in the protein being 

located in the cytoplasm (Everett, 1988a). This was supported by a subsequent study in 

which insertion of a short oligopeptide VRPRKRR at residue 500 of a Vmwl 10 mutant in 

which residues 500-506 had been deleted, resulted in the restoration of its karyophilic 

(nuclear localised) phenotype (Mullen et al., 1994). However, this basic motif alone is not 

sufficient for nuclear localisation and residues on its C-terminal side are also required 

(Everett, 1988a).

•  Role of the NLS for the transactivation function of Vmwl 10

Deletion of the NLS motif caused reduction in the ability of Vmwl 10 to transactivate 

HSV-1 promoters in the presence of V m w l75. However, an insertion into this motif had 

no such effect (Everett, 1988a).

• Role of the NLS in viral growth

The HSV-1 mutant, in which residues 475-548 (inclusive of the NLS) had been deleted, 

caused a moderate reduction in the plaquing efficiency of the virus in tissue culture and the 

viral polypeptide synthesis (Everett, 1989). This mutation also affected transport of 

Vmwl 10 into the nucleus in virus infected cells (R. Everett personal communication).

• Role of the NLS in HSV-1 latency

A HSV-1 NLS mutant virus has not been tested in the in vitro latency system. As such the 

importance of this region for the role of Vmwl 10 in reactivation from latency is not 

known.
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1C Ubiquitin system

Ubiquitin (Ub) is a 76-residue protein that exists in cells, either free or covalently linked to 

other proteins. At first ubiquitin was identified as an essential component of an ATP- 

dependent proteolytic system, in which it functioned by conjugating to proteins and thus 

targeting them for proteolytic processing. However more recently, novel roles that do not 

involve this degradation pathway have been revealed.

Indeed, the number of cellular processes in which ubiquitin-dependent pathways are 

involved have avalanched in recent years. These include: stress response, apoptosis, signal 

transduction, cell differentiation, the cell cycle, embryogenesis, DNA repair, 

transmembrane transport, vesicular transport and functions of the nervous system 

(reviewed in Hochstrasser, 1995, Hochstrasser, 1996, Peters et al., 1998, Varshavsky, 

1997, Wilkinson, 1995).

1C1 Organisation and enzymology of the ubiquitin system

1C1.1 Enzymes involved in the conjugation of ubiquitin to an acceptor 
protein

An elaborate enzymatic system is present in eukaryotic cells that enables covalent linkage 

of ubiquitin to an acceptor protein, in order to produce proteins tagged with either a single 

ubiquitin moiety, or a multi-ubiquitin chain. The ubiquitin is covalently linked to the 

acceptor protein through an amide (isopeptide) bond, between the C-terminal carboxyl 

group of the Gly 76 residue of ubiquitin, and the e-amino group of a Lys residue in the 

acceptor protein (Ciechanover, 1994, Hershko, 1996, Hochstrasser, 1996, Jentsch, 1992, 

Varshavsky, 1996, Wilkinson & Hochstrasser, 1998).

The activation of ubiquitin and its transfer to substrate involve a linked sequence of 

enzymatic reactions (Figure 1C 1.1). The first step is the conjugation of ubiquitin to an E l 

Ub-activating enzyme, which requires the hydrolysis of ATP. This results in the formation 

of a high-energy thioester bond, between Gly 76 of ubiquitin and a specific Cys residue of 

E l (Hershko, 1996, Hochstrasser, 1996, Jentsch, 1992).

Ubiquitin then forms a thioester bond with a second protein, an E2 ubiquitin-conjugating 

enzyme, in a transesterification reaction. The E2 enzyme then catalyses isopeptide bond 

formation between ubiquitin and a Lys residue on an acceptor protein. This step often
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Figure 1C 1.1: Main enzymatic steps in conjugation of Ub to a protein substrate.
(1)- ATP dependent activation of Ub with the formation of a high-energy thiolester bond with an Ub- 
activating enzyme El.
(2)- Transfer of activated Ub to an Ub-conjugating enzyme E2.
The transfer of Ub from the E2 enzyme to a protein substrate can either occur:
• Independently of any other factors :
(3a)- Binding of the protein substrate to the E2-Ub.
(4)- Ligation of Ub to a lysine residue of the protein substrate, followed by the formation of a multiubiquitin 
chain.
• Or with the assistance of an E3 Ub-protein ligase.
(3bi)- Binding of the protein substrate to a specific E3.
(3bii)- Formation of an intermediary complex between E3, the protein substrate and E2-Ub.
(4)- Ligation of Ub to a lysine residue of the protein substrate, followed by the formation of a multiubiquitin 
chain.
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requires the presence of an additional factor, an E3 or ubiquitin-protein ligase 

(Hochstrasser, 1996, Jentsch, 1992, Varshavsky, 1996). There are two alternative methods 

by which the E3 enzymes appear to work. The first mechanism involves the transfer of 

ubiquitin from the E2 thiol group to a thiol group on the E3, ubiquitin can then be 

transferred to the Lys residue of the acceptor protein. The second mechanism involves E3 

acting as an adapter, positioning the acceptor protein in a preferential position for ubiquitin 

transfer from the Ub-thioester-linked E2.

1C1.2 Enzymes involved in the cleavage of ubiquitin

Enzymes also exist which can cleave ubiquitin from ubiquitin-protein fusions, and/or 

isopeptide-bond linked ubiquitin-protein conjugates. These are termed deubiquitinating 

enzymes (DUBs). They are a large, heterogeneous group of specialised thiol proteases, 

which can be classified into two sub-families (Section 1C3.1). As HAUSP is a member of 

the USP family, which is one of the two sub-types of DUB enzymes, details relating to 

these enzymes are provided in Section 1C3.

1C2 Ubiquitin-degradation system

The best defined role for ubiquitin modification of proteins is in facilitating the degradation 

of proteins by a complex protease called the 26S proteasome (Hochstrasser, 1995, 

Hochstrasser, 1996, Wilkinson, 1995).

The 26S proteasome complex is a large supramolecular complex, composed of a core 

proteinase known as the 20S proteasome, and a pair of regulatory complexes, which are 

most likely equivalent to a separable multisubunit protein known as PA700 (for 700kD 

proteasome activator). The exact composition of these regulatory complexes and their 

functions is not fully understood, but it is hypothesised that several versions of these 

components exist and are interchangeable, which would result in the presence of several 

types of 26S proteasome in vivo.

Ubiquitin-dependent degradation of proteins consists of several stages. The first stage 

involves the targeting of ubiquitin tagged proteins to the 26S proteasome. This is thought 

to involve the recognition and binding of the ubiquitin multi-chain to a component of the 

PA700 regulatory complex. The next stage is the unfolding of the protein, which probably 

also requires a component of the PA700 regulatory complex, as well as the hydrolysis of 

ATP. Once the protein is unfolded, it can be fed into the 20S proteinase cylinder, which is
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lined with many varied proteases which degrade the input protein into peptide fragments 

which are released through fenestrations in the wall of the proteasome.

1C3 Ubiquitin-specific proteases

1C3.1 Classification of deubiquitinating enzymes

Enzymes responsible for the proteolytic processing of ubiquitin at the C-terminal Gly 76 

residue have been termed: isopeptidases (Matsui et al., 1982), ubiquitin carboxyl-terminal 

hydrolases (Pickart & Rose, 1985, Rose, 1988), ubiquitin thiolesterases (Rose & Warms, 

1983), ubiquitin-specific proteases (Tobias & Varshavsky, 1991) and deubiquitinating 

enzymes (Papa & Hochstrasser, 1993). However, for the purposes of this thesis the 

acronym DUB enzymes will be used.

Two distinct families of DUBs exist. The first family is a relatively small group of 

proteins, with significant similarity to the neurone specific human protein PGP 9.5 (UCH- 

L l) (Wilkinson et al., 1989). This family comprises proteins of relatively small molecular 

weight (<40kD). They are responsible for cleavage of ubiquitin from peptides and small 

adducts.

The second family is composed of a much larger group of thiol proteases. They are termed 

ubiquitin-specific proteases (USP or UBP). These proteins are generally much larger, 

varying in size from 50kD to 250kD. They are generally responsible for cleaving ubiquitin 

from a wide range of substrates in vivo. HAUSP is a member of this family and as such the 

properties of these proteins are discussed in greater detail below.

1C3.2 Conserved features of USPs

These proteins all contain several short consensus sequences that are likely to comprise the 

catalytic domains (Baker et al., 1992, Papa & Hochstrasser, 1993). In particular, the most 

highly conserved features are Cys and His boxes (Figure 1C3.2), however, additional short 

sequences also show some conservation (Papa & Hochstrasser, 1993, Wilkinson et al.,

1995). An interesting observation is that motifs conserved amongst the USPs do not have 

high sequence similarity to the regions surrounding the conserved Cys and His residues of 

the first family of DUBs. This suggest the two families arose as a result of convergent 

evolution as opposed to divergent evolution.
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1C3.3 USPs are a large and heterogeneous group

Sequence information indicates that the USP family is very large. Indeed, in yeast 16 

proteins that potentially encode for USPs have been identified, which is greater than the 

number of yeast E2 ubiquitin-conjugating enzymes identified (Hochstrasser, 1996).

Yeast USP mutants often do not show major phenotypic abnormalities. This suggested that 

either these proteins control functions which when deleted can not be detected by the 

standard phenotypic assays used, or that there is much redundancy amongst these proteins 

(Baker et al., 1992, Papa & Hochstrasser, 1993).

1C3.4 Substrates of USPs

• Ubiquitin precursor proteins

Ubiquitin genes always encode ubiquitin as part of a fusion protein. The primary 

translation products of one class of ubiquitin genes consist of a ‘linear’ peptide bond linked 

ubiquitin chain made of 3 to 52 ubiquitin molecules (Ozkaynak et al., 1984, Swindle et al.,

1988). In the cases of the other genes encoding ubiquitin, a ubiquitin precursor is 

synthesised, in which ubiquitin is fused to the N-terminal of any of several proteins or 

peptides (Finley et al., 1989).

• Polyubiquitin chains

Multi-ubiquitin chains are found on proteins destined for proteolysis by the 26S 

proteasome.

1C3.5 Potential roles of USPs in the ubiquitin system

• Processing of ubiquitin precursors

As mentioned, ubiquitin is synthesised within a fusion protein. Such proteins require the 

release of free ubiquitin monomers by cleavage of ubiquitin at its C-terminus. This 

function may be performed by USPs.

• Proof-reading of protein ubiquitination

A second role for USPs is in the regulation of ubiquitin-dependent processes. For example, 

a USP could inhibit a ubiquitin-dependent process by removal of ubiquitin from either
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mono or polyubiquitinated protein substrates before they are committed to their fate, e.g. 

degradation by the proteasome. This mechanism could be a proof-reading step to ensure 

only appropriately targeted proteins are degraded (Cox et al., 1986, Ellison & Hochstrasser, 

1991, Wilkinson & Mayer, 1986). This regulatory mechanism, involving the 

conjugation/deconjugation of ubiquitin to proteins, is analogous to that of the 

phosphorylation/dephosphorylation regulatory mechanism.

• Recycling of ubiquitin from polyubiquitinated proteins following commitment to 

degradation

As ubiquitin is a stable protein once polyubiquitinated proteins have been targeted for 

degradation by the proteasome, USPs are required for release of ubiquitin from peptide 

remnants. The free ubiquitin can then be recycled. It is not clear as yet at which stage in 

the degradative cycle ubiquitin release occurs.

• Maintaining free ubiquitin levels and keeping the proteasome free of ubiquitin chains

Along with the mechanisms discussed above, other ways by which USPs may function to 

stimulate protein ubiquitination and/or degradation also exist. For example, long ubiquitin 

chains are sometimes conjugated to inappropriately targeted proteins and failure to remove 

such chains could result in the depletion of cellular ubiquitin levels. Additionally, 

proteasomes and certain enzymes of the ubiquitin conjugation system e.g. E3a, are known 

to bind to ubiquitin chains (Deveraux et al., 1994, Reiss et al., 1989). Such chains which 

have either been generated de novo, or as a result of protein proteolysis, need to be 

removed in order to prevent these chains inhibiting the proteasome, or other ubiquitin 

system enzymes.

1C3.6 Examples of USPs in cellular regulation

Although sequence analysis has identified the presence of many genes which encode USPs 

only a few of these have been analysed and their regulatory functions understood. 

Provided below are a few examples of these showing the diversity of function that this 

group of enzymes displays.
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• The role of the Drosophila fa t facet gene product in development

The product of the Drosophila fa t facet (faj) gene has been shown to have deubiquitinase 

activity. Interestingly, the fa f  gene is required for normal eye development, in particular it 

is thought to regulate a cell communication pathway essential very early in facet 

development which limits the number of photoreceptor cells in each facet of the compound 

eye to eight (Huang et ah, 1995).

It is of interest that mutations in the Cys or His active site boxes resulted in a similar 

phenotype to that observed for Drosophila fa f-null mutants. This suggests that the 

deubiquitinating activity of Faf is central to its biological role, specifically modulating the 

degradation rate of a key regulatory factor of facet development. This was supported by 

the observation that mutations in various alleles of the 20S proteasome subunit suppressed 

the defect seen in the f a f  mutants. Hence, Faf is thought to have a proof reading function, 

deconjugating ubiquitin from a regulatory protein and thus preventing its degradation by 

the proteasome. Indeed, recent work suggests Faf works by negatively regulating the 

RTK/Ras/MAPK signalling pathway during Drosophila development (Isaksson et al., 

1997).

• The role of yeast Ubp3 in silencing

Ubp3, a deubiquitinase expressed in yeast, is found to strongly bind to Sir4, a protein 

which is important in the transcriptional silencing of genes near the telomere and in the 

silent mating type loci of yeast (Moazed & Johnson, 1996).

The exact role of Sir4 in silencing is thought to involve its interactions with the origin 

recognition complex, Sir2 and Sir3 proteins, which result in the formation of a silencing 

complex. These complexes assemble at a particular subset of chromosome sites and are 

thought to alter the state of chromatin at these sites and prevent the encoded genes from 

being transcribed. As deletion of Ubp3 resulted in the significant improvement in the 

silencing of genes, either inserted near the telomere or at one of the silent mating type loci, 

it suggested that Ubp3 is an inhibitor of silencing. However, the exact mechanism by 

which the interaction of Sir4 and Ubp3 interferes with silencing is as yet unclear.
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•  The role of Drosophila D-Ubp-64E in position effect variegation

Another example of a USP functioning in transcriptional silencing is that of the D-Ubp- 

64E deubiquitinase of Drosophila. A mutant of D-Ubp-64E was shown to act as an 

enhancer of position effect variegation (PEV). Furthermore, additional copies of the D- 

Ubp-64E gene suppressed PEV (Henchoz et al., 1996). PEV is a form of transcriptional 

silencing in which chromosome rearrangements occur that place euchromatic genes next to 

a heterochromatin boundary.

•  The role of human Tre2 deubiquitinase in growth control

The human tre2 gene encodes a deubiquitinase enzyme. It was first proposed to have a 

role in growth control based on the observation that a mutation in its Cys active site box 

resulted in oncogenic properties (Papa & Hochstrasser, 1993). There are two mechanisms 

by which trel may be functioning in growth control either by enhancing the degradation of 

a positive regulator of cell proliferation or by preventing the degradation of a tumour 

suppressor by deconjugating its polyubiquitinated intermediates.

• The murine DUB family is a novel family of cytokine inducible deubiquitinating 

enzymes

The first member of this family to be identified was DUB-1. It is an erythroid cell-specific 

EE gene. Its expression is induced in the presence of the cytokines: interleukin 3, 

interleukin 5 and growth maturation-cytokine stimulating factor, requiring the pc common 

subunit of the cytokine receptor (Zhu et al., 1996a, Zhu et al., 1996b). Once expressed it 

becomes rapidly degraded in a proteasome-dependent manner.

A role of this gene in regulation of growth control was suggested by the observation that 

constitutive expression of this gene caused cell cycle arrest in the Gi phase. Furthermore, 

cells which constitutively expressed an active site mutant of the gene were not blocked in 

the Gi phase of the cell cycle.

Other DUB encoding genes are located in the same region on mouse chromosome 7 (Zhu 

et al., 1997). DUB-2, the only other member to be analysed in detail, was also found to be 

an IE cytokine-inducible gene, induced by interleukin 2. It has high sequence homology to 

DUB-1 (88% identical), varying only in a C-terminal hypervariable region. Therefore, it 

has been proposed that different cytokines induce the expression of specific DUB genes, in
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turn the deubiquitinase enzyme generated modulates the ubiquitination state of a specific 

regulatory factor resulting in a cytokine specific response.

•  Role of mammalian isopeptidase T in the metabolism of degradation intermediates

The mammalian isopeptidase T (isoT) USP has substrate specificity for unanchored 

ubiquitin chains, i.e. ubiquitin oligomers with a free C-terminal (Wilkinson, 1995). Such 

chains may be produced as a result of de novo synthesis by E2 enzymes, or as a result of 

action by the 26S proteasome. As the 26S proteasome is found to have strong affinity for 

ubiquitin chains, it is thought the presence of an excess of these unanchored ubiquitin 

chains may inhibit the 26S proteasome. This theory is supported by the observation that 

yeast wild type cells overexpressing such chains have defects in their protein proteolysis. 

As such, the result of the action of isoT may be to prevent such inhibition. Indeed, in vitro 

studies have supported such a role for isoT (Hadari et a l,  1992). A yeast homologue called 

U bpl4 has recently been identified that is thought to share a similar biological property: a 

U bpl4 null mutant was shown to have defects in the degradation of a number of distinct 

proteins and also accumulate an excess of unanchored ubiquitin chains (Amerik et al.,

1997).

• Role of yeast Doa4 in metabolism of degradation intermediates

The yeast Doa4 USP has been implicated to have diverse physiological functions (Papa & 

Hochstrasser, 1993). Mutant doa4 yeast cells have a variety of phenotypic abnormalities, 

which include failure to sporulate (Papa & Hochstrasser, 1993) and failure to accurately co­

ordinate replication from different parts of the genome (Singer et al., 1996).

Doa4 is thought to function by cleaving ubiquitin substrate remnants still bound to the 26S 

proteasome. Evidence of such a role comes from the observation that cells in which doa4 

is mutated have an excess of small ubiquitinated species which are slightly bigger than the 

unanchored ubiquitin chains cleaved by isoT. Furthermore, Doa4 has been found in 

purified preparations of the 26S proteasome (Wilkinson & Hochstrasser, 1998). It is 

thought that an accumulation of such ubiquitin remnants in the absence of functional Doa4 

would also lead to inhibition of the proteasome.
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1D Effects of Vmw110 on the cell 

1D1 Redistribution of ND10 domains

The localisation of VmwllO to discrete regions within the nucleus, when expressed from 

transfected plasmids, was first observed by Gelman and Silverstein in 1985 (Gelman & 

Silverstein, 1985). However, it was not until later that Maul and co-workers observed that 

V m w llO  colocalised with discrete nuclear structures, known as ND10 domains, early in 

HSV-1 infection. In addition, they observed that at later times of infection VmwllO was 

responsible for the dispersion of the ND10 proteins PML and SplOO (Everett & Maul, 

1994, Maul & Everett, 1994).

It is thought that the interactions between Vmwl 10 and host ND10 domains are the key by 

which Vmwl 10 exerts its effect. Relevant aspects of ND10 domain biology are discussed 

below, however, a broad review of the subject can be found in Stemsdorf et al., 1997a.

1D1.1 Introduction to ND10 domains

ND10 domains were first identified by use of a variety of autoimmune sera and monoclonal 

antibodies (Ascoli & Maul, 1991, Koken et a l, 1994, Weis et al., 1994, Xie et al., 1993). 

Interestingly, the ND10 constituents are thought to be associated with the highly organised 

three dimensional framework which consists of proteins and ribonucleoproteins, known as 

the nuclear matrix (Ascoli & Maul, 1991, Dyck et al., 1994, Koken et al., 1994, Weis et 

al., 1994).

Examination of the larger ND10 domains using either light microscopy at high 

magnification, or electron microscopy, reveal a ‘doughnut-like’ structure of these domains 

consisting of a dense fibrillar ring which encompasses a central core (Dyck et al., 1994, 

Weis et al., 1994). These structures are quite large, approximately 0.3p,m in diameter. The 

number per cell varies considerably depending on cell type and other factors, but in general 

10-20 can be located. Hence, they were named ND10 (Ascoli & Maul, 1991), but alternate 

names have also been given including PML oncogenic domains (PODs) (Dyck et al.,

1994), or Kr-bodies (Lamond & Carmo-Fonseca, 1993).

A growing number of constituents have been identified as components of these domains 

these include SplOO (Ascoli & Maul, 1991), PML (Dyck et al., 1994), PIC-1 (Boddy et al.,

1996), HAUSP (Everett et al., 1997), NDP55 (Stuurman et a l ,  1992), LYSP100/Spl40
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(Bloch et al., 1996, Dent et a l ,  1996), Rfp (Cao et a l,  1998) and Int- 6  (Desbois et a l, 

1996). Not all these components are always found in the ND10 domains and some only 

transiently associate with the domains. Details of the ND10 constituents SplOO, PML and 

PIC-1, which have direct relevance for the purposes of this introduction, are discussed in 

greater depth below.

lD l . la  SplOO

The SplOO protein was the first ND10 constituent to be identified. This discovery came as 

a result of studies using autoimmune sera produced from patients with primary biliary 

cirrhosis (Ascoli & Maul, 1991). Furthermore, SplOO was found to firmly bind the nuclear 

matrix (Xie et a l ,  1993). Since then it has been characterised both biochemically and by 

cDNA cloning (Szostecki et a l,  1990, Szostecki et a l ,  1987). A number of alternatively 

spliced isoforms of the protein have also been shown to exist including SpAlt-HMG, 

Spl40 and LYSP100B.

An illustration of the structural and functional domains of these proteins has been provided 

in Figure ID 1.1 a. Features of interest include:

• A sequence with striking similarity to parts of the peptide-binding groove of MHC class 

1 molecules which has been designated MHC-like.

• A region named HSR which represents a highly amplified region in the equivalent gene 

of some mouse populations.

• A transactivating domain which was identified through transfection studies in which 

SplOO fragments fused to a DNA binding domain were cotransfected with a reporter 

plasmid.

• A region overlapping the transactivation domain which was identified as having 

retained weak homology to several transcriptional regulatory proteins, including the 

HIV-1 Nef protein.

• A HNPP box which represents a region with high sequence similarity to an interferon- 

inducible human nuclear phosphoprotein HNPP 1/2.

• A HMG domain which represents an almost complete high mobility group 1 protein 

sequence which have been shown to directly bind to DNA.
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Chapter 1 Introduction

Interestingly, a recent study has suggested a role for SplOO in transcriptional silencing 

(Seeler et al., 1998). In particular, it was demonstrated that the SplOO binds to members of 

the heterochromatin protein 1 (HP1) family of non-histone chromosomal proteins. These 

are involved with transcriptional silencing phenomena known as position effect variegation 

as well as in the proper functioning of the centromere during mitosis (Elgin, 1996, Kellum 

& Alberts, 1995). Overexpression of SplOO led to accumulation of HP1 in these domains. 

Furthermore, they showed that a splice variant of SplOO, which the authors named SP100- 

HMG, concentrated with HP1 in ND10 domains and when bound to a promoter SplOO, 

SP100-HMG and HP1 behaved as transcriptional repressors in transfected mammalian 

cells. As such, it suggests a mechanism by which ND10 may be involved with the control 

and maintenance of chromatin or heterochromatin architecture.

ID 1.1b PML

PML was the second component of ND10 domains to be identified. It exactly colocalises 

with SplOO and is firmly attached to the nuclear matrix. As PML is involved in the 

development of acute promyelocytic leukaemia (APL), the discovery of its localisation to 

ND10 domains prompted much interest in these domains. APL is caused by a 

chromosomal translocation which results in the production of a fusion protein between the 

N-terminus of PML and the retinoic acid receptor alpha (RAR-a) (de The et al., 1991, 

Goddard et al., 1991, Kakizuka et al., 1991, Kastner et al., 1992, Pandolfi et al., 1992). 

The consequence of the expression of this fusion protein is the disruption of the normal 

distribution of the ND10 proteins, from 10-20 discrete structures per nucleus, to a much 

greater number which are distributed both in the cytoplasm and nucleus. It is possible to 

treat this illness using retinoic acid, this results in the proteasome-dependent destruction of 

the PM L-RARa fusion protein, which leads to the restoration of the ND10 distribution and 

normal differentiation of the tumour cells (Dyck et al., 1994, Koken et al., 1994, Weis et 

al., 1994, Yoshida et al., 1996).

Sequence analysis has revealed that the PML gene synthesises a large number of 

alternatively spliced transcripts (Fagioli et al., 1992) which result in the formation of PML 

proteins that range in size from 47-160kD (Chelbi-Alix et al., 1995, Grotzinger et al., 

1996). However, the difference in function of these various forms of PML has yet to be 

understood.

PML belongs to a family of proteins which share an amino-terminal tripartite domain,
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called the RJNG-B-Box-coiled-coil motif (RBCC), characterised by a RING finger, one or 

two additional cysteine-rich regions known as B-box domains and a coiled-coil region 

(Freemont et al., 1991, Lovering et al., 1993, Reddy et al., 1992). The positions of these 

domains and that of the serine rich domain and the nuclear localisation sequence are shown 

in Figure ID 1.1a.

Extensive structure/function analysis on PML has demonstrated that the RING finger is 

both important for the formation of ND10 domains and for mediating PML-PML 

oligomeric interactions (Boddy et al., 1997). However, a complete RBCC motif is 

necessary and sufficient for localisation of PML to ND10 domains (Barlow et al., 1994, 

Borden et al., 1996, Le et al., 1996). Furthermore, the two B-boxes and the coiled-coil 

domain have been shown to be important for interaction with another member of the 

RBCC family, the Ret finger protein (Rfp) (Cao et al., 1998). This is consistent with the 

finding that Rfp is a transient member of ND10 domains. Finally, the serine rich domain is 

speculated to have a regulatory function, which is consistent with the fact that in the 

PML/RARA fusion protein this region is truncated whereas the RBCC motif has been 

retained (de The et al., 1991, Fagioli et al., 1992, Kakizuka et al., 1991).

In addition to Rfp, PML has also been shown to interact with a novel ubiquitin-like protein, 

the PML-interacting clone, or PIC-1 (Boddy et al., 1996). This protein is also a component 

of the ND10 domain and is discussed in greater detail later in the text. Interestingly, recent 

studies have shown that PML is actually covalently modified by PIC-1, which results in the 

formation of several high molecular weight conjugates of PML (Kamitani et al., 1998, 

Muller et al., 1998, Stemsdorf et al., 1997b). It has been suggested that the modification of 

PML by PIC-1 plays an essential part in the formation of ND10 domains (Muller et a l,

1998).

The exact function of PML has yet to be characterised, though several functional studies 

suggest growth and transformation suppressing properties of overexpressed PML in APL 

cells (Ahn et al., 1995), as well as other cell lines (Koken et al., 1995, Le et al., 1996, Mu 

et al., 1994). This is consistent with findings that overexpression of PML in neu oncogene 

expressing NIH/3T3 transformed cell lines caused a marked reduction in the in vivo and in 

vitro growth rates, as well as a reversion of the transformed phenotype (Koken et al., 1995, 

Liu et al., 1995). This role of PML in the control of cell growth and tumourgenesis was 

further supported by a recent study in which the effects of eliminating PML expression
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were observed in mice (Delva et a l ,  1998). However, work by other groups suggests that 

this growth rate regulating function of PML is not observed for all cell lines and under all 

experimental conditions (Stemsdorf et a l,  1997a). PML has also been suggested to 

enhance the effects of various steroid hormone receptors (Guiochon-Mantel et a l, 1995) 

and to act as a transcriptional repressor (Mu et a l,  1994). Therefore, collectively this work 

suggests a role for PML in transcriptional regulation.

lD l .lc  PIC-1

The association of PIC-1 with ND10 domains primarily arose from the discovery of its 

strong and specific interaction with PML (Boddy et a l ,  1996). Antisera raised against PIC- 

1 gave a staining pattern which partially overlapped that of the pattern produced by antisera 

against PML. Interestingly, cDNAs identical to that encoding PIC-1 were discovered 

almost simultaneously by four other laboratory groups designated: SUMO-1 (small 

ubiquitin-related modifier) (Mahajan et a l ,  1997), GMP1 (GAP modifying protein 1) 

(Matunis et a l,  1996), Sentrin (O'Kura et a l,  1996) and UBL1 (ubiquitin-like 1) (Shen et 

a l,  1996).

The PIC-1 protein belongs to the ubiquitin family of proteins, a heterogeneous group of 

proteins which share the ubiquitin-like domain (UbH-domain). The lysine residues, which 

are conserved in ubiquitin and which are required for the normal polyubiquitination, have 

not been conserved in the UbH-domain of PIC-1. Therefore it is unlikely that PIC-1 is 

involved in the normal ubiquitin-dependent pathway of protein degradation.

However, it has been suggested that like ubiquitin PIC-1 acts as a post-translational 

modifier of proteins. Indeed, recent studies have demonstrated that PIC-1 covalently binds 

several proteins, including the mammalian guanosine triphosphate (GTP)ase-activating 

protein RanGAPl, I kappa B alpha and PML (Desterro et a l,  1998, Everett et a l,  1998a, 

Kamitani et a l ,  1998, Mahajan et a l,  1997, Matunis et a l,  1996).

A yeast homologue of PIC-1 has been identified named SMT3 (retaining 73% homology), 

which has been described as a high copy suppressor of mutations in the mitosis fidelity 

protein MIF2 (Meluh & Koshland, 1995), a protein which is involved in mitosis during 

anaphase (B row nera l,  1993).
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1D1.2 Factors that alter ND10 domains

ND10 domains are normally associated with the nuclear matrix, which itself is insoluble 

and non-extractable. However, the domains themselves are dynamic in nature, being 

modulated by a number of factors. These factors can result in changes in size, number, 

morphology and subcellular distribution of the ND10 domains, and sometimes even in 

complete loss of the punctate staining pattern. Factors which effect ND10 morphology and 

composition include: interferon treatment, stress, the cell cycle, and virus infection.

ID 1.2a Interferon treatment alters ND10 composition

Interferons type I (a,P) and type II (y) have been shown to strongly enhance SplOO and 

PML gene expression both at the RNA and protein level (Chelbi-Alix et al., 1995, 

Grotzinger et al., 1996, Guldner et al., 1992, Lavau et al., 1995) with very similar kinetics 

(Grotzinger et al., 1996). In addition, interferon treatment also causes the expression of 

different isoforms of both SplOO and PML, that are not produced in untreated cells.

lD1.2b ND10 distribution is cell cycle regulated

The average number and size of ND10 domains changes during progress through the cell 

cycle (Koken et al., 1995). At the beginning of the cell cycle when the cell is in growth 

arrest (Go) a low number of ND10 domains can be observed, which steadily increases as 

the cell progresses through Gi and then into the S phase when the highest number of ND10 

domains may be observed, as well as a diffuse nuclear form of PML (Koken et al., 1995, 

Terris et al., 1995). It is interesting to note that ND10 domains are found juxtaposed to 

replication domains in the mid to late S phase of the cell cycle (Grande et al., 1996). 

Furthermore, during mitosis PML and SplOO dissociate from each other, PML forming 

large aggregates at the periphery of the mitotic cell and SplOO becomes diffusely 

distributed (Stemsdorf eta l., 1997a).

ID 1.2c ND10 domains are redistributed after stress

Stress factors such as heat shock, heavy metals or other environmental stimuli are known to 

affect the morphology of ND10 domains. For example, heat shock and cadmium ion 

exposure leads to the redistribution of the ND10 domains into hundreds of small dots, 

forming a ‘microspeckled’ pattern (Maul et al., 1995). In contrast to this amino acid
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starvation leads to an increase in size, but a reduction in the number of ND10 domains 

(Kamei, 1996).

lD1.2d Viral factors influence ND10 domains

Work in the past few years has demonstrated that a number of DNA, as well as RNA, virus 

infections result in the modification of ND10 domains. Whether this is a consequence of 

the virus hijacking the host cell machinery or a defence reaction on the part of the cell to 

the invasion is unclear. However, the conservation of this virus-host interaction in a wide 

variety of virus infections suggests it has some fundamental role to play.

DNA viruses:

• Herpesviridae

In particular, the IE gene products of HSV, CMV and EBV interact with the ND10 

domains. In the case of HSV-1 the IE protein Vmwl 10 colocalises with ND10 domains at 

early times in infection and at later stages of infection is responsible for the complete loss 

of ND10 staining (Everett & Maul, 1994, Maul & Everett, 1994). A similar scenario is 

seen for CMV in which ND10 staining is also lost as a result of infection. The IE1 protein 

is found to colocalise with ND10 domains early in infection and at later times cause their 

redistribution. In addition, the IE2 immediate early protein is located adjacent to these 

domains during early times of infection. Interestingly, a recent study has suggested that IE 

transcripts, found adjacent to ND10 domains in HCMV infection, are funnelled into the 

spliceosome assembly factor SC35 domain by IE2, which also recruits some components 

of the basal transcription machinery (Ishov et al., 1997).

The Epstein-Barr virus also expresses a protein EBNA-5 early in infection which 

colocalises with ND10 domains. However, in this case EBNA-5 is homogenously 

distributed throughout the nucleus within the earliest phase of infection and only associates 

with the ND10 domains after the first day of infection. This association does not alter the 

morphology of the ND10 domains. Furthermore, this protein has been found to directly 

bind to the tumour suppressor proteins p53 and pRb and results in their partial 

colocalisation with the ND10 domains (Jiang et al., 1991, Szekely et al., 1993).

40



Chapter 1 Introduction

• Adenovirus

Adenovirus infection also results in the redistribution of ND10 domains. In particular, the 

E40RF3 protein has been shown to redistribute PML, and in part, also the SplOO 

components of the ND10 domains, into fibrous track-like structures (Carvalho et al.,

1995). The E l A oncoprotein also colocalises with these PML-containing fibres for which 

the conserved Rb-binding motif is required.

RNA viruses:

• Human T cell leukaemia virus (HTLV)

This reterovirus is responsible for causing adult T cell leukaemia. It has been found that 

the Tax protein of the virus, which is thought to be one of the key factors in provoking 

transformation of infected cells (Nerenberg et al., 1987), directly binds to a transient 

member of ND10 Int-6 and relocates it to the cytoplasm (Desbois et al., 1996). Hence, it 

has been suggested that this may be an underlying mechanism for the transforming function 

of Tax.

• Influenza A

This virus has been shown to increase the number and intensity of ND10 foci in infected 

HeLa cells, when probing against SplOO (Guldner et al., 1992). This effect is similar to 

that of interferon treatment. However, as only infected cells are affected it suggests this is 

a virus-induced effect.

• Arenavirus

Infection with arenavirus lymphocytic choriomeningitis causes the redistribution of PML 

(Borden et al., 1998). This effect is provoked by the viral Z protein, which is also a 

member of the RING finger family of proteins.

