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Abstract

Ship hulls and other curved shells, like gas tanks, aircraft bodies, and even
clothes and shoes, offer a common difficulty in their manufacturing: it is
necessary to produce them from a set of formerly plane elements. These plane
elements, the raw materials like plates and fabric pieces, must be curved and

assembled together to form the final product.

The reverse of the forming process of these curved elements, is the map of the
curved surface onto the plane, which is improperly known as development. To
develop a surface, in a proper sense, is to unfold it onto the plane without
stretching or bulging. This is not possible with all kinds of shapes, such as
spher;cat and saddle surfaces. Some common developable surfaces are the

conical and cylindrical ones.

To form a non-developable shell requires much more work than to form an
equivalent shell of developable shape. This increases the costs, the processing
times and the defect content. Nevertheless, the fluid dynamists and the other
designers are not always free to use developable shapes in their concepts;
therefore, a pragmatic approach to the construction of curved shells has to cope

with non-developable surfaces.

These subjects are chiefly of an advanced mathematic nature, and the required
background is too widely spread in the bibliography. Therefore the necessary
mathematical results are compiled and presented in CHAPTER 2 - THE
MATHEMATICS OF DEVELOPABLE SURFACES, providing for a unified view of the

concepts, the symbols and the nomenclature.

Since the advent of the digital computer, the increasing availability of
computing power enabled new methods for surface development and for
developable surface definition. By examining and comparing the methods

reported in the literature, CHAPTER 3 - PLATE DEVELOPMENT AND



DEVELOPABLE SURFACES provides a broad view of the surface development
issues, along with the developability conditions and the technologies for the
definition of developable surfaces. Given the absence of developability
conditions in some areas of the shell, a number of methodologies are reported

which produce a plate map onto the plane.

In CHAPTER 4 - CONCEPT AND IMPLEMENTATION OF AN ALGORITHM, the concept
and the implementation of a new development algorithm is described, analysed
and applied to example cases. By geodesicaly mapping the surface onto the
plane, this method avoids the implementation difficulties of both non-
developable surfaces, and developable surfaces with ruling lines aligned in any
direction. Therefore, the slightly non-developable plates, commonly found in

acmaj_§kﬁp hulls, are easily accommodated by this process, working as a map

onto the plane.

In CHAPTER 5 - INDUSTRIAL APPLICATION OF THE IMPROPER GEODESIC MAP, the
user interface of the method is presented. The method provides information
about the surface developability and fairness, which assists the user in the
decision to develop or otherwise to take corrective measures, like re-fairing or

editing of seams and butts.

Results obtained from analytical plates, and comparisons with results from both
a 1/10-scale electrostatic development jig, and a commercial software package,
validate the method. Other results, obtained from actual ship plates, are also
presented, further confirming the good accuracy of the method's developments
and its good behaviour when processing non-developable plates. This method

is in current use, as part of a shipyard system.
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Chapter 1 - Introduction

he shell plate development problem has several different industrial
domains, each with its own peculiarities. Aerospace, car, textile and
shipbuilding industries are the most typical ones.

Cars, clothes and flying craft have small dimensions and are mass-produced,
but ships are quite the opposite in both respects. These are fundamental
differences since they lead to solutions very particular to the process of ship
design and ship building.

Nevertheless, solutions for one industry can be adapted for others, as proved by
the early adoption of ship lofting solutions in the aerospace industry, and later
feed-back from Boeing and McDonnell Douglas into shipyard systems'"!.

The need for good hydrodynamic performance, requires hulls with smooth but
complex curved shapes which makes the production of plated shells a non-
trivial task, requiring highly skilled workmanship, both for the lofting and for
the workshop.

Hulls made of fibre reinforced plastics do not pose the same requirements on
workmanship, since they are lofted at full-scale and frequently built from
reusable moulds.

It is not unusual for a shipyard to spend 3 to 5 working days of a two-man team
(6 to 10 man-days), just to give to a single plate the appropriate curvature. This
does not account for the lofting, cutting, fitting and welding. Note that the
amount of curved plates in a full bodied hull, is typically over 10% of all the
steel plates required for the complete construction, and for other types of ship
that proportion can be doubled™!.

The aerospace and car industries sell so many units of each model, that the
curved plates used in its construction can be mass produced, justifying dies for
any single shape. Those dies are very expensive and time consuming to
produce.

Ships are frequently built on a single specimen basis, or at most in short
series. In fact, even the symmetry of the ship along its longitudinal centre-
plane does not make for such an economy, because the plate series are not long
enough to justify dies or other mass production technologies.

However, the shipyard plate production process is required to be less expensive
and quicker in its delivery of a unique plate shape. Thus, the process should
remain highly flexible, but require much less human intervention.
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Being an industry that creates one-of-a-kind products is one of the most
compelling reasons why shipyards maintain such large workforces (along with
the product size and the short delivery schedules).

To improve the curved plate production methods, shipyards have always been
close to the state of the art in metallic sheet technologies, and have come a long
way since the all template-based production of the last century, when
workmanship was the cheap item in the process. Nowadays, it is common to
have the flat plates (blanks) cut and marked with rolling curves, or even heating
curves, as part of the computer-aided design and manufacturing
system. Templates can also be automatically produced, but further automation
has proved out of reach without a new generation of workshop tools, namely
numerically controlled pressing/heating templates, able to handle at least a mid
size plate. Smaller sizes require increased welding, and have therefore not
been used noticeably.

Moreover, not all the curved surfaces can be developed, because many do not
result from rolling a plane surface, but from heating, stretching, twisting,
bulging,-or a combination of these. To develop a plate is to unroll it to its
isometric flat shape, the blank. Plate development procedures are neither easy
nor simple for the newcomer. The reason is in part that it is a rather exotic
mathematical topic, making it impossible to describe generic developable
surfaces by Euclidean geometry. This can only be accomplished by resorting
to differential geometry, a much more involved and advanced mathematical
discipline, which can be quite stimulating. In Chapter 2, the reader will find a
summary presentation of the relevant mathematical concepts and results applied
to developable surfaces.

From the earliest metal ship construction, 150 years ago, full-scale lofting
leading to complete wooden templates, was the basis for curved plate forming,
in a context where the labour was cheap and abundant, and accuracy was not an
issue, due to the overlap between adjacent plates required for riveting. The
development of welding technologies during the Second World War, and the
advent of 1/10 lofting in the late fifties, made way for much higher accuracy
requirements.

Until the onset of digital computers, shipbuilders could only develop plates
using complex manual drafting techniques, or analogue devices such as the
electrostatic jig, which models the hull surface at a scale of 1/10. These
development procedures were very time consuming, and required highly skilled
people to be accurate, so they were expensive. With the availability of
computers for technical applications in shipyards, plate development methods
and developable surface design and fitting, were among the first applications to
be programmed. Chapter 3 reviews the references about these topics in the last
three decades.
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The time required for plate development in a unique hull constitutes lead-time
for the construction process, since before it the hull plates couldn’t be cut and
even the final production designs of the assembly blocks can’t be settled. With
computer-aided design, the time required for plate development was reduced
dramatically and the accuracy has much improved. Recently, some shipyards
start migrating towards robot-welding of complex assemblies, combined with
new cutting and welding technologies, like laser. These technologies produce
much improved cuts and welds, finer heat affected zones, and reduced cooling
shrinkage. The resulting accuracy increase is rendering obsolete the traditional
use of added material in the plate boundaries. Without this common allowance
for process errors, including the development and forming ones, the quality
requirements of these tasks are further stressed.

Unlike the fabrication processes themselves, lofting has benefited enormously
from the integration of computer systems, in which cutting and marking
machines can now act as mere peripherals to the computer, in the same way as
printers do. The development process can benefit from an accurate and
comprehensive design database, and even more from a much improved fairing
process.

The first problem in preparing for the production of a curved plate, is the
geometric definition of the blank to be cut. If a plate is developable, the
mathematical properties of developable surfaces can be used to “unroll” that
plate. Simply stated, a surface is developable if it can be unrolled into a plane
without any resulting strain. Conical and cylindrical surfaces are developable,
but those with at least one spherically shaped region, cannot be unrolled without
strain, so they are not developable, as are those shaped like a saddle.

A plate is defined by the surface that follows its half thickness. This surface is
called the plate’s mid-surface. Therefore, a plate is developable if it is possible
to unroll it into a plane without any mid-surface strain.

Mathematically cones and cylinders have zero second principal curvature at
every surface point along the direction of their generators. Therefore, to form
these surfaces one should roll along their generators.

Regions shaped as a sphere have two non-zero principal curvatures with the
same sign everywhere, while saddle shaped regions have non-zero principal
curvatures with opposite signs. Thus, a surface region shaped as a sphere or as
a saddle has no strain-free rolling directions. (Pressing it into a plane would
produce significant strains, as would happen with any other forming
technology.) Since non-developability implies that there is no unique mapping
between the curved plate and an eventual blank"®, the researcher must consider
further constraints, reflecting the variety of workshop techniques, such as those
proposed by Letcher!"l.
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Development methods seek that unique mapping between a developable plate
and its blank. When applied to non-developable plates, such methods either
provide no solution, or they lead to a solution that is not unique. To define an
accurate map of a non-developable surface one should start to define what is the
“correct” result. From the mathematical point of view, any result is equally
valid, since the map can’t be isometric. From the workshop point of view, the
result should be feasible and economic. If not for the focus in the bottom-line,
this last perspective is more interesting since it restrains the solution
space. But still we have no unique solution, given that the economic and
forming restraints would translate into quite different optimising conditions
between different shipyards, due to differences in costs, technology and
practices. Therefore, the application of a development method to non-
developable plates is not acceptable unless as an approximation to a production
optimum.

The research documented in this thesis was originally intended to support an
order placed by Estaleiros Navais de Viana do Castelo. This shipyard required
a basic development tool compatible to the existing CAD/CAM system!, which
should match the quality of the existing electrostatic development jig using the
same data, and improve the labour efficiency. The discussions had with the
shipyard for setting the specifications, made clear that the yard was not
concerned with developability issues, just requiring that the tool behaved like
the electrostatic development jig. This device was mostly intended to process
accurately the developable plates. Nevertheless, the sheets used in modelling
the plate material could endure some plastic deformation, but only to an extent
known to be “small” and irrelevant for the project managers. Therefore, the
software should be tolerant at least to marginally non-developable surfaces.

There are a danger in this to let the user process a non-developable plate, not
knowing its true nature, which is more difficult and expensive to form. The
issue here is to let the user evaluate the developability of each individual
plate. The developability of the individual plates is both a matter of the shell
shape, and of the straking methodology employed. These tasks are rather
complex to be done manually in an optimal fashion. But the appropriate
computer tools could offer the designer the information and the editing facilities
to go further in the engineering for production, either re-fairing or using
optimised straking methodologies.

I The shipyard launched an important software and hardware project to improve
the design and production procedures. The author was only the developer of
the plate development tool, almost as an isolated piece of software, and
therefore was not involved in the design or implementation of the other
elements of the CAD system.
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Only properly faired surfaces should be subjected to the map into the plane,
irrespective to the developability or the existing level of curvature. Otherwise
the quality of results could be compromised by errors propagated from bumps
in the surface. The focus of this work is the development however some of the
software components necessary for the development process can be adapted to
depict surface information, assisting the user in the evaluation of the surface
fairness and straking optimality. Note that the curvature computations
necessary for the geodesic tracing, required by the development algorithm, are
closely related to the differencing used in fairness assessments.

When the plates are non-developable, the criteria for acceptance of any plate
mapping onto a plane must be related to the extent of existing non-developable
regions, to the magnitude of the 2™ principal curvature, and also to the
particular workshop practices. This last issue is rather complex to quantify, so
it was not an objective of this work to provide answers for it. However, one
common strategy to deal with the non-developable regions of the hull, is to
subdivide it in smaller and simpler plates, preferably increasing the area
covered by developable plates.

It is not viable to quantify the accuracy of the method in general terms, since it
is a map for which the objects do not form a known population (any
conceivable surface can be admissible). However, one should study the actual
performance of the method when dealing with typical plates, and compare it
with other known and accepted development procedures. Moreover, since the
basic step of the method is the tracing of geodesics, one can study the accuracy
of this elemental procedure. For any surfaces whose geometry is defined
analytically, the geodesic can be determined analytically and therefore
accurately. For surfaces discretely defined (for instance, by a set of section
lines), the accuracy assessment can only be made by comparison with the
results of another approximate method. See Fig. 35 and Fig. 36 for
comparisons of the two methods of geodesic tracing, without concern to the
final development accuracy.

The influence of the principal curvatures of the plate on the accumulated
geodesic curvature is studied empirically, for typical developable and non-
developable surfaces (see Fig. 35 and Fig. 36). The influence of the
developability on the computing efficiency of the tracing procedure is also
interesting enough to be evaluated, since the method is intended for computer
implementation (see Fig. 37).

The effects of thickness on the development process where not covered. The
shipyard required that the software data should match the data for the
electrostatic development jig, which worked reliably for decades without
thickness considerations. This amounts to approximate the plate’s mid-
thickness surface with the surface passing through the offsets. Therefore, for
most of this work this will be the referenced, instead of the mid-thickness one.



Chapter 1 - Introduction

For the development tool to be compatible with the existing CAD/CAM system,
it is required to accept the existing surface data, i.e. a grid of surface lines, with
spacing typical of a paper-based drawing process, not proper CAD
databases. Therefore, these discretisation practices are assessed by making
comparisons with several frame spacings sampling a comprehensive
range. See Fig. 34 for a depiction of the geodesic tracing accuracy related to
the discretizing distance.

Testing with actual shipyard data is sensitive and expensive, but it is necessary
for reasonably evaluating the algorithm, since it is intended for practical
use. The outputs from the method are compared with results from a 1/10-scale
electrostatic development jig, and also with results of commercial surface
development software. See page 108 for results of comparisons made outside
the work of this thesis!”. The results in Table 7 and Table 8 ought to give
confidence in the algorithm and provide for the validation of the software.

Conclusions can be found in Chapter 4, which summarises the findings of this
study, and Chapter 6 briefly explores further research prospects.

The reader can find general guidance on definitions and terminology in
Appendix A. See Appendix B for results obtained with surfaces designed
analytically and translated to a discrete representation of sections lines. These
cover the three surface categories, in regard to curvature: a plane surface (see
page 126), seven developable surfaces (see pages 127 to 133), and six non-
developable surfaces (see pages 134 to 139).



Chapter 2 - The Mathematics of Developable Surfaces

lassical books on mathematics are not known for the ease of use by the
C newcomer, since they are written for mathematicians, thus taking

advantage of rather elegant but involved notations, and moreover, building
the notation and naming conventions on top of traditional ones, which often are
meaningless for non-mathematicians. Additionally, the most relevant
definitions and results about surface development are widely spread in the
bibliographic references, requiring a great deal of searching effort.

Therefore, this Chapter is not intended to substitute for the references, but it is
rather a concise and structured compilation of the mathematical concepts,
definitions and theorems, which support the rest of the thesis, and provide for
general guidance in the consultation of the references.

2.1 N&htion

In the text boldface stand for vectors and matrices, and italics stand for scalars
and for terms to be defined.

Unless stated otherwise, every surface and curve is expected to be regular,
which means it is clear of cusps, knuckles and self-intersections.

Any single proposition is numbered to allow for unambiguous reference, which
would be otherwise impractical.

2.2 Preliminary Results

The angle between two vectors a and b is given by:

ab _Jax|
Jallb Jaflib

The projected length of the vector a onto b is given by:

a _ab )
" bl

Q = arccos (1)



2.3 Basic Concepts on Curves

The component of the vector a about b is given by:

2, =a, 3)
S

For a point P to be on a plane which has a normal vector n and contains the
point Q, it is necessary and sufficient that:

nP=n.Q < nx + nyy + nzz = nxOy + nyQy +nzQ; @

If the point Q is the one closest to the axis origin, among all plane points, then it
is called the central point of the plane.

Its locating vector is normal to the plane, unless the plane contains the origin, in
which case Q=0.

Therefore eqn.4 is equivalent to:
QP=Q.Q & Oxx+Qyy+Qpz= 0% + Qyz+ 0,2 ©)

Defining every plane by its central point establishes a one-to-one relationship
between points and planes, and thus every plane can be defined simply by the
three co-ordinates of the corresponding central point, in the given co-ordinate
system.

2.3 Basic Concepts on Curves

Condition to be met by the curve ¢, in which  is the curve parameter:

de
€20, vu ©)
du

The natural parameter is given by the arc length accumulated along the
curve. If u; is the initial parameter value on the curve, and u; the parameter at
some specified point, the natural parameter s for this point is computed by:

ur
s= |

de
—|d 7
du ! @

Using s instead of some non-natural parameter #, one benefits from this
important simplification (see the following results, using s instead of u):



2.3 Basic Concepts on Curves

de

—l =1 8
1s ®

The unit tangent to the curve ¢ is given by:

de

t=t(u) = g—‘c‘ ©)

du

The unit binormal to the curve c is given by:

de d%e¢

__._x —
2
"="<“>=“3—Z*%2”7 0

du’ do®

Circle

Fig. 1 - The moving trihedron, with the relevant planes.

The unit main normal to the curve ¢ is given by:

n=n(u)=bxt 1n

The moving trihedron or Frenet-Serret trihedron is the system made at any
curve point by the unit vectors t, b and n (see Fig. 1). A special circle traced
from the curve centre of curvature with that same curvature is the osculatory
circle. The plane containing it is the osculatory plane. The plane normal to
the curve is the normal plane, and he plane defined by n and t is the rectifying
plane.



2.4 Basic Surface Concepts

The curvature vector of the curve ¢ is given by:

k=k(u)= :—; = k(u) n(u) (12)

The curvature of the curve ¢ is given by:

de d’c

_X—

du du?
1 3 (13)
c

du

ot

The curvature radius of the curve ¢ is given by:

1
p= P(u)=m5 (14)

Given the curve ¢, its centres of curvature lie in the curve f:

f=f(u)=c+pn (15)

Torsion of the curve ¢:
d’c
t=1(u)=b—~ 16
(u) 17 (16)
The Frenet-Serret formulas relate:

t 0 k Offt
—<n¢=[-k 0 1Kn (17
b 0 -1t Oflb

2.4 Basic Surface Concepts

The form of the surface o, in which u; and u, are parameters and components
of the two-dimension vector u is given by:

¢ =o(u], u) = o(u) (18)

10



2.4 Basic Surface Concepts

The normal to the surface o, at the point with the parametric co-ordinates u;
and u;, is given by:

0c Oc

— x —
n(u) = Ou, Ou,
0c Oc

X
Ou, Ou,

(19)

The normal curvature vector of the curve ¢, lying in a surface o, is the
component of the curvature vector which is normal to o (see Fig. 2):

k, = k() = k(u)n(u) (20)

Kg

Fig. 2 - The curvature vector of a surface’s line, and its components: the normal and the
geodesic curvatures.

The normal curvature of a curve c, lying in a surface s, is the length of the
normal curvature vector:

kn =

k, () @

The vector of the geodesic curvature of the curve c, lying in the surface o, is the
component to the curvature vector which is tangential to c:

k, =k, (») = k(u) - k(x)n(u) 22

11



2.4 Basic Surface Concepts

The geodesic curvature of the curve ¢, lying in the surface o, is the length of the
geodesic curvature vector:

k, = ukg (u)” _ (23)

Let ¢ be a curve lying in the surface o, and P be a point in that curve. The
direction of ¢ at P is given by its tangent vector at that point, t,, When t, and ¢
are rotated around P, the value for the normal curvature changes between two
extreme values, called the principal curvatures, k, and k, ", which are the upper
and the lower bounds.

The Gaussian curvature at a given point of the surface is given by
K=kk 24)

Surfaces with double curvature are those with both principal curvatures
simultaneously non-zero at some point.

Surfaces with single curvature are those with only one of the principal
curvatures zero everywhere.

Non-curved or plane surfaces are those with both principal curvatures zero
everywhere.

A surface is either of double curvature, single curvature or plane.

Definition of a developable surface: to be developable, a surface must have
no more than one non-zero principal curvature, meaning it must be either
singly-curved or already plane.

The mean curvature at a given point of the surface is given by"!:

k +k,
2

H=

(25)

The directions in which %, and k, are computed are the principal directions, h,
and h,, which are always orthogonal to each other®™®’) unless at umbilic
points. These umbilic points are points in the surface where #,and 4, are not
determined, since at these points the principal curvatures are equal.

A line of curvature is a surface curve aligned everywhere with one of the
principal directions™®.

12



2.4 Basic Surface Concepts

The principal directions are defined as scalars, not vectors, because they are
taken as quotients on the parameter variations, measured along each principal
direction. At each surface point, after measuring the variation of both surface
parameters along the direction of k;, the principal directions are given by the
quocient:

n=4% 1, 26)
du,

If h; = 0 then the principal direction i is aligned with the co-ordinate curve of
u]. If hj = oo then the principal direction i is aligned with the co-ordinate curve
of u.

A geodesic is a surface curve with zero geodesic curvature everywhere®’),
having the following properties®™®”):

¢ the osculating plane of the geodesic is always normal to the surface;

e the normal plane of the geodesic is always normal to the surface;

o the .fé"ctifying plane of the geodesic is always tangent to the surface;

e any surface point is crossed by one and only one geodesic at any given
direction.

Normal Curyature

K2 H
Tg

K1

XTet

-Tmax

Fig. 3 - The curvature/torsion circle.
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2.5 Ruled Surfaces

A geodesic is a line of curvature if and only if it is a plane curve®®. Therefore,
the lines of curvature aren’t always geodesic.

The geodesic torsion of the surface ¢ at a given point P, in the direction d, is
the torsion of the one and only geodesic crossing P with direction d. It is a
scalar represented by 7, When d changes, 7, changes accordingly with the
surface shape in the vicinity. That’s why 7, is also called the surface
torsion”. The surface torsion have two extreme values in every surface point
(see Fig. 3). The directions at which these extreme values occurs are rotated by
45° about the principal directions!”.. At the principal directions the surface
torsion is always zero!”), thus a line of curvature is a line of zero surface torsion.

An asymptotic curve is a curve lying in the surface which is always aligned with
one of the surface directions for maximum torsion .

Along an asymptotic line the normal curvature is always equal to the mean
curvature H.

For any surface point, the relationship between the normal curvature and the
surface torsion can be plotted as a circle!”.

Any rotation on the considered direction by an angle a, is mapped in the circle
to a 2a rotation, so the principal directions seem to be 180° apart in the circle.

Note that the geodesic torsion extreme values occur at the mean curvature
directions (see Fig. 3).

The relation between the principal curvatures, and the normal curvature taken at
an angle 0 with the first principal direction is (see Fig. 3):

itk  k—k
2

k,(0) = cos(20) (27)

The relation between the principal curvatures, and the surface torsion taken at
an angle 6 with the first principal direction, is (see Fig. 3):

1,(0)= —%Sin(29) (28)

2.5 Ruled Surfaces

A ruled surface is the locus of a line, called a generator, whose direction is
determined by successive values of a parameter, moving continuously along a

14



2.5 Ruled Surfaces

curve called the directrix, which intersects that curve at an angle other than
zero®! if the intersection point lies inside the surface boundaries.

