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Summary

First catalogued as entry number 433 in an objective prism survey of strong Ha emission line
objects by Stephenson and Sanduleak in 1977, SS433 rose rapidly to fame in 1978 following the
observation of moving hydrogen and helium lines in its optical spectrum. It has since proved
to be an enduring astronomical puzzle. SS433 is a galactic object at a distance of some 5kpc
and is located very near the centre of the supernova remnant W50 with which it is believed to
be interacting. The consensus on the SS433 system itself is that it consists of a binary system
comprising an OB star undergoing Roche-lobe overflow onto a supercritically accreting compact
object, most probably a neutron star though possibly a black hole, leading to the formation of
a geometrically thick accretion disc. Emergent from the narrow funnels of this thick disc are
two oppositely aligned and highly collimated jets which move at a remarkably constant speed
of 0.26¢.

The purpose of this thesis is to investigate the suitability of radiative acceleration as a
mechanism for accelerating the jets to a speed of 0.26¢ and to determine whether such a mech-
anism can satisfy the stringent constraints on the constancy of the jets’ speed imposed by
observations.

In the overview of the SS433 detailed in chapter 1, an historical account of the object is
given as well as a summary of the observations and the many theotetical models that it has
inspired. Though this review is by no means comprehensive, its length reflects the complexity
of the object and the vast amount of work that has been published on it.

Chapter 2 acts as a theoretical prelude to the remaining research chapters. In the first
part of this chapter some common terms and definitions encountered in special relativity and
radiative transfer are elucidated and some useful Lorentz invariants and Lorentz transformations
are introduced. In the latter part of this chapter the general vector equation of motion of a
spherical jet fragment moving within the time independent radiation field of a blackbody emitter
is derived.

Solutions to the general vector equation of motion for a spherical jet fragment, or ‘bullet’,
moving within the radiation field of both infinite planar and infinite conical, isothermal black-
body radiators are sought in chapter 3. Terminal speeds which are dependent on the geometry
of the radiator are found to exist. The degree to which radiation pressure can aid in the process
of jet collimation is also assessed.

Continuing the analysis of chapter 3, the first topic considered in chapter 4 is the motion of
a bullet above an infinite, planar radiator for which the emergent, frequency integrated specific
intensity is given by a generalisation to the Eddington limb darkening approximation. This
is followed by an investigation of the motion of a bullet moving along the symmmetry axis

of an infinite, conical radiator for which the surface temperature decays exponentially with
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increasing distance from the funnel apex. Applicability of this ad hoc temperature profile to
SS433 is achieved by ensuring that the e-folding distance of the temperature profile is consistent
with the observations. Brief sections on axial motion above a finite, isothermal, planar radiator
and radial motion above an isotropic, spherical radiator then ensue. The concluding research of
chapter 4 comprises an analysis of the axial equation of motion of a bullet moving within a finite
accretion funnel. The funnel is modeled first as an isothermal, conical radiator and then as a
conical radiator for which the run of temperature with distance from the funnel apex is given
by that of a polytropic gas with an index appropriate for a radiation dominated regime. The
results of the former model are found to be in surprisingly good agreement with the observations
of 55433.

Finally, in chapter 5 topics related to the work contained in this thesis and which could be
considered in any further investigation are presented. These include suggestions for improving
the ‘bullet’ model of chapters 2,3 and 4 and the possible inclusion of a phenomenon which has
been termed the ‘Compton rocket’ effect.

Alhough a small proportion of the research contained in this thesis, principally part of
chapter 3, consists of material which has previously been published by Icke (1989), the work
presented here was undertaken independently and completed prior to the publication of Icke’s

results.
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Chapter 1

SS433 : An Overview

§1.1 Introduction

The purpose of this chapter is to provide the reader with a broad understanding of the SS433
system. It is not intended to be a comprehensive review. In his anecdotal account of the ‘dis-
covery’ of SS433, Clark (1984) noted that there were 2 papers published on the object in 1978,
28 in 1979, 73 in 1980 and 122 in 1981. This exponential increase in the publication rate has,
thankfully, not been maintained to the present and has in fact become a decline in recent years.
Even so, a recent literature search on the ‘Simbad’ data base revealed 506 citations relating to
S5433. The sheer volume of published work on the system clearly makes a comprehensive review
an impossible task. For a detailed review of the first 6 years of observations the reader should
consult Margon (1984) and for a more recent perspective those of Katz (1986), Cherepashchuk
(1988) (particularly for photometry) and Zwitter et al. (1989) are recommended.

I will begin with a resumé of the early history of SS433 and the observations that prompted
the development of the kinematic model. This is followed by a summary of the observations
at all wavelengths and the many theories that have been propounded. I will conclude with a
discussion of the possible evolutionary path followed by SS433 and its suitability as an analogue

for extragalactic jets.

§1.2 The Rise to Prominence

The enigmatic object SS433 was first catalogued in an objective prism spectral survey of strong
Ha emission line objects by Stephenson and Sanduleak (1977) as entry number 433. The region
had previously been associated with prominent radio emission (Clark, Green and Caswell, 1975)
and recorded as an X-ray source in the Ariel 5 survey, catalogue entry A1909+04, (Seward et
al., 1976) and in the Uhuru satellite observatory survey (Forman et al., 1976). It was again cited
as an X-ray source in the fourth Uhuru catalogue as entry 4U1908+04 (Forman et al., 1978)
though no identification with the radio and optical observations was made due largely to the
poor accuracy with which the X-ray and radio sources could be localised. However, in 1978 the
association of these distinct observations with the optical source SS433 was made independently
by Clark and Murdin (1978) and Seaquist et al. (1979) with the former group and Ryle et al.

(1978) proposing a possible link with the supernova remnant W50. Confirmation of the common
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Fig. 1.1. The red/infrared spectrum of SS433 on three of four consecutive nights, obtained with 10A resolution on the
Lick 0.6m reflector. The dramatic changes in both the wavelength and profile of the two unidentified emission features
flanking HQ are well illustrated. Hel A5876, 6678, 7065 emission is visible, as are the unresolved interstellar NaD lines
and the A6284 band The upper, centre and lower panels were observed in 1978 on October 23, 24 and 26 respectively

(from Margon et al 1979a)
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Fig. 1.2. The spectrum of SS433 obtained on March 20, 1979 with the Lick Observatory 3m Shane reflector. The
principle emission features are identified with the prefixes '+’ and denoting lines in the redshifted and blueshifted
systems respectively. Each division on the ordinate corresponds to 0.83 mag (from Margon et al. 1979b).
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origin of the X-ray, optical and radio emissions was provided by an accurate determination of
the location of the X-ray source (Seaquist, 1981a). The first moderate-resolution spectral data
published (Clark and Murdin, 1978) showed a complex red continuum, resulting from strong
interstellar reddening, dominated by strong broad emission lines, including the Balmer series
(He,, HB, Hv, H$), lines from neutral helium and higher excitation features. The spectrum
bore similarities to that of the eccentric orbit X-ray binary Circinus X-1 (Clark, Parkinson
and Caswell, 1975) which was itself associated with a supernova remnant (G321.9-0.3) leading
Clark and Murdin (1978) to tentatively suggest that they were members of the same class of
object. In December 1978 at the Texas Symposium, Bruce Margon reported the presence of
moving hydrogen and helium lines in the optical spectrum; an event which marked the begining
of SS433’s ascension to its present status as an object of great astrophysical significance. The
spectroscopic observations of Margon et al. (1979a; Fig. 1.1) and Mammano et al. (1980) re-
vealed unidentified emission features flanking the stationary hydrogen and neutral helium lines
that drifted periodically, shifting smoothly by up to 1000 A through the spectrum showing
conclusively that Circinus X-1 and SS433 were different objects with SS433 being by far the
more exotic. Mammano et al. (1980) attributed the anomalous emission features to Zeeman
splitting whilst Margon et al. (1979a) considered the possibility, though seemingly implausible
on account of the enormous velocities and change in velocities implied, that they were due to
Doppler shifted satellites of the stationary Balmer and neutral helium lines. Further obser-
vations by Margon et al. (1979b; Fig. 1.2) and Liebert et al. (1979) showed unambiguously
that the moving spectral features were indeed Doppler-shifted Balmer and Hel emissions with
Liebert et al. (1979) ruling out a magnetic interpretation for the features on the basis of po-
larimetric measurements. Margon et al. (1979b) reported the velocity variations to be cyclical
and roughly sinusoidal with a period of 164+3 days and maximum positive and negative radial
velocities of +50 000 km/s and -35 000 km /s respectively symmetric about a red-shift of 2=0.04.
Detailed analysis of the ‘stationary’ lines spectra by Crampton, Cowley and Hutchings (1980)
revealed a 13.1 day periodic variation with an amplitude of K = 73km/s which they inter-
preted as representing orbital motion. The appearance and width of the profiles was similar to
those originating in the accretion disc of cataclysmic variables prompting Crampton, Cowley
and Hutchings (1980) to interpret the observations as representing a low mass binary system
not unlike Cyg X-2 (Cowley, Crampton and Hutchings 1979). An explanation and theoretical

model for these unprecedented spectral features was necessary.

§1.3 The Kinematic Model

§1.3.1 The Simple Kinematic Model

One of the earliest theoretical papers on the system was that of Milgrom (1979) in which
he proposed that the Ha emission comes from two regions, symmetrically situated about a

central object with velocities of equal constant magnitude and opposite sign. Longitudinal



and transverse Doppler effects are responsible for the wavelength shift with the variation in
wavelength resulting from changes in the angle between the velocity vectors and the line of
sight due to a rotation of the line connecting the two regions. Milgrom (1979) discussed the
schematic configurations which satisfied these constraints: The line emission comes from

i) the illuminated regions of a disc the matter of which moves in a circular Keplerian orbit
about a central object that emits radiation in oppositely directed pencil beams.

il) two opposite conical sections within which matter is free falling radially onto the central
object.

iii) two opposite conical sections within which matter is moving radially away from the
central object.
Milgrom (1979a) noted that configuration iii) is at an advantage over the other two possible
configurations, requiring a central object only of stellar mass. Katz (1980) pointed out the
difficulty with configuration iii) in finding a central, compact object with a 164 day rotation
period that would not be spun-up (or spun-down) in a fraction of its period by accretion torques.
Fabian and Rees (1979) attributed the features on either side of the Balmer lines to cool gas
trapped within approaching and receding jets emanating from a central object which, they
suggested, arose from the formation of shocks within a jet of variable beam-speed. Amitae-
Milchgrub, Piran and Shaham (1979) suggested that the features originated in a ring of matter
orbiting round a massive black hole ~ 106 M0 formed by the capture of a normal solar type

star with the periodicity arising from precession of the ring about the central black hole.

CINTRAL
SOURCI

Fig. 1.3. A schematic representation of the kinematic model (from Zhi, Ruffini and Stella, 1981).

With the benefits of additional data not available to Milgrom, Abell and Margon (1979)
were able to elaborate on schematic configuration iii) proposed by Milgrom (1979a) to formulate
the ‘kinematic’ model. The model conjectures that matter is ejected from a central source in

two collimated, closely aligned opposing jets which rotate on a cone about some axis (Fig. 1.3).
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The emission lines in the jet directed towards earth are observed to be blue shifted whilst those
in its receding counterpart are red shifted. The simple kinematic model, in which the rotation

rate is constant, is specified by seven free parameters:

. B the speed of the jets in units of ¢
° ] the semi-angle of the cone formed by the precession of the jets

about the rotation cone axis

° i the inclination of the rotation cone axis to the line of sight

. By the rotation period

° to a time at which the rotation phase is zero

. X the position angle of the cone axis projected onto the plane of the
sky

. Srot the sense of the jet rotation; +1 for clock-wise and -1 for anti-
clockwise.

All but the last two of the model parameters can be derived from the moving emission line data
and for this reason it is also known as the 5-parameter model. A complete model parameter fit
and the removal of the degeneracy in the angles @ and 7 inherent in any deductions made solely
from the optical data is possible with additional radio observations. Abell and Margon (1979)
provided accurate solutions to five of the model free parameters and predicted the cross-over of
the moving features from the red to the blue and vice versa. This prediction was later verified
by observation (Bedogni et al., 1980; Margon, Grandi and Downes, 1980). From the widths
of the Doppler-shifted emission lines Milgrom, Anderson and Margon (1982) concluded that
the velocity of the jet material was very constant. Further confirmation of the validity of the
‘kinematic’ model was provided by both radio (Gilmore et al., 1981; Hjellming and Johnston,
1981 (a) and (b)) and X-ray (Seward et al., 1980; Watson et al., 1983) observations.

Quoting the best-fit model parameters for the Doppler shifts of Margon and Anderson
(1989) and the best-fit parameters for the VLA data of Hjellming and Johnston (1981b), the

seven model parameters are:

. B(units of c) 0.2602

. 6(degrees) 19.85

. i(degrees) 78.83

. Poy(days) . 162.50

. to(JD) 2443562.37
) x(degrees) 100

I Srot -1.

The VLBI observations of Spencer (1979) and Walker et al. (1981) also indicate a mean position

angle x of 100°. It should be noted in passing that all seven model parameters can in principal
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be determined from radio data; however the five model parameters derived from the optical
data are adopted on the basis of their greater accuracy.
Adopting the phase convention of Abell and Margon (1979) and Margon et al. (1979b),
the Doppler shift of either jet is given by
z= ﬁ% =(y—1)— B (sinfsinicos(2mwy) + cos b cos ©) sjet (1.1)
where sjec = +1 for the approaching jet, -1 for the receding jet, the Lorentz factor v >~ 1.036
and the precessional phase ¢ is defined as
¥(t) = vo + (_tio) with P = 1 arccos (— cot i cot §) . (1.2a,b)
Py 27
The phase convention was chosen to be similar to standard spectroscopic binary notation. The
Jjets are perpendicular to the line of sight twice in one rotation period. This happens when
the Doppler shift of either jet is identically equal to the transverse Doppler red-shift which, by
Eq. (1.1), occurs at phase values 0 and 0.342. It is evident from Eq. (1.1) that the Doppler
shift of either jet is biased by the (v — 1) term thus accounting for the symmetry observed in
the Doppler shifts about z=0.04 (Margon et al., 1979b). This is simply a manifestation of the
transverse Doppler effect and for the Ha line, wavelength 6562.8 A, corresponds to a shift of
~ 234 A into the red.

§1.3.2 Kinematic Deviations and Embellishments

General theoretical arguments indicate that the jet acceleration takes place in a rotating accre-
tion disc suggesting precession of the accretion disc (see §1.6.3) as the logical origin of the 164
day rotation period (Katz, 1980, 1981; van den Heuvel, 1980). Simple stellar rotation locked to
the beams as the underlying system clock had been ruled out (Abell and Margon, 1979; Katz,
1980) on the grounds that the inferred kinetic energy of the jets is far greater than the total
rotational energy of a feasible compact object with a 164 day period. The precession hypothesis
gained further credibility with the observations of Crampton and Hutchings (1981) who found
that the HS emission profile, the intensity of the Hel emission and the Hel and Fell absorp-
tion lines varied in a manner consistent with origin in a precessing accretion disc. Comparison
with other X-ray binaries suggested the possible existence of a substantial accretion disc as an
additional component of the SS433 system.

It is evident from the data (Fig. 1.4) that the observed moving lines do not adhere rigorously
to the predictions of the simple kinematic model. In fact the observations typically lie within
a strip of width ~ 100 A about their predicted value (Mammano et al., 1983). To date at least
three types of deviation have been detected.

The first form is manifest as two short-term periods (Katz et al., 1982; Mammano et al.,

1983; Newsom and Collins, 1981) superposed on the 164 day periodic motion of the moving
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Fig. 1.4. Doppler shift observations of SS433 over a 10 yr period. The solid line indicates the best fit to the simple
kinematic model (from Margon and Anderson, 1989).

emission features. The more dominant of the short-term periods is 6.28 days with an amplitude
~ 10% of the 164 day precessional motion; the second is 5.83 days (Katz et al. 1982). A simple
interpretation of the 6.28 day period, using linear perturbation theory, has been discussed
at length by Katz et al. (1982): The companion star exerts a gravitational torque on the
accretion disc which, when averaged over one binary period, provides a steady torque to drive
the counterprecession of the disc. One component of this torque has a period given by the
synodic orbital period derived from the 13.08 day orbital and 164 day mean precession period.
This periodic torque induces ‘nodding’ motions in the orientation of the accretion disc about
the mean precessional motion. If the direction of the jets is governed by the orientation of
the disc then these nodding motions will be detectable in the moving-line Doppler shifts. This
theory however fails to predict the large observed amplitude of the 5.8 day period; a problem

which has been resolved by the generalised nodding model of Collins and Newsom (1986).
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As mentioned above, the 6.28 day and 5.83 day periods are simply synodic combinations
of the 164 day precession and 13.08 day orbital periods. As their periods are conveniently
small, these short-term periods provide an excellent means of accurately determining the binary
orbital period. The period of the binary orbit is expected to change with time as a result of
mass loss through the relativistic jets (van den Heuvel et al., 1981; Anderson, Margon and
Grandi, 1983a). Consequently, the detection of any change in the orbital period through the
analysis of the Doppler shifts of the moving lines attributable to the nodding motion provides
a means of determining the mass loss rate and thus the jet kinetic energy independently of the
observed intensity of the radiation from the jets. This technique is not dependent on knowledge
of the true form of the precession instability since 1/164 <« 1/13.08. Margon and Anderson
(1989), utilising this method, found an upper limit on any change in the orbital period of the
binary system to be |P13| < 8 x 10~®. These nutations have also been employed as a means of
investigating the structure of the accretion disc.

The second class of deviation is evident as extended periods of time during which the
predictions of the simple kinematic model are systematically shifted with respect to the data.
The reason for this discrepancy is not well understood though its presence indicates that ei-
ther the model precession period is wrong and/or unstable or that the precession clock is more
complicated than anticipated (Margon, 1984). Anderson, Margon and Grandi (1983b) investi-
gated the instability of the 164 day precessional period of the jets through several deterministic
models. Their analysis showed that the more complicated 7-parameter and sinusoidal models
were better able (though not completely successfully) to reproduce the fluctuations seen in the
observations. Further, they deduced that the amplitude of the noise was no greater than that
observed in the 35 day X-ray period of Her X-1, in which precession is also likely as the driv-
ing clock, and that it consequently contains information on how the fluid accretion disc and
companion star precess. Hjellming and Johnston (1986) discussed a model where these sys-
tematic deviations from the simple kinematic model arise from the presence of two underlying
clocks of periods of order 152 days and 175 days. The beat period of ~ 2000 days of these
sinusoidal variations is superposed on the 164 day precessional period. Margon and Anderson
(1989) point out that the two period model of Hjellming and Johnston (1986) is essentially the
same as the sinusoidal model of Anderson, Margon and Grandi (1983). In their more recent
analysis of the deterministic models, Margon and Anderson (1989) concluded that the nature
of the instability of the precessional clock is obscure and probably not increasing, that both
the 6 and 7-parameter models are almost certainly not correct and that the inferred period
of the sinusoidal model has decreased to 1299 + 24 days. However, they could not determine
whether the sinusoidal model had any physical significance or whether it simply fitted the data
on account of the large number of free parameters (9) in the model.

Even after subtraction of empirical fits to the 164 day period instability and the precession
and nodding motions from the best-fit model there still exist apparently random deviations of

several thousand kilometers per second that are variable predominantly on a time-scale of days.
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These constitute the third type of deviation. This ‘jittering’ motion shows no obvious 164 day
phase dependence so eliminating scenarios where stochastic variations of some of the model
parameters, such as the jet velocity, are responsible for the deviations. Katz and Piran (1982)
have noted that the deviations are compatible with a stochastic jitter in the beam pointing
direction of magnitude comparable to or smaller than the jet opening angle. During these
stochastic excursions, the jets show evidence of moving as a solid body (Margon and Anderson,
1989): when the red beam has insufficient red-shift, the blue beam has excess blue-shift and
vice versa. The anticorrelation is not quite exact and appears to be transmitted on time scales
of several days or less. This observation has led Margon and Anderson (1989) to suggest that
most of the collimation and pointing of the jets occurs very close to the jet source rather than
in the outer regions of a thick accretion disc as is believed to be the case in active galactic
nuclei.

The ‘kinematic’ model provides a beautiful, simplistic explanation of the moving line fea-
tures and is accepted by most (see Kundt (1985, 1987) for dissent; §1.6.6) as the canonical
scenario for SS433. However, it completely fails to address many of the perplexing physical
problems posed by the system: the characteristics of the constituent star(s), the mechanisms
that power, collimate and precess the jets and the evolutionary path that culminated in the

formation of SS433.

§1.4 Basic Information

§1.4.1 General Data

The source of the optical emission in SS433, known also as V1343 Aquilae, is located at
«(1950) = 19" 09™21.282° + 0.003%, §(1950) = 04° 53’ 54.04” £ 0.05” in the epoch of 1980
(de Veght and Gehlich, 1979; Kaplan et al., 1980) and has corresponding galactic coordinates
1 =39.7°, b = —2.2° (Margon, 1984). The compact radio and X-ray sources are coincident with
the optical source within the bounds of measurement uncertainty.

The distance to SS433 can be uniquely determined from the radio maps by comparing the
radio brightness distribution with the helical pattern expected from the twin precessing jets
though in most cases it is assumed that the radio knots are moving at the same velocity as the
optical emission line regions. This assumption is supported by the absence of a notable change
in the proper motion of the radio components (Spencer, 1984). On the basis of the more reliable
distance estimates deduced from the radio observations (VLA: Hjellming and Johnston, 1981b;
VLBI: Niell et all., 1981; MERLIN: Spencer, 1984; VLBI: Fejes, 1986; VLBI Vermeulen et al.,
1993a), the presently accepted distance to SS433 is ~ 5 kpc. The distance to the SNR remnant
W50, based on the surface-brightness diameter relation resulting from the decreasing brightness
of SNR with increasing distance from the galactic plane, has been estimated as 3.3 kpc (Caswell
and Lerche, 1979) in rough agreement with the estimates of the distance to SS433.

The apparent magnitude of SS433 is V = 14.22 + 0.04 (Margon et al., 1979a). The
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absolute magnitude is My ~ —7 and the optical continuum spectrum is similar to that of an
05-type star suffering severe interstellar absorption Ay ~ 8 mag (Murdin et al. 1980). The
bolometric luminosity of the system is ~ 4.4 x 103° erg/s and the dominant source of optical
luminosity resembles a blackbody with a mean colour temperature ~ 32500 K (Wagner, 1986).
The 2 — 10keV X-ray luminosity is ~ 1036 erg/s (Warwick et al. 1981) and typical radio flux
densities (summed over the central and extended sources) are 1Jy at 3.7 and 6 cm and 0.2 ]y

at 2cm (Hjellming and Johnston, 1981b).

§1.4.2 The System Configuration

S5433 is believed to be a binary system in which both components follow (nearly) circular
orbits (Collins and Newsom, 1986) with a period of ~ 13 days. The primary is probably an
OB star undergoing Roche-lobe overflow whilst the secondary is a compact object, perhaps a
black hole though recent evidence (D’Odorico et al., 1991; see §1.6.1) favours a neutron star.
Material from the primary is accreted at a supercritical rate (Zealy et al., 1980) onto the
compact component forming a geometrically thick accretion disc. Two highly collimated and
oppositely aligned jets moving at approximately a quarter the speed of light emerge from the
accretion disc funnels along the disc-normal which precesses in a manner consistent with the

kinematic model.

§1.5 Observations

§1.5.1 Gammma-Ray Observations

From an analysis of the data collected by the high-resolution gamma-ray spectrometer on board
the HEAO 3 satellite, Lamb et al. (1983) reported the presence of two gamma-ray lines located
at energies of about 1.5 and 1.2 MeV. Both lines exhibited fractional linewidths AE/E of ~ 1%
and varied in intensity by a factor of ~ 3 on a time scale of days. Assuming that the lines
represent isotropic emission from SS433 then the combined gamma-ray luminosity of both lines
is ~ 2 x 1037 erg/s which is of the order of 250 times greater than the 2-10 keV luminosity
(Marshall et al., 1979) and is a significant fraction of the jet kinetic energy. The gamma-ray lines
were interpreted as blue and red shifted components of the 1.369 MeV line which arises from a
nuclear transition of 2*Mg from its first excited state to its ground state. Lamb et al. (1983)
proposed that the transition was triggered by inelastic collisions of the 2Mg nuclei moving at
~ 0.26¢ (or equivalently with 33 MeV per nucleon) with ambient protons. If this identification
is correct then on the basis of solar abundances of **C and !®0 to 2*Mg, intense lines from
12C and !0 should be present. These lines are not observed indicating that either the 2*Mg
identification is wrong or that the magnesium abundance in $S433 is anomolously high relative
to carbon and oxygen. In a cautionary note, Norman and Bodansky (1984) stressed that if
the gamma-ray features were due to inelastic scattering of 2Mg nuclei on protons then lines

of similar intensity should be observed at ~ 1.4 and ~ 1.8 MeV. Such features have not been
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observed indicating that the explanation proposed by Lamb et al. (1983) is possibly wrong.
Alternative interpretations for the gamma-ray lines have been formulated by several authors
(Kundt, 1985; Boyd et al., 1984; Ramaty et al., 1984; Heifer and Savedoff, 1984). Negative
results have been reported by MacCallum et al. (1985) and Geldzahler et al. (1989) casting

some doubt on the existence of the gamma-ray lines reported by Lamb et al. (1983).

§1.5.2 X-Ray Observations

In early Ariel (Seward et al., 1976; Ricketts et al., 1981), Uhuru (Forman et al., 1978) and
HEAO-1 (Marshall et al., 1979) X-ray observations SS433 appeared as an unremarkable source
with a 2-10 keV luminosity of ~ 1036erg/s. At the assumed distance of 5kpc (Warwick et
al., 1981) this corresponds to approximately 0.01% of the total system luminosity (accounting
both for the kinetic energy of the jets and the radiation from the jets). The spectrum appears
moderately hard (kT ~ 14 keV) with evidence for iron line emission at 6.7 keV from Fe XXVII
(Marshall et al.. 1979) and has the shape of a power law type or relatively hard bremsstrahlung
spectrum (Marshall et al., 1979; Rickets et al., 1981). Imaging observations in the range
0.5 —3 keV performed by the Einstein X-ray Observatory (Seward et al., 1980) revealed the
presence of diffuse X-ray emission associated with the jets extending to at least 30 arc min
from SS433 and aligned with the deformation in the W50 shell. The X-ray lumimosit.y of the
central source accounts for about 90% of the total, the remaining 10%" being attributable to
the X-ray lobes which are morphologically similar to the radio lobes of extragalactic objects
(Fig. 1.5). The work of Seward et al. (1980) was extended by Watson et al. (1983) who
found the X-ray lobes to be confined within a region subtending ~ 30° at the central object

and exhibiting spectral softening with increasing distance from SS433. The spectrum obtained

Fig. 1.5. A smoothed IPC X-ray image of SS433 and the surrounding region in ~0.7—4 keV band with 64” pixels
The image is a composite of three separate observations, each corrected fcor telescope vignetting (from Watson et al.,
1983)
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with the Einstein X-ray Observatory showed none of the emission lines such as Si XIII and
Si XIV expected from a thermal plasma at a temperature of a few keV (Grindlay et al., 1984)
so favouring non-thermal models for the central X-ray source (Seaquist et al., 1982; Grindlay
et al., 1984).

Better resolution spectral observations from the Exosat observatory (Watson et al., 1986)
and corroborative Tenma results (Matsuoka et al., 1986) revealed the presence of the Fe XXV
emission line of estimated luminosity Ljine > 1034 erg/s oscillating periodically across the spec-
trum over a 164 day period in a manner consistent with the kinematic model. The existence
of this line seems to suggest a thermal model for the central source. Only the blue shifted
component is observed. The red shifted counterpart is presumably obscured by the accretion
disc providing constraints on the system geometry and placing an upper limit on the length of
the jets over which the X-ray line emission arises as 10*2cm (Watson et al., 1986). This X-ray
jet length is supported by the results of Stewart et al. (1987) and requires that the jets be
accelerated to 0.26¢ within 102 cm (i.e. in about 100 seconds) and consequently constrains the
possible acceleration mechanisms (§1.6.4).

Most of the X-ray emission comes from a small region at the base of the relativistic jets
(Watson et al., 1986). When this region is eclipsed by the normal star during primary eclipse,
the duration of the eclipse is related to the relative size of the normal star and as a result to
the mass ratio ¢ (§1.6.1).

Band (1989) has pointed out that during the period of Einstein observations SS433 was
a flaring X-ray source whilst during the Exosat observations it was relatively quiescent. This
flaring behaviour would account for the disagreement in the likely model for the emissions
during the Einstein and Exosat observations.

Recent Ginga X-ray observations (Brinkmann et al., 1989; Brinkmann et al., 1991) centered
on the phases of optical primary minimum indicate that the source spectrum is extremely hard
and best fitted with a thermal bremsstrahlung law and that the jets are precessing retrograde

with respect to the orbital binary motion.

§1.5.3 Optical and Infrared Observations

The mean colour temperature (§1.4.1) indicates that the spectrum of SS433 probably peaks in
the UV part of the spectrum. However, because SS433 is located very close to the galactic plane
the UV emissions are severely attenuated making observations in this band very problematic.
In the remainder of this section I will discuss in succession the stationary spectral lines, the
moving spectral lines and, finally, the photometric observations.

The stationary spectral lines originate in the atmospheres of the normal star and the
accretion disc and in the stream of accreting matter between the two. The dominant features
in the stationary spectrum are the Balmer and He I emission lines; the equivalent width of the
Ha has exceeded 500A and was responsible for the inclusion of the object in the SS catalogue.

On occasion, both the He I and Balmer emission lines display P-Cygni absorption wings. The
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He II 24686 and 210124 emissions, typical of cataclysmic variables and galactic X-ray binaries,
are also present as well as the particularly strong C III-N III A4640-4650 emission blend
(Margon, 1984) and the O I A8446 (Mammano et al., 1980; Margon et al., 1979b) emission
feature. The emission line _proﬁles are complex and vary on time scales of less than a day. The
spectrum is particularly deficient in absorption lines with only the strong O I A7773 and some
Fe II lines being intrinsic to the source, the remainder being due to interstellar absorption.
The lines referred to as ‘stationary’ do not occur at their rest wavelengths and in fact
vary with a period of approximately 13 days (Crampton, Cowley and Hutchings, 1980). The
periodic variations of the H and He I emission lines and the Fe II lines first indicated the binary
nature of SS433. From the amplitude of these variations the projected velocity was determined
to be 7T3km/s. This velocity was incorrectly interpreted as representing the orbital motion
of the compact object (Crampton, Cowley and Hutchings, 1980). Observations of the He II
A4686, believed to be formed close to the compact object, showed a similar 13 day modulation
(Crampton and Hutchings, 1981). If this identification is correct then the modulation of the
He II A4686 line represents the binary motion of the compact object. The amplitude of this
modulation is K = 195km/s, with a lower limit of K = 150 km/s, which corresponds to a mass

function

o = (M, sin i)3
T (M, + Myx)?
=1.035x 10~7 (K/kms™!)® (Py3/day) (sini)™> Mg

= 10.6 (4.6) Mg (1.3)

where M, and Mx are the massés of the normal star and the compact object respectively,
i is the system inclination and the bracketed mass function represents the lower limit. This
would seem to indicate the presence of a massive companion. However, the He II A4686 line in
the spectra obtained by Crampton and Hutchings (1981) displayed a complex and unresolved
profile making it difficult to distinguish the true orbital motion from strength variations of the
line components. In a more recent investigation, D’Odorico et al. (1991) measured the orbital
modulation of the resolved He II A4686 line and determined the amplitude of the Doppler
modulation to be K = 112+ 5km/s corresponding to a mass function f, = 2.0 +0.3M which
is significantly lower than that derived by Crampton and Hutchings (1981). The different
velocity amplitudes observed for the He II lines and the other stationary lines can be explained
if the other stationary lines are formed in the stream of material which, because of Roche
lobe overflow, leaves the normal star and flows onto the compact object. The velocity of the
accretion flow is smaller than the orbital velocity and since the He II lines are formed near the
compact object their velocity amplitude will be greater than that of the other emission lines.
This explanation also accounts for the phase difference observed between the He II line and the

other emission lines.
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During the photometric eclipse of the accretion disc, the intensity of the He A4686 line
decreases slightly but never undergoes total eclipse. From this observation it can be deduced
that the line is formed in an extended region such as the accretion disc corona and not in some
localised hot-spot.

Spectral observations in the optical (A4674-5549) and near infra-red (A8355-8987) (Filip-
penko et al., 1988) seem to show that the stationary Paschen lines (A8755, 8670 and 8603) are
double peaked with splittings of ~ 290 km/s. The observations were made at the point in the
precessional phase just before the first crossing of the moving lines and at a point in the orbital
phase close to the secondary eclipse. If these lines occur in the outer regions of the accretion
disc then they constitute the first direct evidence of emission from the accretion disc. The
splittings may result from rotation of the accretion disc.

Analysis of the moving emission lines provided the first indication of the jets in SS433.
Extensive observations of the lines have been made by numerous authors (e.g. Margon et al.,
1980, 1981, 1982; Ciatti et al., 1981,1983; Mammano et al., 1980). These observations show
that the most dominant line is Ha with a luminosity of ~ 103erg/s. Also present in the
moving spectrum are the remaining Balmer series, He I lines and in the infrared, the Paschen
and Brackett series. The moving emission lines are unpolarized (Liebert et al., 1979) and have
typical line widths of several thousand kilometers per second from which an upper limit on the
opening angle of the jet of # =~ 0.1 radians can be inferred (Begelman et al., 1980). The range
of line profiles extends from the very complex (Margon et al., 1979a, 1980; Murdin et al., 1980)
to the Gaussian (Margon et al., 1984). Considerable changes are observed both in the profile
and intensity of the lines on a time scale of less than a day. These intensity variations include
occasions where the blue and red shifted emission lines disappear/reappear in synchronisation
with one another with a time delay between the jets of less than one day. This indicates that the
radiating regions in each jet are less than 100 AU apart. Apart from these intensity variations,
indvidual lines have been observed to brighten then fade at one particular frequency (Murdin
et al., 1980) to be replaced by a similar configuration at a slightly different frequency. This
has been termed ‘bullet’ behaviour. Each bullet takes on average ~ 10 hrs to reach maximum
brightness then dims with a typical radiative lifetime of ~ 2 days (Vermeulen et al., 1993c). As
discussed in §1.3.2, the Doppler shifted emission lines do not strictly follow the predictions of
the kinematic model, exhibiting both nodding motions and jitter. The most rapid photometric
and spectroscopic variations so far observed occurred on a timescale of 15— 20 minutes (Kopylov
et al., 1986) and appeared to be correlated with the intensity of the stationary Ha emission
(Asadullaev and Cherpashchuk, 1986) suggesting that both sets of lines are produced by the
same excitation mechanism. There is no evidence of He II lines and particularly the A4686 line
which is prominent in the stationary line system. The absence of the He II lines constrains the
temperature of the emitting material to be between about 5000 and 40000 K with the most
likely range, on the basis of the behaviour of the cooling function, being ~ 10 000 — 20 000 K.

The complexity of the moving line profiles, attributable to them being comprised of several
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components, indicates that the density of the jets is not homogeneous and instead rather clumpy.
Theoretical considerations indicate that the filling factor, f¢, of the optical line emitting material
in the jets is such that f; < 1 ( Bodo et al., 1985; Begelman et al., 1980). This is generally
much smaller than the limit f; < 0.01 deduced from line profile fitting (Borisov and Fabrika,
1987).

A lower limit for the length of the optically emitting region of the jets, lopt, can be deduced
from a Black body limit argument (Begelman et al., 1980):

lopt > 1.6 x 1012073 Ty~! (Lita )5y % cm (1.4)

where 0 is the jet opening angle, T is the thermal temperature of the region and Ly, is the
luminosity of the Ha line. The spectroscopic variations on a time scale of minutes mentioned
above indicate that the emitting region is relatively compact with lopy < 103 cm which is
in agreement with the variability observaticns of Kopylov et al. (1986) and Asadullaev and
Cherepashchuk (1986). In contrast, the spectroscopic data of Borisov and Fabrika (1987) indi-
cates that lope & 101 cm.

Brown, Cassinelli and Collins (1991) have discussed possible mechanisms for heating the
Ha bullets out to distances of 5 x 10'* cm and turning the emission off at 10!® cm. They impose
the requirements that there be sufficient heating in the observed emission region, that the
bullets be dense enough to suppress forbidden lines and to emit enough He by recombination
and that the lines are neither too broad nor display deceleration. Solutions for spherical bullets
heated radiatively by emissions from SS433 exist only for very massive (10%° g) bullets which
have an angular radius of ~ 0.03 radians at the central source and have a number density
ne ~ 101%cm™3. Such a solution is very improbable since the inferred kinetic luminosity is
~ 10*! erg/s. For heating by collisions from the wind of the companion star, solutions exist for

bullet masses ~ 1024 g, number densities n, ~ 10!'*cm~2 and an angular radius of ~ 10™3
radians. The required wind-loss rates are in the range ~ 107% — 1073 Mg /yr, the lower end of
which is appropriate for SS433. It seems therefore that collisional interaction with the stellar
wind is responsible for heating the optical bullets.