1D1.3 ND10 domains may be sites of early transcription and genome 
replication of DNA viruses

An interesting feature conserved amongst at least four of the ND10 interacting DNA 

viruses investigated so far (SV40, adenovirus, HCMV and HSV-1), is the deposition of 

viral DNA adjacent to the ND10 domains (Ishov & Maul, 1996, Maul et al., 1996). In the 

case of SV40 virus infection replication begins adjacent to the ND10 domains. This is not
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true of adenovirus and HSV-1 infections, in which ND10 domains are redistributed before 

replication. However, when either E40RF3-null adenovirus mutant or Vmwl 10-null 

HSV-1 mutant infections were carried out, in which the ND10 domains were not dispersed, 

the replication compartments were observed adjacent to these nuclear domains. Indeed, a 

recent study has suggested that viral DNA is first deposited adjacent to ND10 domains and 

that subsequently prereplicative sites are formed containing ICP8 which are precursors of 

the replication compartments in which viral DNA is synthesised (Lukonis et al., 1997).

Viral gene expression was not required for the transport of the parental genomes to the 

periphery of the ND10 domains for all four of the viruses mentioned. Collectively these 

studies suggest that early stages of transcription and replication may be occurring at these 

sites.

1D1.4 Contribution of the functional domains of Vmw110 for 
redistribution of ND10 domains

ID 1,4a RING finger

There is some conflict as to the precise role of this domain in ND10 redistribution. The 

most popular theory is that the RING finger is not required for localisation of Vmwl 10 to 

ND10 domains, rather it is required for their dispersion. This is based on the observation 

that infection with mutants of HSV-1, from which the RING finger domain of Vmwl 10 is 

deleted, results in the accumulation of Vmwl 10 in punctate domains, even at late times of 

infection (Everett & Maul, 1994, Maul & Everett, 1994, O'Rourke et al., 1998). Similar 

observations were made from cells transfected with plasmids encoding RING finger 

deleted Vmwl 10.

An alternative view is that this domain is required for the localisation of VmwllO to the 

ND10 domains. This is based on the observation that transfection of cells with plasmids 

encoding mutants of VmwllO, in which the conserved cysteine and histidine residues of 

the RING finger had been substituted, resulted in the transfected proteins producing a more 

nuclear diffuse staining pattern (Lium & Silverstein, 1997, O'Rourke et al., 1998). 

However, it is likely that these mutations cause drastic conformational changes to the 

whole protein and it is these changes which result in the observed loss of interaction with 

the ND10 domains.
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ID 1.4b Multimerisation domain

The C-terminal residues that are involved in formation of Vmwl 10 multimers are required 

for interaction with ND10 domains. This is based on the observation that transfection of 

plasmids encoding VmwllO C-terminal deletion mutants, or Vm wllO  C-terminal 

truncation mutants, resulted in the transfected proteins producing a predominately nuclear 

diffuse staining pattern (Chen et al., 1991, Everett, 1988a, Mullen et al., 1994).

However, the C-terminal does not appear to be sufficient for localisation of VmwllO to 

ND10. This was first suggested by the observation that fusion proteins, consisting of the 

C-terminus of Vm wllO and (3-Galactosidase ((3-Gal), only conferred either diffuse or 

micropunctate staining in cells transfected with plasmids encoding these proteins (Everett 

& Maul, 1994). Additionally, a study which involved the use of hybrids of the N-terminus 

of Vm wl75 and the C-terminus of VmwllO in transfection assays showed that the C- 

terminus of V m w llO  was not sufficient for the translocation of the fusion protein to the 

ND10 domains (Mullen et al., 1994). Therefore, it seems likely that more than one domain 

of Vmwl 10 is involved with its interaction with ND10 domains.

ID 1.4c Nuclear localisation sequence

Transfection of a VmwllO mutant, in which a region inclusive of the NLS was deleted, 

resulted in diffuse cytoplasmic fluorescence, and for a proportion of the cells PML could 

also be observed relocated to the cytoplasm (Everett & Maul, 1994). As such, it was 

suggested PML cycles between the nucleus and cytoplasm.

1D2 Vmw110 is required for the proteasome-dependent 
degradation of several picylated cellular proteins including PML, 
during HSV-1 infection

Disruption of ND10 domains during HSV-1 infection correlates with the loss of several 

high molecular weight isoforms of PML (Everett et al., 1998a). The isoforms of PML that 

are depleted probably correspond to those of PML-PIC1 conjugates. This is dependent 

both on Vm wl 10 and active proteasomes. As such, it has been suggested that Vmwl 10 is 

responsible for the targeting of PML conjugates to the proteasome for degradation and that 

this results in the disruption of ND10 domains observed during HSV-1 infection. The 

RING finger domain of VmwllO was essential for this process, loss of which resulted in 

the stabilisation of the high molecular weight PML isoforms. Vmwl 10 was also shown to
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be responsible for the elimination of several other conjugated proteins which were 

produced as a result of transfection of a plasmid expressing PIC-1.

1D3 Interactions of Vmw110 with cellular proteins

In an attempt to investigate the molecular mechanism by which Vmwl 10 functions, several 

groups set out to identify cellular proteins that interact with VmwllO. Using a 

combination of GST ‘pull-down’ and coimmunoprecipitation assays Everett and co­

workers identified a novel cellular protein, named HAUSP, that strongly and specifically 

bound to Vmwl 10 (Everett et al., 1997, Meredith et al., 1995, Meredith et al., 1994). The 

role of this interaction for HSV-1 infection has been studied for the purposes of this thesis. 

As such, details established at the start of this investigation relating to this interaction are 

described in Section IE.

The yeast two hybrid system has also been used to identify cellular proteins that interact 

with VmwllO. The result of these studies suggested that VmwllO interacts with Cyclin 

D3, through sequences in its second exon, and elongation factor 15, through sequences in 

its C-terminal (Kawaguchi etal., 1997a, Kawaguchi et al., 1997b).
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1E Vmw110 strongly and specifically interacts with a USP 
dubbed HAUSP

1E1 Evidence for interaction between Vmw110 and HAUSP

HAUSP was first identified as a 135kD protein that coimmunoprecipitated alongside 

V m w llO  (Meredith et al., 1994). In particular, Vm wllO  was immunoprecipitated from 

infected cell extracts as a fast sedimenting complex composed of itself and this 135kD 

cellular protein. These results were supported by further immunoprecipitation experiments 

in which exogenously purified Vmwl 10 was added to lysates of a number of different cell 

types, including neuronal (neuroblastoma ND7) and non-neuronal (BHK and HeLa) cell 

lines.

The GST ‘pull-down’ technique was also used to support the authenticity of this 

interaction. A GST fusion protein encoding the C-terminal residues 594-775 of VmwllO 

also interacted with a 135kD cellular protein. Depletion binding experiments verified that 

the same Vmwl 10-associated protein was identified using these different experimental 

strategies. These experiments showed that prior depletion of the 135kD cellular protein 

from the cell extract, by VmwllO immunoprecipitation, resulted in a dramatic decrease in 

the amount of the 135kD protein which bound to the GST fusion protein encoding residues 

594-775 of Vmwl 10 and vice versa.

1E2 Cloning and sequence analysis of cDNA encoding HAUSP

Peptide sequences of the 135kD protein were derived by purification of the protein from 

large scale GST ‘pull-down’ assays using a GST fusion protein encoding Vmwl 10 residues 

594-775. These sequences were used to screen a HeLa cDNA library and resulted in the 

isolation of cDNAs encoding the Vmwl 10-associated protein (Everett et al., 1997). 

Analysis of the cDNA sequence revealed an ORF of 1102 residues which was predicted to 

encode a protein of 128kD. Screening of the NCBI nr database demonstrated that this 

Vmwl 10-associated protein contained only two regions of high sequence homology with 

other proteins. These conserved regions matched the sequence requirements for the USP 

family (Baker et al., 1992, Papa & Hochstrasser, 1993). For this reason the protein was 

renamed HAUSP (herpesvirus-associated ubiquitin specific protease).

Furthermore, two potential yeast homologues have been identified, the Saccharomyces 

cerevisiae protein, GenBank accession number SC995X6, (which has 59% similarity and
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34% identity) and the Schizosaccharomyces pombe protein, GenBank accession number 

Q09879, (which has 57% similarity and 35% identity). The apparent identification of 

HAUSP homologues in yeast and mammalian cells suggests that this protein has been 

conserved throughout eukaryotic evolution, which implies that it has a fundamental role for 

cell biology.

As part of the requirements of this thesis further sequence analysis of the cDNA sequence 

has been carried out, in order to identify regions potentially important for protein-protein 

interactions, and are included in Section 3C2.

1E3 HAUSP is expressed in a wide variety of cells and several 
alternative spliced isoforms may exist

Results of screening of the NCBI dbest database of expressed sequence tags, with HAUSP 

encoding cDNA, identified several precisely matched entries with cDNAs which were 

derived from human brain, liver, placenta, lung and melanocyte cells. This suggested that 

HAUSP is expressed in a variety of cell types.

The possibility of several alternatively spliced isoforms of HAUSP existing was suggested 

from northern blotting analysis which revealed the presence of two transcripts. Both 

transcripts were found in low abundance which suggests that levels of HAUSP expression 

are tightly controlled. The existence of HAUSP isoforms was supported by 

immunoprecipitation experiments using anti-HAUSP rabbit serum which reproducibly 

precipitated, in addition to the major HAUSP protein, a protein of slightly higher molecular 

weight than the original HAUSP band.

1E4 Definition of Vmw110 sequences required for interaction with 
HAUSP

In order to identify the region of VmwllO required for interaction with HAUSP, GST 

‘pull-down’ assays were performed using GST fusion proteins containing selected 

segments of VmwllO and their ability to ‘pull-down’ HAUSP assessed (Meredith et al., 

1994). This work demonstrated that a GST fusion protein encoding VmwllO sequences 

594-775 was able to ‘pull-down’ HAUSP, but a GST fusion protein encoding VmwllO 

residues 633-775 was unsuccessful. This implied that the VmwllO region between 594- 

633 was required for interaction with HAUSP.
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Two further approaches were used to define the region of Vmwl 10 required for interaction 

with HAUSP (Meredith et al., 1995). They involved investigating the effect of deleting 

specific regions of Vmwl 10 on its ability to coimmunoprecipitate HAUSP from cell 

lysates. The first approach consisted of using a mutant of HSV-1 in which residues 594- 

633 of Vmwl 10 had been deleted. The result of this work showed that the expressed 

Vmwl 10 mutant protein, was unable to coimmunoprecipitate HAUSP. The second 

approach involved using Vmwl 10 proteins which had been purified from the baculovirus 

expression system, in which either residues 594-633, 680-720, or those encoding the RING 

finger, had been deleted. The results of this work supported the previous findings that 

Vmwl 10 residues 594-633 are required for interaction with HAUSP.

Furthermore the mutant of Vmwl 10, in which residues 594-633 had been deleted, was still 

able to multimerise, which suggests that sequences required for multimerisation and those 

required for binding to HAUSP are separate.

Interestingly, residues 600-633 of Vmwl 10 have been conserved in the equivalent protein 

of HSV-2 (retaining 70% homology). However, this is not the case for the corresponding 

proteins derived from other herpesviruses. Therefore, Vmwl 10 residues important for 

interaction with HAUSP probably have a function specific to HSV.

During the final preparations of this thesis work was published which further defined the 

region of Vmwl 10 required to interact with HAUSP (Everett et al., 1999). This study 

demonstrated that residues essential for binding to HAUSP in vitro lie between residue 618 

and residue 632. Moreover, substitution of specific residues within this crucial region 

resulted in the identification of charged residues that were essential for HAUSP binding in 

vitro. Coimmunoprecipitation experiments were also carried out using cell extracts 

derived from cells infected with mutants of HSV-1 which carried the above mentioned site 

specific mutations in the Vmwl 10 encoding region. Results from these experiments 

supported those observed using the GST ‘pull-down’ technique. It is also worth noting that 

the effects of substituting these Vmwl 10 residues on the role of Vmwl 10, for 

transactivation, viral growth, and redistribution of ND10, were similar to those described 

below when the effects of removing residues 594-633 of Vmwl 10 were tested.
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1E5 Role of the HAUSP interaction domain in HSV-1 infection

1E5.1 Role of the HAUSP interaction domain for the transactivation 
function of Vmw110

Transfection studies were carried out using a mutant of Vmwl 10 in which residues 

required for interaction with HAUSP had been deleted. The results showed that removal of 

this region caused a significant reduction in the levels of gene expression activation 

observed in synergy with Vmwl75 (Everett, 1988a, Everett et al., 1999).

1 E5.2 Role of the HAUSP interaction domain in viral growth

Infection of cells with the HSV-1 mutant, in which the HAUSP interaction domain had 

been deleted, resulted in a reduction of viral growth, as compared with wild type HSV-1 

infection (Everett et al., 1999, Meredith et al., 1995). However, the reduction to viral 

growth was not as severe as observed with mutants in which either the RING finger 

domain, or the complete C-terminal region of Vmwl 10 had been deleted.

1E5.3 Role of HAUSP interaction in the redistribution of ND10 
domains

Results from indirect immunofluorescence experiments, using anti-HAUSP rabbit serum, 

show that HAUSP is predominantly a nuclear protein, present in a minority of ND10 

(Everett et al., 1997). Interestingly, infection of cells with HSV-1 leads to an increased 

association of HAUSP with ND10 domains at early times of infection. This is best 

observed in cells infected with the HSV-1 RING finger deletion mutant in which the PML 

containing domains are not disrupted. In these cells Vmwl 10, HAUSP and PML are seen 

to colocalise in the ND10 domains. As such, HAUSP is suggested to be a transient 

member of ND10 for whom interaction with ND10 domains may be dependent on cell 

status.

To test the significance of the HAUSP interaction domain of Vmwl 10 for the 

redistribution of ND10 domains immunofluorescence studies were performed on cells 

infected with a HSV-1 mutant in which this region had been deleted (Everett et al., 1999, 

Meredith et al., 1995). Examination of these cells showed that introduction of this 

mutation to Vmwl 10 did not alter the ability of Vmwl 10 to colocalise with ND10 

domains. However, in contrast to results using wild type HSV-1, colocalisation of HAUSP
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with PML was no greater in infected cells than that seen in uninfected cells. Furthermore, 

although in most cases infection with this HSV-1 mutant resulted in the complete 

disruption of ND10 domains, as seen using wild type HSV-1, a significant number of cells 

were observed in which a few ND10 domains were retained. A further difference which 

was observed from that of wild type infection was that in some cases the Vmwl 10 was 

retained in large cytoplasmic foci at later times of infection. However, results from such 

experiments varied depending on incubation time, cell type and from cell to cell which 

means it was hard to compare the relative kinetics of ND10 disruption with a high level of 

accuracy.
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1F Aims of the work presented in this thesis:

Vmwl 10 is an IE protein of HSV-1 that is thought to be an important factor for both the 

lytic and latent stages of infection. HAUSP is a novel member of the USP family that was 

identified to strongly and specifically interact with Vmwl 10. The studies described in this 

thesis were initiated to gain a better understanding of the roles of HAUSP within the cell 

and also for HSV-1 infection.

The cellular role of HAUSP was investigated using three strategies; firstly to investigate 

the potential deubiquitinase activity of the protein using an in vivo bacterial assay; secondly 

to observe the effect of transient expression of HAUSP in eukaryotic cells and thirdly to 

search for cellular proteins that interact with HAUSP, using GST fusion proteins encoding 

residues of HAUSP as bait in GST ‘pull-down’ assays.

The role of the interaction of HAUSP with Vmwl 10 for HSV-1 infection was investigated 

using two further strategies. The first being to define the region of HAUSP required for 

interaction with Vmwl 10 using a combination of GST ‘pull-down’ and 

immunoprecipitation assays. Mutants of HAUSP from which the critical region had been 

removed could then be produced and tested in functional assays. Secondly, the effect of 

Vmwl 10 binding to HAUSP on its normal cellular activities was investigated.
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MATERIALS AND METHODS CHAPTER 2

2A Materials

2A1 Plasmids

The following plasmids were provided by the acknowledged authors:

pGEX2T: This vector is designed for inducible, high-level bacterial expression of proteins 

or protein fragments as fusions with Schistosoma japonicum  glutathione S-transferase 

(GST). Expression of GST fusion proteins is under the control of the IPTG-inducible tac 

promoter and an internal lac f 1 gene which ensures that expression is inducible when 

transfected in certain strains of E.coli. It was obtained commercially from Pharmacia.

pGEX2TN3: (Meredith et al., 1994) This was derived from pGEX2T by insertion of a 

DNA fragment containing NcoI-EcoRl-HindUl restriction sites between the BamHl and 

EcoKL restriction sites downstream of the GST coding sequence, thus removing the original 

BamHl, Smal and EcoRI restriction sites.

pGEX2TNMCR: (Meredith et al., 1994) This was derived from pGEX2TN3 by insertion 

of the entire pUC19 multiple cloning site between the EcoBl and HindlH restriction sites.

pGEXE52: (Meredith et al., 1994) This plasmid encodes GST sequences fused to codons 

594-775 of Vmwl 10. The normal translational termination signal for Vmwl 10 is present.

pGEXE58: (Meredith et al., 1994) This plasmid is similar to pGEXE52 and encodes GST 

sequences fused to codons 633-775 of Vmwl 10.

pT7E52: (Meredith et al., 1995) This plasmid expresses Vmwl 10 codons 594-775 as a 

non-fusion protein from the T7 promoter, in a plasmid based on pET8C.

pT7E58: (Meredith et al., 1995) This plasmid expresses Vmwl 10 codons 633-775 as a 

non-fusion protein from the T7 promoter, in a plasmid based on pET8C.

p i l l :  (Everett, 1987a) This encodes the entire Vmwl 10 coding region under the control of 

its natural promoter in a pUC9 vector.

pT7110: (Everett et al., 1991) This plasmid contains a cDNA version of the entire coding 

sequence of Vmwl 10 under the control of a T7 promoter.
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pT7 111: (R.Everett unpublished) This plasmid is a derivative of pT7110 which has been 

truncated in the 3’ region to remove irrelevant sequences. Both pT7111 and pT7110 

express full length Vmwl 10 in E.coli.

pGEX4222: (R.Everett unpublished) This plasmid expresses GST sequences fused to 

residues 26-1102 of HAUSP.

pT7135: (Everett et al., 1997) This plasmid expresses HAUSP under the control of an 

IPTG-inducible T7 promoter, in a pBR322 Ampr replicon. It was derived in several stages. 

The first stage was the linkage of appropriate fragments from overlapping cDNAs. After 

the introduction of an Ndel restriction site at the presumed initiating ATG codon by PCR 

mutagenesis the complete HAUSP coding sequence was inserted into the T7 expression 

plasmid pET3a (a pBR322 Ampr replicon, obtained commercially from Novagen) using the 

Ndel restriction site to place the initiating ATG at the optimal position for expression.

pT7135His: (M.Kathoria unpublished) This plasmid expresses the entire HAUSP coding 

sequence as a fusion protein with a His tag at the N-terminus under the control of the T7 

promoter. It was derived by ligation of the Ndel-HindlQ. fragment of pT7135 into the Ndel- 

HindUl restriction sites of the pET28a vector (obtained commercially from Novagen).

pET24al35: (R.Everett unpublished) This plasmid expresses the entire HAUSP coding 

sequence under the control of an IPTG-inducible T7-driven promoter, in a pBR322 Kmr 

replicon and contains a FI origin so that infection with helper phage would result in virions 

containing single-stranded DNA that corresponds to the coding strand. It was derived by 

ligation of the Ndel-HindUl fragment of pT7135 into the Ndel-HindUl restriction sites of 

the pET24a vector (obtained commercially from Novagen).

pAC-M-P-gal: (Baker et al., 1992) This plasmid expresses the ubiquitin-methionine-p- 

galactosidase (Ub-M-p-gal) fusion protein under the control of a yeast promoter in a 

pACYC184 Cmr replicon and was kindly provided by R.T. Baker.

pAC-R-p-gal: (Baker et al., 1992) This plasmid expresses the ubiquitin-arginine-p- 

galactosidase (Ub-R-p-gal) fusion protein under the control of a yeast promoter in a 

pACYC184 Cmr replicon and was kindly provided by R.T. Baker.
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pRB105: (Baker et al., 1992) This plasmid expresses the yeast UBP2 USP enzyme from an 

IPTG-inducible tac promoter in a pKK-based plasmid (pBR322 Ampr replicon) and was 

kindly provided by R.T.Baker.

pRB307: (Baker et al., 1992) This plasmid expresses the Ub-GST fusion protein under the 

control of an IPTG-inducible tac promoter in a pKK-based plasmid (pBR322 Ampr 

replicon) and was kindly provided by R.T.Baker.

pACYCHAUSP: (Everett et al., 1998a) This plasmid expresses HAUSP under the control 

of a T7 driven IPTG-inducible promoter in a pACYC184 Cmr replicon.

pACYCUBP2: (Everett et a l,  1998a) This plasmid expresses yeast UBP2 under the control 

of a yeast promoter in a pACYC184 Cmr replicon.

pJ7£2: (Morgenstem & Land, 1990) This plasmid enables easy insertion and subsequent 

expression of exogenous genes in a wide variety of mammalian cells. It comprises a 

mammalian transcription unit composed of a simian CMV IE94 promoter flanked 3’ by a 

polylinker, an intron and a transcriptional termination signal which is linked to a pBR322 

derived backbone.

2A2 Enzymes

Restriction enzymes were obtained from Boehringer Mannheim or New England Biolabs. 

DNasel, RNase A and lysozyme were purchased from Sigma and T4 polynucleotide kinase, 

T4 DNA ligase, calf intestine phosphatase, E.coli DNA polymerase I Klenow fragment and 

proteinase K from Boehringer Mannheim. PCR was carried out using Thermus aquaticus 

DNA polymerase (Taq polymerase) obtained from Boehringer Mannheim. T4 DNA ligase 

for use in site-directed mutagenesis was purchased from New England Biolabs.

2A3 Synthetic oligonucleotides

Oligonucleotides were either ordered directly from Cruachem or they were synthesised on 

site using a Biosearch model 8600 DNA synthesiser or a Cruachem PS250 automated 

synthesiser by Dr. J.McLauchlan, Mr. R. Adams, Mr. R.Reid, Mr. A.Orr, or Mr. D.McNab.
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2A4 Bacteria (E.coli strains)

The E.coli strain D H 5a (Fd end A l  h sd R ll  (rk'mk+) supEAA thil recAl gyrA  (Nalr) relAl 

AilacTXA-argF) U169 (§80dlacA(lacZ)M  15) was used for maintenance and propagation 

of plasmid DNA.

Strain BL21 (DE3) pLysS (F  ompT r'Bm'e) was used for the expression of proteins whose 

expression is under control of the T7 promoter: the integrated lysogenic X bacteriophage 

DE3 has an IPTG-inducible promoter from which T7 RNA polymerase is expressed and 

the plasmid pLysS encodes T7 lysozyme and also a gene conferring Cmr. Protein 

expression from pGEX plasmids utilised this BL21 E.coli strain.

The E.coli strain NovaBlue (DE3) (endAl h s d R llfa n m k \2+) supE44 thi- 1 recAl gyrA96 

relA l lac[F' pro A +B+ lacfZ A M  15::TnlO] (DE3) was used for the standard deubiquitinase 

assays. E.coli bacteria were used for the deubiquitinase assays as they lack the ubiquitin 

degradation pathway and thus there would be no problems of background deubiquitinase 

activity. There are several reasons for the suitability of this strain over other E.coli strains. 

Firstly, NovaBlue bacteria produce a truncated endogenous p-gal and as such it is possible 

to distinguish this from an exogenously expressed full length p-gal construct. Also, 

NovaBlue (DE3) bacteria carry the integrated lysogenic X bacteriophage DE3 leading to 

high-levels of expression from T7-driven plasmids, as well as the lacfi repressor which 

provides tighter control over basal expression of IPTG-inducible promoters than the wild 

type repressor in other strains.

The CJ236 E.coli strain F ’ cat (=pCJ105:M13sCmr)/#wf ung'1 thi-1 relA spoTl mcrA was 

used to aid synthesis of uracil-enriched single-stranded plasmid DNA which is the first 

stage in the production of site specific mutants. The CJ236 strain encodes a d u t1 mutation 

that leads to a deficiency in the dUTPase enzyme (that normally converts dUTP to dUMP). 

This causes a build up of the dUTP intracellular pool, leading to the increased 

incorporation of dUTP in place of dTTP in DNA. The u n g 1 mutation in the CJ236 strain 

also enhances the uracil enrichment of DNA. This mutation leads to a deficiency of the 

wild type uracil-N-glycosylase enzyme that would normally remove uracil residues which 

have been incorrectly incorporated in DNA.
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2A5 Bacterial culture media

The D H 5a strain was grown in Lauria-Bertani medium (LB) (lOg NaCl, lOg 

Bactopeptone, 5g yeast extract in 1L water, pH7.5) and all other strains in 2YT broth (5g 

NaCl, 16g Bactotryptone, lOg yeast extract in 1L water). Agar plates were made with 

1.5% (w/v) agar in LB. Where necessary, media and agar plates were supplemented with 

antibiotics: 70|ig/ml Amp for bacteria harbouring plasmids with Ampr, 25|ig/ml Cm for 

strains harbouring the pLysS plasmid and 30pg/ml Km where the bacteria harboured 

plasmids with Kmr.

2A6 Viruses

Wild type herpes simplex virus strain 17 Syn+ was used for the production of wild type 

Vmwl 10 (Brown et al., 1973). The D12 HSV-1 virus was used for the production of a 

Vmwl 10 mutant in which residues essential for interaction with HAUSP were not present 

(Meredith et al., 1995).

CJ236 R408 helper phage (obtained commercially from New England Biolabs) was used 

during the site-directed mutagenesis of plasmid DNA for the preparation of single-stranded 

plasmid DNA. The CJ236 R408 helper phage was used to infect CJ236 bacteria into 

which plasmid DNA had been transformed. This helper phage provided the necessary 

replicative enzymes and phage coat proteins to enable replication and encapsidation of 

single-stranded DNA from the FI origin site, into phage particles which accumulated in the 

culture supernatant.

2A7 Cells and tissue culture media

All cell culture media were obtained from Gibco.

WS HeLa cells (obtained from Dr. W.Schaffner, Zurich), an epithelial cell line, were 

grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 2.5% new 

bom calf serum, 2.5% foetal calf serum (FCS) and lOOunits/ml penicillin and lOOpg/ml 

streptomycin.

Hep2 cells (obtained from the cytology department of the Institute of Virology), an 

epithelial cell line, were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% FCS and lOOunits/ml penicillin and 100|ig/ml streptomycin.
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2A8 Antisera and monoclonal antibodies

The anti-Vmwl 10 rabbit polyclonal antiserum r95 was obtained from Dr. R.Everett. It was 

prepared after immunisation with a bacterially expressed protein which encompasses 

Vmwl 10 residues 105-211 (Everett et al., 1993b).

The anti-VmwllO mouse monoclonal antibodies (MAbs) 11060 and 10503 were obtained 

from Dr. A.Cross. They were raised against the purified baculovirus-expressed HSV-1 

Vmwl 10 polypeptide (Everett et al., 1993b). The MAb 11060 recognises an epitope 

between residues 20-105, whereas the MAb 10503 recognises an epitope between residues 

633-775.

The anti-HAUSP rabbit polyclonal antisera r201 and r206 were obtained from Dr. A.Cross. 

They were generated by immunisation of rabbits with branched chain peptides, r206 was 

raised against a peptide including residues 26-41 of HAUSP (R.Everett unpublished) and 

r201 was raised against a branched chain peptide including residues 1087-1102 of HAUSP 

(Everett et al., 1997).

The anti-HAUSP MAb antiserum 16613 was obtained from Dr. A.Cross. It was raised 

against a purified GST fusion protein which encodes HAUSP residues 1-193 (R.Everett 

unpublished).

The anti-pp65 MAb was purchased commercially from Capricorn Products Inc.

The anti-PML MAb 5E10 was kindly provided by Professor Roel Van Driel (Amsterdam) 

(Stuurman et al., 1992).

The anti-PML rabbit polyclonal antiserum r8 was kindly provided by Dr. Paul Freemont, 

ICRF (Imperial Cancer Research Fund) London (Boddy et al., 1996).

The anti-p-gal rabbit polyclonal antiserum r 12741 was kindly provided by H.Marsden 

(MRC Virology Institute).

Protein A horse radish peroxidase (HRP) conjugate, goat anti-rabbit IgG whole molecule 

peroxidase conjugate, anti-mouse IgG whole molecule peroxidase conjugate, sheep anti­

mouse (SocM) immunoglobulin, TRITC-conjugated goat anti-rabbit immunoglobulin and 

FITC-conjugated goat anti-mouse immunoglobulin were supplied by Sigma.

56



Chapter 2 Materials and Methods

2A9 Radiochemicals

Radiochemicals were purchased from Amersham at the following specific activities: 

a 35S dATP 1000-1500Ci/mmol (12.5fiCi/|il)

35S L-methionine 800Ci/mmol (10|iCi/jil)

2A10 Solutions

Recipes of general solutions have been listed below, the details of all other solutions have 

been included either in the text or at the end of the relevant section.

Formamide dyes: lOmM EDTA, lmg/ml xylene cyanol FF, 1 mg/ml bromophenol blue

in formamide

10X Loading buffer for agarose gels and non-denaturing polyacrylamide gels: IX TBE,

1% SDS, 50% glycerol, lmg/ml bromophenol blue

PBS (A): 170mM NaCl, 3.4mM KC1, lOmM Na2H P04, 1.8mM KH2P 0 4, pH7.2

PBS-complete: PBS(A) plus CaCl2.2H20  and MgCl2.6H20  at lg/L

STET: 8% sucrose, 5% Triton-XlOO, 50mM EDTA (pH8), 50mM Tris.HCl (pH8)

20X TBE : 2.5M Tris, 0.8M boric acid, 54mM EDTA

TE: lOmM Tris.HCl (pH7.5), ImM EDTA pH8

2A11 Chemicals and reagents

All chemicals and reagents were purchased from BDH Chemicals UK or Sigma Chemical 

Company, unless otherwise stated below or in relevant sections:

Amersham Life Science: rainbow markers

Beecham Research: ampicillin

Bio-Rad: ammonium persulphate (APS), gelatin, N^N^N'-tetramethylethylenediamine 

(TEMED), coomassie brilliant blue, gelatin
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Boehringer Mannheim: protease inhibitors, ADNA, DOTAP liposomal transfection

reagent

Boston Biochem Inc: |3-lactone-lactacystin

CalBiochem: MG 132, lactone-lactacystin

Difco: agar, bactotryptone, yeast extract

Fisons: ammonium hydroxide, acetone

Fluka: formamide, formaldehyde

GibcoBRL: IPTG

Marvel: dried skimmed milk

Melford Laboratories Ltd: caesium chloride

National Diagnostics: 30% acrylamide (2.5% cross-linker)

Pharmacia: rATP, dNTPs, ddNTPs

Prolabo: boric acid, butanol, chloroform, ethanol, glacial acetic acid, glycerol,

hydrochloric acid, isopropanol methanol

Scotlab: acrylamide: N, N'-methylene-bis-acrylamide 19:1

UKC Chemical Laboratories: Citifluor
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2B Methods

2B1 Nucleic acid manipulation and cloning procedures

2B1.1 Restriction enzyme digestion of DNA

Restriction enzyme digestion of DNA was carried out at 37°C (or the temperature specified 

by the supplier), for 2hr in 20|ul reaction volumes of IX buffer (supplied with the enzyme), 

using 1 unit of enzyme per 0.5jng DNA to be digested per hour. The buffer system used 

most frequently was the Boehringer Mannheim A, B, H, L, M system and at all other times 

New England Biolabs NEBuffer 1, 2, 3, 4 system was used. Usually, 0.5|ig DNA was 

digested for diagnostic analysis and 5-20pg for isolation of specific restriction fragments. 

Samples (5|nl) of plasmid DNA prepared by the miniprep method (see Section 2B1.7) were 

digested in the presence of 50jig/ml RNase A.

2B1.2 End repair

To enable efficient ligation it was often necessary to modify the ends of the digested DNA 

fragments. Protocols describing how such modifications were made have been detailed 

below.

On completion of the end repair procedure the modified DNA was purified by a method 

involving several stages. The first stage was the heat inactivation of enzymes for lOmin at 

70 ° C. A phenol extraction was then performed on the sample. This involved the addition 

of an equal volume of TE-saturated phenol to the sample followed by vortexing for lOsec. 

The aqueous and phenol phases were then separated by centrifugation at 13,000rpm for 

2min at RT. The upper aqueous phase containing the DNA was then transferred to a fresh 

tube. A chloroform extraction was then performed on the sample in a similar manner to 

the phenol extraction except that chloroform was used in the place of phenol. The DNA 

was then precipitated using the ethanol precipitation method. This involved the addition of 

2.5 volumes of 100% ethanol and 1 /20th the volume of NaCl to the sample which was then 

left at -20 °C for 30min. The DNA was pelleted by centrifugation at 13,000rpm for 5min 

at 4 ° C and the DNA pellets were washed in 80% ethanol and resuspended in water before 

use in ligation reactions or storage at -20 ° C.
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2B 1.2a Blunt ending of DNA fragments

Fragments generated by enzymes which produce 5’ overhangs sometimes required 

modification (i.e. blunt ended) to enable ligation. DNA was blunt ended by addition of 

dNTPs (at 50|iM per dNTP) and 2 units of DNA polymerase I large Klenow fragment to 

the digestion mixture. This reaction was then left for 20-30min at 37 °C.

2B1.2b Phosphate removal from 5’ ends

Removal of the 5’ phosphates of vector fragments with complementary ends produced by 

digestion with a single restriction enzyme was often necessary to prevent re-circularisation 

of the vector fragment upon ligation. This was done by incubation of the digestion mixture 

with 1 unit of calf intestinal alkaline phosphatase in the appropriate buffer for 20-30min at 

37 ° C .

2B1.3 Purification of synthetic oligonucleotides

Synthetic oligonucleotides were produced by the phosphoramidite method (Section 2A3) 

using 200pM synthesis columns. To remove the oligonucleotide from the column 5ml 

disposable syringes were attached to both ends of the column with one containing 1.5ml 

ammonium hydroxide (0.88 specific gravity), and the solution pushed through the column 

in 200jll1 aliquots with 20min incubation between each fresh addition. After incubation 

with the final aliquot, the 1.5ml solution was pushed back and forth through the column 4- 

5 times to mix the aliquots thoroughly. The oligonucleotide solution was incubated in a 

tightly sealed tube for 5hr at 55°C to remove protecting groups. Following lysophilisation, 

the oligonucleotide was dissolved in 200|il water. An equal volume of formamide plus 

IOjllI formamide dyes were added before boiling for 5min prior to electrophoresis on a 12% 

denaturing polyacrylamide gel (Section 2B1.4d).

