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SUMMARY

The objectives of undertaking this study were firstly to characterise the normal 

surface features of the epithelial lining of the entire respiratory tract of the adult goat by 

the use of the scanning electron microscope (SEM). Secondly, to further characterise, 

by the transmission electron microscope (TEM), the epithelial cell population of the 

distal airways (terminal bronchioles, respiratory bronchioles) and alveolar membrane. 

Thirdly, to investigate, also by the use of the scanning electron microscope, the 

development of the respiratory tract epithelium in the neonatal kid. Fourthly, to provide 

a histological and histochemical picture of the epithelial lining of the respiratory tract. 

And finally to assess the use SEM in the study of clinical material, with the view of 

using it as another tool in diagnostic procedures.

It was apparent that information on the gross anatomy of the respiratory tract of 

the goat was scarce and scattered in many different sources. Thus Chapter 1 was 

introduced to provide a brief account of the gross anatomy of the caprine respiratory 

system.

Chapter 2 details the materials, general procedures and methods used in the the 

whole study. Details of the preparation of different buffers and fixatives are also 

provided.

In Chapter 3, the histology of the epithelial lining of the respiratory tract was 

defined, together with the histochemistry of the respiratory tract mucosubstances. 17 

clinically normal animals were used in the study. Samples were taken from 18 

preselected sites along the entire lining epithelium. Histological sections were stained 

with H&E and AB/ PAS, the latter used for the histochemical study of the 

mucosubstances. A stratified squamous type of epithelium lined the nasal vestibule, 

rostral region of alar and basal folds, caudal region of the nasopharynx, laryngeal 

surface of the epiglottis, cranial surface of the vocal fold and infraglottic cavity. An 

intermediate type of epithelium, itself grading from stratified cuboidal to low columnar,
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was seen to occupy the transitional zone between the nonciliated and ciliated regions of 

the rostral nasal mucosa, nasopharynx, vocal fold and infraglottic cavity. A typical 

respiratory epithelium ( a pseudostratified ciliated columnar epithelium) lined the nasal 

concha and most of the conducting airways. The bronchioles, proximal to the terminal 

bronchioles were lined by a respiratory epithelium. Distal to the terminal bronchioles 

were lined by a simple columnar epithelium which changed into a simple cuboidal in the 

respiratory bronchioles. It was established that the majority of the individual surface 

mucus-producing cells were acidic in character. The submucosal glands produced 

mucosubstances of varying nature and differing proportions of acidic, neutral and 

mixed glycoproteins. In the bronchioles, surface mucus-producing cells were only seen 

proximal to the terminal bronchioles, where they produces almost equal amounts of 

both acidic and mixed mucosubstances.

Chapter 4 detailed the surface characteristics of the lining epithelium o f the 

respiratory tract of the adult goat. Surface characteristics of squamous, nonciliated 

microvillous, mucus-producing, Clara, alveolar Type I and alveolar Type II cells were 

described. Two types of mucus-producing cells were distinguished on the basis of their 

luminal surface characteristics. It was established that the nasal vestibule, and rostral 

regions of the alar and basal folds were lined by squamous cells which gradually gave 

way to an intermediate epithelium, characterised by nonciliated microvillous cells with 

bulging luminal surfaces presenting a “cobblestone” appearance. This type of epithelium 

gradually changed into a ciliated epithelium in the caudal regions of the alar and basal 

folds. The latter type of epithelium was also seen to line the ventral, middle and nasal 

conchae. The intermediate epithelium described in the rostral regions of the nasal cavity 

was also observed on the nasopharynx, vocal fold and infraglottic cavity, situated 

between a ciliated epithelium and a nonciliated squamous epithelium. The trachea, 

bronchi and bronchioles were lined by a ciliated epithelium. The degree of ciliation was 

observed to decrease with decreasing airway diameter, whilst the numbers of 

nonciliated microvillous cells increased. At the level of the terminal bronchioles, Clara



cells, characterised by their apical protuberances and the presence of short, stubby 

surface microvilli, were in the majority, with ciliated cells presenting poorly developed 

cilia. Mucus-producing cells were not identified at this level with SEM. Respiratory 

bronchioles were seen to be present and well developed. Alveolar pores and alveolar 

macrophages were both rarely observed.

Chapter 5 was undertaken to further characterise, by means of TEM, the cell 

population of the distal airways and alveolar membrane. Five cell types were identified, 

namely, ciliated, Clara, alveolar Type I and Type II and mucus-producing cells, the 

latter being only occasionally observed. Essentially all cell types observed presented 

cytological characteristics similar to those observed in other mammalian species.

Having established the normal surface morphology of the epithelial lining of the 

respiratory tract of the adult goat, Chapter 6 involved an investigation, by the use of 

SEM, of the development of this lining epithelium in the neonatal respiratory tract. 

Twenty kids, aged between 3hrs and 21 days, were used in the study. It was 

established that at birth the kid presented a relatively well developed epithelium similar 

to that observed in the adult goat. Some differences between the kid and adult were 

observed, however, and these included: 1. The cilia were more densely packed and 

more extensively distributed within the rostral region of the nasal cavity of the kids than 

they were in adult goats. The large patches of nonciliated microvillous cells seen in adult 

goats were not a feature of the kid, in which only smaller patches were seen. 2. The 

epithelium covering the nasal septum was heavily ciliated in new-born to 3-day-old 

kids, from which time the numbers of nonciliated microvillous cells increased at the 

expense of ciliated cells. 3. Bronchioles were poorly ciliated in kids compared with the 

situation in the adult. 4. A cell type, characterised by a large, wrinkled apical surface 

with short surface microvilli, was frequently observed in the larynx and trachea of the 

kid, while such cells were not seen in the adults.

5. Lung parenchyma in the kid frequently presented evidence of alveolar formation in 

the form of low ridges dividing pre-existing alveoli. 6. In the first week of life,



respiratory bronchioles were rarely encountered. 7. Alveolar pores were less numerous 

in the lung of the kid than in the adult.

The availability of a limited number of clinical cases made it possible to assess 

the use of SEM in the observation of pathological changes as a result of disease. The 

details of this study are presented in Chapter 7. Four cases were investigated , three of 

them suspected to be cases of pneumonic pasteurellosis. It was shown that SEM 

provided a useful means of assessing changes difficult to assess by any other means. 

These changes included cilial loss, desquamations and epithelial cell erosion, excessive 

mucus production, changes of individual cell type surface characteristics. It was 

concluded that SEM can be successfully used to complement other diagnostic tools 

available for the study of disease processes and their pathological effects.

Chapter 8 provides a summary of all the studies undertaken in this work and 

provides conclusions and recommendations where it is appropriate.

In conclusion, the present work has demonstrated the usefulness of SEM in the 

study, for the first time, of normal caprine respiratory tract surfaces. In addition, it has 

shown the value of combining LM, SEM and TEM studies for a more complete 

characterisation of cell types populating the entire airway epithelia. Like all such studies, 

however, many questions remain unanswered, and more detailed studies of such topics 

as the developmental relationship between, and functions of, a number of the cell types 

populating the respiratory airway epithelium await future investigations.

The objectives and aims set in this study have been accomplished, and this work 

for the first time, provides a morphological account of the lining epithelium of the 

caprine respiratory tract., a baseline against which future work can be assessed..
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GENERAL INTRODUCTION:

To meet the huge increase in demand for food products from a rapidly rising 

human population, seen especially in the developing countries, new improved methods 

of animal husbandry based upon sound scientific research and management techniques 

are essential.

In many third world countries, the goat has always been of great significance, 

with over 90% of the world’s goat population being located in the tropical and 

subtropical regions (Wilkinson and Stark, 1987). Its value in terms of meat, milk and 

hide production is enhanced by virtue of the fact that it can survive and prosper on a 

relatively poor quality fodder; it also has a high tolerance to tick-bome diseases and 

trypanosomiasis factors, which tend to limit cattle production in subtropical and tropical 

regions. Even in developed temperate countries the importance of the goat as a milk 

producer has increased and their popularity is reflected in the fact that some veterinary 

practices are presented with more goat than sheep cases (Mews, 1980).

Improved methods of goat husbandry would inevitably entail intensified 

management systems involving the confinement of large numbers of animals in a limited 

space. Such conditions usually favour the rapid growth of disease causing organisms.

Respiratory diseases have already been shown to pose a major clinical problem 

in such intensive goat production systems (Ndamukong et al., 1989) Indeed a number 

of studies have shown that respiratory problems are one, if not the major cause, of 

deaths in goats. A mortality rate of 33% due to pneumonia and gastroenteritis and 

19.2% by pneumonia alone, was reported by Chawla et al. (1982), alsoKumar and 

Prasad (1986), after examining 4360 goats at post mortem over a period of ten years 

found a mortality rate of 25.6% due to pneumonia, while Vihara et al. (1986) working 

on Jamunapari goats, even noted a much higher figure of 42%.

Major disease conditions observed in the respiratory system include fibrinous 

pneumonia, purulent and nonpurulent bronchopneumonia, and pulmonary oedema and
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congestion (Jubb et al., 1985); the causative agents of such respiratory diseases may be 

extremely wide spread. There are however a variety of micro-organisms that have been 

consistently associated with pneumonia and their aetiological role can not be disputed 

(Almeida et al., 1986). For example, Mycoplasma m. mycoides , the causative agent of 

contagious caprine pleuropneumonia, has been reported in 31 countries (McMartin et 

al., 1980) including Nigeria ( Ojo, 1976; Okoh and Kaldas, 1980; Opasina, 1985; 

Ndamukong et al., 1989), India (Kapur et al., 1974; Sharma et al., 1978; Upadhyaya et 

al., 1983), Kenya (Rurangirwa et al., 1981), Sweden (Bolske et. al., 1982) Mauritania 

(Jan et a l, 1987), Senegal (Faugere et al., 1987), Brazil (Almeida et al., 1986), 

Malaysia (Zamri-Saadi et al., 1987) and Portugal (Gon9alves, 1983), whilst Pasteurella 

multocida and Pasteurella haemolytica have frequently been isolated from many of the 

fibrinous pneumonias (Ojo, 1976).

Helminthiasis also plays a role in respiratory conditions of the goat Lungworms 

Dictyocaulus filaria and Mullerius capillaris have been associated with bronchitis. Viral 

agents, such as the causative agent of stomatitis pneumoenteritis complex, which is 

immunologically and morphologically identical with peste des petits ruminants have also 

been shown to cause serious clinical problems, especially in temperate regions (Hamdy 

etal., 1975; Robinson and Ellis, 1984).

Such diseases cause very significant economic losses, and effects include 

mortalities, delay in reaching slaughter weight, poor carcass quality and increased 

veterinary expenses. Indeed Akerejola et al. (1979) working in Nigeria, estimated a loss 

of between 30-60 million Naira annually due to contagious caprine pleuropneumonia 

alone.

It can be appreciated, therefore, that if economic return from intensively or semi- 

intensively managed goats are to be maintained or even increased, respiratory diseases 

(amongst others) must be successfully controlled or eradicated where possible. The 

development of such a successful and necessary therapy depends, in part, on a detailed 

knowledge of the pathological changes that affect the lining of the respiratory tract as a
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result of respiratory infection. Such changes can only be assessed if the normal baseline 

parameter of the topographical appearance of the lining epithelium (first line of defence) 

as well as its histochemical nature are available.

It is the purpose of this study therefore to provide for the first time a systematic 

account of the morphology of the entire airway epithelium of the goat, from the nasal 

vestibule to the alveoli.
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CHAPTER 1.

AN OUTLINE OF THE GROSS ANATOMY OF THE RESPIRATORY

TRACT OF THE GOAT.



INTRODUCTION.

Many of the standard textbooks on veterinary anatomy provide little specific 

information on the gross anatomy of the goat and the reader is usually left to assume 

that anatomical descriptions provided for the sheep are also to be applied to the goat. 

What specific information that is available on the caprine respiratory system is scattered 

piecemeal amongst many different sources and it was therefore thought worthwhile to 

draw all this information together into a brief description of the gross anatomy of the 

respiratory system of the goat before embarking on detailed studies at the histological 

and ultrastructural level. This review thus summarises information derived from the 

following sources: Hare, 1975; Nickel et al., 1979; Dyce et al., 1987; Garret, 1988; 

Habel, 1989, and also from observations of dissections of gross specimens in the 

present study. The respiratory system consists of a conducting portion and a respiratory 

portion. The former comprises the external nares, nasal cavity, nasopharynx, the 

larynx, the trachea and, within the lungs, the bronchi and bronchioles as far as the 

respiratory bronchiole; this portion serves not only to conduct air down into the 

respiratory regions of the lung, but also to warm, humidify and trap particulate matter, 

thus improving the quality of the inspired air. The latter, respiratory portion comprises 

the respiratory bronchioles, the alveolar ducts, alveolar sacs and the pulmonary alveoli, 

and serves primarily to provide for the exchange of gases between the inspired air and 

the blood.

N O SE.

The nose of the goat is embodied in the skeleton of the face and extends from 

the transverse level of the eyes to the rostral extremity of the head, which carries the two 

nostrils. The nostrils in the apex lead into the nasal vestibule, and then on into the nasal 

cavity, to which are connected , directly or indirectly, several paranasal sinuses. The
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nasal septum forms a partition between the nostrils and divides the cavity into the right 

and the left halves. The rostral part of the nasal septum widens along its dorsal and 

ventral margins to form the dorsal and ventral lateral nasal cartilages. Attached to the 

dorsal lateral cartilages are the lateral accessory cartilages which provide the ventral and 

lateral support of the nostrils.

The mobile nostrils (external nares) of the goat appear as narrow slits in a 

narrow area of modified skin (planum nasale) (Fig. 1.1), which is devoid of hairs and 

particularly prominent on the dorsal aspect. This area is kept moist by glands which 

secrete through pores (foveolae) grouped into small polygonal fields.

NASAL VESTIBULE.

The paired nasal vestibules correspond closely in extent and contour to the 

cartilaginous portion of the nasal wall, and each forms an entrance chamber to the 

corresponding half of the nasal cavity. The skin covering the nostril of the goat is 

reflected to line the vestibule. For a short distance within the vestibule the skin retains 

its characteristic keratinized nature and carries numerous hairs, after which it changes 

into a nonkeratinized epithelial lining without hairs.

NASAL CAVITY (Fig. 1.2).

The roof of the nasal cavity is provided by the dorsal lateral cartilages, the nasal 

bones and part of the frontal bones, while the floor is formed by the ventral lateral 

cartilages and the parts of the incisive, maxillary and palatine bones. The lateral walls 

are irregular and are formed by the lateral parts of the dorsal and ventral lateral cartilages 

and by parts of the incisive, maxillary, palatine, ethmoid and lacrimal bones. The caudal 

boundary is formed by the cribriform plate of the ethmoid bone. The cavity is divided
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into two halves by a median septum, the nasal septum, and the term “nasal cavity” may 

refer to the entire cavity or to one of the halves.

Most of the space in the nasal cavity is taken up by the nasal conchae (Fig. 1.2). 

These are scrolls of bones attached to the lateral walls by a basal lamella; the recesses 

formed by these scrolls are in wide communication with the nasal cavity. The nasal 

conchae project mesiad almost to the nasal septum. The dorsal nasal concha is a thick 

shelf supported by the basal lamella which is made up of compact bone and extends 

from the level of the supraorbital foramen to the junction of the rostral and middle thirds 

of the nasal bones. Rostrally, the dorsal nasal concha extends into the nasal vestibular 

region as the unsupported straight fold. In the caudal two thirds of the concha a spiral 

lamella is present. It coils first ventrally, then laterally, and then dorsally, and it 

encloses the dorsal conchal sinus.

The ventral nasal concha originates from the conchal crest and medial plate of 

the maxilla. The basal lamella passes ventromedially for a short distance where it 

bifurcates giving rise to two lamellae. The ventral lamella coils ventrally, laterally, 

dorsally, then medially and ventrally in a small circle; whereas the bigger dorsal lamella 

coils dorsally, laterally, ventrally, then medially to form one and a half turns. In the 

goat, the free borders of the spiral lamellae form subdivided bullae which communicate 

through small openings with their respective recesses. Rostrally, the ventral nasal 

concha continues to form the alar fold dorsally and the basal fold ventrally.

In the caudal part of the nasal cavity lie the ethmoturbinate bones, of which the 

longest is referred to as the middle nasal concha, which in the goat has the shape of an 

arrow-head projecting primarily rostrally and lies just ventral to the dorsal nasal concha 

and dorsally to the ventral nasal concha. The middle nasal concha consists of a basal 

lamella and ventral and dorsal spiral lamellae; in the goat, the dorsal spiral lamella 

encloses a sinus, while the the ventral lamella encloses a second sinus rostrally and a 

recess caudally.

The dorsal and ventral conchae divide the nasal cavity into three meatuses. The
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dorsal nasal meatus is a narrow passage between the roof of the nasal cavity and the 

dorsal nasal concha, and leads into the caudal part of the cavity. The middle nasal 

meatus is located between the dorsal nasal concha and the ventral nasal concha and 

caudally it is split into two channels by the middle nasal concha. An aperture which 

provides communication between the meatuses and the paranasal sinuses (the 

nasomaxillary opening) is found in this area. The ventral nasal meatus (which is the 

largest of these channels) is situated between the ventral nasal concha and the floor of 

the nasal cavity, and leads into the nasopharynx. The common nasal meatus extends 

from the roof of the nasal cavity to the floor and is bounded medially by the nasal 

septum; laterally it is continuous with the other meatuses. Caudally and ventrally the 

nasal cavity communicates with the nasopharynx through the choanae.

The mucosa covering the walls of the nasal cavity, the nasal septum and the 

nasal conchae is reddish in colour in fresh specimens, indicating its very vascular 

nature. In the goat there is a lateral nasal gland producing serous secretions located in 

the mucous membrane of the nasomaxillary opening, and its duct opens into the nasal 

cavity close to the nostril in the region of the straight fold.

NASOPHARYNX (Fig. 1.3).

The nasal part of the pharynx lies caudodorsal to the soft palate and extends 

from the choanae to the intrapharyngeal ostium. The choanae are separated dorsally by 

the crest of the vomer, which is covered by a mucosa overlying a thick submucosal 

venous plexus. In the goat there is an incomplete septum arising from the rostral roof of 

the nasopharynx and projecting into the narrow fomix.The pharyngeal tonsils are 

located at the caudal end of this septum, attached to the caudodorsal wall of the pharynx 

(Habel, 1989). The sides of the tonsil are marked by long ridges and grooves. Each 

auditory tube opens onto the wall of the nasopharynx just lateral to the tonsil. The 

opening, which is a mere slit, lies in the transverse plane passing just rostral to the
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temporomandibular joint at the level of ears (Habel, 1989).

PARANASAL SINUSES

These sinuses, which in the goat include maxillary, palatine, lacrimal, and 

frontal sinuses, surround the nasal cavity almost completely. The maxillary, palatine 

and lacrimal sinuses communicate with the middle nasal meatus through the 

nasomaxillary aperture, while the frontal, and most of the conchal, sinuses open 

separately into the ethmoidal meatuses in the caudal part of the nasal cavity (Nickel et. 

al., 1979).

Amongst the various functions attributed to the paranasal sinuses is that of 

olfaction, with the frontal sinus in particular being lined by extensions of the olfactory 

epithelium.

LARYNX_(Fig. 1.3).

The larynx provides a connection between the caudal region of the pharynx and 

the trachea. In addition to acting as a valve to prevent foreign material entering the 

trachea, it controls the entry of air by regulating the size of the glottis, regulates 

intrathoracic pressure and is also used as a mechanism of phonation. The laryngeal 

cavity is lined by a mucous membrane and is kept patent by a number of paired and 

unpaired cartilages including an unpaired cricoid cartilage caudally, an unpaired thyroid 

cartilage ventrally and laterally, paired arytenoid cartilages dorsally and an unpaired 

epiglottic cartilage rostrally.

The cavity of the larynx connects the laryngopharynx with the trachea. At the 

entrance to the larynx the aryepiglottic folds pass from the lateral margins of the 

epiglottis to the dorsal wall of the larynx bypassing the arytenoid cartilages laterally. 

That part of the cavity between the entrance to the larynx (aditus) and the level of the
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vocal folds is called the vestibule. Some domestic animals have vestibular folds and 

lateral laryngeal ventricles located in this region, but these are absent in the goat. 

Because of the absence of the ventricles, the nearly vertical vocal folds are covered with 

mucosa only medially and rostrally, and consequently appear more like heavy ridges 

than true folds.

That part of the laryngeal cavity bounded ventrally by the vocal processes and 

dorsally by the adjacent areas of the medial surfaces of the arytenoid cartilages is known 

as the rima glottidis and is the narrowest part of the laryngeal cavity. The caudal 

inffaglottic compartment of the cavity is bounded by the cricoid cartilage.

The goat has paraepiglottic tonsils which extend from the free edge of the 

aryepiglottic folds to the floor of the vestibule. Solitary nodules are present on the 

epiglottis and the vocal folds.

TRACHEA,

The trachea is a noncollapsible tube supported by cartilage rings (Fig. 1.3). It 

extends from the larynx to the tracheal bifurcation. In the neck region the trachea lies 

ventral to the oesophagus and longus colli and longus capitis muscles which cover the 

ventral surfaces of the vertebral column. Dorsolaterally, the trachea is accompanied by 

the common carotid arteries, the vagosympathetic trunks and the tracheal lymphatic 

trunks.

In the thoracic region the trachea lies dorsal to the cranial vena cava, whilst the 

oesophagus, which has assumed a lateral position in the caudal cervical region, returns 

to a position dorsal to the trachea. At the level of the fourth to sixth intercostal spaces, 

the trachea divides, at the tracheal bifurcation, into the two principal bronchi, and just 

before it branches, it gives off a tracheal bronchus which supplies the cranial lobe of the 

right lung. The number of tracheal cartilages is not constant for any species, and varies 

even between individuals of the same species. In the goat the average is 42. Between
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the ends of each tracheal ring there is a considerable gap which is filled by connective 

tissue and the tracheal muscle. The muscle is made up of smooth muscle fibres arranged 

in a circular fashion.In the goat the left ends of the cartilage rings overlap the right to 

form a characteristic dorsal crest.

The walls of the trachea consist of four layers, a mucosa, a submucosa, a 

musculocartilaginous layer and an adventitia. Seromucous tracheal glands are numerous 

in the deeper layers of the propria and submucosa. These tracheal glands share essential 

features with the glands of the larynx and the pulmonary bronchi. The submucosa is 

thin but well developed dorsally where the cartilages are incomplete. Numerous elastic 

fibres present in the mucosa help the trachea to return to its normal length after it has 

been stretched by the extension of neck.

LUNGS,

Each lung is contained within a pleural sac formed by the parietal and 

mediastinal pleura. Both sacs occupy the thoracic cavity, although the right pleural sac 

is larger than the left, in order to accommodate the larger right lung which is subdivided 

into a greater number of lobes.

The lobes are separated from each other to varying degrees among different 

animal species but are confluent medially in the vicinity of the hilus of the lung. Hare 

(1955) defines a lobe as “ a large area of pulmonary tissue which is ventilated by a large 

bronchus arising from a main bronchus or from the trachea; being separated from 

neighbouring lobes by interlobular fissures which may be continued by connective 

tissue planes.” Using this definition, the right lung of the goat is composed of four 

lobes: cranial (or apical), a middle (cardiac), a caudal (or diaphragmatic) and an 

accessory lobe. The left lung is composed of two lobes, a cranial and a caudal lobe.

For the purpose of description, each lung is described as presenting a cranial 

apex, a caudal (diaphragmatic) base, two surfaces(costal and medial) and three
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borders(dorsal, ventral and basal). It is thus cone-shaped with a narrow apex directed 

into the cupula pleura at the thoracic inlet. The base is wide and concave following the 

contour of the diaphragm to which it is applied. The large costal surface is convex and 

is in contact with the ribs and intercostal muscles. The less extensive medial surface is 

irregular and is divided into a small vertebral part related to the bodies of the thoracic 

vertebrae and a larger mediastinal part related to the mediastinum and the structures 

contained therein. Cranially the mediastinal part bears a well marked concave area, the 

cardiac impression, for the heart.

The ventral border is acute and irregular. In the right lung the ventral border is 

indented at the level of the heart to form the cardiac notch. The dorsal border is thick 

and rounded. It forms the dorsal boundary between the costal surface and the vertebral 

part of the medial surface. The costal and diaphragmatic surfaces meet at the basal 

border which is sharp and runs in a caudodorsal to cranioventral direction.

BRONCHIAL TREE.

At the level of the fourth to sixth intercostal spaces, the trachea branches into 

two thick, but short, principal bronchi.Upon entering the lung, these principal bronchi 

divide into separate lobar bronchi, each of which ventilates one lobe of the lung. The 

walls of the principal bronchi outside the lungs resemble that of the trachea. Within the 

lungs the supporting cartilages of the bronchial walls form irregular plates instead of 

incomplete rings and the smooth muscle is in the form of a double spiral.

The left cranial bronchus, arising from the left principal bronchus caudal to the 

hilus of the lung, immediately divides into cranial and caudal segmental bronchi which 

serve the two parts of the cranial lobe. The right cranial lobe is served by branches of 

the tracheal bronchus.

The middle lobar bronchus arises from the right principal bronchus a short 

distance caudal to the hilus and serves the middle lobe. The accessory lobar bronchus
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which serves the accessory lobe arises at almost the same level as the middle lobar 

bronchus and is directed ventromedially.

The continuation of the principal bronchus into the caudal lobe of the lung is 

termed the caudal lobar bronchus.

The lobar bronchi give rise to a large number of segmental bronchi, each of 

which enters and ventilates a bronchopulmonary segment. Within this segmental 

bronchi further branch to give rise eventually to the bronchioles. Each bronchiole 

ventilates a lung lobule.

The bronchioles are the smallest branches of the conducting tree, and are 

characterised by a diameter of usually less than 1mm and the absence of cartilage plates 

in their walls. The bronchioles themselves branch repeatedly, before terminating as 

terminal bronchioles. Each terminal bronchiole divides into two daughter branches 

called respiratory bronchioles. They resemble the terminal bronchioles in all aspects 

save for the fact that their walls are interrupted by saccular outpocketings the alveoli. 

The respiratory bronchioles terminate in the alveolar ducts, from which the alveolar sacs 

and alveoli arise.
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CHAPTER 2.

GENERAL MATERIALS AND METHODS.



SOURCES OF ANIMALS.

Seventeen normal adult goats/used in the study of the normal histology and 

ultrastructure of the respiratory epithelium. These animals were of various breeds, 

although the majority were of Cashmere breed, and were aged between eight months 

and one year. Those animals used in the study of the postnatal development of the 

respiratory epithelium were also of Cashmere breed and were aged between 3 hours and 

twenty one days. All animals appeared free from clinical respiratory disease on 

presentation, and showed no abnormalities of their respiratory systems at post-mortem 

and histological examination.

Clinical materials were obtained from two small East African goats from 

Tanzania, aged about one year, and one and half years, respectively, and also from a 

locally purchased Cashmere goat aged about 10 months. All three individuals presented 

obvious clinical signs of respiratory distress; Pasteurella haemolytica was isolated 

following microbiological examination in these three cases. A fourth individual, 

obtained as a normal adult was found to have gross pneumonic lesions at post-mortem, 

and was therefore included in this clinical section.

POST-MORTEM TECHNIQUES.

Animals were killed by an overdose of pentobarbital sodium (Euthatal: May and 

Baker, Dagenham) administered intravenously through the cephalic vein. In each 

individual an incision was made from the submandibular space down to the thoracic 

inlet. Access to the thoracic cavity was achieved by cutting through the stemochondral 

joints and the sternum removed. The tongue, larynx, trachea, heart and lungs were 

removed intact. The trachea was sectioned at the bifurcation, and one lung was perfused 

with Karnovsky’s fixative and tied off, the other lung being perfused with buffered 

neutral formalin (BNF). The head was cut off at the atlanto-occipital joint and sagittaly
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sectioned using a band saw, so as to gain access to the nasal cavity and nasopharynx. 

After removing the nasal septum, the surface of one half was washed with Kamovsky’s 

fixative and the other half with BNF. The halves were then used for SEM and LM 

samples respectively.

Tissue samples were taken from preselected sites as follows (Figs 2.1, 2.2, 2.3)

1. Nasal vestibule.

2. Alar fold.

3. Basal fold.

4. Ventral concha: At the level of 2nd cheek tooth.

5. Dorsal concha: At the level of 2nd cheek tooth.

6. Middle nasal concha: From the rostral tip.

7. Nasal septum: At the level of the 2nd cheek tooth.

8. Nasopharynx: A few millimetres rostral to the opening of the auditory tube.

9. Epiglottis: Laryngeal surface, caudal to the apex.

10.Vocal fold.

11. Infraglottic cavity.

12. Dorsal cranial trachea.

13. Ventral cranial trachea.

14. Dorsal caudal trachea.

15 Ventral caudal trachea.

16. Extrapulmonary principal bronchus.

17.Caudal lobar bronchus.

1% Lung parenchyma to include the following:

a) Large bronchiole.

b) Terminal bronchiole

c) Respiratory bronchiole.

d) Alveolar duct and alveoli.



HISTOLOGICAL AND STAINING METHODS.

a') Fixation, embedding and sectioning.

Tissues for examination with the light microscope were fixed in buffered neutral 

formalin for seven days, then trimmed and post-fixed for two days in mercuric chloride 

formol. These fixatives were prepared as follows:

Buffered Neutral Formalin 

Formaldehyde (40%)

Sodium chloride 

Sodium sulphate 

Distilled water

Mercuric Chloride Formol 

Saturated aqueous mercuric chloride 900 ml

Formalin 100 ml

After fixation, tissues were dehydrated, cleared and impregnated with paraffin wax. 

Paraffin embedded sections were cut at 3p,m with a Leitz Rotary Microtome and 

mounted on glass slides

b) Staining:

Mounted sections were routinely stained with standard Haematoxylin and Eosin (H&E) 

and by the Alcian Blue /Periodic Acid Schiff (AB /PAS) (pH 2.5) method for acidic and 

neutral mucosubstances according to a modification of the method of Mowry and 

Winkler (1956) as detailed below:

200 ml 

10 g

30 g 

1800 ml
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Solutions:

1.1% Alcian Blue in 3% acetic acid (pH 2.5).

2 .1% Periodic Acid.

3. Schiff s reagent

Procedure:

1. Hydrate sections.

2. Solution (1) for 4 minutes.

3. Wash in distilled water.

4. Solution (2) for 2 minutes.

5. Wash in distilled water.

6. Solution (3) for 8 minutes.

7. Wash in running water for 10 minutes.

8. Mayer’s haematoxylin for 4 minutes.

9. Wash in running water.

10. Differentiate in acid alcohol for 10 seconds.

11. Wash in running water.

12. Blue nuclei in Scotts tap water substitute.

13. Wash in running water.

14. Dehydrate, clean and mount.

Results:

Acidic mucosubstances stain blue

Neutral mucosubstances stain red

Mixed mucosubstances stain purple
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SCANNING ELECTRON MICROSCOPIC METHODS.

Samples ranging between 0.5mm-2mm thick were left in Kamovsky’s fixative 

overnight, then washed in 0.2M cacodylate buffer for 4hrs and thereafter cold 

dehydrated in a series of graded acetones as follows:

70% acetone for 4 hours.

90% acetone for 2 hours.

100% acetone for 2 hours.

100% acetone overnight.

The samples were then critically-point dried using liquid carbon dioxide in a 

critical-point-drier (Polaron: Watford, U.K.).

The specimens were orientated such that the mucosal surface was uppermost, 

and stuck on aluminium stubs using silver paint and placed in an oven at 37°C for half 

an hour. The specimens were then coated with a gold-palladium mixture in a sputtering 

system.

The fixatives and buffers were made up as follows.

0.2M Cacodvlate buffer 

0.4M sodium cacodylate 

0.2M hydrochloric acid 

Distilled water

(500 mil

250 ml

210 ml

40 ml

Kamov skv’s Fixative (500 mil

lOg paraformaldehyde dissolved in 100 ml of distilled water at 

60°C together with 10 drops of NaOH, and the mixture added to the 

stock solution.
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Stock solution:

0.2M cacodylate buffer 250 ml

25% glutaraldehyde 50 ml

Distilled water 100 ml

TRANSMISSION ELECTRON M ICROSCOPIC M ETHODS.

Small portions of mucosa from preselected sample site numbered 1 to 18 were 

removed, minced in a petri dish to sizes of approximately 0.5 mm^, and then placed in 

chilled Kamovsky’s fixative for at least 24 hours.

The fixative was then drained off and 0.2M cacodylate buffer was added. After 

one hour, the specimens were post-fixed with 1% osmium tetroxide for a further hour. 

Then the specimens were washed three times using distilled water before being 

dehydrated in a graded series of acetones. After dehydration the specimens were put 

through two changes of propylene oxide for 20 minutes each, before being placed in a 

1:1 Emscope Emix resin (Emscope, Ashford- Kent) / propylene mixture for an hour. At 

the end of this time, the mixture was replaced by pure emix resin, in which the 

specimens were left for 3 hours before being placed in plastic mounting moulds and left 

to polymerise in an oven at 60°C.

Thick sections (at lfiM thickness) were cut from blocks of embedded tissues on 

an 9LKB microtome, (Croydon, Surrey). These sections were stained with toluidine 

blue and examined with a Leitz Laborlux II microscope to enable selection of suitable 

areas for thin sectioning and mounting.

Each block was then subsequently trimmed in preparation for further sectioning. 

Ultrathin sections in the silver or gold-pale range (60 - 90 nm thick) were cut on an 

LKB Mk m  ultramicrotome, flattened using xylene vapour, and picked up on Polaron 

300 mesh grids. Grid specimens were stained with uranyl acetate and lead citrate (see 

below) and examined with an Hitachi HS8 transmission electron microscope.
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Toluidine Blue:

Distilled water

1% Borax (sodium tetraborate) 

1% Toluidine blue

l g  

l g  

100 ml

Staining time 15 seconds

Uranvl acetate:

0.2g of uranyl acetate was dissolved in 10 ml of distilled water, 

providing a saturated solution.

Staining time 5 minutes

Lead citrate:

1.33g of lead citrate and 1.76g of sodium citrate were dissolved in 

30ml of distilled water and shaken for 30 minutes.

8 ml of 0.1 M NaOH were added, followed by distilled water, to give a 

final volume of 50 ml.

Staining time 5 minutes

al Light microscopy:

A Leitz Laborlux 12 microscope equipped with a Wild MPS45 Photoautomat Unit was 

used. For black and white photography, Agfa PAN 35mm film (12 ASA) was 

employed. For colour transparencies Kodachrome 25 (25 ASA) film was used. For 

black and white prints Agfa-Gevaert Rapitome Photographic paper P1-P4 using an 

Agfa-Gevaert Rapidoprint PD 3700 automatic processor was employed.

PHOTOGRAPHIC METHODS
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bl Scanning election microscopy:

All SEM samples were examined using a 50IB SEM (Philips, Holland) and viewed at 

an accelerating voltage of 15KV using spot sizes between 200 and 1000. An attached 

automatic Rolliflex camera fitted with Ilford FP4 120 (125 ASA) film was used in 

taking pictures. Black and white prints were prepared as for light microscopy.

cl Transmission electron microscopy:

Electron micrographs were taken using Ilford Technical EM plates (3 V4” x 4^/^”),

developed in PQ Universal and fixed in Ilford Ilfospeed fixer. Black and white prints 

were prepared as above.
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CHAPTER 3.

HISTOLOGICAL AND HISTOCHEMICAL STUDY OF THE 

EPITHELIAL LINING OF THE ADULT GOAT.



INTRODUCTION-

The objective of this study was to provide for the first time a concise account of 

the basic histology of the epithelial lining of the goat’s respiratory tract from the nasal 

vestibule to the alveolus, as well as a preliminary account of the basic histochemistry of 

the respiratory tract mucosubstances.

It was hoped that this would provide a baseline against which future histopathological 

observations could be interpreted, and, in addition, also assist in the interpretation of 

SEM observations, which, although possessing many advantages in revealing surface 

details of large areas of tissue at a wide range of magnifications, are limited where 

examination of subsurface structures are involved.

LITERATURE REVIEW.

HISTOLOGICAL STUDIES.

The earliest documented finding that the trachea and bronchi possess a 

membranous lining was provided by Laurentius in 1602. Later in 1712 Morgagni 

described precisely the nature of the tracheal glands and their ducts. In 1834, Purkinje 

and Valentine described the presence of ciliated cells in the epithelium lining the 

mammalian respiratory tract, observations later supported and augmented with the 

description of the goblet cell (Sharpey, 1836; Henle, 1837; Bowman, 1847; Schulze, 

1872). These descriptions dealt with single cell types however, and it was not until 

1880 that a complete account of the basic histology of the lining epithelium of the 

mammalian respiratory system was first proposed by Aeby. Since then many research 

workers (Waller and Bjorkman, 1892; Ebner, 1902; Kopsch, 1926; Jarvi, 1935; 

Huber, 1945; Engstrom, 1951; Bloom and Engstrom, 1953; Moe, 1955; Rhodin and 

Dalhamn, 1956; Ali, 1965; Bloom and Fawcett, 1976; Mariassy and Plopper, 1983;
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Sorokin, 1988; Adams, 1990; Pirie et a i,  199l a,b) have contributed towards an 

understanding of the subject in a variety of mammalian species.However the goat, 

amongst domestic animals, has received little attention as far as studies of the 

respiratory system are concerned, the available literature only apparently concerning 

itself with the PAS-positive inclusions in the alveolar Type II cells (Atwal et al., 1979).

Light microscopical studies have shown that the rostral part of the vestibule is 

lined by a keratinized stratified squamous epithelium continuous at the external nares 

with the outer skin covering. In the respiratory part of the nasal cavity, this epithelium is 

replaced by a pseudostratified ciliated columnar (typical respiratory) epithelium (Bloom 

and Fawcett, 1976; Dellman and Brown, 1976; Sorokin, 1988) via a narrow zone of 

transitional epithelium (Andrews, 1979; Adams, 1990). The nature and nomenclature of 

the epithelium lining this transitional zone has been the subject of controversy, although 

it is now generally accepted that it is primarily composed of stratified cuboidal cells 

(Andrews, 1979; Sorokin, 1988; Adams, 1990). The respiratory epithelium is typically 

made up of ciliated, mucus-producing, and basal cells, and covers most of the nasal 

conchae and nasal septum (Greenwood and Holland, 1972; Andrews, 1979; Boysen, 

1982; Adams and Hotchkiss, 1983; Popp and Martin, 1984; Majid, 1986; Menco and 

Farbman, 1987; Pirie, 1990).

The lining epithelium of the nasopharynx changes from a pseudostratified 

ciliated columnar epithelium rostrally (similar to that seen in the nasal cavities), through 

an ‘intermediate’ epithelial type to a caudally distributed stratified squamous epithelium 

(Bryant, 1916; Ali, 1965; Ham, 1969; Greenwood and Holland, 1972; Bloom and 

Fawcett, 1976; Nakano, 1986), continuous at the intrapharyngeal ostium with that 

lining the oropharynx and laryngopharynx.

While most of the laryngeal cavity is lined by a pseudostratified columnar 

epithelium, the epiglottis is covered by a stratified squamous epithelium; the vocal cords 

may be lined by either a pseudostratified ciliated columnar (Dellman and Brown, 1976), 

a stratified squamous (Bloom and Fawcett, 1976) or an ‘intermediate’ (Andrews, 1979)
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epithelium.

Histologically the lower respiratory tract, from the trachea down to the level of 

the smaller bronchi, is lined by a typical pseudostratified ciliated epithelium (Bloom and 

Fawcett, 1976; Dellman and Brown, 1976; Plopper et al.t 1983a; Sorokin, 1988) in 

which ciliated, mucus-producing and basal cells are the only cell types discernible. 

Smaller bronchi and bronchioles are lined by a simple columnar or cuboidal ciliated 

epithelium (Dellman and Brown, 1976); as the diameters of the bronchioles decrease, 

the number of mucus-producing cells and ciliated cells decreases, whereas there is a 

concomitant increase in the number of nonciliated bronchiolar epithelial (Clara) cells and 

nonciliated microvillous cells (Dellman and Brown, 1976; Sorokin, 1988). At the level 

of the respiratory bronchioles, characterised by the presence of scattered alveoli opening 

into their lumina, the epithelial lining is composed primarily of cuboidal Clara cells, 

some of which have apical protrusions. Previous studies have demonstrated that 

respiratory bronchioles are present and well developed in rat, mouse, monkey 

(Castleman et al., 1975), dog (Majid, 1986) and man (Sorokin, 1988), but poorly 

developed in the ruminants (Getty, 1975) and absent in the horse (Pirie et al., 1991^). 

The alveolus itself, the site of respiratory gaseous exchange, is lined primarily by the 

alveolar Type I cells, a cell type also known as the squamous alveolar epithelial cell, 

interspersed between which are the less numerous alveolar Type II cells, also known as 

cuboidal alveolar epithelial cells (Atwal and Sweeny, 1971; Sorokin, 1988).

SECRETORY CELL TYPES.

It is generally accepted that the epithelial lining of the conducting airways of the 

mammalian respiratory system contains at least three cells types which are considered to 

be secretory (Jones and Reid, 1978; Nadel et a i,  1979; Dixon, 1992). These are the 

mucus-producing, serous and nonciliated bronchiolar epithelial (Clara) cells. They have 

been distinguished from each other by both cellular morphology and anatomical
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distribution (Breeze and Wheeldon, 1977; Reid and Jones, 1979). In addition, 

histological criteria have also been used to further divide the mucus-producing cell type 

into four categories (Mariassy and Plopper, 1983), although these categories have since 

been reduced to three on the basis of later ultrastructural studies (Mariassy and Plopper, 

1984).

The mucus-producing and serous cells of the submucosal glands and of the 

surface epithelial lining constitute the secretory apparatus of upper and lower respiratory 

airways down to the level of the terminal bronchioles (Jones and Reid, 1978; Breeze 

and Turk, 1984), whereas Clara cells are the secretory cells in the bronchiolar system 

(Pack et al., 1981; Mariassy and Plopper, 1983), although in some species such as the 

rabbit they are distributed in the tracheobronchial airways as well (Plopper et al., 

1983^). By light microscopy Clara cells can be distinguished from mucous cells by the 

presence of a characteristic apical protuberance, by their location, and also by their 

negative staining reaction to PAS (Cutz and Conen, 1971; Mariassy et al., 1988).

The submucosal glands are present in the upper respiratory tract as well as in the 

tracheobronchial tree of the lower respiratory tract. In the latter region, glands lie in the 

submucosa either between the cartilage and the epithelial surface, or between, and 

occasionally external to, the plates of cartilage; they are also present in the membranous 

wall of the trachea (Bozarth and Strafuss, 1974; Mariassy and Plopper, 1983; Iovannitti 

et al., 1985; Majid, 1986; Pirie, 1990). Studies on the bronchial submucosal gland 

show that it is composed of tubules, each formed by mucous or by serous cells, 

connected by a duct system to the airway surface (Meyrick et al., 1969; Spicer et al., 

1983). The surface epithelium is seen to dip into the mouth of the gland to form a 

ciliated duct. This region of the duct system is considered to regulate the balance of 

electrolytes and water in the bronchial gland secretion (Meyrick et al., 1969; Jones and 

Reid, 1978). From the collecting ducts arise the secretory tubules, with serous tubules 

always distal to mucous ones, being usually arranged in clusters at the distal end of the 

mucous tubule. Thus serous cell secretion flows over the surface of mucous cells before



the total secretion passes into the duct system and onto the airway surface (Jones and 

Reid, 1978; Spicer et al., 1983).

MUCUS BLANKET.

The earliest study on mucus is that provided by Bostock in 1805, who pointed 

out the ambiguity which accompanies the use of the term mucus. To date, two centuries 

later, the situation has not improved and the term is still being defined differently in 

various disciplines, as discussed by Jones and Reid (1978). Stedman’s Medical 

Dictionary (1966) defines mucus as “a clear, viscid secretion of mucous membranes, 

consisting of mucin, epithelial cells, leucocytes, and various inorganic salts suspended 

in water”, a similar definition also being provided in Bailliere’s Veterinary Dictionary 

(Blood and Studdert, 1988). The major component of this mucus is water, amounting 

to 95%, while the other 5% is composed of a fractionated mixture of carbohydrates, 

proteins, lipids and inorganic materials (Jeffery, 1978; Dixon, 1992). The 

carbohydrates and proteins are usually found in the form of a number of different 

glycoproteins, each differing in the ratio of its protein to carbohydrate moieties and its 

degree of acidification. Mucin itself is the term used to describe this glycoprotein 

component of the mucus, and is also known to contain 40% carbohydrate in the form of 

numerous side chains (Hafez, 1977).

The secretions of the mucous cells (a term covering those mucus-producing cells 

distributed within the lining epithelium of the respiratory surface, and of the submucosal 

mucous glands) are regarded as glycoproteinaceous in nature, belonging to that group 

generally referred to as epithelial glycoproteins (Gibbons and Mattner, 1966). The 

mucus of domestic animals is known to have two discernible layers, the outer viscous 

gel, whose structure depends primarily on long glycoprotein chains (Cohen and Gold, 

1975), and the inner sol which has little if any elastic or gel character (Veit and Farrell, 

1978). Submucosal gland secretions appear to contribute significantly to the sol layer,
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while surface mucous cells contribute to the gel layer (Dulfano, 1973).The mucus 

produced from these two sources (Reid, 1954; McCarthy and Reid, 1964; Chakrin and 

Saunders, 1974; Jones et al., 1975) forms a blanket in which inhaled particles and 

gaseous pollutants are trapped or dissolved, and this blanket, together with the cilia, 

forms the mucociliary escalator system which propels trapped material towards the 

pharynx, where it is then swallowed (Wright et al., 1983; Dixon, 1992).

THE HISTOCHEMISTRY OF MUCUS

Histochemistry is a biological approach which permits chemical characterisation 

of cell and tissue components in relation to in situ structural organization. Thus it 

combines histology and analytical chemistry under controlled conditions to identify and 

localise chemical substances on a cytological scale (Weiss, 1988).

The histochemistry of the carbohydrate moiety of the mucus has been 

characterised by the use of the Periodic Acid Schiff (PAS) staining reaction (McManus, 

1946), a procedure used routinely in most histology and pathology laboratories (Mowry 

and Winkler, 1956; Wheeldon et al., 1976; Reid and Clamp, 1978; Spicer et al., 1983). 

It permits the localisation of carbohydrate-rich macromolecules such as glycogen and 

glycoconjugates (glycoproteins and proteoglycans), the technique thus being used to 

characterise these glycoconjugates within the mucus blanket and within secretory cells 

of the respiratory tract. Glycoconjugate itself is a term used to describe polymeric 

substances consisting of carbohydrates covalently linked to a non-carbohydrate moiety, 

usually lipid or protein (nucleic acids are excluded).

Two types of glycoconjugates, the proteoglycans and glycoproteins, in which 

carbohydrate is linked to protein, exist within the mucus. The chief difference between 

the two is that while the former is made up of long, unbranched carbohydrate chains, 

most of which have a repeated disaccharide structure, the latter is composed of relatively 

small carbohydrate units commonly referred to as oligosaccharides (Phelps, 1978; Reid
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and Clamp, 1978). Also the two substances tend to occur in different tissues with the 

proteoglycans occurring in skeletal and supporting tissues, and glycoproteins in body 

fluids such as blood and in seromucous secretions (Clamp et al., 1978).

Glycoproteins comprise a wide range of materials with differing properties and 

functions. Mucus glycoprotein, when freshly produced, has a molecular weight of 

several million and about 50% of this is made up of carbohydrates (Reid and Clamp, 

1978). The carbohydrate units project out from the central core of polypeptide. Different 

acid groups (sialic and sulphate) are terminally attached to some of the oligosaccharide 

units. Oligosaccharide units do not completely surround the central core of polypeptide 

but do leave some free stretches (“naked” peptide) to which neighbouring chains can be 

joined by disulphide cystine bonds.

There are four major groups of glycoproteins which have been identified by 

histochemical methods, namely neutral glycoproteins, sialylated glycoproteins in which 

sialic acid is sensitive to the enzyme neuraminidase, sialylated glycoproteins in which 

sialic acid is resistant to neuraminidase and sulfated glycoproteins.

The Periodic Acid Schiff method employed to identify various carbohydrate 

moieties recognises the presence of characteristic vicinal hydroxyl groups attached to 

carbohydrate moieties. A wide range of other stains, including Alcian Blue (AB), are 

routinely employed to identify the various acid groups, allowing further characterization 

of the carbohydrate-rich molecules by assessing their degree of basophilia. The 

presence of sulphate groups or sialic acid in glycosaminoglycan confers a distinct 

basophilia in appropriately fixed material. Glycans with polyanionic groups can also be 

identified by staining with Alcian Blue. A combined Alcian Blue/ Periodic Acid Schiff 

(AB/PAS) stain thus offers a basis for identification of a number of types of 

glycoprotein (Mowry and Winkler, 1956), all active mucous-producing cells staining 

with either PAS or AB, or with both. Stained cells can be assigned to one of four main 

colour groups for qualitative descriptive purposes:

l.Red. Magenta of PAS with no AB; indicative of neutral mucosubstances
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2.Red-Blue. Magenta of PAS with some AB; indicative of mainly neutral with some 

acidic mucosubstances.