§$S433 is a relatively bright (V~14) star which is photometrically accessible to small tele-
scopes. Consequently, numerous observations of the optical continuum have been made by
means of narrowband (Anderson et al., 1983b) and broadband (Henson et al., 1983; Kemp et
al., 1986; Mazeh et al., 1987; Zwitter, Calvani and D’Odorico, 1991 and references therein). The
optical continuum spectrum resembles a blackbody of mean colour temperature ~ 32 500K and
appears hotter when the brighter precessing object is seen pole-on and cooler when seen nearest
equator-on (Wagner et al., 1986). This variation corresponds to an amplitude in the B-V colour
index of 0.08™ and may result from gravity darkening in the normal star or the thick accretion

disc, or perhaps from high temperature funnels in the accretion disc. Anderson et al. (1983b)

had previously proposed that the accretion disc is thick with a diameter-to-thickness ratio
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of ~ 3/2.

Observations in the U, B and V colour bands show the temporal behaviour of the source
to be erratic with a typical scatter from the smooth light curve of about 0.3™ in V and 0.25™
in B. The source is variable on a wide range of time scales, from hours to years though there
exists no evidence for marked variations on time scales much less than an hour (Lebedev et al.,
1981).

Both the 13 and 162 day periods are clearly observed in the photometric data. The 13
day orbital period is responsible for the two broad minima observed in the B and V bands.
The primary minimum occurs at the same phase as the maximum positive radial velocity of
the stationary Balmer emission lines and occurs half of an orbital period before the secondary
minimum. The primary and secondary minima are interpreted as eclipses of the accretion disc
by the normal star and vice versa respectively. In addition, the orbital phase difference between
this primary minimum and the zero phase of the 6.3 day nodding motions is the same as that
between the Balmer and H II emission line velocities (Crampton and Hutchings, 1981). Since
the nodding motions can only realistically originate near the compact object, the presence of
the common phase offset conclusively proves that the He II line represents the true orbital
motion of the compact object. In the U band, the primary minimum is fairly deep whilst the
secondary minimum appears not to be present.

Observations in the B and V bands (Cherespaschuk, 1981) indicate that SS433 is an eclips-
ing binary system in which the average brightness-temperature of the disc is about twice that
of the normal star. At the average brightness maximum, the accretion disc contributes at least
60% of the total optical luminosity of the system.

Long-term V band observations (Kemp et al., 1986), indicate the presence of the 162 day
precessional period. The detection of a positive ‘hump’ in the 162 day light curve at around the
secondary optical minimum, but not at the primary minimum, was interpreted as indicating
the presence of a thick accretion disc. A Fourier analysis of the same data (Mazeh et al.,
1987) reveals the presence of the 13 day binary period and a periodicity of 6.54 days which
corresponds to the first harmonic of the orbital period.

Recent observations (Zwitter et al., 1991) indicate that the photometric variability of $S433
consists of three separate classes distinguished by their characteristic time scale At: a) At > 6
hours represents orbital and precessional motion of the system components. A disc-like outflow
such as might occur in the supercritical accretion regime may also contribute; b) 30mins < At <
6hrs, possibly the result of an extended corona surrounding the jets and ¢) At < 30mins, may
be linked to the activity of the central engine which could account for the variable brightness

of the exposed funnels in the thick accretion disc.

§1.5.4 Radio Observations

This section consists of two complimentary parts: The first relates particularly to radio obser-

vations of the extended regions of emission formed by the jets of SS433 whilst the second details
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the environment of SS433, namely the supernova remnant W50.

The radio emissions from SS433 have been observed extensively by various means. These
include the VLA and MERLIN maps which have an angular resolution in excess of 0.1 arcsec
corresponding to ~ 10'®cm at 5kpc and the VLBI maps which have a resolution of ~ 0.01
arcsec. The emissions exhibit quiescent and flaring modes (Fielder et al., 1987; Bonsignori-
Facondi et al., 1986; Vermeulen et al., 1993b) with a typical quiescent flux density of ~ 0.7 Jy
at 2695 MHz, often doubling during outbursts. The total radio luminosity of the source is
~ 1032erg/s. On the basis of this rate of energy loss, Spencer (1984) has estimated that the
power source must have an energy output in excess of ~ 10*% erg/s.

The VLA maps show that the morphology of the extended structure evolves over a time
scale of days producing a ‘corkscrew’ type pattern on the plane of the sky (Hjellming and
Johnston, 1981a; Gilmore et al., 1981). These changes can be attributed to the ballistic motion
of material ejected from the jets. This is a natural extension of the optical kinematic model to
the radio regime. A superposition of the jet trajectories as predicted by the kinematic model
onto the radio maps makes possible a derivation of the model’s free parameters, an estimate
of the distance to the source and the removal of the degeneracy between the inclination of the
precession and rotation axes to the line of sight (§1.2). In addition this analysis shows the sense
of the jet rotation to be clock-wise. The precessing beams are observed to extend to a distance
~ 2 x 10} cm from the central source (Hjellming and Johnston, 1986) though no emission is
detected at greater distances as the jets impinge on the shell of W50. The emission has a
spectral index a = —0.6 (S o« v®) characteristic of optically thin synchrotron emission.

The MERLIN observations show the radio emission to lie predominately on the locus
predicted by the kinematic model. The beams do not have a uniform flux density and are
composed of discrete knots (Spencer, 1984). These knots are observed to form in pairs, their
formation coinciding with radio outbursts, and as they move away from the central source with
constant velocity, their brightness decays according to a power law with a time constant of 35
days.

The VLBI maps indicate the presence of diffuse emission (Romney et al., 1987) in addition
to the presence of many discrete features. These discrete emission features may be connected
with the flaring seen in the radio flux density (Bonsignori-Facondi et al., 1986). The radio
emissions, as in the MERLIN observations, generally lie on the locus predicted by the kinematic
model though deviations have been reported (Romney et al., 1987). The radio flux density varies
on time scales of weeks or months (Fielder et al., 1987; Johnston et al., 1981, 1984) and flares
on time scales ranging from a few hours to a few minutes (Seaquist et al., 1979; Seaquist,
1981b). The angular size of the central source is greater than about 5 mas (Geldzahler, Downes
and Shaffer, 1981) corresponding to ~ 20 AU at 5kpc. Vermeulen et al. (1993a), using a
complex VLBI system based on one north American and five European sited radio-telescopes,
have obtained high resolution observations of SS433 on 6 separate occasions at intervals of

2 days. Their radio maps (Fig. 1.6a) show a strong and variable unresolved core (< 10 marcs)



18

"JO 2446938.6

JD 2446940.6

O

JD 2446942.6
[e0)
E
¢
o JD 2446944.6
0
C
13
6
©
> JD 2446946.6
©
DC
<D 2446948.6
50 AU
0 -50 -100

Relative R. A. (milliarcsec)

Fig. 1.6a. European VLBI Network images of SS433 observed at two-day intervals. The same absolute contour levels
are displayed for all six images which are positioned with equal vertical offsets between their respective centres. The
authors’ preferred choice for the location of the binary system is shown by the vertical dashed line. The locus of
emission predicted by the kinematic model, including nodding motion, is drawn through each image. The markers
indicate ejection age intervals of 2 days along the locus whilst the labels refer to the individual features displayed in
Fig. 1.6b (from Vermeulen et al., 1993a)
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Fig. 1.6b. Crosscuts through the images in Fig 1.6a along the locus of emission predicted by the kinematical model.
All crosscuts have been drawn to the same (arbitrary) intensity scale (from Vermeulen et al., 1993a).
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and a series of discrete emission regions located on the predicted precession locus. Crosscuts
through these maps along the kinematic model curve (Fig. 1.6b) show a high contrast between
the knots and the intervening regions. There appears to be a ‘brightening-zone’ located at
~ 250 AU from the central source (Vermeulen et al., 1993a) which may occur when one blob
overtakes the bow-shock of its immediate predecessor. Even though the blobs move at the
same speed, this overtaking is possible since the ejection direction precesses and the bow-shock
is directed backwards at the Mach angle from the foremost face of the leading blob. Beyond
the brightening zone the blobs fade as they expand adiabatically. Assuming each blob to be
a sphere 15 marcs in diameter, a distance to SS433 of 5kpc and a spectral index of —0.65,
Vermeulen et al. (1987) have estimated the luminosity of each blob to be ~ 5 x 103%erg/s and
the energy of each blob to be ~ 7 x 10*! erg.

SS433 is located very near the centre of W50, believed by most workers to have originated
from a supernova explosion. This evolutionary path has been challenged by Kénigl (1983) who
has postulated that the shell of W50 may be an expanding interstellar bubble which is driven
by a strong stellar wind emanating from the normal star in the SS433 system. The angular
dimensions of the ellipsoidal shell of the nebula are 2° along the longer axis by 1°. The scale
of W50 is vast: material travelling in the jets at 0.26¢ takes between 1000 and 1500 years to
traverse the interior of the shell (Vermeulen, 1989).

The source of radio emission from S5433 is synchrotron radiation, suggesting the presence
of a magnetic field which must be ordered because of the high levels of polarization, up to 40%
at 2.7 GHz, in some parts of the structure (Downes et al., 1981). Protruding beyond the eastern
and western boundaries of W50 are regions of radio emission centered about a position angle
of 100°. The central location of SS433 within W50 and the close correspondence between the
position angles of the ansae and the precession cone axis (§1.3.1) clearly indicates that the jets
of SS433 are interacting with W50; puncturing the shell to form the radio ansae. The angle
subtended by the ansae at the core (Geldzahler, Pauls and Salter, 1980) is considerably less
than the angle subtended by the precession cone at the core (Niell, Lockhart and Preston, 1981)
indicating that the jets are possibly being focused by the ambient medium within W50.

§1.6 Theories

§1.6.1 The Binary System

The standard approach in modelling the binary system is to is to adopt the following geometrical
assumptions:

¢ SS433 is a binary system in which the component orbits are (almost) circular.

e The normal star is phase-locked with the orbital motion and the rotation axis of the star
is approximately perpendicular to the orbital plane.

e The normal star fills its Roche lobe.
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o The angle 7 in the kinematic model represents the inclination of the orbital plane to the
line of sight.
All that then needs be specified is the geometry of the accretion disc; a feature which obviously
makes any predictions model dependent.

On the basis of the above assumptions the mass function (Eq. 1.3) can be expressed as

MX M*

Mx
Tq(1+q9)? " (1+9)?

:M*_

where q (1.5a,d)

Jm

Once the mass ratio ¢ is known, the mass function determines the nature of the compact object.
Theoretical estimates for the mass ratio have been made by many groups. I will consider several
of these below.

Leibowitz (1984) assumed the accretion disc to be cylindrical and the normal star to be a
sphere of uniform brightness. By fitting this 10 parameter model to the observed light curve,
Leibowitz (1984) found the precession to be retrograde and ¢ > 0.8 at the 95% confidence level.
Adopting the mass function of Crampton and Hutchings (1981), this value for the mass ratio,
by Eq. (1.5a), implies that Mx > 27(12)My where the term in parentheses (as in the rest of
this section) corresponds to the lower mass function evaluation. These results indicate that the
compact object is a black hole. They do not however represent evidence for a black hole on
account of the many additional approximations made.

Antokhina and Cherepashchuk (1987) interpreted the optical light curves in a 6 parameter
model in which the accretion disc was approximated by an oblate spheroid. Their model
indicates that the normal star fills its Roche lobe with its equatorial region contacting the
Roche lobe of the compact object. They found ¢ > 0.25 at the 99% confidence corresponding to
Mx > 4.1(1.8) Mg by the mass function of Crampton and Hutchings (1981). Model predictions
for mass ratios marginally greater than this lower limit do not agree with observations. Taking
into account all the observational data Antokhina and Cherespaschuk (1987) preferred the mass
ratio ¢ = 1.2 and the resulting solution A, = 52 M and Mx = 62 M. The accretion disc was
found to be thick with an oblateness in the range 0.2 — 0.5 and a bolometric luminosity in the
range 1.4 x 10%° — 1.7 x 103! erg/s, close to or in excess of the critical Eddington limit.

An alternative approach to fitting the entire light curve to the model predictions, as in the
two cases discussed above, is to model particular aspects of the light curve such as the width
or depth of an eclipse. Such an approach requires fewer model parameters and is simpler but
does not represent the system as accurately as the first method. This alternative approach was
adopted by Leibowitz et al. (1984) in their analysis of V band light curves. The width of the
primary eclipse was estimated to be (0.30 £ 0.02) P;3. No flat bottom was detected in the light
curve indicating that the accretion disc was not completely eclipsed. The accretion disc was
assumed to be geometrically thin and its surface normal aligned along the instantaneous jet
axis. Within their model the no-totality condition and the eclipse width constrained ¢ > 0.43

corresponding to the solution Mx > 9.5(4.3) M.
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Stewart et al. (1987) analysed X-ray eclipse data obtained from the EXOSAT satellite.
The X-ray eclipse was coincident with the optical primary minimum providing strong model-
independent evidence for the primary minimum being the eclipse of the compact object by the
normal star. Their model assumed the accretion disc to be a torus with a triangular cross section
and the X-ray emission from the red shifted jet to be obscured by the accretion disc (Watson et
al., 1986). The depth and duration of the X-ray eclipse were then used in conjunction with the
model assumptions to provide constraints on the relative dimensions of the system components.
The X-ray emitting region of the jets was found to be ~ 10'2¢m long and the accretion disc
was deduced to be thick and, assuming a constant disc density, to have a mass in excess of
~ 1078 M. Combined optical and X-ray light curve data restricted the mass ratio to the
range 1.5 > ¢ > 0.8. Adopting the mass function of Crampton and Hutchings (1981), the
masses of the components for ¢ = 0.8 are M, ~ 34.3(14.9) Mg and Mx ~ 27.6 (11.9) M and
for ¢ = 1.5 the masses are M, ~ 66 (29) Mg and Mx ~ 100 (43) M. The inferred stellar radius
of ~ 3 x 10'2cm is consistent with a massive normal component. Stewart et al., (1987) noted
that a mass ratio of ¢ &~ 0.1, required for the compact component to have a mass of 1.4Mg, was
marginally allowed by the X-ray constraints but excluded by the optical data. They concluded
that all the observations were consistent with both the optical and compact components having
masses greater than 10M,.

Brinkmann et al. (1989) employed the conventional approach to analyse Ginga X-ray
observations taken during primary eclipse. With the standard assumption that the primary
fills its Roche lobe they determined the mass ratio to be ¢ = 0.1496 with corresponding masses
for the two components of the system M, = 14My and Mx = 2.1Mj. They noted that a
slightly longer duration of the eclipse, or possible obscuration of the central parts of the jets
by a thick disc, would lower the mass of the compact component making it impossible to
distinguish whether the compact object is a neutron star or a black hole. Brinkmamm et al.
(1989) concluded that two of the standard assumptions, specifically that the primary fills its
Roche lobe and that it rotates synchronously with the binary orbit, required revision.

There have been numerous other recent models not discussed here (e.g. Zwitter and Cal-
vani, 1989, 1990; Kawai et al., 1989) all of which, like those detailed above, favour a black hole
as the compact candidate but do not completely eliminate a neutron star as the alternative.

It is evident from Eq. (1.3) that the mass function is proportional to K3. The amplitude
modulation must therefore be precisely known if reliable values are to be obtained for the masses
of the components. In a recent investigation of the He II A4686 line, D’Odorico et al. (1991)
found the amplitude of the Doppler modulation to be K = 112 4+ 5km/s corresponding to the
mass function f = 2.0 £ 0.3 M. Adopting the mass ratio ¢ ~ 0.245 (Zwitter and Calvani,
1989) and the revised mass function, the corresponding masses of the compact object and the
normal star are Mx ~ 0.8+ 0.1 Mg and M, = 3.2 + 0.4 My respectively. These results imply
that the compact component is a neutron star rather than a black hole. Given the high quality

of the spectra obtained by D’Odorico et al. (1991) a significant error in their derived value of
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K seems unlikely. A higher mass ratio could be inferred if the primary is moderately flattened
or a wind-type mass flow in the system obscures the X-rays for a small fraction of the eclipse
(Brinkmann et al., 1989).

It is evident that there is no consensus on the nature of the binary components though,
if the recent Doppler modulation of D’Odorico et al. (1991) is accepted, then at present the

neutron star scenario is the marginal favourite.

§1.6.2 The Accretion Disc

The observational evidence for a geometrically thick (e.g. Anderson et al., 1983a; Kemp et
al. 1986; Wagner et al. 1986), luminous (eg. Cherespaschuck, 1981) accretion disc is very
strong. The presence of a geometrically thick accretion disc is also inferred by the results
of modelling the 162 day light curve (§1.6.1) (Leibowitz, 1984; Antokhina an Cherespaschuk,
1987). Super-critical accretion onto the compact object was realised to be the power source for
the jets (e.g. Zealy, Dopita and Malin, 1980; Martin and Rees, 1978; Begelman et al., 1980;
Sarazin, Begelman and Hatchett, 1980) largely on the basis of the large kinetic energy of the
jets and the intensity of the moving emission lines.

Wagner (1986) found the diameter to thickness ratio d/h < 1.3 indicating that the accretion
disc more closely resembles a sphere than a greatly flattened sphere or disc whilst Stewart et al.
(1987) found d/h ~ 0.4. The latter group additionaly concluded that for the accretion disc to
provide the observed degree of obscuration of the red shifted X-ray jet it must have a minimum
number density n. ~ 10!2cm~3 at a height of 5 x 10! cm above the orbital plane.

For fully ionized matter in which Thomson scattering provides the main source of opacity,

the Eddington luminosity for an object of mass M is

4rGem, M
or

LEdd = = 1.257 x 1038£ erg/s (1.6)
Mo

where m, is the proton mass and ot is the Thomson cross section. This is the maximal
luminosity of any non-rotating, stationary, electromagnetically neutral object. Rotating objects
can however have L > Lgqq. In particular objects with large shear, small vorticity and small
density can have L/Lgqq > 1. These conditions exist in thick accretion discs (Abramowicz,
Calvani and Nobili, 1980). The bolometric luminosity of the accretion disc is ~ 10%°erg/s
(Cherespaschuck, 1981). For a compact object of mass M ~ Mg such a luminosity exceeds the
Eddington limit by about one order of magnitude. If Thomson scattering is the main source
of opacity then, by equating the Eddington luminosity to the accretion luminosity it can be
deduced that the critical accretion rate, Mcrit, for accretion onto a central object of radius R,
1s
_ 4mmycR,

£ = ——P70% -8 (R
Mgic = o 1.555 x 10 (10km) Mg /yr. (1.7)

Super-Eddington luminosities are possible only if M > M.
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Fig. 1.7. The schematic shape of thick accretion disks: (a) very supercritical accretion as in SS433; (b) mildly
supercritical accretion as in AGNs (from Abramowicz et al., 1987).

The shapes of theoretical thick disc models are toroidal and in the limiting case resemble
a sphere with two deep, narrow funnels along the rotation axis (Fig. 1.7). A compact object
embedded in a thick accretion disc is attractive since accretion in such a deep potential well
provides an efficient mechanism for energy generation. This is particularly true for a thick
accretion disc in which the accretion rate must be high and possibly super-critical. Consequently
the luminosity will be extremely high and may exceed the Eddington limit. In addition the
narrow funnels provide a means of collimating and directing the jets. This is of great significance
to SS433 where the jets are highly collimated, expanding with a cone half-angle less than 0.1
radians (Begelman et al., 1980), and are oppositely aligned to a very high degree (see §1.6.4).

Abramowicz, Calvani and Nobili (1980) found the main properties of a thick accretion disc
orbiting a black and radiating at or beyond the maximal limit to be dependent on the mass of
the central object and the ratio rOut/2n where rm is the distance from the centre of the compact
object to the cusp on the disc located at the formation point of the accretion stream (the inner
accretion disc radius) and rout is the limiting distance from the centre of the compact object
beyond which the disc can be considered thin. Calvani and Nobili (1980, 1981) have described
a model for SS433 based on a thick accretion disc orbiting around a black hole and found
the values rin = 106cm and rout = 1057n to be in agreement with observations. Assuming
that rin % R+ then, by Eq. (1.7), the critical accretion rate for a compact object with an inner
accretion disc radius rin = 106cm is A/Git ~ 1-6 x 10-8 M ¢ /yr. In the SS433 system the normal
star transfers mass to the accretion disc at a rate of ~ 10~4Mg/yr (van den Heuvel, 1981).
Such an accretion rate onto a solar mass compact object evidently constitutes super-critical
accretion by about 4 orders of magnitude and amply satisfies the necessary condition for the

system to have a super-Eddington luminosity.

§1.6.3 The Precession Mechanism

Following the conception of the kinematic model (Abell and Margon, 1979) and the discovery of
the binary nature of SS433 (Crampton, Cowley and Hutchings, 1980), the large periodic Doppler

shifts of the moving lines have been ascribed to the precessional motion of the jets about the
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orbit-normal of the binary system. This precession is conventionaly interpreted as the response
of the spin angular momentum vector to the gravitational interaction of the spinning object
with the other member of the binary system. Four models were initially suggested but two of
these, namely Lens Thirring and geodetic precession, were eliminated because their predicted
precession periods were too slow. The two surviving models for the precessional motion are the
‘slaved-disc’ model and the dynamical model both of which I will discuss below.

The slaved-disc model was initially developed by Roberts (1974) to explain the 35 day
periodicity in the Her-X system and was proposed as a natural explanation of the 164 day
precession period in SS433 by Katz (1980). The model has been discussed in the context of
SS433 by van den Heuvel, Ostriker and Petterson (1980) and Whitmire and Matese (1980).
The basic scenario for the slaved-disc model is as follows: The spin axis of the normal star-
is misaligned with the orbit-normal of the binary system (as may be the case following a
supernova explosion). The gravitational torque applied by the compact object will then force
the spin axis of the secondary to precess at a rate dependent on the mass of each component
and the dynamical ellipticity parameter ¢ (Roberts, 1974). For small centrifugal distortions, the
dynamical ellipticity € = w*zR*a/GIW* where w,, R, and M, are the angular velocity, radius
and mass of the secondary respectively. If the residence time of the accreted material in the
disc is short compared to the precession and nodding periods then the accretion disc normal
will follow the precessing spin axis of the normal star. In the slaved-disc model the precession
is retrograde if the stellar rotation is prograde (Katz, 1981). Such retrograde rotation of the
precessing jets has been observed (e.g. Brinkmann, Kawai and Matsuoka, 1989). Whitmire and
Matese (1980) showed that a precession period of 164 days for the normal star was possible for
reasonable estimates of the dynamical ellipticity parameter.

The dynamical model (Collins, 1985; Collins and Newsom, 1986) describes the motion of
the jets in terms of the classical mechanics description of a distorted body undergoing driven
precession as a result of the presence of a close companion. This is the same Newtonian driven
precession as occurs in the earth-moon-sun system. It is generally accepted that the jets are
formed close to one component of the SS433 system. In the dynamical model it is assumed
that the companion exerts torques on the source component forcing it to precess. If the jets are
constrained to follow the principal axis of this component then they too will precess. The tidal
deformation that accompanies any gravitational interaction of sufficient magnitude to produce
tidal-forced precession does not affect the dynamical motion of the system except through small
changes in the moments of inertia. In the formulation of the dynamical model the components
are treated as rigid objects which they certainly are not. Such an approach however is vindicated
by the work of Papaloizou and Pringle (1982) and Mestel and Takhar (1972) who have shown
that stars will precess as if they are rigid bodies for extended periods of time. For a precession
period of 163 days, the dynamical model requires that the spin rate of the precessing object
be of the order of the orbital frequency (Collins, Newsom and Boyd, 1981). An interesting

feature of pure gravitational precession, be it either Newtonian or general relativistic geodetic
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spin-orbit coupling, is that the precession rate does not decay (DeCampli, 1980). In the case
of a precessing neutron star this means that the precession rate is not a good indicator of the
interior dynamics of the star since it is more sensitive to ‘starquakes’ and variations in accretion
or wind torques.

The choice of model remains controversial. The slaved-disc model requires that the com-
panion star has a misaligned and precessing spin. One problem with this model is that the
orbits in SS433 are nearly circular (the orbital eccentricity € ~ 0.05 (Collins and Newsom,
1986)) and binary systems that display such tidal circularisation are unlikely to show evidence
for precessional motion (Papaloizou and Pringle, 1982). A difficulty encountered with the driven
precession model is that it requires the disc to have a low viscosity (Katz, 1986). This seems
unfeasible on account of the observed precession and 6 day periods of the inner regions of the
disc (Katz et al., 1982). A possible solution to this problem is a heterogeneous model in which
the viscosity is small near the disc midplane and large near its surface layers so that the mass
averaged viscosity is low thereby permitting driven precession and the slaving of the inner disc
to the outer disc’s precession by rapid mass transfer (Katz et al., 1982). The model, however,
fails to predict the observed amplitude of one of the 6 day nodding motions (see §1.3.2).

Regardless of the adopted model it is assumed that the jets follow the motion of the disc
and remain aligned along its instantaneous axis. The best argument supporting this assumption
is that the random deviations in the jet direction are strongly anti-correlated (Katz and Piran,
1982). These minor deviations in the jet orientation are easily detectable through spectroscopy:
e.g. a 1° tilt of the jets towards the observer results in a Doppler shift of ~ 1000 km/s. If the
motions of the accretion disc can be determined from these deviations then SS433 presents an

invaluable opportunity for the study of accretion disc dynamics.

§1.6.4 Jet Energetics, Collimation and Acceleration

The kinetic luminosity of the jets in SS433 is vast. As discussed in §1.5.3 above, the major
axis of W50 1s aligned with the jets of SS433 which indicates some interaction of the jets with
the ambient medium. Estimates of the work required to expand the supernova shell against
the interstellar medium (e.g. Begelman et al., 1980; Zealy et al., 1980; Kirshner and Chevalier,
1980) typically indicate that the kinetic luminosity of the jets must be in excess of ~ 103% erg/s.
From an upper limit estimate of the change in the orbital period Margon and Anderson (1989)
have concluded that mass-loss rates exceeding 10~3 Mg /yr, corresponding to jet kinetic energies
exceeding ~ 10*2erg/s, can be excluded. Analysis of cross spectrum data indicates that the
kinetic luminosity of the jets lies in the range 103° — 10%°erg/s (Zwitter et al., 1989) which
corresponds to the Eddington luminosity (Eq. 1.6) for a 10 — 100 M, star. It is therefore
obvious that if the power source is accretion onto a compact object of mass less than ~ 10 Mg,
then the Eddington luminosity limit must be exceeded to power the jets.

The narrowness of the moving spectral lines, typically with a width no greater than 10%

of their displacement, implies that the opening angle of the jets is less than ~ 0.1 radians
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(Begelman et al., 1980). The work of Shakura and Sunyaev (1973) showed that jet collimation
by the confining pressure provided by the funnels within a thick accretion disc is possible. This
mechanism has been applied to SS433 by several authors (e.g. Davidson and McCray, 1980;
Sikora and Wilson, 1981; Calvani and Nobili, 1981; Bodo et al., 1985). Sikora and Wilson (1981)
showed that the angle of the beam produced within a thick accretion disc funnel depends on
the region in which the beam material originates and, as a rough guide, material originating
at a distance less than ~ GM/c? from the compact object of mass M is collimated with a
beam angle comparable to the opening angle of the funnel. Begelman and Rees (1984) have
proposed that the jets are collimated by passing through narrow de Lavel nozzles which are
situated just beyond the magnetopause of a magnetised neutron star. Eichler (1983) has argued
that a jet with a finite opening angle can be focused on entering a homogeneous medium. The
focal length is nearly independent of the jet opening angle if all other jet parameters remain
the same. The presence of such a process is supported by observational evidence. It has
been shown (Krautter et al., 1983; Begelman et al., 1984) that collimation of a relativistic
gas propagating in pressure equilibrium into an ambient medium will occur if the ambient
pressure decreases more slowly than »=%. Kochanek (1991) has investigated the effect of toroidal
magnetic fields embedded in a precessing jet and found that such tori could overcome the
transverse expansion and focus the jet. This mechanism is important in SS433 if Lang—l < 0.05
where L = L3310%%erg/s is the kinetic luminosity and B = 10~3B3 G is the initial toroidal
magnetic field. Another possibility, which was tentatively suggested by Davidson and McCray
(1980), is that the differential action of radiation pressure on the electrons and ions within the
Jet may generate an EMF which may be sufficient to drive a current in the jet and consequently
induce ‘pinching’ of the beamn in the manner discussed by Benford (1978). The apparent absence
of decollimating effects may be indicative of the physical environment in the jet formation region.
One such mechanism is gravity decollimation which can be induced in a jet by the strongly
curved spacetime surrounding a black hole. If the jet consists of non-interacting particles, the
decollimation can easily be obtained by comparing the opening angle of a particular geodesic
at infinity with the initial opening angle at the origin of the jet. Lu and Pineault (1988) have
investigated the effect of this decollimating mechanism in a Schwarzschild metric and found it
to be dominated by collimating effects unless the sonic point of the jets is located very close to
the black hole.

The jets are probably accelerated by radiation pressure. This is evident from consideration
of the alternative where the pressure is due to ions and electrons: in order for this pressure
to deliver a terminal speed of 0.26c¢, the initial gas sound speed would have to be comparable
to this terminal speed which would require a temperature of ~ 10*! K (Davidson and McCray,
1980). At such a temperature and for gas densities applicable in SS433, blackbody radiation
pressure would exceed the gas pressure by many orders of magnitude. For the gas pressure to be
dominant the radiation energy density would have to be well below the appropriate blackbody

density which could only occur if the optical depth was to be implausibly low. Consequently,
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radiative acceleration is the most frequently discussed mechanism for accelerating the jets in
S5S433.

The observed constancy of the jet speed over extended periods of time is a problem that
needs to be addressed by any prospective acceleration mechanism. One of the earliest attempts
was the ‘line locking’ mechanism proposed by Milgrom (1979b). A similar mechanism had pre-
viously been discussed in connection with redshifts in quasars (e.g. Strittmatter and Williams,
1976). For the mechanism to function only the following conditions need be satisfied: i) The
intensity of the underlying continuum radiation is sufficient to drive gas away from the com-
pact object; ii) Momentum transfer takes place predominately through Lyman-line absorption
by some hydrogenic ion; iii) The continuum flux falls sharply for frequencies (as determined
in the source frame) above the Lyman edge of the absorbing ion. The gas that comprises the
jet will then be accelerated up to a terminal speed B, in units of the speed of light, such that
the Lyman edge wavelength in the comoving frame is equal to the Lyman-« wavelength in that
same frame. This occurs when v, (1— ;) = Ac/Aq = 3/4 (where A is the unshifted Lyman-edge
wavelength and A, is the comoving Lyman-a wavelength) or equivalently when g; = 7/25. This
is very close to the observed terminal speed of 0.26c; in reality the agreement is even better
because the cut-off in the underlying continuum flux occurs at a slightly greater wavelength
than A. due to the accumulation of Lyman lines in the environment of the radiation source
(Shapiro, Milgrom and Rees, 1986).

The term ‘line locking’ refers to the fact that once the terminal speed 3, is reached the jet
material can neither accelerate nor decelerate: If the jet velocity were to fall below 3, absorption
of radiation emitted from below the Lyman edge in the source rest frame would recommence
so forcing the jet speed back up to B;. On the other hand, if the jet velocity were to exceed
B¢ the momentum transferred to the jet material would drop sharply because the only photons
capable of exciting the Lyman lines are those that originate from beyond the Lyman cut-off
where the continuum flux is very low. The jet velocity would then drop back down to the
terminal speed 3.

In a detailed analysis of the line locking mechanism, Shapiro, Milgrom and Rees (1986)
found the acceleration region to roughly lie in the range 10'2Lsg? Z~% cm to 1015 cm (where Z
is the nuclear charge of the hydrogenic ion and Lag is the total luminosity in units of 1038 erg/s)
indicating that the heavier the hydrogenic ion, the closer to the compact object the acceleration
can begin. If the line locking element is hydrogen then the gas must be highly clumped with a
clumping factor ((n2)/(n)?) of the order of the square of the Mach flow number whilst if the line-
locking element is iron then no clumping at all is necessary. Line locking by both hydrogen and
helium can be rejected since they require a minimum initial distance of 2 x 10!3cm and 10*? cm
respectively whilst observations indicate attainment of a terminal speed within ~ 10'2 ¢cm from
the central source. (A closer starting point results in full ionization and a complete break-down
of the line locking mechanism.) Acceleration by the line locking of hydrogenic Fe is marginally

possible within the required distance but necessitates that the abundance of Fe in the flow
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relative to hydrogen be at least ~ 200 times the solar value. The results of Watson et al.
(1986) indicate that the Fe emission in the jets has an equivalent width typical for material
with cosmic abundances so ruling out Fe as the line locking element. It is evident that the
line locking mechanism has severe problems in its application to SS433 and is probably not the
initial acceleration mechanism though it is possible that it plays some role as a ‘speed governor’
once the jet material has been accelerated to near the terminal speed.

Radiative acceleration within a thick accretion disc has been investigated as a possibility
for SS433 by several authors (e.g. Davidson and McCray, 1980; Calvani and Nobili, 1981; Bodo
et al., 1985; Nobili, Calvani and Turolla, 1985; Icke 1989; Eggum, Coroniti and Katz, 1985).
The maximum radiation pressure within the disc funnel must be comparable to the emergent
kinetic energy density of the jet corresponding to blackbody temperatures between 105 and
107*K and certainly not much higher than 103 K (Davidson and McCray, 1980). Calvani
and Nobili (1981) found that plasma beams can be accelerated to relativistic velocities and
collimated within the accretion funnel. Bodo et al. (1985) investigated a two-phase jet model
which is an adaptation of the stellar wind theory model of Ferrari et al. (1984, 1985) that had
been proposed initially as a means of modelling jet acceleration in active galactic nuclei. The
gas within the accretion disc funnels is assumed to be optically thin. The jets are accelerated
to relativistic terminal speeds which are dependent on the funnel geometry and the radiation
field within the funnel at distances less than 10° cm from the central source. The emergent
beams have a temperature > 107 K. The jets then cool and fragment, as a result of thermal
instabilities, forming condensations with a temperature < 10* K which then act as the sources
of the moving emission lines. These small clouds then evaporate at distances of ~ 10'®cm ,
in agreement with the observed length of the optical jets, due to conduction from the hotter
inter-cloud medium. The density contrast in such jets is ~ 103 and the corresponding clumping
factor is no greater than ~ 10%. However, imposing the condition that the flow within the funnel
be optically thin has the disadvantage of constraining the mass efflux rate, and efficiency, to
rather low levels (Sikora and Wilson, 1981) in contradiction to the observations. The model
adopted by Icke (1989) differs from the rest since it assumes that the jets are not continuous
but instead consist of discrete clouds or ‘bullets’. This is the approach that I have followed and
will leave a detailed analysis of this mechanism till later. One possible objection to such models
is their low efficiency: to retain the form of an accretion disc with a funnel opening angle of
~ 0.1radians, requires about 99% of the infalling energy leaving only 1% to contribute towards
the radiation and kinetic energy of the jets (Abramowicz, Calvani and Nobili, 1980).

A greater efflux rate can be achieved if the jet is dense and so capable of trapping radiation.
Begelman and Rees (1984) have suggested that this radiation may be introduced into the gas by
mechanical mixing near the surface of a neutron star which could be achieved either by highly
inhomogeneous accretion or by the magnetosphere of the neutron star driving shocks into the
gas. Adiabatic expansion of the jet subject to inertial confinement by the funnel walls utililses

the energy of the trapped photons as well as their momenta to drive the jet so increasing
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the efficiency of the process. The final jet velocity is dependent primarily on the magnetic
moment and period of the neutron star and is quite insensitive to the mass inflow rate whilst
the predicted jet kinetic energy flux is in the range ~ 10®°~%%erg/s. The drawback however is
that the lateral force exerted on the funnel walls increases the funnel aperture and decreases
their potential for collimation.

Eggum, Corranti and Katz (1985) performed a numerical simulation of the coupled dynam-
ics of the accretion disc and the jet and found the mass efflux rate to be below that occurring
in §S433. Katz (1987) has proposed that this discrepancy may be explained by an instability in
the balance between photoionization and radiative recombination inherent in flows subject to
radiation pressure. If these instabilities grow then clumping factors up to 108 may form. These
density enhancements would then be sufficient to reconcile the low mass efflux rates predicted

by supercritical accretion disc models with the strong intensity of the moving line emissions.

§1.6.5 Alternative Theories

As an alternative to the kinematic model Kundt (1985, 1987) has proposed that the moving
emission lines are emitted near the inner edge of an accretion disc at a distance of 107 cm from
the centre of a 1.4 My neutron star. The spin of the neutron star is inclined at 53° to the orbital
plane and forces the inner edge of the accretion disc into its rotational plane via its corotating
magnetosphere. The moving emission lines are then emitted in the approximate region of the
two intersections of the inner accretion disc with the outer one. The torque between the neutron
star and the accretion disc forces the neutron star to precess. Within this model the kinematic
model parameters are: i = 67°, § = 53° and 8 > 0.9999. The distance to SS433 becomes
3+ 0.5kpec.