A generator is a moving straight-line which sweeps out the entire surface®™. A
ruling is an instantaneous position of the generator'®.,

Let the directrix be the curve d=d(x;), and r be the unit vector of the generator
g=up.r(u;), in which u; and u, are the parameters for the directrix and the
generator. Then the equation for the ruled surface 6=0(u, u,) is:

o(u1, up) = d(up)+ upr(uy) 29)

The following expression is an alternative definition of a ruled surface o, when
it contains two curves d,=d,(%,,) and d,=d,(4,,), known respectively as the
primary and the secondary directrices. The parameter values u;, and uy,
define the intersection points of a ruling at both curves, and u, is the length
measured along the ruling, from the primary directrix d, to the considered
surface point.

T o(ua, u1h #2) = (1- u)d,(u12)+ updy(u1p) e

The cylinder is a ruled surface in which all rulings are parallel to each
other. The common cylinder is the circular cylinder, because its admits an arc
of a circle as directrix.

The cone is a ruled surface in which all rulings intersect at one and the same
point, known as the apex. The cone generator is the generatrix. The common
cone is the circular cone, because its admits an arc of a circle as directrix.

Definition of a developable surface: a developable surface is a ruled surface
having the same tangential plane along one and the same generator'’l,

A ruled surface is not developable if the rulings intersect each other™.

Since a plane tangent to a ruled surface is tangent to the surface along some
ruling, it must be tangent also to any curve lying in the surface where it crosses
the ruling.

Consider two points, R and S, each one in a curve lying in a developable
surface. For the existence of a ruling between them, it is necessary and
sufficient that the curve tangents at those points, named t; and tg lie in the same
plane (see Fig. 4). Therefore, the condition for the line RS to be a ruling, is:

(RSxty).ts =0 €

Another way to put it, is to say that the surface normals at R and S, named Ny
and Ng, must be parallel:

15



2.5 Ruled Surfaces

NpxNs = (txRS)X(t,¥RS) = 0 ¢2)

The cylinder is a developable surface.

The cone is a developable surface, excluding the apex where all the rulings
intersect each other.

The tangent surface (also called convolute®™), is a ruled surface with the
generator tangent everywhere to the directrix (see Fig. 5).

To be a ruled surface, the directrix cannot be inside the surface boundaries, as
the angle from the directrix to the generator is always zero. But one can
consider the tangent surface, as being the union of the directrix with the two
surface sheets, each one produced by making #,>0 and u»<0 in Eqn.29.

Fig. 4 - The tangent plane contains the ruling and both tangent vectors, if the surface is
developable.

The directrix of a tangent surface is named edge of regression™®, cuspoidal
edge!™") or characteristic curve (see Fig. 5). The edge of regression is also
known as the evolute, by relation to some possible involute lying on the tangent
surface®®. The involute is a curve which is normal to every ruling.

The point of the edge of regression lying in some ruling of the tangent surface is
called the characteristic point or the apex of that ruling (see Fig. 5).

Every tangent surface is developable. In a tangent surface the locus of all
apexes is a curve called the edge of regression.

16



2.5 Ruled Surfaces

A plane tangent to a developable surface is an osculating plane at the cuspoidal
edge (see Fig. 5).

Every rectifying plane of the cuspoidal edge is normal to the tangent surface,
and intersects it along a ruling (see Fig. 5).

The edge of regression for a tangent surface contains the points of intersection
of any two consecutive rulings.
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Plane tangent to the surface along \
the rulling AB, and thus osculator
to the edge of regression at P

Fig. 5 - A tangent surface, bounded by two involutes and two
rulings, showing a plane tangent to it.

Taking points at every ruling at the same parameter u, (recall Eqn.29), the
distance between them vanish when u, changes in the direction of the apex, so
the apex curve is described by:

_al—a_d E—O (33)

= +u, =
Ou, Oy oy,

A curve is called a Bertrand offset of another if they have the same main
normals. A surface is a Bertrand offset of another if they have the same unit
normals®®'",

Suppose a tangent surface offsets another developable surface by a distance D,
and moreover, there exists a constant angle & between their regression edges

17



2.6 The Envelope of a One-Parameter Family of Planes

tangents. Then its regression edge must have the curvature and torsion related
by the expression!'?:

(1-kD)sind-rDcosd =0 (34)

If a set of superimposed surface layers, like the ones in a composite material,
are developable, then they satisfy Eqn. 34.

2.6 The Envelope of a One-Parameter Family of Planes

A one-parameter family of planes has the general equation:
n,(u)x+n,(u)y+n,(w)z=q(u) < n(u).p=q(u) (35)
Definition of a developable surface: every developable surface is the

envelope of a one-parameter family of planes, and every envelope for a one-
parameter family of planes is developable!®.

Any ruling in the envelope of the one-parameter family of planes is described
by

(n(u)p=q(x)

< (36)

dn(x) dq(u)
du P= du

The edge of regression of the envelope of the one-parameter family of planes is
described by!'"):

n(u)p=q(u)

dn(u) dq(u)
1 Tdu T 4y G7

d’n(w) _ d’q(u)
| du? P du?

Every developable surface can be subdivided into regions so that any of these
regions is a portion of either a plane, a generalised cylinder, a generalised cone,
or a tangent surface’. However, a surface entirely made of developable

18



2.7 Development Properties

regions is not necessarily developable, due to possible non-developable
boundaries between the developable regions.

2.7 Development Properties

Definition of a developable surface: a surface is developable, if and only if it
has zero Gaussian curvature everywhere 7. This is equivalent to the
statement that a surface is developable if and only if it has the lower principal
curvature zero-valued everywhere.

The development of a surface preserves the angles, the lengths, and the
geodesic curvature of the curves lying in it™®, since it is an isometric
mapping. The normal curvature is eliminated by the development, and the
curvature of the developed line is the geodesic curvature existing before the
development. For any given surface the development is unique, if it exists'*.
If a surface is not developable, to map it onto a plane one can always consider
several flattening maps, so any mapping of a non-developable surface onto the
plane is not unique®®*.

For a line lying in a surface, the integration of the Frenet-Serret equations give
its development. For this it is necessary to eliminate the torsion in the Frenet-
Serret equations, which then becomes a system of only two equations, in which
case it is enough to determine the two unknown functions on the plane co-
ordinates x and y.

The resulting equations on the developed co-ordinates are!”:

d*x dy
+k — =0
d s? () ds
(3%
d’y dx
-k —=0
ds? g(s)ds

2.8 The Spherical Map

Consider the map between any surface point and the unit sphere point where the
locating vector is the surface unit normal. This map is known as the Gauss
map or the spherical map, and is represented by N. The image of a surface or a

19



2.8 The Spherical Map

curve lying on it by the Gauss map, is called the spherical indicatrix, or simply
the indicatrix®®",

The tangent plane at a surface point is parallel to the tangent plane at the image
of that point, made by the spherical map .. If a surface is developable, then
the surface normals are parallel along each ruling®®. Therefore, the indicatrix
of any ruling is just a point on the unit sphere, an the indicatrix of a developable
surface is just a line®®). If the indicatrix of a developable surface has a cusp,
then the surface have an inflexion at the surface ruling which was mapped on
that cusp!'!.,

The indicatrix of a circular cylinder is an arc of a maximum circle (see Fig.
6). The rulings are both tangent to the unit sphere and normal to the arc of
circle.

]
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\ y
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Fig. 6 - The spherical indicatrix of a circular cylinder.

The indicatrix of a circular cone is an arc of circle (see Fig. 7). The rulings are
both tangent to the unit sphere and normal to the arc of circle.

The spherical indicatrix for a generalised cylinder is given by:

)=0 (39

du du?

While for the generalised cone it is:

dn d’n
du du?

) = constant # 0 (40)

And for a tangent surface is:

dn d’n
. = 20 41
(3, duz) f(@) C3))
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2.9 The Metric and Curvature Tensors

The proportion between an element of area at the surface and its spherical map
is the absolute value of the Gaussian curvature®:

dA4

spherical
—=—=|K 42

4K (42)
Consider the differential of the Gauss map, dN(u), with u=(u,, »,) being the
parameter vector of the original surface (not the unit sphere). The determinant
of dN is the Gaussian curvature XK. The negative half trace? of dN is the mean
curvature H®,

Fig. 7 - The spherical indicatrix n(t) of a circular cone, and its curvature K(t) = dn/dt.

2.9 The Metric and Curvature Tensors

The form of the metric tensor, at a given point of the surface o is:

0o do
L= — i,j=12 43
8jj ou, ou, J 43)

2 The trace of a; is Za;;.
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2.9 The Metric and Curvature Tensors

The metric tensor is symmetric, implying that:
d’c B d’c
Ou0u; Ou;0u,

=8> (44)

If a map between surfaces is isometric, then the metric tensors of both surfaces
are equal between any mapped points”). Thus any mathematical entity
depending exclusively on the metric tensor is preserved by an isometric

mapping.

The components of the metric tensor are the coefficients of the first
fundamental form 7, which is a quadratic form. It gives the elementary
displacement on the surface, due to elementary increments on the parameters,
made along a direction du:

I(du) = do? = gjdujdu, = du.g.du’, du= {du, du,} (45)
) J

The forin of the curvature tensor, in a given point of the surface o is:

2
bi' =n 0’c = _22‘1 i’j =1’2 (46)
’ Ou,0u;  Ou; Ou,

The curvature tensor is symmetric, thus:

47

At the umbilic points the curvature tensor has determinant zero.

The coefficients of the second fundamental form //(du) are the components of
the curvature tensor. This quadratic form doubles the elementary displacement
h normal to the surface, due to elementary increments on the parameters.

Notice that the displacement normal to the surface is in fact half the second
order differential, projected along the surface’s normal:

II(du)= n d’c= bjdujdu= du.b.du™= 2h, du= {du, du,} (48)

The mean curvature, at a given point of the surface o, is given by"*™:

H= 8i1bn —281b, + 8by,
2(g11g22 - 812)

(49)
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2.9 The Metric and Curvature Tensors

The Gaussian curvature, at a given point of the surface o, is given by

_byby -ty

(50)
818»n ~ 8n

If the surface parameters are orthogonal to each other (meaning that there are at
least one allowable orthogonal parameterisation), the Gaussian curvature can be
expressed only upon the metric tensor®™:

0 0
oo i{ 1 gzzJ a( 1 glj .
\/gngzz ou\ /g, Ou, VEn Ou,

The principal curvatures, in a given point of the surface o, are given by

k,=HtJH -K (52)

The surface tOI'SlOl’l or geodesic tOI'SlOI'l at some given direction h is given
- 7] : g g g
by

_ (gllbIZ - ngbll) + (gubzz - gzzbn)h + (g12b22 - gu,u,bu,u2 )h2

T (53)
¢ v8i18xn — 8i (gn +2gxzh+822h2)

The principal directions, in a given point of the surface o, are given by™":

h.=b” &k b|2 gk,
l 8k — by, gzzk by,

=12 (54)

On a twice differentiable surface, the normal and the tangent vectors along each
co-ordinate direction form a basis, on which one can define the surface’s second
derivatives by the Gauss equations™™:

.

2
&: F, %o F};}O”_O'_g”n
d ;11 Y u, ou,
3 % _F1‘2 % +F2 'ﬁ_o-'gnn (55)
ou, 0'}42 M, 0’!12
—ag =T, % —+0} — % —gyn
| Ju 0’)1] 0'}12

Whose coefficients F,.J'. are called the Christoffel symbols of the first kind. They
only depend upon the metric tensor and its derivatives®™’:
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2.9 The Metric and Curvature Tensors

I—-ll _ Exn illl -2g, ?: +&n 312‘
! 2(g”gzég g122)
1—12 _ En Euj_glz 0,;12
] 2(g11g22 “8122)
28, B 24 —g, 22 Bn
Il = U, My O,
J i @2(g11g2ggl2zy
rlz} ) 28, d: —&n 0'11]21 +8&n 0'11111
Z(g”gzég g122)
o &n E‘glz 0%]21
, ] 2(g11g22 "8122)
o : &u izz -28;, ﬁlz *+8n Zglzz
I, = 2 2 ' (56)
z(gngzz _glzz)

On a twice differentiable surface, the tangent vectors along each co-ordinate
direction form a basis, on which one can define the first derivatives of the
surface unit normal by the Weingarten equations ™

on ,0c  .,00

o ow " oy

l 1 2
_p 0 , 400 (57)

6 u, ? du,

Whose coefficients B/ depend not only upon the metric tensor, but also on the
curvature tensor (unlike the Christoffel symbols)*":

1 b 8n — b8

8n8n _8122
B2 = b8, — b8
1

818xn — 8’122
T Bl b,&gy — b22g12
2

gugzz g12
Bz byg — b)2g12
2 =

818n gl2

(58)
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2.10 Surface and Line Continuity

Note that the derivative of the unit surface normal must be normal to it, because
the length of the normal is constant. Thus the unit normal derivative is always
tangent to the surface.

A twice continuously differentiable curve c(s)=c(u,(s),u,(s)) is a geodesic if and
only if there exists a natural parameterisation of it such that®"!:

2 2 2
o4 +T (%) +2I") aula—%ﬂ“z'z(—aﬁ) =0

? Os 12 E Os Os (59)
2 2 2

a—‘?+r,ﬁ(9’i] +2T3 —a—”‘—g"lez(%) =0

Os Os Os Os Os

2.10 Surface and Line Continuity

A cusp is a sharp point where the tangent vectors are not
continuous. Therefore, it cannot lie in a straight-line like a ruling, and any
surface with a cusp is at least locally non-developable (besides being not
regular).

Cusp Knucle

Fig. 8 - A cusp and a knuckle.

A knuckle is a ridge or a sharp curve lying in a surface, which therefore is not
regular, so the results previously stated cannot be applied to it. For a surface
containing a knuckle, to be developable it is necessary that the knuckle is a
ruling and the tangency line for two unique planes, each tangent to each side of
the surface along the knuckle.

G" continuity means geometric continuity of n-th order, or equivalently, that the
surface co-ordinates have continuous n-th derivatives on an orthogonal base of
true length parameters. Some practical consequences of this are:
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2.10 Surface and Line Continuity

if n=0, then only point continuity are guaranteed;

if n=1, then the geometric surface tangents are continuous;

if n=2, then the geometric surface curvatures are continuous.

This is defined by opposition to C" continuity, were the differentiation

parameters could be any, thus not requiring geometric continuity, but only the
mathematical continuity of the underlying surface expressions.

Developed Surface

Knucle

Developed Surface

Fig. 9 - The development of a very particular case of a surface with a knuckle.
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Chapter 3 - Plate Development and Developable
Surfaces

t the outset of iron shipbuilding, in the first half of the 19th century, the
A traditional wooden planking procedures became obsolete, given the

enormous differences in the aspect ratios, elastic modulus, stowage
conditions and price of the materials.

For almost a century, until the First World War, the available workforce was
continuously expanding in numbers, and its cost wasn’t the issue it is
today. Full-scale lofting was the only known way to build ships, with all its
requirements for space, time and human resources.

Naturally, the technologies for sail vessel construction were not abruptly
abandoned. The ancient iron riveting and copper planking technologies
suffered gradual improvement and adaptation to the massive metal
constructions required by ironclad construction, mostly in the British shipyards.

The First World War welding technologies led to gradual development between
the wars, culminating in the dominance of welded fabrication by the early
fifties. Before welding, it was common to use full-scale mock-ups and
templates, despite the excess material in the overlapped boundaries of riveted
plates. Welding further reinforced the requirements for full-scale mock-ups
and templates, since it removed the need for plates to overlap, allowing
economies in weight and material bill, but stressed the precision requirements
of plate cutting to a level never experienced before.

After World War II, labour costs started to climb continuously, and this plate
production process became increasingly more expensive, because of the
enormous amount of work content in it.

The reaction came mostly from Germany, where in the fifties an enterprise
started the marketing of a 1/10-scale electrostatic jig, for analogue plate
development purposes, while other enterprises introduced lofting processes
based on the optical projection of 1/10 drawings to its full-scale. In addition,
automatic cutting machinery became available, which also used 1/10-scale
drawings for optical reading. These 1/10-scale procedures did not discarded
completely the need for full-scale mock-ups and templates, but required new
skills to maintain accuracy.

Incidentally, the immense room for the full-scale lofting became welcome for
other activities more vital for the shipyard operation: the increase in ship size
and complexity stressed the need for space inside the yard, and the real estate
evolution in most yard neighbourhoods restricted the possibilities of expansion
outside the facilities perimeter.
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3.1 Graphical Plate Development

In the fifties the computer was introduced to the shipyard
environment. Initially the computer was mostly intended for the project design
phase and administration, but gradually it was also perceived as the central tool
for all design room procedures, including hull lofting. In the late sixties even
the shop was using computer technology, used for the control of cutting
machinery. The continuous stream of improvements brought to the yard by the
computer technologies (which we are still witnessing in full vigour) was a true
technological revolution. In fact, it enabled the return to complete full-scale
lofting, by modelling the ship system in a broader and more accurate way, by
improving operational control, and decreasing dramatically both the design and
construction time. Computer-Aided Design (CAD), Computer-Aided Lofting
(CAL), and Computer-Aided Manufacturing (CAM) are the technologies that
have developed from this revolution, exploiting the opportunities of shared
databases.

To accurately loft the hull plates, reliable plate development procedures (CAL),
and practical methodologies for the design of developable surfaces (CAD), had
to be created and introduced into the process. This Chapter reviews the
bibliography on plate development and developable surface design methods that
contributed to this evolution.

3.1 Graphical Plate Development

In addition to full-scale moulds, and the 1/10-scale electrostatic development
jig, there were graphical methods for plate development, of which three were
described by Branco!”!. Among these, the so called “French Method”, is in
fact a particular case of the “geodesic line method”, so it will not be covered
here, for reasons of conciseness.

Seam spling

Frame spline

Fig. 10 - The splines fitting onto the frame body plan, as in the splines method.
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3.1 Graphical Plate Development

The first method described by Branco, here called “the splines method”, makes
use of splines for the mapping of the hull curves onto the plane. It exploits the
fact that a development is an isometric mapping®™®), so any surface curve would
have its arc length unchanged.

The method starts at the hull’s frame body plan, where splines are used to
measure the projected arc length of the following curves (see Fig. 10):

o the four plate boundaries (two seams and two butts)
¢ the centre line of the plate, which passes through the frames middle points

o the two diagonals of every inter-frame space, intersecting each other at the
centre line of the plate.

For any of these curves, there exists a curved triangle, cylindrically shaped, of
which the three sides are (see Fig. 11):

o the curve itself, of unknown arc length

o the préjected length of the curve onto the vertical plane of the rear frame, is
measured by the fitted spline

e the straight-line connecting the ends of the two former lines, whose length is
the distance between frame planes, being orthogonal to the projection of the
curve.

Fig. 11 - The triangle relating the hull curve with its projection onto the frame plane.
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3.1 Graphical Plate Development

Since this cylindrical triangle is a right-angled one, Pythagoras’ theorem is
enough to obtain the arc length of the curve lying in the plate surface.

Knowing the arc lengths of all the plate curves, it is possible to compose the
development of the previous spline frame. Each curve is represented by a
spline of the same length, where all intersection points are marked. The spline
assembly is done by bounding every two intersecting splines with nails. The
resulting spline mesh is a scale model of the developed plate.

The corrections accounting for the spline thickness are made at the end, because
it is not the spline edge that fits the true line path, but its medium fibre.

Another of Branco’s geometric procedure is called “the geodesic line method”,
since it starts with the drawing of a geodesic curve located in the plate as a
central line. It is drawn in the frame body plan.

The procedure to draw the geodesic is to discretise it frame by frame, from the
mid-point of the plate’s mid-frame, towards each butt. The initial direction of
the geodesic is orthogonal to that frame. These initial conditions are intended
to minimise the possibility of the geodesic intersecting a seam instead of a butt.

To be a geodesic, the line must have its osculating plane always normal to the
surface, which requires that the line have a main normal parallel to the surface
normal everywhere.

The intersection between the osculating plane and the plate surface, is
discretised as a straight segment, which approximates the geodesic segment
between two consecutive frames. The accuracy of this approximation
decreases with the increase of both the frame distance and the normal curvature
of the surface, in the geodesic direction.

As an initial condition, the osculating plane is to be orthogonal to the frame
plane. Therefore its intersection with the next frame is just a matter of
extending the initial tangent in the drawing, until it reaches the next frame,
since the osculating plane is of vertical projection, as it is called in descriptive

geometry.

However, after this initial stage, the osculating plane can become an oblique
one, due to the curvature of the surface, so the problem loses its initial
simplicity.

For the intersection between the next frame and this oblique plane, Branco!"*!
uses a simplified geometric construction, designed to be as straightforward as
possible for the loftsman.

The geodesic line and its tangent vector define a plane o, which is orthogonal to
the frame plane. Fig. 12 depicts the initial geodesic segment M;M;;, between
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3.1 Graphical Plate Development

frames i and ii. The plane B approximates the osculating plane to the geodesic
segment at frame ii, and points M;;;" and M;;; are the intersection between
frame iii and the planes o and B. The segment M;;;""M;; is the intersection
between a and f.

If the surface is plane, M;; would be the intersection between o and the frame
iii. However, the curvature of the surface makes the geodesic rotate about M,
thus the actual intersection is M;;".

Plgne
—_ R T

e

_ ~ g "'ll'

—_ —_t

(Amplified in
Fig. 14)
Fig. 12 - The projective plane a defined by the geodesic
tangent, and the oblique osculating plane p.

To obtain M;;”” it is enough to draw from M,;” the normal n, until it reaches the
extension of the segment that goes from M, to M,,.

To this stage everything is accurate, the only approximations being hand
drawing errors, say 1.5 millimetres™), amplified by the scale factor to 15
millimetres (when drawing at 1/10-scale).

The triangle made by the distance between frames, and by the intersection line
of the normal plane with the shell, is shown in its true length in Fig. 13.

Finally, to determine the real intersection between the osculating plane and
frame iii, Branco assumes that the normal n, is approximately parallel to
n;, Therefore, drawing n; from M,;,”” would intercept the frame iii at M;;. Fig.
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3.1 Graphical Plate Development

14 depicts the three dimensional construction of M, The graphic (two
dimensional) construction of M;; is shown in Fig. 15.
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Fig. 13 - The projective plane defined by the geodesic tangent and the oblique osculating plane,
in its true lengths. Note the sequence by which the geometric construction is drawn.

Note that Branco further simplifies the method, substituting n; by the normal to
the frame ii at P (instead of at M,;), and therefore neglecting the frame curvature
between P and M,
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Fig. 14 - The point P, from which the normal n;; is traced onto
the frame iii (amplified from Fig.12).
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3.1 Graphical Plate Development

After repeating this process in both directions, the geodesic is fully traced. To
develop it, the true length of every geodesic segment is computed or graphically
measured over its true length triangle, made by the vertical projection of the
segment and the distance between frames. The accumulation of all these
lengths gives the total length of the geodesic, which is developed as the straight-
line obtained by the repeated application of Pythagoras’ theorem, to each true
length triangle along the line.

