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ABSTRACT

Control of cell cycle progression in eukaryotes is governed by members of a highly 

conserved family of serine threonine protein kinases, the cyclin-dependent kinases 

(CDKs), which associate with a regulatory cyclin partner protein to attain full activity. 

The CRK3 gene product of Leishmania mexicana is one of two putative CDKs so far 

identified in this organism.

The possible function of CRK3 and the requirement of the CRK3 gene for Leishmania 

survival was investigated using molecular genetic techniques. Attempts to create null 

mutants lacking an intact CRK3 locus failed repeatedly and instead a series of transgenic 

cell lines were generated that had undergone changes in ploidy or genomic 

rearrangements. However, both alleles could be successfully disrupted when extra 

copies of CRK3 were introduced on an episome into a heterozygote mutant, prior to 

disruption of the second chromosomal CRK3 allele. Together these results provide 

evidence that CRK3 is an essential gene in the promastigote form of Leishmania 

mexicana.

CDKs are regulated not only by cyclin binding, but also by inhibitory and activatory 

phosphorylation events. Inhibition of Leishmania mexicana phosphotyrosine 

phosphatase activity by bpV(phen) resulted in inhibition of cell cycle progression, and 

led to an accumulation of cells in the G1 and S-phases of the cell cycle. Cells treated 

with bpV(phen) had a low level of CRK3 activity and upon release from inhibition 

CRK3 activity increased. Inhibition of a phosphotyrosine phosphatase activity could be 

involved in regulation of CRK3 activity, either directly or indirectly.

The CDK inhibitor flavopiridol is a potent inhibitor of mammalian cdkl, cdk2 and 

cdk4, enzymes, which all have a role in cell cycle progression. Flavopiridol was found



to be a potent inhibitor of L. mexicana CRK3 activity and inhibits purified CRK3 with 

an IC50 value of 100 nM. Flavopiridol inhibited growth of L. mexicana promastigotes in 

liquid culture, with 50% inhibition of growth achieved with a concentration of 250 nM. 

Inhibition of growth is due to inhibition of cell cycle progression, as cells were found to 

accumulate in the G2 phase of the cell cycle, probably due to inhibition of CRK3 

activity. Flavopiridol-induced growth inhibition is reversible up to 24 hours after 

addition of the dmg. Release from flavopiridol inhibition resulted in a partially 

synchronous re-entry into the cell cycle. This method may be used to obtain cell 

samples enriched for cells in particular phases of the cell cycle.

In contrast to several plant and animal CDKs, CRK3 failed to complement for loss of 

function of CDC28 activity in the Saccharomyces cerevisiae cdc28-lNt\  cdc28-4ts and 

cdc28-13ts mutants, suggesting that mechanisms of cell cycle control in Leishmania may 

be less conserved than those of other eukaryotes.

The findings that CRK3 is an essential gene in Leishmania, that CRK3 is inhibited by 

specific inhibitors and that CRK3 has features that distinguish it from mammalian 

homologues, make CRK3 a novel drug target of some promise.
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NOTE ON GENETIC NOMENCLATURE

Gene and protein names for Leishmania and trypanosomes follow the guidelines 

outlined in Clayton, et al. 1998. The system for naming the genes of other organisms 

discussed in this thesis is unique for each particular organism. For clarification, 

examples of the nomenclature used to name a hypothetical gene of interest (GOI1) for 

each organism mentioned in this thesis are shown below.

Leishmania and trypanosomes:

Gene: GOI1 Protein: GOI1 Disrupted allele: GOIr.NEO

Saccharomyces cerevisiae:

Gene: GOI1 Protein: GOI1 Temperature-sensitive mutant: g o ilts

Schizosaccharomyces pombe:

Gene: goil Protein: Goil Temperature-sensitive mutant: go ilts

Caenorhabditis elegans:

Gene: goil Protein: GOI-1
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CHAPTER 1

INTRODUCTION

1.1 The trypanosomatids

The trypanosomatid protozoa include various species that are parasites of mammals and 

have widespread medical and economic importance in many parts of the world, 

particularly in developing countries. The trypanosomatids are studied not solely because 

they are mammalian pathogens, but also because many trypanosomatid species exhibit a 

number of interesting biological phenomenon, some of which are rare, if not unique, in 

the eukaryotes. These features are of great biological interest in their own right and in 

some cases shed light on general questions of biological interest. This chapter will 

introduce some of the unique biological characteristics of these organisms, features 

which may be exploited to develop new, much needed, drugs or vaccines for the 

treatment and prevention of these diseases, and will introduce the aims and rationale 

behind the work described in this thesis.

The most important trypanosomatid pathogens are:

(I) The African trypanosome, Trypanosoma brucei brucei, the causative agent of 

Nagana in cattle, and the related subspecies Trypanosoma brucei rhodesiense and 

Trypanosoma brucei gambiense, the causes of acute and chronic African sleeping 

sickness respectively. The relationship between T. brucei brucei and T. b rhodesiense 

is unclear. The only noticeable difference between these parasites is that T. b. brucei 

is lysed by human serum, whereas T. b rhodesiense is not. Epidemics of African 

sleeping sickness may be due to the aquisition of human serum resistance by T.
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brucei parasites, possibly through genetic exchange in the tsetse fly vector (Gibson 

andMizen, 1997).

(II) The South American trypanosome, Trypanosoma cruzi, causative agent of Chagas’ 

disease. This disease is chronic and involves infection and destruction of many tissue 

types, particularly cardiac muscle, eventually leading to heart failure.

(III) The leishmaniases, a group of diseases caused by various species of Leishmania. 

The leishmaniases can be divided into three major disease classes.

(A) Cutaneous leishmaniasis. Causes formation of skin ulcers which can be 

accompanied by secondary infections, and may spread to surrounding tissue 

or may be limited to the site of infection, dependent on the particular 

subspecies involved. Can be caused by L. major, L. mexicana and L. tropica.

(B) Mucocutaneous leishmaniasis. This is a more serious disease that can cause 

gross disfiguration and may also cause complications that are life threatening, 

such as sepsis and bronchopneumonia. Can be caused by infection with L. 

braziliensis

(C) Visceral leishmaniasis or kala-azar. The most serious form of disease, in 

which macrophages within the major organs are infected, causing 

inflammation and organ damage. Caused by L. donovani and L. infantum.

The diseases caused by these parasites vary in their geographical distribution. The 

African trypanosomes occur in sub-Saharan Africa, T. b. rhodesiense in East Africa, and 

T. b. gambiense in Central and West Africa. They are endemic in 36 countries and 55 

million people are at risk of contracting the disease (Molyneux, 1997).

T. cruzi, the South American trypanosome, as the name suggests, occurs in South and 

Central America in 19 countries with 90 million people at risk and 16 million people 

infected by the parasite (Molyneux, 1997).



Leishmania is the most widespread of the trypanosomatid diseases. It is endemic in 88 

countries in the tropics and sub-tropics, but not Southeast Asia and Oceania. 350 million 

people are at risk of contracting the disease and 119 million people are currently 

infected (Molyneux, 1997).

Like many other protozoan parasites the trypanosomes and Leishmania are transmitted 

from one infected host to the next via infection of an intermediate insect vector. The 

vector for African trypanosome transmission is the tsetse fly (Glossina). The infective 

metacyclic form develops in the salivary glands of the fly and is transmitted when the 

fly takes a blood meal. When parasites enter the blood they rapidly differentiate into the 

proliferative long slender bloodstream form. At the peak of infection the long slender 

form undergoes differentiation into the non-dividing short stumpy bloodstream form. 

The short stumpy form is preadapted for survival in the insect vector, and upon 

ingestion by a feeding fly, differentiates to the proliferative procyclic form in the fly 

mid-gut. Procyclics then migrate to the salivary glands where they complete their 

differentiation to the metacyclic form, thereby completing the life-cycle. The vector for 

T. cruzi transmission is the Triatomine bug. Infective forms develop in the hind gut and 

are excreted during feeding. They are then introduced into the site of the bite when 

infected faeces is inadvertently rubbed into the wound. Like the African trypanosome, 

Leishmania is introduced directly into the bloodstream when the insect vector feeds 

(Fig. 1.1). The vector in this case is either the Lutzomyia sandfly (New World) or the 

Phlebotomus sandfly (Old World). Like the trypanosomes, metacyclic parasites, the non 

dividing infective form, develop in the insect vector, in this case in the mouthparts. 

When introduced into the blood of the mammalian host, metacyclics are phagocytosed 

by host macrophages where they differentiate into proliferative amastigotes. 

Amastigotes multiply within the parasitophorous vacuole and eventually lead to lysis of
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the macrophage, releasing free amastigotes into the blood and initiating another round 

of macrophage infection. The life cycle of Leishmania is represented in Fig. 1.1. The 

complex developmental changes these parasites undergo are a common feature of vector 

borne diseases, which encounter very different environments as they progress through 

their life-cycle and must adapt accordingly. Such unusual developmental programs are 

one feature of the biology of the trypanosomes and Leishmania that make them 

interesting organisms to study. Other peculiarites of their biology are discussed below.

1.1.2 The single organelles of trypanosomes and Leishmania

The trypanosomes and Leishmania belong to the Order Kinetoplastida, so called 

because of the presence of the kinetoplast, a DNA containing organelle associated with 

the single mitochondrion. The kinetoplast DNA (kDNA) is analogous to the 

mitochondrial genome of higher eukaryotes. kDNA however is very different in 

organisation from mitochondrial or nuclear DNA, being arranged as a network of 

interlocking circular DNA molecules which fall into two classes, maxicircles and 

minicircles (Shapiro and Englund, 1995). The maxicircles bear most resemblance to 

mitochondrial DNA in that they encode rRNA genes and proteins involved in 

mitochondrial energy production such as cytochrome oxidase subunits and NADH 

dehydrogenase(Simpson, 1987). The expression of maxicircle genes is unusually 

complex. The mRNAs for these genes undergo extensive processing via a procedure 

termed RNA editing, which involves the addition or deletion of uridine nucleotides at 

precise positions in the message to generate the final mRNA (Feagin et ah, 1988). The 

process of editing involves the use of small guide RNA templates involved in 

controlling the specificity of editing. These small guide RNA molecules are encoded by
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the minicircles (Sturm and Simpson, 1990). Both the maxicircle and the minicircle 

DNAs must be replicated during each cell cycle to form two complete and identical new 

kinetoplasts, which are segregated into each daughter cell during cell division.

Another organelle unique to the kinetoplastids is the glycosome. A membrane bound 

organelle that contains the glycolytic enzymes (Visser et al, 1981). In T. brucei 

compartmentalisation of the glycolytic enzymes greatly increases the efficiency of 

glycolysis, allowing the parasites to rely exclusively on glycolysis for their energy 

production in the glucose rich environment of the host (Opperdoes, 1987). As the 

parasite is transmitted to the vector however, where the environment is less rich in 

nutrients, the mitochondrion resumes its role in energy production via oxidative 

phosphorylation, and the levels of glycolytic enzymes decline (Vickerman et al, 1988).

1.1.3 Avoidance of host immune responses

Leishmania and trypanosomes need to avoid detection and elimination by the 

mammalian host immune system in order to proliferate to a level that will increase their 

chances of uptake by feeding insect vectors. T. brucei, achieves this by the process of 

antigenic variation, in which the major constituent of the parasite surface, the variant 

surface glycoprotein (VSG), is sequentially replaced by a new variant, not yet 

encountered by the host immune system. In the course of an infection this gives rise to 

waves of parasitaemia as the immune system kills off parasites expressing one particular 

VSG, reducing the parasite load, until VSG switching occurs to generate antibody- 

resistant parasites that give rise to a new peak in parasitaemia (Barry, 1997a). The 

switch to expression of a new VSG gene reportedly occurs through three separate 

mechanisms: (1) Translocation of an inactive VSG gene from a silent locus to a
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telomeric, transcriptionally active region known as an expression site, (2) an in situ 

switch, resulting in activation of a silent expression site or (3) recombination between 

the active VSG and an inactive gene, generating a hybrid gene (Barry, 1997b).

Unlike T. brucei, both T. cruzi and Leishmania are intracellular parasites and have 

evolved mechanisms to allow their survival inside the cells of the host (Mauel, 1996). 

The surface of Leishmania promastigotes consists mainly of the surface metalloprotease 

gp63 (Russell, 1994), a lipophosphoglycan, LPG (Turco and Descoteaux, 1992), and 

glycoinositol phospholipids, GIPLs, (McConville and Blackwell, 1991). Modification of 

the structure of LPG occurs as promastigotes differentiate into infective metacyclics 

(Sacks et al., 1990). In amastigotes both LPG and gp63 are downregulated and replaced 

on the parasite surface by a structurally distinct LPG (McConville and Blackwell, 1991; 

Moody et al., 1993; Turco and Sacks, 1991). It is thought that LPG and molecules on 

the surface of metacyclics bind to components of complement, avoiding complement 

mediated lysis and allowing uptake of the parasites by type I, and type III, complement 

receptors (CR1 and CR3) on the macrophage surface (Mauel, 1996). Metacyclics are 

then taken into the macrophage by phagocytosis. Phagocytotic vesicles, containing 

parasites, then fuse to lysosomes and/or late endosomes to form a modified organelle 

termed the parasitophorous vacuole (PV) (Chang, 1983; Alexander and Russell, 1992). 

During the formation of the PV metacyclics differentiate into amastigotes (Antoine et 

al., 1998). Amastigotes proliferate in the PV and manage to avoid host defence systems. 

Densely packed glycoinositol phospholipid molecules GIPLs on the parasite surface 

may help to protect the amastigote from the degradative host enzymes present in the PV 

(Winter et al., 1994). There is also evidence that Leishmania can internalise and degrade 

major histocompatibility complex (MHC) class II molecules, thereby avoiding 

presentation of Leishmania antigens by the infected macrophage (De Sousa Leao, 1995;
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Russell et al, 1992). Intracellular amastigotes must also obtain nutrients and do so by 

endocytosis through the flagellar pocket, a specialised, invaginated region of the plasma 

membrane located at the point where the flagellum emerges from the cell (Overath et 

al., 1997). Amastigotes acquire host-derived molecules from the lumen of the PV 

(Russell et al, 1992), and can also acquire molecules from the host macrophage cytosol 

via two separate routes; active transport of small anionic molecules into the PV lumen, 

and import via fusion of autophagous vesicles with the PV (Schaible et al, 1999). 

Because the surface of Leishmania and T. brucei are coated in densely packed protective 

molecules, secretion and uptake of nutrients, metabolites etc. is confined to a specialised 

area of the surface, the flagellar pocket, where the flagellum emerges from inside the 

cell (Webster and Russell, 1993).

1.1.4 Molecular genetic analysis of trypanosomatid gene function

There are a number of aspects of the biology of Leishmania that aid the molecular 

genetic analysis of the biology of these parasites (Beverley and Turco, 1998).

(1) The complete life cycle of many Leishmania species can be replicated in vitro 

(Doyle et al, 1991; Bates, 1993), allowing the growth of large numbers of parasites 

for the purification or analysis of organelles, membranes, or enzyme activities.

(2) Clonal populations can easily be isolated on solid agar medium (Iovannisci and 

Ullman, 1983).

(3) Selected genes can be disrupted by gene targeting. A process which occurs with 

high efficiency via homologous recombination (Cruz and Beverley, 1990; Laban et 

al, 1990; Tobin and Wirth, 1992; Tobin et al, 1991)
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(4) A large number of positive and negative selectable markers can be used to select for 

the integration of gene targeting constructs. These marker genes are discussed below.

(5) Plasmid expression vectors bearing a gene of particular interest can be introduced 

into the parasites where they are stably maintained as extrachromosomal episomes 

(LeBowitz etal., 1990; Kelly et al, 1992).

(6) Cosmids containing large genomic DNA fragments can be used to screen for genes 

that complement a mutant phenotype (Ryan et al, 1993a; Ryan et al, 1993b; Kelly 

e ta l, 1994).

(7) Leishmania artificial chromosomes (LACs) have been developed, allowing the 

analysis of chromosomal structural elements (Beverley and Turco, 1998).

(8) The mariner transposable element from Drosophila may also be used to generate 

mutant parasites by insertional mutagenesis (Gueiros-Filho and Beverley, 1997). 

LAC, cosmid and plasmid libraries may then be used to screen for genes that restore 

the mutant phenotype.

(9) The genome of the Freidlin strain of L. major is currently being sequenced as part of 

a co-ordinated effort (http://www.ebi.ac.uk/parasites/leish.html). This resource, once 

complete, when combined with the use of the technologies described above, should 

help to significantly advance the understanding of the biology of Leishmania.

The development of the aforementioned technologies began with the modification of 

circular, amplified DNA fragments for use as vectors for the introduction and 

expression of genes of interest in Leishmania. Gene amplification upon drug selection is 

a known mechanism by which trypanosomatids become drug resistant (Callahan and 

Beverley, 1992). Many of these gene amplification events involve the generation of 

autonomously replicating extrachromosomal elements bearing the drug resistance gene.
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An example of this phenomenon has been described in the case of spontaneous 

resistance to methotrexate, where two different regions of the genome, the R locus and 

the H region, can be amplified (Beverley, 1991). The amplified R locus, isolated from 

methotrexate resistant mutants of L. major, is a 30 kb extrachromosomal element which 

is stably maintained in the parasite. The R locus contains the open reading frame (ORF) 

for the dual activity dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene, 

plus a large region of flanking DNA (Mori et al., 1994). The amplified R region was 

used as the basis for the generation ofpR NEO, a 30 kb circular DNA construct in which 

the DHFR-TS gene has been replaced by the NEO gene, conferring resistance to the 

aminoglycoside antibiotics G418 and Geneticin (LeBowitz et al., 1990). pR NEO also 

contains pUC derived sequence which allows the maintenance of this construct in 

Escherichia coli (Kapler et al., 1990). The rather unwieldy pR NEO vector was further 

modified to reduce the total Leishmania derived DNA sequence to generate a smaller 

plasmid. This resulted in the pX vector which contains only 2.3 kb of L. major DHFR- 

TS flanking DNA. Reporter genes which were cloned into pX (eg. E. coli p- 

galactosidase or L. amazonensis GP46A) were transcribed and polyadenylated by 

processing events that occurred at the same sites used in processing of the DHFR-TS 

mRNA (LeBowitz et al., 1990). Other investigators had also developed systems for 

expression of the NEO gene in other trypanosomatid species, such as the insect 

trypanosomatid Leptomonas seymouri (Bellofatto et al., 1991). This system relied on 

the use of a-tubulin gene sequence, fused to a truncated NEO gene. The plasmid was 

maintained as a high copy extrachromosomal circular DNA containing several head to 

tail copies of the original plasmid. The a-tubulin-neomycin phosphotransferase fusion 

RNA transcribed from this episome, was polyadenylated and trans-spliced with the 

splice leader RNA (Bellofatto et al., 1991). The pTEX vector, which contains flanking
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and intergenic sequence from the T. cruzi glycosomal glyceraldehyde 3-phosphate 

dehydrogenase (gGAPDH) gene array, can be used to express genes in both T. cruzi and 

Leishmania species (Kelly et al., 1992).

The presence of parasite derived sequence, such as DHFR-TS, gGAPDH or a-tubulin 

sequence, is required for the expression of the drug resistance gene or expression of 

other genes inserted into the plasmid. Such sequence is not however, necessarily needed 

for maintenance and replication of the episome. It has been demonstrated that bacterial 

plasmid DNA which does not contain any Leishmania derived sequence, is stably 

maintained, replicated and segregated in the absence of any kind of selection 

(Papadopoulou et al., 1994). It may be therefore that Leishmania can use bacterial 

origins of replication or alternatively, Leishmania may have no strong requirement for 

specific sequence elements to act as replication origins. The situation in T. brucei is 

very different. In contrast to Leishmania, Leptomonas, and T. cruzi, it is much more 

difficult to obtain extrachromosomal, replicating episomes in T. brucei. There seems to 

be a distinct preference for integration of exogenous DNA rather than 

extrachromosomal maintenance (ten Asbroek et al., 1993), and episomes will only be 

maintained if they contain transcriptional promoters (Patnaik et al., 1993; Metzenberg 

and Agabian, 1994; Patnaik, 1997).

Other more sophisticated systems have recently been developed which allow the stage- 

specific expression of gene products in Leishmania (Ghedin et al., 1998). The 

Leishmania vector (pGEMneo-TK) relies on the use of regulatory sequence derived 

from the amastigote specific A2 gene, to provide the splice addition and 

polyadenylation signals for amastigote-specific gene expression. The gene used in this 

case was the herpes simplex virus thymidine kinase gene. This gene has been used 

previously as a negative selectable marker in transfected Leishmania (LeBowitz et al.,
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1992). Thymidine kinase phosphorylates gancyclovir, a nucleoside analogue, which is 

taken up by the parasites from the culture medium. In the unphosphorylated state, 

gancyclovir is non-toxic. However, in the phosphorylated form, gancyclovir is highly 

toxic to Leishmania as it is incorporated into replicating DNA and halts further 

replication. Expression of thymidine kinase therefore results in phosphorylation and 

activation of the cytotoxicity of gancyclovir. As the thymidine kinase gene was flanked 

by sequence derived from the amastigote specific A2 gene locus, then only amastigotes 

and not promastigotes were sensitive to gancyclovir, due to stage specific expression of 

the thymidine kinase gene (Ghedin et al., 1998). This system represents a useful assay 

for testing the toxicity of expressed genes in Leishmania and may also lead to the 

development of attenuated live vaccines.

Another important development in the molecular genetic analysis of Leishmania was the 

development of techniques, in L. major, for targeted gene disruption (Cruz and 

Beverley, 1990). Heterozygous and null mutants of a particular gene can be obtained by 

sequential rounds of targeted gene disruption. Gene disruption or gene replacement 

constructs containing a drug resistance gene, flanked by sequences derived from the 

target locus can be introduced into the parasite by the same electroporation method used 

to introduce plasmid constructs (LeBowitz, 1994). Such disruption constructs integrate 

into the genome by homologous recombination mediated by matching sequence within 

the knockout construct and the target locus. Homologous recombination was 

demonstrated in L. enrietti by the introduction of constructs containing two separate, 

non-overlapping inactivating mutations in the chloramphenicol acetyltransferase (CAT) 

reporter gene. The subsequent detection of CAT activity indicated that homologous 

recombination had occurred between the two mutant CAT genes, resulting in 

reconstitution of a functional gene (Tobin et al, 1991). Early attempts at gene
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disruption focussed on the a-tubulin gene array of L. enriettii. The pALT-Neo-Tub 

construct, which contains the NEO gene flanked by a-tubulin flanking sequence was 

introduced into L. enriettii cells by electroporation and stably integrated at the a-tubulin 

locus (Tobin and Wirth, 1992). The same investigators also showed that it was possible 

to integrate a gene disruption construct to completely delete one of the two a-tubulin 

gene arrays (Curotto de Lafaille and Wirth, 1992).

The efficiency of homologous recombination in Leishmania has been reported to be 

dependent upon and proportional to, the extent of shared, homologous sequence 

(Papadopoulou and Dumas, 1997). This is therefore an important consideration when 

designing a construct for gene disruption or gene replacement. However as little as 400 

bp of homologous sequence was sufficient to disrupt the 50 kb CPB gene array of L. 

mexicana (Mottram et al, 1996b). Integration of knockout constructs in the related 

parasite, Trypanosoma brucei seems not to require such a large region of homology for 

recombination to occur, and it has been demonstrated that as little as 20 bp of 

homologous sequence can be used to achieve proper integration at the correct locus 

(Gaud et al, 1997). This may reflect differences in the recombination machinery 

between these two trypanosomatid species, as homologous recombination is an integral 

and important aspect of the biology of antigenic variation in African trypanosomes 

(Borst et al., 1997). Inactive variant surface glycoprotein genes (VSG) can be activated 

by integration into a transcriptionally active expression site, thereby replacing one VSG 

type with a different variant which cannot yet be recognised by the host immune system 

(Borst et al., 1997). Leishmania, being intracellular parasites in the mammalian host, do 

not undergo antigenic variation

In order to generate null mutants by successive rounds of gene disruption it is necessary 

to use separate marker genes for each integration event. Fortunately in Leishmania a
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number of separate marker genes exist for the selection and maintenance of stable 

genetic integration events. The first marker gene to be used in Leishmania was the 

neomycin phosphotransferase {NEO) gene which confers resistance to aminoglycoside 

antibiotic G418 or Geneticin (Laban et al., 1990). The hygromycin (HYG) gene, which 

confers resistance to the antibiotic hygromycin B, works in a similar way to the NEO 

gene and has also been used as a stable genetic marker in Leishmania (Lee and Van der 

Ploeg, 1991). Other reporter genes which have been used include the BLE gene, 

conferring resistance to the DNA binding drug phleomycin (Souza et al, 1994); the 

PAC gene which confers resistance to the glycopeptide antibiotic puromycin (Freedman 

and Beverley, 1993); the SAT gene encoding streptothricin acetyltransferase, and 

conferring resistance to nourseothricin (Joshi et al, 1995), and the N- 

acetylglucosamine-1 -phosphate transferase gene which confers resistance to 

tunicamycin (Liu and Chang, 1992). A mutant version of the DHFR-TS gene derived 

from a methotrexate resistant L. major strain has also been suggested for use as a 

selectable marker in Leishmania (Arrebola et al, 1996). However, given that 

spontaneous resistance to methotrexate through gene amplification is a common 

phenomenon in Leishmania (Beverley, 1991), then it is likely that difficulties will be 

encountered in distinguishing true transfectants from false positive clones that have 

undergone such a gene amplification event. In addition to the positive selection methods 

described above, negative selection based on the use of the herpes simplex vims 

thymidine kinase gene {HSV-TK) has been used to demonstrate loss of heterozygosity of 

integrated knockout constructs (Gueiros-Filho and Beverley, 1996). An important 

development in the search for a method to remove drug resistance genes that have been 

integrated to knock out a particular target gene. As HSV-TK expression is cytotoxic to 

the parasites when grown in the presence of gancyclovir, then integration of an HSV-TK
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construct to generate a heterozygous mutant, followed by selection with gancyclovir, 

leads to recombination at the target locus as a means of losing the integrated HSV-TK 

gene. Repeating the procedure on the remaining wild type locus should result in a cell 

line that has lost both copies of the targeted gene, but contains no drug resistance gene 

(Gueiros-Filho and Beverley, 1996). Other markers, which do not rely on conferring 

drug resistance phenotypes, may also be used to select transfected Leishmania. The 

green fluorescent protein (GFP) of Aequorea victoria was expressed in Leishmania and 

transfected parasites, expressing the protein were selected and sorted from non

transfected parasites by fluorescence activated cell sorting (FACS) (Ha et al, 1996). In 

this instance the parasites were fixed, prior to sorting. However the technique may be 

modified to separate live parasites expressing GFP. This technique may be useful in the 

generation of live attenuated Leishmania vaccines as it has the advantage that it does not 

rely on the use of drug resistance genes as markers for gene deletion. It would not be 

desirable to use attenuated parasites containing drug resistance genes as live vaccines 

due to the possibility that these drug resistance genes may be acquired by other 

pathogenic micro-organisms (Gueiros-Filho and Beverley, 1994).

As an alternative to using a gene disruption approach to study gene function it has been 

reported that transfection of T. brucei with double-stranded RNA can be used to abolish 

the function of a particular gene. The mechanism by which this occurs is not yet known, 

but probably involves disruption of mRNA processing and translation. This effect is not 

general, and can be used to target a specific gene (Ngo et al., 1998). This procedure has 

yet to be tested in other trypanosomatid species.

The techniques described in this section allow the detailed analysis of gene function in 

Leishmania. Transgenic mutant clones can be selected on solid media containing the 

appropriate antibiotic and can be transferred and cultured in liquid medium. Such
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mutants can then be analysed for phenotypic changes arising from loss of gene function. 

For example, a decrease in the ability to form lesions in mice has been observed for null 

mutants of the CPB genes, an array of 19 copies encoding isoforms of a cathepsin-L like 

cysteine proteinase (Mottram et al, 1996b). The CPB null mutants were then used in 

complementation assays using different individual members of the array. This work 

showed that not all of the members of the array were identical and there were significant 

differences in the stage specificity of the enzyme activities encoded by members of the 

array (Mottram et al, 1997). It is not always possible to obtain a distinct, observable 

phenotype for particular null mutants (Souza et al, 1994; Bart et al, 1997; Webb and 

McMaster, 1994). Many Leishmania genes do not seem to be essential and their loss 

may be compensated for by the action of other proteins. Alternatively the phenotype of 

null mutants may not be observable in vitro or the wrong phenotypic tests may be used. 

No phenotype was observed for null mutants of the HEXBP gene of L. major (Webb and 

McMaster, 1994). This gene encodes a single strand DNA binding protein that 

specifically binds a region of sequence on the antisense strand of the GP63 5’ flanking 

region in vitro (Webb and McMaster, 1993). This 5’ flanking region is highly conserved 

in Leishmania species and it was proposed that the HEXBP protein may be involved in 

regulating the expression of GP63 (Webb and McMaster, 1993). Null mutants of 

HEXBP showed no difference in transcription of the GP63 mRNA and were able to 

form lesions in BALB/c mice (Webb and McMaster, 1994).

To date null mutants of a particular gene have only been obtained if that gene is non 

essential in promastigotes, as no transfection protocol has yet been developed for 

amastigotes. If a gene is essential for growth and division of the parasite then it is 

clearly not possible to generate null mutants. In some cases mutant lines that have 

undergone sequential rounds of gene disruption undergo changes in ploidy, or genomic
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rearrangements, that are believed to result from attempts to knock out essential genes 

(Cruz et a l, 1993). These phenomena are discussed in more detail in section 3.3.1.

In some cases it is still possible to analyse the function of essential genes using a gene 

disruption strategy. Though it may not be possible to obtain null mutants in which both 

copies of the gene have been disrupted, it is usually possible to disrupt one allele to 

generate heterozygote mutants. In the case of the trypanothione reductase (TR) gene of 

L. donovani, a phenotype was observed for heterozygote mutant parasites (Dumas et al,

1997). Trypanothione reductase is an enzyme involved in the cellular defence 

mechanism of trypanosomatids against oxidative stress and is analogous to glutathione 

reductase of mammalian cells. Heterozygote TR mutants of L. donovani had reduced 

levels of TR activity and showed a decreased ability to survive in an in vitro 

macrophage infection (Dumas et al, 1997).

Gene function may also be analysed by expressing epitope tagged or mutated genes in a 

wild type or null background. Mutant versions of the L. mexicana CPB genes have been 

re-expressed in a CPB null background in order to verify which residues are required for 

enzymatic activity (Brooks et al, unpublished data). A hexahistidine tagged version of 

the CRK1 gene, encoding a cdc2 related kinase, has been expressed in a null background 

allowing purification of the kinase by affinity chromatography on a Nickel NT A agarose 

matrix, and assessment of the stage regulated nature of this kinase activity (Mottram et 

al, 1996a). A trans-dominant mutant version of the trypanothione reductase gene has 

been used to analyse the function of this enzyme (Tovar et al, 1998). The active 

enzyme is a homodimeric complex. Expression of a trans-dominant mutant form of the 

T. cruzi enzyme in L. donovani resulted in a formation of heterodimers between the 

native enzyme and the exogenous enzyme (Tovar et al, 1998). This resulted in an 

inactive complex. The effect of expression of the trans-dominant form was to titrate out
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the activity of the native enzyme, causing a decrease in the ability of these parasites to 

survive in a murine model of a Leishmania infection (Tovar et al, 1998).

Another approach to identifying genes involved in a particular process is to isolate 

mutants that display a characteristic, selectable phenotype. A cosmid library can then be 

introduced into the mutant, allowing the selection of transfected cell lines exhibiting 

repair of the mutant phenotype (Vasudevan et a l, 1998). Cosmids can be recovered 

from these cell lines and can be sequenced to determine which gene or genes may be 

involved in the repair of the mutant phenotype. This approach was used to isolate two 

genes involved in the biosynthesis of lipophosphoglycan (LPG) a major surface 

glycoprotein of Leishmania implicated in virulence and in host parasite interactions 

(Beverley and Turco, 1998). LPG is present on the surface of promastigotes of all 

Leishmania species. The molecule consists of repeating disaccharide units, a glycan 

core, a phospholipid anchor and an oligosaccharide-phosphate cap (Turco and 

Descoteaux, 1992; McConville and Ferguson, 1993). In L. major LPG is capped with a 

P-linked terminal galactose residue. The cytotoxic lectin ricin, binds to terminal p- 

linked galactose residues and, because it is bivalent, will agglutinate Leishmania 

promastigotes. This property was exploited to select for L. major mutants that were 

defective in LPG biosynthesis and were therefore resistant to ricin agglutination (King 

and Turco, 1988). A cosmid library was then screened to isolate genes that restored the 

phenotype. This led to the identification of genes involved in the biosynthesis of LPG 

(Ryan et al, 1993b; Garraway et al, 1993). The ability to clone genes by 

complementation in this way is a very powerful and useful technique. However it relies 

on the availability of a powerful method of screening for a mutant phenotype. For some 

aspects of the biology of Leishmania this is difficult if not impossible, and reverse 

genetic methods must be used instead. The development of the genetic manipulation
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techniques described above is therefore extremely valuable for the analysis of gene 

function in Leishmania.

1.2 Control of the Eukaryotic Cell Cycle

The ordered progression between alternating phases of cell growth, DNA replication 

and cell division is termed the cell cycle. The cell cycle consists of four distinct phases; 

a newly formed daughter cell progresses through a gap phase called G1 before entering 

S-phase, the DNA synthesis phase, when the total DNA content of the cell is replicated. 

After DNA replication there is a second gap phase, G2, before cells enter into mitosis or 

M-phase and divide to form two separate daughter cells. The lengths of each phase 

differ between different cell types and under different growth conditions. The 

Saccharomyces cerevisiae and mammalian cell cycles are represented in Figs. 1.3 and 

1.4 respectively.

Transition from one phase of the cell cycle to the next is a highly ordered process. Cells 

must complete each cell-cycle phase in turn. For example; cells must properly replicate 

their genome during S-phase, before entering into M-phase to ensure that each daughter 

cell has a complete set of chromosomes, otherwise cell division would be lethal. The 

major transition points in the cell cycle are the transition from G1 to S-phase and G2 to 

M-phase and a point during G1 termed START, when cells commit to progression 

through the cell cycle or arrest and become quiescent. These transitions are controlled 

primarily by the activity of homologues of the S. pombe Cdc2 serine threonine protein 

kinase.

1.3 Cell cycle control in fission yeast
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Studies of the mechanisms governing cell cycle progression have relied greatly upon the 

analysis of various temperature sensitive cell division cycle (cdc) mutants of 

Schizosaccharomyces pombe and Saccharomyces cerevisiae (Forsburg and Nurse,

1991). The fission yeast S. pombe is a rod-shaped organism that grows by apical 

extension whilst retaining a constant diameter. The cell then divides by medial fission to 

produce two identical daughter cells. At the permissive temperature of 25°C, the cdc 

mutants of S. pombe grow and divide as normal. At the restrictive temperature of 37°C 

however, cdc mutants are unable to undergo normal division and continue to grow by 

apical extension, resulting in abnormally long cells. It is clear therefore that cell division 

but not cell growth has been blocked in these mutants. The cell cycle stage at which 

these cells are arrested can be determined by DNA content analysis. By these methods 

26 separate cdc mutants were characterised (Hartwell, 1978). The gene responsible for a 

given cdc mutant phenotype can be isolated by screening genomic or cDNA libraries for 

plasmids which will rescue the mutant phenotype. This approach led to the 

identification of the cdc2 gene as a key regulator of the entry into mitosis (Beach et al, 

1982).

A separate class of cell cycle mutants has also been identified which divide prematurely 

to form abnormally small daughter cells, the wee phenotype. At least one of these 

mutants is due to the expression of a dominant mutant form of Cdc2 (Nurse and 

Thuriaux, 1980; Fantes, 1981). These results made it clear that the cdc2 gene had an 

important role in the regulation of mitosis as loss of Cdc2 activity resulted in a failure to 

undergo mitosis, whilst overexpression of a dominant mutant form promoted premature 

entry into mitosis (Nurse and Thuriaux, 1980; Fantes, 1981).
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Analysis of the Cdc2 coding sequence revealed that it was a protein kinase, but it did 

not fall into any of the previously described protein kinase families. It is now known 

that Cdc2 is a member of a distinct group of protein kinases termed the cyclin dependent 

kinases (CDKs). These enzymes rely on the binding of a partner protein belonging to 

the cyclin family, to regulate their activity (see Fig. 1.2 for a representation of regulation 

of cdk activity). Cyclin was first identified in biochemical analyses of cell cycle 

regulated proteins in sea urchin embryos (Evans et al., 1983). One particular protein 

showed an interesting pattern of expression. It was present in very low levels early in 

the cell cycle, and increased gradually, reaching a peak at mitosis. After entry into 

mitosis the protein was destroyed and had to be re-synthesised during the next cell cycle 

(Evans et al., 1983). In S. pombe Cdc2 binds to a cyclin encoded by the cdc!3 gene to 

achieve full activation at the entry into mitosis. Deletion of the cdc 13 gene leads to cell 

cycle arrest at mitosis with an inactive Cdc2 kinase (Booher and Beach, 1988; Hagan et 

al., 1988). Binding of Cdcl3 to Cdc2 and degradation of Cdcl3 at anaphase are key 

regulatory events in the cell cycle, as cyclin binding is required for activity of the 

complex (Moreno et al., 1989; Booher et al., 1989). Cyclin binding is not only 

dependent on the ratio of Cdc 13 subunits to Cdc2 subunits, but is also regulated by 

phosphorylation of a conserved Thr 167 residue (Gould et al., 1991). This residue must 

be phosphorylated to allow cyclin binding to occur (Fig. 1.4). Replacement of Thr 167 

with a non-phosphorylatable alanine residue abolishes in vitro function, and dominant 

mutations cause a cell cycle arrest (Nigg et al, 1992). The kinase involved in Cdc2 

regulation by phosphorylation at Thr 167 is termed CAK (Cdc2 activating kinase). The 

CAK enzyme has been purified from Xenopus laevis and has been shown to be the 

previously identified p40MO15 protein (Fesquet et al., 1993; Poon et al., 1993; Gautier et 

al, 1990; Murray and Kirschner, 1989). Active Cdc2 kinase complex also contains a

20



third protein, p l3sucl, which is encoded by an essential gene and, when overproduced, 

causes accelerated entry into mitosis (Hayles et al, 1986a; Hindley et a l, 1987). The 

sucl gene was cloned as a suppressor of various cdc2 alleles, indicating an interaction 

with Cdc2 (Hayles et al, 1986b). The function of pi 3sucl is not yet known, though it has 

been suggested that it may act as a ‘hub’ for localisation of multiple Cdc2/Cdcl3 

complexes (Vogel and Baratte, 1996). Cdc2 is also regulated by phosphorylation at 

another conserved residue, Tyr 15 (Lee et al, 1988). Phosphorylation at Tyr 15 inhibits 

Cdc2 kinase activity (Gould and Nurse, 1989). Dephosphorylation of Tyr 15 by the 

Cdc25 phosphatase occurs just prior to mitosis and results in activation of the kinase 

complex, triggering entry into mitosis (Draetta and Beach, 1988; Morla et al, 1989; 

Millar et al, 1991b). Temperature sensitive mutants of Cdc25 arrest at mitosis when 

shifted to the restrictive temperature and have the phosphorylated Tyr 15 form of Cdc2. 

