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SUMMARY

A series of studies which have utilised the euglycaemic hyperinsulinaemic 

clamp to measure insulin sensitivity is described. The methods for measuring insulin 

sensitivity have been evaluated and conclusions drawn about reproducibility and 

inherent limitations of the technique. The euglycaemic clamp has been used to 

examine the effects of angiotensin II and antihypertensive drugs on insulin sensitivity 

in normal subjects, patients with essential hypertension and patients with impaired 

glucose tolerance or non-insulin dependent diabetes mellitus (NIDDM). Each 

individual study was approved by the local Research and Ethical Committee and 

informed consent was obtained from each subject before participation in a study.

(i) Evaluation of the euglycaemic hyperinsulinaemic clamp technique.

It was recognised that despite widespread use of the euglycaemic clamp in 

clinical research, key aspects of the technique remained to be validated.

(a) The intra- and inter- subject variability in insulin sensitivity and the time 

for insulin mediated glucose disposal to reach steady state were evaluated in 18 

healthy male subjects and 6 patients with essential hypertension who attended two 

study days when a euglycaemic hyperinsulinaemic clamp was performed.

M easurem ents o f insulin  sensitiv ity  derived from the euglycaem ic 

hyperinsulinaemic clamp were expressed as whole body glucose uptake (M), and the 

insulin sensitivity index (SJp). M values at 120 mins were significantly less than at 180 

mins in both the healthy subjects and in the hypertensive patients indicating a 

progressive increase in glucose utilisation over the 180 minutes. The intra subject 

coefficient of variation (c.v.) of M at 120 mins and 180 mins was 8% and 6% for 

healthy subjects and 14% and 5% for patients with essential hypertension respectively. 

The inter subject c.v. of M at 120 mins and 180 mins was 22% and 21% for healthy 

subjects and 43% and 38% for patients with essential hypertension. The intra subject
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c.v. of the insulin stimulus was 10% in both groups. The intra subject c.v. of the SIp 

was 21% for healthy subjects and 16% for patients with essential hypertension.

Thus, it was demonstrated that the clamp is highly reproducible within subjects 

but the inter subject variability is wide. Clamps of 120 min duration underestimate M 

by up to 10% and are not as reproducible in patients with essential hypertension. The 

S[p is poorly reproducible; my data suggest that the M value is a better index for 

comparison of possible changes in insulin sensitivity.

(b) The need to arterialise venous blood with a heated hand box was evaluated 

in 6 healthy subjects. Each subject attended 2 study days when a euglycaemic 

hyperinsulinaemic clamp was performed and "arterialised" (AV; heated hand vein) 

and mixed venous blood (MV; antecubital fossa) were collected simultaneously for 

the measurement of plasma glucose and oxygen saturations

It was demonstrated that AV blood was effectively arterialised achieving 

oxygen saturations of 95±2%, and that plasma glucose concentrations were less 

variable when compared with MV samples.

(c) The haemodynamic and metabolic effects of hand warming were evaluated 

in 6 healthy male subjects who attended 2 study days when a euglycaemic 

hyperinsulinaemic clamp was performed. On the first day AV blood was used to 

adjust the glucose infusion rate required to maintain euglycaemia; on the second study 

day MV blood was used. The results demonstrate that there was a significant trend for 

M values to be higher when arterialised blood was used when compared with mixed 

venous blood. My results suggest that hand warming may induce a blood pressure 

lowering effect that is associated with a confounding increase in the derived 

measurement of insulin sensitivity.

19



(ii) Evaluation of the effects of lacidipine on insulin sensitivity.

The acute and chronic (2 weeks) effects of the dihydropyridine calcium 

antagonist, lacidipine (4 mg daily), on insulin mediated metabolic responses was 

evaluated in a double-blind placebo-controlled crossover study in 12 healthy subjects 

and 6 patients with essential hypertension. Each subject attended 4 study days when 

insulin sensitivity was evaluated using the euglycaemic hyperinsulinaemic clamp.

In the healthy subjects, reflex tachycardia was observed after lacidipine 

administration but neither first dose nor 2 weeks of lacidipine treatment altered insulin 

sensitivity when compared with placebo. A significant decrease in fasting triglyceride 

concentrations was observed after 2 weeks lacidipine treatment. 95% confidence 

intervals excluded a 15% change in whole body glucose uptake.

In the hypertensive patients, lacidipine treatment was associated with reflex 

tachycardia and a trend towards decreased blood pressure but there was no significant 

effect on whole body insulin sensitivity.

(iii) Evaluation of manipulation of the renin-angiotensin system on insulin 

mediated metabolic responses

(a) The effects of 4 weeks treatment with the ACE inhibitor trandolapril on 

insulin sensitivity was evaluated in a double-blind, placebo-controlled, crossover study 

in 12 "multiple risk factor" patients with impaired glucose tolerance or NIDDM, and 

essential hypertension. Each subject attended 3 study days (once after a single blind 

placebo run-in, and after each crossover) when insulin sensitivity was evaluated using 

the euglycaemic hyperinsulinaemic clamp. The hypothesis under test was that ACE 

inhibition would increase insulin sensitivity via a vasodilatory mechanism and 

angiotensin II "sparing" effect.

Despite evidence of 70% ACE inhibition and significant blood pressure 

lowering effects of trandolapril, there was no evidence that trandolapril altered insulin
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sensitivity when compared with placebo. Confidence intervals excluded a 12% 

increase in insulin sensitivity associated with ACE inhibition.

(b) To test the hypothesis that acute adm inistration of the potent 

vasoconstrictor angiotensin II would decrease insulin sensitivity, twelve healthy male 

volunteers completed a double-blind, placebo-controlled crossover to evaluate the 

effects of a sub-pressor (lng/kg/min) and a weakly-pressor (5 ng/kg/min) infusion of 

angiotensin II on insulin mediated metabolic responses. Each subject attended three 

study mornings when whole body insulin sensitivity measured using the euglycaemic 

hyperinsulinaemic clamp.

The higher dose of All produced a significant rise in blood pressure and 

plasma angiotensin II concentrations were increased to within the pathophysiological 

range; 11+5,27+9 and 125±28 pg/ml after placebo, low and high dose angiotensin II 

respectively. The corresponding values for insulin sensitivity were 10.5±2.0,10.5±2.2 

and 10.9±3.4 mg/glucose/kg/min (NS; 95% confidence interval -1.9,1.1 for placebo 

vs. pressor angiotensin II). Thus, acute administration of angiotensin II with or 

without a pressor response and producing plasma angiotensin II concentrations within 

the pathophysiological range, has no effect on insulin stimulated glucose disposal in 

healthy subjects.

(c) As there is evidence that the renin-angiotensin system may be involved in 

the metabolic as well as the cardiovascular features of diabetes, the effects of 

angiotensin II on insulin-dependent pathways of metabolism were evaluated in 

patients with NIDDM. In a randomised, double-blind, placebo-controlled, crossover 

study 11 patients with (diet-controlled) NIDDM attended on 3 study days to evaluate 

the effects of a 3-hour infusion of subpressor (lng/kg/min) and pressor (5 ng/kg/min) 

doses of angiotensin II on whole-body insulin sensitivity using the euglycaemic 

hyperinsulinaemic clamp.

Plasma angiotensin II levels were 8 ± 4, 28 ± 9 and 162 ± 45 pg/ml after 

placebo, low dose and high dose infusions of angiotensin II. The l^igher dose of 

angiotensin II was associated with significant increases in blood pressure and plasma
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aldosterone. Whole-body insulin sensitivity was 4.3 ± 2.3 mg glucose/kg/min after 

placebo, and 5.5 ± 2.3 and 4.9 ± 2.4 mg glucose/kg/min following low and high dose 

angiotensin II respectively (p<0.05, ANOVA). Angiotensin II had no effect on 

hyperinsulinaemia-induced reductions in serum potassium and triglycerides.

In summary, contrary to general expectation, acute infusion of angiotensin II, 

with or without an increase in blood pressure, increases insulin sensitivity in 

normotensive patients with NIDDM.

The dissociation of metabolic and blood pressure effects of angiotensin II 

suggests that haemodynamic alterations and redistribution of cardiac output might not 

be the sole (or principal) underlying mechanism in patients with diabetes.

(iv) Determinants of insulin sensitivity

Having validated the euglycaemic hyperinsulinaemic clamp and characterised 

insulin sensitivity in 75 individual hypertensive, diabetic, diabetic hypertensive 

patients or healthy subjects, an attempt was made to identify which demographic, 

metabolic or biochemical factors account for the large inter subject variability in 

insulin sensitivity observed.

Demographic and morphometric data were collected for each subject and a 

standard 75 gram oral glucose tolerance test (OGTT) was performed at screening 

when blood samples were collected for serum insulin and plasma glucose profiles at 

baseline and at 30 minute intervals until 120 minutes. On at least one occasion, each 

individual underwent a euglycaemic hyperinsulinaemic clamp was performed using 

arterialised blood samples to derive the calculation of insulin sensitivity.

The relationship between all variables was investigated at two levels. Firstly, 

for individual variables by correlation analysis, and secondly for multiple variables by 

multiple stepwise linear regression analysis. Thus, insulin sensitivity was the 

dependent variable and the independent variables were modelled separately and in all 

combinations with each other to find the best fit.
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For the group as a whole, age, body mass index, diastolic blood pressure, 

fasting insulin and fasting glucose concentrations were the best correlates of insulin 

sensitivity. In the 30 patients with impaired glucose tolerance or NIDDM, the waist 

hip ratio and body mass index were individually the best predictors of insulin 

sensitivity and insulin and glucose concentrations during an OGTT poor predictors.

CONCLUSIONS

This work has validated the euglycaemic hyperinsulinaemic clamp as a safe, 

reproducible method of evaluating insulin-stimulated metabolic responses, but has 

highlighted some inherent limitations of the technique; for example, the wide 

inter-subject variability in insulin sensitivity and the potential confounding metabolic 

and haemodynamic effects of hand-warming. The technique therefore lends itself to 

studies in which subjects act as their own control. Thus, in a series of double-blind, 

placebo-controlled crossover studies, treatment with the calcium antagonist lacidipine, 

and the ACE inhibitor, trandolapril, have been shown to have neutral effects on insulin 

sensitivity in man. Acute administration of sub-pressor and weakly pressor angiotensin 

II in healthy man had no effect on whole body glucose uptake; in contrast, in a group 

of patients with NIDDM, the same experimental protocol was associated with an 

increase in whole body insulin sensitivity suggesting a dissociation of haemodynamic 

and metabolic effects. In a regression analysis metabolic and haemodynamic data 

have been used to explore the most important determinants of insulin sensitivity in
i

man.
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CHAPTER 1 

GENERAL INTRODUCTION
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1.1 INSULIN RESISTANCE: METABOLIC ABNORMALITIES AND

CARDIOVASCULAR DISEASE

Altered sensitivity to the biological actions of a hormone is a well recognised 

phenomenon in clinical medicine; for instance, resistance of peripheral tissues to 

thyroid hormone or refractoriness of end-organs to gonadotrophins. The pancreatic 

hormone insulin, through its integrated actions on carbohydrate, protein and lipid 

metabolism, plays a pivotal role in maintaining glucose homeostasis. Loss of 

sensitivity to the hormonal effects of insulin, i.e. insulin resistance, affects mainly 

liver, muscle and adipose tissues and stands out because of its uniquely high 

prevalence in a variety of physiological and pathological conditions [table 1.1]. In 

some cases, loss of tissue sensitivity can be viewed as a physiological adaptation to an 

environmental challenge; for example, the insulin resistance that develops after any 

stressful insult (trauma, surgery, infection) clearly serves the function of sparing 

glucose substrate from both oxidation and storage at the expense of fat sources of 

energy. When the stress subsides, the insulin sensitivity returns to normal. In other 

cases, insulin sensitivity subserves a general homeostatic regulation of tissue growth 

and substrate utilisation. For example, the insulin resistance associated with pregnancy 

or puberty may reflect the need for more insulin to sustain accelerated tissue growth 

without the associated danger of hypoglycaemia. These physiological examples of 

insulin resistance can often be explained by increased secretion of hormones with 

insulin antagonist properties (catecholamines, cortisol, growth hormone, sex steroids). 

In many cases, however, the biochemical mechanisms and pathophysiological 

implications of insulin resistance have not been clearly established (Moller and Flier,

1991), and the insulin resistance can not always be explained by an adaptive response. 

Thus, the insulin resistance found in diabetic or hypertensive individuals does not 

appear to serve any protective function. Indeed there is growing consensus that the 

insulin resistance associated with such conditions may be a marker of disease or even
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play a pathophysiological role in the development of the disease.

A reduction in insulin-mediated glucose disposal leads to a compensatory 

hypersecretion of insulin; fasting and post-prandial plasma insulin and triglyceride 

concentrations increase, usually with a reduction in high-density-lipoprotein (HDL) 

cholesterol. If the pancreatic response is insufficient or defective, insulin resistance 

may precipitate glucose intolerance. Thus, in non-insulin dependent diabetes mellitus 

(NIDDM), the combination of reduced insulin action and impaired insulin secretion 

gives rise to hyperglycaemia (DeFronzo et al, 1992). By comparison, many obese, 

non-diabetic subjects are more insulin resistant but avoid overt diabetes - at least in 

the short term - by virtue of an adequate 6-cell reserve.

Thus, considerable in terest has recently  focussed on putative 

pathophysiological roles of insulin resistance in the aetiology of various endocrine 

and cardiovascular disorders, including NIDDM (Reaven, 1988a), ovarian 

hyperandrogenism (Barbieri et al, 1988), hypertension (Daly and Landsberg, 1991) 

and in the genesis of atheroma (Stout, 1989). While it is fairly clear that insulin 

resistance is of primary importance in the development of NIDDM (DeFronzo et al,

1992), and some rare hereditary syndromes (Moller & Flier, 1991), the pathogenetic 

significance of insulin resistance (short of diabetes) and individual disorders [table 

1.1] remains in doubt. What seems likely, however, is that insulin resistance 

contributes to some of the clinical, biochemical and metabolic features that often 

complicate these conditions; for example, glucose intolerance in pregnancy and 

hypertriglyceridaemia in obesity and diabetes (Reaven, 1988a).

This chapter explores three areas pertinent to the association of insulin 

resistance and essential hypertension. Firstly, the epidemiological and experimental 

data suggesting a putative role of insulin resistance and consequent hyperinsulinaemia 

in the genesis of hypertensive and atherosclerotic cardiovascular disease is reviewed.
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Secondly, a description and critique of the presently available techniques for 

measuring insulin sensitivity in vivo will be discussed. To enable the insulin sensitivity 

of individuals or populations to be defined, and to allow the evaluation of any strategy 

which may ameliorate insulin resistance, it is essential that investigators have a very 

precise and reproducible technique to quantify the body’s response to insulin.

Thirdly, the studies evaluating differential drug effects on insulin sensitivity 

and new pharmacological approaches to metabolism will be reviewed. One 

explanation for the association between insulin resistance and essential hypertension is 

that some of the commonly used drugs in hypertensive patients (thiazides and 

beta-blockers) may worsen insulin sensitivity.

1.1.1. A CLINICAL TRIAD: OBESITY, NON-INSULIN DEPENDENT
DIABETES MELLHUS AND ESSENTIAL HYPERTENSION.

Simple clinical observation suggests that NIDDM, obesity and essential 

hypertension often occur together in the same patients. The extent to which they are 

associated has been clarified by several large epidemiological studies; for example, 

analysis of data from the 2930 individuals in the San Antonio Heart Study (Mitchell et 

al, 1990) suggests that, by the fifth decade, 85% of diabetics are hypertensive and 

obese and 80% of obese subjects have abnormal glucose tolerance and are 

hypertensive. Conversely, of the 287 patients (9.8%) who were hypertensive, three 

quarters were obese and half had either impaired glucose tolerance or NIDDM 

(Ferrannini et al, 1990) [figure 1.1]. The Framingham Heart Study confirmed that 

diabetic persons have an increased prevalence of hypertension, with as many as 50% 

having some degree of elevated blood pressure, and that the incidence of both diabetes 

and hypertension increases progressively with the degree of obesity (Kannel and 

McGhee, 1979). A high prevalence of hypertension was also noted in the United 

Kingdom Hypertension and Diabetes Study, with 46% of female patients and 35% of
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Figure 1.1. Patients in the San Antonio Heart Study with associated metabolic disorders. 

Of 2930 subjects in this study, 287 hypertensive patients were screened. Definitions are 

as follows: Obese = BMI > 27kg/m2, IGT = impaired glucose tolerance, NIDDM = non 

insulin dependent diabetes mellitus (hatched area), HTG = hypertriglyceridaemia (>2.9 

mmol/L), HCH = hypercholesterolaemia (> 6.48 mmol/L). Modified from Ferrannini et 

al, 1990.
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males being affected (Hypertension in Diabetes Study Group, 1993). Finally, a study 

which screened over one million individuals (Stamler et al, 1978), estimated that 

hypertension was twice as prevalent in young overweight subjects and 50% more 

common in older obese individuals than in normal weight controls. Thus a wealth of 

epidemiological data confirm a striking degree of overlap between essential 

hypertension, obesity and NIDDM. Although the incidence of all three conditions 

increases with age, it has been established that the association between essential 

hypertension and NIDDM is independent of age, obesity and renal function (Teuscher 

et al, 1989; Kannel et al, 1991). When the two conditions coexist, hypertension 

predates the diagnosis of diabetes eight times more commonly than the reverse 

sequence (Lundgren et al, 1988).

Such clinical observations have prompted investigators to explore the 

pathophysiological mechanisms underlying these relationships. A primary abnormality 

in NIDDM is insulin resistance, and this is also a characteristic feature of obesity: over 

the last two decades substantial data has emerged indicating that resistance to the 

glucoregulatory effects of insulin with consequent hyperinsulinaemia are also features 

of essential hypertension. These metabolic abnormalities have therefore resulted in 

new perspectives in the investigation and treatment of hypertension.

1.1.2. INSULIN ACTION, HYPERINSULINAEMIA AND ESSENTIAL

H Y PER TEN SIO N

The two major target tissues in insulin action are muscle and liver. Although 

the insulin-receptor interaction elicits a complex array of biochemical responses, by 

convention "insulin resistance" refers only to the effects of insulin on hepatic glucose 

production and peripheral glucose disposal (both oxidative and non-oxidative). 

Elevated basal free fatty acid levels and failure of insulin to suppress free fatty acid 

production reflect insulin resistance to lipid metabolism (Chen et al, 1987), which is
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often secondary to impaired glucose oxidation. Thus, pathways of glucose, lipid and 

amino acid metabolism are closely inter-linked; resistance to glucose usually implies 

resistance to lipid and amino acid metabolism as well - but other effects of insulin, for 

instance on salt and water balance, may be spared in classic insulin resistant states. For 

example, it is still unclear whether insulin resistance extends to potassium disposal.

The concept of insulin resistance is not new; in 1936, Himsworth proposed that 

patients with diabetes mellitus were either "insulin-sensitive when the cause of the 

disease is deficiency of insulin", o r " insulin insensitive when the cause of the disease 

is not lack of insulin, but the restriction, to a greater or lesser degree, of an unknown 

sensitising factor" (Himsworth, 1936). Thus, loss of tissue sensitivity to the actions of 

insulin leads to a compensatory hyperinsulinaemia which is a characteristic feature of 

both NIDDM and obesity.

Evidence that essential hypertension is associated with metabolic abnormalities 

first emerged in 1966 when Welbom and colleagues reported higher plasma insulin 

concentrations in hypertensive compared with normotensive subjects (Welbom et al, 

1966). This initial evidence, based on only 19 patients, many of whom were on 

treatment, went largely unnoticed, but has more recently been substantiated by data 

from several large scale studies in which oral glucose tolerance tests have been 

performed in patients with essential hypertension. Thus, in a study of over 2000 

individuals, Modan reported higher post-prandial insulin levels in both treated and 

untreated hypertensive patients than normotensive controls (Modan et al, 1985), a 

relationship which was independent of both glucose tolerance and obesity. A similar 

study by Asch in 1437 North Americans reported significantly higher post load insulin 

concentrations in hypertensive individuals, but the significance was lost when 

stratified for glucose intolerance and obesity (Asch et al, 1991). Berglund reported 

elevated fasting insulin concentrations and significantly higher blood glucose 

concentrations 60 minutes after a 100 g oral glucose tolerance test in 106 untreated
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hypertensive patients as compared to 41 controls (Berglund et al, 1976). Parillo 

similarly reported higher serum glucose levels and serum insulin levels 60 to 180 

minutes after a glucose tolerance test in hypertensives as compared to controls (Parillo 

et al, 1988). In a more physiological study, Singer reported that subjects with essential 

hypertension showed a higher insulin response after feeding despite similar changes in 

glucose levels when compared with normal subjects (Singer et al, 1985).

It is important to note, however, that not all hypertensive patients are 

hyperinsulinaemic and that many patients with hyperinsulinaemia and insulin 

resistance do not have hypertension. Ethnic differences may explain these 

discrepancies; for example, the Pima Indians in the United States, in whom insulin 

resistance and hyperinsulinaemia are common, do not have a high prevalence of 

hypertension (Saad et al, 1991). Mbanya reported similar insulin levels in hypertensive 

and normotensive subjects, and although obese subjects were hyperinsulinaemic, there 

was no significant correlation between hypertension and hyperinsulinaemia; in fact 

there was a tendency for a negative correlation between plasma insulin concentrations 

and blood pressure (Mbanya et al, 1988). Moreover, in a recently reported study from 

Mauritius, a positive relationship between insulin and blood pressure was wholly 

accounted for by obesity and age, and showed marked inter-ethnic variation (Dowse et 

al, 1993). Thus, there appear to be racial differences in the association of 

hyperinsulinaemia and blood pressure.

Another explanation for these discrepant results may be problems with 

conventional one-site radioimmunoassays for insulin used in these studies. Insulin is 

normally produced by processing of proinsulin in the fi-cell yielding C-peptide and 

two, 2-amino acid fragments (figure 1.2). Conventional radioimmunoassays for insulin 

lack specificity for the hormone, and different kits show significant but variable 

cross-reactivity with proinsulin and its split products: insulin levels may therefore be 

variably overestimated (Heding, 1977). For example, Temple and colleagues, using 

two-site sensitive and specific immunoradiometric assays for insulin, intact proinsulin
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Figure 1.2: The insulin processing cascade. Pro-insulin is split in the beta-cell to yield 

insulin, C-peptide and two amino acid fragments.
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and 32,33 split proinsulin, have shown that newly-diagnosed patients with NIDDM are 

hypoinsulinaemic and hyperproinsulinaemic (Temple et al, 1989; Temple et al, 1990). 

However, Reaven and Polonsky, using a specific proinsulin enzyme-linked 

immunosorbant assay and by subtracting from total immunoreactive insulin levels to 

give an estimate of "true" insulin levels, showed that the overestimation of insulin 

levels was modest in a similar group of patients (Reaven et al, 1993). Preliminary data 

(in abstract form) using a specific insulin assay to m easure fasting insulin 

concentrations in a large Caucasian population suggest that, after adjustment for 

confounding factors (including weight and age), specific insulin levels but not those 

measured by a conventional radioimmunoassay are, indeed, related to blood pressure 

(Grootenhuis et al, 1993).

The variable association of insulin levels and blood pressure, the variable 

overestimation of insulin levels by conventional assays, and the lack of an obvious 

pressor effect of insulin, raise the possibility that proinsulin (and its split products) 

may have independent vascular and haemodynamic effects. Proinsulin has only 1% of 

the activity of insulin in stimulating glucose disposal in humans, but split-products 

have higher biological activities and are thought to bind to insulin receptors. 

Proinsulin has a longer elimination half-life than insulin and is converted to 

split-products, but not insulin, in the circulation (Galloway et al, 1992). Indirect 

evidence implicating proinsulin as an aetiological factor in human vascular disease has 

come from a clinical trial in which proinsulin was compared to insulin in the treatment 

of insulin-dependent diabetes mellitus (Spradlin et al, 1990). The trial was abandoned 

on safety grounds owing to an increase of myocardial infarctions in the proinsulin 

treated group, and as a result, proinsulin now has very limited availability for human 

study. Data on the relationships among proinsulin, insulin and insulin resistance in 

patients with essential hypertension and appropriately matched controls are still 

awaited.

Conflicting evidence from epidemiological studies may also have arisen
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because they have used glucose tolerance test data which give only indirect 

information about insulin sensitivity, as the resultant insulin and glucose values are the 

product of secretion, distribution and elimination, and may be affected by various 

pathophysiological processes [see section 1.2.1]. The euglycaemic hyperinsulinaemic 

clamp technique, the minimal model technique of Bergman, and the insulin 

suppression test [see sections 1.2.2. to 1.2.5.] are more direct methods of assessing 

insulin dependent metabolic pathways. Using these techniques, steady state metabolic 

studies have been performed on hypertensive patients and it is now clear that the 

elevated insulin levels are a compensatory response to a peripheral defect in 

insulin-stimulated glucose uptake (Ferrannini et al, 1987; Pollare et al, 1990) [figure 

1.3], that this defect persists even after blood pressure has been lowered with 

antihypertensive medication (Swislocki et al, 1989), and that the coexistence of either 

obesity or diabetes results in a further impairment in insulin-stimulated glucose 

disposal.

The metabolic abnormalities of essential hypertension are not restricted to 

carbohydrate metabolism. An abnormal lipoprotein profile associated with essential 

hypertension has been identified, namely an increase in triglycerides and a reduction 

in HDL-cholesterol (Shieh et al, 1987; MacMahon et al, 1985). Reaven has coined the 

term "syndrome X" to describe the combination of essential hypertension, 

dyslipidaemia, hyperinsulinaemia and insulin resistance (Reaven, 1988a). There are 

also data suggesting that elevated levels of fibrinogen (Kannel et al, 1987) and 

plasminogen activator inhibitor (PAI-1) (Landkin et al, 1990) are also features of the 

hypertensive state.
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1.1.3. HYPERINSULINAEMIA IN ESSENTIAL HYPERTENSION: CAUSE 

OR CONSEQUENCE OF HIGH BLOOD PRESSURE, OR 

EPIPHENOMENON

It remains unclear whether the defect in glucose uptake and hyperinsulinaemia 

described in hypertensives is an epiphenomenon, a consequence of the hypertensive 

process itself, or whether it may precede and thus possibly promote the development 

of hypertension.

(D Insulin sensitivity in primary and secondary hypertension.

M arigliano studied 36 patients with essential hypertension, 12 with 

renovascular hypertension, and 69 normotensive controls. He concluded that the 

essential hypertensives had significantly higher fasting insulin concentrations than 

those patients with renovascular disease or the controls (Marigliano et al, 1990). 

Shamiss evaluated insulin sensitivity in 5 patients with essential hypertension, 5 

patients with renovascular hypertension, 5 patients with primary hyperaldosteronism 

and normotensive controls using the euglycaemic hyperinsulinaemic clamp (Shamiss 

et al, 1992). He concluded that the essential hypertensives had significantly lower 

insulin sensitivity than patients with secondary forms of hypertension. These data 

suggest, therefore, that insulin resistance is only found with essential hypertension and 

not in secondary forms of high blood pressure.

(ii) Longitudinal relationship between insulin resistance and essential hypertension.

The association between insulin resistance and essential hypertension appears 

to be long term, and to predate the development of clinically important high blood 

pressure. For example, further analysis of data from the San Antonio Heart Study 

suggests that changes in glucose tolerance and insulin concentrations coexist with
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subclinical elevations in blood pressure in healthy subjects, eight years before the 

onset of essential hypertension (Haffner et al, 1992). Similarly, Zavaroni and 

colleagues subdivided workers in a factory into those who had relative 

hyperinsulinaemia and those with normal insulin concentrations (Zavaroni et al, 1992). 