Fig. 15 - The drawing of the geodesic in the frame body plan, and the definition of bow;.

The true lengths of the seams are also measured, segment by segment, and two
splines are marked accordingly. Since the frame plane is projective, the lengths
of the frames can be directly measured and marked on a spline, both from the
geodesic up to the upper seam, and from the geodesic down to the lower
seam. A single spline is enough for all the frames and both butts.

Relating to the frame bow, as defined in Fig. 16, the spline deflection at frame i
(see Fig. 15) is computed as:

bow,x M;M,
\/ (frame distance)’ x (M;M,)’

spline deflection = (60)

The final development procedure is the scale drawing of the developed
plate. This is done by assembling both seam splines in a 1/10-scale drawing,
following this steps:
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3.1 Graphical Plate Development

1. drawing a straight-line as the development of the geodesic, with marks at the
frame intersections

2. drawing a straight-line q orthogonal to the geodesic development, at a point
distant from frame i by the spline deflexion, to the side that the frame bows

3. the central frame i is developed by placing the mid-point of the frame spline
orthogonal to the geodesic rule, at its intersection with the frame i, and
bending both sides of the spline until they reach the line q at the marked
frame lengths

4. each spline with the seam marks is placed with its frame i at the q line, at the
corresponding point, previously obtained

5. the frame spline is placed at the next frame, for one of the sides, and bent as
in the case of frame i, but to meet the splines representing the seams, which
must also bend until they meet at the proper markings

6. this last couple of steps is repeated for both sides, until the whole plate is
developed.

Frame distance

Frame i

E3
o]
m

Y
Spline deflection

Fig. 16 - The spline deflection at the central frame, related to the bow.

e ——

The geodesic method is much more complex than the splines method, but
Branco reported it as being more accurate. For a loftsman with a solid
background in Descriptive Geometry, the geodesic tracing can be done by the
Monge classical method for intercepting a line (the frame line) with a plane (the
osculating plane)!'*". Doing that, one must use one of the two other
projections of the shell, such as the lines plan. In this way, there are no
methodical approximations, so it is more accurate. Nevertheless, it is not often
that the loftsman has the education required by this procedure. Therefore,
Branco’s simplifications are in line with the actual workforce shortcomings.
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3.2 The First Attempts at Developable Surface Design

Both methods are not easy to program, mainly because of the final spline
assembly. This is mathematically modelled by a set of differential equations,
expressing the boundary conditions of the curves and their invariant lengths.

3.2 The First Attempts at Developable Surface Design

In 1963 Barnaby™ published at research work on developable surfaces and its
applications on completely developable hulls. Developable surfaces were
defined as the ones in which it is possible at any point to draw a straight-line in
some direction, which extends to the boundaries of the shape. This is not
correct if applied to general shapes, like the one in Fig. 17, which is not
developable because of the constraint of the plane elements on the boundaries
of the conical shape. For the generality of Barnaby’s definition, it is necessary
to state that those straight-lines should not cross each other, unless inside the
contour of plane regions.

Barnaby’s method for designing an entirely developable hull was based on an
arbitrary curve called the directrix, chosen by the designer. At arbitrary points
on this curve, the designer passes generators partly contained in the hull
surface. Every two consecutive generators must intercept in a point, which is
the apex of the cone element bounded by those generators and the directrix arc
between them. In this way, a series of continuous cone elements defines the
hull surface. To define cylinder elements, the designer must not intercept the
consecutive generators, but make them parallel to each other.

Illustration is provided for a planing hull®. Planing hulls are quite convenient
for the method, as the chine line can be taken as the directrix. Then, generators
are passed through the chine, not only in the direction of the keel line,
producing the conical bottom, but also in the direction of the deck line,
producing the cylindrical side.

A drafting procedure is detailed, in which the initial data are the sheer line, the
profile of the chine and its half breadth amidships. The slope of the cylindrical
sides can be adjusted but the bottom is made of a single cone element, giving
only the liberty to choose its apex location, which determines the keel line
shape. ‘

Barnaby points out the necessity to plastically shape all the plate, avoiding the
residual stresses made in nearly developable plates, forced in position by elastic
deformation. Obviously, the same can be said for any plate inaccurately
shaped, developable or not. In fact, the advantage of an entirely developable
hull is the economy of time, manpower and money obtained by the easily
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3.2 The First Attempts at Developable Surface Design

shaped hull plates. Methods for developing the surfaces obtained are out of the
scope of this short article.

Having the same the form coefficients, Barnaby expected a negligible penalty in
hydrodynamic efficiency, relatively to classical hulls. He mentions a
comparative study in an experimental tank that reported the same resistance for
tugs. However, it should be noted that to get the same hydrodynamic
efficiency, not only the form coefficients but also the hydrodynamic ones
should be the same, not to mention other issues like particular hull differences
in way of the propeller.

Hatch!"® researched mostly the applications of entirely developable hulls, called
conic hulls. He pointed out several advantages of this type of design, such as
the lack of skilled workmanship in many places where ships have to be built,
savings in man-hours, earlier release of the expensive construction berths and
reduced delivery time for the final product.

Fig. 17 - A non-developable surface made of developable elements.

Applications for this type of design, at the time (1963), were seen as “do-it-
yourself” leisure boats, launches, tugs, barges, fishing vessels, passenger ferries,
small coasters, and other mostly small craft. A great number of ships and small
boats were already been built with this type of design, but none above 260 feet
long, since increasing the ship size would decrease the economical savings
relative to the total cost.

There was also a technical size constraint. Designers were using the conical
surface design method presented by Barnaby, which requires the drawing of the
apexes in the hull drawing. Since the apex tends to be far away for a small
curvature cone, the size of the drawing boards becomes very constraining.
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3.2 The First Attempts at Developable Surface Design

In principle, hull forms can be produced as close to conventionally round hulls
as necessary, using multi-chines and several cone elements, possibly combined
with cylindrical ones, to substitute for a soft bilge and a steep rise of
floor. However, the hull complexity must be acceptable for the vessel being
designed. Large tanker designs with conic hull weren’t treated at the time, but
Hatch pointed out that their typical hull shape was ripe for exploitation, because
of the large amount of almost flat surfaces, and also the small bilge radius and
small rise of floor.

Kilgore!"" studied applications on fishing boats of metallic developable hulls, in
relation to the substitution for wooden hulls with traditional shapes.

If it exists, a developable surface can be found between two given hull lines, say
line a and line b, by tracing the rulings between them. To estimate the ruling at
a point P in a, the tangent vector to a, termed t,, is drawn at P, and then two
straight-lines are drawn onto b (see Fig. 18). Since they intercept each other,

Fig. 18 - Plane o can be rotated around tangent t, until it become tangent
to the surface, and then R and S become the same point at Q.

R and S are the end points of those straight segments at b. This plane
intersects the hull surface along the straight-lines from P to R and S.

Imagine that the plane o rotates around t, until R and S become coincident at
Q. Then a would be tangent to the surface, and the straight segment from P to
R=S, would be the tangency line, which is the ruling between lines a and b at P.

37



3.3 The Outset of Computer Algorithms

Kilgore takes the middle point of the arc from R to S as an approximation to Q,
thus simplifying very much this procedure for drafting applications, so it can
easily be repeated at points in a other than P, providing for as many rulings as
necessary.

The paper makes no mention whatsoever to development procedures, and gives
only simple illustrations on the developable surface fitting
procedures. Guidance in the surface developability is also not provided, but it
would be enough to state that rulings should not intersect each other for the
surface to be developable . In such a case, the designer should try to change
the lines around the ends of the crossing rulings, or otherwise give up on the
development of such surface regions.

Precise shape control of hull lines is required to produce a hull design that is
hydrodynamically efficient and has hydrostatic properties close enough to the
design figures. For conic hulls, developable surfaces are matched until hull
lines are acceptable, so the shape of lines is only indirectly controlled (by the
fitted surfaces), making the procedure error prone and a quite tedious one.

Applying Barnaby’s method to a chine planing boat produces the profile centre-
line, but Kilgore uses this line as initial data in the definition of the hull region
between it and the chine. Kilgore’s method for fitting developable surfaces
largely surpasses the functionality of the conic methods, since it uses not only
cone and cylinder segments, but also convolute surfaces, enabling the designer
to cope with a much wider range of problems. This is achieved without having
to care about the particular type of surface being used, or to try for the location
of apexes, which is not the case with conic hulls. The simplicity and power of
this method made it very popular!'®,

3.3 The Outset of Computer Algorithms

Ferris® conceived a standard series of developable surfaces, covering not only
surface fitting of the main hull lines, but also the development of these
surfaces. In fact, the considerable amount of computing required by this
methodology strongly suggests a computer implementation.

Regarding the fact that every developable surface is the envelope of a one-
parameter family of planes, he chose a surface formulation with all coefficients
of second degree in only one parameter, except for the dependent co-ordinate,
for which the coefficient is of zero degree:

y = J, [(Jal+JyutJ )+l +Jaurd )z T ul+ I+, (61)
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3.3 The Outset of Computer Algorithms

In Eqn.61 the half-breadth is the dependent co-ordinate, for which -1/J, is the
coefficient usually found in the normal equation of the plane. This is the
common expression for hull sides. For the bottom, the dependent co-ordinate
is z. Ferris doesn’t expressly state it, but for each hull region, he chooses as
dependent co-ordinate the one with smaller variations, preserving the numerical
conditioning of the expressions. Given some pair (x, z), the dependent co-
ordinate y on the surface is the extreme value among the ones pertaining to the
plane family.

Differentiating Eqn.61 and computing the root, the following result is obtained:

Jx+Jsz+J,
u= (62)
AU x+J,z+J;)

Ferris didn’t explicitly use this result to eliminate # in Eqn.61, but the generic
equation he actually used for the developable surface was the result of this
substitution.

Variations in the nine coefficients are illustrated, but besides J, and J,, which
are proportional to y, no simple relationship was shown between the coefficients
and the shape, so it is not clear that working with these coefficients is
practically viable. As the plane coefficients form a second-degree polynomial
on the parameter u, the apex locus reduces to a point, since the second
derivative of the y expression don’t depend on the parameter. Therefore, this
second-degree formulation always produces simple cones.

To fit any particular hull shape, Ferris proposed the use of fields of coefficients,
which multiply the developable half-breadths. This ensures good fairness but
deviates from the original developable condition. The reason for this was the
admission that the are regions which cannot be made developable, as in the case
of the concave bow flare. Although this region cannot be fitted with a single
surface patch of second order, since it is not a cone, it can be fitted by
subdividing into several developable elements, if care is taken of the fairness
across element boundaries. Another way to deal with these particular hull
shapes as well as cylinders could be to increase the complexity of the
coefficients, but this was not explored in the paper.

The easiest way to derive hulls is to scale from a basic one, since scale factors
do not affect the surface developability.

Ferris also proposed to establish a system to compute offsets of developable
surfaces for use by naval architects. There appear to be no further reports on
this initiative.

The resulting plate development procedure can be accomplished with relative
ease, either computing or graphically, since all plates are simple conic
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3.3 The Outset of Computer Algorithms

surfaces. Each of these have the apex at the intersection of any two rulings,
and any plate point can be defined by the distance from the apex and the angle
to some reference ruling, in a polar co-ordinate system.

The first report on a computer-aided method for fitting a developable surface is
due to Nolan®”. The method is based on the rulings computation, similar to
the graphical method presented by Kilgore!'”..

As the two curves bounding the developable surface must be fair to ensure
fairness of the surface, he chose the Theilheimer spline to interpolate these
curves, since its deformation follows a physical spline. These curves are
usually the chines, knuckle lines, sheer line and the keel line, without further
subdivision of the hull.

The method calculates the developable surface between the boundary curves,
which is unique, if existing at all. The rulings are computed without
restrictions on direction, so any developable surface can be fitted. They are
computed by searching for parallel surface normals, one at each boundary
curve, at both ends of a prospective ruling.

After computing the surface normal N, at a particular point P, in the boundary
curve a, the other end of the ruling is searched in the boundary b, by taking in it
some point P,, and computing there the normal N,. For the normals to be
parallel it is enough that:

S(®B) =[INXNy[| =0 (63)

When P, is not the very root of Eqn.63, f'is a positive non-zero quantity. Nolan
studied the function f'and found that its derivative about the P, location is zero
at the root and at other unpredictable points.

To calculate the roots of Eqn.63 it is necessary to use some numerical
method. Nolan recommends the method of Newton for this purpose, arguing
rightfully that the selected method should use all available information. But
the Newton’s method require the knowledge of the derivative of f at every
interpolated point. This was possible by the analytic derivation of the
Theilheimer polynomials. Instead, Nolan chose to calculate the derivatives
numerically, incurring in efficiency and accuracy penalties. Moreover, the
efficiency of the Newton’s method is very much vulnerable to small derivatives,
since any minor deviation on one tangent computation can throw the next
iteration far away from the root.

Therefore, even if deriving the Theilheimer polynomials, it is best to use a
method other than first degree, which better reproduces the function shape
known to be far from linear.
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3.3 The Outset of Computer Algorithms

The starting location for P, is usually the last ruling intersection with the line b,
but when the rulings tend to be parallel to b, the search method revealed itself
unreliable. In these cases, Nolan opted for widening the search scope
exponentially, until the acceptable result or an abort condition is achieved. He
did not use all surface boundaries, only the seams, so the algorithm can fail with
developable surfaces if the rulings tend to be parallel to the seams, and cross the
surface butts.

Butts should be processed in a practical application, as the seams are. Another
way is to extend the seams by extrapolating the Theilheimer polynomials, and
then intercept the resulting rulings with the butts.

The extrapolation would lead to amplified errors on the computed points and
vectors, and the computing is further complicated, so it is better to search for
the rulings directly at the butts. If the method doesn’t show convergence than
it is assumed that the surface is non-developable (in fact it is non-ruled).

Nolan doesn’t explore the possibility of the surface being ruled but non-
developable, which should make the rulings cross somewhere, clearly exposing
the problem and its location. If any problem arises, it is advised to change one
of the curves until the procedure works.

At the time (1971) computing costs were remarkably negligible, at least for a
test made on a small chinned hull.

The development of the resulting surface was not explored in Nolan’s paper,
and besides Ferris superficial description®), no other report on development
methods is known until 1972, with the Barkley’s MSc thesis, about computer-
aided surface development!'®),

Barkley’s geometric definition of the plate is based on surface patches of
triangular shape, contoured by geodesics. Thus, any type of plate boundaries
can be modelled, like the triangular plates, which was not the case with the
quadrilateral patch and others.

The development of a geodesic is a straight-line; therefore, the surface
triangular patch is developed onto a plane triangle. This triangle can be drawn,
just by computing the length of each geodesic side.

The main issue in this method is to trace the geodesics between the given
points, lying in the plate surface. To do that, Barkley started choosing a
convenient co-ordinate system (u,, u,), where u, is the frame arc length, and u,
is the waterline arc length, with origin at the initial point of the considered
line. For any surface curve, the parameter is also its length s.

Therefore, for any curve lying in the surface, the following differential equation
holds, where g is the metric tensor:
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3.3 The Outset of Computer Algorithms
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If the curve is a geodesic, then its arc length is minimal. From the
minimisation of the arc length results:
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To solve this equation for u,=u,(s) and u,=u,(s), the ends of the geodesic are
given and finite differences can be computed, establishing the necessary
boundary conditions. Once the differential equations are solved, inverting the
relation s — (u,, u,) at the end gives the geodesic arc length by the final value of
s, named Sf.

Since the aim is to find the geodesic length sf; and not the geodesic curve
equations {u,(s), u,(s)}, one can eliminate the redundant equation, and after
several simplifications get:

2
sz\/ Enth . +(g,2u,+g22u2)2 (66)
8182 ~8n &n =g
f

Eqn.66 gives very good results when the geodesic is contained in a sphere,
producing errors under 0.4% of the arc of the great circle between both ends.

Surfaces that are more realistic were not tested, but for developable surfaces, the
method should give good results, including the final development.

Barkley supposed that it could work acceptably on surfaces with negligible
second principal curvature (thus non-developable). However, reservations are
to be taken about that, because the algorithm for aliasing the plane triangles
during its assembly is simply non-existent, and because of that some
unpredictability is to be expected.

The ICCAS 1973’ conference?'#*?! gathered most of the main software
developers at the time, covering Computer-Aided Lofting and shipyard
Computer-Aided Design and Manufacturing.

Hurst™™, representing the B.S.R.A., reported an initiative to gather information
within the Member Firms, about the required production documents for the
developed plates. This produced the specification for the development
modules of the BRITSHIPS package, and included the representation of the
building frames and other information not specified. Results should be
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3.3 The Qutset of Computer Algorithms

produced in paper drawings and control tapes for the numerically controlled
machines.

At the time, the Member Firms were using development methods based either
in triangulation or in the geodesic line!"”, The BRITSHIPS team opted for a
development method that splits the plate into small segments assumed to be
perfectly developable. These segments are either quadrilateral or triangular.

The formers are developed by the calculation of the arc lengths of the diagonal
geodesics, and the angle between them.

For the triangular segments, only two geodesic sides and its angle are
computed. Naturally, the development of the unfolded segments is done using
straight-lines instead of the curved geodesics. The particulars of the inter-
segment assembly process are not detailed.

Additional value is given to the user, by providing him with the language
“2C,L”, relatively easy to use, since it was purposely built for the shell lines
specification, including the seams and butts.

Magnusson, presenting the VIKING package®®!l, reported on the traditional
loftsman methods used for the computer-aided development of plates. The
adapted manual technique, named the “angle line”, was neither described nor
referenced. The information for production includes both the template
drawings, and in the drawing of the developed plate, the representation of the
welding lines between the plate and the inner structural components.

Belda et al™, argue that geodesic seams should reduce the scrap material
resulting from the plate cutting, since the plate boundaries should be almost
straight, and therefore it is easier to use the remains in smaller parts. Thus, the
FORAN system uses geodesic seams for this purpose.

Instead of programming a traditional method, the FORAN team opted for fitting
a developable surface onto the original frames. This surface spanned an entire
panel. If the Gaussian curvature, integrated over the panel, exceeds some
amount, typical of a reasonable plate, then the panel is to be subdivided until
each plate is acceptable.

For the specification of the seams and butts, the FORAN system develops the
entire panel, where the user then strakes the plates, specifying the seams as
straight-lines. Besides the developed seams and butts, the FORAN system
provides information about thickness, weights, quality, templates and a
“developability index”, which is not explained.

The Aster system, presented by Juranek et all™, is only briefly described. It
includes a development system based on geodesics and rectangular plate
elements, but further information about it is not provided.
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3.4 Computer-Aided Design Becomes Mainstream

The generalisation of computing devices like hand calculators, personal
computers and powerful graphical workstations gave way for increased research
and application development in many practical and theoretical fields, including
ship hull design and plate development.

The author didn’t succeed in finding published information on development
methods or developable surfaces, since the 1973 world recession until 1980. In
this year Grandpierre’s published his book? on small boat design and
construction, included in a series about leisure and fishing boat construction.

Despite the rather simple style of the book, it provides comprehensive and
serious information on the covered topics. Grandpierre points out economies
about 20-40% in the chinned hull construction, when compared with freely
curved ones. He also acknowledges the absolute necessity of computer or
electronic calculator assistance in the design process, given the lengthy and
repetitive calculations required by this type of hull.

Conical, cylindrical and Kilgore’s methods for fitting developable surfaces are
presented clearly and thoroughly. The proposed development admits a plane
approximating to the surface between every two consecutive rulings, if they are
close enough. In this plane, the boundary chine lines form a quadrilateral
figure, which diagonal is easy to compute. Therefore, the graphical
development is just a mater of drawing sequentially every such plane element.

Being this book aimed at the unprepared reader, a systematic method for multi-
chine design is detailed, and several applications on sailboats are thoroughly
demonstrated. In these applications, the complex multi-chine hulls are derived
from equivalent ones of traditional shape, with some admitted loss in the
hydrodynamic efficiency.

Clements™”, maybe because of its background as a mathematician, published
for the first time an algorithm for fitting truly developable surfaces, not just
ruled surfaces. All the covered algorithms were designed for the computer.

The paper explored briefly the necessity of the proper fairing of the boundary
chines, without which the surface could have non-developable spots. Weighted
Theilheimer polynomials are fitted, minimising both the deviations from the
surface data points and the curvature integral along the curve. The surface
fitting is done by searching rulings with Barkley’s algorithm!"®), but controlling
for the possible existence of rulings overlapping at each other, in which case the
developability is locally compromised.

For those cases, a multi-conic procedure is locally executed, imposing the
developability of the surface, at the cost of further deviations on the original
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data points. This is done imposing mathematically a convenient vertex, located
at the intersection of the projections of two consecutive rulings, onto the tangent
plane to one of them. For the surface development, the intersections of rulings
are computed and used for unfolding each cone segment.

This paper is symptomatic about a fundamental change in the knowledge areas
involving the lofting, being that directly associated to the leading
technologies. The descriptive geometry dominated the manual drafting
techniques for fitting developable surfaces and for its development, until the
computer methods started being explored and the differential geometry took the
same role.

In this evolution, Munchmeyer®™ published a systematic study on the
applications of the differential geometry to the ship design. Besides a synthesis
of the necessary mathematics, it reports on several topics, like:

o Surface fitting methods for the regions of the hull.
e Computing of the surface area.

e Forming of developable plates by applying the roll onto the second principal
direction.

o The basis for the optimal design of seams and butts.

Clements took again the subject of surface development®), now with an entirely
new algorithm. This algorithm can only deal with properly developable
surfaces.

Up to a point it seems very much like the geodesic method described by
Branco!™, because it also uses a geodesic fitted longitudinally, as a reference
line for the development procedure. This geodesic is traced as the solution of
the Eqn.67, which is a differential equation on the geodesic g, where n is the
normal to the surface and u is the curve parameter.

dg d?
|d—5xﬁ.n‘=0 67)

This equation is a formulation of the principle that at a geodesic, the curvature
vector is always aligned with the surface normal.

The rulings intersecting the geodesic are computed and the angle between them
and the geodesic is stored, along with the rulings lengths upward and downward
to the seams.

After developing the geodesic as a straight-line, the rulings are developed by its
stored lengths and angles with the reference geodesic. Then, the seams are
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drawn connecting the ends of the rulings. This method is numerically tested
with a chine hull, giving negligible errors.

Possible improvements suggested by the author include a second geodesic used
as a check line for verification of the overall accuracy of the applications.

Norskov-Lauritsen!", working for Burmeister & Wein Shipdesign Aps, reported
on the status of developable surface fitting, in the current production systems.

At the time (1985), big size ships were already built with hydroconic hulls (a
Burmeister & Wein’s series of 20 Panamax ships), providing evidence of the
hydrodynamic efficiency of this design. This shipyard started the utilisation of
a computer system, as early as in 1960, for the replacement of the vast manual
lofting work.

The first generation of the software required the manual input of the rulings to
provide the complete definition of the developable shell surface.