Fabian et al. (1986) have proposed a phenomenological triple star scenario for $5433 as
an alternative to the conventional binary model. They suggested that SS433 consists of a short
period binary (~ 1.5days) orbiting a massive OB star. The close binary then precesses in a
manner similar to the Earth-Moon system. Mass transfer takes place either within or on this
close binary leading to the formation of jets. Eclipses within the close binary system should
produce a 1.5 day photometric modulation which to date has not been observed.

Manka and Bednarek (1992) have suggested a string theory interpretation of SS433 in which
a captured, precessing ellipsoidal loop of a superconducting cosmic string both modulates the
speed of the jets and collimates them.

A novel alternative to radiative acceleration has been proposed by Harrison (1990). The
jets originate in some way at the surface of a neutron star where the protons have a kinetic
energy equal to the pion mass (139.57 MeV/c?). Harrison (1990) assumes the typical escape
energy for a proton from a neutron star to be equal to the muon mass (105.66 MeV/c?). Con-
sequently, far from the neutron star the protons have an energy equal to the pion-muon mass
difference which fortuitously corresponds to a proton moving with speed 0.262c. The pion rich

condensates necessary for this process may be formed deep in the interior of the neutron star
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as a result of rapid oscillations induced by some thermodynamic instability perhaps at a par-
ticularly evolutionary stage. These condensates then rise to the surface of the neutron star,
expanding rapidly as they do so, following the path of least resistance along the rotation axis
of the neutron star and emerge from the surface as hypersonic jets. This scenario is similar to

terrestrial volcano theory where hot magma replaces the pion rich condensates.

$1.7 The Evolutionary Track

In common with the massive X-ray binaries, the SS433 system is composed of an early-type
star plus a compact object. The main discriminating factor appears to be the accretion rate:
in SS433 this is ~ 10~ — 1073 M /yr whilst in X-ray binaries the rate is typically less than
~ 1078 Mg /yr and corresponds to the Eddington limit. The possible progenitor for $S433
may have been a massive X-ray binary (van den Heuvel, 1981) with a period between that of
Vela X-1 (8.96 days) and 4U1223-62 (34.5 days). The possible sequence of evolutionary phases
has been discussed by van den Heuvel (1981) and is illustrated in Fig. 1.8. Beginning from
an unevolved system consisting of a 20M star and an 8M star (phase a) the anticipated
evolution is as follows:

The more massive component evolves faster and begins to fill its Roche lobe and transfer
matter onto the less massive component (phase b). After completion of the first phase of mass
transfer the system is a Wolf-Rayet binary and consists of a WR star and a massive OB star
(phase c). After a further period of about 5 x 10°yr, the WR star explodes as a supernova
to become a compact object. Due to the asymmetry of the supernova explosion the compact
star receives a randomly oriented ‘kick’ velocity. The impact of the SN shell on the OB star
causes a disruption but does not destroy the entire system which becomes a run-away star. The
run-away velocities of the remaining components are of similar magnitude and are less than the
initial orbital velocity of the OB star and independent of the kick velocity (De Cuyper, 1981).
If the compact object formed in the SN explosion is a pulsar, an active period of ~ 10* yr may
begin (phase d) as is observed in the Crab pulsar. Once this activity has ceased the system
will probably lie dormant for about ~ 108 yr until the OB star has evolved into a supergiant
and begins to oveflow its Roche-lobe or emit a strong stellar wind. The compact companion
now becomes an X-ray source (phase f) which is eventually quenched when the accretion occurs
on the thermal timescale of the supergiant over a period of about 3 — 10 x 10*yr . These
stages constitute the standard evolutionary scenario for an X-ray binary. The accretion rate
is now 10~% — 1072 M, /yr and far in excess of the critical accretion rate of ~ 1078 Mg /yr.
This accreted matter is expelled from the system by the super-Eddington luminosity from the
compact star in directions perpendicular to the accretion disc which may grow to fill its Roche
lobe (phase g). The matter ejected in the beams will carry angular momentum from the system
causing the orbital period to decrease which, after ~ 10* yrs, will lead to the formation of a

very close binary system comprised of the evolved core of the massive star and the compact
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Unevolved system

First stage of mass transfer

Double-line Wolf-Rayet binary

Active young pulsar ¢
unevolved massive star

Quiet compact star ¢
unevolved star

Massive X-Ray binary
(beginning Roche-lobe
overflow and/or strong wind)

Roche-lobe overflow on
thermal timescale ;
Formation of supercritical
disk; large mass loss from

T L2
system.
104yrs
Second Wolf-Rayet phase.
HELIUM
STAR
5«10 yrs

Fig. 1.8. The standard evolutionary sequence for a massive close binary system up to the X-ray stage, frames (a) to
(f) inclusive, plus the expected further evolution of a massive X-ray binary, frames (g) and (h) (from van den Heuvel,
1981)
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object. If the core mass is ~ 6 —8 M ¢ it will probably resemble a WR star (phase h).

If this is indeed the evolutionary path then any supernova remnant formed in the process
should have disappeared long ago. This requires that W50 has been formed solely by the jets
of SS433 (van den Heuvel, 1981). An alternative scenario which does permit the existence of a
young SN remnant is 'tandem’ evolution. In this model the system begins with two stars with

near equal mass. The evolutionary phases are illustrated in Fig. 1.9.

M, M2
M=M-A M t=0
2 1 1
mass loss
t* 5x10 yrs
/ WR1 f 1WR2(or OBI)

young t3* 5.5x10 yrs

pulsar WR 1 has exploded
as a SN.

WR 2(or OB 1)

WR 2 (or OBI)
Fig. 1.9. The possible evolution of a massive close binary with an initial mass ratio close to unity. When the more
massive companion explodes, its companion already is a post main-sequence star which soon afterwards begins to

overflow its Roche lobe. This leads to the formation of a supercritical accretion disk around a young compact star.
The system may, at that time, still be surrounded by a SN remnant (from van den Heuvel, 1981).

ijl.8 Analogous Objects

Obvious similarities exist between SS433 and active galactic nuclei, including radio galaxies and
quasi-stellar objects: both exhibit well collimated relativistic outflows. Indeed this similarity
was the motivation behind the twin-jet model of Fabian and Rees (1979). The jets in an AGN, as
in SS433, are believed to be formed by the accretion of matter onto a compact object which then
dissipate their energy in double radio lobes. In both cases this dissipation occurs over a length
scale many orders of magnitude greater than the scale on which the jets are formed. The radio
maps of the extended structure of SS433 have a corkscrew appearance and are morphologically
similar to radio maps of AGN indicating that precession too plays a role in AGN though with

a period in excess of ~ 10000years. There are obvious differences: the principal emissions
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from SS433 are recombination lines produced by a thermal plasma moving at 0.26c whilst the
emission from extragalactic jets is largely nonthermal synchrotron radiation from relativistic
electrons. An additional dissimilarity, noted briefly in §1.3.2, is the region in which the jets are
collimated and directed: in SS433 this seems to occur close to the jet source whilst in AGN
the same function is believed to be performed by the outer regions of a geometrically thick
accretion disc. The best evidence for any analogy between SS433 and extragalactic jets would
be the observation of jet velocities of 0.26¢; jet velocities in AGN are highly relativistic and to
date, none have been found with velocities comparable to those in SS433. It seems that $5433
may not simply represent a scaled down version of an AGN though the case is by no means
closed.

It is reasonable to conclude that, since SS433 is so distant, the galactic density of such
objects is very low and that only a few may exist in our Galaxy. It is not inconceivable that all
‘but one of these is obscured leaving SS433 as the only observable representative of its class in
the entire Galaxy.

To date, none of the galactic objects proposed as belonging to the same class as SS433 such
as the binary system Circ X-1 (Bradt and McClintock, 1983) and the bipolar nebula surrounding
HD 44179 (Webster, 1979) have displayed the spectra necessary to warrant membership. If the
high absolute magnitude estimated for SS433 (see §1.4.1) is a generic feature then it should
be possible to observe analogous objects in the Magellanic Clouds. If present in M31, such an
object would be within the spectroscopic range of large telescopes. In either case the outstanding

problem is knowing exactly where to look.
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Chapter 2

Theoretical Prelude

§2.1 Introduction

The theoretical framework for the physical mechanism of radiative acceleration is formed, prin-
cipally, by the disciplines of special relativity and radiative transfer. In Part I of this two part
chapter I will clarify some common terms and definitions encountered in special relativity and
radiative transfer. This is followed by the introduction of a couple of useful Lorentz invariants
(i.e. quantities which are the same in all Lorentz frames) and some transformations that are of
importance in Part I as well as a discussion of the physical phenomena of Doppler shift and
aberration. As will become evident in later chapters, these phenomena play a crucial role in
governing the speed of the jet. Part II begins with comment on the advantages that fragmented
jets have over their continuous counterparts and with speculation on the means of formation
of such fragmented jets. Building from the theoretical foundations laid in Part I, I conclude
Part II with a derivation of the general vector equation of motion for a spherical jet fragment
moving in the time independent radiation field of a blackbody emitter.

For a more complete analysis of the topics discussed in Part I the reader should consult:
for special relativity e.g. Rindler (1982) and for radiative transfer and special relativity e.g.
Mihalas and Mihalas (1984) and Rybicki and Lightman (1979) and for radiative transfer e.g.
Swihart (1981) and Shu (1991).

Part I

§2.2 Special Relativity

The theory of special relativity is based on two fundamental principles, both postulated by
Einstein. The first is the relativity principle which states that all inertial frames are totally
equivalent for performing all physical experiments with the implication that all the laws of
physics must have an invariant form. The second principle, commonly referred to as the uni-
versality of the speed of light, states that the speed of light is the same in any inertial frame
regardless of the motion of the source. The latter postulate is incompatible with the Galilean
transformation in which space and time are separate entities. Compatability is retained by the
coupling of space and time into one entity known as spacetime and by the introduction of the

Lorentz transformation.



§2.2.1 The Lorentz Transformation

Consider two inertial frames /S and £S’ each containing a cartesian coordinate lattice. Suppose
that £S’ is moving with uniform velocity v in the z-direction of ZS with both frames having co-
incided at ¢ =t/ = 0; the standard frame configuration. Invoking both postulates and imposing
the constraint that any transformations be linear yields the standard Lorentz transformation

equations
=z . Y=y , Z=y(-vt) , t':’y(t———) (2.1a,b,c,d)
where the Lorentz factor v is given by

1(v) = ——— . (2.2)

Suppose now that £S5’ moves with a velocity v in an arbitrary direction relative to £S with
both sets of cartesian axes aligned and having coincided at ¢t = 0 = t’. A similar but more

complex argument to that outlined above gives the general Lorentz transformation

t'=7(t‘gc'z£) : £'=£+{[7—1]%-}'2—£—7t}y (2.3, b)

which can be expressed in matrix block form as

(£)= (S0 o) () =5()

where 8 = v/c, 38 is a 3 x 3 dyadic, I is the 3 x 3 identity matrix and the Lorentz factor now

=)

has the form

7(2) _—— (25)

—
1
=
=

The 4 x 4 matrix A in Eq. (2.4) above is referred to as the general boost matrix.

§2.2.2 Four-Vectors and Relativistic Kinematics

The laws of physics when expressed as tensor equations containing four-vectors and four-tensors
are covariant under Lorentz transformation. Therefore, expressed in this form, they satisfy the
principle of relativity. Consequently, relativistic generalisations of standard non-relativistic
expressions can be derived by re-expressing them in four-tensor form.
Let X* be the contravariant four-vector generalisation of the position vector z represented
by
X = (X% z) (2.6)
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where the time-component X° is equal to ct and the conventional three-vector z consists of
the three components (X!, X2, X3). The norm of the differential of this four-vector defines the

invariant interval ds®
ds? = dX*dX, = ?dt®* —dz - dz (2.7)

which is null for all photon paths.

The proper time interval dr, for a moving particle, is identical to the time interval dt
measured by a clock attached to the particle for which, obviously, dz = 0 and ds? = c¢2dr2.
Equating this invariant interval with that of Eq. (2.7), dividing through by c2dt? and taking
the positive square root gives the useful relation

dr 1 98
dt  y(v) (28)
Since the proper time is a world scalar and X* is a contravariant four-vector, the quantity
dX*#/dr is also a contravariant four-vector and, as stated earlier, must satisfy the principle of

relativity. The appropriate expression for four-velocity is then

dx#

VH# =
dr

= f;(ct,z) =7(v) %(Ct,z) =71(2) (c,v) (2.9)

where use has been made of the relation given by Eq. (2.8). It is trivial to show from Eq. (2.9)

that the four-velocity has a constant magnitude given by
VAV, =c2. (2.10)

Continuing in a logical manner it is apparent that the appropriate definition for four-acceleration

1s

dv# d
b= — —_
At = —— =1(2) 3; {1() (e )} (2.11)
whilst that for four-momentum is
Pt =moV* = y(v) mo (c,v) = m(c,v) = (mc, p) (2.12)

where m, is the particle rest mass and m = ym, is the relativistic mass. The appropriate form
for the four-force is
dp#

d
F”E?=E(movu). (213)
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For a particle of constant rest mass m,, Eq. (2.13) can be written as

F#¥ =m,

= moA” . (2.14)

Differentiation of Eq. (2.10) with respect to proper time gives

d(V,VH) o dve
=2V =0 (2.15)

which with Eq. (2.14) gives the useful relation

V,F*=0. (2.16)

Equation (2.16) shows that the four-force for a particle of constant rest mass is orthogonal to

the four-velocity in space-time. If the four-force vector is given by

F# = (F° F) (2.17)

then Egs. (2.9) and (2.16) imply that for a particle of constant rest mass

F-
Fo==_2 (2.18)
c
If the three-vector part of the four-force is now expressed as
E=9(@)f (2.19)

where f is the conventional three-force, then it follows from Egs. (2.17) and (2.18) that the

four-force has the form
=) (B2g). (220)
Last is the null photon-propagation four-vector K# which is defined as
K¥ = (k, k) (2.21)

where the magnitude of the three-wave vector |k| = 27v/c. I shall define the raypath vector k

as being a unit three-vector in the direction of photon propagation such that

(2.22)

Bl
1l
El e
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§2.3 Elementary Radiative Transfer

§2.3.1 Specific Intensity

In general, a radiation field is a function of both position and time and at some given position

has a distribution in both angle and frequency. The specific intensity I, (z, &, t) of radiation at
position z and at time ¢ travelling in direction E with frequency v is a quantity which describes
the radiation field and is defined such that the amount of energy transported by the radiation

in the frequency range v to v + dv across an area element dA with unit normal 7 in the time

interval dt into the solid angle d§2 around k is
dE, = I,(z,k, 1)k -2dAdQdv dt . (2.23)

In vacuo, the monochromatic specific intensity I, is a conserved along any raypath and has the

SI units [I,] = Jm~2s~1Hz " !steradian™?.

§2.3.2 Angular Moments of the Specific Intensity

(a) Energy Density
Consider a cylinder of length cdt and end area dA within a radiation field of energy density per

unit solid angle per unit frequency U,(€2). The energy within this cylinder will be
dE, =U,(Q)cdtdAdvdQ . (2.24)

All of the energy within this cylinder will exit in a time d¢. Therefore
dE, = I,dtdAdvdQ. (2.25)

Equating Eqs. (2.24) and (2.25) gives

U, (@) = % (2.26)

which, when integrated over all solid angles, gives the monochromatic energy density

u, = / U,(Q)da = 1 / 1,dQ . (2.27)

C

The mean monochromatic specific intensity is given by

1
Jy= £ /I,, e (2.28)

Therefore,

4rJ,
= ”c . (2.29)

Uy
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(b) Energy Fluz

The monochromatic energy flux in the direction k is
F, = / I, kdQ (2.30)
and the energy flux in the direction E is
(e 0]
F= / F,dv. (231)
0
The monochromatic energy flux normal to a surface element dA with unit normal # is

F, = -L,:/L,E-ﬁdﬂ:/l,, cos0d§2, (2.32)

I3

where @ is the angle between k and #, and the energy flux normal to the surface is

[oe]
f:/ F,dv. (2.33)
0

(¢) Momentum Fluz

Since the momentum of a photon of energy E' is E/c, the momentum flux across a surface with

unit normal # in the direction k and in the frequency range v to v+ dv is

F, -
p, ="k (2.34)
The monochromatic momentum flux normal to the surface is
. 1 2
pr=p, 0= I, cos® 6 dQ2 (2.35)
and the momentum flux normal to the surface is
o0
p= / podv. (2.36)
o

In general, different components of a stress tensor denote the rate of momentum transfer across

surfaces with specific orientations. In dyadic notation the above result can be expressed as
1 PN
p=- I, kkdQdv (2.37)
c

where p is the radiation stress tensor.
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§2.3.3 The Equation of Radiative Transfer

The transport of radiation through matter is described by the equation of radiative transfer

which can be expressed in the form

%a;t" +k-VI, = %rpju — prS¥ I, — prye L, + pre / ook, k) I (E) d (2.38)
where p is the mass density, j, is the emissivity per unit mass, k3%* is the total absorption
opacity, k;°® is the total scattering opacity and ¢, (E, E) is the probability of a photon within
the solid angle d¥’ about E being scattered into the solid angle dQ about k. The sum of
each of the positive terms on the right hand side of Eq. (2.38) denotes the increase in the
specific intensity per unit length along the raypath whilst the sum of each of the negative terms

denotes the decrease in the specific intensity per unit length along the raypath. The scattering

probability satisfies normalisation and reversability constraints such that

/ ook, ) de = / ou(h,k)da=1. (2.39)

The emissivity j, consists of two distinct components; one resulting from spontaneous
emission and the other from induced emission. In the rest frame of the gas, the spontaneous
emission component is usually isotropic whilst the induced emission component exhibits the
same directional dependence as the specific intensity. For this reason the contribution from the -
induced emission component is conventionally absorbed into the —px3%* I, term. The resulting

k3% is termed the ‘true absorption corrected for stimulated emission’. The quantity
K, = K30 4 k39 (2.40)

is called the total opacity (corrected for stimulated emission) or just the opacity. If the light
travel time across an object is much less than any of its évolutionary timescales, the time

dependence in the equation of radiative transfer (Eq. 2.38) can be dropped leaving

k-VI,+pr, 1, :p(4i7rj,,+n;’,°“<l>,,) (2.41)

where @, is the specific intensity weighted by the angular phase function for scattering and is

given by

8, (k,z) = / (b, K I, (K, z)de . (2.42)

For isotropic scattering ¢ = 1/4w and ®,, by Eq. (2.28), then equals the mean intensity J,.

Defining the source function by

I. 1 v sca
Su(kz) = — (4R °) (2.43)
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and denoting some path-length along the raypath by s such that k -V = d/ds, permits
Eqn. (2.41) to be expressed as
dr,

— +pk, 1, = pK,S, . (2.44)
ds

Further simplification of Eq. (2.44) is possible by the introduction of a variable called the optical
depth defined by

Ty —=-/ PRy ds (245)

where s, is arbitrary and simply corresponds to the point at which the optical depth is zero. A

medium is termed optically thick when 7, > 1 and optically thin when 7, < 1.

§2.3.4 Thermal Radiation

Any radiation field that is in thermodynamic equilibrium and that can be characterised by
a unique distribution function that depends solely on the absolute temperature is a thermal
radiation field. A good approximation to such a state occurs in the deep interior of stars or
dense accretion discs where |[VT|/psT <« 1 and the radiation is in equilibrium with the matter
at a very uniform temperature. Thermal radiation is described by the Planck function which

can be derived by invoking Bose-Einstein quantum statistics. It takes the form

2h3/c?

B.(T) = exp(hv/kT) -1

(2.46)

and is the isotropic specific intensity of a system in thermal equilibrium. Such radiation is
usually referred to as blackbody radiation and is emitted by a blackbody or perfect radiator.

The integrated Planck function is defined by

2rtkt ,  ac T

- — IR o el 2.47
B(T) /B"(T) dv 15¢2h3 4r (247)
where a is the radiation constant and is given by
8rokt
= — 2.48
* = 15c3k3 (2.48)
This is related to the Stefan-Boltzmann constant ¢ through
ac
== 2.49
o=2 (2.49)

and thus, since the surface energy flux, F, of a sphere of uniform brightness B is simply 7B,

F = (7'T4 (250)

which is the Stefan-Boltzmann law.
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A two-component gas is in strict thermodynamic equilibrium when both components of
the gas are in statistical equilibrium. This occurs when the distribution of photons is given
by the Planck function whilst the distribution in the energy of the matter particles is given by
Maxwell-Boltzmann statistics. If the photon distribution function differs from that given by
the Planck function but the material particle distribution is still given by Maxwell-Boltzmann
statistics then the (matter component of the) gas is in local thermodynamic equilibrium. In

this case the emissivity has a thermal value which is given by Kirchhoff’s law

ju» = 472 B, (T) . (2.51)

§2.3.5 The Eddington Approximation and Limb Darkening

Integral to the above approximation are the assumptions that the radiator geometry is planar,
that radiation traversing the radiator is scattered isotropically and that the opacity of the
radiator’s atmosphere is gray, or independent of frequency. In the deep layers of the atmosphere
far from the boundary at which r = 0, the specific intensity becomes very nearly isotropic. The
Eddington approximation consists of the further assumption that this holds for all depths

leading to the following identification for the radiation pressure

4nJ

3¢

P -;—u = (2.52)

where J is the mean frequency integrated specific intensity; the mean monochromatic specific
intensity is given by Eqs. (2.28) and (2.29). By solving the equation of radiative transfer for
a static, gray atmosphere in radiative equilibrium it can readily be shown that the emergent,

frequency integrated specific intensity is
3
Ipr=0)= =F(p+7) (2:53)

Identification of the integration constant can be made by noting that the emergent, surface

energy flux is given by
1
F= 27r/ wl(p,0)du (2.54)
0

which with Eq. (2.53) leads to the deduction that 7, = 2/3. Hence the emergent specific

intensity is

11,0 = 10,0 (4 3) (2.55)
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The above equation gives the limb darkening in the Eddington approximation; the emergent
specific intensity at the limb (4 = 0) is 2/5 the value of the emergent specific intensity at the

centre (u = 1). The gas temperature varies with optical depth according to

3 2

Thus, the gas temperature and the effective temperature are identical at a continuum optical

depth of 2/3 whilst at the surface T(0) = 0.8409 T¢y;.

§2.4 Transformations, Invariants and Phenomena

§2.4.1 The Phase Space Density Function

Consider an arbitrary radiation field and some infinitesimal volume element d3z = dz dydz at
position z within the field. The average number of photons dN with wave vector k that are

within the volume element d3z at time ¢ is
dN = f(z,k,t)d%z %k (2.57)

where f(z, k,t) is the phase space density function or the distribution function. It can be proven
that the phase space volume d3z d3k is a Lorentz invariant. Since dN is a countable quantity

and, therefore, also a Lorentz invariant it can be deduced that

f(z,k,t) = Lorentz invariant . (2.58)

The energy in the volume element attributable to the photons in the solid angle dQ around &

with a wave vector of magnitude between k and k + dk where k = 27v/c is

27y - (27r1/

2
dE, = hw f(z,k,1) k* ddk &z = hw f(z, ==k, 1) ) 40 dvddz (2.59)
Cc

c

§2.4.2 The Lorentz Invariant I, /3

Comparing Eqs. (2.24) and (2.59) for identical volume elements (d3z = cdtdA) it can be seen
that the phase space density function f(z, k,t) is proportional to U, /v3. Utilising Eq. (2.26),
which relates the monochromatic energy density per unit solid angle to the specific intensity,
and the Lorentz invariance of the phase space density function (Eq. 2.58) then gives the required

result that

I—'; = Lorentz invariant . (2.60)
v
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§2.4.3 Transformation of a Raypath Vector

Let the photon-propagation four-vector in £S’, by analogy with Eq. (2.21), be given by K’ =
(k',k'). Then using the general boost matrix A given in Eq. (2.4) it is simple to show that

-k
k=vyk-8-k) k’:—7g+&+[7—1]%_. (2.61a,b)

From the definition of the raypath vector given by Eq. (2.22) it is then obvious that the raypath

vector transforms according to

/

b+ [o-n5E -] 8

k = - (2.62)
Yy(1-8 k)
§2.4.4 Doppler Shift
Recalling that k = 27v/c and using Eq. (2.22), Eq. (2.61a) can be re-expressed as
V=y(1-8-k)v (2.63)

which describes the physical phenomenon known as Doppler shift: If in the standard frame
configuration, a source at rest in ZS at an inclination # to the z-axis emits radiation at a
frequency v then the same source observed in /S’ will have a lower frequency v’ given by
v' = v (1l - fBcos@)v. If this source is located on the z-axis such that § = 0 and the primed
observer moves towards/recedes from the source with speed ¢ then the observed frequency

will be higher/lower by a factor \/i?% / \/gg . The transverse Doppler effect occurs when
the source location is perpendicular to the direction of motion. In this case § = n/2 and the
frequency of the radiation observed in the primed frame is, by Eq. (2.63), higher by a factor v
than that observed in ZS.

§2.4.5 Aberration

Let the source be located at the origin of a standard spherical coordinate system. In the standard
frame configuration one can, without loss of generality set ¢ = 0, such that the raypath vector
k = (sin#,0,cosf). Substituting this expression into Eq. (2.62), setting E = (sin#’,0, cos ')

and equating each component gives

sin 8 cosf - (3

s SRV p_ BT TP )
sin 6 = = feos?) cos @ T~ Feost (2.64a,b)

which upon further manipulation yield the aberration formula
tand = — S0 (2.65)

v(cosf —B3)
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Equation (2.65) is worthy of some discussion. In the limit 8 — 1

tang’ — —% cot (g) (2.66)

indicating that in the (standard configuration) primed frame the photons are incident in a
narrow cone in the direction of the negative 2’-axis. Consider radiation emitted in the plane
8 = n/2. Clearly, in the highly relativistic limit the perceived angle that this radiation makes
with the z’-axis when observed from the primed frame, by Eq. (2.66), approximates to the very
small angle m — 1/v; the radiation appears to come from in front of the observer. If a source
emits isotropically in ZS then half of all the photons will be emitted into the hemisphere with
6 < /2 and the rest into the hemisphere with 8§ > 7 /2. Consequently half of all the photons
incident in £S’ will have 8 > 7 — 1/v whilst very few will be incident with ¢ <« 7« — 1/4.
This effect is known as relativistic beaming and along with the phenomenon of Doppler shift
has important consequences, as will become clear later, for the relativistic motion of particles

within a radiation field.

§2.4.6 Transformation of an Element of Solid Angle

In the co-moving frame /S’ an element of solid angle has the form
dQ' =sin6’' d¢' d¢' = —du' d¢’ (2.67)

where 6’ and ¢’ are the standard spherical polar coordinates and p’ = cos@’. In the standard

frame configuration, cos @’ transforms according to Eq. (2.645) which upon differentiation gives
g g g

du vy?
dp = ———"——=1(=) d .

A -5 (V’> g (2.68)

where the last equality has been deduced using the Doppler shift formula, Eq. (2.63). It is clear
from Egs. (2.1a, b) that in the standard frame configuration the azimuthal angle ¢’ is invariant
under Lorentz transformation and that therefore d¢’ = d¢. It is then evident from Eq. (2.68)

that in the standard frame configuration

v?dp dé = Lorentz invariant . (2.69)

Equation (2.69) must also be true for a general Lorentz boost. Therefore, by Egs. (2.63), (2.67)

and (2.69), an element of solid angle transforms according to

dQ

abTry R (2.70)

daQ’
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§2.4.7 Transformation of a Three-Force

Assume for the interim, by analogy with Eq. (2.17), that the four-force vector F'# in £S' has
the form F'#* = (F'°, F'). Then from the inverse of the matrix A given in Eq. (2.4) and by
Eq. (2.20) it can easily be shown that the three-vector component of the four-force acting on a
body of constant rest mass transforms according to

/0 ' Jagy:
A comparison of the expression for F’# and Eq. (2.20) indicates that the four-force vector in
ZS' must, since » = 0 in this frame, have the form F'* = (O,f) and that therefore Eq. (2.71)

can be rewritten as

flo= '—g}+- 8 (2.72)

which is the required transformation equation for a three-force.

Part 11

§2.5 Fragmented Jets: Their Advantages and Formation

The temporal and spatial density structure of the jets in SS433 varies over several orders of
magnitude. Observational evidence for this conclusion, from both optical and radio observa-
tions, is unambiguous: The narrowness of the moving emission lines, which have a typical width
of ~ 1300 km/s (Vermeulen, 1989), indicates that the optical jets are fairly smooth on a length
scale of ~ 1013 cm, but are variable on length scales of 101 — 10!% cm, whilst VLBI radio obser-
vations (Vermeulen et al., 1987) clearly show that the jets are formed from a series of evolving
‘blobs’.

At present there exist no concrete theoretical reasons or conclusive observational evidence
to exclude the possibility that the jets are formed by the successive ejection of discrete gaseous
blobs from the vicinity of the compact object. Indeed, if the jet structure close to the jet
source is inferred from the observed jet structure of the optical and radio jets then it would
seem more probable that the jets are composed of gaseous blobs rather than from a continuous
stream of material. If such a fragmented jet were to be accelerated principally by hydrodynamic
processes, the inherent nature of which is to maintain a constant jet momentum density, the
expected jet velocity would certainly not be constant. Such an outcome would be incompatible
with observations which clearly show that the jet velocity in SS433 is constant to a very high
degree as if governed by external factors. Therefore, it would appear appropriate to investigate
the acceleration in a near constant external radiation field of such gaseous blobs or ‘bullets’

as their optical facsimiles have been termed. Such an investigation is the purpose of
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this thesis. However, before deriving the general equation of motion of such bullets, I will
discuss some of the inherent advantages that a discretely composed jet has over its continuous
counterparts and the possible sequence of events that may lead to the formation of discrete
parcels of material near the compact object. This latter topic is, by its very nature, largely
conjecture.

Continuous jets encounter severe difficulties when they impinge on density enhancements
within the medium through which they are propagating. Such interactions force the jet to
bend, though it is possible for the jets to bend through a limited angle only before a disruptive
shock forms across the jet (Icke, 1989). These shocks have a lower probability of forming in a
gaseous bullet and thus a jet formed from such entities is more likely to survive encountering
a density enhancement. For matter in a continuous jet to access the driving radiation field,
the optical depth along the jet axis to the region of interest must be less than of order unity.
Such optical depth problems do not arise in jets composed of gaseous bullets where the driving
surface of the bullet, the rear surface, is easily identifiable. Of course such bullets also have a
front surface which presumably could lead to a rapid deceleration of the bullet on impact with
the ambient medium that may exist within the funnel. This problem can be resolved if the
bullets are embedded in a comoving stream of diffuse gas as would appear to be the case in
S$S5433.

As regards the production of the bullets, consider first the case where the accreting object
is a spinning neutron star. If the pulsar is not totally buried and the magnetosphere reaches
as far out as the speed-of-light cylinder then the spin rate will decrease in the same manner as
an exposed pulsar (Davidson and McCray, 1980). Material from the outer regions of the disc
will spiral inwards as the angular momentum is conveyed outwards through viscous dissipation.
For such a cocoon-enclosed pulsar the accreted material aquires a constant angular momentum
per unit mass dependent on the neutron star spin rate (Davidson, Pacini and Salpeter, 1971)
leading to the formation of an eflective centrifugal-gravitational potential ® per unit mass. As
more matter is accreted and heats up the potential well fills up to ¢ = 0 producing an hour-
glass shaped central funnel. Accreted matter that has an abnormally low angular momentum or
high temperature may ‘evaporate’ from the inner walls of the funnel and enter the acceleration
region. The rate of in-fall will increase as the density of the material in the toroidal potential
well increases resulting eventually in the presence of a considerable amount of material within
the funnel. This matter will be confined by the pressure of the dense torus and will be driven
towards the symmetry axis of the configuration by the lateral component of the radiation force.
It will then be subject to the greatest outward driving force since the hottest part of the funnel
will be directly behind the bullet. As the gaseous bullet accelerates rapidly its leading surface
will experience a ram pressure as it impacts on the ambient medium within the funnel which,
in conjunction with the aberrated radiation pressure and the pressure provided by the funnel
walls, will confine the material as it accelerates to a locus centred on the moving bullet. If the

compact object is a black hole, then a similar centrifugal barrier to that discussed above for
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a spinning neutron star will evolve but of course no angular momentum will be provided for
the accreting material by the black hole, nor will there be any congregation of matter in the
vicinity of the black hole. As with the neutron star, material will spiral inwards as angular
momentum diffuses outwards but only up to a radius » « 6GM/c2 where M is the mass of the
black hole (Davidson and McCray, 1980). At smaller radii general relativistic effects dictate
that material will spiral inwards without further loss of angular momentum. There is no reason
for the angular momentum per unit mass in the upper reaches of the accretion disc to fall below
the lower limit in the disc equatorial plane. Consequently, if the thickness of the accretion disc
is considerably greater than ~ 6GA//c2, a centrifugal barrier will be present permitting the
formation of a funnel. (In SS433 the disc thickness is probably > 10n cm (see §1.6.2) which
is roughly 4 orders of magnitude greater than 6GA//c2 for a 10 MO black hole.) Material that
enters this funnel will be subject to equivalent confining pressures found in the neutron star

funnel and will be driven away from the central black hole as a gaseous bullet.

§2.6 Derivation of the Equation of Motion

Consider two coordinate systems: an unprimed system (ZK) in the rest frame of the radiator
and a primed system (ZK') in which the radiatively driven bullet, assumed to be spherical,
is instantaneously at rest. In the unprimed frame the sphere moves with velocity v — c/?.
The radiation force experienced by the sphere will be evaluated in the primed frame and the
equation of motion derived from the transformation of this expression back to the unprimed

frame.

Fig. 2.1. The configuration geometry as observed in the instantaneous rest frame of the bullet: radiation originating
from a surface element of the radiator at @ impinges on a surface element of the bullet, with unit normal n’p, at P

within a solid angle dfig about a direction k' The solid angle subtended by the area element on the surface of the
bullet, located at P, at the centre of the bullet, O, is dfl'P

Now consider an area element on the surface of the sphere at P and an area element on

the surface of the blackbody radiator at Q which subtends a solid angle dfig at P (Fig. 2.1).
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The differential momentum flux at P due to photons incident within a solid angle dQg about

ic_’ and in the frequency range v’ to v’ +dv’ is

dp, = B (T)dQ' 3 (2.73)

where B,/(T") is the specific intensity of the blackbody radiator as observed in the rest frame

of the bullet. Let the surface area element on the sphere at P be denoted

(2.74)

1

dA’ = r2dQ)p Al

where r’ is the radius of the sphere, dQp is the solid angle subtended by the area element P at

the centre of the sphere and #p is the outward normal at P. The differential force at P due to

photons incident within a solid angle dQ’Q about E and in the frequency range v’ to v/ +dv' is

Af, = —(dA -dp. )k =r 2By (T)dQ’ A (k' - 2p) ' . (2.75)

Using the Lorentz invariant B, /v (Eq. 2.60) and the Lorentz transformation v = y(1+k B)
(Eq. 2.63) where the Lorentz factor v = 1/1/1 — 2 (Eq. 2.5) this can be expressed as

( ) B”C(T) dQp d (k' _;,)E

k- o
P dQg 1— k. (2.76)

|??"> |:>

é)

Using the expression for the Doppler shift (Eq. 2.63) and that for the transformation of the
raypath vector (Eq. 2.62) it is possible to show that

dv (2.77)

dU’= ——r,— .
Y(1+k -p)

Integrating Eq. (2.76) over all frequencies v/, by Eqs. (2.47), (2.49) and (2.77), yields

2 pt *® 2 ] rlz / / E’ﬁl}’ * 2!
d°f = d f”,du = ——dQp dQg — B,(T)dvi k
4 0 = C 74 1+k é)‘i
12 . k’ -'ﬁ’ t
= -2k (K, §)) dp dp —=2P (2.78)
c T ¥ 1+.’£ é 4

where T'( k) is the temperature observed in the direction —k with the relationship between

k and & being given by Eq. (2.62). The three-force acting on the sphere, as measured in the
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instantaneously comoving frame (ZK'), is found by integrating Eq. (2.78) over all solid angles

and therefore has the form

T4(-"kCklp))(k' -n'p)k’
(2.79)
P 0 (i t+k-P)4

Since the integrand is suitably continuous for all physical values of ft the order of integration

may be reversed giving

r-a 1 f T \-k(k,0))k
TR / A /' k Upous (2.80)
JSi’ « + &k -B)4 1In'

To facilitate the integration over QOp in Eq. (2.80) I will assume that all parallel raypath vectors
incident on the surface of the sphere denote the paths of photons with the same frequency v'.
This will certainly be true for an infinite, isothermal radiator. However, for a radiator with a
non-uniform temperature profile it is an approximation equivalent to assuming that the sphere

is small in comparison to the length-scale of any temperature variation.