When shifted back to the permissive temperature these mutants promptly enter mitosis 

(Moreno et al, 1989; Booher et al, 1989). Overproduction of Cdc25 leads to advanced 

mitosis (Russell and Nurse, 1986) and substitution of Cdc2 Tyr 15 with a phenylalanine 

residue, which cannot be phosphorylated, renders cells independent of Cdc25 activity 

(Gould and Nurse, 1989). Both cdc25 mRNA and protein levels increase throughout the 

cell cycle, reaching a peak in G2 phase (Moreno et al, 1990; Ducommun et al, 1990). 

It has been demonstrated that the human Cdc2 kinase is able to phosphorylate Cdc25C, 

one of three isoforms of the Cdc25 phosphatase in human cells. This phosphorylation 

leads to activation of the phosphatase and raises the possibility that a positive feedback 

loop operates to trigger mitosis. An accumulation of active Cdc2 complex reaches a 

threshold level where the activity is great enough to stimulate Cdc25 phosphatase 

activity, which in turn activates more Cdc2 kinase complex (Hoffmann et al, 1993;
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Izumi and Mailer, 1993). Such a mechanism would result in an extremely rapid increase 

in Cdc2 kinase activity, providing an irreversible trigger for entry into mitosis.

Cdc2 Tyr 15 is phosphorylated by the Weel kinase. This kinase was cloned by 

complementation of mutant yeast strain that exhibited a wee phenotype (Russell and 

Nurse, 1987), ie. cells prematurely entered mitosis and divided at a smaller than normal 

cell size (Nurse, 1975). Overproduction of Weel results in formation of abnormally 

long cells that have grown, but failed to undergo mitosis (Russell and Nurse, 1987). It 

was demonstrated that Weel kinase inhibits Cdc2 kinase complex by phosphorylating 

Tyr 15 (McGowan and Russell, 1993).

1.4 Cell cycle control in budding yeast

Important insights into the control of cell cycle progression have also been gained from 

the analysis of cdc mutants of the budding yeast Saccharomyces cerevisiae (Nasmyth 

and Reed, 1980) (Fig. 1.3 shows arepresentation of the S. cerevisiae cell cycle). Cell 

division in S. cerevisiae occurs by budding of the daughter cell from the mother cell 

(Hartwell, 1971). The newly formed daughter cell is smaller than the mother cell and 

must grow before forming it’s own bud and undergoing cell division. Bud formation 

occurs in G1 phase of the cell cycle after a completion of a regulatory event known as 

START. Passage through START is required for completion of the remainder of the 

current cell cycle (Reed, 1980). Under conditions of nutrient limitation cells fail to 

progress through START and enter a quiescent state. Upon restoration of appropriate 

nutrient conditions quiescent cells will re-enter the cell cycle, passing through START 

and progress to completion of DNA synthesis and cell division. Under more severe 

nutrient limitation conditions cells will undergo sporulation to form haploid spores of
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either the MATa or MATa mating type. Haploid spores are capable of mitotic growth 

under appropriate growth conditions but will undergo cell cycle arrest in response to 

mating pheromones secreted by haploid spores of the opposite mating type. Such a cell 

cycle arrest may act to synchronise spores prior to conjugation and re-entry into the cell 

cycle. Phenotypic analysis of the cdc28 temperature sensitive mutant strain indicated 

that at the restrictive temperature cells resembled those that had arrested due to nutrient 

limitation, mating pheromone action or sporulation (Wittenberg and Reed, 1988). It 

seemed therefore that the cdc28 mutant was defective in the completion of START 

(Reed, 1980). The CDC28 gene was cloned by complementation and was shown to be a 

homologue of the fission yeast cdc2 gene (Lorincz and Reed, 1984; Reed et al, 1985). 

CDC28 had kinase activity (Reed et al, 1985) that increased at START, and it was 

shown that monomeric CDC28 was inactive (Wittenberg and Reed, 1988). This 

suggests that, like Cdc2, cyclin binding is required for kinase activity. G1 specific 

cyclins were cloned as high dosage suppressers of the cdc28ts mutation, indicating a 

functional interaction with CDC28 (Hadwiger et al, 1989). Three G1 cyclin genes were 

identified, CLN1, CLN2 and CLN3 (Hadwiger et al, 1989; Sudbery et al, 1980). 

Mutational elimination of CLNs 1, 2, and 3 confers a G1 arrest phenotype (Richardson 

et al, 1989) and CLN proteins co-precipitate with CDC28 (Wittenberg et al, 1990). 

Overexpression of G1 cyclins advances progression through START (Richardson et al, 

1989). Truncated forms of the G1 cyclins are hyperstable and also cause advanced 

completion of START by prematurely activating CDC28 kinase activity (Hadwiger et 

al, 1989; Wittenberg et al, 1990). CLN1 and CLN2 mRNA levels fluctuate during the 

cell cycle, accumulating to a peak level immediately before the Gl/S transition and 

almost completely disappearing in the subsequent G2 interval (Wittenberg et al, 1990). 

CLN1 and CLN2 protein levels and the associated kinase activity mirror the fluctuations
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in mRNA levels (Wittenberg et al, 1990). CLN3 mRNA levels are constant throughout 

the cell cycle, but protein levels are controlled by a translational control element in the 

5’ region of the CLN3 mRNA (Polymenis and Schmidt, 1997) that is regulated by the 

Ras-cyclic AMP pathway (Hall et al, 1998). This control element is required for 

repression of CLN3 synthesis under conditions of slow growth or diminished protein 

synthesis (Gallego et al, 1997), thereby coupling cell growth with cell cycle 

progression. All three CLNs have short half-lives (Wittenberg et a l, 1990; Tyers et al, 

1992; Cross, 1990) and may be specifically degraded by the same mechanism. All three 

proteins contain PEST sequences which, when removed by truncation mutations, confer 

increased protein stability (Hadwiger et al, 1989; Wittenberg et al, 1990; Cross, 1990). 

When S. cerevisiae cells undergo sporulation the haploid spores generated by meiosis 

can undergo two rounds of mitotic division to form one cell of each mating type, MATa 

and MATa. At the first division, a MATa cell will divide to form two MATa cells. The 

cell corresponding to the daughter cell will divide again to form two MATa cells, whilst 

the original mother cell will switch mating type and divide to form two MATa cells. 

Cells of opposite mating type can then mate to from a diploid MATa/MATa cell. The 

mating type switch of the mother cell involves the action of the HO gene product, an 

endonuclease that introduces a site-specific double strand break in the MAT  gene. The 

HO gene product is regulated during the cell cycle with an expression pattern identical 

to that of the CLN1 and CLN2 genes. The element controlling the periodic expression of 

the HO gene is termed the SCB (SWI4 cell cycle box) (Nasmyth, 1985a; Nasmyth, 

1985b; Breeden and Nasmyth, 1987). SCB consensus sequences are also present 

upstream of the CLN1 and CLN2 genes (Ogas et al, 1991). Transcription of the HO 

gene is controlled by two transcription factors, SWI4 and SWI6 (Andrews and 

Herskowitz, 1989). DNA binding analysis indicates that only SWI4 binds to DNA
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(Primig et al, 1992; Sidorova and Breeden, 1993) but both factors are bound as a 

complex to SCB DNA (Nasmyth and Dirick, 1991). The SWI4 gene itself is transcribed 

specifically in G1 (Breeden and Mikesell, 1991). It has been demonstrated that SCB 

transcription is dependent on CDC28 activity. The expression of CLN1 and CLN2 

therefore forms part of a positive feedback loop. Newly bom cells in G1 have no 

significant levels of CLN1 and CLN2 transcripts. In a cdc28ts mutant line maintained at 

the restrictive temperature CLN1 and CLN2 transcripts appear when the cell has 

achieved sufficient growth. These levels do not increase further (Dirick and Nasmyth, 

1991; Cross and Tinkelenberg, 1991). Wild type cells however, increase their levels of 

CLN1 and CLN2 transcripts from the same starting point (Dirick and Nasmyth, 1991). 

The mechanism of CDC28 dependent activation of CLN1 and CLN2 transcription may 

act through activation of the SWI6 transcription factor, which contains consensus sites 

for CDC28 phosphorylation (Sidorova and Breeden, 1993).

During the mating pheromone response, extracellular signals impinge on the cell cycle 

control machinery to regulate progression through START. Mating pheromone causes a 

repression of CLN1, and CLN2 transcription (Wittenberg et a l, 1990; Dirick and 

Nasmyth, 1991). CLN3 transcription however, is induced (Wittenberg et al, 1990), but 

CLN3-associated kinase activity is repressed (Jeoung et al, 1998). The FAR1 gene was 

identified as a mutation that uncouples cell cycle arrest from mating pheromone 

response. FAR1 is regulated by phosphorylation and binds to CDC28/CLN complexes 

(Chang and Herskowitz, 1992). Phosphorylation of FAR1 is due to the action of FUS3, 

a MAP kinase homologue (Peter et al, 1993). FUS3 may also be involved in 

inactivation of CLN3 in a FAR1 independent manner, possibly by direct 

phosphorylation (Elion et al, 1991).
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Passage through START does not necessarily commit cells to DNA synthesis. A 

number of cdc mutants arrest after completion of START, but before entry into S-phase 

(Reed, 1980). The initiation of S-phase is therefore controlled separately from START 

control. There are six B-type cyclins in S. cerevisiae; CLB1-6. CLB1 and CLB2 have a 

role in initiation of mitosis (Surana et al, 1991; Ghiara et al, 1991; Fitch et al, 1992) 

but also appear to have a mid-S-phase role in conjunction with CLBs 3 and 4. Deletion 

of all four genes simultaneously arrests cells in S-phase with a half-replicated DNA 

content (Richardson et al, 1992). CLB5 and CLB6 have a direct role in controlling 

entry into S-phase, as deletion of both genes impairs S-phase initiation, though START 

progression is unaffected (Epstein and Cross, 1992; Schwob and Nasmyth, 1993; Kuhne 

and Linden, 1993). The pattern of expression of the budding yeast B-type cyclins 

mirrors their activities, with CLB5 and CLB6 being synthesised in G1 (Schwob and 

Nasmyth, 1993; Kuhne and Linden, 1993), CLB3 and CLB4 being produced during S- 

phase and CLB1 and CLB2 are synthesised primarily in G2 (Fitch et a l, 1992; Epstein 

and Cross, 1992; Grandin and Reed, 1993). These data suggest that, 1: S-phase initiation 

involves the action of CDC28 with CLB5/CLB6, 2: S-phase progression requires 

interaction of CDC28 with CLB3/CLB4, and, 3: Entry into mitosis is controlled by 

CDC28 bound to CLB1/CLB2.

The regulation of START progression by CDC28 is very similar to the regulation of 

G2/M phase progression by Cdc2 in fission yeast. Both events require the binding of a 

regulatory cyclin partner protein which is itself regulated by proteolysis or degradation. 

Not all temperature sensitive mutant alleles of CDC28 result in G1 arrest. The cdc28-lN  

mutant arrests in G2 (Piggott et al, 1982), suggesting that CDC28 plays a role not only 

in G1 progression, but is also involved in signalling the entry into mitosis in the same 

way as Cdc2 governs mitotic entry in the fission yeast. The identification of the mitotic
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(B-type) cyclins, CLBs 1-4, which show a relatively high degree of homology to fission 

yeast Cdcl3, and the demonstration that these cyclins interact with CDC28, suggested 

that CDC28 did indeed have a dual role in cell cycle progression; governing both G1 

progression and entry into mitosis (Surana et al, 1991; Ghiara et al, 1991; Richardson 

etal., 1992).

A number of other homologues of Cdc2/CDC28 exist in S. cerevisiae, not all of which 

have a direct role in cell cycle progression (see Table 1.1). The product of the 

SRB10/SSN3 gene forms a kinase complex with the SRB11 cyclin. This complex forms 

part of the RNA polymerase II holoenzyme (Kuchin et al, 1995; Liao et al, 1995) and 

has kinase activity towards the carboxy terminal repeat domain (CTD) of the 

polymerase in vitro (Hengartner e.t al, 1995; Liao et al, 1995). The SRB10/SRB11 

complex probably has a role in repression of transcription (Kuchin and Carlson, 1998). 

A second kinase/cyclin complex, KIN28/CCL1, also associates with the RNA 

polymerase II holoenzyme and has CTD kinase activity (Valay et al, 1995).

The CAK1/CIV1 kinase is distantly related to the cdk family but is active as a monomer 

and has not been found to bind to any of the yeast cyclins (Kaldis et al, 1996; Thuret et 

al, 1996; Espinoza et al, 1996). CAK1 phosphorylates the Thr 161 residue of CDC28 

that is necessary for full activity of the kinase (Kaldis et al, 1996; Thuret et al, 1996; 

Espinoza et al, 1996). CAK1 activity is also required for phosphorylation and 

activation of KIN28 (Espinoza et al, 1998).

The last member of the cdk family in S. cerevisiae is encoded by the PH085 gene. 

PH085 interacts with an extensive number of cyclins to carry out a wide variety of 

cellular functions (Measday et al, 1997; Kaldis et al, 1998). For example PH085 acts 

in combination with the PHO80 cyclin to regulate cell cycle progression in response to 

phosphate levels. In low phosphate conditions Pho4 binds to DNA and activates the
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transcription of genes involved in phosphate metabolism such as the acid phosphatase, 

PH05 (Jayaraman et al, 1994). Under high phosphate conditions however, Pho4 is 

phosphorylated by PHO85/PHO80 and cannot bind to DNA (Kaffman et al, 1994). The 

PHO85/PHO80 complex can be inhibited by PH081, a protein that is bound to the 

complex in high and low phosphate conditions. The inhibitory activity of PH081 must 

therefore be post-translationally modified (Schneider et al., 1994; Hirst et al, 1994). 

PH085 also has a role in glycogen metabolism (Timblin et al, 1996) in conjunction 

with the PCL8 and PCL10 cyclins (Huang et al., 1998). These complexes control 

glycogen biosynthesis by phosphorylation of the glycogen synthase GSY2 (Huang et 

al., 1998). PH085 also has a role in cell cycle control in combination with the cyclins, 

PCL1 and PCL2 (Espinoza et al, 1994; Measday et al, 1994). The activity of these 

complexes may be required for progression through Gl. Expression of both genes, like 

that of CLN1 and CLN2, is controlled by SBF, and reaches a peak at START (Espinoza 

et al, 1994; Measday et al, 1994). PH085/PCL1 is able to phosphorylate the SIC1 

protein, the S. cerevisiae homologue of Schizosaccharomyces pombe Ruml (Sanchez- 

Diaz et al, 1998), in vitro (Nishizawa et al, 1998). Phosphorylation of SIC1 results in 

its rapid degradation, a process that is required for DNA synthesis to occur (Nishizawa 

et al, 1998). Both PH085/PCL1 and PH085/PCL2 are able to phosphorylate the 

RVS167 protein (Lee et al, 1998). Deletion of RVS167 results in defects in endocytosis 

and organisation of the actin cytoskeleton, phenotypes that are also observed when 

PCL1 and PCL2 are deleted (Lee et al, 1998). PH085 may also have a role in late M- 

phase as part of a complex with the PCL9 cyclin, expression of which is controlled by 

the SWI5 transcription factor, and reaches a peak level at M/Gl (Tennyson et al, 1998). 

Deletion of PCL9 causes defects in bud formation (Tennyson et al, 1998).
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1.5 Vertebrate cell cycle control

Homologues of the yeast cdc2 and CDC28 genes have been found in a wide range of 

vertebrate species and are known as cyclin-dependent kinases (cdks) (Pines, 1995) (the 

vertebrate cell cycle is represented in Fig. 1.4). In humans there are nine cdks, cdkl to 

cdk9 (see Table 1.2), which interact with members of the human cyclin family, which 

consists of fourteen members: cyclin A (Henglein et al, 1991), cyclin B l, B2, B3 

(Gallant and Nigg, 1994), cyclin C (Lew et al, 1991), cyclin D l, D2, D3 (Xiong et al, 

1991; Motokura et al, 1992), cyclin E (Koff et al, 1991), cyclin F (Bai et al, 1994), 

cyclin G (Tamura et al, 1993), cyclin H (Makela et al, 1994; Fisher and Morgan, 

1994), cyclin I (Nakamura et al, 1995), and cyclin T (Wei et al, 1998). Homologues of 

other cell cycle control genes such as weel, cdc25 and sucl, have also been found 

(McGowan and Russell, 1993; Millar et al, 1991a; Draetta et al, 1987). Although there 

are many similarities between the mechanisms of cell cycle control in yeast and 

vertebrates there are also a number of important differences that are discussed below. 

Experiments involving the fusion of mitotic and inter phase cells identified the existence 

of a factor dubbed MPF (M-phase promoting factor), which was capable of inducing 

chromosome condensation when interphase cells were fused to cells blocked in mitosis 

(Johnson and Rao, 1970). Another factor termed SPF (S-phase promoting factor), 

induced DNA replication in the nuclei of G1 cells fused to cells synchronised in S-phase 

(Rao and Johnson, 1970). Biochemical purification of MPF from Xenopus laevis eggs, 

showed that it contained two proteins of 32 and 45 kDa. The 32 kDa polypeptide cross

reacted with antibodies raised against a conserved region of the fission yeast Cdc2 

protein (Gautier et al, 1988). MPF was also shown to bind to Schizosaccharomyces 

pombe p l3 sucl, as MPF activity is depleted from a crude preparation of MPF passed
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through a p l3 sucl column (Dunphy et al, 1988). These results suggested that cell cycle 

control mechanisms in vertebrates might resemble those found in yeast. A human 

homologue of the fission yeast cdc2 gene had previously been cloned by 

complementation of cdc2ts mutant strains (Lee and Nurse, 1987), demonstrating a 

remarkable degree of conservation of function throughout eukaryotic evolution. The 

human cdc2 gene is also known as cdkl and will be referred to as such in this thesis. 

Microinjection of anti-cdc2 antibodies into mouse cells indicated that mammalian cdkl 

functioned at G2/M but not at Gl/S (Riabowol et al., 1989). After microinjection, the 

mouse cells underwent DNA replication but failed to initiate cell division, indicating a 

G2/M specific role for cdkl and suggesting that it plays no role in Gl/S. This 

hypothesis is supported by the finding that the mouse FT210 cell line, which contains a 

temperature sensitive cdkl gene, completes DNA replication but fails to enter mitosis at 

the restrictive temperature (Hamaguchi et al, 1992). This situation is unlike that 

observed in S. pombe and Saccharomyces cerevisiae, where Cdc2/CDC28 acts to 

initiate both transitions. Gl/S phase progression in mammalian cells involves the action 

of other members of the mammalian cdk family, cdk2 (Pagano et al, 1993) and cdk3 

(Meyerson et al, 1992). The kinase encoded by the cdk2 gene shares the greatest degree 

of homology with cdkl of all the cdks: 65% of all amino acids are identical in both 

kinases. Expression of dominant negative mutant versions of cdk2 and cdk3 block cells 

at the Gl/S-phase transition (Van den Heuvel and Harlow, 1993). The cyclin partner to 

which cdk2 binds during S-phase is cyclin A, which is synthesised at the beginning of 

S-phase (Tsai et al, 1991; Pines and Hunter, 1990). It is believed that cdk2/cyclin A is 

required for DNA synthesis, but not for transition into S-phase. Microinjection of cells 

with anti-cyclin A antibodies abolishes DNA replication as judged by BrdU 

incorporation (Girard et al, 1991; Zindy et al, 1992), and overexpression of cyclin A
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causes premature initiation of DNA synthesis (Rosenberg et al, 1995). There is also a 

role for cdk2 in the Gl/S-phase transition in conjunction with cyclin E. The mRNA and 

protein levels of cyclin E and the activity of the cdk2/cyclin E complex all peak at the 

Gl/S transition and decline as cells progress through S-phase (Dulic et al, 1992). 

Functional evidence to support a role for cdk2/cyclin E in Gl/S progression comes from 

studies on Drosophila embryos with a mutant cyclin E. In these developing flies, once 

the maternal store of cyclin E mRNA is degraded in cycle 15, cells arrest in G1 

(Knoblich et al, 1994). Furthermore, overexpression of cyclin E in mammalian cells 

causes accelerated progression through G1 and into S-phase (Ohtsubo and Roberts, 

1993). The cdk2/cyclin E and cdk2/cyclin A complexes associate with the E2F 

transcription factor (Mudryj et al, 1991; Devoto et al, 1992; Pagano et al, 1992a). The 

E2F family of transcription factors control the transcription of a number of genes 

required for DNA synthesis, such as ribonucleotide reductase, dihydrofolate reductase, 

thymidylate synthase, PCNA and DNA polymerase a  (Nevins, 1992). The E2F 

transcription factors therefore play a role similar to that of the SBF and MBF 

transcription factors of S. cerevisiae. It is not yet clear how the binding of cdk2/cyclin E 

complex to E2F regulates expression of E2F controlled genes. One suggested 

mechanism is that binding of E2F/cdk2/cyclin E complex to DNA allows the 

phosphorylation of proteins forming part of the transcription machinery. One such 

candidate is the CCG1 protein, which associates with the TFIID complex and forms part 

of the RNA polymerase II initiation complex (Hisatake et al, 1993; Ruppert et al,

1993). Of all the human cdks identified, cdkl-9, only cdks 1, 2, and 3 can complement a 

budding yeast cdc28ts mutant, suggesting that cdks 5 to 9 have roles not directly 

associated with cell cycle progression (Meyerson et al, 1992). In the G2 phase of the 

cell cycle cdkl binds to both cyclin A and cyclin B. However, it is the cdkl/cyclin B
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complex that is responsible for signalling entry into mitosis (Draetta and Beach, 1988). 

During S-phase and G2 the cdkl/cyclinB complex is located in the cytoplasm, 

becoming associated with the centrosomes. At mitosis, the complex rapidly enters the 

nucleus (Pines and Hunter, 1991). The cdkl/cyclin A complex on the other hand, is 

located in the nucleus during S-phase and G2 (Pagano et al, 1992b), and localises to 

DNA replication sites in S-phase (Cardoso et al., 1993). The nuclear located cdkl/cyclin 

B complex is responsible for initiating nuclear lamina breakdown, one of the earliest 

events of mitosis (Peter et al, 1990). Other possible substrates of the cdkl/cyclin B 

kinase include cytoskeletal elements such as microtubules (Verde et al, 1992) and 

Golgi membrane proteins (Lowe et al, 1998).

The other members of the mammalian cdk family have diverse functions, some of which 

play an indirect role in cell cycle progression. The cdk4 kinase for example associates 

with cyclin D1 just before the initiation of S-phase and the complex reaches a peak level 

in early S-phase and declines in late S-phase and G2 (Matsushime et al, 1992). 

Accumulation of cyclin D1 is stimulated by growth factors. Mouse macrophages 

stimulated with colony stimulating factor (CSF) begin to accumulate cyclin D1 protein 

4 to 6 hours after stimulation, at a time which corresponds to the beginning of DNA 

replication (Matsushime et al, 1991). Withdrawal of growth factor stimulation leads to 

cessation of cyclin D1 transcription and disappearance of the mRNA and the protein 

itself, as the D-type cyclins are short lived proteins (Won et al, 1992). Experiments 

involving microinjection of anti-cyclin D1 antibodies into serum starved cells indicate 

that it’s activity is required in mid to late G1 and not in S-phase, because antibody 

microinjection up to 8 hours after serum starvation (when cells are in mid G l) prevented 

DNA replication, whereas micro injection after 16 hours (when cells were already 

beginning to enter S-phase) did not affect DNA replication (Baldin et al, 1993). Further
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evidence that the cdk4/cyclin D1 kinase couples growth factor signalling pathways to 

cell cycle control comes from experiments in which cyclin D1 overexpression resulted 

in a diminished dependence on growth factor stimulation and caused a more rapid 

progression through the cell cycle (Quelle et al, 1993). D-type cyclins have also been 

identified as oncogenes (Motokura et al, 1991; Withers et al, 1991; Lammie et al,

1992) and experiments in which cells overexpressing cyclin D1 were injected into nude 

mice showed that they were capable of tumour formation (Jiang et a l, 1993). The 

mechanism by which the cdk4/cyclin D1 complex promotes DNA replication was 

initially thought to involve modulation of the inhibitory properties of the retinoblastoma 

protein pRb (Fig. 1.5). The Rb protein can be phosphorylated by cdk4/cyclin D1 in vitro 

at the same sites that are phosphorylated in vitro at the Gl/S transition (Kato et al,

1993). Activity of the cdk4/cyclin D2 kinase is capable of reversing the Rb mediated 

inhibition of SAOS-2 cell growth. This effect is concomitant with hyperphosphorylation 

of Rb (Dowdy et al, 1993; Ewen et al, 1993). The Rb protein is known to bind to, and 

inhibit, the E2F transcription factor, which controls the expression of a number of S- 

phase genes. Phosphorylation of pRb by the cdk4/cyclin D1 complex is thought to cause 

the dissociation of Rb from E2F, allowing S-phase specific gene expression (Sherr and 

Roberts, 1995). Expression of both cyclin E and cyclin A is dependent on E2F mediated 

transcription (Devoto et al, 1992; Ohtani et al, 1995; DeGregori et a l, 1995), as is 

expression of the Cdc6 protein that is involved in DNA replication (Yan et al, 1998). 

This led to the proposal of a model in which growth factor induced activity of 

cdk4/cyclin D1 kinase resulted in regulation of cdk2/cyclin E and cdk2/cyclin A activity 

via phosphorylation of Rb, resulting in release of E2F and subsequent expression and 

accumulation of cyclin E and cyclin A. The cdk inhibitor (CKI), p lb 11̂ 43, was also 

shown to be expressed in an E2F dependent manner (Hartwell, 1978). p lb 11''*43 is an

33



inhibitor of cdk4/cyclin D (Serrano et al, 1993) and would therefore seem to form part 

of a feedback loop, negatively regulating the activity of cdk4/cyclin D. The proposed 

model therefore links extracellular signalling events to passage through START, and 

progression into S-phase. Other evidence, however, contradicts this presumed role of 

cdk4/6 complexes, and suggests instead that they are involved not in inhibitory 

hyperphosphorylation of Rb, but in hypophosphorylation, that leads to activation of Rb 

(Ezhevsky et al, 1997). It is argued that the reported ability of cdk4/cyclin D to 

hyperphosphorylate Rb occurred under non-physiological conditions, such as in in vitro 

kinase assays and in experiments where cdk4/cyclin D was overexpressed. It is 

suggested that inhibition of Rb by hyperphosphorylation is carried out by the 

cdk2/cyclin E complex (Ezhevsky et al., 1997). The precise role of cdk4/cyclin D 

mediated hypophosphorylation of Rb is still unclear. However it has been observed that 

prior hypophosphorylation of Rb is required for subsequent hyperphosphorylation by 

cdk2/cyclin E (Hatakeyama et al, 1994). Unphosphorylated Rb is therefore not a 

substrate for inactivating hyperphosphorylation and maintains cells in a GO state by 

inhibiting E2F mediated transcription . The cdk4/cyclin D complex may therefore 

regulate cell cycle re-entry from a GO state (Fig 1.6).

The cdk5 protein is present in various mammalian tissues, but cdk5-associated kinase 

activity has been found only in brain tissue. This is due to the restricted expression of 

the activators of cdk5, p35, and two proteins derived from p35 by proteolysis, p25 and 

p23 (Lew and Wang, 1995). Although cdk5 is highly homologous to other members of 

the cdk family, p35 shows no resemblance to any of the known cyclins. The cdk5/p35 ^

kinase phosphorylates the jnicrotubule associated protein, tau, and the neuron specific ^

intermediate filament proteins, NF-M and NF-H (Lew and Wang, 1995). This suggests 

that cdk5/p35 is involved in the regulation of neurite outgrowth and cytoskeletal
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assembly. Evidence that this is the case comes from a study in which neurons were co

transfected with cdk5 and p35 and produced longer neurites. In contrast, neurons 

transfected with a dominant negative cdk5 or with antisense p35, produced fewer and 

shorter neurites (Nikolic et al, 1996).

The function of cdk6 may be similar to that of cdk4. It is known that cdk6 associates 

with D-type cyclins in G l, but the precise role is not yet understood (Meyerson and 

Harlow, 1994; Bates et al, 1994). It may be that cdk4 and cdk6 have overlapping 

functions or may be controlled by different growth factor signalling pathways. Another 

possibility is that cdk4 and cdk6 perform similar functions, but are expressed in 

different tissues.

The CAKjactivity of vertebrates may be formed by another member of the cdk family, 

cdk7, in associatiation with cyclin H. Purified CAK activity from Xenopus laevis 

oocytes was identified as being encoded by the MO 15 gene. This was later renamed 

cdk7, when it was demonstrated that it’s activity was dependent on binding to cyclin H 

(Solomon et al, 1993; Fesquet et al, 1993; Poon et al, 1993). The cdk7/cyclin H 

complex co-purifies with a 36 kDa protein known as MAT1 (menage-a-trois 1). The 

precise function of MAT 1 is not yet known but it may have a role in assembly of the 

complex. A heterotrimeric complex of cdk7/cyclin H/MAT1 is more stable than a 

heterodimer of cdk7/cyclin H, when assembled in vitro (Tassan et al, 1995a). Whether 

cdk7/cyclin H functions as the physiological CAK has not yet been fully determined 

(Harper and Elledge, 1998). The budding yeast homologue of cdk7 is KIN28, which 

does not have CAK activity but associates with the TFIIH transcription complex and has 

CTD kinase activity (Valay et al, 1995). The CAK activity of S. cerevisiae is due to the 

activity of CAK1 (CIV1), a kinase that is related to the cdk family but does not bind to a 

cyclin partner, and is active as a monomer (Kaldis et al, 1996; Thuret et al, 1996;
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Espinoza et al, 1996). There is also a great deal of difference between the mechanism 

of action of CAK1 and cdk7 (Kaldis et al., 1996). This raised the possibility that the true 

in vitro function of cdk7 was as a CTD kinase, and that cdk7 associated CAK activity 

was an in vitro artifact (Harper and Elledge, 1998). Studies in Drosophila however, 

have provided genetic evidence that cdk7 does indeed function as the physiological 

CAK (Larochelle et al, 1998). It is possible, therefore, that cdk7 in metazoans fulfils 

the functions of CAK1 and KIN28 in yeast. As, like KIN28, the cdk7/cyclin H complex 

also associates with the TFIIH transcription factor and functions has CTD kinase 

activity (Serizawa et al, 1995). Phosphorylation of the CTD of RNA pol II may be 

important in controlling transcription and the role of cdk7/cyclin H in this process may 

provide a link between cell cycle control and general transcriptional control. 

Transcription is repressed when cells enter mitosis. Experiments utilising cell extracts 

from mitotic cells or using recombinant cdk 1/cyclin B in an in vitro transcription assay, 

have indicated that cdk 1/cyclin B activity is responsible for this repression. Repression 

of transcription is concomitant with inhibition of CTD kinase activity of TFIIH 

associated cdk7/cyclin H suggesting that cdk 1/cyclin B, activated by cdk7/cyclin H, 

negatively regulates TFIIH-associated cdk7/cyclin H (Long et al, 1998). CAK is 

responsible for phosphorylating the Thr 161 residue of cdkl and the corresponding Thr 

160 of cdk2, which is required for full activation of the kinases. The cdk7 kinase itself 

contains a similar residue, Thr 170, suggesting that it is also regulated by an upstream 

activator. A mutant form of cdk7, in which Thr 170 has been mutated to an alanine 

residue, which cannot be phosphorylated, has reduced CAK activity (Poon et al, 1994). 

Phosphorylation of Thr 170 is not required when the cdk7/cyclin H complex is bound to 

MAT1. When the mutant cdk7 binds to both cyclin H and MAT1, the complex has full 

CAK activity (Fischer et al, 1995). This implies that two separate pathways of CAK
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regulation exist; binding of MAT1, or phosphorylation at Thr 170. The kinase that is 

responsible for phosphorylating the cdk7 Thr 170 residue is known as CAK activating 

kinase (CAKAK) and has yet to be identified. It has been demonstrated however, that 

cdk2/cyclin A is capable of functioning as a CAKAK in vitro. This raises the possibility 

that CAK is regulated by a positive feedback loop involving cdk2 (Fischer et al, 1995). 

Studies in Drosophila have shown that cdk2/cyclin A requires CAK activity for 

activation in vitro (Larochelle et al., 1998).

The cdk8 kinase is the mammalian homologue of S. cerevisiae SRB10, a kinase that 

forms part of the RNA polymerase II holoenzyme. Immunoprecipitation of cdk8, co

precipitates cyclin C (Tassan et al, 1995b), a cyclin that is able to complement an S. 

cerevisiae G1 cyclin mutant (Lew et al, 1991; Leopold and O'Farrell, 1991). The 

cdk8/cyclin C complex has been shown to interact with the large subunit of RNA pol II 

(Liao et al, 1995; Leclerc et al, 1996) and has also been shown to act as a CTD kinase 

in vitro (Rickert et al., 1996). Affinity chromatography using antibodies directed against 

cdk8 has been used to purify a human RNA pol II complex which contains the histone 

acetyltransferases CBP and PCAF which are chromatin remodelling factors (Cho et al., 

1998).

The human cdk9 gene was initially isolated using a PCR based approach (Grana et al.,

1994). Similarly to cdk5, cdk9 appears to have a role in differentiation. The protein is 

detected in higher levels in differentiated tissues than in non-differentiated tissue and the 

kinase activity is highest in terminally differentiated tissues such as brain and muscle 

(Bagella et al., 1998). Cdk9 forms part of a multimeric protein complex (Garriga et al., 

1996), and associates with cyclin T (Wei et al., 1998) and is capable of phosphorylating 

the Rb protein in vitro (De Luca et al., 1997). Cdk9 also forms part of the Drosophila P- 

TEFb elongation complex and can bind to the HIV Tat protein, resulting in increased
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transcription elongation of the HIV genome. Both the P-TEFb and Tat complexes are 

able to phosphorylate the CTD of RNA pol II (Mancebo et al, 1997). These findings 

point to role for cdk9 activity in transcriptional control of differentiation. Further studies 

which utilised the yeast two hybrid system have shown that cdk9 interacts with TRAF2, 

a tumour necrosis factor signal transducer. This interaction was also shown to occur by 

immunoprecipitation (Maclachlan et al, 1998). It seems therefore that cdk9 plays a role 

in integrating extracellular signals, transcription and differentiation.

1.6 Cyclin dependent kinase inhibitors (CKIs)

Another class of proteins which regulate the function of cdks are the cdk inhibitors 

(CKIs). Currently, seven CKIs have been identified in human cells, which fall into two 

major families; INK4 and CIP/KIP. The INK4 family includes pl6, pl5, pl8, and p l9  

(Sherr and Roberts, 1995). The p i6 inhibitor was identified in a yeast two-hybrid screen 

for proteins that interacted with cdk4 (Serrano et al, 1993). The interaction between 

cdk4 and p i6 prevents association with cyclin D and therefore inhibits cdk4 associated 

kinase activity (Serrano et al, 1993). Inhibition of cdk4/cyclin D was thought to lead to 

cell cycle arrest because pRb remains hypophosphorylated and bound to the E2F 

transcription factor (Kato et al, 1993). However, given that cdk4/cyclin D may actually 

be responsible for hypophosphorylation of Rb (Ezhevsky et al, 1997), inhibition of 

cdk4/cyclin D may prevent exit from a GO state. Whatever the mechanism, inhibition of 

cdk4/cycin D results in inhibition of transcription of E2F-associated genes required for 

S-phase progression. Given the role of p i6 in inhibiting the activity of cdk4/cyclin D, 

maintaining cells in a GO state, it is no surprise to find that it is frequently mutated, or 

deleted in many tumours, as are other members of the INK4 family (Orlow et a l, 1995;
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Okamoto et al, 1995; Okuda et al., 1995). A role in tumour formation has been 

confirmed in p i 6 null mutant mice. 69% of these animals develop tumours and they are 

more susceptible to carcinogenic treatments than wild type littermates (Serrano et al, 

1996).