By the time of this report, the second generation were already very automated,
ranging from the processing of the classification drawings to the final offsets
used for steel cutting and construction work, and implementing fully the
concepts of entirely developable hulls.

The hull surface is initially defined as a mesh of lines, bounding each region of
particular geometry. Over this lines it is necessary to specify the boundary
conditions, like continuity of tangents or curvature. For simple and intuitive
manipulation, these lines are internally stored and processed as Bezier
curves. The surface domains of flatness, of developability and of non-
developability, are defined, dividing between them the entirety of the
shell. Boundaries of the plane regions are often specified as straight-lines, for
the sake of smoothness in the transitions to the adjacent regions.

Often the non-developable regions are the transitions between developable
ones, and thus should be relegated for the last stages of the surface design,
because they are mainly a consequence of the particularities of the surrounding
regions.

The developable surfaces are generally defined by specifying a directrix
segmented in relation to a corresponding set of apexes. In this way,
generalised cylinders and generalised cones are fitted with absolute accuracy,
and tangent surfaces are discretised as a continuous set of elements of
generalised cones.

The boundary lines not used in the surface definition are projected onto it, for
the trimming of the surface ends. The regions of the resulting knuckle lines
can be faired by a variety of methods, and in some cases like the bilge, the
blending between surfaces can be specified to be developable. The
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developability of the blended transition depends on the parallelism of the
rulings of the adjacent surfaces.

The developing method uses a two-dimensional co-ordinate system, local to
each surface element. It is placed at the apex of the surface element, and the
co-ordinates are the angles between rulings and the distance along the each
ruling. Because the apexes are accurately known and the surfaces are exactly
developable, the mapping onto the plane is of almost absolute precision,
allowing for ship methods for construction requiring very little adjustments on
the erection site.

The introduction of the developable surface fitting in the integrated production
system yielded about 20% gains in man-hours for the curved
panels. Depending on the fullness of the ship, up to 95% of the hull surface
can be developable, without loss in the hydrodynamic performances.

Fig. 19 - The polar co-ordinate system in the generalised cone.

Hansen™), a mathematician, studied the numerical incidences of applications on
generalised cones, chiefly in surface fitting, surface interpolation, surface
development and the intersections between cones and cones and planes. This
work was done at the Burmeister & Wein Shipdesign Aps.

The generalised cone is a ruled surface with directrix ¢=c(«), were u is the curve
parameter.

To know the position of a point P in the cone, it is enough to find the parameter
u of the ruling that contains P, and the distance d from P to the apex A (see Fig.
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19). Thus, the surface point P is defined by only two co-ordinates, implying
the surface equation (which removes the third degree of freedom). However,
this is clearly a polar co-ordinate system where u is a generalised angle, with
origin at the ruling that passes at beginning of c.

The cone development is naturally defined in a polar co-ordinate system, so the
development becomes just the translation of the three-dimensional polar co-
ordinate system onto the conventional one. To do that it is enough to translate
u to an angle a, in radians, which is simple, given the radian relation to the arc
length:
da=ﬁ=l@du (68)
d dou
Integrating da, and noting that the distance from P to A is unchanged by the

development, results the following relationship between the co-ordinates of P,
before and after the development:

dzl) = d3D
2
me
a= -Cpc—zudu

The expression for a is analysed for numerical implementation and an adaptive
osculatory method is proposed, with differentiation done recursively. This
rather evolved method tries to improve both the numerical accuracy and the
computing efficiency.

Note that the expression for a is the basis not only for the development, but also
for the interpolations and thus also for the surface fittings and
intersections. Therefore, it is expected that the effort required by the design of
this method pay off considerably.

Some pseudo-code is provided for programming the surface fitting, the surface
interpolation and the surface intersection, based in elemental tasks, of which the
evaluation of the o expression is the only one with significant complexity. It is
desirable to have an overall accuracy of at least 7 decimal digits, or 1 millimetre
per kilometre, because the apex is frequently located kilometres away of the
surface.

Alternatively to the plate development, one can try to control the forming
problem and, assuming a given flat plate, plastically bend it until the intended
curved shape is obtained. In this line of research, Hardt et all® studied models
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for plate rolling and punching, which can be matched with the geometric
definition of the hull surface, and the plate thickness, to design the forming
process.

These models can be used to simulate alternative production sequences and
alternative production parameters (like the radius of the die or the rollers),
leading to the optimisation of the forming procedures.

The bending model for die pressing starts with the machine geometry (die
radius a), the punching penetration Y,, and assuming the material as being of
linear strain hardening, with elastic modulus E,, plastic modulus E,, and yield
stress 6,. The maximum deflection moment M,,, is then matched to Y, by an
iterative series of calculations. These integrate the curvature to find the
deflection of the centre point.

Given M, and the resulting linear moment distribution across the plate M(s),
the moment-curvature relationship can be applied to find the corresponding
loaded curvature K(s).

Finallg;, .‘t'he unloaded curvature distribution, K, (s) is found by applying an
elastic moment of equal and opposite magnitude to the original load, to account
for the elastic spring-back, resulting:

M(s)

K, (s)=K(s)- m

(70)

The model accounts for sequences of punches across the plate, and subtracts the
machine penetration Y, by the initial deflection produced by the previous
punches. Residual stresses are computed and accounted for in the model, so
the material behaviour is properly described. The results are the curvature, the
deflection and the residual stress fields.

Sensitivity analysis of the curvature and of the plastic zone shape, show that the
isotropy of the curvature field (the sphericality) can be improved by closely
spacing shallow penetration punches, as expected.

In the rolling, instead of imposing a deflection as in the punching, the machine
imposes a bending moment. However, the penetration of the centre roll,
relatively to the supporting ones, is equivalent to the punch penetration ¥,. The
other machine parameters relevant to the process are the roll spacing d, the
centre roll radius a, and the plate displacement J.

Rolling imposes a linear bending moment, which is zero at the supporting rolls
(neglecting the plate weight), and is maximum at the centre roll, being that
maximum proportional to the penetration and to the distance between
rolls. When the plate is rolled the bending moment at each point changes in
time, increasing from the first supporting roll until reaching the centre roll, and
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then unloading linearly, without further plastic deformation. This produces a
non-symmetric field of imposed curvatures K,(s).

For a desired plastic curvature it was demonstrated that the punch penetration
should be almost linearly dependent to the plate thickness, so varying thickness
across a plate would affect significantly the shape of the rolled plate.

The linking from the plate-forming model to the design of the surface and of the
seams and buts are out of scope for this work. Nevertheless, it is a desirable
feature, not only for the ship builder but also for the ship designer, since it
allows improvements on the time and economic resources required by the
overall project.

3.5 Computer-Aided Geometric Design of Developable
Surfaces

Researching general Computer-Aided Geometric Design (CAGD), Gurunathan
and Dande® described two development procedures, each one adapted to each
formulation for ruled surfaces, as in Eqn.29 for a surface defined with a single
directrix, and as in Eqn.30 for a surface defined with two directrices.

Both development procedures are based in the development of one directrix, by
the integration of the Frenet-Serret equations (recall Eqn.17). The development
preserves the arc length and geodesic curvature of every line lying in the
surface. Therefore, knowing the accumulated arc length and the geodesic
curvature along the directrix is to know the arc length and the curvature of its
plane image.

The three Frenet-Serret differential equations express the relationship between
the arc length, the curvature, and the torsion. Knowing only two of these
functions, it is necessary to eliminate for the torsion, and reducing to a system
of two equations, which is enough to determine the two unknown functions, the
plane co-ordinates x and y. The resulting system of equations is (as in Eqn.38):

d®x dy
k() =0
ds’ e (s) ds
(38)
d*y dx
LY %o
ds’ g(s)ds

The solution in x=x(s) and y=y(s) can be obtained numerically, defining the
developed directrix.
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In particular cases it is possible to get an analytical solution, depending on the
complexity of the function of geodesic curvature, but this subject is not
explored in the paper. One of such cases is when the directrix is a geodesic,
becoming the solution a straight-line.

Applications to surface and curve polynomial formulations, which are common
in computer graphics, could lead to interesting results. The development
preserves the rulings lengths and angles with the directrix, so any point or line
lying in the surface can be easily mapped onto the plane once the directrix is
developed.

Exemplification is not provided in the paper, but applications in air
conditioning ducts and other metal sheet structures were being done by the
authors, at the time.

The development of thick plates was to be tried later, but reports are still not
available.

The computer-aided design and development of hydroconic hulls is studied
again by Akbarabad"!, which used a surface fitting process like
Kilgore’s!"”. The resulting surface is subdivided in conical patches to be
developed one by one, and then fitted together to assemble the plate
development.

This cone assembly can only give approximated results for tangent and
cylindrical surfaces which is rather restrictive, compared with previous works
like Clements’®! which solved this problems already, without method
approximations.

Weiss and Furtner™ studied the problems of connecting two curves by a
developable surface. The targeted application domain is the design of metallic
sheet surfaces, like the transition between two tubes of different shape or
alignment.

The surface fitting is done by a sequence of small four-sided plane elements, or
by small triangles. Therefore, the development of the surface is simplified at
the expense of the systematic error of underestimating the true lengths of the
lines lying in the surface (see Fig. 20).

This technique requires very little work and technology to produce the fitted
surface, and therefore it is desirable for the given application domain, which is
not demanding about accuracy.

For higher accuracy, say 0.1% (about a centimetre for a line 10 meters long),
and for the complex curvatures found in ship hulls, it is necessary to decrease
the step of the discretisation, loosing computing efficiency.
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It is conceivable to have an osculatory method for predicting the accurate
development, based on this discretisation algorithm, but this is out of scope for
this work.

Fig. 20 - Cone discretisation as proposed by Weiss and Furtner.

The Fairline software system was developed by Letcher and Brown"* for the
fitting of spline surfaces. These surfaces can be constrained to be developable
by using Kilgore's method. The development method is very similar to
Gurunathan and Dande's.

In a paper presenting the Fairline system”*, the authors and the audience made
several important remarks about the design of chine lines bounding a
developable surface. The chines should be thoroughly faired. Than, plotting
the abscissa for both chines in the same graphic, the points of maximum second
derivative should be removed, because they could lead to non-developable
spots. The intersecting rulings, showing a non-developable spot, are reported
to occur more frequently at the ship ends. When this happen it is advised to
rise the end of the upper chine.

They give no recommendations for non-developable spots lying in the middle
of the surface, besides moving the nearest control points, one at a time, by trial
and error. Accuracy and reliability considerations point to a minimum of 50-60
rulings defining each developable surface patch. Exemplification is provided
only for a very simple chinned hull, but with an error under 0.1 millimetre.

Hamlin acknowledges the popularity of Kilgore’s method for developable
surface fitting in the Principles of Naval Architecture!’®. Only after 25 years of
published works, is the subject of surface developability covered by this
classical compendium on naval architecture, which says a lot about the lack of
awareness for this issue among the community of ship designers. Nevertheless
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it still doesn’t give any help on plate development, maybe because it is more of
a construction topic, rather then a design one.

Redont’s research!'!! is oriented towards generic computer aided design of
developable surfaces, and is not a specialised hull surface application.

He explores the advantages of dualities between complex graphical entities and
a simpler, more manageable, graphical ones, namely the duality between
developable surfaces and its spherical indicatrix.

For the definition of the developable surface, he uses the spherical indicatrix of
one geodesic line lying in it, and the rulings. The rulings are defined by the
angles and the points at which they meet the geodesic line, plus the lengths
measured from these points to both surface borders. The spherical indicatrix is
discretised as a sequence of circular arcs on the unit sphere. Because of this,
the surface is also discretised, but as a sequence of cones, as seen in the section
2.8 The Spherical Map.

Fig. 21 - The control net for a developable rational Bézier surface, of degree [1x2]. Note that
consecutive rows are coplanar.

This formulation allows the user to edit the resulting surface only by changing
the indicatrix on the unit sphere, which being very powerful is not easily related
with the final surface shape, for a common ship designer. For each indicatrix
point there are a corresponding ruling in the surface, and thus a corresponding
sheet of normals along that ruling, which are equipollent to the locating vector
at the indicatrix point®®!.
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The designer can handle the surface orientation by changing the indicatrix path
along the unit sphere, and thus changing the orientation of the surface
normals. Imposing a cusp in the indicatrix, the designer produces a surface
inflexion along the corresponding ruling. For the design of cylindrical shapes,
it is enough to impose arcs of maximum circle along the spherical indicatrix.

The angles between the rulings and the geodesic, the lengths of the rulings and
the geodesic arc lengths are known. Therefore, the development of the surface
is just a mater of drawing the geodesic as an isometric straight-line, over which
are marked the rulings intersections and angles. Consequently, the rulings can
be mapped into the plane.

Aumann published on developable surface fitting®*. He researched the criteria

for establishing the developability of interpolating developable patches, when
fitted onto two boundary curves, lying in planes parallel to each other. Both
curves, used as the directrices of a ruled surface, are Bézier curves®™, being the
primary one of the third degree, and the secondary of the fourth degree.

The critéria proposed is quite involved and not at all of intuitive use. They
relate the location of the control vertices of both curves, the baricentre of the
triangles made by them, and the slopes made by the lines connecting
them. The continuity between adjacent patches, both of the tangent and of the
curvature, also produces expressions almost impossible to use directly.

Ordinarily, Bézier surfaces are defined by a rectangular mesh of [nxm] control
points, being [(n-1)x(m-1)] the degrees of the corresponding Bézier
polynomials. Lang and Réschel®” used this classical approach to model
developable surfaces. Because developable surfaces should be ruled, they
chose Bézier degrees [1xn] so one of the directions is made of straight-lines.

Moreover, they investigated conditions for the developability of the rational
[1xn] Bézier surfaces, which being rational are not required to be linear in the
direction of degree 1.

The conditions obtained for the developability of the rational [1xn] Bézier
surfaces are too complex for a handy utilisation, unless the degree » is two. In
that case, the control net has consecutive coplanar rows in the direction of n, as
shown in Fig. 21.

Because of its complex results, these papers don’t give the ship designer the
ability of the direct manipulation of Bézier developable surfaces. At least until
there are software tools that hides from the user the intricacies of this task. For
that purpose, other simpler and more intuitive techniques were devised by
Bodduluri and Ravani®®**,

After Redont’s work!""), these authors tried other dualities besides the classical
one existing between developable surfaces and indicatrix lines. They used two
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methodologies to define developable Bézier surfaces, one called a point
representation of the developable surface, and the other called a plane
representation of the developable surface.

They explored the duality between points, defined in homogeneous co-
ordinates, and planes existing in the projective spaceP®, also defined by four
real co-ordinates in its linear formulation. All the Bézier formulations
employed were of the third degree, but other degrees could be employed,
including higher ones for increased freedom in the shaping of the surface®.,

In the point representation of the developable surface, its edge of regression is
constructed as a Bézier curve, defined by its control points®®,

The developable surface is defined by spanning tangent lines at the edge of
regression, used as rulings, and making a tangent surface.

The parameter of the edge of regression, being one-to-one associated with the
rulings, .is used as the longitudinal parameter of the surface. The surface’s
transverse parameter is the length measured along the rulings, from the edge of
regression.

The boundaries of the surface are defined as third degree Bézier relationships
between both parameters. The four three-dimensional points controlling the
shape of the edge of regression are thus associated with the two sets of four
two-dimensional control points of the boundary lines.

The most promising technique in this work was the plane representation of the
developable surface, by a one-parameter family of planes defined with Bézier
coefficients. These coefficients are elegantly defined by a set of control planes,
so there exists a relationship between these control planes and the resulting
developable surface which envelope the family of planes®..

The four linear coefficients of a plane (recall Eqn. 35) of the enveloping family
form a four-dimensional vector. This is defined by the four-dimensional
vectors of the control planes (which are also four, because the degree of the
Bézier is threel®)).

The interpolating equation for the coefficients of the plane family is:

T
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Note that each U® vector contains the linear coefficients of the i-th control
plane, and that u varies between 0 and 1.
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Using Eqgs.36 and 37, the rulings and the edge of regression are derivable from
Eqn. 35 and 71. Therefore, the equation of the surface would take the form of
Eqn. 29, where the directrix is the edge of regression.

Alternatively, to Eqn. 71, the authors illustrate the application of the De
Casteljau classical algorithm for Bézier interpolation.

The main properties resulting from the third degree Bézier formulation for the
control planes are:

e The first and the last control planes are tangent to the developable surface;

e The intersection of the first two control planes and also of the last two
control planes, are respectively the initial and the final rulings of the surface;

¢ The intersection of the first three control planes and of the last three control
planes, are respectively the initial and the final characteristic points of the
surface, which is known to be a tangent one.

At the patch ends the characteristic points must lie simultaneously in the 2nd
and the 3rd control planes, thus they must lie in the line of intersection of these
planes, implying that the characteristic curve is a straight-line. This is an
important topic for practical applications, because the characteristic curve
should have the proper degree of freedom, to adapt for the required constraints.

The Farin-Bohem construction is recommended for G* continuity across
adjacent surface patches. The following relationships between the centre
points U; and V; (i=1,2,3,4) of the control planes of the adjoining surface
patches U and V (see Fig. 22) is a consequence of that:

vV, =10,
T V,=U,+(U,-U,) (72)
\Vs :U2 +4(U4 _U3)

Note that it can be implemented in a simple way for the designer to use: every
plane can be graphically handled by its central point, and the Farin-Bohem
equations are programmed as an intrinsic relationship between those central
points, so changing the location of a centre point (control plane) of one patch,
moves the points/planes of the other patch accordingly. Obviously, this needs
to be properly interfaced for an effective use by the designer.

For the development of the resulting surface it is suggested to discretise the
surface as the set of tangent plane strips, each one using a ruling as a centre
line. The angles between these strips are the angles between the surface
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normals at the centre line rulings, and so they are defined by the following
expression, where Ju is the difference in the longitudinal parameter at
consecutive rulings:

n(u) n(u+ ou)
ln(u)| In(u + 5u)|

a(u) = arccos (73)

Flattening of the surface is done by a simple sequence of rotations. The
dependency of the final accuracy on the curvature and on the strip width is not
explored.

Conversely, the bending sequence required by the forming process is described

by the rotation of -a(u) of the strips chinned at the intersections of the
consecutive tangent planes.

Y

Fig. 22 - The Farin-Bohem construction for G* continuity.

Very simple illustrations are presented in both papers, but the intuitiveness and
simplicity of the proposed method of defining developable surfaces using
control planes are made clear.

Because of its elegant concept of duality between planes and surfaces and its
true integration in all relevant aspects of surface design, surface development
and user interface, this work can not be overlooked, and can be seen as a major
proposal for a systematic methodology of developable surface design and
development, since Nolan’s!"”), 20 years before.
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Nevertheless, it still offers room for further research and improvement, not only
in the user interface concepts and ergonomics, but also in the underlying
formulations for the family of planes.

In fact, Bodduluri and Ravani tried periodic B-Spline, as an alternative to the
Bézier formulation. However, the link from the control planes to the
characteristic points and to the rulings becomes more complex and loose the
intuitiveness of the Bézier formulation.

However, open B-Spline, not covered in this work, offers some of the useful
characteristics of Bézier’s, with the advantage of not having to consider
compatibility conditions between the consecutive patches, like tangent or
curvature continuity.

Moreover, also out of scope of Bodduluri’s paper, NURBS could be another
obvious choice, greatly improving both the degree of freedom and the user
control on the surface shape.

3.6 State-of-the-art on Plate Development

In 1993, Lamb" made a report on the state-of-the-art on plate development
methods, 25 years after Ferris published his leading work on this
subject’®). This work was carried out with the co-operation of several
shipbuilders, to present the point of view of the user and of the main Computer-
Aided Lofting software houses, invited to demonstrate their solutions for plate
development.

Components Quantity

Lofted Parts 35,000

Parts Cut by N/C Machines 16,000
Shell Plates 800
Non-developable Shell Plates 80
Plates Requiring a Bed to be Formed 40

Table 1 - Figures for a typical high speed container ship.

The shipyard expectations about the plate development and fit-up processes
were still to be met, because of claimed software inaccuracies, forcing the
workshop to use excess material around the plate borderline.

Cutting the plate neat to the developed outline is desired by the shipbuilders, in
order to economise the labour intensive fitting, cutting and edge preparation at
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3.6 State-of-the-art on Plate Development

the building berths. An overall accuracy in the millimetre figure is required to
avoid expensive rework of almost finished parts, due to fitting mismatches.

Construction costs of curved plates are not reported in this work, but they are
known to be way above the average costs for other ship structural parts.

Table 1 illustrates for a high-speed container ship built in USA, the amounts of
curved plates relative to the entire set of the ship structural components. Table
2 reports on the relative use of each forming technology, for each ship and
shipyard (Avondale/IHI Shipbuilding, also in USA). Note that the areas of the
plates aren’t reported, but only the number of plates done with each bending
process.

The plates in the table’s first row (“no roll”) are plane ones, and given that they
are the largest ones in the shell, there are not many. The table’s second row
counts the developable plates. Note that this kind of plates are simply rolled or
pressed.

The other rows of Table 2, dealing with non-developable plates, account for
more than 3/4 of the total number of shell plating, but not that much of shell
area because complex surface shapes require further subdivision of the
strakes. The traditionally extensive use of line heat in USA shipyards accounts
in this case for almost 100% of the non-developable plates.

Bending Process Plate Quantity %
No roll 26 8.7
Roller or press only 45 15.1
Roller and line heating 196 65.8
Line heating only 20 6.7
Roller and forming jig 11 3.7

Table 2 - Curved shell plates for a tanker built at Avondale/IHI Shipbuilding (USA)

The inaccuracies found in the prediction of the non-developable plate
boundaries led to errors as much as 3 inches in the plate corners.

Full-scale mocks are used to avoid this in the more problematic areas of the
shell. Typically, these areas are:

e Clipper bows - soft nose stem;
e Cruiser sterns;

¢ Single screw apertures;

Forebody and aft body shoulders;
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Blocks in the fore and aft bodies with vertical butts and horizontal seams;

Bulbous bows;

Domes (sonar’s and other);

Heavy flare in “fine” hulls.

All of these areas are typically non-developable. Therefore, the software
developers aren’t able to provide a consistent map of the curved plate onto the
plane, because this is not uniquely defined, as discussed in section
2.7 Development Properties.

In fact, what shipbuilders ask for is not the plate development itself, but the
convenience of accurately predict the plate shape to be cut in all cases. This is
only achievable by the complete integration between the workshop forming
technologies and the Computer-Aided Lofting software, which is still not
available commercially.

The Cbrﬁputer—Aided Lofting software houses claim that applying development
methods to non-developable surfaces give good approximations in most cases,
and recommend criteria for acceptance of this approximation.

Albacore Research indeed programmed for this purpose its CAL package
ShipCAM, where the spots expected to be unable to provide good development
approximations have no surface mesh fitted over. Nevertheless, the criteria
employed are not documented.

The straking of the shell is one of the most effective tools to improve on the
developability of the plates. Some guidelines recommended when designing
the shell straking are:

To make the straking suit the shell shape, instead of the modular construction
of the hull;

e To place the buts and the seams at the curvature inflexions;
e To decrease the plate size as the surface double curvature increases;

e To optimise the material utilisation, by trying to maintain orthogonality
between butts and seams, and to adapt the plate dimensions to the available
stocks of plating.