Fig. 2.2. in the transformed basis, located in the instantaneous rest frame of the bullet, the i-axis is aligned opposite
to some direction of the incident radiation, & The photons incident upon the surface of the bullet in this arbitrary
direction are assumed to have the same frequency, u’, and collectively illuminate precisely one half of the total bullet

surface area.
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The integration over Q’ is then most easily performed in the transformed basis (denoted

by a tilde) obtained by rotating the primed basis centred on the bullet such that the new z-axis,
Z, 1s aligned opposite to some direction of the incident radiation (Fig. 2.2). In this basis

Zc_l = —(0,0,1) and it = (sin  cos @, sin O sin @, cos 6) (2.81a,b)

and the integral over Q) reduces to

J

Hence on substituting Eq. (2.82) into Eq. (2.80) the three-force experienced by the sphere can

!

f25>

=

2x z
'pdQp = —/ dci)/2 cosfsinfdf = —r . (2.82)
0 0

U
P

be expressed as

Tk (£, B))k
= "_"Zé _(:_(:__Q%—_ aay (2.83)
me Y o o
e (1+k-p)

where D = wr'? is the cross-sectional area of the sphere. It now only remains to transform
Eq. (2.83) to the unprimed basis.
As detailed in Part I, (Eq. 2.62) a raypath vector E transforms according to

b+ - 058 -] 2
B ¥(1-B-k)

and the element of solid angle dQ2, (Eq. 2.70) transforms according to

o Qg
T ra-pebr

It is trivial to show from Eq. (2.62) that

~ 1
1+k f= — 2.84
thet 72 (1-8 k) (289

which, along with Egs. (2.62) and (2.70), when substituted into Eq. (2.83) yields

r=22y T4(-&>{&+[(v—l)ﬁﬂ—f—v]é}u—ébdﬂo- (285)

e o

The three-force, recalling Eq. (2.72), transforms according to

Ly gopl

H D%
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Hence, Eq. (2.89) can alternatively be written as

d d D 1 ~ - - .
px (8% E)+ E= e L r-b{E-20-g bglu-g baog Qo)

Tmec? v

where, in a cartesian coordinate basis the general velocity vector 8 (in units of the speed of

Bz
é = (ﬂy ) (2.93)
Bs

i sin @ cos ¢
k= sinfsing | . (2.94)

cos @

light) has the form

and the raypath vector kis given by

In the following chapters I will investigate solutions to this equation for various funnel
geometries and temperature profiles with particular emphasis on those with model parameters

applicable to SS433.
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Chapter 3

Motion Above an Infinite, Isothermal Radiator

§3.1 Introduction

To begin the analysis of solutions to the general vector equation of motion derived in chap-
ter 2 I will consider the simplest possible case: a bullet of constant radius moving above an
infinite isothermal planar or conical radiator in which gravitational effects are ignored. I shall
investigate axial motion above such a radiator and progress to general off-axis motion. The
correspondence of the radiator geometries is obvious: the infinite plane represents an idealised

thin accretion disc whilst the infinite cone represents an idealised thick accretion disc funnel.

§3.2 Axial Motion

§3.2.1 The Axial Equation of Motion

Let the radiator be orientated such that for the plane, the surface normal is aligned along the
z-axis of a cartesian coordinate basis, whilst for the cone, such that the axis of generation is

aligned along the z-axis. An axial velocity vector will then have the form

0
(1)
e

aad the vector equation of motion (Eq. 2.89) will be given by

ﬂ:x 2r 90
(ﬂy. ) _ b 1/0 / T4( = k(0,6)) X(8;6,6) (1 - f: cos0)sinfdodg  (3.2)
0

Tim C2 g
72 B, 0C™ Y
“here

. dg; . A sin 6 cos ¢
b= X(Bi0,8)=k-v(1-B-B)f=| sinfsing (3.3a,b)

dt - v2(cos 8 — 3;)

aid 4, corresponds to the angle of incidence which a photon emitted at infinity makes with the

prsitive z-axis. If the temperature profile of the radiator is azimuthally symmetric such that
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T(- k9, #)) = T(6) then the integral over ¢ in Eq. (3.2) is trivial and yields

éx oD 1 [%
= fut T*(0) ¥(B;0) (1 — B, cos §) sin § d8 3.4
(75%2) 7l.mocz.,/o (6) ¥(B;6) (1 — B, cos 8) sin (3.4)
where
2r 0
¥(B;0) = X(B:;6,4)d¢ = 0 . (3.5)
0 2my2%(cos 6 - 3,)

Equations (3.4) and (3.5) clearly demonstrate that if the motion of the bullet is initially axial
then it remains so for all later times, as would be expected from consideration of the symmetry
of the problem alone. If the radiator is assumed to be isothermal such that T(6) = T then

Eq. (3.4) further simplifies and, by Eq. (3.5), the axial equation of motion has the form

4 8o
20DT l / (cosg — ﬁz) (1 - ,Bz Ccos 0) sind d6 (3'6)
0

mec? ¥

ﬁ.z:

which, by means of the substitution g = cos 8, can be re-expressed as

. 0’ 4 1
B. = 2007 l/ (n = B:) (1= Bop)dp
“

mec? v
oDT* 1
moc? 3y

°

[~26:4° + 301+ B.2)u® — 6B.4] (3.7)

where p, = cosf, and the Lorentz factor y = 1/ m . The acceleration is thus dependent
on the bullet parameters, namely mass and radius, through the ratio D/m,, dependent on the
radiator geometry through the integral limit p, and, on account of the proportionality to T4,
is sensitive to the blackbody temperature of the driving radiation field. Equation (3.7) can

readily be made dimensionlesst yielding

- dg, 1
B, = E% = V1= B2 [=26.1° + 3(1+ B.°)u" — 68.4] (3.8)
where
tg =Wt and W = oDT*/moc? . (3.9a,d)

The parameter W obviously represents the ratio of the power intercepted by the bullet to its

rest mass energy and, on account of its proportionality to B, 4, Iust be large to ensure rapid

t A variable that has been made dimensionless is denoted by the subscript ‘d’.
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acceleration. Since the parameter D represents the cross-sectional area of the bullet, Eq. (3.9b)

can alternatively be expressed as

124 1274
onr'“T —oa T
W=— ~2x 107 —
C4 M, m,

(3.10)

It should be recalled from §2.6 that for an isothermal radiator, the derived equations of motion
are exact even if the size of the bullet is comparable to that of the cone. The only constraint
imposed on the bullet radius is therefore obvious: r/ must be such that the bullet fits within
the funnel. As remarked in §3.1, the bullet radius has been assumed constant and therefore, if

the bullet is initially at rest or approximately so such that » &~ r’, its radius must satisfy
r < z,sina (3.11)

where 2, is the starting height of the bullet centre above the apex and «a is the half-opening

angle of the conical radiator. Hence, by Eqs. (3.10) and (3.11),

T , .
W<2x1072—22%sin’a . (3.12)
m,
This is a general upper bound on the parameter W, the absolute upper bound occurring when
the bullet is optically thin. If the bullet is composed of fully ionized hydrogen and is optically
thin, the total cross-section that it presents to incident radiation is D = N.or where N, is the
total number of electrons within the bullet and o is the Thomson cross-section. The maximum
value of the parameter W is then given by
oot Me

Winax = T = W, ~ 2.5 x 10767 (3.13)
(me + myp)c? me + mp

where W, represents the parameter W for a single electron. A rough lower bound can be placed
on W by assuming that at formation the bullet number density is comparable to stellar central

densities; typically ne ~ 1032 m~3. For such a number density, the bullet radius is

r= [ 3 (_“11__> l} "~ 1.1 x 10~2m} (3.14)

T \m. +my ) n.

and consequently the approximate range for the parameter W is

4 4
2.4 x 10-28T—1 <W<2x 10-241:43 sina < 2.5 x 107271, (3.15)
mg m,

For SS433 in particular, physical constraints imposed on the bullets if they are to be
collisionally heated (Brown, Cassinelli and Collins, 1991) indicate that they subtend an angular
radius of ~ 0.01 radians at the central source and have a mass in the range 5 x 102° < m, <

10®! kg. VLBI observations (Vermeulen, 1989) have revealed that the blobs are produced,
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on average, every 2-5 days. Since the kinetic luminosity Lx g. = mv?/2 of the jets is 103% —
10%% erg/s, the bullets must have masses in the approximate range 6 x 102! < m, < 1023kg. The
line widths of the moving optical lines suggest that the jet opening angle is less than 0.1 radians
(Begelman et al., 1980) whilst the temperature at the base of the jets probably lies between
5x 108K and 8 x 108K (Brinkmann et al., 1991).

The neglect of gravitational effects is a justified approximation. Regardless of how the
Jjet acceleration works, the X-ray observations (§1.5.2) indicate that the emergent bullets are
already moving at the terminal speed of 0.26¢ within a distance of ~ 10'°m from the central
engine which necessitates that the driving radiation force must greatly exceed the force of
gravity. This does not, however, mean that gravity is negligible over the entire length of the
accretion funnel from the immediate vicinity of the compact object outwards. This can readily
be appreciated by comparing the resultant radiation force L_ad experienced by the bullet within
the funnel with the force of gravity igrau. By Eq. (3.8), with 8, = 0 and p, = —cos «, the

radiation force is approximately given by

2
fr0a =59x10°T8 (2—) s, (3.16)
where a_s is the constant angular radius of the bullet in units of 10~2 radians. If one ignores
any general relativistic effects and neglects the mass attributable to the accretion disc and

considers only that of the central compact object M, the gravitational force is given by

33 UWX/MG) Moy,
= —1. —nf s 2 17
Ly = =18 107 XTI o, (3.17)

where Ty = T/10® K and similarly m,,, = m,/10?! kg. For outward acceleration to be possible,

in the absence of any other forces, fraq > fyrav Or equivalently, by Egs. (3.16) and (3.17),

(A’[X/MG)) m°21]% .

1
Toos (3.18)

z/10km > 1.2 x 10* [

Thus, outward acceleration of the bullet is not possible for distances less than ~ 108 m from the
central engine which, although large, is small compared to the probable upper limit of ~ 10'®m
over which the acceleration takes place. Indeed, the derived bound of ~ 108 m will likely be
smaller in reality on account of the decrease in temperature of the funnel walls with increasing
distance from the compact object. In addition, for the system (disc) to be in equilibrium outside
the jets, the disc material must be supported against gravity by a combination of rotation and
a temperature near the surface of the compact object in excess of 108 K which will further
lower the limit on z in Eq. (3.18). This temperature constraint can be deduced by equating
the radiation pressure at the surface of the compact object to the pressure attributable to
gravitational attraction. If one neglects any contribution to the support of the disc by the

centripetal force and assumes that the accretion disc is spherical, has a radius much greater
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than that of the compact object, is of uniform density and is in hydrostatic equilibrium then,
by solving the hydrostatic equation of equilibrium it can be shown that the pressure at the

surface of the compact object P(Rx) is given by

3G M2, Mx Rad)]
N — 2 3.19
P(Rx) ~ G [1+2(Mad)( o (3.19)

where the subscripts ‘ad’ and ’ X’ refer to the accretion disc and the compact object respectively.
If this gravitational pressure is countered solely by radiation pressure then, in the limit where
Raq > Rx, the temperature at the surface of the compact object necessary to support the
thick disc is

Maa/10Mg)(Mx /Mg) :

(
Tg ~ 1.3
° RS, (Rx/10km)

(3.20)

Hence, on the basis of the comments above and by Eq. (3.15), the range of the parameter

W appropriate for SS433 is

4 T4 2 2
2.4 x 1032 < w <0.278%6%22 55 10572 (3.21)
miﬁ? - - Mo,

where, for the inner regions of the jet, Tg probably lies in the range 5 < Tz < 8. This is of
course a great over-simplification. In a more realistic representation of the acceleration funnel
the cone should be finite in size and have a surface temperature that decreases with increasing
distance from the apex. Such a model will be considered later in chapter 4.

The resultant radiation force £ .4 €xperienced by a stationary bullet located above an
infinite isothermal plane is directed along the normal to the plane and has magnitude

4
= Tp. o

If all relativistic effects are ignored then the radiation force experienced by the bullet for all
later times will be given by Eq. (3.22) and, for a bullet of constant rest mass, the time taken
to accelerate to a speed v will be simply

_ mecv 1

V=D (3.23)

Consequently, the parameter W can be regarded as denoting the time taken for the bullet to
accelerate from rest to the speed of light and as such represents a measure of the characteristic
timescale of the problem t, = 1/W. For an electron, by Eq. (3.13), t. ~ (3.8/T5)*s whilst for
a bullet of mass m, = 102! kg and number density n. = 1032m~3, by Egs. (3.10) and (3.14),

the characteristic timescale is t. ~ (4.5/Tg)*s. Note, however, that the assumptions adopted
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above are at best inaccurate and that the outlined arguments provide a crude description of

the parameter \V.

§3.2.2 The Plane

The planerepresents aspecific case of the general conical radiator inwhich thesemi-angle
a = T/2A photonemitted infinitely far from the bullet will, in the rest frame ofthe radiator,

make an angle 0o = tt/2 with the positive 2-axis. Thus f,0 = 0 and the dimensionless, axial

equation of motion, by Eq. (3.8), is

A- =iv/iTt"1(3A2-8A +3) . (3.24)

From inspection of Eq. (3.24) it is clear that a physical solution to 0,d = 0 exists. This occurs

at, 3z = /200 where

4-\/7
Poo = — Y ~ « 0.4514 (3.25)
is the terminal speed of the bullet above the plane. The terminal speed is clearly independent

of the parameter W, unlike the acceleration which is directly proportional to W .

d&

deceleration acceleration deceleration
did

0

Fig. 3.1. The dimensionless acceleration experienced by a spherical bullet moving axially above an infinite, isothermal,
planar radiator plotted as a function of the bullet speed (in units of c).

A plot of d3z/dtd as a function of 3z (Fig. 3.1) contains two distinct deceleration regions
with the first, for motion towards the radiator (—1 < j3z < 0), having a maximum at /3Z «
—0.674 and the second, for motion away from the radiator but at a speed in excess of the terminal
speed (Poo < fiz < 1), having a minimum at (3Z% 0.797. Between these two deceleration bands

lies the acceleration region (0 < (3Z < /?00)-
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0.5

0.2

w/

Figs. 3.2a,b. The results of integrating the equation of motion for a bullet moving above an infinite, isothermal,
planar radiator with the initial condition 0: (a) speed (in units of ¢) versus dimensionless time, (b) speed (in units
of ¢) versus dimensionless distance.

A 1% 0.1%

0 2.685  4.145
-0.9 3.180  4.640
+0.9 3471 4.937

Table 3.1. The degree of terminal speed attainment. The columns headed 1% and 0.1% show the dimensionless time,
tj, taken for a bullet with the selected initial speeds, 0¢Q,to be within 1% and 0.1% of the terminal speed respectively

The terminal speed is, in reality, an asymptotic limit that the bullet approaches as its
journey time and its distance from the plane tend to infinity. The results of a numerical
integration of Eq. (3.24) for a bullet with an initial speed 0Z — 0 are shown in Figs. 3.2a,b
whilst the dimensionless attainment times for both this bullet and those with initial speeds
of £0.9c are tabulated in Table 3.1. The latter initial velocities have no particular physical
significance but they do illustrate what appears at first sight to be a peculiarity: Inspection of
Table 3.1 shows that a bullet with initial velocity —0.9c has a more rapid degree of terminal
speed attainment than an identical bullet with initial velocity +0.9c. This is indeed bizarre ifone
recalls, from Eq. (3.25), that « 0.4514. An understanding of the reasons for this behaviour
can be appreciated from Fig. 3.3 which depicts the comoving angle of incidence O (with respect
to the c'-axis) of a photon emitted infinitely far from the bullet as a function of /?, and from
Fig. 3.4 which shows the ratio of frequencies v'/u as a function of (3¢ for photons emitted
infinitely far from the bullet (¢ = tt/2) and for photons emitted from the region of the plane
directly below the bullet (0 = 0). These graphs are of course representations of the phenomena
of Doppler shift and aberration which I have already discussed in §2.4.4 and §2.4.5 respectively.
It is evident from Fig. 3.3 that for any j3z ~ 0, photons emitted infinitely far from the bullet
will, in the comoving frame, appear to be incident from ahead. These photons thus serve always
to decelerate the bullet. As the magnitude of the bullet’s velocity increases it can be seen from
Fig. 3.4 that the energy of these photons and of course their momenta, as perceived in the bullet

frame, also increases; particularly so for \3Z1 >~ 0.5. This, in tandem with their increasingly
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60

Pz

Fig. 3.3. The angle of incidence (with respect to the positive *'-axis), as observed in the rest frame of the bullet, of
a photon emitted infinitely far from the bullet versus the axial bullet speed.

1 0.75 0.5 0.25 0 0.25 0.5 0.75 1
Pz

Fig. 3.4. The ratio u'/u versus I3Z for photons emitted infinitely far from the bullet, 0= 7r/2, (dashed-dotted line) and
for photons emitted from the region immediately below the bullet, 0=0, (full line).
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more forward direction of incidence, means that photons emitted from the extremities of the
radiator act dynamically to reduce the magnitude of the bullet’s velocity. Photons emitted
from the region directly below the bullet suffer negligible aberration and are therefore always
incident within some small solid angle about the z-axis. These photons will always drive a
bullet away from the planar surface and can therefore act to decelerate or accelerate the bullet
depending on the direction of its motion. From Fig. 3.4 it can be appreciated that, on account
of the Doppler shift of these photons, a bullet moving highly relativistically towards the plane
will be rapidly decelerated by photons emitted from directly below it whilst a bullet moving
highly relativistically away from the plane will be accelerated at a considerably reduced rate
by the same photons. It can be realised, therefore, that all photons emitted by the radiating
plane act to decelerate a bullet moving towards it whilst only those emitted from its extremities
decelerate a bullet moving at a super-terminal speed. This enhanced deceleration experienced
by bullets moving towards the plane and the tendency of photons emitted from the region of the
plane directly below the bullet always to drive the bullet from the plane regardless of whether
it has a super-terminal speed or not make it possible for a highly relativistic bullet directed
towards the plane to have a more rapid degree of terminal speed attainment than an identical
bullet moving with the same speed away from the plane. This tendency is manifest in Fig 3.1 by
the generally greater magnitude of the ‘negative’ deceleration region compared to the ‘positive’
deceleration region.

The zero end-points which occur at |[3,| = 1 in Fig. 3.1 are worthy of explanation. A
material particle can never attain |8, = 1 but in the limit |3,| — 1, [d8,/dt4| — 0 indicating
that a super-relativistic bullet suffers minimal deceleration. This does not mean that the
magnitude of the radiation force on the bullet also tends to zero; on the contrary, the magnitude
of the radiation force tends to infinity. The axial three-force experienced by a body of constant

rest mass m, moving at speed 3., by Eqgs. (2.11), (2.14), (2.19) and (2.87), is

dg
. =meye —= . 3.26
fo=moy e — (3.26)
Thus, by Eq. (3.24), the axial radiation force experienced by the bullet is
2 __ . 3
f, =mec sz_gﬁ.'*'_ (3.27)

3(1-52)

which, by the introduction of the dimensionless radiation force f,, = f,/mocW, can be re-
expressed as

_ 357 -88: +3

fra = —m— (3.28)

Clearly, therefore, f., — +oc as 3, — F1. The dimensionless radiaton force is, of course, zero

only at 8, = (.
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As already mentioned, the principal driving force originates from photons emitted from
the region on the radiating plane directly below the bullet whilst the principal inhibiting force
originates from photons emitted infinitely far from the bullet. The differentiation between
driving and decelerative photons can be made more precise: In the comoving frame, all photons
incident with @ > x/2 decelerate the bullet whilst those incident with 8’ < x/2 drive the bullet.
By the aberration formula (Eq. 2.65) a photon incident at an angle ' = 7/2 in the comoving

frame is observed in the rest frame of the radiator to be incident at an angle §, where

6. = arccos 3, . (3.29)

Therefore, in the radiation source rest frame, all photons incident at an inclination 8 to the
positive z-axis in the range 0 < 8 < 8, (8. < p < 1) accelerate the bullet whilst all photons
incident in the range 6. < 6 < #/2 (0 < p < B,) decelerate the bullet. The individual
contribution made by both photon fluxes to the motion of the bullet can now be deduced. Let

the total acceleration of the bullet be given by

Bzd — [gacen _ jdecn (3.30)

24 24

where Bj,’:c” and ijc" are the contributions to the total dimensionless axial acceleration by the

accelerative and decelerative photon fluxes respectively. Then, by Eq. (3.8),
jeeen = ST B (34 8) (1 - 6. (3.31a)
and
hen = S VT- B (- BB (3310

The behaviour of B‘z’jc" and Bf:“‘ as a function of 3, are shown in Fig. 3.5. The solid angles

subtended by the two photon fluxes at the bullet in the radiation source rest frame are

arccos 3,
Qacen = 27r/ sinddf = 27 (1 - B.) (3.32a)
0
3
Qdeen = 271'/ sinf df = 27 3, (3.32b)
arccos 3,

Evidently, as the bullet accelerates from rest, §25..n decreases linearly with 3. whilst Qg.cn
increases from zero linearly with £, up to 27 8.
From the discussion above it is intuitively obvious that the terminal speed above an infinite

planar radiator with a temperature profile that decays from the centre outwards will be greater
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than that above an infinite isothermal plane. This problem will be addressed quantitatively in

chapter 4.

odecn

0,

Fsg. 3.5. The accelerative and decelerative components of the total dimensionless, axial acceleration versus the axial
speed of the bullet The crossover point marks the terminal speed

The behaviour of a bullet subject to a small perturbation e from the terminal speed can
readily be deduced by linearising Eq. (3.24): Let the bullet be perturbed by a small amount e

form the terminal speed p” such that
Pz —000+ C (3.33)
where |e] <C 1. Substitution of Eq. (3.33) into Eq. (3.24) yields
dc 2
AT =3V 1-/% (3/3,-4P +0o(d) (3.34)

which, ignoring terms of o(e2) and higher, can be integrated to give

(Zd) = eexpj | y/I - 0~ (3&0 - 4) =*dj

« cexp {-1.574 Zd} - (3.35)

Thus, the dimensionless e-folding time for reversion back to the terminal speed is ~ 0.635 which
is, from inspection of Fig. 3.2a, comparable for the time taken by the same bullet to accelerate

from rest to approximately one third of the speed of light.



65

§3.2.3 The Cone

A photon emitted from the surface of an infinite conical radiator of semi-angle a, infinitely far
from the bullet will make an angle 60 = m—a with the positive z-axis. Hence p0 = —cos @ and

by Eq. (3.8) the dimensionless axial equation of motion is

= b\/l —/3~ {3/?7? sin2a —2&(4 + cos3a -f3cosa) + 3sin2a} . (3.36)

Fig. 3.6. An isometric projection of the magnitude of the dimensionless bullet acceleration plotted as a function of
the bullet speed, 0¢, and the funnel semi-angle. The bullet speed increases from -1 to 1 along the base axis labeled
X whilst the funnel semi-angle, a, increases from 0° to 90° along the base axis labeled Y. The bottom of the trough
marks the domain in 0¢ and a for which the bullet moves at a constant speed.

An isometric projection of the magnitude of the dimensionless bullet acceleration as a function
of the semi-opening angle of the cone and the bullet speed is shown in Fig. 3.6. The clearly
defined trough delineates the region where the dimensionless acceleration is zero and therefore
corresponds to the terminal speed of the bullet for a given cone opening angle. By setting the

dimensionless acceleration equal to zero, it can easily be shown that the functional dependence

of the bullet terminal speed on the cone semi-opening angle a is given by
. . ., .
%O{a)\: P a)\- V{’(ari\- 1 Wflere p/(a)\ = 47 CO; singas €OS« (3.37a, 6)
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Fig. 3.7. The terminal speed, /200, versus the funnel semi-angle, a, in degrees.

A plot of the terminal speed as a function of the semi-opening angle @ is shown in Fig. 3.7.
Although Eqgs. (3.37a, 6) are valid for a > 90° these values have not been displayed since such
inverted conical radiators have no physical significance. For the bullet to have a terminal speed
of 0.26¢c, the same as that observed in SS433, the required semi-opening angle of the cone is
~ 67.1°. This is far greater then the funnel opening angles predicted to occur in the accretion
discs of compact objects undergoing highly supercritical accretion such as SS433. The required
half-opening angle of ~ 67.1° is also incompatible with the observations which indicate that a
representative half-opening angle is ~ 1° unless the bullet is much smaller than the funnel. This
latter condition may be satisfied if the radiation field within the funnel contributes significantly
to the collimation process (see §3.3.2 and §3.3.3).

For cones with small half-opening angles, using the standard trigonometric power series

expansions (Gradshteyn and Ryzhik, 1980),

(3.38a)

01 27 N 81 N 3.386
cos = _2_8 a % 0 ( . )

2 1 1 1 o 2 4 338
CC =" +3+15Q“+18% + (3.38¢)

it is possible to show that

. 8 J 53 2 59 4 \ 3.39
P(Q): 3 A { 3 - 1 92E6 3 38400 + " j ( - )
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and

rr-"

—7 8 [ 53 2 329 4 1 ,
“1=5"71% 192 - agio® +" ] (340>

and that thus, the terminal speed is dependent on a according to

Poofa) = -1f6-ar + (3.41)

Hence, the terminal speed for a bullet within a funnel with an half-opening angle of ~ 1° is
~ 5x 10-5¢ which is approximately three orders of magnitude less than the observed velocity
of the optical bullets. It is obvious that narrow, isothermal funnels are totally unsuitable for
the attainment of high terminal speeds. The reason for the decrease in the terminal speed with
decreasing opening angle evident in Fig. 3.7 is simple: as a decreases a greater proportion of
the radiation that impinges on the surface of the bullet originates from regions more directly
ahead of the bullet. These photons impede the acceleration and restrict the terminal speed to
lower values. The degree to which these inhibiting photons limit the terminal speed will be
less in reality since the surface temperature of the funnel walls will decrease with increasing
distance from the central compact component making the attainment of higher terminal speeds
possible. In chapter 4 I will consider the temperature gradients required for this effect to be
important in SS433.

For completeness, consider the limiting case in which a = 0. In this limit Eq. (3.36) reduces

to

0i=-y~1 -/1213 (3.42)

which represents motion within an isotropic radiation field. Consequently there can be no
preferred direction; the bullet’s velocity vector, in the absence of all other forces, will be recti-
linear and will therefore have a single component which has been denoted by 0. Integration of

Eq. (3.4*2) yields

TNd’ToN ~ where M<d,70) = e X p (-3’A d) (3.43a, b)

I A
1+ nftd, To) To + 1

and To is the Lorentz factor of the bullet at td = 0. These equations can readily be solved for
/3 to give

0(<d,T 1 + 0 -fd 7 i
( R f-—-)--e—-)f—?-—(-or ) where TO = o= . (3.44a, 6)

—T
0o 1+ 10exp(--~"Td) To + 1
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The kinetic energy of a bullet with (constant) rest mass m, and Lorentz factor v, in units of
the rest mass energy, is Exg, = 7 — 1. Hence, by Egs. (3.43a, b), the rate of kinetic energy loss

for a bullet moving within an isotropic radiation field is given by

bp, = 302D _ 84 ko) (3.49)
¢ dty 3 [1 = h(ta, 7))

An obvious application of Egs (3.43a,b), (3.44a,b) and (3.45) is to the motion of a bullet
through the microwave background, the spectrum of which can be fitted remarkably well by a
blackbody with a temperature of T = 2.735 & 0.06 K (Mather et al., 1990). In this context the
term ‘bullet’, rather than referring to a conglomeration of matter as it has previously, is most
applicable to a free particle such as an electron for which, by Eq. (3.13), tq ~ 2.6 x 10-21¢.
Consider now the contribution made to the total dimensionless acceleration by the accel-
erative and decelerative photon fluxes. As in the planar case, all photons incident in the range
0 <0 <6, (B, < p<1)accelerate the bullet and therefore ﬂ;’“" for an infinite, isothermal
cone is identical to that for an infinite, isothermal plane which is given by Eq. (3.31a). The
range of incidence angles for the decelerative photon flux in the conical case is 0, < 8 < 7 -

(—cosa < p < fB;) and thus, by Eq. (3.8),

qdecn 1
deen = -3 1 - B2(B. + cosa)? (B2 — 2B, cosa — 3) . (3.46)
The important point to note is that the contribution made by the driving photons is independent
of the cone semi-angle whilst the decelerative contribution increases as o decreases for a given
B,. The solid angle subtended by the driving photon flux at the bullet, as observed in the
radiation source rest frame, is also independent of a and is given by Eq. (3.32a) whilst the solid

angle subtended by the decelerative photon flux is

Qieen = 27r/"—0 sinfdf = 2#x(8; + cos ) . (3.47)
arccos f,

The behaviour of Qscen/Qrad and Qgecn/Qrad, Wwhere Qpaq = Qacen + Qdeen 1s the solid angle
subtended by the entire radiation field, as a function of « for a terminal speed bullet is shown in
Fig. 3.8. As the cone angle increases the proportion of the radiation field which contributes to
the acceleration increases whilst the proportion that contributes to the deceleration decreases.
This coincides with an increase in the terminal speed of the bullet.

Equation (3.36) can be linearised to reveal the behaviour of the bullet under small per-
turbations from the terminal speed. By Egs. (3.33) and (3.37a,}), such an analysis indicates
that

d 1 .
d_; =5 - B2)3sin® ae (3.48)
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Fig. 3.8. The respective ratios n accn/f2rad and Cldcen/?ra< versus the funnel semi-angle, a, for a bullet moving at
the terminal speed given by Eqs (3.37a,6).

20

Fig. 3.9. The e-folding time for reversion back to the terminal speed versus the funnel semi-angle, a, for a bullet
moving axially within an infinite, isothermal funnel.
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which can be integrated to give

€(tq) = eexp {— [ﬁl(l - ﬂgo)% sin? a] td} . (3.49)

A plot of the dimensionless e-folding time for reversion back to the terminal speed as a function
of « in the range 1° < o < 90° is shown in Fig. 3.9. For small opening angles, by Egs. (3.41)
and (3.49),

€(tq) = eexp {—I—:td} . (3.50)

Thus, for narrow funnels, the dimensionless e-folding time is independent of the semi-opening

angle of the cone and is equal to 3/16.

§3.3 Non-Axial Motion

£3.3.1 The Off-Axis Equation of Motion

Let the radiator be oriented as in §3.2.1 and let the bullet move with a general velocity above
the radiator. The general velocity vector is given by Eq. (2.93) and, by Eqs. (2.92) and (2.94),

the general equation of motion of the bullet will have the form

g\ d 2 o, X
3 x (gx d—l;j) + ¥ :Ll?_i/ / T*( = k(8,)) X(5: 0, 6) C(8: 6, 6) sin 6.6 do
0 0

dt  mmec? 73

(3.51)
where
((8;0,)=1-f -k =1~pB,sin6cos¢ — Bysinfsing — B, cos b (3.52)
and
) sinf cos ¢ — v2¢(B; 6, 0)B:
X(B;0,) = k —v%¢(8;6,4)8 = (sinﬂsin ¢ —7°C(8:6,9)8, ) (3.53)
cos — v2((B; 0, 4)B.

If the temperature profile of the radiator is azimuthally symmetric such that T(, ¢) = T'(6),

the integration over ¢ can be readily performed. Making use of the results

/ch(é; 0,¢)d¢ = m {2 — 45, cos 0 + (B2 + B2)sin” 6 + 287 cos” 0} = m&(;0) (3.54a)
0

27
/ ¢(8:6,¢)d¢ = 27(1 — B, cosb) (3.54b)
0

> fcos ¢ ) _ Bz | .
/0 {sintﬁ}c(g’o’(ﬁ) d¢ = —w{ﬂy}sm@ , (3.54¢)
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integration of Eq. (3.51) over ¢ yields

Bz sin® 6 + v2£(8;6) Bx
d 2
B x (ﬂ x _Q) n %g = "D2i3 “T4(6) ( B, sin? 6 + 12€(B: 9) B, ) sin 6 df
Mo 7" Jo —2(1 — B, cos 6) cos 6 + v*£(B;6) B. )
55

where £(3; 0) is defined by Eq. (3.54a). By invoking the vector identity given by Eq. (2.91), mul-
tiplying the z and y components by 3, and S, respectively and adding the resulting equations

it is trivial to show that

8- B +ﬂ2) + %(ﬂ,z'i, +Byly) =

L i 7’4(0){(ﬂ2+ﬂ2)s1n 0+ v2E(B;0)(B2 + B2)} sinf df . (3.56)

mec? 73

If the component g3, is now defined by
= /B +8  then  f =Dl By (3.57a, b)
P+

and, if 82 + 82 # 0 as indeed they must for off-axis motion, Eq. (3.55) can be rewritten as
y

- 1. oD 1 ﬂ,sin29+72£(é;0)ﬂr ) .
B-B)B+=z=—-"—3 i T4(0)(—2(1—,@,cos&)cost9+72£(g;0),3, sinddd (3.58)

where the general velocity vector 8 has the form

_ (B ‘
B= (ﬂ> . (3.59)

The B, term now denotes the velocity component perpendicular to the z-axis whilst the 3, term
retains its original meaning. This simplification of Eq. (3.55) reflects not only the azimuthal
symmetry of the temperature profile of the radiator but also its infinite extent. For motion
above such a radiator there are only two orthogonal velocity components and any motion must
therefore be confined to a plane. The plane of the motion is determined by both the initial
velocity of the bullet and by its initial position. If the radiator is isothermal such that T'(f) =

then, by means of the substitution g = cos 8, Eq. (3.58) further simplifies to

. 1. 1 ! ﬂr(l—ﬂz)"r'yz&(ﬁ;“)ﬂr )d 3.60
(8-B)B+ =84 = _F/uo (—2(1—ﬁzu)#+72€(£;ﬂ)ﬁz # (3:60)

where

EB, )= (262 — B2 u* — 4B+ 7 +2 (3.61)
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and the parameter W (Eq. 3.96) has been absorbed in the usual manner to make the equation

dimensionless. Solving Eq. (3.60) for f3d and (34 yields the coupled system of differential

equations given by

1 1
Ad= A ff {(A2- 2A2-1)A -2A/i+ (1-A 2)+«(A/<)}
7  Jno

1
Ad = -1/ {2A2-A2-2) +  2(1 -((A/NHA Y} d<

which upon substitution of Eq. (3.61) and integration over /z yield

Ad=| A1- A2-A2{31-M2)A + (-Al+9%0-8)} A

Ad = jv'l - A2- A2 (3(1 - M2)A2 - 2(-/<2 - 3/i,, + 4) A + 3(1 -M2)}

§3.3.2 The Plane

In this case /i0 = 0 and Eqgs. (3.63a, 6) reduce to

A. =10 - A3- A2{3A - 8)A

Ad = j\/1-A2-A2{3/32- 8A + 3} .

(3.62a)

(3.626)

(3.63a)

(3.636)

(3.64a)

(3.646)

It can be seen immediately that if 3 = 0 then Eq. (3.646) simplifies to Eq. (3.24) which describes

purelyaxialmotion and, in addition, that /3< =m0 indicating that themotion remains axial for

all latertimes. Since 33t —8 < 0 for all /3Zand 0 < I/7 < 1 for all /*.and f3r, it can be deduced

that motion parallel to the plane is damped. An illustrative numerical solution to Eqgs. (3.64a, 6)

with an initial velocity = (0.5,0) is shown in Figs. 3.10a,b. The velocity component parallel

0.5

0.4

0.2

0.1

0.2

td

Figs. 3.10a,b. A numerical solution of Eqs. (3.64a4,b) with the initial condition =(0.5,0): (a) dimensionless distance
versus dimensionless time; (b) dimensionless speed versus dimensionless time. The distance traversed by the bullet

from its release point is jj= whilst the bullet’s speed /?=1J/?;:+/7*
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to the radiating surface is strongly damped on a characteristic time scale comparable to that
for terminal speed attainment. The form of the solution for flz{td) in Fig. 3.10b is very similar
to that for axial motion illustrated in Fig. 3.2a. This is to be expected given the likeness of
Egs. (3.24) and (3.64b). The solutions are, however, not identical: for a given (3Z and any
mutually realisable non-zero f3r, the axial acceleration component for a bullet moving off-axis

is reduced by a factor

L-fe-ft (3.65)

compared to an identical bullet moving axially with the same /3Z above the same radiating
plane. Obviously, as f3r increases the factor g decreases and the axial acceleration component
decreases proportionately and, consequently, the terminal speed attainment time increases.

In the Newtonian limit ()3 <C 1), Egs. (3.64a, 6) decouple to yield

Prd - Vi ~ Vrioexp (-~ td (3.66a)

~ 1 vz ~ cld + v. (3.666)

Evidently, in this limit, there is no terminal speed though the velocity component parallel to
the surface of the plane is exponentially damped with an dimensionless e-folding time of 3/8. It
must however be reiterated that Eqs. (3.66a, 6) are only valid for 3 <C 1 and, since the terminal
speed ficv is the same for all bullet and plane configurations, the equations apply only to the

initial stages of the motion of a bullet released with a small initial velocity.