The CIP/KIP family of CKIs function in a different way to the INK4 inhibitors. They do 

not bind to monomeric cdks, but bind to cdk/cyclin complexes. The first of the CIP/KIP 

family of CKIs to be discovered was p21. It was identified in four separate screens; (1) 

through interaction with cdkl in a yeast two hybrid assay (Harper et al, 1993), (2) as an 

inhibitor derived from senescent cells (Noda et al, 1994), (3) as a protein induced by 

the action of p53 (El-Deiry et al, 1993) and (4) as a protein that binds strongly to 

cdk2/cyclin complexes (Gu et al, 1993). p21 can form complexes with cdk2 bound to 

cyclin A, cyclin D l, and cyclin E. In addition it can also bind to complexes containing 

cdkl and cdk3 (Harper et al, 1993; Xiong et al, 1993). The promoter of the p21 gene 

contains a p53 binding site that can confer p53 dependent expression on a reporter gene, 

and p21 can be induced by wild type, but not mutant p53 (El-Deiry et a l, 1993). p21 is 

induced when cells are irradiated, but not in p53 mutant cells (Dulic et al, 1994). 

Analysis of the levels of p21 in quiescent human fibroblasts, stimulated to grow, has 

shown that levels of monomeric, unbound p21 fall as cells approach S-phase. This 

occurs at the same time as cyclin A levels are increasing, lending weight to the 

hypothesis that G1 to S-phase progression occurs when the concentration of cdk2/cyclin 

A exceeds that of p21 (Cai and Dynlacht, 1998). The function of p21 however, is not 

limited to controlling progression into S-phase, a recent report has suggested that it may 

also have a role in correctly co-ordinating mitosis (Dulic et al, 1998).

Mammalian cells arrest in G1 in response to treatment with the antimitogen 

transforming growth factor p (TGF-p). This arrest correlates with inhibition of
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cdk2/cyclin E activity (Koff et al, 1993), and involves the action of p27, another 

member of the CIP/KIP family of CKIs (Polyak et al, 1994b; Toyoshima and Hunter,

1994). p27 is also involved in cell cycle arrest due to contact inhibition (Polyak et al, 

1994a). Although p21 and p27 are related, they differ in their substrate specificities. p21 

binds strongly to cdk2, whereas p27 binds more to cdk4. Though p27 can inhibit 

cdk2/cyclin E, it has a much greater affinity for cdk4/cyclin D (Polyak et al, 1994b). 

Immunoprecipitates of p27 from Swiss 3T3 cells, co-precipitate cdk4/cyclin D l, but no 

other cdk/cyclin complexes (Toyoshima and Hunter, 1994). The activity of p27 is 

masked by binding of a heat-labile ‘masking’ factor, and becomes unmasked when cells 

are treated with TGF-(3, or become contact inhibited (Polyak et al, 1994a). Because p27 

can inhibit cdk2/cyclin E and can be sequestered by cdk4/cyclin D2 complex, it has 

been suggested that cdk2/cyclin E can only be activated when there is enough 

cdk4/cyclin D to sequester p27 (Polyak et al, 1994a).

Another member of the CIP/KIP family of inhibitors, p24Cdl1, identified in a yeast two- 

hybrid assay, has significant homology to VH1 type protein tyrosine phosphatases, and 

has phosphotyrosine phosphatase activity in vitro (Gyruis et al, 1993). Overexpressing 

p24 causes a delay in S-phase. However, overexpression of a mutated version of the 

protein, which has no phosphatase activity, suppresses this phenotype (Gyruis et al,

1993).

1.7 Chemical inhibitors of cyclin-dependent kinases

Because cdks play such a pivotal role in cell cycle progression, and because cell cycle 

regulatory mechanisms are frequently disturbed in tumour cells, a great effort has been

40



invested in identifying compounds that have inhibitory effects on cdks. At least nine 

such inhibitors now exist (Meijer, 1996).

The mechanism of inhibition by a number of these inhibitors is known; staurosporine, 

butyrolactone I (Kitagawa et al, 1993), flavopiridol (Losiewiecz et al., 1994; De 

Azevedo et al., 1996), olomoucine (Abraham et al., 1994), roscovitine (De Azevedo et 

al., 1997). Although the chemical inhibitors of the cdks are structurally diverse, they 

appear to inhibit kinase activity by the same mechanism; ie. competitive binding to the 

ATP binding pocket. They differ however, in their substrate specificities. Some of the 

inhibitors are not specific to cdks, and can inhibit a wide range of kinases. This is the 

case for staurosporine , which inhibits cdkl/cyclin B and protein kinase C (PKC) with 

an IC50 value of 3-6 nM (Rialet and Meijer, 1991; Gadbois et al., 1992), and suramin, 

which inhibits a wide range of nuclear enzymes such as DNA primase, DNA 

polymerase a , and DNA topoisomerase II, as well as cdkl (Mahoney et al., 1990). 

Butyrolactone I on the other hand displays good specificity against cdkl and cdk2. It 

competes for ATP binding and inhibits the phosphorylation of cdkl consensus sites of 

histone HI and pRb (Kitagawa et al., 1993). Another specific inhibitor of cdkl and 

cdk2, namely toyocamycin, has been identified from cultures of Streptomyces sp. 

Toyocamycin shows good specificity towards both cdkl and cdk2 but does not inhibit 

in the nanomolar range, as do some other cdk inhibitors (Park et al., 1998).

Studies on the cleavage of sea urchin eggs identified the puromycin derivative 6- 

dimethylaminopurine (6-DMAP), as a potent inhibitor of cell division (Rebhun et al., 

1973). Further studies showed that, though not specific, 6-DMAP inhibited cdkl/cyclin 

B. Inhibitor screening of derivatives of 6-DMAP identified olomoucine as a specific, 

and potent inhibitor of cdkl/cyclin B (Vesely et al., 1994). Olomoucine inhibits cdkl, 

cdk2 and cdk5, but does not inhibit cdk4 and cdk6, suggesting that it may be possible to
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develop inhibitors that are specific for a particular cdk (Meijer, 1995). Analysis of the 

crystal structure of cdk2 bound to olomoucine, showed that it binds to the ATP binding 

pocket, though the purine ring of olomoucine binds in a completely different orientation 

to the purine ring of the ATP molecule (Schulze-Gahmen, 1995).

Another highly specific inhibitor of cdks is the semi-synthetic flavone, flavopiridol. 

Flavopiridol was initially identified as a compound that was a potent inhibitor of the 

growth of several breast and lung cancer cell lines (Kaur et al, 1992) and was later 

shown to specifically inhibit the cdkl kinase by competition for ATP binding 

(Losiewiecz et al, 1994). It is now known that cdkl, cdk2 and cdk4 are equally 

sensitive to flavopiridol (Meijer, 1995). Flavopiridol is highly specific as an inhibitor of 

cdks and can inhibit the growth of human tumour xenografts at concentrations that 

apparently do not affect the growth of normal cells (Sedlacek et al, 1996), and is 

currently undergoing phase II clinical trials as an anti-cancer drug (Stadler et al, 1998). 

Artificial peptides have also been shown to function as inhibitors of cdk2. Expression of 

a library of random peptides in a yeast two hybrid-based assay allowed the identification 

of peptides that specifically interacted with cdk2 and could inhibit its kinase activity in 

vitro (Colas et al, 1996). More detailed analysis of one of these peptides, pep8, 

indicated that inhibition of cdk2 activity was not absolute, pep8 inhibited activity 

towards histone HI but not pRb, raising the possibility that different peptide inhibitors 

may be developed to inhibit cdk2 activity towards an individual substrate (Cohen et al,

1998).

1.8 Cell division and cell cycle control in trypanosomatids
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Control of cell division in trypanosomes and Leishmania is different from that of yeast 

or mammalian cells in that there has to be co-ordination of replication of the single 

organelles; the kinetoplast, flagellum and the basal body. These organelles must then be 

evenly distributed between both daughter cells. The control of cell division in 

trypanosomatids must therefore include mechanisms to initiate and monitor the proper 

replication and segregation of these organelles. There must also be strict controls linking 

cell cycle progression with differentiation, as the parasite alternates between 

proliferative and non-proliferative life cycle stages. An understanding of the basic 

mechanism of cell cycle control in trypanosomatids is therefore necessary to gain a 

proper insight into control of the parasite life cycle (Matthews and Gull, 1994b).

The cell division cycle of the procyclic form of Trypanosoma brucei has been studied in 

great detail and the timing of a number of characteristic events is known (Sherwin and 

Gull, 1989). The first event to occur is the initiation of kinetoplast and nuclear DNA 

synthesis (Gull et al, 1990; Woodward and Gull, 1990). These events occur almost 

simultaneously and are quickly followed by elongation of the pro-basal body adjacent to 

the mature basal body subtending the flagellum. The elongated pro-basal body will 

initiate the growth of a new daughter flagellum. Flagellum growth occurs for a large 

proportion of the cell cycle. During this time kinetoplast replication and division occurs 

(Sherwin and Gull, 1989). The two kinetoplasts, together with the two new flagellar 

basal bodies separate together as there is a physical link between the basal body and the 

kinetoplast (Robinson and Gull, 1991). The next event to occur is mitosis, which 

involves the segregation of both the large and minichromosomes. Segregation of the 

large chromosomes occurs by the action of kinetochore microtubules. The partitioning 

of the minichromosomes, however, occurs by a another method that may involve the 

action of microtubule motor proteins (Ersfeld and Gull, 1997). Organelle repositioning
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occurs so that longitudinal cell division segregates a single nucleus, kinetoplast and 

flagellum between each daughter cell (Sherwin and Gull, 1989). Inhibition of 

microtubule dynamics disrupts cell division, resulting in mis-segregation of organelles 

and the formation of anucleate ‘zoids’ (Robinson et al, 1995). This suggests that the 

checkpoint mechanisms observed in other eukaryotes do not exist in trypanosomes.

In yeast and mammalian cells, signalling pathways impinge on the mechanism of cell 

division to co-ordinate the expression of genes required for further progression through 

the cell cycle or for cell cycle arrest and differentiation (Pines, 1994; Zetterberg et al, 

1995). Control of cell cycle progression and control of differentiation of T. brucei 

bloodstream form cells to procyclics are linked (Matthews and Gull, 1994a). This 

differentiation requires the perception of an unidentified signal in a particular stage of 

the cell cycle, G1 or GO (Matthews and Gull, 1994a). Studies of the differentiation from 

the proliferative long slender bloodstream form of T. brucei, to the non-dividing short 

stumpy form is due to the accumulation of an as yet unidentified stumpy induction 

factor (SIF) that promotes differentiation via the cAMP signalling pathway (Vassella et 

al., 1997). Adenylate cyclase activity is also known to be stimulated during the 

transition from the bloodstream to the procyclic form (Rolin et al, 1993). The pp44/46 

proteins of T. brucei are tyrosine phosphorylated proteins with RNA binding 

characteristics that are developmentally regulated (Parsons et al, 1994). Proteins such 

as these may provide a link between cell signalling pathways controlling differentiation 

and mRNA stability, degradation or translation. This is a possible way that 

trypanosomatids may control developmental gene expression. Current evidence suggests 

that the expression of the majority of protein coding genes in trypanosomatids is not 

regulated at the level of transcription initiation, but that gene expression is controlled 

post-transcriptionally, by modulation of RNA stability and RNA processing events such
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as trans-splicing and polyadenylation (Agabian, 1990; Vanhamme and Pays, 1995). 

Many homologues of mammalian cell signalling molecules exist in trypanosomatids, 

such as MAP kinases (Wiese, 1998), adenylate cyclase (Paindavoine et al., 1992), 

protein kinase A and protein kinase C homologues (Boshart and Mottram, 1997), and 

trypanosomatids are thought to utilise host-derived molecules to regulate growth and 

differentiation (Barcinski and Costa-Moreira, 1994). T. brucei growth can be stimulated 

by epidermal growth factor (EGF) and a protein that cross-reacts with an antibody 

against the human EGF receptor can be detected in T. brucei cell extracts (Hide et al., 

1989). It is likely therefore that trypanosomatids use similar signalling pathways to 

control growth and division. However, although there will be similarities in the 

mechanisms linking extracellular signals with cell cycle progression between 

trypanosomatids, yeast, and mammalian cells, there are also likely to be important 

differences that may be targets for the development of parasite specific drugs. 

Homologues of components of the cell cycle machinery have been identified in 

trypanosomes and Leishmania. The CRK1 (cdc2-related kinase) gene of Leishmania 

mexicana was isolated from a cDNA library during an experiment unrelated to the study 

of CDK homologues in Leishmania (Mottram et al., 1993). The protein encoded by 

CRK1 contained many of the residues known to be important for the regulation of the 

activity of cdks, such as homologues of the Tyr 15 and Thr 161 residues involved in 

regulation of kinase activity. CRK1 also contained a modified PSTAIR box, with a 

single amino acid substitution. CRK1 was found to have stage regulated kinase activity 

against histone HI, with activity being detected in log phase and stationary phase 

promastigotes but not in amastigotes. This was despite the fact that the protein was 

detected at equal levels in all three life cycle stages, and suggested that the kinase 

activity was post-translationally regulated in the same way as cdks from other
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organisms; by the binding of regulatory proteins such as cyclins, CKIs or by inhibitory 

and activatory phosphorylations. Because the activity of CRK1 is not ubiquitous in all 

three life cycle stages it is likely that it plays a role in differentiation. A direct role in 

cell cycle progression is unlikely, as CRK1 activity is present in cell cycle arrested, 

stationary phase promastigotes and is absent in proliferative amastigotes (Mottram et 

al, 1993). A separate kinase activity that binds to p l3 sucl was detected in Leishmania. 

This activity, originally termed SBCRK (sue 1-binding cdc2-related kinase), was found 

to be present only in the proliferative promastigote and amastigote stages of the life 

cycle, and was not detected in the cell cycle arrested metacyclic stage (Mottram et al, 

1993). Further investigation suggested that the CRK3 kinase is responsible for this 

activity (Grant et al, 1998). The CRK3 gene of Leishmania mexicana is homologous to 

a previously identified gene of Trypanosoma brucei that had been identified by 

heterologous screening using the L. mexicana CRK1 gene as a probe. This approach 

identified a family of CRKs in Trypanosoma brucei (CRK1-CRK3) (Mottram and 

Smith, 1995). A fourth CRK gene has been identified in Trypanosoma brucei (Ford and 

Mottram, unpublished). This gene, CRK4, is homologous to a previously identified 

CRK from the insect trypanosomatid, Crithidia fasciculata (Brown et al, 1992). A fifth 

member of the T. brucei CRK family, CRKS, was identified from the EST sequencing 

project. The kinase encoded by CRKS is most homologous to the mammalian cdk5 and 

may therefore play an important role in differentiation (Van Hellemond and Mottram, 

unpublished). As well as catalytic kinase subunits, a number of regulatory cyclins have 

been cloned from Trypanosoma brucei and Trypanosoma cruzi. The CYC1 gene of T. 

brucei was able to complement an S. pombe cdc!3‘s mutant and co-purified, by 

immunoprecipitation, with a 34kDa protein that cross-reacted with a monoclonal 

antibody raised against the PSTAIR epitope of p34cdc2 (Affranchino et al, 1993). Two
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more cyclins were identified from T. brucei through complementation screening of T. 

brucei cDNA library, expressed in an S. cerevisiae G1 cyclin mutant (Neuville and 

Mottram, unpublished). CRKs have also been found in Trypanosoma cruzi. Co

expression of T. cruzi CRK1 with mammalian cyclins in COS-7 cells, demonstrated that 

CRK1 was capable of binding mammalian cyclins E, D3 and A (Gomez et al, 1998). 

The work described in this study involves the use of molecular genetics, chemical 

inhibition and yeast complementation analysis to gain more knowledge of the function 

of the CRK3 kinase of Leishmania mexicana and it’s possible role in cell cycle control.
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Fig. 1.1 The life cycle of Leishmania mexicana

The life cycle of Leishmania mexicana is represented. The proliferative promastigote and 

the cell cycle arrested metacyclic exist in the sandfly vector. Upon transmission to the 

mammalian host metacyclics differentiate into proliferative amastigotes that are 

phagocytosed by host macrophages where they survive in the parasitophorous vacuole.
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Fig. 1.2. Activation and inhibition of cyclin-dependent kinases

Phosphorylation of Thrl61 (Panel A) allows the binding of a cyclin partner via 

interaction with the PSTAIR box (Panel B). This results in a fully active kinase complex. 

The complex can be inhibited by phosphorylation of Tyrl5 (Panel C) or by the binding of 

a CDK inhibitor protein, CKI, (Panel D).
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Fig 1.3 The Saccharomyces cerevisiae cell cycle

The S. cerevisiae cell cycle is depicted with the position of each cdk/cyclin complex 

representing the point in the cycle at which it functions. Inhibition of cell cycle 

progression due to nutrient limitation, or mating factor signalling, occurs at START.
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Fig 1.4 The mammalian cell cycle

The mammalian cell cycle is depicted with the position of each cdk/cyclin complex 

representing the point in the cycle at which it functions. The point at which inhibitory (-) 

and activatory (+) signals act on cdk/cyclin complexes is indicated by the arrows.
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Fig. 1.5 Model for regulation of S-phase progression by growth factors, via 

modulation of Cdk4/cyclin D activity

Transduction of extracellular growth factor signals, via the MAP kinase cascade, leads 

to activation of Cdk4/cyclin D. Phosphorylation of the retinoblastoma protein (pRb) by 

Cdk4/cyclin D causes it’s release from binding to the E2F transcription factor. This 

allows E2F to participate in activation of transcription of genes required for S-phase 

progression.
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Fig. 1.6 Revised model for regulation of S-phase progression by growth factors, via 

modulation of Cdk4/cyclin D activity

Transduction of extracellular growth factor signals, via the MAP kinase cascade, leads 

to activation of Cdk4/cyclin D. Hypohosphorylation of the retinoblastoma protein (pRb) 

by Cdk4/cyclin D primes the Rb protein for activity. Subsequent hyperphosphorylation 

by Cdk2/cyclin E activates causes release ofthe E2F transcription factor allowing 

transcription of genes required for S-phase progression.
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CDC28 CLN1, CLN2, CLN3 
CLB5, CLB6
CLB1, CLB2, CLB3, CLB4

Passage through START 
DNA replication 
Mitosis

CAK1 CLN2 Activation of Cdc28 by T167 
phosphorylation

KIN28 PCL1 Part of RNA pol II holoenzyme
SRB10 SRB11 Part of RNA pol II holoenzyme
PH085 PHO80

PCL1, PCL5, PCL9
Transcriptional control of phosphate 
metabolism

Table 1.1 The cyclin-dependent kinases of Saccharomyces cerevisiae
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CDK CYCLIN FUNCTION
Cdkl Cyclin A, B, B2, B3 G2/M phase transition
Cdk2 Cyclin A, E,D 1,D 2, D3 Gl/S transition and S-phase progression
Cdk3 Unknown Gl/S transition
Cdk4 Cyclin D1,D2, D3 Gl/S phase progression in response to growth 

factors
Cdk5 p35 and Cyclin D l, D3 Neuronal differentiation
Cdk6 Cyclin D1,D2, D3 Gl/S phase progression in response to growth 

factors
Cdk7 Cyclin H Cdk activating kinase and RNA polll CTD kinase
Cdk8 Cyclin C Component of RNA pol II holoenzyme
Cdk9 Cyclin T Probable role in differentiation

Table 1.2. The mammalian cyclin-dependent kinases
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CHAPTER 2

Materials and methods 

2.1 Molecular methods

2.1.1 Bacterial strains

The Escherichia coli strain used throughout this study was XLl-Blue MRF’ 

(Stratagene). Cultures were grown overnight at 37°C with rotation at 220 rpm.

2.1.2 Glycerol stocks

A single colony was selected from an LB-agar plate and inoculated into 1 ml LB broth. 

The culture was grown overnight at 37°C and 0.5 ml was mixed with an equal volume of 

2% peptone/40% glycerol solution. Samples were stored at -70°C.

2.1.3 Bacterial culture

2 ml LB broth in a sterile glass test tube was inoculated with an individual colony 

selected from an LB-agar plate using a sterile tooth pick. 100 pg ml'1 ampicillin was 

added and caps were placed on the tubes. This culture was incubated in a rotary 

incubator at 220 rpm, 37°C, overnight and was either used to perform a plasmid mini- 

prep, or was used to initiate a larger culture. Briefly, 1 ml of the pre-culture was used to 

inoculate 20 ml (for midi prep) or 400 ml (maxi-prep) LB-broth which was grown 

overnight at 220 rpm, 37°C.
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2.1.4 Preparation of competent cells

1 ml LB-broth containing 20 fig ml'1 tetracycline was inoculated with a single bacterial 

colony selected from an LB-agar plate. This culture was grown overnight at 37°C, 220 

rpm, in a rotary incubator. This pre-culture was inoculated into 200 ml LB-broth 

containing 20 |ig ml'1 tetracycline and was incubated at 37°C, 220rpm till the O.D.600 

value was between 0.6 and 0.7. (The O.D.600 value was determined by transferring a 0.5 

ml sample to a disposable plastic cuvette (Sarstedt) at various time points. The optical 

density at 600 nM was then determined using a DU 650 spectrophotometer (Beckman). 

When the culture had reached the appropriate density, cells were harvested by 

centrifugation at 2000g for 10 min. From this point onwards cells were kept at 4°C. The 

cell pellet was washed once in ice cold distilled H20 . Cells were then resuspended in 20 

ml TFG I buffer and incubated on ice for 15 min. Cells were harvested, resuspended in 

buffer TFG II and incubated on ice for 15min. The cell suspension was then divided into 

250 |il aliquots in eppendorf tubes. Tubes were then snap-frozen by submersion in a 

dry-ice/ethanol bath. Competent cells were stored at -70°C.

2.1.5 Plasmid preparation

Plasmids were prepared from bacterial strains using the mini and midi-prep plasmid 

preparation kits (Qiagen) according to the manufacturers protocol. Briefly, cells were 

pelleted, resuspended, lysed and neutralised. The samples were then centrifuged and the 

clear supernatant, containing the plasmid DNA, was loaded onto a column containing a 

plasmid DNA-binding resin. After washing, plasmid DNA was eluted from the column, 

precipitated, and pelleted by centrifugation. DNA was then resuspended in 100 fil of
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sterile water or TE buffer. This typically resulted in a concentration of approximately 1 

mg ml'1 as measured by U.V. absorption at 260nm.

2.1.6 Large scale plasmid preparation

A single bacterial colony was inoculated into 3 ml LB medium and grown overnight 

with shaking at 37°C. 1 ml of this overnight culture was inoculated into 400 ml LB 

medium and grown overnight at 37°C at 220 rpm. Cultures were then harvested by 

centrifugation at 4000g for 15 min. Pelleted cells were resuspended in 10 ml sucrose 

resuspension buffer (SRB). 2 ml lysozyme stock solution was added and cells were 

incubated at 4°C for 15 min. 4 ml 0.25M EDTA (pH 8.0) was added and samples 

incubated at 4°C for a further 5 min before the addition of 16 ml Triton mix and 

incubation on ice with gentle shaking. Samples were then centrifuged at 30,000g, 4°C 

for 30 min. The supernatant was then transferred to a fresh container and 0.5x volumes 

of ice cold PEG 8000 solution was added. NaCl was added to a final concentration of 

1.5M and samples were shaken vigorously on ice for 15 min. Precipitated DNA was 

pelleted by centrifugation at 30,000g, 4°C for 30 min. The DNA pellet was then 

resuspended in 6.188 ml TE buffer to which was added 6.63 g CsCl and 442 pi 

Ethidium Bromide (10 mg ml'1 stock). Samples were spun at lOOOg for five minutes to 

separate precipitated material. The samples were then loaded into quick-seal tubes 

(Beckman) which were heat-sealed, loaded into a TLN-100 rotor (Beckman) and then 

centrifuged at 60,000 rpm for 24 hours in an Optima™ ultracentrifuge (Beckman). The 

top of the tube was punctured with a syringe needle to form an air hole and the plasmid 

band (which was clearly visible) was recovered by aspirating with a syringe directed 

through the wall of the tube into the relevant band. Ethidium bromide was extracted
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against butan-l-ol. The plasmid solution was mixed with an equal volume of H20- 

equilibrated butan-l-ol, and the phases were allowed to separate. The organic phase, the 

upper phase, was removed and the extraction process was repeated until the aqueous 

phase became colourless. Plasmid DNA was recovered by diluting the clear aqueous 

phase with TE buffer, and precipitating the DNA by the standard ethanol precipitation 

procedure.

2.1.7 Polymerase chain reaction (PCR) amplification of DNA fragments

PCR was used to amplify DNA fragments required for cloning purposes or for 

identification purposes by PCR screening of transformed E. coli or transfected L. 

mexicana. All reactions were carried out in a 10pl volume consisting of 0.9 pi 11.lx 

PCR mix, 20 ng of sense and antisense oligonucleotide primer, approx 50 ng genomic 

DNA or a partial bacterial colony as template, and 2U Taq polymerase (Applied 

Biosystems). Vent polymerase (NEB) was used for cloning experiments as it has 5’ to 

3’ exonuclease activity. The sequence of PCR-amplified products used in cloning 

experiments was determined by automated DNA sequencing of both strands using 

appropriate primers (eg. T7 and SP6 for PCR products cloned into pGEM-T). The 

amplification protocol was as follows: An initial denaturing step of 4 min at 95°C, 

followed by 30 cycles at 94°C for 1 min (denaturing), 60°C for 1 min (annealing), and 

72°C for 1 min (primer extension). A final step of primer extension for 5 minutes at 

72°C was followed by incubation of the samples at 4°C.

For screening of transformed bacteria denaturing, annealing and extension times were 

reduced to 30 seconds. For amplification of L. mexicana genomic DNA 20 pi volumes 

were used and DMSO was added to a final concentration of 5%.
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2.1.8 Restriction digestion

Restriction enzyme digests were carried out according to instructions supplied with the 

enzymes (NEB). Typically 1 pg of DNA was digested in a 20 pi reaction with 10 units 

of restriction enzyme at 37°C for 1 hour. The reaction was halted by the addition of 1/6* 

volume DNA loading buffer. For double digests the reaction was carried out in a buffer 

that was compatible with both enzymes. If this was not possible the DNA was digested 

with one enzyme, this was then heat inactivated by incubation at 65°C for 20 min 

(where appropriate)., then the sample was precipitated, resuspended in restriction 

enzyme buffer and digested with the second enzyme. 5 pg of L. mexicana genomic 

DNA was digested with 40 units of enzyme at 37°C for 4 hours.

2.1.9 Gel electrophoresis

DNA fragments were separated and analysed by gel electrophoresis. For analysis gels 

were typically 0.8 to 1.2 % agarose/TBE gels. Samples were mixed with 6x DNA 

loading dye to allow visualisation of the progress of electrophoresis. Samples were run 

at 40 to 100V until the dye front migrated to two thirds of the distance of the gel. Gels 

were stained in a bath of 300 ng ml'1 ethidium bromide solution and images were 

obtained using The Imager™ gel documentation system (Appligene) under UV 

illumination.

2.1.10 DNA extraction from agarose gel
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DNA fragments to be recovered were separated by electrophoresis through a 0.8% 

agarose/TAE gel. For small scale recovery, < 1 pg, the Qiaquick gel extraction kit 

(Qiagen) was used according to the manufacturers instructions. For large scale recovery 

the appropriate fragment was excised from the gel using a scalpel blade. The gel 

fragment was diced into small cubes approximately 1 mm3. Gel fragments were placed 

into Spin-X tubes (Costar), and incubated at -20 and 37°C respectively for 15 min. 

Samples were then centrifuged at 13,000 rpm in a microcentrifuge for 15 min. Excess 

agarose was discarded and the resulting solution, containing the DNA, was extracted 

twice against equal volumes of dH20  equilibrated chloroform. DNA was then 

precipitated by ethanol precipitation and was resuspended in TE buffer at a 

concentration of 1 mg ml'1.

2.1.11 Phosphatase treatment

To prevent religation of plasmids digested with only one restriction enzyme, the 5’ 

terminal phosphate was removed by treatment with calf intestinal alkaline phosphatase 

(CIP). 5U of CIP (NEB) was added to the reaction mix and incubated at 37°C for 20 

min. The reaction mix was then extracted once against an equal volume of H20- 

equilibrated phenol and twice against an equal volume of H20-equilibrated chloroform. 

The aqueous phase was removed and DNA was precipitated by the addition of 2.5 

volumes of a 9:1 mixture of ethanol and 3M sodium acetate.

2.1.12 DNA Ligation
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Vector and insert DNAs were combined in a 10 pi reaction in a range of ratios, from 3:1 

to 1:3. 200U (equivalent to 3 Weiss units) T4 DNA ligase and T4 DNA ligase buffer 

(NEB) were added and the reaction was incubated at 16°C overnight.

PCR products were ligated into the pTag (Ingenius) or the pGEM-T (Promega) PCR 

cloning vectors according to the manufacturers instructions.

2.1.13 Bacterial transformation

1.0 pi of a ligation reaction was added to 50 pi of competent E. coli in a 15 ml falcon 

tube (Greiner). Cells were incubated on ice for 30 min. then subjected to heat shock at 

42°C for 45 seconds. After heat shock cells were placed on ice for 3 min and then 950 pi 

SOC medium was added. The samples were then incubated for 1 hour at 37°C, 220 rpm 

in a shaking incubator. lOOpl of cells was plated onto LB-agar plates containing 100 pg 

ml'1 ampicillin. Plates were incubated overnight at 37°C.

2.1.14 DNA sequencing

DNA sequencing reactions utilised the ABI-Prism™ cycle sequencing kit (Perkin- 

Elmer) according to the manufacturers instructions using template DNA and the 

appropriate oligonucleotide primer. Sequence was obtained for both strands. Samples 

were then run on an ABI 373 automated DNA sequencer. The University of Wisconsin 

Genetics Computer Group (GCG) software package (Version 7.0) was used to analyse 

nucleic acid and amino acid sequence.

2.2 Generation of constructs described in this thesis
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2.2.1 pGL89

The pGL89 construct containing the 2.0Kb Hindlll fragment from the CRK3 locus was 

generated as described previously (Grant et al, 1998).

2.2.2 pGL97 (CRK3::BLE knockout construct)

The pGL97 (CRK3::BLE) construct was generated by P. Halford. The LmCPA::BLE 

construct (Souza et al., 1994) was used as the basis for generation of pGL97. 

LmCPA::BLE consists of the BLE gene, flanked by 5’ and 3’ L. major DHFR-TS 

sequence that is in turn flanked by LmCPA 5’ and 3’ sequence. The 1.1 kb fragment of 

pGL89 was released by digestion with Hindlll and Sail. The fregment was gel-purified 

and ligated into the LmCPA::BLE construct digested with Hindlll and Sail. This formed 

an LmCPA/CRK3::BLE fusion construct. The CRK3 3’ flank was generated by PCR 

using the OL322 and OL323 oligonucleotide primers (See Table 2.2). These primers 

contain engineered Smal and Bglll restriction sites. The PCR product was cloned into 

the pTAg vector (Ingenius) and the insert was sequenced. The 339 bp insert was 

released by digestion with Smal and Bglll and cloned into the LmCPA/CRK3::BLE 

fusion plasmid digested with Smal and Bglll.

2.2.3 pGL105 (CRK3::HYG knockout construct)

The pGL105 (CRK3::HYG) construct was generated by digesting pGL97 with Spel and 

BamRl to release the BLE drug resistance gene. This was replaced by the 1.0 kb
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Spel/BamRl fragment of LmCPA::HYG (Souza et al, 1994) that contains the HYG drug 

resistance gene

2.2.4 pGL96 (pXC7M3His)

The pGL96 construct was generated by Dr. Karen M. Grant as described previously 

(Grant et al., 1998).

2.2.5 pGLlOO (pTEXCKJD)

The pGL89 construct was digested with EcoRl and Hindlll. The 1.0 kb fragment 

containing the CRK3 gene was gel-purified and ligated into the pTEX vector (Kelly et 

al, 1992).

2.2.6 pGL310 (pTEXC&OHis)

The pGL91 plasmid containing the CRK3 gene fused to a 6-histidine tag (Grant et al, 

1998) was digested with EcoBA and Hindlll. The 800 bp fragment was gel-purified and 

ligated into the pTEX vector (Kelly et al, 1992). Subsequent sequence analysis 

indicated that there was a serine to alanine substitution at the second amino acid 

position of the CRK3 gene in the pGL91 plasmid. This results in the production of an 

inactive kinase (Grant et al, 1998).

2.2.7 pGL120 (pRS416METCRK3)
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The pGL89 construct was digested with EcoRl and Xhol. The 1.1 kb fragment 

containing the CRK3 gene was gel-purified and ligated into the pRS416MET yeast 

expression vector (Mumberg et al, 1994).

2.2.8 pGL332 (pRS314METCFC7)

The pGL106 plasmid containing the T. brucei CYC1 gene (generated by R. Ford), was 

digested with EcoRl and Xhol. The 1.3 kb fragment was gel-purified and ligated into the 

pRS416MET vector (Mumberg et al, 1994). This was then digested with Kpnl and 

Sacl. The 2.1 kb fragment containing the T. brucei CYC1 gene flanked by the S. 

cerevisiae MET25 promoter and CYC1 terminator was gel-purified and ligated into 

pRS314 (Sikorski and Hieter, 1989). pRS314 was a kind gift from Dr. J.V. Gray, 

Department of Molecular Genetics, University of Glasgow.

2.2.9 pGL292 (pRS314METCTC2)

The pGL123 plasmid containing the T. brucei CYC2 gene flanked by the S. cerevisiae 

MET25 promoter and CYC1 terminator (Neuville and Mottram, unpublished), was 

digested with Kpnl and Sacl. The 1.6 kb fragment containing the CYC2 gene, MET25 

promoter and CYC1 terminator, was gel-purified and ligated into the pRS314 vector 

(Sikorski and Hieter, 1989).

2.2.10 pGL293 (pRS314METCTC5)
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The pGL124 plasmid containing the T. brucei CYC3 gene flanked by the S. cerevisiae 

MET25 promoter and CYC1 terminator (Neuville and Mottram, unpublished), was 

digested with Kpnl and Sacl. The 2.4 kb fragment containing the CYC3 gene, MET25 

promoter and CYC1 terminator, was gel-purified and ligated into the pRS314 vector 

(Sikorski and Hieter, 1989).

2.3 Leishmania mexicana methods

2.3.1 Leishmania mexicana cell line

The original L. mexicana cell line used in this study, and from which all transgenic cell 

lines were derived, was Leishmania mexicana mexicana (MNYC/BZ/62/M379).

2.2.2 Leishmania mexicana cell culture

L. mexicana promastigotes were cultured at 25°C in HOMEM medium (Berens et al, 

1976), supplemented with 10% heat inactivated foetal calf serum (FCS) (Labtech). Cells 

were seeded at a density of approximately lxlO6 cells ml'1 and cultures were maintained 

by serial passage when the cell density reached approximately 1.5xl07 cells ml'1. 

Transgenic cell lines were grown in the presence of appropriate antibiotics at the 

following concentrations: hygromycin B (Boehringer Mannheim) 50 pg ml'1, 

phleomycin 10 pg ml'1 (Cayla, France) and geneticin (Gibco BRL) 50 pg ml'1.

2.3.3 Determination of cell density
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Cell numbers were determined by counting cells in an improved Neubauer 

haemocytometer (Weber scientific). 20 pi of cell culture was mixed with 20 pi of 4% 

formaldehyde in PBS in a 1.5 ml eppendorf tube to kill the parasites. The sample was 

then loaded onto the haemocytometer and cells were counted at x20 objective 

magnification.

2.3.4 Preparation of L. mexicana promastigote cell pellets

Cells were centrifuged at 2000g for 5 min. Cells were then washed twice by 

resuspending in 10 ml PBS and centrifuging again at 2000g for 5 min. Cell pellets were 

then stored at -70°C until required.

2.3.5 Preparation of stabilates

Stabilate stocks of all cell lines described in this thesis were prepared by addition of 

10% (v/v) sterile dimethylsulphoxide (DMSO) to 0.5 ml of log-phase cell culture in a 

Cryotube™ vial (Nunc). Samples were frozen overnight at -70°C and transferred to a 

liquid nitrogen storage tank.

2.3.6 Electroporation procedure

Transfection of Leishmania mexicana followed the procedure of C.M. Cobum et al 

(1991). Cells were harvested in mid log phase of growth by centrifugation at 2,000g, 

4°C for 5 min. Cells were washed once in electroporation buffer (EPB). Cells were then 

resuspended to a density of lx l0 8 cells ml'1 in EPB. Samples were kept on ice
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throughout this procedure. 0.4 ml (ie. 4x107 cells) were resuspended in a 0.2 cm 

electroporation cuvette (Biorad). 20 pg of plasmid or gel-purified targeting construct 

DNA was added and cells were immediately transfected by electroporation at 2.25 kV 

cm'1 with the Genepulser II apparatus (Biorad). After electroporation cells were placed 

on ice for 10 min before being transferred to liquid medium (HOMEM). Cells were 

incubated overnight to allow expression of the drug selectable marker, before plating on 

solid HOMEM agar plates containing the appropriate antibiotics. Antibiotics were used 

at the following concentrations: hygromycin B 50 pg ml'1 , geneticin 50 pg ml*1, and 

phleomycin 10 pg ml'1. Plates were wrapped in parafilm and incubated at 25°C for 10 to 

15 days to allow colonies to form. Colonies were picked from plates using a sterile 

pasteur pipette and transferred into 10 ml liquid medium (HOMEM, 10% FCS plus 

appropriate antibiotics). Cultures were incubated at 25°C.

