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ABSTRACT

Inductively coupled plasma-mass spectrometry (ICP-MS) is a rapid and sensitive technique 

which enables the determination of pg ml"1 concentrations of 237Np, 239Pu and 240Pu from 

a single sample. It is a versatile technique with the capability of analysing gaseous, liquid 

or solid samples by the utilisation of different sample introduction techniques. In this 

study, liquid nebulisation and electrothermal vaporisation were investigated. Liquid 

nebulisation was found to be the most reliable technique with a typical detection limit for 

the actinides of 5 pg ml"1, using a minimum sample volume of 3 ml. Inconsistent results 

were obtained using electrothermal vaporisation, but under optimum conditions, a 

detection limit of 0.3 pg ml"1 was obtained, using only a 50 fj\ sample. More typically, the 

detection limit for the actinides was of the order of 1 pg ml"1. It was shown that ICP-MS 

offers certain advantages over a-spectrometric techniques, such as the determination of 

240Pu/239Pu atom ratios and 237Np concentrations.from the same sample within a.matter of. 

minutes. In addition, ICP-MS is more tolerant of sample impurities, reducing the need for 

lengthy, time consuming sample preparation procedures such as those required for a- 

spectrometry.

Application of ICP-MS to the analysis of environmental samples required consideration of 

a number of additional factors. The introduction of liquid samples into the plasma 

restricted the dissolved solids content to less than 0.2% (w/v), to prevent the blocking of 

the nebuliser and overloading of the plasma. This restriction, coupled w ith the low 

concentrations of actinides in environmental media, made the separation of the actinides 

from the bulk matrix necessary. In addition, the high concentrations of 238U in 

environmental matrices resulted in formation of significant levels of 238UH+ in the plasma 

which, in turn, caused an isobaric interference on the 239Pu peak. This was overcome by 

removing uranium from the samples until the final 238U concentration was less than 100 

ng ml"1 and the 238UH+ contribution to the 239 peak was below the detection limit, 

enabling accurate determination of 240Pu/239Pu atom ratios.

An analytical procedure was developed to isolate nuclides of Pu and Np from the bulk 

matrix and uranium using a combination of anion exchange and solvent extraction. This 

procedure was validated by the analysis of a Ravenglass silt sample which had been 

analysed by independent techniques. It was then applied to the analysis of intertidal 

surface sediment and core samples from the eastern shores of the Irish Sea. Good



agreement was found (with linear correlation coefficients of > 0.95) between 239+240pu 

specific activities obtained by ICP-MS and independent data obtained by a-spectrometry. 

A systematic difference was found between the results when different yield tracers were 

used. For some samples, 240Pu/239Pu atom ratio data obtained by Thermal ionisation mass 

spectrometry (TIMS) were also available. These showed excellent agreement w ith ICP-MS 

data, although the precision of TIMS was much greater. To some extent this could be 

accounted for by the limited sample size (1-5 g) available for ICP-MS analysis. Although 

TIMS is a more sensitive technique than ICP-MS for the detection of actinides, like a- 

spectrometry, it requires lengthy sample preparation procedures and the sample throughput 

is less than half that of ICP-MS.

Sediment core samples obtained from areas of accumulating sediments at Maryport and 

the Solway Firth, provided a temporal record of the environmental signature of Sellafield 

discharges. 240Pu/239Pu atom ratio profiles in these cores indicated that sediment material 

deposited at the time of the early discharges from Sellafield had low 240Pu/239Pu atom 

ratios (<  0.10), characteristic of low burn-up material. With time, the 240Pu/239Pu atom 

ratios in the sediments increased until they attained a value typical of the average burn-up 

in a nuclear power station (approximately 0.2). Low 240Pu/239Pu atom ratios were also 

observed in the surface samples of the Maryport core and from some other sites close to 

Sellafield. Although these could be caused by the incursion of significant quantities of 

'older' material, it was concluded that they were more likely to be representative of 

240Pu/239Pu atom ratios in the discharges from Sellafield in the late 1980s. Confirmation 

of this could not be obtained as no information is available on the relative quantities of 

plutonium isotopes in the discharges, or the average burn-up of material reprocessed at 

any given time. The 237Np specific activity profile was obtained for the Maryport core. 

The profile showed some correlation with the available Sellafield discharge data. 

237Np/239+240Pu activity ratios in the core samples highlighted the different behaviour of 

these nuclides in the environment, the average Kd value for Np being an order of magnitude 

lower than that for Pu. Disparities between the expected and observed 237Np/239+240Pu 

activity ratios near the surface of the core suggested a relative remobilisation of Np 

compared to Pu.

Although the marine system is highly complex and dynamic, several attempts have been 

made to describe the system in terms of a simple model. To match the radionuclide 

discharge data with sediment core profiles, two models were investigated. The first 

related the core profiles directly to the annual Sellafield discharge data [Kershaw et al.,



1990], and the second related the core data to the time-integrated Sellafield discharges, 

including a correction term to account for dilution and dispersion of the contaminated 

sediments [MacKenzie et al., 1994]. When applying these to the 239+240pu specific activity 

profiles of the Maryport and Solway cores, it was found that both models were 

inadequate. Comparison of the model predictions with the radionuclide profiles suggested 

that the fine structure of the core profiles closely followed the annual discharge data, while 

the underlying profile matched the time-integrated discharge profile. Empirical 

observations found that the sediment profiles could be described by the addition of a 

fraction of both the annual and integrated discharge profiles, the relative proportions of 

each varying according to the location of the sample site. A t Maryport, close to Sellafield, 

the 239+240Pu specific activities were described by the addition of a greater proportion of 

the annual discharge profile to a smaller fraction of the integrated discharge profile, but the 

reverse was found in the Solway. These observations were insufficient to provide a 

method of deconvoluting the radionuclide core profiles.

In the long-term, assessment of the potential sources and sinks of radiological significant 

radionuclides, such as Pu and Np, is required. ICP-MS offers the opportunity to determine 

environmental levels of these radionuclides and provides information on the 240Pu/239Pu 

atom ratios. It is hoped that such techniques will be applied in the future to observe the 

change in the environmental inventory of Pu and Np and to address the omissions in the 

Sellafield discharge data.
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CHAPTER 1 

INTRODUCTION

1.1 OVERVIEW

Over the last few decades there has been a growing awareness of the detrimental 

affects of contaminating the environment w ith toxic substances. Of particular 

concern has been the release of long-lived artificial radionuclides from nuclear 

installations; concern which has been justified by the increasing evidence that low- 

level exposure to radiation can result in significant health effects [Bertell, 1985]. 

This has led to the continuous monitoring and assessment of the environmental 

impact of released radionuclides [MAFF, 1969-1993; BNFL 1979-1993]. In the last 

40 years the environmental inventories of man-made radionuclides have steadily 

increased as a result of continuous discharges from the nuclear industry, the testing 

of nuclear devices and in situ production from the decay of discharged parent 

atoms. In this study, attention is focused on alpha emitting isotopes of plutonium 

and neptunium. These nuclides dominate in long-term hazard assessment of 

radionuclides released to the environment from the nuclear industry, both in terms 

of their toxicity, and their potential to cause severe damage if they decay within the 

body.

Many investigations have studied the behaviour of radionuclides in the environment 

and obtained information on processes such as their transport, accumulation or 

dispersion and potential for post-deposition remobilisation. This has required the 

development of sensitive analytical techniques to determine the low concentrations 

of radionuclides in environmental media. Traditional methods have been based on 

detecting the products of radioactive decay and although such techniques can be 

both sensitive and specific, they are often laborious, requiring lengthy chemical 

pretreatments and long analysis times. This is particularly the case when alpha- 

spectrometry is used to determine environmental concentrations of Pu and Np, as 

the problems are exacerbated by the low specific activities of the nuclides and the 

requirement for thin, clean sources. In this study, a mass-based technique, ICP-MS 

has been investigated, and methods developed to determine the concentrations of 

the long-lived isotopes of Pu and Np in environmental samples. ICP-MS offers
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certain advantages over alpha-spectrometry: it is rapid, more tolerant of sample 

impurities and can resolve 239Pu and 240Pu, enabling the determination of 240Pu/239Pu 

atom ratios which cannot easily be obtained by or-spectrometry. This technique has 

been used to determine the distribution of 237Np and variation of 240Pu/239Pu ratios 

in marine sediments from the Irish Sea. Interpretation of the results requires an 

understanding of the behaviour of these radionuclides in the marine environment, 

their transport to the sediments and the potential mixing and remobilisation 

processes which may occur within the sediments. The unravelling of the 

environmental record of these radionuclides can potentially provide information on 

the source which may not be available in the records of discharges.

1.2 THE SOLUTION CHEMISTRY OF THE ACTINIDES

The actinides are the transition series from actinium (atomic number, Z = 89) to 

lawrencium (Z = 103), resulting from successive filling of the 5f electron shell. 

Katz et at. [1986a] have extensively detailed the chemical behaviour of the 

individual actinide elements as well as the trends of the series as a whole. A full 

account of this subject is beyond the scope of this thesis, but some of the pertinent 

features are summarised below, with particular reference to neptunium (Np), 

plutonium (Pu), uranium (U) and americium (Am).

Reviews are available for the individual solution chemistry of U [Weigel, 1986], Np 

[Fahey, 1986; Patil et a!., 1978; Hursthouse, 1990], Pu [Weigel et a!., 1986; 

Choppin, 1983; Cleveland, 1970] and Am [Schulz and Penneman, 1986]. Some 

of the general aspects of actinide solution chemistry are discussed below. In the 

environment, the concentrations of the actinides in solution are extremely small, for 

example, 234Th in equilibrium with 238U has a typical concentration of approximately 

10'22 M. In these circumstances, the uptake of particle-reactive species on to 

particulate surfaces can be the dominant factor in controlling actinide solubility. 

More detail on this and the behaviour of actinides in the environment is discussed 

in section 1.4 and the specific chemical procedures required for the extraction of 

actinides from environmental matrices is outlined in chapter 3.
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Table 1.1: Electronic configuration of some actinide atoms and ions

[Katz eta/., 1986b]

Element Gaseous

atom

M + (g) M2+(g) M3+(g) M4+(g)

U 5 f36d7s2 5f37s2 5f36d? 5f3 5f2

Np 5f46d7s2 5f57s? 5 f5? 5f4 5 f3

Pu 5 f67s2 5f67s 5f6 5 f5 5 f4

Am 5f77s2 5f77s 5f7 5f6 5 f5

1.2.1 Electronic configuration and oxidation states

To a large extent, the solution chemistry of the actinides is determined by the 5f 

valence electrons and by the oxidation states of the actinide ions. Table 1.1 shows 

the most likely outer electron configurations of the ground-state gas-phase neutral 

atoms of U, Np, Pu and Am, as well as those for the singly, doubly and triply 

charged gaseous atoms [Katz et a!., 1986b]. In general, due to shielding of the 

nucleus, the energy difference of electrons in the 5f, 6d and 7s orbitals is small 

[Greenwood and Earnshaw, 1984]. As a consequence, actinide ions can be present 

in multiple oxidation states, making their chemical behaviour complex.

The observed oxidation states in solution, including the most stable state and form, 

are shown in Table 1.2. M(lll) and M(IV) states show a strong tendency to 

solvation, hydrolysis and polymerisation due to their high charge. M 02+ and M 022+ 

(the form of the M(V) and M(VI) state respectively) are stable configurations and 

tend to stay as a unit through chemical transformations [Katz eta!., 1986b]. Rapid 

oxidation and reduction reactions occur when transitions do not involve cleavage 

of the metal-oxygen bond, i.e. between the M4+/M3+ and the M 02+/M 022+ couples. 

Other transitions, between M 02+/M3+, M 02+/M4+ and M 022+/M4+, are not 

reversible and tend to occur slowly [Katz et a!., 1986b]. The dominant oxidation 

states are U(IV), Np(IV), Pu(lll,IV) and Am(lll) under reducing conditions and U(VI), 

Np(V), Pu(IV,V) and Am(lll) under oxic conditions [Allard eta!., 1984]. In general,
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actinides in the same oxidation state display similar behaviour although there are 

marked differences between the various oxidation states.

Table 1.2: The oxidation states of some actinide elements [Katz et a/., 1986b]

Element U Np Pu Am Stable form

Oxidation 3 3 3 3 M3+

states
4 4 4 4 M4+

5 5 5 5 m o 2+

6 6 6 6 m o 22+

7 (7) 7? MOs3'

Bold type = most stable; ( ) = unstable; ? = claimed but not substantiated.

1.2.2 Hydrolysis

All actinide ions have a strong tendency to interact w ith water molecules, forming 

aquo cations. The extent of hydrolysis is dependent on the charge to ion size ratio, 

the interaction decreasing in the order M4+ > M 022+ > M3+ > M 02+ [Katz et a/., 

1 986b]. Aquo cations, particularly M4+ and M3+, tend to act as acids in solution:

M(OH2)xn+ = M(OH2)x_1{OH),n-1,+ + H +

However, when considering the extent of hydrolysis for ions of the same charge, 

factors other than the charge/size ratio must be involved. For example, the order 

of acidity for the 4 +  ion is: U4+ » Pu4+ > Np4+ [Katz etal., 1986b]. In addition, 

the degree of hydrolysis for the M(V) and M(VI) ions follows the reverse order to 

that expected, w ith hydrolysis decreasing with increasing atomic number. The 

additional factors which influence the interactions of actinide ions w ith water have 

yet to be determined.

Aquo cations, particularly actinide (IV) ions, can form polymeric species through
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hydroxo (M-OH-M) or oxo (M-O-M) bridges. Polymers of U(IV) and Np(IV) have 

been observed in aqueous solution [Weigel, 1986; Fahey, 1986; Burney and 

Harbour, 1974], but more extensive study has been directed to the polymerisation 

of Pu(IV) [Hursthouse, 1 990]. Pu(IV) shows a particularly tendency to form stable 

polymers, especially when solutions are diluted with water [Coleman, 1965]. 

Although such reactions are unlikely to occur at environmental concentrations, they 

can cause severe difficulties in nuclear fuel reprocessing as Pu(IV) is the most 

common oxidation state used for chemical separations.

1.2.3 Complex formation

Strong complexes are formed with the actinide ions where ligands exchange with 

water molecules in the hydrated shell [Ahrland, 1986], Such inner-sphere 

complexes generally occur with oxygen-containing ligands (oxides, hydroxides, 

phosphates, carbonates and sulphates) and fluoride. For singly charged anions, the 

actinide ions complexing power is in the order fluoride > nitrate > chloride > 

perchlorate, and for doubly charged anions carbonate > oxalate > sulphate [Katz 

et a/., 1986b]. The complex strength increases with the effective charge of the 

acceptor ion (ie, M(V) < M(lll) < = M(VI) < M(IV)) [Ahrland, 1986]. Once again 

(as w ith hydrolysis) there are discontinuities when considering the stability of the 

complexes of ions with the same charge, but generally the stability increases with 

increase in charge/size ratio.

Outer-sphere complexes can also be formed where the ligand attaches to the water 

molecules of the hydrated shell. Weak complexes are often an equilibrium between 

the inner- and outer-sphere complexes although these have been little investigated 

[Ahrland, 1986].

1.3 ACTINIDES AND THE NUCLEAR FUEL CYCLE

1.3.1 Production in nuclear reactors

Figure 1.1 shows the main actinide production and decay processes that occur in 

the fuel elements of a nuclear reactor. The picture is fairly complex, w ith the



Figure 1.1 The main actinide production and decay processes that occur in the 
fuel elements of a nuclear reactor [Choppin and Rydberg, 1980]. Figures along the 
lines are half-lives or effective reaction cross-sections (barns) for a standard power 
LWR, with thermal (0.024eV) cross-sections within parentheses.
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significance of any one pathway for the production of the heavier radionuclides 

being dependent on the initial fuel composition and the degree of burn-up.

239Pu is produced via neutron capture by 238U:

238 U + n- 239U 23.5min ™ NP + P
1/z ty2 2.35d

239Pu + p

The higher plutonium isotopes are then formed by successive neutron capture:
j

I
i 239Pu (n,y) 240Pu (n,y) 241 Pu (n,y)...etc
|

f

j The isotopic composition of plutonium in a fuel element of a nuclear reactor varies

I according to how long the plutonium formed is kept in the neutron flux [Weigel et
\

I a!., 1986]. Figure 1.2 shows the build up of heavier plutonium isotopes with

irradiation of Magnox fuel, the main type of fuel reprocessed at Sellafield (see
i

! section 1.3.2). For all fuel types the 240Pu/239Pu ratio increases with burn-up, as

| shown in Figure 1.3.
I
fi
! 239Pu and 241 Pu produced in nuclear reactors contribute to energy production

I through fission. As fission products accumulate, the fuel elements become
|
| increasingly inefficient due to loss of neutrons through neutron capture. After an
!

| average burn-up of 3000 MWdt'1 for Magnox fuels [Allardice eta!., 1983], the used

fuel elements are replaced and, following an initial cooling period of up to 2 years, 

are sent to Sellafield for storage and reprocessing (see section 1.3.2).

Plutonium can also be specifically produced for use in nuclear weapons. Weapons 

grade plutonium consists of fairly pure 239Pu (>  95%) [Choppin and Rydberg, 

1980]. For maximum energy release and efficiency, neutron multiplication within 

a nuclear device should start only after the critical size has been well exceeded. As 

a consequence, the concentration of 240Pu in weapons grade plutonium is kept as 

low as practicable as it causes the early release of neutrons through spontaneous 

fission. The production of weapons grade plutonium therefore requires low burn-up
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Figure 1.2 The change in isotopic composition with irradiation for Magnox fuel 
[Tyror, 1971]
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(< 20 0 0  MW dt'1) [Choppin and Rydberg, 1980]. This corresponds to a 

characteristic 240Pu/239Pu atom ratio of less than 0.14 (see Figure 1.3).

237Np is produced in a nuclear reactor fuel element via several reactions [Fahey,

1986], approximately 70% via

™U(n,2n)™U ♦ p-

and 30% from tw o processes:

............................ 235U(n,y)23eU(n,y)237U + P ~ .........................

and

24'P« ,,A = 14 years *" Am + P" fVl = 433 years ™ NP *  “

Again, the significance of any one pathway for the production of 237Np will depend 

on the initial fuel composition and the degree of fuel burn-up. Once 237Np has been 

produced, neutron capture leads to the production of 238Pu via

™ Np(n,y)™ Np ™ Pu + P"

More detailed discussions of the physics of burn-up and the design and operation 

of nuclear reactors are given by Tyror (1971), Choppin and Rydberg (1980), 

Flowers (1983) and Askew et al. (1983).



1.3.2  Nuclear fuel reprocessing

Since 1952, over 35,000 tonnes of Magnox fuel have been reprocessed at 

Sellafield (formally Windscale), Cumbria [BNFL, 1992b]. In addition, a mixture of 

highly irradiated oxide fuels from experimental UK WAGR (Windscale advanced gas- 

cooled reactor), SGHWR (sodium-cooled graphite moderated heavy-water reactor) 

and foreign LWR (light water reactors) were reprocessed from 1969 until 1973, 

when the specialised plant was closed after an incident involving the release of 

radioactivity [Allardice et a/.r 1983]. Spent oxide fuel elements have since been 

stored in cooling ponds at Sellafield, awaiting the commissioning of the Thermal 

Oxide Reprocessing Plant (THORP) [BNFL, 1992b].

Originally, the purpose of reprocessing was to recover uranium and plutonium for 

use in fast reactors, maximising the energy yield from the fuel [BNFL, 1992b]. 

However, funding for the fast reactor programme was cut, so now the recovered 

uranium and plutonium is stored or used to produce mixed oxide fuel for thermal 

reactors.

Figure 1.4 shows the main steps involved in the reprocessing of Magnox fuels at 

Sellafield. Spent nuclear fuel elements are highly radioactive and hot due to the 

absorbtion of the released radiation in the fuel and surrounding shielding material 

[Choppin and Rydberg, 1980]. To reduce the radioactivity, the fuel elements are 

stored in cooling ponds which remove heat and allow time for some of the fission 

products to decay. The initial military programmes used 180 day cooling programs. 

Due to the lack of reprocessing facilities, the average cooling time for commercial 

fuel elements has been up to 7 - 10 years [Choppin and Rydberg, 1980]. The 

cooling ponds are constantly purged with water, the waste water originally being 

discharged directly into the Irish Sea via a pipeline [BNFL, 1978]. However, it was 

found that the magnesium or aluminium alloys used to can the Magnox fuel 

elements corroded, releasing actinides and fission products into the effluent. As 

an interim measure to reduce the radioactivity of the discharges, zeolite skips were 

introduced into the cooling ponds in 1976 [Handyside et a!., 1982]. Since 1985, 

the Magnox pond waste water has been passed through a Site Ion Exchange 

Effluent Treatment Plant (SIXEP) which removes suspended particulates (which
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Figure 1.4 Basic steps involved in the reprocessing of magnox fuels at Sellafield 
[BNFL, 1986b]
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Table 1.3: The pre-reprocessing levels of 237Np generated in fuel from different 

reactors for 1 GW(e)-year of electricity. [Rees and Ship, 1981]

Reactor Rating

(MW/t)

Amount of 237Np 

(Bq) (kg)

% 237Np due to:

237Np 241 Am 241 Pu

Magnox 3.16 2.9 x 1011 7.7 23 26 51

AGR 14.66 1.3 x 1011 5.1 16 21 63

LWR 38.3 2.1 x 1011 8.1 18 20 62

I often contain actinides) and reduces the activity of strontium and caesium released

into the Irish Sea [BNFL, 1985-1992]. Water from oxide fuel cooling ponds is still
t

discharged directly to sea as the Zircaloy clad fuel elements are more resistant and 

can be stored for decades without the risk of leakage [BNFL, 1988]. Table 1.3 

shows the amount of neptunium present in spent fuel from a number of different 

reactors. Once the fuel is removed from the reactor, 237Np continues to accumulate 

from the decay of 241Pu and 241 Am. The contribution to the final 237Np levels, after 

a 5 year cooling time, are > 50% due to 241Pu, and < 26% due to 241 Am [Rees 

j  and Ship, 1983]. By contrast, the levels of 239Pu and 240Pu in spent nuclear fuel

[ elements decrease by radioactive decay which is insignificant in terms of the

cooling time scales. 240Pu/239Pu atom ratios in the discharges are therefore related 

to the degree of burn-up of the reprocessed fuel elements.

In the first stage of reprocessing, the fuel is stripped from its cladding (or sheared 

into small sections) and dissolved in boiling nitric acid [Allardice et a!., 1983]. Low 

level liquid wastes from the decanning plant are past through SIXEP and combined 

w ith effluent from the Magnox cooling ponds to form one of the main discharge 

streams from Sellafield into the Irish Sea (see section 1.4.3).

The separation of uranium and plutonium is based on solvent extraction. Initially, 

the BUTEX process was used (with dibutoxy-diethylether solvent), but this was 

replace in 1964 by thefccheaper and more efficient PUREX system, using tri-n-
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butlyphosphate (TBP-OK) [BNFL, 1992b]. The feed solution from the decanning 

plant is conditioned with nitrite to convert virtually all the plutonium into the 

extractable Pu(IV) states [Drake, 1987]. Under such conditions neptunium exists 

mainly in the V and VI state [Drake, 1987; Rees and Shipp, 1983]. The exact ratio 

of the oxidation states of neptunium is difficult to predict as it is dependent on the 

concentration of nitrous acid, which is formed from the radiolysis of nitric acid and 

is therefore dependent on the radioactivity of the feed solution [Rees and Shipp, 

1983]. This in turn makes the prediction of the destination of neptunium 

throughout the extraction process difficult, as each oxidation state behaves 

differently. A t the nitric acid concentrations used, Np(VI) is highly extractable by 

TBP, Np(IV) moderately extractable, and Np(V) virtually unextractable [Drake,

1987]. This leads to a division of the neptunium in the initial extraction process, 

20-50% following the high level waste, the rest remaining in the plutonium and 

uranium stream [Rees and Shipp, 1983]. Virtually none of th e 241 Am present in the 

feed solution is extracted into TBP, the Am remaining with unextracted Np in the 

high level waste. Approximately 99.9% of the uranium and 99.98% of the 

plutonium is extracted into the solvent phase, leaving 99.5% of the fission 

products in the aqueous raffinate-[Allardice et a!., 1983].

To separate the plutonium from the uranium, ferrous sulphamate is added to reduce 

the plutonium to unextractable Pu (III), uranium remaining in the solvent phase as 

U(VI) [BNFL, 1992]. Under such conditions, Np(VI) is rapidly reduced to Np(V) w ith 

32-72% of the original 237Np following the Pu into the aqueous phase, about 0.1 % 

remaining in the uranium fraction [Drake, 1987]. Once the separate uranium and 

plutonium streams have been further purified, uranyl nitrate is concentrated and 

thermally denitrated to give U03. The plutonium is precipitated as oxalate and then 

thermally degraded to Pu02 [BNFL, 1992b]. Low level liquid effluents from the U 

and Pu purification stages which contain a variable amount of Pu and Np are placed 

in sea tanks [Hursthouse, 1990]. The effluent is then neutralised w ith ammonia 

solution, resulting in the precipitation of ferric hydroxide, prior to discharge into the 

Irish Sea [Kershaw eta!., 1992].

There have been no extensive studies on the chemical form of the discharge 

although some data exist for 1982 [Pentreath et a!., 1984]. It was found that
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some 99% of the Pu(ar) and 241 Am, and 60% of the 237Np, in the sea tanks were 

associated w ith particulate (> 0 .22  ym) material. The pond waters were mildly 

oxidising, so lower proportions of the transuranics (89-99% of Pu and Am, and 

12% of Np) were particle-associated. Considering the relative contributions from 

each source, it was concluded that only 1 % of the Pu and 50% of the Np would 

be discharged in the oxidised (V and VI) form [Pentreath, 1984], Am, on the other 

hand, was only present in the III state [Kershaw et a/., 1992].

The effluents have also been found to contain 'hot-particles' which are small 

clusters of or-emitters [Hamilton and Clifton, 1981]. These have been found to 

persist in the environment for several months [Hamilton, 1981; Kershaw eta/., 

1986] although its not certain what proportion they are of the discharged 

plutonium. There have been some suggestions that these hot-particles are 

fragments of the Magnox fuel elements such particles are now removed from the 

effluent by the Site Ion Exchange Plant (SIXEP).

1.4 SOURCES OF PLUTONIUM AND NEPTUNIUM IN THE MARINE 

ENVIRONMENT

Plutonium and neptunium have been released into the environment both on a global 

scale, through the testing of nuclear weapons, and on a more local level, for 

example through controlled discharges from nuclear reprocessing plants. This has 

led to the contamination of the natural environment w ith artificial radionuclides. 

The sources and their contribution to environmental radioactivity are discussed 

below.

1.4.1 Natural production

Table 1.4 lists the long lived (> 100  years) isotopes of Np, Pu, U and Am along 

w ith their respective half lives. With the exception of 235U, and 238U, the half lives 

are too short for them to exist today as primordial elements. Plutonium, neptunium 

and americium isotopes can be produced naturally from neutron reactions in 

uranium. Both 237Np and 239Pu have been detected in pitchblende [Peppard et a/, 

1952, Myres and Linder, 1971]. In a sample containing 40.72% U, 5.45 x 109
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Table 1.4: Nuclear properties of some of the long-lived actinides [Katz eta!., 1986].

Element Mass
no.

Half-life (y) Mode of 
decay

Main radiations 
(MeV)

Method of 
production

U 233 1.59 x 105 
1.2 x 1017

a
SF

a4.824 (83%) 
4.783 (15%)

233Pa
daughter

234 2.45 x 105 
2 x 10 16

a
SF

a4.777 (72%) 
4.723 (28%)

nature

235 7.04 x 108
3.5 x 1017

a
SF

o4.397 (57%) 
4.367 (18%)

nature

236 2.34 x 107 
2 x 1016

a
SF

o4.494 (74%) 
4.445 (26%)

235U(n,K) -

238 4.47 x 109 
8.2 x 1015

a
SF

o4.196 (77%) 
4.149 (23%)

nature

Np 236a 1.55 x 105 EC87%
£-13%

K 0.1 63 235U(d,n)

237 2.14 x 106 
> 1 x 1018

a
SF

o4.788 (51%) 
4.770 (19%)

237U, 241 Am 
daughter

Pu 236 2.85
3.5 x 109

a
SF

05.768 (68%) 
5.721 (32%)

235U(o,3n)
236Np
daughter

238 87.74 
4.8 x 101°

a
SF

o5.499 (71%) 
5.457 (29%)

242Cm,238Np
daughter

239 2.41 x 104 
5.5 x 1015

a
SF

o5.155 (74%) 
5.143 (15%)
K 0.129

239Np
daughter, n 
capture

240 6.56 x 103 
1.3 x 1011

a
SF

05.168 (73%) 
5.123 (27%)

multiple n 
capture

241 14.4 £->99%  
cr10"3%

£-0.021 
K 0.149

multiple n 
capture

242 3.76 x 105 
6.8 x 1010

a
SF

04.901 (74%) 
4.857 (26%)

multiple n 
capture

244 8.26 x 107 
6.6 x 1010

a
SF

04.589(81% ) 
4.546 (19%)

multiple n 
capture

Am 241 432.7 
1.2 x 1014

a
SF

o5.486 (84%) 
5.443 (13%) 
y 0.059 
(35.7%)

241 Pu 
daughter, 
multiple n 
capture

243 7.38 x 103 
2.0 x 1014

a
SF

o5.277 (88%) 
5.234 (11%)

multiple n 
capture

a Not known whether ground-state nuclide or isomer
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237Np atoms g'1 U and 7.84 x 109 239Pu atoms g'1 U were determined by isotope 

dilution mass spectrometry and ar-spectrometry respectively [Myres and Linder, 

1971]. 244Pu has also been detected in Precambrian bastnasite [Hoffman eta /, 

1971], but again the levels found were extremely small, only 2 x 107 atoms being 

detected from 85 kg of ore. In general, the natural occurrences of Pu, Np and Am 

isotopes are insignificant and any such nuclides observed in the environment can 

be considered to be the result of anthropogenic activities.

Uranium, however, is a relatively common element in the earth's crust, the typical 

concentration in igneous rocks being 1-10 /yg g'1 [Katz eta/., 1986b]. Uranium 

concentrations in natural waters typically range from 0.01-10 /yg I'1, the variation 

being a function of salinity. In open sea water, w ith a salinity of 35%o, the uranium 

concentration is 3.3 ± 0 .2 //g I'1 [Pentreath, 1984], but in particularly saline waters 

the uranium content can be as high as 5 0 0 //g I*1 [Allard eta/., 1984].

1.4.2 Nuclear weapons testing

The testing of nuclear weapons and devices has led to the global deposition of 

artificial radionuclides. Since the first nuclear detonation in 1945, over 800 events 

have been publically recorded, with peak periods during 1955-1958 and 1961- 

1962 [Pentreath, 1988]. These have been listed by Carter and Moghissi [1977] 

and Carter [1979] along with approximate explosive yields for each event.

The destination and composition of the fall-out resulting from atmospheric nuclear 

explosions depends on the size of the device, detonation location (height and 

latitude) and prevailing climatic conditions [Carter and Moghissi, 1977; Perkins and 

Thomas, 1980]. Radioactive fallout consists of fission products arising from the 

fissile material used in the explosive device and neutron activation products from 

activation of the device components and the surrounding medium. Within a few  

seconds of the explosion the gaseous components start to condense into small 

particles. Micro-particles of aluminium and iron also form, often entraining 

radionuclides and oxides [Pentreath, 1988]. The heavier particles fall back to earth, 

w ithin a few hundred km from the site of the explosion. Particles entering the
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troposphere result in far-field contamination, deposition occurring up to several 

months after the event and mainly at the same latitude as the explosion [Pentreath, 

1988]. High-yield thermonuclear devices can inject particles into the stratosphere. 

With mean residence times of a few months up to 2 years (depending on the 

season and latitude), w ith subsequent deposition of particles from the stratosphere 

resulting in world-wide distribution of the long-lived radionuclides.