3.Blue-Red. Magenta of PAS with AB, the AB predominating, indicative of mainly 

acidic and some neutral mucosubstances.

4.Blue, strong AB masking the PAS indicative of acidic mucosubstances.

Changes in the glycoproteins of the respiratory mucus have long been known to 

be associated with the pathogenesis of obstructive lung diseases, usually these changes 

being brought about by the abnormal activity of the enzyme glycosyltransferase, which 

is responsible for the synthesis of the mucus. Knowledge of the normal histochemistry 

of the respiratory tract mucosubstances can therefore be of value in interpreting the 

pathological changes which occur in different disease conditions, as shown by 

Wheeldon et al. (1976), in cases of chronic bronchitis in the dog, where there was a 

qualitative shift resulting in increased amounts of acidic mucosubstances being 

produced.

This study of the mucosubstances in the goat’s respiratory tract provides a 

semiquantitative, and a qualitative assessment of the mucus-producing apparatus based 

on simple histochemical procedures.

STUDIES OF MUCOSUBSTANCES IN MAMMALIAN SPECIES.

DOG:

Reports of the histochemical composition of canine respiratory mucosubstances 

employing the AB/PAS staining technique have been provided by several workers 

(Goco et al., 1963; Spicer et al., 1971; Wheeldon et al., 1976). The earliest report by 

Goco et al. (1963) using PAS stain only was of use solely for estimating the number of 

mucosecretory units. Later studies by Spicer et al. (1971) were more informative as 

they employed a variety of histochemical methods and were able to demonstrate that 

acidic mucosubstances predominated in the canine tracheobronchial tree. This was later
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confirmed by Wheeldon et al. (1976) in their study of tracheobronchial mucosubstances 

in normal dogs and in dogs suffering from chronic bronchitis; they found that in both 

groups, the majority of surface and glandular mucus-producing cells contained 

predominantly acidic mucosubstances when stained by the AB/PAS method.

Studies on the dog by Majid (1986) incorporated the upper respiratory tract, in 

addition to the tracheobronchial tree. Using the AB/PAS method, he clearly established 

that throughout the respiratory airways of the normal dog, mucus-producing cells at the 

surface and in the submucosal glands contained predominantly acidic or mixed 

mucosubstances.

PIG:

The glycoproteins in the respiratory epithelium of the lobar bronchi of the 

normal pig have been identified by AB/PAS (Jones et al., 1975), with the use of 

sialidase digestion and AB staining either at pH 2.6 or pH 1.0. Qualitative analysis of 

mucus-producing cells shows that in the normal glands most of the glycoproteins are 

neutral and that the small amount of acidic glycoprotein is sialidase-resistant sialomucin. 

Other areas of the respiratory airway of the pig do not appear to have been studied.

COW :

A histochemical study of the mucosubstances in the bovine respiratory tract has 

been provided by Allan et al. (1977). Samples from three clinically normal 6-month old 

calves were taken from segmental bronchi. Further characterization of acidic 

mucosubstances was achieved by neuraminidase digestion followed by AB/PAS at pH 

2.6; this enabled the localisation of neuraminidase-sensitive sialomucins. Sulfomucins 

were identified by acid hydrolysis followed by AB/PAS staining at pH 2.6. Results 

showed that the bronchial surface mucus-producing cells contained almost exclusively 

sulfated acidic mucosubstances, but a few sialylated acidic mucosubstances were also 

encountered.
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In the submucosal glands, there was a wide variation in the quantities of the 

differing mucosubstances, although, overall, approximately equal amounts of neutral 

mucins, and acidic sialomucins and sulfomucins were produced by the glandular cells.

RHESUS MONKEY:

The mucosubstances in the Rhesus monkey have been investigated by St. 

George et al. (1984, 1986), and they established that the surface mucus-producing cells 

within the trachea are predominantly acidic in nature whilst within the submucosal 

gland, mucus-producing cells were mainly neutral in character. Later studies (Plopper et 

al., 1989 included samples from the bronchial airways. The results showed that the 

majority of all granule-containing cells within the epithelial lining were acidic in nature 

(i.e. AB+), with sulfomucins predominating (High iron diamine positive, i.e.HID+; a 

test used to distinguish between sialylated and sulfated glycoproteins). Only a few of 

the cells were PAS+, these cells being AB" and HID'. In the glands the staining pattern 

was reversed, the majority of the secretory products being neutral in nature. Regional 

variations were apparent however; whilst acidic mucosubstances predominated in the 

tracheobronchial surface epithelium, in the more distal airways the mucosubstances 

were mixed in character, with only a few being acidic and HID". In addition, the 

amount of sulfated material in both surface epithelial mucous cells and submucosal 

glands (HID+) decreased in these distal airways.

PATHOLOGICAL ASPECTS OF M AM M ALIAN RESPIRATORY  

MUCOSUBSTANCES.

Many respiratory diseases are seen to be associated with the impairment of the 

mucociliary escalator system (Wheeldon e ta i,  1976; Allan etal., 1977; Jeffery, 1978; 

Nicholls, 1978; Dixon, 1992). This may be due to deficiencies in the ciliary component
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or in the mucous component of the system. The contribution of each component in the 

dysfunction of the system does not yet appear to have been quantified in any species 

(Dixon, 1992).

In disease conditions, changes in glycoprotein secretions do occur (Wheeldon et 

al., 1976; Nicholls, 1978), although these changes are seen to occur in line with the 

proportions of the various types of glycoproteins normally found. The types of granules 

are the same, but the proportion of various granules within a cell changes, as does that 

of the various cell types, so that the mucus produced may be very different (Jones and 

Reid, 1978). These changes are also reflected in the amount of mucus produced as well 

as in the viscosity of the mucus, the latter being dependent on the biochemistry of the 

glycoproteins (Dixon, 1992).

In most disease conditions, e.g. chronic bronchitis, mucus-producing cells of 

the airway surface epithelium increase in number and extend into the bronchiolar 

airways (where they are normally absent) down to the level of the respiratory 

bronchioles. In the bronchial submucosal glands, mucus-producing cell populations 

increase in number (Reid, 1954, 1960 Ellefsen and Tos, 1972). In these cases, the 

degree of sulphation of the glycoprotein in mucus-producing cells is increased (Lev and 

Spicer, 1965; Lamb and Reid, 1969). This increase may be due to a change in the 

degree of sulphation of molecules, or an increase in the concentration of molecules with 

sulphate radicals. In addition, in chronic bronchitis or cystic fibrosis associated with 

lung infection, there is also usually an increase in the proportion of mucous cells in the 

glands containing neuraminidase-resistant sialylated glycoprotein. The same findings 

have been reported by Wheeldon et al. (1976) while investigating mucosubstances in 

naturally occurring cases of canine chronic bronchitis.

Experiments in the rat have also shown that irritation of the airway epithelium 

results in a change in the proportion of cells producing acidic and neutral glycoproteins, 

and thus in alteration to the regional distribution of acidic, neutral and mixed 

mucosubstances along the respiratory airway (Jones and Reid, 1978).
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Changes in the predominant type of acid group have been noted in mucous cells 

in hypertrophied bronchial submucosal glands in pigs with enzootic pneumonia induced 

by intranasal inoculation of Mycoplasma hyorhinis (Jones et al., 1975). Increase in 

gland size was accompanied by a proportional increase in the number of cells containing 

acidic glycoprotein, along with a relative increase in the amount of neuraminidase- 

sensitive sialylated and sulfated glycoprotein and a decrease in the neuraminidase- 

resistant type.

Similar changes have been observed in the nasal epithelial lining of primates 

exposed for a short period to high ambient levels of ozone, resulting in a significant 

initial increase in both acidic and neutral glycoconjugates stored in transitional zone and 

respiratory epithelium of the nasopharynx. However, over a longer period, the 

nasopharyngeal epithelium was minimally affected (Mellick eta l., 1977).

Allan et al. (1977), employed a variety of histochemical staining techniques to 

determine the nature of the mucosubstances in calves with cuffing pneumonia, a 

proliferative pneumonia characterised histologically by the accumulation of cuffs of 

lymphocytes around the airway. They found that pneumonic calves, along with an 

increase in the number of surface epithelial mucus-producing cells, also produced larger 

amounts of neutral mucosubstances and sulfomucins compared to the normal calves.

MATERIALS AND METHODS.

Seventeen clinically normal, adult Cashmere goats of both sexes were used in 

the present study. The method of destruction, post-mortem procedures and sample sites 

were described in Chapter 2
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a) Fixation, embedding and sectioning.

Tissues for examination with the light microscope were fixed in neutral buffered 

formalin for seven days then trimmed and post-fixed for two days in mercuric chloride 

formol. After fixation, tissues were dehydrated, cleared and impregnated with paraffin 

wax. Paraffin embedded sections were cut at 3pm with a Leitz Rotary Microtome and 

mounted on glass slides

b) Stainine:

Mounted sections were routinely stained with standard haematoxylin and eosin (H&E) 

and by the Alcian Blue /Periodic Acid Schiff (AB /PAS) (pH 2.5) method for acidic 

and neutral mucosubstances according to a modification of the method of Mowry 

(1956) as detailed below:

Solutions:

1)1% Alcian Blue in 3% acetic acid (pH 2.5).

2) 1% Periodic Acid.

3) Schiff s reagent.

Procedure:

1) Hydrate sections.

2) Solution (1) for 4 minutes.

3) Wash in distilled water

4) Solution (2) for 2 minutes.

5) Wash in distilled water.

6) Solution (3) for 8 minutes.

7) Wash in running water for 10 minutes.

8) Mayer’s haematoxylin for 4 minutes.

9) Wash in running water.

10) Differentiate in acid alcohol for 10 seconds.

11) Wash in running water.

3 0



12) Blue nuclei in Scotts tap water substitute.

13) Wash in running water.

14) Dehydrate, clean and mount 

Results:

Acidic mucosubstances blue

Neutral mucosubstances red

Mixed mucosubstances purple

R ESU LTS.

NASAL VESTIBULE.

The epithelium lining the rostral portion of the nasal vestibule was of a 

keratinized stratified squamous type (Fig. 3.1) with a few hairs projecting out from the 

surface. Within the submucosa, in the rostral region of the vestibule, simple, tubular, 

sweat glands were abundant

The caudal part of the vestibule was lined by an epithelium similar to that in the 

rostral part, except that in this region it was non-keratinized and no hairs were seen.

The basal surface of the epithelium was seen to undulate, forming epidermal 

papillae which dipped into the submucosa (Fig. 3.1). No mucus-producing cells were 

observed in the surface epithelium, and glands in the submucosa stained negative with 

AB/PAS.

ALAR FOLD.

The rostral mucosa of the alar fold was found to consist of a thick, non- 

keratinized, stratified squamous epithelium containing a few hair follicles. On moving 

caudally there was a gradual change from a stratified squamous to a stratified cuboidal
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type of epithelium (“intermediate”), the cells of which exhibited a slight apical bulge. 

Occasional mucus-producing cells, cuboidal in shape, were observed within the 

epithelium lining the caudal region of the alar fold (Fig. 3.2); these stained blue with 

AB/PAS, thus indicating the presence of acidic mucosubstances. Many glands were 

also found in the submucosa; although a few stained purple with AB/PAS, indicative of 

the presence of mixed mucosubstances, the majority did not stain. Unlike the glands, 

the gland ducts were lined by cells producing acidic mucosubstances.

BASAL FOLD.

The histology of this region showed that the epithelium was also stratified in 

nature, with the rostral region being stratified squamous and caudally changing into a 

stratified cuboidal type. Within the epithelium, mucus-producing cells were observed 

either singly or aggregated together in a row. With AB/PAS,such mucus-producing 

cells stained blue, indicating the presence of acidic mucosubstances.

Submucosal glands were abundant. Although most of them did not pick up the 

AB /PAS stain, those few that did show a positive reaction were found to be mainly 

mixed in character, with only a small minority being acidic or neutral (Fig. 3.3).

NASAL SEPTUM.

The nasal septum, at the level of the third upper cheek tooth (PM ^), was lined by a 

typical respiratory epithelium, i.e. a pseudostratified ciliated columnar epithelium. 

However, the majority of the cells within the epithelium were nonciliated with only a 

few cells bearing short cilia. These nonciliated microvillous cells were observed to be 

numerous in H&E stained specimens. However, with AB/PAS staining, most of the 

cells were observed to be mucus-producing cells while the rest stained negatively. The 

epithelium was quite thick relative to other areas of the nasal cavity examined. Mucus-
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producing cells were very numerous throughout the epithelium; these demonstrated 

exclusively acidic mucosubstances when stained with AB/PAS.

The majority of cells within the submucosal glands demonstrated the presence of 

mixed mucosubstances, although a few cells were seen to contain neutral or, in very 

few cases, acidic mucosubstances.

NASAL CONCHAE

The mucosa of the nasal conchae was found to be lined by a pseudostratified 

ciliated columnar epithelium, in which numerous surface mucus-producing cells were 

seen (Fig. 3.4). The occasional gutters identified on the surface were lined by both 

ciliated and mucus-producing cells. Although no quantitative assessment of the mucus- 

producing cells was carried out, a subjective assessment suggested that they were more 

numerous in the epithelial lining of the middle concha than that of other conchae. The 

histochemistry of the nasal conchal epithelial lining indicated that the surface mucus- 

producing cells contained predominantly acidic mucosubstances (Fig. 3.4). A thin layer 

of acidic mucosubstances located at base of the cilia was frequently observed in the 

epithelium covering the concha.

Submucosal glands were abundant on the nasal conchae. On the ventral concha 

AB/PAS staining indicated the presence of equal amounts of neutral and mixed 

mucosubstances with very little acidic mucosubstances. The dorsal nasal concha had 

equal amounts of the three types of mucosubstances, whereas on the middle nasal 

concha, although neutral, mixed and acidic mucosubstances were also found, the 

amounts of each decreased in that order.

33



NASOPHARYNX.

The thickness of the epithelium, as well as the type of epithelium, varied within 

the nasopharynx. Although the rostral region was lined by a pseudostratified ciliated 

columnar epithelium, this changed into a transitional “intermediate” epithelial zone, and 

then into a stratified squamous epithelium caudally. It was within this transitional zone 

that there was a gradual changing and merging of the typical pseudostratified ciliated 

epithelium into a stratified cuboidal epithelium, which itself then changed and merged 

into the caudal stratified squamous epithelium The mucosal lining was frequently highly 

folded in both the transitional zone and the caudal region of the nasopharynx. Beneath 

these folds, aggregates of lymphoid tissue were seen (Fig. 3.5). The epithelium 

covering these lymphoid areas was seen to be attenuated in thickness, with only 

occasional mucus-producing cells being encountered. In the gutters between the folds, 

the epithelium was relatively thick and mucus-producing cells more numerous.

Generally surface mucus-producing cells, which were virtually all acidic in 

nature, decreased in number on moving from rostral to caudal regions. Submucosal 

glands were numerous, being abundant in the middle and caudal regions of the 

nasopharynx. These glands were seen deep in the submucosa, usually below the 

lymphoid tissue in the transitional zone. The glands in the nasopharynx exhibited 

predominantly acidic mucosubstances with occasional neutral mucosubstances (Fig. 

3.5).

EPIGLOTTIS.

The laryngeal surface of the epiglottis was found to be lined by a non- 

keratinized stratified squamous epithelium. The occasional taste buds observed 

embedded within the epithelium presented a shape similar to an onion bulb, with the 

long axis of the constituent cells lying perpendicular to the luminal surface (Fig. 3.6).
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Predominantly acidic submucosal glands were seen beneath this lining epithelium, being 

connected to the luminal surface by ducts lined by low columnar to cuboidal epithelial 

cells. No mucus-producing cells were seen in the surface epithelium.

VOCALFOLD.

The rostral surface of the vocal fold was also lined by a typical non-keratinized 

stratified squamous epithelium (Fig. 3.7). This continued caudally over the fold, 

changing gradually into a stratified squamous epithelium characterised by a sharp 

demarcation between a one or two cell thick layer of squamous surface cells resting on 

an inner mass of underlying cuboidal cells. This stratified squamous epithelium showed 

an abrupt change to the pseudostratified ciliated epithelium found lining most of the 

caudal surface of the vocal fold. In this latter region however, ciliated cells, as well as 

mucus-producing cells, were very few, the majority of cells being nonciliated columnar 

cells.

The submucosa was rich in glands. The glands demonstrated almost equal 

amounts of acidic and neutral mucosubstances with AB/PAS staining (Fig. 3.7). 

Surface mucus-producing cells were exclusively acidic in character.

INFRAGLOTTIC CAVITY.

Three types of epithelia were identified lining the infraglottic cavity. Rostrally, 

the cavity was lined by a non-keratinized stratified squamous epithelium. This gradually 

gave way to an “intermediate” type of epithelium. This intermediate epithelium, being 

similar to that observed in the rostral region of the nasal cavity and also in the 

nasopharynx, gradually changed from a stratified cuboidal type of epithelium, through a 

pseudostratified low columnar, into a caudally located typical pseudostratified ciliated 

columnar epithelium.
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Within the epithelium mucus-producing cells were rarely seen, but where 

present exhibited the presence of acidic mucosubstances with AB/PAS staining. 

Submucosal glands were very well developed and equal amounts of acidic, neutral and 

mixed mucosubstances were demonstrated by the use of AB/PAS staining.

TRACHEA.

Except for a slight increase in the number of mucus-producing cells on moving 

caudally, no striking differences in the histological appearance of the epithelium lining 

the cranial and caudal portions of the trachea were observed.

Differences were observed between dorsal and ventral tracheal epithelial linings 

however. The mucosa of the dorsal trachea was highly folded forming alternating 

relatively tall folds and deep gutters; the former were sometimes approximated leaving 

the gutter as a narrow cleft. The epithelium was of a pseudostratified ciliated columnar 

type, punctuated with mucus-producing cells. Ducts leading from submucosal gland 

orifices were seen opening into the base of the gutters (Fig. 3.8).

In contrast, the mucosal folds of the epithelium lining the ventral trachea were 

lower and wider than those of the dorsal trachea, resulting in the formation of relatively 

shallow, widely spaced gutters in this region.

AB /PAS staining indicated that the surface mucus-producing cells, which were 

few in number, were all acidic in character. A slight increase in the number of mucus- 

producing cells was noted on moving caudally, although the histochemical nature of the 

mucosubstances was not altered. Mucosubstances within the submucosal glands were 

predominantly acidic, with only a few producing a mixed reaction; neutral 

mucosubstances were only occasionally observed.

36



BRONCHI.

Although the height of the epithelium decreased as the airway decreased in 

diameter, a pseudostratified ciliated columnar epithelium still lined the bronchial tree at 

every level.

The mucus-producing cells encountered within the epithelium increased in 

number on moving down into the smaller bronchi; in contrast, submucosal glands 

became less numerous. There was a gradual increase in the amount of mixed 

mucosubstances in the surface mucus-producing cells with the decrease in airway 

diameter, such that in the smallest bronchi AB/PAS staining demonstrated almost equal 

proportions of both acidic and mixed mucosubstances. In the submucosal glands of the 

larger bronchi, there was a greater proportion of acidic mucosubstances, with only a 

few neutral being neutral, whereas down the smaller bronchi neutral mucosubstances 

predominated, with only a few acidic and mixed glands being found (Fig. 3.9).

BRONCHIOLES.

These were identified by the absence of cartilage in their walls. At the level of 

the terminal bronchioles, the pseudostratified ciliated columnar epithelium that lined the 

proximal generations of the bronchioles changed into a poorly ciliated, simple columnar 

epithelium. The lining epithelium of the bronchioles proximal to the terminal 

bronchioles was composed of ciliated, mucus-producing, and nonciliated bronchiolar 

epithelial (Clara) cells. The later cell type was identified histologically by its negative 

reaction to AB/PAS, and also the presence of a characteristic apical protuberance. 

Further distally into the respiratory bronchioles, characterised by the presence of alveoli 

along their walls (Fig. 3.10), the lining epithelium was of a simple cuboidal type, 

composed of a few ciliated cells and numerous Clara cells.

A few mucus-producing cells, producing both acidic and mixed mucosubstances
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were observed in the bronchiolar epithelium proximal to the terminal bronchiole (Fig. 

3.11). In the terminal bronchioles as well as the respiratory bronchioles, mucus- 

producing cells were not observed. Submucosal glands were not observed within the 

bronchiolar tree.

ALVEOLAR MEMBRANE.

The cells lining the alveoli were seen to be attenuated, such that most of the cells 

consisted of long thin,cytoplasmic processes. Occasional gaps were observed in the 

alveolar walls.

Two cell types could be identified. One, the alveolar Type II cell, which was 

almost cuboidal in shape and usually seen to be located in a recess of the alveolar 

lumen. The second, the alveolar Type I cell, which had a bulging ovoid mass projecting 

into the lumen of the alveolus and long thin, flat cytoplasmic processes. AB/PAS 

staining did not indicate the presence of any mucosubstances in the lining epithelium.

MS.CUSSIQ.EL

The purpose of undertaking this study was to provide a histological description 

of the lining epithelium of the entire respiratory tract of the goat, and to establish the 

histochemical nature of the mucosubstances found in the mucus-producing cells of the 

epithelial lining and submucosal glands.

The present study established that the nasal vestibule was lined by a thick 

keratinized stratified squamous epithelium, containing a few hairs, hair follicles and 

sebaceous glands, together with numerous AB/PAS-negative serous submucosal 

glands. Such findings reported for the goat are in agreement with observations of the 

nasal vestibule in the mouse (Greenwood and Holland, 1972), rat (Andrews, 1974) and
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dog (Adams and Hotchkiss, 1983; Majid, 1986). As this region of the respiratory tract 

is exposed to significant mechanical insult, a thick keratinized lining epithelium is 

necessary to protect the underlying cells and tissues against both wear and tear and fluid 

evaporation.

Caudal to the nasal vestibule, in the nasal cavity, an “intermediate” epithelium, 

forming a nonciliated transitional zone between the stratified squamous epithelium of the 

nasal vestibule and the ciliated epithelium of the nasal concha, was seen to line part of 

the alar and basal folds. Although the standard histological textbooks appear to describe 

only a stratified squamous and a typical respiratory epithelium as lining this region of 

the nasal cavity (Banks, 1981; Weiss, 1988). A similar type of what, in the present 

study, has been termed “intermediate” epithelium has been described previously, 

although variously, as transitional in the dog (Adams and Hotchkiss, 1983; Majid, 

1986) or stratified cuboidal in the calf and pig (Adams 1986; 1990). This transitional 

zone of “intermediate” epithelium in the caprine nasal cavity was seen to be lined by a 

stratified cuboidal epithelium rostrally; further caudally within this zone, the uppermost 

cells became low columnar in morphology, with a few ciliated cells beginning to 

appear. A few individual cuboidal (surface) mucus-producing cells were also observed 

in the rostral region of the zone, the number of these cells increasing caudally. These 

individual mucus-producing cells stained blue with AB/PAS, indicative of the presence 

of acidic mucosubstances, contrasting with reports in the rat (Katz and Merzel, 1977) 

and horse (Pirie, 1990) where the individual mucous cells exhibited a mixed or neutral 

reaction with AB/PAS.

Within this transitional zone in the goat, submucosal glands were found to be 

numerous. The majority of such glands exhibited no reaction to AB/PAS staining, a 

result indicative of their serous nature. The observation of numerous serous glands in 

this region of the nasal cavity supports similar observations in the rat (Katz and Merzel, 

1977) and horse (Pirie, 1990). These glands, as well as those observed in the nasal 

vestibule, are associated with the copious watery secretions provided by the nasal
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epithelium in the goat, such secretions being a familiar feature of the nasal cavity in 

many mammalian species including rat (Katz and Merzel, 1977), dog (Majid, 1986), 

man (Thaete et al., 1981) and horse (Pirie, 1990). Such serous secretions are essential 

to maintain the required humidity of the inhaled air and prevent the dessication of the 

underlying epithelium. In addition this layer of serous glands, found only in this region, 

probably provides the source for much of the abundant watery secretion released in 

allergic or inflammatory states (Phipps, 1981). Long excretory ducts from these 

AB/PAS negative, compound acinous glands are reported to be lined by mucous cells in 

the horse (Pirie, 1990) and mouse (Thaete et al, 1981), these were also seen in the goat 

in the present study.

Caudal to the transitional zone the nasal cavity was lined by a typical 

pseudostratified columnar (respiratory) epithelium, composed of ciliated and mucus- 

producing cells. Nonciliated microvillous cells were not always discernible with the 

light microscope. Individual mucus-producing cells, which produced an acidic reaction 

with AB/PAS, were seen to increase in number on moving caudally within the cavity. 

This observation in the goat supports previous observations in man (Tos, 1982) where 

a rostrocaudal increase in the number of mucus-producing cells was reported on the 

ventral and middle nasal conchae. The present findings are also in agreement with 

findings in the Bonnet monkey (Harkema et al., 1987), where it was established that 

there was a general rostrocaudal increase in the quantity of total epithelial 

mucosubstances produced along the septal and lateral walls of the nasal cavity, and that 

there were more acidic than neutral mucosubstances in the caudal nasal airway than in 

the rostral region.

Whereas acidic mucosubstances predominated in the individual mucus- 

producing cells in all areas of the nasal conchae, a variation of the types of 

mucosubstances present in the mucus-producing cells of the submucosal glands of the 

ventral, dorsal and middle conchal epithelium was noted in the goat. In the dorsal 

concha, submucosal glands were seen to have equal amounts of mixed, neutral and

4 0



acidic mucosubstances, whilst in the ventral and middle conchae, submucosal glands 

produced primarily neutral and mixed mucosubstances and very little of the acidic type. 

These observations differ from those made in the dog, where acidic mucosubstances 

were seen to predominate within the submucosal glands of the middle nasal conchae. 

(Majid, 1986). Indeed, Bang and Bang (1977), investigating a number of small 

mammals and over 100 species of birds, noted that the submucosal glands of the nasal 

cavity showed significantly different staining properties in regard to acidic, neutral or 

mixed moieties according to the species studied.

In the nasopharynx the lining epithelium differed from the rostral to the caudal 

regions. Rostrally, the nasopharynx was lined by a relatively thick pseudostratified 

ciliated columnar epithelium, similar to that which lined the nasal conchae. An 

intermediate epithelium, similar to that observed and discussed in the rostral region of 

the nasal cavity, itself grading from a low columnar to a stratified cuboidal epithelium, 

was then seen to extend further caudally. A stratified squamous epithelium was 

observed to line the most caudal region of the nasopharynx. Beneath the intermediate 

and stratified squamous epithelia, aggregates of lymphoid tissue were encountered; the 

epithelium overlying these structures was seen to be attenuated and devoid of mucus- 

producing cells.

Such observations in the goat nasopharynx as made in the present study are 

similar to those made previously in a number of mammalian species including man 

(Bryant, 1916; Schumacher, 1927; Copenhaver, 1964; Ali, 1965, 1967; Greep, 1966; 

Ham, 1969; Takahashi, 1973; Bloom and Fawcett, 1976), non-human primates (Leela 

and Kanagasuntheram, 1973), dog (Majid, 1986) and mouse (Nakano, 1986). In all 

these studies, however, a number of different terms have been employed to described 

the lining epithelium of the transitional zone; these terms have included the intermediate 

epithelium (Bryant, 1916; Ali, 1965, 1967), the transitional epithelium (Ali, 1965, 

1967; Leela and Kanagasuntheram, 1973; Majid, 1986) and the stratified columnar 

epithelium (Schumacher, 1927; Copenhaver, 1964; Greep, 1966; Ham, 1969;
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Takahashi, 1973; Bloom and Fawcett, 1976). In the present study, the term 

intermediate epithelium, as previously defined in the rostral region of the nasal cavity as 

well as the nasopharynx, has been used to refer to this lining epithelium between the 

rostral pseudostratified ciliated columnar epithelium and the caudally-directed stratified 

squamous epithelium. Lymphocytes were often seen infiltrating the nasopharyngeal 

epithelium in the goat, an observation also noted in previous studies in non-human 

primates (Leela and Kanagasuntheram, 1973) and the horse (Mair et al., 1987), 

although, in these latter cases, the observed infiltration of lymphocytes was more 

noticeable. Mair etal. (1987) also observed free lymphocytes in the nasopharyngeal 

lumen of the horse, although no such observation was made in the goat in the present 

study. The present observations of follicle-associated epithelium (FAE), commonly 

referred to as a “lymphoepithelium”, overlying the lymphoid aggregates in the 

nasopharynx in the goat has also been noted in several mammalian species including the 

horse (Mair et al., 1987; Pirie, 1990), the dog (Majid, 1986), and the sheep (Chen et 

al., 1991). Such lymphoepithelium was observed in the goat to be attenuated and 

devoid of mucus-producing cells, features also observed in the horse (Mair et al., 1987; 

Pirie, 1990) and sheep (Chen et al., 1991). It is believed that the FAE consists of 

specialised cells which are concerned with the uptake and transport of exogenous 

proteins (Richardson etal., 1976; Chen etal., 1991; Schuh and Oliphant, 1992).

Individual mucus-producing cells were frequently observed in the rostrally 

situated respiratory epithelium lining the nasopharynx, their numbers decreasing 

considerably in the intermediate epithelium, and disappearing completely in the stratified 

squamous epithelial lining of the caudal region. Such individual mucus-producing cells 

were found to produce exclusively acidic mucosubstances in the goat, as were those of 

the well developed submucosal glands usually observed deep below the aggregates of 

lymphoid tissue.

Very few studies of the histochemistry of the mucosubstances produced by 

mucus-producing cells in the nasopharyngeal region in mammals appear to have been
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carried out. It is therefore all the more interesting that a comparison of the present 

results with those of other studies available in this area (Pirie, 1990) show that in both 

the goat and horse individual mucus-producing cells within the epithelium produce 

acidic mucosubstances, while the mucus-producing cells of the submucosal glands 

show a marked species difference in the mucosubstances produced, those in the goat 

being acidic in nature while those in the horse produce both acidic and mixed reactions 

with AB/PAS.

The entire laryngeal surface of the epiglottis of the goat was lined by a thick, 

non-keratinized stratified squamous epithelium which functions to provide protection 

against the wear and tear to which the laryngeal surface is exposed. Whereas in the 

present study only one type of epithelium was seen to line the laryngeal surface of the 

epiglottis, in the mouse three types of epithelia (keratinized squamous, transitional (the 

intermediate epithelium of the present study) and ciliated) have been observed to line the 

rostral, middle and caudal regions of the laryngeal surface of the epiglottis respectively 

(Nakano and Muto, 1987). The transitional epithelium reported in the mouse took the 

form of a stratified cuboidal epithelium. Such an epithelial type has also been observed 

in the epiglottis of the horse (Pirie, 1990) and the dog (Majid, 1986). A ciliated 

epithelium located towards the base of the epiglottis has also been reported in man 

(Copenhaver, 1964, Ham, 1969; Bloom and Fawcett, 1976).

It was also noted in the present study that taste buds are a feature of the 

epiglottic epithelial lining. These presented an appearance similar to an onionbulb. Such 

extra-oral taste buds have been previously reported in the lining epithelium of the 

pharynx and larynx of several mammalian species including human (Lalonde and 

Eglitis, 1961), ox (Palmieri e ta l,  1983), goat (Palmieri e ta l ,  1983), sheep (Bradley et 

a l, 1980), cat (Stedman et a l, 1983) and mouse (Nakano and Muto, 1987). Some 

workers have gone further to provide a numerical assessment of these extra-oral taste 

buds in a number species including the sheep (Bradley et a l, 1980) and the cat 

(Stedman et a l , 1983). In some species these taste buds account for a considerable
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percentage of the total taste bud population; for example in the hamster they account for 

about 11.1% (Miller and Smith, 1984). It is believed that these extra-oral taste buds 

probably play little or no role in food selection, but serve to protect the airway (Stedman 

et al., 1983) although the mechanisms through which this is achieved are not well 

established (Travers and Nicklas, 1990).

The absence of individual mucus-producing cells and the presence of numerous 

submucosal glands in the epithelium lining the epiglottis in the goat are features which 

have also been noted in many mammalian species including dog (Majid, 1986), rat 

(Andrews, 1974), horse (Pirie, 1990) and mouse (Nakano and Muto, 1987). Such 

glands in the goat demonstrated the presence of both acidic and neutral mucosubstances 

produced in abundancy, whilst mixed mucosubstances, were only occasionally 

observed. The present findings in the goat are similar to findings in the dog (Majid,

1986) and horse (Pirie, 1990), where both mixed and acidic mucosubstances were 

encountered. The histochemistry of this region in other mammalian species does not 

appears to have been widely investigated.

In the present study, three types of epithelia (non-keratinized stratified 

squamous, intermediate and pseudostratified ciliated columnar) were observed in 

different locations within the infraglottic cavity. Individual variations in the distribution 

of these various types of epithelia were noted, with some individuals presenting 

predominantly a stratified squamous lining epithelium, while other individuals presented 

mainly an intermediate type of epithelium. The typical pseudostratified ciliated columnar 

epithelium was only observed in the caudal regions of the infraglottic cavity, and its 

extension within the cavity was also observed to vary from individual to individual This 

is in agreement with findings in the dog (Majid, 1986) where, out of 18 animals 

examined, five had a complete ciliation of the ventral larynx, six had a stratified 

squamous epithelial lining in this region, and the remaining seven animals, had a larynx 

lined by both stratified squamous and pseudostratified ciliated epithelia inbetween which 

a “cobblestone” type of epithelium (intermediate) was observed.
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The surface epithelium of the vocal fold and infraglottic cavity had relatively few 

mucus-producing cells, all producing acidic mucosubstances. The paucity of these cells 

in the laryngeal mucosa has also been reported in the dog (Majid, 1986). This paucity 

seems to be compensated for by the well developed submucosal glands in these regions, 

such glands being seen to be abundant in the vocal folds and infraglottic cavity in the 

goat, supporting similar observations in the mouse (Pack et al., 1981) and the dog 

(Majid, 1986). Whereas in the present study acidic, mixed and neutral mucosubstances 

were found in almost equal amounts in the laryngeal submucosal glands, in the dog 

only a few neutral mucosubstances were encountered in the glands of the ventral larynx, 

most mucosubstances being acidic in character (Majid, 1986).

The tracheobronchial system of the goat presented a similar basic histological 

morphology to that of other mammalian species, being lined by a pseudostratified 

ciliated columnar epithelium which decreased in thickness with decreasing airway 

diameter.

In the present study, individual mucus-producing cells were relatively few in the 

trachea in comparison to those seen in the upper respiratory tract, although the numbers 

of individual mucus-producing cells gradually increased from the cranial to caudal 

tracheal regions. Within the bronchial system, however, individual mucus-producing 

cells became much more numerous. The observation of numerous submucosal glands in 

the tracheobronchial epithelium in the goat supports similar observations in the sheep 

(Goco et al., 1963; Mariassy and Plopper, 1983), man (Thurlbeck et al., 1961) and cat 

(Florey et al., 1932; Gallagher et al., 1975), but contrasts with observations in the 

rabbit and guinea pig (Nadel et al., 1979) and the mouse (Hansell and Moretti, 1969; 

Pack et al., 1981), where tracheal submucosal glands are infrequent or even absent. The 

equine trachea is markedly different from that of the goat in that surface mucus- 

producing cells are numerous while submucosal glands are few (Pirie, 1990).

As in the larynx, surface mucus-producing cells within the caprine trachea were 

exclusively acidic in character. Within the bronchial tree, however, a shift in the
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histochemistry of individual mucus-producing cells was observed, such that both acidic 

and mixed mucosubstances were encountered in equal proportions. Submucosal glands 

exhibited an inverse relationship to surface mucus-producing cells in relation to their 

abundance;, cranially, the glands were numerous and well developed, but as the airway 

diameter decreased, fewer glands were encountered. Within the tracheal submucosal 

glands the mucosubstances were predominantly acidic, with a few being mixed; neutral 

mucosubstances were only occasionally observed.

The present findings in the goat are in agreement with previous observations 

made in the dog where it has been established that acidic mucosubstances predominate 

both in the surface mucus-producing cells and in the submucosal glands (Spicer et al., 

1971; Wheeldon et al., 1976; Majid, 1986). In addition, the histochemistry of the 

surface mucus-producing cells observed in the present study appears to be similar to 

that observed in a number of mammalian species including the ox (Allan et al., 1977), 

sheep (Mariassy et al., 1988), Rhesus monkey (St. George et al., 1984) and man 

(Spicer et al., 1983) and even in species where surface mucus-producing cells are few 

such as the rat (Mochizuki et al., 1982) and rabbit (Plopper et al., 1984). Species 

differences in the histochemical nature of the surface mucosubstances has been noted in 

the hamster, where most of the surface mucus-producing cells in the trachea secrete 

neutral mucosubstances; in addition, a regional shift in the nature of the secreted 

mucosubstances, as noticed on moving from the trachea into the bronchial tree in the 

goat, has also been observed in the hamster where, at the bronchial level, the 

mucosubstances are primarily mixed (Becci et al., 1978).

The histochemistry of the tracheobronchial submucosal gland mucosubstances 

of the goat observed in the present study differs markedly from that observed in the 

sheep (Mariassy et al., 1988), pig (Jones et al., 1975), ox (Allan et al., 1977), man 

(Spicer et al., 1983), Rhesus monkey (St. George e ta l,  1986; Plopper etal., 1989), 

mouse (Pack eta l., 1980 1981) and rabbit (Plopper et al., 1984), where neutral 

mucosubstances have been observed to predominate with only a few acidic
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mucosubstances being present.

Within the bronchiolar tree the lining epithelium was seen to differ at different 

levels. The proximal bronchiolar generations arising from the smaller bronchi were 

lined by a pseudostratified ciliated columnar epithelium which gradually changed to 

simple columnar and then low columnar at the level of the terminal bronchioles, the cell 

population in the bronchioles proximal to the terminal bronchiole being composed of 

ciliated, nonciliated (AB/PAS negative) and mucus-producing cells. The histology of 

the bronchioles proximal to the terminal bronchiole in the goat appears therefore to be 

similar to that seen in most mammalian species, including the pig (Baskerville, 1970a), 

monkey (Castleman et al., 1975), horse (Mair et al., 1987; Pirie, 1990), coyote 

(Morrison etal., 1983), dog (Majid, 1986) and man (Ten Have-Opbroek etal., 1991).

The histology of the distal conducting airways (terminal bronchioles, respiratory 

bronchioles and alveolar ducts) has been extensively covered in various mammalian 

Species including pig (Baskerville, 1970a), monkey (Castleman et al., 1975; Tyler et 

al., 1988Plopper et al., 1989;), ferret (Hyde et al., 1979), guinea pig (Lechner and 

Banchero, 1982), rat (Massaro et al., 1984), coyote (Morrison et al., 1983), rabbit 

(Hyde et al., 1983; Plopper et al., 1983^), dog (Majid, 1986), horse (Pirie, 1990) and 

man (Ten Have-Opbroek et al., 1991). The present study established that in the goat 

respiratory bronchioles, characterised by a simple cuboidal epithelial lining and the 

presence of alveoli within their walls, are prominent and well developed. This contrasts 

with previous observations that respiratory bronchioles are poorly developed or even 

absent in ruminants (Getty, 1975), including the ox (Iovannitti et al., 1985). Although 

respiratory bronchioles are present in most of the mammalian species so far examined, 

including dog (Majid, 1986), ferret (Hyde etal., 1979), coyote (Morrison etal., 1983), 

pig (Baskerville, 1970a) and guinea pig (Lechner and Banchero, 1982), they have been 

shown to be rudimentary in the rat (Massaro et al., 1984) and rabbit (Hyde et al., 1983; 

Plopper et al., 1983^), and absent in the horse (Pirie, 1990). In the present study, 

ciliated cells were seen to be present in the epithelium lining the respiratory bronchiole,
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supporting previous observations made in the ferret (Hyde et al., 1979), coyote 

(Morrison et al., 1983), pig (Baskerville, 1970a) and guinea pig (Lechner and 

Banchero, 1982). However, observation made in the present study of the presence of 

ciliated cells in the respiratory bronchioles contrasts with findings made in the dog 

(Majid, 1986), where no ciliated cells were observed in the respiratory bronchioles.

Similar to other mammalian species (Plopper et al., 1989), the present study 

noted that submucosal glands were absent in the bronchiolar tree of the goat, and thus 

mucosubstances were produced solely by the individual mucus-producing cells in the 

lining epithelium. Such mucus-producing cells, relatively fewer in number than those in 

the bronchi, produced both acidic and mixed reactions to AB/PAS. The paucity of 

mucus-producing cells in the bronchiolar epithelium was compensated for by the 

presence of numerous nonciliated bronchiolar epithelial (Clara) cells, which are known 

to be secretory (Breeze and Wheeldon, 1977; Reid and Jones, 1979; Pack etal., 1981). 

No mucus-producing cells were observed from the terminal bronchioles distally. The 

absence of mucus-producing cells in the terminal and respiratory bronchioles noted in 

the present study, although in agreement with previous observations in numerous 

mammalian species including the ox (Iovannitti et al., 1985), ferret (Hyde et al., 1979), 

guinea pig (Davis etal., 1984), dog (Majid, 1986) and horse (Pirie, 1990), differs from 

observations in the Rhesus monkey (Plopper et al., 1989) and in humans (Ten Have- 

Opbroek et al., 1991) where individual mucus-producing cells producing acidic to 

neutral mucosubstances have been observed within these distal airways.

The architecture of the caprine alveolus was observed to be similar to other 

mammalian species, and indeed at the light microscope level no species differences were 

observed, although at the ultrastructural level species differences are apparent. Thj 

ultrastructure of this region, being part of the distal airways, is discussed in detail in 

Chapter 5.

In the present study of the alveolar membrane of the goat, AB/PAS staining did 

not indicate the presence of any mucosubstances in the lining epithelium. Although such
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an observation is in agreement with findings in several mammalian species including 

sheep and buffalo (Atwal et al., 1979), it contrasts with a previous study in the goat 

(Atwal et al., 1979), where PAS- positive inclusions were observed in alveolar Type II 

cells.

49



CHAPTER 4.

EPITHELIUM OF THE NORMAL RESPIRATORY TRACT OF THE 

ADULT GOAT: A SCANNING ELECTRON MICROSCOPICAL

STUDY.



INTRODUCTION.

The development of a rudimentary type of scanning electron microscope in 1937 

(Wang and Thurlbeck, 1970), and the subsequent dramatic advances in SEM 

technology, were instrumental in allowing detailed ultrastructural studies of the surface 

features of the mammalian respiratory tract to be undertaken. One of the major 

advantages of the SEM in such studies is that large areas of tissue can be surveyed with 

ease, either at low or high magnifications, with a high degree of resolution compared 

with the light microscope or any other electrical optical system (Kimoto and Russ, 

1969). In addition, specimen preparation is relatively straight forward. The many SEM 

studies carried out to date have involved examining different sites within the respiratory 

tract of various mammalian species (Table 4.1).

LITERATURE REVIEW.

Information on the presence, distribution and surface characteristics of those cell 

types previously identified by the LM, the details of which were discussed in the 

previous chapter, has been considerably augmented by such SEM studies, and a brief 

review of the major points of these features, as revealed by SEM, is given below.

UPPER RESPIRATORY TRACT.

SEM studies of the stratified squamous epithelium which lines the nasal 

vestibule of most mammalian species have demonstrated polygonal, flattened cells on 

the surface, and such cells are often grouped into patches separated by grooves 

(Andrews, 1979; Nakano, 1986). Such features are also observed where the stratified 

squamous epithelium extends onto the rostral part of the alar fold and straight fold 

(Adams and Hotchkiss, 1983; Adams, 1990).
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Caudal to this vestibular region, the cuboidal surface cells of the epithelial lining 

of the transitional zone appear spherical or irregularly polygonal in outline and are 

characterised by a bulging apical surface carrying short surface microvilli (Andrews, 

1979).

Mucus-producing cells throughout the epithelial lining of the respiratory tract are 

seen to have variable surface characteristics (Popp and Martin, 1984). Typically, the 

apical surface has a prominent central protuberance beneath which mucous granule 

outlines are often seen (Andrews, 1979; Davis and Smallman, 1988). Other cells 

demonstrate a flat, sometimes depressed apical surface, with an aggregation of 

microvilli around the periphery (Popp and Martin, 1984).

SEM studies have shown that the ciliated cells of the pseudostratified epithelium 

covering the nasal conchae, walls and septum of the nasal cavity bear microvilli 

intermingled between straight or wavy cilia exhibiting smooth, rounded or curled tips. 

At the ultrastructural level regenerating ciliated cells can be seen to have many more 

microvilli and fewer cilia per cell than those seen on ciliated cells (Menco and Farbman,

1987). Polygonal or rounded nonciliated microvillous cells, characterised by a convex 

apical cell surface carrying a dense population of microvilli, are another cell type 

revealed at the ultrastructural level in the nasal cavity epithelial lining (Boysen, 1982).

The detailed SEM studies carried out by Nakano (1986) on the mouse, as well 

as confirming histological observations that the nasopharynx was lined rostrally by a 

typical respiratory epithelium and caudally by a stratified squamous epithelium, also 

demonstrated the presence of an intermediate type of epithelium organised into zones 

composed of numerous different cell types. Andrews (1979), Majid (1986) and Pirie et 

al., (1991a) made similar observations on the presence of a transitional zone, lying 

between the rostral ciliated and the caudal squamous epithelia, in the mouse, dog and 

horse respectively

SEM studies of the rat (Andrews, 1974), dog (Majid, 1986) and mouse 

(Nakano, 1986) have shown that the dorsal surface of the epiglottis is lined by a
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typically flattened stratified squamous epithelium, the surface cells of which are 

characteristically similar to those seen in the nasal vestibule. Squames are frequently 

seen detaching from the underlying surface.

Similar studies have shown that the vocal folds are lined primarily by a stratified 

squamous epithelium, the cells of which have a tendency to bulge out from the surface. 

In some individuals, however, an intermediate type of epithelium, composed of 

nonciliated microvillous cells with surface microprojections, appears to line the caudal 

region of the folds. A few progenitor ciliated cells are found intermingled inbetween the 

nonciliated cells (Andrews, 1979). Most of the infraglottic region is seen, under SEM, 

to have a lining epithelium organised into longitudinal folds and is clothed by a heavy 

carpet of cilia (Majid, 1986; Pirie et al., 1991a).

LOWER RESPIRATORY TRACT.

At low magnification, the lining respiratory epithelium of the trachea and 

bronchi of most mammalian species studied (Table 4.1) is seen to be organised into 

longitudinal folds and gutters, with submucosal gland orifices being located mainly in 

the latter. This typical respiratory epithelium is composed of ciliated, mucus-producing 

and nonciliated microvillous cells (Greenwood and Holland, 1972; Alexander et al., 

1975; Andrews, 1979; Wilson et al., 1984; Pirie eta l., 1991b). SEM studies have 

shown that the distribution and proportion of these cell types along the tracheobronchial 

tree differ from species to species, and sometimes, within a species, from individual to 

individual (Hyde et al., 1979Tandler et al., 1983a»b).

At the bronchiolar level, there is the appearance of the nonciliated bronchiolar 

epithelial (Clara) cell, which, under SEM, may exhibit different morphologies. 

Typically, the round, oval or polygonally shaped Clara cells are characterised by dome­

shaped protuberances at the apical surface (Mariassy et al., 1975); these protrusions do 

not usually cany surface microvilli (Plopper et tf/.,1983a*b) and instead have a rough,
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knobby surface (Andrews, 1979). None of the mucus-producing cells in the 

bronchioles appear to exhibit the typical central secretory protuberances characteristic of 

many of these cells elsewhere in the respiratory tract. Instead they have a flattened or 

low concave apical surface with a sparse distribution of microvilli, similar to mucus- 

producing cells sometimes seen on the nasal septum. Ciliated cells in the bronchioles 

are similar to those seen elsewhere, although their cilia seem to be relatively shorter and 

fewer per cell (Mariassy et al., 1975).

Where present, low magnification SEM observations of the respiratory 

bronchioles, which are characterised by the presence of small numbers of alveoli 

opening off the bronchiolar lumen, show the epithelial lining to have a “roughened” 

appearance due to the presence of many Clara cells exhibiting typical dome-shaped 

apical protuberances. In some species, such as the dog (Majid, 1986), the epithelium 

appears devoid of ciliated cells, although in other species such as the rat and mouse, 

ciliated cells, although few in number, remain a component of the epithelial lining of the 

respiratory bronchioles (Wang andThurlbeck, 1970Mariassy etal., 1975).

Much of the work on the mammalian respiratory tract with SEM has dealt 

primarily with the ultrastructural features of the lung parenchyma itself (Table 4.1) The 

alveoli, which constitute the bulk of the lung parenchyma, are separated by thin 

interalveolar septa. SEM studies have provided detailed observations of the surface 

features of the alveolar Type I and Type II cells which line the alveolar walls.