Thickness effects on the development accuracy are told not to be meaningful for
thin plates. For the thicker plates, it is suggested to add its half thickness to the
mould offsets, and develop the obtained plate shape instead of the one defined
by the mould itself.
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3.6 State-of-the-art on Plate Development

The experience of plate development from the aircraft industries is compared
with the ship construction ones. Most significantly, the utilisation of
triangulation algorithms for the developable aircraft parts still require stock
material as an allowance for fitting up. Lamb didn’t explain this, but it could
be related to the bounding and riveting technologies that this industry uses
extensively with the composite materials.

The development algorithms, being of commercial value, are described only to
a point:

The Senermar’s FORAN package develops the surfaces used for the
definition of the shell by a «cylinder or a multi-cone
approximation. However, because these defining surfaces are not unique
across the shell, it seems to require a further approximation for the nesting of
the individual development patches contained in the plate.

The cylinder and conic fittings are validated by least squares criteria,
otherwise it refines the discretisation.

If the overall Gaussian curvature of the plate exceeds some values, the
system itself imposes a re-strake on the panel using more plates.

All the other five Computer-Aided Lofting development modules compared
in this paper, use triangulation of many small panels subdividing the plate,
each formed by four space points, to obtain the flat plate’s shape by some
nesting approximation.

The Albacore Research’s ShipCAM package uses a conical approximation
for the development method of each plate partition, starting from the centre
to the seams and then to the buts, and preserving the mesh arc lengths.

The BMT ICoNS Limited’s BRITSHIPS uses a single triangulation for each
set of four mesh points.

It also starts in the middle of the plate, developing first towards the seams,
and then towards the buts.

The lengths of the seams and buts tend to be maintained, to try to preserve
the mating to the adjacent plates.

The Coastdesign Inc’s AutoPLEX uses an algorithm apparently inspired by
Nolan’s, intended for developable surface applications.
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o Its other product, AutoPLATE, aims at non-developable plates, for which it
uses a finite element method to expand the surface patches, each one defined
by four space points3.

o Kokums Computer Systems AB markets AUTOCON This package includes
a development module working with a triangulation of Coon’s patches, fitted
onto the mesh defining the shell.

e The Cali & Associates Inc.’s SPADES nests the panel’s developed
triangulation from one end of the plate, whereas the others start in the middle
to spread more evenly the algorithm errors.

e All development modules, except ShipCAM and AutoPlex/AutoPlate,
account automatically for the plate’s thickness relatively to the moulded
shape.

e For all development modules, the information provided for production
include N/C code, but only ShipCAM, AutoShip and AUTOCON give
information about the strain fields required to form the plate.

o Several other limitations affect the usability of these applications. One of
them is the difficulty in handling non-conventional plate boundaries, like
triangular plates or buts not parallel to the frames.

e Also stock material is not automatically handled in some products, or is not
considered at all, as in the case of the AutoShip line of products.

To do a practical comparison on the available commercial software tools, five
plates said to be difficult to develop were used as test cases and the results
compared. These plates are located in double curvature areas, therefore they
where differently mapped into the plane by the software packages.

Differences as much as 50 millimetres in length and 25 in width were found at
the corners, which is far too much when compared with common accuracy
requirements for the fitting up. Fit up accuracy requirements is shipyard
dependent. Nevertheless, to mount a steel block without stock material for in-
place adjustment, the required accuracy should be well under the centimetre
range. Otherwise, coherent errors in adjacent parts would render it impossible
to fit.

3 A representative from Coastdesign told the author that there was an
association with Letcher!"! for the first releases, but they adopted independent
development paths since some stage near the first publication of this paper
(1993).
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Lamb remarks that cutting all plates neat to the predicted plane boundaries is
not expected to be possible in the foreseeable future, because of non-
consistencies in workshop procedures, making it virtually impossible to model
by the software.

Contrary to this idea, Letcher!”! took on the effort to develop a geometric
formalism for the process of plate forming. He was already known by its work
on America’s Cup projects, the FairLine Computer-Aided Design system, and
its collaboration with CoastDesign on the AutoShip software package.

The problem of non-developable plates can be addressed by modelling the
fields of in-plane strain, classically known as membrane strain, imposed by
each forming tool. These fields are either isotropic, like in the case of pining,
die pressing and point heating, or orthotropic, as in the cases of rolling or line
heating.

The metric tensor g, of the curved plate, is related to the metric tensor of the
blank G,;, by the membrane strain tensor €,:

" €ap =G~ Bup (74)

This strain tensor models the output of the workshop forming process. Note
that g,; is known for the given hull, and that G is arbitrary for the blank.

Therefore, instead of dealing with continuum mechanics, this model reduces the
forming process to a pure geometric problem, which is in fact the very nature of
forming procedures.

For any particular workshop, the forming procedures are more or less
standardised in face of any typical plate shape.

The field e,; models those procedures. Therefore, given the particular plate
shape and its metric tensor, one should rewrite equation 74 in order to the
unknown metric tensor in the plane blank:

Gop=€upt Bop 75)

For the isotropic strain procedures, the derivative vectors of the patch ¢ and the
blank B, along any direction 6, are proportional to each other. Being so, there
exist a field € at the patch that satisfies the following equation:

op oo
sy il
o (1+¢g) " (76)

Thus, for the metric tensors, the following relationship holds:

Gop = (1+ )" gop an
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From Eqn.74 one concludes that the strain field metric tensor is, for the
isotropic cases:

€up = E(2+8) Bup =268y (78)

If € is not negligible, one can easily reduce the above expression, just by
choosing orthogonal parameters for o, so g,, = 0, and using the Beltrami second
differential parameter and the Gaussian curvature®:

Alln(1 + 8] =K (79)

To make this problem one of determined solution, it is enough to specify € all
around the o boundary.

For the orthotropic strain procedures, the elliptic dependency of € on the
direction 6 can be stated in terms of a factor E:

e(8) = (cos™ + E sin’0) £ (80)

Note  that isotropic procedures can modelled by making £ = 1, and
unidirectional ones by making £ = 0. In fact, E has a characteristic value for
each forming procedure.

Because of Eqn.80, for orthogonal co-ordinates the metric tensors are related
by:

G, =(1 +Ee) g,
G,=g,=0

Gy=(1+8'gy, 81)

By omitting terms other than linear on ¢, it results the following expression,
whose form is closely related to Eqn.79, if expanded:

( )
o g oo 0 e o
1 |94 g Ouy Ou, \|8n Ot
Jg | o 1 0 o 1 0 k@
Exn &
+(1-E) — - £
Ou g, Ow  Ou, gy Ou
The patch boundaries are ruled by equations of the form:
ui=ui(1), i=12 (83)

Once the differential equation is solved, the map between the patch and the
blank is known, and the u; equations are established for the blank.
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For the solution of Eqn.82 (or 79) it is necessary to use a numerical
method. For this purpose, Letcher recommends to geodesicaly triangulate the
patch.

The distances between any nodes i and j, are measured either in the blank
(dyiane)» and in the patch (dg...i.), and related by the average strain between
those nodes:

dplane = [1 +.5 (COSze +E Sinze) (81 + 6]) ]2 dgeoduic (84)

If the triangulation has N nodes, connected by L links, than there exists 3N
unknowns (on the node plane co-ordinates and strain), and L equations of the
above form.

To determine this set of equations, it is necessary to consider 3N-L additional
conditions. These could be the strains at the boundary nodes, plus the
specification of the co-ordinates of one of the plane nodes (eliminating the three
rigid-body degrees of freedom).

The aﬁpiication of this numerical method seems to be quite satisfactory, at least
for the very simple cases explored in the paper: a spherical cap and a Wigley
patch.

Despite the lack of testing on true industrial plates, the essentials of this method
show great promise for the efficiency and quality of forming technology, and
can be the basis for full automation, when using N/C forming tools.

Martins and Aravena"! published on developable surface design, improving on
Kilgore/Nolan previous works. Acknowledging the indirect skills required for
the designer when using the existing systems, they propose a system closer to
the actual problem domain.

The developable surface is discretised with cone and plane elements. Instead
of just defining it by two base lines, they offer the user the possibility to specify
a directrix, plus either the direction of the ruling or the surface normal, along
this curve.

Explicit concern is taken with the application’s user interface, despite some
rather primitive characteristics, like alphanumeric entries where other more
interactive ways could be offered. Nevertheless, the potential for effective and
intuitive design practices seem quite obvious, given the more direct control of
the very nature of the developable surface.

The development procedure is not covered in this work, but is obvious, due to
the underlying conical discretisation.
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Chapter 4 - Concept and Implementation of an
Algorithm

new development method has been formulated, and the respective
A algorithm has been designed and implemented in an actual Computer-

Aided Lofting System, ordered by a shipyard. The method is a map from
any curved surface onto the plane, therefore it enables any plate to be mapped
onto the plane, even if not developable, accommodating the processing of all
kinds of ship plates.

In a mathematical sense, one could name the method as “Improper Geodesic
Map”, because the algorithm maps some in-plate geodesics onto straight-lines
in the plane blank. However, it is not a proper Geodesic Map®, since it only
maps geodesics onto straight-lines if and only if the plate is
developable. Alternatively, one can call it just “Geometric Map”, since it is
purely geometric, by opposition to analytic, but this is rather generic. The
proposed name would be “Improper Geodesic Map”, since it is more precise.

The next sections describe and discuss this method, starting with a full
description of the geodesic tracing procedure, in which it is rooted. The
immediate chapter follows with the analysis of the practical implementation of
the method on an actual Computer-Aided Design system, currently in shipyard
use.

4.1 Geodesic Tracing Discretisation

Because of compatibility requirements with an existing Computer-Aided
Design system, the method had to address the limitations of defining surfaces
not has a patch, but by a set of lines lying in it, like its transverse
sections. Therefore, an analytical procedure being continuous along the surface
has to be adapted to a finite approximation, as the surface itself is finitely
approximated by those lines lying in it. The continuum/finite approximation
called discretisation, is a source of errors and must be carefully evaluated.

Perhaps the most obvious analytical procedure for geodesic tracing, rooted in
the very geodesic definition, is to subtract from the total curvature its geodesic
component, along every infinitesimal curve step, and thus integrate the position
vector from the corrected curvature. This would produce a geodesic path along
the surface, since it will have zero geodesic curvature everywhere. However,
this procedure doesn’t endure the adaptation to a finite application, given the
inappropriate fit between the system curves (for instance cubic splines) and the
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4.2 Geodesic Tracing by a Geometric Procedure

very high degree of the geodesic curvature. Moreover, the finite surface
approximation is clearly not isotropic, since:

¢ Longitudinally, between two consecutive surface sections, the geodesic
curvature can only be approximated to the first degree, because there are
only two geodesic curvature vectors to define it (one at each end).

e Transversely, being the system curves of degree n, their curvature is of
degree n-2, and the surface normals along each curve are of degree (n-1)(n-
1). Therefore, the geodesic curvature at each end is of degree (n-2)(n-1)(n-

1)

Ifnis 1 or 2, there is no possibility to model the curve curvature itself, being it
the second derivative. Therefore, using n= 3 (with cubic splines, for instance),
the degrees of geodesic curvature approximation are 1 longitudinally and 4
transversely.

Therefore, the geodesic curvature profile of a surface curve, being of the 1%
degree, is too stiff to fit the actual profile, which is expected to have roughly the
same degree found in transverse variations (the 4", for cubic splines). Note
that the plate’s definition system is isotropic.

Therefore, the prototyping of this geodesic tracing method produced almost
meaningless results, with extraneous effects on all but the less curved segments,
usually taking it clearly out of the surface, far from the geodesic
path. However, when applied to patch-based Computer-Aided Design systems,
this method should give reliable results, making it an attractive option, because
of its simplicity and straightforward implementation.

This direction of research was naturally suspended, at least until a true surface
definition system becomes available. Instead, a geometric method was devised
for the solution required for the shipyard system. It was based in the same
geodesic property that Branco exploited in his simple drafting method™! for
geodesic tracing. Furthermore, the computer implementation rended
unnecessary several approximations required by hand lofting, which improves
the procedure accuracy.

4.2 Geodesic Tracing by a Geometric Procedure

In the existing Computer-Aided Design system, a cubic spline is a sequence of
cubic segments, each one traced between two consecutive lines defining the
surface. The spline is geodesic if and only if all of its segments are
geodesic. Hence, the core task in geodesic spline tracing is to trace a single
cubic segment, between two consecutive surface lines. The successive trace of
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4.2 Geodesic Tracing by a Geometric Procedure

each segment in a geodesic manner will render a final spline that will be
geodesic.

As an iterative procedure, the geodesic spline tracing passes some information
from step to step, along the surface path. This information is the boundary
conditions of each segment, at the end line defining the surface, where the
current segment meets the next one to be traced. Prior to anything else, one has
to establish those boundary conditions.

The curvature of a surface curve can be decomposed in two components: the
normal curvature and the geodesic curvature®®”). The former is the surface
curvature in the direction taken by the curve. The latter is a component
intrinsic to the curve, as already seen in the 2.4 Basic Surface Concepts section.

Different curves passing in one point of the surface with the same direction (the
same tangent in that point) can have different geodesic curvatures in that point,
but only one normal curvature (see Fig. 23).
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Fig. 23 - Two surface curves with the same tangent at a point.

A geodesic is a curve with zero geodesic curvature in all its extents. Being so,
the geodesic’s main normal is always aligned with the surface normal, and the
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geodesic’s osculatory plane is normal to the surface itself®®”. This is the
essential geodesic property exploited by the present method.

The end of the geodesic spline segment is then approximated as the intersection
between the osculatory plane at the segment’s initial point (see Fig. 24), and the
other mesh line. Therefore, it is admitted that the osculatory plane is constant
along the segment span, or at least it doesn’t change significantly.

Of course, this implies that the frame lines defining the surface should be
spaced accordingly to the surface torsion, or otherwise close enough to deal
with the worst expected case. Addressing this problem, some guidance can be
found in the validation tests, in the final sections of this chapter.

Fig. 24 - Tracing of a geodesic spline segment, geometrically.

The trace of the osculatory plane on the surface is fitted by a 2™ degree curve,
for computing its end tangent vector. The component of this vector that is
normal to the surface is discarded, making it a true surface tangent (see Fig.
25). The use of a curve of the 2™ degree is a consequence of having just 3
boundary conditions, namely the initial tangent vector and both end-points.

The tangent is computed from a 2™ degree segment, which is stiffer than a cubic
segment. Therefore, the surface errors eventually existing along the path, like
small bumps, would not affect the direction as much as if using cubic
splines. Therefore, the 2™ degree interpolation should improve a little the
tracing stability, hence the end tangent is expected to match more closely the
true geodesic’s direction when the surface definition has some error content,
which is often the case.
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4.2 Geodesic Tracing by a Geometric Procedure

Knowing the end point and the end tangent vector, the geodesic cubic spline is
trivially computed, and the method proceeds to the next frame line, taking as
initial conditions the end point and end tangent just computed (see Fig.
25). This process of tracing a geodesic spline geometrically is depicted in
Diagram 1.

For validating this geometric method, it is advisable to compute the actual
geodesic curvature along the curve, and compare the resulting paths with known
geodesics, to have some measure of the method’s accuracy. The Chapter final
sections deal with validation issues, and the next section presents another
procedure, which traces splines of geodesic curvature as low as prescribed,
appropriate for comparison with the geodesics traced geometrically.

t - tangent vector
n - surface normal
P - geodesic point

h

Fig. 25 - Tracing a geodesic segment which follows a previous one.
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/ Input the mesh of longitudinal and transversal splines defining the plate /

surface, which data structure contains the bounding butts and seams

1

Tracing Initialisation
/ Input the first point of the geodesic /
(]

l Compute the surface normal at the first point l

¥

/" Input the initial direction /

(]

Make the initial direction normal to the surface normal, to be a true surface
tangent and become the tangent vector at the first point of the geodesic

Define the Spline Segment Fitting the Intersection
Between the Surface and the Osculatory Plane

Set the osculatory plane, defined by the lately computed
point, tangent vector, and surface normal

'

Compute the new point of the geodesic as the point of intersection
between the osculatory plane and the next line of the surface definition

{

[ Compute the surface normal at the new point of the geodesic

{

Define a 2nd degree polynomial from the previous point to the
new one, using the previous tangent vector as the initial direction

!

+1terpolate in this polynomial the new tangent vector at the new point of the geodesi+

(]

Correct the new tangent vector to be normal to the
surface normal, becoming a true surface tangent

!

Define the 3rd degree spline segment from the previous point, with the
previous tangent vector, to the new point, with the new tangent vector

No

s the current mesh line

at the surface boundary?

Diagram 1 - The process of tracing a geodesic spline by the geometric method.
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4.3 Geodesic Tracing with an Optimised Procedure

Based on the previous geometric method, a new one is presented which
computes the geodesic curvature of each spline segment, and changes its path
according to a minimisation procedure controlled by the geodesic
curvature. Notice that any single geodesic segment must have zero absolute
geodesic curvature accumulated along its span, so the integral of the norm of
Eqn. 22’s vector should vanish when the end conditions are properly defined.

The absolute geodesic curvature accumulated along the segment span, will
increase when the end conditions deviate from the geodesic ones (see Fig.
26). Therefore, a minimisation procedure can be used to find the geodesic by
using the end and the end tangent vector as the optimising parameters.

From a given initial mesh point, on a specified initial direction (the initial
tangent vector), the geodesic spline is traced through the mesh, one segment at a
time. The geodesic segment tracing procedure addresses the problem of
finding.the end and the end tangent vector of a spline geodesic segment, given
its start point and its start tangent vector.

Fig. 26 - Varying the end conditions of the spline segment
affects significantly its geodesic curvature.

The coefficients of the cubic spline segment are stated both in terms of the fixed
initial conditions (the initial point and the initial tangent) and of the final
unknown conditions.

For each spline segment there are only two known geodesic curvatures, one at
each end, therefore the geodesic curvature profile is modelled as a first-degree
polynomial, becoming its integration very simple and efficient.
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4.3 Geodesic Tracing with an Optimised Procedure

The accumulated absolute geodesic curvature of the spline segment is non-
linear on the two end conditions. Therefore, it is natural to use a second-degree
minimisation method to compute those end conditions.

The analytical derivatives of the geodesic curvature in order to both end
conditions are not known. Therefore, a method not depending on derivative
calculation is preferable, to avoid the computing penalty of derivative estimate,
which would require two function evaluations for computing each derivative.

Given the availability of good public domain routines for numerical analysis!*”,
the choice has to be among them. In regard to the previous considerations, and
to avoid the slow progression of the simplex method, the Brent’s method was
selected, applied in two nested steps. The outer step varies the location of the
end of the segment, and the inner varies the tangent vector direction (see Fig.
26). Separating the optimisation in two nested steps it is easier to control the
iteration, and it allows for efficiency improvements. (See Diagram 2 for a
depiction of the general structure of this algorithm.) The relevant issue is that
tangent vector is not entirely independent on the end-point, as would be
assumed” by multidimensional algorithms. By nesting the tangent vector
iteration inside the end-point iteration, it is possible to have the initial
bracketing triplet closer to the expected result.

Initialisation

Input the first end-point (constant) and tangent
vector ({ ) of the geodesic spline seg

Input the second end-paint (candidate) and tangent
vector (candidate) of the geodesic spline seg

l

Minimise the Geodesic Curvature of the Spline Segment

M'""'."”':'he “;‘_’de."f (I:um::ra. Define the cubic spline segment from
varying the en P:;"ha °"?f e the constant end-point with the direction
Tespective curve of the surface of the constant tangent vector, to the

candidate end-point, with the direction of
Brent method the candidate tangent-vector
Function
Evaluation

For each end-point ; Compute the geodesic curvature

minimise the geodesic curvature of the spline segment

by varying the tangent vector
Diagram 2 - The process for minimising the geodesic curvature of a spline segment.
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The bracketing triplets initialising both levels of the iteration have as mid-point
the most “probable” candidate, and use as outer values the most extreme ones,
for reasons ofreliability and simplicity.

The initial bracketing triplet of the end-point are the following:
* The mid-point is computed by the geometric tracing method.
* The two extreme points are the ends ofthe section curve.

For bracketing each tentative end tangent vector the following three unit vectors
are used:

+ The mid tangent vector is computed as the end tangent vector of a second
degree arc, defined by the constant conditions of the spline segment, and by
the candidate end-point; this vector is not forcedly parallel to the surface,
therefore it is projected on it, and only then normalised.

* The other two vectors are heuristically obtained by rotating the previous one
30° in each direction.

Note that the inner optimisation variable is in fact not the tangent vector, but the
angle it makes to the centre vector of the triplet. The iteration control
parameter is the mean absolute value of the geodesic curvature, computed along
the segment’s span.

The parameters whose values control the stop criteria should be the ones
relevant to the computation. The iteration stops when is either one of the three
stop criteria listed in Table 3 is accomplished. The first criteria, which limits
the total of inner iterations, exists for practical reasons, since the process can’t
go forever. The value of 100 is just an heuristic result which seems to be
reasonable.

100
Reduction of Kg per iteration under 2.5%
0.0001m'2
(Allows a 0.5 nmrn )

Table 3 - The three stop criteria for the geodesic curvature minimisation.

The iteration is successful as soon as becomes negligible the mean geodesic
curvature along the span ofthe spline. Note that a typical spline segment, say 2
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metres long, can have its end-point at most 1 millimetre apart from its exact
location.

The second criteria is necessary to abort eventual iterations with negligible
gains, therefore too inefficient to be really improving. It is just a control to
avoid blocking situations, like variations in the geodesic curvature of the order
of the round-off error.

The adjustment of this value was made with the validation tests (see Appendix
B. - Validation Data). The method was to let the iteration go until success, and
then increase this value and try again. When problems where found, some
fiddling with the values of the other criteria was done, but without clear results,
so the value was settled.

The process of geodesic tracing with optimisation is synthesised in Diagram
3. The use of the methods previously described, both for the tracing
initialisation and for the tracing iteration, provide for the problem
decomposition and reduced the overall process complexity. The re-use of the
code alréady made for geometric tracing and the code available for the Brent’s
method”), simplified the phases of implementation and testing.

/ Input the mesh of longitudinal and transversal /

splines defining the plate surface, which data
structure contains the bounding butts and seams

Tracing Initialisation

Define the Spline Segment Fitting the Intersection
Between the Surface and the Osculatory Plane

Minimise the Geodesic Curvature of the Spline Segmen{

No

Is the current mesh line
at the surface boundary?