Figs. 3.11a,b. Collimation above an infinite, isothermal planar radiator: (a) the dimensionless distance normal to
the plane, versus the dimensionless distance parallel to the plane, rd, (b) the angle, 944, which the bullet’s velocity
vector makes with rhe positive 2-axis versus the dimensionless time. In both illustrations the bullet’s initial, axial
velocity component is zero whilst the initial velocity component parallel to the surface of the radiator increases from
0.1c to 0 9c, in increments of 0.1c, from left to right.
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Equations (3.64a, ) provide a means of deducing the degree to which the infinite, planar,
isothermal blackbody surface can collimate radiatively driven material. Illustrations of this are
provided by Figs. 3.11a,b and Fig. 3.12. Even in the extreme case where (3o = 0.9, it can be
seen from Fig. 3.11a that a bullet will be closely aligned with the normal to the plane within
a dimensionless distance (parallel to the surface) of 0.5 units. This corresponds to a physical
distance of ¢/2W metres and since, by Eq. (3.21), the minimum value of the parameter W is
~ 2.4 x 10 3Tg/nio2l, represents an upper bound on the distance » ~ 6.3 X 1010mo02l/Tg metres.

The angle which the bullet’s velocity vector makes with the z—axis is given by

(p = arctan (3.67)

and is plotted as a function of the dimensionless time in Fig. 3.11b. As one would expect, those
bullets which have the lowest values of Oro are collimated the most rapidly. The dimensionless
time taken for a bullet to achieve the marked degree of collimation as a function of (o is
shown in Fig. 3.12. For all but the most extreme values of /3ro, the radiatively driven bullet is
collimated to within 2°, 1° and 0.5° of the normal to the plane in ~ 2, 2.5 and 3 dimensionless
time units respectively. Since the initial condition (32 = 0 has been assumed these values
represent upper bounds on the time taken to achieve the designated degree of collimation for
all (3% in the range 0 < (3% < /7, . Hence, it can be concluded that, for example, all radiatively
driven bullets moving above an isothermal, planar blackbody radiator with an initial velocity
(Pr0,Pz0), where 0 < (32 < will be collimated to within 1° of the normal to the plane
within 2.5 dimensionless time units of being exposed to the radiation field. This represents an

upper limit, by Eq. (3.21), of ~ 10~2moai/Tg days.

Fig. 3.12. The dimensionless time, td, taken for the bullet’s velocity vector to make the labeled angle, 8p} with respect
to the plane normal, plotted as a function of the initial velocity component, (3To, parallel to the surface of the radiating
plane. The initial velocity component along the surface normal, f3t0 is zero in all cases.
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Since both Pr and (3Z are functions of td and /321 ~ 0 for all pr and for all (3Zin the range
0 < pz < poo, the chain rule may be invoked to re-express Eqs. (3.64a, b) in the separable form

8

Pr 3ft2 - 8f

By the integral result (Gradshteyn and Ryzhik, 1980; result no. 2.103:5)

(Mx a4 N)dx M , 91 NC-MB Cx +B —VB2- AC
In 4-f2Bx -fCx A4 In
A+ 2Bx + Cx- ~ 2C 2CVB2- AC Cx A BA- VB2- AC
(3.69)
which is valid for AC < B2, Eqn. (3.68) can then be integrated to give
13ft - 8ft 43|  3ft- 4+ /7 3pp-4- vt !
ft (ft) = ftc (3.70)

[3fto- 8ft0A 31 3ft- 4- y/7 3ft. -4 + N7

Fig. 3.13. The ratio /3r//3ro versus the velocity component 0¢ along the surface normal for the labeled values of the

initial velocity component (3lo

The nature of ft(ft)/ft0 for several ftQin the range 0 < ftc < fto is shown in Fig. 3.13. The
solutions are very nearly linear except in the immediate locality of ft = fto. If the solutions

are assumed linear over their entire range then it is simple to show that an approximation for

ft(ft) is given by

(371)

where ft0 < pz < ftO.
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§3.3.3 The Cone

As in §3.2.3, po = —cosa and Egs. (3.63a, b) therefore simplify to

Br, = :—t\/l — B2 — g2 {3sin’af, + (cos® a ~ Ycoso — 8)} B, (3.72a)
1— 32 — B2 {3sin® aff? — 2(cos® a + 3cos o + 4)B, + 3sin’a} . (3.72b)

As indicated earlier, the motion of the bullet is confined to the plane which is determined by
both its initial velocity and its starting position. Without resorting to a numerical integration
of the equations of motion it is possible to deduce that any bullet which is released with a non-
axial velocity component will eventually have an axial trajectory which need not necessarily
coincide with the symmetry axis of the radiator but will be coplanar with it. This follows
from the fact that ﬂrd = 0 only for 8, = 0 and Brd < 0 for all 8,. Thus, for example, the
radial velocity component of a bullet released with a non-zero radial velocity component on the
symmetry axis of the cone will decrease in magnitude and tend towards zero. The bullet will
then have a near axial trajectory which will not coincide with the symmetry axis of the cone.
This behaviour is particular to the infinite geometry of the radiator and can best be appreciated
by considering the radiation void as viewed by an observer at rest with respect to the radiation
source and located instantaneously at the centre of the bullet (assuming for the interim that
the bullet is transparent to the incident radiation). This observer, regardless of position within
the radiation field, will perceive the radiation void (since it is infinitely distant) to be circular
and to subtend a solid angle constant in time at their location. These observations will be
identical to those made on the true axis of symmetry of the radiator. Consequently, once the
radial component has been damped to near zero, the bullet trajectory will lie along one of the
infinite number of these axial vectors only one of which passes through the apex of the cone
and truly describes the symmetry axis of the cone.

In the above it is implicitly assumed that the initial conditions are such that the bullet does
not collide with the funnel walls. This need not be the case and obviously if such a collision
does take place then the ejection of the bullet will be impeded and perhaps prevented. Equa-
tions (3.72a,b) plus the simplistic constraints outlined below provide a means of determining
the initial conditions for which ejection is possible: Let the bullet be released at time t4 = 0
on the true axis of symmetry of the cone at a height zq, above the apex with a velocity éo at
an inclination fg, to the z-axis. Suppose that after some time interval ¢4 the bullet centre is
located at a height z;, above the apex and at a radial distance r;, from the true symmetry axis
and is moving with a velocity 8 at an inclination g to the z-axis. Assume that if any contact
between the bullet centre and the funnel wall is fuller than a grazing contact then the bullet is

captured. For a cone of semi-angle « it then follows that
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(a) ejection is guaranteed if 6po < a

(b) ejection is guaranteed if 9p < a and rtd < ztdtana

(c) ejection is possible if 8p > a and r#d < ztdtana

(d) ejection is impossible if p > a and rtd > ztdtana
and the problem reduces to finding a (3 such that at some later instant dp = a at rtd = ztd tan a.
The results of such calculations, for selected initial, dimensionless release heights Zd0 = (WVO zo
and cone half-angles of 1° and 0.5°, are depicted in the logarithmic polar diagrams of Figs. 3.14a-
d. As one would expect, the permissible release speeds are less for the cone with the smaller
opening angle and increase with the release height. These graphs highlight the role that the
radiation pressure can play in collimating the bullets so permitting ejection in cases where
one would naively expect the bullet to be captured: If one assumed that following release the
bullet travelled ballistically within the funnel then only those bullets that had initial release
inclinations Opo in the range 0 < Opo < a would be ejected. This is evidently not the case as
Figs 3.14a-d illustrate and it can consequently be appreciated that the radiation pressure can

contribute significantly to the collimation of the jet.

Figs. 3.14a-d. Logarithmic polar diagrams depicting the range of initial velocities, for a bullet located on-axis, for
which escape is possible. The initial, dimensionless heights of the bullet above the funnel apex are: a 10—3; b 10-2;
¢ 10-1 and d 10°. The initial speed is plotted logarithmically along the radius of each diagram, each step inwards
corresponding to a decrease in the speed by a factor of 10. The outer circle corresponds to a speed of 1 (in units of
¢) whilst the inner circle corresponds to a speed of 10~4; the centre of each diagram corresponds to a release speed of
zero The angle of release with respect to the positive z-axis increases in increments of 30° in a clock-wise direction
around the periphery of each digram with the funnel axis being directly upwards in all cases. The inner closed curve
represents a funnel of semi-angle 0.5° whilst the outer closed curve represents a funnel of semi-angle 1°. A bullet which
has an initial velocity vector which lies within either closed curve will escape from that particular configuration.
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§3.4 Conclusions

The analysis of this chapter has revealed that the motion of a bullet above or within an infi-
nite planar or conical blackbody radiator with an azimuthally symmetric temperature profile is
confined to a plane which is determined by both the initial velocity of the bullet and its initial
location. If, at the outset, the motion is axial then it remains so for all later times. Remember
that in the context of the infinite plane, the term axial refers to any trajectory that is perpen-
dicular to the planar surface whilst in the context of an infinite cone it refers to any trajectory
that is parallel to the geometrical axis of symmetry of the cone but which need not necessarily
coincide with it. The rate of acceleration of the bullet is proportional to the parameter W
which is defined as the power intercepted by the bullet divided by its rest mass energy. The
parameter W is, on account of its proportionality to the fourth power of the temperature of
the radiator, sensitive to temperature as too, consequently, is the rate of acceleration.

There exist terminal speeds for motion above both infinite planar and conical radiator
geometries which are, in all cases, independent of the parameter W and which represent an
asympotic limit that the bullet approaches as both its journey time and distance above the
release point tend to infinity. The terminal speed above an infinite isothermal planar radiator is
approximately 0.4514c and occurs when the decelerative momentum flux of the blue-shifted and
considerably aberrated photons emitted from the extremities of the plane is exactly balanced by
the driving momentum flux of the red-shifted and minimally aberrated photons emitted from the
region of the plane directly below the bullet. The terminal speed within an infinite isothermal
conical radiator is a function of the cone opening angle and decreases from the limiting planar
value to zero for motion within an isotropic radiation field. For narrow funnels the terminal
speed is proportional to the square of the opening angle and in particular, for an half-opening
angle of 1° appropriate for SS433, the terminal speed is ~ 5 x 10~°c which is markedly less
than the value of 0.26c observed in the jets of SS433. Indeed, the half-opening angle necessary
for a terminal speed of 0.26¢ is 67.1°. Narrow, infinite, isothermal conical funnels are wholly
unsuitable for the radiative acceleration of gaseous bullets to mildly relativistic speeds. The

radiation pressure can, however, contribute significantly to the collimation of the ejected bullets.
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Chapter 4

Motion Above Non-Isothermal and
Finite Radiators

§4.1 Introduction

Continuing from the analysis completed in chapter 3, I begin this chapter with an investigation
of the motion of a bullet moving above an infinite, planar radiator for which the frequency
integrated specific intensity is given by the Eddington limb darkening approximation and in
addition by a generalisation to this approximation. Following this, the motion of a bullet
moving within an infinite, conical radiator with an exponentially decaying temperature profile
is considered. Applicability of the model to SS433 is achieved by ensuring that the e-folding
distance of the temperature profile is consistent with the observations. Attention is then turned
to the study of motion above a finite, isothermal planar radiator and then briefly to motion
above a spherical, isotropic radiator in which the applicability of Newtonian dynamics to high
speed stellar winds is considered. The concluding section consists firstly of an analysis of the
behaviour of a hullet subjected to the radiation field of a finite, isothermal funnel and latterly
to the motion of a bullet within a finite funnel for which the run of temperature with distance
from the funnel apex is given by that of a polytropic gas of index n, = 3 which is of relevence

to radiation dominated regimes.

§4.2 Motion Above an Infinite, Planar Limb Darkened Radiator

The gas temperature at all points on the surface (7 = 0) of a planar, limb darkened radiator is
the same and although the temperature increases with optical depth according to Eq. (2.56) such
that the radiator is, by definition, non-isothermal the surface of the radiator is an isothermal
plane. The emergent frequency integrated specific intensity is, however, attenuated towards the
limb according to Eq. (2.55) and therefore the contribution made to the emergent energy flux
by the outer regions of the plane is diminished. Indeed, it can be shown that half of the surface
energy flux is attributable to emergent photons with raypath vectors inclined at less than 41°
to the plane normal. It is in this restricted sense that I intend the description ‘non-isothermal’
to apply.

In the derivation of Eq. (2.92) it was assumed that the radiation field was Planckian and
that therefore, the frequency integrated specific intensity was given by Eq. (2.47). Suppose in-

stead that the radiator is subject to the constraints discussed in §2.3.5; the emergent, frequency
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integrated specific intensity will exhibit limb darkening and, in the Eddington approximation,

will be given by Eq. (2.55). Consequently, in this regime Eq. (2.92) will take the form

px@xp+i=cm [ b0 {E-Pa-g-Bela-gbas. @y

moc? v

§4.2.1 The Axial Equation of Motion

In accordance with the notation adopted in §3.2 and by Eq. (2.54), the equation of motion

(Eq. 4.1) can be expressed as

ﬁ:z 27 /2
( 3, ): D %/0 /0 21(1,0) (cos@+§) X(8,6)(1 - Bcosh) sinfdfdg  (4.2)

=
b meycC~
72ﬂz ¢

where Y(0, ¢) is given by Eq. (3.3b). As in the case of the isothermal blackbody radiator, the
only azimuthal dependence occurs in the Y(6, ¢) term which again constrains any bullet released
with zero velocity component parallel to the plane surface to have a trajectory along the normal
for all later times. Introducing the substitution u = cos ¢ and performing the integrating over

¢ yields the axial equation of motion

D 1
mec? v

. 2 !
B = T 1(1,0) /(3ﬂ+2)(u—ﬂz)(1—ﬂz#)d#
; .

- D1 oss
= 55 (1L 0) g = (2467 - 596, + 24) (4.3)

for which the terminal speed is

9— V1177
Boo = §T ~0.5144 . (4.4)

Consider now a generalisation of the Eddington limb darkening approximation given by

I(4,0) = I(1,0) (Aops + 1) . (4.5)

1
1+ A,
where A, is the limb darkening parameter. This expression represents limb brightening for
—1 < A, < 0 and limb darkening for A, > 0 with the value A, = 3/2 corresponding to limb
darkening in the Eddington approximation. If the emergent, surface energy flux is independent
of A, then, by Eq. (2.54), the frequency integrated specific intensity emergent normal to the

surface must be such that

3 A +1

I =——F.
(1,0) 724, +3

(4.6)
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The equation of motion then has the form

P (P 140) j pz -3 4.7
2(P2140) =5 24 amoss /07 @7

1 DT 1{”noz 34940+ 16
2\ 20

mOc- 7 (

which reduces to that for motion above an isothermal blackbody radiator in the limit where
TO0 —¥») and T — <xT4 or equivalently when the effective temperature Te¢j of the limb darkened

radiator is the same as the temperature 7 of the blackbody.

The terminal speed is a function of the parameter TO and is given by

(9TO+ 16) - v/17T2 + 96TO+ 112

4(2T0+ 3) (4.8)

Poo(40) =

The lower bound on the terminal speed occurs in the extreme limb brightening limit (40 —*—1)
when pOo —»7—>/33)/4 % 0.3139 whilst the upper bound occurs in the extreme limb darkening
limit (T0 —®»o0) when p~ — (9—\/17)/8 % 0.6096. Between these limiting values, the function
Poz(A0) is monotonic (Fig. 4.1). The role that the photons emitted from the limb of the radiator
have in governing the terminal speed of the bullet is evidenced by the decrease in the terminal
speed as the frequency integrated specific intensity emergent, from the radiator limb increases
relative to that emergent from the point on the radiator immediately below the bullet.

Linearising Eq. (4.7) reveals that the dimensionless e-folding time, rj, for reversion back
to the terminal speed following a small perturbation is

2 (2T« + 3)

rd(TO) = (4.9)
7(1 - /?7U.4,)] (17.4] + 96.4. + 112) °

a plot of which is shown in Fig. 4.2. It is evident that this e-folding time increases monotonically
from a lower limit of ~ 0.367 to an upper limit of ~ 1.224 as T 0 increases from-1. This behaviour
results in the dimensionless attainment time taken by the bullet to reach a substantial fraction

of its terminal speed increasing with TO.

0.55
Td 07
035
Fig. 4.1. The terminal speed, poo, versus the limb dark- Fig. 4.2. The dimensionless e-folding time, Td, for rever-
ening parameter, 40, for motion above an infinite, pla- sion back to the terminal speed versus the limb darkening
nar radiator for which the emergent, frequency integrated parameter, 40, for motion above the radiatior described
specific intensity is given by a generalisation to the Ed- in the caption to Fig. 4.1.

dington limb darkening approximation (Eq. 4 5).
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§4.2.2 The Off-Axis Equation of Motion

If the emergent, frequency integrated specific intensity is given by the generalisation to the
Eddington limb darkening expression (Eq. 4.5) then it can be shown, in the manner outlined

in §3.3.1, that the component equations of motion are given by

.1 . 3 (154, + 32
Bra = 51— B2 — B2 {3ﬁz -1 (m)} Br (4.10a)

3
o1l e (5 3 (94,416
ﬁZd “g l—ﬂz ﬂzz {3132 9 (2A°+3) ﬂ1+3} ' (410b)

Since the braced term in Eq. (4.10a) is negative for all physical values of 8, and A,, the
velocity component parallel to the planar surface is always damped. In addition, since the
terminal speed is attained when 8,, = Bzd = 0, Eq. (4.10a) implies that the terminal speed
is achieved when G, = 0 and therefore all motion above an infinite, planar radiator for which
the emergent, frequency integrated specific intensity is either limb darkened or brightened is
ultimately parallel to the radiating surface normal.

The effect that the limb darkening coefficient has on dampening the velocity component

parallel to the planar surface, and thus in aiding collimation, can be appreciated from the ratio

given by
BralAoiBr ) _y _ pos A
ﬁ.rd(o;ﬂ,.,ﬂz) =1- f(Ao;B;) where f(Ao; B8:) = 4(8—33,) 24, +3 (4.11a,b)

As one would expect, f(A,; 8;) is positive for those values of the parameter A, which correspond
to a limb darkened radiating plane and vice versa for a limb brightened plane. This indicates
that motion parallel to the plane surface is more strongly attenuated when the radiator is limb
brightened than when it is limb darkened. This behaviour is due to the increased energy flux
incident at the hullet from the limb of the radiator when the radiating plane is limb brightened
as opposed to limb darkened. Also, it is obvious from Eq. (4.10a) that, for a given value of the
limb darkening parameter, A,, and the magnitude of the velocity component parallel to the
z-axis, |B3.|, the velocity component (3, is most strongly damped when the direction of motion

is downwards towards the plane.

§4.3 Motion Above an Infinite, Conical Radiator with an Exponential

Temperature Profile

As a first step towards the investigation of an astrophysically more realistic temperature profile I
will now introduce the ad hoc assumption that the temperature profile decays exponentially with

increasing radial distance r from the base of the accretion funnel. The blackbody temperature
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profile of the inner surface of the accretion disc will then have the form

T(r) = Toexp (-77) (4.12)

where TO is the temperature at the funnel base and H is some scale height. If z is the height of
the bullet centre (assumed to be located axially) above the cone apex and 9 is the inclination
of an incident photon trajectory with respect to the positive z-axis (observed in the rest frame
of the radiator) then from Fig. 4.3 it can be deduced that

sin 9

10,2 a) = 4.13
r{0,z'a) sin(0 + a) ( )

and consequently the temperature profile can be re-expressed as

in 9
T(9, z:a, H) = TOexp j - . (4.14)
sin(# -rQ) H

By Egs. (3.4) and (3.5) the axial equation of motion is then given by

0= = 2 Lr=apfa S07 £ (cos 9 —0Z)(1 —0z cos 9) sin 9d9 . (4.15)
z = - €X - . — COS — — Uz COS sin . .
moe- 7Jo T T sin(#+ af

The important feature of Eq. (4.15) is the explicit dependence of the integrand on z. This
means that, unlike all the examples considered so far, the problem is no longer scale invari-
ant. Integration of the equation of motion is now more complex and is most readily achieved

numericallv.

G 00

Fig. 4.3. If the bullet’s radius is smaller than the characteristic length-scale of the temperature variation on the funnel
wall then, all photons originating from the point S, which is a slant height » above the funnel base, will approximately
make an angle H with respect to the positive £-axis when they impinge on the bullet's surface, the centre of which is
located at a height s above the apex. Note that for simplicity I have sketched the bullet as a sphere although it will,
in all likelihood on account of Lorentz contraction, be observed as an oblate spheroid in the rest frame of the funnel.
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As was mentioned in chapter 2, the derived equation of motion will be a valid approximation
only if the bullet is small in comparison to the typical length-scale of any temperature variation
011 the interior surface of the accretion funnel. In the context of this particular problem the
imposed constraint is that the scale height # be much greater than the bullet radius 77. Before
proceeding further it is therefore necessary to determine the value of the scale height appropriate
for SS433 and to ensure that the aforementioned condition is satisfied.

The bolometric luminosity of the accretion disc is ~ 1032J/s (1039erg/s) (Cherespaschuck;
1981). 1If the disc is assumed to be spherical and to have a radius Rad then its bolometric

luminosity will simply be

(4.16)

and therefore

ir=K 417>

where the effective temperature and accretion disc radius have been expressed in units of 104 I\
and 1010 metres respectively. This expression is in good agreement with the observations of
Wagner (1986) which indicate that the dominant source of optical luminosity in SS433 resembles
a hot blackbody with a radius of ~ 30Rg (Radl0 ~ 2) and mean colour temperature ~ 32 500 K.
The assumption that the disc is spherical is well justified; indeed if the disc is the principal
source of optical luminosity then its diameter to thickness ratio is less than about 1.3 (Wagner;
1986) and it is, consequently, better represented by a sphere than a greatly flattened sphere
or disc. The surface temperature of the most luminous optical source in SS433, however, is
certainly not uniform. Temporal variations of the colour temperature are consistent with von
Zeipel gravity darkening of the optical star or thick accretion disc and also with the presence of
high temperature accretion funnels. Since the inclination of the orbital plane to the line of sight
is ~ 79° (see §1.3.1 and §1.6.1) and since the semi-angle of the cone formed by the precession
of the jets about the normal to the orbital plane is ~ 20° the inclination of the accretion
funnels to the line of sight is never less than ~ 59°. Thus, because the accretion funnels are
very narrow, radiation that originates deep within them can never be observed directly by
a terrestrial observer; only radiation scattered from the funnel mouth can be observed. For
this scattered radiation to account for the observed variation in the colour temperature, the
temperature at the funnel base needs to be extremely hot (Wagner, 1986). The presence of a
blue shifted iron line (Watson et al., 1986) indicates that the temperature at the base of the
jets exceeds ~ 5 x 10" K whilst hydrodynamical modelling of the jets provides acceptable fits to
the data for temperatures at the funnel base between ~ 5 x 108 K and 8 x 108 K (Brinkmann

et al.,, 1991). A base temperature of ~ 8 x 108 K is, therefore, a reasonable estimate.



85

Now at the disc surface T(Raq) = T.sy, and by Eq. (4.12),

Rad
Hiy = 10 4.18
10 9.2+10g(T°‘/T¢fj‘) ( )
which, by Eq. (4.17), can be expressed as
Hio Rady, (4.19)

~ 8+ log(Toa \/Rﬂdm) .

In the present context the term ‘disc surface’ refers to the surface of the sphere of radius Raq4
from which most of the luminosity originates. This, therefore, represents the surface at which
the transition of the disc material from the optically thick to the optically thin regime occurs;
the disc atmosphere, though, may extend out to radii in excess of R,q4. For a feasible central
temperature of 8 x 108 K the scale height for a disc of radius 10° m is, by Eq. (4.19), 1.3 x 108 m
whilst for a disc of radius 101°m the scale height is 10°m. Thus, a typical scale height is
Hio ~ 0.1R,4,, which is suitably large to warrant the unquestioned earlier assumption that the
funnel walls do indeed radiate as a blackbody.

Since the maximum possible bullet radius at a height z above the apex of a narrow cone
of semi-angle o is approximately za, the maximum radius of a bullet at a distance of one scale
height above the apex will simply be Ha &~ 10~ 2 H for semi-angles appropriate for $5433. Thus,
if a maximum radius bullet is released at a height less than ~ H above the apex the necessary
condition detailed above is satisfied and Eq. (4.15) is therefore a justified approximation. I will
return to this topic later.

Introduction of the dimensionless variables

tg=—t and X=-W, (4.20a,b,¢)

0
a
i

) o

C

where the parameter W is defined by Eq. (3.9b) with the isothermal temperature T" being

replaced by the temperature T, at the base of the accretion funnel, allows the identifications

t

o

Z4 L : Cdzd C -
; = == d 2 = T = e
he=q, =% d b=y gm=gh

(4.21a,b)

il

and permits Eq. (4.15) to be expressed as

- -« : ) . .
Za=2X(1-2z))3 /(; exp {—4 [ﬁlen—-ft)] Ed} (cos@ — z4) (1 — z4 cos 9) sinf df .
(4.22)

The dimensionless variables defined by Eq. (4.20a, b, ¢) have been ascribed tildes to differentiate

them from very similar dimensionless variables that will appear in later sections.
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The results of numerical integrations of Eq. (4.22) for selected values of the cone semi-angle,
each evaluated at Zd = 0, are illustrated in Figs. 4.4a,b. From Fig. 4.4a it can be seen that as
q decreases from the maximum value of 90° the dimensionless ratio (3~/W = z~/X develops
a turning point which decreases in magnitude and peaks at increasing values of Zd- This is a
direct result of the integrand in Eq. (4.22) being explicitly dependent on zd and represents what
was meant by the earlier reference to ‘scale invariance’: The radiative acceleration experienced

by the bullet is a function of its speed and its height above the cone apex.

0.5'

Figs. 4.4a,b. The dimensionless acceleration, 0¢<i=0 1/ W , experienced by a stationary bullet located on the axis of
symmetry of an infinite, conical funnel with an exponentially decaying temperature profile versus the dimensionless
height, 2.1, of the bullet centre above the funnel base for selected values of the funnel semi-angle.

The problem, however, does become scale-invariant in the limit where // —Poo or equiv-
alently as id — 0 when the radiator is effectively isothermal. From Eq. (3.36), in the limit
where j — 0, it is evident that f3z/W = sin2a. Thus, for a stationary bullet confined within
a narrow, isothermal cone, the initial radiative acceleration is proprt.ional to As was shown
in chapter 3, the terminal speed is also proportional to or and the terminal speeds that can be
achieved are, consequently, well below the value of 0.26c observed in SS433. In Fig. 4.4b the
ratio 0Z/ W is depicted as a function of Zd f°r semi-opening angles of 0.5° and 1° degrees. The
maximum value of 3Z/ W occurs at Zd ~ 0.25 which, if one recalls that realistic scale heights are
~ 0.1 Radl0i is well within the funnel. It has a magnitude of ~ 2 x 10“2 for a funnel semi-angle
of 1° and ~ 10-2 for a funnel semi-angle of 0.5°. These values are respectively ~ 65 and ~ 130
times greater than those for motion within isothermal cones with identical opening angles. This
fact per se does not ensure that any terminal speed, should it exist, will be high but it does
however mean that the rate of terminal speed attainment will be greater for bullets which begin
their motion in the general locality of the maxima.

Before entering into a more detailed analysis of Eq. (4.22) it is prudent to first determine
suitable values for the dimensionless release height of the bullet, zod, and for the parameter X.
I will first consider zod: By Eq. (3.14) the minimum bullet radius is ~ 105mo2l metres which,

for motion within a narrow funnel, necessitates that the bullet be released at a height

20T > m 621Q12 - (4 *23)
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Now for radiative acceleration to be viable the outward radiative force experienced by the bullet
must exceed the inward attraction of gravity. Noting from Fig. 4.4b that Bz/VV ~ 10~2 for

semi-angles ~ 1°, it can be shown that the rough inequality that needs be satisfied is
3 k-t
205 > 1.8mg,a_3T5," . (4.24)

Both inequalities are therefore satisfied if the minimum release height is ~ 107 metres. Since
typical scale heights are of the order 108 — 10° m, suitable initial dimensionless release heights
%o, need be greater than ~ 1072.

In deriving typical values for the dimensionless parameter X it should first be recalled from
Eq. (4.20¢) that the parameter X is given by the product of the parameter W, discussed in
detail in the previous chapter, and the light crossing time across one scale height. Evidently,
from what has been said immediately above and by Eq. (4.200), H/c lies in the approximate
range 1/3 < H/c < 10/3 and therefore, by Eq. (3.21),

1

8.0 x 10747 mo, Rag,, < X < 6.7 x 1071 T2 22 o ymy ! Raay, - (4.25)
In the initial stages of its motion, with which I am concerned here, the bullet will be extremely
optically thick; the absolute upper bound present in Eq. (3.21) applies when the bullet is
optically thin and as a result can be ignored for the interim. Adopting 8 x 102K as the
likely upper limit on the central temperature, Eq. (4.25) implies that the upper bound on the
dimensionless parameter X is
Xmaz ~ 2.7 x 10%28, a? ;m; .} Raa,, - (4.26)
Familiarised now with the basic model parameters it is worthwhile reconsidering in more
detail the condition under which the invocation of Egs. (3.4) and (3.5) was made and ascer-
taining the degree of its validity. As I stated at the beginning of this section, the bullet must
be much smaller than the scale height of the temperature profile if the approximation is to be
a good one. Obviously, therefore, the equation of motion (Eq. 4.22) is most accurate when the
bullet is small and least accurate when the bullet is large. In addition. from consideration of
the geometry of the problem (with the bullet assumed to be at rest with respect to the ac-
cretion funnel for simplicity) it can readily be appreciated that for a selected incident raypath
vector, agreement on the temperature in the reverse of that direction between observers located
respectively at the points on the illuminated hemisphere furthest from and closest to the funnel
apex is best when the raypath vector is aligned parallel to the normal to the funnel surface.
Agreement is poorest when the raypath vector is perpendicular to the surface normal. This
configuration arises for the regions of the funnel furthest from the apex where the temperature

can be considered as being zero and the effect of any inaccuracies nullified as a result. The same
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however does not apply to regions near the funnel apex. In the ‘worst case’ scenario the bullet
is released at a height of ~ H (the reasons for which will become clear later) above the apex
where it completely fills the funnel. If the raypath vector is, for the purposes of illustration,
selected to be parallel to the positive z—axis and the funnel semi-angle is 0.01 radians then the
temperature seen in the reverse direction by an observer located directly above the apex will
be T, whilst for an observer located on the periphery of the illuminated hemisphere it will, by
Eq. (4.12), be Tye™! ~~ 0.34T,. In this case the approximation is fair. On the other hand, for
the best case scenario the bullet radius is ~ 10° m and the peripheral observer will see, for an
accretion disc of radius 10° m, a temperature of Toe=91 ~ 0.90T, K and for an accretion disc
of radius 10°m a temperature of T, exp~%°! a 0.997, K. In both these estimates use has been
made of the fact that Hyg ~ 0.1Rs4,,- Therefore, when the bullet radius is close to or at the
minimum value, the approximation that the temperature of the funnel observed in a certain
direction from different locations on the surface of the appropriate hemisphere is the same, is
valid.

Numerical integration of Eq. (4.22) reveals that terminal speeds do exist for motion within
a conical accretion funnel with an exponentially decaying surface temperature. This statement
needs qualification: for a given set of initial conditions, integration of the equation of motion
beyond t4 = 10!° yields, to a precision of at least 10 significant decimal places, exactly the
same speed. Further, the release point of the bullet (assumed to commence its motion from
rest) must be close to the base of the accretion funnel. Precise quantification of the term ‘close’
is difficult since it is dependent on the value of the parameter X. As a rough guide the initial
release height can be regarded as being close if it is less than ~ H. The reasons for this will
become clear later. If this is not so, or if the parameter X is not adequately large, the bullet
will not be accelerated to sufficiently high speeds at which the relativistic effects responsible for
governing the bullet’s speed can become effective.

From the form of the integral in Eq. (4.22) it is obvious that ?d — 0 as Zy — oo and,
therefore, the bullet asymptotically approaches its true terminal speed, B, in the limit 4 — oco.
The speed of the bullet after 10'® time units is then a truncation of the true terminal speed.
However, since the attainment time for the bullet to reach a significant fraction of its true
terminal speed is ~ 103 units, integration over an interval of 101° units (representing a physical
time of at least ~ 107 years) is suitably large to provide a very accurate approximation to the
true terminal speed. In this section and those that follow I will adopt the convention that the
terminal speed of the bullet, #15t, is the speed of the bullet after a period of presence within
the driving radiation field of 10!° time units.

From an extended data base formed by ten years worth of data, Margon and Anderson
(1989) found the best fit to the Doppler shifts of the moving lines, within the framework of the
kinematic model, to be made by a jet with speed (0.2602+0.0013)c. The deviation in the speed

of the jet permissible within the confines of this model, and its other more complex variants, is

t The notation should be self-explanatory.
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extremely small, typically representing only 1 part in every 200. Since the true terminal speed
Poo represents an upper bound on the bullet’s speed, any further deviance in its speed once it
has attained 99.5% of this value will be less than 1 part in 200. This is the criterion that I
have imposed on the data illustrated in Figs. 4.5a,b,c which represent motion within a cone of

semi-angle 1°.
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Figs. 4.5a,b,c. The results of a numerical integration
of the equation of motion for a bullet, initially at rest,
moving along the axis of symmetry of an infinite, conical
funnel of semi-angle 1° with an exponentially decreasing
temperature profile for the selected values of the param-
eter A'= 10° (full line), 101 (dashed line), 102 (dashed-
dotted line) and 103 (dotted line) In a the (truncated)
terminal speed, Pn ,is plotted as a function of the initial
dimensionless height, £0<l, of the bullet above the funnel
apex; in b the dimensionless time, *d, taken by the bul-
let to attain 99,5% of the (truncated) terminal speed is
plotted as a function of :0i whilst in ¢ the dimension-
less distance, £d, over which the bullet realises 99.5% of
its (truncated) terminal speed is plotted as a function of

£od

In Fig. 4.5a the terminal speed is depicted as a function of the initial dimensionless release
height for various values of the dimensionless parameter A'. It can be seen that the terminal
speed is remarkably independent of the release height for values of iod up to ~ 1. Beyond
this value the terminal speed falls off dramatically and the point at which the fall-off occurs
increases marginally with X . Thus, to maximise the terminal speed for a specific value of A'
the bullet needs to be released with an initial dimensionless height less than ~ 1. In addition
the terminal speed increases with the parameter X yielding, for example, P15 = 0.20846 for
X = 103. From inspection of Eq. (4.26) it is apparent that values of the parameter X ~ 103 are
permissible. The prospects for the attainment of terminal speeds ~ 0.26c appear promising. I
will consider this topic, in more detail later.

In Fig. 4.5b the dimensionless time taken for the bullet to attain 99.5% of the terminal

speed is plotted as a function of the dimensionless release height. The minimum attainment time
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also occurs at zod ~ 1, increasing slightly with X . The increase in the dimensionless attainment
time with zod for zod < 1 is relatively small e.g. with X = 103 the minimum attainment time
is ~ 213 units occurring at %d = 2 whilst for zod — 10_1 and 10~2 the attainment times are
~ 286 and ~ 338 units respectively. Since H/c ~ 1 (in units of time), by Eq. (4.206), ~ t
and it can therefore be appreciated that these time-scales are very similar to the acceleration
time-scale in SS433 which, on the basis of an estimated X-ray region of length ~ 1010 m, is of
the order of 100 seconds (Watson et al., 1986).

Figure 4.5c illustrates the dimensionless distance traversed by the bullet (measured from
the cone apex), as a function iod, in attaining 99.5% of its terminal speed. As before, the initial
dimensionless release height zod ~ 1 marks a critical boundary: for zod greater than ~ 1 the
attainment distance increases rapidly whilst for Zod less than ~ 1 the attainment distance shows
very little dependence on 5od- In addition, the attainment distance increases with A'; a fact
which is attributable to an increase in the terminal speed with A'. For JV = 103 the attainment
distance is ~ 44 units which is, since Hio ~ 0.1/?adlo, very roughly 4Rad metres. Although
such a distance lies outwith what has been defined here as the surface of the accretion disc it
is still of the same order of magnitude as the radius of the accretion disc and is comparable to

the length-scale within which the jets are accelerated to their terminal speed.
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Fig. 4.6. The value of the parameter X which permits the attainment of a truncated terminal speed of 0.2602¢ versus
the funnel semi-angle, a, for selected values of the initial, dimensionless height £0d The dashed line corresponds to
£od=1 0. the dashed-dotted line corresponds to iO|=0 1 and the full line corresponds to ;O0j=0 01

The values of the parameter X necessary for the bullet to attain a terminal speed of
(0.2602 £+ 0.0001 )c as a function of the funnel semi-angle for several values of the initial dimen-

sionless scale height are shown in Fig 4.6. The parameter A' is very insensitive to iod f°r ~od < 1

and o < 4°: for the values of zq4 displayed, the critical value of X for a = 0.5° is 1.2085 x 104
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whilst for & = 1° the appropriate value of X is 2.0524 x 103. For funnel semi-angles in excess
of ~ 4°, particularly with Zo, > 1, the value of the parameter X necessary for the attainment
of 815 = 0.2602 becomes increasingly sensitive to the initial, dimensionless release height.