The hyperinsulinaemic subjects had higher mean blood pressures without being 

hypertensive and also had increased levels of triglyceride and decreased HDL 

cholesterol concentrations than those with normal insulin levels. More recently, Ferrari 

and colleagues prospectively investigated insulin sensitivity, plasma insulin and 

glucose concentrations in 70 normotensive children of essential hypertensives as 

compared with 78 age and weight matched controls of normotensive families (Ferrari 

et al, 1991a). They concluded that the young normotensives with one hypertensive 

parent were apparently in excellent health, but were hyperinsulinaemic and had 

significantly reduced insulin mediated glucose disposal as compared with controls. In 

a similar study, Beatty and colleagues (1993) matched 15 normotensive subjects who 

had at least one hypertensive parent with 15 controls. Despite having similar blood 

pressures, the insulin mediated glucose disposal of the offspring with hypertensive 

parents as measured by the euglycaemic hyperinsulinaemic clamp was significantly 

lower than controls. The Bogalusa Heart Study has also shown that children 

demonstrate a relationship between blood pressure and metabolic changes at a 

relatively young age (Jiang et al, 1993). Finally in a Finnish study, Salomaa and 

colleagues reported that subjects with impaired glucose tolerance in 1968 had an 

increased risk of becoming hypertensive nearly 20 years later when compared with 

normoglycaemic subjects (Salomaa et al, 1991). Thus, the available clinical evidence 

suggests that a familial trait for essential hypertension would appear to co-exist with 

defects in carbohydrate metabolism, and that the metabolic abnormalities and 

hyperinsulinaemia may precede the development of hypertension. These metabolic 

abnormalities would not appear to be present in secondary forms of hypertension.
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(iii) Animal Evidence.

Insulin resistance and hypertension are associated in some rodent models of 

high blood pressure. Reaven has documented the presence of in-vivo dyslipidaemia 

and hyperinsulinaemia, and reduced in-vitro insulin-mediated glucose uptake by 

adipocytes in two animal models of genetic hypertension; the spontaneously 

hypertensive rat (SHR) (Reaven et al, 1989a), and the Dahl salt-sensitive rat (Reaven 

et al, 1991a). In the SHR the development of insulin resistance precedes the 

development of the hypertension (Reaven & Chang, 1991b). In addition, the normal 

Sprague-Dawley rat, an animal with no genetic predisposition to hypertension, 

develops insulin resistance and hypertension when fed a fructose-enriched diet 

(Hwang et al, 1987). Reaven’s group have also demonstrated in this model that the 

hypertension is attenuated by correcting the insulin resistance by physical training or 

by the administration of somatostatin (Reaven et al, 1989b). In contrast, rats made 

hypertensive by renal artery clipping do not become insulin  resistan t or 

hyperinsulinaemic (Buchanan et al, 1991). In an elegant series of experiments, 

Burstyn studied the in-vivo uptake of a glucose tracer in three animal models of 

hypertension; the SHR, the DOCA-salt animal and the 2-kidney, 1-clip model of 

renovascular hypertension and their controls (Burstyn et al, 1992). He concluded that 

the SHR’s were hyperinsulinaemic and had reduced clearance of the glucose tracer 

compared with controls. In the two non-genetic models of hypertension, however, 

there were no differences between hypertensives and controls.

In another species, insulin resistance has been evaluated in a model of obesity 

hypertension developed by Rocchini. By feeding dogs cooked beef fat, he 

demonstrated that weight gain was directly associated with an increase in blood 

pressure and insulin levels (Rocchini et al, 1989).

In summary, it appears that insulin resistance and hyperinsulinaemia are
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associated principally with essential hypertension in humans and equivalent animal 

models, and that the metabolic abnormalities predate the development of hypertension. 

This raises the possibility that hyperinsulinaemia contributes to the development of 

high blood pressure, and also suggests that an underlying genetic abnormality may 

predispose to both pathophysiological disorders. In this context it is of interest that 

increased red blood cell sodium/lithium counter transport is also associated with 

insulin resistance and other metabolic abnormalities in hypertension, such as 

triglyceride and uric acid levels (Hunt et al, 1991; Mattiasson et al, 1992; Canessa et 

al, 1980). This ion transport activity is a good marker of genetically determined 

essential hypertension, and reinforces the notion that inherited factors may determine 

insulin sensitivity in these subjects. However, other evidence suggests that 

environmental influences in very early development may also play a role. For 

example, Barker and colleagues have shown that low birth weight accurately predicts 

long term development of high blood pressure, coronary heart disease, NIDDM and a 

number of adverse metabolic factors including increased fibrinogen levels and insulin 

resistance in later life (Barker et al, 1993a). It has been proposed that foetal 

under-nutrition might be a common predisposing factor to these abnormalities, and the 

same group have proposed that abnormal pancreatic development might be a possible 

contributory cause to the abnormal insulin response (Barker et al, 1993b).

1.1.4. MECHANISMS AND CONSEQUENCES OF INSULIN RESISTANCE
IN HUMAN DISEASE

Classically the term insulin resistance refers to a reduction in insulin stimulated 

glucose uptake [section 1.1.2]; the im plication of this defin ition is that 

pathophysiological characteristics of insulin resistant states may differ if a selective 

resistance to insulin occurs. The high insulin levels needed to compensate for the 

defect in carbohydrate metabolism may cause increased effects in other pathways. 

Indeed, experimental evidence suggests that the insulin resistance of obesity, aging
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and NIDDM show differential effects on other insulin mediated metabolic processes; 

for example, obesity is also associated with a reduction in glucose oxidation and 

potassium uptake (Bonadonna et al, 1990). In contrast, the insulin resistance of 

essential hypertension appears to be selective for glucose uptake. Using clamp 

studies, Ferrannini has suggested a ’’tissue specific" (predominantly located in skeletal 

muscle), and "pathway-specific" (impairment of insulin-stimulated glycogen 

synthesis, but unaffected lipid, protein and electrolyte metabolism) form of insulin 

resistance (Ferrannini et al, 1987), although these specific observations have not been 

independently confirmed. A number of possible mechanisms which may account for 

the insulin resistance observed in essential hypertension have been proposed.

(i) Altered regional blood flow.

Julius has argued that reduced delivery of glucose to skeletal muscle as a 

consequence of altered regional haemodynamics contributes to the insulin resistance 

of essential hypertension (Julius et al, 1991). Data which report an increase in insulin 

sensitivity after administration of antihypertensive drugs with a predominant 

vasodilatory action may support this hypothesis (Pollare et al, 1989a) [see sections 

1.3.2 and 5.1.1) as may recent studies with angiotensin II (Buchanan et al, 1993; 

Townsend & DiPette 1993) [see chapter 6].

Altered vascular effects of insulin may also contribute to the suggested change 

in regional blood flow, and consequent alteration in delivery of glucose to target 

tissues in essential hypertension. Insulin has been shown to have vasodilator properties 

(at least in pharmacological doses) by some (Creager et al, 1985) but not all (Natali et 

al, 1991) workers. It opposes the direct vasoconstrictor actions of noradrenaline and 

angiotensin II in vitro (Yagi et al, 1988). Findings in humans are, however, 

conflicting: although Sakai and colleagues found that intra-arterial infusion of insulin 

attenuated the decrease in forearm blood flow caused by phenylephrine and
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angiotensin II (Sakai et al, 1993), Naehring reported no effect in studies using a 

similar protocol with noradrenaline (Nearhing et al, 1993), while Lembo and 

colleagues have shown that insulin attenuates the vasoconstriction caused by reflex 

forearm sympathetic activation (Lembo et al, 1993). Insulin-mediated vasodilatation is 

decreased during euglycaemic hyperinsulinaemia in patients with either obesity or 

NIDDM, causing post-prandial blood flow to skeletal muscle to decrease and a 

corresponding reduction in net tissue glucose uptake (Baron et al, 1990; Baron et al, 

1991a). In contrast, skeletal muscle blood flow during hyperinsulinaemia in 

hypertensive subjects has been reported to be no different from that in control subjects 

(Capaldo et al, 1991); however, data are conflicting as another study found that 

attenuation of insulin-stimulated blood flow was correlated with insulin resistance and 

blood pressure in healthy subjects (Baron et al, 1993). Most data which have 

addressed this point have been accrued from normal or obese subjects and further 

studies in patients with essential hypertension are required.

(ii) Altered tissue cellular characteristics.

Differences in glucose transport between skeletal muscle fibre types may be an 

important determinant of in vivo insulin action (James et al, 1986). For example, 

Lillioja and colleagues (1987) found that obesity was associated with capillary 

rarefaction and that capillary density was positively correlated with insulin mediated 

glucose disposal in a population of lean and obese non-diabetic men. In hypertensive 

patients it has also been suggested that there is a quantitative difference in the 

composition of muscle fibres as compared to controls; there are less type I (red) 

oxidative highly vascularised fibres which are more sensitive to the actions of insulin, 

than type lib non-oxidative fibres which are less sensitive (Johlin-Dannfelt et al, 

1979). Therefore both capillary density and insulin sensitivity may be determined by 

fibre composition. In addition, muscle fibre composition could determine insulin
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sensitivity as a function of GLUT 4 transporter expression. This is because, in rats, 

muscles containing greater numbers of type I fibres express more GLUT 4 glucose 

transporters and display a greater capacity for insulin-mediated glucose uptake 

(Richardson et al, 1991; Hardin et al, 1993).

(iii) Cell signalling, glucose uptake and metabolic disposal of substrate.

The defect in glucose uptake in hypertensive animals appears to be unrelated to 

insulin receptor number, binding or tyrosine kinase activity (Reaven et al, 1989a). The 

major mechanism by which insulin activates glucose transport is via a rapid and 

dose-dependent recruitment of glucose transporter proteins from a large intracellular 

pool. In search of a post-receptor defect in insulin action, attention has focussed on 

this family of facilitative glucose transporters in the plasma membrane, particularly 

GLUT-4 which is primarily located in fat and skeletal muscle. For example, in a recent 

comprehensive study which examined the insulin sensitivity in athletes, Ebeling and 

colleagues (1993) concluded that the cellular mechanisms that explained the enhanced 

insulin sensitivity observed were an increase in GLUT-4 content and an increase in 

glycogen synthase activity. There is some evidence, using immuno-blotting and 

measurement of the corresponding mRNA, that reduced levels of GLUT 4 occur in 

skeletal and adipose tissue of patients with NIDDM and/or obesity (Dohm et al, 1991). 

However, in another study using human skeletal muscle biopsies, no difference could 

be found in the plasma membrane content of immunoreactive GLUT 4 between 

patients with NIDDM and normal subjects (Lund et al, 1993). Direct observations of 

glucose transporters or insulin receptors have not been reported in essential 

hypertension.

The studies of Ferrannini suggest that the abnormality in insulin-stimulated 

glucose uptake is restricted to non-oxidative pathways of glucose metabolism, suggest 

a defect in glycogen synthesis (Ferrannini et al, 1987). There is evidence in man that
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alterations in glycogen synthase activity directly account for changes in insulin 

dependent glucose incorporation into glycogen (Bogardus et al, 1987). There are no 

studies which have measured glycogen synthase activity specifically in essential 

hypertension.

The role of glucocorticoids in the genesis of insulin resistance in essential 

hypertension may also be worth considering. Action of hormones at the type II 

corticosteroid receptor has a hyperglycaemic effect which may precipitate diabetes. A 

genetic variation linked with this (glucocorticoid) receptor locus has been reported to 

be associated with the insulin resistance of obesity (Weaver et al, 1992), and it is of 

interest that the same polymorphism, in a different study, was found to be increased in 

frequency in subjects with a high likelihood of developing hypertension (Watt et al, 

1992). More recently, it has been shown that administration of pharmacological doses 

of glucocorticoid to pregnant rats results in development of hypertension in their 

offspring (Benediktsson et al, 1993): this has been ascribed to an imprinting effect of 

the steroid, and preliminary evidence suggests that this rise in blood pressure is 

associated with hyperinsulinaemia. Thus, there is some evidence that altered steroid 

hormone action, either in utero or in adult life, can lead to insulin resistance and 

hypertension.

(iv) Amvlin.

Amylin is a recently described pancreatic peptide which is co-secreted with 

insulin (Cooper et al, 1988). Preliminary evidence suggests that amylin opposes a 

number of the cellular actions of insulin, and it has been suggested that increased 

amylin levels may contribute to the increased insulin resistance seen in subjects with 

NIDDM (Amiel, 1993). However, there is no information on the levels of amylin or 

the effects of this peptide in hypertensive patients or in animal models of hypertension 

and there remains doubt about the exact physiological role of the peptide.
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In summary, the primary mechanisms underlying the reduced insulin 

sensitivity in essential hypertension remain unclear. Although there are a number of 

attractive hypotheses which may account for the abnormality, further careful 

physiological studies in hypertensive patients are required.

1.1.5. CLINICAL IMPLICATIONS OF HYPERINSULINAEMIA AND

INSULIN RESISTANCE IN HYPERTENSION

No satisfactory single hypothesis has been proposed for the mechanism by 

which insulin resistance and the compensatory high plasm insulin levels (or other 

B-cell products) might produce a rise in blood pressure. Any plausible explanation 

needs to take into account the lack of hypertension in patients with insulin/proinsulin 

secreting tumours (Fujita et al, 1992) and also in patients with the polycystic ovarian 

syndrome (Zimmermann et al, 1992): this latter group of patients have profound 

insulin resistance with proportionate increases in insulin and proinsulin levels 

(Conway et al, 1993). A number of plausible biological explanations have been 

proposed by which insulin might produce a rise in blood pressure.

(i) Insulin induced antinatriuresis.

An increase in plasma insulin, within, or slightly above the physiological range 

markedly reduces fractional sodium excretion (DeFronzo 1981; Baum 1987), and 

during euglycaemic hyperinsulinaemia urinary sodium excretion may fall by as much 

as 50% (DeFronzo et al, 1975). The exact mechanisms for this antinatriuresis are 

unknown, but they appear to be related in part to a direct effect on renal tubular 

reabsorption (Gupta et al, 1992). In theory, if hyperinsulinaemia causes a sustained 

antinatriuretic effect, chronic hypertension could result from an expansion of the
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extracellular fluid volume. Preliminary evidence suggests however that insulin’s direct 

antinatriuretic actions are insufficient alone to elevate blood pressure (Hall et al, 

1990). Brands has studied the effects of chronic hyperinsulinaemia on conscious dogs 

using a glucose clamp technique. He reported an antinatriuretic effect most 

pronounced in the acute stage which was due to increased renal tubular sodium 

reabsorption. Despite this transient sodium retention, mean arterial pressure actually 

decreased during the 7 days of insulin infusion (Brands et al, 1991). Furthermore, 

young patients with essential hypertension do not demonstrate an increase in body 

sodium content, nor do they show a reduction in plasma renin concentration which 

m ight be anticipated if there was expansion of ex tracellu lar fluid volume 

(Beretta-Piccoli et al, 1982).

(ii) Activation of the sympathetic nervous system.

The second mechanism by which hyperinsulinaemia may elevate blood 

pressure is via activation of the sympathetic nervous system. Acute insulin infusion 

elevates plasma noradrenaline levels (Rowe et al, 1981), but the interpretation of these 

studies is difficult because pharmacological doses of insulin have been used. Anderson 

recently used physiological insulin concentrations in normal volunteers and reported 

increased sympathetic activity with decreased forearm vascular resistance but no 

increase in blood pressure (Anderson et al, 1991). Furthermore, in normal subjects 

insulin infusion into the forearm opposes the vasoconstriction caused by sympathetic 

activation (Sakai et al, 1993).

(iii) Altered vascular smooth muscle structure and function.

Insulin can be shown in vitro to increase vascular smooth muscle cell growth, 

acting via IGF-1 receptors (Banskota et al, 1989). If this occurs in vivo, long term
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hyperinsulinaemia might promote vascular hypertrophy, which will act as an 

amplification mechanism for the maintenance and development of high blood 

pressure. However, the concentrations of insulin which are required to show this effect 

on vascular cells in vitro are much higher than those found under physiological or 

pathophysiological conditions.

The relationship between insulin action and intracellular cation concentrations 

is also complex. Insulin causes relaxation of pre-constricted cultured vascular smooth 

muscle cells, and this appears to relate to an enhancement of vascular cell recovery 

from intracellular calcium loads (Zemel et al, 1992). However, Resnick has proposed 

that insulin resistance is a primary consequence of altered intracellular calcium/plasma 

membrane calcium handling (Resnick, 1993), and a recent study by Ohno showed that 

in vivo insulin sensitivity was negatively associated with intracellular platelet calcium 

concentrations in subjects with essential hypertension (Ohno et al, 1993).

The vasodilator action of insulin has been discussed above [section 1.1.4], and 

may relate to the effects of insulin on intracellular calcium handling. Limitation of this 

action of insulin (i.e. to reduce intracellular calcium concentrations) in subjects with 

hyperinsulinaemia or insulin resistance, might account for the reported loss of 

insulin-related vasodilatation in this circumstance, and provide an explanation for the 

apparently contradictory finding of Ohno of increased levels of intracellular calcium in 

patients with hyperinsulinaemia.

(iv) Interactions with endothelial dependent relaxation and contraction.

The effects of insulin and proinsulin on endothelial function remain unclear. 

There is evidence that subjects with essential hypertension have reduced vascular 

endothelial dependent relaxation (Panza et al, 1990). While there are reports of 

impaired endothelial function in insulin resistant states including NIDDM (McVeigh 

et al, 1992) and hypercholesterolaemia (Creager et al, 1990), no direct relationship
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with either insulin levels or insulin sensitivity has been shown. Indeed, insulin has 

vasodilator properties in some vascular beds [section 1.1.4] and there is evidence from 

the San Antonio cohort that individuals who went on to become diabetic (and hence 

insulin resistant) had a hyperdynamic circulation (Stern et al, 1992). In patients with 

insulin dependent diabetes mellitus (IDDM) who are without vascular complications, 

endothelial dependent vasorelaxation appears normal (Calver et al, 1992). However, in 

patients with microalbuminuria a defect in endothelial dependent relaxing factor 

(EDRF) activity, which would be consistent with abnormal generation of nitric oxide, 

is reported (Elliott et al, 1993). As other studies show that microalbuminuria is closely 

associated with insulin resistance (Yip et al, 1993), the role of hyperinsulinaemia and 

insulin resistance in this abnormality merit further study.

Insulin is also reported to increase the expression of receptors for endothelin in 

vitro (Oliver et al, 1991), and levels of this vasoconstrictor peptide rise during acute 

hyperinsulinaemia in man (Wolpert et al, 1993). Again, there are no data on the effects 

of hyperinsulinaemia on endothelin-mediated vasoconstriction in human vascular 

tissue.

In summary, there are several p lausible m echanism s by which 

hyperinsulinaemia and insulin resistance may influence blood pressure control; 

however, much of the evidence is circumstantial and direct studies in patients with 

essential hypertension are required.

1.1.6. LONG TERM CONSEQUENCES OF INSULIN RESISTANCE AND
HYPERINSULINAEMIA

The chronic vascular complications of hypertension result from a complex 

interaction among the haemodynamic changes of high blood pressure with a variety of 

other metabolic abnormalities. It has been proposed that hyperinsulinaemia is one of
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the factors associated with hypertension which promotes developm ent of 

atherosclerosis; there are both experimental and clinical data that support the notion 

that insulin  per se is atherogenic, independent o f glucose 

(Stout 1989).

(i) Experimental studies.

The atherosclerotic plaque is characterised by excessive amounts of lipid, 

collagen, foam cell macrophages and proliferated smooth muscle cells. The effects of 

insulin on the constituents and formation of the atheromatous plaque has been 

examined in cell and tissue culture and in animal studies. For example, long term 

treatment with insulin produces lipid-containing lesions and thickening of the arterial 

wall in experimental animals (Stout 1970); insulin inhibits the regression of 

diet-induced experimental atherosclerosis (Marquie 1978); insulin in physiological 

concentrations stimulates proliferation and migration of cultured arterial smooth 

muscle cells (Stout et al, 1975) and also stimulates cholesterol synthesis and LDL 

binding in both arterial smooth muscle cells and monocyte macrophages (Krone et al, 

1988). Thus, under experimental conditions, insulin has been reported to have a 

number of effects on the constituents of atherosclerotic plaques that are consistent with 

our understanding of the progression of atherosclerosis.

(ii) Clinical studies.

As the formal techniques for measuring insulin sensitivity such as the 

euglycaemic hyperinsulinaemic clamp and insulin suppression test are labour intensive 

[section 1.2.1], simple tests, such as fasting serum insulin  and C-peptide 

concentrations or measurements after an oral glucose tolerance test, have been used in 

epidemiological studies to indirectly infer the presence of insulin resistance.

Two large cross-sectional studies have examined the relationships between
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insulin concentrations and cardiovascular disease. Lichtenstein and colleagues (1987) 

in a study of 2512 men aged 45-59 years from Caerphilly reported an association 

between fasting insulin and the prevalence of coronary artery disease independent of 

age, body mass index, blood pressure and serum triglyceride levels. Similarly, in a 

Finnish population, Ronnemaa and colleagues (1991) in a study of 1373 non-diabetic 

men aged 45-64 years reported increased fasting insulin concentrations in those 

subjects with clinical manifestations of coronary artery disease, but this association 

was lost when corrected for body mass index, blood pressure, triglyceride levels and 

HDL cholesterol levels.

There are three large and two small prospective studies which have examined 

the relationship between plasma insulin levels and subsequent coronary artery disease. 

In the Helsinki Policeman study, 982 men aged between 35 and 64 years and free of 

coronary artery disease at baseline received an oral glucose load and were followed up 

for ten years. Both fatal and non-fatal myocardial infarctions were more common in 

those with the highest quintile of fasting, 1 hour, 2 hour and total (AUC) insulin 

responses to glucose. On multivariate analysis this association was independent of 

blood glucose, plasma lipids and body mass index (Pyolara 1979). Similarly, the Paris 

Prospective study of 7038 male civil servants aged 43-54 years examined the 

incidence of fatal and non-fatal myocardial infarctions and has reported at 5 years 

(Ducimetiere et al, 1980), 10 years (Eschwege et al, 1985), and 15 years (Fontbonne et 

al, 1991). At baseline, plasma insulin and glucose concentrations were measured 

fasting and 2 hours after an oral glucose tolerance test. At 5,10 and 15 years there was 

no relationship between the plasma glucose concentrations and incidence of coronary 

artery disease, but the fasting and 2 hour insulin levels were related to the incidence 

of coronary artery disease independent of glucose tolerance and blood pressure, and 

were greater in obese compared with than non-obese subjects. In the Busselton study 

blood samples were collected for insulin levels 60 minutes after a 50 gramme oral 

glucose tolerance test in 3390 Australian male and female adults aged 21 to 70 years.
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The individuals were not instructed to fast. In a univariate analysis, insulin was 

shown to be associated with the 6 year incidence and the 12 year mortality rate from 

coronary vascular disease in men aged 60 to 69 years, but not in women of any age; 

using multiple linear regression analysis, 13 year all-cause mortality rate (but not 

coronary vascular mortality) was significantly and positively related to insulin 

concentrations in those men aged 40 to 70 years at entry (Cullen et al, 1983). In a 

smaller study of 895 Swedish men born in 1913, Welin and colleagues (1992) 

performed oral glucose tolerance tests and collected samples for insulin at baseline, 1 

hour and 2 hours. They demonstrated that the incidence of coronary artery disease was 

related to triglyceride, cholesterol and fasting, 60 and 120 minute plasma glucose 

concentrations, but that the fasting serum insulin concentration was of borderline 

significance: in fact when known diabetic patients were excluded from the study only 

serum cholesterol and triglyceride levels emerged as statistically significant risk 

factors. Lastly, the Edinburgh study of 107 men aged 40 years at baseline examined 

the 12 year incidence of coronary artery disease. In those who developed coronary 

heart disease, the fasting insulin concentration was higher but not significantly so. 

Body mass index and abdominal skin folds were stronger indicators of subsequent 

disease. This is the only large study where HDL cholesterol was measured at baseline: 

regression analysis demonstrated a significant inverse relationship with subsequent 

coronary artery disease (Hargreaves et al, 1992).

These studies have correlated absolute insulin levels to the incidence of 

atherosclerotic complications; there are no data available on the relationship of insulin 

resistance per se, using more direct measures of insulin sensitivity. All of these studies 

(with one exception) only included white middle aged males and the effects of all but 

the highest concentrations of insulin on cardiovascular events were relatively minor. It 

must be borne in mind that hyperinsulinaemia and insulin resistance are associated 

with other potential metabolic risk factors for coronary artery disease including 

fibrinogen, lipoprotein (a) and plasminogen activator inhibitor levels. Many of these
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variables were not measured in the above major epidemiological studies and it is 

possible that insulin is acting as a surrogate marker for other, more potent coronary 

risk factors.

1.2. CLINICAL ASSESSMENTS OF INSULIN SENSITIVITY.

There are various reasons for measuring insulin sensitivity in vivo. Firstly we 

may wish to define the importance of diminished insulin sensitivity as opposed to 

other associated factors such as exhausted beta-cell reserve. Secondly, the 

demonstration of impaired insulin sensitivity in vivo allows the identification of 

conditions in which a specific defect in insulin action should be sought. Lastly, the 

ability to measure insulin sensitivity accurately and reproducibly facilitates the 

evaluation of the efficacy of therapeutic regimens, for example, either drug treatments 

or a change in lifestyle.

The expression of insulin action in any isolated tissue is measured by 

establishing a dose response relationship between the concentration of insulin and 

some index of insulin action. Such data may then be amenable to standard analysis 

such as the application of Michaelis-Mentin kinetics to express insulin action in terms 

of Vmax or Km. Thus the satisfaction of these needs ideally requires a stable, 

quantitative relationship between plasma insulin concentration and some measurable 

insulin-dependent metabolic response. Three techniques, each with a different set of 

limitations, fulfil this requirement, and have found widespread use in clinical research: 

the euglycaemic hyperinsulinaemic clamp, the insulin suppression test, and the 

frequently sampled intravenous glucose tolerance test with model analysis. 

Unfortunately, each of these techniques is relatively labour intensive and not suitable 

for large scale measurement of insulin resistance in epidemiological studies. Thus, 

simple tests such as the measurement of serum insulin or C-peptide levels in the
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fasting state or after an oral glucose load have been used to infer indirectly the 

presence of insulin resistance.

1.2.1. ORAL GLUCOSE TOLERANCE TEST

In the 1930’s, Himsworth introduced the first standard approach to measuring 

insulin sensitivity in vivo (Himsworth, 1936 & 1939). Two oral glucose tolerance tests 

(OGTT) were performed on individual subjects: one with and one without an 

intravenous insulin injection. Insulin sensitivity was expressed as the ratio of the areas 

under the respective glucose tolerance curves, but without direct measurements of 

plasma insulin concentrations Himsworth could only infer differences in tissue insulin 

sensitivity, e.g. between type I (insulin dependent) and type II (non-insulin dependent) 

diabetic patients. Thus, he was unable to exclude differential effects of exogeneous 

insulin on glucose absorption and suppression of endogenous insulin release, or 

differences due to variation in insulin clearance.

Since its initial use by Himsworth, the OGTT has been used by many 

investigators to examine metabolic responses in a variety of disorders. It can provide a 

simple, albeit indirect, estimation of whole-body insulin sensitivity. Inappropriately 

elevated plasma insulin concentrations, e.g. 2 hours after an oral or intravenous 

glucose load, in the face of normal or above-normal plasma glucose concentrations, is 

generally accepted as evidence for decreased overall tissue sensitivity to insulin. 

However, the heterogeneity of OGTT profiles in both normal and diabetic subjects has 

been widely emphasised (Reaven & Miller, 1968), and it is essentially impossible to 

draw conclusions about insulin sensitivity when an intervention (e.g. drug) or disease 

(e.g. NIDDM) under investigation is potentially associated with changes in insulin 

secretion as well as insulin action. For example, changes in peripheral insulin 

sensitivity affect plasma glucose concentrations, which in turn affect glucose-induced 

insulin release, making it impossible to differentiate between pancreatic and
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extra-pancreatic effects. Thus, an OGTT characterises the net effect of several 

glucoregulatory mechanisms but provides only limited information about individual 

pathways and insulin sensitivity; it is nevertheless useful for larger studies, when 

absolute measurements of insulin-mediated glucose uptake are not required, and when 

the study design uses individuals as self-controls.