The alveolar Type I cell is characterised by a bulging central region, and 

extensive cytoplasmic sheets ending in slightly raised cell borders, this cell type has 

relatively few surface microprojections. In contrast, the alveolar Type II cell, which is 

raised above the general surface, has a characteristically rounded outline and a dense 

population of surface microprojections (Nowell and Tyler, 1971; Mariassy et al., 

1975Greenwood and Holland, 1972; Andrews, 1979). A third epithelial cell (alveolar 

brush cell or Type III cell) has been reported in the rat (Meyrick and Reid, 1968; Hijiya, 

1978a’b).
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Alveolar macrophages have been observed, appearing to have variable shapes 

(Majid, 1986), and are occasionally seen migrating through alveolar pores. The latter 

appear as perforations in the alveolar walls and are rounded or oval in outline with 

variable diameters. Their abundancy differs from species to species (Mariassy et al., 

1975; Iovannitti et al., 1985; Pirie, 1990).
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TABLE 4.1

SCANNING ELECTRON MICROSCOPY OF THE RESPIRATORY TRACT OF

SPECIEs

Rat

Mouse

Hamster

Guinea Pig 

Rabbit

VARIOUS MAMMALIAN SPECIES.

SAMPLE SITE /CELL TYPE REFERENCE

Alveolus

Trachea and Bronchi 

Bronchioles 

Alveolar brush cell 

Larynx and Trachea 

Trachea and Bronchi 

Terminal Bronchiole 

Clara cell

Pulmonary Macrophage 

Alveolus 

Nasal cavity 

Clara cell 

Lung: bronchiole 

Nasal Cavity 

Respiratory Tract Surface 

Lung: Alveolus 

Alveolus

Lung: Bronchiole and Alveolus

Lung: Neuroepithelial bodies

Clara cell

Nasopharynx

Lung: Alveolus

Tracheobronchial Epithelium

Lung

Trachea

Clara cell

Trachea

Distal airway

Lung: Alveolus

Bronchus

Lung: Neuroepithelial Body 

Clara cell

Kuhn and Finke (1972) 

Alexander et al.,(1975)

Ebert and Terracio (1975b) 

Hijiya, (1975a*b)

Smolich et al.(1977)

Luchtel (1978)

Lum et al., (1978)

Smith et al., (1979)

Warheit and Hartsky(1988) 

Scheuermann et al., (1988)

Spit et al.(1989)

Okada (1969)

Wang and Thurlbeck (1970) 

Adams, (1972)

Greenwood and Holland, (1972) 

Kuhn and Finke (1972)

Amy et al., (1977)

Zitnik et al. (1978)

Hung et al., (1979)

Smith et al., (1979)

Nakano (1986)

Kuhn and Finke (1972)

Becci et al., (1978)

Krause and Leeson (1973) 

Althoff et a/., (1981)

Okada (1969)

Dahlgren et al., (1972)

Davis et al., (1984)

Holma (1969)

Sturgess (1977)

Cutz et al., (1978)

Smith et al., (1979)
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Coyote Entire Respiratory Tract Morrison et al. (1983)

Ferret Lower Respiratory Tract Hyde et a/.(1979)

Monkey Trachea, bronchi and alveolus Greenwood and Holland, (1973)

Intrapulmonary airway Castleman et al., (1975)

Lung: Respiratory Bronchiole Mellickef al., (1977)

Tracheobronchial epithelium Wilson et al., (1984)

Nasal epithelium Harkema et a l, (1987)

Lung: Bronchus Maina (1988)

Lung: Bronchiole Tyler et al, (1988)

Dog Lung: Parenchyma Groniowski et al., (1972)

Lung: Bronchiole and Alveolus Kondo et al., (1973)

Trachea, Gland orifice Nadel (1977)

Lung: Bronchiole, Alveolus HydQetal., (1978)

Interalveolar Pores Parra et al., (1978)

Nasal Cavity Edwards et a l, (1983)

Trachea and Lung Wright e ta l, (1983)

Cat Trachea Tandler et a l, (1983a»b)

Lung: Bronchiole Plopper et al., (1983a)

Ox Bronchus,Bronchiole & Alveolus Mariassy et a l, (1975)

Clara Cell Smith et al., (1979)

Lower Respiratory Tract Iovannitti et al., (1985)

Sheep Lung: Bronchiole,Alveolus Tyler ef al, (1971)

Pharynx Chen et a l, (1991)

Pig Lung: Bronchiole Wang and Thurlbeck (1970)

Trachea and Bronchi Mebus and Underdahl (1977)

Trachea and Lung Williams and Gallagher (1978)

Lung: Bronchiole and Alveolus Winkler and Cheville (1984)

Nasal Mucosa Adams (1990)

Man Lung: Bronchiole Wang and Thurlbeck (1970)

Larynx Biondi and Biondi-Zappala, (1974)

Lung Gonzales-Crussi and Boston, (1974)

Bronchus Ebert and Terracio (1975a)

Trachea and Lung Greenwood and Holland, (1975)

Clara cell Smith et a l, (1979)

Nasal Mucosa Boysen (1982)

Nasal Mucosa Winther et a l, (1984)

Nasal Cavity Moor-Gillon (1985)

Proximal border of respiratory unit Ten Have-Opbroek et al.( 1991)
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Hose Lung: Bronchiole and Alveolus 

Lung: Bronchus and Alveolus 

Respiratory Bronchiole 

Upper Respiratory Tract 

Lower Respiratory Tract

Tyler et al., (1971) 

Nowell and Tyler (1971) 

Tyler et al., (1988)

Pirie et al., (1991a)

Pirie et al., (1991^)
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MATERIALS AND METHODS.

Seventeen clinically normal, adult Cashmere goats of both sexes were used in 

the present study. The method of destruction, post-mortem procedures and sample sites 

were described in Chapter 2.

For SEM, samples measuring about 5mm x 5mm and 0.5mm-2mm thick were 

left in Kamovsky’s fixative overnight, then washed in cacodylate buffer and thereafter 

cold dehydrated in a series of graded acetones.

The samples were then critically-point dried using liquid carbon dioxide 

(Polaron; Watford, U.K.) in a critical-point drier (Polaron; Watford, U.K.).

The specimens were orientated such that the mucosal surface was uppermost, 

stuck on aluminium stubs using silver paint, and placed in an oven at 37°C for half an 

hour. The specimens were then coated with a gold-palladium mixture in a sputtering 

system. All SEM samples were examined using a 501B SEM (Philips, Holland) and 

viewed at an accelerating voltage of 15KV using spot sizes between 200 and 1000. An 

attached automatic Rolliflex camera fitted with Ilford FP4 120 (125 ASA) film was used 

in taking pictures.

LM samples were fixed in neutral buffered formalin for seven days then 

trimmed and post-fixed for two days in mercuric chloride formol.After fixation, tissue 

were dehydrated, cleared and impregnated with paraffin wax. Paraffin embedded 

sections were cut at 3|im with a Leitz Rotary Microtome, mounted on glass slides and 

routinely stained with standard Haematoxylin and Eosin (H&E) and by the Alcian Blue 

/periodic acid Schiff (AB /PAS) (pH 2.5) method Mowry (1956).
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RESULTS.

NASAL VESTIBULE.

The epithelial surface in the rostral part of the vestibule was composed of 

flattened, polygonally shaped squamous cells (Fig. 4.1),characterised by the presence 

of numerous microplicae on the apical surface and frequently seen detaching, either 

singly or in groups, from the underlying layers. A few caudally directed hair shafts 

were seen projecting from the hair follicles (Fig. 4.1).

Further caudally in the vestibule, hair follicles disappeared although the 

squamous surface cells of the now highly folded epithelium retained their typical surface 

characteristics. Occasional circular arrangements of squamous cells surrounding a 

central pore (Fig. 4.2) were seen on the surface; these were assumed to be the openings 

of submucosal serous glands identified histologically as being present in this region.

Further caudally towards the alar fold, the squamous nature of the cells changed 

to present a more rounded outline (Fig. 4.3) and microplicae or microvilli, or a mixture 

of the two, on their apical surfaces (Fig. 4.4). Individual cell boundaries were clearly 

seen. In this region the presence of mucus-producing cells was revealed by the presence 

of mucous strands being extruded at the apical surface (Fig. 4.5). Occasional cells 

presenting a wrinkled apical surface were observed; these were presumed to be dying 

cells (Fig. 4.3).

ALAR FOLD.

A narrow strip of rostral epithelium lining the alar fold had squamous surface 

cells characteristically similar to those seen in the middle of the nasal vestibule.

On moving away from this rostral zone, surface cells of the epithelium were 

cuboidal cells. The histology of this region showed a stratified cuboidal type of
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epithelium (Fig. 4.6). With the SEM these polygonal cuboidal cells, sometimes 

exhibiting rounded cell boundaries, were seen to have bulging apical surfaces, giving 

the epithelium a “cobblestone” type of appearance (Fig. 4.7). At high magnification, a 

dense population of microvilli was observed on the apical surface (Fig. 4.8). Some of 

the apical cells had their surfaces thrown into folds, thus giving them a wrinkled 

appearance, and some could be seen detaching from the cells beneath.

In the caudal region of the alar fold, another cell type, smaller than the cuboidal 

cells and characterised by a flattened or slightly depressed apical surface carrying a 

sparse population of microvilli, was observed (Fig. 4.9). The concentration of surface 

microvilli around the periphery of this cell made the cell borders much more prominent; 

such cells were considered to be mucus-producing cells (Fig. 4.10). Submucosal gland 

orifices were occasionally found opening onto the epithelial surface (Fig. 4.11).

BASAL FOLD.

Light microscopy of the rostral region of the basal fold showed the epithelium to 

be stratified and composed of cuboidal cells. With SEM, the “cobblestone” appearance 

of the epithelium, similar to that of the alar fold, was again obvious (Fig. 4.12). SEM 

studies also showed that, although most of these cells carried microprojections in the 

form of short microvilli, these were not easily discernible on some of the cells. 

Intermingled between the cuboidal cells were mucus-producing cells characterised by 

slightly depressed apical surfaces and a peripheral aggregation of microvilli. Most of the 

mucus-producing cells in this region were seen actively secreting coalescing mucous 

granules (Fig. 4.13).

Although in some individuals there was a gradual transition, in a few cases even 

an abrupt transition (Fig. 4.14), from this more rostral nonciliated cuboidal epithelium 

to a caudally located ciliated epithelium, in most individuals these two epithelia were 

separated by a transitional zone composed of a mixture of ciliated and nonciliated cells,
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the latter often in different stages of ciliogenesis (Fig. 4.15). Where present, this ciliated 

epithelium was marked by short, longitudinal grooves (Fig. 4.16) of variable depth. 

Mucus-producing cells were also present within this ciliated epithelium, being 

concentrated in and around the gutters and typically presenting a slightly shallow apical 

surface carrying a sparse distribution of microvilli. Outwith the gutters, mucus- 

producing cells were usually encountered singly or in groups of three or four. These 

frequently exhibited an irregular apical protuberance projecting above the level of the 

cilial tips (Fig. 4.17), such actively secreting cells being apparently absent within the 

gutters.

VENTRAL NASAL CONCHA.

The ventral concha was covered by a ciliated epithelium within which 

nonciliated cells were distributed either individually or in groups (Figs. 4.18, 4.19). 

Most ciliated cells exhibited a high density of individually separated, tall, slender cilia, 

often appearing matted at their tips (Fig. 4.19). In a few areas, the ciliated cells carried 

short, matted cilia, of uneven lengths and of low surface density (Fig. 4.20); these cells 

were considered to be regenerating ciliated cells.

Small patches composed primarily of two types of nonciliated microvillous cell 

were observed within the ciliated epithelium. One cell type was characterised by a 

polygonal shape presenting distinct cell borders and a primarily convex apical surface 

with a small radius of curvature, carrying an even distribution of short microvilli (Fig. 

4.20). The other cell type, characterised by a peripheral aggregation of microvilli, could 

be identified as a mucus-producing cell either by a depressed apical surface frequently 

covered by a thin layer of mucus (Fig. 4.21) or a central apical protuberance resulting 

from mucus granules accumulating beneath the plasmalemma (Fig. 4.22).The 

distribution and abundancy of ciliated and nonciliated cells varied from one area to 

another in a given individual, as well as from individual to individual; however in
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totality the ciliated cells appeared to be the dominant cell type (Fig. 4.21).

Occasional bigger patches consisting of regenerating ciliated cells were also seen 

(Fig. 4.23); these cells were characterised primarily by the presence of cilia of unequal 

lengths and sparse surface distribution. Both mature and regenerating cells carried 

surface microvilli, relatively longer than those seen on the cuboidal cells of the basal 

fold.

Although under light microscopy numerous submucosal gland orifices were 

frequently observed, with SEM these were only occasionally encountered.In three 

individuals, no orifices could be visualised as the surface was completely covered by 

sheets of mucus.

DORSAL NASAL CONCHA.

At low magnification the heavily ciliated epithelium, containing numerous 

individually scattered microvillous cells, was normally seen to be organised into 

longitudinal folds. Patches of nonciliated microvillous cells, many of which appeared to 

be mucus-producing cells and some to be regenerating ciliated cells, were observed 

(Fig. 4.24). Occasional submucosal gland openings, usually surrounded by a rim of 

nonciliated microvillous cells, were noted (Fig. 4.25).

In some of the specimens examined the surfaces were extensively covered by 

mucous sheets. In the few occasional areas devoid of mucus, the underlying epithelium 

was seen to be ciliated, although the cilia were matted and disorganised (Fig. 4.26).

MIDDLE NASAL CONCHA.

The epithelial lining of the middle nasal concha presented a characteristic 

longitudinally orientated pattern of folds and gutters of variable depths, the former being 

seen to run for only a short distance compared to those on the ventral and dorsal nasal
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conchae (Fig. 4.27).

Individual mucus-producing cells were frequently observed protruding above 

the surface of a heavily ciliated epithelium (Fig. 4.28), with mucous granules frequently 

being seen through the plasmalemma. In some individuals, the scattered nonciliated 

cells showed a relatively flat apical surface covered by a thin layer of mucus (Fig. 

4.29). Patches of nonciliated microvillous cells were very infrequently distributed 

throughout the ciliated epithelium.

The ciliated cells were similar to those on both the dorsal and ventral nasal 

concha, bearing long, slender and free-standing cilia, in most cases with a wave in their 

middle (Fig. 4.30). Occasionally cilia would appear clumped and matted (Fig. 4.31). 

Islands of regenerating ciliated cells were not uncommon.

NASAL SEPTUM.

The nasal septum was normally covered by a ciliated epithelial lining differing 

from that of the middle nasal concha in containing many small, scattered, irregularly 

shaped patches of nonciliated microvillous cells, giving the epithelium as a whole a 

“moth-eaten” appearance. A few individuals had a complete carpet of cilia lining the 

nasal septum. The cilial carpet was occasionally interrupted by single mucus-producing 

cells protruding from the surface in the characteristic manner seen in the nasal conchae 

(Fig. 4.19). Again, as in the ventral nasal conchae, developing ciliated cells seen in 

different stages of ciliogenesis had fewer cilia than the normal mature cell, these cilia 

appearing disorganised, and of unequal lengths (Fig. 4.32).

Two apparently separate types of nonciliated microvillous cell could be 

identified. One was polygonal in outline with pentagonal or hexagonal borders 

predominating, with a slightly convex apical surface and a high density of apical 

microvilli. The other had a more or less circular cell boundary, with a slightly depressed 

apical surface carrying fewer although taller microvilli (Fig. 4.32). Some of the latter
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type o f nonciliated microvillous cells could be seen discharging mucus in the form of 

granules.

NASOPHARYNX.

The epithelium of the rostral part of the nasopharynx was seen to be similar to 

that lining the nasal conchae. It was again organised into longitudinally orientated 

gutters, and composed of ciliated cells amongst which nonciliated microvillous cells 

were scattered either individually or in groups of two or three (Fig. 4.33). In some 

areas the carpet of cilia was interrupted by islands of nonciliated microvillous cells, 

some of which were identifiable as mucus-producing cells, characterised by a typical 

apical protuberance of mucus (Fig. 4.34).

In the middle, transitional zone, region of the nasopharynx the epithelial lining 

was seen to exhibit a gradual change-over from a heavily ciliated rostral region, through 

a less ciliated but more secretory epithelium, to a final squamous epithelial lining typical 

of the caudal region of the nasopharynx. In this middle region the epithelium was 

initially seen to be thrown into deeper and more irregular corrugations (Fig. 4.35), and 

the number of ciliated cells, themselves carrying fewer and shorter cilia per cell, were 

seen to decrease at the expense of microvillous cells (Figs. 4.36). The nonciliated 

microvillous cells in this transitional zone were polygonal, or occasionally rounded, 

with distinct cell borders and slightly bulging apical surfaces (Figs. 4.37, 4.38). Small 

numbers of cells were commonly seen extruding thick columns of mucus in this region 

(Figs.. 4.39, 4.40). Further caudally, but still in the transitional zone, the epithelial 

lining was characterised by a lack of ciliated cells and the presence of exclusively 

microvillous cells arranged in a "paving-stone" fashion(Fig. 4.41); the latter were 

hexagonal in outline, with evenly distributed surface microprojections, the lengths of 

which varied from cell to cell (Figs. 4.42). Occasionally cells would be seen lifting off 

from the epithelial surface (Fig. 4.43).
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Further caudally, towards the oropharynx, the epithelium was lined by 

squamous surface cells. Flattened squames could be seen detaching from the underlying 

surface. Only occasional submucosal gland orifices were encountered.

In the transitional and caudal regions of the nasopharynx, the epithelium was 

seen to be punctuated by low domes (Fig. 4 44). In the latter region these domes were 

characterised by covering squamous surface cells which were arranged in a circular 

fashion and had relatively larger apical surfaces than the cells surrounding the dome, 

which appeared wrinkled (Fig. 4 44). Within the dome, intercellular pores or fissures 

were sometimes found to contain what appeared to be cellular aggregates. In the 

transitional zone, where the lining epithelium was made up of both ciliated and 

nonciliated microvillous cells, exaggerated fissures between adjacent cells covering the 

domes were a common feature (Fig. 4.45).

EPIGLOTTIS.

The epithelial surface of the laryngeal aspect of the epiglottis was composed of 

squamous surface cells (Fig. 4.46), and was of a similar nature to that observed in the 

nasal vestibule. The flattened squamous cells, bearing apical surface microplicae (Fig. 

4.47), were arranged in an irregular paving-stone fashion; a few desquamating cells 

could be seen at the surface. Towards the base of the epiglottis there was a tendency for 

the mucosa to form transverse folds. Here the squamous cells had a “spongy” 

appearance, with the majority of cells exhibiting a wrinkled apical surface carrying 

microplicae or microvilli.

The rounded or oval orifices of submucosal glands were seen to be sparsely 

distributed across the epiglottal surface (Fig. 4.46).

Taste buds were also often seen. They were characterised by a central pore from 

which sensory hairs projected out, and occasional droplets were seen being discharged 

(Fig. 4.47).
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VOCAL FOLD:

In most of the individuals examined (13/17), the epithelium lining the vocal fold 

was found to be of a squamous type. In these individuals the epithelium was similar to 

that seen on the laryngeal surface of the epiglottis, except that the squamous cells were 

relatively thicker and most of them carried surface microvilli instead of microplicae. 

Occasionally squamous cells with wrinkled apical surfaces were seen to be lifting off 

from the underlying surface; these were thought to be dying cells. This part of the 

larynx differed also from the epiglottis in that no taste buds were encountered, in spite 

of an extensive search of the area. However, submucosal gland orifices were not 

uncommon (Fig. 4.48).

In three individuals, flattened polygonal microvillous cells and mature and 

regenerating ciliated cells covered the surface (Fig. 4.49).

The change-over from the nonciliated to a ciliated epithelium was quite abrupt 

(Fig. 4.50). In the ciliated portion of the epithelium, a few regenerating ciliated cells 

could be seen, characterised by the presence of surface microvilli interspersed between 

short cilia of uneven lengths (Fig. 4.51). The ciliated portion of the epithelium had 

many ciliated cells carrying dense aggregations of cilia of approximately equal lengths; 

these cilia were, however, of relatively short length as compared to those in the nasal 

cavity..

INFRAGLOTTIC CAVITY.

At low magnification the mucosa of the infraglottic cavity in all individuals was 

seen to form irregular longitudinal ridges separated by deep (Fig. 4.52) or occasionally 

shallow gutters (Fig. 4.53). The nature of the epithelial lining of the infraglottic cavity, 

however, exhibited a great deal of individual variation. In two of the individuals
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examined, the cranial half of the cavity was covered by a squamous type of epithelium 

(Fig. 4.54), while the caudal half was lined by an intermediate epithelium composed of 

nonciliated microvillous and regenerating ciliated cells. In three individuals, the cranial 

half of the infraglottic cavity was lined by this intermediate epithelium and the caudal 

half by a ciliated epithelium with occasional patches of nonciliated microvillous cells. In 

four individuals the infraglottic cavity was lined by a ciliated epithelium except for a 

narrow cranial zone which was lined by the intermediate epithelium. The majority of 

animals examined, (8/17) had an infraglottic cavity lined entirely by a ciliated epithelium 

composed primarily of cells bearing tall, slender cilia similar to those seen in the caudal 

regions of the nasal conchae. Readily identifiable mucus-producing cells, characterised 

by apical protuberances, were infrequently observed.

Submucosal gland orifices of relatively bigger diameters than those seen in the 

nasal conchae were frequently encountered in the gutters; in areas where the epithelium 

was ciliated, the orifices were surrounded by nonciliated microvillous cells.

TRACHEA.

Cranial dorsal trachea.

Under low magnification the dorsal surface was seen to be thrown into high 

folds and deep intervening gutters (Fig. 4.55). In most of the individuals examined, the 

epithelium covering the folds was extensively ciliated (Fig. 4.56), with only occasional 

patches of nonciliated microvillous cells apparent. Nonciliated microvillous cells found 

on the folds had slightly raised apical surfaces carrying a dense population of microvilli 

of uniform lengths; some cells had short microvilli while others in the vicinity had 

relatively taller microvilli (Fig. 4.57). Regenerating ciliated cells, characterised by few 

cilia of uneven lengths, were occasionally found inbetween the nonciliated microvillous 

cells (Fig. 4.57). Although it was not always possible to visualise the floors of the 

gutters due to the highly folded nature of the epithelium, in areas where the floors were
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exposed, there were relatively few ciliated cells, the majority of the cell population being 

of the nonciliated microvillous type (Fig. 4.58). These latter cell types, however, were 

different from those found on the surface of the folds in that their apical surfaces were 

flat or shallow (Fig. 4.59), bearing relatively taller and more sparsely distributed 

microvilli; corresponding histological study showed this cell type to be, in all 

probability, a mucus-producing cell. Microvillous cells were also observed around 

submucosal gland orifices, the latter being infrequently observed, and located in the 

exposed portions of the gutters.

A few functional mucus-producing cells characterised by the presence of typical 

apical protuberances were observed, primarily on the folds, scattered singly or in pairs 

amongst the ciliated cells.

Cranial ventral trachea.

The mucosa lining the ventral surface of the cranial trachea was heavily ciliated 

with many irregular depressions giving the epithelium a characteristic surface pattern 

(Figs. 4.60, 4.61). In contrast to the dorsal cranial trachea, submucosal gland orifices 

were frequently observed opening onto the floors of the gutters. Regenerating ciliated 

cells, characterised by numerous microvilli intermingled with few cilia of uneven 

lengths, were not uncommon, and were observed amongst patches of nonciliated 

microvillous cells.

Caudal trachea.

In general, the lining epithelium of the caudal region of the trachea resembled 

that o f the cranial trachea. The only noticeable difference under SEM was that, caudally, 

fewer patches of nonciliated microvillous cells were seen, especially on the ventral 

surface. The dorsal surface, which was still heavily ciliated, remained virtually 

unchanged along the entire length of the trachea.
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F.XTRAPULMQNARY BRONCHUS.

The extrapulmonary bronchial epithelium was similar to that of the trachea in 

being ciliated and thrown into folds. Submucosal gland orifices were significantly fewer 

in the bronchial epithelium than in the cranial ventral trachea, and were confined to the 

gutters, where the density of ciliated cells was much less compared with that on the 

fold.

A marked increase in the number of nonciliated microvillous cells distributed 

amongst the ciliated cells was noted on moving from the trachea into the 

extrapulmonary bronchus. These nonciliated cells were characterised by a relatively flat 

apical surface carrying sparsely distributed microvilli. A cell type, identified as a mucus- 

producing cell, was characterised by a circular and depressed apical surface covered by 

a thin film of mucus (Fig. 4.62). More typical mucus-producing cells with apical 

protrusions were occasionally observed, mostly on the fold.

CAUDAL LOBAR BRONCHUS.

The folded ciliated epithelium of the extrapulmonary bronchus continued into the 

caudal lobar bronchus. At low magnification the epithelium was again seen to be thrown 

into alternating folds and gutters. The depths of gutters were variable; in some areas 

they were quite wide and very shallow, whereas in other areas they were relatively 

deep. Within the gutters a number of oval or rounded submucosal gland openings were 

observed, these orifices being surrounded mainly by nonciliated microvillous cells, 

some of which could be seen discharging mucous droplets (Fig. 4.63). The lining 

epithelium carried a thick carpet of cilia, being more densely organised on the folds 

rather than on the floor of the gutters; the cilia were straight and slender, and had 

rounded tips which curved to form small hooks (Fig. 4.64). Scattered, nonciliated 

microvillous cells and identifiable mucus-producing cells could be seen between the
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ciliated cells.

In the smaller bronchi, there was a marked decrease in the ratio of ciliated to 

nonciliated microvillous cells. In addition, the number of submucosal gland openings 

decreased.

In the smallest bronchi, ciliated cells, the cilia of which appeared curved and 

entangled with each other, especially at the tips, were organised into small patches 

separated by mucus-producing cells (Fig. 4.65).

BRONCHIOLE.

Bronchioles were not readily distinguishable from the smallest bronchi by their 

epithelial surfaces; only those bronchioles confirmed as such in fractured specimens by 

the absence of cartilage plates in their walls were therefore examined.

Immediately after the bronchioles branched off from small parent bronchi, the 

epithelium was found to be composed of a mixture of four readily identifiable cell types, 

the ciliated, nonciliated microvillous, mucus-producing and nonciliated bronchiolar 

epithelial (Clara) cells. In the bronchioles proximal to terminal bronchioles, the relative 

numbers of these cells differed from individual to individual, although in each case 

ciliated cells were numerically dominant. Nonciliated microvillous cells were less 

numerous, while Clara cells were few in number, and identifiable mucus-producing 

cells infrequently observed.

Ciliated cells bore relatively shorter cilia compared to those in the upper 

respiratory tract, and, although cilia formed matted clumps in some individuals, these 

cilia frequently appeared relatively straight and slender (Fig. 4.66). Mucus-producing 

cells had a rounded, slightly depressed surface with relatively few tall apical microvilli; 

their identification was confirmed by the presence of mucus granules, observed in 

fractured specimens. Nonciliated microvillous cells had flattened apical surfaces 

carrying a dense aggregation of relatively thin microvilli.
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Clara cells presented different shapes and different apical surface characteristics, 

but were always seen to carry a characteristic surface population of many thick, stubby 

microvilli (Fig. 4.67). Some had a polygonal cell surface outline with prominent raised 

pentagonal boundaries predominating (Fig. 4.67). The circular cell boundaries of other 

cells were not prominent. Clara cells also presented different apical cell surface 

characteristics. Some had a flattened surface (Figs. 4.66, 4.68), others a low bulge 

centrally, with a flattened periphery (Fig. 4.67). Still other Clara cells had their whole 

apical surface raised into a dome projecting beyond the cilial tips; these were especially 

obvious in the terminal and respiratory bronchioles (Fig. 4.70). Such dome-shaped 

Clara cells became more numerous as the diameter of the bronchiole decreased. In most 

cases this dome-like protrusion appeared full and bulging, and carried few short surface 

microvilli. Occasionally it was seen to be “withered” and collapsing (Fig. 4.71).

TERMINAL BRONCHIOLE.

From the level of the terminal bronchioles distally, there was a marked shift in 

ratio of cell types, with an increase in the number of Clara cells, a significant decrease in 

the number of ciliated cells, and the disappearance of mucus-producing cells. In these 

smaller bronchioles, ciliated cells appeared to carry fewer cilia per cell, these cilia 

appearing relatively short and wavy compared to those in the larger bronchioles. In 

these regions, Clara cells presenting a dome-shaped apical surface predominated over 

those which had a flat, oval apical surface

RESPIRATORY BRONCHIOLE.

The presence of respiratory bronchioles arising at the termination of terminal 

bronchioles in the goat lung was established at low magnification with SEM. These 

were identified as short tubes whose walls were perforated by a number of alveoli (Fig.

7 1



4.69). The epithelium was essentially composed of two cell types, ciliated cells and 

nonciliated bronchiolar epithelial (Clara) cells. The latter were the more numerous of the 

two cell types, ciliated cells being fewer in number and appearing to be squeezed 

between adjacent Clara cells (Fig. 4.70). The cilia of these ciliated cells were short, 

ruffled and fewer in number per cell in comparison to ciliated cells of the upper 

respiratory tract or trachea, and frequently clumped at their tips (Fig. 4.71). Many 

microvilli of variable lengths were intermingled between cilia.

Although Clara cells of variable surface morphologies, such as those in the 

proximal bronchiolar generations, were frequently encountered,Clara cells exhibiting an 

apical dome-like protrusion were much more dominant in the respiratory bronchioles 

(Fig. 4.70). Occasionally, Clara cells presenting a "withered" apical protuberance were 

also observed (Fig. 4.71).

At high magnification the junction between the respiratory bronchiole and the 

alveolus was seen to be an abrupt one, such that ciliated cells and Clara cells had a 

common boundary with the alveolar Type I cellof the alveolar wall (Fig. 4.72).

ALVEOLUS.

Alveoli were first observed at low magnification in the respiratory bronchiole as 

shallow outpocketings (Fig. 4.69; 4.72) lined predominantly by alveolar Type I cells 

characterised by extensive thin cytoplasmic sheets spreading over the alveolar surface, 

away from the raised central nuclear region. Thin, slightly raised borders sometimes 

defined junctions between two adjacent alveolar Type I cells.

Alveolar Type II cells were round or oval in outline, and slightly raised from the 

epithelial surface. The apical surface bore characteristic, densely packed surface 

projections in the form of stubby or sometimes thin microvilli (Fig. 4.73). Although the 

lengths of the microvilli on the same cell were fairly uniform, they were seen to vary 

between cells. Sometimes a few droplets could be seen on the surface of these cells.
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Capillaries were seen as elevated ridges running across alveolar walls, and 

sometimes characteristic outlines of erythrocytes could be seen within them. 

Interalveolar pores (of Kohn), defined by smooth rounded or oval margins, were 

observed as perforations in the alveolar walls. The number of pores per alveolus was 

highly variable, with the diameters of the pores also varying widely (Fig. 4.73).

With SEM, alveolar macrophages were seldom observed. They were 

encountered infrequendy in the alveoli and were even more infrequent in the respiratory 

bronchioles (Fig. 4.74), a considerable number of specimens having to be examined in 

order to locate one. When seen, they were of variable shapes, their cell surfaces being 

either smooth or ruffled and exhibiting pseudopodia-like extensions of the cytoplasm.

D ISC U SSIO N .

UPPER RESPIRATORY TRACT.

The upper respiratory tract is under the constant influence of inspired air, which 

may contain microorganisms, potential allergens and obnoxious gases, and more often 

than not is at unsuitable temperature and humidity levels. Thus the upper respiratory 

tract, and nasal cavity in particular, plays an important role in improving the quality of 

inspired air by warming, humidifying and trapping particulate matter (Mygind et al.,

1982). In spite of these important functions performed by this region of the respiratory 

tract, the upper respiratory tract of the goat has not been widely investigated. The 

purpose of this study, therefore, was to provide a detailed account of the surface 

morphology of the epithelial lining of the caprine upper respiratory tract by the use of 

the scanning electron microscope.

This study has established that the upper respiratory tract of the goat is lined 

basically by three different types of epithelia. The nasal vestibule and the rostral portion

73



of the alar and basal folds are lined by a squamous epithelium which is continued 

caudally by a narrow transitional zone of an intermediate type of epithelium. The major 

part of the nasal cavity is lined by a ciliated epithelium. All three types of epithelia were 

encountered in the nasopharynx as well as in the larynx

In the present study, it was established that the rostral region of the nasal 

vestibule of the goat was lined by keratinized squamous surface cells. Occasional hairs 

were seen projecting from the surface in this region. The present observations on the 

squamous nature of the epithelium lining the nasal vestibule are in agreement with 

similar findings in the rat (Andrews, 1974, 1979; Katz and Merzel, 1977), mouse 

(Greenwood and Holland, 1972), dog (Adams and Hotchkiss, 1983), horse (Pirie, 

1990), monkey (Harkema et al., 1987) and, in less detail, in several mammalian species 

(Graziadei, 1970) and the pig (Larochelle and Martineau-Doize, 1990). Although these 

squamous cells did not appear to present any obvious surface characteristics at low 

power magnifications, appearing simply smooth-surfaced and comified, a feature also 

noted in the rostral region of the nasal vestibule of the rat (Andrews, 1979), at higher 

power magnifications the cell surfaces presented a pitted appearance. The same high 

power surface characteristics have been reported by Cleaton-Jones (1976) in the 

keratinized squamous cells of the soft palate of rats, and seem to be a feature of this cell 

type in general.

In the caudal region of the vestibule, hairs were no longer present, and the 

squamous epithelial surface cells in this region presented prominent surface microvilli or 

microplicae, and sometimes both. Such microplicae are a characteristic feature of 

squamous cells and have been reported to be present on cells in the epiglottis (Nakano 

and Muto, 1987), nasopharynx (Leela and Kanagasuntheram, 1973; Nakano, 1986), 

alimentary tract, cornea and conjunctiva (Andrews, 1976). Different terms have been 

used to describe these structures, such as microridges (Nakano, 1986) and microfolds 

(Fawcett, 1981). Andrews (1976) carried out a detailed study of microplicae and 

contended that they arise from plasmalemmal folds which once provided for intercellular
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interdigitations and desmosome adhesions between adjacent cells. He further argued 

that although microplicae may merely represent the remnants of intercellular 

interdigitations, they may also have another specific function. He speculated that the 

interplical grooves may function to hold a layer of lubricating and cushioning mucin 

which would protect the underlying plasmalemma from abrasive abuse. The same view 

was also held by Fawcett (1981).

It was also established in the present study that further caudally in the nasal 

vestibule, apical microplicae of the surface cells were replaced completely by microvilli 

which became much longer in protected areas of the nasal cavity. The same 

observations have been noted in the rat (Andrews, 1974, 1979) , mouse (Greenwood 

and Holland, 1972) and pig (Adams, 1986). Whereas Andrews, (1979) reported an 

abrupt transition from the comified squamous epithelium of the rostral region of the 

nasal vestibule in the rat to the caudal region, where the cells are covered by either 

microvilli or microplicae, in the present study this transition was observed to be 

gradual. In the horse the transition was also seen to be abrupt (Pirie, 1990).

The alar and basal folds were seen to be lined rostrally by a narrow zone of 

squamous epithelium. However, most of the alar and basal folds were lined by an 

intermediate type of epithelium primarily composed of nonciliated cuboidal cells 

exhibiting a typical “cobblestone” appearance probably due to the bulging nature of the 

surface cells, also previously described in the dog (Majid, 1986), horse (Pirie, 1990) 

and pig (Adams, 1990). The stratified nature of both these epithelial types was 

determined on histological sections. Such observations on this intermediate epithelium 

in the goat are in agreement with descriptions previously reported in several mammalian 

species (Adams e ta l., 1970; Adams, 1972; Lenz, 1973; Andrews, 1979; Mygind etal., 

1982; Adams and Hotchkiss, 1983; Monteiro-Riviere and Popp, 1984; Popp and 

Martin, 1984; Majid, 1986; Harkema et al., 1987; Adams, 1990; Larochelle and 

Martineau-Doize, 1990; Pirie, 1990), although this nonciliated cuboidal lining has only 

been recognised as a separate entity in dog (Adams and Hotchkiss 1983 Majid, 1986),
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bonnet monkey (Harkema et al., 1987), pig (Larochelle and Martineau-Doize, 1990) 

and horse (Pirie, 1990). Although the cuboidal epithelium has been referred to as a 

transitional epithelium (Majid, 1986), Pirie (1990) argues that it is not appropriate to 

refer to it as transitional since histological and SEM observations in the horse, and 

indeed in the dog (Majid, 1986) and goat in the present study, do not conform to the 

classical description of transitional epithelium (now renamed “uroepithelium”) as found 

in the urinary tract. A similar type of epithelium has been described in the nasopharynx 

of the mouse by Nakano (1986), who refered to it as an intermediate epithelium, a term 

which has been employed in the present study in the goat. Boysen (1982) has argued 

that such an intermediate epithelium observed in the human nasal cavity is a result of 

metaplasia, based on the fact that the area of distribution of this particular epithelial type 

was seen to increase with age. Larochelle and Martineau-Doize, (1990) also observed 

that this particular type of epithelium increased its area of distribution with age in pigs, 

and suggested that the increase was probably associated with additional protection 

against bacterial colonisation and infection, with the cuboidal cells probably involved in 

the non-specific antigen interaction. However, the present observations have been 

interpreted as being in agreement with recent findings in the monkey (Harkema et al., 

1987), dog (Majid, 1986) and horse (Pirie, 1990), where this nonciliated stratified 

cuboidal epithelium is regarded as normal and not a result of deciliation and metaplasia 

induced by any specific toxicant.

Two cell types were identified in the intermediate epithelial covering of the alar 

and basal folds. The first presented a dense aggregation of microvilli on its apical 

surface and tended to bulge slightly outwards, while the other cell type was identified as 

a mucus-producing cell.The latter cell type had sparse microvilli and the apical surface 

was either depressed or bulged with mucous granules which were visible through the 

plasmalemma. Histological sections stained with AB/PAS confirmed the presence of 

mucus-producing cells in this region. Adams (1990) also reported the presence of 

goblet cells, although numerically they formed a minor constituent of the epithelium



lining the folds. The use of the term “goblet cell” by Adams (1990) seems to be 

inappropriate, as these cells do not show a classical “goblet” shape when viewed with 

the light microscope.

Mucus-producing cells have been reported to present different morphological 

appearances with SEM depending on the stage of the cells’ life cycle (Boysen, 1982; 

Monteiro-Riviere and Popp, 1984; Harkema et al., 1987; Pirie, 1990). Immature 

mucus-producing cells have been described with a very low apical bulge with relatively 

dense aggregations of surface microvilli. As the cells become mature, the apical surface 

develops into a dome with mucous granules sometimes seen through the plasmalemma, 

and eventually surface microvilli disappear. Discharged cells usually present a collapsed 

apical surface with a pore or two through which mucus has been discharged.

Submucosal gland orifices observed in the alar and basal folds of the nasal 

mucosa of the goat are not unique to this species, as similar structures have also been 

reported in the pig (Adams, 1990), horse (Pirie, 1990), dog (Adams and Hotchkiss,

1983) and Bonnet monkey (Harkema et al., 1987).

Caudal to the stratified cuboidal epithelium in the basal fold, there was a gradual 

change to a ciliated epithelium and in a few cases this change was seen to be abrupt. 

Where the change was gradual, a narrow zone composed of nonciliated microvillous, 

mucus-producing and ciliated cells was observed, the latter bearing short cilia of 

unequal lengths. These cells with imperfectly developed cilia were considered to be 

regenerating ciliated cells and have been described before by other workers (Bryant, 

1916; Andrews, 1974, 1979; McDowell et al., 1978; Iovannitti et al., 1985; Pirie, 

1990). Caudal to this transitional zone, the mucosa was thrown into alternating short 

folds and gutters which were longitudinally orientated and covered by a thick carpet of 

cilia.

The ciliated epithelium covering the caudal region of the basal fold was similar 

to that observed on the ventral, middle and dorsal nasal conchae. As observed in other 

mammalian species (Andrews, 1974; Adams and Hotchkiss, 1983; Popp and Martin,
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1984; Majid, 1986; Harkema etal., 1987), there was a gradual increase in the number 

of ciliated cells from rostral to caudal regions of the nasal cavity. Mygind and Bretlau 

(1973) also observed that in the anterior part of the human nasal cavity the cilia seldom 

formed a thick carpet as is the case distally in the respiratory tract.

This cilial carpet provides an essential component of the mucocilliary apparatus 

which moves trapped foreign material towards the pharynx from where it is eventually 

swallowed (Wright et al., 1983; Dixon, 1992). The mucous blanket originates from two 

sources, from mucus-producing cells which are abundant in the gutters as well as being 

distributed on the folds, and from submucosal glands which are numerous in the gutters 

(Reid, 1954; McCarthy and Reid, 1964; Chakrin and Saunders, 1974; Jones et al., 

1975). Whereas the latter contribute to the sol layer of the mucous blanket, the former 

contribute significantly to the gel layer (Dulfano, 1973).

Studies by Larochelle and Martineau-Doize (1990) show that, although there are 

variations in the areas of distribution of the lining (squamous, transitional, respiratory 

and olfactory) epithelia in the nasal cavity of different age groups of piglets, the 

respiratory epithelium, similar to that described in the present study, lines more than 

50% of the nasal mucosa from the level of the canine tooth up to the third premolar. 

Adams and Hotchkiss (1983) have estimated that between 40-50% of the total nasal 

cavity is lined by a typical ciliated respiratory epithelium, and although Majid (1986) 

does not give the percentage of the nasal mucosa covered by this type of epithelium, his 

findings appear similar to those reported by Adams and Hotchkiss. Studies by Harkema 

et al. (1987) in the Bonnet monkey also indicate that respiratory epithelium lines more 

than 60% of the lateral wall of the nasal cavity. In the present study, taking into 

consideration that the first ciliated cells started to appear at the level of the basal fold, 

and were the dominant cell type at the level of 2nd cheek-tooth, it would appear that 

ciliated respiratory epithelium covers more than half of the total area of the nasal cavity 

in the goat

Patches of nonciliated microvillous cells were frequendy observed on the ventral
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and dorsal nasal conchae, with a few regenerating ciliated cells and mucus-producing 

cells amongst them. On the more caudally located middle nasal concha, such patches 

were infrequent in the goat, supporting earlier observations that the density of ciliation 

increased on moving caudally within the nasal cavity (Menco and Farbman, 1987). 

Haikema et al. (1987) have reported that of all the epithelial cell types to reach the lumen 

on the nasal conchae, 35% are nonciliated microvillous cells, although, they do not 

mention whether these are distributed individually amongst ciliated cells or occur in 

patches. Pirie (1990) reported the presence of large patches of nonciliated microvillous 

cells in the conchoffontal sinus of only one out of 23 horses examined; occasional 

nonciliated microvillous cells were encountered on the dorsal nasal conchae of the 

others.

The epithelium lining the middle regions of the nasal septum of the goat was 

seen to be ciliated, although the cilial carpet was disrupted by numerous nonciliated 

microvillous cells, most of which were identified by SEM as mucus-producing cells. 

This gave the epithelium a characteristic ‘moth-eaten’ appearance. Such an observation 

contrasts with findings reported by Pirie (1990) in the horse, where the nasal septum 

was nonciliated in these middle regions, being only completely ciliated in its most 

caudal part.. Ciliated cells on the nasal septum of the goat had short, poorly formed 

cilia.

Such observations in the goat contrast with findings in the rat (Popp and Martin,

1984), where, although different regions of the septum had a relatively constant mixture 

of cell types, being covered with ciliated cells and numerous interspersed mucus- 

producing cells, patches of nonciliated microvillous cells were not observed.

These patches of nonciliated microvillous cells observed on the nasal septum 

appeared to be composed primarily of two cell types. One exhibited a rounded or 

occasionally polygonal outline and carried a sparse population of surface microvilli, and 

was identified as a mature mucus-producing cell. The second cell type was characterised 

primarily by a dense population of surface microvilli and was thought to represent an

7 9



immature stage of a mucus-producing cell, a suggestion proposed for similar cell types 

found in man (Boysen, 1982), rat (Monteiro-Riviere and Popp, 1984), Bonnet monkey 

(Harkema et al., 1987) and horse (Pirie, 1990). This suggests, therefore, that in the 

goat the number of mucus-producing cells in the epithelium lining the nasal septum is 

substantial. This is in agreement with observations in the rat (Popp and Martin, 1984; 

Katz and Merzel, 1977).

Although the nasopharynx of the goat occupies an extensive area, and the 

sample site used in this study was limited to an area a few millimetres rostral to the 

opening of the auditory tube, this opening was used as a landmark to ensure constancy 

in sampling. From observations in this study, it appears that this area represents a 

transitional zone, as up to three types of epithelia were encountered on a single sample. 

These were pseudostratified ciliated, stratified cuboidal and stratified squamous, the 

stratified nature of the epithelia being confirmed on histological sections.

Rostrally, the mucosa was thrown into longitudinally orientated alternating rows 

of folds and gutters; this region was narrow and resembled the epithelium lining the 

nasal conchae. Caudal to this zone there was a middle, much wider transitional zone, 

characterised by a progressive shift in the ratio of ciliated to nonciliated microvillous 

cells, until the most caudal region of this zone was entirely composed of the latter cell 

type. Caudal to this middle zone, a non-keratinized stratified squamous epithelium, 

similar to that lining the caudal region of the nasal vestibule, was observed. Such 

observations in the goat are in general agreement with similar observations made in the 

mouse (Nakano, 1986), where the rostral part of the nasopharynx is lined by ciliated 

epithelium, and the caudal part by an intermediate epithelium, merging finally into a 

stratified squamous epithelium. The presence of nonciliated microvillous cells as the 

predominant cell type in this transitional zone of intermediate epithelium, as observed in 

the goat, was also noted in the horse (Pirie, 1990) and rat (Andrews, 1974), but not in 

the dog, where the nasopharynx was reported to be covered rostrally by 

pseudostratified ciliated columnar epithelium containing numerous goblet cells and
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caudally, towards the free border of the soft palate, by a non-keratinized squamous 

epithelium (Majid 1986). This lack of any mention of the presence of an intermediate 

epithelium in the dog may be due to the fact that the transitional zone between ciliated 

and stratified squamous epithelium was narrow and was therefore missed in the 

sampling procedures or was absent altogether, as is the case in the gibbon (Leela and 

Kanagasuntheram, 1973).

Studies in other nonhuman primates (Leela and Kanagasuntheram, 1973) have 

revealed that the transition from a pseudostratified ciliated columnar to a stratified 

squamous type of epithelium is a graded one with different types of epithelia mixing and 

changing over gradually. This contrasts with a rapid appearance of a single intermediate 

type of epithelium forming this transitional zone as described by Bryant (1916) in the 

human. Nakano (1986) provided a detailed account of the nasopharyngeal epithelium in 

the mouse and was able to distinguish, by SEM and TEM, three types of epithelia 

(pseudostratified ciliated low columnar, stratified cuboidal and stratified squamous) and 

demonstrated that there was a gradual change from one type to the other. Although no 

TEM studies were done in the present study, SEM findings are in agreement with those 

made in the mouse.

The patches of nonciliated microvillous cells, arranged in a circular manner and 

raised into a low dome, which were encountered in the present study, may represent 

follicle-associated epithelium (FAE) similar to that which has been described in the 

nasopharynx of sheep (Chen et al., 1991). Histological examination of these areas 

showed the overlying epithelium to be attenuated, composed of low columnar 

nonciliated cells and devoid of mucus-producing cells. This modified lymphoepithelium 

has been described histologically by Pirie (1990) and related to the prominent bulging 

areas observed by SEM in the nasopharynx of the horse. Chen et al. (1991) describe the 

FAE in the nasopharynx of the sheep as composed of either tall or flattened nonciliated 

cells presenting characteristic surface microvilli or microfolds, often intermingled with 

non-keratinized squamous cells. They have suggested that such cells represent cells



equivalent to the M cells described in other mucosal-associated lymphoid tissue (MALT) 

in animals and man (Wolf and Bye, 1984; Bienenstock, 1985). The M cells in the 

pharyngeal region were not distinguished from other microvillous cells with SEM but 

were identified by TEM in the rabbit (Bienenstock and Johnston, 1976), ox (Anderson 

et al., 1986) and rat (Spit et al., 1989).

The laryngeal mucosa of the goat in the present study was examined in three 

sites, namely the epiglottis, vocal fold and inffaglottic cavity. The epiglottis was lined 

entirely by non-keratinized squamous cells similar to those described in the caudal 

regions of the nasal vestibule or nasopharynx. Such observations are in agreement with 

similar observations in the rat (Andrews, 1974), dog (Majid, 1986), mouse (Nakano 

and Muto, 1987) and mammals in general (Nickel et al., 1979).