The global inventory of 239+240Pu fallout has been estimated to be between 1.2 x 

104 TBq and 1.6 x 104 TBq [Hardy et a/., 1973; Efurd et a!., 1984; Pentreath,

1988]. To establish the global distribution of fallout plutonium, Hardy eta/. (1973) 

analysed soil samples, to a depth of 30cm. At a latitude of 60-50 °N, 

corresponding to the British Isles, the 239+240Pu fallout was on average 48 ± 7 Bq 

m'2. A later UK soil survey established the average 239+240Pu fallout depositions for 

grassland and woodland as 63 Bq rrf2 and 59 Bq m'2 respectively [Cawse and 

Beedham, 1979]. After correcting for the average rainfall, the fallout deposit in 

Cumbrian soils was calculated to be 48 Bq m‘2 239+240pu [Cambray and Eakins, 

1980]. Assuming that the 239+240pu from fallout is uniformly distributed in the top 

10cm of sediment, this would correspond to 0.5 Bq kg'1 dry [Aarkrog, 1988]. 

Hardy eta/. (1973) also measured the 238Pu activity in global soil samples. Fallout 

238Pu has two contributions, that from weapons testing and fallout from the 

stratospheric burn up of the SNAP-9A satellite in 1964 [Pentreath, 1988]. In the 

UK the 238Pu contributions were calculated to be 1.1 ± 0.1 Bq m'2 from weapons 

fallout and 0.48 ± 0.15 Bq m'2 from SNAP-9A [Hardy et a/., 1973].

The isotopic composition of the fallout from a nuclear explosion depends on the 

neutron flux which increases with the size of the device, resulting in an increase in 

the production of the heavier radionuclides. Since the majority of the nuclear tests 

occurred between latitudes 30° N and 30° S, the fallout in the UK is dominated by 

stratospheric fallout, corresponding to high yield devices. The mean plutonium 

isotopic composition in soils taken from Wantage in the UK were 240Pu/239Pu = 

0.1860 ± 2.7%, 241Pu/239Pu = 0.0091 ± 9.4% and 242Pu/239Pu = 0.0043 ± 

2.3% [Krey eta/., 1976].

Estimates of the amount of 237Np released from nuclear weapons have also been
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made [Holm, 1981; Efurd et at., 1982; 1984]. 237Np is expected to be present in 

similar concentrations by mass to 239Pu since the (n, 2n)/(n, y) reaction ratio for 

238U in a thermonuclear device ranges from 0.5 to 1 [Holm, 1981]. This was 

confirmed by Efurd etal. (1984), who found the 237Np/239Pu mass ratio (determined 

by isotope dilution TIMS) to be 0.7 ± 0.2 in soil samples representative of global 

fallout. This led to the estimation that approximately 3,000 kg of 237Np have been 

released from nuclear weapons testing. Another source of neptunium in the 

environment is from the decay o f241 Pu and 241 Am. The activity of 241 Pu produced 

by weapons testing has been estimated to be 1.7 x 105 TBq [Pentreath, 1988], 

resulting in the production of 5.5 x 103 TBq of 241 Am, w ith the maximum 241 Am 

activity occurring in 2037. This secondary supply of 237Np was calculated to 

account for 0.05% of 237Np fallout in 1981 [Holm, 1981].

Measurements of fallout concentrations of 237Np in the environment are scarce 

[Hursthouse, 1990]. Soil representative of the average global fallout was found to 

contain 2.26 x 10'3 Bq kg'1 237Np [Efurd eta l., 1982; 1984]. 237Np concentrations 

have also been determined in water and sediment samples collected close to 

detonation sites in the Pacific [Noshkin, 1980; Sakanoue, 1987; 1988], where 

open ocean water was found to contain 0.48 ± 0.11 //Bq I'1 [Noshkin, 1980].

1.4.3  Controlled discharges from nuclear installations

Around the world, a number of laboratories and nuclear installations routinely 

discharge radionuclides into the environment. Figure 1.5 shows the main sources 

of artificial radionuclides to the aquatic environment of the UK. Discharges are 

dominated by the British Nuclear Fuels pic reprocessing plant at Sellafield in 

Cumbria [Kershaw eta l., 1992]. Between 1952 and 1992, the authorised releases 

from Sellafield into the Irish Sea have included over 1.3 GBq of alpha emitting 

radionuclides, of which more than 54% was plutonium [BNFL, 1977-1992; 

Cambray, 1982]. The 239+240Pu discharges from Sellafield are estimated to be 

equivalent to 45% of the inventory in the North Atlantic due to global fallout 

[UNSCEAR, 1982]. Although plutonium originating from Sellafield has been 

detected as far as 2500 miles from the discharge point [Holm e ta l., 1986], over 

78% of the plutonium discharged can be found in the sediments and seawater of
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Figure 1.5 Main UK sources of artificial radionuclides [Kershaw et a/. 1992]
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the Irish Sea, making Sellafield by far the dominant source of artificial radionuclides 

in the study area [Pentreath, 1988; 1985; Camplin and Aarkrog, 1989].

Effluents from Sellafield are a by-product of the storage and reprocessing of spent 

nuclear fuel elements (see section 1.2.2). Details have been published of the major 

components of the marine discharges since 1952, the fullest accounts occurring 

after 1978 [Cambray, 1982; BNFL 1971-1993]. In general, discharges into the 

Irish Sea increased from 1952 to maximum values in the mid 1970s, dropping off 

to a fairly constant level in the last 7 years. No data are available for the individual 

239Pu and 240Pu isotopes, however the 239+240pu marine discharges have been 

measured by cr-spectrometry (see Figure 1.6). 237Np has only been determined since 

1978, probably after the discharges reached their maximum value. Predictions of 

the total amount of Np discharged are difficult to make as the levels bear no 

relation to other published nuclide data [Hursthouse, 1990; and section 1.3.2 for 

factors determining 237Np concentrations in discharge]. Another consideration is 

the in situ ingrowth of 237Np from the decay of discharged 241Pu and 241 Am. Day 

and Cross (1981) calculated the accumulation o f241 Am in the Irish Sea sediments 

from the decay o f 241 Pu. Assuming steady-state conditions, it was estimated that 

the ingrowth of 241 Am would level off at approximately 48 TBq yr'1 by 2059. From 

similar calculations, it was estimated that the ingrowth of 237Np, resulting from the 

decay of 241 Am, will reach its maximum in 7296 [Hursthouse, 1990]. Figure 1.7 

shows the recorded Sellafield discharge data fo r241Pu, 241 Am and 237Np along w ith 

the decay corrected integrated discharges, including contributions from ingrowth.

Medium-level radioactive wastes have been stored on site at Sellafield, awaiting the 

commissioning of the Enhanced Actinide Removal Plant (EARP), which took place 

in March, 1994. The greater efficiency of EARP will remove a higher proportion of 

the plutonium and americium [BNFL, 1992b], however the increased volume of 

material reprocessed may result in an increase in the discharge levels. Increases 

in discharges of "T c , 129l, 60Co and 14C will be far greater due to EARP's 

inefficiency at removing these 'less radiologically significant' radionuclides.
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Figure 1.7 Recorded and decay corrected integrated marine discharges from 
Sellafield, including contributions from ingrowth, for (a) 241 Pu, (b) 241 Am, and (c) 
237Np [BNFL, 1977-1992; Day and Cross, 1981]
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Since 1966, the Cap de la Hague reprocessing plant near Cherbourg, France has 

routinely discharged radionuclides into the English Channel [Pentreath, 1988]. 

Guegueniat et al. (1981) and Calmet and Guegueniat (1985), presented 239+240pUf 

238Pu and 241 Am discharge data for La Hague and local environmental data for 

sediment and biota samples. The total Pu(a) discharge from La Hague has been 

insignificant compared to that from Sellafield, corresponding to only 0.4% of the 

Sellafield discharges [Kershaw et a!., 1994]. No discharge data are available for 

237Np. Pentreath etal. (1986a) measured 237Np concentrations in filtered seawater 

samples around Britain, and found that the levels increased from less than 5 x 10'6 

Bq T1 at each end of the English channel, to (1.0 - 1.4) x 10'5 Bq I'1 opposite the 

Cherbourg peninsula. This is insignificant compared to a level of 4 mBq I 1 found 

in the Irish Sea [Pentreath eta l., 1986b].

1.5 BEHAVIOUR OF ACTINIDES IN THE MARINE SYSTEM

Predicting the behaviour of radionuclides released into the marine environment is 

difficult, not only because of the complex chemistry of the individual nuclides, but 

also because of the dynamic nature and variability of the marine system itself. The 

main biogeochemical processes which occur in the marine environment are 

summarised in Figure 1.8. Concern over the accumulation of artificial radionuclides 

in the environment, and their potential use as tracers of environmental processes, 

has led to a huge research effort to determine the behaviour of radionuclides in the 

environment. A number of reviews are available detailing the physical and chemical 

factors affecting the movement and distribution of radionuclides in the marine 

system [e.g. Santschi and Honeyman, 1989; Santschi, 1988; Dyer, 1986]. A 

recent review [Kershaw et a!., 1992] summarises the literature relating to the Irish 

Sea. Considerable effort has been directed towards investigations of the behaviour 

of plutonium and americium [e.g. Sholkovitz, 1983; Pentreath eta l., 1984; Nelson 

and Lovett, 1978; Hetherington, 1975; Aston et a!., 1983; McKay and Walker, 

1990]. By comparison, neptunium has been neglected [Thompson, 1982].

In addition to environmental-based studies, a number of laboratory studies have 

been performed to attempt to elucidate the mechanisms involved in influencing the 

behaviour of transuranium radionuclides [e.g. Mudge et a!., 1988; Choppin and
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Figure 1.9 The Irish Sea
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Morse, 1987; Aston et a!., 1983; Shen eta l., 1983]. However, the relevance of 

such experiments to the 'real' environment has often been brought into question 

[Onishi e ta l., 1981; Choppin and Morse, 1987].

1.5.1 The Irish Sea

The Irish Sea is a semi-enclosed body of water, connected w ith the Atlantic Ocean 

in the south by the St George's Channel, and in the north by the narrower 

NorthChannel, Clyde Sea and Malin Shelf Sea (see Figure 1.9). It is a highly 

complex coastal shelf system, divided naturally into two sections, east and west 

of the isle of Man. The western section contains a central deep channel (>  100 m) 

which runs parallel to the Irish coast. In contrast, the eastern section consists of 

a flat shelf w ith depths rarely exceeding 50 m, and reaching only 30 m between 

Sellafield and the Isle of Man [Kershaw et a!., 1992].

The dynamics of the Irish Sea are principally controlled by tides, propagated from 

the Atlantic Ocean through both the St George's Channel and the North Channel.
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The tidal range is large with high tidal velocities [Dickson and Boelens, 1988]. In 

most areas, the tides are sufficiently energetic to create a vertically homogeneous 

water column, although some stratification can occur in winter and spring as a 

result of fresh-water input [Jones and Folkard, 1971]. The time averaged 

circulation of the Irish Sea is relatively weak, but the dominant flow is northwards 

w ith a persistent southward drift off St Bees Head and the northern Irish coast 

[Dickson, 1987]. The region is subject to frequent storms [Davies and Jones, 

1992], leading to particle resuspension, mixing and transport. The prevailing wind 

also affects the currents, particularly in the near-shore region. Howarth [1984] 

concluded that water off Sellafield tended to oscillate, flowing southeast during 

periods of weak winds, and north-west during storms.

The geological structure of the area has been summarised by Dobson [1977a;b]. 

It consists of several sedimentary basins containing Carboniferous and Permo- 

Triassic rocks which have been deeply eroded by successive glacial advances and 

subsequently overlain by tills and boulder clays [Kershaw et a/.r 1992]. There has 

been much discussion on the sedimentation history and the fate of fine-grained 

sediments in the Irish Sea, the most comprehensive account being given by Pantin 

[1977,1978]. The distribution of the fine-grained sediments is shown in Figure 

1.10. There are tw o main areas of muddy sediments, a belt running parallel to the 

Cumbrian coast, extending from Liverpool Bay in the south to Wigtown Bay in the 

north, and a deep basin between the Isle of Man and the coast of Ireland. These 

areas correspond to regions with weak tidal currents [Howarth, 1984]. Regions 

north and south of the Isle of Man have the strongest tidal currents and are 

associated w ith the coarser sands and gravels. There is conflicting evidence as to 

whether the areas of muddy sediments are regions of active sedimentation. 

Hydrological and sedimentological evidencefor sedimentation [Belderson and Stride, 

1969; Pantin, 1977; 1978; Mauchline, 1980] was challenged by Kirby et al. 

[1983], who concluded that the evidence for present-day accretion was 

circumstantial and suggested that there are not enough sources of fine sediment 

to support continued sedimentation. 14C dating of shells in the Irish Sea sediments 

suggests a low rate of accumulation in some areas over the last 100 years (approx. 

0.1 m m y'1) [Kershaw et al., 1988], although additional contamination of the shells 

with 14C discharged from Sellafield was not taken into account [Begg, 1992].
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Figure 1.10 The distribution of fine-grained sediments in the surface sediments 
of the Irish Sea [Kershaw et a!., 1992]
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Dating of the bulk sediment carbonate fraction, down to a depth of over 1.6 m, 

revealed a well mixed sediment w ith an essentially constant age of 12,500 ± 

1,000 years B.P. [Kershaw et al., 1988].

1.5.2 Behaviour of actinides in sea water

Within the Sellafield effluent, almost all the plutonium and americium and over 60% 

of the neptunium discharged is thought to be associated with particulate material, 

and in particular, w ith iron precipitates (see section 1.3.2). Immediately after 

discharge, the effluent remains stratified for up to 3 to 4 days, moving to and fro 

w ith the tidal plug [Hetherington et a!., 1975]. Diffusion and advection cause 

dispersion, the soluble components following the main circulation system of the 

Irish Sea. There is some evidence that on contact w ith sea water, some of the 

plutonium and americium associated w ith the iron floe dissolves IPantreath, 1987]. 

Calculations of the total environmental inventories of Pu(or) discharged from 

Sellafield to date suggest that 71% is associated with subtidal and intertidal 

sediments, 7% with sea water, leaving 22% unaccounted for [Pentreath, 1987].

Theoretical calculations predict that the dominant actinide species in environmental 

solutions are highly insoluble hydroxide complexes, which are likely to become 

incorporated in iron and manganese hydroxide-oxide phases [Aston e ta l., 1985], 

soluble carbonate complexes and, to a lesser extent, organic complexes [Allard et 

a!., 1984]. Extensive studies of the chemical form of plutonium and americium in 

the waters of the Great Lakes found that the actinides were present in solution as 

simple anionic species [Edgington, 1981]. Since the actinides do not form strong 

complexes w ith halide ions [Sillen and Martell, 1964], it is likely that they are also 

present in the same form in sea water. Recent ultrafiltration techniques suggest 

that a significant proportion of Pu 'in solution' is associated with colloids, although 

further work is required to assess the precise nature of the colloids and their 

associations w ith Pu [Orlandini et a!., 1990].

Actinides are therefore present in sea water both in solution and associated with 

suspended particulate material. The distribution coefficient, Kd, defined as
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v  _ concentration per unit mass of particulate
d ” concentration per unit mass of filtrate

is widely used to describe the partitioning of radionuclides between the solid and 

solution phases, the particulate/solution cut-off being operationally-defined, usually 

at 0.22 or 0.45 pm. Strictly speaking, this assumes that the system is in 

equilibrium and that solid-solution reactions are reversible. However, these criteria 

may not be valid or be demonstrated, which has led to criticism of the extensive 

use of Kds [Sholkovitz, 1983]. Recent studies have used Kd simply to describe the 

partitioning of the solid and solution phases, and not to indicate the state of a 

reaction [e.g. Hamilton-Taylor eta !., 1993].

Typical.values for the bulk Kds for Np, Pu and Am measured in situ in the. Irish. Sea 

are of the order of 104, 105, and 106 respectively, the degree of particle association 

decreasing in the order Am > Pu > Np [Pentreath, 1985]. The fraction of the total 

activity associated with the solution phase for a given Kd depends on the sediment 

load [Pentreath, 1987]. For Np and Pu, the activity in the solution phase dominates 

in regions away from the coast, where suspended loads are less than 10 mg I'1. 

Close to the coast, the suspended loads can be more than 50 mg I'1. Coastal 

surveys reveal little change in the Kd for Pu and Am with distance from the coast, 

implying that in inshore regions, a greater fraction of the total activity is associated 

w ith particulate material [McKay and Walker, 1990; McKay and Pattenden, 1989; 

Pentreath, 1987], In complex estuarine environments the Kds for Pu and Am have 

been found to vary by over an order of magnitude [Hamilton-Taylor et a!., 1993]. 

The average Kd values for 237Np were found to decrease with distance from 

Sellafield. Although this can be attributed to a change in the oxidation state from 

Np(IV) to Np(V) (see below), other factors also have to be considered which could 

affect the Kd, such as the grain-size distribution and the composition of the 

suspended sediments [Edgington and Nelson, 1984].

The difference in Kd values for Pu and Np suggests that Np should be more mobile 

in the environment relative to Pu. This is supported by 237Np/239+240Pu data 

presented by Duniec eta l. [1984] which indicate relative enrichment of 237Np in the 

solution phase with increasing distance from Sellafield. Assessing the relative
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mobility of 241 Am is complicated by the ingrowth o f 241 Am from the decay of 241Pu.

For plutonium and neptunium, the bulk Kd represents an average value, w ith 

contributions from different oxidation states. The Kd values for the reduced (III and 

IV) and oxidised (V and VI) forms of plutonium are of the order of 106 and 5 x 103 

respectively [Nelson and Lovett, 1978]. Limited data exist for neptunium, but 

Harvey (1981) estimated a Kd of about 5 x 103 for the oxidised forms. From 

experiments conducted on sea water collected from the Irish Sea, Nelson and 

Lovett (1978) showed that 71 to 92% of the dissolved plutonium was oxidised, 

with Pu(V) expected to be the dominant species [Orlandini et a!., 1986; Bondietti 

and Trabalka, 1980]. Similarly, Np is predicted to be present in sea water mainly 

in the oxidised Np(V) state [Pentreath and Harvey, 1981]. In contrast, americium 

is considered to be present almost entirely as Am(lll), although there have been 

suggestions that Am(V) species may be present [Pentreath et a!., 1985]. The 

difference in the Kd values for the individual oxidation states of the actinides 

emphasises the importance of the form of the nuclides in the environment, the 

oxidised state being more likely to be in solution and therefore more mobile. 

Dissolved species of plutonium originating from Sellafield have been detected in the 

North Sea [Kautsky and Eicke, 1982, Murray et a/.r 1978], and as far north as the 

Barents and Greenland Seas [Holm e ta l., 1986].

The distribution of plutonium and americium [Pentreath eta l., 1984; Mitchell eta l., 

1991; McKay and Pattenden, 1993] and neptunium [Pentreath and Harvey, 1981 ] 

in filtered sea water from the Irish Sea reveals an exponential reduction in 

concentration with distance from the discharge point (see Figure 1.11). This would 

be expected from a combination of dilution of contaminated sea water and 

scavenging of dissolved species by suspended particulate material. Evidence of the 

removal of Pu by particle scavenging was shown by surveys in the North and South 

Atlantic, which found a reduction in the 239+240pu concentration in sea water by a 

factor of 4-5 between 1972 and 1988/89 [Holm e ta l., 1991]. However, studies 

on the Pu concentration in the lagoon waters of the Enewetak and Bikini atolls 

(bomb test sites) suggest that dissolved Pu can be released from contaminated 

sediments [Noshkin and Wong, 1980]. The evidence for the remobilisation of 

actinides from the sediments in the Irish Sea is discussed in section 1.5.4.
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Figure 1.11 Concentration of (a) 239+240Pu and (b) 241 Am (mBq I'1) 
surface waters of the Irish Sea in April 1979 [Kershaw et al. 19921
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1.5.3  Association with sediments

The overwhelming evidence is that actinides discharged from Sellafield become 

rapidly associated with particulate material which is then incorporated into the 

sediments [Hetherington, 1978; Nelson and Lovett, 1978; Pentreath e ta l., 1985; 

Sholkovitz, 1983; Aston etal., 1985]. Particulate transport and the processes that 

occur in the sediments are therefore fundamental in understanding the behaviour 

of the actinides in the Irish Sea. Pentreath et al. [1986b] estimated that only 7% 

of the annual discharge of plutonium is transported out of the Irish Sea by seawater 

movement. As a consequence, the sedimentary inventory of plutonium (and by 

similar arguments, Am and Np) in the Irish Sea has been increasing since Sellafield 

discharges began.

Adsorption of radionuclides onto particulates can take place in several ways: by 

electrostatic attraction, by chemical bonding to specific sites on the solid surface, 

or by simple physical adsorption [Allard et al., 1 984]. Apart from the latter, these 

processes are dependent not only on the form of the species in solution, but also 

on the composition of the solid surface and the concentration of competing ions in 

solution. In the marine environment, available adsorption surfaces include sediment 

particles, (a mixture of sand, silt and clay), metal hydroxides and organic material. 

In addition actinides can be actively adsorbed to, and taken up by, biogenic material 

[Pentreath, 1985].

The dominant oxidation states of the transuranics in particulates and sediments are 

Pu(IV), Np(IV) and Am(lll) [Edgington and Nelson, 1984; Harvey and Kershaw, 

1984]. The sediment/porewater system is relatively reducing. For example, 

Malcolm eta l. [1990] found that greater than 96% of Pu and greater than 99% of 

Am was in the reduced form at all depths within several sediment cores, except for 

the top 2 cm, where 27-67% of the Pu was in the oxidised form.

Pu and Am particulate concentrations in sediment have been found to be highly 

dependent on the grain size, the concentration increasing w ith decreasing size (see
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Figure 1.1 2 239 + 240pu activities (Bq K g 1 dry), normalised to 100% silt, in the 
surface sediments of the Irish Sea, 1988 [McCartney et a!., 1994]

Table 1.5) [Hetherington, 1978; Aston et al., 1985; Eakins et al., 19 9 0 ] .  This 

suggests that physical adsorption is the dominant process of removal of plutonium 

from solution. The distribution of Pu and Am in the sediments of the Irish Sea 

closely follows that of the fine-grained sediments [Woodhead, 1 9 8 8 ;  Aston et al., 

1 9 8 5 ;  Eakins et at., 1990 ].  From the limited data available, Np also appears to 

follow the same trend [Assinder et al., 1991]. Correcting the surface sediment 

239 + 240pu activities for the grain-size effect, reveals a distribution dominated by the 

w ater circulation pattern (see Figure 1 .12), but with a distinct northwards bias in 

the Sellafield inshore area [McCartney et al., 1994 ]. The northward dispersal of 

plutonium is thought to be caused by tw o effects. Firstly, the Sellafield sea-tank 

discharges, which contain the largest proportion of discharged plutonium, are 

released on or around the high tide, when the tide ebbs to the. north [Pentreath et 

al, 1 984 ].  In addition, a predominant northward drift of particulate matter has been 

suggested both from observations of the relative radionuclide concentrations in the 

sediments [Jones etal.,  1 988 ]  and from hydrological model predictions [Davies and 

Jones, 1 992].
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Table 1.5: Distribution of plutonium nuclides as a function of particle size in a 
sample of surface sediment [Hetherington, 1978],

Size fraction, 
/ym

239+240pu concentration, 
Bq kg'1 (dry)

< 2 11,900 ± 1,600

2 - 5.5 12,540 ± 700

5 . 5 - 1 5 11,100 ± 630

15 - 31 3,920 ± 260

31 - 46 1,630 ± 190

46 - 63 1,036 ± 74

> 63 592 ± 48

1.5 .4  Remobilisation of actinides from the sea-bed

It is evident from the discussion above that the Irish Sea sediments initially act as 

a sink for the actinides discharged from Sellafield. However, the potential for 

remobilisation of the actinides from the sea-bed also has to be accounted for if the 

long term implications of the Sellafield discharges are to be assessed.

Remobilisation of actinides from the sediments requires tw o processes: 

chemical changes to produce more mobile forms in the interstitial water (for 

example, conversion of highly immobile Pu(IV) to more mobile Pu(V) or the 

complexation of Pu(IV) within the water), followed by physical transport of the 

mobile forms by processes such as diffusion and advection [Aston et al., 1985]. 

In addition, direct loss of actinides from surface sediments or from resuspended 

particles could occur due to the operation of the law of mass action [Nelson and 

Lovett, 1981; Mackenzie and Scott, 1984]. Hunt and Kershaw [1990] estimated 

that 8 TBq (5.4% of discharges) of Pu(ar) and 2.5 TBq (3.9% of discharges) of 

241 Am have been remobilised from the sea-bed from 1979-87 and 1976-87 

respectively. Their calculations were based on the differences observed between 

measured concentrations in seawater and the concentrations expected on the basis 

of extrapolation from the conditions of steadier discharge rates experienced in the 

past.
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Measurement of the composition and the physico-chemical conditions in interstitial 

waters provide a direct and sensitive way of determining mechanisms and kinetics 

of chemical reactions in the sediments [Sholkovitz, 1983]. The microbial oxidation 

of organic matter within the sediment system causes variations in the redox 

potential w ith depth, influencing the distribution of redox-sensitive elements such 

as Fe and Mn [Kershaw et al., 1992]. This may also effect the oxidation states of 

Pu and Np, emphasising the importance of measuring parameters such as Eh, pH, 

Mn2 + , Mn4+, Fe2 + , Fe3+, N 0'3/N 0'2 and phosphate concentrations [Harvey, 1981]. 

Another suggestion is that dissolved organic carbon (DOC) could be responsive for 

complexing actinides in the interstitial water [Nelson e ta l., 1985]. Difficulties are 

encountered in analysing interstitial water (or pore-water), as it is essential that the 

measurements reflect the in situ conditions. Any exposure to air during the 

collection and handling of the sediment or during pore-water extraction would result 

in the immediate precipitation of dissolved ferrous Fe, so all operations have to be 

performed in an inert atmosphere [Pentreath, 1987]. In addition, hundreds of ml 

of interstitial water are required to determine the oxidation states of Pu in the Irish 

Sea, litres being required from sediments contaminated with fallout. The low 

concentrations of Np, even in the Irish Sea, imply that even larger volumes (10-20 

I) are required for accurate determination of Np oxidation states [Harvey, 1981].

Nelson and Lovett [1981] have presented data for Pu and its oxidation state 

distribution in interstitial water of sediments from the Irish Sea. They found that 

the concentration of oxidised Pu species generally decreased with depth (however 

some of these data may be suspect as they did not take precautions against 

exposure of the sediment to air during sampling). From profiles of the reduced Pu 

concentrations in the solid and liquid phase, the authors concluded that the Kd 

values for the reduced Pu remained constant w ith depth. This has since been 

disputed by Sholkovitz [1983], who suggested that their data display significant 

changes in Kd values implying that diagenetic reactions may be occurring to 

increase the pore-water concentration of the reduced form of Pu. Malcolm et al. 

[1990] also found small but systematic changes in the Kd values with depth for 

reduced Pu and Am within sediments from the same area. This suggests that the 

solid and liquid phases are not in equilibrium and that some Pu and Am may be 

released from the sediments [Malcolm eta!., 1990; Sholkovitz, 1983], However,
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the interstitial profiles of reduced 239+240pu and 241Am bore no relation to the 

indicators of diagenesis (N0'3, P03'4, Fe2+, Mn2+, DOC, Si(OH)4) w ith depth, but did 

display a qualitative relationship with the solid phase 239+240pu and 241 Am profiles 

[Malcolm et at., 1990]. The distribution of Np in the solid phase and interstitial 

water of an Irish Sea sediment is shown in Figure 1.13 [Flarvey and Kershaw, 

1984]. Again, the Kd values show small variations with depth, but unfortunately 

no ancillary data were collected which could elucidate the mechanisms involved in 

releasing Np from the solid phase.

Once the actinides have been released from the solid phase, the rate of diffusion 

within the interstitial water, calculated from measured concentration gradients, 

would be extremely slow (e.g. 239+240Pu would move less than 0.1 cm in 10 years 

for a 10% concentration front) [Nelson and Lovett, 1981; Buesseler and Sholkovitz, 

1987a]. Nelson and Lovett [1981] also calculated that the advective movement 

of Pu would only be significant if the flow rate through the sediments was > 103 

m yr'1.

The evidence above suggests that there is potential for post-depositional 

remobilisation of Pu, Np and Am, but more work is required to determine the 

precise mechanisms involved. In the short term, such effects are insignificant in 

the Irish Sea compared to the continued input of actinides from Sellafield and their 

subsequent uptake by sediments from the water column [Sholkovitz, 1983].

Comparatively, the effects of physical mixing of sediments by wave action and 

bioturbation are significant. McCartney etal. [1994] observed that the distribution 

and concentration of 239+240Pu in surface sediments has changed little between 

1974 and 1988, despite the increase in the cumulative sedimentary inventory 

during this time. This was attributed to the mixing of sediments by benthic fauna. 

Bioturbation was first suggested as a mechanism to explain the 'irregular' shape of 

radionuclide concentration and ratio profiles in sea-bed cores, the profiles bearing 

no relation to the Sellafield discharge pattern. Several studies have since evaluated 

and described the process [Kirby eta l., 1983; Kershaw e ta l., 1984; 1983; Sw ift 

and Kershaw, 1986; Woodhead, 1988; Hamilton eta l., 1991].
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The degree and extent of the biological mixing of sediments is hard to quantify due 

to the large variations observed even in one area [Kirby et a!., 1983; Pentreath, 

1 987]. Examples of two species active in bioturbation below 5 cm are the Echiuran 

worm Maxmulleria lankesteri and the Thalassinid shrimp Ca/Iinassa subterranea 

[Kershaw et al., 1984; Swift and Kershaw, 1986]. These species can be found to 

depths of 30 and 1 50 cm respectively. M. lankesteri feeds on surface sediment 

particles which are subsequently defecated within the burrow, later to become 

incorporated into the burrow lining. This results in enhanced concentrations of 

239+240pu ancj 24i^m  ̂ ancj ' recent ' 239+240pu/238pu activity ratios at depth [Kershaw 

et al., 1984]. C. subterranea excavates a complex network of burrows, resulting 

in the transport of uncontaminated sediment to the surface, and the burying of 

fresh particulate deposits [Kershaw et at., 1992]. Bioturbation is site specific so 

interpretation is required on an individual core basis [Gurbutt and Kershaw, 1987]. 

For example, in certain cores close to the Sellafield pipeline, unusual quantities of 

oxidised Pu (-6 0 % ) were found in the interstitial water, within the upper 2-5cm 

of sediment [Kershaw eta l., 1992; Malcolm eta l., 1990]. This was attributed to 

a large population of a burrowing Opiuroid species which effectively irrigated the 

sediment with the oxygenated overlying water [Kershaw et a!., 1992].

1.5.5 The environmental record of the Sellafield discharges

The sediments of the Irish Sea act as a major repository for particle reactive 

radionuclides, such as plutonium and neptunium, which are discharged from 

Sellafield. In areas of sediment accumulation, it might be expected that the 

sediments provide a record of the discharges from Sellafield [Kershaw etal., 1990]. 

Indeed, several attempts have been made to match sediment core profiles w ith 

Sellafield discharge data [Hetherington, 1978; Aston and Stanners, 1982a; 

Stanners and Aston, 1981]. Many studies have relied on 239+24°pu/238pu activ ity  

ratios to establish the rate of sedimentation [Kershaw et a!., 1992]. Such 

techniques have been criticised due to the lack of 238Pu discharge data prior to 

1978, and the subsequent over reliance on yearly surface sediment data to 

establish the previous 239+240pu/238pu ratios [Sholkovitz, 1983]. There is also 

evidence that bioturbation and chemical conditions within the sediments can affect 

the sediment profiles, in effect mixing sediments contaminated with 'older'
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discharges with those associated with more recent releases (see section 1.5.4). 

Subsequently, sediment core profiles have been interpreted using a wider range of 

discharged radionuclides [Stanners and Aston, 1984; Kershaw et al., 1990]. The 

most comprehensive studies stress the importance of understanding and assessing 

the dynamics and variability of the whole system in order to interpret any 

environmental data properly [Clifton and Hamilton, 1982; Hamilton, 1983; Hamilton 

and Clarke, 1984]. In addition, a recent publication presents evidence that the 

sediments do not preserve a year by year account of Sellafield discharges, but 

provide a history of the integrated discharges [Mackenzie et al., 1994].