2.3.7 Preparation of Leishmania mexicana genomic DNA. Large scale prep.

30 ml of stationary phase cultures of L. mexicana were harvested by centrifugation at 

lOOOg for 10 min at 4°C. The pellet was washed twice in 10 ml PBS (phosphate 

buffered saline) before being resuspended in 5 ml SE buffer. 0.25 ml of a 20% SDS 

solution was added and the sample incubated at 65°C for 30 min. Proteinase K was then 

added to a final concentration of 50 pg ml"1 and samples were incubated at 37°C for 30 

min. The samples were then extracted twice against phenol (equilibrated to pH >7.0) 

and twice against H20-equilibrated chloroform. DNA was precipitated from the aqueous 

layer by addition of 2.5 volumes of a 9:1 mixture of ethanol and 3M sodium acetate 

before centrifugation at 30,000g for 30 min at 4°C. The pellet was then washed with 3ml 

70% cold ethanol and centrifuged as before. DNA was resuspended in 200 pi TE buffer,
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and RNAse A was added to a final concentration of 20 pg ml'1. Samples were incubated 

at 37°C for 30 min, and were then extracted twice against phenol and chloroform, and 

precipitated as before. DNA was then resuspended in TE at a concentration of 

approximately 1 mg m l1.

2.3.8 Preparation of genomic DNA. Mini-prep method

0.5 ml of late log-phase L. mexicana culture was harvested and washed twice in PBS. 

The cell pellet was then resuspended in 200 pi TELT buffer. Samples were incubated at 

room temperature for 10 min before extraction with H20  equilibrated phenol. The 

samples were then extracted twice with H20  equilibrated chloroform. The aqueous layer 

was removed and DNA was precipitated by the addition of 2 volumes of cold 100% 

ethanol and centrifugation in a microcentrifuge at 13,000 rpm, 4°C for 30 min. The 

DNA was washed with 70% cold ethanol, centrifuged as before, dried briefly at room 

temperature, and then resuspended in 50 pi TE buffer. RNAse A was added to a final 

concentration of 20 pg ml'1 and samples were incubated at 37°C for 30 min.

2.3.9 Southern blot transfer

L. mexicana DNA was digested overnight with Hindlll at 37°C. Fragments were 

separated by electrophoresis through a 0.8% TBE agarose gel. The gel was stained with 

a 300 ng ml'1 solution of ethidium bromide. The gel was analysed under low power UV 

illumination to ascertain whether digestion had gone to completion and to obtain a 

photograph of the gel placed next to a ruler to allow a comparison of the position of 

hybridism bands with the molecular weight markers. The gel was washed for 10 min in
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distilled water, then incubated for 30 min with two changes of depurination solution. 

After brief rinsing with dH20  the gel was incubated in two changes of denaturing 

solution for 30 min. The gel was again rinsed briefly before transfer into neutralisation 

solution with two changes over a 30 min period. Finally the gel was incubated in lOx 

SSC for 30 min. DNA fragments were transferred to Hybond-N, positively charged 

nylon membrane (Amersham) by capillary transfer (Sambrook et al., 1989).

2.3.10 Nucleic acid hybridisation

Nucleic acids were covalently cross-linked to Hybond -N membrane by exposure to 

1200 J UV radiation in a UV crosslinker (Stratagene). The membrane was then 

incubated with Southern blot hybridisation solution at 65°C for 2 hours. Radiolabelled 

probe DNA was prepared by random primer labelling with the Prime-It II kit 

(Stratagene) according to the manufacturers instructions, using 30 ng of template DNA. 

Radiolabelled probe was purified on NucTrap® columns (Stratagene) and added to the 

hybridisation solution and the membrane was incubated overnight at 65°C. Excess 

radiolabel and non-specifically bound probe was removed by washing the membrane 

with three washes of 2x SSC/0.1% SDS at 65°C for 10 min each wash, followed by the 

same washing protocol using 0.2x SSC/0.1% SDS. The membrane was then sealed in 

polythene and exposed to Reflection™ autoradiography film (NEN™ Life Sciences). 

Film was developed using a Kodak X-omat automated developer.

2.3.11 bpV(phen) block and release
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L. mexicana promastigotes were seeded at a density of lx l0 7 cell ml"1 and incubated in 

the presence of 10 pM bpV(phen) (a kind gift of Dr. Martin Olivier, Laval university, 

Quebec, Canada) for 24 hours to block cell cycle progression. Cells were released from 

the block by centrifuging the cells at 2000g for 5 min in a Beckman S4180 swing bucket 

rotor. Cells were then resuspended in cold (4°C) PBS and the process was repeated. 

Cells were then resuspended in a volume of fresh medium equal to the original volume.

2.3.12 Flavopiridol block and release

L. mexicana promastigotes were seeded at a density of lx l0 6 cell ml'1 and incubated in 

the presence of 0, 1.0, 2.5 or 5.0 pM flavopiridol (a kind gift of Dr. Swati Bal-Tembe, 

Hoechst Marion Roussel Ltd, Bombay, India) to block cells at the G2/M transition. 

Cells were released from the block by centrifuging the cells at 2000g for 5 min in a 

Beckman S4180 swing bucket rotor. Cells were then resuspended in either serum-free 

medium, complete medium, or cold (4°C) PBS and the process was repeated. Cells were 

then resuspended in a volume of fresh medium equal to the original volume.

2.3.13 DNA content analysis by flow cytometry

Mid-log phase L. mexicana promastigotes were harvested by centrifugation at 2000g, 

4°C for 5 min. Cells were washed once in 10ml PBS. Samples were then fixed for at 

least one hour in 70% methanol/30% PBS. Prior to analysis, fixed cells were harvested 

by centrifugation at lOOOg, 4°C for 10 min. Cells were washed in 10 ml PBS then 

resuspended in a further 1 ml PBS. RNAse A and propidium iodide were both added to 

final concentration of 10 pg ml'1 and cells were incubated at 37°C for 45 min. After
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staining cells were analysed on a Coulter Epics/XL or a Becton Dickinson FACScalibur 

flow cytometer. 10,000 cells were analysed for each sample. Cell cycle distribution was 

determined using the ModFit LT software package.

2.3.14 SDS-PAGE

Proteins were separated by the discontinuous SDS-PAGE method (Laemmli, 1971). 

12% acrylamide mini-gels (0.75 mm thickness) were cast, loaded and run using a Bio- 

Rad Mini-Protean II dual slab cell according to the manufacturers instructions. Rainbow 

markers (Amersham) were also run to allow the estimation of protein molecular 

weights.

2.3.15 Preparation of p l3sucl beads

p l3 sucl protein, purified as described previously (Mottram and Grant, 1996; Grant et al., 

1998), was provided by Dr. Karen M. Grant. 5 mg ml'1 protein was cross-linked to 

AminoLink beads (Pierce) following the manufacturers protocol. Prepared beads were 

stored as a 50% slurry in 0.05% sodium azide at 4°C.

2.3.16 p l3sucl Binding Kinase Assay

Cell pellets were resuspended at a density of lx l0 8 cells ml'1 in LSGI. Samples were 

incubated on ice for 20 minutes, then subjected to centrifugation at 100,000g for 45 

mins in a Beckman ultracentrifuge. After centrifugation the supernatant was diluted 1 in 

3 with LSGI and 200 pi of the sample was incubated with 40 pi of pi 3 bead slurry for 1
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Hr at 4°C. Beads were then washed with 5 ml LSG, 5 ml HSLS then 5 ml KAB. The 

beads were then resuspended in 1 ml KAB transferred to a 1.5 ml screw capped 

eppendorf tube and centrifuged at 13,000 rpm in a microcentrifuge. Samples were 

resuspended in 20 pi KAM and incubated at 30°C for 30 mins. Reactions were stopped 

by addition of 20pl SDS sample buffer and samples were boiled for 5 min before 

electrophoresis on a 12 % SDS-PAGE gel. Gels were dried under a vacuum, wrapped in 

cellophane and exposed to X-ray film or a phosphorimaging plate for quantification of 

relative radioctivity on a Fuji phosphorimager using MacBas v2.2 software.

2.3.17 Nickel NTA agarose selection and flavopiridol IC50 determination

Cell pellets were resuspended at a density of lx l0 8 cells ml'1 in LSGI and incubated on 

ice for 30 min. Samples were then centrifuged at 100,000g for 45 min. at 4°C. Ni-NTA 

agarose beads were transferred to a 2 ml disposable plastic column (Pierce) and washed 

with 0.5 ml LSGI. The supernatant from the S I00 lysate was diluted 1:1 with 100 mM 

imidazole to give a final concentration of 50 mM. Diluted supernatant was added to the 

column containing the Ni-NTA agarose beads and was incubated at 4°C on a tube roller 

for 1 hour. The column was then drained and washed with the following regime; 5ml 

LSG plus 50 mM imidazole, 5 ml HSLS, and 5 ml LS-T. Bound kinase was then eluted 

with 100 mM EDTA. The kinase was then bound to p l3 sucl beads as described 

previously. Beads were washed as described, aliquoted into screw-capped eppendorf 

tubes and assayed for kinase activity in the presence of a range of concentrations of 

flavopiridol.

2.3.18 DAPI staining and microscopy
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Slides were prepared by spreading a 50 pi volume of cell suspension on a glass 

microscope slide. Slides were air-dried then fixed by incubation in 75% methanol/25% 

PBS at 4°C for 1 Hr. Slides were stained with DAPI by a 20 min incubation in a 20 pg 

ml'1 solution in PBS. Slides were mounted in Mowiol containing DABCO (anti-fading 

agent) (Sigma) and visualised under phase contrast and UV illumination using a Zeiss 

Axioplan microscope fitted with a CCD camera (Hamamatsu photonics). Images were 

captured on a Power-macintosh computer (Apple) using Openlab 2.0.2 software 

(Improvision).

2.4 Yeast methods

2.4.1 Saccharomyces cerevisiae strains

The genotypes of the S. cerevisiae strains used in this study are as follows:-

(1) cdc28-lN, adel, ura3, trpl, his2

(2) cdc28-4, adel, ura3, leu2, trpl, his2

(3) cdc28-13, adel, ura3, leu2, trpl, his2

All of the above strains were the kind gift of Dr. S.I. Reed, Scripps Research Institute, 

La Jolla, California, USA.

2.4.2 Saccharomyces cerevisiae transformation

S. cerevisiae cells were transformed using the lithium acetate method (Ito et al., 1983). 

10 ml of YPD broth was inoculated with a single yeast colony isolated from a YPD agar 

plate. The culture was incubated at 25°C overnight. 1 ml of overnight culture was used
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to inoculate 10 ml YPD and the culture was grown for three hours or until the OD600 

value reached 0.6. Cells were pelleted by centrifugation at 2000g for 5 min. The pellet 

was resuspended in 10 ml dH20  and cells were again centrifuged at 2000g for 5 min. 

The pellet was then resuspended in 1 ml TE/LiAc and transferred to an eppendorf tube. 

Cells were pelleted by centrifugation at 13,000rpm for 5 min. The pellet was then 

resuspended in 30 pi TE/LiAc and the following components were added; 5 pg sheared 

Herring sperm DNA, 5 pg plasmid DNA, and 250 pi 40% PEG 6000 in TE/LiAc. 

Samples were incubated at 25°C for 30 min. then heat-shocked at 37°C for 15 min. Cells 

were then pelleted by centrifugation at 13,000rpm for 5 min. Pellets were washed in 

dH20  to remove excess PEG, then resuspended in 200 pi dH20  and plated onto YNB- 

agar plates containing the appropriate amino acids for plasmid selection. Plates were 

sealed with parafilm and incubated at 25°C to allow colony formation (approximately 4 

days).

2.4.3 S. cerevisiae cell lysates

10 ml YPD broth was inoculated with a colony selected from an agar plate and grown 

overnight at 25°C. Cells were pelleted by centrifugation at 200g for 5 min. Pellets were 

washed once with dH20  and cells were transferred to an eppendorf tube. Pellets were 

resuspended in 100 pi breaking buffer and an equal volume of acid washed glass beads 

(0.5 mm diameter) was added (Sigma). Samples were vortexed for 30 seconds, then 

incubated on ice for 30 seconds. This process was repeated eight times. Samples were 

centrifuged at 13,000rpm for 10 min. The supernatant was removed, mixed with 4x 

SDS-PAGE sample loading buffer, and boiled for 10 min.
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2.4.4 Western blot transfer

Proteins, separated by SDS-PAGE, were transferred to polyscreen PVDF membrane 

(NEN™ Life Sciences) by electroblotting (Towbin et al, 1979) using a Bio-Rad mini 

transblot cell according to the manufacturers instructions.

After transfer the membrane was soaked in methanol for 5 min. then washed in TBST 

(Tris buffered saline with 0.1% Tween 20) for 5 min. The membrane was then incubated 

in blocking reagent (BLOTTO) overnight at room temperature in a 50 ml falcon tube, 

on a tube roller. This causes protein to bind to sites on the membrane that are not yet 

protein bound. This prevents the non-specific binding of proteins during the subsequent 

antibody incubation steps.

2.4.5 Antibody hybridisation

Anti-CRK3 antibody (Grant et al., 1998) was added at a titre of 1 in 500 in BLOTTO 

and the membrane was incubated at room temperature for 2 hours in the presence or 

absence of 2 pg ml'1 competing peptide. The blot was washed for 30 min. with three 

changes of TBST on a shaking platform and probed with a mouse anti-rabbit IgG HRP 

conjugate (Promega) secondary antibody at a titre of 1 in 10,000 for 45 min. The blot 

was washed for 30 min. in three changes of TBST. Hybridising antibody was detected 

using the Supersignal™ CL-HRP substrate chemiluminescent detection system (Pierce). 

Signal was detected by autoradiography with Reflection™ autoradiography film 

(NEN™ Life Sciences). Film was developed using a Kodak X-omat automated 

developer.
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2.5 Buffers and reagents

Ampicillin: 100 mg ml'1 stock in 50% ethanol. Stored at -20°C.

BLOTTO: 5% non-fat dried milk, 5% heat inactivated horse serum (Life technologies) 

in TBS. Stored at 4°C.

bpV(phen): 10 mM stock in PBS. Stored at -20°C.

Breaking buffer: 50 mM sodium phosphate pH7.4, 1 mM EDTA, 5% glycerol, 

protease inhibitors; 1 mM 1,10 phenanthroline, 5 pg ml'1 pepstatin A, 100 pg ml"1 

leupeptin, 50 pg ml'1 pefabloc SC (Boerhinger Mannheim). Stored at 4°C.

Depurination solution: 0.125M HC1. Stored at room temp.

Denaturing solution: 1.5M NaCl, 0.5M NaOH. Stored at room temp.

Denhardt’s solution (50x): 1% (w/v) BSA, 1% (w/v) ficoll, 1% (w/v) polyvinyl 

pyrolidine. Stored at -20°C.

DNA loading buffer: 0.25% bromophenol blue, 0.25% xylene cyanol, 40% sucrose in 

dH20. Store at 4°C.
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Electroporation buffer: 21 mM HEPES pH7.5, 137 mM NaCl, 5 mM KC1, 0.7 mM

phosphate buffer, 5 mM glucose. Stored at 4°C.

Ethidium Bromide: 10 mg ml"1 stock in distilled water. Stored at room temp.

Flavopiridol: 10 mg ml'1 stock in 100% ethanol. Stored at -20°C.

HSLS (high salt lysis solution): 50 mM MOPS pH7.2, 500 mM NaCl, 5 mM EDTA, 5 

mM EGTA, 1% Triton X-100. Stored at 4°C.

KAB (kinase assay buffer): 50 mM MOPS pH7.2, 20 mM MgCl2, 2 mM DTT, lOmM 

EGTA. Stored at 4°C.

KAM (kinase assay mix): 5 pi histone HI (10 mg ml'1 stock) (BRL), 8 pi ATP (100 

pM stock), 186 pi KAB, 1 pi y-32P-ATP (50 pCi). Stored at 4°C.

LELSG (low EDTA lysis solution plus glycerol): 50 mM MOPS pH7.2, 100 mM 

NaCl, 0.1 mM EDTA, 0.1 mM EGTA, 1% Triton X-100, 10% glycerol, 10 mM NaF, 1 

mM Na ortho vanadate. Stored at 4°C.

LELSGI (LELSG plus inhibitors): As LELSG plus protease inhibitors; 1 mM 1,10 

phenanthroline, 5 pg ml'1 pepstatin A, 100 pg ml'1 leupeptin, 50 pg ml'1 pefabloc SC 

(Boerhinger Mannheim). Stored at 4°C.
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Luria-Bertani (LB) agar: As LB broth with 0.8% (w/v) agar (Difco). Autoclaved and 

stored at room temp.

Luria-Bertani (LB) broth: 1% bactotryptone (Difco), 0.5% (w/v) yeast extract, 0.5% 

(w/v) NaCl in distilled water. Sterilised by autoclaving and stored at room temp.

LS (lysis solution): 50 mM MOPS pH7.2, 100 mM NaCl, 5 mM EDTA, 5 mM EGTA, 

10 mM NaF, 1 mM Na orthovanadate. Stored at 4°C.

LSG (lysis solution plus glycerol): 50 mM MOPS pH7.2, 100 mM NaCl, 5 mM 

EDTA, 5 mM EGTA, 1% Triton X-100, 10% glycerol, 10 mM NaF, 1 mM Na 

ortho vanadate. Stored at 4°C.

LSGI (LSG plus inhibitors): As LSG plus protease inhibitors; 1 mM 1,10 

phenanthroline, 5 pg ml'1 pepstatin A, 100 pg ml'1 leupeptin, 50 pg ml'1 pefabloc SC 

(Boerhinger Mannheim). Stored at 4°C.

Lysozyme: 5 mg ml'1 stock in 50 mM Tris-HCl pH 7.4. Prepared fresh prior to use.

Mowiol: 6 g glycerol, 2.4 g Mowiol 4-88 (Calbiochem) in 6 ml dH20. 12 ml 0.2M Tris- 

HCl (pH8.5) added and mixture incubated on shaking platform for half a day. The 

mixture is then left for 2 hours, incubated at 50°C for 10 min then centrifuged at 5000g 

for 15 min. DABCO (Sigma) was added to a final concentration of 0.1% (w/v) and the 

supernatant was aliquoted and stored at -20°C.
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Neutralisation solution: 1.5M NaCl, 0.5M Tris-HCl pH7.0. Stored at room temp.

PBS: 10 mM phosphate buffer, 2.7 mM KC1, 137 mM NaCl, pH7.4. Autoclaved and 

stored at room temp.

PCR mix (11.lx): 45 mM Tris-HCl (pH8.8), 11 mM ammonium sulphate, 4.5 mM 

MgCl2, 6.7 mM p-mercaptoethanol, 4.4 mM EDTA (pH8.0), 1 mM dATP, 1 mM dCTP, 

1 mM dGTP, 1 mM dTTP and 113 jug m l1 BSA. Stored at -20°C.

40%PEG/TE/LiAc: 40% PEG 6000 in 10 mM Tris-HCl pH 7.4, 1 mM EDTA pH 8.0, 

100 mM Lithium acetate. Store at room temp.

RNase A: 10 mg ml'1 stock in sterile water. Stored at -20°C.

SDS-PAGE sample loading buffer: 200 mM Tris-HCl pH6.8, 400 pM P- 

mercaptoethanol, 8% SDS, 40% glycerol, a few crystals of bromophenol blue. Stored at 

room temp.

SOC medium: 2% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.05% (w/v) NaCl, 0.4% 

(w/v) glucose. Glucose added after autoclaving. Stored at room temp.

Southern blot hybridisation solution: 6X SSC, 0.1 % SDS, 0.1 % Na pyrophosphate, 

10X Denhardts, 100 pg ml'1 sheared herring sperm DNA. Stored at room temp.
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SRB: 50 mM Tris-HCl pH8.0, 50 mM EDTA pH 8.0, 25% (w/v) sucrose. Stored at 

room temp.

SSC: 3M NaCl, 0.3M tri-sodium citrate pH 7.0. Stored at room temp.

TAE: 40 mM Tris-acetate, 1 mM EDTA. Stored at room temp.

TBE: 0.9M Tris-HCl, 0.9M Boric acid, 25 mM EDTA. Stored at room temp.

TBS: 20 mM Tris, 137 mM NaCl pH7.6. Stored at room temp.

TBST: 20 mM Tris, 137 mM NaCl pH7.6, 0.1% Tween 20. Stored at room temp.

TE buffer: 10 mM Tris-HCl pH 7.4, 1 mM EDTA pH 8.0. Stored at room temp.

TE/LiAC: 10 mM Tris-HCl pH 7.4, 1 mM EDTA pH 8.0, 100 mM Lithium acetate. 

Store at room temp.

TELT: 50 mM Tris-HCl pH 8.0, 62.5 mM EDTA pH 9.0, 2.5M LiCl, 4% Triton X-100. 

Stored at room temp.

Tetracycline: 10 mg ml'1 stock in 100% ethanol. Stored at -20°C.



TFG I: 30 mM Potassium acetate, 100 mM rubidium chloride, 10 mM CaCl2, 50 mM 

manganese chloride, 15% (v/v) glycerol, pH 5.8 with dilute acetic acid. Filter-sterilised 

and stored at 4°C.

TFG II: 10 mM MOPS, 75 mM CaC12, 10 mM Rubidium chloride, 15% (v/v) glycerol, 

pH 6.5 with dilute NaOH. Filter-sterilised and stored at 4°C.

Triton mix: 50 mM Tris-HCl pH8.0, 62.5 mM EDTA pH8.0, 1% Triton X-100. Stored 

at room temp.

Western blot transfer buffer: 5 mM Tris, 2 mM glycine, 20% methanol in distilled 

water. Stored at 4°C.

YNB agar: 0.67% (w/v) yeast nitrogen base (without amino acids), 2.0% (w/v) glucose, 

2.0% (w/v) bacto-agar (Difco). Supplemented with appropriate amino acids, autoclaved, 

and stored at room temp.

YNB broth: 0.67% (w/v) yeast nitrogen base (without amino acids), 2.0% glucose 

(w/v). Supplemented with appropriate amino acids, autoclaved, and stored at room 

temp.

YPD agar: 1.0% (w/v) yeast extract, 1.0% (w/v) bacto-peptone, 2.0% (w/v) glucose, 

2.0% (w/v) bacto-agar (Difco). Supplemented with appropriate amino acids, autoclaved, 

and stored at room temp.
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YPD broth: 1.0% (w/v) yeast extract, 1.0% (w/v) bacto-peptone, 2.0% (w/v) glucose. 

Supplemented with appropriate amino acids, autoclaved, and stored at room temp.

OL322 GGCCATGGCTTCGTTTGGCCGTGTG

OL323 GCGGATCCCTACCAACGAAGGTCGCTG

OL324 CCTGCACGAATGCAGAAAGTGATA

OL326 GCAGATCTCCCGGGCAGTTGTTTGAGAT

OL327 GCAGATCTCCCGGGCAGTTGTTTGAGAT

OL382 GCTCAGGGCAATGTTCAG

OL383 TTGTAGCACGGAGAAAGG

Table 2.1 List of oligonucleotides
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CHAPTER 3

Targeted gene disruption of Leishmania mexicana CRK3.

3.1 Introduction

A number of molecular genetic tools exist for the analysis of gene function in 

Leishmania (Beverley and Turco, 1998). Genes can be targeted for disruption to 

generate null cell lines for phenotypic analysis (Mottram et al., 1996b). Expression of 

modified or mutated genes can also prove valuable in determining the function of a 

given protein (Mottram et al, 1997). Transient transfection with a reporter gene can be 

used to screen for sequences with promoter activity, (Uliana et al, 1996; Gay et al, 

1996) or for sequences involved in mRNA processing (Curotto de Lafaille et al, 1992; 

Ramamoorthy et al, 1996). Gene disruption experiments can also be used to determine 

whether a given gene is essential (Cruz et al, 1993) and can therefore prove important 

in identifying and validating potential drug targets (Barrett et al, 1999).

A family of cdc2-related kinases (CRKs) exist in the trypanosomatids (Mottram and 

Smith, 1995), two of which have been found in Leishmania (CRK1 and CRK3). These 

kinases are highly related to the cyclin dependent kinase family of serine threonine 

protein kinases that appear to be ubiquitous throughout the eukaryotes. The primary role 

of the CDKs is to regulate and co-ordinate progression through the cell cycle with 

growth signals, transcription, and differentiation (Nigg, 1995; Gao and Zelenka, 1997). 

Activity of the CDKs is regulated by reversible phosphorylation of a number of highly 

conserved residues (Lew and Kombluth, 1996), and binding to regulatory proteins such 

as cyclins, CDK inhibitors or homologues of the fission yeast p l3 sucl protein (Andrews 

and Measday, 1998; Vogel and Baratte, 1996).
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Studies of the CRK1 gene of L. mexicana have indicated that the gene is essential in 

promastigotes (Mottram et al, 1996a), and encodes a stage-regulated kinase that is 

present in all three life cycle stages, but is active only in log-phase and stationary phase 

promastigotes (Mottram et al, 1993).

The CRK3 gene also encodes a stage regulated kinase which is active only in the 

proliferative promastigote and amastigote stages of the life cycle, and is absent from the 

cell-cycle arrested metacyclic stage (Grant et al, 1998). CRK3 also binds to p l3sucl, 

suggesting that it may be the functional homologue of the fission yeast cdc2 gene, 

which plays a key role in signalling entry into mitosis (Nurse, 1990).

To gain a better understanding of the possible role of CRK3, attempts were made to use 

the available molecular genetic techniques to do the following: (1) to test whether the 

CRK3 gene was essential and therefore a potential drug target and, (2) to express a hexa- 

histidine tagged version of the kinase in a null background to allow the purification and 

analysis of active or inactive kinase complex from each life-cycle stage.

3.2 RESULTS

3.2.1 Gene disruption of first and second alleles of CRK3

Targeted gene disruption experiments are informative in that they can elucidate the 

function of a particular gene or confirm whether or not a gene is essential. If the gene is 

essential it is not possible to obtain viable, null mutant parasites lacking a copy of the 

targeted gene. If, on the other hand, the gene is not essential then it is possible to obtain 

null mutants which can then be analysed for phenotypic changes from wild type. Such 

phenotypic analysis can provide valuable functional data on the gene of interest. In
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order to gain more information on the possible function of the CRK3 gene of 

Leishmania mexicana we designed gene targeting constructs based on those previously 

used for gene disruption of the LmCPA, LmCPB and LmCPC genes (Souza et al., 1994; 

Mottram et al, 1996b; Bart et al, 1997). Two targeting constructs were created; these 

confer resistance to hygromycin and phleomycin respectively (see Fig 3.2). The extreme 

5’ end of the construct consists of the 1.2 kb Hindlll/Sall fragment of plasmid pGL89, 

which contains the 5’ flank and 130 bp of the CRK3 ORF. The 3’ end of the targeting 

construct consists of the 339 bp Smal/Bglll fragment of plasmid pGL89. These flanking 

regions allow integration, and hence disruption, of the CRK3 locus.

The original wild type cells used in this study were harvested as amastigotes from a 

mouse lesion. Amastigotes were then transformed in vitro into promastigotes by 

incubation at 25°C in HOMEM medium, supplemented with heat inactivated foetal calf 

serum (FCS). These were designated sub-passage 1 (spl). Cells for transfection were 

used no later than sp7 and were derived from low sub-passage stabilate stocks. The 

Hindlll/Bglll insert from pGL105 (CRK3::HYG) was separated by agarose gel 

electrophoresis and recovered from the gel by purification using Spin-X columns 

(Costar). 4xl07 mid log-phase promastigotes of a wild type Leishmania mexicana 

culture were transfected using standard conditions, with 10 pg of the 4.8 kb 

CRK3::HYG targeting construct. Transfected clones were selected on solid HOMEM 

plates containing 50 pg ml'1 hygromycin. At this concentration no colonies were 

obtained for cells which had been electroporated in the absence of any DNA construct. 

Several colonies were selected from the plates and cultured in liquid medium in the 

presence of 50 pg ml"1 hygromycin. One of these clones, W583 (See Table 3.1) was 

cultured and prepared for introduction of the second targeting fragment conferring 

resistance to phleomycin. The Hindlll/Bglll insert from the CRK3::BLE construct,



pGL97, was digested and gel-purified in an identical way to the CRK3::HYG construct, 

and was introduced into both the W583 clone and wild type L. mexicana by 

electroporation. Drug resistant L. mexicana clones were selected by growth on solid 

medium plates containing 10 pg ml"1 phleomycin and 50 pg ml'1 hygromycin; or 10 pg 

ml"1 phleomycin alone. Two events could be envisaged as a result of this experiment; 

integration of the second knockout construct could occur at the remaining CRK3 allele, 

resulting in a null mutant that is resistant to both hygromycin and phleomycin. 

Alternatively, the second construct may integrate at the previously disrupted locus, 

replacing the HYG gene with the BLE gene.

Only two clones were obtained for the transfection of the hygromycin resistant W583 

clone; these were named W625 and W626 respectively. A number of clones were 

obtained on the plates containing phleomycin alone. One of these clones, W585, was 

selected for further analysis.

DNA was prepared from 10 ml of stationary phase promastigote cultures of wild type, 

W585, W583, W625 and W626 clones. 50 ng of DNA was used as the template in a 

PCR reaction with the primers OL322 and OL323 which anneal to the 5’ and 3’ end of 

the CRK3 gene and anneal to 5’ and 3’ positions of the CRK3::HYG and CRK3::BLE 

constructs (see Fig.3.2). These primers amplify the complete CRK3 ORF of 800 bp 

when the wild type gene is present and amplify a 3.8 kb PCR product from the locus in 

which the CRK3::HYG construct has integrated, and a 3.1 kb product from the locus in 

which the CRK3::BLE construct has integrated (see Fig. 3.2). Amplified PCR products 

were separated by agarose gel electrophoresis, stained with ethidium bromide and the 

resulting gel was photographed (Fig. 3.3). For wild type DNA an 800bp amplified 

fragment corresponding to the CRK3 gene was detected (lane 1). The integrated 

CRK3::HYG and CRK3::BLE constructs were detected in the W583 and W585
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heterozygote mutants (3.1 kb and 3.8kb fragments, lanes 2 and 3 respectively), as was 

the 800 bp wild type CRK3 PCR product. This indicates that both constructs are present. 

Whether they have integrated at the correct locus cannot be determined from these 

results alone. Both of the clones derived from two rounds of transfection, which were 

found to be resistant to both hygromycin B and phleomycin, tested positive for the 

presence of CRK3::HYG and CRK3::BLE as predicted (lanes 4 and 5). However, it is 

also clear that a fragment corresponding to the wild type CRK3 allele is still present in 

both of these clones. Several possibilities could account for this finding: (1) The 

introduced targeting constructs may not have integrated at the correct locus. (2) The 

original cell line used may have been triploid or aneuploid. (3) Cross contamination of 

PCR samples may have occurred. (4) Changes in ploidy may have occurred as has been 

described previously in Leishmania transfectants (Cruz et al, 1993).

To further investigate these possibilities Southern blot analysis of genomic DNA was 

performed. Five pg of genomic DNA from wild type or mutant parasites was digested 

with Hindlll, separated on an agarose gel, transferred to Hybond-N nylon membrane 

(Amersham) and probed with a radiolabelled 2.0 kb Hindlll insert from plasmid pGL89. 

The results confirm those of the PCR analysis and indicate that the CRK3::HYG and 

CRK3::BLE constructs have integrated into the correct locus. A 2.0 kb Hindlll fragment 

containing the wild type CRK3 gene was detected in DNA prepared from wild type 

parasites (Fig. 3.4 lane 1). In the DNA prepared from the W583 or W585 heterozygotes 

a 4.8 kb and 4.1 kb fragment corresponding to the integrated CRK3::HYG or 

CRK3..BLE constructs were detected, as well as the 2.0 kb fragment containing the 

CRK3 gene (lanes 2 and 3). This verified that these clones were indeed heterozygous at 

the CRK3 locus. Clone W625 was found to contain both the 4.8 kb and 4.1 kb fragments 

indicating that both the CRK3::HYG and CRK3::BLE constructs have been targeted to



the correct locus, however the wild type gene was found to be still present (lane 4). 

Clone W626 showed an identical pattern of hybridising fragments to W625 (data not 

shown).

To analyse the DNA content of the mutant cell lines, fluorescence activated cell sorting 

(FACS) analysis was performed. Mid log phase promastigotes were fixed in methanol, 

washed and resuspended in phosphate buffered saline (PBS) then stained with 

propidium iodide, and incubated with 10 pg ml'1 RNAse A for 30 minutes. These 

samples were then analysed on an EPICS/XL flow cytometer (Coulter) in order to 

determine the overall DNA content. As the DNA of the cells was stained with the DNA 

intercalating dye propidium iodide, which fluoresces under excitation from a light 

source, then the level of fluorescence emitted from an individual cell after excitation by 

the laser source gives a direct indication of the DNA content of that cell. A higher level 

of fluorescence indicates a greater number of intercalated propidium iodide molecules 

and hence an increased DNA content. Another useful feature of the flow cytometer is 

that it allows the quantification of the DNA content of a large sample population, in this 

case 10,000 individual cells. The flow cytometry results were plotted as histograms of 

cell numbers versus fluorescence intensity (proportional to DNA content), see Fig. 3.5. 

Panel A shows the results for wild type parasites. There are two major peaks. These 

correspond to cells with either a 2N or 4N DNA content (a DNA content of IN is 

equivalent to a haploid genome). The 2N peak corresponds to cells in the G1 phase of 

the cell cycle and the 4N peak is due to cells which are in the G2 phase of the cell cycle 

and have replicated their DNA but have not yet undergone cell division. The DNA 

content of the heterozygote mutant clones W583 and W585, panels B and C 

respectively, was found to be the same as for wild type parasites, with the two peaks 

corresponding to a 2N or 4N DNA content. The DNA content of the hygromycin and
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phleomycin double -resistant clones obtained from two rounds of transfection, W625 

and W626, was found to be double the normal DNA content, with a G1 content of 4N 

and a G2 content of 8N, indicating that these cells are aneuploid (Panels D and E). This 

change in ploidy has clearly occurred during the introduction of, and selection for, the 

second knockout construct, as happened when the CRK1 gene was targeted for 

disruption (Mottram et al, 1996a). The uneven nature of the DNA content histograms 

for the aneuploid clones W625, and W626, with a less distinct separation into two clear 

peaks, suggests that there may be some variability in the DNA content of these cells and 

they may not be completely tetraploid. The mechanism of such ploidy changes upon 

gene targeting is unknown at present but some possible explanations are provided in 

section 3.3.1.

3.2.2 Introduction of an episomal copy of CRK3 followed by gene disruption

To test the hypothesis that the CRK3 is an essential gene and that the ploidy changes 

result from the selection for maintenance of at least one gene copy, an attempt was made 

to express the gene from an episome prior to disrupting the remaining CRK3 allele. In 

this instance it should be possible to disrupt both alleles without causing any changes in 

ploidy as the cells will still retain copies of the essential gene on an episome.

The CRK3 gene was excised from plasmid pGL89 by digestion with EcoRI/Hindlll and 

ligated into EcoRI/Hindlll digested pTEX vector to give plasmid pGLlOO (see Fig 3.6). 

The pTEX vector was designed for stable episomal expression in Trypanosoma cruzi; it 

contains upstream and intergenic regions of the glycosomal glyceraldehyde-3-phosphate 

dehydrogenase (gGAPDH) gene array which provide splice leader addition, and 

polyadenylation sites for production of mature RNAs. Although these sequences are
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derived from T. cruzi they have been shown to function in various species of 

Leishmania and the pTEX vector has been used to express a number of genes including, 

trypanothione reductase (Tovar et al., 1998), cysteine proteinases (Mottram et al., 1997) 

and the CRK1 gene in L. mexicana (Mottram et al., 1993).

20 jag of the pGLlOO plasmid was introduced by electroporation into the W583 cell line, 

and cells were plated onto solid HOMEM plates containing 50 jag ml'1 Geneticin (G418) 

and 50 jag ml’1 hygromycin B. Only a small number of clones were recovered from 

several attempts. One of these clones W638 was selected for further analysis. It is not 

clear why so few resistant clones were obtained from several experiments; but problems 

have been encountered in other laboratories where Geneticin and hygromycin were used 

to select at the same time (see below). The W638 clone was grown in liquid culture and 

tested for resistance to higher concentrations of Geneticin. Cells were resistant up to 500 

jag ml'1, the highest concentration used, with no noticeable adverse effects. It is not 

clear, however, whether the increase in episome copy number that occurred upon 

increasing the drug selection, resulted in a concomitant increase in expression of the 

CRK3 gene.

The W638 clone was shown to contain an episomal copy of the CRK3 gene and one 

remaining wild type allele. In theory, therefore, it should be possible to disrupt the 

second wild type allele, to create a null mutant background, without a resultant change 

in ploidy, as the essential CRK3 gene would be expressed from the episome. This would 

confirm that both wild type alleles could be disrupted by the construct developed for 

this study. The standard electroporation procedure was used to introduce 10 pg of gel 

purified CRK3::BLE targeting fragment into the W638 cell line. These cells were then 

plated in triplicate on solid media containing 10 pg ml'1 phleomycin, 50 pg ml'1
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hygromycin and 50 pg ml'1 geneticin. The experiment was repeated a number of times 

without any success. One possibility is that the level of expression of CRK3 from the 

episome is too high and cannot therefore complement for loss of the two CRK3 alleles. 