Pirie (1990) describes the epithelium of the dorsal surface of epiglottis of the 

horse to be mixed in character, with the stratified squamous merging into a stratified 

cuboidal epithelium, the latter containing a few mucus-producing cells. This contrasts 

with our observation in the goat, as no stratified cuboidal epithelium nor mucus- 

producing cells were observed. But this difference may be because in the present study 

the base of the epiglottis was not examined; the thickening of squamous cells towards 

the base that was observed suggests that, in the goat, the base may be lined by a 

stratified cuboidal epithelium similar to that in the horse. The number of submucosal 

gland duct orifices were few and did not correlate with the abundant submucosal glands 

observed on histological sections. The abundancy of these submucosal glands has been 

noted by LM in the dog (Majid, 1986) and horse (Pirie, 1990), although no mention of 

submucosal gland duct orifices at SEM level is made.

The laryngeal surface of the epiglottis of the goat was studded with taste buds. 

These appeared in the form of pores from which gustatory hairs were observed 

protruding. Extra-oral taste buds have been found to be present in the mucosa of the 

soft palate, pharynx and larynx of several mammalian species (Travers and Nicklas, 

1990). The relative importance of these structure and the mechanisms under which they
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are stimulated are not well understood. It is however assumed, because of their 

location, that they serve to protect the airway and play no role in food selection (Travers 

and Nicklas, 1990).

Individual variation was noted in the epithelium lining the vocal cords. In most 

of the goats the vocal cords were lined by squamous cells similar to those of the 

epiglottis. A few individuals had vocal cords lined by an intermediate epithelium and /or 

a ciliated epithelium. Such individual variation was much more pronounced in the 

inffaglottic cavity of the larynx, with animals presenting a stratified and intermediate, or 

intermediate and ciliated, or completely ciliated, epithelial lining. The results of this 

study compare with similar observations made on the laryngeal mucosa of the dog, 

where individual variations from animal to animal with regard to the presence or 

absence of respiratory epithelium showed that in only four of the 18 animals examined 

was the infraglottic cavity lined by ciliated respiratory epithelium (Majid, 1986); in the 

present study, in only 3 out of the 17 animals examined was the infraglottic cavity 

completely ciliated. Such observations in the goat and dog, however, contrast with 

those made in the horse (Pirie, 1990), where the laryngeal epithelium caudal to the vocal 

fold was reported to be completely ciliated in all individuals examined. In the bovine, 

the cranial laryngeal mucosa was found to be lined by a stratified squamous epithelium 

whereas the caudal larynx was lined by a pseudostratified ciliated epithelium (Veit and 

Farrell, 1978). However these workers did not indicate the extent of either type of 

epithelium because precise anatomical landmarks were not described.

LOWER RESPIRATORY TRACT.

The present study has established that the tracheal mucosa of the goat is thrown 

into longitudinally orientated folds and intervening gutters, and lined by a heavily 

ciliated epithelium within which are found occasional patches of nonciliated 

microvillous cells. Submucosal gland duct openings are frequently encountered. Three
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cell types are distinguished on the basis of their luminal surface characteristics, the 

ciliated, nonciliated microvillous and mucus-producing cells.

The present detailed SEM observations of the tracheal lining of the goat in 

consisting primarily of a ciliated epithelium composed of ciliated, mucus-producing and 

nonciliated microvillous cells in varying proportions, correspond to those previously 

described for the dog (Majid, 1986), horse (Pirie, 1990), ox (Iovannitti et al.., 1985), 

cat (Tandler et al., 1983a,b), mouse (Pack et al., 1980), ferret (Hyde et al., 1979) and 

in lesser details for the mouse (Greenwood and Holland, 1972), human (Wang and 

Thurlbeck, 1970), monkey (Greenwood and Holland, 1973Wilson et al., 1984), and 

rabbit (Plopper et al., 1983^) In the present study, the tracheal mucosa was heavily 

populated with ciliated cells. These cells presented similar characteristics to those 

reported in other species and were more numerous on the folds, whereas in the gutters 

nonciliated microvillous cells became more frequent. The same distribution of ciliated 

cells has been reported in the ferret (Hyde et al., 1979), cat (Tandler et al., 1983a,b), 

dog (Majid, 1986) and horse (Pirie, 1990). In the present study, dorsal and ventral 

surfaces were compared and no significant differences in cilial lengths were noted. In 

SEM studied on nonhuman primates, however, Wilson et al. (1984) established that 

cilia were shorter on the anterior (ventral) compared to the posterior (dorsal) tracheal 

surface.

Cells which were identified as regenerating ciliated cells were frequently 

encountered, especially in areas devoid of ciliated cells. Such cells were characterised 

by numerous microvilli and very few cilia of unequal lengths, such features being 

similar to those described for regenerating ciliated cells in the rat by Andrews (1979). 

Menco and Farbman (1987) have provided a detailed study of thegenesis of cilia and 

microvilli in rat nasal epithelium, and, along with studies of developing respiratory tract 

cilia in the rabbit by Kanda and Hilding (1968), these observations generally support 

the description of regenerating ciliated cells in the present study. The presence of these 

cells is a result of normal sloughing and the subsequent regeneration of new ciliated
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cells (Rhodin, 1966).

Within the tracheal epithelial lining of the goat, nonciliated microvillous cells 

were frequently encountered in the gutters and occasionally found on the folds. On the 

folds, they were present either singly or in groups of two or three cells, each cell 

exhibiting a low luminal surface bulge carrying densely organised microvilli of uniform 

length. The same cell type has been described in a number of mammalian species 

including the cat (Tandler et al., 1983a’̂ ), the hamster (Becci et al., 1978), the ferret 

(Hyde et al., 1979), the rat (Alexander et al., 1975; Andrews, 1979), the dog (Wright et 

al., 1983; Majid, 1986), and nonhuman primates (Wilson et al., 1984),. The cells 

which populated the gutters had different surface characteristics in that their luminal 

surface was slightly depressed and carried relatively fewer surface microvilli. This latter 

type has been observed in cats to be abundant in gutters and very rare on the folds 

(Tandler et al., 1983a’̂ ).

The pattern of distribution of these nonciliated microvillous cells, when 

considered alongside the light microscopical observations on numbers and distribution 

of AB/ PAS+ cells within the tracheal epithelium, suggests that the majority of these 

cells identified at the SEM level were mucus-producing. The fact that those nonciliated 

cells on the fold and those in the gutters presented different surface features, thus 

indicating that mucus-producing cells exhibit different morphological characteristics, is 

supported in part by the studies of Mariassy and Plopper (1983) on the tracheobronchial 

epithelium in sheep. With the light microscope they identified four categories of mucus- 

producing cells (Ml, M2, M3 and M4), the difference between them being the relative 

sizes of the cells and the secretory granules, and the nature of the secretory granules 

produced. Subsequent morphometric studies of these cells at transmission electron 

microscopic level (Mariassy and Plopper, 1984) showed very little difference between 

M l and M2, suggesting that these two categories may be mere variations of one and the 

same cell type.

Some of the non-ciliated microvillous cells in the goat could definitely be
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identified as mucus-producing cells of the one or the other type, as they appeared to 

present observable differences in the form of mucus discharged. Those usually found 

on the fold presented a characteristic apical protuberance in which, on some occasions, 

discrete mucous granules could be seen accumulating beneath the plasmalemma prior to 

release. Those exclusively confined to the gutters usually produced a sheet of mucus 

which tended to mat the adjacent cilia and often form a covering film of mucus on the 

luminal surface of the cells. The viscosity of the mucus produced by these two 

populations of cells also seemed to differ, taking into account the way the mucus was 

released from these cells. The fact that the viscosity of mucus is dependent on 

biochemical (especially disulphide bonds) and physical properties (Dixon, 1992) 

suggests that these two cell types may therefore be distinct both morphologically and 

histochemically.

SEM studies of the trachea of the rat (Alexander etal., 1975; Andrews, 1979) 

and the ferret (Hyde et al., 1979) have identified a fourth cell type characterised by a 

pentagonal luminal surface outline carrying a dense population of long, thick microvilli, 

and referred to as a brush cell. Such a cell type was not identified in the present study 

despite careful examination of the tracheal samples from 17 different individual animals. 

Other SEM studies in the cat (Tandler et al., 1983a,b), ox (Iovannitti et al., 1985), dog 

(Frasca et al., 1968; Majid, 1986) and horse (Pirie, 1990) have also failed to identify the 

presence of this particular cell type in the trachea. However, TEM studies in the cow 

(Allan, 1978), pig (Baskerville, 1970a»b) and mouse (Pack etal., 1981) have indicated 

its presence, but only in constituting up to 1% of the total tracheal cell population. The 

failure to observe these cells in the caprine trachea in the present study may possibly be 

explained partly by the fact that these cells are relatively rare and partly by the fact that 

they may be obscured by the cilial carpet. The function of this particular cell type is not 

clear (Breeze and Wheeldon, 1977), although both chemoreceptive and absorptive 

functions have been attributed to it (Breeze and Wheeldon, 1977; Allan, 1978).

The patches of nonciliated microvillous cells occasionally found distributed in
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the tracheal mucosa of the goat in the present study have also been reported to punctuate 

the tracheal cilial carpet of the dog (Majid, 1986), horse (Pirie, 1990) and ox (Iovannitti 

et al., 1985). Pirie (1990) encountered these patches in only a few horses and attributed 

these to subclinical infection. However in the present study, these patches were found 

in every individual examined and it is thought likely that the patches are a normal feature 

of the tracheal epithelium of the goat. It is possible that such patches represent a 

covering epithelium associated with respiratory-tract-associated Lymphoid Tissues 

(RTALT). Such tissues have been studied in sheep (Chen et al., 1991) and in cattle 

(Anderson et al., 1986) by the use of SEM and a characteristic type of epithelium has 

been identified overlying these aggregates of lymphoid tissue. This epithelium is 

characterised by nonciliated microvillous cells, is devoid of mucus-producing cells and 

appears similar to the patches observed in the present study.

Submucosal gland duct orifices surrounded primarily by nonciliated 

microvillous cells were seen in the gutters. This is in agreement with observations made 

in the rat (Alexander et al., 1975), cat (Tandler et al., 1983a), ox (Iovannitti et al.,

1985), dog (Wright et al., 1983; Majid, 1986), monkey (Wilson et al., 1984) and horse 

(Pirie, 1990). Although Tandler et al. (1983a) were able to categorise these ostia into 

three types in the cat, the present study was unable to confirm their findings in the goat.

The folded nature of the tracheal mucosa was continued into the bronchi. The 

bronchial mucosa was ciliated, with the gutters being relatively less ciliated than the 

folds. As the diameter of the bronchi decreased there was an increase in the number of 

nonciliated microvillous cells at the expense of ciliated cells. This gradual decrease of 

ciliated cells towards the distal conducting airways has been reported in most 

mammalian species including the rat (Alexander et al., 1975), guinea pig (Davis et al.,

1984), hamster (Becci et al., 1978), dog (Wright et al., 1983; Majid, 1986), pig 

(Winkler and Cheville, 1984), ox (Mariassy et al., 1975Iovannitti et al., 1985), horse 

(Nowell and Tyler, 1971; Pirie 1990), monkey (Greenwood and Holland, 1973; 

Castleman et al., 1975 Wilson et al., 1984;) and man (Wang and Thurlbeck, 1970;
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Ebert and Terracio, 1975a; Greenwood and Holland, 1975).

In the bronchial mucosa of the goat, submucosal gland duct orifices also became 

progressively fewer with decreasing airway diameter.lt is known that in mammalian 

species, mucus is produced from two sources namely, surface mucus-producing cells 

and submucosal glands (Reid, 1954; McCarthy and Reid, 1964; Chakrin and Saunders, 

1974; Jones et al., 1975), it implies therefore, that in the bronchial mucosa, the former 

became more prominent as a source of tracheal mucus. Such observations are in 

agreement with studies in the dog (Majid, 1986), horse (Nowell and Tyler, 1971; Pirie, 

1990), ox (Mariassy et al., 1975; Iovannitti et al., 1985), rat (Alexander et a l, 1975), 

mouse (Wang and Thurlbeck, 1970; Greenwood and Holland, 1972) and ferret (Hyde 

et al., 1979). Examination of the extrapulmonary bronchial epithelium revealed that the 

cellular population and distribution more closely resembled that of the trachea than the 

lobar bronchi.

A number of similarities and differences in the bronchiolar epithelium were 

noted between the goat and other mammalian species. Proximal to the terminal 

bronchiole, epithelial morphology was essentially the same as that which has been 

described in man (Wang and Thurlbeck, 1970; Ebert and Terracio, 1975a; Greenwood 

and Holland, 1975), rat (Andrews, 1974, 1979; Alexander et al., 1975), mouse (Wang 

and Thurlbeck, 1970; Greenwood and Holland, 1972), hamster (Becci et al., 1978), 

monkey (Greenwood and Holland, 1973; Castleman etal., 1975; Wilson etal., 1984; 

Tyler and Plopper, 1985), pig (Winkler and Cheville, 1984), horse (Nowell and Tyler, 

1971), ox (Iovannitti et al., 1985; Mariassy et al., 1975) and dog (Wright et al., 1983; 

Majid, 1986). Histological studies showed that the epithelium lining the bronchioles 

was of a pseudostratified ciliated columnar type, whilst with SEM, ciliated cells, 

mucus-producing cells and nonciliated bronchiolar epithelial (Clara) cells were 

identified. The same epithelial type and cellular population has been reported in the 

Rhesus monkey (Tyler and Plopper, 1985), dog (Majid, 1986), ferret (Hyde et al., 

1979) and rat (Andrews, 1979), although such findings contrast with studies in the
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horse which show that the type of epithelium lining the bronchiole is simple columnar to 

cuboidal in type (Pirie, 1990). However, the bronchiole - terminal bronchiole junction 

was seen to be rather abrupt in terms of epithelial height and cell types in the goat, with 

the pseudostratified columnar epithelium of ciliated and nonciliated microvillous cells 

lining the bronchioles changing into a simple columnar or cuboidal epithelium, 

composed primarily of Clara cells, lining the terminal bronchioles. Such an arrangement 

has also been reported in the ferret (Hyde et al., 1979), rodents (Plopper et <z/.,1980a; 

Plopper et al., 1983^) and stumptail and macaca monkeys (Castleman et al., 1975).

Mariassy et al. (1988) described the bronchiolar mucosa in the sheep as 

composed of approximately equal numbers of ciliated and nonciliated cells. In the goat 

this was only true in the very distal generations of the bronchioles; in the proximal 

generations, ciliated cells were always found to be in the majority. These workers 

further described ciliated cells in the bronchiolar region as having slightly shorter cilia 

than those in the bronchi. The same observation was noted in the present study and by 

other workers in the rat (Andrews, 1979) and the ox (Iovannitti et al., 1985). The folds 

and gutters observed in the trachea and bronchi were reduced to shallow surface folds in 

the larger bronchioles, such folds being reduced to shallow undulations in smaller 

bronchioles. The same observation has been reported in the horse (Pirie, 1990).

In the goat, as observed in the present study, the surface of the Clara cells 

usually presented a characteristic, dome-shaped apical protuberance in line with 

previous descriptions at SEM level in a variety of mammalian species including mouse 

(Okada, 1969), rabbit (Plopper et al., 1983^), ox (Iovannitti et al., 1985), horse (Pirie, 

1990), rat (Andrews, 1979) and man (Wang and Thurlbeck, 1970). Such protuberances 

occasionally appeared to be “withering” instead of full. Sometimes the Clara cells 

presented a flattened surface appearance, occasionally with a very low central bulge, a 

form also observed in the rabbit (Plopper et al., 1983^). These different appearances 

were regarded as the same cell type seen at different levels of activity; the “withering” 

type suggests that the secretory granules may have been discharged, while the flat type
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may be cells at an early stage of maturity. Smith et al., (1979) have grouped these 

different forms of the Clara cell into separate populations and have pointed out that these 

may co- exist in the same animal. In addition, Lauweryns et al. (1969) have proposed 

that these three Clara cell types in the mouse are based on the stages of the cell’s life 

cycle, describing young (flattened), adult (bulging) and involutionary (“withering”) 

forms corresponding to the populations described by Smith etal. (1979) and to the 

observations made in the goat in the present study.

In the goat some of these nonciliated bronchiolar cells, especially those with 

apical protuberances, appeared to resemble, in some respect, the mucus-producing cells 

of the tracheobronchial epithelium. The two cell types could be distinguished, however 

by the use of histological sections stained with AB/PAS. This produced a negative 

reaction in the Clara cells of the terminal bronchiolar epithelium, as also observed by 

Azzopardi and Thurlbeck (1969). It could be argued that maybe these nonstaining cells 

were immature mucus-producing cells, as only mature mucus-producing cells with 

stored glycoproteins could be expected to take the stain. However the present study 

showed that many of these nonciliated bronchiolar epithelial cells appeared to be mature 

or adult cells similar to those described by Lauwyems et al. (1969) which, if mucus- 

producing, would have stained positively with AB/PAS; this did not occur, confirming 

that in all probability these were Clara cells.

In the present study, the identification of prominent, well developed respiratory 

bronchioles in the goat lung contrasts markedly with observations in the available 

documented literature suggesting that, in ruminants in general (Getty, 1975), and in the 

ox in particular (Iovannitti et al., 1975), respiratory bronchioles are usually absent, and, 

if present, are poorly developed. It would therefore appear inappropriate to suggest that 

the lack of respiratory bronchioles is a typical feature of the ruminant lung. Respiratory 

bronchioles have been reported to be present in the dog (Majid, 1986), ferret (Hyde et 

al., 1979), coyote (Morrison et al., 1983), pig (Baskerville, 1970a; Winkler and 

Cheville, 1984), human (Ten Have-Opbroek et al., 1991) and monkey (Tyler et al.,
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1983; Tyler and Plopper, 1985) but were absent in the horse (Pirie, 1990).

A simple cuboidal epithelium composed of ciliated and Clara cells was observed 

in the present study to line the respiratory bronchioles of the goat lung. This epithelial 

organization differs considerably from that of other mammalian species in which 

respiratory bronchioles are present. In the dog, although the epithelium is simple 

cuboidal, the cellular population is quite different, with the Clara cell being the only cell 

type found in this region (Wright et al., 1983; Majid, 1986). In the rat (Andrews, 

1979), Rhesus monkey (Tyler and Plopper, 1985) and humans (Ten Have-Opbroek et 

al., 1991), although the lining epithelium of the respiratory bronchioles is similar to that 

seen in the goat, an additional type of pseudostratified ciliated epithelium is also found 

overlying accompanying branches of the pulmonary artery.

SEM studies of bronchioles in the lungs of laboratory animals (Cutz et al., 

1978; Hung et al., 1979) have indicated the presence of bronchiolar neuroepithelial 

bodies which appear as isolated organoids along the entire length of the bronchiolar 

tree, usually at branching points. In the present study, such organised morphological 

entities could not be identified. Failure to observe neuroepithelial bodies is not 

surprising as the previously reports confirming their presence have been confined to 

fetuses and neonates. SEM studies by Wright et al. (1983) also failed to reveal their 

presence in the lungs of the puppy.

In the present study the alveolar membrane was lined by alveolar Type I and 

alveolar Type II cells, similar to those described in other mammalian species (Nowell 

and Tyler, 1971; Greenwood and Holland, 1972; Kuhn and Finke, 1972; Mariassy et 

al., 1975; Andrews, 1979; Wright et al., 1983; Iovannitti et al., 1985; Majid, 1986; 

Pirie, 1990). The slightly raised boundaries of the Type I cell were not easily 

identifiable, supporting previous observations in the dog (Majid, 1986). The alveolar 

Type ID cell, also known as the alveolar brush cell, which has been reported in the rat 

(Hijiya, 1978a,k), was not identified in the present study, and indeed does not appear to 

have been observed in any other species studied to date.
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Occasional alveolar macrophages, characterised by a ruffled cell membrane with 

rounded pseudopodia, were seen adhering to the alveolar membrane, although a 

considerably large area of lung parenchyma had to be examined before any were 

located. Majid (1986),in his study in the dog, also encountered difficulties in observing 

alveolar macrophages with routinely prepared SEM tissues; however, using material 

obtained from alveolar lavage, and further TEM work, he was able to confirm that 

alveolar macrophages were a normal component of the canine alveolar cell population. 

Numbers of alveolar macrophages appear to vary from species to species, being 

apparently numerous and easily identified in the ferret (Hyde et al., 1979), fewer in 

number in the horse (Pirie, 1990), where they present long filamentous pseudopodia, 

and rare in monkeys (Greenwood and Holland, 1972). In the ox such cells were easily 

identified by Iovannitti et al. (1985), but Mariassy et al. (1975) found them to be rare. 

Alveolar macrophages form an important defence mechanism against bacteria and other 

foreign bodies. Thus in pathological conditions the number of alveolar macrophages has 

been seen to increase considerably. (Greenwood and Holland, 1972; Majid, 1986).

In the goat, interalveolar pores (of Kohn) were found to be few, in contrast to 

observations made in ox (Iovannitti et al., 1985), rat (Andrews, 1979), dog (Wright et 

al., 1983; Majid, 1986), ferret (Hyde et al., 1979) and man (Burn, 1985). Methods of 

fixation of lung tissue have been seen to produce different results in relation to the 

abundancy of interalveolar pores. Intravascular fixation of the lung parenchyma tended 

to preserve the alveolar surfactant, thus covering the pores, whilst airway instillation of 

fixative had the effect of removing the surfactant and revealing pores (Parra et al., 1978; 

Shimura et al., 1986). As the latter method was used in the present study, the paucity of 

alveolar pores is considered a normal feature. Such findings are in agreement with 

similar observations in young adult cattle (Mariassy et al., 1975) where it was reported 

that interalveolar pores are extremely rare.lt has been reported that the number of 

alveolar pores tends to increase with age (Shimura et al., 1986Pirie, 1990); in the 

present study this could not be established as there were no significant differences in
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age among the animals used.



CHAPTER 5.

TRANSMISSION ELECTRON MICROSCOPY OF THE DISTAL 

AIRWAYS AND ALVEOLAR MEMBRANE IN THE LUNG OF THE

ADULT GOAT.



INTRODUCTION.

The purpose of this study was to use the transmission electron microscope to 

further characterise and identify, cytologically, those cell types previously observed by 

light and scanning electron microscopy to populate the distal airways, and to define the 

ultrastructural characteristics of the alveolar membrane.

The use of different terminologies in the study of pulmonary morphology has 

led to some confusion in trying to identify structures described at different levels of the 

respiratory tract by different workers (Iovannitti, 1984). In the present study, the term 

“distal airway” is applied to“the region of the respiratory system including the terminal 

bronchioles through alveoli”as defined by Davis et al. (1984) and used previously in an 

undefined context (Baskerville, 1970a; Hyde et al., 1979; Tyler and Plopper, 1985).

TEM studies were concentrated on the distal airways because of their 

physiological and clinical importance in the gaseous exchange mechanism between 

tissues and the environment, and the fact that it is these airways that frequently show the 

primary effects of pulmonary pathology caused by such factors as infectious agents, 

genetic disorders and inhaled toxic agents (Denny et al., 1977; Castleman et al., 1980; 

Boucher et al., 1983; Pirie, 1990). It is understandable, therefore, that many recent 

studies on the ultrastructure of the lung have concentrated on the distal airways (refer 

Table 4.1) with the aim of defining the epithelial cell populations lining these regions. 

Ultrastructural studies of the distal airways in farm animals have been carried out in the 

pig (Baskerville, 1970a;Epling,1964a»b), the ox (Mariassy et al., 1975; Iovannitti etal.,

1985) and the horse (Gillespie and Tyler, 1967; Nowell and Tyler, 1971; Pirie et al., 

199 lb). However, in the goat, such reports appear to be limited to the ultrastructure of 

the alveolar epithelial cells and to descriptions of the transmission electron microscopic 

anatomy of the pulmonary blood-air barrier (Atwal, 1988; Atwal and Sweeny, 1971; 

Atwal et al., 1979; Atwal and Saldanha, 1985).

In Chapters 3 and 4 the entire epithelial lining of the respiratory airway of the
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goat, from the nasal vestibule to the alveoli, was investigated by the use of the light and 

scanning electron microscope with the aim of identifying both the surface characteristics 

of the different cell types and their distribution within the airways. In the lower 

respiratory tract, bronchioles were seen to be characterised by different cell types at 

different levels: Proximal to the terminal bronchioles they were lined by a 

pseudostratified ciliated epithelium composed of ciliated, mucus-producing and 

nonciliated microvillous cells, whilst at the level of the terminal bronchiole the 

epithelium changed to a simple low columnar to cuboidal lining composed of ciliated 

and nonciliated bronchiolar epithelial (Clara) cells. At this level, mucus-producing cells 

could not be identified. Respiratory bronchioles, characterised by the presence of alveoli 

within their walls, were lined by a simple cuboidal epithelium in the non-alveolar 

region, and a simple epithelium composed of alveolar Type I and alveolar Type II cells 

in the alveolar region. The latter two cell types typically characterised the alveolar lining.

The SEM characteristics of the cells lining the distal airways of the goat lung, as 

described in Chapter 4, are similar to those described in other mammalian species. 

Previous studies have shown however that, whereas SEM characteristics are fairly 

uniform, TEM ultrastructural characteristics appear to differ from species to species, 

especially those of the nonciliated bronchiolar epithelial (Clara) cell, which has been 

extensively investigated (Cutz and Conen, 1971; Smith and Moosavi, 1974; Smith et 

al., 1979; Plopper et al., 1980a"c; Plopper et al., 1983). Not only do the ultrastructural 

characteristics of the cell types differ between species, but also their distribution.

LITERATURE REVIEW.

At least eleven different cell types have been identified in the epithelial 

population lining the airways of the lower respiratory tract in mammals. These cells 

have been characterised and differentiated from each other on the basis of both cellular
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morphology and distribution (Breeze and Wheeldon, 1977; Mariassy and Plopper,

1983). The cell types so far identified are mucus-producing, ciliated, nonciliated 

bronchiolar epithelial (Clara), brush, basal, intermediate, special, serous, pulmonary 

neuroendocrine, alveolar Type I and alveolar Type II cells. Three of these cell types are 

thought to be secretory, the mucus-producing (goblet), the serous and the nonciliated 

bronchiolar epithelial (Clara) cells (Breeze and Wheeldon, 1977; Reid and Jones, 

1979). A brief review of the cellular characteristics of each individual cell type is given 

below.

MUCUS-PRODUCING CELLS.

Mucous cells are found throughout almost the entire lining epithelium of the 

respiratory tract (Breeze and Wheeldon, 1977), where they usually occur in groups of 

three or four and account for about a quarter of the total cell population of the columnar 

layer (Frasca et al., 1968). However their presence in terminal bronchioles and 

respiratory bronchioles has not been ascertained in many mammalian species.

Mucus-producing cells have a narrow, columnar shape, with a base usually 

tapering off towards the basement membrane. Each individual mucus-producing cell is 

surrounded by an irregular space that is closed at the luminal surface by tight junctional 

complexes between adjacent cells (Bozarth and Strafuss, 1974). The nucleus is usually 

located towards the base of the cell and is round to slightly oval in shape (Rhodin, 

1966).

The cytoplasm is relatively dense and electron-opaque compared to that of 

ciliated or basal cells, due in part to the presence of many mucous granules and 

ribosomes which are found in their apical cytoplasm. The granules are of variable size, 

the density of their contents varying from a high density fibrillar to a low density 

homogeneous nature (Frasca et al., 1968).

In the supranuclear position, a well developed Golgi apparatus is usually found
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(Breeze and Wheeldon, 1977). It is generally accepted that the mucous granules develop 

as pre-mucous granules from Golgi membranes and vacuoles (Rhodin, 1966).

One of the characteristics of a mature mucus-producing cell is the dome-shaped 

apical surface, which usually protrudes between the adjacent cells into the lumen of the 

respiratory tract (Baskerville, 1970a). It is in this apical protuberance that mucous 

granules are concentrated; fusion of the granules may occur as the limiting membranes 

become less distinct (Rhodin, 1966). The mucous granules are discharged from the cell, 

often still within an intact limiting membrane (Breeze and Wheeldon, 1977); such 

secretion is thus of the apocrine type (Freeman, 1966).

Cells which are presumed to be immature mucus-producing cells are also 

encountered in the epithelium, and have been extensively investigated by Frasca et al. 

(1968). In size and shape they resemble ciliated cells except that, instead of cilia, many 

cytoplasmic processes (microvilli) project from their apical surfaces. Surface microvilli 

are often found around the apical cell margin and, although found on mature cells, are 

more numerous on immature and discharged cells, where they may be found all over the 

cell surface (Baskerville, 1970a,b; Greenwood and Holland, 1972; Andrews, 1974).

CILIATED CELLS.

Ciliated cells are found in airway epithelium from the nasal cavity down to the 

small bronchi (Sturgess and Czegledy-Nagy, 1978), and are the commonest cell type in 

the conducting portion of the mammalian respiratory tract, averaging, for example, five 

ciliated cells to every mucus-producing cell in the human trachea (Rhodin, 1966).

Within the epithelium the ciliated cell extends from the basement membrane to 

the luminal surface, being narrow and roughly columnar in shape, with a tendency of 

tapering basally. The lower lateral surfaces form complex interdigitations and 

desmosomal attachments with adjacent cells (Frasca et al., 1968; Hansell and Moretti, 

1969; Baskerville, 1970^); cell contacts towards the luminal surface usually tend to be
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straight.

The cytoplasm is usually more electron-lucent compared to the mucus-producing 

and other nonciliated epithelial cells, due to the relative lack of secretory products or 

granules and the sparse distribution of ribosomes (Rhodin, 1966; Breeze and 

Wheeldon, 1977). Lysosomes are numerous, and intracytoplasmic tonofilaments are 

found within the cytoplasm although they are not as abundant as those found in the 

basal cells (Rhodin, 1966).

Towards the tapered end of the cell, an irregularly spherical to ovoid nucleus is 

found, the shape of which corresponds to the shape of the cell (Rhodin, 1966; Tesik,

1984). In most mammalian species, the Golgi apparatus is well developed and is found 

in the immediate supranuclear position (Frasca et al., 1968; Breeze and Wheeldon, 

1977). Large aggregates of glycogen rosettes have been found in many ciliated cells; 

although these are usually in close association with the basal aspect of the nucleus, they 

are occasionally found at the apical aspect and, on rare occasions, surround the nucleus 

(Frasca et al., 1968).

One of the chief characteristics of ciliated cells, which has been clearly 

elucidated by the use of SEM and TEM, is the presence of numerous cilia at the luminal 

surface of these cells. The cilia are anchored within the cytoplasm by means of basal 

bodies from which rootlets extend into the apical part of the cell (Friedmann and Bird, 

1971). The cilia have an average length of about 6|im, although the length and density 

of the cilia have been seen to differ considerably depending on the stage of development 

of the cell (Hilding, 1965; Hilding and Hilding, 1966). The structure of the cilia is 

basically the same for all ciliated cells in animals, each cilium containing nine paired 

peripheral microtubules surrounding a central pair. The microtubules are longitudinally 

orientated and surrounded by an extension of the cell membrane (Frasca et al., 1968; 

Baskerville, 1970a). The two central tubules fuse at the tip of the cilium and do not 

extend to the basal bodies as the others do.

Filiform projections, referred to as microvilli, which are short and have no
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internal structure, are also characteristic of ciliated cells. The plasma membrane covering 

the microvilli has a “fuzzy” appearance due to the presence of a ‘naplike’ coating of fine 

filaments which may interweave with those from the neighbouring microvilli (Okano 

and Sugawa, 1965; Adams, 1986).

Ciliated cells, through the action of cilial propulsive force, transport trapped 

material within the mucus blanket to the pharyngeal region, where it is eventually 

swallowed. Thus ciliated cells form an important component of the mucociliary 

escalator system (Kilbum, 1968; Kaltreider, 1976). In vitro studies have suggested that 

the ciliated cell may also have a secretory function, as it has been observed to play a role 

in the transport of ions and water (Nadel et al., 1985) and the release of macromolecules 

across its luminal surface (Varsano et al., 1987). However, details of in vivo release 

and the significance of these macromolecules are uncertain at this time (Basbaum and 

Finkbeiner, 1989)

NONCILIATED BRONCHIOLAR EPITHELIAL!CLARA) CELLS.

A description of the nonciliated bronchiolar epithelial (Clara) cell was first 

provided by Kolliker in 1881, its presence being later confirmed by Clara (1937) after 

whom it was named.

Clara cells are primarily distributed within the bronchioles. They are most 

numerous in the terminal bronchioles (Smith et al., 1979; Plopper, 1983), with 66% of 

terminal bronchiolar epithelium in the rabbit, 73% in the guinea pig, 55% in the hamster 

and 67% in the mouse being composed of nonciliated bronchiolar epithelial cells 

(Plopper et al., 1980a); in the horse they account for 55-75% of the terminal bronchiolar 

epithelial population (Plopper, 1983). They have been encountered as far proximally as 

the trachea in the mouse (Hansell and Moretti, 1969; Pack et al., 1981) and rabbit ( 

Plopper, 1983), and distally as far down as the respiratory bronchioles in the dog 

(Majid, 1986).
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The Clara cell rests on the basement membrane, the lateral plasma membranes 

forming complex interdigitations, including desmosomes, with adjacent epithelial cells 

(Cutz and Conen, 1971).

With the light microscope, nonciliated bronchiolar epithelial cells appear 

columnar and sometimes cuboidal, have a deeply invaginated central nucleus, and 

usually have a club-shaped protoplasmic process projecting into the lumen beyond the 

ciliated cells (Breeze and Wheeldon, 1977). With SEM, the luminal surface is seen to be 

bulging in shape, and carry short and stubby microvilli. Some species differences have 

been noted as regards the surface microvilli - in rabbits, for example, Clara cells have a 

relatively smooth luminal surface with relatively few, small microvilli (Cutz and Conen, 

1971), whereas in other species, such as the rat, the guinea pig and the mouse, the 

apical surface is studded with numerous short stubby microvilli (Plopper et al., 1980a_ 

c).

There is a considerable variation between species in the TEM ultrastructure of 

the nonciliated bronchiolar epithelial cells (Smith et al., 1979; Plopper et al., 1980a_c; 

Widdicombe and Pack, 1982). The latter compared the ultrastructure of Clara cells in 

fifteen mammalian species, including man, and described three morphologically distinct 

categories based on the presence and abundance of secretory granules, rough 

endoplasmic reticulum (RER) and smooth endoplasmic reticulum (SER). Secretory 

granules and SER are major cell components in the horse and sheep, but not in the ox; 

in dogs and cats, however, the cells are characterised by an abundancy of cytoplasmic 

glycogen granules. SER is not a prominent feature of Clara cells in man.

Although there is a controversy as regards the function of Clara cells (Majid,

1986), it is generally accepted that the cells are secretory in nature (Breeze and 

Wheeldon, 1977; Massaro, 1989) as indicated by the histochemical profile, the 

abundant mitochondria, extensive SER and prominent Golgi zone. Cutz and Conen, 

(1971) have suggested that Clara cells might be an important source of the hypophase 

component of the alveolar lining layer. Since they contain abundant cytochrome P-450,
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it has also been suggested that they play a role in the metabolism of pulmonary toxins 

through a mixed-function oxidase system (Plopper et al., 1980a_c). These functions 

will be considered in the discussion.

Several workers have isolated a common antigen in secretory proteins of Clara 

cells and alveolar Type II cells of both man (Balis et al., 1984; and ratWalker et al.,

1986), and their findings suggest that the two cells may share a functional role. Recent 

studies in man have suggested that the cuboidal Clara cells of the respiratory 

bronchioles are Type II cells (Ten Have-Opbroek et al., 1991).

BRUSH CELLS.

The infrequent occurrence of brush cells was first reported by Rhodin and 

Dalhamn, (1956) in the rat tracheal epithelium. Since then their presence has been 

reported in the bronchi of pigs (Baskerville, 1970a) and calves (Allan, 1978), in the 

upper and lower airways of the mouse (Hama and Nagata, 1970; Breeze and Wheeldon, 

1977), in the trachea of the guinea pig (Inoue and Hogg, 1974) and in the trachea and 

principal bronchi of the rat (Alexander et al., 1975).

The brush cell is tall and always extends from the basement membrane to the 

luminal surface. It seldom occurs singly in between ciliated cells, but is usually 

surrounded by four to six mucus-producing cells (Rhodin and Dalhamn, 1956; 

Andrews, 1979). The apical surface is commonly pentagonal (Alexander et al., 1975) 

and carries very regularly arranged, more densely packed, uniformly sized microvilli, 

which are wider and taller than the microvilli of other nonciliated cells, their intracellular 

axial filaments being finer and much more uniform (Allan, 1978).

The cytoplasm is more electron-lucent than that of mucus-producing cells 

(Rhodin and Dalhamn, 1956) and contains free ribosomes as well as glycogen granules. 

The nucleus is spherical with indentations, so as to appear multilobate, and is located in 

the lower part of the cell just below the Golgi zone (Adams, 1986), at more or less the
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same level as the nuclei of neighbouring ciliated and mucus-producing cells. 

Desmosomes are infrequently observed (Meyrick and Reid, 1968). Mitochondria are 

abundant in the supranuclear region of the cell. Vacuoles of variable diameter, bounded 

by a thick, opaque membrane enclosing a much less opaque centre, are commonly 

located in the basal region of the cell (Rhodin and Dalhamn, 1956).

Although the ultrastructural details of the brush cell have been studied in depth, 

their function is still speculative. The presence of pinocytotic vesicles located at the cell 

apex, as well as the presence of intracytoplasmic vacuoles, strongly suggests that the 

cell has an absorptive function, and this hypothesis has gained much support (Allan, 

1978; Baskerville, 1970a; Jeffery and Reid, 1975). Breeze and Wheeldon (1977) have 

suggested that the nerve endings observed to contact the lateral borders of the brush cell 

are related to a chemoreceptor role for these cells. Jeffery and Reid (1975) have also 

suggested that the brush cell may function as a stretch receptor due to the presence of 

intracytoplasmic filaments, the latter having been noted by Allan, (1978).

BASAL CELLS.

These are the smallest cells of the epithelial cell population. They usually rest on 

the basement membrane and characteristically do not reach the luminal surface; it is this 

feature that accounts for the observed pseudostratified nature of the epithelium. Basal 

cells are most numerous in the trachea and decrease in numbers from trachea to bronchi 

(Evans and Shami, 1989). In the rat, they are found as far distally as the bronchioles 

(Jeffery and Reid, 1975). They are characteristically either ovoid in shape, or rather flat 

and sometimes triangular (Plopper et al., 1983).

The irregular intercellular space surrounding the basal cell is crossed by 

numerous cytoplasmic projections attaching the cell to adjacent cells, or sometimes to 

the basement membrane, frequently by means of desmosomes (Rhodin and Dalhamn, 

1956; Frasca etal., 1968).
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Most of the cell is taken up by the electron-dense nucleus, which is centrally 

situated and has an irregular outline with shallow indentations (Frasca et al., 1968). The 

nucleolus is prominent. The Golgi apparatus occupies only a small zone near the 

nucleus, usually at an indentation. A few short ovoid mitochondria with well formed 

cristae usually surround the nucleus. The cytoplasm contains many ribosomes and 

intracytoplasmic filaments, these then accounting for the observed increased 

cytoplasmic opacity as compared to ciliated cells or mucus-producing cells (Monteiro- 

Riviere and Popp, 1984).

Basal cells were originally considered to be the precursors of nonciliated and 

ciliated cells (Blenkinsopp, 1967). However recent studies (McDowell etal., 1984a,b; 

McDowell et al., 1985; Evans et al., 1986; Plopper et al., 1986) have confirmed that the 

basal cell is not responsible for cell renewal in the columnar epithelium, since it was 

also observed that basal cells do not increase in number following injury (Keenan et al., 

1982a' c). It is now generally accepted that the cellular specialization of the basal cell is 

the formation of desmosomes with adjacent cells, and hemidesmosomes with the 

basement membrane (Kawanami et al., 1979). Since it has been observed that the 

columnar epithelial cells themselves do not appear to form hemidesmosomes with the 

basement membrane, it has been proposed that the function of the basal cell may be to 

aid in the attachment of the columnar epithelium to the basement membrane (Evans and 

Shami, 1989).

INTERMEDIATE CELLS.

Intermediate cells have been described in the tracheal epithelium of rats (Rhodin 

and Dalhamn, 1956) and man (Rhodin, 1966), and in the bronchial epithelium of pigs 

(Baskerville, 1970a,b). They are situated just above the basal cells and they may or may 

not reach the luminal surface. They are spindle-shaped with a large ovoid nucleus.

Rhodin (1966) suggests that since the intermediate cell is less specialised, a
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further differentiation would turn it into either a ciliated cell or a mucus-producing cell; 

cytoplasmic opacity depends, to a great extent, on the line upon which cell 

differentiation proceeds, such that variations in cytoplasmic densities may be seen even 

within species (Jeffery and Reid, 1975). Within the individual cell the cytoplasm 

contains abundant mitochondria, lysosomes and tonofilaments, the latter however being 

less numerous than those seen in basal cells (Breeze and Wheeldon, 1977).

In addition to being a stem cell for the ciliated and mucus-producing cells, It is 

also suggested that the cell may play a role in protein transport (Breeze and Wheeldon, 

1977).

SPECIAL CELLS.

The rarely observed special cell was first described in the tracheobronchial tree 

of the dog by Frasca et al. (1968). The wedge-shaped cell, sometimes resembling the 

basal cell in size and shape, is located in between adjacent columnar or basal cells and 

rests on a basement membrane. The cell tapers towards its apex, but has not been 

observed to reach the lumen of the airway (Frasca et a/., 1968).

The special cell is characterised by the presence of numerous intracytoplasmic 

membrane-bound granules which appear as discs, or curved or straight rods. The 

nucleus is smooth and oval in outline and usually has a visible nucleolus. The Golgi 

apparatus is found in the supranuclear region of the cell, while mitochondria are 

elongated and have prominent cristae. Ribosomes are abundant and scattered uniformly 

throughout the cytoplasm. A little rough endoplasmic reticulum is present and 

occasionally lysosomes are seen (Frasca et al., 1968). The function of the special cell 

remains unknown (Majid, 1986).

EPITHELIAL SEROUS CELLS.

104



Serous cells were first reported in the trachea and extrapulmonary bronchi of 

rats by Jeffery and Reid (1975). They have since been reported in the trachea and 

extrapulmonary bronchi of cat, hamster and human foetus as well (Jeffery and Reid, 

1977).

The serous cell appears columnar in shape and extends from the basement 

membrane to the airway lumen, where a few microvilli are present on the apical surface. 

The electron-dense cytoplasm contains a basally located irregular nucleus, abundant 

rough endoplasmic reticulum and a variable number of rounded, membrane-bound 

secretory granules.

The secretory granules, appearing smaller than those in the mucus-producing 

cells, have been reported to produce a low viscosity secretion contributing to the 

periciliary liquid layer below the tracheobronchial mucus (Jeffery and Reid, 1977).

PULMONARY NEUROENDOCRINE CELLS.

The endocrine cell has been found at all levels of the tracheobronchial tree 

(Hage, 1971, 1972; Scheuermann, 1987). The cell is roughly triangular in shape and 

lies adjacent to the basement membrane. The tapering apical portion of the cell may or 

may not reach the luminal surface, with contradictory observations of this between 

species (Moosavi et al., 1973) and even between individuals within a species (Moosavi 

et al., 1973; Cutz et al., 1974).

Several terminologies, including clear cell (Feyrter, 1954), endocrine-like cell 

(Hage, 1971), Feyrter cell (Moosavi et al., 1973), neurosecretory-appearing cell and K 

cell (Breeze and Wheeldon, 1977) have been used to describe this particular cell type. 

However, it is now referred to principally as a pulmonary neuroendocrine cell (Johnson 

and Georgieff, 1989; Gosney, 1990).

The cytological characteristics of the endocrine cell have been described in detail
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(Breeze and Wheeldon, 1977; Wasano and Yamamoto, 1981). The cytoplasm, 

appearing electron-lucent, contains a round or oval nucleus, a prominent Golgi 

apparatus, numerous free ribosomes and abundant smooth endoplasmic reticulum.

Granules, which have clear haloes between the electron-dense cores and the 

limiting membrane, are usually located in the basal cytoplasm and, together with 

bundles of microfibrils, form the characteristic features of the cell. The cell has been 

included in the APUD (amine-precursor uptake and decarboxylation) group of cells 

(Pearse, 1969; Hage, 1971, 1973a,b) encountered elsewhere in the body (Gail and 

Lenfant, 1983).

Pulmonary neuroendocrine cells are usually distributed singly; where they do 

occur in groups, however, they are referred to as neuroepithelial bodies. Aggregations 

of endocrine cells were first reported by Frohlich (1949) and later described in detail in 

human infants (Lauweryns and Peuskens, 1971). They are found throughout the entire 

tracheobronchial and bronchiolar airways, even within the alveolar ducts and alveoli, 

but they appear to be particularly numerous in the bronchioles, at least in rabbits 

(Lauweryns and Goddeeris, 1975).

A review of the structure, distribution and histochemistry of pulmonary 

endocrine cells (Sorokin et al., 1983) has suggested that they could respond to changes 

in the airway gases by releasing, from the dense-cored vesicles, vasoactive substances 

which regulate airflow (Gail and Lenfant, 1983).

The close association of the neuroepithelial bodies to various morphological 

types of nerve endings (Lauweryns and Goddeeris, 1975) further suggests that these 

cells may act as intrapulmonary chemoreceptors. They are also thought to be regulators 

of airway epithelial differentiation (Johnson and Georgieff, 1989).

ALVEOLAR TYPE I CELLS (Type I pneumocvtes).

Alveolar Type I cells cover most of the alveolar surface of the lung with long,
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thin cytoplasmic extensions or plates (Winkler and Cheville, 1984). The cells account 

for about 93% of the alveolar surface in humans and 97% in the dog (Crapo et al., 

1983). The nucleus-bearing part of the cell is cuboidal and contains a few cell 

organelles. In the cytoplasmic extensions, although vesicles are numerous (Winkler and 

Cheville, 1984), other cellular organelles are scarce, reflecting the highly differentiated 

nature of this cell type, which has subsequently lost its capacity to divide. In spite of the 

paucity of cytoplasmic organelles, the cell has a high metabolic activity (Burn, 1985). 

The characteristically very thin cytoplasmic plates, a feature related to the function of the 

cells in ensuring an efficient gaseous exchange (Burri, 1985), can extend as far as 

50|aM from the nuclear region. Sparsely distributed microvilli are observed on the 

luminal surface of the cytoplasmic extensions of alveolar Type I cells.

ALVEOLAR TYPE II CELLS (Type II pneumocvtesY

Alveolar Type II cells are roughly cuboidal in shape, with apical surfaces that 

either project slightly into the lumen or, in some cases, appear level with the 

surrounding alveolar surface. The luminal surface is covered by short microvilli except 

at the centre, where extrusion of lamellated bodies occurs (Nowell and Tyler, 1971).

The cell cytoplasm appears vacuolated and contains many well developed 

mitochondria and a well developed and widely dispersed Golgi apparatus (Baskerville, 

1970b; Sorokin, 1988). Lamellated inclusion bodies, said to be rich in phospholipids 

(Williams, 1977, 1978), are found throughout the cytoplasm and form a characteristic 

feature of the Type II cell.

The functions of alveolar Type II cells include the synthesis, storage and 

secretion of pulmonary surface-active material, the re-epithelialisation of the alveolar 

wall after lung injury, and transepithelial solute transport to limit the volume of alveolar 

fluid and perhaps to regulate its composition (Voelker and Mason, 1989).

ALVEOLAR TYPE m  CELLS (Alveolar brush cellsV
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In 1968, Meyrick and Reid described an alveolar brush cell, also known as the 

alveolar Type III cell, in the lungs of the rat. This cell is characterised by a pyramidal 

shape and rests on the basal lamina, its lateral surfaces being covered by cytoplasmic 

extensions of alveolar Type I cells, which then form attachments around the free luminal 

surface of the Type HI cell. This free apical surface is densely packed with large, blunt 

microvilli (Bum, 1985).

Investigations using SEM and TEM strongly suggest that alveolar Type ID cells 

are derived from alveolar Type II cells (Hijiya, 1978a’̂ ). Speculations have been made 

regarding their function, and the close relationship of these cells to nerve fibres has led 

to the hypothesis that they may function as receptor cells (Hijiya, 1978a»̂ ; Burri, 

1*985).

MATERIALS AND METHODS

ANIMALS:

Four adults cashmere goats, aged between 10 and 18 months were used in this study. 

Post-mortem procedures were carried out as described in the general materials and 

methods section provided in Chapter 2. Samples were taken from the lung parenchyma 

to include bronchioles, alveolar ducts and alveoli.