Diagram 3 - The process of tracing a geodesic spline by minimising its geodesic curvature.
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4.3 Geodesic Tracing with an Optimised Procedure

The actual tracing implementation in the map has to adapt for the particularities
of the Computer-Aided Lofting System, already in use at the shipyard. Since
the existing surface definition system was exclusively based on lines, the
method has to collect additional information about the mesh lines intercepted by
the geodesic, for efficiency reasons, as it will be seen in the next Sections. The
process used in testing was the one depicted in Diagram 4, which is more
flexible, since it implements both tracing procedures. Notice that the
conditional block of code that contains the optimisation was removed from the
final production code, as discussed in the final Sections of this Chapter.

input the mesh of longitudinal and tr | splii di g the plate
surface, which data str ins the b ding butts and seams
ti‘ me and store me'atr'il.glo bo;wolen th:
n tangent vector of the geodesic an
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Diagram 4 - The process of tracing a geodesic spline, as implemented.
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4.4 The Map Requirements

The only plates theoretically developable, are the ones with zero Gaussian
curvature everywhere, but that condition is not generally met on a typical ship
hull. Therefore, this development method was designed to accommodate the
processing of non-developable plates. In such cases it provides less
meaningful results, to be taken as what they are: approximations to the plate
outline which are as good as the second principal curvature is less significant.

In fact, this is not a serious limitation for the plate manufacturing process,
because in those circumstances, the particular shipyard and operator practices,
though being mandatory, are not at all uniform!™", Therefore, the map of non-
developable plates is already seen by the practitioners as an approximation onto
which they have to consider added material allowances, at least in one of the
tops and one of the seams.

Notice. that a geodesic on a developable surface is developed as a straight-
line®¥. However, if the surface is not developable, there is no unique map
between the shell plate and the plane blank', and the same geodesic can be
mapped onto the plane by several different transformations, onto several
different plane curves. Therefore, some constraints must be set, so the non-
developable surfaces could be uniquely mapped onto the plane. Moreover, to
be effective, the map constraints should model the workshop procedures, as
closely as possible.

Given the trial-and-error interactive nature of the forming work, the forming
procedures of non-developable plates are seldom repeatable, therefore the map
constraints have little to be modelled of. The increasing use of numerically
controlled tools, and the acceptance of Total Quality Management, is expected
to improve the predictability of the forming procedures.

There was no data available to define a set of map constraints, to preserve the
uniqueness of the map results, as Letcher did!". Therefore, a non-unique map
was devised, which preserves the curved plate’s metrics to a reasonable
extent. For that purpose, the simple geodesic map of developable surfaces was
adapted for the processing of non-developable surfaces.

Trying to assure the map relevancy both for technical applications, and as a
research product, a small set of requirements where to be met:
1. It has to be isometric when applied to developable surfaces.

2. It has to be reliable even when applied to non-developable plates, so a
properly developable plate and one slightly disturbed by small non-
developable spots must have almost identical maps.

3. It has to be simple to implement.
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4.5 The Map Concept

4. It has to be reasonably efficient in computer resources.

The fulfilment of the first requirement is a consequence of the map being a
geodesic one, when applied to developable surfaces®.

The second requirement is met by the unlimited existence of geodesics all over
the plate, from which it is always possible to use one to map any single plate
point. However, it remains to be shown that the map results only suffer smooth
variations when the surfaces are deviated from the developable
condition. Being this clearly subjective, the map behaviour must be assessed
for some representative set of plate shapes, as seen in the final sections of this
Chapter.

The third requirement was met by re-using the procedure for geodesic tracing,
already available at the time the development method was ordered. Moreover,
further simplifying the concept and implementation, the geodesics are always
mapped into straight-lines, even when the plate is non-developable.

Finally; ;fhe efficiency requirements are chiefly of an algorithmic nature, to be
dealt with in the next section.

4.5 The Map Concept

A simple geometric map would be to trace a longitudinal geodesic along the
plate, serving as a curved abscissa axis, and a transverse geodesic acting as an
ordinate axis. Being orthogonal, the two curved axes, say uu and vv, would be
mapped on the plane onto two orthogonal straight axis, say xx and yy.

Developed Plate
-

Fig. 27 - A simple geometric map, based in a frame of geodesic co-ordinate axis.

Every single plate point would have co-ordinates on those axes. Each co-
ordinate would be computed by tracing a geodesic from the point onto one of
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4.5 The Map Concept

the axis, such that at the intersection the geodesic and the axis would be at a
right angle (see Fig. 27). The axis span from its origin onto the intersection
point measure the co-ordinate, which is a map invariant for developable
surfaces.

Conversely, one can understand this co-ordinate system as a net of orthogonal
geodesics all over the plate (see Fig. 28), each one being the locus of the plate
points with a particular co-ordinate value.

Paradoxically, this rather uncomplicated concept produces a complex schema to
be implemented, which is quite intensive in computing resources. The reason
for this is the requirement of orthogonality between co-ordinate geodesics,
which requires iterating through several geodesic tracings, for each co-ordinate,
meaning twice for every mapped point.

One can simplify this map procedure, by tracing either the uu geodesics or the
vv, but not both. This way one co-ordinate would be the distance from the
point to_the intercepted axis, and the other would be measured from this
intersection point to the axis origin (see Fig. 29).

Devel
_ove oped Plate

e s Sl el S et o

Fig. 28 - Geodesic co-ordinate grid.

The amount of orthogonally traced geodesics is cut by half. Nevertheless, the
computing toll is still high, due to the complexity of tracing a single geodesic,
subjected to these boundary conditions. Notice that the lines-based surface
definition system doesn’t allow for an analytical and direct orthogonal tracing
procedure, as the geodesic equations formulated from an analytical expression
of the surface. This is an interesting option for Computer-Aided Design
packages built on top of analytical geometry engines.

Other problem, common to both maps, is tracing the geodesic out of the plate
boundaries, risking passing across possible rough spots. These spots should
only affect their containing plates, to localise eventual numeric effects, and to
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4.6 Map Elaboration

assure the procedure robustness. Otherwise, the procedure behaviour would be
unpredictable, in the sense that perfectly developable plates sometimes would

be improperly mapped.

A third map can be derived from this last one, keeping the only geodesic axis
and the one only locating geodesic per mapped point, but relieving the
orthogonality condition at the axis intersection. Instead of locating the mapped
points with one or two co-ordinate geodesics, a single geodesic is traced from
each point onto the abscissa axis (see Fig. 30). Then, the angle beta is
measured at the intersection with the axis, to be used to compute the two
orthogonal components of the mapping geodesic. Notice that this procedure no
longer requires the computing toll of tracing geodesics until a reasonable
orthogonal approximation is reached. Therefore, it is by far more efficient.

Furthermore, the mapping geodesics should always be directed to the plate’
centre region, avoiding completely the possibility of tracing out of plate’

boundaries, which improves the map reliability.

Map
/th Developed Pla_te
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Fig. 29 - The simplified map, using only the transverse geodesics.
g
4.6 Map Elaboration

The previously stated map concept is the basis of this thesis work, and is
hereafter scrutinised, developed, and tested in a particular implementation.

As already seen, the uu geodesic, spanning the plate’s length, is the
development directrix, and is mapped onto the straight-line xx. On the other
hand, the mapping geodesic, particular to the point P, is labelled vv¢p). It is

developed onto the straight segment yy(p).
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4.6 Map Elaboration

When the plate is developable the angles are invariant, due to the isometric
nature of the development map®®. This allows making a quite efficient line
map, as can be seen by the map of the frame point P, in Fig. 30. Notice that the
mapped geodesic yy(p) not only reveals the frame point P, but also the frame
angle alfa. Moreover, the angle gama, that is another development invariant, is
easily computed on the curved plate using the tangent vectors of the frame and
of the directrix at their intersection point Q. Therefore, the frame cubic spline
is completely defined between P and Q, tracing only one map geodesic.

Mapped Surface

face
gurved 3U° p’

Moy, ¥

alpha ec‘yes,

v
ama "(pJ
beta
A R directrix/axis wy B A R'\ axts xx J B’
y
)
H
. c ¢
«

£fr

Fig. 30 - The map of a frame point P onto P’, in the plane.

At the intersection points between frames and the seams, the map is even more
efficient, due to the knowledge of the angles with both lines (see the point T, in
Fig. 31).

T Mapped Surface

axis xx

Fig. 31 - The map of the point T, located at the intersection of the frame and the seam.

Theoretically, if there are non-developable spots, the same point can be mapped
differently, if using various map geodesics vv, as seen in Fig. 32. Moreover,
due to the inescapable numeric errors, even for the developable surfaces, two
different mapping geodesics would usually produce two mapped points
numerically different, even if they weren’t conspicuously apart. The only
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4.6 Map Elaboration

coincidences to be expected to occur are for the trivial cases, for instance the
plane plates.

In fact, because of computing several products distance X angle, the
development method is exposed to inaccuracies in the evaluation of
trigonometric functions, and to the error content in those angles. Alpha is the
only angle directly set by the algorithm. Hence, it should use one of the values
less prone to error propagation. The angle beta and the longitudinal y co-
ordinate are computed using, the direct and inverse cosine functions, for which
it is best to use:

acos=nn, (neZ) (85)

The sine function is also required for the co-ordinate y, but q.os defines the
worst angles for that purpose, in a numerical sense, since the sine differential is
maximum. Therefore a generally more reliable value for alpha would be
(among others admissible):

. alpha=zl6 (86)

The map, as just defined, will hereafter be called “Improper Geodesic Map”, as
it was reasoned in the beginning of this Chapter. The following Diagrams
depict the processing of the map. The core process of the map is the
computing of the in-plate distances and angles existing between the relevant
points and curves (see Diagram 7).

Map

Curvey Plate Developed Plate

Qal Oll

N
XX

Fig. 32 - When the plate is non-developable, the map is non-unique.

The input data-structure that defines the plate surface is made of two sets of
splines: the frames and the buts, plus the splines computed transversely to the
frames, and the seams. These two spline sub-sets compose a mesh of lines
almost orthogonal to each other, like a grid.
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4.6 Map Elaboration

All this lines are defined as cubic splines, so if in the data structure the frames
are transposed with the longitudinal splines and the butts are transposed with
the seams, the procedures accepting the former data-structure will still
work. Therefore, the tracing procedure of the longitudinal geodesic can be
reused to trace transversal geodesics. Furthermore, given that the geodesic
tracing procedure accepts as input the initial tracing direction, then it is able to
trace oblique geodesics.

Input the spline mesh,
the buts and the seams

Compose a data-structure with the entire mesh of splines, bounded by the butts an
the seams, and set it as the current mesh, on which the following procedures apply

pa
I Trace and store the longitudinal geodesic spline U

Take one of the parts in which the mesh was divided by the
longitudinal geodesic, bounded by the butts, by one of the seams
and by the longitudinal geodesic, and set it as the current mesh

Compute and store
the distances and
the angles between
the relevant points
and lines existing
in the current mesh

Take the other part of the mesh, bounded by the butts, by the other
seam and by the longitudinal geodesic, and set it as the current mesh

For each relevant line and for each relevant point, convert
the stored distances and angles in plane co-ordinates

End

Diagram 5 - The overall computing process of the Improper Geodesic Map.

Notice that the tracing of oblique geodesics in the spline mesh requires some
care in the specification of the initial direction. Because the trace process
works by intersecting only the mesh lines in the same sub-set as the one that
contains the starting point. Therefore, it should not go directly to one of the
border splines, that is contained in the other sub-set of the grid splines.

This generalised tracing procedure is used not only to trace the longitudinal
spline, but also to trace the locating splines. Each of these maps not only the
respective point, but also the tangent vector of any intersected curve. This
aggregate map of several vectors along with each point, improves the re-use
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4.6 Map Elaboration

inside the overall procedure (see Diagram 5), and consequently improves its
compactness, reliability and easiness of coding.

The map procedure starts inputting the required data to assemble the data-
structure of the spline mesh that represents the plate surface (see Diagram
5). Using this data-structure the longitudinal spline is traced and its data stored
(see Diagram 6). Following, from each relevant point or curve lying in the
surface, the locating geodesics are traced, and the resulting data is
stored. Finally, this data is translated to the plane co-ordinates of the map, as
already explained above.

Input the mesh of longitudinal and transversal
splines defining the plate surface, which data
structure contains the bounding butts and seams

Initialise the longitudinal geodesic

Compute the middle point of Compute the middle point of
one of the buts, say point A "| the other but, say point B
Compute the surface normal Compute a vector from

at A (the unit vector named N) A to B, say vector D

! !

Make D tangent to the surface at A, by
deducting from it its component along N

Trace the longitudinal axis as a geodesic with
the initial point A and the initial direction D

v
End

Diagram 6 - The process of tracing the longitudinal axis along the plate surface.

The tracing of all the locating geodesics is organised in two similar sub-
processes, one for the upper part of the plate, the other for the lower, as the plate
itself is divided by the longitudinal geodesic axis. Each sub-process uses a
different, simpler surface model (see Diagram 7), without a longitudinal
geodesic across the middle plate, making it possible to be re-used
elsewhere. Notice that despite being simpler, the direct use of this plate model
is prevented by the longitudinal geodesic, which must be as central to the plate
domain as possible, to minimise the errors propagated by the distance.
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4.6 Map Elaboration

y
Input the mesh of longitudinal and transversal splines defining the plate surface

The longitudinal geodesic is inputted as one seam, from which it is indistinguishablg.

For this process, the longitudinal splines are the plate frames, and the transversal

splines are the splines traced longitudinally to the plate, allowing the reuse of the
geodesic tracing procedure, which "thinks" it is longitudinal

I Set one but of the mesh as the current line I

/
ISet the first point of the current line as the current pointl

-{Trace a locating geodesic from the current point, with a specified initial
.. | ~angle from the current line, directing it to the longitudinal geodesic

Compute a new point in
the current line of the mesh and
set it as the current point

Extrapolation

nterpolation

Set the next mesh line as the current one

No

Is the current line
the other but?

Diagram 7 - The process of computing the in-plate distances and angles
between the relevant points and curves.

Notice how the overall process is so heavily dependent on the handling of
spline lines, which define the plate surface. This topic is further discussed in
the next Chapter.
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4.7 Uniqueness Issues

Maps are relations from initial objects onto their images. The usefulness and
workability of a map benefits from two reverse properties: each object has only
one image, and each image has only one object.

If a plate is non-developable, then two different alpha values can produce two
different points in the plane, since there would be two diverse traces across non-
developable plate regions. Therefore, the Improper Geodesic Map can produce
more than one image of the same point

Moreover, even for developable plates, the irretrievable numeric errors would
render different maps for the same initial point, if using different values for
alpha.

Fig. 33 - The map of an extremely non-developable surface, showing the plane
surface folding along the seams, and two parallel frames intersecting each
other. Note the extraneous coincidence of frame points P-Q and R-S.

Therefore, to preserve the one-to-one requirement of any useful map, one must
do only one tracing from each mapped point. However, the reverse problem
still persists, even if only for the extremely non-developable plates: two
different points can be mapped onto the same plane location, producing folded
plate outlines, as seen in Fig. 33.

Fortunately, these errors do not happen but for plates of abnormally high double
curvatures, or for rather long ones, if sparsely discretised, which is also
uncommon.
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4.8 Accuracy Requirements for the Traced Geodesics

The traced geodesics are expected to deviate from its exact path due to several
error sources, including:

1. The data errors, like the ones committed to data during the digitising of
frame lines from traditional tables of offsets;

2. The rounding errors due to the limited number representation in the
computing devices;

3. The error propagation in the algebraic operations;
4. The errors of the method like the discretisation of the geodesic path.

The first error source does not concern this study, since it is independent from
the processing method. Fortunately, this error source can be disregarded just
by making the comparisons relative to data already in digital format, and not
with the data in any analogue format, like the one registered in paper.

The second error source is intrinsic to the common computing devices and
programming languages, therefore it is not possible to simply remove it. Yet,
rounding errors are not particularly interesting for this study, since it is not
intrinsic to the method itself, so to minimise its effects, this study is to use data
with excess of accurate digits. Because the data is not digitised, but designed
purposely for the tests, the data sets where easily represented by real values in
single precision (about seven digits). The third error source is concerned
directly to the procedure and the fourth to the method. Therefore, they should
be the focus of this study.

The proposed measure for the geodesic accuracy, is its deviation from the
accurate path per unit length, due to the last three error sources. It is given by
the following relation, where K, is the average geodesic curvature per unit
length:

8 = [1-cos(K,™)] / K, ®87)

However, since the geodesic curvature is small for a tentative geodesic, the
Taylor approximation to the cosine would give:

d~ K™ /2 (88)

The non-developable plate processing is intrinsically inaccurate, so it doesn’t
constrains the geodesic tracing accuracy. Regarding the developable plates, it
is useful to relate their dimensions and the length of the greatest generators in

the definition of the allowable J.
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In the ship, most developable plates are generated either diagonally or
longitudinally. The seldom plates generated transversely can be seen as a
simplification of the former case.

The plates with diagonal generators are usually either of short length or low
curvature, because the common workshop practices so dictates. Therefore,
their curved geodesics do not accumulate as much curvature as the ones existing
in plates with longitudinal generators. Among these, the round bilge of small
ships constitute the worst cases for the Improper Geodesic Map, given their
high curvature, which makes them the reference for the definition of an
accuracy criteria.

The workshop requires that the plate development accuracy be at the centimetre
level. The bilge plates with shorter radius occur in the smaller vessels, for
which plate beams of 2m are quite common. Based on this reasoning, the
worst developable geodesic should be about a meter long, which makes the
allowed relative error close to the 1% level. This translates to the following
criterion-to be met by the geodesic curvature:

K. <0.020 m? (for developable plates) (89)

Notice that K,”* is the geodesic curvature accumulated along the traced curve,
divided by the geodesic length.

This simplistic accuracy target was made for the round bilge plates of small
ships, the worst design case. More realistically, one should define a set of K™
figures relating to each problem class. For instance, the non-developable plates
should have more relaxed accuracy constraints, since the forming practices vary
widely, and the plate outlines resulting from any map are inevitably given
added material, rendering worthless the effort on an increased accuracy. For
the time being no such set of K™ are in research, so this topic remains to be
handled.

The proposed accuracy criteria for the geodesic tracing is much more relaxed
than the 0.000lm® stop criteria for the geodesic tracing (see Table
3). Consequently, all traced geodesics would meet the accuracy criteria, but
the ones too inefficient to be economically traced. Moreover, these last ones
are expected to occur in plates either acutely non-developable or roughly
discretised, therefore with other more significant accuracy problems.

4.9 Plate Set for the Preliminary Validation

A small set of test plates was made for the preliminary validation of the plate
development procedure, using both geodesic tracing procedures.
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4.9 Plate Set for the Preliminary Validation

This validation is the process of making evidence that the map procedure
consistently provides acceptable results for the target plates. What is to be
validated is the map procedure, not the map itself, since what is actually put to
test is the particular map implementation. Notice that any procedure degrades
the numeric behaviour of the implemented method, due to the inevitable trade-
offs between speed, size and complexity.

The test set must be simple and small enough to be feasible, yet representative
of the actual ship plates on which the procedure is to be used. To be
representative, means to capture all the meaningful features of the actual
shipyard data. Therefore, a clear perception of this data must be established
before designing the test set.

Given the limitations of the existing plate forming technologies, the ship plates
are designed as small surface patches of a uniform geometry. The most
complex hull regions are assembled from smaller plates, and the most uniform
hull regions use the longer plates. Consequently, the hull plates are relatively
even in respect to the intrinsic geometry.

To properly model such surface patches, one has to consider both the most
typical examples like planes, cylindrical and conical plates, but also the most
extreme cases of non-developable shapes, like saddles and
paraboloids. Furthermore, at least the validation set has to explore the
influence of different frame spacings and different plate dimensions, given the
method’s dependence on discretisation issues.

One can argue that actual ship plates would constitute a better test set, but that
would result in a biased one. Unless it is big and varied enough to support
statistic validation, rendering it impractical for this stage of work. Moreover,
an eventually extreme case of a hull plate would be too complex to expose any
single map feature, defeating the efforts to assess the map behaviour. This
behaviour is the very target of a preliminary assessment like this, and to be fully
appreciated it should be exposed in views, as independent from each other as
possible.

The process data are easier to model if classified by prevalent features,
representing each class an independent data type. For instance, the primitive
surface shapes, like cones, planes, saddles, etc., being the fundamental intrinsic
geometry types, represent the purest kinds of data. To have a generic
representation of the data, one should start with these basic data types. Any
particular composition of the pure types would inevitably favour the prevalent
ones, unless one knows how to balance them. This balance is of a statistic
nature, requiring the map of many and varied ship hulls, which is still to be
accomplished.
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Before that, the map has to be preliminary validated, eliminating any
outstanding method misconceptions or procedure bugs. If the procedure fails
to properly process the test set, then it must be further analysed and reworked,
or otherwise discarded. If it succeeds, its ultimate value remains to be
established, for which it is to be fully implemented in a production release, for
shipyard evaluation and current use. This last and telling stage is still in the
way. Yet, some findings where already collected and are presented in
Chapter 5 - Industrial Application of the Improper Geodesic Map.

Description Radius or Equation | Developable ?
Plane Yes
High Curvature Cylinder R=2 Yes
Medium Curvature Cylinder R=3 Yes
Low Curvature Cylinder R= 4 Yes
Rough Frame-Spacing Cone R=5 =05 Yes
Medium Frame-Spacing Cone R=5 r=0.5 Yes
Close Frame-Spacing Cone R=5 r=0.5 Yes
Extreme Spacing Cone R=5 r=05 Yes
-| Slight Curvature Paraboloid | z= (x*2 y*2)/ 200.0 No
Low Curvature Paraboloid z= (x"2 y*2)/ 0.126 No
Medium Curvature Paraboloid | z= (x*2 y*2)/ 0.251 No
High Curvature Paraboloid | z= (x*2 y*2)/ 0.375 No
Extreme Curvature Paraboloid| z= (x*2 y*2)/ 0.500 No
Saddle z= (x"2 -y*2)/ 2.000 No

Table 4 - The 14 validation plates.

The validation set is briefly described in Table 9. Notice it is made of the
fundamental surface shapes, namely: planes, cylinders, cones, paraboloids, and
saddles, which cover both the developable and the non-developable
fundamental cases. Moreover, the discretisation issues are considered by
varying the frame spacings, the number of points defining each frame, and the
principal curvatures (see also Table 5).

Length| Beam Number of ...

Description (m) (m) Frames |Frame Points
Plane 8 2 5 5
High Curvature Cylinder 8 0 5 5
Medium Curvature Cylinder 8 0 5 5
Low Curvature Cylinder 8 0 5 5
Rough Frame-Spacing Cone 8 5t0.5 3 3
Medium Frame-Spacing Cone 8 5t0.5 5 5
Close Frame-Spacing Cone 8 5t0.5 8 8
Extreme Spacing Cone 8 5t0.5 15 15
Slight Curvature Paraboloid 2 2 15 15
Low Curvature Paraboloid 2 2 15 16
Medium Curvature Paraboloid 2 2 15 15
High Curvature Paraboloid 2 2 15 156
Extreme Curvature Paraboloid 2 2 15 15
Saddle 2 2 15 15

Table 5 - Discretisation of the validation plates.
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4.10 Comparative Validation

The plates are developed two times each, with the Improper Geodesic Map
using both geodesic tracing procedures. The average geodesic curvature per
unit length is a measure of the accuracy of the geodesic tracing itself, and
therefore is to be zero for a perfectly developed plate. The arc lengths of the
developed frames and seams are compared with the exact ones existing in the
curved plates, and are to be the same if the development is exact.