Another possibility is that the triple drug selection used places cells under too much 

stress, or it may be that the three drugs used are not compatible. It should be noted 

however that this combination of drugs was successfully used to generate CRK1 nulls 

expressing the CRK1 gene from a pTEX episome (Mottram et al., 1996a). Subsequently 

it was found that several investigators have encountered problems using the NEO and 

HYG genes in combination for drug selection. These problems may arise from the fact 

that both genes encode phosphotransferase enzymes, and the drugs themselves target 

and disrupt the machinery of protein synthesis. Possible ‘crosstalk’ or synergistic effects 

between the two selection mechanisms may make the selection procedure used in this 

study difficult.

3.2.3 Co-transfection of the CRK3 episome with the second targeting construct

Because the CRK3 gene was thought to be essential, it was hypothesised that there 

should be no need to initially select for the episome with Geneticin, as it should be 

possible to perform a co-transfection experiment, in which the episomal CRK3 gene 

would be introduced simultaneously with the second targeting fragment. If CRK3 is 

indeed essential, then this will provide a selection pressure for the maintenance of the 

episome. W583 cells were transfected with 20 pg plasmid pGLlOO and 10 pg gel 

purified CRK3::BLE targeting fragment. Transfected cells were plated onto solid media 

containing 50 pg ml'1 hygromycin and 10 pg ml'1 phleomycin. Assuming CRK3 was an 

essential gene, under this selection protocol one would expect to obtain two classes of
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mutants; aneuploid cells that have integrated the CRK3::BLE cassette only, as described 

previously, and diploid cells which have integrated the CRK3::BLE cassette into the 

second CRK3 wild type allele and have also taken up the episome, thereby retaining a 

functional CRK3 gene. This combination of events would be expected to occur at a low 

frequency.

Clones derived from plates were transferred to liquid medium and grown for further 

analysis. Each clone was tested for resistance to Geneticin as before, by transferring 

approximately 200 pi of mid-log cell culture into 10 ml liquid medium containing 50 pg 

ml'1 Hygromycin, 10 pg ml'1 Phleomycin and 50 pg ml'1 Geneticin. Clones were also 

analysed for DNA content by FACS. Fig 3.7 shows the combined results of the analysis 

by FACS and geneticin resistance. Panels A corresponds to the Geneticin-sensitive wild 

type strain. Only one clone resistant to Geneticin was recovered, clone W635. This was 

found to be diploid (panel B). The majority of the geneticin sensitive clones were 

aneuploid, a representative FACS histogram is shown in panel D, clone W634. These 

aneuploid clones are most likely due to integration of the CRK3::BLE fragment without 

concomitant uptake of the CRK3 episome, resulting in the characteristic ploidy changes 

seen previously upon disruption of the second CRK3 allele (See section 3.2.1). One of 

the Geneticin sensitive clones W633 was diploid (panel C). To test the possibility that 

the W633 clone may contain the CRK3 episome but was not resistant to geneticin due to 

some toxic side effect of overexpression, PCR analysis was performed on 50 ng of 

purified DNA using primers OL324 and OL323 (Table 2.1). This primer combination 

should specifically detect the presence of the pGLlOO episome containing CRK3 and 

not the wild type CRK3 gene, as the OL324 primer is homologous to vector sequence 

which should only be present in the pTEX episome and is unlikely to be present in the 

L. mexicana genome. The results obtained from this analysis are shown in Fig. 3.8.
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When wild type DNA was used as the template in the reaction there was, as predicted, 

no amplified DNA fragment produced (lane 1). When DNA from the Geneticin resistant 

clone W635 is analysed, an amplified fragment was produced (lane 2). This fragment 

corresponds in size to the fragment amplified from the plasmid alone (lane 5). The 

absence of an amplified fragment in the DNA from the W633 clone which is Geneticin 

sensitive, but is still diploid, suggests that the CRK3 episome is not present in this cell 

line (lane 4). To further investigate whether the W633 clone still retained a copy of 

CRK3 Southern blot analysis was performed as described previously in section 3.2.1. 

The results of this analysis are shown in Fig. 3.9. Lane 1 shows hybridisation to the 2.0 

kb fragment containing the wild type CRK3 allele in DNA from wild type parasites. 

Lanes 2, 3 and 4 correspond to DNA from heterozygote mutant clones W583, W585 and 

the aneuploid clone W625 described in section 3.2.1. The 2.0 kb fragment which 

indicates the presence of an intact wild type CRK3 allele is still present in the W633 

clone (lane 6), even although this clone is diploid and resistant to both Hygromycin and 

Phleomycin. It is clear however that the CRK3::BLE targeting fragment has not 

integrated at the correct locus as the characteristic 4.1 kb band is not present. It is 

possible that the introduced CRK3::BLE fragment has formed an episome as occurred 

during a similar study on L. mexicana CRK1 (Mottram et al, 1996a). Alternatively, the 

CRK3..BLE targeting fragment may have integrated at another locus, hence the 6.5 kb 

band seen in lane 6.

The Geneticin resistant clone W635 does not seem to contain a wild type copy of CRK3 

as judged by the absence of the 2.0kb DNA fragment containing the CRK3 gene (lane 

5). However, of the expected 4.8 and 4.1 kb fragments corresponding to the integrated 

CRK3::HYG and CRK3::BLE fragments, only the 4.1 kb CRK3::BLE fragment is 

present. The absence of the 4.8 kb CRK3: :HYG fragment is puzzling as the original cell
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line used in the transfection, W583, was a heterozygote mutant containing an integrated 

CRK3::HYG construct (4.8 kb fragment, Lane 2). Furthermore the W633 clone is still 

resistant to Hygromycin. The absence of the 4.8 kb CRK3: :HYG fragment suggests that 

a recombination event has occurred, resulting in translocation of the integrated 

CRK3::HYG construct to another part of the genome. This possibility would need 

further investigation which is outwith the scope of this study. It is clear from this 

experiment that the approach taken still does not allow the disruption of the second 

genomic copy of the CRK3 gene in the manner expected. Co-transfection with an 

episome and with a targeting construct, followed by triple drug selection results in 

unforeseen effects that complicate the analysis of clones obtained.

The problems encountered in this approach to gene disruption may be due to the vector 

being used. It is possible that the processing signals present in the pTEX vector are not 

sufficient for the proper processing of the CRK3 gene, due to some unknown gene 

specific phenomenon. It has become clear from work performed in a number of 

laboratories that not all genes can be disrupted or re-expressed in the same way and 

careful consideration must be given to the design of experiments aimed at disrupting a 

given gene. It is feasible that flanking regions of a given gene may be as important as 

the ORF itself in some critical aspect of the gene function, indeed it seems certain that 

this must be the case in Leishmania where flanking DNA has a critical effect on mRNA 

stability. For example, for control of expression at particular points in the cell cycle or 

control of mRNA levels (Hines and Ray, 1997; Brown and Ray, 1997). The use of 

heterologous flanking DNA, controlling expression of any gene expressed from an 

episome may result in an unusually stable or unstable mRNA, this may not affect the 

expression of some genes but could conceivably affect the expression of genes whose 

mRNA levels are critically important.
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3.2.4 Episomal expression of CRK3 followed by second round gene disruption in 

the absence of Geneticin selection

As a final attempt to disrupt both alleles of CRK3 an attempt was made to integrate the 

CRK3::BLE targeting fragment into the W638 heterozygote mutant, which has only one 

intact wild type CRK3 allele and which also contains the pGLlOO episome (Fig. 3.5). 

This experiment had been attempted three times previously with no success (section 

3.2.2). In this instance however, the drug selection protocol was altered. Cells were 

electroporated with 10 pg of gel purified CRK3::BLE targeting fragment. Transfectants 

were plated and selected in the presence of 50 pg ml'1 hygromycin and 10 pg ml'1 

phleomycin in the absence of Geneticin. This selection protocol should avoid any 

problems associated with the triple drug selection, whilst allowing the retention of the 

CRK3 episome, as this is the only source of a functional CRK3 gene if the CRK3::BLE 

targeting fragment integrates correctly, disrupting the single remaining wild type allele. 

Five clones were selected for analysis and all were found to be resistant to Geneticin. 

These clones (W1187 to W1191) were analysed by FACS to determine their DNA 

content (Fig. 3.10). All five clones were shown to have a normal diploid DNA content 

(Panels C to G). Panel A corresponds to the diploid, wild type control cells and panel B 

to the W638 cell line. DNA was prepared from each of the mutant clones for Southern 

blot analysis which was performed as described (section 3.2.1). The results are shown in 

Fig. 3.11. Lane 1 is wild type parasite DNA, with a single 2.0 kb fragment containing 

the wild type CRK3 locus. Lanes 2 and 3 are the W585 and W583 heterozygote mutants 

with two fragments corresponding to one intact allele (the 2.0 kb band) and one 

disrupted allele (the 4.1 kb CRK3::BLE, or 4.8 kb CRK3. .HYG band). The heterozygote
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mutant W638 used in this experiment, which contains the pGLlOO episome is 

represented in lane 4. This clone contains both the 2.0 kb wild type allele and the 4.8 kb 

CRK3::HYG disrupted allele. The CRK3::HYG allele is partially obscured by the 

hybridisation to the pGLlOO plasmid bands which range from 5.0 to 10.0 kb. Lanes 5 to 

9 show the DNA of the clones W1187 to W1191. All but one of these mutant clones 

(W1190, lane 8) lack the 2.0 kb wild type CRK3 fragment but do contain the 4.1 kb and 

4.8 kb fragments indicative of integration of the CRK3::HYG and CRK3::BLE targeting 

constructs (lanes 5, 6, 7, and 9). These clones also contain the 5.0 to 10 kb bands due to 

the presence of the pGLlOO episome. These results suggests that these clones lack a 

genomic copy of CRK3 due to disruption of both alleles, and that CRK3 is being 

expressed from the pTEX episome. Clone W1190 still contains the 2.0 kb wild type 

allele, even though both the CRK3::HYG and CRK3::BLE constructs are present (lane 

8). This clone is diploid (see Fig 3.9, panel E) so the presence of an ‘extra’ CRK3 allele 

is not due to ploidy changes such as those discussed previously (section 3.2.1 and 3.2.2), 

but may be due to a recombination event or the duplication of an individual 

chromosome.

3.2.5 Expression of an inactive CRK3 kinase followed by gene disruption results in 

changes in ploidy

In order to aid the analysis of the CRK3 gene we generated a cell line expressing a 

modified, epitope tagged CRK3 protein. The epitope tag consists of six histidine 

residues. This epitope can be recognised by a specific monoclonal antibody and also 

allows purification of the recombinant protein by affinity chromatography with Nickel 

NTA agarose. This system has been used to express a his-tagged version of the L.
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mexicana CRK1 gene, allowing purification and analysis of kinase activity (Mottram et 

al, 1993). It was thought that the p l3 sucl-binding kinase activity of Leishmania was 

encoded by the CRK3 gene. Production of a cell line expressing only epitope tagged 

CRK3 would allow the verification of this hypothesis. To do this a pTEX based 

construct containing a CftO his sequence (pGL320) was introduced into the 

CRK3::HYG heterozygote cell line, W583. The CftOHis sequence consists of the 

CRK3 ORF fused to a short sequence encoding six histidine residues which would allow 

the production of a his-tagged CRK3 fusion protein. 20pg of the pTEXC&Ohis 

construct, pGL320, was introduced into the W583 heterozygote mutant by the standard 

electroporation method, and clones were selected on solid media containing 50 pg ml'1 

hygromycin B and 25 pg ml'1 Geneticin. Of the clones isolated, one was selected, grown 

in liquid medium, prepared and transfected with the CRK3::BLE targeting construct. 

Transfectants were selected for resistance to 50 pg ml'1 hygromycin and 10 pg ml'1 

phleomycin. Clones derived on solid media were transferred to liquid media and tested 

for resistance to 50 pg ml'1 Geneticin. Two independent clones were prepared as before 

for DNA content analysis by FACS. Both clones were resistant to all three antibiotics 

and FACS analysis indicated that they were both aneuploid (Fig 3.12 panels B and C) 

and therefore retain functional copies of the CRK3 gene. Analysis of purified C&Ohis 

from the W1033 cell line showed that the modified kinase was inactive (Dr. K.M. Grant, 

personal communication). Subsequent sequence analysis of the plasmid indicated that 

rearrangement had occurred. The results described in 3.2.4 and 3.2.5 prove that the 

ability to disrupt both CRK3 alleles relies on prior introduction of an episome 

expressing a functional CRK3 enzyme.
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3.2.6 Expression of a modified CRXJHis gene and generation of null mutants using 

a pX-based construct

As a second attempt to generate a null mutant cell line expressing CRK3his, a new 

construct, pGL89 (generated by Dr. K.M. Grant), based on the pX vector was used. The 

pGL89 construct consists of the modified CROhis gene, cloned into the pX vector. 

This shuttle vector is a Leishmania expression vector containing the neomycin 

phosphotransferase gene for selection and maintenance of the construct in transfected 

parasites (LeBowitz et al, 1990). The construct also contains 5’ and 3’ flanking 

sequences derived from the dihydrofolate reductase thymidilate synthase (DHFR-TS) 

gene of L. major. These sequences flank the multiple cloning site and provide the 

necessary trans-splicing and polyadenylation signals which allow the production of 

mature mRNA molecules. A map of this construct is shown in Fig. 3.13.

The pGL96 construct had been used previously to express recombinant, his-tagged 

CRK3 in L. mexicana wild type cells. The recombinant protein can be purified and has 

kinase activity against Histone HI (Grant et al., 1998). An attempt was made to produce 

a cell line containing this construct in a null background allowing the exclusive 

expression of his-tagged CRK3, as was previously achieved for his-tagged CRK1 

(Mottram et al., 1996a).

20 pg of pGL96 plasmid was transfected into 4 x 107 mid-log promastigotes of clone 

W583 and transfectants were selected on solid medium containing 50 pg ml'1 

hygromycin and 50 pg ml"1 Geneticin. Ten colonies were picked and grown in liquid 

culture in the presence of 50 pg ml"1 Geneticin to confirm the presence of the pGL96 

episome. Clone W925H was selected and prepared for a second round of transfection in 

order to knockout the remaining CRK3 allele. W925H cells were transfected with 10 pg
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of gel purified CRK3::BLE targeting fragment. Clones were isolated on solid medium 

supplemented with 50 pg ml"1 hygromycin and 10 pg ml"1 of phleomycin. Six clones 

(W945, W946, W947, W948, W949 and W950) were transferred to liquid culture, 

grown and prepared for FACS analysis to assess their DNA content. All six clones were 

diploid and resistant to Geneticin (Fig.3.14, Panels B to G). Panel A corresponds to wild 

type cells. DNA was prepared from four of these clones for Southern blot analysis. The 

Southern blot analysis was performed as described previously. In all the clones the 2.0 

kb fragment containing the wild type CRK3 gene was present (Fig 3.15 lanes 1 to 7). 

The 4.1 kb fragment expected to be present due to integration of the CRK3::BLE 

targeting fragment was not found to be present in any of the clones (lanes 4 to 7). The 

most likely explanation for this is that the CRK3::BLE fragment has integrated into the 

episome. This is possible because of the 874 bp of shared sequence between the 

episome and the targeting fragment. Both contain DHFR-TS sequence as well as CRK3 

sequence (see Fig. 3.16). As it is the termini of the introduced DNA fragment that are 

involved in the homologous recombination process (Tobin et al., 1991), then any 

nuclease activity which removes some of this CRK3 sequence from either end of the 

DNA fragment will expose the DHFR-TS sequence, allowing the possibility of 

integration into the episome. This process is most likely to occur at the 3 ’end of the 

CRK3::BLE fragment where there is only 339 bp of CRK3 sequence. In addition it is 

likely that there are multiple copies of the pGL96 episome, possibly as many as 100 

copies. There is therefore a greater chance of integration into the episome in preference 

to integration at the CRK3 allele, which is present only as a single copy in the W925H 

heterozygote mutant cell line used in this experiment (see Table 3.1 for descriptions of 

mutant clones and their genotypes). This problem was not encountered previously when 

the same procedure was used to generate null mutants expressing CRK3 from the pTEX
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episome (see section 3.2.2). This may be because pTEX does not contain Leishmania 

DHFR-TS sequence but contains T. cruzi GAPDH sequence to provide the trans-splicing 

and polydenylation signals. There is therefore less homology between the pTEX based 

construct and the CRK3::BLE targeting fragment, and consequently, less chance of 

integration into the episome.

3.2.7 Co-transfection of an episomal vector expressing CRK3his with the 

CRK3::BLE targeting fragment

To avoid preferential integration into the pGL96 episome rather than into the genomic 

locus, the episome was introduced simultaneously with the CRK3::BLE targeting 

construct into the W583 heterozygote cell line. Clones were selected on solid agar 

containing 50 pg ml'1 hygromycin and 10 pg ml'1 phleomycin. Geneticin was not added 

to the medium for the initial selection to avoid any problems associated with combined 

selection with three antibiotics, as mentioned in section 3.2.2. Twenty independent 

clones were grown and prepared for DNA content analysis by FACS (W991-W1006 and 

NS1-NS4). These clones were also tested for resistance to Geneticin at a concentration 

of 50 pg ml'1. Eight of the twenty clones were sensitive to Geneticin (W991-W994 and 

NS1-NS4). FACS analysis indicated that four of these clones were diploid (NS1, NS2, 

NS3 and NS4) (Fig. 3.17 panels B, C, D and E); whilst the remaining four clones 

(W991, W992, W993 and W994) were aneuploid (Fig. 3.16 panels F, G, H and I). Panel 

A corresponds to wild type cells. The four aneuploid clones have probably arisen 

through the same mechanism as the aneuploid clones described in section 3.2.1. These 

aneuploid clones were not analysed further. DNA was prepared from the diploid, 

Geneticin sensitive clones (NS1-4) for Southern blot analysis. The results (Fig. 3.18)
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indicated that the wild type CRK3 gene was still present and that the 4.1 kb band, 

indicative of the integrated CRK3::BLE construct, was not present (Lanes 4, 5, 6, and 

7). This suggests that these cells have arisen through a genomic rearrangement event 

similar to those described in section 3.2.3. The remaining 12 clones (W995-W1006) 

were resistant to Geneticin, indicating the presence of the pGL96 episome. FACS 

analysis also indicated that all twelve clones were diploid (Fig. 3.19, panels B to M). 

Panel A corresponds to wild type cells. DNA was prepared from these clones for 

Southern blot analysis. The results of this analysis are shown in Fig. 3.20. The 2.0 kb 

fragment characteristic of an intact CRK3 locus was present in all clones, lanes 4 to 16. 

It is unclear whether the CRK3::HYG and CRK3::BLE targeting constructs have 

correctly integrated (N.B Lanes 1 to 3 correspond to wild type, W583 and W585 clones 

respectively). What is clear however is that these clones are not null at the CRK3 locus 

and have retained a functional copy of CRK3 either by integration of the CRK3::BLE 

targeting construct at an incorrect locus, or by undergoing a genomic rearrangement. A 

more extensive Southern blot analysis using a variety of restriction enzyme digests of 

genomic DNA, and the use of pulse field gels to separate whole chromosomes, should 

help to answer these questions. However as the aim of this study was to generate null 

mutants expressing an epitope tagged version of CRK3, a detailed analysis of the nature 

of such presumed genomic rearrangements falls outwith the scope of this work.

3.3.1 DISCUSSION

The experiments described in this chapter provide evidence that the CRK3 gene is 

essential to L. mexicana promastigotes. This may be expected for a gene that has a 

possible role in cell cycle progression or growth control. The evidence that the gene is
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essential is that attempts to disrupt both wild type alleles invariably fail. This is not due 

to any effect of the construction of the gene disruption constructs as either the 

CRK3::HYG or the CRK3::BLE constructs can be easily and reproducibly integrated at 

the correct locus, as determined by Southern blot analysis (see section 3.2.1 and Fig. 3.3 

lanes 2 and 3). Neither is the difficulty in generating CRK3 null mutants due to 

incompatibility of the two drug resistance genes used (HYG and BLE) as these genes 

have previously been shown to be compatible in combination (Freedman and Beverley, 

1993). The only way that both wild type alleles could successfully be disrupted, was if 

the CRK3 gene was introduced on an episome prior to disruption of the second wild 

type allele (section 3.2.4). It should also be noted however that careful consideration 

must be given to the drug selection protocol, as initial selection of transfectants with all 

three antibiotics (hygromycin B, Geneticin and phleomycin) repeatedly failed (section 

3.2.2). Only when Geneticin selection was omitted when selecting for the second 

integration event, was the procedure successful (section 3.2.4). Geneticin selection in 

this instance would not be required if the CRK3 gene, present on the plasmid, is 

essential, as the presence of the plasmid should be sufficient to provide a selection 

pressure for maintenance of the episome. It is unclear exactly why the triple drug 

selection protocol proved to be problematic. This effect however, has been reported 

from a number of laboratories. The fact that both hygromycin B and Geneticin belong to 

the same class of compounds which affect protein synthesis, and that the HYG and NEO 

resistance genes both encode phosphotransferase enzymes (Laban et al, 1990; Lee and 

Van der Ploeg, 1991) suggests that the problem may be due to cross reactivity between 

the drugs and the drug resistance enzymes, or possibly due to a synergistic effect 

between these components. It is unclear however why this combination of drugs can be 

used to select for double gene disruption events in some cases (Cruz et al., 1991;



Mottram et al., 1993; Souza et al., 1994; Webb and McMaster, 1994; Dumas et al, 

1997) but not in others.

Other evidence that CRK3 encodes an essential activity is that attempts at generation of 

null mutants frequently produced genetic changes in the parasite. Such as changes in the 

overall ploidy of the parasites, or presumed gene amplification events that allow 

retention of one copy of the wild type CRK3 gene, whilst integrating both targeting 

fragments. Ploidy changes resulting from double targeted gene disruption experiments 

have been accepted as positive evidence that the gene being targeted is essential (Cruz et 

al., 1993). Further evidence that CRK3 is essential is that ploidy changes can be avoided 

and both alleles of the CRK3 gene can be successfully disrupted by expressing the gene 

from an episome.

The mechanism behind the generation of aneuploid parasites upon sequential disruption 

of essential genes in Leishmania is unknown. It may be that spontaneous generation of 

aneuploid cells occurs at a low level in axenically grown Leishmania, but such cells 

would be at a disadvantage in a more rapidly dividing diploid population. Any 

aneuploid parasites present in a culture which is prepared for transfection may integrate 

the introduced construct just as diploid cells would. If this integration event occurs 

during the second round of transfection then such cells would contain both drug 

resistance markers and would grow upon double drug selection, whilst retaining two 

copies of the wild type gene. Diploid cells, however, that have integrated both of the 

drug resistance markers will lack the wild type gene and will be null at the target locus. 

If the gene being targeted is essential to parasite survival then the only cells which could 

possibly grow upon double drug selection would be aneuploid cells containing both 

drug resistance markers whilst retaining two functional copies of the essential gene. As 

the only clones that could be derived from a second round of disruption of the CRK3
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gene were aneuploid then we can conclude that this is an essential gene. Because any 

aneuploid cells present in the culture of the heterozygote mutant W583 would be at a 

low level then the probability of integration of the CRK3::BLE targeting fragment into 

such cells would be very low, this may explain the observed low efficiency of the 

second round transfection where only two viable clones were obtained compared to first 

round transfection experiments which regularly produce greater than 50 independent 

clones.

The transfection procedure itself may cause diploid heterozygote cells to fuse, 

generating aneuploid cells. Subsequent integration of the second targeting fragment 

would generate a clone that contains both targeting constructs, but still retains a copy of 

the wild type gene.

Another alternative explanation is that at the moment of transfection a proportion of 

cells will have gone through S-phase, but not yet divided. Such cells would have a 4N 

DNA content. If, due to the extreme conditions of electroporation, these cells failed to 

divide and re-enter DNA synthesis phase, then they may integrate the second targeting 

fragment. After the next cell division at least one daughter cell would be aneuploid and 

contain both the integrated disruption constructs.

Using a similar procedure to that used to generate null mutants expressing CRK3 from 

the pGLlOO episome, an attempt was made to generate a cell line expressing a modified 

hexa-histidine tagged version of the CRK3 gene in a null background. The pX vector 

used in this case was however different from the pTEX vector used to express the 

unmodified gene. Because the pX vector contains genuine L. major sequence derived 

from the DHFR-TS locus the targeting construct used to disrupt the second copy of the 

CRK3 gene integrated preferentially into the episome rather than at the genomic locus. 

This possibility is more likely because the episome is present in multiple copies whereas
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there is of course only one copy of the wild type gene in the W583 heterozygote cell 

line used in these experiments.

Attempts were made therefore to co-transfect the heterozygote with both the targeting 

fragment and the episome. In this instance none of the clones analysed were null at the 

CRK3 locus. One explanation for this is that integration of the CRK3::BLE targeting 

fragment and simultaneous uptake of the pXCftOhis episome is a rare event. This 

however is clearly not the case as 40% of clones obtained in this experiment were 

resistant to hygromycin, phleomycin and Geneticin, indicating the presence of both gene 

disruption constructs and the pXCftOhis episome (pGL96). It is possible that some 

critical aspect of CRK3 function is affected by the presence of the histidine tag. The 

histidine tagged protein however can be expressed in a wild type background and can be 

purified to give an active Histone HI kinase (Grant et al, 1998).

There is a complication in the interpretation of these results due to the use of different 

vectors for expression of the modified and unmodified genes. The change in use of 

vectors was due to initial problems encountered with the pTEX vector which did not 

generate resistant clones with high efficiency, this was thought to be due to the use of T. 

cruzi gapdh sequence for trans-splicing and polyadenylation of expressed mRNAs. For 

this reason it was decided to use the pX vector which uses L. major DHFR-TS sequence 

to provide trans-splicing and polyadenylation signals. The problem with using this 

vector however is that similar DHFR-TS sequence is present in the gene disruption 

constructs allowing integration of the targeting construct into the episome rather than at 

the CRK3 locus. By using a pTEX based construct, and using the drug selection 

protocol outlined in section 3.2.4, the generation of a CRK3 null mutant cell line, 

expressing hexa-histidine tagged CRK3 may still be possible. Hexa-histidine tagged 

CRK3 can be expressed in a wild type genetic background and the modified kinase is
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active against an exogenous substrate in an in vitro assay. The tag does not therefore 

interfere with the enzyme activity (Grant et al., 1998). Unless the tag interferes with 

some other aspect of CRK3 function, not directly related to it’s kinase function then 

expression of tagged CRK3 in a null background should be possible. This would be a 

valuable tool for the purification and analysis of this enzyme and other interacting 

proteins such as cyclin partners or inhibitory molecules.

This study has indicated that the CRK3 kinase is essential in promastigotes of L. 

mexicana. Clearly therefore, although there are a number of other CRKs in Leishmania, 

they are not degenerate and may each have specific, non-overlapping roles. Both CRK1 

and CRK3 are essential and have different patterns of stage-regulated activity. CRK1 

may play a role in differentiation, as it’s activity is detected only in log-phase and 

stationary phase promastigotes, and is absent from amastigotes. CRK3 is a good 

candidate to be the functional Cdc2 homologue in Leishmania. It binds with high 

affinity to p l3 sucl, a protein that forms part of the active Cdc2 complex in fission yeast. 

CRK1 on the other hand does not bind to p l3 sucl. CRK3 activity is present in the 

proliferative stages of the life-cycle and is absent from cell-cycle arrested metacyclics. If 

CRK3 does play a crucial role in cell cycle progression, then it is probable that the gene 

would be essential in amastigotes. This possibility cannot yet be tested as an efficient 

method for transfection of amastigotes has yet to be developed.
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Fig. 3.1 Sequence of the 2.0 kb HindJH fragment derived from the CRK3 locus

The complete sequence of the 2026 bp Hind\\\ fragment derived from the CRK3 locus, 

and cloned into pBluescript to give pGL89, is shown. The CRK3 ORF and 

approximately 300 bp of upstream sequence was provided by Philomena Halford and Dr. 

Jeremy C. Mottram. Restriction sites are shown in purple, oligonucleotides are in red and 

the CRK3 open reading frame is in blue.
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351

401

451

501

551

601

651

701

751

/ f i n d l  I I

AAGCTTAGGA GGTGCTGGCG GTGTGCCACC GGCAACTTCG CAGGCTGCTT 
TTCGAATCCT CCACGACCGC CACACGGTGG CCGTTGAAGC GTCCGACGAA

CGACTCCAGC CCTAGGAGCT GGTTTCAACC CTGCAATGTT TGCACCTCCT 
GCTGAGGTCG GGATCCTCGA CCAAAGTTGG GACGTTACAA ACGTGGAGGA

GTTCCAGAAG GTAATCCACG GGAGGTTTAT CGCGAGCAAC TGCAGCTGCT 
CAAGGTCTTC CATTAGGTGC CCTCCAAATA GCGCTCGTTG ACGTCGACGA

GCGAGATATG GGTTTTCCCA ATGAGGAAGC GAACATTGCT GCTCTTCAGC 
CGCTCTATAC CCAAAAGGGT TACTCCTTCG CTTGTAACGA CGAGAAGTCG

OL382

AGGCTCAGGG CAATGTTCAG TTCGCATTGG AGCGGCTTCT TGGTGCATGA 
TCCGAGTCCC GTTACAAGTC AAGCGTAACC TCGCCGAAGA ACCACGTACT

TATATTGTGC TTTGCTTCCA CTTACTTCTT CCCCCTATTC TTACTCGTGC 
ATATAACACG AAACGAAGGT GAATGAAGAA GGGGGATAAG AATGAGCACG

TTTCGATCTT CAGAACTGAT CGTGGGAAGG GGAAGCCCTT GTGCTTTACG 
AAAGCTAGAA GTCTTGACTA GCACCCTTCC CCTTCGGGAA CACGAAATGC

AGGTAAGAGT ACGTTTCTTG GTGCTGGTGG GCCGATTTTA GTGAGTTTAC 
TCCATTCTCA TGCAAAGAAC CACGACCACC CGGCTAAAAT CACTCAAATG

AGTACAGAGG ATACTCTATG AACCCAAACA CTAGTCAAAA AGACGGTGGC 
TCATGTCTCC TATGAGATAC TTGGGTTTGT GATCAGTTTT TCTGCCACCG

TGTAACTGGC AGCAGCGATT TGGCAGGGGT GCTGCTCATG CGAGTGACAG 
ACATTGACCG TCGTCGCTAA ACCGTCCCCA CGACGAGTAC GCTCACTGTC

TAAAGCAAAG GTAGAGGATG CCGTTTTGCT GGATTTAAAC GCCAAGCACA 
ATTTCGTTTC CATCTCCTAC GGCAAAACGA CCTAAATTTG CGGTTCGTGT

AGAAGCGAGC AAGTGCATGC TATCAGATAC TTCTAAATGA AAGTCAGCTA 
TCTTCGCTCG TTCACGTACG ATAGTCTATG AAGATTTACT TTCAGTCGAT

CTCTCCTCTT TTTTTGGCAT CATCTTTTTT TCTCCTCTGT CCCTCATCTT 
GAGAGGAGAA AAAAACCGTA GTAGAAAAAA AGAGGAGACA GGGAGTAGAA

GTTTCCTTCC GATCAGAAGT GATAACGCTT CATAGTGAAG GCGTGCATTT 
CAAAGGAAGG CTAGTCTTCA CTATTGCGAA GTATCACTTC CGCACGTAAA

GCCAAGTGTG AAACTTTTTT TTCGACTCAC GATCTAGAAC TTGTCGGAAA 
CGGTTCACAC TTTGAAAAAA AAGCTGAGTG CTAGATCTTG AACAGCCTTT

AAAAAAGTAG CATTTAAAAA AGCATACACA CACTTACACA AATATCTTTT 
TTTTTTCATC GTAAATTTTT TCGTATGTGT GTGAATGTGT TTATAGAAAA
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801

851

901

951

1001

1051

1101

1151

1201

1251

1301

1351

1401

1451

1501

OL383

TCTTTTCCCC TTTAGCGTCT CTGCTGTTGC ACGTTTCTGG CCCTTTCTCC 
AGAAAAGGGG AAATCGCAGA GACGACAACG TGCAAAGACC GGGAAAGAGG

GTGCTACAAC ACACACACAC ACAGATGCCA AAGCACTAGC TTCTGGTGCC 
CACGATGTTG TGTGTGTGTG TGTCTACGGT TTCGTGATCG AAGACCACGG

E coR I

TGATTTTTTG TTGTTTGTAA GGAGAGGAGA CGAAGGAATT CCTTTCTTTT 
ACTAAAAAAC AACAAACATT CCTCTCCTCT GCTTCCTTAA GGAAAGAAAA

TTGAAGGTTT CGGAGCTTTT GCTTTGAACA AAGTTTCTCC CTGCAACATT 
AACTTCCAAA GCCTCGAAAA CGAAACTTGT TTCAAAGAGG GACGTTGTAA

OL322

TCAAATGTCT TCGTTTGGCC GTGTGACCGC CCGCAGCGGC GACGCTGGGA 
AGTTTACAGA AGCAAACCGG CACACTGGCG GGCGTCGCCG CTGCGACCCT

CCCGTGACAG TCTTGACCGG TACAATCGCT TGGATGTTTT GGGAGAGGGA 
GGGCACTGTC AGAACTGGCC ATGTTAGCGA ACCTACAAAA CCCTCTCCCT

S a i l

ACGTACGGCG TTGTGTATCG TGCGGTCGAC AAAATCACTG GACAGTACGT 
TGCATGCCGC AACACATAGC ACGCCAGCTG TTTTAGTGAC CTGTCATGCA

TGCTCTCAAG AAAGTGCGAC TCGATCGCAC TGAGGAGGGT ATTCCGCAGA 
ACGAGAGTTC TTTCACGCTG AGCTAGCGTG ACTCCTCCCA TAAGGCGTCT

CTGCGCTGCG CGAGGTGTCA ATTCTGCAAG AGTTCGACCA CCCCAACATT 
GACGCGACGC GCTCCACAGT TAAGACGTTC TCAAGCTGGT GGGGTTGTAA

GTGAACTTGC TTGATGTCAT TTGCTCGGAC GGGAAGCTCT ACCTTGTCTT 
CACTTGAACG AACTACAGTA AACGAGCCTG CCCTTCGAGA TGGAACAGAA

CGAGTATGTG GAGGCGGACC TGAAAAAGGC GATTGAAAAG CAAGAGGGCG 
GCTCATACAC CTCCGCCTGG ACTTTTTCCG CTAACTTTTC GTTCTCCCGC

GCTACTCTGG AATGGATCTG AAGCGGCTTA TTTATCAGCT TTTAGACGGC 
CGATGAGACC TTACCTAGAC TTCGCCGAAT AAATAGTCGA AAATCTGCCG

CTTTACTTTT GCCACCGCCA TCGCATCATC CACCGTGATC TGAAGCCAGC 
GAAATGAAAA CGGTGGCGGT AGCGTAGTAG GTGGCACTAG ACTTCGGTCG

CAACATCCTC CTGACATCAG GGAACGTCCT TAAATTGGCT GATTTCGGTC 
GTTGTAGGAG GACTGTAGTC CCTTGCAGGA ATTTAACCGA CTAAAGCCAG

TCGCCCGTGC GTTTCAAGTG CCCATGCACA CCTACACGCA CGAGGTGGTT 
AGCGGGCACG CAAAGTTCAC GGGTACGTGT GGATGTGCGT GCTCCACCAA



1551  ACGCTGTGGT ACCGTGCCCC TGAGATCCTC CTCGGTGAGA AGCACTACGC
TGCGACACCA TGGCACGGGG ACTCTAGGAG GAGCCACTCT TCGTGATGCG

1601  TCCTGCTGTG GATATGTGGA GTGTCGGCTG CATTTTCGCC GAGCTAGCAC
AGGACGACAC CTATACACCT CACAGCCGAC GTAAAAGCGG CTCGATCGTG

OL326

1651  GCCGAAAGGT TCTTTTCCGC GGCGATAGCG AAATCGGGCA GTTGTTTGAG 
CGGCTTTCCA AGAAAAGGCG CCGCTATCGC TTTAGCCCGT CAACAAACTC

1701 ATTTTTCAAG TGTTGGGGAC TCCGACGGAC ACCGAGGGGT CCTGGCCTGG
TAAAAAGTTC ACAACCCCTG AGGCTGCCTG TGGCTCCCCA GGACCGGACC

17 51 TGTGTCGCGG CTTCCTGATT ACCGCGACGT ATTTCCCAAG TGGACCGCAA
ACACAGCGCC GAAGGACTAA TGGCGCTGCA TAAAGGGTTC ACCTGGCGTT

1801 AGCGGCTGGG GCAGGTACTA CCAGAACTTC ATCCAGACGC TATTGATCTT
TCGCCGACCC CGTCCATGAT GGTCTTGAAG TAGGTCTGCG ATAACTAGAA

1851  CTCTCCAAGA TGCTCAAGTA CGATCCACGG GAGCGCATAT CAGCCAAGGA
GAGAGGTTCT ACGAGTTCAT GCTAGGTGCC CTCGCGTATA GTCGGTTCCT

OL323

1901  GGCCCTACAG CACCCGTGGT TCAGCGACCT TCGTTGGTAG TGGAAAAGGC
CCGGGATGTC GTGGGCACCA AGTCGCTGGA AGCAACCATC ACCTTTTCCG

1951 ATGACTGAAT ACAGCCTTCT GACGCGTTGA ACGATGGAGG ATTTGTTTTT
TACTGACTTA TGTCGGAAGA CTGCGCAACT TGCTACCTCC TAAACAAAAA

OL327 H i n d i I I

2 001 CTGAGGGTGC TTTGTTAAGG AAGCTT 
GACTCCCACG AAACAATTCC TTCGAA

1 1 0



Fig. 3.2 Map of CRK3 locus and gene targeting constructs

Panel A. Map of the CRK3 gene. The 2.0 kb Hindlll fragment was cloned into 

pBluescript to give plasmid pGL89. Panels B and C show the CRK3::HYG and 

CRK3::BLE disrupted alleles. Restriction sites are indicated. Regions of homology are 

colour coded. The green regions present in the targeting constructs correspond to the L 

major dihydrofolate reductase thymidylate synthase sequences that allow expression of 

the drug resistance gene. The 5’ flank of both targeting constructs consists of the 

1096bp Hin&lWSatl fragment from the CRK3 locus. The 3’ flank consists of a 339 bp 

fragment amplified from the 3’ end of the CRK3 locus by PCR with primers OL326 and 

OL327.