1.2.2. INTRAVENOUS GLUCOSE TOLERANCE TEST.

A conventional intravenous glucose tolerance test (IVGTT) characterises the 

early and late phases of insulin secretion following bolus injection of a glucose load. 

The net fractional glucose disappearance rate (K value) is easily calculated from the 

profile of plasma glucose concentrations, but differences in K cannot distinguish 

between effects on insulin secretion and insulin action.

Bergman and colleagues have described a modification of the IVGTT - the 

so-called "minimal model" or frequently sampled IVGTT - that provides a quantitative 

index of insulin sensitivity (Yang et al, 1987). An intravenous bolus of glucose is 

followed 20 minutes later by an injection of insulin or tolbutamide 500mg; some 30 

blood samples are then collected over 180 minutes for glucose and insulin 

measurements which are analysed using computer-based model predictions of 

insulin’s effect on glucose kinetics. The crucial piece of software, marketed and 

apparently understood only by the authors, calculates an index of insulin sensitivity 

with few details of how the measurement was derived. Despite the complexity of this 

method, parameters derived from the minimal model correlate well with other 

techniques (Bergman et al, 1987).
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1.2.3. EUGLYCAEMIC HYPERINSULINAEMIC CLAMP AND 

HYPERGLYCAEMIC CLAMP TECHNIQUES.

Andres (1966) was the first to propose that a dose-response measure of insulin 

action in the whole body could be derived by maintaining a stable plasma insulin 

concentration, thus disrupting the glucose-insulin feedback mechanism which 

regulates insulin action and secretion.

Thus, the widely popular, though labour intensive, euglycaem ic 

hyperinsulinaemic clamp was initially described by Andres and he evaluated it further 

in collaboration with DeFronzo (DeFronzo et al, 1979). The technique uses a 

constant intravenous infusion of soluble insulin (e.g. 1.5 mU/kg/min) to increase 

circulating insulin concentrations by about lOOuU/ml. Many rates of insulin infusion 

have been used, and the resultant hyperinsulinaemia also depends on the metabolic 

clearance rate of insulin itself. However, as insulin clearance is rapid, "steady state" 

insulin concentrations are usually attained within 30 minutes in healthy subjects.

Normally the glucose level would decline under these conditions, reflecting the 

action of insulin to increase glucose utilisation by some tissues and to reduce hepatic 

glucose output. However, a substantial decline is prevented by making rapid and 

frequent measurements of the plasma glucose during the procedure and by the 

administration of a variable-rate infusion of 20% glucose to maintain plasma glucose 

at a target value, usually 5-6 mmol/L. Although the increase in plasma insulin 

concentration is within 30 minutes, there is a time lag of 1-2 hours before the maximal 

hypoglycaemic stimulus is observed. Thus, during a typical clamp, the glucose 

infusion rate is increased progressively until a steady state equilibrium is achieved, 

usually at around 120 minutes [figure 1.4]. Calculations of insulin sensitivity are based 

on a 30-40 minute period of steady state infusion when the rate of glucose input 

approxim ates to whole body insulin  sensitivity (M value expressed in mg 

glucose/kg/min). Thus it is necessary to maintain the infusions for at least 3 hours.
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Figure 1.4.: Representative euglycaemic hyperinsulinaemic clamp in a healthy 

volunteer. The exogenous insulin infusion (1.5 mU/kg/min) produces a "steady-state" 

serum insulin concentration approx. lOOuU/ml above the basal fasting value (top panel). 

A dose dependent fall in serum potassium is observed (middle panel). Whole body 

glucose disposal, M, in mg glucose/kg min is calculated during "steady state" at the end 

of the 3 hour clamp. ▼ = plasma glucose concentration (lower panel).
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The glucose infusion rate can be adjusted manually in response to rapid 

measurements of plasma glucose at the bedside, or automatically with a computerised 

glucose-controlled infusion system derived from mathematical formulae [Biostar] 

(Ponchner et al, 1984). Manual corrections are perfectly adequate, but as they can be 

influenced by subjective bias, estimated to be up to 15% (Greenfield et al, 1981), in 

clinical pharmacological studies it is still important that the investigator remains blind 

to drug administration. Rebound hypoglycaemia is a potential complication if glucose 

and insulin infusions are stopped simultaneously. This is easily avoided by continuing 

intravenous glucose for an extra 20 minutes and promptly feeding the subject at the 

end of the infusions. In vivo insulin infusion with maintenance of euglycaemia causes 

a dose-dependent fall in plasma potassium concentrations by promoting potassium 

uptake into the liver and peripheral tissues. However, below a threshold potassium 

level the splanchnic potassium exchange switches from a net uptake to a net release, 

so preventing further hypokalaemia (DeFronzo et al, 1980). Thus, potassium 

replacement in the infusate is usually unnecessary.

The clamp provides an overall measurement of whole-body insulin sensitivity, 

which represents the net balance of peripheral glucose utilisation and endogenous 

hepatic glucose production, but there has to be some concern that measurements 

derived under such artificial conditions might not be a true reflection of physiological 

responses to insulin. In insulin resistant states, especially NIDDM, it is unlikely that 

the insulin stimulus will completely suppress glucose secretion from the liver. 

However, by combining the clamp with a constant infusion of radiolabelled tracer 

([3H] - or [2H] - glucose), it is possible to quantify rates of glucose appearance (Ra) 

and disappearance (Rd) which correspond to hepatic glucose production and peripheral 

glucose utilisation respectively (Finegood et al, 1987). These methods depend upon 

steady-state conditions at the time of blood sampling but some investigators doubt 

whether a true equilibrium is achieved after 3 hours, raising questions about the 

accuracy and reproducibility of these measurements.
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The glucose taken-up by skeletal muscle is processed through oxidative (i.e. 

glycolytic) or non-oxidative (e.g. glycogen synthetic) pathways of metabolism, and by 

combining the euglycaemic clamp with a [3H]-glucose infusion and indirect 

calorimetry (Ferrannini et al, 1989), it is possible to quantify peripheral glucose 

utilisation in terms of oxidative and non-oxidative rates of disposal.

The glucose clamp technique is a measure of insulin sensitivity but provides no 

information on insulin secretion. The hyperglycaemic clamp is a method based on the 

same principle but devised to quantify beta-cell sensitivity; the plasma glucose 

concentration is acutely raised to a plateau (e.g. 14 mmol/L) by a priming infusion of 

glucose, and the resultant biphasic insulin response measured (DeFronzo et al, 1979).

The euglycaemic hyperinsulinaemic clamp is discussed in more detail in 

chapter 2.3 and chapter 3.

1.2.4. INSULIN SUPPRESSION TEST.

The principle of the insulin (or pancreatic) suppression test involves 

pharm acological inhibition of endogenous insulin  secretion, and other 

counter-regulatory hormones (e.g. glucagon and growth hormone), during constant 

infusions of glucose and insulin. Endocrine suppression was originally achieved using 

intravenous infusions of epinephrine and propranolol (Porte, 1967), but lately this has 

been replaced by somatostatin (Harano et al, 1987), or the somatostatin-analogue 

octreotide, which is more widely available and appears to be better tolerated. As with 

the clamp, plasma glucose and insulin concentrations gradually reach a plateau [figure 

1.5]; the steady state plasma glucose concentration (SSPG) is a reflection of whole 

body insulin sensitivity.
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Figure 1.5.: Representative insulin suppression test in a healthy volunteer. After around 

120 minutes infusion of insulin, glucose and somatostatin the steady state plasma 

insulin SSPI, and steady state plasma glucose SSPG are calculated, o = plasma glucose 

(mmol/L), A = serum insulin (uU/ml).
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1.2.5. MODEL DERIVED PARAMETERS OF INSULIN SENSITIVITY

Mathematical models have been derived to describe the complex kinetics of 

glucose and insulin under physiological conditions, to derive parameters for peripheral 

insulin sensitivity and to evaluate 6-cell dysfunction. The technique of HOMA 

(homeostatic model assessment), for example, uses measurements of fasting plasma 

glucose and insulin to derive an index of insulin sensitivity (S) which shows good 

correlation with parameters derived from infusion techniques (Turner et al, 1979; 

Matthews et al, 1985). Since basal (fasting) insulin concentrations are particularly 

subject to assay variability, Hosker and colleagues (1985) attempted to improve on the 

assessment of insulin sensitivity from HOMA by stimulating endogenous insulin 

secretion by a constant infusion of glucose. Thus, CIGMA (continuous infusion of 

glucose with model assessment) defines insulin sensitivity from the steady state levels 

of glucose and (endogenous) insulin after 2 hours. These "structural" model 

predictions have many advantages - not least that measurements reflect physiological 

responses to endogenous insulin, rather than "pharmacological" infusions - but as with 

all models there are some inherent assumptions that may be over simplistic; for 

example, that various tissues in different subjects behave similarly with respect to 

glucose metabolism, and many of the variables used to calculate insulin sensitivity are 

not individualised for each subject.

1.2.6. ARTERIALISED BLOOD SAMPLING.

For both of the principal infusion techniques for assessing insulin sensitivity, 

the euglycaemic hyperinsulinaemic clamp and minimal model, it has been emphasised 

that blood used to measure plasma glucose concentrations should preferably be 

sampled from the arterial side of the circulation. Thus, during hyperinsulinaemic 

stimulation glucose extraction across the capillary bed is high, resulting in a
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significant arterio-venous difference in glucose concentration. As arterial cannulation 

is associated with increased morbidity, cannulation of a dorsal hand vein surrounded 

by a heated box is often preferred. The hand is warmed either by hot air (McGuire et 

al, 1976) or a heated pad (Forster et al, 1972). The theory of this manoeuvre is that the 

hand has relatively little muscle bulk and the local application of heat will create a 

physiological arteriovenous shunt (Roddie et al, 1956), thus minimising glucose 

extraction.

The methods for arterialisation of venous blood are discussed in more detail in 

chapter 2 [section 2.3] and chapter 3.

1.2,7. GLUCOSE CLAMP VERSUS IVGTT VERSUS MINIMAL MODEL:

WHICH IS BETTER?

None of the three methods for evaluating insulin sensitivity can categorically 

be said to be "better" as they were developed for different purposes. The clamp is 

frequently the method of choice when resources are available which allow a controlled 

laboratory environment The procedure is compromised however by being relatively 

time-consuming and labour intensive and therefore studies using the clamp are usually 

restricted to a relatively small number of subjects. Nevertheless, the performance of a 

series of clamp experiments within an individual gives an excellent index of insulin 

sensitivity and allows accurate assessment of both peripheral glucose utilisation and 

hepatic glucose output. The inventors of the minimal model claim it has attributes not 

possessed by the clamp. It allows simultaneous assessment of B-cell secretory function 

and requires less blood sampling and less intervention than the clamp. It therefore 

would be the method of choice in studies requiring assessment of insulin sensitivity in 

a large number of subjects. L ikew ise, the insulin  suppression test is less 

time-consuming than the clamp technique and may be preferable in larger scale 

studies.
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1.3 EFFECTS OF PHARMACOLOGICAL AND NON

PHARMACOLOGICAL INTERVENTIONS ON INSULIN 

SENSITIVITY,

The notion that an im provem ent in insulin  sensitiv ity  may reduce 

cardiovascular risk and perhaps lower blood pressure has focussed attention on the 

effects of both pharmacological and non-pharmacological interventions on insulin 

resistance.

1.3.1. NON-PHARMACOLOGICAL METHODS OF MODIFYING INSULIN

SENSITIVITY

(i) Physical exercise.

It is well established that physical exercise can improve glucose tolerance in 

obese individuals, patients with diabetes and in normal subjects. A relationship 

between physical fitness and insulin-stimulated glucose disposal has been established 

in both cross-sectional and exercise training studies (Rosenthal et al, 1983; Rodnick et 

al, 1987); regular aerobic exercise is antihypertensive and is associated with an 

improvement of insulin sensitivity and progressive lowering of plasma insulin 

responses to a glucose challenge (Bogardus et al, 1984; DeFronzo et al, 1987). The 

relationship of physical training to enhanced insulin sensitivity is independent of 

obesity, as brief training bouts can improve insulin sensitivity in the absence of any 

changes in body weight in patients with NIDDM (Rogers et al, 1988) and essential 

hypertension (Saito et al, 1992). The improvement in insulin sensitivity observed 

appears to be shortlived; for example, trained atheletes who do not exercise for several 

days show a deterioration in insulin sensitivity in the absence of changes in body 

weight (Heath et al, 1983).

Thus, there is ample evidence that regular exercise can improve insulin
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sensitivity in humans. The associated benefits of regular exercise of reduction in blood 

pressure and plasm a trig lyceride  concentrations make it an im portant 

non-pharmacological measure in the reduction of cardiovascular risk.

(ii) Obesity and weight loss.

There is much evidence suggesting a relationship between insulin resistance 

and obesity (Despr6s et al, 1990; Cambien et al, 1987). Several studies in obese 

patients both with and without diabetes have shown that weight reduction, whether 

induced by low-calorie diets (Olefsy et al, 1974; Calle Pascual et al, 1991; Fukagawa 

et al, 1990) or gastric bypass surgery (Hughes et al, 1984; Hale et al, 1988) results in 

improvement in glycaemic control and insulin sensitivity. The mechanisms underlying 

these changes remain poorly defined. What is evident is that the improvement in 

insulin sensitivity observed with weight loss is unrelated to the baseline body weight 

or to the absolute or relative weight loss achieved. For example, Olefsky and 

colleagues (1974) demonstrated that a weight loss of 10kg in moderately obese 

individuals resulted in approximately a 37% increase in insulin sensitivity whether the 

subjects weight decreased from 108kg to 97kg or 86kg to 75kg.

A recent randomised study in 64 obese hypertensive men which compared the 

effects of dietary weight reduction versus antihypertensive drug therapy upon insulin, 

glucose, lipid metabolism and blood pressure reported that dietary therapy was inferior 

in controlling hypertension but superior in lowering plasma insulin concentration and 

improving the serum lipid profile (Faberberg et al, 1992).

Much recent work has focussed on the relationships between regional fat 

distribution, most commonly waist-hip ratio, and insulin resistance. It has been shown 

that a subjects with upper body fat distribution are more insulin resistant than subjects 

with the same body mass index, but with lower body fat distribution (Evans et al, 

1984; Peiris et al, 1988).
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(iii) SmQ^ag.

Cigarette smoking is associated with the lipid abnormalities of increased 

plasma triglyceride concentrations and decreased HDL cholesterol concentrations. A 

recent cross-sectional study which evaluated the insulin sensitivity  of 20 

normotensive, glucose tolerant male smokers as compared to 20 age and weight 

m atched non-sm oking controls suggested that the smokers were both 

hyperinsulinaemic and insulin resistant (Facchini et al, 1992). Further studies are 

required to define the relationship between both acute and chronic effects of cigarette 

smoking on in vivo insulin action

1.3.2 PHARMACOLOGICAL METHODS OF MODIFYING INSULIN

SENSITIVITY

Numerous drugs affect glucose tolerance (Pandit et al, 1993), usually via 

changes in insulin secretion, while some exert peripheral effects on insulin target 

tissues. In general, the nature and magnitude of drug effects on insulin-dependent 

metabolic pathways have been poorly characterised and sometimes misrepresented. 

Non-pharmacological measures that improve insulin sensitivity, e.g. weight loss and 

physical exercise [chapter 1.3.1] are effective in lowering glucose and triglyceride 

levels but few drugs, other than the biguanides, enhance insulin signalling. Much 

recent research has focussed on the metabolic effects of drugs used to treat 

hypertension. This section will review the studies evaluating the effects of 

antihypertensive drugs on glycaemic control. The effects of the currently available oral 

hypoglycaemic agents and novel insulin sensitising drugs which are undergoing 

clinical development will also be discussed.

The notion that insulin resistance and hyperinsulinaemia might increase the 

risk of atherosclerosis has focussed attention on the differential effects that

64



antihypertensive drugs may exert on glucose homeostasis and insulin resistance.

These studies have largely been prompted by the hypothesis that the use of the 

more traditional antihypertensive agents may explain the "paradox" that treatment of 

mild hypertension fails to reverse the excess risk of coronary heart disease (Pollare et 

al, 1989b; Poulter et al, 1990). For example, a recent meta-analysis suggests that the 

mean reduction in diastolic blood pressure of 5-6mm Hg in the large hypertension 

trials results in virtually all the epidemiologically predicted stroke reduction (42%), 

but that coronary heart disease was reduced by only half (14%) of that expected 

(Collins et al, 1990). Data from these trials, however, suggest that clinically important 

glucose intolerance occurred in only 2.5% of patients taking thiazides and 1% of those 

taking propranolol or placebo over the 5 year period (MRC Trial, 1985). Other 

authors have therefore seriously questioned the clinical importance of "iatrogenic" 

worsening of insulin resistance (Yudkin 1991).

Many of the studies in the literature are unfortunately compromised by poor 

trial design, lack of full placebo data, various indirect measurements of insulin 

sensitivity and heterogeneous patient groups in whom the biochemical mechanisms of 

insulin resistance may not be the same.

(i) Thiazide diuretics.

Diuretic therapy is of proven efficacy in the control of hypertension and has 

been part of the therapeutic regimen used in most of the major blood pressure 

intervention trials. It has long been recognised that diuretic therapy for the treatment of 

hypertension may be associated with impaired glucose tolerance. This complication 

was highlighted in a study published in 1982 which performed serial oral glucose 

tolerance tests over a 14 year period in diuretic treated hypertensive patients (Murphy 

et al, 1982). They demonstrated substantial deterioration in glucose tolerance but the 

results are difficult to interpret in the absence of a control group. Diuretic therapy has 

recently undergone considerable scrutiny and data from numerous controlled trials are
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now available which have established a relationship between diuretic treatment and 

impaired glucose tolerance. For example, in the single blind MRC trial in mild 

hypertension (1985), bendrofluazide (lOmg daily) was compared with placebo and 

oral glucose tolerance tests were performed if the random plasma glucose was greater 

than 8.3 mmol/L or the fasting value was greater than 6.0 mmol/L. Over the 3 years, 

the incidence of impaired glucose tolerance (per 1000 treated patient years) was 9.4 

for bendrofluazide vs. 2.5 for placebo in men, and 6.0 vs. 0.8 in women. Similar 

results have been reported in large scale double blind studies. For example, in the 

Systolic Hypertension in the Elderly Programme (SHEP) trial (1988) blood sugar was 

significantly higher after 12 months of treatment with chlorthalidone. In the European 

Working Party on High Blood Pressure in the Elderly (EWPHE) trial (Amery et al, 

1989), fasting blood sugar was increased by diuretic therapy after 12 months and 

remained significantly elevated (by approximately 6%) after 3 years. Therefore, there 

is good evidence that long term diuretic treatment is associated with increased 

incidence of impaired glucose tolerance in hypertensive patients.

Peripheral insulin resistance has been implicated as one possible mechanism of 

thiazide induced glucose intolerance but in contrast to the wealth of evidence that 

impaired glucose tolerance occurs with diuretic treatment, there is a surprising lack of 

clinical trials examining the effects of thiazides on insulin sensitivity. In Pollare’s 

study comparing captopril to hydrochlorthiazide at an average dose of 40mg/day for 

14 weeks, it was reported that the diuretic significantly impaired insulin sensitivity, 

but this study was not placebo-controlled (Pollare et al, 1989a). Swislocki also 

reported impaired peripheral insulin sensitivity with thiazides in an uncontrolled study 

(Swislocki et al, 1989). However, a recent crossover study using the euglycaemic 

hyperinsulinaemic clamp showed no effect of bendrofluazide 1.25mg or 5mg on 

insulin sensitivity after 12 weeks (Harper et al, 1993).
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(ii) Angiotensin converting enzvme inhibitors.

Incidental observations appeared in the m id -^ S O ’s suggesting an 

improvement in glucose tolerance after treatment with an ACE inhibitor. Anecdotal 

reports from diabetic clinics also described a reduction in insulin requirements or 

discontinuation of oral hypoglycaemic therapy after the introduction of either captopril 

or enalapril (Ferriere et al, 1985; McMurray & Fraser, 1986); even hypoglycaemic 

episodes were attributed to ACE inhibition (Rett et al, 1988). When given acutely to 

hypertensive patients with NIDDM (Torlone et al, 1991), or normotensive individuals 

(Jauch et al, 1987), captopril has been reported to increase insulin-mediated glucose 

disposal. Jauch proposed that the increase in insulin sensitivity is secondary to 

increased glucose uptake into skeletal muscle; the amount of glucose taken up 30 

minutes after a single oral dose of captopril was 2.22uM/100g/min compared with 

0.83 uM/lOOg/min after placebo. In a similar study but in patients with insulin 

dependent diabetes mellitus, Helve and colleagues (1993) reported no acute effect of 

captopril on insulin sensitivity using the euglycaemic hyperinsulinaemic clamp.

The most widely quoted study of ACE inhibitors and insulin sensitivity is by 

Pollare and colleagues (Pollare et al, 1989a). This study was performed in 50 

non-diabetic hypertensive subjects to compare captopril and hydrochlorothiazide, each 

administered for 16 weeks, in a randomised, cross-over design. Despite a 4-week 

washout phase, carry-over effects hampered the intended analysis, so results were 

presented for two parallel groups during the first treatment phase only. There was no 

difference in fasting plasma glucose and insulin levels, or glycosylated haemoglobin, 

but insulin stimulated glucose disposal increased marginally from 5.7 to 6.3 mg 

glucose kg/min after captopril, compared with a change from 6.4 to 5.7 mg 

glucose/kg/min with the diuretic. In a similar study with enalapril (Prince et al, 1988), 

haemoglobin Alc decreased after 4 weeks of the ACE inhibitor but there was no 

change in the glucose disposal rate. Likewise, a placebo-controlled open trial which
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evaluated the effects of 3 months therapy of the ACE inhibitor cilazapril on glucose 

tolerance and insulin sensitivity in 20 patients with essential hypertension reported no 

effect of chronic ACE inhibition on insulin sensitivity, substrate oxidation or 

thermogenesis (Santoro et al, 1992).

Thus, there are conflicting data which demonstrate striking inconsistencies 

concerning the effects of ACE inhibitors on insulin sensitivity. For example, of 34 

studies in which some parameter of glycaemic control was assessed in patients with 

NIDDM and hypertension receiving an ACE inhibitor, improvements were noted in 

only 13: 3 out of 9 studies with enalapril and 8 out of 24 with captopril (Stein & 

Black, 1991). However, few, if any, studies of the metabolic effects of ACE 

inhibitors have been properly controlled, and there are no direct comparisons with 

placebo.

(iii) Calcium channel blockers

Many investigators have reported the effects of calcium antagonists on 

glucose homeostasis, but often these studies are not comparable because of different 

design and heterogeneous patient groups. Furthermore, the calcium antagonists are a 

heterogeneous group of compounds (i.e. dihydropyridines, benzothiazepines, 

phenylalkalamines) which may exert differential effects on the peripheral vasculature 

and cardiac conduction system. Acute treatment may influence glucoregulatory control 

d ifferently  from chronic treatm ent; this is especially  im portant for the 

dihydropyridines which are characterised by sympathetic augmentation on acute 

dosing.

In two placebo-controlled acute experiments, neither single therapeutic doses 

of oral nifedipine (Joffe et al, 1983) nor a bolus of intravenous verapamil (Rodjmark et 

al, 1980) affected the fasting glucose concentrations or plasma insulin levels in healthy 

normotensive subjects. These findings have been confirmed in other studies. In 

contrast, several studies examining the "short-term" effects of different calcium
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antagonists on glucose tolerance, as assessed by either an oral or intravenous glucose 

challenge, have yielded conflicting results. For example, a detrimental effect of 

verapamil was reported in a small placebo-controlled study of 7 healthy subjects when 

5g of intravenous glucose was administered with an infusion of verapamil [9.6mg/hr] 

(Giugliano et al, 1981). The disappearance rate of glucose and the insulin output were 

both diminished. However, when 20g of glucose was administered under similar 

experimental conditions by the same group, glucose and insulin levels remained 

unchanged. Likewise, the areas under the curve of glucose and insulin were similar 

after a lOOg OGTT with or without concomitant infusion of verapamil [5mg/hr over 2 

hours] (Andersson & Rodjmark, 1981). In contrast, an almost identical protocol led to 

a significant increase in blood glucose and a decrease in plasma insulin between 30 

and 120 minutes after the verapamil infusion was started (De Marinis & Barbarino, 

1980).

Such conflicting results are not unique to verapam il; studies with 

dihydropyridines have caused similar confusion. Two placebo-controlled studies 

reported no change in the profiles of blood glucose and insulin profiles when lOmg 

(Donnelly & Harrower, 1980), and 20mg (Pasanisi et al, 1986) of nifedipine were 

given after a 50g OGTT and IVGTT in healthy volunteers and patients with essential 

hypertension, respectively. However, in another study, when repeated doses of 

nifedipine were given after a lOOg OGTT (20mg of nifedipine in total) the AUC 

glucose profile was significantly increased but the AUC insulin profile remained 

unchanged (Ferlito et al, 1980).

Several studies have examined the effects of long term administration of 

calcium antagonists on glucose homeostasis. Patients with angina pectoris or essential 

hypertension undergoing long term treatment with calcium antagonists (6 weeks to 62 

weeks) have been studied. Trials of 5 different calcium antagonists, nifedipine 

(Landmark, 1985), verapamil (Lang et al, 1981), diltiazem (Pool et al, 1985) and 

nitrendipine (Ferrara et al, 1985) have concluded that there is no adverse effect on



blood glucose, plasma insulin and C-peptide concentrations. Again, there are 

conflicting data; Oehman and colleagues (1985) studied 25 hypertensive patients in a 

placebo-controlled crossover study of nifedipine over a 6 week period. They 

concluded that blood glucose and insulin levels were both significantly elevated, but 

conversely, the glycosylated haemoglobin concentration was significantly lower after 

6 weeks of treatment. Another study with diltiazem and metoprolol in 52 non-diabetic 

hypertensive patients (Hedner et al, 1990), concluded that diltiazem had a significant 

detrimental effect, but the endpoint was fasting blood sugar concentration and the 

resultant values were still within the normal range.

Few studies of calcium antagonists have used direct measurements of insulin 

sensitivity. In two studies using the euglycaemic hyperinsulinaemic clamp, neither 

diltiazem (Pollare et al, 1989b) nor verapamil (Berne et al, 1991) had any effect on 

insulin sensitivity.

In single dose or short term experiments of patients with NIDDM, conflicting 

results have also been reported. Most studies, with or without a glucose challenge, 

report a neutral effect; for example, when lOmg of nifedipine was administered to 8 

elderly diabetics, no effect on fasting blood sugar and plasma insulin levels was found 

(Donnelly & Harrower, 1980). A similar neutral effect has been reported by other 

groups for nifedipine (Collins et al, 1986), verapamil (Ferlito et al, 1982) and 

diltiazem (Wada et al, 1982). In contrast, a beneficial effect of an intravenous infusion 

of verapamil on the AUC of glucose following an OGTT has been reported in two 

placebo-controlled studies (Andersson & Rodjmark, 1981; Rodjmark et al, 1981). The 

plasma insulin concentrations remained unchanged however. Other studies have 

reported significantly increased blood glucose concentrations and reduced plasma 

insulin concentrations for nifedipine, (Deedwania et al, 1984; Sando et al, 1983), but 

the doses studied were high. A poorly controlled single blind study of felodipine 

(Kjellstrom et al, 1991) reported a significant increase in the glucose AUC following 

an OGTT.
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Long term studies have generally only studied small numbers of patients. 

Despite anecdotal reports that a deterioration in glucose tolerance may occur in 

individual cases when a calcium antagonist is prescribed (Bhatnagar et al, 1984; 

Iversen et al, 1990), the majority of controlled studies, for example, with nifedipine 

(Winocour et al, 1986), verapamil (Whitcroft et al, 1986) and nitrendipine (Trost et al, 

1987) have detected no deterioration in fasting blood sugar levels, fasting insulin 

levels or glycosylated haemoglobin concentration. Similar results have been reported 

following an oral glucose challenge with diltiazem (Wada et al, 1982) and nitrendipine 

(Odigwe et al, 1986). A recent double-blind placebo-controlled crossover study, using 

the euglycaemic clamp, evaluating the effects of long term isradipine administration 

on peripheral insulin sensitivity also reported a neutral effect (Klauser et al, 1991).