The insensivity of the parameter X required for the bullets to attain a particular terminal
speed to the initial release height for narrow funnels is an extremely significant feature. Of a host
of perplexing facets associated with SS433, the most bewildering is probably the remarkably
constant speed of its jets. The results displayed here indicate that if the funnel semi-angle is
less than ~ 4° and that the material that forms the bullets enters the accretion funnel at a
distance less than about one scale height from the funnel apex then the terminal speed of the
ejected bullets will, for a specific a, depend solely on the parameter X. This fact, in addition
to several assumptions, permits conjecture on the degree of variability in the accretion rate: If
1t is assumed that any variation in the angular size of the accretion funnels occurs on a time-
scale much greater than the rate of bullet formation and that bullet formation takes place at a
relatively constant height above the funnel apex then the bullet radius should be constant to a
good degree. Since the parameter X (Eq. 4.20c) is proportional to r273/m, the ratio Ty /m,
must then, within the context of this particular model, remain constant if the bullet ejection
speed is also to be constant. This either requires that both Ty and m, are individually constant
or, and I think more likely, it requires that 75 and m, vary in time but in a manner such that
Ty /m, is always constant. The most probable source of variation in these two parameters is
a change in the accretion rate My.. The characteristic boundary layer blackbody temperature
for thin disc accretion onto a compact object is proportional to M (Frank, King and Raine,
1985). If this applies to thick discs too, a fact which is certainly not assured, then the bullet’s
mass must also be proportional to the accretion rate. Assuming that the rate of bullet formation
is related directly to their rate of ejection then the bullets are formed on average every 3-5 days
(Vermeulen, 1989). For an approximately constant bullet mass this observation then restricts
the accretion rate to vary by a factor of about 2 at most.

Making use of the relation Hyg ~ 0.1Rg44,, and of Eq. (4.20a), Eq. (4.26) may be alterna-

tively expressed as

Xmaz ~ 2.7 x IOSzgda2_2m;211Ridm (4.27)

It is evident from inspection of Fig. 4.5a that in order to maximise the attainable terminal
speed (with B85 ~ 0.2) for a selected value of the parameter X, a bullet needs to be released at
a dimensionless height no greater than about 2 units from the funnel base. This condition, in

conjunction with Eq. (4.27), then implies that

Xmar ~ 1.1 x 1052 ,m7; R3, . (4.28)

021" ad1o
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Figs. 4.7a.b. Graphical solutions to the limiting funnel semi-angle problem In both a and b the full line running from
top left to bottom right, where it eventually bifurcates, represents the data displayed in Fig 4 6 In a the parameter
X is plotted as a function of a and the lines running from bottom left to top right represent A'mar for a bullet of mass
1021 kg and an accretion disc of radius /?ai<10=0.1 (full line), 0.5 (dashed line) and 1.0 (dashed-dotted line). All funnel
semi-angles less than that which, for a given set of parameters, marks that intersection are precluded if a terminal
speed of 0 2602c is to be possible In b the parameter A' is again plotted as a function of a whilst the lines running
from bottom left to top right represent X max for an accretion disc of radius Rad10=0 1 and a bullet of mass m021 =0 5
(full line), 5 0 (dashed line) and 50.0 (dashed line). As in a, all semi-angles smaller than that which marks a given
intersection are precluded, for those model parameters, if a terminal speed of 0.2602c¢ is to be achieved

By utilising the data displayed in Fig. 4.6 and the constraint on the parameter X imposed by
Eq. (4.28) it is possible to deduce the limiting funnel semi-angle below which, for a given set
of the parameters m02l and Radl0i attainment of a terminal speed of 0.2602c¢ is not possible.
Graphical solutions to this problem are depicted in Figs. 4.7a and b. The full line running
from top left to bottom right in both Figs. 4.7a and b represents the data displayed in Fig. 4.6.
It is therefore formed from the superposition of three distinct lines which can clearly be seen
to branch into two for ov > 4°. In Fig. 4.7a the lines running from bottom left to top right
denote the value of Xmax for m®@1 = 1 and selected values of Radl0- Each intersection marks
the limiting value of or for the given parameters m02l and Rad/Om Thus, for a bullet of mass
1021 kg and an accretion disc of 10lom the funnel semi-angle must be greater than ~ 0.2° if a
terminal speed of 0.2602c is to be possible. For Rad = 5 x 109 and 109 metres the corresponding
semi-angles are ~ 0.3° and ~ 0.9° respectively. The bullet mass need not be 1021 kg, though,
from the form of Eq. (4.28) the upper limit on the parameter A' is more sensitive to variations
in the radius of the accretion disc than to variations in the mass of the bullet. The effect that
changing the bullet mass has on the limiting semi-angle for an accretion disc of radius 109m is
displayed in Fig. 4.7b. The striking feature of Figs. 4.7a and b is that the limiting values for a
are very similar to the accepted semi-angle of the accretion funnel in SS433, believed to be in
the range 0.5° < o < 1° This indicates that, for this particular model, the terminal speed of
the jets in SS433 is very close to, if not at the highest, that can possibly be achieved.

As has been discussed, once the bullet has reached a speed equal to 0.995/?i5 any further
deviation in its speed will be proportionately comparable to the observational uncertainties in
the speed of the jets in SS433. Therefore, for a speed of 0.2602c the required terminal speed

is ft15 = 0.2615. For a funnel of half-opening angle ~ 0.5°, such a terminal speed necessitates
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that X = 1.2261 x 104 whilst for a half opening angle of 1° the required value of the parameter
X is 2.08(5 x 103. The results of numerical integrations of Eq. (4.22) with these values of the

parameter X and corresponding semi-angle are illustrated in Figs. 4.8a,b and c.

0.275

0.25

td

0.15

102 10 ¢ ,q 10-1 *od 101

Figs. 4.8a,b,c. The results of a numerical integration
of the equation of motion for a bullet, initially at rest,
moving along the axis of symmetry of an infinite, coni-
cal funnel (with an exponentially decreasing temperature
profile) of semi-angle 1° (full line) and 0 5° (dashed line)
with the parameter A'=2 086 x 103 and 1 226x 103 respec-
tively. In a the (truncated) terminal speed, j315,is plotted
as a function of the initial height, iod, of the bullet; in
b the dimensionless time ¢d taken by the bullet to attain
99 5% of the terminal speed is plotted as a function of £od
whilst in ¢ the dimensionless distance over which the
bullet attains 99.5% of its terminal speed is plotted as a
function of : 0,

From inspection of Fig. 4.8a it can be seen that the attainment speed, specifically selected
to be 0.2602c, is extremely well behaved up to zj « 2 for a = 1° and up to 5d % 2.5 for
a = 0.5°. The dimensionless time-scales taken by the bullet to attain 99.5% of the terminal
speed, or equivalently to reach a speed of 0.2602c, are shown in Fig. 4.8b. For a semi-angle of 1°
the minimum attainment time is approximately 179 units whilst for a = 0.5° the corresponding
time is roughly 189 units. A representative minimum time-scale is, therefore, about 184 units.
For an accretion disc of radius 109m and a core temperature of 8 x 108K (Hio = 0.13Radl0)
this corresponds to a physical time of about 80 seconds whilst for a disc of radius 1010m
(Hio = 0.1 Radl0) th's represents a period of approximately 614 seconds. These time-scales are
in excellent agreement with the interval of ~ 100 seconds over which the bullets in SS433 must
be accelerated to their terminal speed. For rapid terminal speed attainment it is obviously
advantageous for the disc radius to be ~ 109 metres rather than ~ 1010 metres. Indeed for

Rad ~ 109m an attainment time inside approximately 100 seconds is possible within a funnel
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of semi-angle 0.5° for Z, in the rough range 1.1 x 107! < %, < 3.7 and with a = 1° for %, in
the approximate range 0.27 x 1072 < %, < 3.0.

The dimensionless distance from the apex of the accretion funnel at which the speed of
0.2602c is reached is, from Fig. 4.8¢c, ~ 48 units for a = 0.5° and ~ 46 units for a = 1°. A
representative distance is, therefore, ~ 47 units which, for a disc of radius 10° m, corresponds
to a physical distance of ~ 6 R,4 whilst for a disc of radius 10'°m it corresponds to a physical
distance of ~ 5R,q4.

The inclination of the accretion disc normal (which is aligned parallel to the funnel axis)
to the line of sight is never less than ~ 59° and the acceleration region is, as a result, always
occluded to the terrestrial observer. X-ray observations (§1.5.2) indicate that the length of the
acceleration region is no more than ~ 10!®m which, on the basis of the information above,
suggests that the accretion disc radius needs to be less than ~ 1.7 x 10° metres. This poses an
obvious problem: If the disc radius is at most ~ 1.7 x 10° m then how can the bullets be obscured
from the observer up to distances ~ 10!° metres from the centre of the accretion disc? One
possible solution is that the bullet is ‘camouflaged’ by the strong stellar wind emanating from
the companion OB star and by an intense wind originating from the surface of the accretion
disc. With respect to the latter point, it should be recalled that the compact object is likely
undergoing supercritical accretion and is therefore predisposed to emanating an intense wind.
The terminal speed of the stellar wind is v, = 500km/s and the mass loss rate is M, =
3 x 1073 M /yr to within a factor of 2 in both instances (Wagner, 1983). The radial optical
depth of the wind from infinity to the surface of the star can readily be shown to be given
by Teo = aT}\:Iw [/4mv, mR,, where m is the mean mass per particle of the winds constituents.
Thus, assuming the wind to consist predominately of hydrogen and assuming a stellar radius
R, ~ 30Ry (Wagner, 1986), the radial optical depth of the wind is 7oc ~ 0.6 which may be
sufficient to provide the required degree of obscuration. The optical depth along a non-radial
path will exceed the value quoted above and therefore the optical depth along an observer’s
line of sight will, in all likelihood, exceed 0.6 so enhancing the obscuring effect of the wind thus
aiding in the camouflaging of the emerging bullets.

Finally, if the disc radius is ~ 10°m then, from Fig. 4.7a, for a bullet mass of ~ 102! kg
the funnel semi-angle needs be greater than ~ 0.9° if a terminal speed of 0.2602¢ is to be
achieved. A rough lower bound on the bullet mass is 5 x 102° kg (Brown, Cassinelli and Collins;
1991) which, on the basis of the data depicted in Fig. 4.7b, excludes funnel semi-angles less than
approximately 0.8°. Therefore, the preferred geometrical funnel parameters for the acceleration

of bullets to 0.26¢ within 10!° metres are Ryq = 10° metres and o = 1°.

§4.4 Motion Above a Finite, Isothermal Plane

In deriving Eq. (2.92) it was assumed that all parallel raypath vectors incident on the surface

of the bullet denoted the paths of photons with the same frequency. For an infinite, isothermal
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plane this assumption is completely justified but for a finite, isothermal plane it is valid only
in a certain limit. Consider Fig. 4.9a: If the inclination, 0, with respect to the positive z-
axis of some raypath vector incident on the surface of the sphere (which for the purposes of
this discussion is at rest with respect to the plane) is less than 7t/2 —6 then all the co-parallel
ravpath vectors toget her illuminate an hemisphere of the bullet. For all such raypath vectors the
assumption expressed by Eq. (2.82) and invoked in the derivation of Eq. (2.92) is fully justified.
This is not so however if 0> #/2 —6; in this case the hemisphere is only partially, rather than
completely, illuminated and the assumption declared by Eq. (2.82) becomes inaccurate. Rather
than embarking on an esoteric quest to quantify the effect of these finite size effects precisely,
I will instead determine the regime for which Eq. (2.92) is a valid approximation and explore

the motion of a bullet above a finite, isothermal radiator within these limits.

Figs. 4.9a,b. A schematic representation of the model geometry for motion above a finite, isothermal plane See the
text for a discussion.

It is evident, from Fig. 4.9b that for the approximation to be good the length Ao must
be much less than the radius of the plane. If this is not so then a (comparatively) substantial
region beyond the extremity of the radiating plane, where the temperature is strictly zero, will
be attributed with a temperature identical to that of the plane itself. From Fig. 4.9b it can

readily be deduced that

sin 60 = ~p~ = j (4.29)

and therefore

Ao = -,/fla + e . (4.30)

The condition that needs be satisfied is, consequently,

(4.31)
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where
Thy = — and 4= —. (4.32a,b)

The inequality denoted by Eq. (4.31) can never be satisfied unless ry, < 1. This is an intuitively
obvious constraint. If the condition 7y, <« 1 is indeed satisfied then it can be deduced from
Eq. (4.31) that the condition z4 > rp, must also be met if the approximation is to be good for
z4 < 1. Thus, for example, when considering an optically thin hydrogen plasma for which the
characteristic ‘bullet radius’ is ~ \/or the approximation is valid, to all intents and purposes,
from the surface of the radiator upwards.

The angle of incidence (with respect to the positive z-axis) of photons originating from the

edge of the radiator is, from Fig. 4.9b,

— Zd
9 = COSs 1 ha———— . 433
° { 1+ z3 } ( )
Therefore, by comparison with Eq. (3.7), the axial equation of motion is

oDT? 1
myc?

B, =2

/ (b =B:) (1= Bop)dp (4.34)
o

which, again with reference to Eq. (3.7) and with the introduction of the dimensionless variables

c . dzyg .. d?z4 R, . R,
lg=—1t . z4g=—=p§, , = =—=8, d X=—"W 4.35a,b,c,d
d R, 1= I B Z4 . B. an . (4.35a,b,¢c,d)

where IV is defined by Eq. (3.9b), can readily be integrated to yield

Zd

3 {2(4Zd +8)za - 3(1425)2(1+ ig)zd}]
(1+ “d)

(4.36)

. 1 ; . 1 .9 .
g = §X(1 — 337 ({323 — 824 +3}+

As with the temperature profile discussed in the immediately preceding section, the equation
of motion is explicitly dependent on the dimensionless variable z4 and as a result the problem
is not, in general, scale invariant. Of course, in the limit where the radius of the plane tends
to infinity the variable z4 — 0 and Eq. (4.36) reduces to the scale invariant equation of motion

given by Eq. (3.24). It is trivial to show from Eq. (4.36) that for z4 = 0,

X
1+23°

34 = (4.37)
From a comparison of this result with Eq. (3.24) it is obvious that the initial radiative accelera-
tion of a stationary bullet located on axis at a dimensionless height z4 above a finite, isothermal

plane is a factor 1+ z3 less than that for motion above an infinite, isothermal plane.
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The terminal speed of the bullet, by definition, is approached as t4 — oo or equivalently
as zq — oo. In this limit Eq. (4.36) simply indicates that 24 — 0. This result could easily have
been deduced using common sense and it unfortunately reveals nothing new about the terminal
speed of the bullet. Information on this subject is best obtained by adopting a numerical
approach.

Prior to investigating Eq. (4.36) in more detail I will first discuss the suitable range of the
model parameters. For radiative acceleration to be possible along the normal axis of the disc

above an accreting object of mass M, the elementary inequality

We GM,
> 4.38
1+23 = RZ22Z’ (4.38)
must be satisfied. This can be solved for zq yielding
a M,
zq > T —ZZa where Zq = _CC;_R};;/(V ) (4.39a, b)

Hence, for radiative acceleration to be viable the parameter Z, must be in the range 0 < Z, < 1;
for any Z, > 1 gravity dominates. The maximum value of the parameter W is achieved in the
limit where the matter to be accelerated is optically thin. Therefore, for a fully ionised hydrogen

plasma, by Egs. (3.13) and (4.390), the lower limit for the parameter Z, is

Z

Gmin

~ 18 (M, /M)RZT{* . (4.40)

In many physical situations the accretion disc is sufficiently thin that the movement of material
within the disc can be modelled as a two dimensional gas flow; this is the thin disc approxima-
tion. If the disc is assumed to be optically thick in the z-direction then each area element, at a
radial distance r from the disc centre, will radiate as a blackbody with a temperature (Frank,

King and Raine; 1985) given by
T(r)=T,

1- (%) %r (4.41)

where T, is a characteristic temperature which can be expressed as

. 1
3GM, M \"
= (= 4.42
L ( 8T R3o ) (442a)
= 4.1 x 10°ME(My /MR K (4.42b)
= 1.3 x 107MA(M, /M) RS K . (4.42c)

Equation (4.42b) is appropriate if the accreting object is a white dwarf whilst Eq. (4.42¢) is

applicable if the accreting object is a neutron star. It should be noted in passing that the
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luminosity of the whole disc, obtained by integrating oT*(r) over both surfaces of the disc, is

Loa = % Lgcc where the accretion luminosity is given by
Lgce = —— . (4.43)

The remaining luminosity originates from a very hot boundary layer close to the surface of
the accreting object. I will not consider such complexities here but will merely adopt the
temperature T, as being characteristic of the surface temperature of the accretion disc. On this
basis, by Eq. (4.40), typical minimum values for the parameter Z, are ~ 6.4 x 10‘212,,‘3J and
~ 6.3 x 107'2R;2 for an accreting white dwarf and neutron star respectively. Recalling that
Za < 1 for radiative acceleration, these expressions imply that the radius of the accretion disc
must be greater than ~ 2.5 x 10°m for an accreting white dwarf and greater than ~ 2.5 x 10*m
for an accreting neutron star. For an accretion disc of radius 10'°m, Eq. (4.39a) then implies
that zg > 0.26 for motion above a white dwarf whilst zq > 2.5 x 10~% for motion above a
neutron star. In reality the respective lower bounds on z4 will likely be considerably less on
account of the thermal energy of the plasma. Even so it is clear that the conditions for the
radiative acceleration of matter from the immediate vicinity of an accreting white dwarf are
not favourable.

The upper bound on the parameter X, by Eqgs. (3.13) and (4.35d), is
Xmar ~ 8.3 x 107°Ry, T} (4.44)

whilst the lower bound on the parameter X for which radiative acceleration is possible (in the

limit where zq — o0) is, by Egs. (4.35d) and (4.39b),
Xmin 7 1.5 x 1077(My/Mo)R; Y . (4.45)

Thus, for a white dwarf located at the centre of a thin, isothermal accretion disc of radius
~ 10'%m the parameter X must, if radiative acceleration is to be at all possible, lie in the
approximate range 1.5 x 1077 < X < 2.3 x 10~° and in the rough range 1.5 x 1077 < X <
2.4 x 10* for motion above an accreting neutron star.

The results of a numerical integration of Eq. (4.36) for selected values of the parameter X
appropriate for an accreting neutron star are shown in Figs. 4.10a,b and c. As in the previous
section it was found that the speed the bullet is, to very good accuracy, constant after a period
several orders of magnitude less than 10!® dimensionless time units. Therefore, in the same
vein as §4.3, I have adopted the speed of the bullet after 101® dimensionless time units as
representing the (truncated) terminal speed.

From Fig. 4.10a it can be seen that the terminal speed increases with X" and, for the

values of X depicted, is very much independent of the initial release height up to z,, ~ 107!,
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Figs. 4.10a,b.c. The results of a numerical integration of
the equation of motion for a bullet, initially at rest, mov-
ing along the symmetry axis of a finite, isothermal plane
for selected values of the paramater X appropriate for an
accreting neutron star The correspondence between X
and the line types is; 10-2, full line; 10°, dotted line;
102. dashed line and 104, dashed-dotted line In a the
(truncated) terminal speed, Pis, is plotted as a function
of the initial height, z0., of the bullet; in b the dimen-
sionless time #i taken by the bullet to attain 99.5% of the
terminal speed is plotted as a function of ,jod whilst in

¢ the dimensionless distance over which the bullet at-
tains 99 5% of its terminal speed is plotted as a function
of ;0,

|od

The former fact permits the attainment of high terminal speeds e.g. for X = 104 the highest
achievable terminal speed is /?is - 0.9959. It can readily be appreciated, too, that the terminal
speed for axial motion directly above an accreting white dwarf will be low. The same conclusion
can also be drawn from simple radiation wind theory in which the terminal wind speed, Vqo,
is related to the escape velocity, vesc, from the central compact object and accretion disc
luminosity, Lad< by the expression — Vesc[Lad/LEdd —1)1/"- Since the escape velocity from
a white dwarf is ~ 0.0lc high terminal speeds are possible only if Lad LEddmThis is in
contrast to motion above a neutron star for which the escape speed is typically ~ 0.6¢c thereby
permitting relativistic terminal speeds for Lad ~ LEdd-

The dimensionless time taken by the bullet to attain 99.5% of its terminal speed as a
function of the initial release height is shown in Fig. 4.10b. As a general rule the attainment
time is very much independent of the initial, dimensionless starting height for z0d < 10“1. For
20d beyond this rough value the attainment time increases rapidly even though the terminal
speed is falling off quickly. A curious feature and exception to this general trend is evidenced

by the sudden down-turn in the attainment time which occurs at z0/ ~ 1for A' = 104; the same
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behaviour is just discernible in the data set corresponding to A' = 103. For an accretion disc
of radius 1010m, by Eq. (4.35a), one dimensionless time unit corresponds to a physical time
of ~ 33 s and the minimum attainment time for X = 104 represents a physical time of only
~ 94 seconds. The dimensionless distance above the plane at which the bullet attains 99.5% of
its terminal speed is plotted as a function of z0J in Fig. 4.10c. Clearly there exists a range of
initial release heights for each value of the parameter X for which the attainment distance is
quite independent of zOd. This range is coincident with that over which the terminal speed is

independent of the initial release height.

$4.5 Motion above a Spherical, Isotropic Radiator

In this section 1 will consider the role that special relativistic effects can play in the radiation
driven winds of hot luminous stars. In particular I will investigate these effects for continuum
radiation pressure which in stellar winds is due mostly to Thomson scattering opacity. Al-
though stellar wind theory is conventionally conducted in the non-relativistic regime some of
the observed terminal wind speeds are marginally relativistic (e.g. the terminal wind speed of
the galactic star HD 48099, which is of spectral type 06.5 V, is 3500 km/s (Conti and Underhill;
1988)) and a cursory realtivistic treatment is worthwhile if only to confirm that the Newtonian

limit is appropriate.

Fig. 4.11. A schematic representation of the model geometry for motion above a star of radius /t¥ The star subtends
an half-angle 0o at the point P, a distance r from the centre of the star.

Consider a star of luminosity L* and radius R+ The energy flux at the point P (Fig. 4.11),

a radial distance r from the centre of the star, is

and the semi-angle subtended by the star at P, observed in the stellar rest frame, is

00=sin-1(/y | . (4.47)
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The energy flux at this same point is, by Eqgs. (2.32) and (2.33), given by

27 8o R* 2
F =/ d¢/ Isinfcosfdf = 1rI( ) (4.48)
0 0

-
and hence, by equating Egs. (4.46) and (4.48), the frequency integrated specific intensity is

L,
I= .
4m2R2

(4.49)

By appealing to Eq. (4.1), the radial equation of motion can be shown to have the form

. or 1 0o(r) .
8= 27rm Z I{cosf — B)(1 —Bcosf)sinbdé (4.50)
P 0

which can be readily integrated to yield

h=-2 Lo (o1 50,) 8+ 87) (4.51)

mpc? 4rr?

where

g 4 — (c032 0o + 3) cos b,

4.
3 sin® 0, (4.52)

f(eo) =
The function f is monotonic, decreasing rapidly from a maximum of 8/3 at » = R, and

asymptoting towards a lower bound of 2 as » — co. By the introducing the parameter

r= Ly

= , 453
LEgdq ( )

where Lgqq is the Eddington luminosity (Eq. 1.6) and retaining terms of order § and less in
Eq. (4.51) it is simple to show that, for v/c <« 1, the radial acceleration due to continuum

radiation pressure alone is given by

dv GM, v

T =T {1-f(0°)z} . (4.54)
The function f falls off very rapidly with r attaining, for example, a value of 2 + 6.412 x 10—3
at r = 2R,. Thus, for r > 2R, Eq. (4.52) is very well approximated by

dv GM, v
Z=r2 {1-22} (4.55)
and, consequently, for wind speeds ~ 3000km/s there will be a typical reduction of ~2% in
the continuum radiation pressure due to radiation drag. This will, in all likelihood, have an

insignificant effect in the terminal wind speeds predicted by standard theoretical models. The
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same cannot, obviously, be said for wind speeds much in excess of ~ 3000 km/s and it seems
reasonable to conclude that relativistic effects ought to be given consideration in any theoretical
modelling where the terminal wind speeds are significantly greater than ~ 3000 km/s. Whether
such objects exist I do not know but AGN’s involving black hole accretion are the most likely

candidates.

54.6 Motion Within and Above a Finite Accretion Funnel

§4.6.1 The Isothermal Funnel

Prior to considering a similar geometric configuration with a more realistic temperature profile I
will first consider the simplest possible case: the acceleration of an electron-proton pair moving
within a finite, isothermal funnel. I shall not attempt to introduce any degree of rigour at
this stage but will explore the solutions to the appropriate equation of motion, derived below,
which will give an indication of the generic behaviour of the solutions which can be expected
in a more representative model. The length-scale of the ‘bullet’is negligible in comparison to
the dimensions of any physical accretion disc and, therefore, finite size problems need not be

considered. 1 will, for the interim, also ignore any gravitational effects.

Fig. 4.12. The model geometry for axial motion within and above the funnel of a thick accretion disc sis perceived by
an observer in the rest frame of the accretion disc. The outer surface of the disc is at a blackbody temperature T2 and
is spherical, with a radius Raed The accretion funnels are conical, with an opening half-angle a, and isothermal at a
blackbody temperature T|. For any location between O and Q the bullet is illuminated solely by radiation originating
from the funnel walls whilst for any location beyond Q the bullet is illuminated by radiation originating from both the
funnel walls and the outer surface of the accretion disc.
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Consider the depiction of the accretion disc displayed in Fig. 4.12: The interior surface of
the disc is at a blackbody temperature 77 and is conical with a semi-opening angle «. The
exterior, spherical surface is at a blackbody temperature 75 and has a radius R44. It is evident
from consideration of the geometry of the disc (in the disc rest frame) that the ‘bullet’, or more
appropriately in this case test-particle, will experience two distinct radiation regimes. In the
first the bullet is driven solely by radiation that originates from within the accretion funnel.
This corresponds to any location between the points O and @ in Fig. 4.12. Above the point
@, which is at at a dimensionless distance zq = sec a above the funnel apex at O, the bullet
is driven both by radiation emitted from within the accretion funnel and also by radiation
emanating from the exterior surface of the accretion disc. This domain represents the second
radiation regime. For some axial bullet location P; between O and @ the maximum, limiting

angle of incidence of any raypath vector is, from a simple application of the sine rule, given by

6, = cos™! 4 _ o8 where 24 = z_ 4.56a,b
' (\/l+z§—2zdcosa 4~ R ( )

For a general, axial location P, beyond the point @ the maximum angle of incidence of any
photon originating from within the accretion funnel is again given by #; whilst the minimum
and maximum angles of incidence of photons emitted by the exterior surface of the disc are 8,
and
0 = cos™! (Zd—_l) (4.57)
2d
respectively.
By analogy with Eq. (4.34) and with reference to Eq. (3.7) it can easily be shown that the

complete, axial equation of motion can be expressed as

. 1 . . . .
a =y Kag (1 - )3 [— 2ia(1 = i) + 3(1 + ) (1 = u) — 6a(1 — ) +

T 4
H(zs = seca) (12 ) {~2halud — 1)+ 30+ 53) (o - ) — Siaos — )} | (459

where
C dzd . d2zd Rad . UDqu Rad
= — = =8, 24 = =28, = , 4.59a,b,c,d
tq Radt’ Zd dt ﬂ 24 dt?j c ﬂ Xad m°c2 ( 99a ¢ )
H(z) is the Heaviside function defined such that
_J1, forz>0
(=) = {0, forz <0 (4.60)

and g1 = cosf:.
2 2
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Fig. 4.13. A plot of z<i/Xad=at/ (o DT*/ (due to radiation originating from the funnel walls) versus dimension-
less height, for a stationary bullet located on the axis of a finite, isothermal accretion funnel for selected values of

the funnel semi-angle.

It can be deduced from Eqgs. (4.58) and (4.59c¢,d) that the contribution made to the radiative

acceleration of a stationary bullet by radiation originating from within a finite, isothermal funnel

is
; sin2 ot
a aD 4 2 (4.61)
m Oc 1+ — 27d cos a
a graphical illustration of which is shown in Fig. 4.13. This is a factor 1+ — 2zd cos a less

than the equivalent expression for motion within an infinite, isothermal funnel. A feature which
is immediately obvious from Fig. 4.13 is the progressive narrowing of the acceleration ‘hump’
as q decreases. Since the maximum value of az occurs at zd = cos a, or equivalently when
the bullet centre is coplanar with the funnel mouth, it is reasonable to expect the bullet to
be accelerated as it approaches the top of the accretion funnel; particularly so if the funnel is
narrow. Such behaviour would seemingly not augur well for the attainment of a terminal speed
in the proximity of the funnel mouth.

It is plausible to conclude that the parameter Xad in Eq. (4.58) will, like its counterparts
in §4.3 and §4.4, play a critical role in determining the final bullet speed. Though, for the
purposes of expediency, I am at present only considering the motion of a test-particle rather
than a much larger bullet, it is necessary to ensure that the numerical values of the parameter
X ad employed in Eq. (4.58) are appropriate for a massive bullet if the results are to be a good

indicator of the behaviour that can be expected in such a model. To this end I will adopt the

parameter values Rad ~ 1010m, m0 ~ 1021 kg and assume a minimum bullet radius, given by
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Eq. (3.14), of i’ ~ 10_2nio metres. By Eq. (4.59¢/) typical values for the parameter X ad are

then

Xad~ 6.6 x 10-2//adlom b3r & . (4.62)

Hence for bullet parameters appropriate for SS433 the parameter values logl0Aad = —2, —1,0, 1
and 2 correspond approximately to funnel temperatures 7| ~ 0.6, 1.1,2.0,3.5 and 6.2 x 108 K
respectively.

The dimensionless time, ¢"x, and speed, z”x, of the bullet when it exits the funnel (zd =
cos a) are tabulated in Table 4.1 whilst graphical solutions to the equation of motion (Eq. 4.58)

are provided by Figs. 4.14 and 4.15.

—0
Q rd 1 ;gx a ff‘ Zlgx
60 11.849 0.0856 2.130 0.3694 1.654 0.4497
45 17.045 0.0916 3.857 0.3597 3.298 0.4494
30 26.560 0.0861 7.929 0.3412 7.251 0.4486
15 58.906 0.0676 27.869 0.3023 27.000 0.4460

5 292.081 0.0425 235.812 0.2332 234.658 0.4368

Table 4.1. The dimensionless time taken by the bullet, with the initial conditions ~"d=0 and id=0, to exit the accretion
funnel and the dimensionless speed at the exit point for selected values of the funnel semi-angle, a, and the parameter

Aad

0.15 0.45
0.35 0.35
Zd 025 ZjX 025

0.15 0.15 -1

0.05 0.05 -2
Fig. 4.14. The dimensionless speed of the bullet, id, ver- Fig. 4.15. The dimensionless speed, i“ , of the bullet
sus the dimensionless time, ¢d, scaled by the dimensionless upon exiting the finite, isothermal funnel versus the fun-
time, taken to exit the finite, isothermal funnel for nel semi-angle for the indicated values of the parameter
X ad=1 and the indicated values of the funnel semi-angle. Arad

The rapid acceleration near the funnel mouth alluded to earlier, particularly for the nar-
rower funnels, is clearly visible in the Fig. 4.14. One feature which should be remarked upon and
which can readily be seen from inspection of Fig. 4.15 and the tabulated data for logl0A'ad = 2
is the proximity of the exit speed to the terminal speed above an infinite, isothermal plane given
by Eq. (3.25). In fact the speed /200 = 0.4514 represents an absolute upper bound on the exit

speed from a finite, isothermal funnel.
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Figs. 4.16a,b,c,d,e,f. Grahpical illustrations of numerical solutions to Eq. (4.58) for axial motion within and above
an accretion disc with an outer surface temperature Tj and inner, funnel temperature 7i for the indicated values of
the parameter Xad and for ratio T2/Ti=o, plots a, b, and ¢ and for T2/Ti=1, plots d, e and f The designation of
line attributes to values of the parameter Xad given in e applies to all of the graphs. In a and d the dimensionless
time, tj, taken to attain 99.5% of the (truncated) terminal speed is plotted as a function of the funnel semi-angle; in
b and e the dimensionless distance, zd, over which 99.5% of the (truncated) terminal speed is achieved is plotted as
a function of the funnel semi-angle and in ¢ and f the (truncated) terminal speed, /?i5, is plotted as a function of the
funnel semi-angle
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The results of integrating the complete equation of motion for selected values of the ra-
tio T5 /T, are illustrated in Figs. 4.16a-f. The, by now, familiar convention of assigning the
(truncated) terminal speed to be that of the bullet after 10'® dimensionless time units has been

adopted. The data specific to a funnel of half-opening angle of 0.5° are tabulated in Table 4.2.

/T, =0 T,/T; = 0.316 /T, = 1
logioXad |ta/10*] z4 | Bis |ta/10%| 24 Bis [taf10%| zq B1s
-2 2.347 |1 1.300( 0.022] 2.453 |28.37210.026| 2.417 |1 90.183]0.129
-1 2.336 {1.314|0.065| 2.373 {28.883(0.077| 2.358 | 73.627]0.336
0 2.335 11.325]10.177| 2.348 |28.2010.209| 2.341 {43.600|0.652
1 2.335 |1 1.307{0.403] 2.340 | 23.707|0.465] 2.337 {20.304]0.876
2 2.335 |1 1.237/0.686] 2.337 |16.481]0.743( 2.336 | 11.507}0.960

‘Table 4.2. The dimensionless time and distance taken by the bullet, with the initial conditions z4=0 and 24=0, moving
within a finite, isothermal funnel of temperature T; and semi-angle 0.5° to attain 99.5% of the (truncated) terminal
speed, B;s, for selected values of the temperature ratio T3/T) and the parameter Xq,q4. Note that once the bullet has
proceeded beyond the funnel limb, zq4>cos 8, it will be illuminated by a finite, isothermal plane of temperature T, and
dimensionless radius R,, =sin o and when beyond the point Q in Fig. 4.12, za>sec &, both by this same finite plane
and by an incomplete spherical, isothermal radiator of temperature T3 and dimensionless radius Rqsa,=1.

Since the latter part of Eq. (4.58) is proportional to the fourth power of the ratio T3/T,
radiation originating from the outer surface of the accretion disc will enhance the terminal speed
markedly only if 75 is roughly comparable to T7. This is evidenced by Figs. 4.16¢,f for which the
ratio (Ty/T1)* is, respectively, 0 and 1. The increase in the terminal speed over that attainable
for T5 = 0 is most significant when the funnel is narrow and negligible for much broader funnels.
This trend has an obvious explanation: the solid angle subtended by the exterior surface of the
accretion disc at the bullet centre when the funnel opening angle is small is much greater than
solid angle subtended by the external surface of the disc at the bullet centre when the funnel
semi-angle is large. Enhancement in the terminal speed on account of radiation emanating from
the outer surface of the disc is accompanied by an increase in the distance taken by the bullet
to attain 99.5% of the terminal speed (Figs. 4.16b,e). This reflects the fact that the bullet
continues to accelerate at considerable distances above the funnel mouth and is a feature which
is most certainly not observed in SS433.

By Eq. (4.17) the effective temperature of the accretion disc in SS433, assuming a disc
radius Rgq = 10'°m, is ~ 3.4 x 10* K. If this temperature is equated to the assumed blackbody
temperature Ty then, for funnel temperatures 73 ~ 108K, the ratio 75/7; ~ 10~* and the
contribution made by radiation from the exterior surface of the disc, even for the narrow funnels
likely to be present in SS433, in enhancing the terminal speed will be completely negligible.
Figures 4.16a,b,c are, therefore, most relevant to S5433.

From the data tabulated in Table 4.2, in particular that data corresponding to T>/Ty =0,
it can be deduced that a terminal speed of 0.26c can be achieved within an accretion funnel
of semi-angle 0.5° if the parameter X,4 is in the rough range 10° < X,4 < 10!. For the
bullet parameters specified above this corresponds to a perfectly reasonable funnel temperature
Ty ~2—-3.5x 108K. Recalling from §3.2.3 that the terminal speed within an infinite, isothermal

funnel is, for small @, B ~ 3/16a? (Eq. 3.41) regardless of the funnel temperature, it is
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apparent, that an isothermal funnel of finite extent is far superior as a means of radiatively
accelerating material to relativistic speeds than its infinite analogue.