OL322

5’ Flank CRK3

OL326

O L323

3’ Fiank

Eco R I Sal I

Hind III

CRK3 locus
2026 bp

O L 327

Hind m

B DHFR-TS 5 'Flank

CRK3 5' Flank

OL322

Hud ni

BLE

DHFR-TS 3' Flank

OL326

CRK33' Flank

OL323

OL327

Spe I
Sal \

Spe I Bam 11 1
Sma I Sma I

Bgl II

CRK3::BLE (pGL97) 

4 .1  kb

Hud III

DHFR-TS 5 'Flank

CRK3 5'

O L322 HYG

DHFR-TS 3' Flank

O L 326

CRK3 5'

O L 323

O L 327

Spel
Sa/I

S p d

Hin d III

B anH  I Smel BgU

CRK3::HYG (pGL105)
4 .8  kb

Hin d III

111



Kb

HYG

CRK3

Fig. 3.3 PCR analysis of transgenic cell lines

Approximately 50ng DNA from wild type L. mexicana and CRK3 mutants was used as 

the template for a PCR reaction with primers OL322 and OL323 which anneal to the 5’ 

and 3’ sequence of CRK3. This sequence is also present in the CRK3::HYG and 

CRK3::BLE disruption cassettes (Fig. 3.1). Molecular weight markers are lkb ladder 

(Gibco BRL)

Lane 1. Wild type 

Lane 2. W585 

Lane 3. W583 

Lane 4. W625 

Lane 5. W626
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Fig. 3.4 Southern blot analysis of transgenic cell lines

5jag DNA from wild type L. mexicana or CRK3 mutants was digested with Hindlll,

separated by agarose gel electrophoresis, and transferred to a positively charged nylon

membrane. The membrane was then probed with the 2.0 kb Hindlll fragment from

plasmid pGL89, containing the complete CRK3 gene. Molecular weight markers are X

Hindlll digest

Lane 1. Wild type

Lane 2. W583

Lane 3. W585

Lane 4. W625
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Fig. 3.5 DNA content analysis of transgenic cell lines by fluorescence activated cell 

sorting (FACS).

The DNA content of wild type L. mexicana or CRK3 mutants was analysed by FACS. 

Mid-log promastigotes were fixed and stained with propidium iodide, then sorted with 

an Epics/XL flow cytometer (Coulter). A total of 10,000 cells were analysed for each 

sample.

Panel A Wild type Panel D W625

Panel B W583 Panel E W626

Panel C W585
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Fig. 3.6 Map of pTEXCRK3 episomal construct, plasmid pGLlOO.

The plasmid used to express the CRK3 gene in L. mexicana is based on the pTEX shuttle 

vector (Kelly et a/., 1992). This vector contains both the Ampr gene, conferring 

resistance to Ampicillin, and the NEO gene, allowing selection and maintenance of the 

plasmid in E. co/i and Leishmania. The Trypanosoma cruzi gGAPDH flanking and 

intergenic sequences, provide the signals needed for trans-splicing and polyadenylation of 

the CRK3 and NEO mRNAs in Leishmania. The position of the OL323 and OL324 

oligonucleotides is shown.
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Fig. 3.7 DNA content analysis of clones, derived from co-transfection experiment 

3.2.2.

Clonal cell lines derived from the co-transfection experiment described in section 3.2.2, 

in which HI heterozygote mutants were transfected with both the pGLlOO episome (Fig. 

3.5) and the crk3::ble targeting fragment, were analysed by FACS to determine their 

overall DNA content. Cells were fixed, stained with propidium iodide and analysed on a 

Epics/XL flow cytometer (Coulter). A total of 10,000 cells were analysed for each 

sample.

Panel A. Wild type, G418s 

Panel B.W635,G418R 

Panel C. W633 

Panel D. W634
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Fig.3.8 PCR analysis of clones derived from co-transfection experiment 3.2.2.

DNA from wild type L. mexicana, or clonal cell lines derived from experiment 3.2.2 

were analysed by PCR. 50ng of DNA was used as the template in a PCR reaction with 

the OL324 (pTEX-specific) and OL323 (C&O-specific) primers. Samples were 

electrophoresed on an 0.8% agarose gel, stained with ethidium bromide and imaged 

under UV illumination. Molecular weight marker was lkb ladder (Gibco BRL)

Lane 1. Wild type (G418s)

Lane 2. W635 (G418R)

Lane 3. W632 (G418s)

Lane 4. W633 (G418s)

Lane 5. Plasmid pGLlOO
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Fig. 3.9 Southern blot analysis of clones derived from co-transfection experiment

3.2.2.

5pg of genomic DNA was digested with Hin&lW, separated by gel electrophoresis and 

transferred to a positively charged nylon membrane. The membrane was probed with 

the 2.0 kb HindlW fragment of pGL89, which contains the full CRK3 sequence (see Fig. 

3.1)

Lane 1. Wild type Lane 4. W625

Lane 2. W583 Lane 5. W635

Lane 3. W585 Lane 6. W633

1 1 8



Fig. 3.10 DNA content analysis of clones derived from experiment 3.2.4.

The DNA content of clones from experiment 3.2.4 was analysed by FACS. Cells were 

fixed, stained with propidium iodide and analysed on a Epics/XL flow cytometer 

(Coulter). A total of 10,000 cells were analysed for each sample.

Panel A. Wild type Panel

Panel B. W638 Panel

Panel C. W1187 Panel

Panel D. W1188
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Fig. 3.11 Southern blot analysis of transfectants from experiment 3.2.4.

5pg of genomic DNA from clones derived as described in section 3.2.4, was digested 

with Hindlll, separated by gel electrophoresis and transferred to a positively charged 

nylon membrane. The membrane was probed with the 2.0 kb Hindlll fragment of 

pGL89, which contains the full CRK3 sequence (see Fig. 3.1)

Lane 1. Wild type Lane 6. W1188

Lane 2. W583 Lane 7. W1189

Lane 3. W585 Lane 8. W1190

Lane 4. W638 Lane 9. W1191

Lanes 5. W1187
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Fig. 3.12 DNA content analysis of clones derived from transfection experiment 

3.2.4

Clones derived from experiment 3.2.4 were analysed by FACS in order to determine 

their overall DNA content. Cells were fixed and stained with propidium iodide and 

10,000 cells were analysed on a Epics/XL flow cytometer (Coulter).

Panel A. Wild type 

Panel B. W669 

Panel C. W669b
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Fig. 3.13 Restriction map of the pGL96 (pXCRK3HIS) episome

The modified, hexahistidine tagged, CRK3 gene can be expressed from the pX episome 

in L. mexicana to produce active kinase. This episome contains both the Ampr and the 

NEO genes, allowing selection in either E. coli or Leishmania. The plasmid also contains 

L. major DHFR-TS flanking sequence which provides trans-splicing and polyadenylation 

signals.
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Fig. 3.14 DNA content of clones generated as described in section 3.2.5

The DNA content of the clones derived from experiment 3.2.5 was assessed by FACS 

analysis. Cells were fixed and stained with propidium iodide and 10,000 cells were 

analysed on a Epics/XL flow cytometer (Coulter).

Panel A. Wild type Panel

Panel B. W925H Panel

Panel C. W945 Panel

Panel D. W946
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Fig. 3.15 Southern blot analysis of clones derived from experiment 3.2.4

5pg of genomic DNA was digested with Hindlll, separated by agarose gel 

electrophoresis, transferred to positively charged nylon membrane and probed with the

2.0 kb Hindlll fragment of plasmid pGL89, which contains the complete CRK3 coding 

sequence.

Lane 1. Wild type Lane 5. W946

Lane 2. W583 Lane 6. W947

Lane 3. W585 Lane 7. W948

Lane 4. W945
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Fig. 3.16 Comparison of homology between the pGL96 and CRK3::BLE constructs

Both the pGL96 episome, and CRK3::BLE constructs both contain extensive regions of 

homology between the DHFR-TS sequence present in both constructs (blue regions). 

Degradation of the prepared CRK3::BLE targeting fragment could conceivably expose 

the DHFR-TS sequence. This may allow homologous recombination to occur between 

the targeting fragment and the episome.
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Fig. 3.17 DNA content analysis of geneticin sensitive clones derived from 

experiment 3.2.6

The DNA content of the Geneticin sensitive mutant clones described in section 3.2.6 

was determined by FACS analysis. Cells were fixed and stained with propidium iodide 

and analysed on a Epics/XL flow cytometer (Coulter). A total of 10,000 cells were 

analysed.

Panel A. Clone W991 Panel F. Clone NS1

Panel B. Clone W991 Panel G. Clone NS2

Panel C. Clone W992 Panel H. Clone NS3

Panel D. Clone W993 Panel I. Clone NS4

Panel E. Clone W994
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Fig. 3.18 Southern blot analysis of diploid, Geneticin sensitive clones derived from 

experiment 3.2.6

5pg of genomic DNA was digested with Hindlll, separated by agarose gel 

electrophoresis, transferred to a positively charged nylon membrane and probed with the

2.0 kb Hindlll fragment of plasmid pGL89. This fragment contains the complete CRK3 

sequence.

Lane 1. Wild type Lane 5. NS2

Lane 2. W583 Lane 6. NS3

Lane 3. W585 Lane 7. NS4

Lane 4. NS1
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Fig. 3.19 DNA content analysis of clones derived from experiment 3.2.6

The DNA content of clones derived from experiment 3.2.6 was analysed by FACS. 

Cells were fixed and stained with propidium iodide and analysed on a Epics/XL flow 

cytometer (Coulter). A total of 10,000 cells were analysed.

Panel A. W583 

Panel B. W995 

Panel C. W996 

Panel D. W997 

Panel E. W998 

Panel F. W999 

Panel G. W1000
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Fig. 3.20 Southern blot analysis of clones derived from experiment 3.2.6

5pg of genomic DNA was digested with Hindlll, separated by agarose gel 

electrophoresis, transferred to positively charged nylon membrane and probed with the

2.0 kb Hindlll fragment of plasmid pGL89. This fragment contains the complete CRK3 

sequence.

Lane 1. Wild type Lane 9. W1000

Lane 2. W583 Lane 10. W1001

Lane 3. W585 Lane 11. W1002

Lane 4. W995 Lane 12. W1003

Lane 5. W996 Lane 13. W1004

Lane 6. W997 Lane 14. W 1005

Lane 7. W998 Lane 15. W1006

Lane 8. W999
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Table 3.1 Nomenclature and genotype of L. mexicana clones derived from

transfection experiments carried out in this study

The clones derived from the experiments described in sections 3.2.1 to 3.2.6 are listed 

above along with details of their observed drug resistance, ploidy and deduced 

genotype.

(A) Name of clone and experiment from which it was derived

(B) Drug resistance assessed by in vitro growth in the presence of 50pg ml'1

hygromycin B, 10pg ml'1 Geneticin (G418) or 10pg ml'1 phleomycin.

(C) Ploidy as assessed by FACS

(D) Genotype with respect to CRK3 locus. Those indicated by an asterisk are predicted 

from the available data, others were verified by experimental evidence



W583 (3.2.1) Hyg Diploid CRK3/CRK3: :HYG
W585 (3.2.1) Ble Diploid CRK3/CRK3:: BLE
W625 (3.2.1) 
W626

Hyg and Ble Aneuploid CRK3/CRK3/CRK3: .HYG/CRK3/BLE *

W638 (3.2.2) Hyg and Neo Diploid CRK3/CRK3: :HYG fpTEX CRK3]
W635 (3.2.3) Hyg, Ble and Neo Diploid CRK3/CRK3: .HYG/CRK3: :BLE [pTEX 

CRK3]
W632 (3.2.3) 
W633

Hyg and Ble Diploid CRK3/CRK3: .HYG/CRK3: :BLE

W1187 (3.2.4) 
W1188 
W1189 
W1191

Hyg, Ble and Neo Diploid CRK3 v.HYGICRK3v.BLE [pTEX CRK3]

W1190 (3.2.4) Hyg, Ble and Neo Diploid CRK3/CRK3:.HYG/CRK3::BLE [pTEX 
CRK3]

W1191 (3.2.4) Hyg, Ble and Neo Diploid CRK3 y.HYGICRK3 y.BLE [pTEX CRK3]
W669 (3.2.4) 
W669b

Hyg, Ble and Neo Aneuploid CRK3/CRK3/CRK3: .HYG/CRK3/BLE 
[pTEXC&OHISl *

W925H (3.2.5) Hyg and Neo Diploid CRK3/CRK3: :HYG \pXCRK3 HIS1
W945 (3.2.5)
W946
W947
W948
W949
W950

Hyg, Ble and Neo Diploid CRK3/CRK3: :HYG [pXCRK3::BLE HIS]

W991 (3.2.6) 
W992 
W993 
W994

Hyg Ble and Neo Aneuploid CRK3/CRK3/CRK3::HYG/CRK3/BLE 
[pTEXC&OHIS] *

W995 (3.2.6)
W996
W997
W998
W999
W1000
W1001
W1002
W1003
W1004
W1005
W1006

Hyg Ble and Neo Diploid CRK3/CRK3: . HYG/CRK3: :BLE [pXCRK3 
HIS]

NS1 (3.2.6) 
NS2 
NS3 
NS4

Hyg and Ble Diploid CRK3/CRK3: .HYG/CRK3:: BLE
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Chapter 4

The effects of direct and indirect inhibition of CRK3 on cell cycle progression in 

Leishmania mexicana

4.1.1 Introduction

Cyclin dependent kinases (CDKs) are key regulators of the cell cycle thought to be 

ubiquitous throughout all eukaryotic organisms. Members of the CDK family have a 

role in cell cycle control through conserved mechanisms that are similar in all 

eukaryotes (Nigg, 1995). This is not surprising, as most cell types need to fulfil the 

same set of operations in order to survive. They need to integrate environmental signals, 

eg. cytokine or growth factor signals, availability of nutrients etc., with intracellular 

signals controlling cell growth, DNA replication, and cell division (Hartwell, 1995). 

These signalling events impinge on cell cycle control via the activity of CDKs that in 

turn phosphorylate a number of target proteins to control progression through the cell 

cycle (Nigg, 1993).

Members of the cyclin dependent kinase family of proteins control transition points 

between the Gl/S and G2/M phases of the cell cycle. Such kinases are not constitutively 

active but have their activity regulated in a number of ways. Firstly; they require the 

binding of a cyclin partner protein to achieve full activity (Meijer et al., 1989; Brizuela 

et al., 1989). Monomeric CDKs have almost no kinase activity (Lees, 1995). CDKs are 

also regulated by phosphorylation and dephosphorylation of a number of critical 

residues. Phosphorylation of Thr 161 is required for full activity whereas 

phosphorylation of Thr 15 has an inhibitory effect on the kinase (Gu et al., 1992).
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Interference with ATP binding, or inhibition of the dephosphorylation of the inhibitory 

phospho-Thr 15 can therefore result in inactivation of CDKs. The CKI family of cyclin 

dependent kinase inhibitor molecules, inhibit CDK activity by binding to the 

cyclin/CDK complex, causing conformational changes and blocking the ATP binding 

site (Russo et al, 1996).

CDK activity can also be inhibited by a number of structurally unrelated chemical 

compounds that act through the same mechanism; competitive binding to the ATP 

binding site (Meijer, 1995). Chemical inhibitors of CDKs are of interest not only 

because they can be used as tools to analyse aspects of cell cycle control by CDKs, but 

also because they may have therapeutic value in the treatment of cancer. The most 

promising inhibitor of CDKs in this respect is flavopiridol, a semi-synthetic flavone, 

structurally related to a natural alkaloid, originally purified from the bark of Dysoxylum 

binectariferum, a plant indigenous to India (Sedlacek et al, 1996). Flavopiridol was 

found to be a potent inhibitor of a number of tumour cell lines, and reduced the growth 

of human tumour xenografts in nu/nu mice (Sedlacek et al., 1991; Czech et al., 1995). 

Flavopiridol can inhibit cdkl (Losiewicz et al., 1994), and cdk2 and 4 (Carlson et al., 

1996), and blocks cells in either G1 (Kaur et al., 1992), or G2 (Worland et al., 1993). It 

has also been shown to affect S-phase progression in Plasmodium falciparum (Graeser 

et al, 1996). The structure and inhibitory properties of flavopiridol against a number of 

protein kinases is shown in Figure 4.1. Flavopiridol has undergone phase I clinical trials 

and is currently undergoing phase II trials for the treatment of therapy-resistant 

progressive tumour diseases (Sedlacek et al, 1996; Stadler et al, 1998). In this study 

flavopiridol was tested for its effect on L. mexicana promastigote growth, and for its 

inhibitory effect against CRK3, as a method to analyse cell cycle progression of L. 

mexicana promastigotes in greater detail.
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Synchronisation of mammalian cells by microtubule drugs, such as nocodazole (Zieve 

et al, 1980) or aphidicolin, an inhibitor of DNA polymerase a  (Pedrali-Noy et al, 

1980), has aided the biochemical analysis of cell cycle progression in mammalian cells. 

An efficient method for synchronising cultures of Leishmania would aid the analysis of 

the biochemistry of cell cycle progression. Many genes involved in cell cycle control, 

such as cyclins, may be present only at certain times in the cell cycle, as is true for most 

other eukaryotes. Synchronisation would also allow a more detailed analysis of the roles 

of CRK1 and CRK3 in cell cycle progression.

A number of methods to synchronise Leishmania and T. brucei have been used 

previously without success. Aphidicolin and hydoxyurea result in a cell cycle arrest of 

bloodstream form T. brucei, with cells accumulating in G2 phase of the cell cycle with 

two kinetoplasts and one nucleus. After release from inhibition there is a 24-hour lag 

period before cells begin to divide. Re-entry into the cell cycle occurs asynchronously 

(Mutomba and Wang, 1996). Hydroxyurea has been used to successfully synchronise 

Crithidia fasciculata (Cosgrove et al, 1979) and Leishmania tarentolae (Simpson and 

Braly, 1970). However attempts to use hydroxyurea to synchronise L. mexicana 

promastigotes did not work effectively (J.C. Mottram, personal communication). The 

use of anti-microtubule agents does not result in a cell cycle block but causes disruption 

of organelle segregation and cytokinesis, resulting in cell division and formation of a 

nucleated cell and an anucleate, flagellated cell termed a zoid (Robinson et al, 1995). 

Inhibition of purine salvage by the purine analogue (S)-9-(3-hydroxy-2- 

phosphonylmethoxypropyl)adenine ((S)-HPMPA) in T. brucei results in arrest during S- 

phase. Again it was not possible to synchronise cells using this inhibitor, as there was a 

significant lag period before all cells had re-entered the cell cycle (Kaminsky et al, 

1998). This chapter describes the use of two independent methods to attempt to
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synchronise Leishmania in order to study in more detail the function of CRK3 in cell 

cycle progression.

4.2 Inhibition of Leishmania growth by the protein tyrosine phosphatase inhibitor 

bpV(phen)

A study carried out in parallel, and recently published, has shown that growth of L. 

major amastigotes was inhibited by the protein tyrosine phosphatase inhibitor 

bpV(phen) (Olivier et al, 1998). bpV(phen) is potent phosphotyrosine phosphatase 

inhibitor and acts as an insulin mimetic in vivo by blocking the dephosphorylation of the 

insulin growth factor receptor (Posner et al, 1994). bpV(phen) also arrests the growth of 

cultured mammalian cells (Faure et al, 1995). This growth inhibition is due to 

inhibition of cell cycle progression, blocking cells in the G2 phase of the cell cycle. 

Growth arrest of L. major by bpV(phen) was also shown to be due to inhibition of cell 

cycle progression. Cells incubated in the presence of bpV(phen) accumulated in the G2 

phase of the cell cycle, as assessed by FACS. It was proposed that this cell cycle block 

resulted from inhibition of the Leishmania homologue of the fission yeast Cdc25 

phosphotyrosine phosphatase (Olivier et al, 1998). In fission yeast and human cells the 

Cdc25 phosphatase has an important role in regulating the function of Cdc2/cdkl. 

Phosphorylation of the Tyr 15 residue of Cdc2/cdkl by the protein tyrosine kinase 

Weel results in inactivation of the Cdc2/cdkl kinase complex (Parker and Piwnica- 

Wonns, 1992). Dephosphorylation of Tyr 15 by Cdc25 at the end of the G2 phase of the 

cell cycle results in restoration of Cdc2 activity and triggers entry into mitosis (Hoffman 

and Karsenti, 1994). Temperature sensitive mutants of cdc25 arrest in late G2, prior to 

mitosis (Moreno et al, 1989; Booher et al, 1989). As this arrest phenotype is similar to
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the cell cycle arrest of Leishmania caused by bpV(phen), it was proposed that this was 

due to inhibition of a phosphotyrosine phosphatase activity in L. major that is 

homologous to the S. pombe Cdc25 tyrosine phosphatase. It was shown that a 35 kDa 

protein in Leishmania cross-reacts with a monoclonal antibody raised against the highly 

conserved PSTAIR epitope of human cdkl (the human homologue of S. pombe cdc2). 

This 35 kDa protein was immunoprecipitated from cell extracts of parasites arrested by 

incubation with bpV(phen). Western blot experiments on immunoprecipitated material, 

with an antibody raised against the phosphorylated Tyr 15 residue of cdkl, showed that 

the putative L. major cdkl homologue cross reacted with this antibody, suggesting that 

the corresponding residue in the Leishmania CDK1 homologue is phosphorylated in 

arrested cells (Olivier et al, 1998).

The experiments outlined in this section were performed in order to determine whether 

bpV(phen) inhibited CRK3 in L. mexicana, and also to test the applicability of 

bpV(phen) mediated cell cycle arrest as a method for studying cell cycle progression in 

Leishmania. bpV(phen) was initially provided as a kind gift by Dr. M. Olivier, Laval 

University, Quebec, Canada, and was later obtained from Alexis corporation.

4.2.1 Incubation of Leishmania promastigotes with bpV(phen) results in a 

reduction of CRK3 activity

Cultures of L. mexicana promastigotes were seeded at a cell density of lx l0 7 cells ml'1 

and incubated for 12 or 24 hours in the presence or absence of 10 pM bpV(phen). Cells 

were harvested by centrifugation, washed in PBS and used for analysis of p l3sucl 

binding kinase activity. p l3 sucl binding kinase activity had previously been shown to be 

CRK3 (Grant et al., 1998).
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Cell pellets were lysed in lysis buffer containing glycerol (LSG) and the extracts were 

incubated with either p l3sucl bound Sepharose beads or with control Sepharose beads. 

The beads were pre-incubated in BSA and then washed with a high salt buffer (HSLS), 

to remove non-specifically binding components. Kinase activity, bound to the beads, 

was assessed by resuspending the samples in kinase assay mix (KAM) containing 

radiolabelled 32P-y-ATP and histone HI substrate. Kinase reactions were incubated at 

30°C for 20 minutes before the reaction was stopped by addition of SDS PAGE sample 

buffer. Reactions were boiled and separated by electrophoresis on a 12% SDS PAGE 

gel. Gels were dried, wrapped in cellophane and exposed to photographic film. Relative 

kinase activity was assessed by phosphorimaging. The results of the autoradiograph and 

phosphorimaging analysis are shown in Fig. 4.2. The structure of bpV(phen) is shown in 

panel A. Panel B shows the results of the autoradiograph. Lanes labelled pl3 correspond 

to samples incubated with p l3sucl beads and lanes labelled C correspond to samples 

incubated with control beads. Panel C shows the relative values obtained from the 

phosphorimaging analysis. Incubation of L. mexicana for 12 hours with 10 pM 

bpV(phen) does not result in any loss of p l3 sucl binding kinase activity (compare panel 

B, lane 5 with lane 1 and panel C, column 5 and column 1), however, incubation for 24 

hours results in a complete reduction of p l3 sucl binding kinase activity to background 

levels (compare panel B, lane 7 with lanes 3 and 4, and panel C, column 7 with columns 

3 and 4). The results of cell cycle analysis, by FACS, of cells incubated with 10 pM 

bpV(phen) for 12 or 24 hours are shown in Fig. 4.3. Panel A corresponds to a control 

sample of cells incubated for 12 hours in the absence of bpV(phen). Panel B indicates 

that cell cycle progression is not affected by a 12-hour incubation with 10 pM 

bpV(phen), whereas panel D shows that incubation for a further 12 hours resulted in an 

accumulation of cells in the Gl/S phase of the cell cycle. Such an accumulation of cells
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in G1 is not observed in the control sample after the same incubation time (panel C). 

The cell cycle arrest caused by 24 hour incubation with bpV(phen) is coincident with 

the loss of p l3 sucl binding kinase activity as shown in Fig. 4.2, lane 7. These results 

together suggest that bpV(phen) may indeed inhibit the as yet unidentified Leishmania 

homologue of Cdc25. Loss of such activity would be predicted to result in the retention 

of the inhibitory phosphorylation at the Tyr 34 residue of CRK3, the Leishmania 

equivalent of the Cdc2 Tyr 15 residue, which is dephosphorylated by Cdc25 (Millar et 

al, 1991). To test whether the Tyr 34 residue of CRK3 was phosphorylated, western 

blot analysis was performed using an antibody raised against the phosphorylated Tyr 15 

epitope of human cdkl. CRK3 kinase from cells incubated for 24 hours with 10 pM 

bpV(phen), was purified by affinity binding to p l3 sucl. Purified kinase was run on a 12% 

SDS-PAGE gel and transferred to PVDF membrane, which was then blocked and 

probed with the anti-phospho-Tyr 15 antibody. No signal was detected using this 

antibody. It is possible that this antibody is unable to cross-react with the analogous 

epitope on the L. mexicana CRK3 protein due to amino acid differences in this region of 

the protein. The antibody recognises the epitope, KIEKIGEGTY(P)GVVYKGRHK. 

The analogous epitope of L. mexicana CRK3, RLDVLGEGTY(P)GVVYRAVDK, 

differs by nine amino acids from the epitope recognised by the antibody.

4.2.2 Restoration of CRK3 activity and re-entry into the cell cycle upon release 

from bpV(phen) induced growth arrest.

Given that bpV(phen) causes a Gl/S cell cycle arrest in L. mexicana we tested whether 

this arrest was reversible and could be used as a method of obtaining a synchronous 

population of Leishmania, progressing uniformly through the cell cycle. L. mexicana

137



promastigotes were seeded at a density of lx l0 7 cells ml"1 in HOMEM medium 

containing 10 pM bpV(phen) and incubated at 25°C for 24 hours. Cells were then 

harvested, washed twice in cold PBS and resuspended in fresh complete medium 

lacking bpV(phen). Cells were incubated at 25°C and samples were taken at 2-hour time 

points for 12 hours and samples were prepared for FACS analysis and for determination 

of p l3 sucl binding kinase activity. Results of the p l3 sucl binding kinase assay are shown 

in Fig. 4.4. Panel A shows the autoradiography results and panel B shows the relative 

signal intensity as judged by phosphorimaging analysis. Lane 1 corresponds to the 

background activity binding to control beads. After 24 hours in the presence of 

bpV(phen) the p l3 sucl binding activity has been significantly reduced (lane 2). After 

washing to remove the inhibitor, this activity increases (lanes 2-7), reaching a peak after 

10 hours (lane 7). FACS analysis indicates that the majority of cells incubated with 

bpV(phen) for 24 hours are arrested in the G1 and S-phases of the cell cycle (Fig. 4.5 

panel B). Washing the cells to remove the inhibitor reverses this arrest, resulting in re

entry into and progression through the cell cycle (panels C to I). Re-entry into a normal 

cell cycle was, however, only partially synchronous. A significant lag period existed 

before some of the cells began to progress through S-phase, G2 and mitosis. Panel C, 

shows that the proportion of cells in G2 has increased, two hours after release from the 

bpV(phen) block. There is still a significant proportion of cells in G1 or S-phase. After 4 

hours (panel D) the majority of cells are in S-phase or G2, but with a significant number 

still in Gl. After the 6 hour time point, most cells are in G2, with far fewer cells in G1 

or S-phase (panel E). From 8 to 12 hours the cell cycle profile of the population reverts 

back to the standard profile as the population becomes less synchronised. The apparent 

lag in cell cycle progression in a proportion of the population is probably due to the fact 

that the population was not uniformly arrested at one defined point in the cell cycle but
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was arrested at various points throughout G1 and S-phase. Cells arrested in late G1 or S- 

phase will enter into mitosis before those cells arrested in early G l, which must progress 

through the remainder of Gl phase, through S-phase and G2 before entering mitosis. It 

appears that it is not therefore possible to use bpV(phen) as a chemical method of 

synchronising cultures of Leishmania to allow a more detailed biochemical analysis of 

cell cycle progression. The compound, however, could be useful in the analysis of 

regulatory phosphorylation of key residues of CRK3, such as Tyr 34. Cell labelling 

studies, using radiolabelled 32P y-ATP, in conjunction with the use of bpV(phen) may 

help to determine the role of phosphorylation and dephosphorylation of key residues of 

CRK3 in regulating its kinase activity throughout the cell-cycle and life cycle.

4.3 Inhibition of CDKs by chemical inhibitors

Because CDKs play a significant part in controlling the growth and division of cells 

they have been the subject of intensive research aimed at elucidating their precise roles. 

This research has led to the discovery of chemical inhibitors that may have therapeutic 

value in treating a number of diseases associated with uncontrolled cell proliferation, 

such as occurs during tumour development. Some of these compounds may also prove 

valuable in the treatment of infection with rapidly dividing eukaryotic pathogens 

(Graeser et al, 1996).

A number of these CDK inhibitor compounds now exist (see chapterl, section 1.7). 

Most of these compounds, though structurally very different, inhibit CDKs in a similar 

way, by competitive binding to the ATP binding site of the kinase complex (Meijer, 

1995).
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A previous study has indicated that the CRK3 kinase of Leishmania shows a similar 

inhibition profile to Cdc2 with the inhibitor, olomoucine (Grant et al., 1998). It has not 

proved possible to generate null or conditional mutants of CRK3 to analyse the possible 

role of CRK3 in cell cycle control in Leishmania (see chapter 3). Therefore, attempts 

were made to use flavopiridol, a chemical inhibitor of CDKs to study the effects of 

inhibition of CRKs on cell cycle progression in Leishmania.

Flavopiridol is a potent inhibitor of CDKs (see Fig. 4.1 for the structure and properties 

of flavopiridol), most active against the cdkl, cdk2 and cdk4 kinases of mammalian 

cells (Losiewicz et al, 1994; Carlson et al, 1996).These are the kinases with a most 

important role in cell cycle control. Flavopiridol has been shown to inhibit the growth of 

a number of human tumour cell lines and is undergoing clinical trials as a potential anti

tumour agent (Carlson etal., 1996).

4.3.1 Inhibition of Leishmania Promastigote Growth by the CDK Inhibitor 

Flavopiridol

Cultures of Leishmania promastigotes were seeded in triplicate at a density of l.Ox 106 

cells ml'1 and incubated in the presence of a range of concentrations of flavopiridol. 

Cells were counted at 24 hour time points and the mean value of triplicate cell counts 

was plotted (Fig. 4.6). Growth of Leishmania was inhibited by flavopiridol in a dose 

dependent manner. A concentration of 1.0 pM resulted in complete arrest of 

promastigote growth, whereas lower concentrations only partially inhibited cell growth 

and higher concentrations resulted in cell death. 50% inhibition of cell growth was 

achieved at a concentration of approximately 250 nM. Because flavopiridol is a known 

chemical inhibitor of CDKs it is likely that the growth inhibition effect is due to the
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inhibition of one or more of the Leishmania CRKs that are homologues of CDKs. It is 

possible that the growth inhibition effect is due to inhibition of other kinases involved in 

growth control, however this is unlikely as flavopiridol does not inhibit other classes of 

kinases to the same extent as CDKs (see Fig. 4.1, Panel B).

4.3.2 Flavopiridol inhibits CRK3 with an IC50 value of 100 nM.

CRK3his protein was purified by Nickel NTA affinity chromatography from the W1033 

cell line that expresses native and his-tagged CRK3 (see Chapter 3, Table 3.1). Bound 

kinase was eluted from the beads with 100 mM EDTA and was then bound by affinity 

binding to p l3 sucl Sepharose beads. This protocol follows that used for the assay of 

inhibition by olomoucine (Grant et al, 1998) and therefore provides a direct comparison 

of the inhibitory properties of olomoucine and flavopiridol against CRK3. It has been 

shown previously that active kinase complex from Leishmania cell extracts binds to 

p l3sucl beads and that the CRK3 protein is the major catalytic sub-unit of this kinase 

activity (Grant et al., 1998).

Samples of kinase bound to p l3 sucl beads were aliquoted and flavopiridol was added to 

each sample at a different concentration. Kinase activity bound to the beads was 

assessed using the previously described histone HI kinase assay. The reaction was 

halted by the addition of SDS sample buffer and samples were boiled for 5 minutes 

prior to loading on a 12% SDS PAGE gel. Gels were dried, wrapped in cellophane and 

exposed to a phosphorimaging plate for analysis and quantification of kinase activity. 

The experiment was repeated three times. The results of a representative experiment are 

shown in Fig. 4.7 The plotted results give an IC50 value of 100 nM that is comparable to 

IC50 values for a number of human CDKs (other experiments gave IC50 values of 80 and
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130 nM). These results indicate that flavopiridol is a potent in vitro inhibitor of CRK3, 

the p l3 sucl binding kinase activity of L. mexicana. It is not yet known however, what 

effect, if  any, flavopiridol has on other CRKs in Leishmania and it cannot be concluded 

from these results alone that inhibition of CRK3 activity by flavopiridol is responsible 

for inhibition of promastigote growth in vivo.

4.3.3 Flavopiridol blocks promastigote growth by causing cells to arrest in G2 

phase of the cell cycle.

Given that CRK3 is a putative controller of cell cycle progression and is inhibited in 

vitro by flavopiridol then it is probable that the inhibition of promastigote growth 

caused by flavopiridol is due to disruption of normal cell cycle progression. Flavopiridol 

has been shown to disrupt Gl to S-phase progression in Plasmodium falciparum 

(Graeser et al., 1996) and causes Gl/S and G2/M cell cycle arrests in various human 

cell lines (Kaur et al., 1992; Worland et al., 1993)

Cultures of Leishmania were set up at a density of lxlO6 cells ml'1 in the presence of 0, 

1.0, 2.5 or 5.0 pM flavopiridol. 1ml samples were taken at 0, 12, 18 and 24 hour time 

points. These samples were fixed, stained with propidium iodide and analysed by FACS 

to determine the overall DNA content and to gain information on the cell cycle 

distribution of the cell samples.

The results of the FACS analysis of all the samples analysed is shown in Fig. 4.8. At a 

concentration of 2.5 pM flavopiridol leads to an accumulation of cells with a 4N DNA 

content after a period of 12 hours (panel J). As these cells are not dividing and have 4N 

DNA content, they must be arrested in the G2 phase of the cell cycle, after DNA 

replication, but before cell division. Cells blocked with flavopiridol for a longer time
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period, or at higher concentrations of flavopiridol, begin to die resulting in a wider 

spread of fluorescence intensity signals as their nuclei break apart (Fig. 4.8, panels G, H, 

and P. At lower concentration the block is not complete, panel F.

Quantitative analysis of the FACS results using the ModFit LT software package allows 

the determination of the proportion of cells in each cell cycle phase. The results of such 

analysis are shown in Fig. 4.9. Panel A shows the results of FACS analysis. Panel B 

shows the results of ModFit analysis of the FACS histogram. Column 1 shows that 

approximately 45% of cells in this sample, from a log-phase promastigote culture, are in 

the Gl phase of the cell cycle. 20% of cells are in S-phase (column 2), and 

approximately 36% are in G2 phase (column 3). The cell cycle distribution of cells 

arrested by a 12-hour incubation with 2.5 pM flavopiridol is very different (panel C). 

Less than 5% of cells are in Gl (Panel D, column 1) and approximately 17% are in S- 

phase (column 2). The majority of cells, greater than 75%, in this population have been 

arrested in G2-phase of the cell cycle (column 3). These results are confirmed by 

fluorescence microscopy of cells stained with the DNA binding dye 4 ’,6-diamidino 

phenylindole (DAPI). In an untreated log-phase culture dividing cells with two 

kinetoplasts and 2 nuclei represent approximately 12% of cells. Such cells are shown in 

Fig. 4.10. Panel A shows a phase contrast image and panel B shows the corresponding 

DAPI image. Cells blocked with flavopiridol are predominantly single cells with one 

kinetoplast and one nucleus (Panel D). Such cells make up approximately 76% of the 

total number of cells.