Oligonucleotides were purified by passive elution from gel slices excised from the gel 

following visualisation of the DNA from U.V. (ultra violet) transillumination; the 

oligonucleotides could be visualised at 254nm as dark shadows against a fluorescing TLC 

(thin layer chromatography) plate. Gel slices were crushed and the DNA eluted into 400|il 

IX TE overnight at 3 7 0 C in a shaking incubator. The liquid phase, containing the DNA, 

was separated from the gel fragments by filtering the mixture through siliconised glass 

wool. The DNA was purified by an ethanol precipitation and pelleted by centrifugation for
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lOmin (13,000rpm). The pellet was resuspended in 100|il of water, ethanol precipitated 

again and the final DNA pellet was washed in 80% ethanol, lysophilised and resuspended 

in water. The DNA concentration was determined by measuring the absorbance at 260nm 

on a Beckman DU-62 spectrophotometer, assuming that for short oligonucleotides (less 

than 30 nucleotides) lOD A 2 6 0  = 20pg/ml.

2B 1.4 Electrophoretic separation and purification of DNA fragments

2B1.4a Non-denaturing agarose gels

DNA fragments produced by restriction enzyme digestion or PCR were resolved by non­

denaturing gel electrophoresis. Horizontal slab gels approximately 0.5cm thick were 

utilised and samples were loaded following addition of the relevant amount of agarose gel 

loading buffer. Appropriate size markers were always run on the gels: HpaU digested 

pBR322 gave fragments in the range 27-622bp, while X DNA digested with HindHl gave 

fragments of 0.55-23.lkb. For separation of fragments over lOObp, 0.5-2% agarose gels 

made up in IX TBE were used and run 12V/cm in IX TBE buffer. Following 

electrophoresis, the gels were stained in lp,g/ml EtBr (ethidium bromide) solution followed 

by rinsing the gel three times with water. DNA was then visualised under U.V. light 

(normally short wave, but long wave was used for preparative gels). Photography was 

carried out using The Imager (Appligene).

2B 1.4b DNA purification from agarose gels

Agarose blocks containing appropriate DNA fragments were excised from gels under long­

wave U.V. using a U.V. Products Inc. transilluminator and the DNA recovered using a 

commercial kit, GENECLEANII (BIO101)l Inc., La Jolla, CA. The kit contains a silica 

matrix which binds DNA in the presence of high concentrations of sodium iodide 

(Vogelstein & Gillespie, 1979).

The IX TBE gel slice was weighed to estimate its volume and cut into approximately 2mm 

cubes to facilitate gel dissolution in 4.5 volumes Nal solution and 0.5 volumes TBE 

modifier. This sample was incubated at 5 5 0 C until the gel slice was dissolved. The silica 

matrix was then added (5jll1 for up to 5(Xg DNA) and the mixture vortexed and left at RT 

for 5-10min. Following a 5-10sec centrifugation, the silica matrix pellet was washed twice 

in 500|il ‘NEW ’ wash and allowed to air dry for 5min at RT. The DNA was then eluted
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into lOjil water by mixing the washed pellet with water and incubating the sample at 55 ° C 

for 5min. The matrix was pelleted and the supernatant containing the DNA transferred to a 

fresh tube. A second elution of DNA from the silica matrix was then carried out and the 

10|il supernatant mixed with the first elution and stored at -20 ° C.

2B 1 Ac Non-denaturing polyacrylamide gels

5-8% Vertical non-denaturing polyacrylamide (acrylamide:N,N’-methylene-bisacrylamide 

19:1) gels containing IX TBE, were used to resolve DNA fragments between 50-200bp. 

Polymerisation was initiated by adding 0.01 volumes 10% APS and 0.001 volumes 

TEMED. Samples were loaded following addition of the relevant amount of gel loading 

buffer and run in IX TBE in a kit manufactured in house at up to 16V/cm. DNA fragments 

were visualised using the EtBr staining method described in Section 2B1.4a.

2B 1,4d Denaturing polyacrylamide gels

Vertical denaturing polyacrylamide (acrylamide:N,N’-methylene-bis-acrylamide 19:1) gels 

containing 8M urea and IX TBE were used to resolve the products of DNA sequencing 

reactions and to purify synthetic oligonucleotides. Polymerisation was initiated by adding 

0.01 volumes 10% APS and 0.001 volumes TEMED.

DNA sequencing gels (0.35mm thick and 0.35cm long) contained 6% or 8% acrylamide. 

The samples were boiled for 2min with formamide dyes prior to loading and run at 40W in 

IX TBE for varying lengths of time depending upon the sequence to be visualised. Gels 

were then vacuum dried on a Bio-Rad S83 gel dryer and exposed to Kodak X-OMAT S 

film for 1-7 days, before developing the film in a Kodak X-OMAT ME-3 processor.

Gels for purifying oligonucleotides contained 12% acrylamide (1.5mm thick X 25cm long). 

The samples boiled in formamide dyes for 2min prior to loading and run at 250V in IX 

TBE, in a kit manufactured in house, until the bromophenol blue was approximately 3A way 

down the gel.

2B1.5 DNA ligation

Vector and insert DNA fragments with appropriate compatible termini (purified by the 

GENECLEANH kit) were ligated in a 1:2-10 ratio in a 20|xl reaction volume of IX Ligase 

buffer, ImM rATP and 2 units of T4 DNA ligase overnight at RT and if necessary could be
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stored at -20 ° C. A 6jnl aliquot of the ligation mix was then transformed into competent 

E.coli (Section 2B1.6).

Solutions for DNA ligation :

5X Ligase buffer: 250mM Tris.HCl (pH7.6), 50mM MgCl2, 5mM DTT, 5mM ATP,

25% PEG (Poly ethylene glycol) 8000

2B1.6 Preparation and transformation of competent E.coli cells for 
plasmid growth and maintenance

Plasmids were grown and maintained in the E.coli strain DH5a. D H 5a bacteria were 

streaked onto a nutrient agar plate and a fresh colony used to set up a 1ml overnight culture 

(grown in LB). The overnight culture was inoculated into 100ml LB and grown at 37 °C 

until the OD4 5 0 nm was about 0.3. The culture was cooled on ice and centrifuged at 2,600 

rpm at 4°C  for lOmin. The pellet was gently resuspended in 5ml total 0.1M MgCl2 

(cooled to 4°C). The sample was then spun again at 2,600rpm for 5min at 4°C  and the 

pellet resuspended in 5ml total of 0.1 M CaCl2 (cooled to 4 0 C). This sample was then left 

on ice for 45min and then spun at 2,600rpm for 5min at 4°C . The pellet was then 

resuspended in 5ml 0.1M MOPS (3-[N-Monopholino propane sulphonic acid]) pH6.5. 

Aliquots of 100pl, 200pl and 300jll1 amounts were frozen quickly in liquid nitrogen and 

then stored at -70 ° C.

An aliquot of lOng of plasmid DNA or 6)il of a ligation reaction were transformed into a 

lOOpl aliquot of thawed competent D H 5a bacteria and left to equilibrate for 30min on ice. 

The sample was then heat shocked at 37 ° C for lmin and 500|il 2YT added and left for 45- 

60min shaking at 37 ° C. A 300pl aliquot of the transformation sample was then plated out 

onto LB agar plates containing the appropriate antibiotics. The plates were incubated 

overnight at 3 7 0 C.

2B1.7 Miniprep plasmid DNA preparation

The boiling miniprep method was used to produce plasmid DNA on a small scale. Fresh 

single colonies were picked and inoculated into 2.5ml of 2YT, and the cultures grown 

overnight at 37 °C in a shaking incubator. Aliquots of 1.5ml of the cultures were 

centrifuged for 20sec in a microfuge (13,000rpm) and the pellet resuspended in 200pl 

STET. The bacterial cells were then lysed by addition of 5(il lysozyme (fresh lOmg/ml
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solution in STET) and samples boiled for 50sec. Cell debris were pelleted by 

centrifugation for lOmin (13,000rpm) and the supernatant was removed and made up to 

1 50jll1 with STET. Plasmid DNA was precipitated by the addition of 135|xl isopropanol 

(0.9 volumes) and pelleted by centrifugation for 5min. The pellets were then washed with 

80% ethanol, air dried for 5min at RT and resuspended in 20pl water and stored at -20 ° C.

2B1.8 Large scale plasmid DNA preparation

E.coli containing the desired plasmid were streaked (from an older agar plate) or spread 

(from an aliquot of newly transformed competent cells, Section 2B1.6) onto a LB agar 

plate containing the appropriate antibiotics (Section 2A5) and then incubated at 37°C 

overnight.

2B1.8a ‘Maxi-boiling’ method of large scale DNA preparation: for use in transfections

Plasmid DNA was prepared from bacteria according to the ‘maxi-boiling’ method of 

Holmes & Quigley, 1981 and the supercoiled DNA purified on a caesium chloride 

gradient. A single colony was picked from a fresh plate on which the plasmid transformed 

bacterial cells were grown and used to inoculate 350ml LB containing antibiotics as 

appropriate, which was incubated in a shaking incubator at 37°C overnight. Bacterial 

cultures were centrifuged at 5,000rpm for lOmin at RT in a Sorvall GS3 rotor, and the 

pellets resuspended in 20ml STET plus 2.5ml freshly prepared lOmg/ml lysozyme in 

STET. The mixture was brought to the boil over a bunsen flame and placed in a boiling 

water bath for 45sec, before pelleting cell debris by centrifugation in a Sorvall SS34 rotor 

at 18,000rpm for 50min at RT. Nucleic acids were precipitated from the supernatant by the 

addition of 0.9 volumes of isopropanol, and pelleted by centrifugation in a Beckman GPR 

centrifuge at 3,000rpm for 5min at RT. The pellet was resuspended in 5.5ml IX TE (to 

give a volume Xml), then X+0.7g caesium chloride and 0.2ml lOmg/ml EtBr were added. 

The samples were incubated on ice for 20min prior to centrifugation at 3,000rpm for lOmin 

at 4°C. The supernatant was transferred to a Dupont 03945 crimp-seal centrifuge tube 

using a syringe and then centrifuged at 45,000rpm, 15°C for 16-18hr in a Sorvall TV865 

vertical rotor. The lower band (which contains supercoiled plasmid DNA) was removed 

using a syringe, taking care to avoid contamination with chromosomal DNA from the 

upper band. The EtBr was removed from the plasmid solution by 2-3 extractions with TE 

saturated butan-l-ol, and the caesium chloride was removed by dialysing against IX TE at 

RT for 2hr. Following this, the solution was treated with 100pg/ml RNase A at 65°C for
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lhr, then 100|ig/ml proteinase K plus 0.1% SDS at 37°C for lhr. The plasmid DNA was 

then cleaned by phenol:chloroform extraction, and concentrated by ethanol precipitation. 

The DNA was then pelleted by centrifugation at 3,000rpm for 15min at RT and 

resuspended in 400pl IX TE and then ethanol precipitated again. The final pellet was 

washed in 80% ethanol and resuspended in an appropriate volume of IX TE before storage 

at -20°C. The plasmid concentration was determined by measuring the absorbance at 

260nm on a Beckman DU-62 spectrophotometer, assuming lOD A2 6 0  = 50p,g/ml.

2B1.8b Alternative-alkaline lysis method of large scale plasmid DNA preparation

A single colony was picked from a fresh plate on which the plasmid transformed bacterial 

cells were grown and used to inoculate 100ml LB (containing antibiotics as appropriate). 

This sample was incubated in a shaking incubator at 37°C overnight. Bacterial cultures 

were centrifuged at 5,000rpm for lOmin at RT in a Sorvall GS3 rotor, and the pellets 

resuspended in 1ml Glucose/Tris/EDTA solution (50mM Glucose, 25mM Tris, lOmM 

EDTA) and transferred to a 10ml snap cap tube. The cells were then lysed by addition of 

250jll1 lysozyme (25|ig/ml prepared in Glucose/Tris/EDTA solution) and mixed by 

inversion. This sample was left to incubate for lOmin at RT. A freshly prepared aliquot 

(2.5ml) of 0.2M NaOH/1% SDS was then added, mixed by inversion until the solution 

became homogenous and cleared, and left for lOmin at 4°C. The cell debris was 

precipitated by addition of 1.9ml of 3M potassium acetate solution and mixed by inversion 

until the viscosity was reduced and a large precipitate formed. The sample was then left at 

4°C for lOmin. The bacterial chromosomal DNA and proteins were then pelleted by 

centrifugation at 9,500rpm in a Sorvall SS-34 rotor at 4°C. The supernatant was then 

decanted to a fresh centrifuge tube. The plasmid DNA was then precipitated by addition of 

0.6 volumes of isopropanol, mixed by inversion and left for lOmin at RT. The plasmid 

DNA was pelleted by centrifugation at 9,500rpm for lOmin at RT. The supernatant was 

then discarded and the pellet washed with 80% ethanol. The DNA was then dissolved in 

400pl water and transferred to a fresh eppendorf tube. Contamination by RNA was treated 

by addition of IjllI RNaseA (lOmg/ml) and left at 60°C for 30min. Protein contamination 

was then treated by extraction first with an equal volume of TE-saturated phenol and 

followed by an extraction with an equal volume of chloroform and the DNA concentrated 

by ethanol precipitation. The DNA pellet was then washed with 80% ethanol and 

resuspended in 200|il water and stored at -20°C.
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2B1.9 Sequencing of DNA

DNA was sequenced either using the didexoy nucleotide chain termination method as 

described below, or by an on site ABI Prism 377 automated DNA Sequencer which was 

operated by Lesley Taylor from the Institute of Virology.

Dideoxv sequencing of DNA:

Plasmid DNA was sequenced by the dideoxy nucleotide chain termination method as 

described by Sanger et a l,  1977, details of the buffers used for this procedure have been 

provided after the protocol description. Purified plasmid DNA (about 2jig), or 10|il 

miniprep DNA, was denatured at RT for lOmin in a 20|il reaction volume containing 0.4M 

sodium hydroxide. The denatured DNA was then precipitated by the addition of 6|il 3M 

sodium acetate pH4.5, 14jxl water and 120|li1 ethanol, and left on ice for lOmin. The DNA 

was then pelleted by centrifugation in a microfuge at 13,000rpm, for lOmin at RT. The 

pellet was then washed with 80% ethanol and resuspended in 8pJ water. The primer was 

annealed to the DNA template at 37°C for 20min in a 10(il reaction volume consisting of 

IX Sequencing buffer and 5pmol of primer (sequences of primers used for the purposes of 

this thesis have been listed in Table 2B1.9).

Meanwhile, the labelling mix was prepared which, for four sequencing reactions, consisted 

of 1.5(il 35S dATP and 4.5|il 11.8|iM dATP. Using this labelling mixture, reaction mixes 

were made for each nucleotide which for four sequencing reactions consisted of 9(li1 of the 

appropriate Nseq solution and 1.5(11 of labelling mix. An aliquot (2pl) of each reaction 

mix was dispensed into one of four round bottomed wells labelled T, G, C and A on a 96 

well microtitre plate (Nunc).

After the annealing reaction was completed, 2units of E.coli DNA polymerase I large 

Klenow fragment were added to the annealed template. Aliquots (2(0.1) of these DNA 

samples were then dispensed into the 4 wells containing the T, G, C and A nucleotide 

reaction mixes. The plate was then incubated at 37°C for 15min. Following this, any 

newly synthesised strands which had not been terminated by incorporation of a dideoxy 

nucleotide were extended into high molecular weight products by adding 2(0,1 chase mix 

and incubating the samples at 37°C for 30min. The reactions were stopped by the addition 

of 2)0.1 formamide dyes and could be stored at -20°C. The samples were boiled for 2min 

prior to loading on a denaturing polyacrylamide gel (Section 2B1.4d).
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Solutions used for dideoxy sequencing of DNA :

i- Dideoxy sequencing buffers: 
d-N-0 solutions
dT-0: 1 jllI 5mM dTTP, 20|til 5mM dCTP, 20^il 5mM 7-deaza dGTP, 50pl 10X TE, 370p,l 
water
dC-0: 20pl 5mM dTTP, ljul 5mM dCTP, 20|Lil 5mM 7-deaza dGTP, 50|Lil 10X TE, 370jll1 
water
dG-0: 20jll1 5mM dTTP, 20^il 5mM dCTP, l|LLl 5mM 7-deaza dGTP, 50|il 10X TE, 370p,l 
water
dA-0: 20|il 5mM dTTP, 20jll1 5mM dCTP, 20^1 5mM 7-deaza dGTP, 50pl 10X TE, 540|Lil 
water
ii- 10X TE: 1 OOmM Tris.HCl pH8.0, lmM  EDTA
iii- Sequencing mixes (Nseq solutions):
T sequencing mix: 500|il dT-0 solution, 500pl 600|iM ddTTP
C sequencing mix: 500jil dC-0 solution, 105jil 140|iM ddCTP, 395jli1 water
G sequencing mix: 500|il dG-0 solution, 155jli1 200|iM ddGTP, 345|il water
A sequencing mix: 500jil dA-0 solution, 250)il 140jxM ddATP, 250jnl water
iv- 10X Sequencing buffer: lOOmM Tris.HCl, lOOmM MgCl2, pH8
v- Chase mix: All four dNTPs, each at 0.25mM

Sequencing Primer Oligonucleotide sequence
1664 C ATTTGTTCTT CC AT A A AG
1782 GGTGTG AAATTCCT AACATTG
2141 CCATGTCCTCGGGCTCGCTC
424NTRUNC ATCTCC ACT ATGA ACC AG
GEX2T GCAGGGCTGGCAAGCCAC
H+8 CTGAGTG A AGTTTT AC A
KEKE CTGAACAAACTCAGCAAGCG
Xba STOP A ATT AATCT AG ATT A ATT

Table 2B1.9: Oligonucleotide sequences of sequencing primers

2B1.10 Site-directed mutagenesis:

Site-directed mutagenesis was conducted by a method based on the use of uracil-modified 

DNA (Kunkel, 1985, Kunkel et al., 1987), the buffers used for this procedure have been 

described after the protocol description. This method involves preparing a template of 

single-stranded plasmid DNA (for the purposes of this thesis pET24al35 was used) in 

which a proportion of the thymidine bases have been replaced by uracil. A mutagenic 

primer is then annealed to this template and the complementary strand synthesised, 

(however this strand contains thymidine in place of uracil). This double stranded template 

is then transformed into competent E.coli cells in which the uracil-enriched single-stranded 

template is degraded and replaced by a thymidine-enriched strand, using the mutant strand
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as a template. In this manner a double stranded plasmid could be synthesised in which a 

site-specific mutation had been incorporated.

2B 1.10a Preparation of uracil-enriched single-stranded DNA

An overnight culture of CJ236 bacteria was set up using 10|il of frozen stock in 8ml of 

2YT (in the presence of Cm, Km and 100|ig/ml uridine) and left shaking at 37°C. An 

aliquot of 4ml of the overnight culture was used to inoculate 200ml 2YT containing 

100|Lig/ml uridine in 2 litre baffle flask and left to grow for 30min at 37°C. Helper phage 

CJ236 R408 (1.2 XIO10 pfu/ml) was added and the sample incubated for a further 9.5hrs. 

The culture was centrifuged at 9,000rpm for lOmin in a GSA rotor. The supernatant was 

transferred to a fresh centrifuge bottle and recentrifuged at 9,000rpm for lOmin. The 

supernatant was transferred to a sterile GSA bottle and if necessary could be stored at 4°C. 

The phage was precipitated by addition of 0.25 volumes of 20% PEG 6000/2.5M NaCl 

mixed by inversion and left at 4°C for 30min. The phage was pelleted by centrifugation at 

12,000rpm for 15min in a GSA rotor. The supernatant was decanted and 5ml of this used 

to resuspend the phage pellet (which often is smeared down the side of the bottle). The 

resuspended phage was transferred to a 30ml Oakridge tube and centrifuged at 7,000rpm 

for 15min in a SS34 rotor. All the supernatant was removed and the pellet resuspended in 

2ml of IX TE. A phenol extraction was performed on the sample using an equal volume of 

TE-saturated phenol and mixed end-over-end for lhr interspersed by 3 periods of vigorous 

vortexing. The sample was then centrifuged at 2,600rpm for 5min at RT to separate the 

phases and the upper aqueous phase was transferred to a fresh tube. To the tube containing 

the phenol and interphase 1ml of IX TE was added, this sample was vortexed and 

centrifuged at 2,600rpm for 5min and the aqueous phase removed and pooled with the first 

extraction. This sample was then extracted twice with an equal volume of 

phenol/chloroform/isoamyl alcohol (24:24:1) and then once with an equal volume of 

chloroform/isoamyl alcohol (24:1). The DNA was precipitated by the addition of 80p.l/ml 

4M NaCl/50mM EDTA and 2.5 volumes ethanol, mix by inversion and incubation at - 

20°C for a minimum of 2hr. The DNA was pelleted by centrifugation at 7,000rpm for 

20min in a GSA rotor. The supernatant was removed and the sample recentrifuged for 

20sec to remove any remaining supernatant. The single-stranded DNA was dissolved in 

0.3ml water, ensuring complete dissolution of DNA by rolling the water around the sides 

of the tube and transfering the sample to a fresh eppendorf tube. The DNA was 

reprecipitated by addition of 24|il 4M NaCl/50mM EDTA and 750)il ethanol. The sample
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was inverted and incubated at -20°C for 2hr minimum. The DNA was pelleted by 

centrifugation at 13,000rpm for lOmin. The supernatant was removed and the sample 

recentrifuged for 20sec to remove any remaining supernatant. The purified single-stranded 

DNA was then dissolved in IOOjllI water, ensuring complete dissolution by rolling the water 

around the sides of the eppendorf tube. The DNA concentration was determined by 

measuring the absorbance at 260nm on a Beckman DU-62 spectrophotometer, assuming 

that for single-stranded DNA lOD A 2 6 0  = 33.3pg/ml.

2B10.b Design and production of a mutaeenic primer

The second stage of this procedure was the design and production of an oligonucleotide 

(the mutagenic primer). The oligonucleotides were designed to encode the appropriate 

mutation required and the sequence surrounding the mutation. The primers were also 

designed to incorporate a silent base change that would result in either the introduction or 

removal of a restriction site. This result allowed rapid screening of mutants by restriction 

digests. The primers were then synthesised and purified as in Sections 2A3 and 2B1.3. 

Mutagenic primers that were synthesised for the purposes of this thesis have been listed in 

Table 2B1.10.

2B 1.10c Addition of a phosphate to the 5’ termini of a mutagenic primer

It was necessary to add a phosphate group to the 5’ ends of the mutagenic primers to 

facilitate the subsequent synthesis of a complementary strand of DNA. The reactions were 

carried out in 30|il of IX Kinasing buffer containing lOOng of mutagenic primer, ImM 

rATP and using 5 units of T4 polynucleotide kinase. The sample was then left for 45min at 

37°C. To adjust the oligonucleotide to a lng/|il concentration, 70pl water was added and 

the reaction stopped by heat inactivation at 70°C for lOmin and stored at -20°C.

2B1.10d Annealing of the mutagenic primer to the uracil-enriched single-stranded DNA 
and synthesis of the complementary strand

The annealing reaction was carried out in 10|il of IX Annealing buffer containing 200ng 

uracil-enriched single-stranded DNA and 2ng of the 5’ phosphorylated mutagenic primer. 

The sample was placed at 65°C for 3min to remove any secondary structures that would 

inhibit the annealing and then cooled slowly to RT by placing the tube in a vessel 

containing the 65°C heated water and allowing the water to cool naturally to RT. The
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sample was centrifuged for 5sec at 13,000rpm to spin down any liquid which had 

condensed on the sides of the tube.

The synthesis of the complementary strand was carried out by addition of ljil 10X 

Synthesis buffer, 6  units of T4 DNA ligase and 1 unit of T7 polymerase to the annealed 

template/primer. This sample was incubated on ice for 5min, then at 25°C for 5min and 

finally at 37°C for 90min. The synthesis reaction was stopped by addition of IOjllI Stop 

solution and an aliquot of the DNA (5 j l i 1) transformed into competent D H 5a E.coli bacteria 

(Section 2B1.6). The fresh bacterial colonies grown from these transformations were used 

to prepare plasmid DNA via the miniprep method (Section 2B1.7). The DNA was then 

checked by restriction analysis (Section 2B1.1) and/or sequencing (Section 2B1.9) to 

ensure correct incorporation of the mutation.

Site-directed mutagenesis buffers:

i- 5X Kinase buffer:
ii- 10X Annealing buffer:
iii- 10X Synthesis buffer: 
15mM DTT
iv- Stop solution:

350mM Tris.HCl (pH7.5), 50mM MgCl2, 25mM DTT 
200mM Tris pH7.4, 20mM MgCl2, 500mM NaCl 
4mM dNTP, 175mM Tris.HCl (pH7.4), 37.5mM MgCl2,

lOmM Tris, lOmM EDTA pH 8

Mutant Mutagenic primer sequence (reverse and complementary)
C223S AAGIAATICAGIGGCIGCCIACTIAGTITACIATGIAAC 

K N Q G  A T S Y M N
H456L GTCICTGIGTTICTTITCCIGGAIGATIAAT 

V L V L S G  D N
H464L CATIGGTIGGAICTTITACIGTAIGTTITATICTA 

H G  G L Y V V Y L
E/E546/547P/P TTGIGTGIGAGICGCITTAICAAICCAICCGIAAAIAGGIATCIGAG 

L V E R  L Q P  P K  R I E
K/E556/557P/P GCTICAGIAAGICGGICCGICCGICGGICAGIGAAIGCC 

A 0  K R P P R Q E  A
H562L CGGICAGIGAAIGCGICTTICTCITATIATGICAA 

R Q  E A L L Y M Q

Table 2B1.10: DNA and translated codon sequences of mutagenic primers. Mutated bases and codons have 
been highlighted in bold. The introduction of a restriction site is indicated by underlining of the relevant 
sequence.

2B2 Deubiquitinase assays

The assay involved the use of a model USP substrate Ub-X-P-gal, in which ubiquitin was 

N-terminally linked to X-p-galactosidase (X being either methionine or arginine). 

Competent E.coli strain NovaBlue (DE3) cells were prepared using the method outlined in
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Section 2B4.2 and were transfected with either the pAC-M-p-gal or pAC-R-p-gal plasmid 

(Section 2A1) and grown on LB agar plates containing Cm. Colonies from these plates 

were picked and used to make competent cells (Section 2B4.2). These cells were then 

transfected with either a T7-driven IPTG-inducible HAUSP expression plasmid or pRB105 

and grown on LB agar plates containing the appropriate antibiotics. Single colonies were 

then picked from fresh plates of NovaBlue (DE3) parent, NovaBlue (DE3)/pAC-X-(3-gal, 

NovaBlue (DE3)/pAC-X-p-gal/pT7-HAUSP, NovaBlue (DE3)/pAC-X-P-gal/pRB105 and 

used to inoculate 10ml 2YT. These cells were grown in a shaking incubator for 2-3hrs at 

37°C until the OD45 0 nm was about 0.3. Two aliquots (4ml) of each culture were taken, one 

aliquot left uninduced whilst the other was induced with 4pl lOOmM IPTG. The cultures 

were left to grow for a further 3hr at 37°C, then bacterial cell extracts were harvested by 

centrifugation of the cultures at 2,600rpm for 15min at 4°C and pellets resuspended in 

800jnl PBS(A). Aliquots (5jll1) of these total protein extracts were run on 6 % SDS-PAGE 

gels (Section 2B4.5) and analysed by western blotting (Section 2B4.7) using rabbit 

polyclonal antibody rl2741 at 1/10,000 dilution.

2B3 Tissue culture

2B3.1 Growth of cells

Mammalian derived cells were passaged in sterile, 175cm3 plastic flasks (Nunc) in the 

appropriate media (Section 2A7), and incubated at 37°C in a humidified incubator under 

5% CO2 . Confluent monolayers were harvested by washing first with versene (0.6mM 

EDTA in PBS(A), 0.002% phenol red) and then trypsin/versene (1:2) (supplied by the 

Institute of Virology Media Services) and then resuspended in 10ml of the appropriate 

media. For continual passage, Hep2 and WS HeLa cells were split in a 1:10 ratio every 3-4 

days.

2B3.2 Liposomal mediated transfection for immunofluorescence 
experiments

Cells were seeded on 13mm glass coverslips in 24 well Linbro plates (Nunc) at 0.5 X105  

cells per well in 1ml of medium and incubated overnight at 37°C prior to transfection. 

Plasmid DNA (ljLXg) was made up to a 10(0.1 volume in HEPES buffer (20mM HEPES, cell 

culture grade pH7.4, sterile filtered) in a 15ml sterile reaction tube. In a separate sterile 

reaction tube DOTAP (6 |il/transfection) was diluted to a final volume of 20pl/transfection
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with HEPES buffer. The DOTAP/HEPES mixture (20|il/transfection) was mixed with the 

DNA/HEPES sample by a gentle pipetting the sample several times. The sample was 

incubated at RT for 10-15min, then 1ml of the appropriate medium was added and gently 

mixed. The culture medium was removed from the appropriate cells and replaced by the 

culture medium containing the DNA/DOTAP mixture and the cells incubated at 37°C for 

varying amounts of time (24-48hr) before immunofluorescence was performed. In some 

cases the DNA/DOTAP/medium mix was replaced after lOhr with fresh medium and 

incubation at 37°C continued for 14hr after which immunofluorescence was performed.

2B3.3 Indirect immunofluorescence

Transfected cell monolayers (Section 2B3.2) were washed twice with PBS(A) and fixed for 

lOmin at RT with 2% sucrose, 5% formaldehyde in PBS(A). The cells were washed 3 

times with PBS(A), then left for lOmin at RT with 0.5% NP40, 10% sucrose in PBS(A). 

The cells were again washed 3 times with PBS(A) supplemented with 1% FCS. Aliquots 

(20jnl) of the appropriate primary antibodies diluted in PBS(A)1% FCS were added to each 

coverslip for 45-60min. Anti-pp65 MAb was used at 1/300, anti-VmwllO MAb 11060 

was used at 1/2000, anti-PML MAb 5E10 was used at 1/20, anti-PML r8  sera was used at 

1/1000, and the anti-HAUSP r201 and r206 sera were used at 1/200. After incubation with 

the primary antibody the cells were washed 6  times in PBS(A)1% FCS. The coverslips 

were then incubated with 2 0 |il aliquots of the appropriate secondary antibodies diluted in 

PBS(A)1% FCS and left at RT for 30min in the dark. Goat anti-mouse FITC-labelled and 

goat anti-rabbit TRITC-labelled secondary antibodies (Sigma Immunochemicals) were 

used at 1/100. After the cells were washed 6  times with PBS(A)1% FCS, they were rinsed 

in distilled water and air dried and mounted on glass slides with 3|il Citifluor, a 

glycerol/PBS solution (UKC Chemical Laboratories). If necessary DAPI, 4’,6’-diamidino-

2-phenylindole, (an anti-DNA stain), was present in the Citifluor. Cells were examined 

using a Nikon MICROPHOT-SA fluorescence microscope with appropriate filters and 

photographed using Kodak ASA400 black and white film.

2B 3.435S-Methionine radiolabelling and extract preparation

Confluent monolayers of WS HeLa cells grown on 140mm diameter tissue culture plates 

were labelled with 3 5 S-methionine and soluble protein cell extracts prepared for use in GST 

‘pull-down’ assays and immunoprecipitations.
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Plates were seeded at 1.5 X107  cells per 140mm plate in 30ml complete medium and 

incubated overnight. The medium was then removed and the cell sheet washed twice with 

PBS-complete (prewarmed to 37°C), then the cells were incubated with 15ml PBS- 

complete containing l,500p,Ci 3 5 S-Methionine for 2hr at 37°C. Afterwards, the cells were 

washed twice in ice-cold PBS-complete and harvested by scraping them from the plate 

using a rubber policeman into 5ml PBS-complete and transfering them to a 15ml Falcon 

tube. To ensure complete removal of the cell sheet the remaining cells were scraped into 

5ml more PBS-complete and transferred to the same Falcon tube. The cells were pelleted 

by centrifugation at 1,000 rpm for 5min at 4°C and resuspended in 1ml PBS-complete, then
or

repelleted and resuspended in 1ml of S-Methionine labelled cell extraction buffer 

containing 50mM HEPES (pH7.4), 0.2mM NaCl, ImM |3-mercaptoethanol, 0.1% NP40, 

ImM PMSF, 0.5jig/ml leupeptin and 40pg/ml bestatin. The cells were then lysed by 

sonication in a sonibath (Kerry) for 30-60sec and the cell debris pelleted by centrifugation 

at l,000rpm for lOmin at 4°C. The soluble protein extract was stored at -70°C until 

required.

2B3.5 Infection of cells with HSV-1 and extract purification

Confluent monolayers of WS HeLas grown on 100mm diameter tissue culture plates were 

infected with the appropriate HSV-1 strain and soluble protein cell extracts prepared for 

use in GST ‘pull-down’ assays.

2B3.5a Absorption of virus bv cells

Plates were seeded at 4 X106  cells per 100mm plate in 15ml medium and incubated 

overnight. The medium was removed and replaced with 2ml fresh medium. Virus was 

added at a multiplicity of 5pfu per cell and the plates gently swirled prior to incubation at 

37°C for lhr. This was interspersed by periods of gentle swirling every 10-15min to ensure 

complete absorption of the virus. The cells were then overlaid with 8 ml of the appropriate 

medium and left to incubate at 37°C for a further 16hr.

2B3.5b Harvesting of the virus infected cell soluble protein extract

The medium was removed from the plates and the cells washed twice with ice-cold PBS- 

complete. The cells were then harvested as in Section 2B3.4. The cells were pelleted by 

centrifugation at l,000rpm for 5min at 4°C, then the supernatant was discarded and the
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pellet resuspended in 220jli1 homogenisation buffer containing 50mM Tris pH8.5, 0.2M 

NaCl, lOmM (3-mereaptoethanol, O.lmM zinc acetate, 0.5jig/ml leupeptin and 1 jLLg/ml 

aprotinin. The cells were lysed using a dounce homogeniser and the cell extract transferred 

to a fresh eppendorf. The cell debris was pelleted by centrifugation at 10,000rpm for 

15min at 4°C. The supernatant containing the virus infected soluble cell extract was stored 

at -70°C.

2B4 Protein-protein interaction assays

2B4.1 Prediction of regions important for protein-protein interactions

Computer analysis of protein sequences were performed on the Digital Alpha computer 

system using the University of Wisconsin Genetics Computer Group (GCG Inc., Madison, 

Wis.). For details refer to Genetics Computer Group (1996) Program Manual for the GCG 

Package, Version 9.0, 575 Science Drive, Madison, Wisconsin, USA 53711.

2B4.2 Preparation and transformation of competent E.coli cells for 
protein expression

Plasmids which encoded proteins that were to be expressed as part of a bacterial extract 

were transfected into a fresh batch of the appropriate E.coli host competent cells 

immediately before use. Plasmids under the control of the strong T7 promoter were 

transfected into the BL21 (DE3) pLysS strain, whilst the pGEX series were transfected into 

the BL21 strain and the plasmids which were required for use in the standard 

deubiquitinase assay were transfected into the NovaBlue (DE3) strain.