For small funnel opening angles the dimensionless time taken by the bullet to attain 99.5%
of the terminal speed is insensitive to the parameter X ad and the ratio Tn/T\ (Figs. 4.16a,d and
Table. 4.2). In particular, for a funnel semi-angle of 0.5° and a temperature ratio 7i/T| = 0
the dimensionless attainment time for a terminal speed ~ 0.26c is approximately 2.3 x 104
units. For an accretion disc radius of 1010m this is, by Eq. (4.59a), equivalent to a period of
about one week. This somewhat lengthy timescale is a direct consequence of the bullet being
rapidly accelerated only in the latter stages of its motion through the funnel. One would,
therefore, expect a bullet released at a considerable fraction of the funnel height above the apex
to have a much shorter acceleration time-scale. The attainment distance, again for this specific
case, is approximately 1.3/?ad. This is certainly close to the funnel mouth and is of the order
of the acceleration region in SS433. However, the physical legitimacy of such an isothermal
configuration has to be questioned since the temperature at the surface of a thick accretion disc
will undoubtably be much less than at the centre.

In the cursory treatment of the problem described above I circumvented consideration of
finite size effects by assuming the bullet to be small and have neglected the effect of gravity.
This approach may not be satisfactory for massive bullets depending on their density. I shall

address each of these effects below starting first with finite size effects.

ad

o

Fig. 4.17. Let the bullet (assumed for simplicity to be at rest) be located on the axis of the finite, isothermal funnel
of slant height Rad and semi-angle a with its centre, P, at a height z above the apex. Vectors which graze the surface
of the bullet and which are parallel to the raypath vector which intersects both the funnel limb and the bullet centre
intersect the (would be) funnel at a distance Ai from the funnel limb.
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The geometry to be considered is illustrated in Fig. 4.17. I have, for simplicity, assumed
that the bullet is at rest with respect to the accretion disc. For the equation of motion to be
a good approximation the length Ai must be substantially less than the accretion disc radius.

By application of the sine rule it is a simple matter to show that

A ~cosa) ' sin a
NERA' s2) . (4.63)
sSin a

A graphical representation of this equation for » = 0.01 rads is shown in Fig. 4.18. The trough
centred on ZJ4 = 1 indicates the region where the approximation is most accurate. If the bullet
is assumed to have a near minimum radius such that r&d ~ 10- 5m321 then the dimensionless
distance Aid < 10-2 for > 0.1. Finite size effects are, therefore, minimal for dimensionless
heights above the funnel apex greater than ~ 0.1 and the equation of motion given by Eq. (4.58)

can be regarded as a good approximation in this regime.

U

03

02

00

10“1
2d

Fig. 4.18. A plot of Aid=Ai/r6, given by Eq. (4 63) versus the dimensionless height, 04, of the bullet centre above
the funnel apex

For radiation pressure to be capable of driving a massive bullet away from the compact
object located at the funnel apex the radiative acceleration experienced by the bullet must
exceed the inward acceleration due to gravity. For funnels with small opening angles this may,

by Eq. (4.61), be expressed approximately as

zd > where « 2.2 x 10"2(1\/1"‘/]\/10)m13)?77‘216"/1?H4a”712 (4.64a,6)

and use has been made of the expression for the minimum bullet radius (Eq. 3.14) in deriving

Eq. (4.646). Hence, for a funnel temperature of 108 K radiative acceleration is possible for
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Figs. 4.19a,b. Numerical solutions to Eq. (4.58) for axial motion within and above a finite, isothermal accretion
funnel of semi-angle 0.01 radians with the ratio T7A/T~Q and the parameter X0d=2.36 for the values of the initial

dimensionless starting height, £0d, indicated in b

In a the dimensionless distance Zd is plotted as a function of the

dimensionless time «d whilst in b the dimensionless speed of the bullet, id, is plotted as a function of td

*d

Figs. 4.20a,b,c. Numerical solutions to Eq. (4 58) for
axial motion within and above a finite, isothermal ac-
cretion funnel of semi-angle o.01 radians with the ratio
T2/Ti=0 and the parameter Aad=2.36. In a the dimen-
sionless time, td, taken by the bullet to attain 99.5% of its
(truncated) terminal speed, /?i5, is plotted as a function
of the initial dimensionless height, z0d; in b the dimen-
sionless distance zd over which the bullet achieves 99.5%
of /?1s is plotted as a function of whilst in ¢, /?is is
plotted as a function of z0d.

015 ois
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dimensionless heights greater than ~ 0.13 whilst for T} = 8 x 103K, z4 needs be greater
than about 2.3 x 1073 units. These crude criteria, in conjunction with those above deduced
from consideration of finite size effects, imply that radiative acceleration is viable and that
Eq. (4.58) is a good approximation to the true equation of motion for a massive bullet of radius
Ty~ 10‘2m§l metres and at a dimensionless distance from the funnel apex greater than about
0.1 units.

In the preceding analysis it was found that the contribution made by radiation emanating
from the exterior surface of an accretion disc with model parameters suitable for SS433 in
enhancing the bullet terminal speed is negligible. This well justified approximation is inherent
in what follows. For a funnel of semi-angle 0.01 radians the minimum value of the parameter X,4
necessary for the attainment of a terminal speed 815 = 0.2602 is X,4 = 2.36. For an accretion
disc of radius ~ 10!° metres and a bullet of minimum cross-section and mass ~ 102! kg this
represents a funnel temperature of ~ 2.4 x 108 K. The dimensionless distance and speed of a
bullet radiatively driven along the symmetry axis of a finite, isothermal funnel of semi-angle
0.01 radians with X,4 = 2.36 are plotted as functions of the dimensionless time for various initial
dimensionless heights in Figs. 4.19a,b. These figures indicate, as was suggested earlier, that the
time taken by the bullet to attain its terminal speed decreases as the release point approaches
the funnel mouth, though for initial release heights immediately below the funnel mouth and
beyond the terminal speed falls off dramatically. These points are additionally illustrated by
Figs. 4.20a,b and ¢. The minimum attainment time for a terminal speed of 0.2602c is 1.9 units
and occurs for z,, = 0.98 (Fig. 4.20a). For a disc of radius 10!° metres this corresponds to
a physical attainment time of about 63 seconds. The distance from the funnel apex by which
99.5% of the terminal speed is attained is (Fig. 4.20b) 1.37R,4. This attainment distance is,
like the terminal speed (Fig. 4.20c), very insensitive to the bullet release height for all release
heights from just below the funnel mouth to much deeper within the funnel. Although these
results are pleasingly in keeping with the observations of SS433 it is unreasonable to expect
that the accretion funnels in SS433 can be accurately modelled as finite, isothermal radiators.

A more realistic temperature profile is considered in §4.6.2 below.

§4.6.2 The Polytropic Funnel

Current accretion disc theory is incomplete and without an archetypal model. However, some
of the important properties common to most thick accretion disc models are exemplified by
the simple Newtonian equilibrium model in which the gravitational attraction of the central
compact object is balanced by a combination of gas pressure, radiation pressure and centripetal
force. I will discuss this model briefly below.

The principal simplifications are the invocation of Newtonian dynamics and the assumption
that the mass M of the compact object is much greater than the mass of the accretion disc. In
the simplest possible case it is further assumed that the specific angular momentum [ = R2Q

(where R is the radial coordinate in cylindrical polars and §2 is the angular velocity) is constant
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throughout the disc. The form of the accretion disc is prescribed by the equipotential surface
for the given specific energy of the accreting material. These equipotentials are specified by the
expression

R

sin t) — 4.65
) 2rRx + Er2 ( )

(Frank, King and Raine, 1985) where r is the distance from the compact object, the polar angle
6 = sin- 1(/?/r), Rk is the radius at which the Keplerian angular velocity Qk is such that
RBR& k — I a°d E is the specific energy of the accretion disc material in units of the binding
energy, Ek — GM/2Rk, of matter in a Keplerian orbit of radius Rk - For the disc to remain
bound to the compact object the specific energy £ must lie in the range —1 < E < 0; the most
tightly bound configuration occurs for £ = —1 when the disc becomes a ring of radius Rk
whilst the most loosely bound configurations occur as £ —%0. The minimum polar angle, a,
can readily be deduced, by differentiating Eq. (4.65) with respect to r, to occur at r = —R.k /E,

Substituting this expression back into Eq. (4.65) then gives

sin“a = —F . (4.66)

Thus, for the formation of a funnel of semi-angle 1° the specific energy of the accreting}: material
needs to be £ ss —3.05 x 10-4. Such a disc is depicted in Fig. 4.21 where the conical nature of
accretion funnels is clearly evidenced. It is apparent from Eq. (4.66) that narrow funnels are
formed when the accreting material is loosely bound to the central compact object. A direct
consequence of this fact is that material near the funnel walls can readily be driven outwards by
radiation pressure producing well collimated jets. The temperature of the funnel walls, however,

remains completly unspecified by this model.
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Fig. 4.21. The equipotential surface for which the minimum polar angle is 1° A thick accretion disc of this general
geometrical form is believed to be present in the SS433 system. The ordinate corresponds to the height, i, of the disc
in units of the Keplerian radius, Rk, whilst the abscissa denotes the radius, R, of the disc in units of Rk

} Strictly speaking there is no accretion in this nor any other equilibrium model since the

disc material is assumed to have a null poloidal velocity component.
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To overcome this problem I will assume that the pressure-density relationship within the
accretion disc can be expressed by a polytropic equation of state. Such an equation of state
is applicable to a gaseous sphere in hydrostatic equilibrium and has physical legitimacy as the
generalisation of the observed behaviour of an ideal gas undergoing an adiabatic change. Since
the diameter to thickness ratio of the accretion disc in SS433 has been variously estimated to
be ~ 1.5 (Anderson, Margon and Grandi, 1983a) and less than 1.3 (Wagner, 1983) and the
funnel semi-angle is probably less than 1°, the assumption that the disc is spherical is well
justified. The assumption that the disc is in equilibrium is, on the other hand, valid only if the
poloidal velocity component of the accreting material is much less than the toroidal velocity
component. Adoption of the polytropic equation of state also involves the assumption that the
contribution made by the centripetal force to the support of the disc is negligible. Rather than
merely quoting the relevant results obtained from the assumption of a polytropic equation of
state I will provide an outline of their derivation below.

Define the quantity 8, such that the gas pressure and radiation pressure are given respec-
tively by

pkT aT?

P, = T = ﬂth and Pr = "§— = (1 - ﬂp) Pt (467a|b)

where P, is the total pressure given by the sum of the radiation and gas pressures. Solving for

T by eliminating P; between Eqs. (4.67a, b) yields

_ 3(1—ﬁp)k]% \
T = [ummhaﬂp P (4.68)

which when substituted back into Eq. (4.67b) gives

() 1]
= p3 . (4.69)

HmMMp a ﬂ;

If the gas pressure is a constant fraction of the total pressure throughout the disc, and by

definition therefore 3, a constant, Eq. (4.69) can be more simply expressed as

i
E o \*31-5,]°
P,=Kp}  where K= ( ) 3 f” (4.70a, b)
/"mmh a ﬁp
is a constant of proportionality. This equation corresponds to a polytrope of polytropic exponent
7p = 4/3 or equivalently of polytropic index n, = 3. In general the pressure-density relationship

has the form

ny +1

Py(r) = Kp(r)' with "=
P

(4.71a,b)
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Any spherical, gaseous body in hydrostatic equilibrium for which the pressure and density have
the radial dependence expressed by Eq. (4.71a) is a polytrope. A polytrope of index n, = 3/2
conventionally represents a star in convective equilibrium for which radiation pressure is unim-
portant whilst a polytrope of index of n, = 3 normally corresponds to a star in radiative
equilibrium in which energy is transported by radiation rather than by convection. The latter
polytrope is commonly referred to as the standard model and will be discussed further below.
For completeness I will just note that a polytrope of index n, = 3 can also represent a rel-
ativistic, degenerate electron gas and such a polytropic model therefore presents a means of
exploring the internal sructure of exotic entities such as white dwarfs.

By analogy with the deduction of the general polytropic expression for the pressure-density
relationship (Eq. 4.70a) from Eq. (4.69) it is obvious from Eq. (4.68) that the general polytropic

expression for the temperature-density relationship is

1
Y k 31-0,]°
T(r) = Jp(r)™» where J = ——-’1] ) 4.72a,b
() = Jo(0) [ (4720,
Hence, to determine the run of temperature with radius, the run of density with radius must

first be known.
Since the disc is assumed to be spherical and in hydrostatic equilibrium the relationship

between the pressure and density at every location within it is specified by the equation

dP, _ _ GMaa(r)p(r)

= oz (4.73)
where M,4(r) is the mass within a radius r and has the differential form
dﬂ;@ = 4mrip(r) . (4.74)

The polytropic equation of state (Eq. 4.71a) specifies the relationship between the pressure and
density and, therefore, by eliminating P; between Egs. (4.71a) and (4.73) the run of density

with radius can be obtained. The resulting expression has the form

d (Kri(n,+1)dp\ _ 9
E (Wa?) = —4nGr P (475)

and represents one form of the Lane-Emden equation. The boundary conditions for this non-
linear second order differential equation are p(0) = p. and p(Rzq) = 0; both the parameter
K(B,) and the polytropic index n, are free parameters. Equation (4.75) is best solved by
transforming to the Emden variables, details of which can be found in standard texts such as
Clayton (1968), Collins (1989) and, for a more complete treatment, Chandrasekhar (1939). By
the introduction of these variables the normalised run of temperature with radius, p(r)/p., can

be derived from Eq. (4.75) which, when substituted into Eq. (4.72a) yields T(r)/T.. The run
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Fig. 4.22. The normalised temperature, T/T¢, versus normalised radius, r/ R+, for the standard model.

of normalised temperature with dimensionless radius for the standard model is illustrated in

Fig. 4.22. It should be noted that the predicted surface temperature is 0 K. This follows directly

from the imposition of the boundary condition p(Rad) = 0. Unfortunately analytic solutions

to the Lane-Emden equation exist only for np = 0,1 and 5; for the remainder, which includes

the standard model, the equation has to be solved numerically. For the standard model it can

further be shown that the radius, mass and central temperature of the accretion disc are given

respectively by

< -x
Rad = 6.89685 \IATEI pc 3= 7.73821 x 1010/, s 11 3p

>/ P
Mad = 8.07296tt (A . ) = 18.0101 M)
PaiPp

and

Te=Jpi = 3.19837 x 106 (-— ~ pc
PmPp

By Eqgs. (4.76a, 6) the central density, pc, may be expressed as

Mad
pc = 25.72795

R adlo

which when substituted into Eq. (4.76¢) yields

1 Mad

T® = 1.37444 (ppr
Radio Mo

Pe (4.76a)

(4.766)

(4.76¢)

4.77)

(4.78)
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Thus, if the two parameters Mad and the mean molecular weight, //m, are specified then the
ratio of the gas pressure to total pressure, /I, is prescribed by Eq. (4.766) and the central
temperature, after selection of the disc radius Rad, is subsequently defined by Eq. (4.78). Since
T(r)/Tc is also known, the temperature on the funnel surface at any distance from the apex is
then specified.

A plot of Tc as a function of the disc mass for a disc of radius 1010m and selected values of
the mean molecular weight of the accreting material is illustrated in Fig. 4.23. Clearly central
temperatures of ~ 108 K are not possible unless the disc mass is implausibly large. However, on
account of the inverse proportionality of the disc radius to the central temperature (Eq. 4.78),
a central temperature in excess of 108 K is possible for a disc of radius 109m for all values of

the mean molecular weight if the disc mass is greater than approximately 15Mgq.

08

M/M©
Fig. 4.23. The temperature, Tc (in Kelvin) predicted by the standard model to occur at the disc centre, versus the

disc mass, Mad, in solar mass units for selected values of the mean molecular weight, /i,, T h e selected values of
are, from top to bottom, 2, 3/2, 1and 1/2.

Since the surface temperature of the accretion disc is, according to the polytropic model,
0 K the bullets are driven only by radiation originating from within the accretion funnel. It was
found in §4.6.1 that the contribution made by radiation emanating from the external surface
of the disc in enhancing the terminal speed of the bullets is significant only if the temperature
of the disc surface is comparable to that within the funnel. In SS433 this is most certainly not
the case and a model disc surface temperature of 0 K constitutes a valid approximation.

I shall now proceed to derive the equation of motion: Assume that the walls of the funnel

radiate as a blackbody for which the temperature profile along the funnel surface be given by

T(r) = Tcf(r) (4.79)
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where r is the radial distance from the funnel apex, Tc is given by Eq. (4.78) and /(r) is the
numerical solution to the Lane-Emden equation for np = 3. By Eq. (4.13) the temperature

profile can then be expressed as

T{6, z;a) = Tcg(9, z\a) where 209, z;a) = f(r(9, z;a)) . (4.80a, b)

By Egs. (3.4) and (3.5) the axial equation of motion is then given by

an i r9
(32 =2 / \g(0,z'ia)] (cos 9 - (32)(1 - 0z cos 9) sin 969 (4.81)

m oc 7 Jo

where $1(2) is given by Egs. (4.56a, 6). With reference to Eqgs. (4.59a, 6,c, d) the equation of

motion can further be expressed as

zd = 2Xad (1 - id)* / [e(t* Zd-,(x)]4 (n - id)(1 - id/")d/i (4.8%2)

where, of course, the temperature 7! in Eq. (4.59d) is now replaced by Tc. The ratio Zd/Xad
for a bullet at rest within a finite, standard model polytropic funnel of semi-angle 0.5° and 1°

is shown in Fig. 4.24.
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Fig. 4.24. The ratio zd/X ad versus zd for a bullet at rest within a finite, standard model polytropic funnel of
semi-angle 0.5° and 1° (full lines) . For ease of comparison the ratio Zd/Xad for a stationary bullet within a finite,
isothermal funnel (dashed lines) plus the data depicted in Fig. 4.4b for the exponentially decaying temperature profile
(dashed-dotted lines) are, by means of the approximation id«10?d, also plotted to the same scale. It should be recalled
that the maxima for the plots representing the finite, isothermal funnel have a magnitude of 1 unit.

Before proceeding to integrate the equation of motion (Eq. 4.82) I will first determine the
domain in which the bullet release height must lie if acceleration due to radiation pressure is

to exceed that due to gravitational attraction.
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r/ Rad

Fig. 4.25. The function h versus the radius, r, in units of the accretion disc radius Rad

For the standard model only, the mass of accretion disc material within a radius r is

independent of the central density and can be simply expressed as

Mad(r) = h(r) Mad m (4.83)

The function h(r) is obtained from a numerical solution of the Lane-Emden equation and is
displayed in Fig. 4.25. An assumption inherent to Eq. (4.83) is that the mass which can be
regarded as ‘missing’ on account of the presence of the accretion funnels is negligible. This is
certainly true for narrow accretion funnels with which I am concerned here: the solid angle oc-
cupied by each accretion funnel is approximately irex2 and hence the ‘missing’mass attributable
to each funnel is about orM adl4 which, for a funnel semi-angle of 1° represents ~ 1.5x 10~4M ad

for the funnel pair. The acceleration due to Newtonian gravity is, therefore, well expressed as

ag #=1.32706

r adio "d

Consider now the acceleration due to radiation pressure. Let the bullet radius, for a given

starting height, be a fraction x of the maximum possible such that the bullet cross-section is

D = T(xzsina)2 where x <0< 1. (4.85)

Then, by Eqgs. (4.78) and (4.82), the radiative acceleration is given by
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ar = 1.29173 x 105*2f1J<€o”or2m dal(A -/*">)4 (/fl;\ d )/ (4.86)

Jnx(zi,a)
where a, assumed small, is in degrees. For the bullets to be driven outwards along the funnel
axis the obvious condition ar > ag must be satisfied. By Eqs. (4.84) and (4.86) this can

alternatively be expressed as

\ A 1
rr) / 1.

O T

(4.87)

In Fig. 4.26 the left-hand side of Eq. (4.87) is shown as a function of zd from which it is apparent

that there exists, for each value of Mad/M @, a distinct range over which radiative acceleration

is viable; for Mad > 15Mq the minimum release height needs to be greater than ~ 10-2(-

o
n.
10-2
16J
102 10-1 100 .
Fig. 4.26. The ratio ar/ag given by the left-hand side Fig. 4.27. The minimum, dimensionless bullet radius,

of Eq. (4.87) versus the dimensionless height, z<|, for the
mean molecular weight pm=0.5, a=1° and the parameter
x=1 for selected values of Mad/MQ which, from top to
bottom as displayed, are 25, 20, 15, 10 and 5. Since the
parameter x has been chosen to equal 1, the bullet cross-

rfed, for which radiative acceleration is viable versus the
dimensionless release height for selected values of the ac-
cretion disc mass. The mean molecular weight pm=0.5
whilst the selected values of Magj/A/o are, from top to
bottom as displayed, 5, 10, 15, 20 and 25.

section is the greatest permissible and consequently the
values of the ratio ar/a g shown represent an upper bound.

By determining the value of the parameter x, the remaining parameters remaining fixed,
for which the left-hand side of Eq. (4.87) equals 1, it is possible to find the minimum value of the
dimensionless bullet radius, for a given initial release height, for which ejection of the bullets is
possible. This then permits the suitability of Eq. (4.82) as an approximation to the true, axial
equation of motion to be determined. From Fig. 4.27 it can be seen that a dimensionless bullet
radius of ~ 10~3 units is sufficient to ensure ejection for all accretion disc masses in excess of
~ 15Mq. Beyond the funnel mouth it is not important that i'sd be such that ar > ag. To

appreciate this point one need only perform a simple Newtonian energy calculation in which

the radiative drive beyond the funnel mouth is assumed to be zero: it is simple to show that if
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(0

Fig. 4.28. Parallel vectors passing through the centre of the bullet at P and which graze the bullet’s surface intersect
the funnel wall at the points B and 4, C respectively At 4, B and C the funnel wall is at a black body temperature

T4, TB and Tc respectively.

AT

Fig. 4.29. The ratio A T/T versus the dimensionless distance, r& of the point of intersection denoted as B in Fig. 4.28
above. The funnel semi-angle is 1° and the bullet has a dimensionless radius r(,d=10~3. The labeled values represent
the dimensionless height of the bullet centre above the funnel apex. The bullet is located on the axis of symmetry of

the funnel and, for simplicity, is assumed to be at rest with respect to it.
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the bullet exit speed is 8., then

Mad/MO

PR where AB = Ber — Boo - (4.88)
ex {lad;o

AB~1.48 x 1077
Thus, for example, even for a very massive, compact accretion disc of mass Mgq = 25Mg and
radius Rgq4,, = 0.1 and an exit speed B = 0.2, the reduction in the speed is only A8 =
1.85 x 10~4.

Let me now return to the question of the validity of Eq. (4.82) as a representation of the
true equation of motion. I will, for expediency, assume that the bullet is at rest with respect
to the funnel. Consider the geometry depicted in Fig. 4.28. The approximation adopted in the
derivation of Eq. (4.82) is equivalent to assuming that the temperatures T4, Tp, and T¢ at
the locations A, B and C on the funnel wall are the same. This will certainly not be so since
the temperature predicted by the standard model (Fig.- 4.22) is a monotonically decreasing
function of r and therefore T4 > T > T¢. Evidently, for the approximation to be good the
ratio (T4 — T¢)/Te = AT/T must be small. From inspection of Fig. 4.29 it can be seen that
the approximation is best for those regions of the funnel closest to the bullet and poorest for
regions at or near the funnel mouth. The latter behaviour occurs because at locations near the
funnel mouth it is possible for T4 > Tg,Tc even though T4,Tg,Tc < 1. In the limiting case
Ta > 0 whilst Tg = T¢ = 0 and consequently AT/T — oo. If the approximation is deemed to
become poor when AT/T ~ 1, then for initial release heights of ~ 10~!, only the funnel surface
up to a dimensionless distance of ~ 0.35 from the apex is represented accurately. This may
seem to be a very poor approximation indeed but, if one recalls that the equation of motion
(Eq. 4.82) is dependent on the fourth power of the temperature, and observes from Fig. 4.22
that at rq ~ 0.35, (T/T.)* ~ 0.5* ~ 6 x 1072 it can be appreciated that, on account of the
relative importance of those regions where AT/T > 1 during the bullets initial stages of motion,
Eq. (4.82) represents a fair approximation to the true equation of motion. I have stressed the
word initial since in the later stages of the bullet’s motion when it is moving relativistically,
aberrated, blue-shifted radiation from these same regions is of importance and acts to reduce
the speed of the bullet. Fortunately though, when r4 ~ 1 the ratio AT/T ~ 0.1, except for
those regions essentially on the funnel limb (r4 = 1) where AT/T rises dramatically for the
reasons already given above, and the approximation is again fair.

To summarise, Eq. (4.82) is a reasonable approximation to the equation of motion for
a bullet with a dimensionless radius r,, ~ 1073 and improves as r;, decreases. There is,
however, clearly scope for a more complete treatment of the problem which does not involve
the assumption that AT/T = 0 but I will consider this topic no further in the present work.

I shall now investigate the solutions to Eq. (4.82). In Fig. 4.30 the (truncated) terminal
speed, fO;s, is shown as a function of the parameter X,4 for motion within a funnel of semi-
angle 1° and for selected initial dimensionless heights. The upper line, in fact, consists of the
superposition of the data for z,, = 0.01 and 0.1 from which it can immediately be concluded

that the terminal speed is insensitive to the initial bullet height from z,, = 0.01 to at least 0.1.
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0
10° 10> 10%*

Xad

Fig. 4.30. The (truncated) terminal speed, 0i$, versus the parameter X a4 for axial motion within a finite funnel of
semi-angle 1° for which the run of temperature with radius is given by the standard model. The upper line consists of
the superposition of the data for a bullet released at an initial, dimensionless height i 0<J=0,01 and 0.1 whilst the lower
line represents a bullet for which ~0,=1.

td P

Figs. 4.31a,b.c. Numerical solutions to Eq. (4 82) for ax-
ial motion within a finite accretion funnel of semi-angle 1°
for which with the run of temperature with radius is given
by the standard model with the parameter X ad= 1255. In
a the (truncated) terminal speed is plotted as a func-
tion of the initial dimensionless height, zO(i; in b the di-
mensionless time, td, taken by the bullet to attain 99.5%
of its (truncated) terminal speed is plotted as a function
of the initial dimensionless height whilst in ¢, the dimen-
sionless distance «d over which the bullet achieves 99.5%
of /?i5 is plotted as a function of "od*

101
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For the attainment of a terminal speed of 0.2602¢, interpolation of the data for z,, = 0.01
and 0.1 reveals that X,4 = 1235 is a necessary condition whilst for a speed of 0.2602¢ to
represent 99.5% of the terminal speed requires that Xg;4 = 1255. Integrating Eq. (4.82) with
the latter value of Xsq yields the results displayed in Figs. 4.31a,b,c. The terminal speed
(Fig. 4.31a) is constant for all release heights less than 0.55R,4 whilst the minimum time for
the attainment of a speed of 0.2602¢c is 89 units (Fig. 4.31b) and occurs for a bullet released at
a dimensionless height of 0.55 units above the apex. By Eq. (4.59a) this represents a real time
of approximately 3000R,q4,, seconds which, for an accretion disc of radius 10°m, is in rough
agreement with the observations in SS433. The attainment distance (Fig. 4.31b), however, lies
well beyond the funnel mouth and is typically 23R4 for bullets formed at a distance less than
0.5R44 from the funnel base. On the basis of this fact alone the polytropic temperature profile
can probably be regarded as inappropriate to SS433.

By Eq. 4.59d it is simple to show, with T} replaced by T, that

X Y. L s
TC, = (—6'61 ;4102> m;ﬂrbdigRad‘m (489)

which for a bullet mass of 10%! kg and dimensionless radius 10~2 units implies that, for the
attainment of a terminal speed of 0.2602¢c (X,4 = 1235), the temperature at the funnel base
needs be ~ 1.17 x 108K for an accretion disc of radius 10!°m and ~ 6.58 x 108K for an
accretion disc of radius 10° metres. These are perfectly reasonable base temperatures but, from
inspection of Fig. 4.23, they are only possible within the polytropic model for accretion disc
masses in excess of 100Mg which is well above the likely upper bound to the disc mass.

For the simple polytropic model considered above it is clear that the disc masses necessary
for the required funnel base temperatures are absurdly high. These base temperatures can,
however, be achieved for much smaller disc masses if allowance is made for the presence of a
compéct object at the disc centre. Recalling Eq. (3.20) which gives the temperature at the
surface of a neutron star for a disc of uniform density to be supported solely by radiation
pressure, it is easy to show that for a typical neutron star mass of 1.4M and radius of 10km

that the temperature close to the neutron star surface must be approximately

————M“"/mM@] ’ . (4.90)

R3

adm

TCB~1.4l

Thus, funnel base temperatures of ~ 1.17x8K and ~ 6.58 x 108K can be achieved within
accretion discs of radii 10'°m and 10° m respectively for disc masses (excluding the mass of the
neutron star) of ~ 5M¢. Indeed, since in the derivation of Eq. (3.20) the assumption that the
density of the accretion disc is uniform was used, the temperature given by Eq. (4.90) is a rough
estimate of the lower bound on the temperature at the neutron star surface. Consequently, a
disc mass of less than ~ 5Mg would probably be sufficient to ensure the requisite funnel base

temperatures. This value, though much lower than those demanded by the simple polytropic
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model considered above, is still too high for self-gravity to be neglected as is common in accretion
disc theory. The scenario is, on account of the substantial envelope mass, similar to that
proposed by Collins, Brown and Casinelli (1990) in which the jets originate from polar holes
in a precessing giant star at the centre of which is located a compact object. Such an anomaly
could arise through the rapid transfer of matter from an evolved giant star onto an already
supercricical accreting compact object with an existing pair of well established, oppositely
aligned jets.

The large discrepancy between the central temperature predicted by the polytropic model
(Eq. 4.78) and that given by Eq. (4.90) arises from the failure of the single polytropic model to
account for the existence of a neutron star at the core of the spherical envelope. A better and
more representative model would consist of two distinct polytropes: a polytrope of index n, = 3
for the radiative envelope and a polytrope perhaps of index n, = 0, for which the density of
the polytrope is uniform, for the neutron star. I will, however, leave this as a topic for future
consideration.

A polytrope of index n, = 3, amongst other things, provides a means of deducing the rough
form of the run of temperature with radius throughout a gaseous sphere in radiative equilibrium.
If the run of normalised temperature with dimensionless radius for the single polytropic model
(Eq. 4.80b, Fig. 4.22) is, as would seem reasonable, similar to that in the radiative portion of
a composite polytropic model, then the equation of motion (Eq. 4.82) remains valid (and so
too, therefore, do the results) though with the funnel base temperature now given by Eq. (4.90)
rather than by Eq. (4.78).

§4.7 Conclusions

For the motion of a bullet above an infinite, planar radiator for which the emergent, frequency
integrated specific intensity is given by the Eddington limb darkening approximation, the ter-
minal speed is 0.5144c. This is marginally higher than the figure of 0.4514c for motion above
an infinite, isothermal plane. If the emergent, frequency integrated specific intensity is given
by a generalisation to the Eddington limb darkening approximation then the terminal speed
is lowest, with a value of 0.3139¢c, in the extreme limb brightening limit and highest, with a
value of 0.6096¢, in the extreme limb darkening limit. This trend results from the action of
aberrated, blue-shifted photons emanating from the radiator limb which for the limb brightened
radiator account for a greater proportion of the total energy flux than do photons arising from
a similar location on the limb darkened plane and, therefore, for a given energy flux emergent
from the plane and a particular bullet velocity, provide a greater decelerative force. Regardless
of whether the plane is limb brightened or darkened, motion parallel to its surface is always
attenuated with the degree of attenuation being greatest for the most limb brightened radiator.
Also, for a given degree of limb brightening or darkening and a particular speed parallel to the

z-axis the degree of damping of the velocity component parallel to the plane surface is greatest
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when the direction of motion is downwards towards the radiator.

If the accretion funnels of SS433 are modelled as infinite cones for which the blackbody
surface temperature decreases exponentially with radial distance from the apex and the scale
heights are chosen such that the effective surface temperature is in agreement with the obser-
vations then, assuming a funnel base temperature of 8 x 108 K, appropriate scale heights are
~ 0.1R,4. Since the terminal speed is strictly attained in the limit where ¢ — oo it cannot
be determined precisely but only to a high degree of accuracy if a suitably long time interval
is employed; in this work a period of 10'® dimensionlessv time units was used. The terminal
speed is dependent on the parameter X which is given by the ratio of the power intercepted by
the bullet to its rest mass energy all times the light crossing time across one scale height. For
a given value of the parameter X the terminal speed is found to be remarkably independent
of the height above the funnel apex at which the bullet is formed if this height is less than
roughly one scale height or equivalently one tenth of the accretion disc radius. If the release
point exceeds this rough limit then the terminal speed which can be achieved greatly decreases.

Observational uncertainty on the jet speed is about 0.5% and therefore any relative devia-
tion in the bullet’s speed once it has attained 99.5% of its terminal speed will be comparable to
this observational uncertainty. The minimum time taken by the bullet to attain 99.5% of the
terminal speed occurs at a height of approximately one scale height above the apex. This same
limit also marks the boundary beyond which the distance taken by the bullet to attain 99.5%
of its terminal speed greatly increases. For release heights less than about one scale height the
attainment distance is, like the terminal speed, remarkably independent of the initial height.
The value of the parameter X required for the attainment of a specific terminal speed is par-
ticularly insensitive to the release height for narrow cones with semi-angles less than about 4°.
This insensitivity is a very important feature and may partially explain why the observed speed
of the jets in SS433 is so constant. The attainment of a terminal speed of 0.2602¢ within a
funnel semi-angle 1° necessitates that the value of the parameter X be 2052. For the accepted
values of the funnel semi-angle, the speed of the jets in SS433 is very close to, if not at, the
highest that can possibly be achieved.

The minimum attainment time taken by a bullet to achieve a speed of 0.2602¢, which
represents 99.5% of the terminal speed, within a funnel of semi-angle 1° with a base temperature
8 x 108 K is ~ 80s for an accretion disc of radius 10° m and ~ 614 s for an accretion disc of radius
10'°m. The former value is in particularly good agreement with the observations which indicate
that the acceleration time-scale is ~ 100 seconds. The corresponding attainment distance is
~ 6R4q for a disc of radius 10° m and ~ 5Rg44 for an accretion disc of ~ 10'® metres. Therefore,
if the attainment distance is to be comparable to the 101°m indicated by observations then
the disc radius needs to be less than ~ 1.7 x 10° metres. However, if Rsg ~ 10° m then, for a
funnel base temperature of 8 x 108 K, the funnel semi-angle must exceed ~ 0.8° if a terminal
speed of 0.2602¢ is to be possible even for a likely minimum bullet mass of 5 x 102°kg. Funnel

semi-angles in the upper part of the range of accepted values and accretion disc radii less than
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~ 1.7 x 10° m are, therefore, preferable.

Unlike that for motion above an infinite, isothermal planar radiator the terminal speed of
matter moving axially above a finite, isothermal radiating plane is not restricted to one universal
value. Instead, the terminal speed is dependent on the parameter X which is identical to the
parameter X mentioned above excepting that the characteristic time scale is given by the light
crossing time across one plane radius. The initial height of ~ 0.1R, denotes the rough limit
before which, for a given value of the parameter X, the terminal speed is quite independent
of the release height and beyond which the terminal speed falls sharply and the attainment
distance rises quickly. This dependence of the terminal speed on the parameter X permits the
attainment of highly relativistic terminal speeds e.g. terminal speeds in excess of 0.99c are
possible for motion above a thin accretion disc with model parameters suitable for neutron star
accretion. The marked increase in the terminal speeds that can be achieved is attributable to
a considerable decrease in the effectiveness of photons emitted from the limb of a finite, planar
radiator to provide a decelerative force compared to those emitted from the limb of an infinite,
planar radiator.

A cursory, relativistic treatment of motion above a spherical, isotropic radiator showed
that there is a typical reduction of ~ 2% in the continuum radiation pressure for wind speeds
~ 3000 km/s relative to that derived in the Newtionian limit. Although the discrepancy is
negligibe for the range of wind speeds known to date, a relativistic treatment should be adopted
for wind speeds much in excess of 3000 km/s which are most likely to occur as a result of black
hole accretion in AGN.

Obvious similarities exist between the exponentially decaying temperature profile model
and that for the finite, isothermal plane as regards the behaviour of the terminal speed and
attainment distance both before and beyond a model dependent release height. Motion within
the radiation field of a finite, isothermal funnel is no different: the terminal speed is, for a
given value of the parameter X4 and the funnel semi-angle, constant if the release point is
located anywhere between the funnel apex and a point just below the funnel mouth. Motion
within a narrow funnel is characterised by a period of very rapid acceleration on the immediate
approach to the funnel mouth. For all funnel semi-angles the maximum ezit speed is identical
to the terminal speed above an infinite, isothermal plane.