Both developments are compared by measuring the distances of the developed
plate corners, which should be coincident if the methods are the same. The
correction for rigid body motion is not included. Therefore, the given results
are more pessimistic than the reality.

4.10.1 Assessing the error lower bound

The plane plate is included not only to validate the simplest case, but also to
assess the most basic numeric errors, due to the digital numeric representation
in the computer microprocessor (see Table 10).

For this plate, both tracing procedures give the same errors. This suggests that
the measured error occurs inside the plate interpolation procedure and the
geometric inception of the geodesic segment, offering less than the required
2.5% gain in geodesic curvature, to be optimised. The magnitude of these
errors defines the lower bound for the errors to be expected.

Nevertheless, the figures obtained are extremely small, and thus acceptable for a
single precision computation as this one (no more than 7 significant digits), and
for industry application.

4.10.2 Discretisation effects

The cylindrical and the conical plates validate both tracing methods, being the
errors again quite negligible. The 4 conical plates represent the very same
surface, only with different frame spacing, to better illustrate the discretisation
effects.

As expected, the non-optimised tracing procedure presents higher values of
mean geodesic curvature (see Fig. 34). If the optimisation process is allowed
to go further the differences found should increase, since the optimisation
procedure will be allowed diminishing improvements, which are
computationally less efficient.
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_0— Optimised Kg
N - - 0- - Non-Optim Kg

Frame Spacing (log2 m)

Average Kg/ Length (1/m2)

0.000
0.571 1.143 2.000 4.000

Fig. 34 - Developing the same cone with different discretisation spacings.

The respective developments results indicate that the 2 lower resolution cones
had somewhat rough spacings, which could be improved as in the cone with
1143mm frame spacing. Possibly less evident, is the numeric error propagation
in the céne with the finer spacing, which being the worst case among all, is
nevertheless a quite good development. Too closely spaced frames aggravate
the inaccuracies contained in the frames co-ordinates, in the same way as do the
denominators approaching zero.

Clearly, there seems to be an optimal spacing around levels usual in the ship
design and construction, which being mostly empirical, are expected to capture
the best numeric practices. Away from this optimal spacing, increasing it will
slowly degrade the accuracy, due to the surface worsening fit, but decreasing it,
at least under the unity, will numerically inflate any fairing imperfection.

4.10.3 Effects of the First principal curvature

The geometric geodesic tracing procedure assumes a low rate of change for the
osculatory plane along the geodesic, which is normal to the surface. Therefore,
when the surface twists along the geodesic path, the procedure behaviour is
expected to degrade accordingly. One such common case is when the geodesic
direction is not aligned with any principal direction. In this case, even if the
second principal curvature is zero everywhere, the rate of change of the
osculatory plane increases with the First principal curvature.

The transverse geodesics on a cone or a cylinder are to suffer of such
effects. Therefore, the 3 cylinders of the validation set show a clear
progression in the average geodesic curvature when K, decreases (see Fig.
35). That suggests that the geometric algorithm could improve if it initially
aligns the geodesic along one principal direction, or at least with one of a minor
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geodesic torsion, instead of assuming a specific initial angle, as is presently
implemented.

— - o0— Optimized Kg
- -3 -- Non-Optim. Kg

0.020 Ehall

Kg / Length (1/m2)

0.000
- 0.250 0.333 K1 (1/m) 0.500

Fig. 35 - Variation of the average geodesic curvature with the
First principal curvature, for the 3 cylinders.

Note that even the optimised procedure, due to the presently relaxed
optimisation parameters, tends to be too inaccurate for the higher curvatures,
which are to be found in the round bilge of small ships.

The non-optimised tracing procedure shows higher mean geodesic curvatures,
as expected.

4.10.4 Effects of the second principal curvature

The influence of the second principal curvature on the algorithms behaviour
was checked by processing 5 paraboloids, which results were compared (see
Fig. 36). For these surfaces the two principal curvatures are equal everywhere,
so the first principal curvature have no distinct effects by itself.

As can be seen in the tables of results of these plates’ developments (in
“Appendix B. - Validation Data”), when the principal curvatures rise the map
deviates strongly from an isometric one. However, for the 3 less curved plates,
the results still seem quite acceptable.

Note that with the flatter plate, the procedure strikes almost exact geodesics at
first chance. This reflects in Fig. 36’ curves, where the almost linear increase
in geodesic curvature should have a root halfway the two first data points. This
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point represents the K, maximum value for which it is to expect an almost exact
initial geodesic.

006 _
—o— Optimzed Kg
_ _o- -Non-Optim Kg
0.05 -
0.04 - i
.
0.03 e

//)/
002 a-

Average Kg / Length (1/m2)

K2 at the Origin (1/m)
0.0025 0.2519 0.5013 0.7506 1.0000

Fig. 36 - Dependency of the geodesic curvature on the
principal curvatures, for the non-developable paraboloids.

4.10.5 Computing efficiency

As expected, the optimised procedure expends more computing time than the
purely geometric one (see Fig. 37). As seen before, the flattest paraboloid plate
behaves like a plane one, showing no iterations at all, and making the two
tracing procedures almost indiscernible. For this data point (k,=.0025m™), the
negligible performance difference between both procedures, is due to the slight
overhead of the optimisation process.

Besides this particularity, both procedures perform each almost independently
with the principal curvature, which being expected for the geometric one, given
its straightforward nature, is a little surprising with the iterative
optimisation. The fact is that the steps to minimise the geodesic curvature do
not show any particular dependence on the principal curvatures, as shown in
Table 6, only denoting a small curvature dependency in the cylinder set.

More relevant to the computing time is the number of plate frames, as shown by
the cone set. Thus, larger plates are also expected to require longer processing,
since a proper fit would demand more frames and more points in each frame,
lengthening the data structures and the time to assess and query them.

With respect to the executable size, the optimised tracing procedure carried to
the program an extra 25KB of code and data. This is irrelevant in the present
32bit personal computing environments. However, it was not so for the 16bit
computing persisting in the industry for long during this project. Moreover,
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when running the development tool inside AutoCAD 11 mixed protected mode
and real mode environment).
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Fig. 37 - Variation of the geodesic tracing speed with the
principal curvature, for the non-developable paraboloids.
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Chapter 5 - Industrial Application of the Improper
Geodesic Map

software tool resulting from the implementation of the Improper
A Geodesic Map, was integrated in an actual Computer-Aided Design

System in current shipyard use. The shipyard wished to emulate its
electrostatic development jig (see Fig. 38). This device is a set of flexible
frames at 1/10-scale (see Fig. 39). It is still a very reliable tool, despite
expensive in labour. Therefore, its developments were used as the validation
standard for accepting the software tool.

Fig. 38 - An electrostatic development jig, with the electrical stick over the table,
in the left. Notice the 1/10-scale frame templates already in place.

The shipyard already experienced problems when using development software
on non-developable plates, which otherwise were acceptably processed by the
electrostatic development jig, for most cases. Consequently, the Improper
Geodesic Map was the implemented solution, making it possible to map onto
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Chapter 5 . Industrial Application o fthe Improper Geodesic Map

the plane even non-developable plates. Hence, the user should be assisted in
the judgement of the development validity, since the non-developable plates
should not be cut neat to its mapped boundaries, and could even require
partitioning in several patches, due to the extensive in-plane strains necessary to
their shaping.

The relationship between the intrinsic plate geometry, and the stock material
added around its boundaries, can only be established with extensive studies on
the actual workshop practices, which are out of scope of this
thesis. Nevertheless, this topic is briefly explored, in an attempt to shed some
light on it, and to propose some directions for further work.

For introduction purposes, the shipyard Computer-Aided Design system is
briefly presented. The shell plate geometry database is discussed, related to the
pre-processing ofthe initial data for plate development.

Fig. 39 - Three phases of the manual development procedure, from left to right:

e Shaping the two templates for a frame, over an 1/10 drawing (note the needles in
each template, which later will electrically puncture the paper along the plate’s
relevant curves).

¢ Placing the templates at 1/10 frame spacing.

* Preparing a metalled paper sheet (which is the plate 1/10-scale model), to be
fitted between the templates, and then marked by the sparks made by touching
each needle with an electrical hand stick (seen over the table in the middle
photo).

Post-processing and user interface issues are described and discussed, being
fundamental for the effective use of a development package. Other outputs are
the Computer-Aided Manufacturing information and the workshop
documentation, both described and analysed here.

After this first industry implementation, a research on software for hull repair
support was conducted for another yard. The testing conduced then included
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5.1 The Shipyard’s Computer-Aided Design System

several comparisons with other software and hardware development tools, and
is reported and analysed here, in the way of the precedent chapters.

S.1 The Shipyard’s Computer-Aided Design System

The development software was integrated in the Computer-Aided Design
System running in the shipyard“!. This system was initially developed by the
shipyard personnel, and is running since the beginning of the
eighties. Conceptually, it evolved from the traditional loftsman manual .
techniques, with the continuous work of the in-house project and programming
staff.

The shipyard originally used Data General mini-computers with text and
graphical terminals. The programming language adopted was the powerful DG
Basic. -

Now, instead of the minis, they are running local area networks of PCs, running
AutoCAD and common desktop applications, abandoning the graphical
terminals completely, and most of the text ones.

The Basic was entirely replaced by FORTRAN, AutoLISP, Cliper and C
languages.

Aiming at greater system portability, and both independence from proprietary
computer makers and restricted system integrators, the designing and
production process was to be entirely re-implemented based in the facto
standards, like:

IBM PC compatible architecture of personal computers;

DOS computer operating system;

Netware local networks of computers;

AutoCAD drafting software package;

FORTRAN programming language.

The old system provided less then appropriate depicting techniques in its
graphical terminals, making imperative that the visual analysis of hull lines was
conducted entirely on paper. That made the big and slow pen plotters become
the bottleneck of the system, with reported plotting queues of more then a week.
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5.1 The Shipyard’s Computer-Aided Design System

Presently, with the aid of new methods for depicting, analysing and editing the
curve shape, common PCs are being used for the same purpose, much faster
than before, and with far better quality™!.

The system of hull geometry definition was originally, and still is, entirely
single precision (4 byte real numbers), defining the shell surface by the net of
its transverse sections, waterlines, buttocks and knuckle lines.

The system still is not able to assure its coherence, because its not based on the
intersecting points between those lines, but in the individual lines
themselves. If some editing is made on one of those lines, the others aren’t
changed accordingly by the system, unless by user interaction prone to error.

This, and mostly the lack of a consistent service for interpolation of points and
curves over the hull surface, made it extremely difficult to stabilise the
requirements for the development module, and accounted for the great majority
of the software development time. This interpolation service, instead of unique
and centralised, was in fact replicated in several parts of the system, making it
vulnerable to version discrepancies and configuration errors.

All the curves have the same information structure: they are cubic parametric
splines, defined as a sequence of points with unit tangents, where a knuckle
point is represented as a repeated point with different tangents.

Naturally, the internal representation of curves in the development tool follows
this same structure. It was designed to operate in a batch either way, as a DOS
executable, or interactively, inside the AutoCAD graphical environment, as an
ADS application. In both cases, the memory size of code data were to kept
roughly under the S00KB figure, because no only of the 640KB limit of PC’s
16bit real mode, but also because under AutoCAD11, running in 4MB RAM
386 PC’s, there were scarce resources to play with.
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Chapter 5 - Industrial Application of the Improper Geodesic Map

5.2 Shell Plate Definition System

Surfaces are defined in full-scale through its curves in this Computer-Aided
Design system, which uses an interactive smoothing and analysis method for
individual curves (see Fig. 41). For each section curve all sudden variations of
curvature are to be scrutinised to decide if it is a feature of the local hull shape
or if it is an unfair spot. In the end the global behaviour of the curvature profile
could be appreciated and compared with the other sections in the vicinity.

Fig. 41 - Curvature distribution along a hull line being faired.

This procedure is not enforced by the system, it is only expected that the user
follows these guidelines. The surface fairing procedure also relies much on the
draftsman’s experience, because it is necessary to judge the shape of the surface
from these curves. Note that a region of unfair shape, maybe with just a single
wrinkle, can be bounded by four perfectly fair lines (see Fig. 42). Note that the
problem in this plate is that the user wasn’t aware of the existence of a knuckle
within the designed plate boundaries. This can happen if the system depends to
much on user intervention.

Fig. 42 - A non-smooth patch can be bounded by smooth lines.
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5.3 Plate Surface Model and Data Pre-processing

Moreover, a collection of hull curves, usually smoothed to accuracy within the
centimetre range (some millimetres), cannot guarantee that smoothness on the
surface itself, because of error propagation in the interpolation process.

Therefore, the smoothing process, being entirely dependent on user
intervention, and also being made one curve at a time, is not able to assure a
consistent level of fairing quality. In fact, during the removal of big shape
errors, it can introduce small localised ones, out of the user’s perception, due to
the absence of tools to perceive the entire patch as a proper surface.

In other hand, the design process of seams and butts, bounding every plate, is
usually conducted in this shipyard with little concern to accuracy, because of
the manual lofting experience of the users, which still expect late adjustments,
were required. Adding to this the common use of excess material around the
plate boundaries, providing for in-place adjustment, it is understandable why
the three-dimensional seams are frequently found some centimetres out the shell
surface.

5.3 Plate Surface Model and Data Pre-processing

The plate boundaries are the seams and the butts. In this system, the butts are
even in the abscissa, so they are interpolated very precisely, as common
transverse sections. However, the seams are not so accurately traced, because
they are only roughly defined, and can be found way out of the shell surface,
sometimes over the centimetre range.

Instead of relying on those ill-behaved seams, the development program uses
projections of them onto the interpolated transverse sections, using a proximity
algorithm. For each section this algorithm computes its closest point to the
misbehaved seam, and then takes it as the seam projection onto the
section. The algorithm is as a second-degree iterative optimisation method,
with a penalty function when outside any of the lines spans. It is quick, reliable
and accurate, but a little lengthy in the programming, if not using available code
libraries, as the author did.

Underlying this system, the lines-based surface representation provides no
direct access to the surface’s intrinsic geometry. That can only be done by
building a surface’s model on top of the lines system, through which one can
get not only the surface points, but also tangents, normals, curvatures, areas,
etc.. This model must be as accurate and efficient as possible, therefore it has
to stay formally close to the original information structure to avoid the
respective overhead.
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5.3 Plate Surface Model and Data Pre-processing

The plate surface is defined originally as a set of interpolated transverse
sections, each one starting and ending at the bounding seams. Then, those
curves serve as a basis for the interpolation of longitudinal curves, making for a
set of lines, which includes the seams, and is non-collinear to the transverse
sections. These longitudinal lines are traced in a way, that at along any frame,
the longitudinal lines and the seams are evenly spaced, as shown in Fig. 43.

Note that the longitudinal set of surface lines is obtained by a two-fold
interpolation on the original data, which is not the best practice, at least for the
point of view of numerical accuracy and performance. Nevertheless, it is the
only practical option, given the nature of the data provided by the system.

Seoms orno Lomgi tuolimal Limes
Fromes

Fig. 43 - The defining mesh of the plate surface.

The mesh formed by this set of curves and by the transverse sections makes the
data framework of the surface model. For the sake of the model’s integrity,
further operations inside the plate are always done on the mesh data by the
mesh procedures, and no more system data is used, so the model is in fact a
self-contained subsystem.

To conclude the surface formal model, it was necessary to implement a set of
procedures for evaluation of points, tangents, normals, curvatures, elemental
areas, curves lying on the surface, etc..

Along any mesh line, it is simple to interpolate a surface tangent just by
differentiating the line at the given point. Between two parallel mesh lines, a
surface tangent can be interpolated from the tangents on those lines.

Let a surface tangent t, make an angle 6 with one of the mesh lines, say line
a. Composing the tangent from the unit tangents t, and t,, interpolated on the
closest mesh lines a and b one gets:
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5.4 Implementation of the Development Software Tool

to = cos0.t, + cos(arccos(t,.t,) - 0).t, (90)

To compute a normal vector it is enough to evaluate the external product of two
of such non-collinear unit tangent vectors.

The procedures for evaluating the curvature, the elemental areas, etc., uses the
common formulae, already presented in Chapter 2.

The tracing procedure for a discretised line, lying in the plate, had to be
accurate but simple. The surface’s curve is discretised as a cubic spline, like
the ones of the existing Computer-Aided Design system. Each spline segment
starts and ends in points interpolated over the mesh lines, thus there aren’t point
interpolations outside the mesh lines, in all the processing after the construction
of the plate’s mesh, keeping the point interpolation simple and accurate.

The spline tangents are defined as the surface tangents aligned with the curve, at
the starting and ending points of each curve segment. This was quite simple to
implement, due to the already available surface model infrastructure.

Obviously, the accuracy of the method depends on the distance between
consecutive mesh frames, however it is not possible to increase the accuracy
effectively beyond the centimetre error range, because the data errors are
already in that level.

From the Numerical Analysis, we know that in a division the error propagation
grows as the reciprocal square of the denominator. The author experienced that
when mesh curves are interpolated too close, say under the decimetre figure, the
frame interpolation errors become quite amplified, building up bumps in the
surface, which where otherwise inconspicuously small.

Keeping the step between mesh curves in the range of 200 to 500 millimetres,
usually smoothes those bumps, since the same absolute errors of the co-ordinate
evaluation are divided by larger distances in the slope computations.

5.4 Implementation of the Development Software Tool

When the software requirements were established, the shipyard’s drafting
rooms were just starting to use AutoCAD10. Moreover, the target machines
were 2MB RAM 16 MHz 386Sx and 20MHz 386Dx. The development tool
was to run inside the AutoCAD environment, which translated to critical
constraints on the tools’ size and speed.

The speed, lower memory occupation, and reliable behaviour made the non-
optimised geodesic tracing procedure the solution to adopt. Presently, the
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previous constraints are partly overcome, but the little accuracy gain provided
by the optimised tracing procedure are still offset by its slowest operation.

Besides, the designers find quite satisfying the present development
procedure. Indeed, they seem to prefer improvements in the post-processing
rather then in the development procedure itself. Therefore, the optimised
procedure is still discarded for industry application, being still quite useful in
research work, as an accurate reference.

5.5 Plate Data Post-Processing

Any development method for industry applications is to help the users not only
in the cutting, but also in the shaping operations. The forming process, despite
being a somewhat dirty and heavy work, do require skilful people, due to the
complex-behaviour of materials, like spring-back, heat distortions, etc.. Along
with the proper training, this people should be given adequate documentation,
not restricting to template drawings and other full-scale mock-ups.

Today it is common that the development software provides strain maps, rolling
lines and even heat lines!". Given the requirements posed by the yard hull
workshop, the only strain measures provided where along the seams and
but. Other forming information was not desired in this first phase, to allow the
shop people to adapt, and maybe to rethink the specification the new documents
should obey.

In the drafting room, there were also particular needs to be addressed. The
designers need to be prescient of the handling difficulty presented to the shop
people by each plate, before they settle the final seams and buts design. These
concerns are rooted in the difficult forming of the non-developable hull regions.

The usual technique dealing with spots of pronounced second principal
curvature, is to design finer plates locally, so any single one have no
exaggerated amount of accumulated K,. To quantify that “exaggerated
amount” is clearly out of scope for this thesis. The fact is that the designers,
which are rather experienced, feel confident to rely exclusively on their
intuition, and if things eventually go wrong, possibly in the very hull shop, they
decide to further partition the plates, and make the whole plate as an assembly
of smaller ones.

In a first attempt to support the designer decision process, R, contour plots were
included on the drawings of the mapped plates (see Fig. 44). The decision to
plot R, = 1/K; instead of K, was concerned with the background of the people
in the design rooms, most of which had no appropriate analytical

106



5.5 Plate Data Post-Processing

education. Therefore, since a radius is a simpler concept than a curvature, the
option was made for R;.

The plots with the higher curvature figures are both the most likely to trouble
both the map, at the design room, and the forming procedure, at the
workshop. Inside the problem-areas the R field display either extreme values
or contour curves too close to each other (denoting intense gradients). Isolated
maxima are also plotted, independently of its the actual values, because they are
helpful to spot the unfair bumps.

The plots proved difficult to understand by the yard designers, since they were
not trained at all, and neither had the desirable analytical
education. Nevertheless, along with strain maps it is for the time being the
only help they get, besides directly inspecting the hull geometry.

The depicted strain values refer to each plate curve. In the case of extreme
deformations the designer can easily perceive the problem. Naturally, he
should be aware of the allowable figures of the intended construction materials.

Strain_ +0.0]12%

Strain +0.008%
Strdin +0.005%

Strain +0.000Z

Strain +0.

Strain +0.001%

Strain +0.014%

Fig. 44 - The development of a plate, showing strain figures and R, contour plots.

Interestingly, these plots offer two opposite comments:

e For the first, they were difficult to interpret because they appear quite
confusing, showing many small spots and irregularities in the curvature.

e For the other, they present the designer with the fairness reality of the hull,

making this a powerful tool to assess the fairing quality, and to eventually
select areas for re-design.
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Presently, this is one of the areas where some progress is to be made, either in
the yard’s Computer-Aided Design rooms, with a better enlightenment of the
tool usage, and by the research and development people, as the yard’s feed-back
is incorporated in the tool’s requirements, for posterior improvements.

5.6 Discussion of Results

A research on software for hull repair supportll, was conducted after this first
industry implementation ofthe Improper Geodesic Map. In the eighth Chapter
of the resulting reportl2, the non-optimised variant of the method was used in
development comparisons with both the electrostatic development jig, and a
commercial software package, the KCS’> STEERBEAR (presently known as
TRIBON). The data collected by the research will be analysed here.

It was not possible to conduct both comparisons over the same data set, since
the collaborating shipyards could only provide data about the current works of
their own. Consequently, two different sets of plates were used, one developed
by the STEERBEAR package and the Improper Geodesic Map, and the other
developed by the electrostatic development jig and the Improper Geodesic Map.

Each plate set contains only three specimens. These were chosen to be
challenging, but not so far from developable that the map results could become
unpredictable. Therefore, none of the test plates were either developable or of
pronounced second principal curvature. The test was focused on the curved
plates from the big full hulls, which are the most common in the line of
business of the involved yards.