Bacteria were streaked onto LB agar containing the appropriate antibiotics and 3-5 fresh 

colonies were inoculated into 10ml 2YT and grown in a shaking incubator at 37°C for 2- 

3hr until the OD4 5 0 nm was about 0.3. Cells were then pelleted by centrifugation at 

3,000rpm for 5min at 4°C and resuspended in 0.5ml 0.1M MgCL (cooled to 4°C). The 

cells were then repelleted by centrifugation at 3,000rpm for 2min at 4°C and resuspended 

in 0.5ml 0.1M CaCl2  (cooled to 4°C). These cells were then left at 4°C for 30min before 

being used for transfection. The required transfections were then carried out using lOOjul 

aliquots of the relevant cells and lOng of the appropriate plasmid as described in Section 

2B1.6.
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2B4.3 Expression of proteins under the control of an IPTG-inducible 
promoter and preparation of bacterial extracts

A single fresh E.coli colony transformed with the desired plasmid was inoculated into 

2.5ml of LB and shaken overnight at 37°C. An aliquot (1ml) of this culture was added to 

100ml 2YT containing the appropriate antibiotics and the culture was grown at 37°C for 3- 

4hr until the OD4 5 0 1UT1 was about 0.3. IPTG was added to a concentration of O.lmM to 

induce protein expression and incubation continued for a further 3hr. Bacterial pellets 

were harvested by centrifugation at 3,000rpm for 15min at 4°C and the cell pellet was 

resuspended in 2ml PBS(A). The bacterial cells were lysed by sonication. This involved 

exposure to three lOsec bursts of the Branson sonifier 450 soni-probe set at a 50% duty 

cycle and an output control of 5. After each lOsec burst of the soni-probe the samples were 

left to cool on ice for lmin. Once the cells had lysed Triton-XlOO was added to a 1% 

concentration and the lysate was incubated on ice for 5min. The cell debris was then 

pelleted by centrifugation at 9,500rpm in a Sorvall SS34 rotor for 5min at 4°C. The 

soluble protein extract supernatant was decanted into a fresh tube and stored at -20°C.

2B4.4 Expression and crude purification of T7E52 and T7E58

An overnight culture was set up in 10ml LB from a single fresh E.coli colony, strain BL21 

(DE3) pLysS, transformed with either pT7E52 or pT7E58 and left shaking overnight at 

37°C. The culture was added to 1 litre of 2YT containing Amp at 70|ig/ml and grown for

3-4hr at 37°C until the OD4 5 onm was about 0.3. IPTG was then added to a concentration of 

O.lmM to induce protein expression and the incubation continued for a further 3hr. The 

bacterial pellet was harvested by centrifugation at 5,000rpm in a Sorvall GS3 rotor for 

5min at 4°C. The cell pellet was resuspended in 10ml cold Extract Buffer (50mM HEPES 

pH7.5, lOOmM NaCl, 0.4% CHAPS, ImM PMSF, O.lmM DTT) and stored at -20°C 

overnight. After thawing, lOjxl 20mg/ml DNase 1, 25jnl 2M MgCL and 30|il lOmg/ml 

lysozyme were added to the mixture and the cells were lysed using a soni-probe as 

described in Section 2B4.3. This was followed by the addition of 250jnl 5M NaCl and 50jll1 

10% polymin P to the lysate which was then left on ice for 30min. Cell debris and 

precipitated nucleic acids were pelleted by centrifugation at 9,500rpm for 5min at 4°C. 

Proteins were precipitated by addition of saturated ammonium sulphate to the supernatant 

to 40% volume and the mixture stirred on ice for 30min. Precipitated proteins were 

pelleted by centrifugation at 9,500rpm for lOmin at 4°C and the pellet resuspended in 2ml
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50mM HEPES (pH7.5), 50mM NaCl, 0.01% CHAPS, ImM PMSF, O.lmM DTT. The 

extract was then filtered using a 0.45pm millipore filter and stored at -20°C.

2B4.5 SDS polyacrylamide gel electrophoresis (SDS-PAGE) of 
proteins.

Proteins were resolved by electrophoresis through SDS polyacrylamide minigels (Laemmli, 

1970) using the Bio-Rad miniprotein II apparatus. The resolving gel mixes were prepared 

first and poured into glass plate sandwiches in the BioRad gel former apparatus, overlaid 

with butanol and left to set. Once the gel set, the butanol was washed away with water. 

The set gel was then overlaid with stacking gel mixture and a comb inserted. Details of 

how the resolving and stacking gel mixes were prepared are given in Table 2B4.5. Protein 

samples were mixed with the relevant gel loading buffer and placed in a boiling water bath 

for 2min prior to loading. Gels were run in tank buffer at 200V until the tracking dye 

reached the bottom.

Solution 7.5% resolving gel Stacking gel

30% acrylamide 

(2.5% cross linker)

2.5ml 0.4ml

RGB 2.5ml NA

SGB NA 0 .6 ml

Water 5 ml 1.4ml

Table 2B4.5: Solutions used to make SDS-polyacrylamide gels. Amounts of 30% acrylamide and water were 
adjusted accordingly for preparation of 6%, 10% or 12.5% resolving gel mixes. To each resolving gel mix 
80pl 10% APS and 8(il of TEMED were added and 20pl 10% APS and 3pi TEMED were added to stacking 
gel mixes, in order to catalyse setting of the gels.

Glycine SDS-PAGE buffers:

i- 3X gel loading buffer: 29% SGB, 6 % SDS, 2M |3-mercaptoethanol, 29% 
glycerol, 1 mg/ml bromophenol blue
ii- RGB (resolving gel buffer): 1.5M Tris.HCl, 0.4%SDS, pH8.9
iii- SGB (stacking gel buffer): 0.5M Tris.HCl, 0.4% SDS, pH6.7
iv- Tank buffer: 0.05M Tris, 0.05M glycine, 0.1% SDS
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2B4.6 Coomassie staining of SDS-PAGE gels:

The gels were stained with Coomassie Blue for five minutes and destained in protein gel 

destain.

Solutions for coomassie staining:

Coomassie stain: 0.2% Coomassie Brilliant Blue in 50:50:7 ratio of methanol:
water: acetic acid 

Protein gel destain: 5% methanol, 7% acetic acid in water

2B4.7 Western blot analysis of proteins.

2B4.7a- Electroblotting to a nitrocellulose filter

Proteins resolved on SDS-PAGE minigels were transferred to a nitrocellulose filter by the 

method of Towbin et al., 1979 in a BioRad mini transblot cell. A blotting sandwich was 

set up such that the gel was in contact with a sheet of nitrocellulose (Schleicher and Schuell 

Inc.) and both were sandwiched between Whatman 3mm paper of the appropriate size. 

This was in turn sandwiched between sponges provided by BioRad and blotting carried out 

in Towbin buffer at 0.25A for 3hr.

2B4.7b- Detection of 3 5 S-Methionine-labelled proteins

35After completion of transfer of proteins to the nitrocellulose membranes, detection of S- 

Methionine labelled proteins was achieved by air drying the blot for lhr prior to exposure 

to Kodak X-OMAT S film.

2B4.7c- Immunodetection of proteins

2B4.7ci- After completion of transfer of proteins to the nitrocellulose membranes, proteins 

were immunologically labelled using either of the two methods:

Gelatin blocking method

This involved incubating the membranes in 3% gelatin (made in TTBS/TPBS) for lhr 

(replacing the gelatin with a fresh batch after 30min) and ensuring complete coverage of 

the blot by placing it in a shaker. The blots were then washed 3 times for 5min each time 

at RT in TTBS/TPBS, then incubated with the first antibody (made up to the appropriate 

dilution in 20ml of 1% gelatin in TTBS/TPBS) and left gently shaking overnight at RT.
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After this incubation the blots were washed 6  times, for 5min each time, in TTBS/TPBS at 

RT, then incubated in the relevant secondary antibody for 60-90min at RT, which was 

followed by 6  final 5min washes with TTBS/TPBS. The secondary antibodies were diluted 

in 20ml of 1% gelatin in TTBS/TPBS: Protein A HRP and anti-mouse IgG whole molecule 

peroxidase conjugates were used at a 1 / 1 , 0 0 0  dilution.

Marvel blocking method

This involved incubating the blot in 5% marvel (made in TTBS/TPBS) overnight at 4°C 

(ensuring that the blot was completely covered). The blots were washed 3 times for 5min 

each time at RT in TTBS/TPBS, then incubated with the first antibody (made up to the 

appropriate dilution in 20ml of 5% marvel in TTBS/TPBS) and left shaking for 2-4hr at 

RT. Following this the blots were washed 6  times, for 5min each time, in TTBS/TPBS at 

RT and then incubated with the relevant secondary antibody for 60-90min at RT, which 

was followed by 6  final 5min washes with TTBS/TPBS. The secondary antibodies were all 

diluted in 20ml of 2% marvel in TTBS/TPBS: Protein A HRP and anti-mouse IgG whole 

molecule peroxidase conjugates were used at a 1/1,000 dilution and goat anti-rabbit IgG 

whole molecule peroxidase was used at a 1/50,000 dilution.

2B4.7cii- Protein detection by enhanced chemiluminescence (ECL)

Bound antibodies were detected using the Amersham enhanced chemiluminescence (ECL) 

system. The two reagents provided in the kit were mixed in equal volumes and a total of 

3ml poured on to the filter which was then agitated for lmin. The filters were wrapped in 

cling film and exposed to Kodak X-OMAT S film for variable lengths of time.

2B4.7ciii- Stripping and reprobing membranes

The complete removal of primary and secondary antibodies from membranes was 

sometimes required in order to reprobe a membrane. This involved submerging the 

membrane, after immunodetection, in stripping buffer (lOOmM (3-mercapto-ethanol, 2% 

SDS, 62.5mM Tris.HCl, pH6.7) and incubating it at 55 °C for 60min with occasional 

agitation. The membrane was then washed twice for lOmin in about 100ml of 

TTBS/TPBS at RT. The membrane was then reprobed using one of the blocking protocols, 

followed by the detection of proteins by ECL as described above.

78



Chapter 2 Materials and Methods

Solutions for western blotting:

TBS: 0.02M Tris, 0.5M NaCl, pH7.5 with HC1
Towbin blotting buffer: 25mM Tris.HCl, 192mM glycine, 20% methanol, pH8.3
TPBS: PBS (A) plus 0.1% TWEEN-20
TTBS: TBS plus 0.05% TWEEN-20

2B4.8 Standard GST ‘pull-down’ assay

These standard assay conditions formed the basis by which all the GST ‘pull-down’ assays, 

to test the interaction between a GST fusion protein X and non-GST fused protein(s) Y, 

were carried out. However, the exact details varied significantly. The initial step of 

purification of fusion proteins by interaction with glutathione agarose beads was based 

upon the method of Smith & Johnson, 1988. Glutathione agarose beads (Sigma) were 

prepared for use in the experiments by pre-swelling in 10X volume PBS(A) for lhr at RT. 

The beads were then washed 3 times in excess PBS (A) (pelleting the beads by 

centrifugation at 13,000rpm for 15-20sec between washes). After the final wash the beads 

were resuspended in a equal volume of PBS(A) and stored as a 50% slurry for up to a 

month at 4°C.

An aliquot of glutathione agarose beads in a 50% bead slurry (35|il) were added to 300|il 

bacterial extract (containing a GST fused protein X) and mixed end-over-end for lhr at 

4°C. The beads were pelleted by centrifugation at 13,000rpm for 15-20sec and washed 3 

times with 1ml of ice-cold PBS(A), recovering the beads by a brief centrifugation between 

washes. After the final wash the beads were resuspended in a 50% slurry and stored on ice. 

Aliquots (5|iil) were run on a SDS-PAGE gel (Section 2B4.5) with size standard markers, 

to help normalise (equalise) the amounts of bound GST fusion proteins used in the ‘pull­

down’ experiment. Based on the results of this gel, appropriate aliquots of the bead slurry 

for each bound GST fusion protein were taken and mixed with the initial bead slurry so 

that each sample had a total volume of 30fil, but would contain approximately equal 

quantities of GST fusion protein. These samples were then mixed end-over-end at 4°C for 

lhr with 300pl of a pre-cleared extract (see below) containing the Y protein/s in a buffer 

optimised for the assay. The beads were recovered by spinning at 13,000rpm for 15-20sec, 

washed 3X for 5min in 1ml of an optimised wash buffer (this differed for each experiment 

and has been described where necessary) and finally resuspended in a 50% slurry.
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The extracts containing the Y protein/s were routinely pre-cleared by incubation for lhr at 

4 ° C end-over-end with glutathione agarose beads carrying the GST protein expressed by 

pGEX2TN3 vector plasmid. This step depleted the extract of proteins which non- 

specifically bound to the beads or GST.

Bound proteins were then eluted from the beads by the addition of 20|il 50mM reduced 

glutathione and incubation at RT for 20min (interspersed by a gentle agitation of the beads 

every 5min). The beads were then spun down and the supernatant was transferred to a 

fresh tube. This elution step was repeated and the eluates mixed with 3X SDS gel loading 

buffer and boiled for 2min and if necessary stored at -70°C. The samples were again 

boiled for 2min prior to loading on a SDS-PAGE gel (Section 2B4.5). The presence of 

particular proteins was then detected by western blotting analysis (Section 2B4.7).

2B4.9 Standard Immunoprecipitation experiment

Proteins were immunoprecipitated using a version of the following standard protocol, to 

test the interaction between proteins X + Y, which was modified where necessary to suit 

the purpose of the experiment. An extract containing the X + Y proteins was pre-cleared 

end-over-end at 4°C for lhr with Protein-A-Sepharose beads in a 50% slurry (made up in 

the same buffer used in the later stages of this procedure). Next the beads were pelleted by 

centrifugation at 13,000rpm for lmin at 4°C in an Ole Dich Instrument Makers 157.MP 

microfuge. The supernatant was split into two equal amounts and incubated end-over-end 

at 4°C for 3hr with preimmune or immune serum. This was followed by the addition of 

60jll1 of Protein-A-Sepharose beads (50% slurry) and the reactions were incubated for a 

further lh r at 4°C. The Protein-A-Sepharose beads were pelleted by a brief centrifugation 

at 13,000rpm and washed 3X with 1ml of an optimised wash buffer (which differed 

depending on the purpose of the experiment and has been described where necessary) to 

remove any non-specifically bound proteins. The beads were pelleted by a brief 

centrifugation between washes. After the final wash the specifically bound proteins were 

eluted by addition of 20jll1 IX SDS gel loading buffer, then the samples were boiled for 

2min, before being separated by SDS polyacrylamide gel electrophoresis (Section 2B4.5). 

The presence of particular proteins was then detected by western blotting analysis (Section 

2B4.7).
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RESULTS CHAPTER 3

3A To investigate the potential deubiquitinase activity of 
HAUSP

3A1 Introduction

The aim of this project was to understand in more detail the role of the novel protein 

HAUSP which was found to strongly and specifically interact with the HSV-1 IE protein 

Vmwl 10. Prior to the start of this project, analysis of the novel cDNA sequence encoding 

HAUSP identified two highly conserved motifs belonging to the USP family (Everett et al., 

1997). As HAUSP contained no other highly conserved features it was thought that 

investigating its deubiquitinase activity would be a good strategy to begin to understand its 

role both within the cell and for viral infection.

There are a variety of methods by which the deubiquitinase activity of a protein can be 

tested. One of the most widely used methods involves coexpressing in E.coli the protein 

and a gene encoding a Ub-X-p-gal fusion protein, in which ubiquitin is fused to the N- 

terminus of (3-gal via a linker amino acid X (Varshavsky, 1992). The standard in vivo 

deubiquitinase assay used in this investigation was based on this method and is outlined in 

Figure 3A1.

The experiments in sections 3A1-3 describe the use of the above assay to determine the 

deubiquitinase activity of HAUSP and to identify the active site residues essential for this 

activity.

3A2 Cleavage of model substrates by HAUSP using a standard in 
vivo deubiquitinase assay

3A2.1 HAUSP is enzymatically active on the model substrate Ub-M-p- 
gal expressed in bacteria

The results of using the standard in vivo deubiquitinase assay, in which Ub-M-(3-gal was 

used as a model substrate, are shown in Figure 3A2.1. As can be seen both the positive 

control (UBP2) and HAUSP cleaved the 121kD Ub-M-f-gal model substrate to the lower 

molecular weight 113kD M-p-gal product. However, constitutive expression of UBP2 was 

sufficient to completely cleave the low levels of substrate present, whereas even after
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Figure 3A1: An outline of the standard in vivo deubiquitinase assay.
The pAC-M-P-gal plasmid (which is in a pACYC-184 Cmr replicon) expressing the Ub-M-P-gal fusion 
protein substrate was coexpressed with a USP encoding compatible replicon. The plasmids encoding the 
USPs were either pRB105 expressing the yeast UBP2 USP enzyme from an IPTG-inducible tac promoter in a 
pKK-based plasmid (pBR322 Ampr replicon), or a T7-driven HAUSP plasmid expressing HAUSP from an 
IPTG-inducible T7 promoter in a pET-based plasmid (pBR322 Amp7Kanr replicon). These plasmids were 
coexpressed in the NovaBlue E.coli strain for a number of reasons. Firstly, E.coli lacks a ubiquitin system, 
secondly, the NovaBlue strain expresses a truncated endogenous p-gal which can be distinguished from the 
model P-gal fusion protein substrate. Thirdly this strain also encodes a laqlq repressor which reinforces the 
repression of IPTG-inducible promoters until IPTG becomes available. Finally NovaBlue bacteria encode a 
phage T7 RNA polymerase which is required for induction of expression from the T7-driven plasmids. 
Deubiquitinase activity could then be detected by running the IPTG induced and uninduced bacterial extracts 
on a SDS-PAGE gel and detecting P-gal products by immunoblotting techniques. In this way cleavage of the 
model Ub-M-P-gal substrate to the M-P-gal product, could be detected by the appearance of a reduced 
molecular weight M-P-gal product on the western blot.
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Figure 3A 2.1: D eub iqu itina tion  by H A U SP o f  a standard  ub iqu itin  fusion p ro te in  expressed  in
bacteria.
A standard  in vivo deub iqu itinase  assay w as carried  out as described  in Section  2B 2 using  bacte ria  
harbouring  p lasm ids expressing  the  U b-M -P -gal m odel substrate  (pA C -M -P -gal) and  either H A U SP 
(p T 7 135) or U B P2 (pR B 105).
A- T he w estern  b lot o f  the bacterial cu ltu res p robed  w ith  an ti-P -gal an tiserum  r 12741. T he labels on 
top  o f  the  tracks ind icate  the pro te ins w hich  w ere expressed  in the cu ltu res and w hether the ir 
expression  had been induced by the add ition  o f  IPTG  or left un induced  (as ind ica ted  by + and - 
respectively). T he upper dot betw een  lanes 4 and 5 ind icates the uncleaved  substra te  and the low er do t 
ind icates the co rrectly  cleaved  M -P-gal p roduct (as defined  by the U B P 2-positive  con tro l in lanes 7 and 
8). T he endogenous truncated  P-gal expressed  by the  N ovaB lue bacte ria  is ind icated  by the arrow  on 
the right o f  the gel.
B- T he w estern  b lo t w as stripped  and reprobed  for H A U SP  using  the r201 an ti-H A U S P  an tipep tide 
an tibody  in a 1 in 1,000 dilu tion . T he arrow  on the right o f  the gel ind icates the position  o f  H A U SP, 
ind ica ting  that it w as correctly  expressed .
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induction, HAUSP expressing cultures cleaved the substrate incompletely. This may have 

been a reflection of the lower growth rates observed for bacterial cultures in which HAUSP 

expression had been induced compared with those cultures in which HAUSP was absent.

Basal levels of HAUSP expression, by cultures transfected with a HAUSP encoding 

plasmid and grown in the absence of IPTG, appear to be sufficient to cleave a substantial 

quantity of the substrate (Figure 3A2.1 part A lane 5). Furthermore, as this expression of 

HAUSP was not detectable by western blotting techniques (Figure 3A2.1 part B lane 5) it 

suggests that HAUSP is a potent USP cleaving substrate efficiently even at low levels.

3A2.2 HAUSP cleaves the model substrate Ub-R-p-gal at the junction 
between the ubiquitin and the fusion protein.

The second stage in this investigation was to test that cleavage of the model substrate by 

HAUSP takes place at the junction between the C-terminus of the ubiquitin and the (3-gal 

moiety of the fusion protein. In order to test this an assay was performed based on the 

standard in vivo deubiquitinase assay, with the exception that the pAC-R-p-gal plasmid 

was used which encoded the Ub-R-P-gal fusion protein, in place of the pAC-M-p-gal 

plasmid. In this case deubiquitination of the model substrate would result in the production 

of R-p-gal which is an unstable protein and is rapidly degraded in E.coli (Tobias et al., 

1991). The results of this assay are shown in Figure 3A2.2 part A. As can be seen, both 

UBP2 and HAUSP cleave the full length model Ub-R-p-gal substrate, however lower 

molecular weight p-gal products did not appear, indicating that cleavage is resulting in the 

production of an unstable product, presumably R-p-gal. Residual levels of substrate were 

again observed in samples in which HAUSP expression had been induced. The western 

blot of the deubiquitinase assay samples was probed for HAUSP encoding sequences 

(shown in Figure 3A2.2 part B) to prove that HAUSP was being expressed as expected. As 

can be seen a relatively high level of background HAUSP expression could be observed 

even in the absence of induction by IPTG. This is probably the result of using the BL21 

strain of E.coli for this assay, as opposed to the Nova Blue strain which were normally 

used, as BL21 (DE3) bacterial cells lack the lacF repressor which provides tighter control 

over basal expression of IPTG-inducible promoters than the genomic wild type repressor.
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Figure 3A 2.2: C leavage o f  Ub-R-(3-gal by H A U SP  occurs at the ju n c tio n  betw een  U b and  the C- 
term inal fusion  protein.
A  standard  in vivo d eub iqu itinase  assay w as carried  ou t as described  in Section  2B2 using  bacteria 
harbouring  p lasm ids expressing  the Ub-R-(3-gal m odel substrate  (pA C -R -P -gal) and e ither H A U SP 
(p T 7 135) o r U B P2 (pR B 105), w ith  the excep tion  that the BL21 strain  o f  E.coli w as used as opposed  to 
the N ova B lue strain.
A - W estern  b lo t o f  the bacterial cu ltu res  p robed  w ith  an ti-p -ga l an tiserum  rl 2741. T he labels on  top  
o f  the tracks indicate p ro te ins w h ich  w ere expressed  in the cu ltu res and w hether the ir expression  had 
been induced  by the addition  o f  IPT G  or left un induced  (as ind icated  by + and - respectively). T he dot 
be tw een  lanes 4 and 5 ind icates the uncleaved  substrate. T he endogenous truncated  P-gal expressed  by 
the N ovaB lue  bacte ria  is ind icated  by the arrow  on the  righ t o f  the gel.
B- T he w estern  b lo t w as stripped  and reprobed  for H A U SP  using  the r201 an ti-H A U S P  an tipep tide  
antibody  in a 1 in 1,000 d ilu tion . T he arrow  on the right o f  the gel ind icates the position  o f  H A U SP.
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3A3 Identification of residues essential for the enzyme activity of 
HAUSP

3A3.1 Prediction of residues required for the enzyme activity of 
HAUSP

The strategy used to define residues within the active site domains essential for the enzyme 

activity of HAUSP, was to first identify potential target residues and then to perform site- 

directed mutagenesis, in order to generate mutants in which these residues have been 

altered.

The cysteine 223, histidine 456 and histidine 464 residues targeted were identified by 

comparison of the HAUSP highly conserved cysteine and histidine motifs with those of 

other USPs as shown in Figure 3A3.1. The targeted residues are those indicated in bold 

face.

3A3.2 Construction of HAUSP active site mutants

Construction of the HAUSP active site mutants was achieved by performing site-directed 

mutagenesis using the C223S, H456L and H464L oligonucleotides (Section 2B1.10 and 

Table 2B1.10). The successful incorporation of the mutations was checked by restriction 

enzyme analysis using restriction sites introduced in each mutagenic primer which did not 

affect the coding potential. Then for the C223S, H456L and H464L pET24al35 clones, a 

small region surrounding the inserted mutation was subcloned into the original wild type 

pET24al35 plasmid DNA. This was done in order to reduce the likelihood of any 

additional mutations which may have arisen as part of the site-directed mutagenesis 

procedure, interfering with the results. A figure illustrating the positions of restriction sites 

within the open reading frame of HAUSP which were relevant to the construction of 

plasmids encoding HAUSP, has been given in Figure 3A3.2 and an additional loose leaf 

copy has been placed in a pocket at the back of this thesis.

The C223S pET24al35 subclone was synthesised in a ligation reaction with two fragments 

isolated from the relevant digestion mixes: these were the ZtoKjl(193)-ZfaKjI(241) C223S 

pET24al35 insert fragment and the 2?sK}I(241)-ZfarGI(193) wild type pET24al35 vector 

fragment (see Figure 3A3.2).
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HAUSP Cysteine domain:

215 aa-GLKNQGATCYMNSLLQTLF 
GL N GnTCOMNSOLQcLO

HAUSP Histidine domain:

4 4 8aa - YILHAVLVHSGDNHGGHYWYLNPKGDGKWCKFDD 
Y L V H G GHY O k  WO ODD

4 8 4aa-WSRCTKEEAIEHNYGGHDDDLSVRHCTNAYMLVY
A Y O L fY

Figure 3A3.1: HAUSP active site sequences aligned against cysteine and histidine USP consensus motifs. 
These consensus sequences were derived from alignments of 20 other members of the USP family accession 
numbers: Sc9952x6, Q09879, P38187, P39967, p34547, A49132, Z54218, Sc9959x5, P40453, P36026, 
P32571, P39944, P35123, U20657, P35125, P39538, P40818, P25037, Q01476, Z47811x3.
The highly conserved residues within the cysteine and histidine motifs of the USP family are indicated under 
the HAUSP sequence, with residues that are not present in HAUSP written in lower case, the letter O 
depicting conserved hydrophobic residues and those written in bold indicating predicted active site residues. 
Figure modified from Everett et al., 1997 with permission.



iii m

Uw
r o u

(088)IIZ/K
(I98)ll/2ff

(/.£8)IW

(6X>L)\\\l/V
( m ) R P 3:?

(I 8 S)IIIZ/K
(9iS)PW

(6 r s ) n a w
,(91S)P3P

( m ) i  9 
(i?rw ra033

( \ K ) \ o ^ sa

( i )i w

u

_0J
1 3
o

GO

0 )
3

."2
’ to

<u
s—

CU
GO
D

o
i n

c u
C/3 c
X- <u <  u
PC ^
<u £

• £  «
c  ^• S  c/2

■£3 "<A 
• r
£  5

c
o

T 3
5

<u

<4-1
O
c
o

C/2 c / 5

. «  6
60 c!i
s °

. 2  C/2 —<1

00 
_ c

c  c/5 
u  c
u '3
& s
a> O  
2  -O

"O
c

2  4) C2 .'til
O 32
'5 a
<« fcr
2  3 

£  &  
o  <u
C/2 ’S
c  S  .2 , o

35 <u 
O  T3
c l  2
<u £

r©  C/2
H  T3

g*  !
C/5 j3

D  o .  <
PC ©

c o  g_c .2 
• 5  o  © 5O
C  C/2
(U c  
cu O  
o  u> 
C  (U 
<U r*3 2

a sC/2
<u C  

- C  <3 
2  >  
<4—4 (U 

©  «  
c l  *-
c d  i >

£ 5
C  - C

.2 .2

t« 45
©  E

{ 2  3
f*-1 . .  <4-1

<N 00 
m  . g  
< 2  
^  s<L> u< 
H3  c
.sp a
Ql  O

O >
2  O 
00 3  
C  ^ -s

2  X
1> w
2  2  
3  ' . 3
O  C/2
•5 IS
.£  T3
o  3  © <3

T3
u

T 3
C
<u
<u

- c
T3
3

x :

£
a>
E00
3
24-4

g £ cu
CU CJ 3 J=,
> c

‘ob <u
g 03 -E

0

c
<u ‘C4-> -C I S

£o
X>

C/2
>4 T3

C/2 o es
3 <U <u

j n £ O
g

- 2
”£

C4-4
0

c0
c*-1<4—1

o
C/2

<

C/2
c

. 2

C
CU
u

-D

0 0
, g
3 3

' ca
O

C/2 cO
2
CU

3
J 3

(US-I
-X D .

1/ C
£ 2 iU

CL
£
c

03
£

C/2
C
O

O
04

_ o ' x C/3
0H .2 D

oa.
CL
CL
CO

'CwC/2
iU

<
PC

c CU fc- cu
o

T3 •s 3 -C4-4
O a> X c
o £ 2 I S
L-l .2 cu

”C
. o - 3

g
-C 'I

4—* _c c
T3 C/2 0
C u <U \ 3
3 s l-t

!U 35
T3 ^** 0

203
TD
(U £ CL

c
CJ cc

z

0

2
_ g

a»
-C
H

T3
O
O



Chapter 3 Results

Both the H456L and H464L pET24al35 subclones were synthesised in similar ligation 

reactions with two fragments isolated from the relevant restriction digestion mixes: these 

were the Bsu36l(441 )-Z?sfEII(529) insert fragment from either the H456L or H464L 

pET24al35 clones and the £ 1yfEII(529)-5,sw36I(441) wild type pET24al35 vector fragment 

(see Figure 3A3.2).

Sequencing (Section 2B1.9) was then performed, using the sequencing primers (Table 

2B1.9) 1664 for the C223S pET24al35 mutant and 1782 for the H456L and H464L 

pET24al35 mutants, to ensure the correct incorporation of the mutations.

3A3.3 Investigation of the deubiquitinase activity of HAUSP active site 
mutants

The ability of these HAUSP active site mutants to cleave model ubiquitin fusion proteins 

was tested by including them in the standard in vivo deubiquitinase assay, the results of 

which are displayed in Figure 3A3.3. As can be seen substitution of the key Cys 223 

residue with a serine and either of the two conserved histidine 456 or 464 residues with 

leucine resulted in abolition of the deubiquitinase activity of HAUSP. The fact that the 

lack of deubiquitinase activity cannot be explained by reduction in the levels of full length 

HAUSP expression was established by reprobing the western blot of the bacterial extracts 

with anti-HAUSP serum (Figure 3A3.3 part B). This blot shows that full length HAUSP is 

expressed to comparable levels for both the wild type and mutant proteins.
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Chapter 3 Results

3A4 Development of an in vitro cleavage assay

3A4.1 Introduction

In order to confirm the deubiquitinase activity of HAUSP, attempts were made to develop 

an in vitro cleavage assay. The experimental strategy to develop such an assay involved 

first purifying HAUSP and then testing its ability to cleave a purified model substrate of 

USPs. The model substrate chosen for use in the assay was Ub-GST, as it could be 

purified from bacterial extracts using glutathione agarose beads.

3A4.2 Confirmation of the ability of HAUSP to cleave Ub-GST using 
an in vivo based assay

Before testing Ub-GST in the in vitro cleavage assay it was decided to first ensure that Ub- 

GST was recognised by HAUSP as a substrate for cleavage. This was tested using a 

modified version of the standard in vivo deubiquitinase assay which has been described in 

detail in the legend of Figure 3A4.2. This involved using a plasmid expressing Ub-GST in 

place of one which expresses Ub-M-P-gal. It is clear from the tracks derived from samples 

in which HAUSP or UBP2 protein expression was induced, that a protein of lower 

molecular weight, similar to that expected for GST alone, has been produced. This 

suggests that both these proteins recognise Ub-GST as a substrate for cleavage. However, 

HAUSP expression in this assay only resulted in approximately 50% cleavage of the Ub- 

GST. This is in contrast to the sample in which UBP2 had been expressed in which 100% 

cleavage was observed. The root cause of this observation is not clear, but may be due to 

the differences in the substrate specific activity of these two proteins or as a result of lower 

expression levels of HAUSP in comparison to UBP2.

3A4.3 Purification of Ub-GST substrate

The initial step in developing an in vitro cleavage assay for deubiquitinase activity was to 

obtain purified substrate. This involved transforming the pRB307 plasmid encoding Ub- 

GST into the E.coli NovaBlue strain. Cultures were grown, protein expression induced by 

the addition of IPTG and soluble protein extracts prepared as described in Sections 2B4.2 

and 2B4.3. An aliquot of 900|il of the soluble protein extract was then taken and mixed 

with 150jil of glutathione agarose beads and left to incubate for lhr end-over-end at 4°C. 

The beads were then washed 4 times with 1ml PBS(A), pelleting them by a brief 

centrifugation in between every wash. Beads-bound proteins were then eluted by addition
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66kD-
45kD-----
36kD-----

■
29k D -----

24kD -----

14.2kD-----

00 cn

Ub-GST
GST

Figure 3A 4.2: In vivo assay con firm ing  the c leavage o f  U b-G S T  by H A U SP.
A m odified  in vivo assay  based  on  the standard  in vivo deub iqu itinase  assay described  in Section  2B 2 w as 
perform ed. T he first m od ifica tion  involved  using  the  p lasm id  pR B 307 w hich  encodes the U b-G S T  substrate  
in p lace o f  the U b-M -P -gal expressing  p lasm id. T his p lasm id  w as coexpressed  w ith  a com patib le  p lasm id  
encoding  a U S P  e ither U B P2 (pA C Y C U B P 2), or H A U SP (pA C Y C H A U S P ) in N ovaB lue  cells and the cell 
ex tracts harvested  as in the standard  assay. T he cell ex tracts w ere then son icated  using  a son ibath  and the cell 
debris pelle ted  by cen trifug ing  the ex trac t at 9 ,500rpm  for lO m in at 4°C . T he so lub le  bacterial ex trac ts w ere 
then decan ted  into fresh ep p en d o rf tubes and m ixed w ith  4 0 p l G ST  beads and left to incubate  end -over-end  at 
4°C  for lh r . T he beads w ere then  w ashed  w ith  1ml P B S(A ) three tim es, pe lle ting  the beads by a  b rie f  
cen trifugation  in betw een  each  w ash. G ST  fused pro te ins bound to the beads w ere then  elu ted  by the addition  
o f  20fa.l o f  IX  SD S load ing  buffer and the bo iling  o f  the sam ples fo r 2m in. The beads w ere then  pelle ted  by a 
b rie f  cen trifugation  (20sec at 13,000rpm ) and the supernatan t decan ted  into a fresh  eppendorf. I f  necessary  
the elu ted  sam ples w ere then bo iled  again  fo r 2m in prio r to load ing  on a 12.5%  S D S -PA G E  gel. A n aliquo t 
(2p l) o f  m olecu lar w eigh t m arkers w as also  run on the  gel, the  sizes o f  w hich  have been ind ica ted  on  the left 
o f  the gel. T he labels on  top  o f  the tracks ind icate  w hich  pro te ins w ere expressed  in the  cu ltu res and w hether 
their expression  had been induced  by the add ition  o f  IPT G  or left uninduced  (as ind icated  by +  and - 
respectively). T he upper arrow  ind ica tes the position  o f  the uncleaved  substra te  and the low er arrow  
ind icates the  correctly  cleaved  product.
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of 60(0,1 elution buffer (50mM reduced glutathione pH7.4, ImM DTT, 0.2M NaCl and

0.05% NP40), followed by a 30min incubation at RT. The reducing agent DTT was 

present in the elution buffer as its presence was thought to optimise USP activity by 

ensuring the reduced status of the thiol group of the active site cysteine residue. The beads 

were then pelleted and eluted proteins decanted and stored at -70°C. A 2jil aliquot of this 

eluted sample was then run on a 10% SDS-PAGE gel alongside a standard molecular 

weight marker to ensure that the protein had been purified successfully (data not shown).