1.6 EXPOSURE OF THE HUMAN POPULATION TO ACTINIDES

One of the main considerations in assessing the long term implications of 

discharges from Sellafield is the resulting exposure of the public. This has led to 

a considerable research effort to determine the potential pathways by which 

radionuclides may return to the human population. Exposure can occur internally 

through the ingestion of sea food and inhalation of resuspended soil, silt, or sea 

spray and externally through exposure to contaminated sediments and beach 

material.

1.6.1 Sea-to-land transfer

Soil transects, taken inland from the West Cumbrian coast, showed an excess of 

plutonium, 241Am and 137Cs (above the weapons fallout contribution), which 

decreased with distance from the coast and correlated with Na deposits [Cambray 

and Eakins, 1982]. The activity ratios of these samples were characteristic of 

marine particulate material contaminated with discharges from Sellafield, indicating 

that radionuclides had been transferred from the sea on to the land. Since then, 

much work has been done on the mechanisms of sea-to-land transfer. These 

include deposition of seaborne sediment by tidal action and inundation [Horrill, 

1984; Curtis et al., 1991; McDonald e ta l., 1992], and deposition of air borne 

material [Eakins and Lally, 1984; McKay and Pattenden, 1990].

Studies have found that particle associated radionuclides become enriched in sea
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spray compared to the activities found in the seawater itself [Cambray and Eakins, 

1982; Eakins and Lally, 1984; Pattenden et a!., 1989]. Bubbles rising to the 

surface are thought to scavenge particulates, producing aerosol droplets on 

bursting at the surface which have enrichment factors for the actinides of the order 

of 10 for the surf zone, and of the order of 100 further out to sea [McKay and 

Pattenden, 1990; McKay et a!., 1993].

In Cumbria, the sea-to-land transfer of radionuclides, and in particular Pu and 

241Am, results in exposure of the population through inhalation and through 

consumption of local produce. For an average person living in Seascale, 4 km from 

Sellafield, this exposure is calculated to have resulted in a peak dose of 24 ytySvy'1 

in 1 973, falling to 4 //Svy'1 by 1987 with a further reduction to 2 //S vy1 predicted 

for the year 2000 [Howorth and Eggleton, 1988]. The figures are higher for 

members of the 'critical group' in Seascale, whose exposure due to sea-to-land 

transfer in 1987 was calculated to be 8% of the dose received through the 

consumption of seafood [McKay and Pattenden, 1990]. The radiological 

significance of the sea-to-land transfer is small (<  5% of the ICRP principal limit 

of 1 mSvy'1), but, it results in the exposure of the population to actinides, and is 

likely to persist through the continued presence and accumulation of actinides in 

surface sediments and suspended particulate material [McKay and Pattenden, 

1990].

1.6.2 Exposure through the consumption of marine biota

To assess the radiation exposure of the public as a result of discharges from 

Sellafield, the Ministry of Agriculture, Fisheries and Foods (MAFF) has carried out 

annual monitoring and surveillance programmes in the Sellafield area and elsewhere 

in the UK coastal environment [MAFF, 1967-1993]. A major part of these 

programmes has been the determination of radionuclide concentrations in marine 

biota which form one of the main pathways of exposure of the human population. 

Figure 1.14 shows 239+240Pu concentrations measured by MAFF in a variety of 

marine samples. 237Np has only been determined in a limited number of samples, 

since 1984 (Figure 1.15). Between 1967 and 1993, there have been three'main 

pathways of exposure; the consumption of Porphyra, external exposure and the
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Figure 1.14 239 + 240Pu concentrations (Bq kg'1, wet) in marine biota from the Irish 
Sea from 1969 to 1992 [MAFF, 1970-1993]
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Figure 1.15 237Np concentrations (Bq kg1, wet) in marine biota from the Irish Sea 
from 1984-1992 [MAFF 1985-1993]
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consumption of seafood including fish and shellfish (Figure 1.16).

Initial concern was directed towards the consumption of laverbread, produced from 

the alga Porphyra which was harvested from the coast near Sellafield. This was 

the dominant pathway of human radiation exposure between 1967 and 1972, 

resulting in a dose to individuals of the critical group of 4 to 7 mSvy'1 [Preston and 

Jefferies, 1969]. After 1972, harvesting of Porphyra from the Cumbrian coast 

ceased, and external exposure to individual workers in the Esk Estuary became the 

dominant pathway, until 1974, when the critical group changed to shellfish and fish 

consumers [Kershaw et a!., 1992].

From early studies it was evident that transuranium nuclides were not highly 

accumulated by fish such as plaice [Pentreath and Lovett, 1976, 1977, 1978; 

Leonard and Pentreath, 1981], but were concentrated in edible shellfish [Hamilton 

and Clifton, 1980; Clifton et at., 1983]. However, the initial dose received by 

shellfish consumers was predominantly caused by exposure to Cs nuclides, w ith 

239+240pu ancj 24i^m accountjng for less than 0.13 m Svy1 in 1974. By the 1980s 

the relative importance of the transuranium radionuclides increased, due to 

reductions in the levels of 137Cs discharged and through revisions to the estimates 

of the gut absorbtion factors for Pu at low concentrations [Kershaw et a/., 1992]. 

In 1 980, 239+240Pu were the predominant nuclides, accounting for 9.5% of the 

effective dose equivalent of 1.95 mSvy'1, but in 1981 changes to the critical group 

to include voracious mollusc eaters (45 g day'1), made 241 Am the dominant nuclide, 

contributing 20% to the effective dose equivalent. Since the 1980s, the dose 

received by the shellfish consumers has declined as a result of the decrease in 

discharges and subsequent decrease in shellfish concentrations (see Figure 1.16), 

and since the late 1980s the critical pathway has been again through external 

exposure [Kershaw eta !., 1992].

1.6.3  Radiological significance of the long-term disposal of radioactive wastes

The expansion of the nuclear power industry since the late 1950s and nuclear fuel 

reprocessing, has led to substantial quantities of intermediate and high-level 

radioactive waste. Under government authorisation, UK Nirex Ltd are to build an
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Figure 1.16 Exposure (mSv y 1) of the public as a result of porphyra consumption, 
external exposure and fish and shellfish consumption [MAFF, 1970-1992]
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underground repository at Sellafield, designed for the long-term storage of 

intermediate waste. This repository will probably be located under the Irish Sea 

bed, so it is likely that eventually some radionuclides will escape from the 

repository into the marine system.

The assessment of the risks involved in the long-term disposal of high-level 

radioactive wastes has led to the calculation of hazard indices. These assess the 

implications of release of radionuclides from repositories into the biosphere and 

include considerations such as the composition of the waste, the behaviour of the 

radionuclides in the environment, the potential pathways to the food chain and the 

human population, and the radiotoxicity of the individual nuclides [Kirchner, 1990]. 

Such calculations reveal that 239Pu and 240Pu are significant components of high- 

level waste up to 105 years after reprocessing, after which 237Np becomes more 

significant (see Figure 1.17) [Cohen, 1982; Cohen, 1983; Kirchner, 1990].

1.7 DETECTION METHODS

1.7.1 Overview

The concentrations of anthropogenic radionuclides in environmental media vary 

spatially and w ith time, depending on factors such as the source term, the chemical 

behaviour of the individual nuclides and the parameters of the environmental 

system into which they are introduced. Table 1.6 shows the typical ranges of 

concentrations of 239+240Pu and 237Np found in biota and sediments from the Irish 

Sea in the last 40 years. Although actinides in these samples are relatively 

enhanced, the concentrations are still at a trace or ultra-trace level, and their 

determination requires selective and sensitive techniques. Table 1.7 lists the main 

techniques used for the determination of the levels of 237Np and isotopes of 

plutonium in environmental samples. The characteristics, advantages and 

limitations of some of these techniques are discussed below.

1.7 .2  Radiometric methods

Conventional techniques used for determining radionuclide concentrations, are
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Table 1.6: Typical 237Np and plutonium isotope concentrations in samples from 
the Irish Sea [MAFF, 1969-1992; aAssinder et al., 1991; bPentreath and Harvey,

1981; cPentreath et al., 1984].

Nuclide Sample type Concentration range,
Bq kg'1 (mBq I'1, for seawater 

samples)

237Np asediment 0.012 - 13.3
bseawater 0.01 - 3.8
fish 0.00015 - 0.016
shellfish 0.0015 - 1.6

239 + 2 4 0p u sediment 18 - 4,200
cseawater 0.1 - 25
fish 0.00046 - 0.37
shellfish 0.012 - 280
seaweed 0.2 - 170

238Pu sediment 3.9 - 1,100
fish 0.00001 - 0.089
shellfish 0.0032 - 30
seaweed 1 -4 3

241 p u sediment 1,200 - 61,000
fish 0.25 - 2.5
shellfish 1.3 - 3,000

based on the detection of decay products. Table 1.4 lists the decay modes of the 

long-lived radionuclides of Pu, Np, U, and Am. The majority of the actinides are a- 

emitters. Alpha particles and gamma rays emitted during the process of radioactive 

decay have characteristic energies which are specific to each transition and 

detection is based on measuring the energy distribution of the emitted radiation. 

However, detectors have finite energy resolution, depending on the type of the 

detector and the quality of the electronics, which limits the separation of the 

resulting signals and the distinction between transitions which have similar 

energies. In most circumstances, this can be overcome by radiochemical separation 

of the analytes prior to analysis. The low specific activity of the long-lived 

radionuclides (for example, 237Np with a half-life of 2.14 x 106 years has a specific 

activity of 2.6 x 107 Bq g'1) and the low concentrations of actinides in 

environmental samples often mean that some sample preconcentration is also 

required.
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Table 1.7: Comparison of techniques used to measure environmental 
concentrations of 237Np and plutonium isotopes [Cross and Hooper, 1987; and

references in text].

Method Detection limit Comments

o-spectrometry 1 0 4 Bq
(3.8 x 10-12 g 237Np,
3.1 x 10"14 g 239+240Pu, 
based on fallout activity 
ratio)

detection limit based on 
106 s count, low 
background, chemical 
separation required, 
counting times > 24 
hours

neutron
activation
analysis

10'4 - 1 0 5 Bq 237Np 
(3.8 - 0.38) x 10'12 g

detection limits dependent 
on neutron flux, some 
chemical separation 
required

alpha track 
counting

10 3 - 10‘4 Bq non-specific technique, 
determines total a- activity

laser induced
photoacoustic
spectrometry

approx. 10"8M, (0.062 Bq 
ml'1 237Np, 5.5 Bq ml’1 239Pu)

not sensitive enough for 
low-level environmental 
samples

ICP-MS 10 x 10'12 g ml'1 
(2.6 x 10'4 Bq m l1 237Np, 
0.023 Bq ml"L239Pu, 0.084 
Bq ml'1 240Pu)

advantages for long-lived 
nuclides, some chemical 
separation required, fast

TIMS

SID-TIMS

4.3 x 10 '15 g 239Pu (1.7 x 
10'5 Bq 239+240pu)
1 x 105 atoms, 1 x 10"9 Bq 
237Np, 9 x 10'8 Bq 239Pu

sensitive enough to 
determine fallout 
concentrations, chemical 
separation required

1.7.2.1 Alpha Spectrometry

The most widely used technique for measuring low-level activities of o-emitters is 

alpha spectrometry as it provides both an extremely low background and sufficient 

energy resolution to distinguish between different a-emitting actinides.

Alpha-particles are commonly detected using silicon surface barrier (SSB) detectors 

[Lally and Phillips, 1984]. These consist of a thin wafer of silicon, containing a p-n 

junction. N-type silicon is oxidised in air to produce the p-type contact. A layer of 

gold is evaporated on to one side to act as the positive contact, w ith aluminium 

being deposited on the reverse side as the negative contact. Full details of the
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principles of semi-conductor devices are given by Knoll [1979]. Sources for high 

resolution a-spectrometry need to be uniform and very thin, to avoid self adsorption 

and are usually prepared by electrodeposition onto polished stainless steel discs. 

Separation of the actinides from the bulk matrix is required to remove all traces of 

iron and other metals from the sample which could 'plate out' w ith the actinides 

during electrodeposition, resulting in 'th ick' sources.

For a-energies of 4 to 7 MeV, the typical energy resolution of SSB detectors is of 

the order of 10 to 20 keV (Full Width at Half Maximum, FWHM) and approximately 

20 to 30% of the emitted a-particles are detected, depending on the solid angle of 

the detector. Even with an energy resolution of 10 keV, several of the actinides 

have a-particle energies which overlap. The potential interferences in the analysis 

of 237Np and Pu isotopes in environmental samples are highlighted in Figure 1.18. 

For 237Np analysis, a-particles resulting from the decay of 234U cause major 

interference, especially considering that 234U/237Np activity ratios can be as high as 

5 x 105 in certain environmental samples. Chemical separation of Np from U is 

therefore required prior to analysis. Corrections for any 234U remaining in a 

separated sample can be made by calculating the concentration of uranium in the 

sample from detection of 238U. Some separation of 237Np from Pu is also required 

to reduce the contribution to the 237Np peak from the tailing of the 239+240Pu a-peak. 

As a result, radiochemical separation procedures for determination of 237Np by a- 

spectrometry are often long and laborious. Typical procedures are detailed by Holm 

and Nilson [1981 ] and Germain et al. [1987]. Plutonium isotopes are relatively free 

from interference, although counts from 210Po may tail into the 239+240pu peak if it 

is present in large concentrations. Unfortunately, SSB detectors cannot resolve 

239Pu and 240Pu a-particles, so no information can be gained on the 240Pu/239Pu 

activity ratio from alpha spectrometry. Although there are fewer interferences 

involved in Pu analysis, radiochemical separation of Pu from the bulk sample is still 

required to produce thin, clean sources suitable for a-spectrometry.

Background count rates are essentially zero in alpha spectrometry, so detection is 

limited by the efficiency of the detector, the time available for counting each 

sample, and counting statistics. Counting times for low-level samples are long, 

often requiring over 24 hours. For a 108 second count, a source of approximately
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Figure 1.18 Typical a-particle spectra obtained during the analysis of (a) plutonium 
and (b) 237Np samples, showing nuclides which may cause interference
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10'4 Bq would produce a peak of 10,000 counts, resulting in a standard deviation 

of ± 1 % [Cross and Hooper, 1987; Hislop et al., 1987].

1.7.2.2 Gamma spectrometry

A number of the actinides are both a and low energy gamma emitters (see Table 

1.4). However, gamma detectors have a high background count so determination 

of low levels of these nuclides is impossible [Cross and Hooper, 1987]. In the case 

of 237Np, the low abundance of its y emissions (87 keV, 13.1% and 29 keV, 9.-8%) 

limits the sensitivity of the technique. 241 Am, however, can be determined to 

reasonably low levels, using the 60 keV emission. Cross and Hooper [1987] found 

that the detection limit for 241 Am from a 1 ml sample was approximately 0.05 Bq 

ml'1, after 8 hours counting, but this was increased to 0.001 Bq ml'1 by counting 

a sample volume of 200 ml. The main advantage of y-spectrometry is that aqueous 

samples can be analysed directly without the need for complex sample preparation.

1.7.2.3 Neutron activation

237Np can been determined in environmental samples by neutron activation, based 

on the nuclear reaction 237Np(n,y)238Np [May and Pinte, 1986; Germain et al., 1987; 

Byrne, 1986]. 238Np is both a p  and y emitter with a 2.11 day half life, and 

quantification is achieved by detecting the intense y-rays (1030 and 1027 keV at 

100%, and 943 keV at 83%) which are free from interference.

The analysis of 237Np by neutron activation is complicated by interferences which 

occur as a result of the irradiation of the sample. For example, additional 237Np is 

produced from the decay of 237U resulting from neutron reactions with both 238U 

and 235U [Germain et al., 1987]. Neutron activation of 238U also results in the 

production of 239U, whose decay product, 239Np, is often used as a chemical yield 

tracer. Activation of environmental samples, particularly marine samples which 

have high levels of sodium, chlorine and bromine, generates highly radioactive 

samples which make sample handling difficult. To overcome this, and to reduce 

the interferences from the activation of uranium, pre and post irradiation chemical 

separations are required [May and Pinte, 1984; Byrne, 1986]. To some extent this
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negates the advantage of neutron activation which, in combination w ith y 

spectrometry, (for other samples) requires virtually no sample preparation compared 

to a-spectrometry.

The sensitivity of the technique is dependent on the neutron flux, w ith detection 

limits of the order of 5 x 10'4 to 1.3 x 1O'5 Bq [Byrne, 1 986; Germain et al., 1987].

1.7.3 Mass based techniques

An entirely different approach from using radiometric techniques to assay long-lived 

radionuclides is to determine their mass abundance. Low level samples with 

activities of 10'2 to 10'3 Bq m l'1 contain very low concentrations of the actinides 

(for example 1 0 2 Bq ml'1 corresponds to 4.4 x 10'12 g ml'1 for 239Pu). Although 

these concentrations are below the detection limits of most methods normally used 

for trace metal analyses, there are a number of different mass spectrometric 

devices which can be used to determine the suitably long-lived nuclides [Koppenaal,

1988]. Some of these techniques are outlined below.

For mass spectrometry, interferences occur when more than one chemical species 

or nuclides have the same mass (isobars). Peaks may also overlap by peak tailing, 

the extent of which is determined by the resolution of the device. 237Np, 239Pu, 

240Pu and 242Pu are all free from isobaric interferences, b u t241 Am interferes with 

241 Pu. 241 Pu is a relatively short lived radionuclide (t1/2 = 14.4 years) and 

concentrations of 10'12 g ml'1 correspond to an activity of 3.8 Bq m l'1, but, if it is 

present at these concentrations, 241Pu can be determined by removing 241 Am prior 

to analysis. In the mass spectrometric determination of 237Np and 239Pu there is 

potential interference from the tailing of the 238U peak, due to its high natural 

abundance. An advantage of the mass-based techniques is that the 240Pu/239Pu 

atom ratio can easily be determined.

1.7.3.1 Inductively coupled plasma-mass spectrometry (ICP-MS)

ICP-MS involves the coupling of an inductively coupled plasma to a quadrupole 

mass spectrometer. Full details of the technique are given in section 2.1. One of
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the main advantages of ICP-MS is that sample preparation procedures are much 

simpler than the rigorous separation procedures required by a-spectrometry. The 

criterion used for ICP-MS is that analytes should be removed from the bulk matrix 

and presented to the instrument in a 2-5 ml solution with a total salt content of

0.2% or less. ICP-MS also has some advantages in sensitivity over radiometric 

techniques for the long-lived radionuclides. Figure 1.19 shows the ICP-MS 

detection limit in Bq against half-life, assuming a detection limit (apart from 129l and 

"T c  which have isobaric interferences) of 10'11 g ml'1, w ith a 1 ml sample required 

for analysis [Hislop et al., 1987]. This shows the advantage of ICP-MS for 

radionuclides with half-lives of over 106 years. ICP-MS also has the advantage of 

being a rapid technique, with the capability of routinely analysing over 20 samples 

in a day.

Figure 1.19 Effect of Half-Life on detection limit for ICP-MS vrs a-spectrometry 
[Hislop eta !., 1987]
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The initial applications of ICP-MS to radionuclide assay were for the determination 

of Th and U in geological samples [e.g. Gray and Date, 1983; Riddel et al., 1988; 

Russ, 1 989]. Since the assessment of the technique for the analysis of long-lived 

radionuclides [Hislop et al., 1987; Brown et al., 1987] there has been a small, but 

increasing number of applications, including the determination of Sellafield-derived 

237Np in soils [Hursthouse et al., 1991] and intertidal sediments [Assinder et al.,

1991].

1.7.3.2 Thermal ionisation mass spectrometry (TIMS)

TIMS is a standard technique in which samples are vaporised from a source 

filament (usually Re or Ta) and analysed by a mass spectrometer which can scan 

a number of individual mass units. The preparation of the source filament requires 

chemical purification procedures of similar complexity to those required for a- 

spectrometry [Buesseler and Halverson, 1987]. TIMS is a very sensitive technique 

w ith lower detection limits than both ICP-MS and a-spectrometry, even for isotopes 

of plutonium (1.7 x 10‘5 Bq for 239+240pu or 4.3 x 10'15 g 239Pu) [Buesseler and 

Halverson, 1987]. The detection limit of the system can be further improved by 

a surface ionisation-diffusion-type (SID) ionisation source, the preparation of which 

is described for 237Np analysis by Effurd et al. [1986] and for Pu analysis by Perrin 

et al. [1984]. Detection limits were quoted as 1 x 105 atoms (3.9 x 10'8 ng, or 1 

x 10'9 Bq 237Np and 9 x 10'8 Bq 239Pu) w ith a precision of 0.15%  (2a). TIMS 

analysis takes longer than ICP-MS, approximately 8 samples requiring 8 hours 

analysis time [Buesseler and Halverson, 1987].

The sensitivity of this technique means that it can be applied to the analysis of 

plutonium and neptunium in samples representative of global fallout. For example, 

240Pu/239Pu atom ratios have been determined in sediments from the North Atlantic 

[Buesseler and Sholkovitz, 1987a] and the Gulf of Mexico [Scott et al., 1983], as 

well as in the Arctic and Antarctic ice sheets [Koide et al., 1985]. Effurd et al. 

[1984] have also determined the 237Np/239Pu atom ratio in fallout soil and in lung 

and liver tissue of individuals exposed to global fallout. Soil and intertidal sediment 

samples contaminated by the Sellafield discharges have also been analysed by
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TIMS, to obtain the 240Pu/239Pu and 241Pu/239Pu atom ratios [McCarthy and Nicholls, 

1990].

1.7.3.3 Resonance ionisation mass spectrometry (RIMS)

RIMS consists of the combination of laser resonant photo-ionisation w ith mass 

spectrometry (magnetic sector, quadrupole or time-of-fight). The full details of the 

technique are described by Baxter et al. [1987]. The technique is highly selective 

as it involves the detection of atoms or molecules which have been ionised after 

having been excited to a particular state which is unique to the element of interest, 

and therefore requires little sample preparation. The potential of the technique for 

the analysis of actinides in the environment has yet to be realised, although some 

initial measurements have been made by Rimke et al. [1987], who quoted detection 

limits of less than 107 atoms of 239Pu.

1.7.4 Counting versus mass-based techniques

To conclude, the conventional radiometric technique for determining the activity of 

actinides in environmental samples, c/-spectrometry, is sensitive and selective but 

requires laborious and lengthy sample preparation procedures. By comparison, 

mass-based techniques can offer lower detection limits for long lived radionuclides 

and, in the case of ICP-MS and TIMS, much faster sample analysis. In addition, the 

sample requirements for ICP-MS are met by simplified sample preparation 

procedures. 240Pu/239Pu atom ratios can be determined by ICP-MS and TIMS, 

although TIMS has lower detection limits and greater precision. The main 

disadvantage of the mass-based techniques is that they are more expensive.
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1.8 AIMS OF RESEARCH

There were 5 main aims of this project:

1. To investigate and characterise ICP-MS for the analysis of 237Np and 

isotopes of plutonium.

2. To develop an analytical technique for ICP-MS to determine 237Np, 239Pu, and 

240Pu concentrations in sediment samples.

3. To investigate the variations in 240Pu/239Pu atom ratios in intertidal sediments 

contaminated w ith Sellafield-derived plutonium.

4. To investigate the sediment record of Pu and Np discharges from Sellafield 

by the analysis of sediment cores from intertidal regions of the Irish Sea.

5. To assess the potential for deconvolution of the sediment record to provide 

information on the source 4erm.
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CHAPTER 2

INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETRY

2.1 INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETRY

ICP-MS is a relatively new technique which combines the ability of inductively 

coupled plasmas to atomise and ionise samples with the selectivity and sensitivity 

of mass spectrometry [Houk and Thompson, 1988]. Excellent reviews are available 

detailing the principles of the technique [Jarvis et a!., 1992] and its applications 

[Date and Gray, 1989].

2.1.1 Historical development

Initially, inductively coupled plasmas were investigated as an excitation source to 

be used in combination with atomic emission spectrometry (AES) for trace metal 

determinations [Greenfield eta/., 1964; Wendt and Fassel, 1965]. It was shown 

that ICPs improved AES, giving detection limits of 0.1- 10 ng ml'1 for a range of 

elements; two or more orders of magnitude better than previous results [Dickinson 

and Fassel, 1969]. However, problems were found in the analysis of rock samples 

whose matrix elements, such as Ca, Al and Fe, caused severe spectral 

interferences, making it difficult to find free spectral lines for trace analysis. A 

technique was required that would analyse solid mineral samples and provide multi­

element analyses at levels down to 10 ng g'1 in an analysis time of a few minutes 

[Gray, 1986a].

Of the spectrometric techniques available, mass spectrometry offered low detection 

limits across a wide elemental range and the ability to analyse trace elements from 

a complex matrix, along with simple spectra and high sample throughput. A 

technique was required to volatilise and dissociate the sample and provide a source 

of ions for the mass spectrometer. Spark source mass spectrometry, the main 

technique first used for multi-element mass spectrometry, required solid sample 

compacts whose preparation limited the sample throughput. Chemical flames were 

considered but they were not hot enough to ionise many elements, so attention 

was turned to atmospheric DC and RF plasmas which had already proved good

54



sources of ions for ICP-AES. The problem was then how to extract representative 

ions from the plasma at atmospheric pressure to the ion detector at high vacuum. 

Following the work on flame mass spectrometry analysis by Sugden [1965] and 

Knewstub and Hayhurst [1974], a feasibility study was set up by Moruzzi using a 

small capillary DC arc source with a small quadrupole mass analyser and a 

channeltron ion detector. The tailflame impinged on an aperture of 0.07 mm 

mounted in the wall of the first vacuum stage. This first system showed promise, 

w ith high sensitivity and essentially zero background [Gray, 1992]. However, the 

discharge consisted of a single high temperature channel which resulted in poor 

sample introduction and a poorer degree of ionisation than expected so that 

elements w ith ionisation potentials above 8 eV had very low sensitivities. It was 

concluded that a hotter plasma such as the ICP was required [Gray, 1978].

By the late 1970s, three groups (at Surrey in the UK, Toronto in Canada, and the 

Ames laboratory in Iowa) were working on the problem of using an ICP as an ion 

source with its high temperature and RF fields. A detailed history of their 

developments can be found in the literature [Houk et a/., 1980; Date and Gray, 

1981; Douglas etaL, 1 983; Gray, 1985; 1986; 1989]. The main problem was the 

extraction of representative ions from the plasma into the mass analyser. Initially 

small apertures of 0.05-0.07 mm were used, similar to the capillary arc source, but 

these were found to be too small, as a cool boundary layer formed at the tip of the 

aperture. Larger apertures caused difficulty in removing the thermal flux, resulting 

in melting and enlargement of the tips. After achieving good thermal contact to the 

larger apertures (0.4mm), it was found that too much gas was extracted, causing 

the pumping system to stall. The solution was to have a two stage vacuum system 

with a preliminary, high-pressure stage of about 2 mbar, achieved using a rotary 

pump. 1981 saw the first demonstration of ion extraction from the bulk ICP 

plasma [Gray, 1982]. By 1983 two commercial instruments were launched, the 

VG PlasmaQuad, based on the Surrey system, and the Sciex Elan, based on the 

Toronto system. The principle of the two systems is the same, although there are 

differences in the grounding of the RF coil (and as a consequence the potential of 

the plasma) and in the arrangement of the ion optics. By 1984 the first 

instruments were installed in laboratories and since then their use for trace element 

analysis has rapidly expanded with applications in geological, environmental and
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medical science and over 450 instruments around the world.

2.1 .2  Instrumentation Overview

The ICP-MS used in this study was a VG PlasmaQuad PQ1, purchased in 1988. 

A schematic diagram of the overall system is shown in Figure 2.1. The system can 

be divided into four main sections; sample uptake and introduction into the plasma, 

the plasma, the sample interface, and ion selection and detection. Each of these 

sections is described below.

A variety of techniques can be used to introduce samples into the plasma, 

dependent on the sample composition and form. Once in the plasma the sample 

is volatilised, dissociated and the component atoms ionised. Representative ions 

are then extracted from the plasma into the first stage of the vacuum system via 

a sampling cone, a supersonic jet forming behind the cone as a result of the 

pressure difference. A skimmer cone is placed within the mach disc enabling ions 

to enter the second, high vacuum stage. The ions are then focused into the 

quadrupole mass analyser, whose parameters allow only ions with a narrow band 

of mass to charge ratios to pass through and be detected by the electron-multiplier. 

Scanning the quadrupole parameters allows ions to be detected sequentially in 

order of their mass to charge ratio.

2.1 .3  Sample introduction

Samples can be introduced into the ICP as a gas, vapour or aerosol of fine droplets 

or solid particles of 10 //m or less in diameter. This enables rapid desolvation, 

volatilisation and atomisation to take place without disrupting the plasma. A wide 

variety of sample introduction techniques has been used with ICP, including 

pneumatic or ultrasonic nebulisation of liquid samples, electrothermal vaporisation 

of fj\ samples, laser or spark ablation from a solid, and direct introduction of volatile 

hydrides or oxides from a reaction vessel. A full account of sample introduction 

techniques is given by Williams [1992]. In the present study, both liquid 

nebulisation and electrothermal vaporisation were used as described below.
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2.1.3.1 Liquid Nebulisation

The most commonly used sample introduction technique in ICP-MS is pneumatic 

nebulisation of liquid samples. A high velocity gas stream produces a fine droplet 

dispersion of the analyte solution with a broad distribution of droplet diameters up 

to 100 //m. To remove the larger droplets which would disrupt the plasma, the 

aerosol is passed through a spray chamber. This allows droplets of only 8 //m or 

less to enter the plasma [Montaser and Golightly, 1987]. The use of pneumatic 

nebulisation is widespread because it is a simple technique, enabling rapid sample 

throughput w ith good stability at low cost. However, it is a highly inefficient 

process with only 1-2% of the sample reaching the plasma [Thompson and Houk, 

1987]. In addition, pneumatic nebulisation presents several problems when used 

with the ICP. Deposition of matrix elements can cause nebuliser blockage so 

samples are restricted to < 0.2 % (m/v) dissolved solid content. The presence of 

hydrogen, oxygen and matrix elements in the plasma also causes the formation of 

interfering polyatomic species and matrix-induced effects on the ion signal during 

ion transport between the source and the detector. Liquid nebulisation also 

requires a sample volume of 3-10 ml. Ultrasonic nebulisers offer higher sampling 

efficiencies, but they are more complicated, expensive and can be unreliable 

[Boumans and De Boer, 1976].

The liquid nebulisation work in the present study used a Meinhard glass concentric 

nebuliser [Meinhard, 1976] and a Scott double pass spray chamber [Scott et a!., 

1974] (Figure 2.2) w ith a Gilson peristaltic pump to meter the solution to the 

nebuliser. The sample uptake rate was kept between 0.7 and 1.0 ml min'1.

2 .1 .3 .2  Electrothermal Vaporisation

Electrothermal vaporisation (ETV) devices have been used for sample introduction 

in AES since 1974 [Nixon et a!., 1974]. The first use of ETV for sample 

introduction into an ICP-MS was in 1983 [Gray and Date, 1983]. Since then its 

use, for small samples and samples which cause severe matrix interference when 

liquid nebulisation is used, has been widespread [Williams, 1992],
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Figure 2.2 Schematic diagram showing (a) a Meinhard nebuliser and

nozzle
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(b) a Scott double pass spray chamber used in the PQ1 system [Jarvis et al, 1992]
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The electrothermal vaporisation unit is basically an electrically conductive 

vaporisation cell into which microlitre samples can be injected. Applying a current 

to the cell causes resistive heating. Changing the current using an electronic 

control system enables the cell to be heated in a sequence of temperature stages. 

Initially a low current is applied to the cell to dry the sample. In some cases an 

'ash' stage is then used to remove some of the matrix from the sample. Finally a 

high current is applied to the cell for a short period (<  5 secs) to vaporise the 

sample. Argon is continuously passed through the cell and this sweeps the sample 

vapour into the plasma.

Electrothermal vaporisation can provide several advantages over pneumatic 

nebulisation. These include the analysis of small samples ( 5 - 1 0 0  jl/I), higher 

transport efficiency (20 - 80 %), the ability to analyse samples with higher solid 

and/or acid content, and possible separation of the analyte from the sample matrix 

[Shen eta/., 1990]. Potentially, this leads to reduced sample pretreatment, greater 

sample pre-concentration and higher sensitivity.