TRANSMISSION ELECTRON MICROSCOPY:

Small portions of mucosa preselected sample site numbered 1 to 18 were removed, 

minced in a petri dish to sizes of approximately 0.5 mm^, and then placed in chilled 

kamovsky’s fixative for at least 24 hours, washed with buffer, dehydrated through a 

graded series of acetones and embedded in Emix. Thick sections were cut and stained 

with uranyl acetate and lead citrate, and examined with a Hitachi HS 8 transmission
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e le c tr o n  m ic r o sc o p e .

RE&ULXS.

TEM studies confirmed the previous LM observations on the morphology of the 

lining epithelium, in that the epithelium lining the terminal bronchiole was observed to 

be of a simple columnar to a simple cuboidal type (Figs. 5.1, 5.2). Two cell types, the 

ciliated and the nonciliated bronchiolar epithelial (Clara) cell, formed the major 

components of the cell population, with the mucus-producing cell being observed only 

occasionally. The cells rested on a prominent basal lamina, and the whole epithelium 

was thrown into folds.

The epithelium lining the respiratory bronchioles was predominantly of a simple 

cuboidal type, being occasionally interrupted by areas of simple squamous epithelium. 

Nonciliated bronchiolar epithelial cells and a few ciliated cells bearing a small number of 

cilia, together with alveolar Type I and Type II cells, formed the cell population of the 

respiratory bronchiolar epithelium. No mucus-producing cells were encountered at this 

level.

The alveolar membrane of the goat was comprised of a continuous, simple 

squamous epithelial lining and a centrally situated capillary which was surrounded by 

connective tissue, the amount of which differed from region to region. Two cell types 

were observed to constitute the epithelial lining, namely alveolar Type I and Type II 

cells (Fig. 5.8).

CILIATED CELLS.

Ciliated cells were observed in the terminal bronchioles and as far distally as the 

respiratory bronchioles, and were seen to vary both in number and height. Whereas 

those in the terminal bronchioles were columnar, ciliated cells in the respiratory
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bronchioles were fewer in number and were exclusively cuboidal in shape. However, 

the cytological characteristics were the same. The cells were large and extended from the 

basal lamina to the airway lumen. The luminal surfaces were seen to bear cilia and 

numerous microvilli (Figs. 5.2, 5.3). The cilia were seen to arise from the apical 

cytoplasm and were anchored onto the basal bodies. Microvilli were seen to be much 

thinner than cilia, and had no obvious internal structure (Fig. 5.3).

The cytoplasm of ciliated cells was much more electron-lucent than that of the 

neighbouring nonciliated microvillous cells (Fig. 5.2), and a nucleus, oval in shape, 

was usually observed occupying the basal portion of the cell. A well-developed Golgi 

apparatus was usually seen situated above the nucleus, and a number of mitochondria 

with relatively few cristae were seen occupying a region immediately below the basal 

bodies (Fig. 5.3). A few intracytoplasmic membrane-bound inclusion bodies containing 

homogeneous electron-dense material were observed (Fig. 5.1, 5.4). Profiles of 

smooth endoplasmic reticulum were observed in the apical region of the cell.

A narrow intercellular space was seen surrounding the lateral cell surface, except 

at the luminal surface where tight junctions with adjacent cells were present (Fig. 5.3).

Occasionally, cells which were presumed to be developing ciliated cells were 

encountered in the terminal bronchiole. Such cells, which were columnar in shape, 

arose from the basal lamina, projected up to the airway lumen, and were characterised 

by the presence of numerous microvilli and the presence of a number of basal bodies 

(Fig. 5.4). The cytoplasm was of a medium electron-density and a few intracytoplasmic 

multivesicular bodies were observed. A prominent Golgi body and a basally situated 

nucleus were characteristic features of this cell type.

NONCILIATED BRONCHIOLAR EPITHELIAL (CLARA1 CELL.

Nonciliated bronchiolar epithelial (Clara) cells were observed in the terminal 

bronchioles and all the way into the respiratory bronchioles, where they were in the
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majority. Clara cells were observed with TEM to be columnar to cuboidal in shape (Figs 

5.1, 5.2) and often presented characteristic apical protuberances (Fig. 5.5). The apical 

surfaces were usually studded with numerous short, thick stumpy microvilli. The cells 

were attached apically to each other or to adjacent cells by tight junctions; in the basal 

region, numerous interdigitations with neighbouring cells were always observed (Fig. 

5.5).

Individual cell cytoplasm was usually seen to be electron-dense compared to 

adjacent ciliated cells (Fig. 5.2). The relatively large nucleus was frequently observed in 

the central region of the cell, although occasionally located in the apical protuberance. 

Patches of dense heterochromatin were distributed in the periphery of the nucleus and a 

nucleolus was often present.

Accumulation of smooth endoplasmic reticulum was observed especially in the 

apical region (Fig. 5.6); a few inclusion bodies were also encountered.

A few discrete, electron-dense granules, devoid of internal structures and 

lacking a clear limiting membrane, were observed, mainly in the apical region. Moderate 

numbers of elliptical mitochondria with an electron-dense matrix were observed (Figs. 

5.5, 5.6).

MUCUS-PRODUCING CELLS.

These were very occasionally observed in the terminal bronchioles only. The 

cell was cuboidal in shape and was attached to adjacent cells by tight junctional 

complexes (Fig. 5.7). The luminal surface carried a few short microvilli concentrated 

around the periphery of the cell. A large nucleus with a prominent nucleolus was basally 

situated. The cytoplasm was much more electron-lucent compared to that of the Clara 

cell, although, of a higher electron-density than that of the ciliated cell. Numerous 

heterogeneous granules were distributed in the supranuclear region of the cell. 

Abundant rough endoplasmic reticulum and a small amount of smooth endoplasmic
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reticulum were encountered, particularly in the apical half of the cell (Fig. 5.7).

BASAL CELLS.

These were not observed in the present study of the distal airways of the goat 

ALVEOLAR TYPE I CELL.

This was observed to contain an oval nucleus surrounded by a limited 

perikaryon from which very long cytoplasmic extensions, covering most of the alveolar 

surface, arose. The cytoplasm appeared to be devoid of cellular organelles except for 

occasional pinocytotic vesicles. Occasionally short microvillous-like protrusions were 

observed projecting from the luminal surface of the cell (Fig. 5.8).

ALVEOLAR TYPE II CELL.

The large cuboidal-shaped cells, occupying positions in the alveolar recesses 

(Fig. 5.9) and sometimes bulging out into the alveolar lumen (Fig. 5.8), were identified 

as alveolar Type II cells. These cells were also characterised by the presence of 

numerous thin microvilli on their free surfaces, and were seen to form junctional 

complexes with neighbouring alveolar Type I cells.
i

The cytoplasm was electron-dense and contained characteristic lamellated 

inclusion bodies. The lamellated bodies, consisting of spirals of osmiophilic material, 

appeared to vary in size and number from one individual cell to another (Fig. 5.9 inset). 

Numerous, relatively large and well formed mitochondria with an electron-dense matrix 

were observed distributed in the cytoplasm, along with granular endoplasmic reticulum 

and numerous ribosomes (Fig. 5.9). A Golgi apparatus was occasionally observed. 

Lipid vacuoles of variable sizes were observed distributed in the cytoplasm; whereas
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some appeared empty (lipid material having been lost during processing of specimens), 

many of them still contained electron-lucent material (Figs. 5.9, 5.11). The large 

centrally-placed nucleus was often observed to contain a prominent nucleolus; 

sometimes two nucleoli were seen.

On rare occasions, large Type II cells dramatically protruded into the alveolar 

lumen near to the basal lamina; the lateral surfaces of such cells were seen to be attached 

to the cytoplasmic extensions of the alveolar Type I cells by desmosomes and tight 

junctional complexes. The protruding surface was studded with microvilli (Fig. 5.10). 

Occasional cross section through the apical dome of such cells gave an impression of 

these cells being free in the alveolar lumen (Fig. 5.11).

ALVEOLAR SEPTUM.

Capillary endothelial cells in the alveolar septa were attenuated except for the 

nuclear region which bulged into the lumen. The cytoplasmic extensions presented 

numerous deep invaginations both in the luminal and basal surfaces of the cells (Fig. 

5.12). Within the capillary lumen, white blood cells and red blood cells were observed

The amount of connective tissue within the alveolar septa varied from region to 

region and was located between the basal lamina of the epithelial cell and that of the 

endothelium. Aggregates of collagen fibres were observed (Fig. 5.12), and fibroblasts 

and occasional mast cells were also encountered. In some areas, where the septal 

connective tissue was absent, the basal laminae of endothelial and epithelial linings 

fused to form a basal lamina common to both.

ALVEOLAR MACROPHAGES.

Free cells, unattached to a basal lamina, were occasionally observed in the 

alveolar spaces and were identified as alveolar macrophages (Fig. 5.13). The cell
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surface was to a large extent smooth and, at intervals, long pseudopodia-like extensions 

were observed. The cytoplasm contained smooth endoplasmic reticulum, a patchy 

distribution of rough endoplasmic reticulum, many small ellipsoid-shaped 

mitochondria, and a large irregularly-shaped nucleus (Fig. 5.14).

Large vacuoles and numerous membrane-bound vesicles of varying sizes and 

containing a dense matrix were observed in the cytoplasm. Spherical bodies containing 

osmiophilic material or lamellated lattice-like structures were also observed distributed 

within the cell (Figs. 5.13, 5.14).

D ISC U SSIO N .

The present study confirmed LM observations (Chapter 3) that, in the goat, the 

terminal bronchioles are lined by a simple columnar epithelium, the height of the cells 

decreasing with the decrease in airway diameter to form a simple cuboidal epithelium in 

the respiratory bronchioles.

These observations on the types of epithelia lining the distal airways in the goat 

are in agreement with those made in several mammalian species including the dog 

(Majid, 1986), pig (Baskerville, 1970a), cat (Al-Tikriti et al, 1991), horse (Pirie, 

1990), ox (Iovannitti et al., 1985) and rat (Andrews, 1979), although they contrast with 

observations made at LM and TEM level in humans (Ten Have-Opbroek et al., 1991) 

and in nonhuman primates (Tyler and Plopper, 1985; Plopper et al., 1986), where two 

types of epithelia have been described lining the respiratory bronchioles. In the 

primates, in addition to the simple cuboidal epithelial lining of the respiratory 

bronchiole, a strip of pseudostratified columnar epithelium has been described located 

on the bronchiolar wall apposed to the associated pulmonary arterial branch. Such an 

arrangement was not observed in the goat in the present study.

This lining epithelium of the distal airways, as observed in the goat, was seen to
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be populated by five different cell types, identified and characterised by the use of the 

transmission electron microscope (TEM). These were the ciliated, nonciliated 

bronchiolar epithelial (Clara) and mucus-producing cell types, and the alveolar Type I 

and alveolar Type II cell types. Alveolar macrophages were also observed.

CILIATED CELLS.

Ciliated cells were observed both at the level of the terminal bronchiole and the 

respiratory bronchiole. The cells were easily identified by the characteristic presence of 

cilia on their apical surfaces and the less opaque nature of the cytoplasm in comparison 

with that of the adjacent cells (Okano and Sugawa, 1965). Although ciliated cells are 

frequently refered to as being columnar in shape (Rhodin and Dalhamn, 1956; Rhodin, 

1966; Gail and Lenfant, 1983), the present study has observed that the height of the cell 

may vary while still retaining the same cytological characteristics; indeed, the ciliated 

cells observed in the respiratory bronchioles were cuboidal in shape.

Cilia presented a typical cytoskeletal arrangement of 9 peripheral tubules 

arranged in a regular circle about a pair of central tubules, a description which basically 

still remains the same as it was when described by Rhodin and Dalhamn (1956) almost 

half a century ago. This time-tested description of the structure of the cilium appears to 

be similar in all mammalian species so far examined (Breeze and Wheeldon, 1977; Gail 

and Lenfant, 1983).

Other characteristic features observed in the present study included a prominent 

Golgi body, basal bodies to which the cilia were anchored, numerous mitochondria , 

tight junctions on the luminal surface and an electron-lucent cytoplasm. These features 

are in agreement with the general cytological features as provided by Breeze and 

Wheeldon (1977). However, the aggregations of glycogen rosettes observed in the 

ciliated cells of the tracheobronchial epithelium of the dog (Frasca et al., 1968) were not 

observed in the present study, neither were they reported in the horse (Pirie, 1990), or
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in later studies in the dog (Majid, 1986). Also the intracytoplasmic tonofilaments 

reported in the ciliated cell of the rat (Rhodin, 1966) were not observed in the goat.

The Golgi complex of the ciliated cell is said to be mainly concerned with 

protein synthesis within the cell itself (Varsano et al., 1987), while the mitochondria, in 

addition to providing energy for this activity, play a more important role in providing 

energy for the ciliary beat, which may explain their supranuclear position just below the 

basal bodies.

The membrane-bound inclusion bodies observed in the ciliated cell in the present 

study have also been observed in other mammalian species (Tyler and Plopper, 1985); 

they are clear on photomicrographs provided for the horse (Pirie, 1990) and have also 

been observed in the domestic fowl (Mohammed, 1989). However, their exact nature 

and function remains unclear; whether these inclusions are related to the secretion of 

macromolecular glycoconjugates by ciliated cells, which has been established in vitro 

(Varsano et al., 1987), can only be speculative.

Only a few short cilia were observed on the apical surface of ciliated cells in the 

distal airways. This is in agreement with observations by Breeze and Turk (1984), who 

reported that cilia decrease in length progressively with succeeding airway generations 

in the peripheral lung.

The cilia carpet forms an intergral part of the mucociliary apparatus responsible 

for clearing the airways by propelling trapped foreign bodies, including micro­

organisms, through the ciliary beat, towards the pharynx were they are eventually 

swallowed. The important role played by the cilia in the surface defence mechanisms of 

the respiratory airways is thus well recognised (Kilbum, 1968; Kaltreider, 1976), and 

the paucity of cilia in the distal airways observed in the present study may account for 

the vulnerability of this region to diseases, as noted in the review of literature. The 

association of deciliation with pathological conditions is well documented and is 

discussed later in Chapter 7.

Microvilli were observed intermingled in between cilia, and have been reported
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to be present on ciliated cells of all mammalian species studied (Sturgess, 1989). 

Friedmann and Bird (1971) reported that microvilli have bundles of filaments forming a 

central core. Such details were not observed in the present study, the microvilli 

appearing to have no internal structure. Indeed, the presence of filaments within 

microvilli does not appear to have been observed in many of the ultrastructural studies.

The function of these microvilli on the ciliated cells of the respiratory airways 

remains elusive. As it is generally accepted that microvilli increase the surface area and 

there are reports that ciliated tracheal epithelial cells synthesise and transport sulfated 

macromolecular glycoconjugates which are eventually released from the cell surface, it 

may be that microvilli play a role in such processes (Varsano et a i, 1987).

Cells which were presumed to be developing ciliated cells were encountered in 

the present study. Although no cilia were observed on the apical surfaces of such cells, 

the presence of numerous basal bodies suggested that these cells were destined to 

become ciliated. It was established that, at the level of the terminal bronchioles in the 

goat, basal cells (which have been presumed to be stem cells of columnar cells in a 

pseudostratified epithelium) are not represented in the cell types composing the epithelial 

lining; this begs the question as to which cell type is involved in cell renewal in the 

distal airways?

It has been proposed (McDowell et a i, 1984a,b) and confirmed experimentally 

(Evans et al., 1986), that the nonciliated bronchiolar epithelial (Clara) cell is capable of 

both cell division and cell differentiation to form new secretory and ciliated cells. Thus it 

is now accepted that the Clara cell is the primary progenitor cell in the distal airways.

NONCILIATED BRONCHIOLAR EPITHELIAL (CLARA) CELLS.
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4 ' present study were usually seen to carry apical protuberances, but were also

occasionally observed to present a flattened apical surface.

The TEM appearance of the Clara cell in the mammalian respiratory tract lining
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epithelium shows considerable variation in its observed ultrastructure. For example, 

Plopper et al., (1980°) have shown the presence of considerable qualitative and 

quantitative interspecies variations in Clara cell morphology based on the presence and 

abundance of secretory granules, and on whether smooth, rough or both types of 

endoplasmic reticulum are present

Clara cells observed in the present study contained numerous profiles of smooth 

endoplasmic reticulum; this supports similar observations made in the Clara cells of the 

horse and sheep, where SER is a major cell constituent, but differs from observations 

made in the ox, dog, cat and man (Plopper et al., 1980a_c) and nonhuman primates 

including Rhesus, Bonnet and stumptail monkeys (Castleman et al., 1975), where SER 

is not a prominent intracytoplasmic feature. In addition, the presence of secretory 

granules in the Clara cell of the goat is in agreement with observations made in a 

number of other mammalian species, where they have been consistently observed, 

although such granules were reported to be absent in the Clara cell of the Rhesus 

monkey and the cat (Plopper et al., 1980a_c). Secretory granules in the goat were 

observed to be rather spherical than ovoid, as has been reported in other species.

Glycogen granules were not observed in the present study in the goat. Although 

this is in agreement with observations made in the guinea pig, rat, hamster and mouse 

(Plopper et al., 1980a) and in the horse (Plopper et al., 1980^; Pirie, 1990), this present 

observation contrasts with reports in the ox, cat, and ferret (Plopper et al., 1980^) and 

in the dog (Plopper et al., 1980^; Majid, 1986) where glycogen granules were 

abundant. While the present observations are in agreement with the general 

morphological descriptions provided for these cells (Breeze and Wheeldon, 1977), it is 

apparent that Clara cells exhibit great interspecies diversity in many of their 

ultrastructural characteristics. Indeed it has been noted (Plopper et al., 1980a"c) th a t, 

aside from the nucleus which appears to be common to all 15 species studied, the 

cytoplasmic extensions from the lateral cell surfaces, also observed in the present study, 

may be the only other common feature.
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Although the function of the Clara cell is uncertain and controversial, it is 

generally accepted that the cell is secretory in nature (Cutz and Conen, 1971; Becci et 

al., 1978; Smith et al., 1979; Plopper et al., 1980a“c; Tyler and Plopper, 1985; Majid, 

1986). The proposed function of the cell has been based on the presence of two of the 

cellular characteristics which have also been commonly used to distinguish nonciliated 

bronchiolar epithelial cells, namely numerous membrane-bound granules and abundant 

SER. The granules are said to contain either proteins or phospholipids and have been 

associated with the production of serous secretions (Breeze and Turk, 1984). SER, in 

addition to being associated with such secretions (Kuhn et a l, 1974), is also associated 

with the metabolism of pulmonary toxins. Cytochrome P-450-dependent mono­

oxygenases provide a major pathway for the oxidative metabolism of xenobiotics 

present in the environment. These enzymes have been isolated in the Clara cell (Boyd, 

1977; Serabjit-Singh et a i, 1980), and thus there is much evidence to suggest that the 

Clara cell is a primary site for detoxification. Indeed studies in the rabbit have further 

suggested that the Clara cell is involved in the metabolism of noxious compounds 

(Boyd, 1977; Serabjit-Singh et a i, 1980), a proposal supported by Plopper et al., 

(1983).

Studies in the rat exposed to nitrogen dioxide, oxygen and ozone (Evans et al., 

1973; 1978; Lum et al., 1978) have also suggested that Clara cells function as 

progenitor cells for the bronchiolar epithelium. Since no basal cells ( which are 

considered to provide a renewal of cells in the proximal airways) were observed in the 

distal airways in the present study, this further supports the view that Clara cells are 

responsible for cell renewal at this level.

A recent study in humans appears to provide a different opinion as regards the 

nature of the nonciliated bronchiolar epithelial cell. By means of immunocytochemical 

techniques, also supported by histochemistry and TEM observations, Ten Have- 

Opbroek et al. (1991) have demonstrated the presence of glycoproteins in the columnar 

types of Clara cells. At the same time they have suggested that the cuboidal type of
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Clara cells are Type II precursor cells, based on ultrastructural criteria for embryonic 

Type II cells ((Ten Have-Opbroek et al., 1990), including a cuboidal shape, a large and 

roundish nucleus, presence of both SER and RER, osmiophillic multivesicular bodies, 

and dense bodies. In addition, the cuboidal cells showed a cytoplasmic staining pattern 

for surfactant protein-A , identified immunocytochemically. These workers have 

therefore suggested that Clara cells in man instead of being a separate cell type, may 

instead be varieties of mucus-producing or alveolar Type II cells. These studies were 

based on previous histochemical observations of the respiratory bronchioles in primates 

which gave some indication that mucus-producing cells were present at this level (Tyler 

and Plopper, 1985; Plopper et al., 1989).

Histochemical observations made in the goat in Chapter 3, however, provide no 

evidence of mucus-producing cells in the distal airways. In addition, the present TEM 

studies did not show the presence of osmiophillic multivesicular bodies characteristic of 

these cells in man (Ten Have-Opbroek et al., 1991). Whether this represents a species 

difference between the goat and man can not be judged on the present results alone. The 

observation by Widdicombe and Pack (1982), that the Clara cells are still the “mystery 

cells of the lung”, is therefore still valid and further work would be justified to be able 

to elucidate the nature and function of these cells.

MUCUS-PRODUCING CELLS.

In the present study an occasional mucus-producing cell was encountered in 

only one individual animal. This was differentiated from the nonciliated bronchiolar 

epithelial (Clara) cell by the heterogeneous nature of the secretory granules, and the 

presence of both smooth and rough endoplasmic reticulum along with the basally 

situated nucleus and the electron-lucent nature of the cytoplasm.

This TEM observation of mucus-producing cells in the present study contrasts 

with the earlier LM and SEM studies (chapter 3 and 4), and also contrasts with
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observations in other mammalian species including the dog (Majid, 1986), ox (Mariassy 

et al.t 1975; Iovannitti et al., 1985) and horse (Pirie, 1990). It is worth noting, 

however, that mucus-producing cells constitute the major secretory cell type in the distal 

airways of humans (Ten Have-Opbroek et al., 1991) and the Rhesus monkey (Tyler 

and Plopper, 1985).

Observations of the bronchiolar epithelium in man, demonstrating that smoking 

results in a reduction in the number of Clara cells and an increase in the number of 

mucus-producing cells (Ebert and Terracio, 1975a), have suggested that the Clara cell, 

which is known to be a progenitor cell (Evans et a i, 1973, 1978; Lum et al., 1978), 

may differentiate into a mucus-producing cell following irritation of the epithelial lining. 

It could be speculated that the individual animal showing the presence of these mucus- 

producing cells in the present study was, although free from detectable respiratory 

distress, exhibiting an epithelial response to a mild, but clinically undetectable, irritation 

of the respiratory mucosa.

ALVEOLAR TYPE I CELLS.

This cell type, identified by its attenuated cytoplasm joined with the alveolar 

Type II cell by tight junctions and desmosomal attachments, was seen to line most of 

the alveolar surfaces. Except for the frequently observed mitochondria and endoplasmic 

reticulum in the perinuclear region, the ultrastructural characteristics observed in the 

present study are similar to those described in earlier studies in the goat (Atwal and 

Sweeny, 1971). Similar ultrastructural features have been described in other mammalian 

species including the horse (Pirie, 1990), ox (Epling, 1964a; Rybicka et al., 1974a), 

pig (Baskerville, 1970^) and coyote (Morrison et al., 1983).

The alveolar Type I cells are estimated to cover 95% of the alveolar surface in 

the rat (Meyrick and Reid, 1970), and because of their thin squamous nature they 

facilitate gaseous exchange. Atwal (1988) reported for the first time a significant amount
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of tubular endoplasmic reticulum (TER), which is a modified SER and pinocytotic 

vesicles in the Type I cells of the goat’s lung, and linked these structures to the transport 

of fluid and electrolytes across the cell membrane of the pneumocyte. Pinocytotic 

vesicles were observed in the cytoplasmic extensions in the present study, although the 

TER reported by Atwal (1988) was not identified. This could have been due to the 

differences in the methods of fixation employed; whereas Atwal, (1988) used vascular 

perfusion, in the present study, airway perfusion was employed in fixing the material.

ALVEOLAR TYPE II CELLS.

The alveolar Type II cell was easily identified by the use of TEM and was 

distinguished from the alveolar Type I cell by its cuboidal shape, the presence of 

numerous apical surface microvilli, and the characteristic presence of intracytoplasmic 

osmiophilic inclusion bodies, the latter being the cellular form of surfactant (Kuhn, 

1976; King, 1979)

The Type II ultrastructural features observed in the present study are similar to 

earlier descriptions provided for this cell type in the goat (Atwal and Sweeny, 1971). 

Large membrane-bound inclusions containing electron-lucent material, and presumed to 

be be lipid vacuoles, were observed in the goat in the present study, confirming 

previous observations in the goat by Atwal and Sweeny (1971). Such vacuoles do not 

appear to have been reported in the normal lung of other mammalian species. However, 

similar vacuoles have been reported in guinea pigs exposed to hypoxia in low-pressure 

chambers, leading to the suggestion that perhaps the development of such hypoxic 

features in the alveolar Type II cells is a significant factor in high altitude pulmonary 

conditions, this vacuolar response being involved, in some way, with changes in the 

surfactant-producing mechanism (Valdivia et al., 1966). Alternatively, it has been 

suggested that the presence of lipid vacuoles may be a result of the high respiratory 

quotient of the goat (Homer 1977), which favours the formation of fat, and the
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mammalian lung is known to participate in de novo synthesis of fatty acids (Mason, 

1976). This has led to the suggestion that metabolic pathways in the goat lung are 

mostly orientated towards the formation of lipids, and this leads to lipid accumulation in 

the metabolically active alveolar Type II cells (Atwal and Sweeny, 1971).

It is generally accepted that alveolar Type II cells actively synthesise and secrete 

the surface-active phospholipids (surfactant) of the alveolar lining (Kikkawa et al., 

1965; Kuhn, 1976; King, 1979; Morrison et al., 1983; Kikkawa and Smith, 1983; 

Breeze and Turk, 1984), and the osmiophilic lamellated inclusions appear to be 

associated with this function. In addition to the production and storage of pulmonary 

surfactant, the alveolar Type II cell is also known to be a stem cell of the alveolar 

epithelium, involved in regenerating the epithelium following injury (Kauffman, 1980). 

Other postulated functions of alveolar Type II cells have included the defence of the 

lung against oxidant injury (Freeman et al., 1981) and the metabolism of xenobiotic 

substances (Devereux et al., 1981; Devereux and Fouts, 1981).

Occasional large alveolar Type II cells dramatically protruding into the alveolar 

lumen, as observed in the present study, have been observed in other species (Krause et 

al., 1976) and appear to be a feature of the neonatal animal. Observation of such cells in 

the present study could imply that alveolar formation, characterised by Type II cell 

proliferation, may also continue into adult life in the goat.

ALVEOLAR MACROPHAGES.

Although alveolar macrophages were rarely observed in previous investigations 

with SEM (Chapter 4), in the present study alveolar macrophages were frequently 

observed with the use of TEM. Majid (1986) had previously reported difficulties in 

observing the alveolar macrophages in the dog using SEM, and attributed his failure to 

detect them in spite of studious searches to the intrabronchial instillation of fixative. 

However, change in technique to intravascular perfusion also failed to detect any
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macrophages with SEM although they were frequently observed with TEM. To 

quoteMajid (1986) ‘it appears inconceivable that, despite the greater surface area 

available for inspection with SEM compared to the relatively small specimens used for 

TEM studies, alveolar macrophages could only be identified with certainty in the latter’.

The present study can only speculate that maybe airway instillation of fixative 

causes the macrophages to stick together, as they were often observed in pairs (Refer 

Fig. 5.14); as a result they were confused with debris on SEM studies. However, this 

does not provide an answer as to why they could not be detected following vascular 

perfusion.

The ultrastructural characteristics of the alveolar macrophage of the goat as 

described in the present study are in agreement with a previous study in the goat (Atwal 

and Sweeny, 1971). They are also similar to those of other mammalian species 

including the horse (Pirie, 1990), ox (Epling, 1964a; Rybicka et al., 1974a) and dog 

(Majid, 1986).

In the present study lamellar material, similar in appearance to the lamellated 

material observed in the alveolar Type II cells, was observed in the alveolar 

macrophages. This material, characteristic of surfactant, has also been observed in the 

alveolar macrophages in the ox (Epling, 1964^; Rybicka et al., 1974a) and has led to 

the suggestion that the macrophage cells participate in controlling alveolar surfactant 

levels (Veit and Farrell, 1978). The latter suggestion has been supported by recent work 

which has localized by immunocytochemical methods, the major surfactant apoprotein 

in the alveolar Type II cells, Clara cells and alveolar macrophages of rat lung (Walker et 

a l, 1986)

Alveolar macrophages are known to phagocytose an assortment of inhaled 

debris, including infectious agents and inorganic minerals (Green and Kass, 1964; 

Heppleston and Young, 1973; Gilka et al., 1974), and thus their major function is 

defence.

The present study, in cytologically characterising the cell populations that line

1 2 4



the distal airway in the goat lung, has thus provided additional information which, when 

combined with that obtained from previous LM and SEM studies, provides a basic 

understanding of the morphological features of the cell population of the epithelium 

lining the goafs respiratory tract.
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INTRODUCTION.

The respiratory epithelium, through its mechanical, cellular and humoral actions, 

plays an important part in defending the respiratory tract against obnoxious substances 

or disease-causing organisms, and thus its stage of development could be expected to 

effect its efficiency. The degree of development of this system at birth has an added 

degree of significance when it is realised that respiratory related problems have been 

shown to account for more than 50% of all mortalities in kids, with the majority of such 

deaths usually occurring within the first three weeks of life (Osuagwuh and Akpokodje, 

1981).

Investigations of the lungs of various mammals have since brought growing 

evidence for the general concept that the development of the mammalian lung is not yet 

completed at birth and that new alveoli are formed postnatally. This has been 

demonstrated for the lung of mice (Engel,1953), rats (Engel, 1953; Neuhauser, 1962; 

Neuhauser and Dingier, 1962; Weibel, 1967), rabbits (Dingier, 1958), dogs (Boyden 

and Tompsett, 1961) and also man (Emery and Mithal, 1960; Mithal and Emery, 1961; 

Dunnill, 1962; Boyden, 1965, 1967; Boyden and Tompsett, 1965; Emery and Wilcock, 

1966; Reid, 1967; Zeltner and Bum, 1987).

The degree of development of the lung at birth varies widely, and Engel’s 

studies (1953) on various mammalian species culminated in a postulate that the degree 

of lung maturity at birth reflects the stage of general body development. Whereas 

extremely altricious species (such as the opossum) have markedly underdeveloped lung 

structures at birth, precocious neonatal animals exhibit relatively well developed lungs 

(De Lorimier etal., 1969; Alcorn era/., 1981; Lechner and Banchero, 1982; Winkler 

and Cheville, 1984).

Although there is plenty of information on the foetal development of the 

mammalian respiratory system, there is still a dearth of information as far as systematic 

investigations of postnatal development of lungs in domestic animals is concerned
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(Winkler and Cheville, 1984). A few investigators have attempted to provide some 

information on the subject, although these studies are limited in scope as they either deal 

with only selected sections of the respiratory tract (mainly the lung tissue) or with only a 

few animals, thus making it difficult to reach a satisfactory conclusion.

Despite the economic significance of respiratory diseases in kids, very little 

attention has been paid to the study of the postnatal development of the respiratory 

system of the goat, with information on the postnatal development of the epithelium of 

the respiratory of the goat in particular being apparently unavailable. It is the purpose of 

this study to provide, apparently for the first time, an account of the postnatal 

development of the lining epithelium of the entire respiratory tract in the goat.

LITERATURE REVIEW.

Lung development appears to follow the same basic pattern in all mammalian 

species, the difference amongst them being based primarily on the timing of events. The 

more active or independent the species at birth, the more developed the lung is in the 

new-born. It has been observed that the neonatal young of the opossum, which are 

solely dependent on their mother at birth as they are bom blind and naked, have a very 

rudimentary, saccular lung with no alveoli. In contrast, new-born lambs, which are 

seen to be on their feet within hours of their birth, possess a relatively well developed 

lung with many alveoli.

FOETAL LUNG DEVELOPMENT.

Thurlbeck (1975) has provided a comprehensive review of foetal lung 

development and the following brief review incorporates his findings along with studies 

by Burri (1974, Alcorn et al. (1981), Langston et al. (1984), ), Zeltner and Burri 

(1987) and Latshaw (1987). Foetal lung development is divided into the an early
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embryonic period (or phase), followed by a pseudoglandular period, a canalicular 

period, and finally a terminal sac period. The latter phase may, depending on the 

species, be followed by a possible alveolar period.

The embryonic period includes the earliest phase of lung development, which 

involves the evagination of the pharynx to form the laryngotracheal groove and the 

separation of the oesophagus from the trachea by formation of a tracheoesophageal 

septum. The trachea then divides dichotomously to form two buds. These paired lung 

buds elongate to form lobar buds which continue to divide dichotomously, the divisions 

of which essentially represent the developing bronchial tree.

At this stage the lung enters the pseudoglandular period with airways being lined 

by columnar epithelium and separated from each other by poorly differentiated 

mesenchyme.

This stage is followed by a canalicular period characterised by the proliferation 

6f  the mesenchyme and the development of a rich blood supply within it, together with 

flattening of the epithelium that lines the airways. At this stage the epithelium is usually 

irregularly thinned and continuity between epithelial cells is sometimes seen to be lost at 

the cell margins, being maintained only at their bases. During this canalicular period, 

but especially towards the end, areas of thin blood-air barrier resembling that of the 

adult begin to appear and the various types of alveolar lining epithelial cells (alveolar 

Type I and Type II cells) can be identified, together with osmiophilic bodies in alveolar 

Type II cells.

The terminal sac period is characterised by a progressive thinning of the 

epithelium and a protrusion of capillaries into the airways resulting in a greater surface 

area of the blood-air barrier. The terminal generations of the airways are lined only by 

flattened epithelium. During this phase, although true alveoli are not yet present, 

respiration can be maintained and most altricious animals, notably the rat and mouse 

(Burri and Moschopulos, 1992), are born during this period. Terminal sac phase 

involves alveolar formation in such species as the cat (Al-Tikriti et al., 1991) and dog
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(Boyden and Tompsett, 1961) but in other species including the rat and mouse (Burri 

and Moschopulos, 1992), alveolar formation is a separate phase following the terminal 

sac phase.

POSTNATAL DEVELOPMENT.

The postnatal growth of the lung has been investigated for many years, 

especially in laboratory mammals. As early as 1881, Kolliker had concluded that adult 

structures of the lung (the presence of alveoli, with a single capillary network) were 

already present in the new-born infant and that growth involved expansion only. More 

than half a century later his view was still held to be true and was supported by Short 

(1950). More recent work however has indicated that the lungs of many new-born 

mammals are qualitatively different from those of adults of the same species in that 

alveoli are few or absent at birth (Amy et al., 1977). Thus the lungs of many species at 

birth are usually in their final part of the terminal saccule stage and /or at the beginning 

of the alveolar period. Those species in which most or all alveoli in the lung are formed 

after birth include the rat (Weibel, 1967; Burri, 1974), rabbit (Engel, 1953), cat (Engel, 

1953; Dingier, 1958) and man (Boyden and Tompsett, 1965; Reid, 1967).

In contrast, ruminants are well into the alveolar stage at birth and thus have 

relatively more alveoli than do other domestic mammals (Alcorn et al., 1981; Castleman 

and Lay, 1990). At birth, the horse and the pig have fewer alveoli than ruminants but 

more than are found in carnivores (Latshaw, 1987), which themselves have more 

alveoli than new-born infants, but are still in the terminal saccule stage at birth. 

However, regardless of how advanced or not lung development is at birth, it has been 

established that all mammals form alveoli postnatally, and the increase in the number of 

alveoli soon after birth accounts for the major part of the early postnatal growth of the 

lang (Bartlett, 1972; Latshaw, 1987; Winkler and Cheville, 1984).

The process of alveolar formation itself is controversial and several explanations
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have been provided. These include subdivision of peripheral lung units, alveolar 

‘sprouting’, alveolarization of bronchioles, and peripheral airway branching (Amy et 

a l,  1977). It has been established in the rat that subdivision of peripheral lung units 

(primary saccules) is an active process involving proliferation of interstitial and 

endothelial cells, and not a mere expansion of the septal tissue mass as had been 

originally stated by Short (1950). The ‘sprouting’ theory has been described as a form 

of alveolar formation by several workers (Broman, 1923; Wilson, 1928; Bremer, 1935, 

1936, 1937) and involves the outgrowth of tubular buds at the end of the bronchiolar 

tree.

Alveolarization of bronchioles was first described as a mode of alveolar 

formation by Boyden and Tompsett (1961; 1965). They found that bronchioles are 

converted into respiratory bronchioles by the local transformation of the bronchiolar 

wall, which involves the outpocketing of circumscribed areas and the formation of the 

blood-air barrier, resulting in the formation of true alveoli.

Peripheral airway branching was first proposed by Loosli and Potter (1959), 

and this involves centripetal partitioning of the air spaces starting from the most 

peripheral.

POSTNATAL DEVELOPMENT OF THE EPITHELIAL LINING OF THE 

RESPIRATORY TRACT IN VARIOUS MAMMALIAN SPECIES.

As noted earlier on, the postnatal development of the lining epithelium of the 

mammalian respiratory tract has received very little attention, with the literature that is 

available apparently dealing primarily with the lung parenchyma. Very little information 

appears to be available concerning the postnatal development of other regions of the 

respiratory tract lining epithelium.
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Tracheobronchial tree.

Wright et al. (1983) investigated the normal development of the ciliation pattern 

in the dog, as demonstrated by the distribution of ciliated cells in the lower respiratory 

tract of 25 puppies aged between 4 hrs and 6 months, using SEM. They observed that 

in the new-born puppy only the dorsal wall was ciliated, complete ciliation of the 

trachea not being achieved until day 5 of age. In addition, bronchi of new-born puppies 

were uniformly poorly ciliated, but at the age of 2 days complete ciliation was attained. 

Smaller bronchi were poorly ciliated, although there was an increase in number of 

ciliated cells with age. In addition, Pirie et al. (1991b) working with horses, found that 

2-day-old foals had a complete ciliation of the trachea and bronchi comparable to the 

adult pattern.

It has also been observed in calves (Iovannitti et al., 1985) that, at one week of 

age, the distribution of ciliation in the lower respiratory tract is similar to the pattern in 

adult animals. The first week of life was not investigated.

Bronchial tree and lung parenchyma.

There is a substantial amount of information available on the postnatal 

development of the lung in rats and mice (Weibel, 1967; Burri, 1974; Amy et al., 1977; 

Scheuermann et al., 1988), indicating that at least in the rat postnatal development 

proceeds in three consecutive stages (Burri, 1974). The first stage is characterised by 

expansion of the primitive gas exchange airspaces (primary saccule), and this usually 

lasts up to 4 days postnatally. The second stage, which extends from days 4 to 13, 

basically involves a rapid enhancement of specific lung tissue mass involving an 

extremely rapid enlargement of the alveolar and capillary surface areas as well as 

formation of alveoli, the latter being formed by septation of the primary saccule. The 

third stage, which lasts from the 13th to 21st day, consists of the restructuring of
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interalveolar tissue components, the double capillary network being transformed into a 

single network and the alveolar septa becoming thinner (Burri, 1974; Caduff et al.,

1986).

Recently, extensive studies of postnatal development and growth of the 

mammalian lung have been carried out by Zeltner and Burri (1987) in humans aged 

between 26 days and 64 months, and also in cats (Al-Tikriti et al., 1991) aged 1, 7, 14 

and 21 days postnatally. It was found that in humans at one month of age alveolar 

formation, which begins in late foetal life, was well under way and secondary septa 

were seen to subdivide peripheral airspaces into shallow alveoli. The parenchymal septa 

present during and after alveolar formation were immature in that they still retained a 

double network of capillaries. The results in humans at this stage were comparable to 

those seen in rats in the first to second week following birth (Burri, 1974; Scheuermann 

et al., 1988). This stage was followed by a few months of septal maturation and was 

characterised by a reduction in the interstitial tissue mass and the restructuring of the 

capillary network into a single capillary layer. By one and half years of age, most of the 

parenchymal septa were comparable to those seen in the adult.

The cat was seen to have patches of primitive airspaces and very few alveoli at 

birth (Al-Tikriti et al., 1991). Primary saccules were seen to be thick-walled and very 

cellular, with alveolar Type II cells being the major cell type lining the saccule. In 7- 

day-old kittens a progressive septation of the primary saccule was observed. The 

septum was lined by both alveolar Type I and alveolar Type II cells. In 21-day-old 

lungs some areas of the septum were seen to retain a double capillary network, although 

in general the septa became thinner and increased in length with a concomitant decrease 

in cellularity.

Winkler and Cheville (1984) have provided some information on the 

ultrastructural morphology and postnatal development of the terminal airways and 

alveolar region of the pig. They observed that the porcine lung at birth exhibited a high 

degree of maturity, as thick-walled primary saccules, described in mice (Engel, 1953;
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Amy et al., 1977), rats (Weibel, 1967; Burn et al., 1974), humans (Zeltner and Burri,

1987) and cats (Al-Tikriti et al., 1991), were not observed. Subsequent morphometric 

studies (Winkler and Cheville, 1985) augmented their previous findings that the porcine 

lung is relatively well advanced at birth and the morphology of alveolar septa in new­

born pigs was seen to resemble the ones in 30-day-olds. However, it was also 

established that lung growth was far from being complete, and the first two weeks of 

life involved further subdivision of the airspaces and a decrease in septal thickness as 

well as the remodelling of capillaries from a double to a single network. In 60-day-old 

animals the size and shape of alveoli were discernible, appearing smaller than the 

primary saccule, having more regular walls and with less protrusions of capillaries into 

alveolar lumina. Alveolar pores were infrequently observed.

There is very little literature available on the subject of postnatal lung 

development in ruminants. Castleman and Lay (1990) recently conducted a 

morphometric and ultrastructural study of postnatal lung growth and development in 

calves with a view to determining whether there were any especially rapid periods of 

postnatal bronchiolar or alveolar growth comparable to those described in rodents; they 

also investigated maturation of nonciliated bronchiolar epithelial (Clara) cells. The three 

basic conclusions drawn from their work were that the basic architecture of the bovine 

lung is essentially developed at birth, the alveoli are formed with a single capillary 

network in contrast with a double capillary network found in other mammals (Caduff et 

al., 1986; Zeltner and Burri, 1987), and that there are age-associated increases in 

alveolar number and surface area.

As far as small ruminants are concerned, it appears that a systematic postnatal 

investigation of the normal development of the respiratory epithelium has not been 

carried out. The only apparently available information on sheep and goat is based on 

qualitative lung morphology and morphometric studies dealing with lung volume and 

respiratory surface area in relation to body weight (De Lorimier et al., 1969; Tyler et a i, 

1971; Bartlett and Areson, 1977). Recent information on pulmonary development in the
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lamb is provided by Docimo et al. (1991) in the form of a morphometric study of the 

alveolar surface area, lung volume and interalveolar wall thickness in fetuses, with only 

an occasional mention of new-born animals.

MATERIALS AND METHODS,

ANIMALS.

Twenty kids of Cashmere breed, representing the following age groups : Day 1, Day 2, 

Day 3, Day 5, Day 7, Day 9, Day 15 and Day 21, were used in this study. Post-mortem 

procedures and sample sites were similar to those described in the general materials and 

methods section in Chapter 2.

SCANNING ELECTRON MICROSCOPY:

For SEM, samples measuring about 5mm x 5mm and 0.5mm-2mm thick were left in 

Kamovsky’s fixative overnight, then washed in 0.2M cacodylate buffer for 4hrs and 

thereafter cold dehydrated in a series of graded acetones.

The samples were then critically-point dried using liquid carbon dioxide in a 

critical-point drier (Polaron: Watford, U.K.).

The specimens were orientated such that the mucosal surface was uppermost, 

stuck on aluminium stubs using silver paint, and placed in an oven at 37°C for half an 

hour. The specimens were then coated with a gold-palladium mixture in a sputtering 

system. All SEM samples were examined using a 50IB SEM (Philips, Holland) and 

viewed at an accelerating voltage of 15KV using spot sizes between 200 and 1000. An 

attached automatic Rolliflex camera fitted with Ilford FP4 120 (125 ASA) film was used 

in taking pictures.
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LIGHT MICROSCOPY:

LM samples were fixed in buffered neutral formalin for seven days, then trimmed and 

post-fixed for two days in mercuric chloride formol.After fixation, tissues were 

dehydrated, cleared and impregnated with paraffin wax. Paraffin embedded sections 

were cut at 3|im with a Leitz Rotary Microtome, mounted on a glass slides and routinely 

stained with standard Haematoxylin and Eosin (H&E) and by the Alcian Blue /Periodic 

Acid Schiff (AB /PAS) (pH 2.5) method (Mowry and Winkler, 1956).

R E SU LT S.

NASAL VESTIBULE.

The initial part of the respiratory tract was lined by squamous cells which 

histological examination showed to be the surface cells of a stratified squamous 

epithelium. Rostrally, the cells were very flattened and could be seen detaching. A few 

hairs were also seen. Caudal to this region, squamous cells had wrinkled apical surfaces 

(Fig. 6.1). Numerous gland orifices were seen opening onto the epithelial surface. 

Individual squamous cells carried surface microvilli and microplicae (Fig. 6.2), 

especially prominent in newly-born to three-day-old kids. Whorl-like microplicae, 

similar to those encountered in adults were rarely observed. Occasionally, mucus 

strands were seen extruding from the cell surfaces in the caudal region of the vestibule 

(Fig. 6.3).

A feature observed in all ages, from the new-born to the three-week-old kids, 

was the presence of dome-shaped areas in the caudal regions of the nasal vestibule (Fig. 

6.4). These areas were covered by squamous cells having smooth luminal surfaces, in 

contrast to squamous cells elsewhere, which exhibited the characteristic folded luminal 

surface. A central pore was usually encountered on the summit of these dome-shaped 

areas, and two to three spherical cells would often be seen extruding from these pores
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(Fig. 6.4).

There were no other major differences in the epithelium or in individual cell 

morphology between animals of different ages.

ALARFOLD:

In all the kids examined in this study, from a 3-hr-old to twentyone-day-old, 

LM observations showed that the alar fold was lined by a narrow zone of stratified 

squamous epithelium rostrally (Fig. 6.5), with the major part of the fold being lined by 

a stratified cuboidal epithelium. The latter gave way caudally to a narrow zone of ciliated 

epithelium.

SEM studies showed that, in the middle region of the alar fold, the surface cells 

of the stratified cuboidal epithelium had prominent boundaries and luminal surfaces 

which were frequently dimpled or folded (Fig. 6.6); these features were observed in 

kids of all ages. Although at low magnification the luminal surfaces appeared to be 

smooth, at high magnifications surface microplicae could be seen.

Submucosal gland orifices were often encountered in this region, along with 

numerous nonciliated microvillous cells with sparsely populated microvilli; the latter 

cells were considered to be mucus-producing cells (Fig. 6.7).

The caudal region of the alar fold was fairly heavily ciliated even in new-bom 

kids, with mucus-producing cells scattered amongst the ciliated cells (Fig. 6.8). The 

same extent and degree of ciliation was seen in all kids examined in the present study. 

Dome-shaped circumscribed areas with a central pore, similar to those encountered in 

the nasal vestibule, were also observed in this region, although the dome was much 

flatter than in those seen in the nasal vestibule (Fig. 6.9).
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BASAL FOLD.

In the rostral region of the basal fold, the mucosal surface was lined by 

squamous cells, the cells appearing thicker on moving caudally. Most of these surface 

cells were characterised by depressed and sometimes folded luminal surfaces (Fig. 

6.10). Surface microvilli were not easily discernible at low power, although at high 

power they were seen to be short and closely packed. On moving caudally, a narrow 

zone composed of nonciliated microvillous cells, regenerating ciliated cells and a few 

mature ciliated cells was seen (Fig. 6.11). The caudal region was completely ciliated, 

the degree of ciliation being much more pronounced than on the alar fold, even at the 

early age of 3 hrs. (Fig. 6.12). Individual mucus-producing cells were observed within 

the cilial carpet, while patches of nonciliated microvillous cells were not uncommon 

(Fig. 6.13).

NASAL CONCHAE.

The epithelium lining the ventral concha, which was organised into longitudinal 

folds with short gutters, was seen to be heavily ciliated in kids of all ages, the cilia 

frequently being seen to be matted. Submucosal gland orifices were numerous and these 

were located primarily within the gutters. Mucus-producing cells, identifiable by their 

characteristic apical protuberances, were numerous and these were seen to increase with 

age, being fewer in new-bom animals and more numerous in three week-old-kids (Fig. 

6.14). Patches of nonciliated microvillous cells and a few ciliated and regenerating 

ciliated cells were also occasionally encountered

The heavy ciliation of the lining epithelium of the ventral concha was also 

observed to extend onto the middle and dorsal conchae. However, on these conchae, 

patches of nonciliated microvillous cells were frequently observed, and differences in 

the degree of ciliation between kids of different ages were noticeable. This was much
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more obvious on the middle nasal concha ,where the new-bom kids presented a more 

sparsely ciliated epithelial surface (Fig. 6.15) compared to the three-week-old animals 

(Fig. 6.16).