In summary, currently available data suggest that calcium antagonists do not 

alter glucose homeostasis when given acutely in therapeutic doses, although some 

short term studies in non-diabetic hypertensive patients have reported increased fasting 

blood sugar levels and reduced insulin sensitivity with the dihydropyridines. 

Interpretation of many of these studies is difficult because of uncontrolled study 

designs.

(iv) Beta-adrenoceptor blockers.

The suggestion that B-adrenergic blocking agents may increase the risk of 

developing diabetes mellitus in patients with essential hypertension first emerged from 

longitudinal studies which compared treated hypertensive patients with a healthy 

normotensive control group and attributed the higher incidence of diabetes in the 

hypertensive patients to their therapy (Bengston et al, 1984; Skarfors et al, 1989). 

Such longitudinal, poorly controlled reports should be viewed with caution; for 

example, in a large cross-sectional study Halkin and colleagues (1989) reported no
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difference in the prevalence of glucose tolerance and diabetes mellitus between an 

untreated hypertensive group and patients treated with B-adrenergic blocking agents.

Nevertheless, B-adrenergic blocking agents have been shown in smaller studies 

to increase fasting blood sugar and to decrease glucose tolerance in diabetic and non 

diabetic hypertensive subjects (Helgeland et al, 1984; Struthers et al, 1985). The 

release of insulin from the pancreas is modulated by B-adrenergic receptors and 

B-adrenergic blocking agents are reported to inhibit insulin secretion by as much as 

50% (Kendall et al, 1988).

Whether B-adrenergic blocking agents influence insulin sensitivity remains 

uncertain. In a study using the euglycaemic hyperinsulinaemic clamp, Pollare and 

colleagues (1989c) reported a deterioration in insulin sensitivity in hypertensive 

patients after treatment with the B 1-adrenergic blocking agents metoprolol and 

atenolol, but the results may have been confounded by weight gain in the B-blocker 

treated group. In contrast, in subjects with impaired glucose tolerance, metoprolol and 

atenolol have been reported to improve insulin sensitivity as compared with placebo 

(Faberberg et al, 1990).

(v) Alpha receptor blockers

Alphaj -adrenergic receptor antagonists such as prazosin, terazosin and 

doxazosin effectively reduce blood pressure without affecting lipid or glucose control. 

A study evaluating the metabolic effects of prazosin reported an improvement in 

insulin sensitivity but this was not placebo controlled (Pollare et al, 1988).

In summary, a disappointing feature of many of the published trials which have 

evaluated the effects of antihypertensive therapy on glucoregulatory control 

mechanisms is that many are uncontrolled or have used "indirect" endpoints such as 

fasting glucose and insulin concentrations to infer information about changes in
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insulin resistance. There are few, if any, well controlled studies using direct, 

reproducible measurements of insulin sensitivity.

1.3.3. ORAL HYPOGLYCAEMIC AGENTS.

(i) Metformin.

Metformin is widely used in the treatment of NIDDM, both as monotherapy 

and in combination with sulphonylureas. The glucose-lowering effect occurs without 

stimulation of insulin secretion and several mechanisms have been suggested, 

including delayed gastrointestinal absorption of glucose (Czyzyk et al, 1968), 

enhanced insulin sensitivity (Gin et al, 1983) and suppression of hepatic glucose 

production through inhibition of gluconeogenesis (Wollen & Bailey, 1988). Although 

the principal underlying mechanism remains unclear, several studies have shown 

increases in insulin-stimulated glucose uptake and oxidative metabolism in muscle 

(Fantus & Bousseau, 1986; De Fronzo et al, 1991; Widen et al, 1992). However, this 

is not a universal finding (Jackson et al, 1987), and many believe that the 

hypoglycaemic effect is largely due to a reduction in hepatic glucose output (Wollen 

& Bailey, 1988). Consistent with its putative insulin-mimetic actions, metformin has 

other beneficial effects on lowering triglyceride levels, body weight and even blood 

pressure.

(ii) Sulphonvlureas.

These drugs form the mainstay of oral therapy for NIDDM but there is still 

some debate about whether sulphonylureas lower glucose levels by mechanisms in 

addition to stimulation of insulin secretion (Feldman & Lebovitz, 1969). Part of the 

controversy about extrapancreatic effects stems from studies evaluating insulin 

responses during chronic therapy; hypoglycaemic effects were observed with little or 

no change in plasma insulin concentrations (Barnes et al, 1974). In addition, several
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studies have demonstrated improved insulin sensitivity (Kolterman et al, 1984; 

Simonson et al, 1984) and increased receptor binding (Beck-Nielsen et al, 1979). 

However, at present, the balance of evidence is probably against significant 

extrapancreatic effects; for example, sulphonylureas do not lower plasma glucose 

levels in patients with IDDM or patients with NIDDM rendered insulinopaenic with 

somatostatin (Widen et al, 1991), and it is quite possible that the apparent increase in 

insulin sensitivity is a non-specific response secondary to improved glycaemic control, 

rather than any direct peripheral effect of the drug itself.

1.3.4. NEW PHARMACOLOGICAL APPROACHES TO NON-INSULIN

DEPENDENT DIABETES MELLITUS.

NIDDM is characterised by a triad of metabolic abnormalities: peripheral and 

hepatic insulin resistance, im paired insulin  secretion and hepatic glucose 

overproduction. There is some debate about which disorder arises first but insulin 

resistance, affecting multiple pathways of glucose and lipid metabolism, is generally 

regarded as the principal defect (DeFronzo et al, 1992). It therefore seems somewhat 

anomalous that sulphonylurea drugs, which are primarily insulin secretagogues, 

should form the mainstay of oral therapy; the ideal treatment should logically focus on 

reversing the peripheral defects in glucose and lipid oxidation. This is supported by 

the relatively high rates of secondary failure of sulphonylurea therapy (Groop & 

Pelkonen, 1984), which presumably reflect islet cell exhaustion in the face of sustained 

tissue insulin resistance. The last decade has seen enormous progress in defining the 

biochemistry of NIDDM, and has led to a variety of new pharmacological innovations, 

some of which are now entering early clinical development.

The thiazolidinedione derivatives represent a new structural class of 

antidiabetic compounds. Included in this group are ciglitazone, pioglitazone, 

englitazone and troglitazone. At least three are at present undergoing phase I and II
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studies, and a recent report demonstrated hypoglycaemic efficacy in patients with 

NIDDM (Suter et al, 1992; Iwamoto et al, 1991; Kuzuya et al, 1991). Analogues of 

this class lower plasma glucose, insulin and triglyceride levels in a variety of rodent 

models in which insulin resistance is a conspicuous feature, and biochemical studies 

have shown insulin-mimetic effects in each of the key target tissues (Hofmann & 

Colca, 1992). Thus, thiazolidinediones increase glucose oxidation in adipose tissue 

and muscle, increase glycogen and lipid synthesis from glucose and decrease 

glycogenolysis (Steiner & Lien, 1987; Colca & Morton, 1990). In vitro studies have 

shown that this group of drugs act as insulin -sensitisers; for exam ple, 

insulin-stimulated uptake of deoxyglucose in isolated adipocytes from KKAy mice 

was markedly more sensitive to insulin after pretreatment of these insulin sensitive 

animals with pioglitazone (Hofmann & Colca, 1992), and thiazolidinedione effects 

(like those of metformin) are dependent upon the presence of insulin (Hofmann et al, 

1991). In addition to their hypoglycaemic effects, these drugs have other properties 

that may be particularly useful in patients with NIDDM, including effects on 

HDL-cholesterol and possibly blood pressure (Yoshioka et al, 1993).

D ichloroacetate (DCA) represents a potentially  novel class of oral 

hypoglycaemic agents. DCA has no effect on insulin secretion but reduces plasma 

glucose levels via inhibition of hepatic glucose production and stimulation of 

peripheral utilisation (Stacpoole & Greene, 1992). The peripheral effect is due mainly 

to the stimulation of pyruvate dehydrogenase, which is the rate-limiting enzyme of 

glucose oxidation. In patients with NIDDM, short-term treatment with DCA was 

associated with a significant fall in triglycerides (Stacpoole et al, 1978). Clinical trials 

with DCA were discontinued due to one case of reversible neuropathy, but new DCA 

derivatives are now available (Stacpoole et al, 1987).

Elevation of free fatty acid levels is a well recognised feature of NIDDM, and 

there is evidence that this may be causally related to hyperglycaemia. Fatty acid 

release from adipocytes is dependent on the net balance between lipolysis and
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re-esterification. In NIDDM there is resistance to insulin-mediated suppression of 

lipolysis, which is the rate limiting step in free fatty acid re-esterification. The 

principal mechanism by which free fatty acids may be causal in hyperglycaemia is in 

stimulating gluconeogenesis in the liver. In addition, Randle and colleagues (1963) 

showed that free fatty acids exacerbate insulin resistance in skeletal muscle.

Insulin therapy and other inhibitors of lipolysis, e.g. nicotinic acid and its 

analogue acipimox, reduce levels of free fatty acids and glucose (Dulbecco et al, 

1989). Clinical trials with acipimox have shown useful effects on triglyceride levels 

and glycaemia (Fuccella et al, 1980), but rebound effects with these anti-lipolytic 

agents has focussed attention on different approaches to lowering elevated free fatty 

acid levels. One approach is with novel adenosine A-l receptor antagonists, for 

example, GR79236 (Strong et al, 1993), which inhibit catecholamine induced 

lipolysis. In addition, a series of inhibitors of free fatty acid oxidation are presently in 

various stages of development. In particular, a group of drugs that irreversibly inhibit a 

key mitochondrial enzyme involved in long-chain fatty acid oxidation, carnitine 

palmitoyltransferase-1 (CPT 1) have entered clinical development (Foley 1992). For 

example, preliminary studies with etomoxir in patients with NIDDM using the 

euglycaemic hyperinsulinaemic clamp showed a 33% increase in insulin-stimulated 

glucose disposal (Ratheiser et al, 1991).

1.4 SCOPE OF THE THESIS*

In recent years it has become recognised that clustering of metabolic 

abnormalities is an inherent feature of the hypertensive individual; patients with 

untreated essential hypertension have higher than norm al plasm a insulin  

concentrations, are resistant to insulin-stimulated glucose uptake, and often have 

accompanying lipid abnormalities. The extent to which insulin resistance is involved 

in the initiation and maintenance of high blood pressure remains unknown, but these
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observations have potentially important implications for long term hypertensive 

complications, as insulin has mitogenic properties and can potentiate vascular smooth 

muscle growth thus promoting structural changes and atherosclerosis.

Much recent interest has focussed on the potential confounding or beneficial 

effects of drugs on metabolic function. Antihypertensive and oral hypoglycaemic 

agents may have differential effects on carbohydrate metabolism and insulin resistance 

but their effects have often been poorly characterised because of concerns about the 

methodology used to assess insulin sensitivity and limitations of study design.

This thesis incorporates a series of studies of insulin sensitivity using the 

euglycaemic hyperinsulinaemic clamp in healthy male volunteers, patients with 

essential hypertension and patients with NIDDM.

The studies consist of 211 individual clamp procedures performed in 75 

individuals. Chapter 3 is a series of 3 experiments performed in 24 healthy male 

volunteers and 6 patients with essential hypertension designed to evaluate critically the 

euglycaemic hyperinsulinaemic clamp technique. This research technique has been 

used for over 20 years for the in vivo determination of insulin mediated metabolic 

responses. Despite its widespread use, several aspects of the method have been poorly 

documented. This chapter firstly describes the validation of the technique in my hands, 

secondly evaluates the use of a heated hand box to achieve "arterialisation" of 

venous blood, and lastly analyses the metabolic and haemodynamic effects associated 

with euglycaemic hyperinsulinaemia and arterialisation of venous blood with a heated 

hand box.

Few studies in the literatu re  which have evaluated the effects of 

antihypertensive drugs on insulin sensitivity have used a placebo-controlled, crossover 

study design. Chapters 4 and 5 evaluate the effects of two new antihypertensive agents 

on insulin induced metabolic responses. Chapter 4 evaluates the effects of the new 

dihydropyridine calcium antagonist, lacidipine, on whole body insulin sensitivity in 12 

healthy volunteers and 6 patients with essential hypertension. As the dihydropyridine
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calcium antagonists are associated with reflex sympathetic augmentation on acute 

dosing, both the acute and chronic effects of drug administration on insulin sensitivity 

are evaluated. Chapter 5 evaluates the effects of the ACE inhibitor trandolapril on 

whole body insulin sensitivity and metabolic parameters in 12 patients with both 

essential hypertension and impaired glucose intolerance or NIDDM.

At both in vitro and in vivo levels, numerous studies have suggested important 

pathophysiological links between glucose and insulin metabolism and the 

neuroendocrine systems involved in cardiovascular regulation, particularly the renin 

angiotensin system and the sympathetic nervous system; for example, the insulin 

antagonist effects of the catecholamines are well established. Insulin augments the 

aldosterone response to angiotensin II, there is in vitro evidence that angiotensin II 

may possess some glycogenolytic and gluconeogenic properties, and there are limited 

data that suggest that ACE inhibitor drugs may enhance insulin sensitivity, but the in 

vivo effects of angiotensin II on insulin mediated metabolic responses have not been 

previously reported. Chapter 6 examines the effects of angiotensin II on insulin 

stimulated metabolic responses using the euglycaemic clamp technique in 12 healthy 

male volunteers and 11 patients with NIDDM.

It is well recognised that even within a group of age matched healthy 

volunteers, insulin sensitivity may vary by more than threefold. Using data collected 

from all 75 subjects in whom insulin sensitivity was determined by the euglycaemic 

clamp technique, chapter 7 uses a multiple linear regression analysis to investigate the 

inter subject variability in insulin sensitivity and identifies factors which may be of 

clinical importance in predicting the insulin sensitivity of an individual.
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CHAPTER 2 

GENERAL METHODS
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2.1. GENERAL CLINICAL PROTOCOL

Healthy male volunteers were recruited by advertising. Patients with essential 

hypertension were recruited from the cardiovascular risk factor clinic at the Western 

Infirmary and patients with non-insulin dependent diabetes mellitus (NIDDM) were 

recruited from Dr. M. Small’s diabetic clinic at Gartnavel General Hospital or from 

the joint dietetic/medical obesity clinic at the Western Infirmary. In total, seventy-five 

subjects gave informed consent to participate in the projects, all of which were 

individually approved by the Research and Ethical Committee of Greater Glasgow 

Health Board (Western District).

Hypertensive patients were either newly diagnosed and previously untreated, 

or patients in whom current antihypertensive therapy was ineffective or poorly 

tolerated. Each patient discontinued any previous m edication and, after a 

treatment-free period of at least 4 weeks, was entered into a study if blood pressure on 

three consecutive occasions was within the range 160/90 to 210/115 mmHg. Patients 

with secondary forms of hypertension, co-existent disease requiring regular 

prescription medication, or with a history of myocardial infarction in the preceding 12 

months were excluded from participation.

All patients with NIDDM were diagnosed either by a documented random 

blood sugar of greater than 14 mmol/L, or by a 75 gram oral glucose tolerance test 

(OGTT) (WHO Study Group, 1987) [section 2.1.4], No patients were receiving any 

oral hypoglycaemic agent or insulin therapy.

Before entering a study, all patients and volunteers underwent full clinical 

screening, performed by myself, including physical examination, routine biochemistry, 

haematology, urinalysis and an electrocardiogram to exclude other significant 

cardiovascular disease, or significant end-organ damage. All subjects had a 75 gram 

OGTT at screening.

After informed consent was obtained, each individual was asked to refrain 

from any strenuous exercise for the duration of the study and asked to maintain his or
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her usual diet. The diabetic patients were advised to adhere to an isocaloric diabetic 

diet throughout the study consisting of approximately 55% carbohydrate, 25% fat and 

20% protein.

The general clinical protocol for each study was similar. On each study day, 

following an overnight fast, each subject attended the CIRU at 8 a.m. After 20 

minutes supine rest, baseline blood pressure and heart rate were recorded before the 

insertion of indwelling cannulae into a left antecubital vein and a right dorsal hand 

vein. The 3 hour euglycaemic hyperinsulinaemic clamp was than commenced, during 

which blood pressure and heart rate were measured at regular intervals. A standard 

light lunch was provided at the end of the procedure.

2.2. CLINICAL AND MORPHOMETRIC MEASUREMENTS.

2.2.1. Body mass index.

Body weight and height were measured with subjects in undershorts and 

without shoes to the nearest 0.5kg of weight and to the nearest 0.5cm of height. Body 

mass index (BMI) was calculated as:

Body weight (kg)
Body height (m)2

2.2.2. Waist hip ratio.

Hip circumference, at the greater trochanter, and waist circumference, at the 

umbilicus, were measured to the nearest 0.5cm while the subject was standing.
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2.2.3. Blood pressure and heart rate.

During all the clinical studies the technique of blood pressure and heart rate 

measurement was uniform. Systolic and diastolic blood pressure and heart rate were 

measured using a previously validated (Johnson & Kerr, 1985) Datascope Accutorr 

Semiautomatic Sphygmomanometer, maintained and calibrated at regular intervals by 

the Clinical Physics Department at the Western Infirmary. This machine uses an 

oscillometric technique for indirect blood pressure and direct heart rate measurement. 

All subjects had supine and erect measurements taken at screening. On each study day, 

duplicate recordings were made 30 minutes before and at 15 minute intervals during 

the euglycaemic hyperinsulinaemic clamp.

2.2.4. Oral glucose tolerance test.

An OGTT was performed in all subjects in the morning after ten hours of 

overnight fasting. The subjects were resting in the semi-recumbent position and took 

75 grams of glucose orally with 100 mis of water after 20 minutes of rest. Blood was 

withdrawn from a peripheral venous cannula at time zero and at 30 minute intervals 

throughout the test for 2 hours for measurement of plasma glucose and serum insulin 

concentrations. The diagnosis of diabetes was made if the fasting plasma glucose was 

greater or equal to 7.8 mmol/L and/or the 2-hour post-load plasma glucose was greater 

or equal to 11.1 mmol/1. The diagnosis of impaired glucose tolerance was made if the 

fasting plasma glucose was less than 7.8 mmol/L and the 2-hour post load plasma 

glucose was between 7.8 and 11.1 mmol/L (WHO Study Group, 1987).
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2.3. THE EUGLYCAEMIC HYPERINSULINAEMIC CLAMP.

In each individual study, the whole-body insulin sensitivity was assessed 

using a modification of the euglycaemic hyperinsulinaemic clamp described by 

DeFronzo et al (1979).

2.3.1. Infusions of insulin and glucose.

Two 18 gauge intravenous cannulae {Venflon, Helsinborg, Sweden) were 

inserted: the first retrogradely into a dorsal hand vein for blood sampling and the 

second antegradely into the contralateral antecubital fossa for administration of insulin 

and 20% Dextrose.

The infusion of soluble insulin (Actrapid, Novo Nordisc, Denmark) was 

prepared in 45 mis of 0.9% NaCl plus 5 mis of the patients’ own blood to prevent 

adsorption of insulin to plastic surfaces, and was administered using a Braun Perfusor 

pump.

The insulin was administered as a primed, constant rate infusion at a rate of 

1.5 mU/kg/min for 180 minutes, with the aim of achieving a steady state serum insulin 

concentration approximately 100 uU/ml above the basal fasting level. The primed 

infusion regimen used was as follows:

A variable rate infusion of 20% dextrose was administered to maintain 

euglycaemia (5.2 mmol/1). The 20% dextrose was infused from 4-180 minutes using 

an IMEDIV infusion system (IMED, Abingdon, UK). The infusion rate was adjusted 

for body weight for each individual and expressed as mg glucose/kg/min. For

0-4 minutes

4-7 minutes

7-180 minutes

4.5 mU/kg/min 

3.0 mU/kg/min

1.5 mU/kg/min
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example, the infusion rate of 20% Dextrose equal to lmg glucose per kilogramme per 

minute for a 70kg individual would be calculated as:

60 mins + 200g glucose x 70 kg = 21 mis 20% Dextrose/hour.

A 3 way tap enabled simultaneous infusion of the insulin and 20% Dextrose 

solutions.

At 5 minute intervals, 2 ml blood samples were collected from the cannulated 

dorsal hand vein surrounded by a heated box (55°C) with the aim of arterialisation of 

venous blood for plasma glucose measurements [section 2.3.3].

2.3.2. Calculation of whole body insulin sensitivity from the euglycaemic 

hyperinsulinaemic clamp.

Under steady state plasma glucose conditions, usually the last 40-60 mins of 

the clamp, the glucose infused must equal the glucose being removed out of the 

glucose space (i.e. glucose metabolised, M) provided that endogenous glucose 

production is completely suppressed. If hepatic glucose synthesis was quantified using 

labelled glucose, it would be possible to calculate peripheral glucose disposal; as this 

was not done, the measurements equate with whole body glucose disposal.

In practice, the glucose infusion (I) must be modified by two factors before it 

can be equated with M:

M = I - U C - SC

where I is the glucose infusion rate, UC is the correction for urinary glucose loss (only 

relevant in a hyperglycaemic clamp), SC is the space correction for inevitable 

variations from absolute euglycaemia, and all values are calculated in units of mg 

glucose/kg/min. This "space correction" (in mg glucose/kg/min) is calculated as
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follows (De Fronzo et al, 1979):

SPACE CORRECTION = (52 - G) x 17.86 x 0.095

G = Ambient glucose concentration over last 40 
minutes of the clamp in mmol/L.

17.86 = Conversion factor to mg/dl.

0.095 = Space correction.

Obviously if SC is negative (i.e. the glucose level has fallen), the correction is 

added to I and M is greater than I. If too much glucose has been infused, SC is 

subtracted from I. In clamps of good quality the SC is usually small; approximately 

0.1 mg/kg/min. To calculate I  the infusion rate over the last 40 minutes of the clamp is 

averaged. For example, if I was calculated between 120-140 minutes:

Clamp Time 

118mins

Infusion Rate 

5.0

131 5.5 11x5 =55

136 5.5 5x5.5 =27.5

139 6.0 3x5 = 15

1x6 = 6

140------------------------------------------------------

Total 103.5

I = 103.5 = 5.17 mg/kg/min
20 mins

2.3.3. Arterialisation of venous blood

A dorsal hand vein was cannulated in a retrograde fashion to enable 

placement of the hand into a cylindrical heated box (Department of Physiology,
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Nottingham University, UK) which under thermostatic control maintains the ambient 

temperature at 55#c. The patency of the cannula was maintained with an infusion of 

0.9% NaCl which was attached to a 3 way tap to facilitate venous sampling. During 

the euglycaemic hyperinsulinaemic clamp, approximately lOOmls of 0.9% NaCl was 

administered via the dorsal hand vein cannula. The rationale behind the use of the 

heated hand box is discussed in chapter 1.3.3. The metabolic and haemodynamic 

effects of the heated hand box are discussed in chapter 3.

2.4. LABORATORY METHODS.

Venous blood samples for laboratory assay were withdrawn from the 

indwelling right dorsal hand cannula and collected into normal clotted, and chilled 

lithium heparin and EDTA tubes. Plasma was separated by centrifugation at 4°C for 

15 minutes at 3000 rpm and stored at -70#C until assay. Whenever possible, within 

each study, the samples for each individual were performed in batches.

2.4.1. Serum insulin and C-peptide concentrations.

Human insulin and proinsulin originate as a single polypeptide chain known as 

proinsulin, which is formed on the surface of the rough endoplasmic reticulum in the 

beta cells of the islet of Langerhans. Proinsulin is then transported to the Golgi 

apparatus where it is packed into granules. It is in these granules that proinsulin is 

cleaved proteolytically into insulin and C-peptide. Insulin and C-peptide are stored in 

these beta granules until their secretion is stimulated, at which time approximately 

equimolar amounts of each are released into the portal vein. While insulin has a 

pervasive influence on the body, affecting virtually every organ and biochemical 

component, C-peptide has no known physiological function.

Serum insulin  and C-peptide concentrations were m easured using 

radioimmunoassay (INCSTAR) kits. To perform these equilibrium assays, samples are
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combined with an antibody and a tracer and incubated for 16 hours at 5°C. A 

pre-precipitated second antibody complex is then added as a single reagent. The assay 

is then centrifuged and decanted after 20 minutes incubation at 20°C.

The normal range for fasting serum C-peptide in our laboratory is 0.5-3.0 

ng/ml. The normal range for fasting serum insulin in our laboratory is less than 25 

uU/ml. The within-assay and between-assay coefficients of variation for C-peptide are 

6.7% and 14.3% respectively. The within-assay and between-assay coefficients of 

variation for serum insulin are 6.4% and 8.5% respectively. For each study, all 

samples for each individual were performed in batch analysis.

2.4.2. Plasma glucose concentrations.

At baseline and at 30 minute intervals during the OGTT, and at 5 minute 

intervals throughout the euglycaemic hyperinsulinaemic clamp, blood samples were 

collected for plasma glucose measurements. Samples were collected into 1.5ml tubes 

and loaded into a Beckman microfuge (Beckman Instruments, Fullarton, California, 

USA) situated at the bedside. Samples were spun for 60 seconds. An Accustroke Pipet 

was than used to aspirate 10 microlitres of plasma. The pipetting technique included a 

post aspiration rinse of the disposable pipet in sterile water to avoid carryover effects 

from material retained on the outside of the tip. Samples were analysed using a 

Beckman Glucose Analyser II (Beckman Instruments, Fullarton, California, USA) 

which measures the rate of change in oxygen consumption when a sample is injected 

into an enzyme reagent sample.

When a sample is injected into the enzyme reagent solution, B-D-glucose from 

the sample combines with dissolved oxygen from the solution according to the 

reaction:

B-D-Glucose + 0 2--------> Gluconic acid +
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In the reaction, oxygen is consumed at the same rate as glucose reacts to form 

gluconic acid. At all times during the reaction, the rate of oxygen consumption is 

directly proportional to the concentration of glucose present in the reaction cup. The 

maximum observed rate has been shown to be a direct measure of the concentration of 

glucose originally in the sample at the time of injection (Kadish et al, 1968). The 

analyser measures and holds this maximum rate and permits the digital readout to be 

scaled, providing a number corresponding to glucose concentration in mmol/L.

On each study day, the Beckman glucose analyser was calibrated to 8.3mmol/L 

with an aqueous standard, and typically, checked once every ten samples during the 

euglycaemic hyperinsulinaemic clamp. The intra-assay coefficient of variation in 

plasma glucose concentrations was 3.6%.

2.4.3. Serum aldosterone concentrations.

Serum aldosterone concentration was measured by radioimmunoassay 

(Biodata, Milan) according to the technique described by MacKenzie and Clements 

(1974). Samples were incubated for 3 hours at 20°C with a tracer (125I - Aldosterone); 

these two compete for binding sites on the antibody. After incubation the amount of 

tracer bound to the antibody is inversely proportional to the amount of aldosterone 

present in the plasma sample. Separation of the bound fraction is performed by 

addition of a second antibody coupled to magnetic particles and the immunocomplex 

is collected by the application of a magnetic field: the quantity of antibody-ligand 

complex is measured by radioactive counting using a gamma camera.

The normal range for serum aldosterone in the supine position in our 

laboratory is 12-150 pg/ml. The within-assay and between-assay coefficients of 

variation are 5.0% and 5.4% respectively.
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2.4.4. Plasma renin activity.

Plasma renin activity was determined by radioimmunoassay of angiotensin I 

(Biodata, Milan). Before radioimmunoassay, plasma was incubated so that renin 

generated angiotensin I under standardised conditions. This then competes with a 

radioactive tracer (125I - Angiotensin) for the binding sites of the antibody. After 

incubation the amount of tracer bound to the antibody is inversely proportional to the 

amount of renin present in the plasma sample. The separation of the bound from the 

free fraction is performed by addition of a double antibody coupled to magnetic 

particles. The application of a magnetic field allows the sedim entation of 

immunocomplexes, avoiding the centrifugation step. The normal range for plasma 

renin activity in the supine position in our laboratory is 0.12 -1.59 ng/ml/AI/hour. The 

within-assay and between-assay coefficients of variation are 4.9% and 7.8% 

respectively.