The electrothermal vaporisation -unit used in the present study was a VG 

Microtherm Mark 1 manufactured by VG Elemental Ltd (Figure 2.3). It consisted 

of a pyrolytically coated graphite tube mounted in carbon bushes inside a quartz 

sleeve. 10-100 fj\ samples were injected into the graphite tube using a 

micropipette and the tube was then plugged with a graphite rod. A typical 

temperature profile is shown in Figure 2.4. During the vaporisation stage the 

sample is swept into the plasma by the carrier gas flow. This also contained 

approximately 1 % freon (CHF3) which is required to prevent the formation of 

carbides in the furnace and to increase the transport efficiency of refractory 

elements such as plutonium and neptunium.

2.1 .4  The Inductively Coupled Plasma

The inductively coupled plasma (ICP) is required to volatilise, dissociate, and ionise 

the incoming sample and produce a source of representative ions which can then 

be mass analysed. It consists of a discharge in a gas at atmospheric pressure. The
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most commonly used gas is argon although other gases and gas combinations have 

been used [Williams, 1992]. Some of the fundamental properties and 

characteristics of the ICP are discussed below.

2.1.4.1 Plasma Generation

The production of an inductively coupled plasma has changed little since the 

pioneering work of Reed who established vorticular stabilisation of an argon plasma 

by introducing argon tangentially into a vertical plasma torch [Reed, 1961]. 

Modification of the plasma torch enabled samples to be efficiently introduced into 

the central channel of the plasma and led to its first application in an analytical 

technique [Greenfield et al., 1964].

The main difference in the plasma system now used in ICP-MS is the horizontal 

configuration of the plasma torch. From the sample introduction system the 

samples are transported by the carrier or nebuliser gas to the plasma via the ICP 

torch. A typical torch including the gas flows and the induced magnetic field, is 

shown in Figure 2.5. It consists of three concentric quartz tubes through which are 

passed three separate gas flows. The coolant and the auxiliary flows enter the 

outer and inner annular spaces respectively at a tangent so as to create vorticular 

flow. The coolant gas flow (10-15 I min'1) is the main support gas for the plasma, 

whilst the auxiliary flow (0 - 1.5 I min'1) prevents the plasma from melting the tip 

of the central capillary tube. The carrier gas is passed through the central channel 

creating a cool jet of gas which punches a hole through the middle of the plasma. 

To initiate the plasma, the gas is seeded with free electrons produced from sparks 

from a tesla coil. The plasma is then maintained by coupling energy from a RF 

(radio-frequency) generator via 2 turns of a cooled copper coil which is placed 

around the torch a few millimetres from the end. An RF frequency of 27 MHz is 

used to create a field which lies along the axis of the torch. Free electrons in the 

plasma then precess around the magnetic field lines in circular orbits and the 

electrical energy supplied to the coil is converted into kinetic energy of the 

electrons. The mean free path of the electrons is approximately 10'3 mm, after 

which they collide and transfer their energy to the argon atoms. This heats the 

plasma and causes a bright discharge. At the frequencies used, the skin effect,
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Figure 2 .4  ETV temperature profile used in this study
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Figure 2.5 Schematic diagram of ICP torch, gas flows and the induced magnetic 
field, th e  shaded zones are observed when, a nebulised sample containing Y is 
introduced along the central Channel [Jarvis et al, 1992]
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caused by RF induction heating, ensures that most of the energy is coupled to the 

outer or induction region of the plasma which attains a temperature of about

10.000 K [Scott et a/., 1974]. The gas in the centre is heated mainly by 

conduction and radiation from the induction region, the temperature ranging from

5.000 to 8,000 K. Samples entering the plasma from the central channel of the 

torch therefore have little effect on the electrical processes which maintain the 

plasma [Gray, 1989].

2 .1 .4 .2  Fundamental Properties of the ICP

Much work has been done to determine the fundamental properties of the 

inductively coupled plasma, with the aim of improving its analytical capabilities and 

to elucidate the excitation mechanisms which take place within it [Hasegawa and 

Haraguchi, 1987]. Properties such as plasma temperature, electron number 

densities and number densities of analyte and argon species have been measured 

under different plasma conditions by a variety of techniques [Blades and Caughlin, 

1985; Furuta et a!., 1985; Mao Huang eta/., 1992]. As a consequence of its 

inhomogeneous nature, the spatial distribution of these properties is required to 

characterise the plasma [Hasegawa and Haraguchi, 1987]. The plasma is said to 

be in local thermodynamic equilibrium (LTE) when the distribution functions 

(Boltzmann, Saha, Maxwell, etc) are characterised by unique temperature for all 

species. Empirical observations of the above parameters have led to the conclusion 

that the ionic and neutral species in the ICP are not in LTE [Boumans, 1987], 

although in the normal analytical region of the plasma 'close to LTE' conditions 

prevail [Furuta, 1986]. The reason for the departure from LTE is still under 

discussion, but a number of excitation mechanisms have been proposed [Hasegawa 

and Haraguchi, 1987].

2 .1 .4 .3  Ionisation and distribution of ions in the Plasma

In the ICP, the analyte ions are not the dominant species present. Using the ideal 

gas laws the particle number densities can be calculated. With a pressure of 1 bar 

and a gas kinetic temperature of 5,000 K, the total particle density is 1.5 x 1018 

cm 3, the majority of which is argon [Jarvis et a/., 1992]. In a dry plasma the
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number density of the argon ion (nAr+) and the electron number density (ne) are 

calculated to be 1 x 1015 cm'3. This compares favourably w ith measured values 

which range from 5 x 10u  to 5 x 1015 cm'3 [Hasegawa and Haraguchi, 1987]. 

Nebulising a solution of 1 % nitric acid with an efficiency of 1 % and at an uptake 

rate of 1 ml min'1 contributes electrons and ions from the ionisation of hydrogen (2 

x 1014 cm'3), oxygen (1 x 1014 cm'3) and nitrogen (1 x 1012cm'3) [Jarvis eta!.,

1992]. This increases the total electron number density of the plasma to 1.3 x 

1015 cm'3. The nebulisation of sample solution into the plasma therefore makes a 

significant contribution to the electron and ion population.

It is also worth considering the contribution made by trace elements in a sample 

solution. Elements that are present at a concentration of 1 jjq ml'1 in solution 

contribute 1 x 1010 ions cm'3 to the plasma population, whereas a fully ionised 

matrix element at 5,000 fjg ml'1 contributes 5 x 10 13 ions cm'3. Even at such a high 

concentration, a matrix element represents a barely significant contribution to the 

ion and electron population. Ionisation suppression in the plasma is therefore 

generally not a major cause of matrix interference [Olivares and Houk, 1986].

The degree of ionisation of analyte species can be predicted by the Saha equation:

Hi = A
n„ n„

( 2 7imkT\ 3/2
f 2Zi) \~E')exp

U r ]I  h2 ) U J

where nj= conc. of ions; na= conc. of atoms; ne = electron number density; me = 

mass of electron; T = ionisation temperature; Zj= partition function of ion i; za = 

partition function of atom a; and Ej= the ionisation potential.

With an ionisation temperature of 7,500 K and an electron number density of 1.3 

x 1015cm'3 this equation predicts that greater than 90% of most elements will be 

present as positively charged, singly ionised species [Houk, 1986]. Table 2.1 

shows the distribution of ionisation energies among elements for singly and doubly 

charged species and Figure 2.6 shows how the degree of ionisation changes with
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ionisation energy for singly charged ions in the ICP. The majority of the elements 

have first ionisation energies of less than 10 eV, an energy which corresponds to 

over 50% ionisation. In addition the second ionisation energies of most elements, 

w ith the exception of the alkaline and rare earth elements, uranium and thorium, 

are above 16 eV implying that elements introduced into the plasma will consist 

mainly of singly ionised species [Jarvis et a!., 1992].

Table 2.1: Distribution of ionisation energies among the elements for singly and 

doubly charged ions at 1eV intervals, from [Gray, 1989].

Ionisation
energy

(eV)
Elements

< 7 Li, Na, Al, K, Ca, Sc, Y, Zr, Nb, Ti, V, Cr, Ga, Rb, Sr, La, Ce, 
Pr, In, Cs, Ba, Eu, Gd, Tb, Dy, Ho, Nd, Pm, Sm, Tm, Yb, Lu, 
Hf, TI, Ra, Er, Ac, Th, U

7 - 8 Mg, Mn, Fe, Co, Ni, Cu, Sn, Sb, Ge, Mo, Tc, Ru, Rh, Ag, Ta, 
W, Re, Pb, Bi

8 - 9 B, Si, Pd, Cd, Os, Ir, Pt, Po

9 - 10 Be, Zn, As, Se, Te, Au 2 + ions

1 0 -1 1 P, S, I, Hg, Rn Ba, Ce, Pr, Nd, Ra

1 1 -1 2 C, Br Ca, Sr, La, Sm, Eu, Tb, 
Dy, Ho, Er

1 2 -1 3 Xe Sc, Y, Gd, Tm, Yb, Th, 
U, Ac

1 3 -1 4 H, 0 , Cl, Kr Ti, Zr, Lu

1 4 -1 5 N V, Nb, Hf

1 5 -1 6 Ar Mg, Mn, Ge, Pb

> 16 He, F, Ne All other elements

To produce singly ionised species as efficiently as possible the incoming sample 

must first be desolvated, volatalised, dissociated and subsequently ionised. For 

these processes to occur the sample must remain in the hottest part of the plasma 

for several milliseconds [Houk, 1986], the exact time required depending on the 

size of the desolvated particles which in turn depends on the dissolved solids 

content of the sample. The time required to dissociate molecular species depends
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Figure 2.6 Degree of ionisation vrs ionisation energy for singly charged ions in the 
ICP [Gray, 1989]
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Figure 2.7 Transverse profile across the plasma flame at 5 ,10  and 15mm from the 
load coil in 1 mm steps for a nebulised solution containing 10Ong/ml Co [Jarvis et 
at, 1992]
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on their bond strengths, refractory species requiring longer residence times [Jarvis 

et al., 1992]. The conditions in the plasma and the residence time of the sample, 

can to some extent, be optimised by changing the nebuliser flow rate and the RF 

power supplied to the plasma.

The processes occurring in the plasma can be rendered visible by introducing a 

concentrated (1,000 //g g'1) solution of yttrium. This causes the initial radiation 

zone of the plasma to glow red, corresponding to emission from excited YO and 

neutral Y atoms. Further along the axial channel, singly charged Y ions are formed 

which emit blue light [Houk and Thompson, 1988]. The distribution of ions can 

also be observed by moving the sampling orifice and detection system across the 

plasma at various distances from the load coil. Figure 2.7 shows the transverse 

profile of an ICP at 5, 10 and 15 mm from the load coil, the signal being obtained 

from nebulising a solution of cobalt at 100 ng ml'1 [Jarvis eta!., 1992]. This profile 

shows that the central channel is about 3 mm wide with a sharp drop off at the 

sides. Further along the axis the central channel diffuses into the annulus. The 

optimum position for the sampling orifice is just after the initial radiation zone 

where interfering species still exist and before the ions diffuse out of the central 

channel.

In conclusion, the ICP is an excellent source of singly charged ions w ith few  doubly 

charged species or polyatomic ions being formed. It enables easy sample 

introduction, w ith the sample composition having little effect on the processes 

which maintain the plasma. The main disadvantage is that representative ions have 

to be taken from the high temperature and pressure region of the ICP to the high 

vacuum region of the mass analyser.

2 .1 .5  The Sample Interface

2.1.5 .1  Ion Extraction

The interface between the ICP and the mass spectrometer must be capable of 

extracting ions from the plasma at atmospheric pressure into the quadrupole mass 

spectrometer at a pressure of 10'5 torr. A schematic diagram of the interface used
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Figure 2.8 The VG Plasma Quad interface [VG Isotopes, 1988]
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in the VG PlasmaQuad is shown in Figure 2.8.

As the plasma impinges on the water cooled nickel sampling cone, a boundary layer 

forms between the plasma and the cone surface (Figure 2.9). The gas flow 

through the sampling orifice (diameter 1 mm) is sufficient to puncture this boundary 

layer and sampled ions flow directly from the plasma into the first vacuum stage 

[Gray, 1989]. Oxide formation and other chemical reactions resulting in the 

formation of polyatomic species readily take place in the cooler boundary layer. 

The extraction of these interfering species is kept to a minimum by keeping the 

skimmer cone orifice (0.75 mm diameter) smaller than the sampling cone [Vaughan 

and Horlick, 1990a; Gray, 1986]. In addition to the boundary layer, a sheath forms 

around the sampling cone (see Figure 2.9) as a consequence of electrical interaction 

of the plasma with the grounded sampling cone. As a result, the plasma assumes 

a net positive floating potential which affects the energy of the ions extracted 

which in turn affects the behaviour of the ions in the ion focusing region of the ICP- 

MS [Fulford and Douglas, 1986; Olivares and Houk, 1985a].

If the plasma potential is high enough it can cause a secondary discharge to occur 

between the plasma and the sampling orifice. This is detrimental as it erodes the 

sampling cone, generates multiple charged ions and induces high kinetic energies 

and a wide spread of kinetic energies in the extracted beam [Houk et a!., 1981; 

Douglas and French, 1986]. In Sciex Elan instruments the plasma potential is 

reduced significantly by grounding the load coil [Douglas and French, 1986]. The 

plasma potential can also be reduced by using a low aerosol flow  rate (0.5 - 0.9 I 

min'1), reducing the solvent load of the plasma and moving the sampling cone 

closer to the load coil [Jarvis et a/., 1992].

The pressure difference between the plasma and the first vacuum stage (1 bar to 

1 mbar) is sufficient for the sampled gas to form a supersonic jet behind the 

sampling cone. Some collisions take place for the first few orifice diameters, after 

which expansion takes place freely [Douglas and French, 1988]. The supersonic 

jet is surrounded by a barrel shock and Mach disc, where collisions w ith the 

surrounding gas become significant. The small number of collisions within the jet 

and the short duration of expansion (approximately 3 j j s )  imply that the sampling
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process is not complicated by extensive chemical reactions and that the ions 

extracted are more or less representative of those in the plasma [Douglas and 

French, 1988]. This is supported by ionisation temperature measurements [Crain 

et a/.r 1 990], and electron density measurements in the jet [Lim and Houk, 1990]. 

However, there is evidence that some charge separation takes place during the 

extraction process [Chambers et a!., 1991], although the extent of charge 

separation has not been determined [Tanner, 1992]. During the expansion stage 

the ions are entrained in the flow of the argon gas and attain a velocity equal to the 

terminal velocity of argon. The kinetic energy of the ions (the sum of 1/2 mv2 and 

the plasma potential) is therefore dependent on the mass of the ions [Crain et a/., 

1990].

The skimmer cone is placed within the supersonic jet, the optimum skimmer- 

sampler position found empirically to be approximately 2/3 of the distance from the 

onset of the Mach disc [Lam and Horlick, 1990; Douglas and French, 1988]. About 

1 % of the ions extracted from the plasma flow  through the skimmer cone [Gillson 

et a!., 1988]. The condition of both the skimmer and sampling cone is significant 

to the instrument performance. -During use, sample material builds up on the 

surfaces of the cones which also become pitted and corroded. To avoid memory 

effects, the cones should be cleaned daily and replaced if the instrument response 

has dropped significantly due to their deterioration.

2 .1.5.2 Ion Focusing

To transmit the ions from the skimmer to the mass analyser, they are focused into 

a beam by an array of ion lenses, the principle operations of which are given by 

Jarvis et a/. [1992]. For an ideal lens the trajectory of an ion, to the first 

approximation, is independent of m/z provided that the initial position and kinetic 

energy are the same. This implies that one set of lens voltages could transmit all 

ions w ith the same efficiency [Jarvis et a/., 1992]. However the ion's kinetic 

energy is mass dependent, the spread of kinetic energy across the mass range 

being a few eV [Crain et a!., 1990; Fulford and Douglas, 1986]. As a result, ions 

of different mass have different paths through the ion optics and a compromise set 

of lens voltages has to be found. This introduces mass discrimination into the
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system, with some ions being transmitted more efficiently than others, and the 

extent of the mass discrimination depending on the plasma potential and on the ion 

lens settings. The trajectories of ions through the ion lens system have been 

modelled using a computer program, MacSimion, which illustrates the dependence 

of ion path on kinetic energy [Vaughan and Horlick, 1990b]. The program has been 

further adapted to account for space charge affects in the ion optics (see below) 

[Tanner, 1992].

The lens stack also contains a metal disc on the axis which acts as a photon stop, 

preventing photons emitted from the plasma from reaching the detector and 

contributing to the background count rate. Consequentially about 50-80% of the 

ions are also lost here [Jarvis et a!., 1992].

2 .1.5.3 Space charge effects

The beam of ions passing through the skimmer cone can be considered to be quasi­

neutral, the ion current being balanced by an equal electron current [Douglas and 

French, 1988]. However, as the beam leaves the skimmer, the electric field of the 

lens collects the ions and repels the electrons. Coulombic repulsion of ions of the 

same charge limits the number of ions that can be compressed into a beam of a 

given size. The ion current at the base of the skimmer has been calculated to be 

1,500 jjA  [Gillson et at., 1988] which well exceeds the maximum current of 1 jjA  

where space charge effects are expected to be negligible [Olivares and Houk,

1985b]. As a result, ions are de-focused from the beam, the lighter, less energetic 

ions being affected more than the heavier, more energetic ions [Vickers et al.,

1989]. The mass bias effect is further enhanced within the ion optics where 

accelerating potentials induce a stronger mass-dependence to the ion's velocity, 

resulting in heavier ions moving more slowly than lighter ions [Tanner, 1992], The 

heavier ions which were initially focused more tightly on the axis, now move more 

slowly and so make a greater contribution to the space charge. This is illustrated 

by Figure 2.10, which shows the suppression effect of matrix elements on the 

response for Li+, Rb+, and Th+ as a function of the matrix element mass. Heavier 

matrix elements cause greater suppression than lighter matrix elements and, for a 

given matrix, light analytes are suppressed more than heavier analytes [Gillson et
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Figure 2 .10  Ratio of analyte signal in the presence of the matrix element to that 
in the absence of matrix element as a function of the matrix element for Li+, Rb + 
and Th + analyte ions with matrix element concentration of 0 .0042M  [Gillson eta l, 
1988]
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Figure 2.11 The Quadrupole mass filter, [Miller and Denton, 1986]



a!., 1988]. Space charge effects in the interface are therefore the major cause of 

matrix interferences in ICP-MS.

2.1 .6  Ion Selection and Detection

2.1.6.1 The quadrupole mass filter

Once the ions have passed through the ion optics they are focused into the 

quadrupole mass filter. This consists of four rods accurately machined to be 

parallel to and equidistant from the axis (Figure 2.11). Pairs of rods are connected 

together and a DC and RF voltage applied to each pair. To one pair the DC voltage 

is positive, to the other it is negative, the RF voltage being the same for each pair 

but 180° out of phase. Selecting RF and DC voltages appropriately allows only ions 

of a given m/z ratio to have stable paths through the rods, all other ions being 

deflected so that they hit the rods and become neutralised. The trajectory of the 

ions through the quadrupole can be calculated by considering the force acting on 

the ions by the electric field [Miller and Denton, 1986]. The solutions to the 

equations of motion require the definition of parameters a and q where:

r0= radius between the rods; w  = RF frequency; U = the magnitude of the DC 

voltage; V = the magnitude of the RF voltage.

The full mathematical calculation is given by Dawson [Dawson, 1976]. The 

stability of the appropriate solutions depends only on parameters a and q and a plot 

of a against q reveals regions where the solutions are stable or unstable (Figure

2.1 2). Keeping U/V constant restricts the operation of the mass filter to a set of 

operating points which lie on a straight line, known as the mass scan line (Figure 

2.12). Only ions that fall on the scan line inside the sharply pointed tip of the

a
w2TqM

4 eU 2eV

w*r0M
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Figure 2 .12  Stability diagram for ion transmission through quadrupole for fixed U 
and V, the (a, q) values for ions of different m/z = M, M-1 and M + 1 are indicated 
along the scan line [Miller and Denton, 1986]
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stability region have stable paths through the rods. The quadrupole therefore acts 

as a narrow band-pass filter. Changing U and V alters a and q and this corresponds 

to moving from one m/z ratio to another along the scan line. Sweeping the 

voltages applied to the rods scans the band-pass region of the mass filter.

Adjusting the slope of the mass scan line by changing the U/V ratio alters the width 

of the m/z values transmitted. For example, increasing U/V narrows the mass-band 

of the filter and so in effect increases the resolution. However, the number of ions 

transmitted depends approximately on the area of the stability diagram that is 

enclosed, so increasing the resolution also decreases the fraction of the ions at the 

m/z ratio of interest getting through [Jarvis eta/., 1992]. Therefore, a compromise 

between resolution and ion transmission has to be made.

The quadrupole performs best w ith ions of low kinetic energy (<  20 eV). Ions with 

high kinetic energy pass too quickly through the quadrupole and do not experience 

enough RF cycles for proper resolution. The axial ion energy can be altered by 

applying a DC voltage uniformly to all rods, which would accelerate slow ions and 

retard fast ions.

To improve the performance of the quadrupole mass filter short, RF only 

quadrupoles are placed at the entrance and exit of the mass analyser. These act 

as high pass mass filters and collimate ions closer to the central axis and also 

reduce the effects of fringe fields at the exit and entrance of the analyser [Jarvis 

eta/. , 1992].

The advantages of using a quadrupole mass filter are that it can tolerate high 

operating pressures (approximately 10‘4torr) and significant spreads in ion velocity. 

It also can be scanned rapidly and provide unit mass resolution [Houk and 

Thompson, 1988].

2 .1 .6 .2  Ion detection

Mass resolved ions leaving the quadrupole mass filter are detected by a channeltron 

electron multiplier in pulse counting mode. This consists of an open glass tube
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Figure 2.13 A Channeltron electron multiplier [Jarvis et a!, 1922]
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with a cone at one end (Figure 2.13). The interior surface of the tube and cone is 

coated with a lead oxide semiconducting material which enables a continuous 

potential gradient to be set up inside the tube by maintaining the cone at a high 

negative potential (approximately 3 keV) whilst keeping the other end of the tube 

at ground. A positive ion leaving the mass analyser is attracted to the negative 

potential. On collision with the interior surface of the cone it releases one or more 

electrons which are then accelerated by the potential gradient towards ground. If 

the electrons have acquired enough energy from the electric field, they will release 

secondary electrons on collision with the surface. This process repeats itself 10-20 

times so that an incident ion results in a discrete pulse of typically 108 electrons at 

the collector. This pulse is then sensed and shaped by a fast pre-amplifier and the 

output passed to a digital discriminator and counting circuit. Only pulses above a 

set threshold amplitude will be counted, enabling discrimination against low 

amplitude pulses caused by spurious emission of electrons in the tube.

Channeltron electron multipliers have the advantage that they can be vented to the 

air w ithout damage, as long as the high voltage is switched off. They are robust 

and can tolerate pressures up to 10'5 mbar. In addition the low instrumental
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background (<  1 cps) enables high sensitivity. In pulse counting mode a linear 

response is obtained over 5 -6  decades of concentration, and this can be extended 

to 8 decades by using mean current detection. They have, however, a limited 

lifetime, dependent on the total accumulated charge and suffer from deadtime and 

counting fatigue at count rates greater than 106 s'1.

2 .1 .6 .3  Data collection

Pulses from the channel electron multiplier are counted into a multichannel scaler. 

This contains a 16 bit digital to analogue converter (DAC) which controls the 

quadrupole setting. The acquisition of data takes place for a defined dwell time at 

each DAC setting, after which the contents of the counter are passed into a latch 

so that the next acquisition can take place at the new DAC setting. The latch is 

subsequently read by a microprocessor which adds the contents to the appropriate 

location in the acquisition memory. This enables versatility in the acquisition of 

data which can be collected in two ways, peak jumping or scanning. In scanning 

mode the data are collected over a pre-defined mass range for a relatively large 

number of points per peak (15-20). With enough storage channels (4096), data 

can be collected for all isotopes of elements in the mass range 4-250 m/z, although 

more often a narrow region of interest is scanned. Skip scan regions can also be 

defined where data are not collected, although the quadrupole requires a settling 

time of a few milliseconds afterwards to equilibrate. Scanning has the advantage 

of collecting data over a wide mass range, making identification of interfering peaks 

easier, and also provides information on peaks which may not be of immediate 

interest.

In peak jumping mode data are collected at a number of fixed mass positions for 

selected isotopes. Usually the positions are taken as the central point of a peak, 

w ith tw o points either side. The dwell time on each isotope can be varied to 

improve the counting statistics. In this mode, time is not wasted collecting data 

on peaks which are not of interest, although this can make identification of 

interfering species more difficult. Peak jumping is advantageous if the isotopes of 

interest are spread over a wide mass range, or if only a small number of isotopes 

and isotope ratios are required.
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2.2  ANALYTICAL PERFORMANCE

This section discusses the performance of the ICP-MS system used in this study. 

The system was bought in 1 988, only four years after the first instruments were 

commercially available. The present study followed on from the work of 

Hursthouse [Hursthouse, 1990] at a time when ICP-MS was a relatively new 

technique and the system was still in a stage of development. With a growing 

community of ICP-MS users, the manufacturers were pressurised to make upgrades 

to the system, in order to improve its robustness and reliability. The extent and 

rapidity of the changes to the ICP-MS system mean that some of the development 

work present here, relating to the PlasmaQuad PQ1 and in particular to the 

Microtherm Mark 1 ETV, is now historical, although the underlying principles remain 

the same. As discussed earlier, there was little information in the literature relating 

to this particular application of the technique.

The initial section below, demonstrates the optimisation of the system for the 

analysis of actinides using standard solutions. The reliability and reproducibility of 

the system as a whole are discussed. Finally, the accuracy of the technique was 

tested by the analysis of a sediment sample which had been previously analysed 

by independent analytical techniques.

2.2.1 Optimisation

Theoretical studies of the fundamental properties of the ICP-MS system, such as 

the characteristics of the plasma and space charge effects, are important for 

understanding the behaviour of analyte species and for further development of the 

technique. However, the daily optimisation of the ICP-MS system is performed on 

a more empirical basis. A number of mutually interdependent parameters such as 

nebuliser flow  rate, RF power, aperture-load coil separation and lens settings affect 

the performance of the ICP-MS system. In general, most of these parameters are 

kept at default values and optimisation consists of fine tuning the sampling position 

and the lens settings.

The analytical and developmental procedures were carried out periodically between
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1 989 and 1 992, during which time the ICP-MS instrument was subjected to a wide 

variety of users and sample matrices. The results presented in this study were 

obtained during week long blocks of instrument time. A t the start of each block 

the spray chamber and plasma torch were soaked overnight in 10% (1.6M) nitric 

acid, after which they were rinsed in doubly distilled, deionised water (DDI) and 

dried. The sampling and skimmer cones were cleaned daily w ith a proprietary 

stainless-steel cleaning preparation, Polaris, and rinsed with DDI water.

2.2.1.1 Lens settings and sampling position

Initially, the ion optics lens settings were optimised by maximising the 115ln+ signal 

obtained by aspirating a standard solution of 10 ng ml'1 115ln in 2% (0.32M) nitric 

acid. Table 2.2 shows typical lens settings used during this study. The collector, 

extractor and L1 and L3 voltages were found to be critical. The 115ln tuning 

solution was later replaced by a 1 ng ml'1 236U solution to maximise the signal 

obtained for the mass region of interest (i.e. 235 - 242 a.m.u.). The optimum lens 

settings for the 115ln+ and the 236U+ signals were found to vary slightly, but w ith 

no obvious trend. The sampling position was also optimised using the tuning 

solution. The distance between the load coil and the sampling aperture was fixed 

at approximately 10 mm so that dissociation and ionisation of the sample were as 

complete as possible. The positioning was checked occasionally by measuring the 

relative level of oxide to analyte species. Reduction of this distance may result in 

a higher ion response but carries an increased risk of incomplete dissociation of 

species [Gray and Williams, 1987]. The horizontal and vertical positioning of the 

torch were then adjusted to obtain the maximum ion signal. After any alteration 

of the sampling position the lens settings were re-optimised.

2 .2 .1 .2  Nebuliser flow rate and RF power

The nebuliser flow  rate and the RF power are important parameters for determining 

the distribution and relative abundance of species in the plasma at any given 

sampling position. Figure 2.14 shows the variation in signal response with 

nebuliser flow  rate for uranium, neptunium and plutonium isotopes, at four different 

power settings (1 250, 1300, 1350 and 1400 W). All other parameters were kept

80



constant. The results were obtained by aspirating a mixed standard solution and

Table 2 .2  : Typical lens settings and supply voltages used during study

Lens Average setting 
(PQ1 supply)

Average voltage Recommended
voltage

Extractor 1.14 ± 0.19 -200 ± 20 -190

Collector 4.84 ± 0.26 -5 ± 8 0

L1 5.01 ± 0.10 0 ± 3 0

L2 3.71 ± 0.68 -40 ± 20 -30

L3 4.75 ± 0.16 -13 ± 8 0

L4 3.24 ± 0.56 -90 ± 30 -50

Front Plate 5.07 ± 0.17 2 ± 5 4

Pole Bias 5.10 ± 0.36 0 ± 2 -3

recording the integral response over the mass range 235 - 246 using 512 MCA 

channels and a 1 minute integration time for each run. The optimum nebuliser flow 

rate increased with RF power, the maximum response being obtained at a power 

of 1400 W and a flow rate of 0.72 I min'1. There was no significant variation in the 

optimum flow  rate observed for Np, U, and Pu isotopes implying that the 

instrument parameters could be optimised using only one isotope. Subsequently, 

the RF power was fixed at 1350 W and the nebuliser flow  rate optimised daily 

using a 1 ng ml'1 236U solution. Figure 2.15 shows the variation in nuclide ratios 

measured during this experiment. Excluding the initial ratio in each data set, the 

deviations of the nuclide ratios were all less than 2%. The probable cause of the 

deviation of the first result is initial instability in the plasma after the RF power was 

altered. The general stability of the nuclide ratios suggests that U, Np and Pu 

nuclides have similar behaviour in the ICP-MS system implying that 236U can be 

used as an internal standard for 237Np analysis.

2 .2 .1 .3  Resolution

The resolution of the ICP-MS system can be adjusted by altering the ratio of the DC 

and RF voltages applied to the quadrupole mass filter (see section 2.1.6.1). 

However, an increase in resolution results in a decrease in sensitivity (Figure 2.16) 

and a compromise setting has to be reached. The most critical factor in this study
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Figure 2 .14  The variation in signal response with nebuliser flow rate at four
different power settings for 236U, 237Np, 239Pu and 242Pu
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Figure 2.15 The variation in nuclide ratios with nebuliser flow rate at four different
power settings
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Figure 2 .16  Variation in integrated counts with resolution for an aspirated solution 
of 100ng ml 1 238U in 2% HN03.
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was the complete separation of adjacent peaks, as 237Np and 239Pu were measured 

on either side of 238U, which was present at up to 105 times higher concentration. 

This required an abundance sensitivity of greater than 10'6, which was readily 

achieved by setting the quadrupole to baseline resolution between adjacent peaks.

2 .2 .1 .4  Data collection and sample throughput

In this study the nuclides of interest fell in a narrow mass range between 236 and 

242 a.m.u. As all the peaks in this region were of interest both as analytes and 

potential interferents, data were collected by rapidly scanning across this mass 

range. The scanning parameters chosen are shown in Table 2.3. A t a sample 

uptake rate of 1 ml min‘\  three consecutive one minute scans required a minimum 

volume of 5 ml of sample, taking into consideration a tw o minute sample uptake 

time. This allows time for the sample to reach the plasma and for the conditions 

in the plasma to reach equilibrium before data are collected. For each sample, a 

time of only 5 minutes was required to obtain data for three repeat runs. A three 

minute wash time between each sample was also applied, aspirating 2% HN03 to 

remove any sample memory from the system. Considering the time required for
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optimisation, standards, checks and reference materials a typical throughput of 

samples was 20 a day.