NASAL SEPTUM.

In new-bom kids (3 hrs to one-day-old) the epithelium lining the nasal septum 

was found to be heavily ciliated, the cilia frequently being matted (Fig. 6.17). From the 

age of nine days onwards there was a gradual reduction in the degree of ciliation, such 

that in the three-week-old kids the nasal septum exhibited extensive patches of 

nonciliated microvillous cells. These cells, which were sometimes seen to be flattened 

and appearing to lift off from the underlying surface, presented a large luminal surface 

frequently seen to be wrinkled and studded with prominent surface microvilli. Mucus- 

producing cells identified by their characteristic apical protuberances were numerous at 

all ages. By the age of 3 weeks, the nasal septum presented a “moth-eaten” appearance 

characterised by large numbers of nonciliated and mucus-producing cells, and a few 

scattered regenerating ciliated cells, interspersed amongst the ciliated cells (Fig. 6.18); 

such an appearance was also a characteristic feature of this epithelium in the adult.

NASOPHARYNX:

In all age groups, the mucosa of the rostral portion of the nasopharynx was seen 

to be organised into longitudinal folds and gutters, and to be lined by a ciliated 

epithelium. Frequently, ciliated cells were seen to be matted and forming clumps (Fig. 

6.20). Interspersed between the ciliated cells were mucus-producing cells presenting 

globular apical protrusions. A few nonciliated microvillous cells were also observed.
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Occasional submucosal gland orifices, often seen extruding mucus, were observed in 

the gutters. In the new-born animals, the degree of ciliation was observed to be 

relatively poor compared to older kids (15 and 21-day-old animals), the cilia being short 

and the epithelium containing relatively more nonciliated microvillous cells (Fig. 6.19). 

Occasionally patches of densely ciliated epithelium were however also observed in these 

younger kids (Fig.6.20).

Caudal to the ciliated epithelium, a transitional zone was observed. This was 

characterised by an epithelium composed of numerous nonciliated microvillous cells, 

regenerating ciliated cells and a few ciliated cells. In the new-bom, 2-day-old and 3- 

day-old kids, although most of the cells presented a bulging apical surface some of the 

nonciliated microvillous cells presented apical surfaces which appeared to have folds or 

dimples (Fig. 6.21). Occasionally circumscribed areas composed exclusively of 

nonciliated microvillous cells were observed on the epithelial folds; these cells carried 

very dense aggregations of short surface microvilli,discernible only at high power (Fig. 

6.22).

LM observations demonstrated that a stratified epithelium, starting off as 

stratified low cuboidal rostrally and continuing into a stratified squamous epithelium 

caudally, lined the region caudal to the transitional zone. The caudal region presented a 

similar appearance in animals of all ages. A few submucosal gland orifices were 

encountered in this region .

EPIGLOTTIS:

The epiglottis was seen to be lined by squamous cells characterised by the 

presence of microplicae on their luminal surfaces. Submucosal gland orifices and taste 

buds (Fig. 6.23) were encountered. No differences in the basic appearance were noted 

amongst kids of different ages .
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VOCAL FOLD.

LM observations showed that three types of epithelia lined the vocal folds in all 

ages, an intermediate type of epithelium being observed to form a narrow transitional 

zone between a cranially located stratified squamous epithelium and a caudally situated 

ciliated epithelium.

The stratified squamous epithelium was characterised, at the level of SEM, by 

flattened surface squames, most of them presenting wrinkled luminal surfaces. In this 

region, circumscribed, dome-shaped areas were frequently encountered, the squamous 

cells on the dome appearing flat and smooth (Fig. 6.24). On moving caudally the 

squamous cells became more "spongy" and their luminal surfaces appeared to be much 

more wrinkled and pitted (Fig. 6.25).

The transitional zone was lined by an intermediate type of epithelium 

characterised by the presence of numerous regenerating ciliated and nonciliated 

microvillous cells amongst which were distributed a few ciliated cells (Fig. 6.26). Some 

of the nonciliated microvillous cells appeared to have ‘pits’ on their luminal surfaces 

from which droplets of mucus could be seen extruding.

The mucosa lining the caudal surface of the vocal folds was organised into folds 

and short gutters, and was lined by a ciliated epithelium. The cilia appeared relatively 

shorter than those seen on the nasal conchae and were frequently seen to be matted. 

Intermingled between the ciliated cells were nonciliated microvillous cells which 

presented large, wrinkled luminal surfaces. Occasional patches of normal nonciliated 

microvillous cells were observed (Fig. 6.27).

Age differences were noted in relation to the nonciliated microvillous cells, 

which were much more wrinkled and numerous in new-bom to 15-day-old kids, and 

less numerous in the three-weeks-old ones.
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INFR AGLQTTIC CAVITY

The mucosa lining the cavity was organised into low folds and gutters which 

were longitudinally orientated. Squamous cells were observed to line a narrow cranial 

region of the cavity whilst ciliated cells lined the remainder. Ciliation was observed in 

animals of all ages, although in the new-bom to 3-day-old kids it was not as well 

developed as in 21-day-old animals. Nonciliated microvillous cells were frequently 

seen, either individually distributed amongst the ciliated cells or organised into patches. 

Most of the individually distributed cells, and a few of those grouped into patches, 

presented a very obvious wrinkled luminal surface carrying numerous short microvilli 

(Fig. 6.28). LM observation of this region demonstrated the presence of mucus- 

producing cells.

TRACHEA.

The mucosa of the trachea, organised into folds and gutters, was seen to be 

lined by a relatively heavily ciliated epithelium as early as 3 hrs postnatally. However, 

the cilia appeared shorter and not so densely organised as those seen in the adult. 

Patches composed of intermingled nonciliated microvillous and regenerating ciliated 

cells were often observed (Fig. 6.29). Occasionally, smaller circumscribed areas of 

nonciliated microvillous cells, without regenerating cells, were encountered along the 

tracheal mucosa; the cells appeared to present flattened luminal surfaces with a dense 

population of microvilli.

Characteristic of the new-born to 15-day-old kids were cells presenting 

large,wrinkled microvillous or microplicate apical surfaces. These were often seen to be 

distributed singly amongst ciliated cells (Fig. 6.30).

Mucus-producing cells with depressed luminal surfaces were seen distributed in 

the gutter areas in all ages, along with numerous submucosal gland orifices which
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decreased in number on moving caudally down the trachea. LM sections show that there 

were relatively fewer mucus-producing cells in the dorsal tracheal epithelium than in the 

ventral epithelium; in both areas such cells were located mainly in the gutter areas. In 

addition, cilia were frequently seen to be matted and clumped. Mucus-producing cells 

presenting apical protuberances were very infrequently observed on the folds in the 

larynx and trachea. It was not until the first week of life that such cells were observed in 

small numbers on the folds in the trachea. A layer at the base of the cilia, staining blue 

with AB/PAS, was often observed by LM.

EXTRAPULMONARY and CAUDAL LOBAR BRONCHI.

The bronchial epithelium in all ages was also thrown into alternating folds and 

gutters, with ciliated cells being more numerous on the folds than in the gutters. In new­

born to 5-day-old animals, a number of individually distributed nonciliated microvillous 

cells were observed on the folds; occasionally these would appear in groups of twos or 

threes and usually presented a slightly convex luminal surface.

In animals of all ages the gutters were primarily populated by nonciliated 

microvillous cells with slightly depressed luminal surfaces. Such cells were identified as 

mucus-producing cells as they were often seen discharging mucus in sheet form. Few 

ciliated cells were found in the gutters.

As the diameter of the bronchial tree decreased, regardless of age there was a 

concomitant decrease in the number of submucosal gland openings and ciliated cells, 

whereas the number of nonciliated microvillous cells and mucus-producing cells 

increased (Fig. 6.31).
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RESPIRATORY BRONCHIOLES.

Respiratory bronchioles were rarely encountered in the first week of life. It was 

only at the age of 7 days that structures comparable to the adult respiratory bronchioles 

were first observed (Fig. 6.32) . These bronchioles were characterised by a few 

shallow depressions in their walls, the depressions being surrounded by relatively thick 

ridges at the rims (Fig. 6.33). The epithelium was essentially composed of two cell 

types: nonciliated bronchiolar epithelial (Clara) cells and ciliated cells (Fig. 6.34). The 

former usually presented typical apical protuberances and short, stubby surface 

microvilli; the latter were characterised by very few cilia per cell, the cilia being of 

unequal lengths and frequently matted, with microvilli distributed amongst them.

At the age of 15 days, respiratory bronchioles had relatively more alveoli within 

their walls, although they still remained shallow. A gradual increase in the number of 

ciliated cells relative to nonciliated bronchiolar epithelial cells was noted. As the age of 

the kids advanced up to 21 days, the numbers and lengths of individual cilia per cell 

increased.

ALVEOLI.

Low power micrographs of lung parenchyma from new-born kids were seen to 

present numerous alveoli, the appearance being similar to that observed in adult animals 

(Fig. 6.35). However, high power magnification of the same areas indicated that, 

although the majority of alveoli were lined with flattened alveolar Type I cells, in the 

new-born to 3-day-old kids, alveolar Type II cells were frequently seen to be clumped 

together, in some situations appearing to form the whole of the alveolar wall (Fig.

6.36). Such aggregations of Type II cells were also occasionally observed in the other 

age groups.
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Alveolar sacs with low septa separating individual alveoli were much more 

common in new-born to 3-day-old animals than in the 15 to 21-day-old kids (Fig.

6.37).

Alveolar pores (of Kohn) and alveolar macrophages were rarely encountered in 

kids of any age.

PISCUSSIQfiL

A review of the literature indicated that studies of the postnatal development of 

the respiratory system in domestic mammals are very limited, with information 

concerning the goat in particular being apparently unavailable.

The review established that the pattern of foetal and postnatal lung development 

in mammalian species is essentially the same, with species differences being related 

primarily to the timing of events. For species such as the goat, in which the new-born 

kid has to be on its feet and active as soon as possible following birth, it is obviously 

advantageous to have as fully functional and efficient a respiratory system as possible at 

birth. Such a system would be expected to be structurally very similar to that of the 

adult animal.

Such an assumption was confirmed in the present study which established that 

the epithelium lining the respiratory tract of the new-born kid is relatively well 

developed and essentially resembles that found in the adult goat. However, the 

differences which did exist in the structural organisation of the epithelial lining in the kid 

were characteristic, and are discussed below.
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UPPER RESPIRATORY TRACT:

The epithelium lining the nasal vestibule and rostral region of the basal fold and 

alar fold was of a squamous type, observed to be stratified on histological sections. 

This epithelium presented similar characteristics in kids of all ages from new-born to 

21-day-old. Such observations are in agreement with studies in the neonatal pig 

(Adams, 1990; Larochelle and Martineau-Doize, 1990).

In these regions in the present study, dome-shaped areas covered by smooth 

squamous cells surrounding a central pore were commonly observed. These areas, 

previously identified as lymphoepithelium (Chapter 4), were more frequently 

encountered in the kid than in the adult goat, suggesting that neonatal kids have more 

nasal-associated lymphoid tissue (NALT) than adult goats. The sentinel position of the 

NALT suggests that it plays a significant role in host defence (Mair et al., 1987), and 

since young animals are usually more susceptible to infection, it would therefore appear 

appropriate that these structures are most frequently encountered in young animals. 

Although the present observations thus also appear to suggest that NALT may decrease 

with age in the goat, such mucosal-associated lymphoid tissue (MALT) increases or 

decreases with age are not well established. Mair et al. (1987) found that there was a 

marked variation between individual horses in the amount of NALT, as well as in the 

amount of bronchiole-associated lymphoid tissue (BALT), present. This variation did 

not appear to be age related, and they proposed that it was due to the variation in the 

degree of exposure to environmental antigen. Such a proposal is supported by the 

observations of Jericho et al. (1971) and Gregson et al. (1979) who found that BALT is 

poorly developed in germ-free and specific pathogen-free animals. In the present study 

however, the young animals (especially the new-bom kids) had had little environmental 

antigenic stimulation and it would therefore appear that the variation in occurrence and 

distribution of this NALT tissue in the goat is more probably age related.

In animals whose young are not immediately active, the development of MALT
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appears to be be somewhat delayed. In the rat, associated lymphoid tissue in the 

bronchioles is first found 2 weeks after birth, and continues to develop beyond 8 weeks 

of age (Emery and Dinsdale, 1973). In man, BALT aggregates are not found at birth but 

appear at approximately 1 week of age (Emery and Dinsdale, 1973). These observations 

in the rat and man reflect the immature stage of lung development at birth in these 

species compared to that of the goat

It was established in the present study that at birth the neonatal kids also present 

a ciliated epithelium in those areas of the nasal cavity that are normally ciliated in adult 

animals. Although the caudal regions of the alar and basal folds of adult animals are 

ciliated, the present study in kids established that the degree of ciliation was heavier 

even in the 3-hr-old kids. Further into the nasal cavity, the development of ciliation on 

the nasal conchae appeared to be somewhat delayed; indeed it was not until three weeks 

of age that the middle nasal concha presented a heavily ciliated epithelium similar to that 

observed in the adult animals. Such observations suggest that the postnatal development 

of cilia in the nasal respiratory epithelium of the kid follows a rostrocaudal axis, 

beginning in the rostral region of the nasal cavity, and developing later in the caudal 

region. These observations receive some support from the studies of Kanda and Hilding 

(1968) in the rabbit, where ciliogenesis occurs along a craniocaudal axis, being first 

observed in the nasal cavity, followed by the larynx and then the trachea. However, 

there is a disagreement with findings obtained in the rat (Menco and Farbman, 1987), 

where cells with both cilia and microvilli first start to appear in the caudal region of the 

nasal cavity near the olfactory region, and develop later in the rostral region of the nasal 

cavity.

It was observed in the present study that the epithelium lining the nasal septum 

was heavily ciliated in new-born kids up to the age of 9 days, from which time onwards 

the degree of ciliation was markedly reduced to resemble that of the adult animal, as 

described in Chapter 4. This relative reduction in ciliation in the lining epithelium with 

age, as seen in the present study, may well be due to the effect of airflow in the nasal
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cavity postnatally. Such a view receives some support from observations in new-born 

babies (Mygind, 1978), where the pseudostratified ciliated epithelium covering the nasal 

conchae and extending into the caudal region of the nasal vestibule later shows marked 

deciliation, assuming the characteristic adult pattern of a transitional zone epithelium. In 

addition,cessation of nasal breathing, as brought about by mouth breathing in rhinitis 

patients or in cases of tracheotomy, results in the nasal epithelium becoming more 

heavily ciliated (Ewert, 1965; Jahnke, 1972; Mygind etal., 1974).

In the present study, mucus-producing cells identified at both SEM and LM 

levels were encountered even in the new-born kid. Although no quantitative assessment 

of mucus-producing cells was attempted in the present investigation, a qualitative 

assessment suggested that there was an increase in the number of these cells with age. 

This observation is in agreement with studies in man, where it has been observed that 

goblet cells on the nasal conchae tend to increase with age in both prenatal and postnatal 

phases of development (Tos, 1982; Boysen, 1982).

The rostral regions of the nasopharynx of 1 and 3-day-old kids exhibited a poor 

cilial carpet, although the degree of ciliation was seen to increase with age. The other 

regions of the nasopharynx presented a surface morphology similar to that seen in the 

adult goats. The surface morphology of the epiglottis was also similar in appearance to 

that of the adult goat, even in the new-bom kid.

A nonciliated microvillous cell type, not identified in adult goats, was 

encountered in all age groups of kids examined in the present study. This cell type was 

frequent in ages up to 1 week, although thereafter it was seen to decrease numerically. It 

was characterised by a large, wrinkled apical surface studded with short microvilli and, 

very occasionally, with microplicae. Such cells, frequently seen singly or in groups of 

two or three, were first observed at the laryngeal level, and again in the trachea. Such 

cells were not observed elsewhere.

Smolich etal. (1977) investigating the postnatal development of the epithelium 

of the larynx and trachea in the rat, described a nonciliated microvillous cell type larger
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than other epithelial cell types and presenting an irregular polygonal apical surface with 

a low electron response and sparsely distributed microvilli. Beyond the third postnatal 

week these cells were seen to have disappeared. Although such cells did not present the 

typical wrinkled appearance characteristic of similar cells observed in the present study, 

their distribution and postnatal pattern of development showed some similarities. Such 

cells, as observed and described in the present study, were not seen in the adult goat 

and do not appear to have been reported in any other mammalian species. Patches of 

similar cells have been reported, however, in the trachea of the broiler chicken 

(Mohammed, 1989), where it was suggested that they might represent sites of ciliated 

cell metaplasia.

In the present study it was observed that, although the pattern of ciliation in the 

larynx and trachea was already established at birth, it had not reached the same stage of 

development as that observed in those regions in the adult goat, nor even that in the 

nasal cavity of the new-born. This observation supports previous observations in rabbit 

(Kanda and Hilding, 1968) and dog (Wright et al., 1983) that the pattern of cilia 

development in the mammalian respiratory tract follows a cranial-caudal axis.

Such observations might suggest that the wrinkled nonciliated microvillous cells 

observed in the larynx and trachea in the present study may represent an undifferentiated 

cell type capable of developing into either a ciliated or mucus-producing cell. Such a 

suggestion receives some support from the proposition, experimentally confirmed 

(Evans et al., 1986), that the nonciliated microvillous cell is a primary progenitor ce ll, 

capable of developing into a ciliated or a mucus-producing cell (McDowell et al., 

1984a).

Given that typical mucus-producing cells were very infrequent in the larynx and 

trachea of the neonatal kid but numerous in these regions in the adult, and that the 

distribution and location of the wrinkled, nonciliated microvillous cell types was similar 

to the distribution and location of the mucus-producing cell in these locations in the 

adult goat, it is tempting to suggest that these wrinkled, nonciliated cell types may
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represent a developing form of the mucus-producing cell.

However, such speculation begs the question as to why such a developmental 

form of mucus-producing cell was not observed in other areas of the lining epithelium. 

Certainly, more studies on the nature of these cells are required, especially with the use 

of TEM to further characterise these cells at the ultrastructural level.

LOWER RESPIRATORY TRACT.

The tracheobronchial epithelium of the goat was ciliated at birth; indeed, the 

general morphological appearance of this epithelium in kids of all ages examined in the 

present study was similar to that of the adult. The only noticeable difference between 

kids and adults was that the ciliation in kids was relatively less dense than that seen in 

the adult. Also nonciliated cells presenting a large, wrinkled apical surface, similar to 

those observed in the larynx of the kid, were again observed in the trachea of kids of all 

ages in the present study. As the airway diameter decreased, the degree of ciliation was 

also seen to decrease, an observation in agreement with that made in the sheep, and 

supporting the suggestion that the development of the conducting airways in the foetal 

lung proceeds centripetally (Alcorn et al., 1981).

The present observation of the relatively heavy, almost adult pattern of ciliation 

in the tracheobronchial tree of the new-born kid contrasts markedly with observations in 

the dog by Wright et al. (1983). These workers investigated the pattern of cilia 

formation in the tracheobronchial tree of 25 animals aged between 4 hrs. and six 

months, and were able to show that the new-born dog is bom deficient of its full 

complement of cilia, apart from a carpet of cilia running along the dorsal wall of the 

trachea. They found, however, that the dog quickly developed its full complement of 

ciliated cells within five to seven days after birth. In the ox, it was observed that calves 

at one week of age had also attained the adult pattern of ciliation (Iovannitti et al.,

1985). However, because this latter study of cilial development was not carried out
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during the first week of life, the pattern of cilia distribution at parturition in the calf was 

not established.

Although observations made in the goat in the present study are in agreement 

with those made previously in the sheep (Alcorn et al., 1981) and in the bovine 

(Castleman and Lay, 1990) in that the basic architecture of the lung is well developed at 

birth in these species, the present study of young goats has established that respiratory 

bronchioles are not well developed at birth. They are rarely encountered in the first 

week of life, after which they are encountered with increasing frequency as the animal 

ages. These observations are in agreement with those of Mariassy et al. (1975) who 

found that in the bovine, where, like in the goat, the degree of lung development is well 

advanced at birth, alveolization of respiratory bronchioles at birth is poor. Such 

observations are also similar to those of Castleman and Lay (1990) who were unable to 

find respiratory bronchioles in the lung of new-born calf and also observed that the 

volume densities of airways, vessels and alveolar tissue undergo no major changes with 

age for the first 5 months of life, suggesting that the distal airways are fully developed 

at birth and undergo no major changes thereafter. Whether or not respiratory 

bronchioles develop later in the adult bovine lung is not well established, as such 

structures were not observed in the adult lung by Iovannitti et al. (1985), although 

Mariassy et al. (1975) reported their presence. The presence of respiratory bronchioles 

in the lung of the adult goat has been previously described in the present study.

The present observation of a postnatal development of respiratory bronchioles in 

the goat is similar to reports in the dog (Boyden and Tompsett, 1961) where it was 

demonstrated that alveolization of conducting airways to form respiratory bronchioles 

also occurs during postnatal development; this is not surprising in this species as the 

general architecture of the lung of young dogs at birth differs considerably from that of 

the adult However, present findings contrast with those of the guinea pig (Lechner and 

Banchero, 1982) where terminal bronchioles were observed to grade into typical 

respiratory bronchioles by 58 days of gestational age. The alveolization of the
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conducting airway has also been shown to begin halfway through gestation in the 

Rhesus monkey (Tyler et al., 1983); whether respiratory bronchioles continue to 

develop postnatally was not established in this species.

The present study in the goat has established that at birth the lung has relatively 

well formed alveoli, comparable to those of the adult. Such observations can also be 

applied to the sheep (Alcorn et al., 1981) where the process of alveolar formation, 

which is seen to begin around the 120^ day of gestation, results from the subdivision 

of the saccules by alveolar crests; the associated wall attenuation results in the formation 

of small thin-walled alveoli. SEM of lung parenchyma in the goat revealed numerous 

alveoli lined by alveolar Type I and alveolar Type II cells. Most of the alveolar septa 

were relatively thin, similar to those seen in the adult animal. Findings in the goat in the 

present investigation further support Engel’s (1953) postulate that the degree of lung 

maturity at birth reflects the stage of body development. It has been observed (Bartlett 

and Areson, 1977) that large species such as the sheep and cow have well developed 

lungs at birth, with a higher alveolar surface area per unit of oxygen consumption. This 

pattern reflects the extensive metabolic requirements which must accompany, among 

other activities, the new-born animal’s struggle to stand and walk efficiently as soon 

possible after birth.

The present study has revealed, however, that the process of alveolar formation 

in the kid is not entirely complete at the time of birth. This was evidenced by the 

occasional presence of ridge-like elevations seen subdividing what appeared to be large 

saccules. In addition, in some of the alveoli the walls were seen to be lined by 

numerous cuboidal alveolar Type II cells. It is generally accepted that alveolar Type I 

cells are formed from alveolar Type II cells (Thurlbeck, 1975), such Type II cell 

proliferation usually being associated with normal alveolar development (Kauffman et 

al., 1974; Adamson and Bowden, 1975) or alveolar repair following lung damage 

(Evans et al., 1973; Adamson and Bowden, 1975). It is therefore likely that such 

aggregations of alveolar Type II cells lining some of the alveolar sacs are precursors of
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the alveolar Type I cells later involved in the remodelling of the alveolar wall.

A double capillary network associated with alveolar development in rat and 

mouse (Burri, 1974), man (Boyden, 1967), and cat (Al-Tikriti et al., 1991) was not 

observed in the goat lung with either the SEM or LM. The present study suggested that 

only a single capillary network was associated with the alveoli in the developing lungs, 

observations which have also been reported in the bovine (Castleman and Lay, 1990) 

and sheep (Alcorn et a l, 1981Docimo et al., 1991). Such a transitory double capillary 

network, therefore, does not appear to be a feature of alveolar formation in ruminants.

A paucity of alveolar pores (of Kohn), compared to those observed in the adult 

goats (chapter 4), was noted in the lung of the kid in the present study. This observation 

is in general agreement with reports in the cat (Al-Tikriti et al., 1991) where, although 

alveolar pores were not observed in the developing lung, they were seen to be present in 

that of the adult. Such an increase in the number of pores with age has also been 

reported in a number of other mammalian species including monkey (Shimura et al., 

1986), dog (Gillette et al., 1989), man (Loosli, 1937; Pump, 1976), rat (Mercurio and 

Rhodin, 1984) and horse (Pirie, 1990). In the latter case it was reported that numbers of 

alveolar pores were fewer in animals under 6 years of age but increased in older 

animals. It has been suggested that such increases in the number of alveolar pores are a 

pathological manifestation associated with senescence of the alveolar membrane (Gillette 

etal., 1989).

In summary, although the epithelium lining the respiratory tract of the kid is 

essentially similar to that of the adult goat, characteristic differences, representing 

developmental stages, between the two were observed. These include:

1. The cilia were more densely packed and more extensively distributed within the 

rostral region of the nasal cavity of the kids than they were in adult goats. The large 

patches of nonciliated microvillous cells seen in adult goats were not a feature of the 

kid, in which only smaller patches were seen.

2. The epithelium covering the nasal septum was heavily ciliated in new-born to 3-day-
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old kids, from which time the numbers of nonciliated microvillous cells increased at the 

expense of ciliated cells.

3. Bronchioles were poorly ciliated in kids compared with the situation in the adult.

4. A cell type, characterised by a large wrinkled apical surface with short surface 

microvilli ,was frequently observed in the larynx and trachea of the kid, while such cells 

were not seen in the adult.

5. Lung parenchyma in the kid frequently presented evidence of alveolar formation in 

the form of low ridges dividing pre-existing alveoli.

6. In the first week of life, respiratory bronchioles were rarely encountered.

7. Alveolar pores were less numerous in the lung of the kid than in the adult.
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CHAPTER 7.

OBSERVATIONS ON THE USE OF THE SCANNING ELECTRON 

MICROSCOPE IN THE STUDY OF THE CAPRINE RESPIRATORY 

TRACT EPITHELIUM IN THE DISEASED SITUATION.



INTRODUCTION:

Respiratory diseases are a major constraint in goat production systems 

(Shavulimo et al., 1988; Ndamukong et al., 1989). It was noted in the general 

introduction (Chapter 1) that the major causative agents of these diseases include such 

pathogens as viruses, bacteria and helminths. The commonest bacterial agents 

associated with respiratory conditions include Mycoplasma m. mycoides and Pasteurella 

haemolytica (Ojo, 1976; Ngatia et a l, 1985; Jasni et a l, 1991), the causative agents of 

contagious caprine pleuropneumonia and pneumonic pasteurellosis respectively. Both 

organisms have been shown to produce marked changes in the SEM structure and 

organization of the respiratory lining epithelium in other species (Mebus and Underdahl, 

1977; Jones et a l, 1985; Ackermann et a l, 1991).

The availability of a limited number of goats with clinical respiratory problems 

provided an opportunity to determine possible changes in the SEM organisation of the 

epithelial lining and surface characteristics of individual cell types in the caprine 

respiratory tract, with a view to assessing the use of the SEM as an additional tool in the 

battery of diagnostic procedures available for studying respiratory diseases.

The presence and extent of such changes could only be appreciated and properly 

assessed by having a firm knowledge of the normal SEM morphological appearance of 

the respiratory tract epithelium in the goat. This was previously established and 

described in Chapter 4.
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LITERATURE REVIEW.

Scanning electron microscopy allows very large areas of tissue to be prepared 

and examined with relative ease, thus helping to eliminate difficulties in interpretation 

that might be caused by sampling errors. It has been used effectively to study the 

numerous morphological surface changes occurring in the lining epithelium of the 

respiratory tract as a result of the challenge arising from such factors as pathogens, 

environmental pollutants, chemical agents and mechanical insults.

The types of changes observed are reviewed below:

LOSS OF CILIATION.

This appears to be the most frequently observed response to pathological 

processes, and is certainly a feature of all chronic cases. An extensive loss of ciliation 

was observed with SEM in the trachea and bronchi of gnotobiotic pigs infected with 

Mycoplasma hyopnewnonia (Mebus and Underdahl, 1977), and also in porcine tracheal 

ring and lung explant organ cultures infected with the same organism (Williams and 

Gallagher, 1978). Cilial loss was also appreciated under SEM in the the trachea of the 

mouse damaged following aspiration of gastric contents (Wynne et al., 1981). Loss of 

ciliation has been reported in SEM studies of the respiratory lining epithelium of horses 

infected with Streptococcus equi (Pirie, 1990) and in calves infected with bovine 

herpesvirus I (Allan and Msolla, 1980).

SEM has also been used to assess the damage caused by low levels of ozone on 

the respiratory epithelial lining (Hyde et al., 1978; Zitnik et al., 1978), where cilial loss 

was reported to be a feature of the pathological lesion. Mechanical injuries resulting 

from tracheal intubation have also been successfully investigated with SEM, being seen 

to cause cilial loss (Althoff etal., 1981).
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CHI A. DESQUAMATION.

With SEM, sloughing of cells following infection has been reported. Muse et al. 

(1977) used SEM to demonstrate the effect of Bordetella pertussis on tracheal tissue 

cultures, and exfoliation was effectively demonstrated. Similar observations have been 

observed with SEM in calves infected with bovine herpesvirus I (Allan and Msolla,

1980). SEM investigations in mice following aspiration of gastric contents 

demonstrated the desquamation of cells in the tracheal epithelial lining (Wynne et al.,

1981). The effects of Pasteurella haemolytica on the nasal mucosa of the goat were 

successfully investigated with SEM (Jasni et al., 1991), where erosions and 

desquamation of epithelial cells were among the changes observed as a result of the 

damaging effects of the organism; lesions were observed to be severe in animals 

inoculated with pure cultures of Pasteurella haemolytica.

INCREASED MUCUS PRODUCTION.

Extensive sheets of mucus have been reported by the use of SEM to cover the 

respiratory epithelial lining in disease processes. Both Majid (1986) and Pirie (1990) 

observed extensive sheets of mucus almost obscuring the details of the epithelial lining 

in dogs and horses infected with Bordetella bronchiseptica and Streptococcus equi 

respectively. Increased mucus production was also appreciated with SEM in the trachea 

of pigs inoculated with Mycoplasma hyopneumoniae (Mebus and Underdahl, 1977).

It is known that mucus is produced from two sources, the superficial mucus- 

producing cells and the submucosal glands. The former have been confirmed by the use 

of SEM to contribute to the observed abnormal sheets of mucus as a result of their 

numerical increase in pathological conditions. This increase in numbers of mucus- 

producing cells in disease situation as observed by the use of SEM, has also been 

reported by several investigators in both mammalian species (Mebus and Underdahl,
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1977; Majid, 1986; Pirie, 1990; Jasni etal., 1991) and in birds (Mohammed, 1989). 

CHANGES IN CELL SURFACE MORPHOLOGICAL CHARACTERISTICS.

SEM has been useful in studying morphological changes in the lining epithelial 

cells of the respiratory tract due to pathological processes. Carcinoma-like cells of the 

distal airways in sheep infected with ovine pulmonary adenomatosis virus (Payne and 

Verwoerd, 1984) could be distinguished on the basis of surface characteristics observed 

by SEM. Metaplastic changes were also easily appreciated with the use of SEM in the 

tracheal epithelium of the golden hamster instillated with benzo(a) pyrene-ferric oxide 

(Becci et al., 1978), where patches of epithelium with protruding neoplastic cells 

characterised by short, stubby microvilli or microridges were revealed, findings 

confirmed concurrently by the use of TEM.

SEM changes in the characteristics of surface cilia, observed as bulbous or 

curved cilial tips, or a sometimes highly disorientated ciliary pattern, have been 

associated with disease processes such as immotile cilial syndrome in dogs (Edwards et 

al., 1983) and Bordetella bronchiseptica infection in dogs (Majid, 1986) respectively.

Changes in surface characteristics of Clara cells have been observed with SEM 

in 3-methylindole-induced bronchiolitis (Turk et al., 1983), in chronic obstructive 

pulmonary disease (COPD) of horses (Pirie, 1990; Pirie et al., 1992) and in the 

bronchiolar epithelium of the rat exposed to high levels of ozone and oxygen (Lum et 

al., 1978; Zitnik et al., 1978). Unusual crater-like lesions were observed with SEM in 

the apical surfaces of alveolar Type II cellsof horses with COPD (Kaup et al., 1990), 

and were easily distinguished from the normal.

Hyde et al. (1978) investigating the long term effect of high ambient levels of air 

pollutants on the respiratory system of the dog, noted that SEM revealed the apparent 

loss of alveolar walls more clearly. The persistent nature of bronchiolar cell proliferation 

was also clearly demonstrated by the use of SEM.
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PRESENCE OF CAUSATIVE AGENT.

The use of SEM has made it possible to observe, and in some cases identify 

with certainty, the actual causative agent of the pathological changes observed in the 

lining epithelium of the respiratory tract

Murphy et al. (1980) observed filaments characteristic of M ycoplasma  

pneumonia adhering to the cilia of infected hamsters. Also spherules of Mycoplasma 

hyopneumoniae have been observed with SEM in the tracheobronchial epithelial lining 

of infected pigs (Mebus and Underdahl, 1977), their size and shape being confirmed by 

SEM observation of the pure culture. Rods of Bordetella bronchiseptica were observed 

under SEM in the trachea and bronchi of dogs, and the numerical increase of the 

organisms with time post-infection was appreciated by the use of SEM alone (Majid,

1986).

RESPIRATORY DISEASE IN GOATS.

It was noted earlier in the introductory section that pneumonic pasteurellosis is 

one of the important diseases in goat production systems, especially in the tropical and 

subtropical regions. Although the disease has been reported worldwide, it does not 

appear to be of great economic importance in temperate regions, where caprine arthritis 

encephalitis virus (CAE) is the most frequently encountered disease condition. Although 

CAE is basically a disease of the nervous system, pneumonia, either as a result of the 

virus or as a consequence of the recumbency caused by locomotor paralysis, is an 

eventual development. On returning home to Tanzania for a short visit, animals 

exhibiting clinical manifestations typical of pneumonic pasteurellosis became available 

for study, thus the opportunity was seized to examine the respiratory tract using SEM 

techniques.
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Although there is a dearth of information on the gross pathology, 

histopathology, and clinical manifestations of these conditions, a summary of which is 

provided below, the effects of the disease processes on the surface characteristics of the 

epithelial lining of the respiratory tract do not appear to have been investigated by SEM.

Pasteurella infection in goat.

Pneumonic pasteurellosis is one of the most important caprine diseases in the 

world (Jasni et al., 1991) and causes high mortality rates in goats of all ages 

(McSporran et al., 1985). Pasteurella haemolytica is frequently isolated from normal 

goats and has been recognised as part of the normal flora of the upper respiratory tract 

(Ojo, 1976; Ngatia et al., 1985; Hayashidani et a i, 1988); however in disease 

conditions it is the most frequent isolated bacteria. Although Pasteurella haemolytica is 

ffequendy isolated in pneumonic lungs, the aetiology of this disease remains uncertain.

Stress factors, including poor housing, transportation, inclement weather and 

the damaging effects of general viral infections, have been associated with outbreaks of 

pneumonia in goats (Ngatia et al., 1986; Hayashidani et al., 1988; Fodor et al., 1990) 

Pasteurella haemolytica also plays a role in respiratory disease of other ruminants such 

as catde and sheep (Jericho and Langford, 1978; Panciera and Corsvet, 1984; Mishra, 

1988). In cattle, it has also been noted that Pasteurella haemolytica alone does not 

necessarily cause the disease, the aetiology being multifactorial and involving stress 

factors usually associated with shipping, primary viral infection (including infectious 

bovine rhinotracheitis and parainfluenza type 3 virus) or bacterial infection 

CMycoplasma bovis and Pasteurella multocida) (Jericho and Langford, 1978; Panciera 

and Corsvet, 1984).

Pneumonic pasteurellosis in the goat is clinically characterised by elevated body 

temperature and respiration rate, coughing and bilateral mucoid nasal discharge and 

dullness (Ngatia et al., 1986). Microscopically, pathological lesions of consolidated
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lungs range from an acute exudative necrotising bronchopneumonia with numerous 

neutrophils infiltrating the visceral pleura and peribronchiolar and perivascular 

connective tissue (Buddie et al., 1990^), to a predominantly proliferative pneumonia. 

Exudative-proliferative lesions are characterised by relatively less neutrophils than in the 

exudative type and more macrophages, hyperplasia of lymphoid tissue, and 

epithelialisation of alveoli. Proliferative-exudative lesions are characterised by 

pronounced hypertrophy and hyperplasia of bronchiolar epithelium, moderate 

hyperplasia of lymphoid tissue, and fibrosis of interlobular septa and perivascular 

regions, together with patchy epithelialisation of alveoli.

Caprine arthritis-encephaliris virus infection.

Caprine arthritis-encephalitis (CAE) is a relatively new disease complex that 

affects domestic goats of all ages and probably all breeds, and is caused by a non- 

oncogenic retrovirus, a member of the lentiviruses (Clements et al., 1980; Sundquist,

1981). The virus can cause three different diseases in different age groups of the host. 

These include are a rapidly progressive leukoencephalitis in newborn and young goats, 

a chronic arthritis and mastitis in adult goats, or a sporadic slowly progressive 

pneumonia-encephalitis.

The most frequently encountered of these three disease syndromes is the arthritic 

disease of goats aged between 2 and 9 years. The arthritis is insidious in onset and 

slowly progressive over a period of months to years; joints (usually the carpal joints), 

bursae and tendon sheaths are the targets. Depending on severity affected animals are 

usually thin to emaciated and have long, coarse hair. Animals show signs varying from 

lameness and reluctance to walk, to severe restrictions in joint movements, leading to 

recumbency. Unless there are septic complications, the animals usually appear alert, 

afebrile and appetite is maintained.

Rapidly progressive neurological disease of young goats is the other major
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syndrome associated with this virus infection (Cork et al., 1974). The syndrome is 

clinically characterised by posterior paresis (which may progress to include the fore­

limbs), circling signs and apparent blindness. Kids with neurological disease also often 

develop a transient subclinical interstitial pneumonia and the lungs fail to collapse 

completely at autopsy. Histologically, these lesions consist of lymphoid hyperplasia 

with frequent nodular arrangements, thickening of alveolar septa and pronounced 

infiltration by macrophages (Narayan and Cork, 1990).

In spite of the fact that respiratory diseases are one of the major constraints in 

goat production systems, investigations of disease processes in this species with the use 

of the scanning electron microscope do not appear to have been attempted. The purpose 

of this study therefore, was to use SEM to provide a three-dimensional view of the 

diseased respiratory tract epithelium of the goat, and compare it with the normal

MATERIALS AND METHODS.

SOURCE OF CLINICAL CASES.

Two animals, TZ1 and TZ2, aged three and two years respectively, were 

obtained from the abbatoir in Dar-es-salaam, Tanzania. During routine ante-mortem 

inspection the two animals were seen to be suffering from a respiratory condition. Their 

history revealed that these goats had been introduced into a small herd only a few days 

before showing any clinical signs. Upon clinical examination their body temperatures 

were elevated, with temperatures of 40° and 41°C respectively (cf. 39.3°C). Both 

animals were coughing and had an increased respiratory rate of 30 and 35 per minute 

respectively (cf. 15 -20 per minute), with goat TZ1 showing a mucoid discharge from 

the nostrils. They were slightly underweight (18-20 kg) (cf. ~25 Kg.), with poor hair 

coats.
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Animal CC1 was referred to the Anatomy Department, Glasgow University, 

with a history of poor performance; it was unable to stand upright, walking on its carpal 

joints, and had exhibited a long term loss of appetite. Clinical examination revealed a 

loss of co-ordination, especially of the fore-limbs, together with dyspnea and an 

obviously stunted growth. Secondary bacterial pneumonia following caprine arthritis 

encephalitis (CAE) virus infection was suspected. No attempts were made to isolate the 

virus, but bacterial culture of lung tissue later revealed the presence of Pasteurella 

haemolytica.

Animal MC5: This animal was obtained from among the normal goats used in 

the study of Chapter 4, and on clinical examination presented no signs of respiratory 

embarrassment. However, post-mortem examination revealed gross pathological lesions 

in the lungs of this animal and it was decided to include it in this section.

POST-MORTEM PROCEDURES AND TISSUE COLLECTION.

The animals were killed using an overdose of pentobarbital sodium (Euthetal: 

Mayer and Baker), the head sagittally sectioned, and the lungs and trachea removed and 

examined for gross pathological lesions. Samples for both histology and scanning 

electron microscopy were taken from those sites described in Chapter 3. Tissue samples 

from the lung parenchyma from animal TZ1, TZ2 and CC1 were removed for 

bacteriology assessment. No attempts were made to isolate the virus from CC1.

LM AND SEM SAMPLES.

Samples for LM and SEM were processed in the same manner as described in 

Chapter 3.
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RESULTS.

GROSS PATHOLOGY.

Animals TZ1 and TZ2.

Within the nasal cavity, the nasal conchae of TZ1 were covered with excessive mucoid 

material. Examination of the lungs revealed extensive consolidation of the cranial lobes 

and conspicuous lobulation in both lungs. The consolidated areas were greyish red and 

firm on palpation. Similar gross pathological lesions of the lungs were observed in 

TZ2, except that there was no excessive mucus in the nasal cavity.

Animal CC1.

Excessive mucoid material was observed within the trachea, together with extensive 

consolidation of the cranial lobes of both lungs and the middle lobe of the right lung. On 

cutting these consolidated areas, thick plugs of mucoid-like material, cheesy in 

consistency, were seen to block the small airways.

Animal MC5.

This animal had extensive pleurisy involving most of the surface of the lungs. Focal 

areas of consolidation were observed in the cranial lobes of both lungs and the middle 

lobe of the right lung. The trachea contained excessive mucoid material.

HISTOPATHOLOGY.

Animals TZ1 and TZ2.

Upper respiratory tract: In animal TZ2 a mild form of rhinitis was observed, 

characterised by mononuclear cell infiltration in the lamina propria, as well as in the
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epithelium. Mucus was seen lying on the luminal surface. Changes in animal TZ1 were 

relatively much more pronounced than in animal TZ2. The epithelium and dermis of the 

nasal vestibule was seen to be infiltrated by inflammatory cells, mainly plasma cells and 

lymphocytes (Fig. 7.1). A mild form of rhinitis, characterised by polymorphonuclear 

cell infiltration in the epithelium and mononuclear cell infiltration in the lamina propria, 

was a feature. Congestion and mild oedema was also observed. Some loss of surface 

epithelial cells was encountered. Mucus and debris was also seen lying on the luminal 

surface (Fig. 7.2).

Lower respiratory tract: Animal TZ2 presented mild changes in the lower respiratory 

tract, although there was some evidence of tracheitis and bronchitis characterised by 

mononuclear cell infiltration in the lamina propria (Fig. 7.3). Lymphocytic infiltration 

was observed around some bronchioles. Foci of alveolar collapse was a feature. Again 

changes in the lower respiratory tract of animal TZ1 were relatively pronounced. 

Lymphocytic “cuffing-type” lesions were frequently encountered around bronchi, and 

hyperplastic submucosal follicles were seen. Small bronchi and bronchioles were often 

seen to contain inflamatory exudate composed of neutrophils and mucoid material (Fig. 

7.4). Foci of alveolar collapse were also observed.

Animal CC1:

Upper respiratory tract: Focal necrosis and apical cell erosion was observed in the 

epithelium lining the nasal vestibule. The epidermis, as well as the dermis, was heavily 

infiltrated by neutrophils. Acute rhinitis associated with dense infiltration of neutrophils 

in the epithelium was found in the basal fold

The epithelium covering the nasal conchae presented varying degrees of 

changes, characterised by an accumulation of mononuclear cells, mainly plasma cells 

and lymphocytes, in the lamina propria; a few of them infiltrated the epithelium. Debris, 

composed of inflammatory cells, dead and dying epithelial cells and mucus, was 

observed lying on the epithelial surface. In some areas most of the epithelial cells were
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seen to be exfoliated, exposing the basal lamina (Fig. 7.5).

In the nasopharynx, there was heavy infiltration of the lamina propria by 

lymphocytes and plasma cells. Lymphatic nodules had distinct germinal centres. The 

epithelium overlying lymphatic nodules was frequently seen to be disrupted, with 

lymphocytes seen passing through clefts in the epithelium onto the epithelial surface 

(Fig. 7.6).

A very mild infiltration of mononuclear cells was seen in the lamina propria of 

the epiglottis, most of the epithelium showing a normal organisation except for a few 

necrotic foci in the epithelium. In the vocal fold, a ruptured microabscess was seen in 

the epithelium; the lamina propria was also infiltrated by a few plasma cells and 

lymphocytes.

Lower respiratory tract: The trachea and bronchi presented similar changes

characterised by infiltrations of lymphocytes and plasma cells within the lamina propria, 

a mixture of inflammatory cells, debris and mucus lying on the luminal surface, and a 

mild degree of lymphoid hyperplasia in the cranial dorsal trachea. The bronchioles were 

blocked by inflammatory exudate (Fig. 7.7) composed of neutrophils, mucus and some 

exfoliated epithelial cells.

Most of the changes were seen in the lung parenchyma. There was an extensive 

degree of alveolar collapse, together with thickening of the alveolar membrane; this 

thickening was due to the heavy infiltration of neutrophils and plasma cells in the 

interstitial tissue (Fig. 7.8). Occasionally a mild degree of oedema was observed in the 

interstitium. Some of the alveoli were filled with mucus.

Animal MC5:

Upper respiratory tract: The mucosa of the alar and basal folds presented varying 

degrees of inflammation, being more pronounced in the latter. The epithelial lining was 

infiltrated by polymorphonuclear cells while the lamina propria was infiltrated by 

mononuclear cells, mainly plasma cells and lymphocytes. Some macrophages were also
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observed, especially in the basal fold. Debris, consisting of desquamated cells, mucus 

and some inflammatory cells, was observed on the surface of the epithelial lining.

Changes in the nasal conchae were characterised by mononuclear cell infiltration 

of the lamina propria and an increase in numbers of surface mucus-producing cells. 

Mucosal lymphoid hyperplasia was observed in the ventral and middle nasal conchae. 

Changes in the dorsal nasal concha were of a relatively mild nature, with an increase in 

numbers of mucus-producing cells being the prominent change.

Except for an occasional infiltration of mononuclear cells seen in the vocal fold, 

the epiglottis and vocal folds presented no striking changes in the lining epithelium. The 

infraglottic cavity exhibited prominent changes in the lamina propria, with an infiltration 

of mononuclear cells, mainly plasma cells and lymphocytes.

Lower respiratory tract: The dorsal cranial trachea appeared normal. Inflammatory 

changes were prominent in the ventral trachea, however, these changes being 

characterised by the infiltration of mononuclear cells consisting of lymphocytes, plasma 

cells and some macrophages, into the lamina propria. Other salient features were 

mucosal lymphoid hyperplasia and an increase in numbers of surface mucus-producing 

cells. Debris, consisting of mucus and desquamated cells, was observed on the 

epithelial surface. Relative to changes observed in the trachea, those in the bronchi were 

of a mild nature. Mucoid material was observed in the lumina of the terminal and 

respiratory bronchioles with AB / PAS staining, and numerous numbers of mucus- 

producing cells were observed (Fig. 7.9).

There was a degree of alveolar collapse, and thickening of the alveolar septa. 

Some lymphocyte infiltration of the septa was observed. A mild degree of fibrosis was 

encountered, together with cellular exudate in the alveolar lumina.
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SCANNING ELECTRON MICROSCOPY.

Animal TZ1. TZ2 and MC5.

It was observed that the lesions in the epithelial lining of the respiratory tracts of the 

three animals, TZ1, TZ2 and MC5, were similar. Thus to avoid monotony of repetition 

in describing the observed changes, it was decided to discuss the findings in these three 

animals together, highlighting only significant individual differences.

Nasal vestibule and alar fold: Debris, appearing to be made up of a mixture of 

desquamated cells and mucus, was seen to be entangled in between the hairs in the 

rostral portion of the nasal vestibule. Sheets of desquamating cells were also seen on the 

luminal surface. In the exposed regions a few micro-organisms, presenting varying 

shapes ranging from stellate to coccoid to coccobacilli, were seen lying on the luminal 

surface (Fig. 7.10). Most of the surface squamous cells in this region presented a 

number of pores on their luminal surface (Figs. 7.10, 7.11); the numbers of such cells 

were seen to increase towards the alar fold.

Within the alar fold mucus strands, debris and micro-organisms were also seen 

lying on the luminal surface (Fig. 7.12), and in the caudal regions mucus strands were 

seen being extruded from the cells beneath (Fig. 7.12).

In the alar fold, there was evidence of the loss of considerable numbers of the 

surface cuboidal cells. The areas from which the cells had detached were marked by 

depressions or pits; in these areas, the intercellular spaces between adjacent cells were 

seen to be wider than normal, leaving gaps between adjacent cells.