3A4.4 Investigation of the ability of HAUSP to cleave Ub-GST using an 
in vitro based assay

Testing the ability of HAUSP to cleave Ub-GST using an in vitro based assay involved 

first the purification of HAUSP and then the use of this protein in a cleavage reaction in 

which the Ub-GST purified substrate was present (the experimental procedures for which 

are described in detail in the legend of Figure 3A4.4a). HAUSP was purified using cell 

extracts by immunoprecipitation onto Protein-A-Sepharose beads, using anti-HAUSP r201 

serum. Cleavage reactions were then set up, which involved adding purified Ub-GST 

substrate to the beads obtained from the immunoprecipitation experiment, altering the 

conditions to optimise USP activity (as described in the legend of Figure 3A4.4a) and 

leaving them to incubate for 2hr at 37°C. The protein constituents of the supernatant 

samples (containing the purified GST proteins) and bead samples (from the 

immunoprecipitation experiment), were analysed by coomassie staining and western 

blotting techniques respectively. The results of this preliminary experiment can be seen in 

Figure 3A4.4a. It is clear from the gel in Panel A that in the sample provided with the 

immunoprecipitated HAUSP (as verified by the immunoblot in Figure 3A4.4a part B), only 

minimal cleavage of the Ub-GST to a lower molecular weight GST product was observed. 

Furthermore, a lower molecular weight product was also seen to a lesser extent in samples 

in which HAUSP was not present. This may have been produced as a result of background 

cleavage from other proteases which were precipitated from the cell extract by the 

constituents of the preimmune rabbit r201 serum, or secondly it may have been a natural 

degradation product of the Ub-GST substrate.

As the in vitro cleavage activity of HAUSP, if any, was of very low efficiency, an attempt 

was made at optimising the levels of cleavage. This consisted of increasing the number of 

hours of incubation and shaking the samples continuously to ensure the beads were fully
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Figure 3A 4.4a: P relim inary  attem pt to develop  an in vitro  deub iquitinase assay for H A U SP.
T he first step in th is experim en t w as the pu rifica tion  o f  H A U SP. A s such, tw o W S H eL a cell ex trac ts  w ere 
m ade from  100m m  plates, as described  in Section  2B 3.5b , w ith  the excep tion  th a t the cell pe lle ts  w ere 
resuspended  in 500pl o f  U SP assay  buffer (50m M  T ris pH 7.4 , Im M  D T T , 0 .2M  N aC l). A n 
im m unoprecip ita tion  w as then carried  out, as described  in Section  2B 4.9, adding e ither 20p l p reim m une r201 
serum  or 20pl im m une r201 serum  to  the pa ir o f  P ro te in -A -S epharose  p re-cleared  cell extracts. A no ther 
excep tion  to the m ethod  described  in Section  2B 4.9  w as that U SP  assay buffer w as used  to w ash the beads 
from  any non-specific  in teractions. In add ition  to th is, im m unoprecip ita ted  pro te ins w ere not e lu ted  into IX  
SD S gel loading buffer from  the beads, ra ther the beads w ere used as a source o f  H A U SP for the in vitro 
cleavage assay. C leavage reactions w ere then  set up in fresh  ep p en d o rf tubes. T h is invo lved  firstly  adding 
1.5pl purified  U b-G ST  to bo th  the  m ock  and test im m unoprecip ita ted  beads and m ak ing  the final vo lum e up 
to 20p l w ith U SP assay buffer. T he beads w ere then  left at 37°C  for 2hr, m ix ing  the  supernatan t and beads 
sam ples every lOmin. T he supernatan t and beads sam p les  w ere then  separated  by a  b r ie f  cen trifugation  and 
placed  separately  into fresh  ep p en d o rf tubes. A n a liquo t o f  1 Ojul o f  3X  SD S load ing  bu ffe r w as added  to each 
decan ted  supernatan t sam ple and 2 0p l a liquo ts o f  IX  SD S loading buffer w ere used  to  e lu te  pro teins from  the 
beads sam ples. The sam ples w ere then bo iled  for 2m in  p rio r to loading on SD S -P A G E  gels.
Panel A: Show s the so lub le  p roducts o f  an in vitro c leavage reaction  betw een pu rified  U b-G S T  and either 
im m unoprecip ita ted  H A U SP  bound  to P ro te in -A -S epharose  beads (+), or P ro te in -A -S epharose  beads m ock 
im m unoprecip ita ted  using a p re-im m une serum  (-), run  onto  a 12.5%  SD S -P A G E  gel and v isualised  by 
coom assie  staining. A n a liquo t (2 p l) o f  m o lecu lar m arker w eigh ts w as also  run on th is gel, the sizes o f  w hich 
are ind icated  on the left o f  the  gel. T he arrow s on the  righ t o f  the gel correspond  to the  positions o f  U b-G ST  
and a low er m olecu lar w eigh t p roduct m ost likely G ST.
Panel B: Show s the products e lu ted  from  the P ro te in -A -S epharose  beads sam ples derived  from  the in vitro 
cleavage reaction , run on a 6%  SD S -P A G E  gel and transferred  to a n itrocellu lose filte r and then probed  for 
H A U SP using  the 16613 an ti-H A U S P  m onoclonal an tibody . T he arrow  on the righ t o f  the gel ind icates the 
position  o f  the band co rrespond ing  to H A U SP.
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immersed in the cleavage reaction. The results of this experiment are in Figure 3A4.4b. 

As can be seen, neither the extra hours of incubation nor continual shaking appeared to 

have significantly altered the efficiency of in vitro cleavage by HAUSP.

3A4.5 Limitations in the development of an in vitro cleavage assay

The reasons for the low level of in vitro cleavage by HAUSP are not clear. Whether the 

problem was intrinsic to HAUSP or to the design of the assay could not be confirmed. As I 

was not able to establish whether the assay worked in the presence of other USPs due to a 

lack in the availability of antibodies against such proteins.

However, other groups including that of Dr. John Mayer (Nottingham) and Dr. Rohan 

Baker (Canberra, Australia) have also attempted to study the in vitro cleavage activity of 

HAUSP. In these cases they applied in vitro cleavage assays which had previously been 

used successfully to confirm the activity of other USPs. They too observed in vitro 

cleavage by HAUSP, but again the levels of cleavage appeared to be very low. As such 

this supports the concept that the low level of in vitro cleavage observed for HAUSP in the 

assay developed here is an intrinsic problem related to HAUSP rather than a problem of 

developing a working assay.
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Figure 3A 4.4b: A n in vitro c leavage assay testing  the e ffec ts o f  varying the incubation  cond itions on the
ab ility  o f  H A U SP  to cleave U b-G ST .
F o r th is assay, c leavage reactions w ere set up in 6 w ells o f  a 96 w ell m icro titre  p late  (N unc). T he first step 
w as to m ake three sets o f  im m unoprecip ita ted  beads, p repared  in the absence or p resence  o f  active r201 
serum , using the sam e m ethod  as described  in the p rev ious figure. T hese beads w ere then  added  to the w ells 
o f  the m icro titre  plate (using  a  cu t o f f  yellow  g ilson tip). T he nex t step w as to add 1.5jil pu rified  U b-G S T  to 
each  w ell and m ake the final vo lum e up to 20p l w ith  U SP assay buffer. T he three sets o f  beads w ere then  left 
shak ing  at 37°C , for 2hr, 4h r o r 20hr respectively . A t the end o f  each incubation  period  the supernatan t and 
beads sam ples w ere rem oved  from  the re levant w ells and p laced  into separate ep p en d o rf tubes. P ro teins from  
the sam ples w ere then analysed  as described  in the legend o f  F igure 3A 4.4a.
Panel A  show s the 12.5%  S D S -P A G E  gel w ith  the supernatan t sam ples and Panel B show s the  im m unob lo t 
o f  the  6%  S D S-PA G E  gel w ith  the beads sam ples, bo th  o f  w h ich  have been labelled  in a s im ila r fash ion  as 
fo r the gels described  in the legend  o f  F igure 3A 4.4a. A dd itionally , the num ber o f  hours the cleavage 
reaction  w as incubated  for has been ind icated  above the gel.
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3A5 Summary of the investigation into the potential 
deubiquitinase activity of HAUSP

• Established that HAUSP has deubiquitinase activity using a bacterial based in vivo 

assay.

• Demonstrated that HAUSP cleavage of the model substrate occurs at the junction 

between the ubiquitin and the fusion protein.

• Confirmed that the conserved active site residues C223, H456 and H464 are essential 

for deubiquitinase activity.

• Development of an in vitro cleavage assay for HAUSP proved difficult.
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3B To test the effects of transiently expressing HAUSP in 
eukaryotic cells

3B1 Introduction

In order to investigate the role of HAUSP within the cell it was decided to try to transiently 

express HAUSP in eukaryotic cells. The strategy used involved transfecting eukaryotic 

cells with a plasmid expressing HAUSP under the control of the strong CMV promoter and 

testing these cells for overexpression of HAUSP using indirect immunofluorescence 

(Sections 2B3.2 and 2B3.3). The preliminary data from the initial experiments has not 

been shown, but typical images are presented in the later parts of this section.

3B2 Construction of the pCMV135 plasmid which encodes 
HAUSP for expression in eukaryotic cells

Plasmid pCMV135 was designed to transiently express HAUSP in mammalian cells under 

the control of the strong simian CMV promoter. The vector used was pJ7Q, which 

includes the simian CMV IE94 promoter flanked 3’ by a polylinker, an intron and a 

transcriptional termination signal which is linked to a pBR322 derived backbone. 

Construction of the pCMV135 plasmid was achieved through ligation of the Xbal-Pmll 

fragment of the pT7135 plasmid (which encodes the entire HAUSP coding region), into the 

Xbal-Smal restriction sites of the pJ7£2 polylinker. The junction between the vector and 

HAUSP encoding regions was checked by sequencing (Section 2B1.9) using the 2141 

sequencing primer (Table 2B1.9).

3B3 Investigation of the effects of transient transfection of 
pCMV135 in eukaryotic cells

The pCMV135 plasmid was tested for its ability to express HAUSP in eukaryotic cells by 

firstly transfecting WS HeLa cells or Hep2 cells with pCMV135 using the DOTAP method 

of transfection (Section 2B3.2). Indirect immunofluorescence was then performed on cells 

at 24hr and 48hr post transfection (Section 2B3.3), using the anti-N-terminal HAUSP anti­

peptide r206 as the primary antibody. The Vmwl 10-harbouring plasmid p i l l  was used as 

a positive control for transfection in these experiments using the anti-Vmwl 10 MAb 11060 

as the primary antibody. Although the transfection efficiency using plasmid p i l l  was 

satisfactory it was concluded that no significant differences could be observed between 

cells mock transfected and those transfected with pCMV135 and probed with r206. This
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suggested that pCMV135 was not expressing HAUSP. This could have been due to the 

targeting of excess HAUSP for degradation.

3B4 Construction of pp65CMV135

It was decided to construct a plasmid which would incorporate a pp65 epitope tag on the 

N-terminus of HAUSP. This was done to distinguish between endogenous and exogenous 

expression of HAUSP by use of an anti-pp65 epitope MAb. Also, it was hoped that 

incorporation of a pp65 tag at the N-terminus might lead to an increase in the stability of 

exogenously expressed HAUSP. Details of the oligonucleotide sequences designed for the 

construction of the pp65 tag are illustrated in Figure 3B4 part A.

The pp65CMV135 plasmid was constructed through a ligation reaction with three 

fragments which encoded the pp65 epitope tag, the HAUSP coding region and the pJ7£2 

vector backbone respectively. These fragments were isolated from the following digestion 

mixes: the Xbal-Nde 1(1) digestion of the 5’ phosphorylated pp65 epitope tag (the 

preparation of which is outlined in Figure 3B4 part B), the Kpnl-Xbal digestion of the 

pJ7Q vector and Ndel{\)-Kpnl digestion of the pCMV135 plasmid respectively. The 

junction between the pp65 tag and HAUSP encoding regions was checked by sequencing 

(Section 2B1.9) using the 2141 sequencing primer (Table 2B1.9).

3B5 Expression of pp65-tagged HAUSP in eukaryotic cells

The pp65CMV135 plasmid was tested for its ability to express HAUSP in eukaryotic cells 

using a similar method as used for pCMV135 (Section 3B3). This involved firstly 

transfecting WS HeLa cells or Hep2 cells with pp65CMV135 using the DOTAP method of 

transfection. Indirect immunofluorescence was then performed on cells at either 24hr or 

48hr post transfection using both the anti-HAUSP N-terminal r206 serum and the anti- 

pp65 MAb in the primary antibody mix. The p i l l  plasmid was again used as a positive 

transfection control. The general conclusion from repeated experiments was that pp65- 

tagged HAUSP expression was detectable in cells probed with the anti-pp65 antibody 24hr 

after transfection and to a lesser degree 48hr after transfection. However the number of 

cells positively transfected with the pp65CMV135 plasmid was much lower 

(approximately a ten fold reduction), compared to those transfected with p i l l .  

Furthermore, no significant differences were seen when using Hep2 or WS HeLa cells.

90



pp
65

 
5’ 

TC
TA

G
A

G
C

C
 

AT
G 

GC
T 

GA
G 

CG
C 

A 
AG

 
AC

G 
CC

C 
CG

C 
GT

C 
AC

C 
GG

C 
GG

A 
GG

T 
CA

T 
AT

G 
AA

C 
CA

C 
3’

pp
65

 
3’ 

A
G

A
TC

TC
G

G
 

TA
C 

CG
A 

CT
C 

GC
G 

TT
C 

TG
C 

GG
G 

GC
G 

CA
G 

TG
G 

CC
G 

CC
T 

CC
A 

G 
TA

 
TA

C 
TT

G 
GT

G 
5’

O  . 3  \ 3

X

z

s

X

o

o

o

H

>

Dh

H

§

"O<D
T333Ul

C/5 W)
-3h +333
o

T3

CD
cx
o*->

"O ■a0) CD

in•c3 Q-cx CX

T3<D fen Crt 3i-—{ ■*“’% S.
^  'B.^ JTT O w  

-C in  
CX 'sO O.

in  cx

> .2

W

<

Q
><

CQ ID

m

m

Q. H D-
o -o ro

_c ob 0>
~a

<*-1 3 c CQ
o CD

Cl
ea (N

c c/5 Co O JD _o
3 ’5 . _D o
(3 u 3 <u
Q- in O GO
U VO -o s—'
Q- Cl <u c/5

D- _c VT3 <D<—
-o

C <*-c • 3
cd o o
c
W)

t*-
O c

o
JD
o

C/D <DO 3
3
C

Q c
0)

u.3 O
bJj

3 "
3  
CT
uC/5

D-<Uk. O
P3 O. bOco CD 0> e
<D
3 £

x:
H ■o

o
bfi 3

E < CQ c
O

' . 5  c >
0)
s

C /D

(T .p  w)1



Chapter 3 Results

However as Hep2 cells have more distinguishable ND10 domains it was decided to 

continue the work using this cell line.

3B6 Investigation of why so few pp65-tagged HAUSP expressing 
cells were detectable

It is not clear why so few pp65-tagged HAUSP expressing cells were detectable. It is 

speculated that this could be a result of the cells stringent regulation of the level of cellular 

HAUSP. Hence any excess HAUSP produced may have been targeted for degradation or 

the cells in which HAUSP was produced in excess may themselves be targeted for 

apoptosis.

Furthermore, although only a low percentage of cells showed detectable expression of 

pp65-tagged HAUSP, within those cells excess amounts of the exogenously expressed 

HAUSP were always detected. An explanation for this may be that it is only when cells are 

at a particular stage in the cell cycle that a cellular factor is produced which enables 

detection of excess levels of HAUSP.

3B6.1 Investigation of whether the pp65-tagged HAUSP was being 
degraded by the proteasome

To investigate the possibility that pp65-tagged HAUSP was being targeted for degradation 

by the proteasome, a modified version of the standard indirect immunofluorescence 

experiment was performed. This involved carrying out transfections in Hep2 cells using 

either no plasmid or the pp65CMV135 plasmid and then incubating the cells for 24hr 

posttransfection (Section 2B3.2). Proteasome inhibitors were then added to the transfected 

cells, in fresh medium. To investigate which proteasome inhibitor was most effective and 

at which concentration: lactone lactacystein, P-lactone-lactacystein and MG132 were tested 

at varying concentrations. Lactone lactacystein was used at: Opm, ljim, 5pm and 10pm; p- 

lactone lactacystein at 10pm and MG132 at 5pM. To investigate the incubation period at 

which the proteasome inhibitors were most effective transfected cells containing a 

particular concentration of a proteasome inhibitor were incubated for: 2hr, 4hr and 8hr 

periods. At the end of the incubation period, cells were fixed as normal and left in 

approximately 200pl PBS (A) overnight. This was followed by continuation of the indirect 

immunofluorescence procedure, using both the anti-pp65 MAb and anti-HAUSP anti­

peptide antibody r201 in the primary antibody mix (Section 2B3.3).
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Chapter 3 Results

Comparison between transfected cells which were either exposed, or not, to the proteasome 

inhibitors for a particular duration revealed no significant differences in the number of 

pp65-tagged HAUSP expressing cells. The distribution or level of the tagged HAUSP 

between these cells was also not significantly altered. This suggests that pp65-tagged 

HAUSP is not a target for the proteasome.

However, cells in which the transfection mix had been replaced by fresh medium and 

incubated for 8hr post transfection had an approximately two fold increase in the number 

of pp65-tagged HAUSP expressing cells (irrespective of whether or not proteasome 

inhibitor was present), compared to cells that were fixed straight after the 24hr transfection 

period. This suggests that replacement of transfection mix with fresh medium may 

increase the number of detectable pp65-tagged HAUSP expressing cells. In order to test 

this, it was decided to transfect Hep2 cells with pp65CMV135, using the DOTAP 

transfection method, and leave the transfection mix on the cells for either lOhr, 14hr or 

24hr and then replace it with fresh medium. Indirect immunofluorescence was then 

performed 24hr after the start of transfection using both the anti-pp65 MAb and r201 serum 

in the primary antibody mix. Examination of the coverslips revealed that replacement of 

the transfection mix with fresh medium lOhr after transfection gave the highest number of 

detectable pp65-tagged HAUSP expressing cells. All transfections done subsequently were 

based on this protocol.

3B6.2 Investigation of the effect of expression of pp65-tagged HAUSP 
on the state of the cell

As explained previously, the low levels of cells expressing detectable pp65-tagged HAUSP 

may have been the result of targeting cells overexpressing HAUSP for apoptosis. An 

observation which may support this theory was that a minor proportion of the pp65-tagged 

HAUSP expressing cells appeared sickly and often blebing of the plasma membranes was 

seen, similar to that observed for apoptotic cells (Figure 3B6.2). Thus it was decided to 

further investigate whether these cells had other features of apoptotic cells such as 

alterations in their nuclear structure (Martin et a i,  1994). Hep2 cells were transfected with 

pp65-tagged HAUSP harbouring plasmid and indirect immunofluorescence performed 

using anti-pp65 MAb as the primary antibody. The fluorochrome DAPI which stains DNA 

was also used. A fair representation of the results of this experiment are illustrated in 

Figure 3B6.2. Panel A shows the most prominent phenotype observed for a pp65-tagged 

HAUSP positively transfected cell in which the cell membrane appears normal. Panel B
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Chapter 3 Results

represents the same field of cells and shows the distribution of the DNA. Thus it is clear 

that, in this case, tagged HAUSP expression does not significantly alter DNA location. 

However panels C and D illustrate two cells positively transfected with tagged HAUSP that 

have the membranous blebing effect previously described. It is interesting to see that the 

DNA appearance within these cells appears somewhat altered. Changes in or degradation 

of nuclear architecture are one of the signs of apoptosis, but it would be necessary to 

investigate these phenotypes in more detail in order to come to any conclusion on the fate 

of overexpressing exogenous HAUSP.

3B6.3 Investigation into the effect of enzymatic inactivation of HAUSP 
for transient expression in eukaryotic cells

Another possible reason for the low level of pp65-tagged HAUSP expressing cells is due to 

HAUSP enzyme activity being toxic to the cells. Thus to investigate what effect lack of 

deubiquitinase activity would have on HAUSP transient expression in eukaryotic cells, an 

enzymatically inactive version of pp65CMV135 was made. The C223S pp65CMV135 

mutant was made by subcloning a small fragment of the HAUSP coding region in which 

the C223S mutation had been incorporated into the relevant sites of the wild type 

pp65CMV135 plasmid. In particular, a ligation reaction was set up between the 

RsKjI(193)-Z?sKjI(241) C223S pET24al35 insert fragment and the BsrG 1(241)- 

R?rGl(193) wild type pp65CMV135 vector fragment (see Figure 3A3.2 for positions of 

these sites within the HAUSP coding sequence).

The C223S pp65CMV135 mutant was then transfected alongside wild type pp65CMV135 

in Hep2 cells and indirect immunofluorescence was carried out using both the anti-pp65 

MAb and r201 serum in the primary antibody mix. No differences were observed between 

the level or distribution of tagged HAUSP expression in cells positively transfected with 

wild type or mutant pp65-tagged HAUSP. However, an approximately three fold increase 

in the number of positive cells expressing tagged HAUSP was seen for the enzyme inactive 

mutant. Thus, this work suggests that HAUSP enzyme activity is toxic to the cells and as 

such excess production of active HAUSP may cause cell death.

3B7 Investigation of the distribution of transiently expressed 
tagged HAUSP within Hep2 cells

Once pp65-tagged HAUSP expression in eukaryotic cells was optimised to an acceptable 

level the next stage was to design indirect immunofluorescence experiments to observe the
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distribution of tagged HAUSP within the cells, the results of which can be seen in Figure 

3B7. From the several thousand cells examined, the dominant phenotype observed was 

that shown in panel A where pp65-tagged HAUSP is mainly located in the cytoplasm. The 

next most common phenotype is displayed in panel B where the pp65-tagged HAUSP is 

both located in the nucleus and cytoplasm, while panel C shows the least prominent, but 

still significant phenotype in which pp65-tagged HAUSP expression is mainly in the 

nucleus. In contrast to this endogenous HAUSP is mainly located in the nucleus in a 

diffusely punctate form as part of the ND10 domains (Everett et al., 1997). It has been 

speculated that this punctate localisation is a result of protein-protein interactions between 

HAUSP and a component of the ND10 domains. The observed difference between the 

distribution of endogenous and exogenous HAUSP may be a result of the exogenous 

HAUSP expression exceeding the level of the ND10 protein with which it interacts, 

resulting in excess HAUSP being relocated to the cytoplasm.

3B8 Characterisation of exogenously expressed HAUSP

To better characterise the pp65-tagged HAUSP being expressed, pp65CMV135 was 

transfected into Hep2 cells and indirect immunofluorescence carried out using both the 

anti-pp65 MAb and either: the N- or C-terminal anti-HAUSP serum in the primary 

antibody mix. The results of these experiments are displayed in Figure 3B8a and 3B8b. 

As can be seen from Figure 3B8a, cells which appeared to be positively transfected with 

the pp65-tagged HAUSP (detected using the anti-pp65 MAb), gave a similar staining 

pattern when probed using the anti-N-terminus HAUSP anti-peptide antibody r206. This 

suggests that the N-terminus of pp65-tagged HAUSP is expressed correctly.

More interestingly, the cells which appeared to express pp65-tagged HAUSP (detected 

using the anti-pp65 antibody), did not give a similar staining pattern when probed using the 

anti-C-terminus HAUSP anti-peptide antibody r201. Indeed, a number of different 

phenotypes were seen (Figure 3B8b Panels A-F). The most predominant phenotype, as 

before, was of cells which express pp65-tagged HAUSP mainly in the cytoplasm (Panel 

A). Surprisingly, in these cells the C-terminus of HAUSP was only detected in the nucleus 

at a level comparable to that of the surrounding mock transfected cells (Panel B). This 

suggests that pp65-tagged HAUSP, but not endogenous HAUSP, is being truncated at the 

C-terminal. This could be the result of cleavage by a cellular protease, but why only the 

tagged HAUSP should be targeted is unclear. A second phenotype observed was for cells

94



Figure 3B 7: Indirect im m unofluorescence  experim en t to  investigate  the  ce llu lar location  o f  transien tly
exp ressed  pp65-tagged  H A U SP.
H ep2 cells w ere transfected  w ith  pp65C M V 135 and incubated  for lOhr, a fter w h ich  the 
D N A /D O T A P /m edium  m ix w as rep laced  by fresh m edium  and incubated  fo r a fu rther 14hr (S ection  2B 3.2). 
Ind irect im m unofluorescence  w as then  carried  out on these cells using  the M A b an ti-pp65  an tibody  and FITC 
labelled  goat an ti-m ouse  IgG  secondary  an tibody  (as described  in Section  2B 3.3). T he fie lds o f  cells show n 
have been selected , a fter exam ina tion  o f  several thousand  cells, to illustrate  the  range o f  pheno types 
observed . T he dom inan t pheno type w as tha t show n in panel A  w here pp65-tagged  H A U S P  is m ain ly  located  
in the cy top lasm . Panel B d isp lays the nex t m ost com m on phenotype w here  the pp65-tagged  H A U S P  is 
located  in both  the nucleus and cy top lasm , w hile  panel C show s the least p rom inen t, but still s ign ifican t, 
phenotype in w hich  pp65-tagged  H A U S P expression  is observed  m ainly  in the  nucleus.



A

B

Figure 3B 8a: Im m unofluorescence  experim en t illustrating  the quality  o f  the N -term inus o f  the  pp65-tagged  
H A U SP protein .
H ep2 ce lls  w ere transfec ted  w ith  pp65C M V 135 and incubated  fo r lOhr, a fte r w hich the 
D N A /D O T A P /m edium  m ix w as rep laced  by fresh m ed ium  and incubated  for a fu rther 14hr (S ection  2B 3.2). 
Ind irect im m unofluorescence  w as then  carried  out on these  cells using both  the an ti-pp65 M A b and the anti 
N -term ina l H A U SP serum  r206  in the prim ary  antibody  m ix (as described  in Section  2B 3.3).
Panels A and B show  the m ain  phenotype observed  after exam ination  o f  several thousand  cells. B inding 
against pp65 w as detec ted  using  the FITC  labelled  goat an ti-m ouse  IgG  (illustrated  in panel A). B inding 
against H A U S P w as detec ted  using  T R ITC  labelled  goat an ti-rabb it IgG  (illustrated  in panel B).



Figure 3B 8b: Im m unofluorescence  experim en t illustrating  the quality  o f  the C -te rm in u s o f  the pp65-tagged  
H A U SP pro tein  and the  effect o f  exogenous H A U SP  expression  on levels o f  endogenous H A U SP.
H ep2 cells w ere transfected  w ith  pp65C M V 135 and incubated  for lO hr, a fter w h ich  the 
D N A /D O T A P /m ed ium  m ix w as rep laced  by fresh  m edium  and incubated  for a fu rth er 14hr (S ec tion  2B 3.2). 
Indirect im m unofluorescence  w as then carried  out on these  cells, using  both  the an ti-pp65  M A b and  the anti 
C -term inal H A U S P  serum  r201 in the p rim ary  antibody  m ix  (as described  in S ection  2B 3.3).
A fter exam ina tion  o f  several thousand  cells three m ain  pheno types w ere observed . T hese  three phenotypes 
can are d isp layed  in panels A /B , C /D  and E/F. B ind ing  against pp65 w as detec ted  using  the F IT C  labelled  
goat an ti-m ouse  IgG  (illustrated  in left hand panels A ,C  and E). B ind ing  against H A U S P  w as detec ted  using 
T R ITC  labelled  goat an ti-rabb it IgG  (illu stra ted  in righ t hand panels B, D and  F). T he w h ite  arrow s 
illustrated  in the right hand panels ind icate  the position  o f  the  cells show n in the left hand  panels.
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in which the pp65-tagged HAUSP was expressed both in the cytoplasm and nucleus (Panel 

C). In this case the level of HAUSP C-termini detected in the nucleus was lower than that 

observed for the surrounding cells (Panel D). This suggests that when the C-terminal 

truncated tagged HAUSP enters the nucleus, it may displace the endogenous full length 

HAUSP to the cytoplasm or target it for cleavage or degradation. This is further supported 

by a third phenotype observed where the cells express pp65-tagged HAUSP mainly in the 

nucleus (Panel E). In these cases no C-termini of HAUSP were detected in the nucleus 

(Panel F). This strengthens the theory that a protein exists in the ND10 domains which 

interacts with HAUSP and which limits its nuclear localisation. Furthermore, it implies 

that this interaction does not require the C-terminal of HAUSP. Alternatively, localisation 

of exogenously expressed HAUSP in the nucleus results in partial degradation of 

endogenous HAUSP.

3B9 Investigation of the effect of expression of pp65-tagged 
HAUSP on distribution of the ND10 constituent PML

As it has been observed that HAUSP colocalises with PML in a subset of ND10 domains 

(Everett et al., 1997). It was decided to investigate the effect of expression of tagged 

HAUSP on the distribution and level of endogenous PML. This was done in order to 

explore the idea that PIC-1, or ubiquitin-tagged PML may be substrates of HAUSP. As 

such, it was thought pp65-tagged HAUSP expression may cause a change in the stability of 

endogenous PML, which would result in a change in its levels observed within the cell. 

Thus cells were transfected with the plasmid encoding pp65-tagged HAUSP and indirect 

immunofluorescence carried out using the anti-pp65 MAb and anti-PML rabbit serum r8 in 

the primary antibody mix. A fair representation of the results have been provided in Figure 

3B9. No significant alteration can be seen in either the distribution or level of endogenous 

PML expressed in cells positively transfected with pp65-tagged HAUSP in comparison to 

the surrounding untransfected cells. This result suggests that alteration of the intracellular 

levels of HAUSP by transfection does not effect PML or ND10 domains.

3B10 Investigation into the role of different domains of HAUSP 
for transient expression in eukaryotic cells

It was postulated that by expressing only specific regions of HAUSP we would be able to 

formulate a clearer idea of the role each region played in the expression of HAUSP in the 

cell. Therefore, N- and C-terminal mutants of HAUSP were constructed.
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A

Figure 3B9: Im m unofluorescence  experim en t illu stra ting  tha t the level o f  endogenous PM L is not a ltered  by 
expression  o f  pp65-tagged  H A U SP.
H ep2 cells w ere transfec ted  w ith  pp65C M V 135 and incubated  fo r lOhr, after w hich the 
D N A /D O T A P /m ed ium  m ix w as replaced by fresh m edium  and incubated  for a fu rther 14hr (S ection  2B 3.2). 
Indirect im m unofluorescence  w as then  carried  out on  these cells, using  both the anti-pp65  M A b and anti- 
PM L  serum  r8 in the p rim ary  an tibody  m ix (as described  in S ection  2B 3.3).
Panels A  and B show  the sam e field  o f  cells. FITC  labelled  goat an ti-m ouse  IgG w as used to detec t the pp65 
b ind ing  (panel A ) and T R IT C  labelled  goat an ti-rabb it IgG  w as used to detec t the PM L b inding  (panel B). 
T he w hite  arrow s in panel B illustrate  the position  o f  the cells show n in panel A.
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The 18 residue N-terminal pp65CMV135 deletion mutant was synthesised in a ligation 

reaction with three fragments: the Xbal-Ndel{\) pp65CMV135 vector fragment (in which 

the Ndel site was blunt ended), the Aval( 18)-Z7sfEII(529) pp65CMV135 HAUSP fragment 

(in which the Aval site was blunt ended) and the BstEU.(529)-Xbal pp65CMV135 fragment 

(see Figure 3B10). The junction between the pp65 and HAUSP encoding regions was 

checked by sequencing (Section 2B1.9) using the sequencing primer 1868 (Table 2B1.9).

The 424 residue N-terminal pp65CMV135 deletion mutant was synthesised in a ligation 

reaction with three fragments: the Xbal-Ndel{\) pp65CMV135 vector fragment (in which 

the Ndel site was blunt ended), EcoRl(424)-BstEU(529) pp65CMV135 HAUSP fragment 

(in which the ZscoRI site was blunt ended) and the BsiEU(529)-Xbal pp65CMV135 

fragment (see Figure 3B10). The junction between the pp65 and HAUSP encoding regions 

was checked by sequencing (Section 2B1.9) using the sequencing primer 424NTRUNC 

(Table 2B1.9).

The 441 residue C-terminal truncated pp65CMV135 mutant was synthesised by ligation of 

a stop linker (Table 2B1.9) into the pp65CMV135 plasmid which had been linearised 

within the sequence encoding residue 441 of HAUSP. This linearised pp65CMV135 

plasmid was isolated after digestion of pp65CMV135 with Bsu36l(44\) followed by blunt 

ending and dephosphorylation of the fragment (Section 2B1.2).

The 576 residue C-terminal truncated pp65CMV135 mutant was synthesised by ligation of 

a stop linker (Table 2B1.9) into the pp65CMV135 plasmid which had been linearised 

within the sequence encoding residue 576 of HAUSP. This linearised pp65CMV135 

plasmid was isolated after digestion of pp65CMV135 with Mscl(516) followed by blunt 

ending and dephosphorylation of the fragment (Section 2B1.2). The correct incorporation 

of the termination signal at codon 576 was checked by sequencing (Section 2B1.9) using 

the sequencing primer H+8 (Table 2B1.9).

The 880 residue C-terminal truncated pp65CMV135 mutant was synthesised by ligation of 

a stop linker (Table 2B1.9) into the pp65CMV135 plasmid which had been linearised 

within the sequence encoding residue 880 of HAUSP. This linearised pp65CMV135 

plasmid was isolated after digestion of pp65CMV135 with A/ZII(880), followed by blunt 

ending and dephosphorylation of the fragment (Section 2B1.2).
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Chapter 3 Results

The wild type and mutant pp65CMV135 plasmids were transfected into Hep2 cells and 

indirect immunofluorescence carried out using both the anti-pp65 MAb and either r201 

serum (in the case of the N-terminal deletion mutants), or r206 serum (in the case of the 

wild type and C-terminal truncated mutants), in the primary antibody mix. Examination of 

these transfected cells showed no significant differences in subcellular distribution or level 

of HAUSP expression between cells expressing the 18 residue N-terminal deleted, 441 

residue C-terminal truncated or 880 residue C-terminal truncated mutants of pp65-tagged 

HAUSP with that of cells expressing wild type pp65-tagged HAUSP. As such no solid 

conclusions could be made as to the roles of these missing regions for HAUSP function 

within the cell.