Table 2.3: Typical scan parameters

a) Liquid nebulisation

Mass Range 235 - 246 a.m.u.
Number of channels 512
Number of scan sweeps 1600
Dwell Time (fjs) 80
Approximate run time 66s
Number of runs per sample 3

b) ETV

Mass range 235 - 246 a.m.u
Number of channels 512
Number of scan sweeps 200
Dwell Time {jjs) 80
Approximate run time 8s
Number of runs per sample 5

2 .2 .2  ETV Optimisation

The optimum settings for ETV-ICP-MS were not expected to be the same as those 

obtained for liquid nebulisation as the plasma is operated under 'dry' conditions 

w ith the ETV. However, the signal obtained during a normal analytical run by ETV- 

ICP-MS has a short duration (0.5 - 10 seconds), making optimisation of the 

instrument parameters exceedingly difficult. Several techniques were investigated 

during this study to produce a prolonged signal (Table 2.4). The results were 

variable, not only from day to day, but also from hour to hour. The most reliable 

technique was the bismuth optimisation. In many cases, the 'optimum' settings 

were inappropriate for a normal analytical run. In general, adequate signal response 

was obtained by optimising the instrument by liquid nebulisation, then converting 

directly to ETV without changing any parameters.
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Table 2.4 : Techniques attempted to optimise the ETV-ICP-MS

parameters

Isotope Temperature profile Injection Comments

Bi Dry, then vaporise 
from 1 25 to 

1,825°C in 10s, 
holding for 60s

50 / j \  100 ppb Bi 
solution in 2%

h n o 3

High m/z, sharp peak 
observed, followed 

by a slow decrease in 
counts during which 
optimisation can take 

place

Xe As above 100 //I h2o Generally, a small 
signal observed of 

short duration

Hg Set furnace 
temperature to 50°C

Place a pipette tip 
filled with Hg in the 

furnace hole

Good steady signal 
observed, but 

optimum settings 
inappropriate for 
normal analysis

c h f 3
Impurity

None found at high 
enough concentration

2.2.2.1 Temperature profile

A typical temperature profile used to heat the graphite furnace is shown in Figure 

2.4. The temperature profile consists of three stages namely; drying, ashing, and 

vaporisation. During the initial drying stage, the solvent is removed from the 

sample at a slow enough rate to produce a reproducible deposit, preventing 

spluttering or spreading of the sample over the surface of the furnace. From visual 

observation of the sample droplet, this required gradual ramping of the furnace 

temperature from 75 °C to 125 °C over a period of 100 seconds. The ashing stage 

removes residual organic matter and some matrix material from the sample. The 

maximum ashing temperature, which did not result in the loss of analyte material, 

was found to be 725 °C. This was not high enough to remove some of the major 

matrix components such as sodium.

Figure 2.17 shows the variation in signal response with vaporisation temperature 

for three different carrier gas flow rates. In each case the maximum signal was
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Figure 2.17 The signal response for 236U, 237Np and 242Pu as a function of 
vaporisation temperature, at carrier gas flow rates of 0 .725 , 0 .750  and 0 .800  
(Imin'1)
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Figure 2.18 The variation in signal response for 236U, 237l\lp and 242Pu with freon 
flow rate on three different days of ETV-ICP-MS analysis
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obtained at the maximum vaporisation temperature used, 2,750 °C. Temperatures 

above this tended to cause rapid ageing of the furnace, resulting in heavy carbon 

deposits on the cones and cracking of the furnace surface. Increasing the carrier 

gas flow  rate decreased the signal response. The default temperature profile was 

set at a vaporisation temperature of 2,750 °C and at the optimum carrier gas flow  

rate determined by liquid nebulisation.

2 .2 .2 .2 . Freon flow rate

At the vaporisation temperatures used with ETV, refractory elements, such as the 

actinides, can form carbides which stick to the surface of the graphite tube. To 

overcome this, freon (CHF3) was added to the carrier gas so that volatile fluorides 

formed preferentially, increasing the transport efficiency of the actinides from the 

furnace to the plasma [Hutton, 1990]. Figure 2.18 shows the results of three 

experiments investigating the effect of the freon flow rate on the signal response. 

The first two graphs display a similar trend, with the optimum freon flow  rate 

occurring at 0.78 ml min'1, approximately 0.11 % of the carrier gas flow  rate. The 

third graph displays a markedly different trend with the maximum signal response 

occurring at or close to zero freon flow. Although the results were reproducible on 

the day, this was a 'one o ff' set of results, thought to be caused by entrainment 

of air (instead of freon) in the furnace, resulting in the formation of oxides. In 

general the addition of freon increased the signal response. The default freon flow  

rate was set at 0.1 % of the carrier gas flow rate.

2 .2 .2 .3  Data Collection

ICP-MS data can be collected in two ways: single ion monitoring, where the 

quadrupole is left resting at the mass unit of interest, or multielement scanning 

where the quadrupole is scanned rapidly over a discrete number of mass units. 

Figure 2.19 shows the signals obtained from a 50 //I injection of a 100 pg ml'1 

solution containing 236U, 237Np and 242Pu by single ion monitoring and multielement 

scanning. In this case, 11,879 cps were measured by single ion monitoring at 236 

m/z w ith a background count rate of 54 cps compared to 2,705 cps obtained by 

multielement scanning w ith a corresponding background of 34 cps. Although
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Figure 2.19 Spectra obtained by (a) single ion monitoring at mass 236 and (b) 
multielement scanning, using a 50//I injection of a solution containing 100 pg ml 
236U, 237Np and 242Pu
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Figure 2 .20  Signal response as a function of dwell time for a fixed integration time 
of 10 seconds
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greater sensitivity is achieved by single ion monitoring as data are collected only at 

the mass of interest, multielement scanning can provide more information and 

enable internal standardisation of the technique. The total signal duration as shown 

in Figure 2.19a is only a few seconds. To obtain accurate nuclide information 

during a multielement scan, short dwell times are required. Figure 2.20 shows the 

effect of increasing the dwell time, whilst keeping the total integration time 

constant. For small dwell times ( < 40 jjs ) the finite time required for the 

quadrupole to change mass and the resting time required between scans (~ 10ms), 

as well as the time for the ions to be transmitted through the quadrupole (~ 2 0 jjs ) 

become significant. The minimum dwell time for maximum integrated counts was 

found to be 80 jjs with an optimum number of scan sweeps of 200 (see Figure 

2 .2 1 ).

2 .2 .3  Signal response, stability and reliability

Figure 2 .22  Signal response curve across the mass range
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Figure 2.23 Long term signal response observed for (a) 115ln and (b) 237Np by liquid
nebulisation, and (c) 237Np by ETV

a)

Q .
a.

cn
CLu

4
New cones Clean lens stack2

0

New multiplier
8

6
by liquid nebulisation4

2
Poor vacuum

0 L— 
1989 19921990 1991 1993

b)
Date

CL
Cl

V)
ClU

2

0

8

6
237 

■ Np
by liquid nebulisation4

2

0
3010 15 20 250 5

c)
Liquid nebulisation run

70

60

50

1  40
cn
CLo 30

20

□□

15 20 25 30 350 5 10

237 |
□ Np 

by ETV—ICR —MS

ETV run

93



2.2.3.1 Response across the mass range

Figure 2.22, showing the signal response of the ICP-MS system across the mass 

range, indicates that the sensitivity is greater for the heavier elements, w ith the 

response curve flattening out in the mass range of interest in this study. The shape 

of the curve is dependent on the parameters of the system and on space charge 

effects in the interface.

2.2.3.2 Long term signal response

On any one day, the signal response is dependent on all the parameters of the ICP- 

MS system as well as factors such as the condition of the skimmer and sampling 

cones, the lens system and the age of the detector. Figure 2.23 shows how the 

initial signal response varied during the study for the indium tuning solution, and for 

neptunium, both by liquid nebulisation and ETV. For liquid nebulisation, a threshold 

response of 2 cps/ppt was set, below which steps were taken to improve it. In 

general, a low response was caused by the condition of the cones or lens system. 

With new cones and a clean lens stack a response as high as 8-10 cps/ppt was 

obtained although the average response was 4 cps/ppt.

The signal response measured for ETV-ICP-MS showed much more variability, w ith 

a maximum response of 50-60 cps/ppt for 237Np, but w ith a minimum well below 

the 2 cps/ppt threshold. This is due to additional factors which affect the signal, 

such as the condition of the graphite furnace, and the difficulty of optimising the 

instrument parameters.

In general, the signal responses for uranium, neptunium and plutonium isotopes 

were not significantly different in either liquid nebulisation or ETV-ICP-MS.

2.2.3.3 Short term signal response and signal stability

The change in signal response over one day of analysis is shown in Figure 2.24. 

In general, the signal response deteriorates during the day as sample material 

deposits on the surface of the cones. For liquid nebulisation the signal reduced to
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a minimum of 64% of the maximum level. The drop in the signal response for the 

ETV is more marked, with the signal dropping to a minimum of 42% of the initial 

signal. One cause is the deterioration of the graphite furnace, resulting in 

deposition of carbon onto the cone surfaces and less efficient transfer of the 

sample into the plasma as a result of leakage of sample from the tube and bushes. 

Evidence of this is shown in Figure 2.24b where the replacement of the furnace 

resulted in an immediate improvement of the signal response. It was observed that 

the addition of freon into the carrier gas, accelerated the rate of decay of the 

furnace.

The variation in the signal over ten consecutive runs of a 1 ppb solution for both 

liquid nebulisation and ETV is shown in Figure 2.25. Once again the signal for ETV 

is more variable than liquid nebulisation, w ith typical standard deviations of 12%, 

and 4% respectively. Another factor causing signal variation for ETV is the manual 

injection of each sample. Reproducibility can be improved by the use of an 

automatic sampler.

2 .2 .3 .4  Reliability

During the study the instrument had a high percentage of "down time". Apart from 

the regular replacement of skimmer and sampling cones and plasma torches, the 

quadrupole, detector(x3), generator, torch box, expansion chamber front plate, 

rotary pump, RF quadrupole valves (x4), and quadrupole control electronics were 

replaced or upgraded.

2 .2 .4  Validation

2.2.4 .1  Calibration and sampling protocol

As shown by the above discussion, the signal response of the ICP-MS system 

changes from day to day and from hour to hour. Several techniques can be 

employed to correct for instrument drift; internal standardisation, external 

calibration, isotope dilution and standard addition [Jarvis eta!., 1992]. The most 

powerful of these techniques for mass spectrometry is isotope dilution, where the
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Figure 2 .24  237Np signal variation during 4  days of analysis by (a) liquid
nebulisation and (b) ETV
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Figure 2.25 Short term variation in signal response over 10 consecutive runs for 
(a) liquid nebulisation and (b) ETV
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elemental concentration of a sample can be calculated by measuring the change in 

intensity of tw o selected isotopes after the addition of a known quantity of spike 

enriched in one isotope. In the case of plutonium analysis, this is possible by the 

addition of the long-lived 242Pu isotope. The advantage of this technique is that the 

plutonium isotopes have very similar behaviour in the ICP-MS system and 242Pu can 

be used simultaneously as an internal standard and a chemical yield tracer. 

Unfortunately no long-lived isotope is available for the analysis of 237Np by isotope 

dilution. Instead a system of internal standardisation and external calibration was 

used. A known quantity of a high purity 236U standard in 2% HN03 (Harwell, UK) 

was added to each sample as an internal standard. 236U was chosen as an internal 

standard as it is free from interference and close in mass to 237Np. Although they 

have differing first ionisation energies, 236U and 237Np display similar behaviour in 

the ICP-MS system as discussed above. Each run was started by a three point 

calibration curve with standard calibration checks after every five samples. A 

standard sediment sample (section 2.2.4.2) and a certified isotope ratio standard 

were also analysed randomly throughout each procedure to check the accuracy of 

the technique. 237Np standards were prepared by dilution of a high purity stock 

solution in 2% HN03 (CIS, UK). A typical calibration curve is shown in Figure 2.26 

w ith linearity over 3 orders of magnitude and a correlation coefficient of 0.99999.

2 .2.4 .2  Accuracy and precision

A review of the standard reference materials which had certified values for the 

elements of interest and were available at the time of this study revealed that none 

had values for the 237Np content of the sample, or the individual 239Pu and 240Pu 

concentrations. However a bulk homogenised sample of Ravenglass silt which had 

been analysed by a previous study for 237Np and plutonium isotopes both by ICP- 

MS and by independent techniques [Hursthouse, 1990] was available for analysis, 

and this was used to validate the technique. A comparison of results is shown in 

Table 2.5.
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Figure 2.26 Typical ETV-ICP-MS calibration curves for 237Np
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Table 2.5: Summary of results for Ravenglass sediment sample

(errors are ± 1 a)

a) Neptunium concentrations (pg g'1)

Technique This Study 'Previous Study

Liquid Nebulisation 101 ± 24 139 ± 21

ETV-ICP-MS 103 ± 25 -

Alpha Spectrometry - 116 ± 7

Neutron Activation - 81 ± 36

b )239 + 2 4 0 p u  (B q  k g -1}

Technique This study 'Previous Study 'Institute of 
Terrestrial Ecology

Liquid Nebulisation 1,020 ± 120 1,038 ± 36 -

ETV-ICP-MS 1,110 ± 180 - -

ar-spectrometry - 870 ± 220 1,060 ± 80

'fro m  Hursthouse, 1990.

The results of the plutonium analysis show close agreement, within ±*1(7. The 

difference in the standard deviations in the results obtained by ICP-MS for this 

study and the previous study reflect the different methods used. In this study, 

chemical processing was performed on separate aliquots of the sediment material 

whereas, for the previous study, data were obtained from a single processed bulk 

sample [Hursthouse, 1990]. Table 2.6 includes the results of replicate analyses of 

a bulk sample which display comparable deviation to those obtained by Hursthouse. 

The disparity of the deviations by the two methods indicates possible 

inhomogeneity in the bulk Ravenglass sample.

The neptunium results acquired by liquid nebulisation and ETV-ICP-MS show close 

agreement, and agree to within ± 2cr with those obtained by different techniques. 

The precision of the ICP-MS results reflects both the chemical recovery and the
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performance of the instrument on the day of analysis and is therefore subject to 

large variation. From Table 2.6 it can be seen that the deviation in the liquid 

nebulisation results is comparable to those obtained by ETV. Once again, repeat 

analysis of a single sample on different days showed a smaller deviation than 

analyses of a series of discrete subsamples indicating inhomogeneity of the bulk 

sample.

A certified isotopic standard containing 239Pu, 240Pu, 242Pu and 244Pu (Harwell, UK) 

was also analysed as part of the analytical scheme to assess the accuracy of the 

isotope ratio data, and the results are presented in Figure 2.27. In general, the 

expected isotope ratio value was within the precision of each individual result. 

Where the measured isotope ratio was greater than one standard deviation from the 

expected value, the results were treated with caution and, where possible, the 

analyses were repeated. The variation in the precision of each measurement and 

the overall deviation of the results was much greater for the ETV results than for 

those acquired by liquid nebulisation, the standard deviations being 8% and 2.3% 

respectively. The poorer reproducibility of the ETV results (Figure 2.27b) is again 

a factor of manual injection and the condition of the graphite furnace as discussed 

above.
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Table 2.6: ICP-MS results for bulk Ravenglass sediment sample

a) 239+240pu activity (Bq g'1) ± 1 a

Analysis of individual 
sub-sample

Repeat analysis of single sample

Liquid Neb. ETV Liquid Neb. ETV

1.041 ± 0.216 0.848 ± 0.017 1.010 ± 0.060 1.107 ± 0.095

1.162 ± 0.200 0.908 ± 0.020 1.041 ± 0.075 1.104 ± 0.085

1.022 ± 0.079 1.089 ± 0.017 0.931 ± 0.114 1.136 ± 0.046

0.929 ± 0.187 1.110 ± 0.056 1.013 ± 0.057 1.113 ± 0.042

0.890 ± 0.200 1.065 ± 0.068 1.008 ± 0.022 1.120 ± 0.059

0.768 ± 0.129 1.342 ± 0.348 1.026 ± 0.038 1.060 ± 0.123

0.870 ± 0.134 1.259 ± 0.083 1.059 ± 0.072 1.106 ± 0.039

0.848 ± 0.071 1.293 ± 0.174 1.013 ± 0.060

1.072 ± 0.142 1.160 ± 0.202 1.001 ± 0.031

0.938 ± 0.192 1.417 ± 0.250 0.999 ± 0.065

1.094 ± 0.180 1.273 ± 0.139

1.067 ± 0.176 1.278 ± 0.102

1.092 ± 0.202 1.129 ± 0.037

1.133 ± 0.083 1.195 ±  0.087

1.140 ± 0.084 0.689 ± 0.132

1.181 ± 0.104 0.847 ± 0.151

1.149 ± 0.065 0.871 ± 0.246

1.009 ± 0.034 1.331 ± 0.292

1.158 ± 0.083

1.118 ± 0.187

0.940 ± 0.519

1.168 ± 0.115

1.107 ± 0.086

1.126 ± 0.037

1.100 ± 0.027

1.107 ± 0.023

Mean = 1.023 Mean = 1.113 Mean = 1.010 Mean = 1.107

a = 0.122 a  = 0.175 a  = 0.033 a  = 0.023

102



b) 237Np concentration (pg g'1) ± 1 a

Analysis of individual 
sub-samples

Repeat analysis of single sample

Liquid neb. ETV Liquid neb. ETV

91.0 ± 6.1 91.8 ± 9.8 - 137 ± 31

78 ± 16 111 ± 12 133.2 ± 6.5

76.2 ± 4.2 113 ± 38 105.8 ± 6.3

137.8 ± 6.8 76.9 ± 15.6 127.9 ± 9.5

113 ± 11 169 ± 23 119.0 ± 8.0

109.6 ± 4.0 65.3 ± 3.5 108.2 ± 10.9

81.0 ± 1.9 107.8 ± 8.0

113 ± 38

100.4 ± 5.6

86.4 ± 6.9

120 ± 13

100.8 ± 6.8

99.6 ± 1.9

111 ± 14

Mean = 101 Mean = 103 - Mean = 1 20

CMIIb a  = 25 - ( 7 = 1 3

2 .2 .5  Detection limits

Table 2.7 shows the detection limits (based on 3(7 background count rate) obtained 

for liquid nebulisation and ETV, both by multielement scanning and single ion 

monitoring. The typical range and the average value of the detection limits have 

been quoted as these are dependent on the performance of the instrument on any 

particular day. The observed range of the background count rate for both liquid 

nebulisation and multielement scanning ETV were similar (3-40 cps), and in both 

cases the average background count rate was 13 cps. However, in general, the 

signal response for ETV-ICP-MS was greater than that for liquid nebulisation
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Figure 2.27 Plutonium standard isotope ratio variations observed during this study 

for (a) liquid nebulisation and (b) ETV
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resulting in a reduction in the average detection limit by a factor of 5, w ith a value 

of 1 pg ml'1. This corresponds to an absolute detection limit of 50 fg. To 

substantiate these detection limits, Figure 2.28 shows a spectrum obtained by 

injection of 50 //I of a standard solution containing 1.1 pg ml'1 236U, 1.9 pg ml'1 

237Np, 1.2 pg ml'1 239Pu, 240Pu and 242Pu and 0.4 pg ml'1 244Pu, along with a 

spectrum obtained by injection of 50 jj\ of 2% HN03 blank solution. All the peaks 

are clearly distinguishable above the background count rate. In the case of single 

ion monitoring, both the background count rate and the signal response are 

increased but w ith a resultant detection limit lower than that for multielement 

scanning, the average absolute value being 20 fg. During this study the best 

absolute detection limit obtained was 0.7 fg, obtained by single ion monitoring.

Table 2.7: ICP-MS detection limits observed during this study

Liquid nebulisation ETV
Multielement

scanning

ETV 
Single ion 
monitoring

Range 
(pg ml'1)

1 - 16 0.3 - 3.0 0.014 - 1.8

Typical value 5 pg ml'1 1 pg ml'1 0.4 pg ml'1

Background
counts

3 - 30 cps 4 - 39 cps 2 - 340 cps

2.2 .6  Summary

ICP-MS is a rapid and sensitive technique which can provide information on both 

isotopic and elemental composition within one sample in a matter of minutes. Once 

the instrument parameters have been optimised, the operation of an ICP-MS is 

relatively simple enabling a high sample throughput. Using liquid nebulisation the 

performance of the ICP-MS used in this study was in general reliable w ith a 

sensitivity between 2 and 10 cps/ppt. The performance of the mark 1 ETV unit 

was more erratic, w ith the sensitivity of the system varying considerably from day 

to day and even within days. However, on average, the response of the instrument 

using ETV was 5 times that of liquid nebulisation giving average detection limits for 

isotopes of the actinide elements of 1 ng ml'1. One of the main advantages of
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using ETV as opposed to liquid nebulisation, is the small sample volumes required 

for analysis.

2.3 LIMITATIONS FOR THE ANALYSIS OF 'REAL' SAMPLES

Section 2.2 discussed the performance of the ICP-MS system when analysing 

standard solutions. However, in the analysis of 'real' samples the effect of the 

physical form and content of the sample must also be taken into consideration as 

these may cause interference with the analyte species and disrupt the performance 

of the ICP-MS system.

2.3.1 Spectroscopic Interferences

The interferences observed in ICP-MS fall into two main categories; spectroscopic 

interference from isobaric, polyatomic and oxide ions, and non-spectroscopic 

interference including matrix effects and physical effects from high dissolved solid 

concentrations. These are discussed below.

2.3.1 .1  Polyatomic and Oxide Interferences

Background spectral interferences can be formed from the plasma gas, gases 

entrained into the plasma or from the sample solvent. The main interfering species 

are those formed from the dominant species in the plasma, ie Ar, H and O which 

can combine together and with elements from the sample matrix to form 

polyatomic ions. The severity of background interferences depends strongly on the 

choice of solvent used, w ith water and nitric acid producing similar background 

spectra, while hydrochloric and sulphuric acids result in much more complex 

spectra [Jarvis eta l., 1992]. Most of the interfering species are well characterised 

and occur below mass 80. Tables have been produced which list all the possible 

combinations of background ions and the major and minor isotopes of elements 

w ith which they might interfere [Tan and Horlick, 1986]. Less detail is given on the 

magnitude of the species as this is dependent on the instrument design and the 

operating conditions [Gray and Williams, 1987].
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In this study 2% nitric acid was chosen as the solvent to maintain the background 

species to as low a level as possible while maintaining the analytes in solution. A 

background spectrum produced by aspiration of 2% HN03 (Figure 2.29) indicates 

that the background in the mass region of interest is very low. Figure 2.28b also 

shows a background spectrum obtained by ETV-ICP-MS. This shows a small peak 

at 238U which is present at a low concentration ( < 5 pg ml'1) in Aristar HN03.

Another source of spectroscopic interference is from refractory oxides which occur 

either as a result of incomplete dissociation of the sample or from recombination 

in the plasma tail. The level of oxides in general does not exceed 1.5 % although 

this is again dependent on the conditions in the plasma, particularly on the nebuliser 

flow  rate [Horlick eta!., 1985]. Doubly charged ions also occur, especially for 

those elements which have low second ionisation energies. In this case reducing 

the nebuliser flow  rate increases the level of doubly charged ions as a result of the 

increased plasma temperature, although under normal operating conditions the 

levels remain less than 1 % [Jarvis et a!., 1992].

In the m/z region from 236 to 242, the only polyatomic species, to cause 

interference is that from MH + , and in most cases the magnitude of this species is 

insignificant compared to the background count rate. However, 238U concentrations 

in environmental samples are 3-4 orders of magnitude or more higher than the 

concentrations of plutonium and neptunium. In this case the 238UH+ species can 

be a significant contribution to the 239Pu peak. This is illustrated in Figure 2.30 

which shows a spectrum obtained from the aspiration of a 1 j jg ml'1 uranium 

solution. This spectrum was obtained in the early stages of this study and shows 

a spurious precursor signal at approximately m/Z = 237.4. This was an artifact 

of the early system and was removed by changing the wiring of the quadrupole. 

The 238UH+ species was observed using both liquid nebulisation and ETV. The 

238UH+/238U+ ratio was found to vary from (2.7 ± 0.2) x 10'5 to (3.2 ± 0.3) x 10'5 

during this study. To maintain the UH+ interference to below background levels, 

it is necessary to reduce the uranium concentration in the final solution to below 

100 ppb.
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Figure 2.29 Liquid nebulisation, ICP-MS spectrum of a 2% HN03 solution over the
mass range of interest
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2 .3 .1 .2  Isobaric Interferences

Isobaric interferences can occur anywhere in the mass spectrum where two 

elements have isotopes of similar mass (to approximately within 0.7 a.m.u.) which 

are unresolved by the ICP-MS system. The severity of the interference depends on 

the composition of the sample and in some cases can be reduced or removed by 

chemical separation. Usually, isotopes which are free from isobaric interference 

can be found and used for determination of the elemental concentrations.

In the mass region of interest there are two isobaric interferences, 238U with 238Pu, 

and 241 Am with 241Pu. The first of these is insignificant as the concentrations of the 

short-lived 238Pu are undetectable by ICP-MS, especially when considering the 

decontamination factors which would be required to remove 238U from any sample 

(even the concentration of uranium in *Aristar nitric acid at 2% v/v would mask the 

238Pu signal). The 241Am interference on 241Pu is more significant. However 

americium can be removed easily from the sample without loss of plutonium and 

the decontamination factors checked by ^-spectrometry.

2 .3 .2  Non-spectroscopic interferences

Non-spectroscopic interferences include the physical effects caused by the 

dissolved solid content of the sample and suppression or enhancement effects 

which occur in the presence of high concentrations of matrix or concomitant 

elements.

The continuous aspiration of a high dissolved solid content sample results in 

deterioration of the analytical precision and a rapid decrease in the signal during the 

first 20 min, after which the response stabilises. These effects are caused by the 

deposition of sample material on the sampling orifice, resulting in fewer ions 

entering the system and reducing the efficiency of the extraction system [Jarvis et 

a/., 1992]. To avoid this affect, the total dissolved solids content of samples were 

maintained at less than 0.2% w/v throughout the study.

A review of the effects on analyte signals in the presence of concomitant elements
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presents a confusing picture. In general, suppression of the analyte signal is 

observed [Thompson and Houk, 1987], but some studies have reported both signal 

enhancement and no effect [Beauchemin eta/., 1987]. For example, Olivares and 

Houk [1986] investigated the effect of increasing salt concentrations on the signal 

obtained from a 1.2 mg I'1 solution of Co. Suppression of the Co ion signal was 

observed for salt concentrations above 0.01 M, the degree of suppression 

increasing with decreasing ionisation energy (Na > Mg > I > Br > Cl). This 

suggests a shift in ionisation equilibrium as a possible mechanism. These findings 

were contrary to those of Beauchemin et a/. [1987] who found that 0.01 M 

solutions of Na, K, Cs, Mg, and Ca induced enhancement of the signals obtained 

from 100 fjg I'1 solutions of Cr, Mn, Ni, Co, Cu, Zn, Cd and Pb. Of the matrix 

elements investigated, B, Al and U were found to cause signal suppression, while 

Li had no effect. It was concluded that because the easily ionised elements caused 

signal enhancement, a shift in the ion-atom equilibrium in the plasma was not the 

only mechanism to cause these effects as, in such a case, signal suppression would 

be expected. The deposition of refractory oxides on the interface was suggested 

as the cause for the signal suppression observed with U, Al and B. The matrix 

effect was found to be strongly dependent on the nebuliser flow rate [Tan and 

Horlick, 1987] although plasma power and sampling depth appeared to have little 

significance. A strong mass dependence of the matrix effect has been observed 

by several authors, w ith heavier matrix elements causing more severe suppression 

and being affected less that lighter elements [Gregoire, 1987; Gillson eta/., 1988; 

Tan and Horlick, 1987; Beauchemin, 1987]. An explanation of this could be space 

charge effects (see section 2.1.5.3).

In this study, the effect of sample matrix on the signal response for actinide 

nuclides was investigated by increasing the dissolved NaCI content of a standard 

solution from 0 to 1 % w/v. The results, shown in Figure 2.31, reveal that for both 

liquid nebulisation and ETV, increasing the NaCI content of the sample resulted in 

a suppression of the analyte signal. This was more marked in the case of ETV, 

w ith the signal dropping to 18% of the original value when the NaCI content was 

increased to 1.0% w/v. In all cases, the results were corrected for drift in the 

original signal response throughout the experiment.
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Figure 2.31 Suppression of analyte signal by NaCI for (a) liquid nebulisation and
(b) ETV
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Although in the above experiment NaCI was used to simulate the effect of sample 

matrix on the analyte signal, for environmental samples the sample matrix is 

complex and not easily reproduced using laboratory solutions. To further 

investigate the effect of sample matrix on the analyte signal a sediment sample 

taken from Loch Long in the Clyde Sea Area was prepared in the same manner as 

the samples (see section 3.3) along with a reagent blank. The final solutions were 

split into three and spiked with 237Np to concentrations of 10, 50 and 100 ng m l'1 

respectively. In addition 10, 50 and 100 ng ml'1 solutions of 237Np were made up 

in 2% HN03. All the samples were spiked to 100 ng ml'1 of 236U which was used 

as an internal standard. The uncorrected signal responses obtained for each matrix 

are shown in Figure 2.32a which reveals that signal suppression was in the order: 

sediment matrix > reagent blank > 2% HN03 blank. Interestingly the suppression 

observed for the reagent blank and the sediment matrix solutions were of a similar 

magnitude, indicating that the 'purity' of the samples is restricted not by the 

original matrix of the samples but by the solutions used during sample preparation. 

It is also interesting to note that the sediment sample contained a small 

concentration of 237Np as indicated by the intercept of the y-axis. This was not 

observed with the reagent blank and can therefore be attributed to a 237Np 

contribution from the sediment sample.

Several methods have been proposed to compensate for non-spectroscopic 

interferences, including using an internal standard [Thompson and Houk, 1987], 

isotope dilution [McLaren eta!., 1987], standard addition [Beauchemin eta/., 1987] 

and flow  injection [Vickers et a!., 1989]. In this study a system of internal 

standardisation was used for 237Np analysis and isotope dilution for plutonium 

analysis. Figure 2.32b shows the results of the above experiment normalised to 

the 236U counts. This supports the evidence that 236U is a suitable internal standard 

for 237Np analysis, capable of correcting for both instrument drift and for matrix 

suppression within each individual sample.

2.4  SAMPLE REQUISITES SUMMARY

As discussed above, the analysis of real samples by ICP-MS presents some 

restrictions on the final sample solution to be aspirated into the plasma. The
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Figure 2 .32 Effect of matrix on 237Np calibration curves with (a) no internal 
standard and (b) 236U used as an internal standard, by ETV-ICP-MS
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dissolved solids content limitation of 0.2% w/v coupled w ith the detection limits 

of the system, the matrix suppression effects, and the ultra-trace levels of 

neptunium and plutonium in environmental samples implies that some sample 

preconcentration is required. In addition to this, the 238UH+ interference with 239Pu 

limits uranium concentrations to below 100 jjg ml'1 in the final solution. Another 

consideration is the isobaric interference o f241 Am with 241Pu. In conclusion, for the 

analysis of environmental levels of plutonium and neptunium, ICP-MS is not a 

panacea for an environmental chemist tired of lengthy laboratory procedures, as 

some chemical pretreatment is required.

I
i

116



CHAPTER 3 : DEVELOPMENT AND VALIDATION OF A METHOD 

FOR ANALYSIS OF SEDIMENT SAMPLES

3.1 INTRODUCTION

In Chapter 2 it was shown that ICP-MS is a sensitive and rapid technique capable 

of the determination of 237Np concentrations and 240Pu/239Pu atom ratios in 

environmental samples. Originally, it was envisaged that ICP-MS could be applied 

to the analysis of environmental samples without the laborious and lengthy sample 

preparation procedures which are required for a-spectrometry. However, as 

discussed in section 2.3.2, samples presented to the ICP-MS are restricted to a 

solids content of less than 0.2% (w/v), introducing a dilution factor of over 500 for 

solid samples. If environmental samples were analysed directly in this way, the 

actinide concentrations would be well below the detection limits of the system. 

This can be overcome by preconcentrating the analytes of interest after separating 

them from the bulk matrix. In addition, it was shown that the high natural 

abundance of 238U, led to a 238UH+ interference with 239Pu, and increased the risk 

of the 238U peak tailing into the 237Np and 239Pu peaks (see section 2.3.1.1). 

Application of ICP-MS to the determination of 237Np concentrations and 240Pu/239Pu 

atom ratios in environmental samples therefore requires sample preparation 

procedures which are capable of separating Np and Pu from the bulk matrix and 

uranium.