Basal fold: The epithelium was confirmed by histology to be stratified cuboidal in 

nature. Numerous mucous cells could be seen extruding mucus (Fig. 7.13). In a few 

places, the uppermost layer of cuboidal cells was seen to have been lost, leaving a 

rugged surface carrying debris mixed with mucus.
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Further caudally on the basal fold, there emerged a number of regenerating 

ciliated cells characterised by few short cilia of uneven lengths; their numbers increased 

caudally in the nasal cavity. Many micro-organisms, mostly coccoid in shape, were 

seen adhering to the luminal surface, being primarily attached to the cilia.

Nasal septum: In animal TZ2 the nasal septum was lined by an epithelium composed of 

a few regenerating ciliated cells interspersed between normal ciliated cells. Other ciliated 

cells, carrying much longer but fewer cilia per cell, were also encountered. In contrast 

the nasal septum of goat TZ1 presented an epithelial lining completely devoid of cilia 

(Fig. 7.14). Here the majority of cells at the luminal surface were of the nonciliated 

microvillous type, with microvilli length varying between cells, although uniform on 

individual cells.

In both animals, mucus-producing cells were numerous. Some were seen 

extruding mucus in the form of apical protuberances, while others carried a shallow 

crater on their apical surface with an occasional film of mucus on top. Mucous sheets 

and debris covered most of the luminal surface of the nasal septum. Micro-organisms 

were only seen in areas which had some ciliated or regenerating ciliated cells.

Ventral nasal concha: The ventral nasal concha was extensively covered by sheets of 

mucus. In those areas where the surface epithelium was exposed, nonciliated 

microvillous cells were the major cell type making up the epithelium, although 

occasional patches of ciliated cells bearing relatively short cilia were also observed (Fig. 

7.15). Mucus-producing cells were seen discharging mucus; in some places these were 

numerous and presented a dome-shaped apical surface. Submucosal gland orifices were 

also a feature, and could be seen extruding mucus.

Dorsal nasal concha: The dorsal nasal concha showed an extensive loss of cilia, the 

majority of cells comprising the epithelium presenting a microvillous apical surface
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(Fig. 7.16). Occasionally a few patches of ciliated cells, covered by a surface debris 

composed of desquamated cells, mucus and inflammatory cells, were observed.

The mucosa was thrown into alternating folds and gutters, both of which were 

devoid of cilia; the few ciliated cells that were seen had short, poorly developed cilia. 

The lining epithelium contained mucus-producing cells in greater numbers than normal, 

some of which exhibited protuberances of mucus at the apical surface.

Middle nasal concha: The middle nasal concha was also covered by mucous sheets to 

some extent. The lining epithelium was composed of nonciliated microvillous cells and 

a few interposed patches of ciliated cells.

Larynx: Most of the epiglottis appeared normal, the epithelium being composed of 

surface squamous cells. In some areas there were extensive sheets of mucus covering 

the epithelium. A few micro-organisms were seen scattered on the luminal surface of the 

epiglottis (Fig. 7.17). The cranial surface of the vocal fold had a similar epithelial lining 

to that seen on the epiglottis, whilst the caudal surface had fewer ciliated cells than 

normal, the majority of the component cell type being the nonciliated microvillous cell.

In these animals the lining epithelium of the infraglottic cavity had a 

characteristically matted appearance. Sheets of mucus, together with cellular debris and 

inflammatory cells, were observed covering the epithelial lining.

Trachea and extrapulmonarv bronchi: The ciliated epithelium found lining the dorsal 

regions of the tracheal lumen was folded to form alternating ridges and gutters as 

normal. However, these gutters were also narrowed, and in some areas the resultant 

clefts were plugged with mucus (Fig. 7.18). In most areas examined the cilia were 

characteristically matted by mucus; in some areas the latter formed a heavy blanket 

covering the luminal surface of the trachea. There was a great variation in density of 

cilia from one area to another. In some areas the cilial carpet was thick, whilst in several
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areas the carpet was thinner, the ciliated cells here presenting fewer cilia per cell, with 

the cilia usually ruffled and intertwined. Highly active mucus-producing cells were seen 

extruding columns of mucus (Fig. 7.19). A number of micro-organisms were again 

seen attached to the cilia; the majority were coccoid in shape.

The ventral tracheal mucosa presented an undulating surface with shallow 

gutters. A mucus sheet containing cellular debris and dead cells was again seen lying on 

the luminal surface. Areas denuded of cilia were common, resulting in a larger than 

normal population of nonciliated microvillous cells bearing short microvilli on their 

apical surfaces. These would sometimes exhibit a slight apical bulge with a wrinkled 

cell membrane. In some regions there were patchy, irregularly defined areas where the 

epithelium had been eroded down to the basal lamina. Occasionally in other regions, 

where erosion appeared to be in its early stages, ciliated cells could be seen detaching 

from each other and being extruded from the epithelium.

Intrapulmonarv bronchi and bronchioles: Compared to the trachea and extrapulmonary 

bronchus, the epithelial changes seen in the bronchi and bronchioles were relatively 

minor. Such changes included an increase in the number of mucus-producing cells, 

poorly developed ciliated cells and increased surface mucus, especially in the terminal 

and respiratory bronchioles. Microvilli on Clara cells were not readily discernible, the 

rough apical surface being raised into a dome (Fig. 7.20).

Alveoli: TZ2 was characterised by greatly thickened alveolar septa. Although alveolar 

Type II cells were not easily identified, the nuclear outlines of alveolar Type I cells 

protruding into the alveolar lumina were more apparent than normal. In some areas the 

luminal surfaces of the alveoli were covered by amorphous sheets of material (Fig. 

7.21), making it impossible to see the details of the alveolar surface. Blood capillaries 

were greatly engorged and thus were more obvious than normal. (Fig. 7.22)

The thickness of alveolar septa in goat TZ1 appeared normal. The only
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noticeable abnormality was an accumulation of inflammatory cells in the alveolar 

lumina. A few macrophages, bearing a rough surface with blunt pseudopodia, were 

seen. Some flocculent material was occasionally seen lying on the alveolar surfaces.

Animal CC1.

Alar and basal folds: Apical squamous cells lining the rostral regions of the alar and 

basal folds were frequently seen desquamating singly or in patches. Further into the 

nasal cavity, the apical cells were mainly cuboidal in shape and these also were seen 

detaching to leave a depression (Fig. 7.23). Some micro-organisms, coccoid in shape, 

were observed on the epithelial surface. Mucus was often seen to be produced in the 

form of long filamentous strands.

Ventral nasal concha: The epithelial lining of the ventral concha was extensively covered 

by sheets of mucus (Fig. 7.24). Where the epithelial surface was exposed, a dense 

carpet of matted cilia was observed.

Dorsal nasal concha: In contrast to the ventral nasal concha, extensive deciliation was 

observed, with the majority of the component cell type being the nonciliated 

microvillous cell. Numerous regenerating ciliated cells were frequently observed. 

Mucus, together with cellular debris and some fibrous debris, was observed lying on 

the epithelial surface (Fig. 7.25). Mucus-producing cells appeared to be more numerous 

than normal.

Middle nasal concha: The surface was similar to the ventral nasal concha, however 

sheets of mucus were not as pronounced. Mucus-producing cells, often occurring in 

patches and exhibiting apical protuberances, were encountered in large numbers.
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Larvnx: Changes in the vocal fold were characterised by the presence of sheets of 

mucus and surface debris containing cellular exudate, and frequent patches of 

nonciliated microvillous cells. Extensive areas of desquamation (Fig.7.26), sometimes 

leaving a bare basal lamina, were observed in the infraglottic cavity. Cells appearing to 

be detaching from adjacent cells and lifting off from the surface were often observed.

Trachea: The epithelial lining of the dorsal surface of trachea was extensively deciliated, 

the few ciliated cells that were present having a small number of cilia on their apical 

surfaces. Sheets of mucus were frequently observed. In some areas there appeared to be 

evidence of desquamation, with most of the epithelial cells lost to leave, in some cases, 

a bare basal lamina.

The epithelial lining of both the cranial and caudal portions of the ventral surface 

of the trachea showed mild changes in comparison to the dorsal surface. Such changes 

included an increase in number of the domed patches of nonciliated microvillous cells, 

increased mucus production with mucous plugs being occasionally observed in 

submucosal gland orifices and a general decrease in number of the ciliated cells (Fig.

7.27).

Bronchi: Changes were relatively mild in comparison to those observed in the trachea. 

In addition to a general reduction in the number of ciliated cells, patches of nonciliated 

microvillous cells were frequently observed such that their numbers appeared to be 

greatly increased compared to those observed in normal animals.

In one of the specimens a single cell, characterised by a dense aggregation of tall 

spiky, uniform surface microvilli, was observed surrounded by ciliated cells (Fig.

7.28); this cell was considered to be a brush cell. Mucus-producing cells, actively 

producing sheets of mucus, were also frequently observed.

Bronchioles: The lumina of the smaller bronchioles, the terminal bronchioles and the
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respiratory bronchioles contained accumulations of flocculent material which, in many 

cases, covered the entire epithelial surface (Fig. 7.29). In the few areas that were 

exposed, the ciliated cells had markedly disorientated cilia, with some flocculent 

material being held in between cilia. The majority of the Clara cells presented flattened 

apical surfaces, while some presented shrivelled (‘withered’) apical protuberances (Fig.

7.30).

Alveoli: There was evidence of an increase in the number of alveolar Type II cells (Fig.

7.31), most of them presenting a number of pores on a central region sparsely 

populated by microvilli, in contrast to the densely populated peripheral regions (Fig.

7.32). Flocculent material was often observed covering the alveolar surfaces, and 

occasionally accumulating in the alveolar lumina.

BACTERIOLOGY

Pasteurella haemolytica was isolated from animals TZ1, TZ2 and CC1. Samples from 

MC5 were not taken for bacteriology.
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DISCUSSION,

The present study was undertaken to give an indication of the use of SEM as an 

additional tool for examining disease processes within the caprine respiratory system. It 

was not intended to provide an examination of any particular disease process. In 

addition it was intended to highlight how a knowledge of normal SEM morphology 

could be used in clinical situations.

Animals used in this study had natural infection and, in all the cases except 

MC5, Pasteurella haemolytica was isolated. The gross pathological examinations carried 

out, however, revealed that the animals used in the present study were suffering from 

respiratory disease, possibly due to infections by Pasteurella haemolytica. This 

organism is known to be part of the normal flora of the nasal cavity of the goat (Ojo, 

1976; Ngatia et a i, 1985), but may become associated with disease processes when 

other factors, often stress-related, come into play.

UPPER RESPIRATORY TRACT.

The presence of a small number of micro-organisms, possessing coccoid to 

coccobacillic morphological characteristics similar to those previously described for 

Pasteurella haemolytica by Buxton and Fraser (1977) on the epithelial surface of the 

rostral regions of the nasal cavity as described by SEM support the indication of a 

possible role for Pasteurella in the observed clinical conditions. The small numbers of 

these micro-organisms observed in the present study, however, contrast with previous 

studies where Bordetella bronchiseptica, Streptococcus equi and Mycoplasma 

hyopneumonia were observed in large numbers on the lining epithelium of the nasal 

cavity of the dog (Majid, 1986), horse (Pirie, 1990) and pig (Mebus and Underdahl, 

1977) respectively. The numbers seen in the present study seem to be on the low side 

given the severity of morphological changes on the lining epithelium. These low
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numbers may well be a true reflection of the degree of infection, although numerous 

factors may alter them.

SEM observations made in the present study demonstrated marked changes 

from the normal appearance of the lining epithelium of the rostral regions of the nasal 

cavity, with large numbers of desquamating surface cells forming, together with 

inflammatory cells, an accumulation of surface debris often seen to entangle in hairs of 

the nasal vestibule.

Desquamation of cells as reported in the present study is in agreement with a 

previous report in the goat (Jasni et al., 1991) on the effect of Pasteurella haemolytica 

on the nasal mucosa. Erosions and epithelial cell desquamations were characteristic 

changes observed with SEM. Such observations have also been reported in the lining 

epithelium of the respiratory tract of other species. Allan and Msolla (1980) observed by 

SEM a considerable degree of desquamation in the trachea of calves infected with 

bovine herpes virus. Sloughing of cells was also observed in tissue cultures infected 

with Bordetella pertussis (Muse et al., 1977). Also, patches where desquamation of 

cells had occurred, were observed in the nasal cavity of dogs infected with Bordetella 

bronchiseptica (Majid, 1986). It would appear that SEM presents the best means of 

assessing the extent of damage in the form of cell desquamation, which appears to be a 

common pathological finding in bacterial and viral infections of the lining epithelium of 

the respiratory tract (Muse, 1977; Allan and Msolla, 1980).

Present SEM observations also indicated that occasionally the surface lining 

cells presented pores on the luminal surface. Such an observation may be an indication 

of the damage to the surface plasmalemma, an assumption consistent with observations 

reported by Whiteley et al. (1991), who investigated alteration in pulmonary 

morphology and peripheral coagulation profiles caused by intratracheal inoculation of 

live and ultraviolet light-killed Pasteurella haemolytica Al in calves. They observed that 

Pasteurella haemolytica A l produced cell necrosis and pore formation. Indeed 

Pasteurella haemolytica has already been shown to secrete a leukotoxin known to form
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pores in cell surface membranes (Clinkenbeard, et al. 1989a»b). In addition, Pasteurella 

haemolytica produces several factors including endotoxins (Kiess et al., 1964; Rimsay 

et al., 1981) a protein exotoxin (Kaehler etal., 1980; Shewen and Wilkie, 1982Chang 

et al., 1986), neuraminidase (Tabatabai and Frank, 1981) and a neutral protease 

(Otulakowski, 1983) that may also be involved in early damage of the plasmalemma of 

susceptible cells. Other bacteria such as Streptococcus equi have also been shown to 

produce soluble products including toxins and enzymes, which are presumed to be 

involved in local pathogenic damage (Bazeley, 1943; Taussig, 1984).

In the most caudal regions of the nasal cavity, the extensive deciliation and 

increased mucus production observed in the present study in the goat is in agreement 

with previous observations (Jasni et al., 1991), where these workers reported extensive 

cilial collapse onto the epithelial surface, and the micrograph they provideded reveal 

extensive deciliation. The present findings are also in agreement with previous 

observations in the pig nasal epithelium colonised by a toxigenic strain of Pasteurella 

haemolytica Type D. (Ackermann etal., 1991), in dogs infected with Bordetella 

bronchiseptica (Majid, 1986), in horses infected with Streptococcus equi (Pirie, 1990) 

and also in a viral condition associated with perennial rhinitis in man (Mygind and 

Bretlau, 1973) Such studies have shown the ciliated cells to be extremely sensitive to 

infections, resulting in the localised loss of cilia followed by regeneration, provided that 

the injury is not repetitive or lethal (Sturgess, 1989). Such regeneration of ciliated cells 

was also observed in the present study.

Although there was no quantitative assessment of either the individual mucus- 

producing cells or submucosal glands, which are both responsible for contributing to 

the formation of the mucous blanket (Chakrin and Saunders, 1974; Jones etal., 1975), 

a subjective assessment of the individual surface mucus-producing cells suggested that 

they were more numerous than usual in the epithelial lining of the nasal cavity in the 

diseased animals. The observed increase in numbers of mucus-producing cells supports 

previous observations that irritation of the lining epithelium o f the nasal cavity either
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mechanically (Reid, 1963), chemically by inhalation of various gases such as sulphur 

dioxide (Mawdesley-Thomas et al., 1971; Collier, 1980) or due to infection (Jones et 

al., 1975; Wheeldon et al., 1976; Majid, 1986) results in an increase in numbers of 

mucus-producing cells. The main role of the mucous blanket is to trap inhaled 

substances, both particulate (Gail and Lenfant, 1983) and microbial (Newhouse, 1982), 

and then provide for their elimination by activating the mucociliary clearance mechanism 

(Kilbum, 1974).

In respiratory diseases there is an increase in the numbers of mucus-producing 

cells and this is usually coupled with changes in the histochemistry of the mucus 

produced (Jones et al., 1975; Wheeldon et al., 1976; Mellick et al., 1977).

SEM observations in the present study showed that the surface morphology of 

the epiglottis was not affected in any of the clinical cases examined. Such findings 

support previous SEM studies in horses infected with Streptococcus equi (Pirie, 1990) 

and also in dogs infected with Bordetella bronchiseptica (Majid, 1986). It would thus 

appear that this region of the respiratory tract is very resistant to pathological changes.

LOWER RESPIRATORY TRACT.

In the present study, the trachea of all four cases examined showed SEM surface 

changes in the form of cilial loss, mucosal erosion and excess mucus production. There 

were regional variations in the degrees of change observed, these being more 

pronounced in the cranial regions of the trachea than in the caudal regions. In addition, 

the dorsal tracheal epithelial surface exhibited more changes than the ventral surface. 

Such variations in the regional severity of observed lesions within the trachea are 

comparable to SEM findings in the Rhesus monkey (Mellick et al., 1977) exposed to 

high ozone and oxygen levels, where deciliation was more marked on the dorsal 

membranous aspect than on the lateral or ventral aspect of the tracheal epithelial lining. 

The present findings in the goat also support previous SEM studies in the dog (Majid,
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1986), ferret (Chevance etal., 1978) and horse (Pirie, 1990) where regional variations 

in observed pathological responses to challenges by Bordetella bronchiseptica, influenza 

A virus and Streptococcus equi respectively was also observed. Although the latter case 

is considered to be a disease primarily of the upper respiratory tract, SEM revealed that 

some changes also occurred in the lower respiratory tract where patches of nonciliated 

microvillous cells were present in the usually well ciliated surfaces of these regions. 

SEM examination of horses affected with chronic obstructive pulmonary disease 

(COPD) revealed more extensive patches of nonciliated microvillous cells than normal, 

with ciliated cells exhibiting fewer and more disorganised cilia in the tracheal epithelial 

lining (Pirie et al., 1992).

It has been suggested that the regional variation in damage caused to the 

tracheobronchial epithelium by inspired pathogenic organisms or chemical agents would 

be primarily influenced by three factors, namely the concentration of the aetiological 

agent at the site, the variation in the degree of protection provided by the covering 

mucus, and the regional differences in susceptibility to the aetiological agent residing in 

the inherent sensitivity of the component cell population of the lining in any given 

region (Mellick et al., 1977).

In the present study, very few micro-organisms with the morphological 

characteristics of Pasteurella haemolytica were observed at this level of the respiratory 

tract. In addition to an increased mucus production, such as that observed in the 

diseased animals in the present study, the nature of the histochemistry of the 

mucosubstances produced in clinical cases has also been observed to change (Ellefsen 

andTos, 1972; Wheeldon et al., 1976; Nicholls, 1978)

Experiments in the rat have shown that irritation of the airway epithelium results 

in a change in the proportion of cells producing acidic and neutral glycoproteins (Jones 

and Reid, 1978) and thus in alteration to the regional distribution of acidic, neutral and 

mixed mucosubstances along the respiratory airway. Allan eta l. (1977) observed 

changes in the mucosubstances of calves with cuffing pneumonia, where mucus-
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producing cells producing larger amounts of neutral mucosubstances than normal were 

observed; also the amount of sulphation in such cases was observed to be greatly 

increased. Wheeldon et al., (1976) also reported an increase in the amount of 

neuraminidase-resistant sialylated glycoprotein in cases of chronic bronchitis in dogs. In 

cases of chronic bronchitis in man, the histochemical nature of mucus has also been 

observed to change, with the mucus produced containing greater proportions of 

neuraminidase-resistant acid glycoprotein than in normal cases (De Haller and Reid, 

1965).

There are two schools of thought in explaining the observed changes in the 

histochemistry of the mucosubstances produced in clinical situations. One is that the 

change is due to the disruption of glycoprotein synthesis by the pathogen, whereas the 

other school of thought suggests that the change in histochemistry is produced in order 

to neutralise or counter the damaging effects of the pathogen.

It is tempting to think that the regional variation observed in the present study 

may in part be due to the regional differences in susceptibility to pathogenic organisms 

in the lining cell population. However observations made in the present study can only 

allow a speculative comment on this point, and further work in this area would be 

necessary.

In the present study, mucosal erosion was observed both on the ventral and 

dorsal tracheal epithelial surfaces. Patches of desquamated epithelial cells were obvious 

and in some areasthe basal lamina was exposed. Observations made in the present study 

are in agreement with observations made in calves infected with bovine herpes virus 

(Allan and Msolla, 1980), where desquamation and sloughing of cells was observed. 

Cell desquamation has also been noted in hamsters infected with Bordetella pertussis 

(Muse et al., 1977), and in ovine and caprine tracheal cultures infected with 

Mycoplasma ovipneumoniae and Mycoplasma arginini (Jones et al., 1985).

In the bronchial epithelium of one individual animal, a single cell, characterised 

by tall spiky, densely organised uniform microvilli, was revealed. These surface
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characteristics of this cell were identical to those described for a brush cell (Alexander et 

al., 1975; Andrews, 1979) and it was therefore identified as such in the present study. 

Brush cells, constituting a small percentage of the tracheobronchial cell population, have 

also been described in SEM studies of the normal epithelial lining of the respiratory tract 

of several mammalian species including the pig (Baskerville, 1970a), horse (Nowell and 

Tyler, 1971) and rat (Andrews, 1979; Popp and Martin, 1984).

Although in the present study the histopathology of the bronchial and 

bronchiolar mucosa indicated pronounced changes, characterised by mononuclear 

infiltrations in the lamina propria, lymphoid hyperplasia, and accumulation of 

inflammatory exudate in the lumina, SEM observations showed only minor changes, 

characterised as matted cilia and accumulation of surface debris. Compared to the 

trachea, mucosal erosion in the bronchi was uncommon.

Although SEM demonstrated that the number of ciliated cells decreased and the 

cells had few cilia, the major changes noted in the bronchioles in this study involved the 

collapse of the characteristic apical protuberances of the nonciliated bronchiolar 

epithelial (Clara) cells. Such observations have also been noted in the distal airways of 

the rat (Lum et al., 1978) and mouse (Zitnik et al., 1978) exposed to high ambient 

ozone or oxygen levels, in the bronchiolar epithelium of smokers (Ebert and Terracio, 

1975a), in cases of equine bronchiolitis induced by 3-methy 1-indole (Turk et al., 1983) 

and in cases equine chronic obstructive pulmonary disease (Kaup et al., 1990; Pirie et 

al., 1992). Previous observations have also suggested that the collapse of the Clara cell 

apical protuberances is also associated with a reduction in number of contained 

secretory granules (Lum et al., 1978; Zitnik et al., 1978; Kaup et al., 1990). The 

collapse of the Clara cell protuberance made positive identification of the cells difficult at 

this level with the SEM in the present study, a difficulty also encountered by Pirie et al. 

(1992) in cases of equine COPD, Lum et al. (1978) in the rat and Zitnik et al. (1978) in 

the mouse.

It could be argued that the observed flattening of the nonciliated bronchiolar
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epithelial cells was a shift in the cell type, with more of them changing into mucus- 

producing cells.

More recent studies in monkeys (Plopper et al, 1989) and in man (Ten Have- 

Opbroek et al., 1991) have suggested that, at least in these species, the nonciliated 

bronchiolar epithelial cell is indeed a mucus-producing cell, a proposition which departs 

from the classical view that, at this level, the secretory cell type is the Clara cell. 

However, it has also been noted that the Clara cell serves as a stem cell of the small 

conducting airways (Evans et al., 1976, 1978a, 1986a) and indeed may change into a 

mucus-producing cell. Thus, the increase in mucus production observed at this level in 

the goat may be due to an increase in the number of these mucus-producing cells, an 

assumption that receives some support from histopathological and SEM studies in mice 

(Zitnik et al., 1978) rats (Lum et al., 1978) and man (Wang and Thurlbeck, 1970; Ebert 

and Terracio, 1975a). The observed increase in mucus production, together with the 

reduction in the ciliary escalator system, results in the accumulation of mucus, 

inflammatory exudate and surface debris, which cover large parts of the bronchiolar 

surface. Such observations are in agreement with those in horses affected with COPD 

(Kaup et al., 1990; Pirie, 1990) and in mice (Zitnik et al., 1978) and rats (Brummer et 

al., 1977) exposed to ozone, where accumulation of inflammatory exudate was a feature 

of affected bronchioles.

At the alveolar level it was observed in the present study that in localised 

regions, there was an increase in the number of alveolar type II cells. Such an increase 

is usually associated with alveolar formation in young normal animals (Kauffman et al., 

1974; Adamson and Bowden, 1975; Kauffman, 1980), but in diseased conditions, an 

increase in the number of alveolar Type II cells has been shown to be associated with 

the repair of the damaged alveolar lining epithelium (Rosin, 1947; Hers, 1955; Freeman 

et al., 1972; Mellick et al., 1977; Kaup et al., 1990; Pirie, 1990). The fact that this 

increase in alveolar Type II cell numbers was only occasionally observed suggests that 

the lesions in the lung parenchyma were localised, an observation supported by LM
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findings. The alveolar Type II cells observed in the present study usually exhibited 

fewer than normal surface microvilli and showed a number of pores on the luminal 

surfaces. Such features of the alveolar Type II cells have been described previously in 

horses affected with COPD (Kaup et al., 1986; Pirie, 1990). It has been suggested that 

these pores are associated with hyperactivity of the alveolar Type II cells, the pores 

being sites of surfactant release. The ease with which they are seen in certain disease 

conditions has been considered indicative of an increased rate of surfactant production 

(Kikkawa and Smith, 1983).

In one animal (TZ2), the alveolar surfaces were extensively covered by sheets of 

amorphous material. In normal situations the alveolar membrane is lined by surfactant 

material (King, 1979) which, during normal SEM preparation, is usually washed away. 

The reasons for the persistence of this lining as observed in this particular individual 

animal must be speculative, possibly being due to either an increased production of 

surfactant material and /or a spill-over of bronchiolar secretions. The latter, which 

appear to be a mixture of Clara and mucus-producing cell secretions, have also been 

noted in certain disease conditions, such as horses with COPD (Pirie et al., 1992).

Another feature observed by SEM in the present study of the diseased 

respiratory epithelium of the goat was the accumulation of inflammatory exudate in the 

alveoli, which appeared to be cellular in character. However the amount of exudate did 

not correlate with LM observations, where accumulation of this cellular exudate 

appeared to be abundant, filling alveolar lumina.

Macrophages were observed with considerable ease, an observation which 

contrasted with their scarcity in the normal animal. The present findings of increased 

numbers of alveolar macrophages in certain disease conditions supports previous 

studies in the horse (Kaup et al., 1986, 1990; Pirie, 1990), dog (Majid, 1986) mouse 

(Zitnik et al., 1978) and monkey (Mellick et al., 1977). Recruitment of extra numbers 

of alveolar macrophages observed in the present study may have been brought about as 

a response to the infectious agent, as alveolar macrophages are reported to phagocytose
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an assortment of debris, including infectious agents and inorganic materials (Green and 

Kass, 1964; Heppleston and Young, 1973Gilka et a l, 1974). Hyperventilation, which 

is associated with some respiratory diseases such pneumonic pasteurellosis (Rybicka et 

al., 1974b) and COPD (Pirie, 1990), also results in an increase in surfactant production. 

It is tempting to suppose that the increase in number of alveolar macrophages may also 

be involved in controlling the quantity of surfactant. This function of the alveolar 

macrophages has been proposed because of the observed presence of lamellated 

material, characteristic of surfactant, within alveolar macrophages (Rybicka et al., 

1974b). Work by Miles et al. (1985) went further, to confirm that alveolar macrophages 

are capable of rapidly degrading natural surfactant. These workers suggested that it 

seems likely that alveolar macrophages may play an important role in the handling of 

surfactant that is not recycled into alveolar Type II cells.

The present study has shown that SEM can reveal significant surface epithelial 

changes brought about by disease processes within the respiratory tract, to complement 

conventional histopathological examinations. Thus SEM can be successfully employed 

as a complimentary diagnostic tool in the diagnosis of respiratory diseases amongst the 

battery of other diagnostic tools available.
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CHAPTER 8. 

SUMMARY AND CONCLUSIONS.



SUMMARY AND CONCLUSIONS.

The goat is an important animal in the economics of the Least Developed 

Countries (LDCs) of the tropical and subtropical regions, where 90% of the world’s 

goat population is found. Although respiratory diseases account for up to 40% of all 

mortalities observed in the goat, any attempt to understand and assess the nature and 

progression of the relevant disease process, in order to develop appropriate curative and 

/  or control measures, can only be successfully undertaken if a basic knowledge of the 

normal morphological features of the respiratory tract is available.

A review of the available literature established that studies on mammalian 

respiratory tract epithelial morphology have dealt mainly with laboratory animals, 

including the rat, mouse, hamster and monkey. It is only recently that attention has been 

focused on the domestic mammals, and extensive studies of the dog, bovine and horse 

have been undertaken with a view to defining the surface morphology of the lining 

epithelium within the respiratory tract by the use of SEM. Such studies have also 

employed TEM techniques to characterise the cell types within the epithelial lining. The 

lack of available information on epithelial morphology in the respiratory tract of the 

goat, however, determined that the primary objective of this study was to characterise 

the normal surface features of the entire respiratory tract of the goat by the use of the 

scanning electron microscope. In addition to this core objective, the histology and the 

histochemistry of the respiratory tract epithelial lining were also investigated. TEM was 

used to further characterise the cell types that populate the distal airways and the alveolar 

membrane. The development of the respiratory tract epithelium was also investigated in 

new-born kids up to the age of three weeks.

Having established the normal surface topographical appearance, the last chapter 

dealt with how the SEM could be used to examine surface changes in the respiratory 

tract lining epithelium as a result of respiratory diseases.

As most standard anatomical texts do not provide an account of the morphology
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of the caprine respiratory system in its own right, assuming structures to be similar to 

those in the sheep unless otherwise indicated, it was felt that an introductory account of 

the gross anatomy of the respiratory system in the goat as provided in Chapter 1 would 

provide a useful basis for embarking on the main objective of the histological and 

ultrastructural study of the epithelial lining of the tract

As a prelude to the ultrastructural studies, the histology and the histochemistry 

of the normal respiratory tract lining epithelium was studied as detailed in Chapter 3. 

Seventeen clinically normal goats were used in both the light microscopical and 

ultrastructural studies. Animals were killed, and samples taken and processed, as 

detailed in the procedures described in Chapter 2.

It was established that the nasal vestibule and rostral regions of the alar and 

basal folds were lined by a stratified squamous epithelium which graded caudally, 

through an intermediate zone composed of stratified cuboidal cells, into a 

pseudostratified ciliated epithelium. The latter type of epithelium was found to line the 

major part of the nasal cavity. The olfactory region was not investigated in the present 

study.

Individual surface mucus-producing cells were not observed in the nasal 

vestibule, and were very occasionally observed in the alar and basal folds. Such cells 

were more numerous on the nasal conchae and nasal septum, and demonstrated the 

presence of exclusively acidic mucosubstances. Submucosal gland orifices were 

numerous in the rostral regions of the nasal cavity and indeed elsewhere on the nasal 

conchae. It was established that the histochemistry of the submucosal glands differed 

from region to region. Whereas in the rostral region of the nasal cavity (nasal vestibule, 

alar fold, basal fold), the secretions were serous in nature, on the nasal conchae the 

proportions of acidic, neutral and mixed secretions were seen to vary between the 

ventral nasal concha, where the glands produced little acidic and equal amounts of both 

neutral and mixed mucosubstances, the dorsal nasal concha, where equal amounts of 

acidic, neutral and mixed mucosubstances were produced, and the middle nasal concha,
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which produced neutral, mixed and acidic mucosubstances, although the amounts of 

each decreased in that order.

The epithelium lining the nasopharynx was seen to vary, changing from a 

rostrally situated pseudostratified ciliated epithelium through an intermediate epithelium, 

itself grading from pseudostratified ciliated low columnar to stratified cuboidal, into a 

stratified squamous epithelium in the caudal regions of the nasopharynx. Individual 

mucus-producing cells were numerous in the rostral region, their numbers decreasing 

on moving into the caudal regions. Lymphoid aggregations were observed below the 

epithelial lining, the latter being attenuated and devoid of mucus-producing cells. 

Submucosal glands, producing primarily acidic and but mixed mucosubstances, were 

abundant.

Regional variations in the type of epithelium lining different regions of the 

larynx was observed. Whilst a stratified squamous epithelium lined the laryngeal 

surface of the epiglottis and cranial regions of the vocal fold and infraglottic cavity, the 

caudal surfaces of the latter two regions were lined by a pseudostratified ciliated 

epithelium. An intermediate type of epithelium, similar to that observed in the rostral 

regions of the nasal cavity and in the nasopharynx, was observed between the cranial 

stratified squamous epithelium and the caudally-directed pseudostratified ciliated 

epithelium on both the vocal fold and infraglottic cavity. Surface mucus-producing cell 

were exclusively acidic in character, but the submucosal glands exhibited both mixed 

and acidic staining reactions.

The trachea was lined by a pseudostratified ciliated columnar epithelium. 

Individual surface mucus-producing cells were relatively few in number and 

predominantly acidic character.; there was however, a general cranio-caudal increase in 

numbers of these cells. Submucosal glands were numerous and produced 

predominantly acidic mucosubstances with only a few producing a mixed reaction; 

neutral mucosubstances were rarely observed.

The type of epithelium that lined the bronchial tree was similar to that observed
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in the trachea, with only a reduction in the height of the epithelial lining being apparent 

In addition, the numbers of individual surface mucus-producing cells were seen to 

increase with a decrease in airway diameter. In contrast, the numbers of submucosal 

glands decreased with decreasing airway calibre. Both mixed and acidic 

mucosubstances were seen to be produced in equal amounts in the bronchial surface 

mucus-producing cells, whilst neutral mucosubstances predominated in the submucosal 

glands, acidic and mixed mucosubstances being rarely observed.

The bronchiolar epithelium was seen to vary at different levels of the bronchiolar 

tree. Proximal to the terminal bronchiole, the epithelial lining was of a pseudostratified 

ciliated type, with only a few surface mucus-producing cells being present. The terminal 

bronchiolar epithelium was a simple columnar epithelium, composed of ciliated and 

nonciliated bronchiolar epithelial (Clara) cells, the latter being identified by their 

negative staining reaction to AB /PAS. Mucus-producing cells were not observed at this 

level. In the distal generations of the terminal bronchioles, the lining epithelium was of a 

simple cuboidal type. The same type of epithelium was observed to line the respiratory 

bronchioles, although the epithelial lining of the latter was also interrupted by alveoli. 

Submucosal glands were not observed within the bronchiolar tree.

The alveolar membrane was thin and attenuated. At the level of the LM two cell 

types could be identified, the cuboidal alveolar Type II cell and the alveolar Type I cell 

with its long cytoplasmic processes. At this level no mucosubstances were detected by 

AB /PAS staining procedures.

The LM studies detailed in Chapter 3 provided a basis for the examination of the 

surface morphology of the lining epithelium of the respiratory tract by means of SEM. 

Results of this study are detailed in Chapter 4. This appears to be the first time that such 

an account of the surface morphology of the entire caprine respiratory tract epithelial 

lining has been provided. Seventeen clinically normal animals were used in this 

particular study, and a total of eighteen sample sites, covering the lining epithelium from 

the nasal vestibule to the lung parenchyma, were utilised.

187



In the upper respiratory tract it was established that squamous cells, carrying 

microplicae on their luminal surfaces, lined the nasal vestibule and the rostral regions of 

the alar and basal fold. A large area of intermediate epithelium lined the caudal regions 

of the alar and basal folds and exhibited a typical “cobblestone” surface appearance. The 

surface cells of this intermediate epithelium carried numerous microvilli. Mucus- 

producing cells were identified by their slightly depressed apical surfaces and a sparse 

distribution of surface microvilli. Occasionally mucous granules were observed within 

such cells.

The mucosa of the nasal conchae was thrown into folds and was lined by a 

ciliated epithelium, the cilia forming a dense carpet. Patches of nonciliated microvillous 

cells were also observed. Mucus-producing cells were distributed individually on the 

folds and were more numerous in the gutters. The apical surfaces of those observed on 

the fold usually exhibited a characteristic protuberance within which mucous granules 

were sometimes observed. Submucosal gland orifices were observed, especially in the 

gutters. The epithelium lining the nasal septum contained small numbers of ciliated 

cells. The whole epithelial surface presented a “moth eaten” appearance characterised by 

numerous nonciliated microvillous cells and mucus-producing cells intermingled in 

between the few mature and regenerating ciliated cells.

The rostral region of the nasopharynx was seen to be heavily ciliated, with 

nonciliated microvillous cells intermingled, individually or occasionally in groups, in 

between the ciliated cells. Individual surface mucus-producing cells, exhibiting the 

typical apical protuberance, were also observed. In the middle region of the 

nasopharynx the numbers of ciliated cells were seen to decrease progressively at the 

expense of nonciliated microvillous cells. In this region, low domes representing 

follicle-associated epithelium were observed, the cells covering the domes having 

smooth apical surfaces studded with microvilli; an occasional pore was seen on such 

domes. The caudal regions of the nasopharynx were lined by squamous epithelium, 

similar to that observed in the nasal vestibule. This same type of epithelium lined the
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laryngeal surface of the epiglottis and cranial regions of the vocal fold and infraglottic 

cavity. Taste buds, characterised by a pore from which numerous sensory hairs 

protruded, were observed on the laryngeal surface of the epiglottis. A few submucosal 

gland orifices were also observed. On the vocal fold, the change-over from the 

nonciliated intermediate epithelium to a ciliated epithelium was seen to be abrupt.

The infraglottic cavity was lined, cranially by a squamous epithelium, and 

caudally by a ciliated epithelium; in between an intermediate type of epithelium was 

observed. There was a great diversity in the extent and distribution of each epithelial 

type between individual animals.

In the lower respiratory tract the dorsal tracheal mucosa was seen to be thrown 

into high alternating folds and gutters; although the ventral surface was also organised 

into alternating folds and gutters, the latter were seen to be much wider and shallower. 

The cilial carpet was more densely organised on the folds than in the gutters, and 

punctuated with patches of nonciliated microvillous cells. Mucus-producing cells were 

seen to present two morphologically distinct surface characteristics. On the folds, they 

were frequently observed with a typical apical protuberance, whilst in the gutters they 

presented a shallow apical surface with mucus appearing to be produced in a sheet-like 

form. Along the bronchial tree, there was a gradual decrease in the density of the cilial 

carpet, with an increase in the number of nonciliated microvillous cells.

At the bronchiolar level nonciliated bronchiolar epithelial (Clara) cells were 

observed. They frequently presented a characteristic apical protuberance studded with 

short stubby microvilli. Various morphological forms of Clara cell were observed, 

including those with an obvious apical bulge and others presenting a flattened apical 

surface. They appeared to represent developmental stages of the Clara cell. Respiratory 

bronchioles characterised by the presence of alveoli within their walls were observed to 

be prominent and well developed.

At the alveolar level two cell types were identified. The alveolar Type II cell 

usually presented a protruding luminal surface studded with numerous microvilli. The
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alveolar Type I cell was characterised by its long cytoplasmic processes and an 

occasionally identifiable central bulging nuclear region. Alveolar pores were seen to be 

rare and alveolar macrophages were infrequently observed

In Chapter 5, TEM was employed to further characterise the different cell types 

populating the distal airways and alveolar membrane of the goat lung. Four clinically 

normal animals aged between 10 and 18 months were used in the study. Five cell types, 

namely ciliated, nonciliated bronchiolar epithelial (Clara), mucus-producing, alveolar 

Type I and alveolar Type II cells were identified and characterised ultrastructurally.

The ciliated cells presented ultrastructural characteristics similar to those 

described for other mammalian species. Some developing ciliated cells, characterised by 

the presence of a number of basal bodies and a medium electron-dense cytoplasm, were 

observed.

The nonciliated bronchiolar epithelial (Clara) cell of the goat was seen to present 

an electron-dense cytoplasm containing numerous profiles of smooth endoplasmic 

reticulum concentrated in the apical region.The presence of significant amounts of rough 

endoplasmic reticulum was not established in the present study. A few membrane- 

bound secretory granules were observed. Short stubby microvilli were observed on a 

luminal surface which was frequently seen protruding into the lumen. Occasional Clara 

cells presenting a flattened luminal surface were also observed.

In one of the animals examined, a possible mucus-producing cell was identified 

at this level. It was characterised by the presence of heterogeneous membrane-bound 

secretory granules and a cytoplasm with an electron density between that of a ciliated 

cell and Clara cell. Profiles of rough and smooth endoplasmic were abundant and the 

nucleus was large.

Alveolar Type I cells presented long cytoplasmic processes containing 

occasional pinocytotic vesicles but very few other cellular organelles. Alveolar Type II 

cells were identified by their characteristic cuboidal shape and were frequently observed 

in alveolar recesses, where the luminal surface, itself studded with numerous microvilli,
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was usually seen to be level with the general lining of the alveolus but occasionally 

protruded into the alveolar lumen. Osmiophilic lamellated bodies were a constant feature 

of these cells, as were frequent large intracytoplasmic lipid vacuoles.

Alveolar macrophages were observed lying free in the alveolar lumina. They 

presented numerous pseudopodia, a large nucleus, numerous ellipsoid mitochondria 

and numerous membrane-bound inclusion bodies of various sizes, possibly 

representing lysosomes. A feature of these cells was the presence of vacuoles 

containing lamellated bodies, similar to those seen in the alveolar Type II cells. Smooth 

endoplasmic reticulum was seen distributed within the cytoplasm, whilst the distribution 

of rough endoplasmic reticulum was only patchy.

The combined LM, SEM and TEM studies described in Chapters 3, 4 and 5 

have provided ,for the first time, a detailed morphological account of the entire lining 

epithelium of the respiratory tract of the normal adult goat, thus providing a sound 

morphological basis for future studies in goats with respiratory diseases.

Chapter 6 was undertaken to investigate, by the use of SEM, the postnatal 

development of the lining epithelium of the respiratory tract of the neonatal kid. Twenty 

kids aged between 3 hrs and 21 days were used in the study. The age groups examined 

were 1 day, 2 days, 3 days, 5 days, 7 days, 9 days, 15 days and 21 days old. Two to 

three animals were examined in each age group.

This study revealed that the general pattern of ciliation throughout the respiratory 

tract is well established at birth, and that with age there is a change in the degree of 

ciliation, varying from region to region. Whereas the nasal septum for example was 

seen to become less ciliated with age, in contrast the degree of ciliation increased in the 

distal conducting airways.

Patches of nonciliated microvillous cells were frequently observed in the nasal 

cavity and, less evidently, elsewhere along the respiratory tract. Although no 

quantitative assessment was carried out, the patches in the nasal cavity of kids were 

encountered more frequently than in adults (Chapter 4). The present study has linked
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these patches to nasal-associated lymphoid tissue.

Individually scattered or aggregated cells presenting wrinkled apical surfaces 

were frequently observed in the larynx and trachea; with increase in age, they were less 

ffequendy observed. The distribution of such cells, as observed in this study, suggested 

that they may be mucus-producing cells. However, the findings in relation to these cells 

were only speculative and no reason could be advanced as to why, at the age of seven 

days, these cells were no longer observed. TEM characterisation of these cells would be 

necessary in order to confirm their exact nature.

The study also revealed that respiratory bronchioles, although present, are 

poorly developed and not well established at birth, and that further differentiation and 

growth of these structures is a post-natal occurrence. Whereas most alveoli are well 

formed at birth, the study has revealed that some are formed post-natally. Alveolar 

pores were very rarely observed in young goats, although by the third week of life their 

numbers had increased.

This study has, for the first time, provided information on the morphology of 

the lining epithelium in the respiratory tract of the neonatal goat and its subsequent 

development during the first three weeks of life. It has highlighted the considerable 

degree of development attained by the caprine respiratory tract at the time of birth and 

discussed such features in relation not only to studies in other species, but also in 

relation to the requirement for an efficient respiratory system in the neonatal kid. It is 

apparent however that relatively little information appears to be available in the literature 

dealing with developmental aspects of the lining epithelium in the respiratory tract of the 

mammal.

The availability of a limited number of goats with clinical respiratory problems 

provided an opportunity to determine possible changes in the SEM organisation of the 

epithelial lining and in the surface characteristics of individual cell types, with a view to 

assessing the use of the SEM as an additional tool in the battery of diagnostic 

procedures available for studying respiratory diseases. The results of this study are
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presented in Chapter 7.

Extensive deciliation and desquamation was observed in the nasal cavity, along 

with an increase in the extent and distribution of the mucous blanket. Inflammatory 

exudate was observed lying on the luminal surface. Although no quantitative 

assessment was made, a qualitative assessment suggested that there was an increase in 

the numbers of surface mucus-producing cells. Similar changes were observed in the 

nasopharynx. The epiglottis appeared to be unchanged. Within the larynx more changes 

were observed in the infraglottic cavity than anywhere else and these included extensive 

deciliation, desquamation, and increased mucus production. Patches of nonciliated 

microvillous cells were more frequent in the trachea of diseased animals than in the 

normal animal. Regional variations in the degree of severity of the lesions were also 

noted, with the dorsal tracheal surface being more affected than the ventral surface. 

Similar, relatively milder changes were observed in the bronchial tree with SEM than 

were observed by histopathological examination.

Within the bronchiolar tree ciliated cells were observed to carry poorly 

developed and matted cilia. Clara cells frequently presented collapsed apical 

protuberances, and debris, together with cellular exudate, covered most of the 

bronchiolar surface

Lesions in the lung parenchyma were focal in nature and at the alveolar level 

they affected an increase in numbers of alveolar Type II cells. Alveolar macrophages 

were also seen to increase in response to the disease processes. Alveolar lumina usually 

contained significant cellular inflammatory exudate. In one animal a layer of what 

appeared to be surfactant material and /or bronchiolar secretion covered most of the 

alveolar lining membrane.

Although these SEM observations were complimented by histopathological 

examinations, the extent of deciliation and desquamation was best appreciated by SEM. 

In addition, a number of cellular changes, such as observation of the collapsing apical 

protuberances of the Clara cells observed at the bronchiolar level, could not have been
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observed as clearly by histopathology examination.

In conclusion, the present work has demonstrated the usefulness of SEM in the 

study, for the first time, of normal adult and neonatal caprine respiratory tract surfaces. 

In addition, it has shown the value of combining LM, SEM and TEM studies for a more 

complete characterisation of cell types populating the entire airway epithelium, and 

show how the basic morphology of the lung epithelium may be affected by respiratory 

disease. Like all such studies, however, many questions remain unanswered, and more 

detailed studies of such topics as the functions of, and the developmental relationship 

between a number of the cell types populating the respiratory airway epithelium await 

future investigation.
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APPENDIX: CHAPTER 3.

Distribution and semi-quantitative assessment of mucosubstances in the respiratory tract 
of the goat as detected by the Alcian Blue /Periodic Acid Schiff method.

EXPLANATION OF TERMS USED.

Acid — Cells stain blue.
Neutral = Cells stain red.
Mixed = Cells stain purple.
1+ = Very few cells.
2+ = Few cells.
3+ = Many cells.
4+ = Very many cells.
ND = Not done, or epithelium not available for assessment.
- — Negative.



ALAR FOLD

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI 1+ - - - - -
MC2 1+ - 1+ - - -
MC3 - - - - - -
MC4 1+ - - - - -

MC5 1+ - - - - -

MC6 1+ - - - - 3+
MC7 2+ - 1+ 1+ - 3+
MC8 ND ND ND ND ND ND
MC9 1+ - 1+ - - 1+
MC10 4+ - - - - 4+
MC11 1+ - - - - -
MC12 1+ - - - - -
MC13 2+ - - - - -
MC14 3+ - - 1+ - -

MC15 1+ - - - - -

MC16 2+ - - - - -

MC17 1+ - - - - -
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BASAL FOLD

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI ND ND ND ND ND ND
MC2 4+ 3+ - - - 2+
MC3 3+ - - - - 3+
MC4 4+ 1+ - 1+ 1+ 3+
MC5 2+ - - - - 3+
MC6 ND ND ND ND ND ND
MC7 ND ND ND ND ND ND
MC8 4+ - - - - -

MC9 3+ 1+ 1+ - 2+ 3+
MC10 ND ND ND ND ND ND
MC11 3+ - - 1+ 1+ 3+
MC12 3+ - - 1+ 1+ 3+
MC13 3+ - - 1+ - 3+
MC14 3+ - - 1+ 1+ 4+
MC15 3+ - - 1+ 2+ 4+
MC16 3+ - - 1+ 1+ 3+
MC17 ND ND ND ND ND ND
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VENTRAL NASAL CONCHA

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI 3+ 1+ 2+ 1+ 4+ 2+
MC2 3+ - - 2+ 4+ 2+
MC3 3+ - - - 4+ -

MC4 3+ - - 1+ - 3+
MC5 ND ND ND ND ND ND
MC6 ND ND ND ND ND ND
MC7 3+ - - 1+ 3+ 2+
MC8 3+ - - - - -

MC9 4+ - - 1+ 4+ 2+
MC10 ND ND ND - 3+ 1+
MC11 3+ - - 1+ 4+ 1+
MC12 3+ - - 1+ - 3+
MC13 2+ - - - - 2+
MC14 ND ND ND 1+ 3+ 2+
MC15 3+ - - 1+ 3+ 2+
MC16 3+ - - 2+ 2+ 3+
MC17 3+ - - 1+ 2+ 2+
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DORSAL NASAL CONCHA

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI 3+ - - - 4+ 2+
MC2 ND ND ND ND ND ND
MC3 2+ - - - 2+ 4+
MC4 2+ - - 2+ 1+ 2+
MC5 4+ - - 3+ 1+ 2+
MC6 ND ND ND ND ND ND
MC7 ND ND ND - 2+ 4+
MC8 ND ND ND ND ND ND
MC9 3+ - - 3+ - -

MC10 3+ - - - 3+ 3+
MC11 ND ND ND - 1+ 4+
MC12 3+ - - - 2+ 3+
MC13 ND ND ND ND ND ND
MC14 3+ 1+ - 1+ 4+ 2+
MC15 4+ - - 2+ 2+ 2+
MC16 3+ - - 2+ 2+ 3+
MC17 ND ND ND ND ND ND
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MIDDLE NASAL CONCHA

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI 3+ - 1+ 2+ 3+ 2+
MC2 ND ND ND ND ND ND
MC3 3+ - - 2+ 4+ 3+
MC4 3+ - - 2+ 3+ 3+
MC5 4+ - - - 4+ 3+
MC6 3+ - - 1+ 3+ 2+
MC7 3+ 1+ - 1+ 3+ 2+
MC8 4+ - - - 3+ 2+
MC9 3+ - - - 3+ 1+
MC10 2+ - - - 3+ 1+
MC11 4+ - - 2+ 3+ 2+
MC12 4+ - - 2+ 3+ 2+
MC13 2+ - - 2+ 3+ 2+
MC14 4+ - - 1+ 4+ 2+
MC15 3+ - - 2+ 4+ -

MC16 3+ - - 2+ 2+ 3+
MC17 2+ - - 1+ 3+ 3+
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NASAL SEPTUM.