Interestingly, expression was not detectable for the 424 residue N-terminal deleted or 576 

residue C-terminal truncated mutants of tagged HAUSP. The reason for this lack of 

expression is unclear. However, the possibility existed that loss of the respective residues 

from these mutants lead to their improper folding or deletion of a stability element which 

resulted in targeting them for degradation. In order to test whether these mutant proteins 

were being degraded by the proteasome, Hep2 cells were first transfected with these 

mutants and left for 24hr (Section 2B3.2). Next the DNA/DOTAP/medium transfection 

mix was replaced with fresh medium containing MG 132 to a final concentration of 5|iM 

and the cells incubated for a further 8hr. Indirect immunofluorescence was then carried out 

using both the anti-pp65 MAb and either: r201 serum (for the N-terminal deletion mutant) 

or r206 serum (for the C-terminal truncated HAUSP mutant), in the primary antibody mix. 

However, no pp65-tagged HAUSP expression was detectable.
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3B11 Summary of the investigation into the effects of transiently 
expressing HAUSP in eukaryotic cells

• Exogenous expression of pp65-tagged HAUSP was detectable. As exogenous 

expression of untagged HAUSP was not detectable it was suggested that the N-terminal 

pp65 tag is required for stable expression.

• Expression of pp65-tagged HAUSP was detectable in a lower number of cells compared 

with the expression of another exogenously expressed protein. This implied that 

intracellular levels of HAUSP are closely monitored.

• Investigations into possible causes for the low number of detectable pp65-tagged 

HAUSP expressing cells suggested:

1. Exogenously expressed pp65-tagged HAUSP is not degraded by the proteasome.
2. Exogenous expression of HAUSP may be triggering cells for apoptosis.
3. The deubiquitinase activity of exogenously expressed HAUSP may be toxic for cells.

• Although pp65-tagged HAUSP expression was observed in the nucleus, its expression 

in the cytoplasm was the dominant phenotype observed. This is in contrast to the 

endogenous HAUSP which is expressed in punctate domains in the nucleus.

• Characterisation of the pp65-tagged HAUSP suggested that it was truncated at its C- 

terminal end.

• Exogenous expression of pp65-tagged HAUSP does not effect the level or distribution 

of the ND10 constituent PML.

• Expression of various N-terminal deletion and C-terminal truncation mutants of pp65- 

tagged HAUSP did not alter the distribution pattern observed for the protein.
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3C Identification of cellular proteins that interact with 
HAUSP

3C1 Introduction

A key to understanding the function of a protein in a cell often lies in understanding its 

interactions with other proteins. As such it was decided to initiate a search for the cellular 

proteins which interact with HAUSP.

From the wide variety of methods that exist to detect specific protein-protein interactions, 

it was decided to use one based on the GST ‘pull-down’ technique. This technique 

involves the synthesis of fusion proteins between a protein, or protein segment, of interest 

and GST. The expressed GST fusion proteins are then purified from bacterial lysates by 

adsorption to glutathione agarose beads (Smith & Johnson, 1988). These beads, on which 

the GST fusion proteins are immobilised, are then used as ‘bait’. In this manner, proteins 

which naturally interact with the GST fusion proteins can then be purified from a sample, 

first by the addition of the sample to the beads and then subsequent washing of the beads 

which involves their centrifugation.

The fundamental reasoning for using this technique is that it had been used successfully as 

the method by which HAUSP itself was identified as the protein that interacts with 

Vmwl 10 (Meredith et al., 1994). In addition to this, results arising from this work will be 

used to support the work of another member of the group who is using the yeast two hybrid 

assay to identify cellular proteins that interact with HAUSP.

An outline of the ‘pull-down’ designed to identify cellular proteins that interact with 

HAUSP is given in Figure 3C1. The design of the initial ‘pull-down’ assay implemented 

was based on the conditions used originally to identify HAUSP as being a cellular protein 

that interacts with Vmwl 10 (Meredith et al., 1994). Thus, by using conditions under 

which it is known that Vmwl 10 and HAUSP would interact, it was hoped that any cellular 

proteins identified as interacting with HAUSP would be of biological significance.

This section describes experiments based on this assay which led to the identification of 

~40kD, lOOkD and 105kD cellular proteins that strongly interact with specific regions of 

HAUSP. Furthermore, it describes the use of immunoprecipitation to support this data. It 

also describes the use of this assay to define more precisely the residues of HAUSP 

required for these interactions. Finally the GST ‘pull-down’ assay was also used to
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Figure 3C1: Outline of the GST ‘pull-down’ assay implemented to identify cellular proteins that interact with 
HAUSP.
Bacterial extracts containing GST fusion proteins were mixed with glutathione agarose beads and the beads- 
fusion complexes were then washed to remove non-specific interactions.
Aliquots of the beads were run on a 10% SDS-PAGE gel and coomassie stained. This was done in order to 
calculate the amounts of beads-fusion complexes to be used, such that the fusion proteins would be present in 
equalised quantities (normalised) for subsequent ‘pull-down’ experiments.
Normalised amounts of beads-fusion complexes were mixed with pre-cleared radiolabelled soluble cell 
extract and washed to remove non-specific interactions.
Proteins bound to the beads were then eluted by competition with reduced glutathione. The eluted proteins 
were separated on an SDS-PAGE gel and transferred to a nitrocellulose filter. The molecular weight of any 
eluted radiolabelled proteins was observed by exposing the nitrocellulose blot to a film.
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Chapter 3 Results

investigate the susceptibility of the ~40kD, lOOkD and 105kD proteins to proteasomal 

degradation.

3C2 Targeting of regions within HAUSP predicted to be important 
for protein-protein interactions

The first stage in this process was to synthesise HAUSP GST fusion proteins encoding 

regions of HAUSP potentially important for protein-protein interactions. Such regions 

were first predicted using computer protein structure prediction packages such as PepPlot, 

Plot Structure and Helical Wheel which predicted the secondary structure of HAUSP. The 

most significant findings from these analyses were those indicating that HAUSP had 

regions which were strongly predicted to form a-helices. As can be seen from Figure 3C2 

the N-terminal 19 residues and segments between residues 515-572, 920-960 and 1008- 

1043 are predicated to have a high a-helical content. GenBank database searches using the 

NCBI non-redundant database were also performed. The database comparisons revealed 

no other highly conserved features outside the USP active site domains. However the 

results of this work did show that the regions specified to have high a-helical content also 

showed low level similarity to the helical bundles of the involucrin family of proteins 

which form an extended flexible rod and are thought to allow multiple intermolecular 

interactions (Yaffe et al., 1992). Thus it was postulated that these helical regions in 

HAUSP were involved with protein-protein interactions. The regions of HAUSP to be 

used as bait in the GST ‘pull-down’ assay were chosen based on these results.

3C3 Plasmids expressing GST fusion proteins

The pGEX2TN3 plasmid (Figure 3C3) was used for expression of GST sequences and was 

used as a control in the ‘pull-down’ assay.

The pGEX4222 plasmid was used for expression of a HAUSP GST fusion protein 

encoding the HAUSP residues 26-1102.

The plasmids pGEX135N/B, pGEX135B/B, pGEX135A/P, pGEX135A/A’, 

pGEX135A’/A ” , pGEX135A” /P, pGEX135M/P, pGEX135A/H and pGEX135P/H were 

all derived from the pGEX2T vector (Figure 3C3). These plasmids were used for the 

expression of HAUSP GST fusion proteins encoding the HAUSP residues: 1-193, 241-441, 

516-837, 513-581, 581-749, 749-837, 576-837, 516-1102 and 837-1102 respectively. An 

outline of how they were all constructed is given in Table 3C3.
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Clone Vector fragment HAUSP
fragment

HAUSP
residues
encoded

5’ junction 
sequence

pGEX135N/B pGEX2T /Smal# Ndel*-BsrG\* 1-193 ATC/CCC/
TAT/GAA

pGEX135B/B pGEX2T/Smal# BsrGl*-
Bsu36l*

241-441 ATC/CCC/
GTA/CAT

pGEX135A/P pGEX2T/SmaI# Accl*-Pstl* 516-837 ATC/CCC/
CTA/CAT

pGEX135A/H pGEX2T/Smal-Pstl 
pGEX2TN 3/Pstl-HindHL

AccI*-HindIIl 516-
1102

ATC/CCC/
CTA/CAT

pGEX135P/H pGEX2T/Smal-Pstl 
pGEX2TN 3/Pstl-Hindni

Pstl*-Hindni 837-
1102

ATC/CCC/
GTT/TTT

pGEX135A/A’ pGEX2T/SmaI# A/zm*-A/zm* 513-581 ATC/CCC/
CAT/GTT

pGEX135A/A” pGEX2T/Smal# A/zm*-A/zni* 581-749 ATC/CCC/
CGT/GTC

pGEX135A” /P pGEX2T/Smal# A fm *-P sti* 749-837 ATC/CCC/
CAT/GTA

pGEX135M/P pGEX2T/Smal# MscI-PstI* 576-837 ATC/CCC/
CCA/CCA

Table 3C3: The construction of various plasmids encoding HAUSP GST fusion proteins.
Each HAUSP GST fusion protein encoding plasmid was constructed in a ligation reaction with fragments 
isolated from the relevant digestion mixes of the pGEX2T/2TN3 vector(s) and HAUSP encoding plasmids. 
A # sign indicates that this vector fragment has been dephosphorylated. A * sign indicates the restriction site 
next to which it has been marked has been blunt ended. Six bases either side of the 5’ junction between 
sequences encoding GST and HAUSP have been listed for each clone.
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The pGEX135B/E plasmid was used for the expression of a GST fusion protein encoding 

HAUSP residues 516-744. It was made in a ligation reaction with two fragments isolated 

from the relevant digestion mixes, the BarriHI-EcoRI pGEX2T vector fragment and the 

BamHl-EcoKl(144) pGEX135A/P HAUSP fragment.

The pGEX4222/B plasmid was used for the expression of a GST fusion protein encoding 

HAUSP residues 26-193. It was made by first digesting the pGEX4222 plasmid with 

ZfarGI and HindUl and blunt ending the resulting fragments. The large HindUl-BsrGl( 193) 

fragment was then isolated and self-ligated.

The junction between the GST and HAUSP encoding regions of the pGEX plasmids 

constructed were all checked by sequencing (Section 2B1.9), using the sequencing primer 

GEX2T (Table 2B1.9).

3C4 Expression of GST fusion proteins

The expression of GST fusion proteins was done in several stages. Firstly, the pGEX 

plasmids were transformed into the E.coli BL21 strain (Section 2B4.2). The next step was 

to grow cultures in which protein expression was induced from the Ptac promoter by 

addition of IPTG and from these cultures protein extracts were prepared as described in 

Section 2B4.3.

Expression of the fusion proteins was detected by mixing bacterial extracts containing GST 

fusion proteins with glutathione agarose beads and washing them with PBS (A) to remove 

any non-specific interactions. Aliquots of these beads were analysed on SDS-PAGE gels 

and the gels coomassie stained. As expression of the proteins varied, a second gel was run 

on which the quantity of beads used was adjusted so that each fusion protein was present in 

equalised (normalised) amounts. The coomassie stained gels on which normalised levels 

of these GST fusion proteins have been run can be seen in Figures 3C4a and 3C4b.

The molecular weights were estimated by plotting a graph of the logarithmic molecular 

weight of the standard proteins against distance migrated on the acrylamide gel. These 

results were then compared to the predicted molecular weight calculated using the GCG 

‘Translate’ computer program to ensure that the fusion proteins were of full length.

Despite attempts to normalise the amounts of beads-bound proteins run on the gels, it is 

still evident that some proteins either had high degradation levels, were bound to the beads
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Figure 3C 4a: C oom assie  sta ined  10% polyacry lam ide gel show ing  sam ples o f  fusion  p ro teins bound  to  beads. 
A liquo ts o f  bacteria l ex trac ts (3 00p l) w ere incubated  w ith  30pl o f  a 50%  slurry o f  g lu ta th ione  agarose beads 
for lh r  at 4°C  end-over-end . T he beads w ere w ashed  th ree tim es in 1ml cold  P B S (A ) and the beads-bound  
p ro teins elu ted  into 2 0 p l reduced  g lu tath ione. T he sam ples w ere then  boiled  for 2m in  after add ition  o f  lOpl 
3X SD S load ing  buffer and lOpl aliquo ts loaded on a 10% S D S -PA G E  gel, a longside  m o lecu la r w eigh t 
m arkers and the gel coom assie  stained (S ection  2B 4.6). B ased on these resu lts ano ther 10% polyacry lam ide  
gel w as run in w hich  norm alised  am oun ts o f  the beads-bound  fusion  p ro teins w ere loaded. H ow ever, it is 
still ev iden t tha t degradation  o f  som e fusion  p ro teins w as very h igh in com parison  to o thers. T he d iagram  
underneath  the gel illu stra tes H A U S P  fragm ents expressed  as fusion  pro te ins w ith in  the  con tex t o f  the entire 
sequence o f  H A U SP.
The ‘G S T ’ track  show s the e luan ts o f  the beads-bound  to  the G ST  protein . T he num bered  tracks rep resen t 
the residues o f  H A U S P encoded  by the pu rified  G ST  H A U SP fusion  p ro tein  that w as loaded on tha t track. 
B ands represen ting  the full length beads-bound  fusion pro tein  are m arked w ith  a •  nex t to the  co rrespond ing  
band. The sizes o f  the m o lecu lar w eigh t m arker p ro te ins are ind icated  at the side o f  the  gel.
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with less affinity or were expressed at reduced levels. For example, it is clear that the GST 

fusion proteins encoding the C-terminal regions of HAUSP are more susceptible to 

degradation. In general, the subclones of the 513-837 region appear to be expressed at 

reduced levels compared to the other fusion proteins. The GST fusion protein encoding the 

HAUSP residues 26-1102 was also produced at low levels. Thus, to minimise these 

problems, fresh extracts were generally used for the GST ‘pull-down’ assays. Secondly the 

amounts of the fusion proteins used in each assay were normalised, by running beads- 

fusion complexes on a gel and then adjusting the amounts of these complexes used for the 

subsequent ‘pull-down’ assay to provide equalised levels of the fusion proteins.

3C5 Initial experiment to identify cellular proteins that interact 
with segments of HAUSP

The initial experiment to identify cellular proteins that interact with segments of HAUSP 

involved carrying out a ‘pull-down’ assay using glutathione agarose beads bound to 

HAUSP GST fusion proteins encoding HAUSP residues 1-193 and 516-1102. These beads 

were mixed with radiolabelled WS HeLa cell extracts and then washed with a 0.2M NaCl 

wash buffer to remove non-specific interactions. Details of the experiment are explained in 

the legend of Figure 3C5.

The results of the autoradiographs of 7.5% and 12.5% SDS-PAGE gels on which the eluted 

samples of the ‘pull-down’ assay were run are shown in Figure 3C5. Bands that 

specifically interacted with HAUSP GST fusion proteins were clearly observable due to 

only a minimum of proteins being pulled down by the control GST beads. In particular, 

observation of the lower concentration (7.5%) acrylamide gel shows that the 1-193 HAUSP 

GST fusion protein appears to interact with 40kD, lOOlcD and 105kD cellular proteins and 

the 516-1102 HAUSP GST fusion protein with 40kD and 80kD cellular proteins (Figure 

3C5 part A). The sizes of these proteins were estimated by the relative mobility of the 

corresponding bands compared to the rainbow markers.

This lead to speculation that may be both the N- and C-terminal HAUSP GST fusion 

proteins were interacting with the same 40kD cellular protein. However, when these 

samples were run on the higher percentage (12.5%) acrylamide gel, on which the molecular 

weight of proteins around 40kD can be better resolved, it is clear that these proteins are 

different (Figure 3C5 part B). In fact the l-193kD HAUSP fusion protein appears to 

interact with a 45kD cellular protein, whereas the 516-1102 HAUSP GST fusion protein
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A G S T  ‘p u ll-d o w n ’ assay w as carried  out using  the standard  assay cond itions described  in Section  2B 4.8 , 
w ith  the fo llow ing  m odifications. N orm alised  am ounts o f  g lu ta th ione  agarose beads-bound  to G S T  fusion  
pro te ins (encoding: G ST  alone, 1-193 H A U SP G ST , and 516-1102  H A U SP G ST ), w ere prepared. T hese 
beads w ere then  m ixed  w ith  300p l quan tities o f  p re-c leared  35S -rad io labe lled  W S H eLa cell ex trac ts (the 
p roduc tion  o f  w hich  is described  in Section  2B 3.4) and sam ples incubated  for lh r  at 4°C  end-over-end . T he 
sam ples w ere then w ashed three tim es w ith  1ml o f  w ash buffer contain ing : 0 .2M  N aC l, 0 .05M  H epes pH 7.4 , 
0 .1%  N P40, Im M  (3-m ercaptoethanol, 0 .5pg /m l leupeptin , Im M  PM SF and 40 p g /m l bestatin . A fter e lu tion  
o f  the  bound p ro teins by reduced  g lu tath ione, 3X SD S load ing  buffer w as added  and sam ples boiled  for 2m in. 
Sam ples w ere then  loaded on 7 .5%  and 12.5%  S D S -P A G E  gels. P ro teins w ere then transferred  to a 
n itrocellu lose  filter and once dried  these b lo ts w ere exposed  to  film  (as described  in Section  2B 4.7).
Panel A show s the resu lts from  the 7.5%  SD S -PA G E  gel and  panel B show s the resu lts  from  the 12.5%  SD S- 
PA G E  gel. A  2pl sam ple o f  the j:,S -radio labelled  W S H eL a cell ex tract w as run in the last lane. T he tracks 
labelled  ‘G S T ’, ‘ 1-193’ and ‘5 1 6 -1 1 0 2 ’ show  rad io labelled  pro te ins e lu ted  from  the beads-fusion  com plexes 
o f  the  G ST  fusion pro teins encoding: G ST  alone, 1-193 H A U SP G ST  and 516-1102 H A U SP G ST  
respectively . The positions o f  the 40kD , 45kD , 80kD . lOOkD and 105kD  pro teins are indicated  on the left o f  
the gels. T he m obilities o f  the 40kD  and 45kD  pro te ins w ere  not d is tingu ishab le  on the 7.5%  gel. T he sizes 
o f  the ra inbow  m olecu lar w eigh t m arkers have been ind ica ted  on the righ t o f  the gels.
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interacts with a protein of about 40kD molecular weight. This is a reproducible result. 

However, all the subsequent experiments described in this section involved running 

samples on either 7.5% or 10% acrylamide gels. On these gels the difference in the 

mobility between these ~40kD cellular proteins, that interact with either the N- or C- 

terminal HAUSP GST fusion protein, cannot be distinguished. Therefore both these 

proteins are hereafter referred to as ~40kD cellular proteins.

3C6 Optimisation of the GST 'pull-down’ assay

We wished to investigate the relative stabilities of protein-protein interactions observed 

between HAUSP GST fusion proteins and components of the cellular extract described in 

Section 3C5. A modified GST ‘pull-down’ assay was therefore designed, based on the 

assumption that increases in salt concentrations disrupt weak protein-protein interactions. 

This ‘pull-down’ assay involved using the GST fusion proteins encoding: GST alone, 1- 

193 HAUSP GST and 516-1102 HAUSP GST, bound to glutathione agarose beads. Each 

beads-bound fusion protein sample was then divided into three aliquots and mixed with 

radiolabelled WS HeLa cell extract (made up in a buffer containing 0.2M NaCl). After a 

lhr incubation at 4°C , the three aliquots of each fusion protein sample were washed three 

times, using 1ml of buffer A, B or C (which differed only in their final salt concentrations: 

buffer A-0.2M NaCl, B-0.35M NaCl, C-0.5M NaCl). The ‘pull-down’ assay was then 

continued as described previously (see the legend of Figure 3C6 for the experimental 

details of this assay).

The results of this ‘pull-down’ are shown in Figure 3C6. For samples washed in the lowest 

salt concentration, 0.2M NaCl, a large number of proteins remained bound to all the GST 

fusion proteins. However close observation of the gel reveals three proteins of 

approximately 40kD, lOOkD and 105kD that interact with the N-terminal HAUSP GST 

fusion protein and an approximately 40kD protein that interacts with the C-terminal 

HAUSP GST fusion protein. The bands corresponding to these proteins were better 

defined after using the 0.35M NaCl wash buffer B. The most clear results were observed 

for samples made using the 0.5M NaCl wash buffer C. Indeed, in these samples the only 

different bands that are apparent between the control track and HAUSP GST fusion protein 

tracks, are the lOOkD and 105kD proteins which interact with the N-terminal HAUSP GST 

fusion and the ~40kD cellular protein that interacts with the C-terminal HAUSP GST 

fusion protein. This means that, apart from the ~40kD protein that interacts with the N-
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Figure 3C 6: G S T  'p u ll-d o w n ’ assay investigating  the  re lative stab ilities o f  in teractions betw een  H A U SP and 
ce llu la r p ro teins.
A G S T  'p u ll-d o w n ’ assay  w as carried  out using the  standard  assay cond itions described  in Section  2B 4.8, 
w ith  the fo llow ing  m odifica tions. N orm alised  am oun ts o f  g lu ta th ione  agarose beads bound  to G ST  fusion 
p ro te in s (encod ing : G S T  alone, 1-193 H A U S P G ST , and 516-1102 H A U SP G ST), w ere p repared  and each 
sam ple d iv ided  in to  th ree aliquots. T hese beads w ere then  m ixed  w ith  300p l quan tities o f  p re-cleared  35S- 
rad io labelled  W S H eL a cell ex tracts (the production  o f  w hich  is described  in Section  2B 3.4) and sam ples 
incubated  for lh r  at 4°C  end-over-end . T he nex t stage w as to w ash the beads w ith  1ml w ash  buffer. A 
d ifferen t w ash  b u ffe r A , B or C (described  in d iagram ) w as used for each o f  the three aliquo ts o f  the G ST  
fusion  beads-bound  com plexes. A fter e lu tion  o f  the  bound  p ro teins by reduced  g lu tath ione, 3X  SD S loading 
buffer w as added  and sam ples boiled for 2m in p rior to load ing  on a  10% SD S-PA G E  gel. P ro te ins w ere then 
transferred  to a n itroce llu lo se  filter and once dried  the b lot w as exposed  to film  (as described  in Section  
2B 4.7).
A 2p l sam ple o f  the 3:,S -rad io labelled  W S H eLa cell ex trac t w as run in the first lane. T he tracks labelled  
'G S T ’, ‘ 1 -193’ and ‘5 1 6 -1 1 0 2 ’ show  rad io labelled  p ro te in s e lu ted  from  the beads-fusion  com plexes o f  the 
G S T  fusion  p ro te in s encoding : G ST  alone, 1-193 H A U S P  G ST  and 516-1102  H A U SP  G ST  respectively . 
The type o f  w ash  buffer used has been indicated  below  the re levan t sam ples. T he positions o f  the ~40kD , 
lOOkD and 105kD  p ro te in s  are indicated  on the righ t o f  the gel. The sizes o f  the m olecu lar m arker w eight 
p ro te in s are ind ica ted  on the  left o f  the gel.
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terminal HAUSP GST fusion protein, the other interactions appear to be both strong and 

specific. Therefore, future efforts were focused on better defining these interactions.

It is also worth noting that no band corresponding to 80kD was seen to interact with the 

516-1102 HAUSP GST fusion protein in this experiment. This is in contrast to all the 

other GST ‘pull-down’ assays executed using this fusion protein. However, it is thought 

this could be an artefact of running the SDS-PAGE gel at a different percentage (10%), 

from the percentage at which it was most regularly run (7.5%) in which this interaction is 

observed. As such the 80kD protein may have been pulled down in this experiment too, 

but its appearance could have been masked by a background protein which had a similar 

gel mobility.

3C7 Comparison of the interactions observed between HAUSP 
and cellular proteins using either an immunoprecipitation or GST 
'pull-down’ based assay

An immunoprecipitation experiment was designed (as described in the legend for Figure 

3C7), to identify interactions that occur between wild type HAUSP and cellular proteins. 

This was done in order to compare these interactions with those already identified to occur 

with segments of HAUSP using the GST ‘pull-down’ assay. The results of this 

immunoprecipitation experiment can be seen in Figure 3C7. Comparison of proteins 

precipitated in the mock IP and test IP tracks, demonstrates that a band most likely 

representing HAUSP (of approximately 135kD), is the major additional band that appears 

in the test IP track. There are a number of other bands that coprecipitate, including two 

which have mobilities similar to the 105kD and ~40kD bands, identified through the GST 

‘pull-down’ assay using the GST fusion proteins encoding HAUSP residues 1-193 and 

516-1102 respectively (Figure 3C6). A band running at a slightly lower gel mobility than 

105kD can also be observed in the test IP sample but not the mock IP sample. It is 

uncertain whether this band runs with the same mobility as the lOOkD protein band 

observed in the GST ‘pull-down’ assay using the GST fusion protein encoding HAUSP 

residues 1-193. The complexity of the proteins which appear to coimmunoprecipitate with 

HAUSP precludes definative analysis, but the results of the immunoprecipitation appear to 

provide support to those found using the GST ‘pull-down’ assay. However, the question of 

whether substrates of HAUSP would interact for a long enough duration to be 

coimmunoprecipitated (as such interactions are usually extremely transitory), should be 

taken into consideration when interpreting data from this experiment.
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Figure 3C 7: C om parison  o f  the in terac tions observed  betw een  H A U SP and ce llu lar p ro te ins using  e ither an 
im m unoprec ip ita tion  o r G S T  ‘p u ll-d o w n ' based assay.
An im m unoprec ip ita tion  w as carried  ou t based on the standard  assay cond itions described  in S ection  2B 4.9 , 
w ith  the  fo llow ing  m od ifica tions. A  3!,S -rad io labe lled  W S H eLa cell ex tract w as m ade as d escribed  in 
Section  2B 3.4  and p re-c leared  w ith  P ro te in -A -S epharose  beads. A liquo ts (lOOpl) o f  p re-c leared  35S- 
rad io labelled  W S H eL a cell ex trac t w ere m ixed  w ith  either: an a liquo t (2 0p l) o f  the pre-im m une an ti-H A U S P  
r201 serum , o r an a liquo t (2 0 p l) o f  the active an ti-H A U S P  r201 serum . T he total vo lum e o f  each sam ple  w as 
m ade up to  500p l con ta in ing : 0 .2M  N aC l, 0 .05M  H E P E S  pH 7.4 , 0 .1%  N P40, Im M  P -m ercap toethano l, 
0 .5pg /m l leupep tin , Im M  P M S F  and 40pg /m l bestatin . T hese sam ples w ere left to incubate  for 3h rs at 4°C  
end-over-end . A n a liquo t (6 0 p l) o f  a  50%  slurry o f  P ro te in -A -S epharose  beads w as added  to  the sam ples and 
left for lh r  at 4°C . T he sam p les w ere then  w ashed  th ree  tim es w ith  a bu ffer contain ing : 0 .2M  N aC l, 0 .05M  
H EPE S pH 7.4 , 0 .1%  N P 40 , Im M  P -m ercap toethano l, 0 .5pg /m l leupeptin , Im M  PM SF and 4 0 pg /m l bestatin . 
Im m uneprecip ita ted  p ro te in s w ere elu ted  in an a liq u o t (20p l) o f  IX  SD S loading buffer. Sam ples w ere 
boiled  fo r 2m in  p rio r to load ing  on a 10%  S D S -P A G E  gel. P ro teins w ere then  transferred  to  a n itroce llu lo se  
filter by w estern  b lo tting  and once dried  the  b lot w as exposed  to film  (as described  in S ection  2B 4.7).
Sam ples (2 p l) o f  the to tal and p re-c leared  3:,S -rad io labe lled  W S H eLa cell ex trac ts w ere run in the  first tw o 
lanes. T he M ock IP track  show s rad io labelled  pro te ins tha t w ere im m unoprecip ita ted  w hen p re-im m une  r201 
serum  w as used. T he T est IP track  show s rad io labelled  p ro teins tha t w ere im m uneprecip ita ted  w hen  active 
r201 serum  w as used. A liquo ts (lO p l) o f  sam ples from  the G ST  ‘p u ll-d o w n ’ assay described  in F igure 3C 6 
using the 0 .5M  N aC l w ash  b u ffe r C w ere loaded in the ‘G S T ’, ‘G S T 1-193 ’, ‘G S T 5 1 6 -1 102' tracks. T hese 
tracks show  rad io labe lled  p ro te in s  e lu ted  from  the beads-fusion  com plexes o f  the G S T  fusion pro te ins 
encoding: G S T  a lone, 1-193 H A U S P  G ST, and 516-1102  H A U SP G ST  respectively . T he positions o f  the 
~ 40kD , lOOkD and 105kD  p ro te in s  are  indicated . T he sizes o f  the m olecu lar m arker w eigh t p ro te in s are 
indicated  on  the left o f  the gel.



Chapter 3 Results

3C8 An investigation to determine which HAUSP residues are 
required to bind cellular proteins

The next stage, after establishing the existence of strong and specific interactions between 

segments of HAUSP and cellular proteins, was to better define the region of HAUSP 

required for these interactions. In order to do this GST ‘pull-down’ assays were carried out 

as outlined in the legend of Figure 3C8, using an array of GST fusion proteins. The results 

can be seen in Figure 3C8.

It is evident from the results shown in panel A that among the ~40kD, lOOkD and 105kD 

proteins pulled down by the 1-193 HAUSP GST fusion protein, only the ~40kD and 105kD 

proteins are pulled down by the N-terminal truncated 26-193 HAUSP GST fusion protein. 

This suggests residues 1-26 of HAUSP interact with the lOOkD protein and residues 26- 

193 interact with the ~40kD and 105kD proteins.

Furthermore, it appears that only the 516-837 and not the 837-1102 HAUSP GST fusion 

protein pulled down the ~40kD band (Figure 3C8 part A), suggesting that residues 516-837 

are sufficient for this interaction. Interestingly none of the subclones of the 513-837 region 

fused to GST, encoding HAUSP residues: 513-581, 581-749, 749-837, 516-744 and 576- 

837, pulled down the ~40kD protein (illustrated in Figure 3C7 part B). This suggests that 

the integrity of the entire 516-837 region is required to keep the interacting domain in a 

suitable conformation, even if it is potentially a more local interaction.

Additionally, this experiment also demonstrated that the 80kD protein, which interacts with 

HAUSP residues 516-1102, was not pulled down by either of the GST fusion proteins 

encoding HAUSP residues 516-837 or 837-1102. This may suggest that sequences 

encoded in the entire 516-1102 C-terminal region of HAUSP need to be present in order to 

form a structure to which the 80kD protein can bind. Alternatively these results may 

suggest that a minimum of residues which span the region around the 837 residue of 

HAUSP are required for this interaction.

3C9 Investigation of the susceptibility of the ~40kD, 100kD and 
105kD proteins to proteasomal degradation

To investigate whether the ~40kD, lOOkD and 105kD proteins were substrates for the 

ubiquitin proteasome degradation pathway a modified GST ‘pull-down’ assay was 

attempted, described in the legend of Figure 3C9. In this ‘pull-down’ assay three
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Figure 3C8: GST ‘pull-down’ assays investigating HAUSP residues involved in binding the ~40kD protein. 
These ‘pull-down’ experiments were carried out using the conditions described in the legend of Figure 3C5, 
with the exception that a 10% SDS-PAGE gel was run instead of the 12.5% gel.
Panel A shows the results of the autoradiograph derived from the 7.5% SDS-PAGE gel and panel B shows 
the results of the autoradiograph derived from the 10% SDS-PAGE gel. The total extract track shows a 2pl 
aliquot of the 35S-radiolabelled WS HeLa cell extract. The tracks labelled ‘GST’, ‘26-193’, ‘1-193’, ‘516- 
744’, ‘576-837’, ‘513-581’, ‘581-749’, ‘749-837’, ‘516-837’, ‘837-1102’, ‘516-1102’ show radiolabelled 
proteins bound to beads of the GST fusion proteins encoding: GST alone, 26-193 HAUSP GST, 1-193 
HAUSP GST, 516-744 HAUSP GST, 576-837 HAUSP GST, 513-581 HAUSP GST, 581-749 HAUSP GST, 
749-837 HAUSP GST, 516-837 HAUSP GST, 837-1102 HAUSP GST, 516-1102 HAUSP GST, 
respectively. The positions of the ~40kD, 80kD, lOOkD and 105kD proteins are indicated. The sizes of the 
molecular marker weight proteins are indicated on the left of the gels.
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Chapter 3 Results

radiolabelled WS HeLa cell extracts were made (denoted extracts A-C), A being normal 

extract, B being made 12hr after labelling and C being made 12hr after labelling but in the 

presence of proteasome inhibitor. The protocol consisted of following the standard 2hr 

labelling procedure with 35S-methionine (Section 2B3.4) and then, for extract A, WS HeLa 

cells were harvested as usual. For extract B the label mix was replaced with normal growth 

medium and then the cells harvested 12hr later and finally, for extract C the label mix was 

again replaced by normal growth medium, but this time containing 2.5|iM MG 132 

proteasome inhibitor and the cells harvested 12hr later. A ‘pull-down’ assay was then 

carried out with the GST alone, 1-193 HAUSP GST fusion protein and 516-1102 HAUSP 

GST fusion protein using these three extracts. The results are illustrated in Figure 3C9.

As can be seen the lOOkD and 105kD proteins appear at equal levels when using all three 

extracts indicating that these proteins are not substrates for proteasomal degradation. 