2.4.5. Plasma catecholamine concentrations.

Plasm a noradrenaline was assayed by high perform ance liquid 

chromatography with electrochemical detection (HPLC-ED) as previously described 

by Howes et al (1985). Catecholamines were extracted from plasma by acid-washed 

alumina (50mg) and were then eluted by vigorously mixing the alumina with 250ul of 

0.2 M perchloric acid. A 200 ul aliquot of the eluate was injected into the liquid 

chromatograph onto a home packed 5 micron spherisorb octadecylsilane (ODS) 

reversed phase column. The normal range for resting supine plasma noradrenaline and 

plasma adrenaline is 0.3 - 7.5 nmol/1 and 0 -1 .0  respectively. The within-assay and 

between-assay coefficients of variation are 15% and 13% respectively.
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2.4.6. Plasma angiotensin II concentrations.

Plasma angiotensin II concentration was determined by radioimmunoassay 

according to the technique as described by Dusterdieck and McElwee (1971). Venous 

blood was collected into EDTA/phenanthroline to inhibit converting enzyme and 

angiotensinase enzymes. Angiotensin II was extracted from plasma using cartridges 

containing a reverse phase non-polar medium. The cartridges were pretreated with 

methanol and then water. Angiotensin II was eluted from the column with aqueous 

20% methanol. The extracts were dried and redissolved in Tris buffer for assay. The 

normal range for plasma angiotensin n  in the supine position in our laboratory is 3.0 -

12.0 pg/ml. The within-assay and between-assay coefficients of variation are 6.4% and 

8.8% respectively (Morton and Webb, 1984).

2.4.7. Serum potassium concentrations.

Serum potassium ion activity was measured by a direct ion selective electrode 

on a Coming Model Na/K analyser (Ciba Coming Diagnostics, Halstead, Essex, UK).

2.4.8. Blood gas analysis.

Samples for blood gas analysis were collected into heparinised syringes and 

immediately placed on ice. Oxygen saturation and oxygen concentration were 

measured on a Coming 288 analyser (Ciba Coming Diagnostics, Halsted, U.K.).

2.4.9. Glycosylated haemoglobin concentrations.

Glycosylated haemoglobin (HbAj) was determined by electroendosmosis using 

a Coming Glytrac Haemoglobin Set (Coming 470064, U.S.A.). The reference range of 

the Biochemistry Laboratory at Gartnavel General Hospital Glasgow, derived from the 

endogenous population, is 4.8% to 7.8%.
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2.4.10. Plasma angiotensin converting enzvme activity.

Angiotensin converting enzyme (ACE) converts the decapeptide angiotensin I 

to the octapeptide angiotensin II through cleavage of the carboxy-terminal dipeptide 

histidyl-L-leucine. The assay that was used to determine plasma ACE activity is based 

on an HPLC technique for measuring the rate of release of hippuric acid from an 

artificial substrate of angiotensin I (Chiknas,1979). One unit of enzyme generates one 

nanomole of hippuric acid per minute and the normal range in our laboratory for 

plasma ACE activity is 5-32 EU/ml. The inter- and intra-assay coefficients of variation 

are 6% and 2% respectively, with a limit of detection of 0.1 EU/ml.

2.4.11. Plasma lipid and lipoprotein concentrations

Plasma and lipoprotein cholesterol concentrations were measured using a 

CHOD-PAP kinetic method (Boehringer Mannheim, East Sussex, U.K.), standardised 

with primary cholesterol standards (Reference Laboratory for Cholesterol Assays, 

Bilthoven, the Netherlands). Triglycerides were measured using an enzymatic method 

(Merck Diagnostics, Darmstadt, Germany). Measurements were performed using a 

Cobas Bio Analyser (Roche Diagnostics, Welwyn Garden City, U.K.).

2.5. STATISTICAL ANALYSIS.

All data were formally checked to ensure a Gaussian distribution by plotting 

normal plots using the statistical package Minitab. Coefficients of variation (c.v.) were 

calculated according to the method of Bland (1987).

Whole-body insulin sensitivity in mg/kg/min was calculated under steady
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state conditions during the last 40 minutes of each ‘clamp* (DeFronzo et al, 1979). 

Insulin sensitivity values for individual subjects on each study morning were 

compared between treatments by analysis of variance (ANOVA) using the statistics 

package, Rummage, and the Bonferroni method for calculating 95% confidence 

intervals. To ensure that the euglycaemic clamps were of good quality, the c.v. of 

glucose measurements from time 0-180 minutes of all the clamps, and the mean 

plasma glucose levels over the last 40 minutes of the clamps for each treatment period 

were calculated.

Measurements of serum insulin, C-peptide, triglyceride, potassium, plasma 

renin activity, plasma aldosterone and plasma noradrenaline at individual time points 

were compared between study mornings by repeated measures ANOVA.

Blood pressure and heart rate measurements were evaluated by repeated 

measures ANOVA.

Linear regression analysis was used to investigate the relationship between the 

derived value for insulin sensitivity, and factors such as patients age, body mass index, 

fasting serum insulin concentration and baseline blood pressure [see chapter 7.2].

Results throughout are expressed as mean + standard deviation.
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CHAPTER 3

THE EUGLYCAEMIC HYPERINSULINAEMIC CLAMP:

AN EVALUATION OF THE METHODOLOGY INCLUDING THE 

ARTERIALISATION OF VENOUS BLOOD
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3.1. INTRODUCTION:

The euglycaemic clamp [chapter 1.2.3] has been used extensively over the last 

15 years to quantify in vivo insulin sensitivity. Despite some recognised limitations of 

this technique (Bergman et al, 1989), the clamp has found widespread application in 

both cardiovascular and endocrine research but a number of important technical 

aspects of the method have not been clearly documented. For example:

(1) since the original report by DeFronzo and colleagues (1979), in which 

reproducibility was assessed in only 4 volunteers, few investigators have evaluated 

the intra-subject variation in metabolic responses across a range of glucose disposal 

rates (and without the confounding influence of dietary or drug interventions).

(2) whether insulin sensitivity should be expressed in terms of glucose uptake (M) 

or the insulin sensitivity index (SJp) is controversial, and the merits of these two 

parameters have not been directly compared in the same individuals.

(3) the optimal duration of the clamp is unclear: although glucose requirements 

may increase steadily for up to 5 hours (Dobeme et al, 1981), infusions are usually 

m aintained for either 2 or 3 hours, but differences in insulin sensitivity  

measurements from 120 versus 180 minute clamps have not been clearly evaluated.

(4) the importance of sampling "arterialised" blood from a heated dorsal hand 

vein - a cumbersome and sometimes painful procedure - is disputed (Andrews et 

al, 1984), and few studies have assessed the overall impact of hand-warming on 

both the haemodynamic and metabolic response to a euglycaemic clamp.

Before embarking on the main series of studies that comprise this thesis, the 

aim of this study was to address some of these methodological issues pertinent to the
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euglycaemic hyperinsulinaemic clamp itself. In particular, (1) to evaluate the 

reproducibility of insulin sensitivity (expressed as M and S;p) in subjects with a range 

of glucose disposal rates - i.e. both insulin sensitive and insulin resistant; (2) to 

compare the quality of information obtained from clamps of 120 and 180 minutes 

duration; and (3) to assess the haemodynamic and metabolic effects of hand-warming 

using a purpose-built warm air device (manufactured commercially by the Department 

of Physiology and Pharmacology, University of Nottingham). •

3.2. SUBJECTS AND METHODS.

3.2.1. General methods.

A total of twenty-four healthy male volunteers (age range 20-34 years, BMI

22.1 + 2.2 kg/m2), and six patients (4M, 2F), with mild to moderate essential 

hypertension (age range 49-59 years, BMI 26.2 + 4.6 kg/m2), gave written consent to 

participate in these studies. The 6 patients and 12 volunteers in chapter 4 [table 4.1] 

who underwent two euglycaemic hyperinsulinaemic clamps while taking placebo 

therapy are included in the reproducibility analysis (protocol A).

In each study, the general clinical protocol was similar. All subjects attended 

the Clinical Research and Investigation Unit (CIRU) at 8 am following an overnight 

fast. In each study, whole-body insulin sensitivity was assessed with the euglycaemic 

hyperinsulinaemic clamp as described in chapter 2.3. At baseline, and at 60-minute 

intervals during the 3-hour clamp, blood samples were collected for measurements of 

serum insulin, C-peptide and potassium concentrations. In addition, in 4 healthy 

subjects, insulin concentrations were measured at 5 minute intervals for the first 60 

minutes of the clamp to evaluate the serum insulin profile induced by the priming 

phase of the insulin infusion (chapter 2.3). Measurements of supine blood pressure and 

heart rate were recorded at 15 minute intervals during the clamp.
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3.2.2. Study designs

Three separate studies were performed:

Protocol A: Specific aim: to evaluate the reproducibility of M values and Sip values

derived from the euglycaemic clamp.

Eighteen healthy volunteers and six patients with essential hypertension 

attended for 2 study mornings at least 1 week apart. On each occasion, a 3 hour clamp 

was performed with blood sampled from a heated dorsal hand vein for the 

determination of insulin sensitivity. In both the volunteer group and the patient group, 

the inter-subject and intra-subject variability of whole body insulin sensitivity was 

assessed by calculating the coefficient of variation (c.v.) [chapter 2.5]. In addition, 

insulin sensitivity was calculated using data from two time periods of the 3 hour 

clamp; 80 to 120 minutes, and 140 to 180 minutes. The reproducibility of SJp and the 

insulin stimulus were also calculated for the same time periods.

Protocol B: Specific aim: to evaluate the effects of hand warming on plasma

glucose concentrations and oxygen saturation of venous blood.

Six healthy volunteers attended for 2 study mornings at least 1 week apart. On 

each occasion, a 3 hour clamp was performed with the following modifications: (1) a 

cannula was inserted into the antecubital fossa of both arms for infusions of glucose 

and insulin [right arm], and for sampling of mixed venous blood [left arm]. In 

addition, a cannula was inserted into a dorsal hand vein of the right arm which was 

heated with the warm air box (55°); and (2) at 10 minute intervals antecubital and 

"arterialised" blood samples were collected simultaneously for analyses of plasma 

glucose and (every 60 minutes) oxygen saturation. The glucose infusion rate was 

adjusted according to the arterialised plasma glucose concentrations.
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Protocol C: Specific aim: to evaluate the effects of hand warming on

haemodynamic and metabolic responses.

Six healthy volunteers attended for 2 study mornings 1 week apart. On each 

occasion, a 3 hour clamp was performed. On the first study day arterialised blood (i.e. 

with the warm air box) from a heated dorsal hand vein was used to adjust the glucose 

infusion rate required to maintain euglycaemia. On the second study day, mixed 

venous blood (i.e. without the warm air box) from the antecubital fossa was used to 

guide the glucose infusion and calculate insulin sensitivity. The order of the 2 study 

days was randomised.

For each study, whole-body insulin sensitivity (M) in mg glucose/kg/min was 

calculated under steady state conditions during the last 40 minutes of each clamp, as 

described in chapter 2.3. The S/p was calculated as the steady state ratio of the 

increment in glucose uptake (A/?,) to the increment in plasma insulin concentration 

(A/), normalised to the ambient plasma glucose concentration (G) at which the clamp 

was performed (Bergman et al, 1989): S/p= 100 x  ARd / (Al x  G). Values for M and 

SJp for individual subjects on each study morning were compared between treatments 

by analysis of variance [chapter 2.5].

3.3. RESULTS.

3.3.1. Evaluation of priming phase of the insulin infusion.

Individual profiles of serum insulin in 4 healthy subjects during the first 60 

minutes of the clamp are shown in figure 3.1. The priming protocol tended to cause an 

"overshoot" in serum insulin concentration within the first 10 minutes, but a 

steady-state p lateau was achieved thereafter, with insulin  concentrations 

approximately 80uU/ml above baseline (fasting) levels (figure 3.1).
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3.3.2. Protocol A: Evaluation of the reproducibility of the technique.

There was no significant difference between the steady state plasma glucose 

concentration at 80-120 minutes compared with 140-180 minutes; mean values were 

5.1±0.2 and 5.2+0.4 mmol/L, respectively, for the healthy volunteers and 

correspondingly 5.3±0.4 and 5.2+0.2 mmol/L for the hypertensive patients. 

Satisfactory euglycaemia was maintained throughout the clamps as reflected by the 

mean c.v. of plasma glucose concentrations of 7% for healthy subjects and 8% for 

hypertensive patients. In both healthy male volunteers and patients with essential 

hypertension mean values for M and S[p calculated for the period of 140-180 minutes 

were significantly higher than values obtained at 80-120 minutes; for example, in 

healthy volunteers M was 9.8+2.0 mg/kg/min at 180 minutes compared with 9.0+1.9 

mg/kg/min at 120 mins (p<0.001). S[p values for the corresponding time points were

8.1 ± 2.6 and 8.8 ± 2.7 mg/kg/min per uU/ml (x 100) respectively (p<0.001) (table

3.1). Intra-subject reproducibility was the best for M values derived from clamps of 

180 minutes duration; for example, the c.v. was 6% in the healthy subjects and 5% in 

patients with essential hypertension. SJp values, however, demonstrated greater 

variability; the corresponding c.v.’s for SJp values at 180 minutes were 21% and 13% 

respectively (table 3.1).

There was wide inter-subject variability in insulin sensitivity in both groups of 

subjects. In healthy subjects and essential hypertensives the inter-subject c.v. in M at 

180 minutes was 30% and 47% respectively. The corresponding c.v for the 

inter-subject variability in the insulin stimulus was 20% and 36% respectively (table

3.1). There were no significant changes in blood pressure or heart rate during the 

hyperinsulinaemic stimulus in the normotensive or hypertensive subjects.

3.3.3. Protocol B: Evaluation of arterialisation of venous blood.

"Arterialised" samples had higher and less variable oxygen saturations than

99



HEALTHY SUBJECTS

MEAN RANGE INTERSUBJECT INTRASUBJECT
C.V. (%) C V . (%)

M VALUES 120 mint 9 .0 + /-1 .9 5.3 -13 .0 22 8
mg kg/min 180m ins 9 .8 + /-2 .0 5.6 -13.8 21 6

INSULIN 120m ins 8.1 +/- 2.6 3.0 -16.3 32 21
SENSITIVITY 180m ins 8 .8 + /-  2.7 3 .7 -18 .1 30 21

INDEX

INSULIN 120 mint 1 1 8 + /-2 6 9 3 -2 2 0 22 12
STIMULUS 180 mint 1 1 7 + /-2 4 8 8 -2 0 8 20 10

uU/ml

HYPERTENSIVE PATIENTS

MEAN RANGE INTERSUBJECT INTRASUBJECT
C V . (%) C V . (%)

M VALUES 120m ins 5 .9 + /-2 .5 1.5 -10 .0 43 14
mg kg/min 180 mint 6 .6 + /-1 5 1 0  -10.3 38 5

INSULIN 120 mint 5 .4 + /-  2.6 0.7 - 8.7 48 17
SENSITIVITY 180 mint 6 .4 + /-3 .0 1 .0 -9 .9 47 13

INDEX

INSULIN 120 mint 1 2 1 + /-4 0 90 - 221 33 15
STIMULUS 180 mint 115+ /-41 8 2 -1 9 7 36 10

uU/ml

Table 3.1: Table summarising the reproducibility of M values and insulin sensitivity 

index values derived from time periods 80-120 minutes and 140-180 minutes during 

the euglycaemic hyperinsulinaemic clamp in 18 healthy subjects and 6 patients with 

essential hypertension.

Insulin sensitivity index is expressed as the increase in glucose uptake divided by the 

increment in plasma insulin concentration (mg/glucose/kg/min per uU insulin x 100).
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mixed venous blood withdrawn simultaneously (figure 3.2). For example, at 180 

minutes 0 2 saturation was 95±2% in arterialised venous blood compared with 

79±18% in mixed venous blood. In keeping with this, there was a difference between 

arterialised and mixed venous plasma glucose concentrations; 5.2+0.2 vs. 4.5±0.4 

mmol/L at 150 minutes (figure 3.3). This difference in plasma glucose was smallest at 

the beginning of the procedure and increased progressively until 60 minutes. The 

difference between arterialised and mixed venous blood glucose concentrations 

correlated significantly with the difference in arterialised and mixed venous oxygen 

saturations (r=0.609, p<0.01).

3.3.4. Protocol C: Evaluation of metabolic and haemodvnamic effects of hand 

y fl-ming.

Mean steady state plasma glucose concentrations during the two clamps were 

5.2+0.4 and 5.1+0.4 mmol/L for the arterialised and non-arterialised day respectively. 

Mean steady state increments in serum insulin concentration were similar in both 

studies; the mean c.v. of the insulin stimulus was 1% and 8% for the arterialised and 

non-arterialised days respectively. Individual values obtained for M during the clamp 

studies are seen in table 3.2. It is apparent that individual values for M were quite 

comparable, but there was a small but significant trend for the derived measurement of 

insulin sensitivity to be higher using arterialised as compared with mixed venous 

blood; 11.7±3.2 mg/kg/min compared with 10.5±3.0 mg/kg/min {p<0.05). 

Confidence intervals for this observation were 0.4,1.9. Blood pressure profiles of the 

two days are shown in figure 3.4. There was a significant reduction in blood pressure 

on the days when arterialised venous blood was used; e.g. 6 mmHg reduction in 

diastolic blood pressure at 120 minutes (p<0.05), and a corresponding increase in 

heart rate (figure 3.4).
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Subject

No.

M value

Arterialised
Blood

M value

Mixed venous 
Blood

Difference

1 11.6 11.4 0.2
2 12.8 11.5 1.3
3 13.1 11.4 1.7
4 10.0 9.6 0.4
5 6.6 5.2 1.4
6 16.2 14.1 2.2

Mean 11.7 10.5 1.2
S.D 32 3.0 0.7

Table 3.2: Individual M values (mg glucose/kg/min) of 6 healthy subjects who 

underwent 2 euglycaemic hyperinsulinaemic clamps one week apart. Insulin 

sensitivity values derived from the clamp were significandy greater on the day when 

arterialised blood was used to adjust the glucose infusion rate.

(p<0.05) 95% confidence intervals; 0.4,1.9.
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3.4. DISCUSSION.

Although the euglycaemic hyperinsulinaemic clamp has been widely practised 

for over 15 years, important aspects of the methodology have been poorly validated. 

With more widespread application of the technique it is important that the 

methodology is subjected to critical evaluation. To the best of my knowledge, this is 

the largest study to report the intra-subject reproducibility of M and Sfp values derived 

from the clamp. The only available data comes from DeFronzo’s original description 

of the technique. He studied 4 healthy subjects, 3 to 4 weeks apart, and reported mean 

M values of 8.5 ±  0.8 mg/kg/min on the first study day, compared with 8.4 ± 0.8 

mg/kg/min on the second day. My studies have therefore demonstrated good 

reproducibility of M values derived from the clamp in both healthy subjects and 

hypertensive patients, but have confirmed large inter-individual variations; insulin 

mediated glucose disposal varied almost threefold in healthy subjects and more than 

fivefold in patients with hypertension. This variation in insulin sensitivity in healthy 

subjects is consistent with that reported by others (Reaven, 1988a) and cannot entirely 

be explained by differences in BMI or age. These results serve to highlight the 

importance, whenever possible, of using a crossover rather than parallel group design 

when evaluating insulin mediated metabolic responses with the clamp. This large 

variation in glucose disposal rates may in part be related to the variation in the insulin 

stimulus observed; even in this group of apparently homogeneous male subjects, the 

weight adjusted insulin infusion produced steady-state insulin concentrations which 

varied almost threefold [table 3.1]. Insulin clearance rates are known to vary with 

obesity (Meistas et al, 1983) and age (Minaker et al, 1982) and these variables may 

account for the differences observed in the hypertensive patients but not in the group 

of healthy subjects.

A notable feature of this study is the poor reproducibility of SJp values despite 

the clamps achieving stable euglycaemia and glucose disposal rates as demonstrated 

by the acceptable coefficients of variation of the glucose measurements from 0-180
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minutes. Bergman (1989) advocates the use of SJp when reporting values of insulin 

sensitivity derived from clamp experiments. He argues that a number of difficulties are 

associated with the use of M values derived from clamp experiments as the value of M 

obtained is highly dependent on the ambient glucose and insulin concentrations 

obtained which are difficult to match among groups. Bergman warrants that the SJp is 

not confounded by non-insulin mediated glucose uptake and does not change over the 

physiological range of insulin or glucose (Bergman et al, 1989). Thus, the S/p is 

widely used but there are no published data on its reproducibility. My results 

demonstrate marked variability in the Sfp within an individual from day to day. My 

data therefore suggest that despite the theoretical advantages of using S/p values from 

clamp experiments, M values are less variable and are probably a better index for 

comparison of possible changes in insulin sensitivity derived from clamp experiments.

The utility of the euglycaemic hyperinsulinaemic clamp technique is limited by 

its labour intensiveness; furthermore, it is time consuming for patients and volunteers. 

Many investigators have attempted to minimise discomfort to subjects by performing 

2 hour clamps. My data suggest that 2 hour clamps have acceptable reproducibility but 

may underestimate insulin sensitivity by up to 10% when compared with the 3 hour 

clamp. In contrast, Reaven’s group reported an underestimation of up to 20% in obese 

subjects and patients with NIDDM (Dobeme et al, 1981). It is notable however that 

the reproducibility of the 2 hour clamp in the hypertensive subjects was the poorest at 

14% - this may reflect a longer time to reach steady state in these insulin resistant 

subjects; a phenomenon observed in insulin resistant obese individuals (Reaven et al, 

1988b). Therefore, a three hour clamp is optimal when evaluating insulin sensitivity, 

especially in groups of patients with insulin resistance.

In analysing whole body glucose metabolism, measurement of arterial rather 

than venous glucose concentrations has been preferred because arterial kinetic data 

represent an average of the processes occurring in the tissues comprising the total 

body, whereas venous data, although more easily obtainable in man, will be affected 

by the particular tissue which is being drained. During the hyperinsulinaemic stimulus
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of the clamp, there is increased extraction of glucose into skeletal muscle, which gives 

rise to a large and variable arterio-venous difference in plasma glucose concentration. 

Arterial cannulation would therefore be desirable during the clamp but tends to be 

avoided in clinical research protocols because of increased risks compared with 

venous cannulation. Investigators have compromised by sampling from a heated hand 

vein (McGuire et al, 1976). As the hand has relatively little skeletal muscle bulk, 

heating effectively shunts blood from the arterial to the venous side of the circulation. 

The extent to which this is effective, or necessary is controversial; additionally, it 

remains unknown whether this local application of heat may have systemic effects on 

cardiovascular or metabolic variables. For example, Liu and colleagues (1992) 

evaluated the effects of the warm air box in 6 healthy subjects during 

hyperinsulinaemic euglycaemia and hypoglycaemia. They concluded that the heated 

hand technique sufficiently arterialises venous blood so that the glucose measurement 

in the arterialised blood gives a reasonable estimate of the true arterial value. They 

noted however that venous blood from the opposite forearm was also markedly 

arterialised, probably reflecting a generalised vasodilator effect of heating. There were 

no haemodynamic measurements in this study. Gallen and Macdonald (1990) 

evaluated the effects of two methods of hand heating for 60 minutes on body 

tem perature, forearm  blood flow and oxygen saturation. Again, adequate 

arterialisation was achieved by the use of the warm air box, but a consistent 

(non-significant) increase in forearm blood flow was recorded above baseline values.

My study demonstrates that the arterialisation technique used can sufficiently 

arterialise venous blood and achieve a blood oxygen saturation close to the true 

arterial value as reported by others (Liu et al, 1992). The variability in saturation in the 

non-arterialised blood was much higher when compared with arterialised blood; 

54%-97% and 91%-97% respectively. The high non-arterialised blood oxygen 

saturation in our study is likely to be, in some individuals at least, a result of heating 

the contralateral hand for 180 minutes resulting causing a vasodilating effect on the 

forearm superficial vasculature with increased cutaneous blood flow (Gallen &
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MacDonald, 1990).

As the heated hand box possibly exerts a confounding influence on the results 

derived from euglycaemic hyperinsulinaemic clamps, my last study addressed; (1) 

whether results obtained from the use of mixed venous blood in clamp studies differ 

from results using arterialised venous blood; and, (2) the overall impact of hand 

warming on haemodynamic variables. Previous studies have reported that results are 

not appreciably diminished if mixed venous blood is substituted for arterialised blood 

(Andrews et al, 1984; Wahab et al, 1993). However, in the study reported by Wahab 

and colleagues (1993), "mixed venous" blood was sampled in the antecubital fossa of 

the arm ipsilateral to the heated hand; therefore it may have been partially arterialised, 

obscuring any possible difference. My results suggest, however, that in healthy 

subjects, values of insulin sensitivity derived from mixed venous blood are 

significantly lower than clamps using arterialised blood. This is somewhat surprising 

in view of the results of my second study which demonstrate effective arterialisation 

of venous blood by heating the dorsal hand vein: in this study the plasma glucose 

concentration of the mixed venous blood was consistently lower than that of 

arterialised blood. It would therefore be expected that if mixed venous blood glucose 

concentrations are used to alter the glucose infusion rate, the calculated value for 

insulin sensitivity would be consistently higher than the value derived from 

arterialised blood samples. The haemodynamic data (i.e. an increase in heart rate and 

decrease in blood pressure) may provide an explanation for this apparent paradox: 

there is evidence that skeletal blood flow is an important determinant of glucose 

disposal in man (Julius et al, 1991) [chapter 1.1.4]. It is possible that the heating of 

the hand for 3 hours may cause a significant increase in perfusion of skeletal muscle 

blood flow by reducing systemic blood pressure via sympathetic deactivation. There 

are reports of increased forearm blood flow when the contralateral hand is heated with 

a hot blanket (Abramson et al, 1965) and in the study of Gallen and MacDonald 

(1990). Interestingly, there is evidence that lower body negative pressure may induce 

acute insulin resistance in the human forearm by a decrease in blood flow and reflex
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sympathetic activation (Jamerson et al, 1993). Without direct measures of forearm 

blood flow or sympathetic tone it is impossible to assess however whether dorsal hand 

heating affects insulin sensitivity by altering muscle perfusion.

In summary, this study has evaluated the methodology of the euglycaemic 

clamp technique. In particular:

(1) My studies have confirmed the reproducibility of the clamp in a group of 

subjects with a range of glucose disposal rates but have questioned the value of the 

S[p as a measure of insulin sensitivity derived from the clamp. The use of a 2 hour 

clamp is reproducible but underestimates insulin sensitivity by 10%. It is important 

that study designs take account of the large inter-individual variations in insulin 

sensitivity and steady-state insulin concentrations observed even in a group of 

homogeneous healthy male subjects. Whenever possible, a crossover study design 

should be employed and the investigator should remain blind to the treatment under 

investigation.

(2) The heated hand box effectively provides arterialised blood samples with 

oxygen saturations similar to those of arterial blood. My data suggest, however, that 

the heated hand box may exert independent confounding effects on whole body insulin 

sensitivity via vasodilatory and haemodynamic actions. Further studies incorporating 

measurements of skeletal muscle blood flow will be required to evaluate the systemic 

vasodilator effects of the heated hand box.
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CHAPTER 4

THE EFFECTS OF THE DIHYDROPYRIDINE CALCIUM ANTAGONIST 

LACIDIPINE ON INSULIN SENSITIVITY 

IN NORMOTENSIVE AND HYPERTENSIVE SUBJECTS
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4.1. GENERAL INTRODUCTION

Although the metabolic effects of antihypertensive drugs have been widely 

reported, few, if any, previous studies with calcium antagonists have used a 

placebo-controlled, cross-over design and many have obtained only indirect 

measurements of insulin sensitivity from oral glucose tolerance tests [chapter 1.3.2]. 