For model parameters appropriate to SS433 the contribution made by the exterior, spherical
surface of the accretion disc in enhancing the terminal speed is completely negligible. A terminal
speed of 0.2602¢ can be achieved with a funnel of semi-angle 0.01 rads if the parameter X,4 has
the value 2.36. For a bullet of minimum cross-section and a mass of 102! kg this corresponds to
a temperature of 2.4 x 108 K. On account of the inverse proportionality of the temperatufe to
the square root of the bullet radius this quoted funnel temperature represents a rough upper
bound on that required for the attainment of a terminal speed of 0.2602c. The minimum
attainment time occurs for an initial height given by 0.98R.4. For an accretion disc of radius

101°m the attainment time and distance are ~ 63s and ~ 1.37R,q respectively. These results
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are in excellent agreement with the observations of SS433.

A terminal speed of 0.2602c can be achieved above a finite, polytropic funnel of semi-angle
1° for which the run of temperature with radius is appropriate for a system in radiative equilib-
rium if the parameter Xqq has the value 1235. For a bullet of mass 102! kg and dimensionless
radius r5, = 103 and a disc of radius 10° m this represents an acceptable base temperature
of 1.17 x 108 K. However, for the simple polytropic model considered this central temperature
requires that the mass of the disc be in excess of 100M which is far greater than any realistic
upper bound to the disc mass unless adequate account is taken of the compact object located
at the disc centre. The terminal speed is independent of the height of bullet formation up
to a distance 0.55R.q4 from the funnel apex. The minimum attainment time taken to reach a
speed of 0.2602¢, which corresponds to 99.5%, of the terminal speed, is ~ 300s for an accre-
tion disc of radius 10° m whilst the minimum attainment distance, which is independent of the
accretion disc radius, is ~ 23R,4. This large attainment distance indicates that the polytropic
temperature profile utilised in the model is inappropriate for S5433.

To summarise, the best match to the observations, particularly the attainment of a termi-
nal speed close to the funnel mouth, is obtained from the model in which the accretion disc
funnels of SS433 are represented as finite, conical isothermal radiators. As I have previously
mentioned, it is inconceivable that the accretion funnels are truly isothermal over their entire
length though it may be that the temperature gradient along the length of the funnels is much
smaller than anticipated. A lowering of the temperature gradient may result if radiation from
the hottest regions near the funnel base is absorbed then re-radiated by those further from the
apex thereby directly raising their temperature above that for material equally distant from
the funnel apex but located within the accretion disc. This is analagous to what has been
termed the ‘reflection effect’ which occurs in binary systems. Possible observational evidence to
support this suggestion is provided by the periodic variation in the optical continuum spectrum
(Wagner, 1986) which may be due to high temperature radiation being scattered or re-radiated

from regions near the funnel mouth.
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Chapter 5

Future Work

§5.1 Introduction

In this concluding chapter I will present topics related to the work in this thesis which could be
considered in any future investigation. The first, and principle topic, involves what has been
termed the Compton rocket effect (O’Dell, 1981). The term ‘rocket’ refers to the increase in
the radiation pressure experienced by a hot plasma over that experienced by a cold plasma in
the presence of an anisotropic radiation field due to Compton scattering of the incident photon
flux. A hot plasma is driven away from the radiation source by both the incident photon
flux and by an anisotropic loss in internal energy. The significance of the latter contribution
to the total driving force increases with the internal energy of the plasma. In §5.2 below I
will derive the Compton rocket equation of motion and highlight its similarity with the bullet
equation of motion derived in §2.6 and, in addition, present the equation of motion in a form
which ultimately permits a fluid treatment of the plasma. The solution of the fluid dynamical
equations of motion for a plasma confined within a conical radiator will be left as a topic for
future research. An expression for the radiation force per unit volume acting on a plasma at
rest within the radiation field produced by an infinite, conical radiator of uniform brightness
will be derived and the magnitude of the enhancement in the radiation force attributable to
the Compton rocket effect in the context of SS433 will be considered. The remaining topics,
presented in the final section, represent a series of worthwhile improvements and extensions

which are related specifically to the ‘bullet model’ outlined in the previous research chapters.

£5.2 The Compton Rocket Effect

§5.2.1 Derivation of the Fundamental Equations

Consider a volume element of plasma moving with a flow velocity 02(1) s in £S(;), the rest
frame of the radiation source. Let the instantaneous inertial rest frame of the plasma element
be denoted by £S(3). Consider one particular electron in the plasma element that is observed in
£S(s) to have a thermal velocity cg @ Since the number of Compton scatterings is a countable
quantity it is a Lorentz invariant. By Eq. (2.8) it is evident that d¢(3)y = ¥(2).d¢(3) and therefore

the scattering rate of this particular electron, as observed in £S(3), is
dNpy 1 dN
dtz) Y2y digs)

(5.1)
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where

i
Yy = ——— .
V1= Play

In the instantaneous rest frame of the electron (£S(s)) the scattering rate is given by

dt(3) // codn(s) (5.3)

where o is the Compton cross-section and dn(s) is the differential photon number density in

(52)

£S(3) which is defined as the number of photons per unit volume within the frequency range
v(3) to v(3)+ dy(3) moving within the solid angle d€2(3); about the direction E(s),—. The subscript
‘7’ indicates that the parameter corresponds to that of the incident photons. The next step

makes use of the fact that
n . .
- = Lorentz invariant . (5.4)

This can readily be deduced as follows: From the definition of the photon differential num-
ber density given above and by the definition of the differential number of photons given by
Eq. (2.57) it is clear that

z, k,t)d3%k = (2“) f(z, mk ) ridrdQ . (5.5)

By Eq. (2.58) the distribution function f(z,k,t) is a Lorentz invariant whilst by Egs. (2.67)
and (2.69) v2dQ? is also a Lorentz invariant. Since vdv must transform in the same manner
as v? the quantity vdvdQ) is a Lorentz invariant too and, therefore, dn/v satisfies Eq. (5.4).
Utilising this invariance and the Doppler shift relation given by Eq. (2.63) the scattering rate,

as determined in the instantaneous rest frame of the electron, can be written as

dt(s) .[/CU'Y(?)t (2)t _’9(2),) dn(s) . (5.6)

According to Eq. (2.59) the energy attributable to the passage of photons in the frequency
range v to v + dv within a solid angle dQ2 about k across a differential surface element of area

dA and unit normal 2 in a time interval d¢ is
2m 27y ;
dE, = - hf(:z —L ) 3 dv dQ cdt (k n)dA (5.7)

Equating this expression with the definition of the specific intensity given by Eq. (2.23) results

in the identification
fla, =k t)= 5" (5-8)
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which upon substitution into Eq. (5.5) yields

dn= L@ED 40 (5.9)
chv
Thus, Eq. (5.6) can be expressed as
(5.10)

i {202y k(2yin 1)) .
// . L) (2(2), k(2 (1 = Blaye 'E(z).') dv(2y: dQay; -

dt(3) hV(g),-

In the instantaneous rest frame of the electron the frequency of a photon prior to scattering,
V(3)i, 1s related to that after Compton scattering, v(s),, according to the relation

Yy = ——r (5.11)
1 + el COL (1 et k(3)‘ k(3)3)

mec?

where m, is the electron rest mass (Blumenthal and Gould, 1970). The Thomson limit corre-

sponds to the regime in which

hyay < m.c? (5.12)
or equivalently, by Eq. (5.11), to that in which
V(3)s R V(3)i - (5.13)
By the Doppler shift formula, Eq. (5.13) can be written as
L= By ke v (5.14)

l/(z), ~
‘é(z)z k(2)s

and, upon inclusion of Eq. (5.14) into Eq. (5.10) as the argument of a delta function, permits

the scattering rate in the electron rest frame (Eq. 5.10) to be expressed as

Lon@opkeyta) (_, 1
dt(a) ///{07() hv(2)i ( Biay _(2)')

L= By, - k2
x 6|uay — | —=2 N }du(z),» dv(ay A0y . (5.15)
1- é(z)z T2(2)s

Eenid

In the instantaneous rest frame of the electron the Thomson differential cross-section (Blumen-

thal and Gould, 1970) is

do 3 : : 2
—_ = - 5.16
&y~ 1677 {1 + (&(3). k(s):) } (5.16)
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from which it can readily be shown that in the flow frame (£S(2)) the Thomson differential

cross-section is

N “ 2
d 1 — ko - &
d(z_o' :-1——63—1;0'1\ 1 + 1-— " - (2)i (2)s -
@ Yz (1 =By E(z»‘) (1 =By &(2),)
x ! : (5.17)

[7(2): (1 - E(z): 'E(z)a)] ’

With reference to Eqgs. (5.1) and (5.15), the scattering rate in the flow frame can then be written

as

_dN — I"(z)i(E(Z),&Q)i,t(Z)) .
dt(Z) B ////{ hV(z),' (1 - é(2)t ’k(?)l')

1=8. ko
2y 2(2)i ( do )
x 6|yys — | —————— il == ) pdw)i dvz)s dQ(2y dQ(2), - (5.18

[(2)3 (I“E(z)t'&(z)s)y(z)] Q2 @i dviar Az e - G-18)

For a relativistic electron gas 7(3); > 1 and in this limit

1
27(22)1

ﬂ(g)‘ ~1-— (519)

Therefore, according to the Doppler shift formula, Eq. (2.63), the maximum and minimum

frequencies of the incident photons, as observed in the electron rest frame, are respectively

’ i Vo
vy = Yyl + B2y )viayi & 2y2pv(2)i and 1) = v2)(l — By)veey = 2( X

. (5.20a,b)

Y(2)

The frequency of the scattered radiation as observed in the plasma flow frame is related to that

in the electron rest frame according to the relation

V(2)s = Y(2)t (1 + By 'E(a)s) V(3)s (5.21)

and, therefore, in the Thomson limit the maximum frequency of the scattered radiation observed

in £8(3y is, by Egs. (5.13) and (5.20a),
V(nzlf,z = 27(2)11/8;: = 27(2):"('3‘?.? ~ 47(22)¢V(2)i . (5-22)

Thus, the maximum energy of a scattered photon observed in the rest frame of the plasma is a

factor 47(22)t greater than that of the incident photon. The characteristic frequency of a Thomson
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scattered photon is, therefore, ~ 7(22),1/(2);. Though the corresponding energy of this photon is
large it is small in comparison to the rest mass energy of the electron if hy(z); < mec? /7&"2)1
which, therefore, loses a small fraction of its total energy as a result of each scattering. In the
Klein-Nishina limit this is not so and the scattered photon carries away a considerable fraction
of the electron’s energy. In either case the relativistic electrons undergo Compton cooling, a
process which is commonly referred to as the inverse Compton effect. In the reverse situation,
where the incident photons are more energetic than the scattering electrons, the photons will in
general lose energy due to the Compton recoil of the electrons which, in turn, becorne Compton
heated. Before proceeding further with derivation of the fundamental equations I will briefly
consider the applicability of Thomson scattering in the context of SS433.

A likely upper bound on the temperature at the base of the accretion funnels is 8 x 108 K.
For a plasma at such a temperature the most likely thermal speed of the constituent electrons
is ~ 0.575¢ (see below) and, consequently, the typical maximum frequency of any radiation as
observed in the rest frame of an electron is ~ 2y(3);. For a jet speed of 0.26c the maximum
frequency of any incident radiation observed in the flow frame is ~ 1.31(;); and therefore
1/("3‘;',.” ~ 2.6v(1)i. If the funnel walls radiate as a blackbody at a temperature T then according

to the Wien displacement law the frequency at which the maximum in B, (T") occurs is
v=588x 108THz . (5.23)

Therefore the typical maximum frequency of the incident radiation as observed in the electron
rest frame is v37 & 1.22 x 102° Hz which corresponds to a ratio hu('g;f/mecz ~ 1. This ratio
is the greatest that can possibly be achieved in SS433 for a photon with a frequency given by
the Wein displacement law and, since the brightness of a blackbody drops very steeply with
frequency beyond the maximum, it is also a very good indicator of the absolute maximum ratio.
Evidently the problem should ideally be formulated with the incorporation of Klein-Nishina
scattering. I will, however, leave such an analysis as a topic for future work and continue in the
Thomson limit, but now aware of its limited applicability.

As mentioned above, in the Thomson limit, a distribution of electrons undergoing Compton

cooling lose a small fraction of their energy as a result of each scattering. In the flow frame the

energy gained by the photon is simply
A&)pn = hi(2)s — hr(zyi (5.240)

for which the corresponding change in momentum is

hU(z), ~ hV(z)" -
APeaypn = Tk(z)s —— ko (5.24b)

The rate at which the electron loses energy in the flow frame is given by the product of the
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scattering rate in the flow frame (Eq. 5.18) with the energy lost at each scattering (Eq. 5.24a)

leading to the mathematical expression

d5(2)e Ly, "3(2) _(2),,t(2)) .
i) //// By (1= Beaye - k) (hwiays = hays)

1-4 ko
E(2y " =(2)i ( do )}
x 8| vzye — | == o] (29— Pduay dvays A2 A2y, (5.25a)

[ Y (1 =By k2)s Y dQ(2), (2)i d8(2)

Similarly, the rate at which momentum is transferred to the electron by the radiation field is

dp (29, k¢ayir 1(2)) - hyeays » hyggyi -
%P _ vy &) k@i t@) (o) (s a
dt)y //// { hv(2)i (1 By k(z)')( O L(z)')

1=8. ko

B2y " 2(2)i do

x8lyays — | —————— | 2 ( dy(ayi dy(a)s dQ2)i dQ(ay,. (5.25b)
l: ) ( 1- g(z)t : &(2)3 ) d€(z), ( *

The procedure for evaluating these integrals is lengthy but, on account of their similar form,
is much the same for each. For this reason the approach to integrating Eq. (5.25a) will be
outlined and the integrated form of the rate of change of momentum equation merely stated,
the remaining manipulation being left to the reader.

The integration over 1(3), is trivial and requires no explanation whilst the integration over
V(2)i can be performed by appealing to the Lorentz invariance of I,/v® (Eq. 2.60) and the
Doppler shift formula (Eq. 2.63). The rate of energy loss equation then has the form

df(g)e N 4 -
T // Iay( x(l)’k(l)t’t(l))'y(l)f( _/Z(l)f'ﬁu)s) (1—2(2):'&2):')

1= By, kay
o || 2 @) (ﬁ"—) }da(z),. dQ2), (5.26)
1= By ks (2)s

where I(;) is the frequency integrated specific intensity as observed in the rest frame of the
radiator. The integral over (3), is best performed by transforming to the instantaneous rest
frame of the electron. Using the equation for the transformation of the raypath vector (Eq. 2.62)

it can readily be shown that

1= B e

Sy 22y 2 .

C—ﬁ—-k— = 1= (1 +£(2)t k@)‘) (1 +£(2), "—c(z)i) -1 (5.27)
oy " =(2)s

which upon substitution into Eq. (5.26), and with reference to the differential Thomson cross-



134

section given by Eq. (5.16), yields

dg(z)e - 4 X
dt2y 167r // Ty oy o) oy (1_[—30)1'-’9(1)") (l‘ﬁ(z)f’—‘mi)

x (e (1+ B ko) (1= Braye ko) = 1] [1+ (ko - ko) ] }dﬂ(z)x’ Q)
“ n 4 A
= —O'T/{-’(1)(&1)’&(1)-':%1))7?1)1 (1 =Buyy ~£(1),-) (1 =By 'ﬁ(z)i)

X [‘/én (1 = Blay: -E(z),-) - 1] } d€(z); - (5.284)

Upon integration over the frequency of the incident radiation, the frequency of the scattered

radiation and the solid angle into which it is scattered, the rate of change of momentum equation

(Eq. 5.25b) reduces to

dp 4
£(2)e _ oaT M 4 - “
dtzy / {I(l)(z(l)’&(l)ht(l))7(1)f (1 —Buy, 'E(l)") (1 ~ Bay '£(2)")

X [7(22)t ( =By —(2)1) Biay — k(z).'] }dﬂ(z)s . (5.28b)

For the particular case in which the flow velocity is zero, the inertial frames £5(;) and £S)

are identical and Eq. (5.28b) simplifies to

dp
=(l)e __ O'T
dGta, e {’(1)(’”(1) ko)) (1= By, - k)
) ) A
x [‘7(1): (1 =By '.’E(l)i) B1ye “."2(1);] }d9(1)«' : (5-29)

In the limit where the frequency integrated specific intensity is replaced by the frequency inte-
grated Planckian (Eq. 2.47) and the Thomson cross-section is replaced by the radiation cross-
section of the bullet this is identical to Eq. (2.85) derived earlier, through a largely macroscopic
approach, to describe the three-force experienced by a grey, massive bullet moving within a
blackbody radiation field. Since an electron has no physical size, Eq. (5.29) gives a very accu-
rate representation of the equation of motion in the Thomson limit regardless of the physical
form of the radiation field. This same degree of authenticity applies to the motion of a massive
bullet only within the radiation field created by an infinite, isothermal radiator. For other radi-
ator configurations the problem is blighted with finite size effects which, although considered in
previous chapters in order to ascertain the degree of validity of the various equations of motion,
ought to be quantified properly in any future analysis.

From inspection of Egs. (5.28a,b) it is obvious that both integrands are functions of the

incident raypath three-vector as determined in both frames £S(;) and £S(2). To make further
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progress in the integration of these equations it is necessary to select one specific inertial frame
and to perform all calculations in that frame. Since the frequency integrated specific intensity is
expressed in terms of the coordinates of the rest frame of the radiation source, it is the natural
frame to choose.

To transform the integrand of Eq. (5.28a) to £S(;) both the transformation properties of

dS2(2); and the quantity (1 - _(2),-) need to be known. The transformation of an element of

—(2)t
solid angle is described by Eq. (2.70) whilst the transformation equation for the latter quantity
can readily be deduced as below.

In the flow frame the four-velocity of an electron is V(‘;) = 7(2),c(1,£(2)‘) whilst the prop-
agation four-vector of an incident photon is given by K(“.‘,)‘. = (K(oz).., k(3)i)- In £5(1) these same
four-vectors are given by V(‘;) = Y1)yrC (l,ﬁ(l)r) and I<(“1)i = (K(ol)‘.,lc_(l)‘-) respectively where the
subscript ‘r’ indicates that the velocity of the electron as observed in the radiation source rest
frame, ’6(1) , consists of the relativistic resultant of the velocities ﬂ(l)[ and _ﬂ_(z)‘. Both E(l)r
and (1), will be determined shortly. Utilising the fact that any four-vector product is a world

scalar it follows that

Yy Ky

1- By - kayi) - (5-30)
7(2)11((2). ( R )

p)K(l)iu =

Bk = Ve Ky K

Then, by the definition of the propagation four-vector given by Eq. (2.21) and the Doppler shift
expression given by Eq. (2.63), it is obvious that

1=8,. . -k
; Y(1)r C(yr =1
1= 8, k= : (5.31)
Z(2ye  =(2) YY) (1 _Lq(l)! 'E(1).‘)

which upon substitution into the rate of energy loss equation (Eq. 5.28a), along with the

equation for the transformation for an element of solid angle (Eq. 2.70), yields

d€(2)e Yy

——— = —07T Iny(Zo1y, Koy t 1- ,-E i
3 " {(1)(_(1)_(1). m)( Ay (1))

X [‘Y(z)t'r(l)r (1 — By &) - Y1)s (1 =By 'E(l)i) ] } dQq1); - (5.32a)

Substituting these same expressions into the equation for the rate of momentum transfer
(Eq. 5.28b), along with the equation for the transformation of a raypath vector (Eq. 2.62),

gives
dE(2)e . oTY)r ’e ’} 1
=T 1(1)(&(1)_(1):'11(1)) (1 - .H(l)r ‘..(1):') YY) ( - ﬂ(l) 1):) é(g)t

dt(2) ¢ Y

: —(l)t By )i
—kayi - { (vays = 1) T_(f) - 7(1)/}5(1);] } dQqy; - (5.32b)



136

All that is now required for Egs. (5.32a, b) to be fully specified are expressions for the functional

dependence of both é(l)r é(l)f and é(z)z'

four-velocities have been stated above and the appropriate transformation is

and 7(1) on These can readily be derived: the relevant

Vi = A (=By IV (5.33)

where the general boost matrix, A(8), is given in Eq. (2.4). The time-component and three-

vector component of Eq. (5.33) respectively yield

Y1) = YR YV)f (1 +8; -ﬁ(z),) (5.34a)
and
By By
2(2): + ) Yr - [7(1)1 —1] ﬁ%‘)l g(1)j
é(l)r = . (5.34b)
100t (14 Bayy *Baye)
Thus far, equations describing the rate at which a single electron moving with a thermal
velocity 3,.. . in a flow frame which itself moves with respect to the radiation source with a

E(ay
flow veloci(t; _ﬂ_(l)f have been derived. I shall now extend the analysis applying the equations
expressed above to an ensemble of electrons, or equivalently to a volume element of plasma.
For this to be possible it is essential that the distribution of thermal velocities of the electrons
be known.

For a relativistic gas in local thermodynamic equilibrium (or at least collisional equilibrium)

consisting of material particles of rest mass my, the distribution function is (Synge, 1957)

2
n _ n(z) __P*V, . _ <
g(‘Pv P ‘/Ihic.) - 47rm8c31{2(mggo) exp (P C2 WIth (P ]CT (535(1, b)

where T is the absolute temperature of the gas, n(z) is the particle number density at z, P¥ is
the particle four-momentum, V* is the flow four-velocity and K, is a modified Bessel function

of order 2. The number of particles within a phase space cell d®z d®p is then given by
dN = g(p, P*V,,z) 8z d% . (5.36)

Having expressed the rate of energy loss equation (Eq. 5.32a) and the rate of momentum transfer
equation (Eq. 5.32b) as functions of the electron thermal velocity, é(z) o rather than momentum
it is preferable, for my purposes to have Eq. (5.36) expressed in terms of ‘beta-space’ rather
than three-momentum space. This requires that the relation between an element of beta-space,

d3£, and three-momentum space, dag, be found.
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In spherical polar coordinates an element of ‘beta-space’ and three-momentum space can

be respectively written as
d’°8 = B*sin0dBdfdé¢ and  dp=p’sinfdpdfde (5.37a,d)

which together imply that

::—2 = ;‘3’:3’; . (5.38)
From the definition of four-momentum given by Eq. (2.12) it is obvious that
pt= pp= mov2c?B? = mici(v? - 1) (5.39)
and it therefore follows that
pdp = mZcZydy (5.40)
which upon substitution into Eq. (5.38), by Eq. (5.39), yields
:Tag = Tﬁ%’;;lij—; =mdc3y® . (5.41)
Hence, the number of particles within an element of phase space dag d3z is
dN = g(p, P*V,,z) mycPy*d®gd’z (5.42)
which, for a spatially isotropic distribution, can, by Egs. (5.35a,b), be expressed as
dN = #(::090) exp {—goP::/“ }75 dagda_x_ : (5.43)

In the plasma flow frame (£S(2)) the four vector product P(‘.:,)V(g),, = ¥(2ytmoc? and therefore
the number of electrons within the comoving phase space cell dsé(z) . dag(z) is given by

Ne(2)Me P

dN, = j exP {=v@imep}rlay 4°B 5, 23 - (5.44)

T 4nKo(mey

The distribution of electron thermal velocities, -’Q(Z)t‘ for various temperatures is illustrated in

Fig. 5.1. The most probable thermal velocity, .‘QZZ)V is, by Eq. (5.44), such that
"—d"' {exp ("7(:)tme¢) 'Y(sz)gﬂ(zz)t} =0 (5.45)
dB(2y:
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the solution to which satisfies

(MR - Sy*)t ~ (Me<p)7()t + 3= 0. (5.46)

For temperatures of 108, 4 x 108 and 8 x 108K the most probable electron thermal velocities

are 0.187c, 0.391c and 0.575c respectively.

4 x 108

P(2)t

Fig. 5.1. The distribution in speed for an electron gas at the temperatures indicated. The ordinate is proportional to
the number of electrons with speeds in the range P(2)¢ +d/3(2), Each graph has been normalised so as to have
a maximum of unity.

As an aside, consider the behaviour of Eq. (5.44) for large values of y? or equivalently for
low absolute temperatures. For large x the modified Bessel function Kn(x) is given by the

asymptotic expansion (Abramowitz and Stegun, 1970)

A" (X ~ (o4 A + N 2) A+ Wilre  m = 4n2  <5'47a’6)

and therefore for 3<C 1, Eq. (5.44) is approximately
/ me \ a ft Xmtc2\

V2kT) 6XPl T2 ~ kT

which is the familiar Maxwellian distribution. The temperature 7 in Eq. (5.356) is then identical

to the kinetic temperature.
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Before entering into the analysis for an ensemble of electrons I will briefly define the mean

of a quantity z. For any spatially isotropic distribution this takes the form

z B)d3
(x>=f—7(2;§d—3ﬂﬂ / (8)9(8)d°8 (5.49)

which for a relativistic distribution function can, by Eq. (5.44), be expressed as

m 1
(2) = P __ /0 2(B) exp {~mopr} 752dB

Ka(moyp)
= ¥ /m z(y) exp {—moep cosh y} cosh y sinh? ydy . (5.50a)
Ka(moyp) Jo
where
y =cosh™ . (5.500)

Returning now to the task of expressing the equation of motion in a form more suitable for
a fluid treatment. By Eq. (5.49) the expected rate of energy loss per electron and the expected

rate of momentum transfer per electron in the flow frame are respectively

dg(z)e _ 1 dé:(z)c 3
(F2) = o [ T2 s(p0) %8 (5.51a)

N(2)e

where d&(2)./dt(2) is given by Eq. (5.32a) and

dp 1 dp
=H(2)e \ _ —(2)e 3
< df(z) > - n('l)e dt g(ﬂ(2)¢)d ﬂ (5.51b)

where dz_a(z)e/dt(g) is given by Eq. (5.32b). Hence the rate of energy loss per unit volume and

the rate at which energy is transferred to the plasma per unit volume are

d5(2)> / d&(a)e 3
= d 5.52
<dt(2) . !I(ﬂ( y)d°8 (5.52a)
and
dp
223 = / g(ﬁ( ) d38 (5.520)
t2) [y,
respectively.

At this stage it is relevant to introduce the four-force density F#. As the name suggests it
is a slight variant on the four-force, F#, which, for a particle of constant rest mass, is given by
Eq. (2.20). The four-force density is defined to be

-, _ Fr 4y (f-v
F“:AVU = AVO( c ,f) (5.53)
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where AV} is a proper volume element. Since F'* is a four-vector and AV} is a world scalar,

the four-force density is a genuine four-vector. If the ordinary force density is defined to be

_f_ = i/AV it then follows that
Fr = (i—cgi) : (5.54)

The rate of change of momentum per unit volume given by Eq. (5.52b) obviously comprises
the three-vector component to the four-force density in £S(3) whilst it can easily be shown that
the rate of energy loss per unit volume given by Eq. (5.52a) comprises the time-component of

the four-force density in £S(3). Therefore, since
Fly = My(=Byy ) Fey (5.55)

the rate of energy loss per unit volume and the rate of change of momentum per unit volume

in the rest frame of the radiator are given respectively by

d€n) > < d€(2) > dp(s)
—y = —2) 4 (22 5.56
<dt(1) v\ /, 2 dtzy [, (5:564)

and

dp dp d& 1 dp

=(1) =(2) (2) R(eVY (2

_— = ( —=£ + 4 70)f < > + I (== J¢j . (5'561,)
< dt(yy >V < dt(9y >V { ) dta) / ﬁ(zx)! =1)f di(a) v —1)f

If the plasma is treated as a relativistic fluid it is then possible to determine the fluid-dynamical

equations which can be expressed in the form (Mihalas and Mihalas, 1984)
MK = F# (5.57)

where M#" is the material stress-energy tensor and the semi-colon, as is conventional, signifies
the covariant derivative. I will not, in this work, attempt to solve the fluid-dynamical equations
but do intend at a later stage to investigate their solution with particular emphasis on config-
urations in which the plasma is constrained to move within the confines of a conical radiator.
This represents a major future research topic. In the meantime consideration will be
restricted to the case where the plasma flow velocity é(l) ;= 0. I will determine the radia-
tion force exerted on the plasma per unit volume and the rate of energy loss per unit volume.
Though this reveals nothing about the terminal flow speed of the plasma it will provide an
indication of the typical enhancement to the initial driving force, due to the finite temperature

of the bullet, which can be expected.
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§5.2.2 A Simple Solution of the Fundamental Equations
If the plasma is at rest with respect to the radiation source such that é(l) ;= 0 then the
reference frames £S(;) and /S(s) are identical and the rate of energy loss per electron is, by

Eq. (5.28a), given by

déaye _ i i 2
oy —"T/ oy ey by ty) (1= Baye-Eea) [ (1= By Ea) =1] 490y
(5.58)

whilst the rate of transfer of momentum to the plasma per electron is given by Eq. (5.29). For
motion within an infinite conical radiator of uniform brightness I(;)o and semi-angle « these

equations, upon integration over all directions of the incident raypath vector &(l)i' become

d‘c/'(l)e 1 2 2 2 2
Ay —37oTl(1)0 Y1)t 6 (ﬂ(l)t, +Bay, + ﬂ(l)z,) (cosar+1) —

(ﬂa):, + ﬂ?l)ty) (cos®a — 3cosa —2) + 2,3(21),‘ (cos®a + 1) — 2Bay, sin’ a} (5.59a)

and

dp 1
1) nor
d.;((”e =-3 1(1)0{7(21), [6(cosa +1)- (ﬂ(zl)t, + ﬂ(zl),y) (cos’a —3cosa —2) +

By, By, [cos? @ — 3cosa — 2]
2621y, (cos® & + 1) — 601y, sin a)] B |~ Bay, [cos?a —3eosa — 2] }.(5.5%)
ﬁ(l)t. 3Sin2 o — 2ﬂ(1)t‘ [0083 o+ 1]

For a spatially isotropic distribution, the differential number density of electrons in £5(;)

can, by Eq. (5.44), be expressed as

dngye = d LY 5.60
(1)e = dnye(Bey) yp (5.60a)
where
Ne(1)Meyp
dnne(Baye) = —I\f:(:ne;) exp { —7(1yme®} 11y By 481yt - (5.60b)

Therefore, with reference to Eq. (5.49) and denoting any of the three cartesian coordinate axes

by the subscript ‘j°, the following identities hold true:

d dn(1ye 27 (™ sinf cos 8df d
<ﬁ(1)z.> _ Jhop.dnqe _ [ Bandna)(Buy) Jo Jo sind cos ¢ _o (5.61a)
J n(1)e n(1)e 4r
<72 5 >_ S 8yBay,dnqye [ iy Baydnye(Bay) [77fy sinfcos§dfdg 0 (5.618)
(DeP(1)e; n(1)e n(1)e an .
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f7(21)tﬂ(21)g‘dn(l)e 3 S 7y Bty ednaye(Baye) [27[¥ sin 6 cos® 6 d9 dg

2 2 —
<7(1)tﬁ(1)11’> - n(1)e N(1)e 4w
f7(21)zﬁ(21)tdn(1)f 1/,
- 3n(1)e -3 <7(1)‘ﬁ(1)‘> ' (5.61c)

Hence, by Eq. (5.59a), the expected rate of energy loss in a unit volume of the plasma due to

the incident photon flux originating from the funnel walls is

d&() 81 -
<_dt(1) . = —?UTI(l)o (cosa+ 1) <7(1)U6(1)t> (5.62a)

whilst the expected rate of momentum transfer to a unit volume of the plasma by the radiation

field is, by Eq. (5.59b),

=y _T9T 2/ 2 n 9
<dt(1) >V = I(1)0 {1 + 3 <7(1)tﬂ(1)¢>} s’ o (1) . (5.62b)

These results are similar to those derived by O’Dell (1981) for a plasma located in the vicinity
of a point source of radiation with respect to which it is at rest. The important feature of
Eq. (5.62b) is that for a relativistic plasma, the radiation force experienced per unit volumeis a
factor 14 2/3(7¢,,,57),) above that for a cold plasma. This enhancement is due to anisotropic
Compton losses in the plasma which are a direct consequence of the anisotropy in the radiation
field to which the plasma is subjected. The initial rate of acceleration of a relativistic plasma
moving within a conical radiator will, therefore, be greater than that for a cold plasma; a
feature which should reduce the typical timescale for the attainment of a given fraction of the
terminal speed. This is significant in SS433 where the acceleration timescale is ~ 100 seconds.
Equation (5.62a) indicates that the hotter the plasma the more rapid is its rate of cooling
and consequently the enhanced acceleration rate may only be realised in the initial stages of
the plasma’s motion. However, in a future treatment consideration should be given to heat
transfer from the bullet’s interior to its surface. (An analogous situation arises in the sun
where rapid heat loss from the surface is offset by heat supplied from the interior.) The full
implications of the rate of energy loss equation on the rate of bulk acceleration can only be
determined accurately within the context of a full fluid treatment of the plasma. Such an
approach has previously been undertaken by Cheng and O’Dell (1981) and Phinney (1982).
The former authors considered the motion of a plasma moving above a point source of radiation
and found that the Compton rocket effect can accelerate the plasma to relativistic bulk speeds
on a time scale comparable to that for energy loss. Phinney (1982) concluded that relativistic
bulk speeds can be achieved though with seemingly unreasonable heating rates and, further,
that the Compton rocket effect can significantly alter the structure of thick, radiation supported

accretion discs if some of the electrons are relativistic.
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The importance of the Compton rocket effect is essentially governed by the magnitude of

the parameter which, by Egs. (5.50a, b), is

l//-CO
exp {~me”cosh y) cosh sinh4ydy

o

— eY— - / exp {—m eip cosh cosh 5y —3 cosh 3y + 2 cosh d
16A2(mev) 0 p yi A y y y} dy

=Tr T

i Foymeqy 17 3(rnep) - 3K3(mep+ 2I<i(mep)] (5.63)

A plot ( )t3(\)¢) 35 a funcfi®n °f T for an isotropic distribution of electrons is illustrated in
Fig. 5.2. For a temperature 7 — 8 x 108 K, the likely upper bound on the temperature at the
base of the jets in SS433, (7f1)tPfi)t) = 0.553. Thus the maximal initial acceleration that can
be expected in SS433 is a factor ~ 1.37 greater than that possible if the Compton rocket effect

is neglected, as in the analysis of chapters 3 and 4.

01
00
0-1
107 10®
Fig. 5.2. The expected value of versus temperature (Kelvin) for an isotropic distribution of electrons

In the treatment above it has been assumed that the plasma is dilute and therefore that each
electron in the plasma is subjected to the radiation field attributable to the funnel walls. This
is unlikely to be so, particularly in the initial stages of the bullet’s motion. A better treatment
should, therefore, include a realistic description of the passage of the radiation through the
plasma which can, theoretically, be accomplished by solving the equation of radiative transfer
(Eq. 2.38). It. was further assumed that the electron distribution is isotropic in the plasma
flow frame which, according to Phinney (1982), can only be achieved through collective plasma
instabilities. This isotropy in the electron distribution can be expected, principally through

Compton scattering, to lead to a progressive isotropisation of the radiation field with increasing
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optical depth within the plasma. Since the Compton rocket is fuelled by anisotropic Compton
losses resulting from an inherent anisotropy in the illuminating radiation field, this progressive

isotropisation will tend to diminish the effectiveness of the Compton rocket mechanism.

§5.3 Further Considerations

The most pressing problem associated with the analysis in the previous chapters has been the
intrusion of finite size effects. Their result is to restrict the validity of the equations of motion
for a massive bullet to instances where, in essence, the typical bullet length scale is much smaller
than that over which any changes in the brightness of the radiator occur. The exception to
this is the specific case where the radiator is both infinite and of uniform brightness. The most
readily achievable improvement to the model would, therefore, be the full incorporation of finite
size effects into the derivation of the fundamental equations of motion. This should be possible
by extending the derivation described in §2.6.

Throughout the work presented here, the bullets have been assumed to have a constant
cross-section. This will, almost certainly, not be so since the tendency of any hot plasma is
to cool by expansion, converting thermal energy into bulk kinetic energy as it does so. A
simple, preliminary investigation of the effect of bullet expansion on, for example, the rate of
bulk acceleration could be performed by assuming that the bullet expands spherically within
an infinite conical radiator of uniform brightness such that it always fills the funnel. The bullet
cross-section will then be defined in terms of the location of its centre above the apex and
the funnel semi-angle, except for locations beyond a certain height when the bullet becomes
optically thin and the cross-section remains constant.

Attention should also be directed towards the bullet geometry. The form of the bullet will
evolve with the radiation pressure acting over its surface which will change as both the bullet
location within the radiation field, and its velocity, change. An initial step in this investigation
would be to consider the motion of a spheroidal bullet, varying selected geometrical parameters
to determine the effect each has on the rate of acceleration and the terminal speed of the bullet.

In chapter 3 I considered the off-axis motion of a bullet moving above or within an infinite
plane or cone. A worthwhile extension to this work would be an investigation of the off-axis
motion within a finite conical radiator. Such an analysis should yield information on the degree
of jet collimation that can be achieved and, given the observed degree of collimation, could
indicate the region within the funnel in which the bullets are formed.

Further work could also involve the determination of more realistic temperature profiles
for the radiation field within the accretion funnel. One approach is to solve the equations of

stellar structure whilst another possibility could involve the twin polytropic model outlined in

§4.6.2.
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