However the band corresponding to the ~40kD protein which interacts with the C-terminal 

half of HAUSP appears clearly in the normal extract A but, compared to the background 

bands diminishes when extract B was used in which the cell extract has been chased for 

12hr. Interestingly this band was not decreased in the sample made using extract C, which 

was also chased for 12hr, but in the presence of a proteasome inhibitor. This indicates that 

the ~40kD protein is broken down during the 12hr chase. Furthermore, as this degradation 

appears to be prevented in the presence of proteasome inhibitor, it suggests the ~40kD 

protein is specifically targeted for degradation by the proteasome. As ubiquitinylation of 

the ~40kD protein is most probably required to signal it for proteasomal degradation, the 

possibility exists that HAUSP cleaves off these ubiquitins and therefore regulates its 

degradation.
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Figure 3C 9: Investiga tion  o f  the suscep tib ility  o f  the ~40kD , lOOkD and 105kD  pro te ins to p ro teasom al 
degradation .
A G S T  ‘p u ll-d o w n ’ assay  w as carried  out using the standard  assay cond itions described  in Section  2B 4.8 , 
w ith  the fo llow ing  m odifica tions. T hree d ifferen t W S H eL a cell ex tracts w ere prepared  in w hich  the cells 
w ere labelled  w ith  3,S -M eth ion ine (Section  2B 3.4) and w ere either; harvested  im m ediately  for ex tract 
p repara tion  (ex trac t A ); o r the label m edium  rep laced  w ith  norm al g row th m edium  and the cells harvested  
after 12hr (ex trac t B); o r the label m edium  replaced w ith  norm al g row th m edium  (con ta in ing  the pro teasom e 
inh ib ito r M G  132 at a 2 .5pM  concentration) and the ce lls  harvested  after 12hr (ex trac t C). N orm alised  
am o u n ts  o f  g lu ta th ione  agarose beads-bound  to G S T  fusion  p ro teins (encoding: G ST  alone, 1-193 H A U SP  
G ST , and 516-1102  H A U S P  G ST), w ere prepared  and each fusion  pro tein  sam ple d iv ided  into three aliquots. 
E ach o f  these  th ree  a liquo ts  w as then  m ixed  w ith one o f  the three d ifferen t ex trac ts p repared  A , B, o r C and 
sam ples incubated  fo r lh r  a t 4°C  end-over-end . T he vo lum es o f  ex trac ts A , B and C used fo r the ‘p u ll-d o w n ’ 
assay  w ere ca lib ra ted  such that equal levels o f  rad ioactiv ity  w ere presen t. T he sam ples w ere then  w ashed  
th ree  tim es w ith  0 .5M  N aC l w ash buffer C (described  in F igure 3C 6). A fter e lu tion  o f  the bound  pro te ins by 
reduced  g lu ta th ione , 3X  SD S loading buffer w as added  and  sam ples bo iled  for 2m in. S am ples w ere then  
loaded  on a  10%  S D S -P A G E  gel. P ro teins w ere then  transferred  to  a  n itrocellu lose filter and once dried  the 
b lo t w as exposed  to film  (as described in Section  2B 4.7).
A 2p l sam ple o f  the 3;,S -rad io labe lled  W S H eLa cell ex trac t w as run in the first lane. T he tracks labelled  
‘G S T ’, ‘ 1 -193’ and ‘5 1 6 -1 1 0 2 ’ show  rad io labelled  p ro te ins e lu ted  from  the beads-fusion  com plexes o f  the 
G S T  fusion  p ro te ins encoding : G ST  alone, 1-193 H A U SP G S T  and 516-1102  H A U SP G ST  respectively . 
T he type o f  ex trac t u sed  has been ind icated  below  the gel. T he positions o f  the ~40kD , lOOkD and 105kD  
p ro te in s are ind icated . T he sizes o f  the m olecu lar m arker w eigh t p ro te ins are ind icated  on the left o f  the  gel.
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3C10 Summary of studies to identify cellular proteins that interact 
with HAUSP

• Based on secondary structure predictions and GenBank database searches, regions of 

HAUSP with potential importance for protein-protein interactions were identified.

• Interaction of HAUSP with a ~40kD cellular protein:

1. Using the GST ‘pull-down’ technique a ~40kD cellular protein was identified which
interacts with residues 516-837 of HAUSP.

2. This interaction appears to withstand increases in salt concentration, suggesting it is a 
stable interaction.

3. The biological significance of this interaction was supported by the results of an
immunoprecipitation assay, in which a protein of similar molecular weight
coimmunoprecipitated with wild type HAUSP.

• Interaction of HAUSP with a 80kD cellular protein:

1. The GST ‘pull-down’ technique also identified a 80kD cellular protein which interacts 
with residues 516-1102 of HAUSP.

• Interaction of HAUSP with a lOOkD cellular protein:

1. The GST ‘pull-down’ technique also identified a lOOkD cellular protein which interacts 
with residues 1-193 of HAUSP, of which the first 26 residues are essential.

2. This interaction appears to withstand increases in salt concentration suggesting it is a 
stable interaction.

• Interaction of HAUSP with a 105kD cellular protein:

1. A 105kD cellular protein was also identified using the GST ‘pull-down’ technique 
which interacts with residues 26-193 of HAUSP.

2. This interaction appears to withstand increases in salt concentration, suggesting it is a 
stable interaction.

3. This finding was supported by the results of an immunoprecipitation assay in which a 
protein of similar molecular weight coimmunoprecipitated with wild type HAUSP.

• Interaction of HAUSP with another ~40kD cellular protein:

1. A second cellular protein with the molecular weight of ~40kD was identified to interact 
with residues 26-193 of HAUSP, using the GST ‘pull-down’ technique.

2. This interaction did not withstand increases in salt concentration, suggesting it is not a 
stable interaction.

• Investigation into the susceptibility of these proteins to degradation by proteasome 

showed that the ~40kD cellular protein that interacts with HAUSP residues 516-1102 

was unstable in the cell and degraded in a proteasome-dependant manner.
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Chapter 3 Results

3D To define the region of HAUSP that interacts with 
Vmw110

3D1 Introduction

The aim of the work done in this section was to define the region of HAUSP that interacts 

with Vmwl 10. Based on results from these studies, mutants of HAUSP were produced in 

which residues essential for interaction with Vmwl 10 were removed. It was hoped that 

these mutants could then be used in HAUSP functional assays to test for the importance of 

these regions.

The initial strategy used was based on the GST ‘pull-down’ system, an outline of the 

specific method designed is given in Figure 3D1. It involved using the HAUSP GST 

fusion proteins already described in Section 3C3, the first stage being to immobilise them 

on glutathione agarose beads. The next stage was to mix the beads-bound proteins with a 

pre-cleared soluble bacterial extract in which a Vmwl 10 fragment, encoding residues 

essential for interaction with HAUSP, was expressed, the synthesis of which is described in 

Section 2B4.4. The final steps were the washing of the beads and elution of the proteins 

from the beads. The samples were then analysed for the presence of Vmwl 10 by probing a 

western blot of the eluants for Vmwl 10.

3D2 Initial investigation of the HAUSP residues involved in 
binding to Vmw110

Initial experiments involved using this ‘pull-down’ technique (details of which can be seen 

in the legend of Figure 3D2) and all the HAUSP GST fusion proteins previously described 

in Section 3C3. The results are shown in Figure 3D2.

From the blot in Figure 3D2 part A, it is clear that only HAUSP GST fusion proteins 516- 

1102 and 26-1102 ‘pull-down’ the bacterially expressed 594-775 Vmwl 10 C-terminal 

fragment and not the 241-441 or 837-1102 HAUSP GST fusion proteins. This suggested 

that only the region 516-837 of HAUSP is necessary for the interaction with the C-terminal 

of Vmwl 10. This was supported by the observation that the GST fusion protein encoding 

HAUSP residues 516-837 was sufficient for the interaction with the Vmwl 10 fragment 

(Figure 3D2 part B).
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Figure 3D1: Outline of the GST ‘pull-down’ assay, in which HAUSP GST fusion proteins were used as 
‘bait’.
i) Bacterial extracts containing GST fusion proteins encoding selected segments of HAUSP were mixed with 
glutathione agarose beads and the beads-fusion complexes were washed to remove non-specific interactions.
ii) Normalised amounts of beads-fusion complexes were mixed with pre-cleared soluble bacterial extracts in 
which the C-terminal of Vmwl 10 was expressed. The samples were washed to remove non-specific 
interactions. Proteins bound to the beads were eluted by competition with reduced glutathione.
iii) The eluted proteins were separated on an SDS-PAGE gel and transferred to a nitrocellulose filter. The 
blots were analysed by immunodetection of Vmwl 10 encoding sequences using the 10503 monoclonal 
antibody.
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Figure 3D 2 P anels A and B: G ST  ‘pu ll-d o w n ’ assays investigating  H A U SP residues invo lved  in b ind ing  to 
V m w l 10.
P anels A -D  show  ‘p u ll-d o w n ’ experim en ts based  on the  standard  assay co nd itions described  in S ection  
2B 4.8 . A liquo ts o f  beads bound to contro l G S T  p ro te in  and G ST  fusion p ro te in s encod ing  selected  
sequences o f  H A U SP , w ere ad justed  in o rder to p rov ide norm alised  levels o f  all the  p ro teins. T hese w ere 
then  added  to  300ul quan tities o f  p re-cleared  extracts. T he pre-cleared  ex tract consis ted  o f  266p l bacterial 
ex trac tion  buffer (50m M  H E PE S pH 7.5 , 50m M  N aC l, 0 .1%  N P 40), 27 p l 5M  N aC l and 7p l T 7E 52 bacterial 
ex tract. A  protocol fo r the syn thesis o f  T 7E 52 is de tailed  in Section  2B 4.4. T hese  sam ples w ere then 
incubated  for lh r  at 4°C  end-over-end . B eads w ere then  w ashed three tim es w ith  1ml o f  cold  0.5M  N aC l 
w ash  buffer (consisting  o f  50m M  T ris, 0 .5M  N aC l, Im M  E D T A , 0 .5%  N P40, Im M  P M S F , lp g /p l  leupeptin , 
15pg /p l B estatin). A fter e lu tion  o f  the bound p ro teins by reduced g lu tath ione, 3X  SD S loading buffer w as 
added . The sam ples w ere then boiled  for 2m in  prio r to load ing  on a 12.5%  S D S -P A G E  gel and then 
transferred  to a n itrocellu lose  filter. T he b lo ts w ere then  analysed by im m unodetec tion  (as described  in 
S ection  2B 4.7c) fo r the presence o f  V m w l 10 encod ing  sequences using  the 10503 M A b in a  1 in 10.000 
d ilu tion .
T he ‘G S T ’ track show s p ro teins elu ted  from  beads bound  to the G ST  protein . T he num bered  tracks show  
pro te in s elu ted  from  beads bound to purified  G ST  H A U S P fusion  p ro teins, the num bers represen ting  the 
residues o f  H A U SP encoded  by the protein . T he labels ‘b e fo re ’ and ‘a fte r’ rep resen t sam ples from  the ‘p u ll­
d o w n ’ assay ob tained  ‘b efo re ’ b ind ing  to the p re-cleared  ex tract and those w hich  w ere e lu ted  ‘a fte r’ b ind ing  
to p re-cleared  extract. T he ‘V m w l 10 5 9 4 -775 ’ track  show s a 5pl sam ple o f  T 7E 52  bacte rial extract. The 
b lack  arrow s to the right o f  the gels denote the p osition  o f  the bands rep resen ting  the V m w l 10 fragm ent 
encod ing  residues 594-775.
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Chapter 3 Results

The results shown in part B revealed that the N-terminal 26-193 and 1-193 HAUSP GST 

fusion proteins also interact with the C-terminal of Vmwl 10, but to a lesser degree than the 

516-837 HAUSP GST fusion protein. This difference in affinity was very reproducible.

Interestingly, in part A the 26-1102 HAUSP GST fusion protein appeared to pull down the 

C-terminal of Vmwl 10 to a lesser degree than the 516-1102 HAUSP GST fusion protein. 

However, this is probably due to the fact that the 26-1102 HAUSP GST fusion protein is 

very unstable and so degraded during the ‘pull-down’ procedure, despite attempts to 

normalise the amounts of HAUSP GST fusion protein bound to the beads.

The results shown in part C and part D are of ‘pull-down’ assays in which HAUSP GST 

fusion proteins encoding subcloned regions of HAUSP residues 513-837 were used in an 

attempt to identify the minimal region required for interaction with the C-terminal of 

Vmwl 10. However, none of these fusion proteins interacted with the Vmwl 10 fragment, 

suggesting that the entire region is required for interaction. One possible explanation could 

be that all these residues need to be present in order that the protein forms a structure in 

which residues essential for binding to Vmwl 10 become exposed.

3D3 An investigation into the interaction of HAUSP fusion 
proteins with various forms of Vmw110 to test their specificity

3D3.1 An investigation into whether the HAUSP GST fusion proteins 
interacted with the bacterially expressed region of Vmw110 essential 
for binding to cellular HAUSP

After the regions of HAUSP required for interaction with the 594-775 C-terminal fragment 

of Vmwl 10 were identified, the next stage was to ensure that these interactions required 

the 594-633 residues of Vmwl 10, demonstrated to be essential for binding to cellular 

HAUSP (Meredith et al., 1995). Therefore an experiment was designed which tested the 

ability of the N-terminal 1-193 and C-terminal 516-837 HAUSP GST fusion proteins, to 

interact with either the 594-775 or the 633-775 C-terminal Vmwl 10 encoding fragments 

(details of which are described in the legend to Figure 3D3.1). The results of these 

experiments can be seen in Figure 3D3.1. Both HAUSP GST fusion proteins only pulled 

down the 594-775 and not the 633-775 C-terminal fragment of Vmwl 10 (Figure 3D3.1 

parts A and B). This implies that both regions of HAUSP interact with residues within 

594-633 of Vmwl 10 in a ‘pull-down’ assay and supports the biological specificity of the 

observed interactions.
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Figure 3D 3.1: G S T  ‘p u ll-d o w n ’ assays to investigate  w h eth er the H A U S P G S T  fusion pro te ins in teract w ith 
the reg ion  o f  V m w l 10 essen tia l fo r b ind ing  to ce llu lar H A U SP.
Panels Ai and Bi show  ‘p u ll-d o w n ’ experim en ts based  on the assay cond itions described  in F igure legend 
3D 2. T he ‘p u ll-d o w n ’ experim en ts show n in panels A ii and Bii w ere done sim ultaneously  based on the sam e 
assay cond itions , w ith  the excep tion  that the 300pl p re-c leared  ex trac t used as the source o f  V m w l 10 for 
b inding to each  beads-bound  G ST  fusion protein  consisted  o f  269p l bacterial ex trac tion  buffer (50m M  
H EPE S pH 7.5 , 50m M  N aC l, 0 .1%  N P40), 27 p l 5M  N aC l, and 4 p l T 7E 58 bacterial extract. T he pro toco l for 
the syn thesis  o f  T 7E 52  and  T 7E 58 is detailed  in Section  2B 4.4.
The G ST  track  show s p ro teins elu ted  from  beads bound  to  the G ST  protein . The num bered  tracks show  
pro teins e lu ted  from  beads bound  to purified  G ST  H A U S P  fusion  pro teins, the num bers rep resen ting  the 
residues o f  H A U S P  encoded  by the protein . T he ‘b e fo re ’ and ‘a fte r’ has been indicated  to rep resen t sam ples 
from  the ‘p u ll-d o w n ’ assay  ob tained  ‘befo re’ b inding to the  pre-cleared  ex trac t and those  w hich  w ere elu ted  
‘a fte r’ b ind ing  to p re-c leared  extract. The V m w l 10 594-775 track  show s a 5pl sam ple o f  the T 7E 52  bacterial 
ex tract and  the V m w l 10 633-775  track show s a 5pl sam ple o f  the T 7E 58 bacterial ex tract. T he b lack  arrow s 
indicated  on  the right o f  the gels denote  the position  o f  the  bands represen ting  either the  V m w l 10 fragm ent 
encoding  res idues 594-775 o r the one encoding  residues 633-775 .



Chapter 3 Results

3D3.2 An investigation of the interaction of HAUSP fusion proteins 
with Vmw110 expressed during virus infection

To further investigate the biological relevance of these interactions we tested whether the 

HAUSP GST fusion proteins identified as interacting with bacterially expressed fragments 

of Vmwl 10, also interacted with full length Vmwl 10 expressed during virus infection. An 

experiment was designed to investigate this, in which the relevant HAUSP GST fusion 

proteins were used in a ‘pull-down’ assay with wild type HSV-1 infected cell extract as the 

source of Vmwl 10. The results shown in Figure 3D3.2a reveal that the 26-1102, 516-1102 

and 1-193 HAUSP GST fusion proteins interact with wild type Vmwl 10, albeit at different 

affinities. It should be noted that the 26-1102 HAUSP GST fusion protein became 

degraded during the course of experiment despite the use of a freshly prepared extract and 

as such was present in a smaller proportion relative to the other GST fusion proteins. This 

may explain why the band pulled down by the 26-1102 HAUSP GST fusion protein, which 

corresponded to wild type Vmwl 10, was of such low intensity. However, what was really 

surprising was that the 1-193 HAUSP GST fusion protein appeared to pull down wild type 

Vmwl 10 with a greater affinity than the 516-1102 HAUSP GST protein, which is the 

reverse of what is seen when using the bacterially expressed C-terminal Vmwl 10 fragment 

(Section 3D2). Furthermore, this result was reproducible and was not an artefact of less 

516-1102 HAUSP GST fusion protein being present compared with the 1-193 HAUSP 

GST fusion protein, as the amounts of these protein present prior to use in the ‘pull-down’ 

were always normalised.

The next stage was to establish whether or not the interactions between the HAUSP GST 

fusion proteins and Vmwl 10 expressed during virus infection were specific. In order to 

test this a slightly modified version of the experiment described above was designed in 

which the source of Vmwl 10 was from a cell extract which had been infected with the D12 

mutant of HSV-1. This strain of HSV-1 has the 594-633 residues of Vmwl 10 removed, 

which are essential for interaction with cellular HAUSP (Meredith et al., 1995). The 

results shown in Figure 3D3.2b demonstrate that neither the 26-1102 nor the C-terminal 

HAUSP GST fusion proteins interact with D12 Vmwl 10. Thus, although the interaction 

of 516-1102 HAUSP GST fusion protein with full length HSV-1 Vmwl 10 was of a 

relatively lower affinity than seen with the N-terminal HAUSP GST fusion protein, this 

interaction requires residues within Vmwl 10 that have been demonstrated to be essential 

for interaction with cellular HAUSP. Hence, this supports the idea that this interaction is
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Figure 3D 3.2a: G S T  ‘p u ll-d o w n ’ assay  to  investigate  i f  H A U SP  G ST  fusion  p ro te ins can  in teract w ith  w ild 
type V m w l 10 from  17 S yn+ H SV-1 in fec ted  cell ex tracts .
A G S T  ‘p u ll-d o w n ’ assay w as carried  out using  the assay  cond itions described  in the legend o f  Figure 3D 2, 
w ith  the excep tion  tha t the p re-c leared  ex trac t used w as derived  from  w ild  type 17 Syn^ HSV-1 in fected  cell 
extract. T he p ro toco l fo r syn thesis ing  th is  cell ex tract is described  in S ection  2B 3.5.
A sim ilar gel an no ta tion  as described  in the legend o f  F igure 3D 2 has been  used. T he track labelled  ‘W T 
infected  cell e x trac t’ rep resen ts a 5p l a liquo t o f  the w ild  type HSV-1 in fected  cell ex tract. T he black arrow  
deno tes the position  o f  the bands rep resen ting  w ild type V m w l 10.



Figure 3D 3.2b: G ST  ‘pu ll-d o w n ’ assays to investigate  i f  H A U SP G ST  fusion pro teins can in teract w ith  D12 
V m w l 10 from  D 12 HSV-1 infected  cell extracts.
Panels A -B  show  ‘p u ll-d o w n ’ assays based on the  pro toco l g iven in the  legend o f  F igure 3D 3.2a, w ith  the 
excep tion  tha t the p re-cleared  ex tract is derived  from  D 12 HSV-1 in fected  cell ex trac t. A  sim ilar gel 
anno ta tion  as described  in the legend o f  F igure 3D 2 has been used. T he track  labelled  ‘D 12 infected  cell 
ex trac t’ rep resen ts a 5pl a liquo t o f  the D 12 HSV-1 in fected  cell extract. The b lack  arrow s deno te  the 
positions o f  the bands rep resen ting  D12 V m w l 10.



Chapter 3 Results

of biological significance. However this is not the case for the 26-193 and 1-193 HAUSP 

GST fusion proteins which appeared to strongly interact with D12 Vmwl 10. This suggests 

that the interactions seen with the N-terminal HAUSP GST fusion proteins and Vmwl 10 

from HSV-1 infected cell extracts are non-specific. This is in contradiction to the results 

shown in Section 3D3.1 of the ‘pull-down’ assay investigating which residues of Vmwl 10 

expressed in bacteria were specific for interaction with the HAUSP fusion proteins. These 

previous results demonstrated that the N-terminal 26-193 and 1-193 HAUSP GST fusion 

proteins did require residues 594-633 of Vmwl 10 for interaction.

3D4 An investigation into the interaction of full length Vmw110 
with deletion mutants of HAUSP

Studies using fragments of exogenously expressed HAUSP had suggested that residues 

516-837 of HAUSP are required for interaction with Vmwl 10 (Section 3D2 and 3D3). 

The significance of these residues for interaction with Vmwl 10 in the context of full length 

HAUSP was investigated. In order to test this, mutants of HAUSP were constructed in 

which residues in the critical region had been removed. The ability of these mutants to 

interact with Vmwl 10 was then tested.

3D4.1 Construction of X513-581, X529-576 and X744-861 HAUSP 
deletion mutants

As residues 516-837 of HAUSP are required for interaction with Vmwl 10, it was decided 

to construct two HAUSP mutants in which either residues 513-581 or 744-861 had been 

deleted. Interestingly, sequence analysis revealed that the region spanning between 

residues 515-529 of HAUSP, directly downstream of the histidine active site domain, were 

conserved between members of the USP family. This implied that these residues are 

important for the normal functioning of HAUSP in the cell. Therefore, another HAUSP 

deletion mutant was made removing only residues between 529-576 to reduce the 

likelihood of deleting residues from HAUSP that disrupt a separate function other than its 

interaction with Vmwl 10.

The plasmid x513-581pET24al35 was constructed in a ligation reaction of three fragments 

isolated from relevant digestion mixes: these were the Xbal-Afffil(513) pET24al35 insert 

fragment, the A/Zffl(581)-£coRI(744) pET24al35 insert fragment and the EcoRl(144)-Xbal 

pET24al35 vector fragment (see Figure 3D4.1a).
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Chapter 3 Results

The plasmid x744-861pET24al35 was constructed in a ligation reaction of three fragments 

isolated from relevant digestion mixes: these were the Hindni-Bsu36l(44l) pET24al35 

vector fragment, the Rsw36I(441)-£c<9RI(744) pET24al35 insert fragment (in which the 

EcoRl site was blunt-ended) and BgM (S6\)-Hindni pET24al35 insert fragment (in which 

the BgUl site was blunt-ended) (see Figure 3D4.1b).

The plasmid x529-576pET24al35 was constructed in a ligation reaction of two fragments 

isolated from relevant digestion mixes: the Mscl(516)-Ndel(\) pET24al35 vector fragment 

and the NdeI(\)-BsiEU.(529) pET24al35 insert fragment (in which the BstETl site was 

blunt-ended) (see Figure 3A3.2 for the positions of these restriction sites in the HAUSP 

coding sequence).

3D4.2 Expression of the HAUSP deletion mutants

The HAUSP deletion mutants were transformed into E.coli strain BL21 pLysS DE3. 

Cultures were grown and fusion protein expression was induced from the Ptac promoter by 

the addition of IPTG. Protein extracts were prepared as described in Section 2B4.3, with 

the exception that Triton-XlOO was not used and the cell debris was pelleted by 

centrifugation at 9,500rpm for 30min. The cells were then resuspended in 2ml PBS(A) 

containing ImM DTT (which stabilises deubiquitinase activity).

Expression of the deletion mutants was ascertained by probing a western blot of the 

bacterial extracts using anti-HAUSP rabbit serum (data not shown). The results showed 

that for the x513-581 HAUSP and x529-576 HAUSP bacterial extracts, a protein of the 

expected molecular weight was synthesised and expressed at levels equivalent to full 

length HAUSP. However, the x744-861 HAUSP deletion mutant bacterial extract 

produced a band of the expected size, but of a much lower intensity relative to the band 

corresponding to full length HAUSP. This suggests that x513-581 and x529-576 are 

relatively stable but x744-861 is not and implies that residues 744-861 are important for 

maintaining a stable conformation of HAUSP.

3D4.3 The effect of removal of residues from HAUSP on its ability to 
interact with a C-terminal Vmw110 GST fusion protein

The effect of removing these residues on the ability of full length HAUSP to interact with a 

C-terminal fragment of Vmwl 10 was then tested using a modified ‘pull-down’ assay (an 

outline of the experiment is given in Figure 3D4.3a and the details of which are provided in
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Figure 3D4.3a: Outline of the GST ‘pull-down’ assay, in which the GST fusion protein encoding the C- 
terminal 594-775 residues o f Vmwl 10 was used as ‘bait’.
i) Bacterial extracts in which the GST fusion protein encoding the C-terminal 594-775 residues of Vmwl 10 
had been expressed were mixed with glutathione agarose beads and the bead-fusion complexes were then 
washed to remove non-specific interactions.
ii) Normalised amounts of beads-fusion complexes were mixed with pre-cleared soluble bacterial extracts in 
which either full length HAUSP or HAUSP deletion mutants had been expressed. The samples were then 
washed to remove non-specific interactions. Proteins bound to the beads were eluted by competition with 
reduced glutathione.
iii) The eluted proteins were run on a SDS-PAGE gel and transferred to a nitrocellulose filter. The blots 
were analysed by immunodetection for the presence of HAUSP encoding sequences using the r201 
antipeptide antibody.



GST fusion protein encoding 
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Chapter 3 Results

the legend of Figure 3D4.3b). In order to normalise the amounts of x744-861 HAUSP 

deletion mutant and full length HAUSP present in the ‘pull-down’ assay, five times the 

amount of the deletion mutant extract was used compared to that of full length HAUSP 

(based on the expression levels observed). This was done to ensure that the potential 

ability of these proteins to interact with the Vmwl 10 GST fusion protein was comparable. 

As can be observed for all three ‘pull-down’ assays (Figure 3D4.3b), only the full length 

HAUSP was pulled down by the C-terminal fragment of Vmwl 10 and the x513-581, x529- 

576 and x744-861 HAUSP deletion mutants all lost their ability to interact with this 

protein. This reinforces the data suggesting that residues between x516-837 are essential 

for interaction with Vmwl 10 and further suggests that specific residues required for this 

interaction lie in the regions spanning residues 529-576 and 744-861.

3D4.4 The effect of removal of residues from HAUSP on its ability to 
interact with full length Vmw110 in an immunoprecipitation assay

Up until now the experiments to define the region of HAUSP required for interaction with 

Vmwl 10 had always involved at least one of the proteins being expressed as a fragment 

fused to GST. Therefore a logical extension of this work was to observe the interaction 

between two full length proteins by coimmunoprecipitation. The immunoprecipitation 

experiment designed is outlined in Figure 3D4.4a.

The results from the clearest of a number of immunoprecipitation assays are seen in Figure 

3D4.4b. Note, only the x513-581 HAUSP deletion mutant was tested in this assay as the 

expression of the x744-861 HAUSP deletion mutant was too low for the purposes of this 

experiment.

The western blot shown in part B is of the immunoprecipitation samples which have been 

probed to detect Vmwl 10 and they verify that Vmwl 10 was immunoprecipitated only in 

the samples in which the anti-Vmwl 10 MAb was added. The blot shown in Figure 3D4.4b 

part A is of the same samples probed against HAUSP. These results show that HAUSP 

was only coimmunoprecipitated from the sample in which full length HAUSP was present 

and not from the sample in which the x513-581 HAUSP deletion mutant was present. As 

such these results imply that HAUSP residues within 513-581 are required for interaction 

with full length Vmwl 10.
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Figure 3D4.4a: Outline of an immunoprecipitation to investigate the interaction of full length Vmwl 10 with 
HAUSP deletion mutants.
i-ii) Bacterial extracts in which full length HAUSP or HAUSP deletion mutants had been expressed were 
mixed with a bacterial extract in which full length Vmwl 10 had been expressed and then pre-cleared twice 
with Protein-A-Sepharose beads.
iii) The samples were then divided into two. To one half only sheep anti-mouse immunoglobulin (SaM IgG) 
was added and to the other half SaM IgG and the Vmwl 10 MAb 11060 was added.
iv) Protein-A-Sepharose beads were added next to precipitate 11060 and the interacting proteins.
v) The samples were washed to remove non-specific interactions. Proteins bound to the beads were eluted 
into IX SDS loading buffer.
vi) The eluted proteins were run on an SDS-PAGE gel and transferred to a nitrocellulose filter. The blots 
were analysed by immunodetection for the presence of HAUSP and Vmwl 10 encoding sequences.
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Figure 3D 4.4b: Im m unoprec ip ita tion  assay to investiga te  the in teraction  betw een  V m w l 10 and  a  H A U SP 
deletion  m utant.
T he im m unoprecip ita tion  assay w as carried  out using  the standard  protocol described  in S ection  2B 4.9 , w ith  
the fo llow ing  m odifications: full length V m w l 10 w as expressed  in bacte ria  using  the  sam e m ethod  as 
described  in S ection  3D 4.2 as fo r the expression  o f  H A U SP dele tion  m utants. S am ples w ere prepared  
consisting  of: 4 0 0p l bacterial ex tract in w hich  either H A U S P had or had not been exp ressed  and 4 0 0p l 
bacterial ex tract in w hich  V m w l 10 had been expressed , m ade up to a to tal vo lum e o f  1ml in w h ich  the final 
concen tra tions o f  N P 40  and N aC l w ere 0 .05%  and 0 .5M  respectively . T hese sam ples w ere then  p re-cleared  
tw ice using P ro te in -A -S epharose  beads. T he sam ples w ere then d iv ided  into tw o equal portions. O ne portion  
received  an  a liquo t (5 p i) o f  S a M  im m unog lobu lin  and o th e r portion  also received  an a liquo t (5 pi) o f  the 
S a M  im m unog lobu lin , p lus a lp l  a liquot o f  the an ti-V m w l 10 M A b 11060. T hese sam ples w ere left to 
incubate  for 3hrs at 4°C . T hen an aliquot (60p l) o f  P ro te in -A -S epharose  beads in a 50%  slurry  w as added to 
each sam ple and left fo r lh r  at 4°C . T he sam ples w ere then w ashed  three tim es w ith  a w ash  buffer 
(consisting  o f  50m M  T ris, 0 .5M  N aC l, Im M  E D T A , 0 .5%  N P40, Im M  PM SF, 1 pg /p l leupeptin , 15pg/pl 
B estatin). A fte r rem oval o f  the supernatan t from  the  final w ash  an  aliquo t (2 0p l) o f  IX  SD S load ing  buffer 
w as added  to e lu te  the sam ples. Sam ples w ere bo iled  for 2m in  prio r to load ing  on a 6%  S D S-P A G E  gel. 
P ro teins w ere then  transferred  to a n itrocellu lose  filter and analysed  by im m unodetec tion  for H A U SP 
encoding  sequences using the r201 serum . T his b lot w as then stripped  and reprobed fo r the  presence  o f  
V m w l 10 encod ing  sequences using  the r95 antibody.
A liquo ts (5p l) o f  bacte rial ex trac ts w ere run in the far left hand lanes o f  each gel. T he ‘M ock IP ’ track  show s 
pro teins tha t w ere im m unoprecip ita ted  w hen S a M  im m unog lobu lin  a lone w as used and  the ‘ 11060’ track 
show s the p ro te ins that w ere im m unoprecip ita ted  in the p resence o f  bo th  S aM  im m unog lobu lin  and 11060. 
The labels above each track indicate w hich  type o f  H A U SP w as p resen t in the sam ples prepared  for 
im m unoprecip ita tion . Panel A show s the b lo t probed  using  r201 and panel B show s the sam e b lo t reprobed 
using r95. B ands correspond ing  to H A U SP and full leng th  V m w l 10 have been ind icated  by arrow s to the 
right o f  the appropria te  gels.



Chapter 3 Results

3D5 An investigation to identify precise residues required for 
interaction with Vmw110

3D5.1 Targeting of residues required for interaction with Vmwl 10

Since the region of HAUSP required for interaction with Vmwl 10 had been mapped to 

within residues 529-576, the next stage was to try and more precisely identify which of 

these residues are essential.

In order to do this sequences C-terminal of the USP histidine domain were compared 

between HAUSP and other members of the USP family. The most significant results of 

this work can be seen in Figure 3D5.1. These results show that there is a high degree of 

homology retained between this region in human HAUSP and the equivalent regions in the 

two yeast homologues (Section 1E.2).

Furthermore, this region shows strong similarity to the ‘KEKE’ motif, which is also present 

in subunits of the 20S and 26S proteasome, and an activator of the 20S proteasome 

(Realini et al., 1994). The ‘KEKE’ motif is defined as being greater than 12 amino acids in 

length, devoid of W, Y, F or P residues, consisting of more than 60% K and E/D residues 

and lacking five positive or negatively charged residues in a row. It has been proposed that 

they promote association between protein complexes and may contribute to the selection of 

peptides presented on MHC class 1 receptors.

It was predicted that these conserved residues have some functional significance. The 

exact role of these residues for the cellular function of HAUSP is debatable. However, 

based on the observation that viral proteins often use such pre-existing motifs for their own 

purposes, it seemed plausible that Vmwl 10 interacted with HAUSP through these residues. 

As such, residues E546, E547, K556, E557 and H562 were targeted for mutagenesis.

3D5.2 Construction of E/E546/547P/P, K/E556/557P/P and H562L 
pET24a135 mutants

The E/E546/547P/P, K/E556/557P/P and H562L pET24al35 mutants were synthesised in 

several stages. The first stage was to perform site-directed mutagenesis using the 

pET24al35 plasmid as the template and the E/E546/547P/P, K/E556/557P/P and H562L 

oligonucleotides as the mutagenic primers (Section 2B1.10 and Table 2B1.10). The 

successful incorporation of the mutations was checked by restriction analysis using
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Chapter 3 Results

restriction sites introduced in each mutagenic primer which did not affect the coding 

potential. Then in each case for the E/E546/547P/P, K/E556/557P/P and H562L 

pET24al35 clones a small region surrounding the inserted mutation was subcloned into the 

original wild type pET24al35 plasmid DNA. This was done in order to remove any 

additional mutations which may have arisen as part of the site-directed mutagenesis 

procedure.

The E/E546/547P/P, K/E556/557P/P and H562L pET24al35 subclones were synthesised 

in ligation reactions with three fragments isolated from the relevant digestion mixes: these 

were the BstEU-BstEIL(529) pET24al35 fragment, the BstEU.(529)-MscI(516) fragment 

from the relevant mutant pET24al35 clone and the Mscl(516)-BstEE (dephosphorylated) 

pET24al35 fragment (see Figure 3D5.2). Sequencing (Section 2B1.9) was then performed 

using the KEKE sequencing primer (Table 2B1.9) on these mutants to ensure the correct 

incorporation of the mutations.

3D5.3 Expression of the HAUSP site specific mutants

The HAUSP site specific mutants were then expressed in the E.coli strain BL21 pLysS 

DE3 and protein extracts made as described for the expression of the HAUSP deletion 

mutants (Section 3D4.2). Expression of the site specific mutants was ascertained by 

probing a western blot of a SDS-PAGE gel of the bacterial extracts using anti-HAUSP 

rabbit serum r201. The results of this can be observed in Figure 3D5.3 and they show that 

proteins of the expected molecular weight have been synthesised and are expressed at 

levels equivalent to full length HAUSP.