Thus, inadequate study designs may partly explain why there are so many conflicting 

reports about the effects of dihydropyridine calcium antagonists on insulin sensitivity 

and glycaemic control; for example, nifedipine has been shown to impair glucose 

tolerance in both diabetic (Bhathagar et al, 1984) and non-diabetic subjects (Oehman 

et al, 1985), whereas others have reported neutral metabolic effects with nifedipine 

(Landmark 1985), nisoldipine (Odigwe et al, 1986) and amlodipine (Ferrari et al, 

1991b). There is also evidence that dihydropyridines may enhance insulin sensitivity 

following a glucose load (Beer et al, 1993; Giugliano et al, 1980).

This placebo-controlled, crossover study evaluates the effects of a new 

long-acting dihydropyridine, lacidipine, on insulin sensitivity in normotensive and 

hypertensive subjects.

4.1.1. Clinical pharmacology of lacidipine.

Lacidipine (Glaxo, Italy) is a new calcium antagonist which has been granted a 

licence in the United Kingdom as once daily therapy for the treatment of hypertension. 

It has a pharmacological profile typical of the dihydropyridine group of agents; 

vascular selectivity and extensive first pass metabolism. It causes a dose-related fall in 

vascular resistance accompanied by reflex tachycardia at single doses of 3-5mg in 

normal subjects (Hall et al, 1991). Lacidipine does not affect sino-atrial or 

atrioventricular dysfunction in healthy subjects or patients with atrial fibrillation 

(Frank et al, 1990). Lacidipine is rapidly absorbed and undergoes extensive first pass
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metabolism to inactive metabolites. Absolute bioavailability is 2-9% and reported 

half-life 1-3 hours; protein binding is greater than 90% (Hall et al, 1991). In acute dose 

studies of lacidipine in essential hypertension, single doses of 4-6 mg were required to 

produce a definite pharmacodynamic effect (Perelman 1991). Despite its remarkably 

short half-life there are data suggesting lacidipine has a sustained duration of action 

with 24 hour blood pressure control following single daily dosing (Lyons et al, 1994; 

Heber et al, 1990). For example, after one weeks treatment, lacidipine 4-6 mg resulted 

in a significant reduction in blood pressure 24 hours after the last dose when compared 

to placebo. After single doses, lacidipine 4 mg has similar efficacy to that of nifedipine 

10 mg but a longer duration of action (Perelman 1991). In chronic therapy, lacidipine 

4-6 mg has been compared with hydrochlorothiazide (Chiariello, 1991; Leonetti et al, 

1991a), atenolol (United Kingdom Lacidipine Study Group, 1991) and nifedipine 

(Leonetti et al, 1991b) in a series of double-blind, parallel group dose titration studies. 

Efficacy at the end of the dosing interval was similar to that of hydrochlorothiazide 25 

- 50 mg daily, atenolol 50 - 100 mg daily or slow release nifedipine 20 - 40 mg daily. 

However, in the comparator groups, response rate was generally higher and fewer 

patients required dose titration.

Thus, the available data suggest that lacidipine may have comparable 

antihypertensive efficacy to a range of conventional alternative agents. Despite its 

short half-life there are data suggesting that a sustained antihypertensive response may 

be achieved across 24 hours following once-daily dosing. This long duration of action 

has been attributed to accumulation in a cellular lipid compartment, allowing 

continuous release into the binding site of the calcium channel (Herbette et al, 1993).

There are no studies evaluating the effects of lacidipine on glucoregulatory 

mechanisms. This placebo-controlled study evaluates the effects of single and multiple 

doses of lacidipine on whole-body insulin sensitivity in healthy male subjects and in 

patients with essential hypertension using the euglycaemic hyperinsulinaemic 

clamp.

113



4.2. SUBJECTS AND METHODS.

Twelve healthy male volunteers and six patients with a diagnosis of essential 

hypertension gave written informed consent to participate in the study (table 4.1.).

Following routine screening as outlined in chapter 2.1.1, each subject received 

lacidipine 4 mg once daily (Glaxo, Italy) and matching placebo, each for 2 weeks, in a 

randomised, double-blind crossover design with a 2-week washout period between 

each treatment phase (figure 4.1).

Clam p Clam p C lam p ClampI I 1 I
LacidipineLacidipine

P laceb oP laceb o

W eek 0  2 4  6

Figure 4.1: Schematic of study design.

Each subject attended four 5-hour study mornings to evaluate the metabolic 

effects of acute and chronic lacidipine and the corresponding placebo administrations. 

On each occasion, following an overnight fast, subjects attended the CIRU atX)745 

am. A fter 20 m inutes supine rest, baseline blood pressure and heart rate 

measurements were recorded (i.e. 24 hours after the last dose). Venous cannulae were 

inserted and subsequently lacidipine or placebo was administered orally with 100 mis 

water.
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On each study day, whole-body insulin sensitivity was calculated using the 

euglycaemic hyperinsulinaemic clamp as described in chapter 2.3. The clamp was 

commenced 60 minutes after drug administration. Systolic and diastolic blood 

pressure and heart rate (HR) were recorded in duplicate 60 minutes before and at 15 

minute intervals during the clamp. At baseline, and at 60-minute intervals during the 

3-hour clamp, additional blood samples were collected for measurements of serum 

insulin, C-peptide, serum potassium, triglyceride, plasma noradrenaline, plasma renin 

activity and serum aldosterone concentrations.

It was calculated from data in chapter 3 that the volunteer arm of this study 

would have greater than 80% power to detect a 15% change in insulin sensitivity.

4.3. RESULTS: (V) NORMAL VOLUNTEERS.

4.3.1. Tolerance

Lacidipine was generally well tolerated; apart from transient headache in one 

subject, no adverse events were reported, there were no significant adverse 

biochemical events, e.g. hypoglycaemia or hypokalaemia, and there were no 

withdrawals from the study. One subject had an episode of micturition syncope at time 

138 minutes following acute lacidipine administration. The plasma glucose at the time 

of symptoms was 5.1 mmol/L; his supine blood pressure was 74/50, pulse rate 47 

bpm. The subject made a prompt recovery.

4.3.2. Blood pressure and heart rate.

There were no statistically significant differences in supine blood pressure 

between the 4 study days in this group of normotensive volunteers. For example, 

average blood pressure between 0-180 mins was 124/63 mmHg after the first dose of
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lacidipine compared with 125/62 mmHg following placebo (figure 4.2). There was a 

trend towards higher heart rates following active treatment: on average (0-180 mins) 

68 and 69 bpm after the first dose and two weeks of lacidipine compared with 62 and 

61 bpm following placebo (figure 4.3). The increase in heart rate was maximal and 

significantly greater than the corresponding placebo 30 - 75 minutes after the start of 

the clamp, i.e. 90- 135 minutes after drug administration, and was observed following 

acute dosing and after 2 weeks of drug administration.

4.3.3. Serum insulin and C-peptide concentrations.

Serum insulin levels increased to a plateau within the first 60 minutes of the 

infusion and there were no significant differences in insulin concentration between the 

4 study days (figure 4.4); for example, at 120 minutes, serum insulin concentrations 

were 125.3 ± 55.4 and 116.9 ±  37.2 uU/ml for acute and chronic lacidipine 

respectively, compared with 122.6 ±  35.7 and 116.3 ± 29.8 uU/ml on the 

corresponding placebo study days. The acute rise in serum insulin concentration was 

associated with a significant decrease in endogenous insulin release. C-peptide 

concentrations at 120 -180 minutes were 25-30% lower than baseline fasting levels 

(figure 4.4.) (p<0.001).

4.3.4. Plasma glucose and whole-bodv insulin sensitivity.

Lacidipine had no significant effect on insulin-stimulated glucose uptake. 

Mean values for insulin sensitivity were 8.9 and 9.6 mg/kg/min after first dose and 2 

weeks lacidipine respectively, compared with 9.1 and 9.7 mg/kg/min following 

placebo. Confidence intervals for this observation were -0.9,1.3 for 2 weeks placebo 

versus 2 weeks lacidipine. Individual values for whole body insulin sensitivity on the 

four study days are shown in table 4.2.
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SUBJECT FIRST DOSE 
PLACEBO

2 WEEKS 
PLACEBO

FIRST DOSE 
LACIDIPINE

2 WEEKS 
LACIDIPINE

1 5.6 6.8 6.3 7.0

2 8.7 7.4 9.4 8.3

3 9.6 10.0 10.0 12.0

4 11.0 11.7 11.4 12.0

5 8.8 8.9 9.4 8.5

6 8.5 10.2 5.9 7.1

7 10.6 10.4 9.0 11.0

8 7.5 9.8 8.4 6.7

9 9.9 10.4 9.2 8.5

10 11.7 11.8 13.0 11.8

11 7.9 10.3 6.5 10.5

12 9.6 9.2 8.9 11.5

MEAN 9.1 +/- 2.0 9.7 +/-1.5 8.9 +/-1.6 9.6+/-2.1

Table 4.2: Individual values for whole body insulin sensitivity 
of healthy subjects in lacidipine study.
Values expressed as mg glucose/kg/min.
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4.3.5. Serum triglyceride concentrations.

After 2 weeks treatment with lacidipine there was a significant reduction in 

fasting serum triglyceride concentrations at baseline: 0.7 ± 0.3 mmol/1 vs 0.9 + 0.6 

(p< 0.01). In addition, there were significant reductions in serum triglyceride 

concentrations during each clamp; for example, after 2 weeks of lacidipine, 

triglyceride levels fell from 0.7 ±  0.3 to 0.5 ± 0.3 mmol/1 at 180 mins, compared with 

a corresponding change of 0.9 ± 0.6 to 0.7 ±  0.5 mmol/1 after placebo. There was no 

significant effect of lacidipine on insulin-stimulated reductions in triglyceride 

concentration during the clamp (figure 4.5).

4.3.6. Serum potassium concentrations.

There was a significant reduction in serum potassium concentration at the end 

of each clamp: on average 0.5mmol/l (figure 4.5). However, the insulin-stimulated 

reductions in serum potassium concentration were not significantly different between 

the four study days. The reduction in serum potassium was maximal within 60 minutes 

of commencing the infusion; there were no further significant reductions thereafter.

4.3.7. Plasma noradrenaline, plasma renin activity and serum aldosterone.

Baseline plasma renin activity was significantly higher after 2 weeks 

lacidipine compared with placebo; for example, 3.25 ± 0.60 ng Al/ml/hr after 2 weeks 

of lacidipine compared with 1.82 ± 0.79 ng Al/ml/hr following 2 weeks placebo 

(figure 4.6). There were no significant differences in plasma renin activity, serum 

aldosterone or catecholamines during the clamp (figure 4.7).
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4.4. RESULTS OP: HYPERTENSIVE PATIENTS.

4.4.1. Tolerance.

Lacidipine was generally well tolerated and there were no withdrawals from 

the study. In one patient (patient 2, study day 2) the euglycaemic hyperinsulinaemic 

clamp was discontinued after 120 minutes for safety reasons because of failure of the 

Beckman glucose analyser. The plasma glucose at the time was 5.8 mmol/1. The 

hormonal data from all four study days are included for this patient but no value for 

whole body glucose disposal was obtained. Two patients complained of headache on 

acute dosing with lacidipine, but these symptoms had resolved after 2 weeks.

4.4.2. Blood pressure and heart rate.

After 2 weeks treatment with lacidipine there was a significant reduction in 

baseline systolic blood pressure, i.e. 24 hours after the last dose, compared with 

screening values (p<0.05) but no significant difference compared with placebo. After

2 weeks lacidipine, supine values were 136/79 ± 16/12 following lacidipine compared 

with 143/78 ± 22/12 following 2 weeks placebo. Profiles of blood pressure during the

3 hour period of intervention and hyperinsulinaemia were not significantly different 

between study days (figure 4.8). Reflex tachycardia was observed after both first dose 

and after 2 weeks of lacidipine treatment; this increase in heart rate was maximal 60 

minutes after drug administration (figure 4.9).

4.4.3. Serum insulin and C-peptide.

Lacidipine had no significant effect on fasting serum insulin concentrations; 

for example, 10.3±6.6 uU/ml after 2 weeks lacidipine, compared with 6.5±3.0 uU/ml
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after 2 weeks placebo. Serum insulin levels increased to a plateau within the first 60 

minutes of the insulin infusion and there were no significant differences in insulin 

concentration between the 4 study days (figure 4.10); for example, at 120 minutes, 

serum insulin concentrations were 106.8 ± 31.4 and 98.7 ± 29.8 uU/ml for first dose 

and 2 weeks lacidipine respectively, compared with 119.9 ± 28.2 and 100.2 ± 21.4 

uU/ml on the corresponding placebo study days. As with the volunteers, the acute rise 

in serum insulin concentration was associated with a significant decrease in C-peptide 

concentrations; for example at 180 minutes C-peptide levels were about 15% lower 

than baseline fasting levels (figure 4.10) (p<0.05).

4.4.4. Plasma glucose and whole body insulin sensitivity.

Lacidipine had no significant effect on fasting plasma glucose concentrations; 

for example, 5.6±0.9 mmol/L after 2 weeks lacidipine, compared with 5.2+0.4 

mmol/L after 2 weeks placebo. The individual values of whole body insulin 

sensitivity on the four study days are shown in table 4.3. Lacidipine had no significant 

effect on insulin-stimulated glucose uptake. Mean values for insulin sensitivity were 

6.6+3.0 and 5.7±2.2 mg/kg/min after first dose and 2 weeks respectively, compared 

with 6.6±2.4 and 6.5±2.0 mg/kg/min following placebo. Confidence intervals for this 

observation were (-2.0,3.0) for 2 weeks lacidipine versus 2 weeks placebo.

4.4.5. Serum triglyceride and potassium concentrations.

Lacidipine had no effect on fasting serum triglyceride concentrations at 

baseline. There were, however, significant reductions in both triglyceride and 

potassium concentrations during each clamp; for example, after 2 weeks of lacidipine, 

triglyceride levels fell from 2.3 ± 2.0 at baseline to 1.6 ± 2.0 mmol/1 at 180 mins, 

compared with a corresponding change of 2.2 + 1.9 to 1.9 ± 1.6 mmol/1 after placebo
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PATIENT FIRST DOSE 
PLACEBO

2 WEEKS 
PLACEBO

FIRST DOSE 
LACIDIPINE

2 WEEKS 
LACIDIPINE

1 5.5 6.4 5.5 6.0

2 11.0 9.0 9.9 NR

3 2.1 3.0 3.3 2.3

4 8.3 8.0 7.1 8.0

5 6.9 6.6 7.1 7.0

6 6.0 6.0 6.6 5.3

MEAN 6.6+/-2.4 6.5 +/- 2.0 6.6 +/- 3.0 5.7 +/- 2.2

Table 4.3: Individual values for whole body insulin sensitivity 
of hypertensive patients in lacidipine study.
Values expressed as mg glucose/kg/min.
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(figure 4.11.). Correspondingly, potassium levels fell from 4.0 ± 0.3 to 3.5 ±0.1, and 

from 4.4 + 0.3 to 3.4 ± 0 .1  mmol/L, during the same study days (figure 4.10.). 

Lacidipine had no significant effect on these insulin-stimulated reductions in 

triglyceride and potassium concentrations.

4.4.6. Plasma noradrenaline, plasma renin activity and serum 

aldosterone.

There were no significant differences in plasma catecholamine concentrations 

(figure 4.12), plasma renin activity and serum aldosterone concentrations (figure 4.13) 

following 2 weeks treatment with lacidipine.

4.5. DISCUSSION.

Lacidipine had no effect on whole body insulin-stimulated glucose uptake in 

this group of insulin sensitive healthy male volunteers or in patients with essential 

hypertension. The confidence intervals for the effect of chronic lacidipine on insulin 

sensitivity in the healthy volunteers excludes a 10% decrease and a 15% increase in 

insulin-sensitive glucose transport, i.e. effects similar to those reported with 

hydrochlorothiazide and captopril respectively in patients with essential hypertension 

(Klauser et al, 1991; Pollare et al, 1989b). In the patient group, there was a tendency 

for whole body insulin sensitivity to decrease after 2 weeks lacidipine (5.7 vs 6.6 

mg/kg/min) but the confidence intervals were relatively wide and a type II statistical 

error cannot be excluded. An additional finding in the healthy volunteer group was 

that, after chronic dosing, there was a significant reduction in fasting serum 

triglyceride concentrations.
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It should be borne in mind, however, that the results of this 2 week 

"short-term" study may not necessarily reflect the metabolic effects of long term 

treatment with lacidipine in hypertensive patients.

The role of calcium in glucose-induced insulin release is well established but 

the significance of this intracellular cation in regulation of insulin mediated responses 

remains to be clearly defined (Levy et al, 1989). There are some data, however, that 

suggest that the intracellular calcium concentration correlates with in vivo insulin 

sensitivity (Resnick et al, 1993).

Calcium antagonists may affect glucose and insulin metabolism via a number 

of different mechanisms, e.g. decreased insulin secretion, enhanced release of 

glucagon and altered hepatic glucose output (Giugliano et al, 1980; Charles et al, 

1981). In addition, since blood flow is an important determinant of glucose uptake 

into skeletal muscle (Baron et al, 1991b; Julius et al, 1991), vasodilatation per se may 

increase peripheral glucose utilisation. With dihydropyridines, however, the 

vasodilator response observed after acute dosing is often associated with reflex 

increases in plasma renin activity and catecholamines which might attenuate 

insulin-dependent glucose transport during short-term  administration. This 

sympathetic activation often subsides during chronic treatment when baroreflex 

mechanisms reset. An interesting feature of this study in both the healthy subjects and 

patients with essential hypertension was that increases in plasma noradrenaline and 

significant increases in supine heart rate were observed following the first dose of 

lacidipine and also after 2 weeks of drug administration. This reflex tachycardia 

observed after 2 weeks would be entirely consistent with the once-daily administration 

of a dihydropyridine with a short half life, and in keeping with the observed plasma 

half-life of lacidipine of 1 - 3 hours (Hall et al, 1991). In addition, the lack of a 

significant reduction in supine blood pressure in the patient group 24 hours after the 

last dose compared with placebo does not suggest a sustained 24 hour duration of 

action of lacidipine, although the number of patients studied was small. Despite this
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evidence of sympathetic activation after single dosing and after two weeks there was 

no change in insulin sensitivity compared with placebo administration.

Calcium antagonists have generally been reported to have neutral effects on 

glucose tolerance [chapter 1.3.2.] but there have been conflicting reports about the 

specific effect of dihydropyridines on insulin-stimulated glucose uptake by peripheral 

tissues. Diabetogenic effects of nifedipine (Bhatager et al, 1984) and enhanced insulin 

sensitivity with nitrendipine (Beer et al, 1993) are frequently cited, though 

uncontrolled studies. Many other investigators have reported contrasting effects of 

dihydropyridines on glucoregulatory control (Trost et al, 1984; Gill et al, 1987; 

Chellingsworth et al, 1989; Klauser et al, 1991; Oehman et al, 1985). The 

conflicting results may be due, in part, to limitations of study design (often a lack of 

placebo data), differences in methodology for assessing insulin sensitivity, and 

heterogeneous patient groups in whom the biochemical mechanisms of insulin 

resistance, and drug effects, may not be the same, e.g. in diabetic patients compared 

with hypertensive patients. Many of these uncontrolled studies have used oral glucose 

tolerance tests as an indirect measure of peripheral insulin sensitivity. The difficulty 

with this method is that while profiles of glucose and insulin concentration for groups 

of subjects are usually quite smooth, curves for individuals are often erratic and the 

interpretation is hampered because both dependent variables, glucose and insulin, are 

changing simultaneously [chapter 1.2.1]. To the best of my knowledge, the present 

study is the one of the first double-blind, placebo-controlled, crossover studies to 

evaluate both the acute and short-term metabolic effects of a calcium antagonist in 

healthy subjects and patients with uncomplicated essential hypertension.

In the healthy volunteer group, steady state treatment with lacidipine resulted 

in a significant reduction in fasting serum triglyceride concentrations at baseline, but 

this effect was not observed in the patients with essential hypertension, although the 

number of patients studied was small limiting the power of the study. Increased 

triglyceride tolerance has been reported previously with dihydropyridines (Marrotta et
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al, 1989; Trost & Weidmann, 1987) but the mechanism of this action remains unclear. 

There is limited evidence that calcium antagonists may enhance secretion of 

lipoprotein lipase which is the principal enzyme involved in triglyceride removal 

(Pasanisi et al, 1988). In both groups, lacidipine had no effect on insulin-stimulated 

triglyceride uptake during the 180 minute clamp. Thus, there was no evidence from 

this study that lacidipine exerted an additive or synergistic effect on the effect of 

insulin on triglyceride disposal which is also mediated via lipoprotein lipase.

In summary, this placebo-controlled study has shown a reduction in fasting 

triglyceride levels with lacidipine in the healthy volunteer group and no adverse 

effects on insulin-stimulated uptake of glucose, potassium and triglyceride in both the 

patients with essential hypertension and the healthy volunteers. These data are relevant 

to the debate of the inter-relationship between insulin resistance, non-insulin 

dependent diabetes and essential hypertension. Thus, it is well established that 

lacidipine lowers blood pressure by vasodilatation of resistance arterioles, many of 

which perfuse skeletal muscle, yet in this study, despite significant cardiovascular 

effects (and presumably a modest increase in peripheral blood flow), there was no 

change in whole body insulin sensitivity. In order to draw any firm conclusions 

regarding regional tissue perfusion, however, it would clearly be necessary to repeat a 

similar study with direct measurements of skeletal muscle blood flow.
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CHAPTER 5

THE EFFECTS OF THE ACE INHIBITOR TRANDQLAPRIL 

ON INSULIN SENSITIVITY IN PATIENTS WITH ESSENTIAL 

HYPERTENSION AND IMPAIRED GLUCOSE TOLERANCE OR NIDDM
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5.1. GENERAL INTRODUCTION

Angiotensin converting enzyme (ACE), also known as kininase II, is 

responsible for the enzymatic conversion of angiotensin I to the potent vasoconstrictor 

peptide angiotensin n. The ACE inhibitor drugs, of which captopril and enalapril were 

the first to be licensed for clinical use, have become established in the treatment of 

hypertension (Brunner et al, 1981) and cardiac failure (CONSENSUS, 1987).

There is some debate about the metabolic effects of ACE inhibitors [chapter 

1.3.2]. Anecdotal reports and small clinical studies have suggested increased insulin 

sensitivity following ACE inhibition, but few, if any, of these reports are based upon a 

placebo-controlled, cross-over design. Furthermore, most of the available evidence is 

based on indirect measurements of insulin sensitivity derived from oral or intravenous 

glucose tolerance tests. Thus, deficiencies in study design may be partly responsible 

for conflicting results about the effects of ACE inhibitors on insulin action and 

glycaemic control. For example, it has been shown that single doses of captopril 

increase insulin sensitivity in hypertensive diabetics (Torlone et al, 1991; Uehara et al, 

1994; Rett et al, 1988), whereas others have found no effect (Helve et al, 1993). 

Likewise, there are confusing reports regarding metabolic changes after long-term 

administration of ACE inhibitors; while the studies of Pollare et al (1989a), Paolisso 

et al (1992) and Torlone et al (1993) report an increase in insulin sensitivity with 

captopril, other investigators have reported neutral effects of various ACE inhibitor 

drugs, including captopril (Seefeldt et al, 1990), perindopril (Bak et al,1992), enalapril 

(Moore et al, 1988) and cilazapril (Santoro et al, 1992). However, none of these 

uncontrolled studies is entirely satisfactory. The present study, therefore evaluates the 

effects of a new ACE inhibitor, trandolapril, on whole body insulin sensitivity in 

patients with at least two cardiovascular risk factors, namely glucose intolerance or 

NIDDM, and essential hypertension, using a double-blind, placebo-controlled study 

design with the euglycaemic hyperinsulinaemic clamp.
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5.1.1. Clinical pharmacology of trandolapril

Trandolapril is a potent non-sulphydryl ACE inhibitor which, following oral 

administration is hydrolysed to the active diacid metabolite, trandolaprilat, which 

inhibits both serum and tissue ACE (figure 5.1). Since trandolapril is a pro-drug, it is 

subject to extensive first-pass metabolism and its absolute bioavailability is about 

7.5% (De Ponti et al, 1991). The absolute bioavailability of trandolaprilat administered 

as trandolapril is 40-60%. The pharmacokinetics of trandolapril are linear whereas 

those of trandolaprilat are non linear; this may be explained by the saturation of 

binding to angiotensin converting enzyme (Bree et al, 1992). The effective half-life of 

trandolapril at steady state is between 16 and 24 hours, thus allowing once daily 

dosing. In terms of efficacy, results of double blind placebo-controlled comparative 

studies have shown that trandolapril administered at a single daily dose of 2 to 4mg is 

effective in lowering blood pressure for up to 24 hours in patients with mild to 

moderate hypertension (Mancia et al, 1992). Trandolapril is fully licensed in the U.K. 

(Knoll Pharmaceuticals).

COOH

CH R :' C2H5: Trandolapril 
0  3 - H: Trandolaprilat (diacid)

I
,c

NH
^ C H — -C H 2 ------CH2

COO-R

Figure 5.1: Chemical structure of trandolapril.
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5.2. PATIENTS AND METHODS

The study group consisted of 12 male patients with untreated essential 

hypertension and either impaired glucose tolerance (IGT) or (diet-controlled) NIDDM. 

A further 10 patients were screened and randomised, but were excluded from the study 

after visit 2  because they failed to meet blood pressure or glucose tolerance entry 

criteria. On entry into the study, the median age was 54 years, mean BMI 31.7 ±5.2 

kg/m2 and mean blood pressure 164/95 ± 19/8 mmHg. Four patients were smokers, 

with a mean consumption of 15 cigarettes daily. On the basis of the screening OGTT, 

6  of the patients were diagnosed as having IGT and six had NIDDM according to 

standard WHO criteria [chapter 2.1.2]. All patients were asked to adhere to an 

isocaloric diabetic diet throughout the study consisting of approximately 55% 

carbohydrate, 25% fat and 20% protein [chapter 2.1.4]. They were asked to refrain 

from strenuous exercise and none of the subjects was receiving any proprietary or 

prescription medication. The clinical details of the patients are shown in table 5.1.

Following routine screening [chapter 2.1.1], the study consisted of a single 

blind placebo run-in period for 2 weeks followed by 2  double-blind crossover periods, 

each of 4 weeks, when patients were randomised to receive trandolapril 2mg once 

daily or matching placebo. A 2 week washout period was included between the 

crossover phases [figure 5.2].

Visit I Visit 2
OGTT Clamp

Visit 3 Visit 4 
Clamp Washovt

Visit 5 
Clamp

Trandolapril Placabo

Sing/a
blind

placabo Placabo Trandolapril

WEEKS 0 2 6 8 12

Figure 5.2: Schematic of study design.
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Each subject attended three 5-hour study mornings (once after the single blind 

run in phase, and after each crossover period) to evaluate the metabolic effects of 

trandolapril and the corresponding placebo administrations. On each occasion, 

following an overnight fast, subjects attended the CIRU at 0745 am. After 20 minutes 

supine rest, baseline blood pressure and heart rate measurements were recorded (i.e. 

24 hours after the last dose of trandolapril or placebo). Baseline blood samples were 

collected and trandolapril or placebo was administered orally with 100 mis water.

On each study day, whole-body insulin sensitivity was calculated using the 

euglycaemic hyperinsulinaemic clamp as described in chapter 2.3. The clamp was 

commenced 60 minutes after drug administration. Systolic and diastolic blood 

pressure and heart rate (HR) were recorded in duplicate 60 minutes before and at 15 

minute intervals during the clamp. At baseline, and at 60-minute intervals during the 

3-hour clamp, additional blood samples were collected for measurements of serum 

insulin, C-peptide, serum potassium, triglyceride, plasma noradrenaline, plasma renin 

activity, serum aldosterone concentrations and serum ACE activity.

It was calculated from previous data that this study would have greater than 

80% power to detect a 15% change in insulin sensitivity.

5.3. RESULTS

5.3.1. Tolerance

The euglycaemic clamp was generally well tolerated and there were no adverse 

biochemical events. One patient (no. 11) experienced an episode of micturition 

syncope on his final study day and the procedure was abandoned after 12 0  minutes. 