In this chapter, chemical separation techniques for the actinides are discussed 

generally, followed by details of a method adapted in the present study for analysis 

of sediment samples by ICP-MS. The technique has been validated by the analysis 

of intercomparison samples which were analysed independently, using different 

chemical separation and analysis techniques.

3.2  CHEMICAL SEPARATION TECHNIQUES FOR THE ACTINIDES

One of the key aspects of the solution chemistry of the actinides which is 

important for their analytical separation is their ability to form multiple oxidation 

states (see section 1.2.1). Other important properties include covalent bonding
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with oxygen and halogens, with the stability of the bonds decreasing in the order 

M4+ > M 022+ ~ M3+ > M 02+, and the formation of anionic complexes between 

M4+ and fluoride, chloride or nitrate (see section 1.2.2 and 1.2.3). Both solvent 

extraction and anion exchange, the main separation techniques used in actinide 

chemistry, rely on the manipulation of the oxidation states of the actinides to create 

or destroy these complexes in order to obtain the desired separation of the 

elements [Harvey and Thurston, 1988].

The industrial reprocessing of irradiated nuclear fuels and the extraction of uranium 

from ores have resulted in wide scale research into the separation chemistry of the 

actinides. Some of the basic techniques are outlined below, w ith particular 

reference to methods which have been used in this study. Recent developments 

in the extraction chemistry of the actinides are described by Ahrland [1986]; 

Musikas, [1987]; and Myasoedov [1987]. In addition, Hursthouse [1990] has 

reviewed the techniques available for the separation of 237Np from solution, w ith 

reference to Pu and U.

3.2.1 Co-precipitation

Co-precipitation is a technique widely used to isolate trace elements from large 

volume solutions and provides an effective method for pre-concentrating and 

separating the actinides from environmental matrices. The extent of co­

precipitation of the actinides is dependent on their oxidation states, which can be 

manipulated to provide effective separation from solution. For example, iron 

hydroxide co-precipitation schemes are used from slightly alkaline solution as 

actinides in their lower oxidation states (M3+ and M4+) readily co-precipitate w ith 

small quantities of iron hydroxide, whereas actinides in their higher oxidation states 

(M 02+ and M 022+) remain in solution [Lovett et al., 1990]. Other commonly used 

methods include co-precipitation of actinides with rare-earth fluorides or calcium 

oxalate from acid solutions [Lovett et al., 1990; Harvey and Thurston, 1988]. 

These techniques provide a good preliminary step for separating the actinides from 

many elements and anions, but are not selective enough to provide the pre­

concentration and isolation factors required for the final solution for ICP-MS 

analysis.
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3.2 .2  Liquid-liquid extraction

Liquid-liquid extraction (or solvent extraction) is based on the differential 

distribution of actinide complexes between two immiscible liquid phases, normally 

an aqueous and an organic phase [De et al., 1970]. The vast range of organic 

reagents which is used to extract actinides from various aqueous phases can be 

split into three main groups; anionic extractants, where the chelating agents are 

coordinated to the metal ions as anions (e.g. /?-diketones); neutral extractants, 

where extractable compounds are formed by electrostatic attraction (e.g. 

organophosphates and amines); and mixtures of extractants which have a 

synergistic effect, resulting in a higher extraction ability than when each extractant 

is used separately [Ahrland, 1986; Hursthouse, 1990].

3.2.2.1 Anionic extractants

Strong complexes of actinide ions are formed with the/?-diketones, the tropolones, 

the8-hydroxyquinolines (oxines), ethylenediaminetetraaceticacid(EDTA), and other 

complexones [Ahrland, 1986]. Of these, the most widely used chelating agent is 

the /?-diketone: thenoyltrifluoroacetone (TTA).

TTA is slightly soluble in water and highly soluble in organic solvents. In benzene, 

it exists in two forms, 11 % as the keto form and the rest as the enol form, which 

forms complexes through dissociation of the OH group [Poskanser and Forman, 

1961]. The extraction mechanism can be described as:

Mz+(aq) + zHTTA(org) ^  M(TTA)z(org) + zH +

The extraction of different metal ions by TTA is highly dependent on pH (see Figure 

3.1), enabling the separation of one metal ion from another [Poskanser and Forman, 

1961]. For the actinides, M4+ ions are more strongly complexed and extracted 

than other oxidation states, with Pu4+ forming a stronger complex than Np4+ 

[Ramanujan et al., 1978].

Quantitative extraction of Pu4+ and Np4+ from 0.5M HCI can be achieved using
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Figure 3.1 Effect of pH on the extraction of actinides by HTTA (benzene) 
[Hursthouse, 1990; Stary, 1964]
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0.5M TTA(xylene), with 99% extraction occurring after an optimal equilibration 

time of 10 - 15 mins [Moore, 1957]. However, for environmental samples, 

separation from the bulk matrix is required prior to TTA extraction as the salt 

content of the samples increases the solubility of TTA in the aqueous phase and 

formation of ferric iron causes interference by simultaneous extraction [Hursthouse, 

1990].

3 .2 .2.2 Neutral extractants

For extraction with neutral or cationic extractants, the properties and concentration 

of the anions present in the aqueous phase are very important. Efficient extraction 

is only possible if the anion can participate in the formation of mixed complexes 

which can be accepted into the organic phase. An example of this is the Purex 

process where tetra- and hexavelant actinides are extracted by tributly phosphate 

(TBP). The reactions taking place from nitric acid solutions are:

M4+(aq) + 4N 03 (aq) + 2TBP(org) M(N03)4(TBP)2(org)
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and

M 022+(aq) + 2N 03'(aq) + 2TBP(org) M 02(N03)2(TBP)2(org)

respectively [Ahrland, 1986]. The extraction efficiency of TBP for the actinides is 

highly dependent on the concentration of nitric acid in the aqueous phase. Initially 

extraction increases with acid concentration, but reaches a maximum at 

approximately 5 M, after which competing reactions, such as the formation of 

HN03.TBP in the organic phase and anionic nitrate complexes in the aqueous phase, 

reduce the efficiency of the extraction [Ahrland, 1986]. The Purex process using 

TBP is one of a wide range of processes involving neutral extractants which have 

been utilised by the nuclear industry. A summary of these is shown in Table 3.1.

The ketones and ethers are also effective extractants for the actinides. For 

example, di-isopropyl ether can be used to quantitatively extract Np, Pu and Am 

from nitric acid solutions. Extraction decreases in the order Pu4+ > Np022+ > 

Pu0 22+ > Np4+ (see Figure 3.2)[Grindler, 1962]. However, the extraction of the 

actinides w ith di-isopropyl ether is poor compared to other extractants and no 

extraction takes place from hydrochloric acid solutions.

3.2.3 Ion exchange

Ion exchange is a commonly used analytical technique which involves the exchange 

between free species in solution with species immobilised or sorbed onto an inert 

solid phase, as described by:

^resin ®soln ^  ®resin ^soln

Both anionic and cationic resins are available, usually with copolymers of styrene 

and divinylbenzene to provide a framework for the active ion exchange groups. The 

functional groups present determine the exchange characteristics of the resins. For 

example, strong cation exchangers possess -S020H groups and strong anion 

exchange resin contains -NR3OH. Anionic exchange is most commonly used for 

actinide separation [e.g. Burney and Harbour, 1974; Lally and Eakins, 1978; Harvey
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Figure 3.2 Extraction of actinides by diisopropylether from HN03 [Hursthouse, 
1990; Grindler, 19621

Pu-IV
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molarity HN03

and Thurston, 1988; Lovett et al., 1990].

The adsorption behaviour of a given solute on ion exchange resins is represented 

by the equilibrium distribution coefficient. This can be defined either as a volume 

distribution coefficient, Dv (amount of solute adsorbed per millilitre resin 

bed/amount of a solute per millilitre of solution), or as a weight distribution 

coefficient, Dg (amount of solute adsorbed per gram dry resin/amount of a solute 

per ml of solution) [Saito, 1984].

The distribution coefficients for the adsorption of the actinides by Dowex 1X8, an 

anion exchange resin used in this study, from both nitric acid and hydrochloric acid 

are shown in Figure 3.3. Although the separation characteristics are better from 

nitric acid than hydrochloric acid, the oxidising nature of nitric acid can lead to 

disruption of the organic resin bed, making its application impractical [Hursthouse, 

1990].
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Figure 3.3 Anion exchange distribution coefficients for aqueous actinide ions on 
Dowex 1X8 [Coleman, 1965; Burney and Harbour, 1974; Satio, 1978; Harvey and 
Thurston, 1988]

3.3 METHOD DEVELOPMENT

For the determination of plutonium and neptunium from marine sediments by ICP- 

MS, an analytical procedure was required which would:

i) separate the actinides from the bulk matrix to enable some preconcentration of 

the analytes prior to analysis, whilst restricting the dissolved solid content of the 

final sample to less than 0.2% (w/v)

ii) eliminate uranium from the sample to the extent where the UH+ interference in 

the 239Pu peak was below detectable limits and to reduce the risk of tailing of the 

238U peak in to the 237Np and 239Pu peaks

iii) involve simple chemical separation techniques to take full advantage of the less 

stringent sample requirements of ICP-MS compared to a-spectrometry.

This study followed on from the work of Hursthouse [1990], who developed a
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Figure 3 .4  A schematic summary of the analytical procedure used to determine 
237Np concentrations and 240Pu/239Pu atom ratios in marine sediments by ICP-MS, 
adapted from Hursthouse [1990] and Byrne [1986]
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method for the analysis of 237Np by ICP-MS based on an analytical procedure used 

by Byrne [1986] to determine 237Np by neutron activation. This method was 

investigated and developed for the analysis of 237Np and plutonium isotopes from 

the same sample by ICP-MS. A summary of the resulting procedure is shown in 

Figure 3.4.

3.3.1 Radiochemical yield tracers

For accurate determination of radionuclide concentrations it is essential to account 

for any losses which may occur during the chemical procedures. As discussed in 

section 2.2.4.1, the ideal technique is isotope dilution where an isotope with similar 

characteristics as the determinand is added to the sample, enabling simultaneous 

determination of both the determinand and yield tracer from the final solution, thus 

reducing errors associated with matrix effects and systematic errors which may 

occur from the use of more than one detection system. This is possible for the 

determination of 239Pu and 240Pu by ICP-MS by the addition of 242Pu which has a 

half-life of 3.76 x 105 years. For 237Np analysis, a potential candidate for a yield 

tracer is 236mNp with a half-life of 1Q7 years [Landrum et al., 1969], but isotopically 

pure standards are difficult to produce due to 237Np contamination [Hursthouse, 

1990]. There are also no strong ar-emitting isotopes of Np which can be used as 

a tracer for cr-spectrometry. As a result, the most commonly used chemical yield 

tracer for 237Np analysis is the short-lived isotope 239Np which can be determined 

by y or /?-spectrometry [Holm and Nilsson, 1980; Holm, 1984; Harvey and Lovett, 

1984; Hursthouse, 1990].

In this study, 1 - 2 ml aliquots of 242Pu (0.1445 Bq ml'1) in 8 M HN03, were 

weighed into each sample during the preliminary leaching stage along with aliquots 

of 239Np. 239Np is the short-lived (2.35 day half-life) daughter of 243Am. Separation 

of the daughter from the parent can be achieved by a single cycle TTA solvent 

extraction [Byrne, 1986; Hursthouse, 1990; and section 3.2.2.1]. A solution of 

243Am (obtained by A. Hursthouse from E. Hamilton and R.Clifton of I.M.E.R.) w ith 

an activity of approximately 4 kBq was separated into (nominally) 800 Bq aliquots 

which were placed into 10 ml solutions of 0.5 M HCI, containing 0.5 g of 

hydroxylamine hydrochloride (NH2OH.HCI, BDH AnalaR) [Hursthouse, 1990]. An
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equal volume of 0.2 M TTA (toluene) was added to this solution and 239Np 

extracted into the organic layer by mixing thoroughly for 10 - 15 minutes. The 

solutions were then centrifuged to separate the layers, and the upper, organic layer 

removed and retained. 239Np was back-extracted from this solution with 5 ml of 

8 M HN03. Again, the layers were separated by centrifugation, the 8M HN03 

pipetted o ff into a 20 ml polythene pot and counted (see section 3.3.6). Weighed 

aliquots of the spike were then added to each sample. The 243Am solution was left 

for at least 2 weeks to allow time for the solution to reach secular equilibrium, after 

which 239Np could once again be milked from its parent.

3.3 .2  Spiked sediment sample

To investigate the application of some of the techniques outlined in section 3.2, 

and the procedure shown in Figure 3.4, a sediment sample was required with 

enhanced and known concentrations of neptunium and plutonium. This was 

produced by spiking a 'background' sediment sample (obtained from Crombie point, 

Rosyth (Grid reference 3035 6844) on 8th August, 1988) w ith 237Np and 242Pu. 

This sample was dried for 24 hours at 30°C, sieved using a 2 mm mesh, and 

ground. 76% of the sediment sample was in the less than 2 mm fraction, which 

consisted of fine to coarse sand and shell fragments. The sediment contained 0.08 

± 0.02 Bq kg'1 239+240Pu and 0.4 fjg g'1 238U [Bradley, 1989]. A 20 gram aliquot 

was taken and ashed in a muffle furnace at 500°C for 12 hours after which the 

sample was heated gently for a further 12 hours in 500 ml of aqua regia (3:1, 11.4 

M HCI and 15.6 M HN03 respectively). After cooling, the sample was filtered, the 

aqueous phase taken to near dryness and the volume made up to 100 ml w ith 8 

M HCI. This solution was spiked with 237Np and 242Pu to a concentration of 4.8 and

8.2 ng ml'1 respectively. Aliquots of this solution were then used to investigate the 

performance of analytical procedures as described below. In addition, the 'in- 

house' standard reference sample of Ravenglass silt, (see section 2.2.4.2) was 

used to assess the analytical procedures.

3.3.3  Initial sample preparation and dissolution

Aliqouts of the sediment samples which had been previously dried, sieved using a
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2 mm mesh, and ground, were dried overnight at a temperature of 110°C. This 

process was checked by comparing the weight loss per gram of sediment w ith 

freeze drying and no significant difference was found between the tw o techniques.

The dried samples were then ashed overnight in a muffle furnace at 500°C to 

combust any organic material. After cooling, the samples were heated gently with 

aqua regia in the presence of the chemical yield tracers. For sediment samples, Pu 

and Np originating from Sellafield discharges are unlikely to be present in primary 

mineral phases, so a simple acid leach is sufficient to release the analytes into 

solution [Popplewell and Ham, 1987]. This is advantageous for analysis by ICP-MS 

as only 30 - 50% of the total weight of the sample is released into solution [Krey 

and Bogen, 1987], reducing the need for sample clean up procedures.

Table 3 .2  Effect of initial sample weight on final 239+240pu sediment 
concentrations for Ravenglass silt

Sample weight
(g)

Final sample 
volume (ml)

No. of 
samples

239+240pu Specjfjc activity 
(Bq kg'1)

30 5 5 861 ± 60

20 5 3 926 ± 89

10 5 5 1,065 ± 75

2 1 3 1,102 ± 36

1 1 3 1,104 ± 48

Table 3.2 shows the effect of the initial sample weight on the final 239+240Pu 

specific activity of the Ravenglass silt sample. For sample weights of greater than 

10 g the sample leaching processes used here were less efficient at releasing the 

plutonium from the sample, most probably due to insufficient volume of aqua regia 

compared to the weight of sample. The relative proportion of leaching solution for 

the larger sediment samples was increased to a minimum of 10:1 w ith satisfactory 

results as a subsequent bulk sample with an initial sample weight of 100 g was 

found to have a 239+240pu specific activity of 1,020 ± 14 Bq kg'1. The reagent 

volumes used in the following procedure applies to sediment samples w ith an initial 

sample weight of 2 - 10 g.
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3 .3 .4  Anionic exchange

After leaching, the samples were cooled and the solid phase removed by filtration. 

The aqueous sample was then taken to low volume and made up to 20 ml using 

8 M HCI. Iron was removed by extraction with equal volumes of di-isopropyl ether 

[Nachtrieb and Conway, 1948a,b]. This was repeated until the aqueous phase was 

clear or pale yellow, in general requiring a single cycle extraction for samples of 5 

g or less. The samples were then heated gently to remove any residual ether, 

cooled and the volume and acidity of the solution altered to produce a 20 ml 

solution of 9 M HCI. A t this stage approximately 1 g of NH2OH.HCI was added to 

the solution to reduce Np to the IV state. Meanwhile a 1 x 10 cm column of 

Dowex 1X8 (100-200 mesh) anionic exchange resin was prepared and pre­

conditioned with 9 M HCI. Just before addition of the sample solution to the 

exchange column, 10 drops of 15.6 M HN03 were added to the solution to ensure 

that Pu was in the IV state. After addition of the sample, the column was washed 

with an equal volume of 9 M HCI, followed by 4 x 50 ml washes of 8 M HN03, to 

remove a proportion of uranium from the sample (see below). Finally both Pu and 

Np were eluted from the column using 150 ml 1.2 M HCI. Elution curves for the 

removal of uranium and the final elution of Pu and Np are shown in Figure 3.5. 

These were obtained by using the spiked sediment sample which had a 238U 

concentration of 28.3 ± 0.5 ng ml'1. In this case 60% of 238U was removed from 

the sample, and 87 and 73% of 237Np and 242Pu respectively were in the final 

elution solution. Repetition of this experiment produced variable results (see Table

3.3), however in general the anionic exchange column was effective in removing 

over 50% of 238U with over 70% recovery for both Pu and Np. Semiquantitative 

analysis of the wash solutions, by ICP-MS, revealed that the main components of 

the sediment sample solution (Ca, Mg, Na, Al and Mn) were not adsorbed by the 

anionic exchange resin and remained in the 9 M HCI solution.

The distribution coefficients for Np, Pu and U in the IV oxidation state (see Figure

3.3) indicate that they are strongly sorbed onto the anionic exchange column in 

HCI, the adsorption increasing with HCI molarity. However, if U is first oxidised to 

U(VI) then it can be removed, to a certain extent, by 8 M HN03 (the distribution 

coefficient in 8 M HN03 for U(VI) is < 10, compared with > 103 for Np(IV) and
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Figure 3 .5  Elution curves for DOWEX 1X8 anion exchange resin showing % 
recoveries for (a) 238U in 8M HN03 wash, (b) 237Np and (c) 242Pu in 1.2M HCI wash
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Table 3.3 Results of experiments to adjust the oxidation state of Pu and Np 
before addition of sample solution onto anionic exchange column in terms of %

recovery in each solution

Experiment Wash 238u 237Np 242Pu

No reducing agents 9M HCI 
8M HN03 
1.2M HCI

0.4 - 3 
69 - 86

1 - 4 
55 - 77

6 - 14 
26 - 55

Addition of 
NH2OH.HCI

9M HCI 
8M HN03 
1.2M HCI

< 1 
< 1 

66 - 76

< 1 
< 1 - 2  
75 - 84

8 - 1 5  
3 - 14 
8 - 62

Addition of 
NH2OH.HCI and
h n o 3

9M HCI 
8M HN03 
1.2M HCI

< 1 - 2 3  
104 - 140 

5 - 41

< DL
< DL 

88 - 108

< DL - 7 
< DL 

89 - 101

Pu(IV)). By comparison, all actinides in the VI and IV oxidation states have low 

distribution coefficients at low acidity, and should be eluted from the anionic 

exchange column by 1.2 M HCI. The effect of the addition of oxidising\reducing 

agents to the sample prior to anionic exchange can be seen in Table 3.3. Best 

recoveries of both Np and Pu were obtained by the addition of HN03 and 

NH2OH.HCI. The results for 238U were variable and in some cases unexpected, w ith 

8M HN03 failing to remove the uranium and with > 100% recoveries observed. 

This suggested that the anion exchange resin contained significant quantities of 

uranium in the 4 +  oxidation state. A similar conclusion was reached by 

Hursthouse [1990], and a fresh batch of resin was acquired which was relatively 

free of uranium.

The 238U concentration of 20 g aliquots of the Ravenglass silt sample after anionic 

exchange was found to be 400 - 500 ng ml'1. An ETV-ICP-MS spectrum obtained 

for one of these samples is shown in Figure 3.6. In this case the 238U peak tails 

into 237Np, although the peaks could have been separated by increasing the 

resolution at the expense of the signal response (see section 2.2.1.3). However, 

the 238U concentration was high enough for 238UH+ to interfere w ith 239Pu, as 

confirmed by the average 240Pu/239Pu atom ratio which was found to be 0.214 ± 

0.006 compared to an average value of 0.250 ± 0.020 found for samples which 

had lower 238U concentrations. As a result, further removal of uranium was 

required.
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Figure 3.6 ETV-ICP-MS spectrum obtained from analysis of a 20g Ravenglass 
sediment sample after anionic exchange.
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3.3.5 TTA solvent extraction

Separation of Np and Pu from uranium was achieved by a single cycle TTA 

extraction from 0.5 M HCI. Firstly, the 1.2 M HCI wash solution was taken to near 

dryness and the remaining solution was taken up in 25 ml of 0.5 M HCI. Extraction 

was performed with an equal volume of pre-conditioned TTA w ith thorough mixing 

of the solvent and aqueous phase for 15 minutes. The aqueous layer was removed 

and Np and Pu were back extracted with 25 ml of 8 M HN03. This was then taken 

to near dryness and made up to 2 - 5 ml using 2% HN03. The sample was placed 

in a polythene pot and the gamma spectrum recorded to obtain the Np recovery 

(see section 3.3.6).

Several experiments were performed to investigate the effect of adding reducing 

and oxidising agents to the 0.5 M HCI solution, prior to TTA extraction, using 10 

g aliquots of the Ravenglass silt sample which had previously undergone anion 

exchange separation. The results of these experiments are summarised in Table 

3.4. All the experiments resulted in the effective removal of uranium to a final
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Table 3.4 Results of experiments investigating the effect of reducing\oxidising 
agents on the extraction of Pu and Np by TTA, showing % final recovery for Np 
and Pu, and final 238U concentration for an initial sample weight of 10 g.

Oxidation/reducing agents 
added to 0 .5  M HCI 
solution prior to TTA  
extraction

% Np 
recovery

% Pu 
recovery

238u
concentration in 

final solution 
(ng ml ')

None 53 - 107 5 0 - 1 0 4 0 .4  - 1.1

1 g N H 3OH.HC! 67 - 96 3 - 6 1.6 - 6.1

10 drops 1 5 .6 M  H N 0 3 26 - 66 96  - 101 0 .6  - 4 .7

N H 2OH.HCI and H N 0 3 41 - 101 6 - 83 6 .3  - 9 .5

None, 2 x TTA  extraction 33 - 89 29 - 60 0 .0 4  - 0 .0 7

Figure 3.7 ETV-ICP-MS spectrum obtained from analysis of a 10 g Ravenglass 
sediment sample after anionic exchange and a single cycle TTA extraction
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concentration of less than 10 ng ml'1, which caused no interference with analysis 

of 237Np and 239Pu (see Figure 3.7). The recoveries for both- Pu and Np were 

variable, the best results obtained by adding no oxidising or reducing agent 

between anion exchange and solvent extraction steps. Table 3.4 also shows the 

results obtained after performing two TTA extraction steps. As expected, the final 

238U recovery was lower, as were the recoveries for both Np and Pu. Considering 

the requirement for minimum chemistry, the second TTA extraction step was 

redundant.

The replacement of anion exchange with TTA extraction was also investigated, but 

the results were unreliable, probably due to the levels of salt in the samples 

effecting the solubility of TTA in the aqueous phase (see section 3.2.2.1).

3.3 .6  Determination of 237Np recoveries

239Np was used as a yield tracer for Np analysis as described in section 3.3.1. Np 

recoveries were calculated by comparing the counts obtained for the 228 keV 

(11.8%) and 277 keV (14.1 %) emissions (using high resolution y-spectrometry) for 

the initial 239Np spike with the counts obtained for the final solution. The more 

abundant 106 keV (22.8%) emission was not used due to interferences from Pu 

Ka and lines. Corrections were made to account for decay during counting using 

an equation derived by Hoffman and Van Camerik [1967] such that:

gn((1 ~e~m"2)IRln2) 

ln2

where At is the time correction, determining the time from the start of counting for 

which the observed activity is the true activity of the sample, and R is the number 

of half-lives counted ((counting time, T)/t1/2). Addition of A t to the time taken for 

processing the samples enabled calculation of the complete decay corrections. 

Since only the relative 239Np activity of the final sample was required, the absolute 

efficiency of the y-detector was not needed as both the spike and the sample were
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measured in a fixed geometry. However, the sample volumes were variable within 

the 1 - 2 ml range. To check that changes in sample volume did not affect the 

measured activity, the absolute efficiency of the detector was measured for this 

volume range using a standard y-source, and the variation in efficiency was found 

to be insignificant.

y-counting the samples prior to analysis also confirmed that the peaks observed at 

241 m/z in the ICP-MS spectra were due only to 241Pu in the samples as the high 

intensity 60 keV 241 Am y-ray was not observed. 241 Am was not expected to be 

present in the final solution as the dominant oxidation state of Am is the III state 

which does not form stable, negatively charged chloro complexes implying that it 

would pass straight through the anionic exchange column [Cleveland, 1970].

3 .4  APPLICATION TO IRISH SEA SEDIMENT SAMPLES

To establish the 240Pu/239Pu atom ratios and obtain data on the 237Np distribution 

within the sediments of the Irish Sea, intertidal sediment samples from the coast 

of West Cumbria and sediment core samples taken from Maryport and the Solway 

Firth were obtained.

The analysis of these samples by ICP-MS provided the opportunity to study the 

environmental record of Sellafield discharges. In Chapter 4, the results are 

discussed in terms of the current understanding of the dynamics of the Irish Sea 

and the environmental behaviour of these radionuclides, and conclusions are drawn 

on the interpretations that such data can provide on unpublished releases from 

Sellafield.

3.4.1 Sample site locations

3.4.1 .1  Intertidal surface sediments

Intertidal sediment samples were collected from the coastline of West Cumbria, 

between the 10 and 12th November, 1988 (Figure 3.8). Bulk sediment samples 

were taken from 1 m squares, up to 50 m below the high tide mark, to a depth of
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Figure 3.8 Intertidal sediment sample collection sites
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Figure 3.9 Schematic diagram showing the collection site of cores taken from 
Maryport Harbour, Cumbria [Kershaw eta !., 1990]
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Figure 3.10 Sampling site of Southwick Core (SC1) [Allan, 1993]
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1 cm. The sediment types ranged from coarse sands to fine silt (based only on 

visual characterisation). At each sampling site, the samples were placed in 

polythene pots, which were then sealed in bags to prevent cross contamination. 

Each sample was dried, sieved using a 2 mm mesh and ground using a TEMA disc 

mill. The homogenised samples were then sub-sampled prior to analysis. The 

analysis procedure has been detailed in section 3.3.

3 .4 .1 .2  Sediment core samples

Sections of sediment cores collected from Maryport and the Solway Firth were 

kindly donated by Dr. P.J. Kershaw and Dr. R.L. Allan respectively. The sampling 

techniques employed to extract and sub-section these cores, detailed by Kershaw 

et al. [1990] and Allan [1993], are summarised below.

Several sediment cores were taken from Senhouse Dock in Maryport harbour. This 

was dredged in the early 1950s, at about the time of the first discharges from 

Sellafield (then Windscale). The dock rapidly silted up and was left undisturbed 

until 1988, when it was redredged as part of a harbour redevelopment project. 

Core samples were collected at low water on 17th February, 1988 (Figure 3.9). 

Square section (15 x 15 cm), steel 'Kasten' barrels were lowered onto the exposed 

sediment surface using a 12 ton crane. The core sections analysed in the present 

study originated from tw o cores, M1 and M2, which were 210 and 108 cm in 

length respectively. These cores were sectioned into 1, 2, or 5 cm intervals, and 

each section homogenised and sub-sampled. 2 - 5 grams of core sub-sections, 

spanning the whole length of the cores, were made available for ICP-MS analysis.

The Solway core was extracted from a vertical river bank of Southwick Water. 

This sample location is subject to an oscillatory pattern of erosion caused by the 

slumping of the banks, followed by periods of rapid sediment accumulation 

[MacKenzie et al., 1994]. The sediment core was collected as part of a project to 

assess the transfer of Sellafield discharges to the Solway coast. Figure 3.10 

shows the sample collection site of the Solway core (SC1), located 200 m 

downstream from the intersection of the path from the entrance to the Scottish
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Wildlife Trust's Southwick Coast nature reserve at Netherclifton [Allan, 1993]. A 

70 cm core was extracted by preparing a clean vertical face at the stepped edges 

of the merse and extracting the sediment samples in 5 cm depth intervals, the 

surface area of each section being approximately 1 0 x 1 5  cm. Each sub-sampled 

section was placed in polythene bags, dried overnight at 60°C then sieved through 

a 2 mm mesh prior to analysis.

3.5  VALIDATION OF RESULTS

The results obtained by ETV-ICP-MS for the Maryport core and Solway core (SC1) 

samples are shown in Table 4.4 and 4.5 respectively. Validation of the plutonium 

results was possible by comparison of the 239+240pu specific activities (derived from 

the 239Pu/242Pu and 240Pu/242Pu atom ratios obtained by ICP-MS), w ith the results 

obtained by Kershaw et al. [1990] and Allan [1993] by a-spectrometry. In addition, 

some of the electrodeposited sources used for a-spectrometry by Kershaw et al. 

[1990] were sent to W. McCarthy (AWE, Harwell) for analysis by TIMS. This 

enabled direct comparison of the 240Pu/239Pu atom ratios obtained by ICP-MS with 

those obtained by TIMS. The differences between ICP-MS, a-spectrometry and 

TIMS techniques were outlined in section 1.7. Unfortunately, no data were 

available for comparison with 237Np specific activities obtained by ICP-MS for 

Maryport core samples. Instead the 'in-house' Ravenglass silt reference standard 

was analysed as part of each analytical procedure and the 237Np results checked 

with the expected 237Np specific activity (see section 2.2.4.2).

3.5.1 239+240pu results

Figure 3.11 shows a plot of the 239+240pu specific activity obtained by ICP-MS 

compared to a-spectrometry [Kershaw et al., 1990], for the Maryport core samples. 

The agreement between the results is good, with a correlation coefficient of 0.955. 

Figure 3.12 shows a plot of the difference between the individual results obtained 

by each technique against their mean value. This reveals tw o types of variation 

between the tw o data sets: a systematic difference in which the mean ICP-MS 

value is 142 Bq kg'1 higher than the equivalent a-spectrometry result, suggesting 

a difference between the two yield tracer spikes; and a random difference where,
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Figure 3.11 Comparison of 239+240pu specific activities obtained by ICP-MS and a-
spectrometry [Kershaw et a!., 1990] for Maryport core samples
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Figure 3 .12  Plot of the difference between individual results obtained by ICP-MS 
and cr-spectrometry [Kershaw et a!., 1990] against their mean value
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in a few cases, there are large disparities between the data sets, possibly the result 

of sub sampling or an artifact of the different analytical procedures. Absolute 

validation of the concentration of the 242Pu spike used in this study was not 

possible, but each dilution of the original certified material was checked.

The 239+240Pu specific activities for samples from the Solway core obtained by ICP- 

MS and a-spectrometry [Allan, 1993] are compared in Figure 3.13. Once again, 

the agreement between the two data sets is good w ith a linear correlation 

coefficient of 0.951. Interestingly, a plot of the difference between the results 

against their mean value (Figure 3.14) reveals a greater correspondence between 

the tw o data sets than was observed for the Maryport core data, w ith a mean ICP- 

MS value only 15 Bq kg'1 lower than the mean a-spectrometry value. In this case, 

the systematic error due to the yield tracer is removed as the same spike solution 

was used for both techniques.

3.5.2 240Pu/239Pu results

The 240Pu/239Pu atom ratio profilesjor the Maryport core obtained by ETV-ICP-MS 

and by TIMS [McCarthy, 1994] are shown in Figure 3.15. The agreement between 

the two data sets is excellent, w ith a correlation coefficient of 0.980 (Figure 3.16). 

In this case, the average difference between the results was 0.0039 (Figure 3.17). 