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI 4+ - 1+ 2+ 1+ 3+
MC2 3+ - - 2+ 1+ 4+
MC3 3+ - - 3+ 2+ 3+
MC4 4+ - 2+ 2+ - 4+
MC5 4+ 2+ 3+ 3+ 4+ 2+
MC6 3+ - - 2+ - 3+
MC7 3+ - - 3+ 1+ 4+
MC8 4+ - - 2+ - 3+
MC9 3+ - 1+ 2+ - 3+
MC10 ND ND ND ND ND ND
MCI 1 3+ - - 3+ 2+ 3+
MC12 3+ - - 3+ - 3+
MC13 ND ND ND ND ND ND
MC14 3+ - - 3+ - 3+
MC15 3+ - 1+ 3+ - 4+
MC16 3+ - - 3+ - 3+
MC17 3+ - - 2+ - 4+
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NASOPHARYNX

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI 1+ - - 4+ 2+ -

MC2 2+ - - 4+ 1+ -

MC3 2+ - - 4+ 3+ -

MC4 ND ND ND 4+ 1+ -

MC5 2+ - - 4+ 1+ 1+
MC6 2+ - - 4+ - -

MC7 2+ 1+ - 4+ 1+ -

MC8 2+ - - 4+ - -
MC9 ND ND ND ND ND ND
MC10 2+ - - 4+ 2+ -
MC11 1+ - - 4+ 2+ -
MC12 2+ - - 4+ - -

MC13 2+ - - 4+ - -

MC14 2+ - - 4+ - -

MC15 3+ - - 4+ - -

MC16 2+ - - 3+ - -

MC17 3+ - - 4+ - -
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EPIGLOTTIS

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI - - - 4+ 2+ -

MC2 - - - 4+ 2+ -

MC3 - - - 4+ 3+ -

MC4 - - - 3+ 4+ -

MC5 ND ND ND ND ND ND
MC6 - - - - 3+ 3+
MC7 - - - 4+ 3+ -

MC8 - - - 4+ 4+ 1+
MC9 ND ND ND ND ND ND
MC10 - - - 4+ 4+ -

MC11 - - - 3+ 4+ -

MC12 - - - 3+ - -

MC13 - - - 4+ 1+ 2+
MC14 - - - 3+ 3+ 1+
MC15 - - - 4+ 3+ 2+
MC16 - - - 3+ 3+ -

MC17 - - - 4+ 3+ -
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VOCAL FOLD

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI 1+ - - 3+ 3+ -

MC2 ND ND ND ND ND ND
MC3 - - - 4+ 2+ 2+
MC4 1+ - 1+ 3+ 3+ 2+
MC5 ND ND ND ND ND ND
MC6 ND ND ND ND ND ND
MC7 1 + - 1+ 3+ 3+ -

MC8 1+ - - 3+ 4+ -

MC9 2+ - - 3+ 3+ 1+
MC10 - - - 3+ 4+ 2+
MC11 1+ - 1+ 3+ 4+ 3+
MC12 1+ - - 3+ 4+ -

MC13 - - 3+ 4+ 1+
MC14 1+ - - 4+ 3+ -

MC15 - - - 4+ 3+ -

MC16 - - - 3+ 4+ 1+
MC17 1+ - - 4+ 3+ -
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INFRAGLOTTIC CAVITY

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI ND ND ND 3+ 3+ 2+
MC2 ND ND ND 3+ 3+ 2+
MC3 1+ - - 2+ 2+ 2+
MC4 - - ND - 2+ 3+
MC5 ND ND ND ND ND ND
MC6 ND ND ND ND ND ND
MC7 ND ND - ND ND ND
MC8 1+ - - 4+ 2+ 3+
MC9 1+ - ND 3+ 2+ 3+
MC10 ND ND 1+ 4+ 2+ 3+
MC11 2+ - - 3+ 1+ 3+
MC12 2+ - - 3+ 2+ 3+
MC13 - - - 3+ 2+ 3+
MC14 1+ - - 4+ 3+ 2+
MC15 1+ - - 3+ 3+ 2+
MC16 2+ - - 4+ 2+ 2+
MC17 1 + - - 3+ 3+ 3+
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DORSAL CRANIAL TRACHEA

EPITHELIUN' GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI ND ND ND ND ND ND
MC2 2+ - 2+ 2+ 34- 34-
MC3 1+ - 1+ 2+ - 24-
MC4 ND ND ND 4+ 44- 14-
MC5 2+ - 1+ 2+ - 34-
MC6 ND ND ND ND ND ND
MC7 ND ND ND 2+ - 24-
MC8 2+ - - 2+ - 14-
MC9 ND ND ND ND ND ND
MC10 ND ND ND ND ND ND
MC11 ND ND ND ND ND ND
MC12 3+ - - 3+ - -

MC13 1+ - - 2+ - -

MC14 3+ - - 3+ - 24-
MC15 2+ - - 3+ - -

MC16 ND ND ND ND ND ND
MC17 3+ - - 34- - 14-
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VENTRAL CRANIAL TRACHEA

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI ND ND ND ND ND ND
MC2 1+ - - 3+ - 3+
MC3 ND ND ND ND ND ND
MC4 ND ND ND 3+ - -

MC5 2+ - - 2+ - 4+
MC6 ND ND ND ND ND ND
MC7 ND ND ND ND ND ND
MC8 ND ND ND ND ND ND
MC9 2+ 1+ 2+ 4+ 1+ 2+
MC10 ND ND ND 4+ - 2+
MC11 ND ND ND 4+ - 2+
MC12 2+ - 1+ 3+ 2+ 2+
MC13 1+ - 2+ - -

MC14 3+ - 3+ 3+ 2+
MC15 2+ - 2+ 1+ 2+
MC16 ND ND 2+ 1+ 2+
MC17 2+ - 3+ 2+ 2+
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DORSAL CAUDAL TRACHEA

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI 2+ - 1+ 3+ - 2+
MC2 ND ND ND ND ND ND
MC3 1+ - - 3+ 2+ 1+
MC4 ND ND ND 4+ 4+ -

MC5 1+ - - 2+ 1+ 2+
MC6 ?? 1+ 1+ 3+ 3+ 3+
MC7 ND ND ND 2+ 2+ 2+
MC8 ND ND ND ND ND ND
MC9 1+ 1+ 1+ 2+ 2+ 2+
MC10 ND ND ND ND ND ND
MC11 2+ - 1+ 2+ - 2+
MC12 2+ - - 3+ - 2+
MC13 2+ - - 3+ - -

MC14 3+ - - 2+ - -

MCI 5 3+ - - 3+ - 2+
MC16 2+ - - 2+ - 2+
MC17 1+ - 1+ 3+ - 1+
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VENTRAL CAUDAL TRACHEA

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI 3+ - - 4+ 1+ 2+
MC2 2+ - - 3+ 3+ 2+
MC3 1+ - - 4+ - 2+
MC4 2+ - - 3+ 1+ 4+
MC5 1+ - - 3+ 3+ 3+
MC6 2+ ND ND 3+ 2+ 3+
MC7 2+ - 1+ 3+ 2+ 2+
MC8 ND ND ND ND ND ND
MC9 2+ - 1+ 4+ 2+ 3+
MC10 ND - 1+ ND ND ND
MC11 2+ ND ND 3+ 2+ 3+
MC12 2+ - - 4+ 2+ 2+
MC13 ND - - 3+ - ??
MC14 2+ - - 3+ - 2+
MC15 2+ - - 3+ 1+ 2+
MC16 2+ - - 4+ - 2+
MC17 3+ - - 3+ 1+ 2+
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EXTRA PULMONARY PRINCIPAL BRONCHUS.

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI 2+ - - 2+ - 2+
MC2 2+ 1+ 1+ 2+ 3+ 2+
MC3 1+ 2+ - 1+ 3+ 1+
MC4 2+ 1+ - 1+ 3+ 1+
MC5 ND ND ND ND ND ND
MC6 2+ 1+ - 2+ - 2+
MC7 1+ - - 3+ 2+ 2+
MC8 1+ - - 3+ 2+ 2+
MC9 2+ - - 3+ 1+ 2+
MC10 1+ 1+ 1+ 2+ - 2+
MC11 2+ - - 3+ - 3+
MC12 ND ND ND ND ND ND
MC13 2+ - - 2+ - 2+
MC14 2+ - - 2+ - 2+
MC15 3+ - - 3+ - 4+
MC16 1+ - - 2+ - 2+
MC17 2+ - - 3+ - 3+

252



CAUDAL LOBAR BRONCHUS.

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI 3+ - 1+ 2+ 1+ 3+
MC2 3+ - 1+ 2+ 2+ 4+
MC3 2+ - 1+ 2+ 2+ 3+
MC4 2+ 1+ - 2+ 3+ 2+
MC5 3+ - - 2+ 2+ 3+
MC6 4+ 1+ 1+ 2+ - 3+
MC7 2+ 1+ - 2+ 2+ 3+
MC8 3+ - - 2+ 1+ 1+
MC9 ND ND ND 3+ 2+ 4+
MC10 2+ - 1+ 2+ 4+
MC11 2+ 2+ 1+ 1+ 4+ 2+
MC12 2+ - ND ND ND
MC13 3+ - 3+ 3+ 3+
MC14 3+ - 4+ 2+ 2+
MC15 2+ - 2+ 2+ 2+
MC16 3+ - 2+ 2+ 3+
MC17 ND ND ND ND ND ND
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L A R G E  B R O N C H I O L E .

EPITHELIUM GLANDS
ANIMAL ACID NEUTRAL MIXED ACID NEUTRAL MIXED

MCI 2+ - 1+
MC2 1+ - 1+
MC3 1+ - 1+
MC4 2+ 1+ 2+
MC5 1 + - 2+
MC6 1+ 1+ 1+
MC7 2+ 1+ 1+
MC8 2+ - 1+
MC9 1+ - 2+
MC10 1 + - 1+
MCI 1 2+ - 2+
MCI 2 2+ - 1+
MCI 3 1+ 1+ 1+
MC14 1+ - 2+
MCI 5 2+ - 2+
MC16 1+ - 2+
MCI 7 2+ - 1+
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CHAPTER 1



Fig. 1.1 Nose.

The external nares appear as narrow 

slits (arrows). A narrow planum nasale 

(*) can be seen.
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Fig. 1.2 Nasal cavity.

In this sagittal section of the head of an adult 

goat, the nasal septum has been removed so that 

the contents of the nasal cavity can be seen.

1. middle nasal concha.

2 . dorsal nasal concha.

3. ventral nasal concha.

4. basal fold.

5. alar fold.

6 . nasopharynx.
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Fig. 1.3 Nasopharynx and larynx.

The internal choanae leading from the nasal 

cavity (NC) into the nasopharynx (N) lie at the 

level of the vomer (V).

Note the continuity of the nasopharyngeal airway 

with the larynx (L) and trachea (T) lumen via 

aditus laryngis (*).

Ethmoidal concha (E).

Infraglottic cavity (Ig).

Epiglottis (Ep).

Soft palate (Sp).
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CHAPTER 2



Fig. 2.1 Diagram of a sagittal section of a goat head with 

the nasal septum removed to expose the contents 

of the nasal cavity. Sites where samples were 

taken for both LM and SEM are indicated:

a) Nasal vestibule.

b) Alar fold.

c) Basal fold.

d). Ventral nasal concha.

e).Dorsal nasal concha.

f).Middle nasal concha.

g).Nasopharynx.

h).Epiglottis.

i).Vocal fold. 

j).Infraglottic cavity

Note: Sample site for the nasal septum is not 

indicated. The sample was taken at the same level 

as for the ventral nasal concha.
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Fig. 2.2 Diagram of the dorsal view of the goat lung.

Sample sites for both LM and SEM are indicated:

a).Dorsal cranial trachea.

b).Ventral cranial trachea.

c).Dorsal caudal trachea.

d).Ventral caudal trachea.

e).Extrapulmonary principal bronchus.

f).Caudal lobar bronchus.

g).Lung parenchyma to include:

Large bronchiole.

Terminal bronchiole.

Respiratory bronchiole.

Alveolar duct and alveoli.

Samples for TEM were taken from site g) only.
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CHAPTER 3



Fig. 3.1 Nasal vestibule (rostral region).

This region is lined by a keratinized squamous 

epithelium. Note the dermal papillae (P), 

abundant sweat glands (*) and hair follicle with 

associated sebaceous glands (arrow).

AB /PAS x 250.

Fig. 3.2 Alar fold (caudal region).

The epithelium is of stratified squamous non­

keratinized type. Individual mucus-producing 

cells can be seen in the epithelium (closed 

arrows). Note submucosal gland duct opening 

onto the epithelial surface (open amow).

AB /PAS x 250.
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Fig. 3.3 Basal fold (caudal region).

Note the stratified cuboidal nature of the 

epithelium and the occasional individual mucus- 

producing cells exhibiting an acidic reaction 

(arrows).

Submucosal glands (*) are abundant; the majority 

stain negatively, indicative of their serous nature. 

AB /PAS x 100.

Fig. 3.4 Middle nasal concha.

The lining epithelium is of the pseudostratified 

ciliated columnar type. Mucus-producing cells 

are numerous, being predominantly acidic in 

nature.

AB /PAS x 250.
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Fig. 3.5 Nasopharynx (transitional zone).

Note the aggregates of lymphoid tissue (L). Only 

occasional mucus-producing cells are seen within 

the lining epithelium (arrows).

Submucosal glands produce predominantly acidic 

mucosubstances.

AB /PAS x 250.

Fig. 3.6 Epiglottis.

Stratified squamous epithelium. Note the 

presence and appearance of the taste-buds 

(arrows).

AB /PAS x 250.
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Fig. 3.7 \bcal fold (cranial region).

Stratified squamous epithelium.

Submucosal glands (*) exhibit equal amounts of 

both acidic and neutral mucosubstances. Note 

cartilage (C).

AB /PAS x 100.

Fig. 3.8 Trachea (dorsal cranial surface).

Submucosal gland duct opening into the gutter. 

AB /PAS x 100.
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Fig. 3.9 Bronchus.

Pseudostratified ciliated columnar epithelium. 

Note that within the submucosal glands neutral 

mucosubstances predominate; only a few acidic 

mucosubstances are present.

AB /PAS x 100.

Fig. 3.10 Two respiratory bronchioles (R) can be seen

arising from a terminal bronchiole (T). Note the 

presence of alveoli in the walls of the respiratory 

bronchioles (*).

H&E x 100.
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Fig. 3.11 Bronchiole.

Proximal to the terminal bronchiole, a few 

mucus-producing cells were observed in the 

lining epithelium (arrow).

AB /PAS x 250
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CHAPTER 4



Fig. 4.1

Fig. 4.2

Nasal vestibule, (rostral region). 

Squamous epithelium. Note hair shaft and 

desquamating cells.

SEM x 720

Nasal vestibule, (middle region).

An occasional submucosal gland orifice is 

observed.

SEM x 720.
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Fig. 4.3 Nasal vestibule (caudal region).

Note the spongy nature of the cells and their 

rounded borders, mucus being extruded from at 

least one surface cell (closed arrow) and a dying 

cell presenting a wrinkled apical surface (open 

arrow).

SEM x 1,440.

Fig. 4.4 Nasal vestibule (caudal region).

High power micrograph of Fig. 4.3. Note 

surface microvilli and microplicae.

SEM x 11,25
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Fig. 4.5 Nasal vestibule (caudal region).

Note the production and extrusion of mucus 

(arrows) in this region.

SEM. x 5,600.

Fig. 4.6 Alar fold.

The epithelium is seen to changes from stratified 

squamous rostrally (R) to stratified cuboidal 

caudally (C). Note the appearance of mucus- 

producing cells in these caudal regions (arrow). 

Note the submucosal gland duct (*).

H&E x 250.
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Fig 4.7 Alar fold.

The “cobblestone” nature of the epithelium is 

apparent. Note the distinct cell boundaries. 

Submucosal gland orifice (*).

SEM x 1,440.
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Fig. 4.8 Alar fold.

Densely packed surface microvilli cover the 

luminal surfaces of the cuboidal epithelial cells. 

Note the presence a number of mucus-producing 

cells (*) in this region.

SEM x 11,250.

Fig. 4.9 Alar fold.

Note the appearance of another cell type with 

prominent raised borders (arrows).

SEM x 1,440.
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Fig. 4.10 Alar fold.

Mucus-producing cells (*) with depressed apical 

surfaces and a sparse population of surface 

microvilli are readily identifiable. Note their 

prominent borders.

SEM x 5,600

Fig 4.11 Alar fold.

Occasional submucosal gland orifices (*) are 

observed in this region. Note the two types of 

nonciliated microvillous cells (1 and 2).

SEM x 5,600.
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Fig 4.12 Basal fold.

Note the “cobblestone” appearance of the 

epithelial surface cells and their prominent cell 

boundaries. Mucus-producing cells can also be 

observed (arrows).

SEM x 5,600.

Fig. 4.13 Basal fold.

Mucus-producing cells.

Coalescing mucous granules may be seen 

through the plasmalemma (arrow).

SEM x 5,600.
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Fig. 4.14 Basal fold (transitional zone).

Note the abrupt transition from nonciliated to 

ciliated epithelium.

SEM x 2,800.

Fig. 4.15 Basal fold (transitional zone).

Note the appearance of regenerating ciliated cells 

at different stages of ciliogenesis (arrows).

SEM x 5,600.
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Fig. 4.16 Basal fold (caudal region).

Low power photomicrograph of the ciliated 

epithehal lining organised into longitudinal 

grooves (G). Note the large numbers of mucus- 

producing cells protruding beyond ciliary 

surface.

SEM x 360.

Fig. 4.17 Basal fold (caudal region).

Active mucus-producing cells with apical 

protuberances, distributed individually amongst 

ciliated cells.

SEM x 5,600.
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Fig. 4.18 Ventral nasal concha.

Ciliated epithelium. Note mucus-producing cells, 

exhibiting typical protuberances distributed 

individually amongst ciliated cells.

SEM x 2,800.

Fig. 4.19 Ventral nasal concha.

The slender cilia carried by ciliated cells 

frequently appear matted at their tips (arrows). 

Note microvilli on the apical protrusions of the 

mucus-producing cells.

SEM x 5,600.
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Fig. 4.20 Ventral nasal concha.

Ciliated cells carrying short, matted cilia of 

unequal lengths. These cells are considered to be 

regenerating ciliated cells (arrows).

SEM x 5,600.

Fig. 4.21 Ventral nasal concha.

Nonciliated microvillous cells with a thin layer of 

mucus on their apical surfaces (arrows) can be 

seen.

SEM x 2,800.
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Fig. 4.22 Ventral nasal concha.

Mucus-producing cells are distributed 

individually amongst ciliated cells . Note the 

accumulation of mucous granules seen through 

the plasmalemma.

SEM x 5,600.

Fig. 4.23 Ventral nasal concha.

Patches of regenerating ciliated cells. Note the 

unequal lengths of their cilia.

SEM x 5,600.
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Fig. 4.24 Dorsal nasal concha.

A patch of nonciliated microvillous cells. Note 

mucus being discharged (*) at the surface. 

Regenerating ciliated cell (arrow).

SEM x 5,600.

Fig. 4.25 Dorsal nasal concha.

Submucosal gland orifice (*). Nonciliated 

microvillous cells are seen around the orifice. 

SEM x 5,600.
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Fig. 4.26 Dorsal nasal concha.

Ciliated epithelium. Cilia appear matted and 

disorganised.

SEM x 5,600.

Fig. 4.27 Middle nasal concha.

At low power epithelial ridges (R) and gutters 

(G) are prominent.

SEM x 360.
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Fig. 4.28 Middle nasal concha.

Heavily ciliated epithelium

Note the individual mucus-producing cells

scattered amongst the ciliated cells.

SEM x 5,600.

Fig. 4.29 Middle nasal concha.

Nonciliated microvillous cells showing relatively 

flat apical surfaces with a thin layer of mucus on 

top (*).

SEM x 5,600.
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Fig. 4.30 Middle nasal concha.

Heavy cilial carpet with long, slender free­

standing cilia.

SEM x 5,600.

Fig 4.31 Middle nasal concha.

Cilia appear matted and clumped. Note the 

nonciliated microvillous cell with microvilli 

entangled by mucus (*).

SEM x 11,250.
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Fig. 4.32 Nasal septum.

Ciliated cells bear disorganised matted cilia. 

Nonciliated microvillous cells with shallow apical 

surfaces and sparsely distributed surface 

microvilli (*) are also seen.

SEM x 5,600.

Fig. 4.33 Nasopharynx (rostral region).

Ciliated epithelium with a few scattered 

nonciliated microvillous cells.

SEM x 5,600.
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Fig. 4.34 Nasopharynx (rostral region).

Part of 'island' of nonciliated microvillous cells. 

Many of the latter are characterised by apical 

protuberances typical of mucus-producing cells. 

SEM x 2,800.

Fig. 4.35 Nasopharynx (transitional zone).

The highly folded nature of the lining epithelium 

is characteristic of this region. Note the depth of 

the corrugations.

SEM x 90.
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Fig. 4.36 Nasopharynx (transitional zone).

Nonciliated microvillous cells with slightly 

bulging apical surfaces and polygonal, or 

occasionally rounded, cell borders predominate 

in this region.

SEM x 5,600.

Fig. 4.37 Nasopharynx (transitional zone).

Nonciliated microvillous cells with slightly 

bulging apical surfaces. Note single ciliated cell 

(arrow) and mature mucus-producing cell with 

apical secretory granules (*).

SEM x 5,600
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Fig. 4.38 Nasopharynx (transitional zone).

Further caudally within this region nonciliated 

microvillous cells predominate. Mature ciliated 

cells are rare here, although scattered 

regenerating ciliated cells (arrow) are not 

uncommon.

SEM x 2,800.

Fig. 4.39 Nasopharynx (transitional zone).

Mucous columns are seen to be extruded from an 

epithelium composed primarily of nonciliated 

microvillous cells.

SEM x 2,800.
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Fig. 4.40 Nasopharynx (transitional zone).

At higher magnifications the nonciliated 

microvillous cells are seen to present microvilli of 

varying lengths (1 and 2). A number of cells are 

identifiable as regenerating ciliated cells (*). Note 

the thick column of mucus being extruded from 

the apical surface of a mucus-producing cell 

(arrow).

SEM x 5,600.
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Fig. 4.41 Nasopharynx (transitional zone).

The caudal region of transitional zone is seen to 

be devoid of ciliated cells. Nonciliated 

microvillous cells are polygonal in outline and 

arranged in a ‘paving-stone” manner.

SEM x 1,440.

Fig. 4.42 Nasopharynx (transitional zone).

Note that, in this caudal region of the transitional 

zone, microvilli on any individual cell appear 

uniform, in length although their length may 

differ from cell to cell.

SEM x 5,600.
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Fig. 4.43 Nasopharynx (transitional zone).

In the caudal region of this zone, nonciliated 

microvillous cells present distinct borders and 

evenly distributed surface microvilli. A cell can 

be seen lifting off from the epithelial surface. 

SEM x 5,600.
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Fig. 4.44 Nasopharynx (caudal region).

Low, dome-shaped area characteristic of this 

region. Cells covering the dome appear smooth, 

whilst those on the periphery are seen to be 

wrinkled (*).

SEM x 360.

Fig. 4.45 Nasopharynx (transitional zone).

Exaggerated intercellular spaces can be seen 

between the covering surface cells of one of the 

dome-shaped areas in this region.

SEM x 1,440.
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Fig. 4.46 Epiglottis.

The laryngeal surface is lined by squamous cells. 

Some cells are seen detaching from the surface. 

A submucosal gland orifice (*) can be seen.

SEM x 720.

Fig. 4.47 Epiglottis.

Squamous cells show surface microplicae. Note 

the presence of a taste bud (arrow).

SEM x 5,600.

Inset: Taste bud.

Numerous sensory hairs seen protruding through 

the pore; a few secretory granules can also be 

seen.

SEM x 5,600.
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Fig. 4.48 \bcal fold.

The epithelium is lined by flattened nonciliated 

microvillous cells with distinct cell borders.

A submucosal gland orifice (*) can also be seen. 

SEM x 1250.

Fig. 4.49 \bcal fold.

In a few individuals regenerating ciliated cells 

(arrow) were also seen.

SEM x 2,800.
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Fig. 4.50 \focal fold.

Note the sharp border between nonciliated and 

ciliated epithelia. A few cells have wrinkled 

apical cell surfaces and seem to be detaching 

from the layer beneath (arrow). Note also the 

opening of the submucosal gland which appears 

to be covered by a sheet of mucus.

SEM x 2,800.

Fig. 4.51 \bcal fold (ciliated region).

Within the ciliated region, ciliated cells (C), 

nonciliated microvillous cells (N), and 

regenerating ciliated cells (R) can be seen. Note 

the presence of surface microvilli between the 

cilia of the regenerating ciliated cell.

SEM x 5,600.
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Fig. 4.52 Infraglottic cavity.

The folded nature of the lining mucosa is clearly 

visible. A thin sheet of mucus (arrow) can be 

seen covering part of the surface.

SEM x 360.

Fig 4.53 Infraglottic cavity.

At higher magnifications the heavily ciliated 

nature of the lining epithelium is observed. Note 

the shallow gutters (*).

SEM x 720.
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Fig. 4.54 Infraglottic cavity.

In two individuals, the folded mucosa lining the 

cranial region of the infraglottic cavity was lined 

by a squamous epithelium.

SEM x 180.

Fig. 4.55 Trachea (cranial dorsal surface).

The mucosa shows high folds and deep 

intervening gutters.

SEM x 360.
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Fig. 4.56 Trachea (cranial dorsal surface).

Note the complete ciliation of the lining 

epithelium. Mucus-producing cell (arrow). 

SEM x 5,600.
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Fig. 4.57 Trachea (cranial dorsal surface).

Nonciliated microvillous cells (*) and 

regenerating ciliated cells (arrow) Note that the 

density and length of the microvilli differ from 

cell to cell.

SEM x 11,250.

Fig. 4.58 Trachea, (cranial dorsal surface).

Note that the exposed part of the gutter (G) has 

relatively fewer ciliated cells. Submucosal gland 

discharging mucus at the orifice (*). Nonciliated 

microvillous cells are seen around the gland 

orifice.

SEM x 360.
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Fig. 4.59 Trachea (cranial dorsal surface).

Nonciliated microvillous cells with flat to shallow 

apical surfaces (arrows). Microvilli are very 

sparsely distributed over the cell surface.

SEM x 2,800.

Fig. 4.60 Trachea (cranial ventral surface).

Shallow gutters give the mucosa a characteristic 

pattern.

SEM x 180.
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Fig. 4.61 Trachea (cranial ventral surface).

Higher magnifications show the heavily ciliated 

nature of the lining epithelium.

SEM x 1,440.

Fig. 4.62 Extrapulmonary bronchus.

Nonciliated microvillous cells with rounded 

apical cell surfaces. Note a film of mucus on the 

apical surface (aiTow).

SEM x 2,800.
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Fig. 4.63 Caudal lobar bronchus.

Submucosal gland orifice surrounded by 

nonciliated microvillous cells. Note mucus 

droplets (arrow).

SEM x 1,440.

Fig. 4.64 Caudal lobar bronchus.

Straight and slender cilia with curved tips 

(arrows).

SEM x 2,800.
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Fig. 4.65 Small bronchus.

Cilia appear matted. Note the depressed apical 

surfaces of the mucus-producing cells (*). 

SEM x 2,800.

Fig. 4.66 Bronchiole.

Relatively short, straight and slender cilia. Note 

the nonciliated bronchiolar epithelial cells (*). 

SEM x 2,800.
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Fig 4.67 Bronchiole.

Clara cells with raised pentagonal boundaries (*). 

Note their flattened periphery and small low 

central bulge.

SEM x 5,600.

Fig. 4.68 Bronchiole

Clara cells with flattened apical surfaces bearing 

short, stubby microvilli (*).

SEM x 5,600.
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Fig 4.69 Respiratory bronchioles.

Two respiratory bronchioles (R) can be seen 

arising from a terminal bronchiole (T). The 

former are characterised by the presence of 

shallow alveoli (*) in their walls.

SEM x 360.
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Fig. 4.70 Respiratory bronchiole.

Note the presence of numerous Clara cells (*), 

their apical surfaces raised into a dome. Ciliated 

cells appear squeezed in between the Clara cells. 

SEM x 5,600.

Fig. 4.71 Respiratory bronchiole.

Clara cells occasionally exhibit 'withered' apical 

protuberance (arrow). Note clumping of cilial 

tips.

SEM x 5,600.
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Fig. 4.72 Respiratory bronchiole / alveolar border.

The junction between the respiratory bronchiolar 

epithelium and the alveolar epithelium is clearly 

demarcated (arrows).

SEM x 2,800.

Fig. 4.73 Alveolar membrane.

Note alveolar Type I cell (*), alveolar Type II cell 

(open arrow) and alveolar pore of Kohn (closed 

arrows).

SEM x 11,250.
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Fig. 4.74 Respiratory bronchiole.

Note the presence of an alveolar macrophage 

(arrow) lying on the epithelial surface. 

Alveolus (*).

SEM x 2,800.
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CHAPTER 5



Fig. 5.1 Terminal bronchiole.

Simple columnar epithelium composed of ciliated 

cells (C) and nonciliated bronchiolar epithelial 

(Clara) cells (NC) resting on a prominent basal 

lamina (arrow).

Airway lumen (L).

TEM x 5,400.

Fig. 5.2 Terminal bronchiole.

In more distal regions of the terminal bronchiole, 

epithelial cells are cuboidal in shape. The 

nonciliated bronchiolar epithelial cell (NC) 

exhibits a more electron-dense cytoplasm than the 

adjacent ciliated cell (C). Intracytoplasmic 

inclusion bodies are seen in the ciliated cell 

(closed arrow).

Airway lumen (L); basal lamina (open arrow). 

TEM x 8,000.
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Fig. 5.3 Ciliated cell.

Note cilium (arrow) and basal bodies (star) and 

numerous microvilli on luminal surface. Part of 

the nucleus (N) is visible, as is a prominent 

Golgi body (G) and many mitochondria (M). 

Tight junctions (small arrow) can be seen 

between adjacent cells.

TEM x 20,000.

F ig .5.4 Developing ciliated cell.

Numerous microvilli on the apical surface. Basal 

bodies (*) are seen just below the luminal 

surface. A dense homogeneous granule (open 

arrow) and multivesicular body (closed arrow) 

are present.

TEM x 40,000.
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Fig. 5.5 Terminal bronchiole.

Nonciliated bronchiolar epithelial (Clara) cell. 

Note the characteristic apical protuberance (AP). 

Secretory granules (open arrow) are visible as is 

the raised intercellular boundary and surface 

microvilli (closed arrow).

TEM x 13,400

Fig. 5.6 Clara cell.

Numerous profiles of smooth endoplasmic 

reticulum in the apical region of the cell (arrow). 

Note the short, stubby surface microvilli (*). 

Airway lumen (L).

TEM x 28,000.
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Fig. 5.7 Mucus-producing cell.

Numerous heterogeneous secretory granules (G). 

A large nucleus (N) with a prominent nucleolus 

(star). Note tight junctional complexes (open 

arrow). Microvilli are seen on the luminal 

surface. Profiles of rough endoplasmic reticulum 

are distributed throughout the cytoplasm (closed 

arrow).

TEM x 10,000.

Fig. 5.8 Alveolar membrane.

Note the protruding alveolar Type II cell (*), 

blood capillary (C) and cytoplasmic extensions of 

alveolar Type I cell carrying a few surface 

microvilli (small arrow).

Alveolar lumen (L).

TEM x 5,400.
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Fig. 5. 9 Alveolar Type II cell.

Note the numerous surface microvilli projecting 

into the alveolar lumen (L). Large lipid vacuoles 

are seen (V) and large well formed mitochondria 

are also visible (M).

TEM x 20,000.

Inset: Osmiophilic lamellated inclusion body.

TEM x 40,000).

Fig. 5.10 Alveolar Type II cell.

The cell dramatically protrudes into the alveolar 

lumen (L). Desmosomal attachments with 

adjacent alveolar Type I cells can be seen 

(arrow). Numerous microvilli are seen 

protruding from the cell surface.

TEM x 16,000.
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Fig. 5.11 Alveolar Type II cell.

A cross-section through the apical portion of an 

alveolar Type II cell similar to that seen in Fig. 

5.10. Note its apparently unattached and 'free' 

position in the alveolar lumen (L).

Osmiophilic lamellated inclusion bodies (*). 

TEM x 20,000.

Fig. 5.12 Alveolar membrane.

Smooth luminal surface of alveolar Type I cell 

(open arrow). Collagen fibres (*) and fibroblast 

process (F) lie between alveolar Type I and blood 

capillary endothelial cells, these structures 

forming the blood / gas barrier.

Alveolar lumen (L); capillary lumen (C); basal 

lamina (closed arrow).

TEM x 40,000.
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Fig. 5.13 Two alveolar macrophages.

Note large extent of smooth cell surface and long 

pseudopodia-like extensions (arrows).

Alveolar lumen (L).

TEM x 10,000.

Fig. 5.14 Alveolar macrophage.

Note the large nucleus (N), ellipsoid 

mitochondria (small arrows), large membrane- 

bound vesicle (V) and long pseudopodia-like 

extension (arrow). Alveolar lumen (L).

TEM x 20,000.
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CHAPTER 6



Fig. 6.1 Nasal vestibule (Caudal region), 3-day-old kid.

Note surface squamous cells exhibiting folded 

apical surfaces and the presence of numerous 

submucosal gland orifices (arrows).

SEM x320.

Fig. 6.2 Nasal vestibule, 2-day-old.

Individual squamous cells present microplicae on 

their apical surface.

SEM x 11,250.
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Fig. 6.3 Nasal vestibule (caudal region), 2-day-old kid.

Occasional mucus strands were observed in this 

region (arrow).

SEM x 2,800.

Fig 6.4 Nasal vestibule, 9-day-old kid.

Note the smooth nature of the squamous cells 

covering one of the dome-shaped areas typical of 

this region. These areas usually exhibit a cental 

pore (*).

SEM x 1,440.

314





Fig. 6.5 Alar fold(rostral region), 3-hr-old kid.

The narrow rostral zone of the fold is seen to be 

lined by a stratified squamous epithelium. A 

submucosal gland orifice is visible (arrow). 

SEM x 2,800.

Fig. 6.6 Alar fold (middle region) 3-day-old kid.

Apical cells are seen to present dimples or folds 

(arrows) on their luminal surfaces.

SEM x 2,800.
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Fig. 6.7 Alar fold (middle region),3-hr-old kid.

A submucosal gland orifice (*) surrounded by 

numerous nonciliated microvillous cells with 

distinct cell borders.

SEM x 5,600.

Fig. 6.8 Alar fold ( caudal region), 3-hr-old kid.

The caudal region of the fold is seen to be heavily 

ciliated even in the new-born. Mucus-producing 

cells (arrows) are numerous.

SEM x 720.
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Fig. 6.9 Alar fold (rostral region), 3-hr-old kid.

Domed areas (*), similar to those observed in the 

nasal vestibule, are also seen in this region.

SEM x 1,440.

Fig. 6.10 Basal fold, 7-day-old kid.

Caudal to the narrow rostral zone of the 

squamous epithelium, the apical cells appear 

“spongy”, with depressed or wrinkled surfaces. 

SEM x 2,800.
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Fig. 6.11 Basal fold (caudal region), 3-hr-old kid.

Note a patch containing numerous regenerating 

ciliated cells (arrows) together with a few 

nonciliated microvillous cells (*).

SEM x 2,800.

Fig. 6.12 Basal fold, (caudal region), 3-day-old kid.

The caudal region of the fold is completely 

ciliated in kids of all ages. A patch of nonciliated 

microvillous cells, apparently devoid of 

regenerating ciliated cells, can be seen (*).

SEM x 1,440.
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Fig. 6.13 Basal fold (caudal region), 2-day-old kid.

A patch of nonciliated microvillous cells. Note 

the presence of a few regenerating ciliated cells 

(*) scattered amongst numerous nonciliated 

microvillous cells.

SEM x 5,600.

Fig. 6.14 Ventral nasal concha, 3-day-old kid.

Numerous mucus-producing cells presenting 

typical apical protuberances(*) are observed 

within the ciliated epithelium.

SEM x 2500.
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Fig. 6.15 Middle nasal concha, 3-hr-old kid.

This region is seen to be poorly ciliated. 

SEM x 1,440.

Fig. 6.16 Middle nasal concha, 3-week-old kid.

The region is seen to have a dense cilial carpet 

with the cilia being frequently matted (arrow). 

Submucosal gland orifice (*).

SEM x 2,800.
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Fig. 6.17 Nasal septum, 12-hr-old kid.

The epithelium is heavily ciliated and the cilia 

matted. A submucosal gland orifice (*) and 

mucus strands (arrow) can be seen.

SEM x 1,440.

Fig. 6.18 Nasal septum, 3-week-old kid.

The epithelium presents a “moth eaten” 

appearance similar to that observed in the adult 

goat. Numerous nonciliated microvillous cells 

and a few regenerating ciliated cells (arrows) can 

be seen.

SEM x 2,800.
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Fig. 6.19 Nasopharynx (rostral region), 2-day-old kid.

The degree of ciliation is seen to be relatively 

poor in the 2-day-old kid with nonciliated 

microvillous cells being numerous.

SEM x 2,800.

Fig. 6.20 Nasopharynx (rostral region), 2-day-old kid.

An occasional patch of densely ciliated cells is 

seen in this 2-day-old kid. Such a heavily ciliated 

epithelium is characteristic of kids of older ages. 

SEM x 2,800.
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Fig. 6.21 Nasopharynx (transitional zone), 2-day-old kid. 

Caudal to the ciliated region, numerous 

regenerating ciliated cells and a few ciliated cells 

can be seen. Nonciliated microvillous cells 

present dimples on their luminal surfaces 

(arrows).

SEM x 2,800.

Fig. 6.22 Nasopharynx, (transitional zone), 15-day-old 

kid.

Nonciliated microvillous cells are seen present 

aggregations of short surface microvilli.

SEM x 11,250.
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Fig. 6.23 Epiglottis, 5-day-old kid.

Squamous cells line the laryngeal surface. A taste 

bud is seen, with some sensory hairs protruding 

through the pore (arrow).

SEM x 2,800.

Fig. 6.24 \bcal fold, 7-day-old kid.

Circumscribed, dome-shaped areas.

(a) These are lined by smooth flattened squamous 

cells. Such areas frequentiy exhibit a central 

pore.

SEM x 360.

(b) At higher magnifications, many of those cells 

around the periphery of the dome-shaped areas 

are seen to present a pitted appearance.

SEM x 1,440.
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Fig.6.25 \bcal fold, 7-day-old kid.

The spongy nature and pitted surface of the 

peripheral cells shown in Fig. 6.24 can be better 

appreciated at higher magnifications.

SEM x 5,600.

Fig. 6.26 \bcal fold (transitional zone), 3-week-old kid. 

Mature ciliated cells, numerous regenerating 

ciliated cells and nonciliated microvillous cells are 

characteristic of this region.

SEM x 2,800.
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Fig. 6.27 \bcal fold, 15-day-old kid.

A patch of normal nonciliated microvillous cells. 

SEM x 2,800.

Fig. 6.28 Inffaglottic cavity, 2-day-old kid.

Individual nonciliated microvillous cell (*) 

presenting, a large wrinkled apical surface. 

SEM x 5,600.
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Fig. 6.29 Trachea, 2-day-old kid.

A patch composed of numerous nonciliated 

microvillous cells and regenerating ciliated cells 

(arrows).

SEM x 2,800.

Fig. 6.30 Trachea, 5-day-old kid.

Nonciliated microvillous cells with a 

characteristic wrinkled luminal surface are seen 

distributed individually amongst ciliated cells. 

These are characteristic in the new-born to 15- 

day-old kid.





Fig. 6.31 Caudal lobar bronchus, 2-day-old kid

Mucus-producing cells (*), characterised by 

depressed luminal surfaces with a scarce 

population of surface microvilli, are numerous. 

Ciliated cells present matted cilia (arrows). 

SEM x 5,600.

Fig. 6.32 Lung Parenchyma, 9-day-old kid.

A respiratory bronchiole characterised by shallow 

alveoli (arrows) is seen in a 9-day-old kid. Note 

that the lung parenchyma in general presents an 

appearance similar to that seen in the adult goat. 

SEM x 180.

328





Fig. 6.33 Respiratory bronchiole, 3-day-old kid.

Shallow alveoli (*) are defined by obvious raised 

ridges (open arrows). An alveolar pore can also 

be seen (closed arrow).

SEM x 2,800.

Fig. 6.34 Respiratory bronchiole, 3-day-old kid.

The epithelium is composed of numerous 

nonciliated bronchiolar epithelial (Clara) cells 

presenting characteristic apical protuberances and 

ciliated cells with poorly developed cilia.

SEM x 2,800.
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Fig. 6.35 Lung parenchyma, 12-hr-old kid.

The alveoli present similar appearance to those 

observed in the adult goat. Note that alveolar 

pores are very rare.

SEM x 360.

Fig. 6.36 Alveolus, 5-day-old kid.

In very young kids, alveoli are usually lined 

mainly by Type II cells (*), as illustrated. Such 

alveoli are, however, occasionally observed in 

older kids.

SEM x 5,600.
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Fig. 6.37 Alveolar sac, 3-day-old kid.

Low septa (arrows) are seen subdividing a large 

alveolar sac into shallow alveoli (*).

SEM x 1,440.
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CHAPTER 7



Fig. 7.1

Fig. 7.2.

Nasal vestibule.

The epithelium and dermis are seen to be 

infiltrated by inflammatory cells.

H&E x 250.

Ventral nasal concha.

Note the numerous surface mucus-producing 

cells in the epithelium (E). A thick mucous 

blanket (B) lies on the luminal surface.

AB /PAS x 250.
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Fig. 7.3.

Fig. 7.4

Trachea.

A mild degree of inflammation, with some 

inflammatory cells in the lamina propria. 

H&E x 100.

Small bronchus.

The lumen is seen to be blocked by inflammatory 

exudate composed of mucus, debris and 

inflammatory cells.

H&E x 100.
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Fig. 7.5 Ventral nasal concha.

Most of the epithelial cells have desquamated, 

leaving an intact basal lamina (arrow) and a few 

basal cells.

Note an infiltration of mononuclear cells.

H&E x 250.

Fig. 7.6 Nasopharynx.

Disrupted lymphoepithelium. Lymphocytes can 

be seen passing through the ruptured epithelium 

(arrow).

H&E x 250.
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Fig. 7.7 Small bronchiole.

The lumen is blocked by inflammatory exudate 

composed of neutrophils and osmiophilic 

material. Note the presence of mucus-producing 

cells in the lining epithelium.

H&E x 250.

Fig. 7.8 Lung parenchyma.

There is extensive alveolar collapse. Note the 

accumulation of inflammatory exudate in the 

respiratory bronchiole (*).

H&E x 250.
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Fig. 7.9 Bronchiole.

The lumen is blocked by plugs of mucus, debris 

and inflammatory cells. Note the numerous 

numbers of mucus-producing cells.

AB /PAS x 250.
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Fig. 7.10 Nasal vestibule.

Note the presence of micro-organisms lying on 

the luminal surface (closed arrow). Some 

squamous cells have pores (open arrow) on their 

luminal surface.

SEM x 5,600.

Fig. 7.11 Nasal vestibule.

High power micrograph of Fig. 7.10. Note the 

pores on the luminal surface of squamous cells. 

Cells presenting such pores were seen to increase 

in number towards the alar fold.

SEM x 11,250.
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Fig 7.12 Alar fold.

(a) Mucus strands, micro-organisms and debris 

are seen lying on the surface.

(b) In the caudal region, mucus strands were 

seen being extruded (arrow).

SEM (a) x 2,800, (b) x 5,600.

Fig. 7.13 Basal fold.

Mucus-producing cells are seen actively 

producing mucus (arrow).

SEM x 5,600.
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Fig. 7.14 Nasal septum.

The epithelium is completely devoid of cilia. 

Note discharged (*) and discharging mucus- 

producing cells.

SEM (a) x 2,800, (b) x 5,600

Fig. 7.15 Ventral nasal concha.

A patch consisting of numerous nonciliated 

microvillous cells. Small numbers of mature and 

regenerating ciliated cells are present. SEM x 

2,800.
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Fig. 7.16 Dorsal nasal concha.

Extensive deciliation is evident. Most of the cells 

are of the nonciliated microvillous type, possibly 

mucus-producing cells.

SEM x 1,440.

Fig. 7.17 Epiglottis.

The epithelial surface is seen to be extensively 

covered by a sheet of mucus (*). Individual 

squamous surface cells are seen in the exposed 

region, along with a few micro-organisms 

(arrows).

SEM x 1,440.
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Fig. 7.18 Trachea.

Narrow clefts between mucosal folds are plugged 

with mucus and debris.

SEM x 360.
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Fig. 7.19 Trachea.

Numerous highly active mucus-producing cells 

are seen. Note that mucus is being extruded in 

long columns.

SEM x 2,800.
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Fig. 7.20 Bronchiole.

Note that stubby microvilli are not evident on 

Clara cells. Also note the poor degree of ciliation. 

SEM x 5,600.

Fig. 7.21 Alveoli.

The alveolar surface is extensively covered by a 

sheet of amorphous material.

SEM x 2,800.
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Fig.7.22 Alveoli.

Note the bulging blood capillaries. 

SEM x 5,600.

Fig. 7.23 Alar fold.

Numerous apical cells are seen to be 

desquamating, leaving numerous depressions on 

the luminal surface.

SEM x 1,440.
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Fig. 7.24 Ventral nasal concha.

Extensive areas are seen to be covered by a 

mucous blanket (M).

SEM x 180.

Fig. 7.25 Dorsal nasal concha.

Mucus, debris and inflammatory cells are seen 

lying on the epithelial surface.

SEM x 1,440.
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Fig. 7.26 Larynx (infraglottic cavity).

Extensive areas of epithelial desquamation are 

seen. Note both eroded (arrow) and intact 

epithelium (*).

SEM x 180.

Fig. 7.27 Trachea.

Extensive deciliation is observed, with ciliated 

cells being only poorly ciliated.

Note the mucous plug in the submucosal gland 

opening.

SEM x 5,600.
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Fig. 7.28 Small bronchi.

A brush cell, with tall, spiky, densely organised, 

uniform microvilli (arrow), amongst ciliated 

cells.

SEM x 5.600.

Fig. 7.29 Bronchiole.

Note the presence of flocculent material covering 

most of the epithelial surface.

SEM x 1440.
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Fig. 7.30 Bronchiole.

Note the presence of flocculent material matting 

the cilia (arrows). Most Clara cells present a 

flattened apical surface and a few have collapsed 

apical protuberances. Cellular inflammatory 

exudate is also seen (*).

SEM x 2,800.

Fig. 7.31 Alveolus.

Note the aggregation of alveolar Type II cells. 

SEM x 2,500.
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Fig. 7.32. Alveolar Type Ii cell.

A number of pores are seen on the luminal 

surface. Note that the central region of the 

luminal surface is sparsely populated by surface 

microvilli as opposed to the densely populated 

periphery.

SEM x 20,000.
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