(All measures in mm)

Comer A# =Comer B? .Comer Car Comer Dii; Diagonals LengthI
Plate Development Procedure!#,Ww mm $8X5$ PHY t<x wm i"XB! f:Y:r ADIS' i BC '
3E Non-Optimised Geodesic Map'.;- 0 0 -564 2763 7820 7 7491 2201 7807 8826
— ~% oot 0 0 -562 2761 7800 12 7465 2194 7787 8799
| Comer Distances: . 0 3 21 27 ( Differences;; 21 27
'V Average Distance = I
6E Non-Optimlsed Geodesic Map)) 0 0 31 2946 9952 -32 9843 2816 10238 10358
Electroestactic Development Jig 0 0 35 2948 9941 -13 9837 2820 10233 10341
Distances' Jilt 0 4 23 7 | Differences: ..16-m !$H17- |
' 4#Werage Distance =
4F Non-Optimised Geodesic Maps 0 0 -62 2719 7979 -37 7697 2741 8171 8500
Electroestactic Development Jig's 0 0 61 2719 7978 -53 7697 2748 8179 8494
Distances ?Mmv. 0 1 16 7 | Differences:' 6
Average Distance = 6

Table 7 - Results for the 3 ship plates, mapped into the plane by the electrostatic development
jig, and the Improper Geodesic Map, as implemented 2L

The study compared the lengths of the diagonals of the developed plates, and
the corner co-ordinates (see Table 7 and Table 8). The developed co-ordinates
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were not corrected for differences in rigid body motions. Hence, de found
differences exaggerate the actual figures, so they are conservative.

The electrostatic development jig is accurate only to the centimetre, making the
millimetre digit irrelevant. This is so because it is operated at 1/10-scale, and
the measuring is done down to the millimetre. For the other side, the
STEERBEAR package, and the implementation of the Improper Geodesic Map,
have an expected accuracy around the millimetre.

In Table 7 the average distances between the developed comers of each plate,
and also the differences in the developed diagonals, are quite reasonable,
because the inaccuracy of the electrostatic development jig envelopes
reasonably this deviations.

In the other hand, comparing the results from STEARBEAR and the Improper
Geodesic Map, the Table 8 reports a close match between both programs,
naturally due to the higher precision of computer processing.

(All measures in mm)

Comet* ifcomcfeBi sComerCi’af-ComerOiH Diagonals Length
Plato Development Procedureasss wWX1 X 'ft Ww&i v, AD BO:..
602-3-2  Non-Optimlsed GeodesicMaP 0 0 15 2701 8980 15 8157 2748 7898 9359
STEERBEAR"IIPP 0 0 15 2704 8981 15 8155 2750 7896 9360
sDistances v : 0 3 1 3 | Differences?r 2 2 Hi?
Average Distance « -2 m
603-3-1 N — = o 0 0 3 2206 7032 0 7110 2209 7445 7368
STEERBEARSPIfISSi' 0 0 1 2206 7031 -2 7110 2208 7445 7369
Distances?# 0 2 2 0 | Differences:*
Average Distance -is# [ ]
603-3-3 Non-Optimised Geodpsic Map 0 0 14 2320 7120 16 7204 2324 7550 7471
STEERBEART > 7°Ti 0 0 15 2320 7125 15 7207 2323 7553 7474
Distances 0 1 5 3 | Differences? 'me-2i : -3

Average Distance =#3".:"

Table 8 - Results for the 3 ship plates, mapped into the plane by STEERBEAR and the
Improper Geodesic Map, as implemented 2L

Evidently, this research confirmed the preliminary testing of the Improper
Geodesic Map, using the theoretical surface forms. Moreover, at the time this
report was being published, the contracting shipyard had already validated the
development software tool, by conducting internal tests from which the data
was not made available. This testing was reported to the author to be entirely
satisfactory, showing fully acceptable agreement of the plates developed by the
system and the ones developed by the electrostatic development jig. The found
deviations were told to be less than 10 millimetres, after discounting the
differences in rigid body motion. Since then, the software as been in daily use,
and presently, there is already sailing ships, which production data was entirely
processed by the development software.
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Chapter 6 - Conclusions

survey of the published materials on surface development and
developable surface definition has been undertaken, covering both the
mathematical background and the other published works since 1963.

The research relating to surface development has been segregated
predominantly into two fields:

e mathematics on one side, relying on the rather involved notations of
Differential Geometry; and

e practical engineering on the other, by approaching the problem in more
empirical ways.

The application of digital computers in shipyards made it possible for engineers
to implement more complex development methods, closer to the theoretical
base of ‘Differential Geometry. At present, after the publication of several
successful methods, such as Nolan'sP”, research is shifting towards the
processing of non-developable plates, which has still to show results®¥.

From the mathematical definition of geodesic lines, a new map has been
conceived in this study, to allow for the processing of any plate surface, even if
not developable, as is frequently the case in ship hulls. This map has been
implemented as the development tool of an actual software package, and has
been in shipyard use since 1995.

6.1 The Improper Geodesic Map

This new map (presented in CHAPTER 4 - CONCEPT AND IMPLEMENTATION OF
AN ALGORITHM) uses geodesic lines to map points and vectors onto a
plane. Since there is always one (and only one) geodesic passing through every
point on a surface in any particular direction, this the map will always produce
the plane image of any conceivable point or vector. However, in cases of
extreme second principal curvature (K?2), this mapping procedure can produce
the same image for different points (see Fig. 33). Since it is applicable to non-
developable surfaces, it is not always a one-to-one mapping of points in the
curved surface into the plane, i.e. such mapping is not unique. In the
mathematical sense, this means it is not isometric and therefore it is not a
geodesic map, consequently it has been termed an “Improper Geodesic Map”.

In industrial use, this mapping procedure can only be disrupted by these
extreme K values, as the curved plate will be impossible to form because
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6.1 The Improper Geodesic Map

different elemental areas will map into the same spot in the plane, resulting in a
folded outline (see Fig. 33). To correct this, one can use the traditional
technique of dividing the plate into smaller ones, reducing the accumulation of
K> to be processed by the map in each run. Nevertheless, as it takes abnormal
values of K to produce such cases, this should not happen in practice, and in
fact the shipyard never requested software support related to this.

The possibility of a fairing error in the plate surface, results in a localised
extreme value of K;. The software exposes such cases both by folding the
plate outline onto itself, which is a conspicuous error, and by letting the user
appreciate the R; field across the plate (see Fig. 44).

The decision to plot R, = 1/K} instead of K, was concerned with the background
of the people in the design rooms. Most of the designers had no appropriate
analytical education, therefore the curvature radius, which is more intuitive than
the curvature itself, was the preferred measure of shape variation.

Inside the problem-areas the R, field will display either extreme values or
contour ‘curves too close to each other (denoting intense variations). Isolated
maxima are also plotted, independently of its the actual values, because they are
helpful to spot unfair bumps.

If the plate is correctly faired and mapped, the plot of the R; field still offer the
user an alternative way to perceive the surface and possible forming
difficulties. One such difficulty is due to improper straking leading to disparate
curvatures in the same plate, like a plate shaped partly as a saddle and partly as
cylinder. (In this particular situation the user will find the R, field restricted to
saddle region.) This sort of problems is handled by partitioning the plate into
regions where the curvature has a more uniform variation.

It is important to note that if the designer doesn’t have the proper background to
understand the contour plots, this tool is of no use, and could even be
detrimental. In such cases, it is probably better to freeze the CAD layer in
which these plots appear, so that the user is not confused by data unintelligible
to him.

The only plates in which the map has been found to fold have been theoretical
ones with extreme K values. These plates were purposely conceived to stretch
the mapping procedure to the limit. So far, there has been no attempt to
establish criteria to predict the folding of a plate. These criteria would be
rather complex and of little practical value for the contracting yard, since the
software already copes with the problem by first exposing it and then
supporting the iterative redesign of seams and butts. Note that the most
obvious candidates as parameters for such criteria are the accumulated
curvatures in the plate surface, which indicates the complexity and
computational load that might be involved.
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6.1 The Improper Geodesic Map

Comparing the software solution developed with the alternative of the
electrostatic development jig, it is not only more economic in labour costs, but
also provides the user with information about the actual plate curvature and
strain, assisting him in the detection and evaluation of the problem areas of the
hull. This allows for further economic gains, by improving the design for
production of the plate straking definition.

As discussed in CHAPTER 4 - CONCEPT AND IMPLEMENTATION OF AN
ALGORITHM, each plate point is mapped on the developed plane by rectifying
(straightening) the geodesic traced through it within the curved
plate. Therefore, the central procedure of the mapping process is the tracing of
geodesics, and the efficiency and accuracy of the resulting map is largely
controlled by it. Branco’s discrete algorithm for geodesic tracing!® was
reused, since having been found to be both accurate and efficient enough for
hand drawing, it should be even more so for computer tracing. In fact, this is
confirmed in Fig. 34 and Fig. 37. However, as Branco’s procedure has no
accuracy control parameters, another tracing method has been derived from it,
just by -coupling an optimisation procedure, to minimise the geodesic
curvature. As a result, this derived tracing procedure is computationally
heavier, so it is less suited for field use; but since it is has controllable accuracy,
it serves well for research purposes.

The map is made in two sequential steps:
1. the tracing in the plate
2. the rectifying in the plane.

These are the only error sources inside the map, so knowing the error of one, the
error of the other can be deduced from the observed total error. Moreover, the
difference between the final errors of both mapping procedures is a measure of
the error content of Branco’s tracing procedure, even if a little underestimated.

The optimised tracing procedure requires an accuracy measure for the traced
geodesics. The proposed measure is the ratio of the geodesic length to the
accumulated geodesic curvature. As this represents an average geodesic
curvature, it is termed “K,™”. A reasonable figure for this, related to the
typical plate dimensions, expected maximum curvature and workshop accuracy
(which is about one centimetre) is (Eqn.89):

Kgave <0.020 m-2 (89)

This value is less significant in the case of non-developable plates, since their
map requires significant strains of an arbitrary nature, possibly above this
figure.
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6.1 The Improper Geodesic Map

To test the tracing procedures and the maps, it was decided to use basic
geometric shapes as data, instead of practical plate cases, which would be too
complex for initial assessment, and could bias the results towards the particular
examples assessed. The set of basic shapes considered included both
developable and non-developable surfaces (see Table 4). The former where
represented by cones and cylinders, and the latter where represented by
paraboloids. A saddle and a plane complete the set, being representative of the
universe of simple surfaces.

To assess the discretisation effects, the developable surfaces contained different
discretisation distances (see Table 5). This study confirmed that the spacings
used by the shipyard in the hand drawing system are close to the optimum for
accuracy (see Fig. 34). Since the CAD system was specified to optimise of the
previous hand-drawing system, maintaining many of the old techniques, the
coincidence of this optimum in both systems is understandable. Note that both
systems represent the surface by section lines, instead of surface patches, and
therefore both rely on similar discretisations. Possibly, another surface
representation scheme would have different optimum spacing.

To assess curvature effects, the test surfaces where made with different
principal curvatures. This study suggests that for small curvatures, the method
behaves extremely well, as if there is no curvature at all and the surface is
plane. At around the 0.25m™ curvature level, the curvature starts to affect the
geodesic tracing procedure, and from that point onwards the tracing error
increases regularly. Nevertheless, this increasing error is a negligible fraction
of the overall curvature of the geodesic line, as can be seen by comparing the
relative scales of both axes in Fig. 35 and Fig. 36. Therefore, the numeric
contribution to the overall tracing error can be relatively important.

The results compiled in Appendix B. - Validation Data, demonstrate the good
fit of both optimised and non-optimised maps to their true developments, for the
developable surfaces, as shown by the strain figures. Note that the differences
between both maps are of the same order as the difference between the
optimised maps and the true developments. Therefore, the errors made in the
geometric tracing are about the same order as the errors in the rectification
procedure.

Fig. 35 and Fig. 36 show some expected results, like the lower curvature
developable surfaces having more accurate developments than those with higher
curvature, the same also applying to non-developable surfaces. However, not
so evident are the lower distortions and geodesic curvatures of the very low
curvature paraboloid, in comparison with developable surfaces which, despite
the absence of second principal curvature (k2), do have much higher first
principal curvature (k7). Once more, mapping accuracy is clearly dependent on
first principal curvature.
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6.2 Industrial Implementation of the Map

The computing efficiency of these methods is measured against the principal
curvatures, as demonstrated in Fig. 37. This is more relevant in the interactive
environment of the CAD package in which the development tool is used. As
expected, the optimised procedure expends more computing time than the
purely geometric one. The flattest paraboloid behaves like a plane, showing no
iterations at all, and making the two tracing procedures almost
indiscernible. For this data point (k,=.0025m™), the negligible performance
difference between both procedures, is due to the slight overhead of the
optimisation process. Besides this peculiarity, both procedures perform almost
independently of the principal curvature, which might be expected for the
geometric one, given its straightforward nature, but is a little surprising in the
case of iterative optimisation. The fact is that the steps required to minimise
the geodesic curvature do not show any dependence on the scale of principal
curvatures, as shown in Table 6. Therefore, perfectly developable data sets are
mapped with negligible errors, and the development software tool is suitable for
the present accuracy standards. This means two things, namely that the tool is
reliable in its:

e functioning - meaning that it accepts the current accuracy levels of the data
used by the contracting shipyard, including the common deviations from the
developable condition, which can disrupt other software procedures.

e and its results, meaning that it produces accurate results, regarding the data
quality, including the cases of plates which are "almost" developable. Note
that for extremely non-developable plates, the development results are
intrinsically meaningless.

6.2 Industrial Implementation of the Map

The mapping procedure has been implemented in a software tool, used as part
of a shipyard CAD package, and as such, has been in use since 1995. From the
first applications in the yard, it proved as an effective and efficient tool, and was
enthusiastically accepted by the personnel. Nevertheless, since it is included in
a complex CAD package, all of it relying on surfaces defined by section lines,
one should guard some care against the possible use of it with inaccurate
data. Such case can easily happen just by using too few nodes in the
discretisation of the splines that represent the section lines, the seams and the
butts. A seam can be apparently well defined by placing two consecutive
nodes 10 metres apart, but a particular seam point can be 20 centimetres apart
from the hull surface. Note that the hull surface is defined by a set of splines
unrelated to the seams in the present Computer-Aided Design
specification. The integrity/coherence of this geometric database can only be
assured by filtering every user attempt to define new lines or new points on the
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6.2 Industrial Implementation of the Map

hull surface, running special software. For the moment, this software does not
formally exist in the system, despite being part of the development tool.

During the development of the software and the training of the shipyard
personnel, several informal tests where made, but it was not possible to retrieve
the reference data developed by other tools. Naturally, the shipyard conducted
internal approval tests after delivery of the software, but the results where not
formally disclosed, only the outcome of acceptance and its introduction into the
routine operations. This testing was reported to the author as entirely
satisfactory, showing acceptable agreement of the plates developed by software
and the ones developed by the electrostatic development jig. This agreement
means less than 10 millimetres deviation, after discounting the differences in
rigid body motion. Since then, the software has been in daily use, and
presently, there are already ships sailing, for which production data was entirely
processed by the development software.

Further research on software for hull repair support” has been conducted after
this first.industry implementation of the Improper Geodesic Map. In the 8th
Chapter ‘of the resulting report'?, the non-optimised variant of the method was
used in development comparisons with both the electrostatic development jig,
and a commercial software package, the KCS STEERBEAR system (presently
known as TRIBON).

It was not possible to conduct both comparisons over the same data set, since
the collaborating shipyards could only provide data about their current
projects. Consequently, two different sets of plates were used, one developed
by the STEERBEAR package and the Improper Geodesic Map, and the other
developed by the electrostatic development jig and the Improper Geodesic Map.

Each plate set contains only three specimens. These were chosen to be
challenging, but not so far from developable that the map results could become
unpredictable. Therefore, none of the test plates were either developable or of
a pronounced second principal curvature. The test was focused on the curved
plates from big full hulls, which are the most common in the line of production
of the yards involved.

The study compared the lengths of the diagonals of the developed plates, and
the corner co-ordinates (see Table 7 and Table 8). The developed co-ordinates
were not corrected for differences in rigid body motions. Hence, those found
differences are exaggerated.

The electrostatic development jig is accurate only to the centimetre, the
millimetre digit being irrelevant. Note that as it operates at 1/10-scale, the
actual measurement is to the millimetre. The implementation of the map
compared favourably with results from the electrostatic development jig',
which was shown to be less accurate. The electrostatic development jig, due to
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6.3 Limitations and Improvements of the Map

its working scale, is in fact an error amplifier, which is not the case for the
software, which works at full-scale.

Table 7 presents the average distances between the corners of each developed
plate, and also the differences in the developed diagonals. These are quite
acceptable, because the inaccuracy of the electrostatic development jig, which is
still the standard for development accuracy, reasonably envelops these
deviations. On the other hand, comparing results by STEARBEAR and the
Improper Geodesic Map, Table 8 demonstrates a close match between both
programs, given the higher precision of computer processing.

This evidence confirms the testing of the Improper Geodesic Map using
theoretical basic surfaces.

6.3 Limitations and Improvements of the Map

Traditionally, fairing is mostly understood as a hydrodynamic necessity, but in
fact, the complete fairing of the hull surface has the utmost impact on the
development and effectiveness of the workshop. Even the most inconspicuous
bumps affect the accuracy of the map and would be blindly reproduced by the
workshop, with a penalty in labour costs. Hence, the development software
should be complemented with tools to assist the identification of problem areas
in the hull surface. In the case of this particular software, the depiction method
adopted was a plot of the second principal curvature maxima and contour lines
onto the mapped plate. It was not intended to replace the proper fairing tools,
but only to offer the user a last chance to realise possible errors still existing in
the design.

Besides proper non-developable features of the hull shape, the troubled areas
will appear with high values or intense gradient (closer contours) of the second
principal curvature. Therefore, the map can benefit from improved hull
smoothing:

e by removing the bumps, the plates can have lower curvature levels, which as
seen before (see Fig. 35 and Fig. 36), improves the behaviour of the
development method.

e once having removed even the less conspicuous frame deviations, the
accuracy gains allow for an increase in the frame spacing, reducing the
amount of data, and thus the processing time and computer storage
requirements.

Instead of assuming an initial angle along the bigger plate dimension, as is
presently implemented, the geometric algorithm can also be improved if it
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6.3 Limitations and Improvements of the Map

initially aligns each geodesic with one principal direction, or at least with one of
minor geodesic torsion. With this strategy, the mapping geodesics would have
smoother paths; and their discretisation errors will decrease.

Note that even the optimised procedure, due to the presently relaxed
optimisation parameters, tends to be inaccurate for the higher curvatures which
are to be found in the round bilges of small ships. It is also possible to make
the stop criteria parameters depend on the plate’s intrinsic geometry, which will
allow the development procedure to adapt to wildly different
cases. Alternatively, this accuracy improvement will allow for more relaxed
spacings in the discretisation of the geodesics, improving the processing time
and the storage requirements.

For the current implementation, the program size in the computer memory is
not an issue, since its size is around 500 Kbytes, with PCs with 4 to 16 Mbytes
RAM as the targeted computing platforms.

It should be noted that the shipyard is presently using (or at least testing)
commercial software for hull fairing and straking. This is an acknowledgement
of the inadequacy of the existing one, to much inspired in old practices of hand-
work to exploit appropriately the powerful tool which is a computer.
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Chapter 7 - Prospects for Further Work

studies proving substantial cost savings when developable surfaces are

fitted instead of compound curvature ones®, most ship persist to be
projected with extensive non-developable areas in the hull, so the plane
mapping of non-developable plates continues to be an interesting subject for
research.

g fter much experience with almost entirely developable hulls), and

Continuous advances in the capabilities of plate forming machinery could lead
to a situation where the plate’s developability is not an issue as it is
today. Note however, that the workshop equipment still missing is now an
imminent reality, because all the basic technologies are already available: fast
digital computers, accurate modelling of the material deformation due to forces
and heat, instrumentation for accurate monitoring, sophisticated control devices
like robots, and an important base of experience with numerically controlled
machines of disparate types.

The deformation of non-developable plates can be improved, by minimising the
in-plane strain energy. The material behaviour could also be modelled more
accurately. Thus, the purely geometrical methods originally intended for
developable plates, as the one presented here, could become less relevant in
Computer-Aided Design and Manufacturing packages.

As the survey of this thesis suggests, the methods for surface design are still in
evolution, mostly the ones intended for the design of developable

4 Since the "60’s, with rowing dinghies, sailing craft, cargo launches, trawlers,
tug boats, and the 20 panamax ships built by the Burmeister & Wain shipyards,
between 1980 and 1985,

5 In the *60’s, a US Navy study on the plating production costs for two big
carrier sponsons, found differences of about $100,000 between compound
curvature and alternative developable designs'™.
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Chapter 7 - Prospects for Further Work

surfaces. Designing surfaces is a task heavily dependent on the quality of the
user interface: both the control and the rendering (the input and the
output). Virtual reality technologies are available, and are extremely effective
in rendering complex shapes. However, the necessary control methodologies
to full exploit virtual reality environments seems to be still in the infancy.
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Appendix A. - Glossary

ADS: AutoCAD Development System.

AutoCAD: is the commercially dominant drafting software package.

Blank: is the plane plate before being cut or subjected to other mechanical work.
CAD: Computer-Aided Design.

CAGD: Computer-Aided Geometric Design.

CAL: Computer-Aided Lofting.

CAM: Computer-Aided Manufacturing.

DQS; ‘is‘t-he Disk Operating System, ordinarily used on personal computers.

FORTRAN: the first high level programming language, originally designed for
scientific and technical applications.

IBM PC: the industry the facto standard for the architecture of personal
computers.

LAN: local area networks of interconnected computers.
N/C: Numerically Controlled machines.

NURBS: Non-Uniform Rational B-Spline®®,

Patch: is the curved plate.

Stock or green material: the excess material considered around the plate
boundaries, as an allowance for process errors.
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Appendix B. - Validation Data

This test plates were processed in a 9OMHz Pentium PC, running Windows
NT3.51 in 32 MB RAM.

The code was compiled as a console application in Microsoft Powerstation 4.0
Fortran 90 compiler, configured with the default optimised options.

Other hardware and compiler configurations should produce quantitatively
different results, but the qualitative assertions made on this results should still
hold.

The distances between the developed plate corners of both development
methods do not discount rigid body motion differences, thus providing for
somewhat conservative figures.

No drawings are presented because they exibit no discernible differences at the
fit scale to the A4 page format, as the numeric results demonstrate.

Length|*Beam " - Number:of-...

Description : --Radius ‘or Equation =| Developable'?| (m)..| (m) :| Frames |Frame Points
Plane Yes 8 2 5 5
High Curvature Cylinder R=2 Yes 8 2 5 5
Medium Curvature Cylinder R=3 Yes 8 3 5 5
Low Curvature Cylinder R= 4 Yes 8 4 5 5
Rough Frame-Spacing Cone R=§6 r=0.5 Yes 8 5t0.5 3 3
Medium Frame-Spacing Cone R= 5§ r=0.5 Yes 8 5t0.5 5 5
Close Frame-Spacing Cone R=5 r=05 Yes 8 5t0.5 8 8
Extreme Spacing Cone R=5 =0.5 Yes 8 5t0.5 15 16
Slight Curvature Paraboloid | z= (x*2 y*2)/ 200.0 No 2 2 15 15
Low Curvature Paraboloid z= (x"2 y*2)/ 0.126 No 2 2 15 15
Medium Curvature Paraboloid | z= (x*2 y*2)/ 0.251 No 2 2 15 16
High Curvature Paraboloid | z=(x*2 y*2)/ 0.375 No 2 2 15 15
Extreme Curvature Paraboloid| z= (x*2 y*2)/ 0.500 No 2 2 15 15

Table 9 - The plates of the test set
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