The main difference between the two data sets was the precision, typically 4.4% 

for ICP-MS compared to 0.35% for TIMS. Direct comparison of the precision for 

specific samples is not possible as different sample preparation procedures were 

used, and only 1 - 2 grams of material were available for ICP-MS analysis. For ICP- 

MS, the precision was dependent on the sensitivity of the instrument and on the 

concentration of plutonium in the final solution. The precision could therefore be 

improved by increasing the initial sample size and by the use of the latest 

generation ICP-MS instruments (PQ2 series) which have improved sensitivity of 

typically an order of magnitude.
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Figure 3.13 Comparison of 239+240pu activities obtained by ICP-MS and a-
spectrometry [Allan, 1993] for Solway core (SC1) samples
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Figure 3.15 240Pu/239Pu atom ratio profile for Maryport core samples obtained by 
ICP-MS and TIMS [McCarthy, 1994]
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Figure 3.16 Comparison of 240Pu/239Pu atom ratios obtained by ICP-MS and TIMS
[McCarthy, 1994] for Maryport core samples.
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CHAPTER 4  

AN ENVIRONMENTAL APPLICATION

4.1 INTRODUCTION

The Sellafield discharges offer an opportunity to study the environmental behaviour 

of radionuclides, such as plutonium and neptunium, which were not present in the 

marine system before the discharges started, or were at a relatively low 

concentration compared to the present levels. As the isotopes of plutonium and 

neptunium are of long-term significance in terms of nuclear waste disposal (see 

section 1.6.3), it is important to assess the environmental behaviour of these 

radionuclides in order to address the omissions in the Sellafield discharge record 

and to predict the potential sources and sinks of the actinides in the future.

The isotopic signature of the Sellafield discharges has changed with time, and this 

can potentially help to untangle the environmental record of the discharges. For the 

heavy elements, such as Np and Pu, it can be assumed that no isotopic 

fractionation occurs during biological or chemical reactions in the environment, so 

that the isotope ratios observed in environmental media are related to those 

observed in the discharges, although the individual contributions from each year's 

discharge may vary from sample to sample. Some separation of different elements 

does occur during environmental processes as a result of each element's individual 

biogeochemical behaviour, although elements from the same group, for example the 

actinides, tend to have similar behaviour. This can be highlighted by observing 

nuclide ratios in different environmental media.

One limitation in interpreting the environmental signature of radionuclides 

discharged from Sellafield is the incomplete record of the releases. For example, 

237Np and 238Pu discharge data only exist since 1978, after the peak discharges of 

the early to mid 1970s. In addition, some isotope ratios in the discharges, such as 

240Pu/239Pu, have never been recorded. In the case of plutonium, a nearly complete 

record of the Sellafield releases exists for 239+240Pu, and this can be used to 

interpret the observed 239+240pu concentrations In environmental media. If a model 

is then established which relates the discharges to the environmental signature, it
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can be applied to other isotopes of plutonium, such as 238Pu, for which limited 

discharge data exist. Once a model predicts and agrees with the available Sellafield 

discharge data, it can be used to predict the level of releases for which no data 

exists. Likewise, a model which predicts the recorded 238pu/239+24°pu ratjos in the 

discharge from the sediment record, could be applied to the 240Pu/239Pu ratios. For 

some radionuclides, such as 237Np, the discharge data are limited and the 

environmental behaviour is not well characterised. In such a case nuclide ratios, 

for example the 237Np/239+240Pu activity ratio, can be used to provide a comparison 

w ith radionuclides for which the behaviour is well known.

In this study, 240Pu/239Pu atom ratio data and 237Np specific activity data were 

obtained by ICP-MS for intertidal surface sediment and core samples. The 

interpretation of these data is discussed below, as well as the potential for 

deconvolution of the environmental signature to provide information on the source 

term.

4 .2  RESULTS FOR INTERTIDAL SURFACE SEDIMENTS FROM THE IRISH SEA

Table 4.1 240Pu/239Pu atom ratios and 239+240pu specific activities found in
intertidal sediments by ICP-MS

Sample Site Type 240Pu/239Pu atom ratio 239 + 2 4 0 p u

(Bq k g 1)

Wigtown Sand 0.2083 ± 0.021 26 ± 5

Silloth Sand 0.1799 ± 0.0068 33 ± 7

Maryport Silt 0.2043 ± 0.029 931 ± 108

Workington Sand 0.1832 ± 0.0047 110 ± 8

Whitehaven Sand 0.2326 ± 0.027 57 ± 7

St Bees Sand 0.1429 ± 0.0082 35 ± 2

Sellafield Sand 0.1852 ± 0.0062 170 ± 1 1

Drigg Sand 0.1908 ± 0.0025 201 ± 4

Ravenglass Silt 0.2188 ± 0.0072 1117 ± 36

Millom Sand 0.2132 ± 0.0050 281 ± 13

Walney Island Sand 0.250 ± 0.013 42 ± 2
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4.2.1 239+240Pu specific activity

239+240pu specific activities measured in intertidal sediments collected from the 

coastline of West Cumbria are shown in Table 4.1. As expected, the data show 

a relationship between the 239+240pu concentrations and sediment type, the sand 

samples having lower concentrations than the silt samples. The variation in the 

239+240pu concentrations within the broad 'sand' classification used here, based only 

on visual characterisation, is likely to be a function of both the particle size 

distribution within the sediments and the distance of the sampling point from the 

Sellafield pipeline. Table 4.2 lists published 239+240pu concentration data, obtained 

by a-spectrometry, for intertidal sediments collected from similar locations during 

the 1980s. In general, the results obtained by ICP-MS show good agreement w ith 

those obtained by a-spectrometry, although there are some striking differences. 

For example, the sediment sample collected at Workington by MAFF contained 970 

Bq kg-1 239+240Pu, whereas the sample analysed in this study contained only 110 Bq 

kg'1. In this case, the difference can be attributed to sample types. Studies have 

shown that even within a small area with similar sediment types, the 

concentrations of radionuclides canvary considerably [Aston and Stanners, 1982a]. 

This highlights the limitations of environmental data in that they can only provide 

a snapshot of what is happening at one moment in time and at one specific 

location. This can be overcome by collecting a number of samples from any one 

site and obtaining an average to ascertain the general trend.

4.2.2 240Pu/239Pu atom ratios

Interpretation of 240Pu/239Pu atom ratios observed in environmental materials from 

the Irish Sea is difficult as there are few data available in the literature for 

comparison (Table 4.3) and no information is published on 240Pu/239Pu ratios in the 

Sellafield discharge or the average burn-up of nuclear waste reprocessed at any 

given time. However, it is known that the initial reprocessing program was 

developed to produce nuclear weapons, so it would be expected that early 

discharges from Sellafield would have characteristically low 240Pu content (see 

section 1.3.1) and that the 240Pu/239Pu ratio in the discharges would increase as 

higher burn-up material from nuclear power stations was subsequently reprocessed.
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Table 4.2 Comparison of 239+240pu specific activities in intertidal sediments from
the Cumbrian and Solway coast

Reference This study Aston et al., 
1985

Eakins et a!., 
1988

Others

Sampling date 1988 1978-80 1982-84 1985-88

Wigtown 26 + 5 120 ± 3 8 132 ± 9

Silloth 33 ± 7 242 ± 5 10 ± 1

Maryport 931 ± 108 1818 ± 33 94 ± 6 b 970

Workington 110 ± 8 37 + 1

Whitehaven 57 + 7 33 ± 4 b 810

St Bees 35 ± 2 110 ± 8 c 103 ± 25

Sellafield 170 ± 1 1 142 ± 9

Drigg 201 ± 4 116 ± 3 113 ± 7

Ravenglass 1117 ± 36 1297 ± 33

Millom 281 ± 13 2921 ± 38

Walney Island 42 ± 2 964 ± 29 72 ± 4

8 Sample collected during 1985 [MacKenzie et a!., 1987] 
b Samples collected during 1988 [MAFF, 1989] 
c Sample collected 1986-87 [McKay and Walker, 1990].

The 240Pu/239Pu atom ratios obtained for the intertidal sediments collected from 

West Cumbria are listed in Table 4.1. Figure 4.1 shows the variation in 240Pu/239Pu 

atom ratios w ith distance from the Sellafield pipeline, for the results obtained in the 

present study and those obtained by McCarthy and Nicholls [1990] by TIMS. The 

results from each study show a close correspondence, despite the three year gap 

between sample collection, indicating that the 240Pu/239Pu atom ratio in the intertidal 

sediments did not significantly change during this time. In general, the 240Pu/239Pu 

atom ratios are indicative of high burn-up material, showing little variation w ith 

distance from Sellafield. Interestingly, most of the values to the north of Sellafield 

are within error of the average fallout value, implying that the 240Pu/239Pu atom ratio 

alone cannot be used to determine the source of the plutonium. However, the 

concentrations of plutonium in the samples indicate that the dominant source is

149



Table 4 .3  Published 240Pu/239Pu atom ratios for marine samples

Irish Sea intertidal sediment samples

Place Date 240Pu/239Pu Reference

Ravenglass 1989 0.197 ± 0.003 Kim et a!., 1989

Ravenglass 1986 0.217 ± 0.089 Hursthouse, 1990

Ravenglass 1985 0.194 ± < 1% McCarthy and Nicholls,

Seascale 1985 0.180 " 1990

Braystones 1985 0.182 " i i -

Nethertown 1985 0.187 " i i

Nethertown 1983 0.188 " i i

Newbiggin 1985 0.198 " i i

Saltcoats 1977 0.158 " i i

Whitehaven 1985 0.1943 - 0.200 Koide et a!., 1985

Samples contaminated with fallout

Sample 240Pu/239Pu Reference

Average fallout, soils 0.179 + 0.014 Perkins and Thomas, 1980
Atlantic sediment cores 0 .1 0 5 -0 .1 9 3 Buesseler and Sholkovitz, 1987
Atlantic pore waters 0 .0 5 2 -0 .1 6 3
Atlantic sediments 0.142 - 0.179 Buesseler and Halverson, 1987
" pore waters 0.179 - 0.188
" seawater 0 .1 80 -0 .211 IT

" sediment trap material 0 .1 7 9 -0 .1 8 0 II

Coral 0 .1 9 4 -0 .2 3 9 II

Gulf of Mexico
Sediment cores 0 .0 6 9 -0 .1 8 5 Scott et a!., 1983
Antarctic and Artie ice
Post-moratorium 0.09 - 0.22 Koide et a!., 1985
Pre-moratorium 0.21 - 0.34 i t

Enewetak
Lagoon water, 1972 0 .0 9 2 -0 .1 1 6 Noshkin, 1980
Fish bone 0.309 ± 0.067 i i

Bikini coral, 1 976 0.207 ± 0.017 i t
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Sellafield. In both studies, there is one data point that is much lower than the 

others and lower than the average fallout value (see Figure 4.1). Both of the 

samples which exhibit low 240Pu/239Pu atom ratios occurred in sediments close to 

Sellafield, the probable source of low burn-up material. The low 240Pu/239Pu atom 

ratios in these sediments indicate that either earlier discharge material forms a 

significant proportion of the surface sediment, or Sellafield has recently been 

releasing plutonium with a low 240Pu/239Pu atom ratio.

For comparison, the 238pu/239+240pu activity ratios found in intertidal sediments are 

shown in Figure 4.2. These show a similar general trend to the 240Pu/239Pu atom 

ratios, with the 238pu/239+240pu activity ratios remaining fairly constant in the 

sediments over distances up to 100 km from Sellafield, the average values being 

0.208 ± 0.009 for samples collected between 1978 and 1980, and 0.233 ± 

0.019 for samples collected from 1982-1984. The ratios recorded for the Sellafield 

discharges at these times were 0.31 and 0.32 respectively. The lower values 

found in the sediments and the increase in the ratio observed with time, indicate 

that the 238pu/239+240pu activity ratios in the intertidal sediments are influenced by 

earlier discharges from Sellafield which had a higher proportion of 239 240pu. jh is  

is supported by the evidence of Eakins et at. [1988] who found that Pu 

concentrations within intertidal sand cores were fairly constant to a depth of 50 

cm, suggesting that the sediments were well mixed and that the 238pu/239+240pu 

activity ratios are indicative of cumulative discharges. Likewise, it is expected that 

the 240Pu/239Pu ratios found in intertidal areas are also representative of the 

cumulative Sellafield discharges.

At large distances (>  100 km) from Sellafield the 238pu/239+240pu activity ratios 

decreased. No discharge data exist for 238Pu before 1978 and the best available 

estimates of the early 238pu/239+240pu activity ratios are provided by Hetherington 

[1975] who measured the annual 238pu/239+240pu activity ratio in surface sediments 

from Newbiggin between 1966 and 1974. The data show an increase in the 
238Pu/239+240Pu ratj0 from 0 053 jn 1966 t0 q.200 in 1973 (see Figure 4.3). 

Comparison of the results obtained by Hetherington [1975] w ith those found above 

(Figure 4.2), suggests that the samples at large distances from Sellafield are more 

influenced by 'older' discharges, resulting in lower 238pu/239+240pu activity ratios.
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Figure 4.1 Variation in 240Pu/239Pu atom ratios in intertidal surface sediments with
distance from Sellafield
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Figure 4 .2  Variation in 238Pu/239+240Pu activity ratios in intertidal surface sediments 
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Figure 4.3 Annual 238pu/239+240pu activity ratios found in intertidal surface 
sediments from Newbiggin from 1966 to 1974 [Hetherington, 1975]
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An alternative explanation could be that fallout 238pu/239+240pu ratios become more 

significant as the dominance of the Sellafield discharges decreases w ith distance. 

The 238pu/239+240Pu fallout activity ratio is characteristically low (0.031 in 1982, 

from Pentreath [1988]) so the mixing of sediments contaminated w ith fallout w ith 

those contaminated with diluted Sellafield discharges, would result in the 

observation of lower 238pu/239+240pu activity ratios. However, the plutonium 

inventory for all the samples collected by Eakins et at. [1988] was significantly 

higher than the expected fallout inventory, w ith even the southern most sampling 

site having a 239+240pu content of 5 kBq m‘2, compared to 48 Bq nrf2 expected from 

fallout. Unfortunately, in the present study, samples were not collected at such 

distances from Sellafield as it would have been interesting to observe 240Pu/239Pu 

atom ratios in sediments which had low 238pu/239+240pu activity ratios.

4.3 SEDIMENT CORE DATA

The analysis of two cores taken from Maryport and the Solway Firth (SC1) has 

been described in Section 3.3. Several publications also relate to these specific
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Table 4 .4  ETV-ICP-MS results showing 237Np and 239 + 240pu concentrations, and 
240Pu/239Pu atom ratios for Maryport core samples.

Sample 237Np 239+240pu 240Pu/239Pu atom ratios
concentration concentration

(pg g 1') (Bq kg■1)

M1 0 - 1 54 ± 2 -

M1 1 - 2 50 ± 1 631 ± 14 0.169 ± 0.014

M1 2 - 3 38 ± 2 758 ± 50 0.217 ± 0.023

M1 3 - 4 - 1113 ± 94 0.169 ± 0.014

M1 4 - 5 32 + 5 -

M1 5 - 6 45 ± 7 -

M2 6 - 8 28 ± 5 956 ± 26 0.221 ± 0.012

M2 8 - 10 - 912 ± 12 0.2546 ± 0.0030

M2 10 - 12 - 1087 ± 40 0.239 ± 0.013

M2 12 - 14 - 1700 + 250 0.2114 ± 0.0085

M2 14 - 16 34 ± 2 1261 ± 30 0.238 ± 0.011

M2 16 - 18 - 1549 ± 29 0.242 ± 0.015

M2 18 - 20 71 ± 4 987 ± 61 0.214 ± 0.018

M2 26 -28 - 1594 ± 31 0.247 ± 0.013

M2 28 - 30 76 ± 3 1843 ± 90 0.2288 ± 0.0089

M2 30 - 32 32 ± 1 1322 ± 19 0.2228 ± 0.0031

M2 32 - 34 - 1789 ± 49 0.2304 ± 0.0026

M2 34 - 36 101 ± 6 1271 ± 89 0.233 ± 0.010

M2 36 - 38 - 1862 ± 67 0.2405 ± 0.0035

M2 38 - 40 - 2580 ± 380 0.2096 ± 0.0098

M2 40 - 42 - 1556 ± 80 0.217 ± 0.010

M2 42 - 44 40 ± 5 1416 ± 31 0.2166 ± 0.0043

M2 44 - 46 67 ± 9 - -

M2 46 - 48 119 ± 12 - -

M2 48 - 50 70 ± 10 3630 ± 340 0.228 ± 0.013
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Sample 237Np 239+240pu 240pu/239Pu atom ratios
concentration concentration 

(pg g'1) (Bq kg'1)

M2 50 - 52 178 ± 17 -

M2 54 - 56 - 1945 ± 40 0.188 ± 0.013

M2 56 - 58 57 ± 8 2058 ± 24 0.1938 ± 0.0083

M2 58 - 60 23 ± 3 2720 ± 410 0.194 ± 0.016

M2 60 - 62 113 i : 8 -

M2 6 4 - 66 - 3060 ± 110 0.1842 ± 0.0058

M2 70 - 72 32 ± 2 2130 ± 130 0.1669 ± 0.0084

M2 74 - 76 29.6 ± 0.7 -

M2 76 - 78 16.9 + 0.8 2296 ± 27 0.1709 ± 0.0029

M2 78 - 80 32 ± 1 2210 ± 100 0.1890 ± 0.0050

M2 80 - 82 - 2960 ± 110 0.1590 ± 0.0053

M2 82 - 84 - 4669 ± 64 0.1653 ± 0.0046

M2 84 - 86 64 ± 2 3350 ± 77 0.1672 ± 0.0048

M2 86 - 88 - 3290 ± 120 0.1618 ± 0.0020

M2 88 - 90 75 ± 27 3170 ± 110 0.1730 ± 0.0015

M2 90 - 92 99 ± 7 4290 ± 120 0.1541 ± 0.0050

M2 92 - 94 - 4760 ± 210 0.174 ± 0.016

M2 94 - 96 - 4490 ± 37 0.1667 ± 0.0033

M2 96 - 98 - 2300 ± 310 0.156 ± 0.012

M2 98 - 100 - 1850 ± 120 0.1499 ± 0.0067

M2 100 - 102 - 2070 ± 140 0.1372 ± 0.0062

M2 102 - 104 100I ±: 3 2670 ± 220 0.1372 ± 0.0043

M2 104 - 106 130l ± : 5 3680 ± 71 0.1493 ± 0.0045

M2 106 - 108 - 1880 ± 140 0.1499 ± 0.0043

M1 110 - 115 - 1610 ± 120 0.134 ± 0.015

M1 120 - 125 - 1390 ± 25 0.1153 ± 0.0029

M1 125 - 130 - 1202 ± 60 0.1153 ± 0.0041

M1 130 - 135 9.1 ± 0.6 1306 ± 53 0.0961 ± 0.0031

M1.140 - 145 - 1271 ± 33 0.0929 ± 0.0026

M1 150 - 155 6.3 ± 2.5 485 ± 15 0.0809 ± 0.0029
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Sample 237Np 239+240pu 240Pu/239Pu atom ratios
concentration concentration

(pg g"1) (Bq kg"1)

M1 1 6 0 - 1 6 5 - 691 ± 15 0.0826 ± 0.0034

M1 1 6 5 - 1 7 0 - 649 ± 19 0.07559 ± 0.00063

M1 1 7 0 - 1 7 5 - 482 ± 5 0.06165 ± 0.00091

M1 1 7 5 - 1 8 0 - 848 ± 41 0.0581 ± 0.0057

M1 1 8 0 - 1 8 5 - 418 ± 13 0.0615 ± 0.0032

M1 1 9 0 - 1 9 5 - 480 ± 13 0.0579 ± 0.0028

M1 195 - 200 6.0 ± 2.5 402 ± 10 0.0707 ± 0.0039

cores. In particular, the Maryport core is referred to by Kershaw et al. [1990] and 

MacKenzie eta/. [1994], and the Solway core (named here SC1) is referred to by 

MacKenzie et al. [1994] as S2 and Allan [1994] as SC1. The 240Pu/239Pu atom 

ratio, 239+240Pu activity concentrations and 237Np concentrations of samples taken 

from the Maryport core, determined by ETV-ICP-MS, are listed in Table 4.4., and 

the 240Pu/239Pu atom ratios in samples from SC1 are shown in Table 4.5. The 

240Pu/239Pu atom ratios and the 239+240pu specific activities have been validated by 

comparison w ith the results obtained by independent techniques as discussed in 

section 3.5. The relationship between the sediment core profiles and the Sellafield 

discharges is discussed in detail in section 4.3.3.

Table 4 .5  240Pu/239Pu atom ratios for Solway core, SC1 
obtained by ETV-ICP-MS

Sample depth (cm) 240pu/239Pu atom ratio

5 - 10 0.1988 ± 0.0059

20 - 25 0.2070 ± 0.0021

30 - 35 0.1957 ± 0.0027

45 - 50 0.1543 ± 0.0033

60 - 65 0.090 ± 0.014
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4.3.1 240Pu/239Pu atom ratios

4.3.1.1 The Maryport core

Figure 4.4 shows the 240Pu/239Pu atom ratio profile down the Maryport core. The 

ratio changes significantly with depth, varying from 0.058 ± 0.006 at depths of 

175-180 cm to a maximum value of 0.255 ± 0.003 at 8-10 cm, but w ith the 

values levelling off between 6 and 50 cm to an average of 0.229. The 239+240pu 

specific activities and 238pu/239+240pu activity ratios [Kershaw et a!., 1990] in the 

sediment indicate that the source of the plutonium is dominantly Sellafield. Using 

the relationship between the degree of burn-up and the 240Pu/239Pu atom ratios in 

nuclear fuel (as shown by Figure 1.2), the maximum and minimum ratios found in 

the core correlate to a burn-up in Magnox fuel of 4 and 0.65 GWD/Te respectively. 

It is worth considering that the expected 240Pu/239Pu atom ratios for low-bum up 

material, characteristic of weapons grade plutonium, is less than 0.14, whereas the 

ratio found in Magnox fuel after an average burn-up in a nuclear power station is 

greater than 0.2 (see section 1.3.1). The 240Pu/239Pu atom ratios observed at depth 

in the Maryport core are therefore-representative of low burn-up weapons grade 

plutonium, whereas those nearer the surface are characteristic of high burn-up 

material. In simple terms, if the 240Pu/239Pu atom ratios at depth are representative 

of early discharges from Sellafield, and those near the surface are representative 

of more recent discharges, then it can be concluded that the bulk of the material 

initially reprocessed was low burn-up, but w ith time, inclusion of higher burn-up 

material resulted in an increase in the average 240Pu/239Pu ratios.

One interesting trend observed both by ICP-MS and by TIMS (see Figure 3.15) is 

the drop in the 240Pu/239Pu atom ratio in the top 5 cm of the sediment core. This 

could be caused by several mechanisms: bioturbation might have brought 'older' 

material from the depths of the core to the surface after or while the sediments 

were deposited, or the discharges from Sellafield in the late 1980s had lower 

240Pu/239Pu atom ratios and this material formed a significant fraction of the 

plutonium in the surface sediments, or the sediment being deposited at Maryport 

was well mixed with low burn-up material before deposition. Evidence against 

bioturbation causing the lower 240Pu/239Pu surface ratios is provided by the
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observation that only a few worm burrows were present in the core, and these 

were restricted to a depth of 1 m [Kershaw et al., 1 990]. The 240Pu/239Pu ratios at 

1 m are of the order of 0.1 5, with a 239+240Pu concentration of approximately 2000 

Bq kg'1, significantly higher than the 550 Bq kg'1 observed at the surface. Consider 

a theoretical situation where the sediment deposited on the surface at Maryport 

was well mixed with a 240Pu/239Pu ratio of 0.222 (the average value obtained for the 

top 50 cm), and a 239+240Pu concentration of 550 Bq kg'1. Under these conditions 

a worm depositing material from a depth of 1 m would have to deposit 

approximately 10% of the surface material for the final ratio to be 0.169 with a 

239+240pu concentration of 700 Bq kg'1 (as observed in the 1-2 cm sample). 

Incursion of sediment from closer to the surface would require even more material 

to be deposited to significantly reduce the ratio, but this would also result in an 

increase in the activity of the sample. Considering the density of worm burrows 

found in the core and the average apparent accumulation rate of 6.4 cm y'1 

[Kershaw et al., 1990], this process would appear unlikely. In addition, X-ray 

radiographs taken by Kershaw et al. [1990] suggested that there was little post- 

depositional mixing in the sediments. Similarly, if pre-depositional mixing of the 

sediments were to result in the reduction of the 240Pu/239Pu atom ratio at the 

surface of the core, then this would require an incursion of significant quantities of 

low burn-up material, which either did not occur previously or was insignificant 

compared to the quantities of high burn-up material deposited at lower depths. 

From the surface data of the Maryport core and the data presented in section 

4.2.2., which also showed spuriously low 240Pu/239Pu atom ratios in surface 

sediments near to Sellafield in 1985 and 1988, it is difficult to ascertain if the low 

ratios were caused by mixing with sediments contaminated w ith much 'older' 

discharges or if the ratios were characteristic of the discharge values in the late 

1980s.

For comparison, the 238pu/239+240pu activity ratios in samples from the Maryport 

core, obtained by Kershaw et al. [1990], are shown in Figure 4.5. The shape of 

the 238pu/239+240pu activity profile is similar to that of the 240Pu/239Pu atom ratio 

profile, but w ith a larger variation, changing from 0.0208 ± 0.0005 at depths of 

180-185 cm to 0.256 ± 0.006 at depths of 46-48 cm. However, it should be 

noted that the shape of the profile is complicated by the radioactive decay of 238Pu,
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Figure 4.5 238Pu/239+240Pu activity ratio profile for Maryport core using (a) measured 
ratios and (b) decay-corrected ratios [Kershaw et a!., 1990]
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whose 87.8 year half-life is significant in terms of the 40 years of Sellafield 

discharges. Decay correcting the 238pu/239+240pu ratios requires some assumptions 

on the 'age' of the material deposited. Figure 4.5b shows the decay corrected 

profile, based on the chronology established by Kershaw et al [1990]. Like the 

240Pu/239Pu atom ratio profile, the 238pu/239+240pu activity ratios level off in the top 

6 to 50 cm and show a decrease, but to a lesser extent, near the surface of the 

core. This would be expected as the 238pu/239+240pu activity ratios are also 

indicative of the degree of burn-up, but in a more indirect way than the 240Pu/239Pu 

atom ratio (see section 1.3.1).

4 .3 .1.2 The Solway core (SC1)

The 240Pu/239Pu atom ratio profile for the Solway core (SC1) is shown in Figure 4.6. 

The general shape of the profile is similar to that observed at Maryport. The 

240Pu/239Pu atom ratios in SC1 change from 0.090 ± 0.014 at a depth of 60-65 

cm, to 0.2069 ± 0.0023 at a depth of 20-25 cm, w ith the values levelling off in 

the top 35 cm to an average of 0.201. The rate of change of the 240Pu/239Pu ratio 

w ith depth is much greater for SC1 than for the Maryport core, as the average 

sedimentation rate for the Solway core was 2.4 cm y'1 [Allan, 1992], compared to

6.4 cm y 1 observed at Maryport [Kershaw e ta l.r 1990]. Allan [1992] obtained an 

average sedimentation rate for SC1 by matching the depth of the maximum of the 

nuclide profiles w ith the year of the maximum Sellafield discharges for 239+240pU/ 

241 Am and 137Cs. The average sedimentation rate was then used to establish a 

chronology for the core. Using this, and the chronology obtained by Kershaw et 

at. [1990] for the Maryport core, direct comparison of the 240Pu/239Pu atom ratio 

data from each site can be made (Table 4.6). The data show remarkable 

correspondence considering possible discrepancies in the individual chronologies, 

and factors such as the location and topography of each site, and the dynamic 

nature of the Irish Sea. One difference is the higher 240Pu/239Pu atom ratios 

observed near the surface of the Maryport core, which has an average 240Pu/239Pu 

plateau value of 0.229 ± 0.013, compared to the equivalent value of 0.201 ± 

0.006 observed for SC1. Since there was little evidence of post-depositional 

mixing within SC1 [Allan, 1993], the lower 240Pu/239Pu atom ratios in the near 

surface samples from the core are likely to be the result of greater mixing with
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Figure 4 .6  240Pu/239Pu atom ratio profile for Solway core, SC1
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'older' material before deposition, compared to the sediments deposited at 

Maryport. This is not unexpected considering that sediment transport has been 

shown to be the dominant mechanism for the transfer of plutonium in the Sellafield 

discharges to the Solway [MacKenzie et a!., 1987], and considering the difference 

in the distance between the Sellafield pipeline, Maryport and the Solway, w ith the 

chance for the sediments to mix before deposition increasing with distance from 

Sellafield.

Table 4.6 : Comparison of 240Pu/239Pu atom ratios obtained for the Solway core 
w ith the average ratios for the Maryport core at the equivalent depths, based on 
the chronologies established by Allan [1994] and Kershaw et al. [1990] for the 

Solway and Maryport core respectively.

'Date' Depth
(cm)

Solway core

240Pu/239Pu

Maryport core

Depth Average 240Pu/239Pu 
(cm)

1988-1986 5-10 0.1988 ± 0.0059 - -

1982-1980 20-25 0.2069 ± 0.0023 14-36 0.232 ± 0.011

1977-1975 30-35 0.1958 ± 0.0027 52-66 0.1896 ± 0.0042

1971-1969 45-50 0 .1543~ ± 0.0033 88-110 0.155 ± 0.013

1963-1965 60-65 0.090 ± 0.014 140-170 0.0830 ± 0.0073

Figure 4.7 shows the 238pu/239+240pu activity ratios obtained by Allan [1993] for 

SC1. As was observed for the Maryport core, the 238pu/239+240pu activity and 

240Pu/239Pu atom ratio profiles down SC1 are similar, but w ith the 238pu/239+240pu 

activity ratios showing a larger range of values. The 238pu/239+240pu activity profiles 

for the Maryport and Solway cores are similar after consideration of the different 

sedimentation rates at each site. Again, the plateau ratios for the Solway show a 

lower average value of 0.204 ± 0.005 in the top 25 cm compared to 0.224 ± 

0.013 in the equivalent top 65 cm of the Maryport core. This supports the 

evidence that the sediments recently deposited at the Solway have been better 

mixed with material contaminated with 'older' discharges than the sediments 

deposited at Maryport.

163



Fi
gu

re
 

4.8
 

(a)
 

23
7N

p 
sp

ec
ifi

c 
ac

tiv
ity

, 
(b

) 
23

9+
24

0p
u 

sp
ec

ifi
c 

ac
tiv

ity
 

an
d 

(c)
 2

37
N

p/
23

9+
24

0P
u 

ac
tiv

ity
 

ra
tio

 
pr

of
ile

s 
fo

r 
M

ar
yp

or
t 

co
re

o

=3 CM 
Q_

Csl

Q_

O
OOO

LOo

( l u o )

(uuo) L|}doQ

( l u o )

20
0 

° 
20

0 
LV 

16
4 

20
0



4 .3 .2  237Np specific activity in the Maryport core

The 237Np specific activities of samples from the Maryport core are shown in Figure 

4.8, along with the corresponding 239+240pu specific activity and 237Np/239+240Pu 

activity ratio profiles. The 237Np profile has more structure than the 239+240Pu 

profile, but both profiles display two sub-surface maxima at depths of 

approximately 50 and 105 cm. A notable difference between the tw o profiles is 

the increase in 237Np specific activities from a depth of 8 cm to the surface. In 

general, there is a relatively constant relationship between 237Np and 239+240pu jn the 

samples, but w ith a gradual increase in the relative proportion of 237Np towards the 

surface. This reflects the trend observed in the Sellafield discharges, which have 

shown an increase in 237Np/239+240Pu activity ratios since 1982 (see Table 4.7). The 

correlation between the 237Np specific activities and 237Np/239+240Pu activity ratios 

for the core samples, averaged in yearly increments using the chronology 

established by Kershaw et a/. [1990], and the corresponding Sellafield discharge 

data (see Figure 4.9) is fairly good, w ith linear correlation coefficients of 0.81 and 

0.93 respectively.

Table 4.7 237Np and 239+240pu activities and the 237Np/239+240Pu activity ratios for 
discharge from Sellafield, 1978-1988 [BNFL, 1979-1990].