This cell cycle arrest is likely to be due to the in vivo inhibition of CRK3 because of it’s 

presumed role as the Leishmania Cdc2 homologue. This experiment does not however 

rule out the possibility that flavopiridol inhibits other Cdc2 homologues in L. mexicana 

that may also contribute to proper control of cell cycle progression. However, given that
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CRK3 is strongly inhibited by flavopiridol in vivo, and that other evidence strongly 

suggests that CRK3 is the functional homologue of Cdc2 in Leishmania (Grant et al., 

1998), it seems likely that the observed G2/M block, resulting from incubation of L. 

mexicana promastigotes in the presence of flavopiridol, is due primarily to inhibition of 

CRK3.

4.3.4 Release from flavopiridol induced cell cycle arrest

To test whether the G2/M phase arrest caused by flavopiridol was reversible, log phase 

L. mexicana promastigotes were seeded at a density of lxlO6 cells ml'1 (-12 hr time 

point) and incubated for 12 hours in the presence of 2.5 pM flavopiridol. Cells were 

then washed twice in complete medium and resuspended in fresh, complete HOMEM 

minus flavopiridol (0 hr time point). Cells were incubated at 25°C and samples were 

prepared for cell cycle analysis by FACS at 2, 4 and 6 hours. The results of this analysis 

are shown in Fig. 4.11. Panel A shows the FACS results and panel B shows the results 

of ModFit analysis. At the -12Hr timepoint the sample shows the normal cell cycle 

distribution of logarithmically growing promastigotes. At time 0 hr, 95% of cells are 

blocked with a 4N DNA content, presumably in the G2 phase of the cell cycle. At time 

0, cells were washed and resuspended in fresh medium to release from the flavopiridol- 

induced growth inhibition. 2 hours after release approximately 65% of cells still remain 

in G2 and 30% are in G l. After a further 2 hours (4 hr time point) approximately 70% 

of cells are in S-phase and approximately 10% are in G2 and a further 10% in Gl. At 

the 6 hr time point 65% of cells are in G2, 17% in Gl and 18% in S-phase. These results 

show that washing the cells to remove the inhibitor reversed the G2/M arrest due to 

flavopiridol. After washing, cells divided and progressed through a full cell cycle.
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Under these conditions however, cells are not uniformly released from the block. A 

significant sub-population of cells, approximately 65%, still remain in G2 phase after 2 

hours when a large proportion of the cells, 30%, have divided and progressed into the 

Gl phase of the cell cycle. After 4 hours 70% of cells are progressing through S-phase, 

whilst 10% of cells remain in Gl. These Gl cells may be the slow dividing sub

population that had not divided by 2 hours after release from the flavopiridol block. It is 

not clear why there should be a sub-population of cells that do not divide as promptly as 

the majority of cells do. It is possible that the G2 block induced by flavopiridol is not 

entirely uniform and that cells are blocked at different stages through G2. This may 

explain why some cells enter mitosis more rapidly than others upon release from the 

block. Those cells that are arrested in late G2 can divide very quickly, as soon as the 

block is released, however cells that were arrested in early G2 must progress through the 

remainder of the G2 phase before dividing.

To test the possibility that serum components are signalling cells to divide whilst they 

are being washed the experiment was repeated, this time washing the cells in serum free 

medium. The results of the FACS analysis (Fig. 4.11) were broadly similar to the results 

obtained for complete medium washed cells. A large proportion of cells, 72%, still 

remained in G2 at the 2 hr time point and divided within the next 2 hours to result in a 

population of cells mainly in Gl (41%) and S-phase (55%) at the 4 hr time point. The 

same experiment was also repeated using a PBS wash rather than complete or serum- 

free medium. The results (see Fig. 4.12) again do not show a completely synchronised 

re-entry into the cell cycle, however there is a larger proportion, 68%, of cells in the Gl 

phase of the cell cycle 2 hours after release from the block, and only 23% remain in G2. 

After a further 2 hours (4 hr time point), 70% of cells are in S-phase, whilst 12% and
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18% are in Gl and G2 phase respectively. At the 6 hr time point the majority of cells, 

61%, are in G2, whilst 21% and 18% are in Gl and S-phase respectively.

Although release from flavopiridol inhibition is not completely synchronous this 

method could certainly be used to enrich samples for cells in specific cell cycle stages. 

Samples taken at 2, 4, and 6 hours after release from the block are enriched for cells in 

Gl (68%), S-phase (70%), and G2 phase (61%) respectively. Such populations, 

enriched for cells at a particular stage of the cell cycle, could be used to purify and 

analyse cell-cycle regulated proteins.

4.3.5 Flavopiridol inhibits the growth of bloodstream and procyclic forms of T. 

brucei

The ability of flavopiridol to inhibit the growth of both bloodstream and procyclic 

culture forms of the monomorphic T. brucei strain STIB 427 was assessed. Triplicate 

cultures of procyclic or long slender bloodstream form trypanosomes were seeded at a 

density of lxlO6 and lx l0 5 cells ml"1 respectively, in SDM-79 medium (Brun and 

Schonenberger, 1979) or HMI-9 medium (Hirumi and Hirumi, 1989). Cultures were 

incubated with a range of concentrations of flavopiridol at 27°C (for procyclics) or 37°C 

(bloodstream form cells). Cells were counted at various time intervals and the mean 

values of triplicate counts were plotted against time (Figs. 4.13 and 4.14). Flavopiridol 

affects the growth of both T. brucei bloodstream and procyclic forms. However there is 

a difference in the concentrations of inhibitor needed to result in a complete block of 

growth. Growth of procyclic trypanosomes is inhibited by 50% at a concentration of 

approximately 100 nM flavopiridol, whilst a concentration of 250 nM is required to 

inhibit the growth of the bloodstream form. This concentration is similar to that needed
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to achieve 50% inhibition of L. mexicana promastigote growth (Fig. 4.6), however the 

starting density of the T. brucei bloodstream form cultures was tenfold less than that of 

the L. mexicana promastigote cultures or the procyclic cultures. Procyclics of T. brucei 

are therefore more sensitive to flavopiridol than the bloodstream form, and their growth 

inhibition resembles that of L. mexicana promastigotes, both of which are insect- 

adapted life cycle stages. However T. brucei procyclics treated with flavopiridol do not 

arrest exclusively at the G2/M transition but appear to arrest at both Gl/S and G2/M. 

Fig. 4.16 shows the results of DNA content analysis of flavopiridol treated T. brucei 

procyclics. Panel A shows the FACS histogram of an untreated population. The 

proportions of cells in each phase of the cell cycle is shown in Panel B. 51% of cells are 

in G l, 33% in G2, and 16% in S-phase. In cells treated with 2.5 jaM flavopiridol for 12 

hours (Panel C) the cell cycle distribution of cells is as follows; 66% in G l, 33% in 

G2/M, and only 1% in S-phase (Panel D). The reasons for the difference in sensitivity to 

flavopiridol between procyclic and bloodstream trypanosomes may be due to structural 

differences in the target enzyme thereby altering the binding properties of flavopiridol, 

or may be due to a difference in uptake of the drug. It is not known whether flavopiridol 

diffuses passively into the cell or whether it specifically enters via receptor mediated 

endocytosis. The culture conditions of bloodstream trypanosomes are quite different 

from that of procyclic trypanosomes or Leishmania promastigotes. Differences in 

chemical composition of the media used, or differences in incubation temperature (37°C 

for bloodstream trypanosomes, 25°C and 27°C for procyclic trypanosomes and 

Leishmania promastigotes respectively) may affect the stability and half-life of the drug. 

None of these possibilities have currently been tested.

4.4 Discussion
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The experiments described in this chapter provide evidence that CRK3 has a role in cell 

cycle progression in L. mexicana. Inhibition of L. mexicana growth by the 

phosphotyrosine phosphatase inhibitor bpV(phen) caused arrest in the Gl and S-phases 

of the cell cycle. Purified CRK3 from such blocked cells is inactive. Activity of CRK3 

recovers after release from the block as cells re-enter the cell cycle. It is not known 

however whether other CRKs such as CRK1 are also inhibited by this method. It is 

assumed that the cell cycle arrest observed after incubation with bpV(phen) is due to 

inhibition of the Leishmania homologue of the Schizosaccharomyces pombe Cdc25 

protein tyrosine phosphatase. In S. pombe Cdc25 plays a role in regulating cell cycle 

progression by removing the inhibitory phosphate at the Tyr 15 residue of the Cdc2 

kinase (Millar et al., 1991). As CRK3 contains a homologous residue (Tyr34), it is 

likely that phosphorylation and dephosphorylation at this residue also regulates CRK3 

activity. Inhibition of the Cdc25 homologue in Leishmania by bpV(phen) would 

therefore be expected to lead to inhibition of the activity of the Leishmania Cdc2 

homologue, resulting in cell cycle arrest. Because bpV(phen) does lead to inhibition of 

cell cycle progression, and this inhibition correlates with inhibition of CRK3 kinase 

activity, this suggests that CRK3 does play a role in cell cycle progression in 

Leishmania. However it is also possible that the cell cycle arrest is due to inhibition of 

some other phosphatase with a role in growth control. Tyrosine kinase activity plays an 

important role in cell signalling events in other organisms and is likely to play a role in 

growth and differentiation of trypanosomatids (Parsons et al., 1990; Dell and Engel, 

1994). The use of okadaic acid, a serine threonine phosphatase inhibitor, resulted in 

defects in cell division in T. brucei (Das et al., 1994). The action of kinases and 

phosphatases is clearly important in signalling events in the trypanosomatids, just as
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they are in other organisms. It is therefore possible that bpV(phen) is acting against 

other phosphatase targets in the experiments performed in this study. Without 

confirmation that Leishmania does indeed possess a Cdc25 homologue, it is not possible 

to rule out this prospect.

Inhibition of L. mexicana growth by the CDK inhibitor flavopiridol results in an 

accumulation of cells with a 4N DNA content (Fig. 4.1, Panel J). This is indicative of a 

cell cycle block in the G2 phase of the cell cycle, when cells have replicated their DNA 

but are blocked prior to mitosis. Purified CRK3 kinase complex can be inhibited by 

flavopiridol at nanomolar concentrations in vitro. The IC50 value obtained was lOOnM. 

This is slightly lower than the IC50 values obtained for inhibition of the human CDK1, 

CDK2 and CDK4 kinases by flavopridol, which are 400 nM (Losiewicz et al., 1994; 

Carlson et al, 1996). Because flavopiridol is a very potent inhibitor of CRK3 in vitro, 

and inhibits cell growth at a similar range of concentrations it is likely that the cell cycle 

arrest caused by flavopiridol is primarily due to inhibition of CRK3 in vivo. However it 

is not possible to mle out the possibility that flavopiridol inhibits other protein kinases 

such as CRK1, thereby contributing to the cell cycle arrest. However, given that CRK3 

forms the majority of the p l3 sucl binding kinase activity in L. mexicana and is therefore 

likely to play a similar role in regulating cell cycle progression as S. pombe Cdc2, it is 

likely that the inhibition of CRK3 by flavopiridol is directly affecting cell cycle 

progression. Because flavopiridol appears to be a more potent inhibitor of L. mexicana 

CRK3 than human CDK1, 2, or 4, it may be a suitable lead compound for rational drug 

design. The work described in this study was performed on promastigotes, or on CRK3 

kinase purified from promastigotes. The effect of flavopiridol on the growth of 

amastigotes or on CRK3 purified from amastigotes has not yet been done. It is possible 

that a different CRK acts as the master regulator of cell cycle control in amastigotes.
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The effect of flavopiridol on the growth of the bloodstream form of T. brucei was less 

potent than on the procyclic form. However, given that CRK3 in Leishmania is also 

active in amastigotes, it probably has a similar function in this life cycle stage. There 

may, however, be differences in other components of the kinase complex, a different 

cyclin partner for example, that may have an effect on the binding of flavopiridol. As 

flavopiridol exerts its effect by competitively binding to the ATP binding site of the 

kinase (De Azevedo et ah, 1996) however, this is unlikely. What may have a more 

important bearing on the effectiveness of flavopiridol on amastigotes is the way in 

which it enters the cell. It is also true that in an in vivo situation, where amastigotes 

reside inside the parasitophorous vacuole of infected macrophages, the drug must first 

enter the macrophage before it can begin to have any effect on the parasite. This may 

mean that doses required to kill the amastigotes will have toxic side effects. This of 

course, is a problem for all potential anti-leishmanial drugs. However, this is not the 

case for therapies acting against the bloodstream form of Trypanosoma brucei which 

does not infect host cells but lives free in the bloodstream of the host. Therefore 

flavopiridol, or derivatives of flavopiridol may be useful as anti-trypanosomal drugs. 

Inhibition of cell cycle progression of L. mexicana promastigotes is reversible. Cells can 

be released from a G2 phase block by washing with PBS at 4°C, before resuspension in 

fresh medium. Although this does not result in a completely synchronous re-entry into 

the cell cycle, this method can still be used to obtain samples enriched for cells in a 

particular phase of the cell cycle. This may be useful to study the levels of cell cycle 

regulated transcripts, proteins, or for the analysis of components of the cell cycle 

machinery in Leishmania. For example, the role of regulatory phosphorylation of the 

Tyr34 residue of CRK3 throughout the cell cycle, or the binding of cyclin partners of
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CRK3 at different points of the cycle could be analysed. The activity of CRK3 and other 

CRK complexes throughout the cell cycle could also be studied.

A number of methods that are used to synchronise various eukaryotic cell types, have 

been used to attempt to obtain synchronous populations of Leishmania. Hydroxyurea, an 

inhibitor of ribonucleotide reductase, causes inhibition of cell cycle progression by 

reducing the availability of deoxyribonucleotides, thereby inhibiting DNA synthesis 

(Yarbro, 1992). Hydroxyurea has been used to synchronise populations of Leishmania 

tarentolae and Crithidia fasciculata (Simpson and Braly, 1970; Cosgrove et al., 1979). 

Attempts to use hydroxyurea to synchronise L. mexicana however, were unsuccessful 

(J.C. Mottram, personal communication). Other methods that have been used in the 

trypanosomatids include the use of aphidicolin, an inhibitor of DNA polymerase a  

which arrests cells at the Gl/S-phase boundary (Feher and Mishra, 1994), to 

synchronise Trypanosoma brucei procyclic and bloodstream form cells (Mutomba and 

Wang, 1996). This method did not result in a synchronous population of cells as there 

was a significant lag period before cells re-entered the cell cycle upon release from the 

block. A similar problem was encountered in a study of the use of (S)-9-(3-hydroxy-2- 

phosphoenolmethoxypropyl)adenine ((S)-HPMPA), a purine analogue which arrests T. 

brucei in S-phase, to synchronise African trypanosomes (Kaminsky et al, 1998).

The results presented in this study on the use of flavopiridol to synchronise L. mexicana 

promastigotes, currently appears to be the best available method for doing so. However, 

flavopiridol cannot be used to synchronise African trypanosomes as the effect of 

flavopiridol on both procylic and bloodstream stages of T. brucei is to cause a block at 

both Gl/S and G2/M.
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Fig. 4.1. Structure and inhibition properties of flavopiridol

The chemical structure (Panel A) and IC50 values of flavopiridol against a number of 

protein kinases is shown (Panel B). Table adapted from, Meijer, 1995.



(A)

• H C 1

EGF-receptor 21

Protein kinase A 122

Protein kinase C 6

CDKl/Cyclin B 0.3

CDKl/Cyclin A 0.3

CDKl/Cyclin E 0.3

CDK2/Cyclin A 0.1

CDK2/Cyclin E 0.1

CDK4/Cyclin D 0.4

CDK6/Cyclin D 0.4

CDK7/Cyclin H 0.4
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Fig. 4.2 Indirect inhibition of L. mexicana p l3sucl Binding Kinase (CRK3) by the 

protein tyrosine phosphatase inhibitor bpV(phen)

L. mexicana promastigotes were incubated at a density of lx 107 cells ml'1 in the 

presence of 10 pM bpV(phen) for 12 or 24 hours. p l3 sucl binding kinase was purified 

and assayed for ability to phosphorylate histone HI. Relative kinase activity was 

assessed by quantification on a phosphorimager (Fuji). (A) Structure of bpV(phen). (B) 

Autoradiograph results. (C) Results of Quantification by phosphorimaging. 

p i3: p 13suc 1 beads 

C: Control beads
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Fig. 4.3 FACS analysis of L. mexicana promastigotes incubated with bpV(phen)

L. mexicana promastigotes at a cell density of lx l0 7 cells ml'1 were incubated for 12 or 

24 hours in the presence of 10 pM bpV(phen). The samples were fixed and stained with 

10 pg ml"1 propidium iodide, and DNA content was analysed by FACS. 10,000 cells 

were counted on an Epics/XL flow cytometer (Coulter).

Panel A: 12 hr, 0 pM bpV(phen) Panel C: 24 hr, 0 pM bpV(phen)

Panel B: 12 hr, 10 pM bpV(phen) Panel D: 24 hr, 10 pM bpV(phen)



Fig 4.4 Restoration of L. mexicana p l3sucl binding kinase activity upon release from 

bpV(phen) induced Gl/S cell cycle arrest

L. mexicana promastigotes at a cell density of lx l0 7 cells ml'1 were incubated for 24 

hours with 10 pM bpV(phen). Cells were then washed twice in cold PBS to remove 

bpV(phen) and resuspended in fresh medium minus bpV(phen). Samples were prepared 

for p l3sucl binding kinase assay after 24 hour incubation with bpV(phen) (lane 2) and at 

2 hour time points after cells were released from bpV(phen) inhibition (lane 3-9). p l3 sucl 

binding kinase activity was assessed as by phosphorylation of histone HI as described 

previously.

Panel A Autoradiograph

Panel B Quantification by phosphorimager

Ctrl. Assay of kinase activity bound to control beads
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Fig. 4.5 FACS analysis o iL . mexicana promastigotes after release from bpV(phen) 

induced Gl/S-phase block

Samples of L. mexicana promastigotes inhibited with bpV(phen) and then released from 

inhibition were prepared and analysed for DNA content by FACS. Inhibition and release 

were as described in Figure 4.3. Cells were stained with lOpg ml'1 propidium iodide and 

analysed on an Epics/XL flow cytometer (Coulter). 10,000 cells were counted for each 

individual sample.

Panel A: 0 pM bpV(phen)

Panel B: 24 hr, 10 pM bpV(phen)

Panels C-I: Incubated for 24 hr with 10 pM bpV(phen), resuspended without bpV(phen) 

and incubated for 2, 4, 6, 8, 10, 12, and 30 hr respectively.
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Fig 4.6 Growth inhibition of L. mexicana promastigotes by flavopiridol

Cultures of L. mexicana promastigotes were seeded at a density of lx l0 6 cells ml"1 and 

incubated in the presence of 0, 50, 100, 250, 500 nM, 1.0 and 5 pM flavopiridol. Cell 

density was determined at 24 hr intervals and the mean result of triplicate values is 

plotted. Error bars show the standard deviation.
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Fig 4.7 Flavopiridol inhibits CRK3 with an IC50 value of 100 nM

Active CRK3his was purified by Nickel NTA agarose affinity selection from the L. 

mexicana cell line, W1033. Histone HI kinase activity was assayed in the presence of 

increasing concentrations of flavopiridol (Panel A), and the relative kinase activity was 

assessed by phosphorimaging analysis. The experiment was repeated three times giving 

IC50 values of 130, 100 and 80 nM respectively. A representative experiment is shown. 

Results are plotted as a percentage of uninhibited kinase activity (Panel B).
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Fig 4.8 DNA content analysis of cells incubated with flavopiridol

The total DNA content of L. mexicana promastigotes incubated in the presence of the 

CDK inhibitor, flavopiridol, at different concentrations and for differing time periods 

was assessed by FACS. Cells were fixed, stained with propidium iodide, and 10,000 

cells were counted on a Coulter Epics/XL flow cytometer.

Panel A-D. Negative control culture with no inhibitor at 0, 12, 18 and 24 hours 

Panel E-H. 1.0 pM flavopiridol at 0, 12, 18 and 24 hours 

Panel I-L. 2.5 pM flavopiridol at 0, 12, 18 and 24 hours 

Panel M-P. 5.0 pM flavopiridol at 0, 12, 18 and 24 hours
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Fig 4.9 Analysis of the cell cycle distribution of L. mexicana promastigotes arrested 

with flavopiridol

L. mexicana promastigotes at a cell density of lxlO6 cells ml'1 were incubated with 2.5 

pM flavopiridol for 12 hours. Cells were fixed and stained with propidium iodide and 

analysed on a Becton Dickinson FACScalibur flow cytometer. Cell cycle distribution was 

determined using the ModFit LT software package.

Panel A: L. mexicana promastigotes, no flavopiridol

Panel B: Cell cycle distribution of L. mexicana promastigotes minus flavopiridol 

Panel C: L. mexicana promastigotes blocked with 2.5 pM flavopiridol for 12 Hrs 

Panel D: Cell cycle distribution of L. mexicana promastigotes blocked with 2.5 pM 

flavopiridol for 12 Hrs
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Fig 4.10 Fluorescence microscopy of flavopiridol treated L. mexicana 

promastigotes stained with DAPI

L. mexicana promastigotes were incubated in the presence or absence of 2.5 pM 

flavopiridol for 12 hours. Cells were smeared onto slides, fixed for 1 hour in 70% 

ethanol and then stained with 20 pg m l1 DAPI. Slides were viewed under UV 

illumination using a Zeiss Axioplan microscope fitted with a CCD camera (Hamamatsu 

photonics). Images were captured on a Power Macintosh (Apple) using the OpenLab 

2.0.2 software package (Improvision). Arrows indicate nuclei. Arrowheads indicate 

kinetoplasts.

Panel A. Untreated cells, phase contrast image 

Panel B. Untreated cells, fluoresence image 

Panel C. Flavopiridol treated cells, phase contrast image 

Panel D. Flavopiridol treated cells, fluoresence image
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Fig 4.11 Release of L. mexicana promastigotes from flavopiridol induced cell cycle 

arrest

L. mexicana promastigotes at a density of lx l0 6 cells ml'1 were incubated for 12 hours 

in the presence of 2.5 pM flavopiridol. Cells were washed twice in complete medium 

and resuspended in fresh complete medium. Cells were then incubated at 25°C and 

samples were removed at 2 hour time points, fixed and stained with propidium iodide 

and analysed on a FACScalibur flow cytometer (Panel A). 10,000 cells were analysed 

for each sample. Cell cycle distribution was determined using ModFit LT software 

(Panel B). Samples marked Ctrl correspond to untreated cells.
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Fig. 4.12 Release of L. mexicana promastigotes from flavopiridol inhibition by

serum-free medium wash

L. mexicana promastigotes at a density of lx l0 6 cells ml'1 were incubated for 12 hours 

in the presence of 2.5 pM flavopiridol. Cells were washed twice in serum free medium 

and resuspended in fresh complete medium. Cells were then incubated at 25°C and 

samples were removed at 2 hour time points, fixed and stained with propidium iodide 

and analysed on a FACScalibur flow cytometer (Panel A). 10,000 cells were analysed 

for each sample. Cell cycle distribution was determined using ModFit LT software 

(Panel B). Samples marked Ctrl correspond to untreated cells.
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Fig. 4.13 Release of L. mexicana promastigotes from flavopiridol inhibition by PBS

wash

L. mexicana promastigotes at a density of lx l0 6 cells ml'1 were incubated for 12 hours 

in the presence of 2.5 pM flavopiridol. Cells were washed twice in PBS and 

resuspended in fresh complete medium. Cells were then incubated at 25°C and samples 

were removed at 2 hour time points, fixed and stained with propidium iodide and 

analysed on a FACScalibur flow cytometer (Panel A). 10,000 cells were analysed for 

each sample. Cell cycle distribution was determined using ModFit LT software (Panel 

B). Samples marked Ctrl correspond to untreated cells.
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Fig. 4.14 Growth inhibition of procyclic form T. brucei by flavopiridol

Cultures of T. brucei procyclics were seeded at a density of lxlO6 cells ml'1 in the 

presence of 0, 50, 100, 250, 500 nM, 1.0 and 5.0 pM flavopiridol. Cell density was 

determined at 24 hour intervals and the mean result of triplicate values is plotted. Error 

bars show the standard deviation.
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Fig. 4.15 Growth inhibition of bloodstream form T. brucei by flavopiridol

Cultures of T. brucei bloodstream form cells were seeded at a density of lx l0 5 cells ml'1 

in the presence of 0, 50, 100, 250, 500 nM and 1.0 pM flavopiridol. Cell density was 

determined at 24 hour intervals and the mean result of triplicate values is plotted. Error 

bars show the standard deviation.
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Fig. 4.16 Cell cycle analysis of T. brucei procyclics incubated in the presence of 

flavopiridol

T. brucei procyclics at a cell density of lx l0 6 cells ml'1 were incubated with 2.5 pM 

flavopiridol for 12 hours. Cells were fixed and stained with propidium iodide and 

analysed on a Becton Dickinson FACScalibur flow cytometer. Cell cycle distribution 

was determined using the ModFit LT software package.

Panel A: T. brucei procyclics, no flavopiridol

Panel B: Cell cycle distribution of T. brucei procyclics minus flavopiridol

Panel C: T. brucei procyclics blocked with 2.5 pM flavopiridol for 12 Hrs

Panel D: Cell cycle distribution of T. brucei procyclics blocked with 2.5 pM

flavopiridol for 12 Hrs
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CHAPTER 5

5.1 Complementation experiments with Saccharomyces cerevisiae cdc28ti mutants

The availability of a wide variety of temperature sensitive mutant strains of S. cerevisiae 

allow the identification of genes from other organisms that can complement for the loss 

of function of the gene bearing the conditional mutation. Many temperature sensitive 

mutants exhibit easily identifiable phenotypes at the restrictive temperature, eg. 

Changes in cell polarity (Rethinaswamy et al., 1998), bud morphology (Zhang et al, 

1998), mitotic spindle formation (Spang et al., 1996) or temperature dependent lethality 

(Uemura et al, 1996). It is therefore possible to screen for homologous genes that, when 

expressed in such mutant strains at the restrictive temperature, are able to restore the 

phenotype to wild type (Elledge and Spottswood, 1991; Ninomiya-Tsuji et al, 1991). 

Many homologues of the Schizosaccharomyces pombe and Saccharomyces cerevisiae 

cdc2!CDC28 genes have been identified due to their ability to complement temperature 

sensitive mutants. Complementation of a Schizosaccharomyces pombe cdc2 mutant led 

to the identification of a human (Lee and Nurse, 1987) and an alfalfa homologue of cdc2 

(Hirt et al, 1991) and complementation of Saccharomyces cerevisiae cdc28 mutants 

have led to the identification of human (Elledge and Spottswood, 1991; Ninomiya-Tsuji 

et al, 1991), zea maize (Colasanti et al, 1991), soybean (Setiady et al, 1996), 

Caenorhabditis elegans (Mori et al, 1994), and Nicotinia tabacum (Setiady et al, 

1996) homologues of CDC28. The identification of cdc2ICDC28 homologues from 

such a diverse array of organisms by complementation illustrates the high degree of 

conservation of cell-cycle control mechanisms throughout the evolution of eukaryotes.
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Complementation of temperature sensitive yeast mutants has been used successfully as a 

method to clone trypanosomatid homologues of various yeast genes. A Trypanosoma 

cruzi heat shock protein 90 gene (Palmer et al, 1995), a Trypanosoma brucei profilin 

homologue (Williamina and Seebeck, 1997), T. brucei dolichol phosphate mannose 

synthase (Mazhari-Tabrizi et al, 1996), and two T. brucei cyclin homologues (Neuville 

and Mottram, unpublished) have all been identified in this way. It is therefore possible 

to identify trypanosomatid homologues of yeast genes by complementation, despite the 

degree of evolutionary distance between these organisms. To determine whether the 

CRK3 kinase of Leishmania mexicana was a functional homologue of Cdc2/CDC28 the 

kinase was expressed in three separate temperature sensitive cdc28 S. cerevisiae mutant 

strains and tested for complementation.

It has been shown previously that some genes that can complement for loss of CDC28 

Gl/S kinase activity are not necessarily able to complement for loss of CDC28 G2/M 

kinase activity (Mori et al, 1994) and vice versa (Hirt et al, 1993). For this reason 

CRK3 was tested for the ability to complement three distinct mutant yeast strains; 

cdc28-lNts and cdc28-4ts, which arrest at the G2/M transition and the cdc28-13ts strain 

which arrests at the Gl/S checkpoint (Lorincz and Reed, 1986). Expression levels of 

cell-cycle control genes are tightly regulated, it was therefore important that the CRK3 

gene was expressed over a range of levels to eliminate the possibility that 

overexpression of CRK3 may be toxic.

5.2.1 CRK3 fails to complement S. cerevisiae cdc28-lN cdc28-4* and cdc28-13ts

The CRK3 gene was excised from plasmid pGL89 by digestion with EcoRl and Xho\. 

The resulting fragment was purified from an agarose gel and ligated into the
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pRS416MET yeast expression plasmid (Mumberg et al, 1994) to give plasmid pGL120 

(Fig. 5.1). This plasmid contains the S. cerevisiae MET25 promoter upstream of the 

multiple cloning site. In the absence of methionine the MET25 promoter is maximally 

active, and is repressed when methionine is present. This allows regulation of 

expression of cloned genes by altering the concentration of methionine in the medium 

(Mumberg et al., 1994). The plasmid also contains the URA3 gene allowing selection 

for cells bearing the plasmid when grown on medium lacking uracil. The cdc28-lNts, 

cdc28-4ts, and cdc28-13ts yeast strains were transformed with the pGL120 plasmid using 

the lithium acetate procedure (Ito et al., 1983). Five independent clones per 

transformation were selected and patched onto duplicate plates. Plates were sealed with 

parafilm and incubated either at the permissive temperature of 25°C, or at the restrictive 

temperature, 37°C. Plates were incubated for 4 days to allow colonies to form. The 

results of the complementation test are shown in Fig. 5.2. Colonies formed at the 

permissive temperature of 25°C (Fig. 5.2, Panel B) but did not form at the restrictive 

temperature (Panel A). To determine whether CRK3 was expressed in these clones 

western blot analysis of cell lysates was performed. 10ml overnight cultures were 

harvested and cells were washed and resuspended in breaking buffer. Samples were 

incubated on ice and an equal volume of acid-washed glass beads was added. Samples 

were alternately vortexed and incubated on ice for 30 seconds. This procedure was 

repeated eight times. The resultant clarified supernatant was removed and mixed with 

SDS-PAGE sample loading buffer. Samples were separated by SDS-PAGE and 

transferred to PVDF membrane (NEN™ Life Sciences) by electroblotting. Samples 

were run in duplicate so that the membrane could be split into two identical halves. Both 

halves of the membrane were blocked and probed with a rabbit polyclonal antibody 

raised against a 10 amino acid peptide corresponding to the extreme C-terminus of
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CRK3. One half of the membrane was probed with the anti-CRK3 peptide antibody 

alone and the other was probed in the presence of 2 pg ml'1 competing peptide.

The blot was probed with a goat HRP-conjugated anti-rabbit secondary antibody, 

exposed to enhanced chemiluminescence (ECL) reagents, then exposed to medical X- 

ray film. The resulting autoradiograph is shown in Fig. 5.3. Lanes 1 to 3 correspond to 

lysates from the cdc28-lNts, cdc28-4‘s and cdc28-13ts strains transformed with the 

pGL120 plasmid and probed with anti-CRK3 peptide antibody in the presence of 

competing peptide. No signal is detected for any of these samples. Lanes 4 to 6 

correspond to lysates from the cdc28-lNts, cdc28-4ts and cdc28-13ts probed with the anti- 

CRK3 antibody in the absence of competing peptide. A clear signal is detected in all 

three samples. The predicted molecular weight of the protein to which the antibody has 

bound, is approximately 35kDa. These results indicate that CRK3 is being expressed in 

all three yeast strains, but complementation is not occurring.

To test whether complementation might occur by altering the expression levels of 

CRK3, all three transformed yeast strains were patched onto YNB-agar plates 

containing a range of concentrations of methionine. The presence of methionine should 

repress the MET25 promoter, reducing the expression levels of CRK3. As a control the 

cdc28-13ts strain was transformed with a plasmid that allows expression of the 

Caenorhabditis elegans nccl gene. C. elegans NCC1 is a homologue of CDC28 and has 

previously been shown to complement a cdc28-lNts mutant (Mori et al., 1994). Plates 

were incubated at the restrictive temperature (37°C) for four days to allow colonies to 

form. The results are represented in Fig. 5.4. Panel A corresponds to the control plate 

incubated at 25°C. Panels B to F correspond to plates containing 1000, 500, 250, 100 

and 50pM methionine, incubated at the restrictive temperature of 37°C. After four days 

only the control cells transformed with the C. elegans nccl gene were able to grow at
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37°C. It was not possible to ascertain whether the levels of CRK3 were altered under 

different methionine concentrations by western blot analysis, possibly because maximal 

expression is required to generate enough protein to be detectable using the anti-CRK3 

antibody.

5.2.2 Co-expression of T. brucei cyclins with L. mexicana CRK3 fails to complement 

for loss of S. cerevisiae CDC28 activity

One explanation for the inability of CRK3 to complement for loss of CDC28 activity is 

that CRK3 cannot bind to yeast cyclins to form a functional kinase complex. It is known 

however, that two Trypanosoma brucei cyclin homologues, TbCYC2 and TbCYC3 are 

able to complement an S. cerevisiae CLN1,2 and 3 mutant strain (Neuville and Mottram, 

unpublished). This suggests that they can bind to CDC28 to form a functional complex 

that is able to recognise and phosphorylate the correct substrates. Furthermore, a third T. 

brucei cyclin CYC1, is able to complement a Schizosaccharomyces pombe cdc2ts 

mutant (Affranchino et al., 1993). It is likely that Leishmania contains homologues of 

the T. brucei cyclin genes, some of which may interact with CRK3.

To test whether CRK3 could bind to the T. brucei cyclins to form a functional complex 

that could complement for loss of CDC28 activity, all three T. brucei cyclins were co

expressed with L. mexicana CRK3 in the cdc28-4ts S. cerevisiae mutant. All three T. 

brucei cyclins plus the MET25 promoter and CYC1 terminator regions were cloned into 

the pRS314 vector which is selectable by growth in tryptophan deficient media. The 

resultant plasmids CYC1, pGL332 (Fig. 5.5), CYC2, pGL292 (Fig. 5.6) and CYC3, 

pGL293 (Fig. 5.7) were introduced into the cdc28-lNts, cdc28-4‘\  and cdc28-13ts 

mutants and transformants were selected. No transformants were recovered for the
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cdc28-IN15 and cdc28-13ts strains. However transformants were isolated for the cdc28-4ts 

strain and were tested for complementation to verify that expression of the cyclins alone 

could not suppress the mutant phenotype. Overexpression of genes that interact with a ts 

mutant protein is known, in some cases to lead to suppression of the mutant phenotype 

and can be used to clone genes encoding proteins that interact with the mutant protein 

(Del Priore et al, 1996). As expected none of the transformants were able to grow at the 

restrictive temperature (Fig. 5.8, panel A), although they grew at the permissive 

temperature (Panel B). The pG1120 plasmid was then introduced into these cells to 

generate transformants expressing CRK3 in combination with all three T. brucei cyclins. 

Triplicate clones were selected, plated onto selective medium plates and incubated at 

25°C or 37°C. Colonies were formed at 25°C (Fig. 5.9, panel B) but not at 37°C (Panel 

A), indicating that the temperature sensitive phenotype has not been rescued by co

expression of CRK3 in combination with the three T. brucei cyclins. Unfortunately no 

anti-cyclin antibodies were available at the time of this study to test whether the cyclins 

were expressed in the CRK3 expressing cdc28-4ts strain.

5.3 Discussion

The large degree of evolutionary divergence between the trypanosomatids and other 

eukaryotes such as Saccharomyces cerevisiae and Schizosaccharomyces pombe may 

explain why in some cases trypanosomatid homologues of yeast genes are unable to 

complement yeast mutants. Both L. mexicana CRK1, and T. brucei CRK2 failed to 

complement an S. pombe cdc2ts mutant (Mottram et al, 1993; Mottram and Smith, 

1995). In the case of CRK3 the degree of divergence with CDC28 in the PSTAIRE box, 

six amino acid substitutions out of sixteen, may preclude the binding of yeast cyclins
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and therefore the activation of the kinase. Homologues of yeast cyclins have been 

identified in the related trypanosomatid Trypanosoma brucei. Two of these genes were 

cloned during a screen for genes that could restore growth to a conditional G1 cyclin 

mutant (Neuville and Mottram, unpublished). Both of these cyclins therefore appear to 

be able to bind to and activate S. cerevisiae CDC28, and must be able to recognise the 

correct substrates. Homologues of T. brucei cyclins are likely to exist in L. mexicana 

and may function as cyclin partners of CRK3. All three of the T. brucei cyclins were co

expressed in the S. cerevisiae cdc28-4,s mutant with L. mexicana CRK3, and tested for 

their ability to restore growth at the restrictive temperature. It was reasoned that one or 

more of the T. brucei cyclins might be able to form a functional kinase complex with L. 

mexicana CRK3, and that such a complex may be able to rescue the temperature- 

sensitive phenotype at the restrictive temperature. However, again complementation did 

not occur. Assuming that the cyclins are expressed there are several explanations why 

complementation failed. It may be that L. mexicana CRK3 cannot bind to any of the T. 

brucei cyclins used in this study, possibly because they are not the functional partners of 

CRK3. It is likely that many more trypanosomatid cyclins remain to be discovered, 

some of which may be the functional partners of CRK3. An alternative explanation is 

that the degree of divergence between the T. brucei cyclins and presumed L. mexicana 

homologues is too great, and the T. brucei cyclins cannot, therefore, bind to L. mexicana 

CRK3. This however is unlikely as T. brucei CRK1 (which is 72 % identical to L. 

mexicana CRK1) can function in L. mexicana in the absence of native CRK1. 