3D5.4 Effect of the E/E546/547P/P, K/E556/557P/P and H562L 
substitutions on the ability of HAUSP to interact with the C-terminal of 
Vmw110 in a ‘pull-down’ assay

The effect of these substitutions on the ability of HAUSP to interact with Vmwl 10 was 

then tested. This was achieved by performing a ‘pull-down’ assay similar to the one 

described in Section 3D4.3, in which the 594-775 C-terminal Vmwl 10 GST fusion protein 

was used as ‘bait’ to ‘pull-down’ HAUSP mutants (experimental details are the same as 

those given in the legend of Figure 3D4.3b). The results of this experiment are shown in 

Figure 3D5.4 which shows that the substitutions have not altered the ability of these 

HAUSP proteins to be pulled down by the C-terminal fragment of Vmwl 10. This suggests 

that the residues: 546, 547, 556, 557 and 562 of HAUSP are not essential for binding to
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HAUSP

Figure 3D 5.3: W estern  b lo t analysis o f  bacteria l ex trac ts con ta in ing  the H A U SP site specific  m utants
E /E 546 /547P /P , K /E 556 /557P /P  and H 562L.
From  100ml cu ltu res induced  w ith  IPT G , 2m l so lub le  bacterial ex tracts w ere p repared  and 5p l sam ples w ere 
sub jected  to  S D S -PA G E  and the p ro teins transferred  to a n itrocellu lose filter and probed for H A U SP 
encoding  sequences using  r201 d ilu ted  1 in 1,000 (as described  in Section  3D 4.2). T he label above each 
track describes the type o f  bacterial ex trac t loaded in that lane. T he arrow  represen ts the position  o f  the bands 
co rrespond ing  to H A U SP.
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Vmwl 10. Hence the residues required for interaction with Vmwl 10 must lie elsewhere 

within the 529-576 region of HAUSP.
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3D6 Summary of studies done to define the region of HAUSP that 
interacts with Vmwl 10

• Using the GST ‘pull-down’ technique in which selected segments of HAUSP were 

expressed as fragments fused to GST, it was established that residues 26-193 and 516- 

837 are independently sufficient for interaction with a bacterially expressed C-terminal 

fragment of Vmwl 10.

• The interaction of these HAUSP fusion proteins with the Vmwl 10 fragment were 

shown to require sequences within Vmwl 10 which are essential for its interaction with 

cellular HAUSP.

• Results of GST ‘pull-down’ assays in which the Vmwl 10 used was derived from HSV- 

1 infected cells, implied that HAUSP residues 516-837 and not residues 26-193 interact 

with full length Vmwl 10 through sequences within Vmwl 10 which are essential for its 

interaction with cellular HAUSP.

• The significance of these residues for interaction with Vmwl 10 when in the context of 

full length HAUSP was investigated using HAUSP deletion mutants in which residues 

within this critical region were removed.

1. Introduction of these mutants in a modified GST ‘pull-down’ assay showed that HAUSP 
residues 529-576 and 744-861 were required for interaction with the C-terminal 
fragment of Vmwl 10.

2. Introduction of the x513-581 HAUSP deletion mutant in an immunoprecipitation assay 
showed that these residues are required for interaction with full length Vmwl 10.

• Investigation into precise residues within the HAUSP region 529-576 which were 

hypothesised to be important for protein-protein interactions, resulted in the 

identification of residues that were well conserved with other USPs. However it was 

shown that these residues are dispensable for interaction of HAUSP with the C-terminal 

of Vmwl 10.
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3E An investigation into the effects of Vmw110 binding on 
the biochemical activities of HAUSP

3E1 Introduction

In order to better understand the role of HAUSP in HSV-1 infection, the effects of 

Vmwl 10 binding to HAUSP on its normal cellular activities were investigated. For this 

purpose two strategies were designed.

The first approach was based on the observation that the region of HAUSP required for 

interaction with Vmwl 10 was located a few residues downstream of the histidine active 

site domain (Section 3D). For this reason the effect of Vmwl 10 binding on the 

deubiquitinase activity of HAUSP was investigated.

The second strategy was based on the observation that HAUSP residues 516-837 were 

shown to be required for interaction with both Vmwl 10 and a ~40kD cellular protein 

(Sections 3C and 3D). As such it was speculated whether Vmwl 10 binding to HAUSP 

affected the ability of the ~40kD protein to bind to the same region.

3E2 An investigation into the effect of Vmwl 10 on the 
deubiquitinase activity of HAUSP

3E2.1 An investigation into whether the residues of HAUSP required 
for interaction with Vmw110 are also important for its deubiquitinase 
activity

The initial strategy to investigate whether Vmwl 10 effects the deubiquitinase activity of 

HAUSP involved establishing if deletion of the HAUSP region required for interaction 

with Vmwl 10 affected its enzyme activity. For this purpose the x529-576 HAUSP 

deletion mutant was tested in the standard in vivo deubiquitinase assay, the results of which 

are shown in Figure 3E2.1. It is worth noting that the conserved residues of the active site 

domains have been retained in this mutant. As can be seen in the track where expression of 

the x529-576 HAUSP deletion mutant was induced, no substrate cleavage of Ub-M-p-gal 

to the lower molecular weight M-p-gal was observed, unlike in the track expressing the 

wild type HAUSP. This suggests that residues shown to be essential for interaction with 

Vmwl 10 also appear to have a function for the deubiquitinase activity of HAUSP. 

However, the loss of the deubiquitinase activity of this mutant may be the consequence of 

conformational changes that result from deletion of these residues. Therefore bacterial
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Chapter 3 Results

extracts used for the deubiquitinase assay were probed for the presence of HAUSP, to 

verify that there was not a problem with its expression (Figure 3E2.1 part B). The results 

indicated that the x529-576 HAUSP mutant expressed was produced at levels comparable 

to the full length protein.

3E2.2 An investigation into whether expression of HAUSP with 
Vmwl 10 effects its deubiquitinase activity

The next step was to investigate the direct effect of Vmwl 10 binding on the deubiquitinase 

activity of HAUSP. The initial strategy involved first coimmunoprecipitating Vmwl 10 

and HAUSP and then testing this complex for deubiquitinase activity using an in vitro 

cleavage assay. However, as described in Section 3A attempts to establish such an assay 

for HAUSP proved difficult.

An indirect approach was used instead. This involved using the standard in vivo 

deubiquitinase assay to test whether expression of Vmwl 10 affected HAUSP enzyme 

activity. As such a construct was made in which HAUSP and Vmwl 10 were placed under 

the control of the same T7 promoter, in order that they could be expressed simultaneously. 

A second construct was also prepared in which Vmwl 10 was again inserted next to the 

HAUSP coding DNA, but this time in a 3’ to 5’ antisense orientation. This latter construct 

was designed to see if the presence of Vmwl 10 encoding sequences next to the HAUSP 

coding region, by themselves without protein expression, interfered with the deubiquitinase 

activity of HAUSP.

3E2.2a Construction of plasmids expressing HAUSP and Vmwl 10 (either in a sense or 
antisense orientation) under the control of the same promoter

The bi-cistronic pT7110(sense)-HAUSP and pT7110(antisense)-HAUSP plasmids were 

constructed in a ligation reaction made from three fragments isolated from the relevant 

digestion mixes (Figure 3E2.2aa).

The PCR amplified BstER-Xbal fragment encoding residues 709-775 of Vmwl 10 was 

prepared in order to introduce a Xbal site at the 3’ terminus of the Vmwl 10 open reading 

frame. Its synthesis firstly involved isolating a fragment from an EcoRI-EcoRI digest of 

pGEXE52 plasmid containing the C-terminus of Vmwl 10. A part of this fragment was 

then PCR amplified from a reaction set up in 50jxl total consisting of: 0.5ng pGEXE52 

EcoRl fragment, 50pmoles BstEQ. primer (Figure 3E2.2ab) and 50pmoles Xbal primer
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Chapter 3 Results

(Figure 3E2.2ab), 2|Lil lOmM MgCl2, ljil lOmM dNTPs, 5jll1 10X PCR buffer (supplied 

with the enzyme) and 0.5 units Taq polymerase. The following cycling conditions were 

then used to amplify the fragment: 5min initial cycle at 95°C (denaturing), then 2min at 

72°C (annealing), followed by 25 cycles at 95°C for 30sec and 72°C for 2min, and then 

finished by a 30sec cycle at 95°C and a lOmin cycle at 72°C. The reaction product was 

then purified by the isolation of a band of the correct molecular weight from an agarose gel 

using the GENECLEAN13 kit (Section 2B1.4b). The final step was to then isolate the 

DNA from a BstEU-Xbal digestion mix of this PCR amplified fragment.

709 716
VmwllO sequence (57 to 3'): GAG ACC GCG GGT AAC CAC GTG ATG
BstEII primer (57 to 3 7): G ACC GCG GGT AAC CAC GTG A

772 STOP CODON
VmwllO sequence (57 to 3 7): GAG GGA AAA CAA TAAG
X b a l primer (37 to 5 7): CTC CCT TTT GTT ATTCAGATCTCGCCG

Figure 3E2.2ab: Sequences of the RsfEII and Xbal primers. The primer sequence has been aligned with the 
relevant sequence within VmwllO. The codon position of the VmwllO sequence has also been indicated. 
The RyfEII restriction site (in the ZfafEII primer) and Xbal restriction site (in the Xbal primer) have been 
underlined.

3E2.2b Introduction of the pT7110(sense)-HAUSP and pT7110(antisense)-HAUSP 
plasmids into the standard in vivo deubiquitinase assay

The effect of introducing either the pT7110(sense)-HAUSP or pT7110(antisense)-HAUSP 

plasmids into the standard in vivo deubiquitinase assay can be seen in Figure 3E2.2b. It is 

clear from the track in which the pT7110(sense)-HAUSP was expressed, that the 

simultaneous expression of VmwllO did not detectably alter the ability of HAUSP to 

cleave the Ub-M-p-gal substrate. Indeed it displayed 100% cleavage of the model 

substrate, which is comparable to that seen with the control pT7110(antisense)-HAUSP 

plasmid and with the positive control in which HAUSP alone was expressed.

The blot of the bacterial extracts from the deubiquitinase assay were also probed for the 

presence of Vmwl 10 (shown in Figure 3E2.2b part B), these results verified Vmwl 10 had 

been expressed by the pT7110(sense)-HAUSP plasmid and not the pT71 lO(antisense)- 

HAUSP plasmid. Hence, these results indicated that the presence of VmwllO does not 

affect HAUSP deubiquitinase activity.
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Chapter 3 Results

3E2.2c Limitations of using the indirect in vivo approach

This strategy only tested the effect of the presence of Vm wllO  on HAUSP enzyme 

activity. However, whether HAUSP was complexed to Vm wllO  when it cleaved the 

model substrate is debatable. A particular drawback of this approach was that expression 

of full length VmwllO in bacteria under this promoter only occurs at low levels. Hence 

uncomplexed HAUSP may have been available to cleave the model substrate.

3E2.2d Construction of pT7C110(sense)-HAUSP and pT7C110(antisense)-HAUSP 
plasmids

Therefore, in order to overcome the potential problem of insufficient VmwllO being 

expressed (to saturate all the free HAUSP) new constructs were designed. The plasmids 

were designed to encode HAUSP and the C-terminal 594-775 residues of Vmwl 10 (either 

in the sense or antisense orientation) under the control of the same promoter. The idea 

being that this C-terminal 594-775aa VmwllO fragment has a high level of expression 

when placed under the control of the T7 promoter and as such decreases the chances of 

unbound HAUSP being available to cleave the substrate.

The pT7Cl 10(sense)-HAUSP and pT7Cl 10(antisense)-HAUSP plasmids were constructed 

in a ligation reaction made from three fragments isolated from their relevant digestion 

mixes (Figure 3E2.2d).

3E2.2e Introduction of the pT7C110(sense)-HAUSP and pT7Cl 10(antisense)-HAUSP 
plasmids into the standard in vivo deubiquitinase assay

The effects of introducing the pT7C110(sense)-HAUSP and pT7Cl 10(antisense)-HAUSP 

plasmids into the standard in vivo deubiquitinase assay are shown in Figure 3E2.2e. In the 

track in which the C-terminal region of VmwllO and HAUSP were expressed 

simultaneously it is clear that no alteration of HAUSP enzyme activity has occurred.

The blot of the bacterial extracts from the deubiquitinase assay was probed for VmwllO 

encoding sequences (Figure 3E2.2e part B), these results show that the C-terminal region 

of Vmwl 10 was efficiently expressed. Hence, these results appear to support the idea that 

Vmwl 10 does not alter the deubiquitinase activity of HAUSP.
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Chapter 3 Results

3E3 An investigation of whether the binding of Vmw110 to HAUSP 
affects its ability to bind to the ~40kD cellular protein

3E3.1 Strategy

The alternative approach used to investigate potential roles for the interaction between 

Vmwl 10 and HAUSP involved testing whether Vmwl 10 binding to HAUSP affected the 

ability of the ~40kD cellular protein to interact with the same region. The experimental 

strategy used to test this theory required several stages and has been described in the legend 

of Figure 3E3.1. The first stage was to ‘pull-down’ the C-terminal region of VmwllO 

using the 516-1102 HAUSP GST fusion protein. The second stage was to take the 

Vmwl 10/GST HAUSP bound-beads and use them in an another ‘pull-down’ using 

radiolabelled WS HeLa cell extract. In this manner it could be checked if the complex of 

Vmwl 10 fragment/HAUSP bound to the beads prevented the ~40kD cellular protein from 

being pulled down.

Parallel samples were set up in which either the Vmwl 10 fragment encoding residues 594- 

775 was used (which interacts with cellular HAUSP) or one encoding residues 633-775 (in 

which residues essential for interaction with HAUSP were absent). An excess of these 

Vm w llO  C-terminal fragments was used, relative to the amount used normally, in an 

attempt to saturate all the available binding sites on the HAUSP GST fusion proteins.

The results of this experiment are shown in Figure 3E3.1. From the first blot probing for 

Vm w llO  encoding sequences (part A) it can be seen that the 594-775aa VmwllO 

fragment, but not the 633-775aa fragment was pulled down by the 516-1102 HAUSP GST 

fusion protein as expected (Section 3D). Figure 3E3.1 part B shows the results of the 

second ‘pull-down’ which indicates that in the track in which the VmwllO fragment 

encoding residues 594-775 was complexed to the HAUSP GST fusion protein the ~40kD 

cellular protein was still pulled down. Therefore this implies that interaction of the C- 

terminal of Vmwl 10 with HAUSP does not occlude the ~40kD protein from binding.

3E3.2 Limitations of using this approach

This strategy also has limitations that should be taken into account when interpreting the 

results. The main point being that the HAUSP GST fusion protein was expressed at 

extremely high levels. Thus even though an excess of VmwllO was used in the primary 

‘pull-down’ experiment it is unlikely that all the HAUSP GST fusion proteins would have
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Figure 3E3.1: A GST ‘pull-down’ assay to investigate if the presence of the C-terminal region of VmwllO 
inhibits the binding of the ~40kD cellular protein to a HAUSP GST fusion protein.
Panels A-B show results of a double ‘pull-down’ experiment, which was based on the standard assay 
conditions described for GST ‘pull-down’ assays in Section 2B4.8. Aliquots of beads bound to control GST 
protein and GST fusion protein encoding HAUSP residues 516-1102 were adjusted in order to provide 
normalised levels of all the proteins, and each sample was divided into two aliquots. Next the aliquots of 
each GST protein beads sample were mixed with either a T7E52, or T7E58 pre-cleared extract and samples 
incubated for lhr at 4°C. The T7E52 pre-cleared extract consisted of 253pl bacterial extraction buffer, 27pl 
NaCl, and 20pl T7E52 bacterial extract and the T7E58 pre-cleared extract consisted of 257pl bacterial 
extraction buffer, 27pl NaCl, and 1 6 j li1  T7E58 bacterial extract. Beads were then washed three times with 
lml of cold 0.5M NaCl wash buffer (consisting of 50mM Tris, 0.5M NaCl, ImM EDTA, 0.5% NP40, ImM 
PMSF, lpg/pl leupeptin, 15pg/pl Bestatin) and after the final wash they were left in a 50% slurry of PBS(A). 
These beads were stored at -70°C overnight. An aliquot of 300pl of pre-cleared 35S-radiolabelled WS HeLa 
cell extract (the production of which is described in Section 2B3.4) was added to each beads sample and 
samples incubated for lhr at 4°C. The samples were then washed three times with lml 0.5M NaCl wash 
buffer C (described in Figure 3C6). After elution of the bound proteins by reduced glutathione, 3X SDS 
loading buffer was added and samples boiled for 2min. Samples were then loaded on 10% and 12.5% SDS- 
PAGE gels. Proteins were then transferred to a nitrocellulose filter by western blotting. The blot of the 
12.5% SDS-PAGE gel was then analysed by immunodetection (Section 2B4.7), for the presence of Vmwl 10 
encoding sequences using the 10503 MAb and once dried the blot of the 10% SDS-PAGE gel was exposed to 
film (Section 2B4.7).
A-The blot of the 12.5% SDS-PAGE gel probed with the 10503 anti-Vmwl 10 MAb. The ‘GST’ track shows 
proteins eluted from beads bound to the GST protein. The 516-1102 labelled tracks show proteins eluted 
from beads-bound to the purified 516-1102 HAUSP GST fusion protein. The ‘VmwllO 594-775’ and 
‘Vmwl 10 633-775’ tracks show 5pl samples of T7E52 and T7E58 bacterial extracts respectively. The bands 
corresponding to these proteins have been appropriately indicated and which of these two extracts was used 
as the source of Vmwl 10 has also been indicated below the relevant tracks.
B-The blot of the 10% SDS-PAGE gel dried and exposed to film. A similar labelling scheme as for Panel A 
has been used. The track labelled ‘total extract’ shows a 2pl sample of 35S-methionine radiolabelled WS 
HeLa cell extract. The position of the ~40kD cellular protein has been indicated on the right of the gel.
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Chapter 3 Results

been saturated. Hence, the ~40kD cellular protein could have bound to free HAUSP GST 

fusion protein.
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Chapter 3 Results

3E4 Summary of the studies done to investigate the effects of 
Vmw110 binding on the cellular activities of HAUSP

• Deletion of HAUSP residues required for interaction with Vmwl 10 result in the loss of 

its deubiquitinase activity.

• Coexpression of HAUSP with VmwllO did not alter the enzyme activity of HAUSP 

observed using the standard in vivo deubiquitinase assay. This suggests VmwllO does 

not affect HAUSP deubiquitinase activity in the experimental system used.

• The interaction of Vmwl 10 with HAUSP residues 516-1102 does not appear to inhibit 

the ~40kD cellular protein from binding to this same region of HAUSP.
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Chapter 4 Discussion

CHAPTER 4 DISCUSSION 

4A The biological role of HAUSP

4A1 What do we understand so far about the cellular activities of 
HAUSP?

The biological significance of HAUSP within eukaryotic cells was partially characterised 

by investigations carried out as part of the requirements of this thesis. The most significant 

finding was the confirmation that HAUSP has deubiquitinase activity, cleaving the bond 

between the C-terminal glycine residue of ubiquitin and the N-terminal residue on a model 

substrate protein. Furthermore, the presence of specific cysteine and histidine residues was 

shown to be essential for the catalytic activity of the enzyme.

Additionally, studies in which HAUSP was transiently expressed in eukaryotic cells 

suggested that the levels of intracellular HAUSP may be tightly controlled and that 

increases in HAUSP expression might be toxic for the cell, which implies that it plays a 

role in an important cellular regulation pathway. In addition it was suggested that 

localisation of HAUSP to the ND10 domains was limited by protein-protein interactions.

Results derived from GST ‘pull-down’ experiments identified several proteins of 

approximately 40kD, lOOkD and 105kD that strongly and specifically interact with 

HAUSP. The regions of HAUSP required for interaction with these cellular proteins were 

shown to lie between residues: 1-26 for interaction with the 105kD cellular protein; 26-193 

for interaction with the lOOkD cellular protein and 516-837 for interaction with the ~40kD 

cellular protein. Immunoprecipitation analysis supported the interaction of wild type 

HAUSP with cellular proteins of approximately 40kD and 105kD. Furthermore, it was 

shown that the ~40kD cellular protein, that interacted with the C-terminal of HAUSP, was 

a target for proteasome degradation and as such may be a substrate for HAUSP 

deubiquitinase activity.

Collectively these results suggest that HAUSP plays a role in an as yet unidentified 

ubiquitin dependent pathway. However, as neither the identity of the HAUSP interacting 

proteins or the pathway(s) in which HAUSP is involved are defined as yet, the assignment 

of a specific biological role to HAUSP at this preliminary stage would be highly 

speculative.
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4A2 Future work to assist in our understanding of HAUSP cellular 
function

The key to understanding HAUSP cellular function lies in identifying the cellular proteins 

with which it interacts and defining the pathways in which it is involved. Therefore, 

perhaps the most critical investigation for the future of this project would be to reveal the 

identity of the cellular proteins that interact with HAUSP. This would first involve 

isolating high enough quantities of the ~40kD, lOOkD and 105kD cellular proteins that 

interact with HAUSP using large scale GST ‘pull-down’ assays. Peptide sequencing could 

then be performed on these purified protein samples from which degenerate 

oligonucleotides could be synthesised. The next stage would be to use these degenerate 

oligonucleotides to screen cDNA libraries from WS HeLa cells and in this manner clone 

the cDNAs encoding these proteins. The yeast two hybrid system could also be used to 

identify cellular proteins that interact with HAUSP and the results of this investigation may 

support the findings from the GST ‘pull-down’ assays.

The yeast homologues in S.cerevisiae and S.pombe described in Section 1E2 are the most 

closely related genes to HAUSP, apart from the exact homologue in mice. Therefore, as 

the manipulation of yeast genetics is relatively simple compared with that of human 

genetics producing a yeast knockout strain of this gene should be possible. The results 

generated from the analysis of this yeast strain should give us some insights into the 

cellular function of this protein. The greatest problem with this idea is that yeast pathways 

may be different from the human cellular pathways and as such the phenotypes observed 

from such a yeast knockout strain might not give us a true indication of the function of 

HAUSP itself.

Another idea which follows on from the one mentioned above is to search for a Drosophila 

homologue of HAUSP. If such a gene is identified then a Drosophila knockout fly could 

be constructed and, as Drosophila is higher up the evolutionary scale than yeast, it is more 

likely that any phenotypes observed from the removal of this gene would have more 

relevance for HAUSP function. Such a knockout strain could also be used to investigate 

the role, if any, of a Drosophila HAUSP homologue in the silencing phenomena called 

PEV which, as discussed later in this section, is a system in which HAUSP could 

potentially be involved.
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Studies in which HAUSP was transiently expressed raised the possibility that increases in 

HAUSP expression in some cells might induce apoptotic pathways. As such it would be 

interesting to investigate the significance of this result and further investigate if HAUSP 

has a role in growth control and development.

As many enzymes involved in the ubiquitin dependent pathways play a role in the cell 

cycle regulation and are themselves cell cycle regulated (Peters et al., 1998), it would be 

curious to see if HAUSP is similarly cell cycle regulated. Such an idea is supported from 

the work in which HAUSP was transiently expressed. There are two methods by which 

this can be tested. The first involves starving the cells from serum which would result in 

the cells being arrested in Go. The cells could then be induced into Gi by the addition of 

serum. In this manner the cells would be synchronised in the cell monolayer and a cell 

cycle dependent effect could be monitored either by western blotting of cells synchronised 

at the different stages of the cell cycle, or by indirect immunofluorescence techniques of 

the same cells, in both cases using antibodies raised against HAUSP.

Further investigation into the different isoforms of HAUSP which are most likely 

generated though alternative splicing (described in Section 1E3) would be interesting. In 

particular, this might be possible by first studying the HAUSP encoding gene and then 

characterising the alternatively spliced cDNAs and protein products. Furthermore, it might 

be of interest to investigate if expression of these alternative transcripts differs in non­

neuronal and neuronal cells.

Further investigation into the semi-conserved KEKE motif of HAUSP (described in 

Section 3D5.1) would also be interesting. This region has been implicated to be of 

importance for protein-protein interactions and has been conserved in a significant number 

of proteins involved in the ubiquitin-dependent degradation system. Therefore, it would be 

interesting to investigate if this region plays a similar role in HAUSP. As such, the three 

mutants already synthesised of this region could be used in similar GST ‘pull-down’ 

experiments, as described in Section 3C, to test the significance of these residues for 

interaction of HAUSP with cellular proteins. The same three mutants could also be tested 

in the deubiquitinase assay to assess the significance of these residues for the enzymatic 

activity of HAUSP.
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4B The role of HAUSP for HSV-1 infection

4B1 What do we understand so far about the interaction of 
HAUSP with Vmw110?

The interactions between HAUSP and VmwllO are likely to be of great importance to the 

understanding of HSV-1 lytic growth and reactivation from latency. A number of 

investigations described in this thesis were initiated in order to improve our understanding 

of the mechanics of this interaction and its role in HSV-1 infection. Firstly, studies using 

the GST ‘pull-down’ technique defined the regions of HAUSP required for interaction with 

VmwllO as those between residues 529-576 (which are directly downstream of the 

conserved histidine box) and residues 744-861. Furthermore, immunoprecipitation 

experiments confirmed the requirement of HAUSP residues 513-581 for this interaction.

Investigations into whether VmwllO binding to HAUSP affected its normal cellular 

activities implied firstly that the presence of VmwllO does not appear to decrease the 

catalytic activity of HAUSP and secondly that VmwllO binding to the C-terminal of 

HAUSP does not affect the ability of a ~40kD cellular protein to interact with the same 

region.

4B2 What affect might Vmw110 binding have on HAUSP function?

Results presented in this thesis suggest that the interaction of Vmwl 10 with HAUSP does 

not inhibit its deubiquitinase activity, however alternative roles for this interaction can be 

envisioned. For example, VmwllO may be sequestering HAUSP and targeting its 

deubiquitinase catalytic activity to other substrates bound to alternate sites on Vmwl 10, for 

example the RING finger domain or the multimerisation sequence, both of which are 

potentially important for protein-protein interactions (see Figure 4B2). This would result 

in the stabilisation of such VmwllO bound ubiquitinated-substrates. Secondly, although 

interaction of HAUSP with Vmwl 10 may not directly inhibit its deubiquitinase activity it 

is possible that the act of sequestering HAUSP to ND10 domains may prevent it from 

deubiquitinating its natural substrates localised elsewhere in the cell. This in turn would 

prevent those ubiquitinated-substrates from being protected from proteasome-dependent 

degradation.
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4B3 Mechanisms by which the Vmw110/HAUSP interaction could 
affect HSV-1 infection

One of the central aims of this thesis was to try and decipher the role of HAUSP in HSV-1 

infection. Using evidence which has accumulated within the field, during the course of this 

study (see Introduction chapter) and also during the production of this thesis, a number of 

plausible mechanisms can be suggested.

4B3.1 HAUSP interaction with Vmw110 may result in the stabilisation 
of ubiquitinated viral proteins

Viral proteins including VmwllO and Vmwl75, which are synthesised at the onset of 

infection, may be recognised as foreign proteins by the cells and targeted for degradation 

by the proteasome. Loss of such viral proteins would result in a reduced efficiency in the 

initiation of lytic replication. However, if Vmwl 10 sequestered HAUSP and redirected its 

deubiquitinase activity to these ubiquitinated viral proteins this would result in these 

proteins being protected from degradation by the proteasome. This is consistent with the 

finding that VmwllO is required to stimulate viral growth only at low moi, as at higher 

moi enough non-ubiquitinated viral proteins would be present to initiate viral replication. 

However, until the question of whether viral proteins are targeted for degradation by 

ubiquitination has been answered, this theory remains extremely hypothetical.

4B3.2 HAUSP may function to directly enhance the activities of 
Vmw110

The region of VmwllO required for interaction with HAUSP has been shown to play a 

significant role in the ability of VmwllO to transactivate gene expression, as well as 

stimulate virus growth in cultured cells (Everett, 1988a, Everett et al., 1999, Meredith et 

a l,  1995). As such, it has been suggested that the role of HAUSP in HSV-1 infection is to 

directly aid Vm wllO in eliciting its many effects. Therefore, in order to understand the 

role of HAUSP one must first understand the mechanism by which Vmwl 10 is functioning 

in HSV-1 infection.

4B3.2a Vmwl 10 functions through the ubiquitin-proteasome pathway

Interaction of HAUSP with VmwllO was the first indication that VmwllO may be 

functioning by altering the stability of proteins. However, recently several other lines of 

evidence have emerged which suggest that the mechanism by which VmwllO functions

129



Chapter 4 Discussion

involves ubiquitin-dependent processes. In particular, VmwllO has been shown to be 

required for the proteasome-dependent degradation of several cellular proteins including 

PML, DNA-dependent protein kinase, CENP-C and several uncharacterised PIC-1 

conjugated proteins (Everett et al., 1998a, Lees-Miller et al., 1996, Parkinson et al., 1999, 

R.Everett, personal communication). Furthermore, it has recently been shown that 

proteasome activity is required for Vmwl 10-dependent activities which result in an 

increased efficiency in viral replication, activation of gene expression and efficient 

reactivation of quiescent genomes (Everett et al., 1998b). Therefore the alteration of 

protein stability by VmwllO appears to be central to the mechanism by which it functions 

in HSV-1 infection.

• HAUSP may assist this effect of VmwllO by stimulating ubiquitin-dependent 

degradation processes

Interaction of HAUSP with VmwllO could enhance these activities by simply stimulating 

ubiquitin-dependent degradation processes. For example, VmwllO could sequester 

HAUSP and redirect its deubiquitinase activity to cleave ubiquitin precursors which would 

increase the amount of free ubiquitin. Interestingly, the observation that V m wl75 

upregulates the expression of the human ubiquitin precursor Ubi B gene provides an 

explanation of how VmwllO and Vm wl75 may be acting synergistically to transactivate 

gene expression (Kemp & Latchman, 1988). Another method by which interaction of 

HAUSP with Vm wllO could stimulate these activities would be if sequestration of 

HAUSP by Vm wllO redirected its deubiquitinase activity to stabilise enzymes involved in 

ubiquitin-dependent degradation.

4B3.2b Vm wllO may be acting to reverse or inhibit the silencing of viral genomes in 
HSV-1 infection

Recently a more specific and rather elegant mechanism by which Vmwl 10 may be eliciting 

its effects has been suggested (Everett et al., 1998b). It has been proposed that viral 

genomes which are deposited adjacent to ND10 domains after entry into the nucleus may 

be repressed in a similar manner to silenced heterochromatin DNA. VmwllO may be 

acting to reverse or inhibit such silencing processes and as such encourage the onset of 

lytic infection. There is much circumstantial evidence that lead to the creation of this 

hypothesis. For example the heterochromatin protein HP1, which is a protein involved in 

the silencing phenomena PEV, has been shown to interact with a constituent of ND10
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called SplOO and interaction of these proteins has been suggested to have a role in 

silencing of genes (Section lD l.la ). Vmwl 10 is known to be responsible for dispersion of 

SplOO from the punctate ND10 domains during HSV-1 infection and PIC-1 conjugated 

SplOO has been shown to be degraded in a Vmwl 10-dependent manner (Section 1D1 and 

1D2; R.Everett, personal communication). This theory also provides an explanation for the 

observation that Vmwl 10 is only required at low moi, in that if the genomes are present in 

high moi then the proteins involved in silencing would be swamped and therefore many 

genomes would be present that are not silenced from which lytic replication could be 

initiated.

• Sequestration of HAUSP by VmwllO may prevent it from enhancing silencing of the 

viral genome

One way in which HAUSP interaction with Vmwl 10 could inhibit the silencing of HSV-1 

genomes is if the natural role of HAUSP in the cell was to enhance silencing processes. 

Under these circumstances sequestration of HAUSP by VmwllO may act to prevent 

HAUSP from enhancing the silencing of the viral genome. This is consistent with the 

findings that other members of the USP family have roles in silencing. For example, the 

yeast protein Ubp3 has been shown to interact with Sir4 and regulate silencing both at 

telomeres and mating-type loci in yeast (Section 1C3.6). Furthermore, the Drosophila USP 

D-Ubp-64E has been shown to suppress PEV in a dose-dependent manner (Section 1C3.6).

• Interaction of HAUSP with Vmwl 10 may stimulate ubiquitin-dependent degradation of 

cellular proteins including those involved in silencing of the viral genome

As explained in Section 4B3.2a VmwllO appears to elicit much of its effects through 

ubiquitin-dependent pathways, stimulating the degradation of several cellular proteins. As 

such, it is possible that Vmwl 10 derepresses quiescent HSV-1 genomes by stimulating the 

degradation of proteins involved in silencing such as SplOO. The role of HAUSP in such a 

scenario could simply be to stimulate the ubiquitin-dependent degradation processes by the 

methods described in Section 4B3.2a.

4B4 Future work to investigate the role of HAUSP in HSV-1 
infection

A direct strategy to answer the question of HAUSP function in HSV-1 infection would be 

to identify proteins with which HAUSP interacts during infection. In this manner if
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HAUSP interactions during infection differ from those when the cells are not infected the 

identification of the proteins concerned might lead to an understanding of how HAUSP 

may be manipulated by VmwllO to assist HSV-1 infection. There are two methods by 

which this could be achieved. The first would involve performing similar GST ‘pull­

down’ experiments, as described in Section 3C, in which GST fusion proteins encoding 

selected segments of HAUSP are used as bait to ‘pull-down’ proteins in this case from 

infected cell extracts. A second method would be to use HAUSP as bait in the yeast-two- 

hybrid system to screen cDNA libraries derived from infected cells.

The U 20S cell line appears to have a cellular function that can compensate for the loss of 

VmwllO during HSV-1 infection (Section 1B2.1). The PC12 neuronal cell line when 

exposed to nerve growth factor or fibroblast growth factor also has a cellular function that 

appears to compensate for the loss of VmwllO during HSV-1 infection (Section 1B2.1). 

As does release of cells from growth arrest state Go (Section 1B2.1). The manner by which 

the cells derived from the above sources by-pass the need for VmwllO during HSV-1 

infection might involve using the same pathways as VmwllO. As such identification of 

the proteins which interact with HAUSP in these cells might give us some insight into 

possible mechanisms by which Vmwl 10 is acting.

It has long been hypothesised that Vmwl 10 has an important role in the switch between the 

lytic and latent states of HSV-1 infection (Section 1B2.4). It has also been established that 

factors such as stress, cytokines and heat shock are known to affect the intracellular 

distribution of ND10 domains in a similar manner to VmwllO (Section 1D1.2). 

Furthermore, similar factors are known to cause the reactivation of quiescent genomes into 

the lytic state (Section lA2.4b). Therefore, as HAUSP interacts with Vmwl 10 and is also 

a transient member of ND10 domains it would be interesting to see if the cellular 

localisation or level of HAUSP expression is altered in cells exposed to such factors.

As mentioned previously HAUSP may be working in HSV-1 infection to stabilise viral 

proteins targeted for degradation by ubiquitination. To test this hypothesis first it must be 

established whether viral proteins are ubiquitinated. However there are technical problems 

with simply performing a western blot and probing HSV-1 infected cell extracts using anti- 

Ub serum. In particular, there is high background using such serum and secondly a high 

number of cellular proteins are also conjugated to ubiquitin and so it would be hard to 

distinguish whether the ubiquitinated-proteins were cellular or viral. However, by
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transfecting cells with plasmids expressing either VmwllO or Vmwl75 in the presence of 

a proteasome inhibitor it should be possible to detect by western blotting techniques, using 

antibodies to these proteins, if higher molecular weight isoforms of these proteins are 

generated which correspond to ubiquitinated-conjugates. Furthermore, constructs could be 

synthesised in which VmwllO or Vmwl75 encoding sequences are fused at their N- 

terminal to sequences encoding ubiquitin via a sequence encoding the same natural bond 

that is found in other ubiquitinated-substrates. These constructs could then be used in a 

modified deubiquitinase assay in which they are cotransfected alongside VmwllO and 

HAUSP to see if under these circumstances they are recognised as substrates for 

deubiquitination.
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