Year 237Np discharge 
(TBq)

239+24opu djscharge
(TBq)

237Np/239+240Pu
ratio

1978 0.592 45.62 0.0130

1979 0.333 37.44 0.0089

1980 0.666 20.35 0.0327

1981 0.407 15.32 0.0266

1982 0.307 16.06 0.0191

1983 0.324 8.73 0.0371

1984 0.3 8.3 0.0361

1985 0.2 2.6 0.077

Total Pu(o) 237Np/Pu(a) ratio
discharge (TBq)

1986 0.4 2.7 0.148

1987 0.23 1.3 0.177

1988 0.28 1.4 0.200
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Figure 4 .9  Comparison of Maryport core and Sellafield discharge data for (a) 237Np 
(b) 237Np with the available discharge data normalised to 1984 core data and (c) 
237Np/239+240Pu activity ratios using the chronology established by Kershaw e ta /., 
[1990]
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Table 4 .8  237Np activities and 237|\ip/239+240Pu activity ratios observed in
sediments from the Irish Sea.

Reference Sediment sample 237Np specific 
activity 
(Bq kg'11

237Np/239+240Pu 
activity ratio

Assinder et a!., 
1991

Intertidal, from Solway 
to N. Welsh coast, 

1988

0.012 - 4.5 0.0017 - 0.0052

Hursthouse,
1990

Ravenglass silt, 1987 3.26 ± 0.05 0.0038

Offshore cores, 1987 0.25 - 0.56 0.0007 - 0.0023

Byrne, 1986 Newbiggin 4.35 -

Grange-over-sands 0.55 -
Ravenglass 5.9 -

Harvey and Offshore core, 1982 0.8 - 14.4 0.0037 - 0.012
Kershaw, 1 984

Pentreath and Suspended particulates 0.19 - 38.9 -

Harvey, 1981

Holm, 1981 Sediment, 1977 1.4 3.44 x 10'4

Figure 4 .10  Ratio of 237Np/239+240Pu activity ratios in the Sellafield discharges to 
averaged Maryport core data for the equivalent 'year', with depth
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Interestingly, the 237Np/239+240Pu activity ratios throughout the Maryport core agree 

well w ith published 237Np/239+240Pu activity ratios observed in Irish Sea sediments 

(Table 4.8), but are an order of magnitude, or more, lower than the ratios in the 

discharges. This reflects the relative bulk Kd values for Pu and Np in the Irish Sea 

which are of the order 105 and 104 respectively, suggesting that Pu should be 

relatively enhanced in the sediments by a factor of approximately 10 compared to 

Np (see section 1.5.2). Figure 4.10 shows the ratio of the 237Np/239+240Pu activity 

ratios in the discharge to the equivalent ratio in the averaged core segments against 

the depth down the core, corresponding to each 'year'. A t depths of greater than 

10 cm, the factors between the discharge and core ratios are fairly constant at 

approximately 1 5, as expected. However, towards the surface of the core, the 

factor increases, up to a value of 70. This suggests that in the top 10 cm of the 

core there is a relative lack of Np in the solid phase compared to Pu. Interpretation 

of this requires an understanding of the chemical processes occurring in the 

sediments which could effect the relative proportions of the oxidation states of Np 

between the more particle reactive Np(IV) and Np(V).

Interstitial water profiles obtained from nearby cores collected at the same time, 

indicated that S042' reduction was taking place in the Maryport sediments [Kershaw 

eta/., 1990]. The absence of N03’ below 0-1 cm suggested that anoxic conditions 

occurred below the sediment surface and the enhanced titration alkalinity 

concentration measured in the top 0-1 cm segment suggested that sulphate 

reduction began immediately below the sediment surface [Kershaw eta/.,  1990; 

Elderfield et a/., 1981]. However, the rate of sulphate reduction appeared to be 

lower in the top 10 cm compared to the sediments at greater depths, despite the 

greater availability of metabolisable organic matter near the sediment surface. To 

account for this discrepancy, it was concluded that irrigation of the sediments was 

occurring in the top 10 cm [Kershaw eta/., 1990].

The chemistry of the transitional zone between the oxidising seawater and the 

relatively reducing sediment is complex, and is further complicated by the irrigation 

of the surface sediments. From considerations of porewater chemistry and Eh/pH 

conditions, it is expected that reduction of Np(V) to Np(IV) should occur in the 

sediments below the top 10-20 cm [Harvey, 1981]. Predictions of the behaviour
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of Np in the transitional zone, however, is difficult and experiments observing the 

reduction of Np(V) in the upper layers of disturbed sediments were inconclusive 

[Harvey, 1981]. Harvey and Kershaw [1984] observed that the percentage of 

reduced Np in the interstitial waters of an Irish Sea core, increased from the surface 

to a depth of approximately 8 cm, suggesting reduction of Np to Np(IV), which may 

have then formed soluble complex species w ith organic ligands. Similar behaviour 

would be expected for Pu. For example, Malcolm eta/. [1990] found that > 96% 

of Pu was in the reduced form at all depths of several sediment cores, except for 

the top 2 cm where 27 - 67% was found in the oxidised form due to the irrigation 

of the sediment with oxidising seawater.

The evidence above suggests that in the top 10 cm of the Maryport core both Np 

and Pu may be present in more mobile oxidised forms due to the irrigation of the 

sediments. In addition, discrepancies in the relative proportions of Np and Pu in the 

solid phase compared to that expected from the relative Kds of each element, 

indicate that this effect is more significant for Np than Pu, suggesting that Np is 

more likely to be remobilised from the surface sediment than Pu. Confirmation of 

this requires the measurement of the oxidation states of Np and Pu both in the solid 

phase and the interstitial water.

4.3 .3  Matching core profiles with Sellafield discharge data

The relationship between the Sellafield discharges and their distribution within the 

sediments of the Irish Sea is complex, depending on factors such as: fluctuations 

of the discharges between years and within individual years; changes in the 

chemical associations in the effluent as a result of changes in the reprocessing 

procedures; mixing of recently contaminated sediments w ith 'older' material, 

corresponding to earlier discharges; redistribution of the radionuclides within the 

sediments by bioturbation, diffusion or diagenesis; and changes in the dynamics of 

the Irish Sea [Kershaw eta/., 1990; and section 1.5.4]. Despite the complexity of 

the environmental system, there have been numerous attempts to match temporal 

variations in the Sellafield discharges with sediment core profiles (see section 

1.5.5), including the use of techniques such as simple visual matching of core 

profile shapes w ith the discharge record and 210Pbex dating techniques to determine
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independent sedimentation rates.

4.3.3.1 The Maryport core

Kershaw et a/. [1990] obtained data from the Maryport core samples for a wide 

range of radionuclides. Some of these profiles and the corresponding Sellafield 

discharge data are shown in Figure 4.11. On first glance, the shapes of the 

radionuclide profiles in the sediment appear to match the shapes of the annual 

Sellafield discharge data closely, particularly for 239+240pUf 241Am and 137Cs. 

However, there are some exceptions. For example the 60Co profile shows no 

obvious relationship w ith the discharge data. Kershaw eta/. [1990] established a 

chronology for the Maryport core by visually matching the core profile shapes, for 

both radionuclides and nuclide activity ratios, with the discharge data, combining 

the individual radionuclide chronologies to obtain an overall 'best-fit' chronology. 

This required the assumption of a 'lag' time of approximately 1 - 2 years for 

discharged radionuclides to become incorporated into the sediments at Maryport, 

some 40 km north of the discharge point. The resulting 'date' of the top of the 

sediment core (which was collected in 1988) was 1986. Attempts to use the 

210Pbex concentrations in the core samples, to provide an independent estimate of 

the sedimentation rate, were limited due to an additional and variable source of 

210Pb from a phosphate factory at Whitehaven [Kershaw et a/., 1990; McCartney 

et a/., 1990]. The implications of the chronology derived by Kershaw et af. [1990] 

were that the concentrations of radionuclides in the sediment core at specific 

depths were directly proportional to the Sellafield discharges in the equivalent 

'year'. However, from the differences observed between the 154Eu/155Eu and 

239+240pu/238pu activ ity ratios in the core, w ith the equivalent decay-corrected 

activity ratios in the discharges, it was noted that some mixing of the sediments 

deposited at Maryport w ith 'older' material must have occurred [Kershaw et a/., 

1990]. In particular, it was found that the decay-corrected 239+240pu/238Pu activity 

ratios in the core were consistently higher by a factor of 1.31 ± 0.13, than those 

of the discharge between 1978 and 1986. This factor was used to modify the 

239+240pu/238pu actjv ity ratios throughout the core, to obtain an approximate value 

for the discharges of each year, which was then applied to the total Pu(or) discharge 

data, giving an estimate for the 238Pu discharge from 1959 to 1986 (see Figure
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4.12) [Kershaw et a/., 1990]. Although the results of the predicted 238Pu discharge 

agree well w ith the recorded Sellafield discharge data, where such data are 

available (1978-1986), the use of a constant mixing factor in this way for the 

whole of the core is questionable. It might be expected that for some time after 

the mid 1 970s, the sediment concentrations and nuclide ratios would be dominated 

by the peak discharges which occurred in the early to mid 1970s. Between 1978 

and 1986 the 239+240pu/238pu activity ratios in the discharges did not vary 

significantly. As a result, mixing of sediments contaminated by these discharges 

with a sediment pool dominated by the peak discharges would result in the 

observed consistent relationship between the average activity ratios in the 

deposited sediments and the discharge data. However, the situation was very 

different before the peak discharges, when plutonium was released into a relatively 

uncontaminated environment. In this case, the significance of the previous 

discharges would be expected to have a lesser and variable influence on the 

deposited sediment activity ratios, depending on the degree of contamination of the 

sediment pool. The relationship between the sediment core profiles and Sellafield 

discharge data is discussed further below.

Figure 4 .12  Actual and predicted discharges of 238Pu (TBq y'1) [Kershaw et al., 
1990]
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On closer inspection, there are several inconsistencies between the sediment core 

profiles and the Sellafield discharge data.

For example, for 137Cs, 239+240Pu and 241 Am, the ratios between the maximum and 

surface nuclide concentrations of the core samples were one to tw o orders of 

magnitude lower than the equivalent ratios in the Sellafield discharges, suggesting 

a non-linear relationship between the sediment concentrations and the quantities 

of radionuclides discharged [MacKenzie et a!., 1994]. In addition, the surface 

concentrations of these radionuclides are much higher than would be expected, 

considering the recent levels of the Sellafield discharges. The similarities and 

differences between the 239+240Pu specific activity profile in the Maryport core and 

the Sellafield discharge data can be seen from Figure 4.13 which compares the 

core data, averaged over yearly increments, with the discharge data. Much of the 

fine structure of the Sellafield discharges is mimicked in the core profile. However, 

the maximum to surface ratio for the 239+240pu concentrations is 7.5, compared to 

30.6 observed in the equivalent Sellafield discharge data, w ith the surface 239+240pu 

concentrations being higher than expected from the recent discharge data.

MacKenzie et at. [1994] hypothesised that if particle transport was the dominant 

mechanism of transfer of Sellafield waste to the intertidal sediments of the Irish 

Sea, and assuming that the contaminated offshore sediments are completely 

vertically mixed (with respect to radionuclide activity ratios) before redistribution, 

then the radionuclide concentrations and activity ratios in accumulating intertidal 

sediments would be related to the time-integrated discharges. Further, in an 

accumulating sediment environment, such as the sample sites of Maryport and the 

Solway, then deposits to the surface of the sediment from the mixed sediment 

pool, and subsequent radionuclide activity ratios at any given depth, should be 

directly related to the discharge integrated up to the time of deposition, after taking 

into account radioactive decay and ingrowth. The authors contended that the 

empirical data supported this hypothesis by comparing 241Am/239+240Pu and 

137Cs/241Am activity ratios normalised to the annual discharges w ith those 

normalised to the time-integrated discharges, accounting for the ingrowth o f241 Am 

from 241 Pu (Figure 4.14). The 241Am/239+240Pu ratios for the Maryport core, 

normalised to the time-integrated discharges, showed little variation, w ith a mean
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Figure 4 .13  239+240pu core profile for (a) all samples, (b) averaged data in yearly 
increments, and (c) 239+240pu Sellafield discharge data [Kershaw eta l., 1990; BNFL, 
1971-1986; Cambray, 1982]
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Figure 4 .14  (a) 241Am/239 240Pu activity ratios and (b) decay corrected 137Cs/241Am 
activity ratios for Maryport cores [Kershaw et a!., 1990], normalised to the 
corresponding ratio in: Sellafield annual discharges; Sellafield annual discharges 
plus ingrowth of 241 Am from decay of corresponding 241 Pu discharges; and the time- 
integrated Sellafield discharge [MacKenzie et a!., 1994]
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value of 1.3 ± 0.3. Ratios obtained after the peak Sellafield discharges, in the mid 

1970s, were even more consistent, with a mean value of 0.99 ± 0.14. In 

contrast, the ratios normalised to the annual discharges showed large and 

inconsistent variations, changing from 2 to 16, and from 1.1 to 3.8 when taking 

into account ingrowth from 241Pu. This was supported by 241Am/239+240Pu ratios for 

Solway cores which displayed similar consistencies when normalised to the time- 

integrated discharges, and variations when normalised to the annual discharges.

The 137Cs/241Am activity ratios normalised to the time-integrated discharges showed 

more variation, and for both the Maryport and Solway cores, displayed a systematic 

decrease after the peak discharges. This was interpreted as the result of re­

dissolution of 137Cs from the sediment [MacKenzie et a!., 1994]. Unfortunately, 

such comparisons cannot be made for 237Np/239+240Pu activity ratios as the time 

integrated discharges for 237Np cannot be calculated from the available discharge 

data.

The time-integrated environmental inventories for Sellafield waste 241Am and 

239+240pu ^ave beep increasing continuously. The corresponding 137Cs inventory has 

shown only a small decrease since 1983 when radioactive decay has exceeded 

fresh Sellafield inputs. However, the sediment profiles show distinct sub-surface 

maxima corresponding approximately to the sediments deposited in the mid-1970s. 

To account for this, MacKenzie etal. [1994] contended that physical dispersion and 

dilution of the contaminated sediments have caused a decrease in the sediment 

concentrations deposited since the 1970s. This is supported by observation of the 

temporal change in radionuclide concentrations in Irish Sea surface sediments. For 

example, Pentreath et at. [1984] observed in 1977/78, that radionuclide 

concentrations decreased in surface sediments by tw o orders of magnitude 

between the discharge point and the coast of south-west Scotland, whereas by 

1987, McDonald et al. [1990] found that radionuclide concentrations were a 

function of the sediment composition and that for silts the concentrations were 

effectively constant over a distance of 60 km. Vertical mixing of sediment has 

been shown to reduce the radionuclide concentrations by mixing the surface 

contaminated material w ith deeper uncontaminated sediments [Kershaw et a/., 

1983; 1984].
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MacKenzie et a/. [1994] described these processes in terms of a simple model in 

which discrete volumes of sediment from a well mixed sediment pool are 

transferred to an accumulating intertidal deposit, providing a record of the changes 

in the sediment radionuclide concentrations, as described by:

where Ct is the radionuclide concentration in the sediment pool at time t, lt is the 

annual input from the Sellafield discharge and A is a removal probability per unit 

time which represents a sum of contributions from radioactive decay, 

dispersion/dilution and redissolution. An outcome of this model is that if the value 

of lt tends towards zero, as observed in recent years, then Ct should show an 

exponential decrease with time. This is supported by plots of the natural logarithm 

of the sediment 239+240Pu concentration, normalised to the time-integrated discharge 

(shown in Figure 4.15 for Maryport and Solway cores), which reveal a highly linear 

decrease as a function of time, particularly for the sections of the plot relating to 

post 1975 [MacKenzie eta/., 1994]. From the linear portions of these plots, half­

value periods for the reduction of radionuclide concentrations (In2/A) can be 

derived. For 239+240pUf these are calculated to be approximately 5.6 and 3.7 years 

for SC1 and the Maryport core respectively, implying that a more rapid reduction 

of the 239+240Pu concentrations by dilution/dispersion is observed at Maryport than 

in the Solway. MacKenzie eta/. [1994], suggested that this could be the result of 

non-uniform distribution of radionuclides in offshore sediments resulting in 

redistribution of material from areas of relatively high concentration to areas of 

lower concentration, but leading to an increase of the radionuclide inventory in 

accumulating sediments such as those sampled in the Solway.

Figure 4.16 shows the year by year relative values of Ct, as derived from the 

integrated 239+240Pu discharge data, with no dilution/dispersion, and with half-time 

values of 5.6 and 3.7 years, as calculated for the Maryport and Solway (SC1) 

cores. One of the interesting aspects of this model is that the maximum
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Figure 4.15 Plot of the natural logarithm of the ratio of the sediment 239+240pu 
concentration to the corresponding integrated Sellafield discharge for (a) Maryport 
cores [Kershaw et a!., 1990] and (b) Solway core SC1 [MacKenzie et a!., 1994]
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Figure 4 .16  Model curves for temporal variations in relative concentrations of
2 3 9 + 2 4 0 p u

radionuclide concentrations occur after the maximum discharge. This could 

account for the lag-times required in previous studies [Stanners and Aston, 1981 

a,b; Aston and Stanners, 1982] to match the sub-surface maxima with the peak 

Sellafield discharges. Kershaw et at. [1990], also required a lag-time of 

approximately 1 to 2 years to match the observed radionuclide profiles in the 

Maryport core with the annual Sellafield discharge data. Figure 4.17a shows the 

model predictions (normalised to the 1975 core data) w ith the observed 239+240Pu 

concentration profile (averaged for yearly increments) for the Maryport core, based 

on the chronology established by Kershaw et a/. [1990]. Although the general 

shape of the model curve is similar to the observed sediment profile, it appears 

translocated to the right of the core profile. Shifting the chronology by a few  years 

would bring the core profile in line w ith the model predictions. This is justifiable as 

the model is based on the sediment concentrations reflecting the integrated 

discharges up to the time of deposition, suggesting that 2 years should be added 

to each year of the original chronology so that the surface 'age' corresponds to the 

date of collection. Comparisons of the model predictions with a shifted chronology 

are shown in Figure 4.17b and 4.17c. The model predictions match remarkably 

well (linear correlation coefficient of 0.91) with the underlying sediment profile after 

a three year shift in the chronology. This would, however, bring the date of
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Figure 4.17 Model predictions for 239+240pu with observed concentrations in 
Maryport core averaged in yearly increments using (a) original chronology [Kershaw 
et a!., 1990], (b) a two year shifted chronology, and (c) a three year shifted 
chronology
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the surface of the core to after the time of collection, and the sharp peaks, relating 

to the 1973 and 1978 discharges (see below), to 1974 and 1981 respectively. 

However, the errors associated with the chronology may well be of the order of 

years. In particular it was noted that the sharp peak in the 239+240pu core profile 

relating to the 1973 discharge was given an 'age' of 1971 in the original 

chronology. A tw o year shifted chronology has a linear correlation coefficient w ith 

the integrated discharge model of 0.865. For convenience, the terminology 'tw o  

year shifted chronology' will refer to a chronology based on the original version 

obtained by Kershaw eta/. [1990], but w ith 2 years added to each 'date' to correct 

for the lag-time, so that the date of the core surface corresponds w ith the sample 

collection date.

Although the model discussed above matches well w ith the underlying sediment 

profile of the Maryport core, there are still significant deviations between the 

sediment profile and the model curve. Figure 4.18a shows the 239+240pu annual 

discharge profile normalised to the Maryport core samples, w ith the core data, 

using a two year shifted chronology. This clearly demonstrates that the fine 

structure of the Maryport core corresponds well w ith variations in the annual 

discharge data, w ith two sharp peaks relating to the 1973 and 1978 Sellafield 

releases. However, the underlying core profile deviates from the annual discharge 

profile as discussed above. If a fraction of the relative 239+240Pu concentrations 

obtained from the integrated discharge data, w ith a dilution half-time of 3.7 years, 

is added to the annual discharge data, the resulting profile becomes a mixture of 

both the annual and integrated discharge model profiles (Figure 4.18b,c,d). From 

Figure 4.18c, it can be seen that the addition of 30% of the yearly integrated 

discharge data (correcting for dilution) to the annual releases produces a profile 

very similar in shape to the Maryport core profile, w ith a linear correlation 

coefficient of 0.92. Altering the chronology to fix the sharp peaks at 1973 and 

1978 would result in an even closer match. This suggests that the Maryport 

239+240pu profj|e does not reflect only the annual discharge data, as suggested by 

Kershaw et a/. [1990], or the integrated discharge data, as suggested by 

MacKenzie et a/. [1994], but reflects a combination of both. An implication of this 

model is that the relative significance of the annual discharges to the sediment
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Figure 4 .18  Model predictions for 239+240Pu with observed Maryport core data 
averaged in yearly increments using a two year shifted chronology and model 
curves based on the annual Sellafield discharge plus (a) 0% , (b) 10% (c) 30%  and 
(d) 50%  of the integrated discharge profile with a 3.7 yr half-time for dilution and 
c£j^persion, normalised to 1977 data
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Figure 4 .19  Comparison of factors obtained to calculate the 238Pu annual 
discharges with published Sellafield discharge data
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profiles would alter with time as the relative contribution from the integrated 

discharge values increases. Attempts to deconvolute the 238Pu core profile in order 

to obtain the 238Pu annual discharge data met with difficulties (see Figure 4.19). 

Unfortunately, the complex fine structure of the 238Pu profile led to large errors in 

the estimated integrated discharge data, which also led to significant errors in the 

factors which were to be used to calculate the annual discharge data. Comparison 

of these factors with the published Sellafield discharge data provides no useful 

information.

A sediment profile influenced by both the annual and integrated Sellafield releases 

could be produced by tw o mechanisms; namely 1) the contaminated sediments do 

not totally mix with 'older' sediments before deposition in areas of accumulation 

close to Sellafield, or 2) a combination of both contaminated sediment transport, 

representing the integrated Sellafield discharge data, and solution transport, 

contaminating the surface sediment material with radionuclide concentrations 

representative of the annual discharge data. If the timescales for solution and 

sediment transport were significantly different then these mechanisms could be 

differentiated. However, soluble species are rapidly removed from the Irish Sea in 

a time of less than one year [Jefferies et a!., 1973], and sediment transport also 

occurs in a similar timescale [Hunt, 1985].

4 .3 .3 .2  The Solway Core

The 239+240pu sediment profile for the Solway core SC1 is compared to the annual 

Sellafield discharge data in Figure 4.20. The general shape of the core profile is 

similar to the discharge data, except for the top portion of the core which has 

enhanced levels of 239+240pu indicating that the sediment profile does not merely 

reflected the annual discharges. The maximum to surface 239+240Pu concentration 

for this core is 2.1, compared with a ratio of 89.8 observed in the discharges for 

the equivalent years. The sediment profile does not display the fine structure 

observed in the Maryport core, in part due to the 5 cm depth sampling increments 

which span nearly 2 years due to the low sedimentation rate (on average 2.4 cm 

V 1).
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Figure 4.20 Showing (a) 239+240pu concentration profile for SC1 [Allan, 1993] 
compared with (b) 239+240pu annual Sellafield discharges
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Figure 4.21 (a) 241Am/239 + 240Pu activity ratios and (b) decay corrected 137Cs/241Am 
activity ratios for SC1, normalised to the corresponding ratio in: Sellafield annual 
discharges; Sellafield annual discharges plus ingrowth of 241Am from decay of 
corresponding 241 Pu discharges; and the time integrated Sellafield discharge 
[MacKenzie et a!., 1994]
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Plots of the 241Am /239 + 240Pu activity ratio and 137Cs/241Am activity ratio normalised 

to the annual and integrated discharges, accounting for the ingrowth of 241Pu, are 

shown in Figure 4.21 [MacKenzie et af.r 1994]. As with the Maryport core, the 

radionuclide data for SC1 have a more consistent relationship w ith the integrated 

Sellafield discharge data than with the annual discharges. For example, the 

241Am/239+240Pu activity ratios normalised to the integrated discharges have an 

average value of 0.99 ± 0.14, since 1975. Plots of the natural logarithm of the 

ratio of 239+240Pu concentrations to the integrated 239+240pu discharge (see Figure 

4.15) show a high degree of linearity, particularly after 1979, consistent w ith the 

mixed sediment pool model discussed above. From the linear portions of this plot 

the half-value period for reduction of 239+240Pu concentrations by dispersion/dilution 

of the contaminated sediments is 5.6 years.

Figure 4 .22  Model predictions for 239+240pu with observed concentration in SC1 
using a sedimentation rate of 2.95 cm y'1 [Allan, 1993]
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In the case of the Solway core, if the maxima of the core radionuclide profiles are 

matched to the integrated discharge profile, w ith the predicted half-value period, 

then the average sedimentation rate is increased to 2.95 cm y '1 [Allan, 1994]. 

Figure 4.22 shows the observed sediment profile for 239+240pu jn SC1 (using a 

chronology based on a sedimentation rate of 2.95 cm y'1), w ith the model 

predictions, normalised to the 1978 values. The model profile shows close 

agreement w ith the observed 239+240Pu profile, but, as was observed for the 

Maryport core, fails to predict the two peaks which correspond to the maximum 

discharges in 1973 and 1978. Figure 4.23 shows the correspondence of the 

observed 239+240Pu data with profiles produced by different combinations of the 

integrated and annual discharge data. Neither the integrated nor annual discharge 

profiles could account for the rapid decrease in the 239+240pu concentrations near 

the bottom of the core, or the slight increase in activity near the surface of the 

core, both of which may be caused by a change in the sediment composition. 

Interestingly, unlike the Maryport core profile, the SC1 data correspond closer to 

the integrated discharge profile than the annual profile. This suggests that although 

both particulate and solution transport contribute to the transfer of Sellafield waste 

to the Solway, the relative contribution from solution transport is lower than for 

areas close to Sellafield.

One weakness of the Solway data is that the sediment core was sub-sampled in 

incremental depths of 5 cm, and as a consequence each data point represents an 

average of several years of accumulated sediment. The resulting profiles show 

little of the fine structure observed at Maryport and it is difficult to tell if this is 

because the annual discharges have little influence on the sediment profiles or if 

their influence has been averaged out. This is unfortunate as the fine structure of 

core profiles can be used to establish a more precise chronology. Sub-sampling 

cores in increments representative of less than a year, however, can also lead to 

problems due to seasonal variations in the sediment composition [Graham, 1994]. 

The SC1 data show that the sediment concentrations in the Solway are dominated 

by the integrated discharges, suggesting that further sediment cores collected from 

this area may well provide data which could be used to produce a history of the 

Sellafield discharges.
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Figure 4.23 Model predictions for 239+240pu with observed concentrations in SC1 
with model curves based on; the integrated discharge data with a 5.6 year half-time 
and (a) 0% and (b) 50%  of annual discharge data; and the annual discharge profile 
with (c) 0% and (d) 50%  of integrated discharge data with 5.6 yr half-time all 
normalised to 1973 data.
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4 .3 .3 .3  Establishing core chronologies

One of the key factors in interpreting the sediment core profiles in terms of the 

Sellafield discharge data, is the sediment chronology. In the Maryport core, the 

original chronology [Kershaw eta!., 1990] was established by visually matching the 

core profiles w ith the annual discharge data. Although this technique has worked 

well in the case of Maryport, it gives no indication of how well the chronology fits 

the data.

As an illustration of an independent technique to match discharge data w ith core 

profiles, and to provide a measure of how well the data sets correspond, a 

statistical program, 'SLOTSEQ', (developed to compare and correlate tw o sets of 

physical log data from boreholes [Gordon, 1980; Gordon and Reyment, 1979]), 

was used to match the decay corrected discharge data w ith the radionuclide data 

obtained by Kershaw et at. [1990]. In order that direct comparisons can be made 

between the tw o dissimilar data sets, they were first standardised in terms of the 

number of standard deviations from the mean value for each individual sequence. 

The program then slots one sequence into the other, whilst maintaining the order 

of original sequences [Gordon, 1980]. Consider tw o sequences A and B, w ith 

individual objects A0, A, A2, A3, etc, and B0, B1f B2, etc, respectively, the program 

will slot A and B together to produce a single sequence (see Figure 4.24). For each 

object in each sequence, the local discordance of the object in the slotting can be 

defined [Gordon, 1988]. In this case, the local discordance of an object C was 

defined as the smallest dissimilarity between C and the pair of objects from the 

other sequence between which C is located, e.g., the local discordance of A2 is the 

minimum value of the difference between A2 and Blf and A2 and B2. The global 

discordance of tw o sequences is then defined as the sum, over each object in each 

sequence, of the local discordances (ie the sum of the dashed lines in Figure 

4.24)[Gordon, 1988]. The program obtains the optimum slotting of one sequence 

into the other by finding the minimum value of the global discordance. The 

program also defines a statistic k, which is related to the global discordance 

[Gordon, 1988]. Although the characteristics of this statistic have not been fully 

assessed, it can be predicted that large values of k brings into question any 

agreement between the two sequences, but values close to 1 indicate a good
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correspondence [Gordon, 1988; Gordon, 1980],

Figure 4.24 The slotting of sequences A and B [Gordon, 1988]

(*•)

(B.)

SLOTSEQ was applied to the Sellafield decay corrected annual discharge data and 

Maryport core data for 239+240Pu, 238Pu, 241Am and 137Cs. The resulting single 

sequences are shown in Table 4.9. From the values of k obtained for the data sets, 

239+240pu an(j i37qs showecj the best matching of core profiles w ith discharge data. 

Interestingly, the chronologies obtained in this way closely matched the chronology 

obtained by Kershaw et a/. [1990], but w ith the maximum annual 239+240Pu 

discharge of 1973 corresponding to the distinct 239+240pu concentration peak 

observed at depths of 90 to 94 cm. This gives further evidence of inconsistencies 

in the original Maryport core chronology and suggests that the fine structure of the 

core profile matches with the annual discharges.

One of the short fallings of this technique is that the initial standardisation of the 

data tends to smooth out any major differences between the two data sets such 

as those highlighted by MacKenzie eta/. [1994].
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Table 4 .9  Comparison of the Kershaw et al. [1990] chronology with the SLOTSEQ 
results

Depth Date 239 + 2 4 0 p u 238Pu 241 Am 137Cs

(cm)
86 84 85 81 85

0-1
- 84 - 84

1-2
85 - - - -

2-3

3-4
83 - 80/77 -

4-5
84 - - 76 83

5-6
82 - - -

6-8
83 - 83 - -

8-10

10-12
81 - - 82

12-14
82 - 82 - 81

14-16
- - - 80

16-18

18-20
81 - - - -

20-22

22-24

24-26

26-28
80 - - - -

28-30

30-32
80 - - -

32-34

34-36
79 - - - -
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239 + 240

36-38

38-40

40-42

42-44

44-46
77/76

46-48
74/73

48-50

50-52

52-54

54-56

56-58

58-60

60-62

62-64
78/75

64-66

66-68

68-70

70-72

72-74

74-76

76-78

78-80

80-82
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Depth_______ Date 239+240pu 238pu______ 241 Am 137Cs

82-84

84-86

86-88

88-90

90-92

92-94

94-96

96-98

98-100

100-102

102-104

104-106 

106-108 

100-105

105-110 

110-115 

115-120 

120-125 

125-130 

130-135 

135-140 

140-145 

145-150

71

74

73

70 72 - 72

71

71

69 - - - 70

69

68 70 - 71 68

69 - - -

67 68 - - 67

67 - - -

70

66

65

K = 1.2 k = 4.2 k = 2.2 k = 1.3
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I

4 .4  CONCLUSIONS

ICP-MS is a quick and sensitive technique capable of the determination of 237Np 

concentrations and 240Pu/239Pu atom ratios in sediment samples contaminated by 

Sellafield discharges. Chemical separation of Np and Pu from the bulk matrix and 

238U (to comply w ith the sample restrictions of < 0.2 % dissolved solids content 

and < 100 ng ml'1 238U, while maintaining the levels of Pu and Np above the 

detection limits of the system) was achieved by a combination of solvent extraction 

and anion exchange. Radionuclide profiles in sediment cores from areas of 

accumulating sediment were found to provide a temporal record of the Sellafield 

releases, related to both the annual and time-integrated discharge data. However, 

full deconvolution of the radionuclide profiles was not possible.
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