Consequently T. brucei CRK1 must be able to bind L. mexicana cyclins to function. It is 

likely, therefore, that L. mexicana CRK3, which is 78 % identical to T. brucei CRK3, is 

able to bind to T. brucei homologues of its cyclin partner. Ideally this experiment should 

have been performed using the T. brucei CRK3 gene. This was not done due to the
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the failure of attempts to clone the T. brucei CRK3 gene into the pRS416MET vector, 

coupled with time constraints.

During the course of this work it became apparent that a separate study on L. major 

CRK3 had resulted in successful complementation of a Schizosaccharomyces pombe 

temperature-sensitive cdc2 mutant (Wang et al, 1998). However, complementation 

occurred in only two of 50,000 transformants. Analysis of these two transformants 

showed that the introduced plasmid had integrated into the genome, and that the 

expression levels of the CRK3 protein were lower than that of cells in which CRK3 was 

expressed from a plasmid. The level of expression of CRK3 appears therefore to be 

critical in determining whether a complementation test will succeed or fail. 

Overexpression of CRK3 may have a dominant negative effect that is only apparent in 

the absence of Cdc2 function at the restrictive temperature, as no visible phenotype was 

observed at the permissive temperature in strains expressing CRK3. Alteration of the 

expression level of L. mexicana CRK3 in the cdc28-lNts, cdc28-4ts and cdc28-13ts 

mutants, by growing the transformants in the presence of methionine, did not result in 

complementation. It was not possible, using the available anti-CRK3 antibody, to 

determine whether CRK3 levels were indeed affected as predicted. The anti-CRK3 

antibody would only detect the protein at the limits of detection when CRK3 was fully 

expressed. It may be that expression levels were repressed in the presence of 

methionine, but that the repression was not significant enough to reduce CRK3 levels to 

the required level. It is clear, however, that although complementation of conditional 

yeast mutants provides a powerful method for analysing gene function, unforeseen 

epigenetic effects may hamper such analysis. For some genes it is clearly not enough to 

express them in a particular mutant, but the level of expression must be tightly 

controlled to provide a true test of the ability to complement.

175



pGL120
6645 bp

Kpn I (2009) 

CYC1 Terminator

Xho I (2329)

Kpn I (2819)

CRK3

Sac I (3858)

MET25 Promoter

Xba I (3467) 

E co R I (3437)

ARSH4

CEN6

UR A 3

Fig. 5.1 Map of the pGL120 construct

The pGL120 construct allows the expression of L. mexicana CRK3 in S. cerevisiae. The 

MET25 promoter and CYC1 terminator provide the necessary transcriptional control 

regions. The URA3 gene allows for selection of clones bearing the plasmid on medium 

lacking uracil.

176



Fig. 5.2 Complementation test of S. cerevisiae cdclS*5 mutant strains expressing the 

L. mexicana CRK3 gene

The cdc28-lNts, cdc28-4ts and cdc28-13ts mutant S. cerevisiae strains were transformed 

with the pGL120 plasmid to allow expression of L. mexicana CRK3 in S. cerevisiae. 

Transformants were selected on YNB-agar medium lacking uracil. Five colonies 

derived from each transformation were picked from the plate, resuspended in 50 pi 

distilled water and 5 pi of this cell suspension was transferred to duplicate plates. One 

plate (Panel A) was incubated at the restrictive temperature of 37°C and the other at the 

permissive temperature of 25°C (Panel B).
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Fig. 5.3 Western blot analysis of transformed S. cerevisiae cell lysates

Cell lysates were prepared from the cdc28-l~Nts, cdc28-4,s and cdc28-13,s mutant strains 

transformed with the pGL120 plasmid. Lysates were separated by SDS-PAGE, 

transferred to PVDF membrane and probed with an antibody against the last ten 

residues of the C-terminus of CRK3 (Grant et al., 1998).

C. Control lysate, untransformed cdc28-13ts.

Lane 1. cdc28-lNts, pGL120, lysate plus 2 pg ml'1 competing peptide

Lane 2. cdc28-4ts, pGL120, lysate plus 2 pg ml'1 competing peptide

Lane 3. cdc28-13's, pGL120, lysate plus 2 pg ml'1 competing peptide

Lane 4. cdc28-J3ts, no plasmid

Lane 5. cdc28-lNts, pGL120, lysate

Lane 6. cdc28-4's, pGL120, lysate

Lane 7. cdc28-13's, pGL120, lysate
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Fig. 5.4 Complementation test in the presence of methionine

The cdc28-lNt\  cdc28-4ts, and cdc28-13ts S. cerevisiae mutants expressing L. mexicana 

CRK3, and a cdc28-13ts strain expressing the C. elegans nccl gene, were transferred to 

plates containing 1.0 mM or, 500, 250, 100 or 50 pM methionine, to alter the levels of 

expression of CRK3. The control plate (Panel A) was incubated at the permissive 

temperature (25°C). All other plates were incubated at the restrictive temperature (37°C).

Panel A. Control plate 30°C. 

Panel B. 1.0 mM methionine 

Panel C. 500 pM methionine 

Panel D. 250 pM methionine 

Panel E. 100 pM methionine 

Panel F. 50 pM methionine
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Fig. 5.5 Map of the pGL332 construct

The pGL332 construct allows the expression of T. brucei CYC I in S. cerevisiae. The 

MET25 promoter and CYC1 terminator provide the necessary transcriptional control 

regions. The TRI0 gene allows for selection of clones bearing the plasmid on medium 

lacking tryptophan
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Fig. 5.6 Map of the pGL292 construct

The pGL292 construct allows the expression of T. brucei CYC2 in S. cerevisiae. The 

MET25 promoter and CYC I terminator provide the necessary transcriptional control 

regions. The TRP gene allows for selection of clones bearing the plasmid on medium 

lacking tryptophan
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Fig. 5.7 Map of the pGL293 construct

The pGL293 construct allows the expression of T. brucei CYC3 in S. cerevisiae The 

MET25 promoter and CYCJ terminator provide the necessary transcriptional control 

regions. The TRP gene allows for selection of clones bearing the plasmid on medium 

lacking tryptophan.
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Fig. 5.8 Complementation test of cdc28-4* mutant expressing T. brucei CYC1,

CYC2 or CYC3

The cdc28-4ts mutant S. cerevisiae strains was transformed with either the pGL332, 

pGL292 or pGL293 plasmids, that allow expression of T. brucei CYC1, CYC2, and 

CYC3 in S. cerevisiae. Transformants were selected on YNB-agar medium lacking 

tryptophan. Triplicate colonies derived from each transformation were picked from the 

plate, resuspended in 50 pi distilled water and 5 pi of this cell suspension was 

transferred to duplicate plates. One plate (Panel A) was incubated at the restrictive 

temperature of 37°C and the other at the permissive temperature of 25°C (Panel B).
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Fig. 5.9 Complementation test of cd c2 8 -4 mutant co-expressing L. mexicana CRK3 

and T. brucei CYC1, CYC2 and CYC3

The cdc28-4ts mutant S. cerevisiae strains expressing CRK3 from plasmid pGL120 was 

transformed with the pGL332, pGL292 and pGL293 plasmids that allow expression of 

T. brucei CYC1, CYC2, and CYC3 in yeast. Transformants were selected on YNB-agar 

medium lacking uracil and tryptophan. Triplicate colonies derived from each 

transformation were picked from the plate, resuspended in 50 pi distilled water and 5 pi 

of this cell suspension was transferred to duplicate plates. One plate (Panel A) was 

incubated at the restrictive temperature of 37°C and the other at the permissive 

temperature of 25°C (Panel B).
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CHAPTER 6

General Discussion

6.1 Gene Disruption of CRK3

The aim of this thesis has been to describe the methods used to analyse the function of 

the CRK3 gene of Leishmania mexicana, and to explain the findings of these analyses. 

The kinase encoded by the CRK3 gene of L. mexicana is a member of a group of 

trypanosomatid kinases that show a high degree of homology to members of the cyclin- 

dependent kinase family of Serine/Threonine protein kinases (Mottram et al., 1993; 

Mottram and Smith, 1995; Grant et al, 1998). In other organisms members of the cdk 

family play important roles in initiating transitions between phases of the cell cycle 

(Piggott et al, 1982), controlling the transcriptional apparatus of the cell (Primig et al, 

1992), and integrating extracellular signalling events with cell cycle progression, 

transcriptional regulation and differentiation (Kato et al, 1993; Polyak et al, 1994). 

Sequence analysis alone is not sufficient to determine which of the trypanosomatid 

kinases is the functional homologue of a particular yeast, or vertebrate cdk. The level of 

similarity between any member of the trypanosomatid CRKs and a member of the 

vertebrate or yeast cdks varies between 43% and 59% (Mottram and Smith, 1995). We 

tested whether CRK3 was essential by attempting to generate CRK3 null mutant cell 

lines in which both copies of CRK3 were disrupted by the site specific integration of a 

gene targeting construct. Such targeting constructs contained a drug resistance marker 

gene, conferring resistance to an appropriate antibiotic compound. One CRK3 allele 

could be reproducibly deleted by homologous integration of gene disruption constructs 

(section 3.2.1). The CRK3::HYG and CRK3::BLE constructs were equally effective. 

However attempts to integrate the second targeting construct, in order to generate a null
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mutant, resulted in ploidy changes in the resulting transfectant cell lines (section 3.2.1). 

The exact mechanism by which these ploidy changes occur is unknown. But, it is 

believed that these changes are due to the requirement for the parasite to retain a copy of 

the gene being targeted (Cruz et al, 1993). If the gene being targeted is essential, then it 

is not possible to obtain double resistant mutants unless ploidy changes, or a genomic 

rearrangement, has allowed the double resistant cells to retain at least one copy of the 

targeted gene (Mottram et al, 1996; Tovar et al, 1998). It is possible that under the 

extreme conditions of electroporation, when the parasite membrane is temporarily 

permeabilised to allow entry of the transfected DNA, parasites may fuse together. This 

would result in a cell containing two wild type and two disrupted CRK3 alleles. 

Subsequent incorporation of the transfected DNA molecule at one of the wild type 

CRK3 alleles, allows expression of the second drug resistance marker gene, whilst still 

retaining an intact CRK3 allele. Another possibility is that aneuploid parasites can arise 

during serial passage of Leishmania promastigotes in liquid culture. Under normal 

conditions such parasites would have a growth disadvantage and would quickly become 

outnumbered by more rapidly growing diploid cells. Under the extreme selection 

conditions that exist during the second round of disruption of an essential gene, then 

aneuploid parasites would have a distinct selective advantage. They could integrate the 

second targeting fragment whilst still retaining an intact wild type CRK3 allele. Under 

double drug selection such cells would be able to grow. It is also possible that cells in 

late S-phase, with a greater than 2N DNA content, at the time of electroporation, 

integrate the targeting construct but fail to undergo cell division. Such cells again have a 

selective advantage as they contain both drug resistance genes whilst retaining a 

functional CRK3 allele.
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The sort of changes in ploidy mentioned above do not occur if an extra copy of CRK3 is 

introduced into a heterozygote mutant prior to disruption of the second native CRK3 

allele (see section 3.2.4). However this was only possible when the drug selection 

protocol was manipulated so that the selection of the episome was not coincident with 

selection for the second integration event. Because CRK3 is an essential gene then there 

would be no need to select for the episome in this instance, as only those cells which 

have retained the episome and integrated the second targeting fragment will be able to 

grow. It is not clear why selection with all three antibiotics (hygromycin, phleomycin 

and Geneticin) was lethal, because transfected parasites in which both wild type CRK3 

alleles had been disrupted, and which were expressing CRK3 from the pTEX episome, 

were able to grow in liquid culture in the presence of all three antibiotics. For some 

reason the initial triple drug selection on solid medium is not feasible. It is possible that 

some subtle, synergistic effect of the triple drug selection becomes apparent only under 

the extreme conditions of selection of transfectants on solid medium; when a single 

transfected cell is expected to grow and divide to form a colony of cells.

Attempts to produce a cell line in which both native CRK3 alleles were disrupted and a 

modified, hexa-histidine tagged version of the kinase was expressed from an episome, 

failed at each attempt. Invariably the second targeting construct integrated into the 

episome (see section 3.2.6). This failure may be due to an effect of the presence of the 

tag, which is located at the C-terminus of the molecule, on some aspect of the function 

of the kinase. It is known however, that the tagged kinase can be expressed and purified 

from Leishmania, and has kinase activity (Grant et al, 1998); indicating that regulatory 

events such as cyclin binding and phosphorylation/dephosphorylation of critical 

residues are unaffected. It is possible that the presence of the tag interferes with 

substrate binding. This however is unlikely, as substrate specificity is likely to depend
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upon the cyclin subunit, rather than the catalytic subunit. Another possibility is that the 

tag interferes with the sub-cellular localisation of the kinase. It is known that cdk 

complexes move between different subcellular compartments at different points in the 

cell cycle (Hagting et al, 1998). Another explanation is that the approach taken to 

generate the required cell line was flawed. In this case, unlike the previous instance 

where a pTEX based episome was used to complement a null background, a pX based 

episome was used to express the modified CRK3. The pX vector contains L. major 

derived DHFR-TS intergenic sequence, which provides the signals for trans-splicing and 

polyadenylation of the required mRNA. This DHFR-TS derived sequence is also present 

in the gene targeting construct, to provide the signals for trans-splicing and 

polyadenylation of the mRNA derived from transcription of the drug resistance gene. 

This situation means that any degradation of the introduced targeting fragment, by 

exonucleases for example, may expose the DHFR-TS sequence, allowing homologous 

recombination with other DHFR-TS sequence, such as is present in the pX episome. 

Because the pX episome is present in a high copy number in comparison to the target 

locus, then integration into the episome is highly favourable. It is clearly important to 

give careful consideration to the design of constructs for gene disruption experiments. 

Such constructs can be designed using flanking regions of the gene being targeted to 

provide the RNA processing signals for the drug resistance gene. However such 

flanking regions may contain sequence motifs conferring cell cycle regulated periodicity 

on the gene transcript; this occurs in the case of a number of genes involved in 

kinetoplast DNA replication (Hines and Ray, 1997; Brown and Ray, 1997), and may 

possibly occur in the case of genes involved in cell cycle control, such as cyclins or 

crks. In Saccharomyces cerevisiae it is known that cyclin transcripts are cell cycle 

regulated (Wittenberg et al, 1990), however this is not the case for CDC28 transcript
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levels, that remain constant throughout the cell cycle (Lorincz and Reed, 1984). If 

flanking regions of a constitutively expressed gene are required to ensure constitutive 

expression of the drug resistance marker gene, then it may be prudent to ensure that 

such sequence bears no homology to sequence present in any episome that may also be 

introduced into the parasite. If this is unavoidable then it is important to use a large 

amount of flanking DNA derived from the target locus. This would minimise any 

problems associated with the degradation of DNA at either end of the linear targeting 

fragment.

Expression of hexahistidine tagged CRK3 from a pTEX based episome, followed by 

disruption of both native CRK3 alleles following the procedure used in section 3.2.4 

should allow expression of the modified kinase in a null background.

The gene disruption evidence presented in this thesis, suggests that CRK3 is essential to 

L. mexicana promastigotes and has a non-redundant function. If the same is true of 

CRK3 in amastigotes then CRK3 can be considered a potential drug target.

6.2 Indirect inhibition of CRK3

Incubation of Leishmania promastigotes with the protein tyrosine phosphatase inhibitor 

bpV(phen), resulted in growth arrest of the parasites. A parallel study has suggested that 

this growth arrest is due to indirect inhibition of the Leishmania homologue of the cdkl 

gene, which is involved in controlling the transition from G2 to M phase in vertebrate 

cells (Draetta and Beach, 1988). It is thought that this inhibition occurs by inhibition of 

the Leishmania homologue of the vertebrate cdc25 tyrosine phosphatase (Olivier et al, 

1998). The cdc25 phosphatase regulates cdkl activity by removing the inhibitory 

phosphate at the conserved Tyr 15 residue (Millar et al., 1991). Inhibition of cdc25
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therefore results in inhibition of cdkl activity, as the Tyr 15 residue cannot be 

dephosphorylated (Faure et al., 1995). Incubation of L. mexicana promastigotes with 

bpV(phen) resulted in a cell cycle arrest in the G1 and S-phases of the cell cycle (section 

4.2.1). Analysis of the p l3 sucl binding kinase activity of L. mexicana, due predominantly 

to CRK3 (Grant et al., 1998), showed that a 24 hour incubation with bpV(phen) 

drastically reduces the kinase activity (Fig.4.2). Presumably this reduction in kinase 

activity is due to inhibition of an as yet unidentified Leishmania homologue of Cdc25. 

The inhibition of kinase activity is reversible. Cells which have been arrested by a 24 

hour incubation with bpV(phen) can be released from the arrest by washing the cells in 

PBS before resuspending them in fresh medium. Cells will then re-enter the cell cycle, 

progressing through S-phase, G2, and M-phase. This re-entry into a normal pattern of 

cell cycle progression is coincident with a restoration of the p l3 sucl binding kinase 

activity. These results may therefore point to a role for CRK3 in control of the Gl/S- 

phase transition in Leishmania. A role for other CRKs in controlling this transition 

cannot be ruled out as it is not yet clear whether other CRKs can bind to p l3 sucl and 

make a contribution to the overall p l3 sucl binding kinase activity. The study mentioned 

previously in which L. donovani promastigotes were incubated with bpV(phen), resulted 

in a G2/M-phase cell cycle block. It is possible that differences in the experimental 

conditions have resulted in this apparent difference between the two species of 

Leishmania. If dephosphorylation of CRKs by a Leishmania cdc25 homologue is 

required at both the Gl/S and G2/M transition then subtle experimental differences may 

result in arrest at one or other transition point. It is also possible that there are 

fundamental differences in the control of cell cycle progression in both these 

Leishmania species with two different cdc25 activities acting at either transition, one 

which is resistant to bpV(phen) inhibition and the other not. It may be that the
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susceptible cdc25 homologue acts at the Gl/S transition in L. mexicana and acts at the 

G2/M transition in L. donovani. This situation is unlikely, given the close relatedness of 

both parasite species in evolutionary terms (Croan et al., 1997). An alternative 

explanation is that CRK3 plays no role in control of the Gl/S transition and is not active 

at this stage of the cell cycle. Inhibition of cell cycle progression by bpV(phen) may be 

due to another CRK complex that governs the Gl/S-phase transition. This may explain 

why CRK3 activity is low in cells arrested at Gl/S but rises as cells are released from 

the block. A third possibility is that bpV(phen) affects other protein tyrosine 

phosphatase possibly involved in signal transduction. Differences in tyrosine 

phosphorylation by as yet unidentified kinases are known to occur during the 

trypanosome life cycle (Parsons et al, 1990). It is probable that tyrosine 

phosphorylation/dephosphorylation events play an indirect role in cell cycle 

progression. However, given that no cdc25 homologues have yet been discovered in any 

trypanosomatid species and the true nature of bpV(phen) action in Leishmania is not 

fully understood, then it is difficult to distinguish between these possibilities.

6.3 Direct inhibition of CRK3 by the cdk inhibitor flavopiridol

Incubation of Leishmania promastigotes in the presence of the cdk inhibitor 

flavopiridol, resulted in a dose dependent reduction in the growth rate of the parasites. 

Analysis of the DNA content of growth arrested parasites by FACS, indicated that cells 

were blocked at the G2/M transition. This block was reversible and cells could be 

released, and would continue progression through mitosis and into a subsequent cell 

cycle. Release from the cell cycle block was partially synchronous for the duration of 

the subsequent cell cycle, after which the synchrony broke down. Purified hexahistidine
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tagged CRK3 kinase is inhibited by flavopiridol in a dose dependent manner. 50% 

inhibition of the purified kinase activity is achieved at a flavopiridol concentration of 

100 nM. This figure is broadly comparable with the concentration of 250 nM which is 

required to give 50% inhibition of Leishmania growth. The discrepency between the 

two figures is probably due to the fact that to inhibit the kinase in vivo, flavopiridol 

must cross the plasma membrane to exert its effect on the kinase. In the in vitro situation 

when purified kinase is assayed for activity, this is not the case. The fact that the two 

values vary within a single order of magnitude provides good evidence that the effect of 

flavopiridol on cell cycle progression is due to it’s inhibitory effect on CRK3. The 

CRK3 kinase is one member of a family of CRKs in Leishmania and trypanosomes, 

many of which may have a role in cell cycle progression. Given that CRKs are likely to 

function in a similar manner and that the site of flavopiridol action, ie. the ATP binding 

pocket, that is likely to be structurally similar in all CRKs, then it is possible that 

flavopiridol can inhibit other CRKs with similar kinetics to CRK3. It is known that 

flavopiridol can inhibit a number of mammalian cdks, but is most effective against 

cdkl, (Losiewicz et al, 1994), cdk2 and cdk4 (Carlson et al, 1996), the kinases with 

the most direct affect on cell cycle control. What can be concluded is that as flavopiridol 

is a highly specific inhibitor of CRK3, and that it causes a block in cell cycle 

progression, then CRK3 is likely to play a role in signalling cell cycle progression in 

Leishmania. The p l3sucl binding properties of CRK3 and the link between bpV(phen) 

induced perturbation of cell cycle progression and CRK3 kinase activity, provide other 

independent lines of evidence that CRK3 has a role in cell cycle control. It is not 

possible based on the available evidence to say whether cell cycle control in Leishmania 

is similar to the situation in yeast, where a single cdk is responsible for controlling both 

Gl/S and G2/M progression, or whether different CRKs act to promote either transition,
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as occurs in vertebrate cells. What is clear is that CRK3 plays a role in signalling entry 

into mitosis. Inhibition of CRK3 activity by the cdk inhibitor flavopiridol blocks entry 

into mitosis. It remains to be seen whether other CRKs, such as CRK1 are also inhibited 

by flavopiridol.

In Trypanosoma brucei, incubation of procyclic or bloodstream forms with flavopiridol 

resulted in growth arrest at both the Gl/S and G2/M transition (Fig.4.16), suggesting 

that CRK3 acts at both transition points. Why the same effect is not observed in 

Leishmania is not clear. It is possible that CRK3 interacts with different cyclin partners 

at each transition and that in Leishmania, the Gl/S CRK3 complex is more resistant to 

inhibition by flavopiridol due to structural changes in the ATP binding pocket induced 

by cyclin binding. Alternatively, the T. brucei Gl/S kinase may be more sensitive to 

falvopiridol than its Leishmania homologue. Clearly a lot has still to be learned about 

the mechanisms governing cell cycle control in both Leishmania and trypanosomes.

The use of flavopiridol to synchronise Leishmania may prove a valuable tool to aid the 

biochemical analyses of cell cycle control. Synchronised parasites in a given phase of 

the cell cycle may be used as the starting material for the isolation of CRK/cyclin 

complexes or for identification of activities that are cell cycle regulated.

6.4 CRK3 fails to complement Saccharomyces cerevisiae cdc28ts mutants

The fundamental components of cell cycle control have been conserved throughout 

evolution to such a degree that homologues of the Schizosaccharomyces pombe cdc2 

and Saccharomyces cerevisiae CDC28 genes from distantly related species can 

complement for loss of function of these genes (Hirt et al., 1991; Miao et al., 1993; 

Setiady et al., 1996; Mori et al., 1994; Lee and Nurse, 1987; Ninomiya-Tsuji et al.,
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1991). Expression of Cdc2/CDC28 homologues in temperature sensitive mutant strains 

can rescue the temperature sensitive phenotype. The human homologue of 

Schizosaccharomyces pombe Cdc2 can complement both an S. pombe cdc2 as well as a 

Saccharomyces cerevisiae cdc28 mutant (Lee and Nurse, 1987; Meyerson et al, 1992). 

In addition the human cdk2 gene can complement an S. cerevisiae cdc28 mutant. The 

use of such conditional mutant yeast strains provides a useful and sensitive assay of 

potential Cdc2/CDC28 function, and has been used to clone cdc2!CDC28 homologues 

from plant species (Hirt et al, 1991; Miao et al, 1993; Setiady et al, 1996), 

Caenorhabditis elegans (Mori et al, 1994) and mammals (Lee and Nurse, 1987; 

Ninomiya-Tsuji et al, 1991). Given that the CRK3 kinase of Leishmania mexicana has 

features that make it a good candidate to be the functional homologue of Cdc2 (it binds 

with high affinity to p l3 sucl and is active only in the proliferative life cycle stages) it was 

thought to be important to test the CRK3 gene in such a complementation assay. 

Sequence analysis of the known CRKs provides no real clue to their function. None of 

the CRKs obviously resemble any known member of the cdk family to such a degree 

that the function can be presumed. The CRK1 gene of L. mexicana had previously been 

tested for ability to complement a fission yeast cdc2 mutant strain, and failed to do so 

(Mottram et al, 1993). Attempts to clone a cdc2 homologue by complementation of a 

cdc2ts mutant with an L. mexicana cDNA library also failed (J.C. Mottram, personal 

communication). A possible reason for such failure may be that the fission yeast cell 

cycle is peculiar in that the main point of control occurs at the G2/M transition, whereas 

the Gl/S phase transition seems to be more important in most diploid eukaryotes. This 

apparent peculiarity of the fission yeast cell cycle may preclude the cloning of cdc2 

homologues from many species. The mammalian cdk2 gene was cloned due to its 

ability to complement an S. cerevisiae cdc28 mutant, but was never cloned in a screen
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for genes that complement fission yeast cdc2 mutants. For this reason a number of 

budding yeast cdc28 mutants were used in a complementation test of the CRK3 gene 

(section 5.1). The particular cdc28 mutants arrest with different phenotypes and at 

slightly different points in the cell cycle, cdc28-lNts and cdc28-13ts arrest in G1 whilst 

cdc28-4ts arrests in G2 (Lorincz and Reed, 1986). The positions of the mutations 

responsible for the mutant phenotypes did not correlate with the observed biological 

characteristics of the mutant alleles. They appeared, however, to occur at regions of 

structural transition (Lorincz and Reed, 1986). L. mexicana CRK3 was expressed from a 

centromeric plasmid under the control of the S. cerevisiae MET25 promoter. This 

promoter is active in the absence of methionine and is repressed in high methionine 

concentrations (Mumberg et al, 1994). The L. mexicana CRK3 gene failed to 

complement any of the three cdc28 mutant strains tested (Fig.5.2). Regulation of the 

levels of CRK3 expression by the inclusion of a range of concentrations of methionine 

in the medium did not affect this result. The CRK3 kinase could be detected by western 

blotting in all three strains (Fig.5.3), but it is not known whether the levels of the kinase 

could be regulated by repression in the presence of methionine. Overexpression of 

CRK3 could conceivably result in an imbalance between essential cell cycle 

components causing a toxic effect on the cells. Another possibility is that CRK3 is 

unable to bind to yeast cyclins to form a functional kinase, or cannot phosphorylate the 

proper substrates. As two trypanosome cyclins were cloned by complementation of a 

budding yeast c ln l j  and 3 mutant, TbCYC2 and TbCYC3 (Neuville and Mottram, 

unpublished), and are therefore functional in S. cerevisiae; they, along with the TbCYCl 

gene, were expressed in the cdc28-4ts mutant, along with the Leishmania CRK3 kinase, 

in the hope that they would be able to bind to CRK3 to form a functional kinase 

complex. This would help to ascertain which, if any, of the known trypanosome cyclins
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is a partner for CRK3. Ideally this experiment would have been performed using the T. 

brucei CRK3 for the co-expression and complementation test, however, due to repeated 

failure of attempts to clone T. brucei CRK3 into the pRS416MET vector, this was not 

possible. Co-expression of all three trypanosome cyclins in combination with L. 

mexicana CRK3 failed to complement for loss of CDC28 activity. It is not known 

whether Leishmania CRK3 can bind to trypanosome cyclins, however the trypanosome 

CRK1 is able to function in Leishmania, suggesting a close functional conservation 

between the trypanosomatid species (Mottram et al., 1996). It is therefore likely that L. 

mexicana CRK3 is able to bind to the T. brucei homologue of it’s cyclin partner. 

However, only three cyclins were tested in these experiments as these are the only 

known cyclins in trypanosomatids. It is not unreasonable to assume that there are other 

(as yet unidentified) cyclins in the trypanosomatids, that could be the partners of CRK3. 

Recently it has been shown by the yeast two-hybrid assay, and by co- 

immunoprecipitation experiments that T. brucei CRK3 interacts with TbCYC2, though 

it is not yet known at what stage of the cell cycle this complex is active (Van Hellemond 

and Mottram, unpublished).

A subsequent study in which the L. major CRK3 gene was expressed in a 

Schizosaccharomyces pombe cdc2 mutant, has shown that CRK3 can complement for 

loss of Cdc2 function (Wang et al., 1998). In this instance, however, complementation 

only occurred when the CRK3 gene had been integrated into the S. pombe genome. The 

reason for this is not yet known, but it is possible that a gene dosage effect, or a 

requirement for a particular genomic location which may affect gene regulation, is 

needed to achieve the correct level of expression of CRK3 in such an assay. As the 

experiments described in this study involved expression of CRK3 from an episome, this 

may explain the failure to complement the mutant strains used. Complementation

196



experiments involving species, separated by such a large evolutionary distance may not 

be widely applicable and are probably only of use to study genes that are very highly 

conserved. It is also questionable how relevant such complementation tests are to the 

function of a given gene. Some cyclins that are able to complement a clnl, 2, 3 mutant 

have no functional similarity (Lew et al., 1991).

6.5 Future Directions

To gain a more complete understanding of cell cycle control mechanisms in Leishmania 

and trypanosomes, interacting proteins will need to be unambiguously identified and 

their activities characterised. Given that the trypanosomatid CRKs contain many 

conserved residues associated with function and regulation of cdks; eg. Tyr 15, involved 

in regulation of activity (Gould and Nurse, 1989); Thr 161/167, involved in regulation 

of cyclin binding (Gould et al., 1991); and the PSTAIR box, a region involved in 

binding to the regulatory cyclin partner protein (Jeffrey et al., 1995); then it is highly 

likely that proteins involved in phosphorylation/dephosphorylation or binding to such 

residues/motifs will also be found in trypanosomatids through biochemical purification 

of CRKs, and through yeast two-hybrid interaction screens. The pathways governing the 

activity of CRKs are likely to prove to be excellent targets for chemotherapeutic 

intervention due to the essential role of CRKs in cell growth and their possible role in 

division and differentiation between infective and non-infective life cycle forms. In 

pleiomorphic strains of T. brucei grown in semi-solid liquid culture, an as yet 

unidentified factor (stumpy induction factor, or SIF) accumulates and induces 

differentiation from the long slender proliferative to the short stumpy non-proliferative 

form (Vassella et al., 1997). The short stumpy form is arrested in the G1 phase of the
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cell cycle and the effect of stumpy induction factor (SIF) can be mimicked by analogues 

of cyclic AMP (Vassella et al, 1997). The links between such signalling pathways and 

the control of cell cycle progression have yet to be uncovered. However it is likely that 

regulation of CRK activity by the upregulation of an inhibitory phosphorylation event or 

an inhibitory protein is a key factor in such a cell cycle arrest. The work described in 

this thesis has shown a link between the activity of the CRK3 kinase of Leishmania 

mexicana and cell cycle progression of the promastigote form of the parasite. Given that 

CRK3 is active in promastigotes and amastigotes, and appears to play a central role in 

control of cell cycle progression in promastigotes, it is likely to play a similar role in 

amastigotes and can therefore be considered as a good anti-leishmanial 

chemotherapeutic target. A large number of structurally unrelated inhibitors of cdks now 

exist (Meijer, 1995; Meijer, 1996). Flavopiridol is one of the most potent and selective 

of the known chemical inhibitors of cdk activity (Sedlacek et al., 1996). This study has 

shown that flavopiridol has a potent inhibitory effect on L. mexicana CRK3. 

Flavopiridol inhibits cdk activity by binding to the ATP binding pocket. However the 

flavopiridol molecule makes contacts with residues that are not involved in ATP 

binding (De Azevedo et al., 1996). These particular residues, which have no role in ATP 

binding, are unlikely to be as highly conserved as other residues in the pocket region 

which are involved in ATP binding. For this reason it is possible that some chemically 

modified derivatives of flavopiridol may bind more strongly by the parasite enzyme 

than the host enzyme, thereby limiting toxicity to the host. Flavopiridol itself is highly 

toxic and the range of concentrations required to kill Leishmania in an infected host 

may exceed thresholds of toxicity (Parker et al, 1998; Arguello et al., 1998).

The inhibition experiments with flavopiridol were all carried out in vitro on the 

promastigote, the insect form of the parasite, or on purified kinase from promastigotes.
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It is not known whether CRK3 is also essential in amastigotes, the parasite life cycle 

stage found in the host bloodstream or infected macrophages. In vitro assay of the 

effects of flavopiridol on peritoneal exudate cells, from Balb/C mice, infected with 

stationary phase promastigotes is currently in progress. The results of this work will 

determine whether flavopiridol should be tested for ability to cure Balb/C mice of an 

infection with L. mexicana. Another possible method of interfering with CRK3 function 

is by disrupting the interaction with regulatory cyclin partner proteins. The binding of 

cyclins is necessary for the function and occurs via the PSTAIR box, a sixteen amino 

acid region found in all cdks (Jeffrey et al, 1995). The PSTAIR box of L. mexicana and 

T. brucei CRK3 contains a total of six substitutions (Grant et al., 1998; Mottram and 

Smith, 1995). This suggests that the structure of the CRK3-binding cyclin/s is/are 

significantly different from their mammalian counterparts, and may mean that the 

interaction between the parasite proteins could be disrupted by a specifically designed 

drug, without interfering with the analogous interaction of the mammalian proteins. 

Currently there is no direct proof that CRK3 is the kinase involved in cell cycle 

progression. Such proof can only come from the analysis of the phenotypes of parasites 

expressing mutant versions of the protein. As the gene is essential, and no inducible 

expression system exists for Leishmania, this is a difficult task. An inducible system 

has, however, been developed for use in Trypanosoma brucei (Wirtz and Clayton, 

1995). This system allows a degree of control of expression of a gene of interest. This 

technique could be used to express dominant negative mutant forms of the T. brucei 

CRK3, which could be analysed for mutant phenotypes associated with disruption of the 

cell cycle. For example, expression of a mutant form of CRK3 in which the Tyr 34 

residue has been mutated to phenylalinine, may result in premature entry into mitosis 

upon induction of expression. Such a phenotype has been observed for a fission yeast
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mutant in which the corresponding residue had been mutated in the same way (Gould 

and Nurse, 1989). Alternatively the Thr 161/167 residue, which in Schizosaccharomyces 

pombe is phosphorylated to activate the Cdc2 kinase (Gould et al, 1991), could be 

mutated to a non-phosphorylatable amino acid such as alanine. This should result in an 

inactive kinase that is still able to bind a cyclin partner protein. Overexpression of such 

a mutant protein would be expected to result in a dominant negative phenotype whereby 

cyclin regulatory sub-units would be sequestered in an inactive complex. This would 

result in delayed entry into mitosis, a phenotype which is observed when such an 

experiment is performed in S. pombe (Gould et al, 1991).

Another alternative is to mutate the Asp 165 residue to Asparagine. This has been done 

previously for the Asp 145 and Asp 146 residues of human cdkl and cdk2 (Van den 

Heuvel and Harlow, 1993). The analogous residue of human cAMP dependent protein 

kinase A is involved in the phosphotransfer reaction (Taylor, 1993), and the equivalent 

residue in Saccharomyces cerevisiae CDC28 (Asp 154) is mutated in a dominant 

negative cdc28 mutant (Mendenhall et al, 1988).

Transcriptional feedback loops are important aspects of cell cycle control in eukaryotes 

(Reed, 1996). Expression of gene products required for progression through a particular 

phase of the cell cycle is controlled by the activity of transcription factors (Ohtani et al, 

1995; DeGregori et al, 1995), the activity of which may be influenced by members of 

the cdk family (Serizawa et al, 1995). Because gene regulation in trypanosomatids is 

not normally regulated at the level of transcription, but is regulated at the level of 

translation or mRNA stability (Vanhamme and Pays, 1995), it is likely that the 

expression of specific cell cycle regulated genes involves an interaction between the 

activity of CRKs and proteins involved in translational control or mRNA stability. A 

number of cell cycle regulated genes have been identified in Crithidia fasciculata that
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are upregulated in G1 phase, reaching a peak level immediately prior to kinetoplast 

replication (Pasion et al, 1994; Hines and Ray, 1997; Brown and Ray, 1997). The 

mRNA of the top2 gene was shown to be regulated at the level of mRNA stability. 

Sequences in the 5’ UTR were identified as being involved in this cell cycle regulated 

stability (Hines and Ray, 1997). It has recently been shown that a number of as yet 

unidentified proteins bind to this region and are probably involved in stabilising the 

message (Mahmood and Ray, 1998). This is thought to lead to an increase in the levels 

of the TOP2 protein, which is required for kinetoplast replication. The protein factors 

responsible for mRNA stabilisation are themselves probably cell cycle regulated and are 

possibly regulated by the activity of CRKs involved in cell cycle progression. Such a 

mechanism would enable the regulated expression of genes required at a particular 

phase of the cell cycle in the absence of transcriptional control. This prospect raises the 

possibility of a new set of potential drug targets in trypanosomatids, as cell cycle 

regulated genes in the mammalian host are more likely to be controlled at the 

transcriptional level and not by the action of mRNA stabilising proteins. The role played 

by such trypanosomatid proteins in cell cycle regulated gene expression, and the link 

with the cell cycle control machinery will surely prove to be an intriguing area of 

research and may even help to uncover novel molecular mechanisms not present in 

“model” eukaryotic organisms.
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