The plasma glucose concentration at the time was 5.5 mmol/L. As steady-state had not 

been reached, the biochemical data are included in the analyses but the insulin 

sensitivity data from visit 5 have been omitted.
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5.3.2. Blood pressure and heart rate

Chronic treatment with trandolapril was associated with a significant decrease 

in baseline blood pressure (i.e. 24 hours after the last dose) compared with placebo. 

Mean supine values were 167/97 ±  10/7 mmHg after the placebo run-in phase and 

160/93 ± 17/9 and 152/88 ± 13/7 mmHg after 4 weeks of placebo and trandolapril 

respectively (p<0.05 ANOVA). At subsequent time points during the clamp, 

trandolapril was associated with significant decreases in supine blood pressure from 

30 to 180 mins; for example, after 4 weeks treatment, supine blood pressure at 180 

minutes was 138/72 ± 12/7 mm Hg compared with 153/82 ± 13/12 mm Hg after 

placebo (figure 5.3). There were no statistically significant differences in heart rate 

between the 3 study days (figure 5.4).

5.3.4. Serum insulin and C-peptide concentrations

Serum insulin levels increased to a plateau within the first 60 minutes of the 

infusion and there were no significant differences in insulin concentrations between 

the 3 study days (figure 5.5); for exam ple, at 120 m inutes, serum insulin  

concentrations were 143 ± 35,141 ± 47 and 151 ± 30 uU/ml after the placebo run-in, 

and after 4 weeks placebo and trandolapril respectively. The acute rise in serum 

insulin concentration was associated with a significant decrease in endogenous insulin 

release. C-peptide concentrations at 180 minutes were 30-40% lower than baseline 

fasting levels; for example, baseline values were 2.3 ±1.1  ng/ml after 4 weeks 

placebo and 2.3 ±1.1 ng/ml after 4 weeks trandolapril. The corresponding values at 

180 minutes were 1.2 ± 0.1 ng/ml and 1.7 ±  1.3 ng/ml respectively (figure 5.5) 

(p<0.001). Thus, trandolapril appeared to have no effect on insulin clearance.
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5.3.5. Plasma glucose and whole body insulin sensitivity

There was no significant difference in plasma glucose concentrations during 

the 3 clamps; mean fasting plasma glucose concentrations were 6.6  +1.2 mmol/L, 6.8  

±1.4  and 6.8  ±1.2  for the run-in, placebo and trandolapril study days respectively. 

The corresponding mean plasma glucose concentrations for the last 40 minutes of each 

clamp were 5.2 ± 0.3,5.3 ± 0.3 and 5.2 ± 0.3 mmol/L.

There was no significant difference in insulin-stimulated glucose uptake 

between the 3 study days; mean values for whole body insulin sensitivity were 4.6 ± 

1.7,4.7 ±1.9 and 4.7 ± 1.3 mg glucose/kg/min on the run-in, placebo and trandolapril 

study days respectively (p=0.75). Confidence intervals for this observation were 

(-0.6,1.1) for 4 weeks placebo versus 4 weeks trandolapril (table 5.2).

5.3.6 Plasma ACE activity

Trandolapril was associated with a significant decrease in baseline ACE 

activity (i.e. 24 hours after the last dose); mean values were 16.9 ± 6.3 EU/L and 23.4 

± 5.4 EU/L after 4 weeks trandolapril and 4 weeks placebo respectively (p<0.01) 

(figure 5.6). Following drug administration on the active study day, trandolapril was 

associated with a prompt decrease in plasma ACE activity. The mean percentage ACE 

inhibition at 120-180 minutes was 70 ±  15% (figure 5.6).

5.3.7. Serum potassium concentrations

The time course of changes in serum potassium concentrations during the 

clamp are depicted in figure 5.5. There was a significant reduction in serum potassium 

concentration during each clamp; the reduction was maximal within 60 minutes and
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SUBJECT RUN IN 
PLACEBO

4 WEEKS 
PLACEBO

4 WEEKS 
TRANDOLAPRIL

1 4.3 5.0 4.5

2 4.9 3.5 4.3

3 6.5 8.3 5.4

4 3.6 2.2 2.7

5 5.6 6.4 6.4

6 4.1 5.6 4.8

7 6.0 4.9 6.3

8 3.9 4.4 4.5

9 1.4 2.2 2.2

10 5.0 4.8 6.3

11
2.8 2.3 NR

12 7.5 5.2 5.2

MEAN 4.6 +/-1.7 4.7 +/-1.9 4.7 +/- 1.3

Table 5.2: Individual values of whole body insulin 
sensitivity of patients in trandolapril study.
Values expressed as mg glucose/kg/min.
There was no significant effect of trandolapril on insulin sensitivity 
p = 0.75 4 weeks placebo vs. 4 weeks trandolapril (ANOVA).
95% confidence intervals -0.6,1.1.
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there were no further significant reductions thereafter. Treatment with trandolapril had 

no significant effect on insulin-stim ulated reductions in serum potassium  

concentration during the clamp.

5.3.8. Serum aldosterone, plasma renin activity and plasma noradrenaline

The time course of changes in serum aldosterone concentrations during the 

clamp are shown in figure 5.7. Both trandolapril and placebo clamps were associated 

with a significant (P<0.004) decline in plasma aldosterone, and chronic ACE 

inhibition had a further independent (2 0 %) effect of lowering plasma aldosterone 

concentrations; for example, at 120 minutes aldosterone levels were 67 ± 30 pg/ml 

and 100 ± 64 pg/ml after 4 weeks trandolapril and placebo respectively.

There was a significant increase in plasma renin activity after trandolapril 

administration; for example, at 180 minutes plasma renin activity was 4.6 ± 3.7 ng 

Al/min after trandolapril compared with 1.6 ± 0.2 and 1.9 + 1.5 ng Al/min after the 

run-in and placebo phases respectively (p<0.001) (figure 5.7).

The acute rise in serum insulin was not associated with any significant change 

in plasma noradrenaline concentrations during any of the three study days (figure 5.8).

5.3.9. Serum triglyceride concentrations

Treatment with trandolapril was associated with a significant reduction in 

fasting triglyceride concentrations. Thus, baseline values were 2.1 + 0.9 mmol/1 and

2.0 ± 1 .2  following placebo run-in and 4 weeks placebo, compared with 1.4 + 0.6 

mmol/1 after 4 weeks trandolapril treatment (p<0.01). Both the trandolapril and 

placebo clamps were associated with a significant (P<0.05) decline in serum 

triglyceride concentrations during the procedure, but chronic ACE inhibition had no 

further independent effects on lowering plasma triglycerides during the clamp (figure 

5.8).
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5.4. DISCUSSION

This study has shown that in patients with essential hypertension and glucose 

tolerance ACE inhibition with trandolapril reduced blood pressure but had no effect on 

whole body insulin-stimulated glucose uptake. The confidence intervals for the effect 

of trandolapril (after 4 weeks) excludes a 12% increase or a 23% decrease in insulin 

sensitivity. The patients in this study were moderately hypertensive, obese (10 of the 

12 patients had a BMI greater than 27) and glucose intolerant. These three factors are 

all recognised to have additive detrimental effects on insulin sensitivity; accordingly 

the group as a whole were markedly insulin resistant with a mean baseline insulin 

sensitivity of only 4.6 ± 1.3 mg glucose/min, although limited evidence suggests that 

hypertension does not add significantly to the magnitude of the insulin resistance that 

is already present in obesity and NIDDM (Bonora et al, 1993).

The primary aim of this study was to evaluate the effects of chronic ACE 

inhibition on insulin-stimulated glucose uptake. Much recent research has focused on 

mechanisms whereby ACE inhibition might contribute to enhanced glucose uptake by 

skeletal muscle. It has been suggested, for example, that microcirculatory changes in 

muscle, secondary to vascular hypertrophy and rarefaction, might contribute to insulin 

resistance, especially in essential hypertension (Julius et al, 1991) [chapter 1.2.1]. It is 

therefore reasonable to propose that any drug with vasodilatory actions may increase 

insulin sensitivity by virtue of improved regional perfusion. There are uncontrolled 

data suggesting that augmented forearm glucose uptake in diabetics receiving captopril 

is due to a modest increase in limb blood flow (Rett et al, 1986; Jauch et al, 1987; 

Kodama et al, 1990), although another possible mechanism is blockade of the RAS. 

ACE inhibitors reduce angiotensin n  formation and there are in vitro data that suggest 

angiotensin n  has some gluconeogenic and glycogenolytic actions (Kaley et al, 1967; 

Kneer & Lardy, 1983). Thus, activation of the RAS might be expected to have a 

deleterious effect on insulin sensitivity and conversely, ACE inhibition might have an 

opposite effect. This issue is addressed in chapter 6 . The last possible mechanism
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relates to elevation in systemic kinin levels associated with ACE inhibition. Jauch and 

colleagues (1988) reported that during a euglycaemic hyperinsulinaemic clamp, the 

administration of bradykinin was associated with a marked increase in forearm 

glucose uptake and a reduction in hepatic glucose output in post-surgical patients.

Despite various theoretical mechanisms whereby ACE inhibition might 

increase insulin-mediated glucose uptake, the principal finding of this study was that 

ACE inhibition failed to change whole body insulin sensitivity. This result is in 

agreement with previous studies examining the long term effects of ACE inhibition on 

whole body insulin sensitivity with cilazapril (Santoro et al, 1992), and captopril 

(Seghieri et al, 1992), but stands in contrast to well publicised reports that whole body 

insulin sensitivity is increased after chronic ACE inhibition with captopril (Pollare et 

al, 1989a; Torlone et al, 1993; Paolisso et al, 1992). Several explanations may account 

for the disparity in these observations. Firstly, the study of heterogeneous patient 

groups in whom the defect in insulin sensitivity may not be the same is a possible 

explanation. This appears unlikely as an improvement in insulin sensitivity has been 

reported in both glucose tolerant hypertensive patients (Pollare et al, 1989a) and 

diabetic hypertensive patients (Torlone et al, 1993; Paolisso et al, 1992). Secondly, 

differences in experimental design may be responsible. For example, in Pollare*s 

study, a small but significant decrease in insulin sensitivity was observed when 3 

months treatment with captopril was compared with 3 months of treatment with 

hydrochlorothiazide. There was no direct comparison with placebo and the study was 

analysed as parallel groups although it had been designed as a placebo-controlled 

crossover study. Torlone*s study did utilise a placebo-controlled crossover design in 

2 0  diabetic hypertensive patients, but the study was open, used an incremental 

infusion regimen of insulin to evaluate insulin sensitivity during a euglycaemic 

hyperinsulinaemic clamp, and patients were allowed to continue oral hypoglycaemic 

therapy (sulphonylureas and biguanides) throughout the study. And thirdly, it is 

possible that the effect reported is drug-specific, rather than class-specific. 

Uncontrolled studies have suggested that the acute improvement in insulin sensitivity
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observed with captopril therapy is because it contains a sulphydryl group (Jauch et al 

1987; Uehara et al, 1994). Finally, a potentially important feature of the study design 

is whether the ACE inhibitor is administered on the morning of the euglycaemic 

hyperinsulinaemic clamp. As discussed above, it is well established that ACE inhibitor 

drugs acutely vasodilate forearm blood vessels. Such a mechanism of increasing 

insulin sensitivity would be common to any vasodilator and not specific to 

manipulation of the renin-angiotensin system. It is of interest that in the studies of 

Santoro and Seghieri, drug administration was omitted on each study day, whereas in 

the studies demonstrating a beneficial effect of captopril, drug treatment was 

administered immediately prior to the measurement of insulin sensitivity. Lastly, a 

possible explanation is that some studies have had inadequate power to detect a 

change in insulin sensitivity. With reference to my study, this appears unlikely, as the 

95% confidence intervals exclude a 12% increase in insulin sensitivity with 

trandolapril treatment.

These results also clarify the response of the RAS to insulin administration in 

hypertensive diabetic patients. Trovatti and colleagues (1989) reported that during a

1.0 nmol/1 euglycaemic hyperinsulinaemic clamp in healthy subjects, plasma renin 

activity and angiotensin II levels increased while reducing serum aldosterone 

concentrations. The activity of serum ACE was not affected. These hormonal changes 

were abolished by potassium supplementation. My results have confirmed adequate 

inhibition of plasma ACE in this group of hypertensive diabetic patients after once 

daily dosing of trandolapril; 4 weeks therapy was associated with a 30% reduction in 

serum ACE activity compared with placebo at baseline (i.e. 24 hours after the last 

dose) and maximal enzyme inhibition (65-70%) was achieved within 2-4 hours during 

the clamp. ACE activity was unaffected by the insulin stimulus alone. In this group of 

patients, trandolapril treatment was associated with a non significant increase in 

plasma renin activity at baseline and a further significant increase during the clamp. 

The insulin stimulus alone had no effect on plasma renin activity. The rise in plasma 

insulin concentrations induced by intravenous insulin caused marked hypokalaemia
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with mean serum potassium decrements of 0.44 + 0.05 and 0.33 + 0.05 following 4 

weeks placebo and 4 weeks trandolapril respectively; the corresponding decrements in 

serum aldosterone concentrations from baseline were 37% and 52% respectively.

In summary, this is one of the first double-blind, placebo-controlled crossover 

study to evaluate the effects of ACE inhibitor therapy on insulin dependent metabolic 

responses in hypertensive patients with impaired glucose tolerance or NIDDM. 

Despite conflicting evidence from previous uncontrolled studies, there was no 

evidence that sustained ACE inhibition affected whole body insulin sensitivity after 4 

weeks. There has been much speculation as to potential mechanisms whereby ACE 

inhibitors may improve insulin action in both short-term and long- term studies, 

including increased bradykinin concentrations (Dietze 1982), increased blood flow to 

’’insulin sensitive" tissues (Junichi et al, 1991), via an angiotensin n  sparing effect [see 

chapter 6], or even a direct metabolic effect of the ACE inhibitor itself. The present 

data suggest no such beneficial effect with a non-sulphydryl group ACE inhibitor. The 

interpretation of results of studies of insulin sensitivity following treatment with ACE 

inhibitors are highly dependent upon the type of protocol used.
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CHAPTER 6

EFFECTS OF SUB-PRESSOR AND PRESSOR DOSES OF 

ANGIOTENSIN II ON INSULIN SENSITIVITY IN HEALTHY SUBJECTS

AND PATIENTS WITH NIDDM
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6.1. GENERAL INTRODUCTION.

Peripheral and hepatic insulin resistance, affecting multiple pathways of 

glucose and lipid metabolism, plays a major role in the development of NIDDM 

(DeFronzo et al, 1992) [chapter 1.1.1]. In addition, resistance to insulin-mediated 

glucose transport and hyperinsulinaemia (short of overt diabetes) have been implicated 

as both slow-pressor and atherogenic mechanisms that might contribute to increased 

blood pressure and the long term development of hypertensive vascular complications 

(Reaven, 1988; Ferannini et al, 1987; Stout, 1989). Thus, the significance of common 

associations among metabolic and haemodynamic abnormalities, not only in patients 

with diabetes but also in non-diabetic subjects, has attracted widespread interest 

[chapter 1.1.4]. Since hypertension is at least twice as common in patients with 

NIDDM (independent of body weight and renal dysfunction) and the combination of 

diabetes and hypertension exerts a greater-than-additive effect on coronary heart 

disease risk (Hypertension in Diabetes Study Group 1993), there are important reasons 

for pursuing the nature of this association and for identifying possible sites of 

interaction between mechanisms of blood pressure and endocrine regulation. Thus, at 

both in vitro and in vivo levels, numerous studies have suggested important 

pathophysiological links between glucose and insulin m etabolism  and the 

neuroendocrine systems involved in cardiovascular regulation, particularly the 

renin-angiotensin-aldosterone system (RAS) and the sympathetic nervous system 

(Trovatti et al, 1989; Ferrannini et al, 1992; Rowe et al, 1981). In particular, it has 

been proposed that changes in glucose and insulin metabolism might be secondary to 

hypertensive microvascular complications (Baron et al, 1993), and much discussion 

has focussed on the importance of skeletal muscle blood flow as a determinant of 

glucose disposal rate and the potential insulin-antagonist effects of neuroendocrine 

mechanisms involved in cardiovascular regulation (Baron et al, 1991a; Julius et al, 

1991). Thus, the insulin antagonist effects of catecholamines are well established
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(Deibert & DeFronzo, 1980), and insulin augments vascular reactiv ity  to 

noradrenaline (Gans et al, 1991a).

More recently, attention has focussed on the role of the RAS in insulin 

resistant states. There is evidence that the circulating and tissue-based RAS may be 

implicated in the pathogenesis of common diabetic complications including 

hypertension, microalbuminuria, renal dysfunction and both micro- and macrovascular 

disease. Local generation of angiotensin peptides occurs in the microvascular network 

of skeletal muscle (Vicaut & Hou, 1993), and might potentially regulate blood flow 

distribution to muscle fibres of varying insulin sensitivity. In addition, there is limited 

evidence that components of the RAS directly affect metabolic control; in vitro 

studies have shown hyperglycaemic effects of angiotensin II on the liver, via increased 

glycogenolysis and decreased gluconeogenesis (Kaley et al, 1967). 

Hyperinsulinaemia enhances the aldosterone response to angiotensin II with no effect 

on the vasoconstrictor response (Gans et al, 1991a; Vierhapper et al, 1983). However, 

there are no in vivo data examining the direct metabolic effects of angiotensin n. The 

only evidence comes indirectly from the metabolic effects of renin-angiotensin system 

blockade with angiotensin converting enzyme inhibitor drugs (chapters 1.3.2. and 5.1.) 

and from studies evaluating insulin sensitivity after dietary salt modification; thus, 

there is evidence that angiotensin converting enzyme inhibitors may enhance insulin 

sensitivity in both diabetic and non-diabetic subjects (Pollare et al, 1989a; Prince et al, 

1988; Gans et al, 1991b), even after single-dose administration (Jauch et al, 1987), and 

that dietary salt restriction in "salt-sensitive" normotensive volunteers may increase 

insulin sensitivity (Sharma et al, 1991; Donovan et al, 1993).

Therefore, there is evidence suggesting involvement of the RAS in some of the 

metabolic as well as the haemodynamic features of diabetes. Since the metabolic 

derangements associated with diabetes produce structural as well as functional 

changes in arteries and resistance arterioles, and since haemodynamic responses to 

angiotensin II (as well as other vasoconstrictor peptides) are reported to differ
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significantly in diabetic compared with non-diabetic subjects (Tuck et al, 1980; 

Chrisdieb, 1976), the present study was designed to evaluate the effects of two doses 

of angiotensin II on blood pressure and insulin sensitivity in both healthy subjects and 

in patients with NIDDM.

6.2. SUBJECTS AND METHODS.

Twelve healthy normal volunteers, median age 25 years with mean BMI 24.0 ±

2.0, and eleven diet-controlled patients with NIDDM, median age 56 years, BMI 27.5 

+ 2.0, with mean duration of diabetes of 4 years, gave written informed consent to 

participate in this study. Clinical details of the individual subjects are shown in table

6.1.

Each subject attended three 5-hour study mornings, one week apart, in the 

CIRU to evaluate the effects of placebo, subpressor (1 ng/kg/min) and pressor (5 

ng/kg/min) doses of angiotensin II on insulin stimulated metabolic responses in a 

randomised, double blind, crossover design. On each occasion, following an overnight 

fast, subjects attended the CIRU at 0745 hours. After 20 minutes supine rest, baseline 

blood pressure and heart rate measurements were recorded. On each study day, whole 

body insulin sensitivity was assessed using the euglycaemic hyperinsulinaemic clamp 

[chapter 2.3]. In addition to the infusions of insulin and 20% dextrose, a third constant 

rate infusion of either saline, low (1 ng/kg/min), or high (5 ng/kg/min) dose 

angiotensin II was administered for 180 minutes. The angiotensin II or placebo 

infusion was prepared in 50 mis of saline by an independent investigator in the 

Pharmacy Department at the Western Infirmary, Glasgow and administered 

intravenously into the left antecubital fossa using a Braun perfusor pump.

Systolic and diastolic blood pressure and heart rate were recorded at 15 minute 

intervals during the euglycaemic clamp. At baseline, and at 60 minute intervals
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additional blood samples were collected for measurements of serum insulin, 

C-peptide, plasma renin activity, serum aldosterone and plasma catecholamine 

concentrations. A single 10ml blood sample for the measurement of plasma 

angiotensin II concentration was collected at 120 minutes.

It was calculated from previous work that these studies would have greater 

than 80% power to detect a 15% change in insulin sensitivity in both the healthy 

volunteers and patients with NIDDM.

6.3. RESULTS (I) - HEALTHY VOLUNTEERS.

6.3.1. Tolerance.

The euglycaemic clamp was well tolerated; there were no adverse biochemical 

events and there were no withdrawals from the study.

6.3.2. Blood pressure.

The high dose infusion of angiotensin II was associated with a significant 

increase in supine systolic and diastolic blood pressure from 15 to 180 mins; for 

example, at 150 minutes, supine blood pressure was 131/65 ± 13/11 mmHg compared 

with 118/57 ± 14/10 for the corresponding placebo infusion. The subpressor infusion 

of ANGII was not associated with any significant change in blood pressure (figure 

6.1).

6.3.3. Heart rate.

There were no statistically significant differences in heart rate between the 3 

study days (figure 6 .2 ).
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6.3.4. Serum insulin and C-peptide concentrations.

There were no significant differences in insulin concentrations during the 

clamp on the 3 study days; a "steady-state" insulin concentration was achieved within 

the first 60 minutes of the clamp (figure 6.3). For example, at 120 minutes, serum 

insulin concentrations were 122 ± 22, 129 ± 43 and 126 ± 38 uU/ml after placebo, 

subpressor angiotensin II and pressor ANG II respectively. The acute rise in serum 

insulin was associated with a significant decrease in C-peptide concentrations; for 

example, at 180 minutes values were 20-25% lower than baseline fasting levels (figure 

6.3) (p<0.01).

6.3.5. Plasma glucose and whole body insulin sensitivity.

Angiotensin II had no significant effect on insulin-stimulated glucose uptake. 

Mean values for whole body insulin sensitivity were 10.5 ± 2.0,10.5 ± 2.2 and 10.9 ± 

3.4 mg glucose/kg/min on the placebo, sub-pressor angiotensin II and pressor 

angiotensin II study days respectively (table 6.2). Confidence intervals for this 

observation were (-1.9,1.1) for placebo versus high dose angiotensin n. There was no 

significant difference in plasma glucose concentrations between the clamps on the 3 

study days; mean plasma glucose concentration for the last 40 minutes of the clamp 

were 5.2 ± 0.4, 5.1 ± 0.3 and 5.2 ± 0.3 mmol/1 for placebo, low and high dose 

angiotensin n  respectively. The mean c.v. of plasma glucose concentrations during all 

the clamps was 8%.

6.3.6. Plasma angiotensin II concentrations.

Plasma angiotensin II levels at 120 minutes were 11 ± 5,27 ± 9 and 125 ± 28 

pg/ml after placebo, low dose and high dose infusions of angiotensin II respectively. 

Individual values of plasma angiotensin II concentrations are shown in table 6.3.
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SUBJECT PLACEBO LOW DOSE 
ANGH

HIGH DOSE 
ANGH

I 10.2 10.0 10.5

2 8.8 5.0 5.0

3 9.3 10.0 10.7

4 12.0 12.0 12.2

5 12.5 11.8 13.5

6 9.5 11.5 10.0

7 9.0 11.0 9.0

8 7.5 9.3 6.5

9 8.8 11.9 9.0

10 13.0 13.1 12.8

11 11.3 9.5 12.0

12 14.0 13.0 18.2

MEAN 10.5 ± 2.0 10.7 + 2.2 10.9 + 3.4

Table 6.2: Individual values of whole body insulin 
sensitivity of healthy subjects in angiotensin II study.
Low dose ANG II = 1 ng/kg/min. High dose ANG II = 5 ng/kg/min. 
Values expressed as mg glucose/kg/min.
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SUBJECT PLACEBO LOW DOSE 
ANGH

HIGH DOSE 
ANGH

1 NR 35.0 20.0

2 9.8 NR 106.4

3 14.4 24.6 140.8

4 8.8 26.7 150.0

5 4.6 20.8 131.5

6 6.8 11.2 159.6

7 4.6 23.6 91.0

8 10.9 24.0 148.2

9 13.2 27.8 139.2

10 17.6 27.0 135.7

11 10.3 46.4 83.2

12 10.7 31.8 85.0

MEAN 11+5 27+9 125 + 28

Table 6.3: Individual values of plasma angiotensin II 
concentrations in healthy subjects at 120 minutes 
in angiotensin II infusion study. NR = not recorded.
Low dose ANG II = 1 ng/kg/min. High dose ANG II = 5 ng/kg/min 
Values expressed as pg/ml.
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6.3.7. Serum potassium concentrations.

There was a significant reduction in serum potassium concentration during 

each clamp; the reduction was maximal within 60 minutes and there were no further 

significant reductions thereafter (figure 6.3). Angiotensin II had no significant effect 

on insulin stimulated reductions in serum potassium concentration during the clamp.

6.3.8. Plasma noradrenaline, plasma renin activity and serum aldosterone.

The high dose of angiotensin II was associated with a significant increase in 

plasma aldosterone concentration at all time points after starting the infusion; for 

example, at 120 minutes, 314 ± 161 pg/ml compared with 62 ± 19 pg/ml during the 

placebo infusion (p<0.001) (figure 6.4). There was no significant change in plasma 

renin activity after angiotensin II administration; for example, after the high dose 

angiotensin II infusion; at 180 minutes the plasma renin activity was 1.62 ± 0.97 ng 

Al/min compared with 1.65 ± 0.63 ng Al/min after the placebo infusion. The mean 

profiles of plasma catecholamines are shown in figure 6.5. There was no significant 

change in the concentrations of plasma noradrenaline or adrenaline during the 

euglycaemic hyperinsulinaemic clamp.

6.4. RESULTS (II) - PATIENTS WITH NIDDM.

6.4.1. Tolerance.

In the patients with NIDDM, the clamp was well tolerated and there were 

neither any adverse biochemical events nor any withdrawals from the study.

171



Se
ru

m 
al

do
st

er
on

e 
Pl

as
m

a 
re

ni
n 

ac
ti

vi
ty

3.0 n

E
<
E

2.0 -

1.0 -

. - • a ................

■■•a -....................

0.0 J

o
E
c l

500 n

400 -

300 -

200  -

100 -

i
i

.A*’*

j

i

60

..A

I

120

Time (minutes)

1

180

Figure 6.4: Mean profiles of serum aldosterone and plasma renin activity 
of healthy subjects during euglycaemic clamp in angiotensin II infusion study 
■ = placebo, □ = sub-pressor ANG II. 4  ■ pressor ANG II 
*  m p<0.001 ANG II vs. placebo.

172



-EH-
I
I
I 
■
II 
II 
II 
I I 
I I 
I I 
I I 
I I
I 1

■EMB
I I
V
n 
i \ 

i 
i 
t

o
CO

y

o
CM

“ ■  □

! ;  
i i/
i >
i /»
i '  i 
i '  i
■/ 1
> 1

/* 1
/  » 1

/ i ■
/  i i

<  ■  &

i
i

* oto

o
H
oo o

CO

I
o
CM

(l/iouiu) au j jeud jpe jou  e w se id

173

Ti
m

e 
(m

in
ut

es
)

' F
igu

re 
6.

5:
 

M
ea

n 
pr

of
ile

s 
of 

pl
as

m
a 

no
ra

dr
en

al
in

e 
of 

he
alt

hy
 

su
bj

ec
ts 

du
rin

g 
eu

gl
yc

ae
m

ic
 

cla
mp

 
in 

an
gi

ot
en

sin
 

II 
inf

us
ion

 
st

ud
y.

■ 
= 

pl
ac

eb
o,

 
□ 

= 
su

b-
pr

es
so

r 
AN

G 
II, 

A 
= 

pr
es

so
r 

AN
G 

II.



6.4.2. Blood pressure

The high dose infusion of angiotensin II was associated with a significant 

increase in supine systolic and diastolic blood pressure from 15 to 180 mins; for 

example, at 180 minutes, supine blood pressure was 138/81 ± 23/13 mmHg compared 

with 122/68 ± 16/12 for the corresponding placebo infusion. The subpressor infusion 

of angiotensin II had no significant effect on blood pressure (figure 6.6).

6.4.3. Heart rate.

There were no differences in heart rate between the 3 study days (figure 6.7).

6.4.4. Serum insulin and C-peptide concentrations.

The profiles of serum insulin and C-peptide concentrations on the 3 study days 

are depicted in figure 6.8. Serum insulin levels increased to a plateau within the first 

60 minutes of the infusion and there were no significant differences between the 

placebo and angiotensin II study days. The hyperinsulinaemic stimulus was associated 

with a decrease in C-peptide concentrations; at 180 minutes values were 30-40% 

lower than baseline fasting levels (figure 6.8.) (p<0.001).

6.4.5. Plasma glucose and whole body insulin sensitivity.

There was no significant difference in fasting plasma glucose concentrations or 

the glucose concentration during the clamps; mean fasting plasma glucose values on 

the three study days were 8.8 + 3.2 mmol/L, 9.0 + 3.6 mmol/L and 8.8 ± 3.2 mmol/L 

for placebo, sub-pressor angiotensin II and pressor angiotensin II respectively. The 

corresponding mean plasma glucose concentrations for the last 40 minutes of the 

clamp were 5.3 ± 0.3,5.2 ± 0.3 and 5.3 ± 0.3 mmol/L.
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* -  p<0.001 from corresponding baseline value.

177



Angiotensin II increased insulin-stimulated glucose uptake; mean values for 

whole body insulin sensitivity  were 4.3 ± 2.3, 5.5 ± 2.3 and 4.9 ± 2.4 mg 

glucose/kg/min on the corresponding study days (p<0.05). Confidence intervals for 

this observation were (-0.1, -1.7) for placebo versus angiotensin II (table 6.3).

6.4.6 Plasma angiotensin II concentrations.

Plasma angiotensin II levels at 120 minutes were 8 ± 4, 28 ± 9 and 162 ± 45 

pg/ml after placebo, low dose and high dose infusions of angiotensin n  respectively. 

The individual values of plasma angiotensin n  concentrations are shown in table 6.4.

6.4.7. Serum potassium concentrations.

There was a significant reduction in serum potassium concentration on each 

study day which was maximal within 60 minutes after starting the clamp. There were 

no further significant reductions thereafter (figure 6.8). Angiotensin II had no 

significant effect on insulin stimulated reductions in serum potassium during the 

clamp.

6.4.8. Plasma noradrenaline, plasma renin activity and serum aldosterone

concentrations.

The high dose of angiotensin II was associated with a significant increase in 

plasma aldosterone concentration at all time points after starting the infusion; for 

example, at 120 minutes, 325 ± 128 pg/ml compared with 79 ± 25 pg/ml during the 

placebo infusion (p<0.01) (figure 6.9.). There was no significant change in plasma 

renin activity after angiotensin II administration; for example, after the high dose 

angiotensin II infusion; at 180 minutes the plasma renin activity was 1.53 ± 1.58
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PATIENT PLACEBO LOW DOSE 
ANGH

HIGH DOSE 
ANGH

1 4.7 6.6 6.2

2 2.6 4.1 2.8

3 5.2 6.6 4.9

4 8.9 9.5 8.1

5 1.5 2.1 0.6

6 2.8 3.5 5.2

7 5.2 5.5 7.0

8 3.4 3.5 3.3

9 4.1 5.5 5.7

10 7.4 8.2 8.0

11 1.1 5.1 2.1

MEAN 4.3+ 2.3 5.5+ 2.3 4.9+ 2.4

Table 6.4: Individual values of whole body insulin 
sensitivity of patients with diabetes in angiotensin II study.
Low dose ANG II = lng/kg/min. High dose ANG II = 5 ng/kg/min 
Values expressed as mg glucose/kg/min.
Angiotensin II significantly increased insulin sensitivity 
p<0.05; 95% confidence intervals -0.1,-1.7
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PATIENT PLACEBO LOW DOSE 
ANG n

HIGH DOSE 
ANGH

1 NR NR NR

2 9.3 23.0 203.0

3 6.7 18.3 235.0

4 6.0 27.5 164.0

5 9.3 46.0 198.8

6 3.0 24.5 105.6

7 15.2 42.3 NR

8 10.8 30.0 161.3

9 9.1 23.8 168.8

10 3.5 16.0 111.8

11 11.8 29.7 112.8

MEAN 8.5+4.0 28.0 + 9.0 162.1 +45.6

Table 6.5: Individual values of plasma angiotensin II 
concentrations in patients with diabetes at 
120 minutes in angiotensin n  infusion study.
Low dose ANG II = lng/kg/min. High dose ANG II = 5 ng/kg/min 
NR = not recorded.
Values expressed as pg/ml.
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ng/AI/min compared with 1.55 ± 1.08 ng/Al/min after the placebo infusion.

The acute rise in serum insulin was associated with a significant increase in 

plasma noradrenaline and adrenaline concentrations (p<0.01) (figure 6.10). 

Angiotensin II had no significant effect on the increase in plasma catecholamine 

concentrations during the clamp.

6.5. DISCUSSION.

This placebo-controlled study has shown that a 3-hour infusion of angiotensin 

II in healthy volunteers (producing plasma angiotensin II concentrations within the 

pathophysiological range), with or without an increase in blood pressure, has no effect 

on insulin-stim ulated uptake of glucose, potassium and triglycerides under 

euglycaemic hyperinsulinaemic conditions. However, in patients with NIDDM who 

were normotensive and had no evidence of microvascular complications, the results 

clearly demonstrate that under euglycaemic hyperinsulinaemic conditions both low 

and high dose angiotensin II infusions were associated with increases in whole-body 

insulin-stimulated glucose uptake of 28% and 14% respectively, while only the higher 

dose of angiotensin II increased blood pressure.

In both groups of subjects a reproducible insulin stimulus (within the 

physiological range) was obtained on each of the 3 study days; the intra-subject 

variation in plasma insulin concentrations during the last 60 minutes was less than 8% 

in the healthy subjects and 6% in the patients with NIDDM. There was no evidence of 

an effect of angiotensin II on insulin clearance in either group. As with most clamp 

studies, the glucose infusion rate, the critical determinant of glucose disposal, was 

adjusted manually (by myself) in response to frequent measurements of plasma 

glucose at the bedside. It is often recognised but seldom acknowledged that this can 

introduce subjective bias, even though glucose levels are maintained within reasonable
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limits of "euglycaemia". A notable feature of this study was that the investigator 

performing the clamp remained blind to angiotensin II administration. Blood pressure 

recordings were monitored automatically and then stored by the Datascope Accutorr 

semiautomatic sphygmomanometer [chapter 2.2.3], and the changes in arterial 

pressure with high dose angiotensin II were sufficiently small and variable that a 

pressor effect was not immediately obvious. The results in healthy subjects and 

patients with NIDDM will now be discussed independently.

(i) Results in healthy subjects

These observations in healthy subjects have recently been extended by other 

investigators who have reported the effects of various doses of angiotensin II on 

insulin sensitivity in lean, healthy male volunteers (Townsend et al, 1993; Buchanan et 

al, 1993; Townsend & DiPette 1993).

My study has used a placebo-controlled double blind design and has 

demonstrated that the higher dose of angiotensin II (5 ng/kg/min) produced a small, 

sustained increase in blood pressure (11/9 mmHg) but neither this dose nor 

lng/kg/min of ANG II affected glucose uptake under hyperinsulinaemic conditions.

Townsend and colleagues (1993a) in an uncontrolled study of 8 normotensive 

young men, also found that a 3 hour infusion of subpressor (0.3ng/kg/min and 

lng/kg/min) doses of angiotensin II had no effect on insulin sensitivity in normal 

subjects during a euglycaemic clamp. However, the same group using higher doses of 

angiotensin II (10-20 ng/kg/min) have more recently reported increases in glucose 

transport and oxidation in skeletal muscle in 8 healthy subjects which generally tended 

to parallel the associated increments in blood pressure (Townsend & DiPette 1993b). 

This study however was not placebo-controlled.

Buchanan and colleagues (1993), in a study of 7 healthy males, performed a 

270 minute euglycaemic hyperinsulinaemic clamp on 3 occasions each, one week
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apart. On each study day, for the final 90 minutes of the clamp, they infused one of 

three dose pairs of angiotensin II: 0.5 and 2.0, 2.5 and 10.0, 5.0 and 20 ng/kg/min. 

The lower of each pair was given for 30 minutes followed by the higher dose for 60 

minutes. Despite the fact that there was no placebo control in this study which would 

have confirmed that the clamp had indeed reached steady state prior to the angiotensin 

II infusion, they reported a convincing dose-related increase in insulin-mediated 

glucose disposal of 41% with the lOng/kg/min infusion and 72% with the 20ng/kg/min 

infusion (Buchanan et al, 1993). Thus, the available data suggest that in healthy 

subjects angiotensin II increases glucose disposal in a dose-dependent fashion.

(ii) Results in patients with NIDDM

To the best of my knowledge, the effects of angiotensin II on glucose and 

insulin metabolism in patients with NIDDM have not been previously reported. In 

comparison with the above studies in normal subjects, the data from the patients with 

NIDDM suggest that these patients are more sensitive to the metabolic as well as the 

haemodynamic effects of angiotensin n. Perhaps the most significant finding in this 

study is that the metabolic response to angiotensin II was completely independent of 

its effect on blood pressure. Both active infusions increased insulin sensitivity and 

the effect on glucose uptake tended to be greater with the low-dose infusion which had 

no effect on arterial pressure. This dissociation of the haemodynamic and metabolic 

effects of angiotensin II was not observed in healthy volunteers and is difficult to 

reconcile with the recently proposed mechanisms of angiotensin II-induced insulin 

sensitisation (Townsend & DiPette, 1993; Buchanan et al, 1993). In particular, my 

results suggest that a haemodynamic (i.e. vasoconstrictor) effect of angiotensin II, 

presumably involving redistribution of blood flow from the splanchnic and visceral 

(especially renal) circulation towards skeletal muscle, might not be the sole (or even 

principal) underlying mechanism in patients with NIDDM. Three specific features of
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the present data suggest, albeit indirectly, that mechanisms in addition to 

haemodynamic changes might be contributing to the observed increase in insulin 

sensitivity in patients with NIDDM:

(1) Although blood flow was not directly measured, it seems unlikely that the 

metabolic response to such a low dose of angiotensin II (1 ng/kg/min) could be 

entirely accounted for by an increase in blood flow through large conduit arteries, e.g. 

to the limbs, in the absence of an effect on blood pressure.

(2) Both Buchanan and colleagues (1993) and Townsend and DiPette (1993b) 

have shown that high doses of angiotensin II (10-20 ng/kg/min) significantly decrease 

insulin clearance due to a reduction in renal plasma flow. Since there was no evidence 

of this effect in the present study, it would appear that the 25% increase in glucose 

uptake occurred without evidence of significant vasoconstriction in renal tissues.

(3) If changes in muscle perfusion were solely responsible for the increase in 

glucose extraction, it seems somewhat surprising that there was not a similar increase 

in potassium and triglyceride disposal under euglycaemic hyperinsulinaemic 

conditions.

Thus several features of the my study suggest that in patients with NIDDM 

mechanisms in addition to haemodynamic changes and simple redistribution of cardiac 

output might be contributing to angiotensin-II induced insulin sensitisation.

These data would be consistent with a direct biochemical effect of angiotensin 

II and since diabetic individuals are more sensitive to both the endocrine (i.e. 

aldosterone) and cardiovascular effects of the peptide (Tuck et al, 1990; Christlieb 

1980) it is conceivable that such a response is much less evident in normal subjects. 

An additional mechanism that has not been considered relates to local vascular effects
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of angiotensin II within skeletal muscles. Buchanan and colleagues (1993) have 

postulated that the metabolic effects of angiotensin II are due to large vessel 

redistribution of blood flow away from relatively insulin-resistant tissues (particularly 

the kidney) towards muscular areas (e.g. the limbs), but it is also possible that 

angiotensin II produces significant vascular effects (independent of major changes in 

blood pressure) at the level of the microcirculation. This is consistent with recent 

observations that local generation of angiotensin peptides occurs in the microvascular 

network of skeletal muscles (Vicaut & Hou 1993) and this might serve a paracrine role 

in regulating the perfusion of muscle fibres of varying insulin sensitivity (James et al, 

1986). Thus, subpressor doses of angiotensin n, while having little effect on larger 

arterioles, might still redistribute blood flow within skeletal muscles of mixed 

fibre-type composition, producing a net increase in perfusion of more insulin-sensitive 

(type 1) fibres. Such an effect might also serve a useful function in "fight or flight" 

reactions, since angiotensin n  increases during the stress response.

The present study has not excluded an effect of angiotensin II on hepatic 

glucose production. However, it has been shown that angiotensin II has no effect on 

hepatic glucose production in normal subjects (Buchanan et al, 1993), and limited data 

from in vitro experiments suggest a tendency for angiotensin II to increase 

glycogenolysis and decrease gluconeogenesis (Kaley et al, 1967), which would have 

tended to give an opposite result.

(iii) General discussion

The results of this study contribute information on the role of neuroendocrine 

regulation in insulin resistant states. The insulin antagonist effects of catecholamines 

and cortisol are well established. Reflex activation of the sympathetic nervous system 

has been directly associated with the development of metabolic complications in 

cardiovascular disease. For example, peripheral and hepatic insulin resistance in
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patients with congestive heart failure is directly related to increased plasma 

concentrations of noradrenaline (Paolisso et al, 1991). Thus, sympathetic activation 

clearly worsens insulin sensitivity but in contrast the present data suggest that the 

vasoconstrictor angiotensin II increases peripheral insulin sensitivity. This is 

somewhat unexpected, especially in view of some in vitro evidence showing that 

angiotensin II might increase plasma glucose levels via increased glycogenolysis and 

decreased gluconeogenesis (Kaley et al, 1967).

These data are also relevant to the present debate concerning the metabolic 

effects of ACE inhibitors, and specifically the reports that ACE inhibitors improve 

various parameters of glycaemic control in both diabetic and non-diabetic subjects 

(Pollare et al, 1989; Prince et al, 1988) [chapters 1.3.2 and chapter 5]. In the past it has 

been suggested that removal of angiotensin II-mediated effects on potassium and 

glucose transport are important (Ferrannini et al, 1992) but, conversely, the present 

studies suggest that the metabolic effects of ACE inhibition are probably independent 

of angiotensin II. Indeed, if the purported effects of ACE inhibitors were mediated via 

an angiotensin II sparing effect, the present data would suggest that angiotensin 

converting enzyme inhibitors would exert a deleterious effect on insulin sensitivity. 

However, the results of this acute study may not necessarily reflect the long term 

metabolic effects of ACE inhibitors described in hypertensive and diabetic (insulin 

resistant) patients.

An interesting biochemical feature of this study is that plasma renin activity 

did not show the expected decrease during angiotensin II administration. This may be 

explained by an interaction with the clamp; previous studies have demonstrated that 

under euglycaemic conditions insulin induced hypokalaemia increases plasma renin 

activity (Trovatti et al, 1989). Furthermore, the lower dose of angiotensin II was only 

associated with a modest increase in aldosterone concentration; this is perhaps 

surprising since insulin has been shown to enhance angiotensin II induced aldosterone 

secretion (Rocchini et al, 1990). This may be related to hypokalaemia induced by the
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clamp, since the weight of evidence indicates that serum potassium concentration is 

the key determinant to the aldosterone response to other stimuli (Young et al, 1984).

Another interesting finding was the increase in plasma catecholamines 

observed at the end of the clamp in the diabetic patients. A possible explanation for 

this observation is that when plasma glucose is maintained at 5.2 mmol/L, these 

patients with NIDDM (who are accustomed to a fasting glucose concentration of 8.0 

to 12.0 mmol/L) experience "relative" hypoglycaemia which induces an adrenergic 

response.

In conclusion, acute administration of angiotensin II at physiological plasma 

concentrations did not alter whole-body insulin sensitivity in healthy subjects but 

increased whole-body insulin sensitivity in patients with NIDDM. In contrast to recent 

observations in healthy volunteers which report a dose-related increase in glucose 

disposal with higher doses of angiotensin II than used in this study, the metabolic 

effects of angiotensin II in patients with NIDDM were observed at lower doses of 

angiotensin II and were independent of changes in blood pressure. While angiotensin 

II-induced redistribution of blood flow is likely to be an important underlying 

mechanism, these data suggest that additional effects of angiotensin II (including 

biochemical and/or microvascular changes within skeletal muscle) might be 

contributing to the metabolic response in NIDDM.
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CHAPTER 7

DETERMINANTS OF INSULIN SENSITIVITY IN HEALTH AND DISEASE
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7.1. GENERAL INTRODUCTION

Despite attempts at standardisation, recent studies have demonstrated that the 

oral glucose tolerance test (OGTT) has poor reproducibility and therefore does not 

constitute a controlled physiological stimulus. This casts further doubt on the test’s 

validity not only in the clinical research setting but also in the accurate classification 

of glucose intolerance (Yudkin et al, 1990). In order to investigate the complex 

interplay of insulin secretion and insulin action in pathophysiological states, 

standardised experimental techniques have been devised to quantify pancreatic insulin 

secretion and the sensitivity of target tissues to insulin [chapter 1.2]. Thus, the 

euglycaemic hyperinsulinaemic clamp, the minimal model technique and the insulin 

suppression test were devised as reproducible methods of determining the sensitivity 

of insulin-mediated responses, whereas the hyperglycaemic clamp can be used to 

quantify pancreatic sensitivity to glucose-induced insulin secretion. Whilst these tests 

define specific aspects of glucoregulatory control, some authors claim they are 

"unphysiological" (Ng et al, 1988). Furthermore, because- these techniques are 

relatively labour intensive, expensive and generally impractical for large numbers of 

subjects, epidemiological studies have relied on the simpler OGTT to infer 

abnormalities in insulin secretion and insulin resistance. For example, many of the 

large population-based studies linking insulin resistance to hypertension (for example, 

Modan et al, 1985; Asch et al, 1991) [see chapter 1.1.2] used fasting plasma insulin 

concentrations as a surrogate marker of peripheral insulin resistance. The problem 

with this approach is that few, if any, previous studies have properly validated the 

OGTT (or indeed other morphometric or biochemical indices) against direct 

measurements of insulin sensitivity derived from the euglycaemic hyperinsulinaemic 

clamp, which is arguably the "gold standard" for determining insulin-stimulated 

responses.

Having evaluated the methodology of the euglycaemic hyperinsulinaemic 

clamp and characterised insulin sensitivity not only in hypertensive, diabetic and
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diabetic hypertensive patients but also in healthy subjects, analysis of the entire data 

base is suitable for identifying factors which may account for the large inter-subject 

variability in insulin sensitivity. Thus, the principal aim of this study was to determine 

which clinical measurements, e.g. body weight, BMI, blood pressure etc. were the 

major determinants of insulin sensitivity in both normal individuals and in a range of 

patients with hypertension, impaired glucose tolerance and NIDDM. The following 

biochemical and morphometric indices were included: basal plasma glucose and 

insulin concentrations, weight, BMI, blood pressure, sex, waist hip-ratio, fasting 

cholesterol and triglycerides.

7.2. PATIENTS AND METHODS

7.2.1. General Methods.

Four clinical research studies have been described in this thesis which, in total, 

include measurements of whole body insulin sensitivity by means of the euglycaemic 

hyperinsulinaemic clamp in 65 individuals. In addition, 10 patients who were screened 

but excluded from the trandolapril study [chapter 5] were also included for the purpose 

of the present analysis. These patients underwent an OGTT and had insulin sensitivity 

measured during the placebo run-in, but they failed to meet the entry criteria for the 

study; 7 had impaired glucose tolerance or NIDDM but were not hypertensive, and 3 

were hypertensive but not glucose intolerant. Thus, by including data from these 

subjects, OGTT’s and euglycaemic clamps were performed in a total of 75 

individuals.

Each subject underwent a standard 75g OGTT at screening [chapter 2.2.4]; 

blood samples were collected for serum insulin and plasma glucose profiles at baseline 

and at 30 minute intervals until 120 minutes. On at least one occasion thereafter (while 

on placebo therapy), each individual attended the CIRU when a euglycaemic 

hyperinsulinaemic clamp was performed using arterialised blood samples to derive the
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calculation of whole-body insulin sensitivity. The clinical protocol is described in 

detail in chapter 2.3, and the same method was used in all subjects to derive insulin 

sensitivity (M) in mg glucose/kg/min.

7.2.2. Statistical analysis

In each subject, a number of metabolic, demographic, morphometric, 

neuro-endocrine and biochemical variables which may influence insulin sensitivity 

were recorded. The measurement techniques are described in chapter 2.

(i) Metabolic variables

- Fasting serum insulin concentration.

- Fasting plasma glucose concentration.

(ii) Haemodynamic variables.

- Screening supine systolic blood pressure.

- Screening supine diastolic blood pressure.

- Screening supine mean arterial blood pressure.

(iii) Biochemical variables.

- Serum total cholesterol.

- Serum triglycerides.

- Serum potassium.

(iv) Demographic and morphometric variables.

-Age

- Body mass index

- Waist hip ratio
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(v) Neuro-endocrine variables

- Baseline noradrenaline concentrations.

- Baseline aldosterone concentrations.

- Baseline plasma renin activity.

Data from the OGTT were used to calculate the ratio of fasting insulin to 

fasting glucose and the ratio of the 120 minute postload insulin to the fasting insulin 

(Saad et al, 1988). The area under the insulin and glucose curves in the OGTT were 

calculated by the trapezoidal rule.

The relationship between one or more of these variables and insulin sensitivity 

(M) was investigated in two ways; firstly, the relationship of individual parameters to 

insulin sensitivity was assessed by simple correlation analysis of the form;

y = AX + Z

where X is the independent variable, e.g. BMI or fasting plasm a glucose 

concentration, and y is the dependent variable , i.e. insulin sensitivity in mg 

glucose/kg/min. All scatterplots were inspected to detect non-linear associations and 

outliers. Thus, a square array of each pair of variables was constructed and this 

correlation matrix was then used as a starting point for stepwise linear regression 

analysis.

Stepwise linear regression analysis was performed by fitting a hierarchy of 

linear models to the distribution of values for insulin sensitivity. Thus, M is defined as 

the dependent variable and the independent variables are modelled seperately and in 

all combinations with each other to find the best overall fit. The R2 value obtained for 

each model represents the percentage variability in insulin sensitivity which can be 

accounted for by the variable or variables in the model. One, 2, and 3 variable models 

were fitted sequentially to the data, e.g.:
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y = AXx + Z (1)

y = AXj + BX2 + Z (2) 

y = AXj + BX2 + CX3 + Z (3)

where y is the M value, X v X2 and X3 are the independent variables, e.g. BMI, fasting 

glucose, triglycerides, etc., and A, B, and C are the coefficients. A forward stepping 

selection procedure was utilised. Thus, one variable was selected and each remaining 

variable was considered individually; the one with the highest F-to-enter statistic was 

then included in the model. To guard against overfitting, the value of R2 for the best 

subset of each size was plotted against the size of the subset; and the "optimal" 

number of regressors was identified where the plot began to level off. Because of the 

large number of comparisons, only p values of less than 0.001 were taken to indicate 

statistical significance.

The correlation coefficients and multiple linear regression analyses were firstly 

performed for the group as a whole (n=75). Subsequently, sub-group analysis was 

performed for the "insulin resistant" patient group with impaired glucose tolerance or 

NIDDM (n=30).

In an attempt to evaluate which variables (either those that influence insulin 

sensitivity, e.g. BMI and blood pressure, or those variables that reflect insulin 

sensitivity, e.g. fasting insulin concentrations), were of the greatest value in the 

prediction of insulin sensitivity in an individual, 95% confidence intervals for 

predicted values of M and the prediction error were calculated.
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7.3. RESULTS

7.3.1. General

Table 7.1 shows the mean age, sex, BMI and blood pressure together with 

fasting and 2 hour post-load plasma glucose concentrations, in each of the subject 

categories. The healthy volunteers were all male, significantly younger, less heavy and 

had significantly lower blood pressures compared with the patient groups. Thus, direct 

comparison between the three groups (normal, hypertensive and glucose intolerant) 

was not feasible. On analysis of the group as a whole, there was a wide range in 

insulin sensitivity as derived from the euglycaemic hyperinsulinaemic clamp; whole 

body glucose uptake ranged from 1.1 mg/kg/min in the most insulin resistant 

individual to 16.2 mg/kg/min in the most insulin sensitive subject. The number of 

cigarette smokers (22%) in the whole group was too small to allow any formal 

statistical analysis.

7.3.2. Correlation analysis

(i) All subjects (n=75)

Table 7.2 shows the correlation coefficients for one-variable analysis of insulin 

sensitivity versus the various demographic, metabolic, haemodynamic and 

biochemical measurements for all 75 subjects. A number of measurements correlated 

with insulin sensitivity. Strongest negative correlations were for identified for age 

(r=-0.64), BMI (r--0 .68 ), fasting plasma glucose concentration (r=-0.68) and 

diastolic blood pressure (r--0.62), as shown in figure 7.1. There were also significant 

negative correlations with fasting insulin and total cholesterol concentrations, but there 

was no correlation with fasting triglycerides. Similarly, there was no significant 

correlation between serum aldosterone, serum potassium, plasma renin activity or 

plasma noradrenaline concentrations and insulin sensitivity.
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Healthy
Subjects
(n=36)

NIDDM or IGT 
Patients 
(n=30)

Hypertensive
Patients
(n=9)

Sex 36 males 27 males 
3 females

4 males
5 females

Age
(median)

26 years 
range 18-43

56 years 
range 33-73

50 years 
range 33-66

BMI
(kg/m2)

23.8 +/- 3.2 30.0+/-5.5 263 +/- 2.4

Blood pressure 
(mm/Hg)

118/65+/-11/8 157/89 +/- 21/11 174/93 +/-16/7

Fasting glucose 
(mmol/L)

5.0 +/- 0.4 7.9 +/- 23 5.1 +/- 0.8

120 min glucose 
(OGTT)

4.9+/-1.0 12.8+/-4.0 5.3 +/-1.1

Fasting insulin 
(uU/ml)

9.0 +/- 3.7 20.1 +/-13.4 8.1+/-4.3

120 min insulin 
(OGTT)

25.0 +/-13.1 90.1 +/- 66.0 48.7 +/-18.2

AUC glucose 
(OGTT)

810+/-128 1512+/-35.8 935 +/- 234

AUC insulin 
(OGTT)

5500 +/- 2957 8806 +/- 6297 8466+/-4211

Triglycerides
(mmol/L)

1.19+/-0.88 2.01+/-0.88 1.46+/-1.59

Cholesterol
(mmol/L)

4.41 +/-1.18 5.70+/-0.84 6.20 +/- 0.50

WHR 0.94 +/- 0.09 1.00+/-0.07 0.78 +/- 0.5

M Value 
(mg/kg/min)

10.4+/-2.3 4.5 +/-1.9 7.6 +/- 2.1

M value range 
(mg/kg/min)

6.2-16.2

0000tfHH 5.8 -10.0

Table 7.1: Demographic, metabolic and biochemical characteristics 
of normal subjects, glucose intolerant patients and hypertensive 
patients studied. Data shown are mean +/- S.D. unless otherwise stated 
IGT = impaired glucose tolerance, AUC = area under the curve 
BMI = body mass index.
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rvalue pvalue

Age -0.64 <0.001
Weight -0.50 <0.001
Height 0.32 N.S
BMI -0.68 <0.001
Systolic BP -0.50 <0.001
Diastolic BP -0.62 <0.001
Mean Arterial BP -0.59 <0.001
Fasting glucose -0.68 <0.001
Fasting insulin -0.58 <0.001
AUC glucose (OGTT) -0.67 <0.001
AUC insulin (OGTT) -0.38 N.S.
Triglycerides -0.25 N.S.
Cholesterol -0.54 <0.001
Noradrenaline -0.38 N.S.
Plasma renin activity -0.05 N.S.
Potassium -0.07 N.S.
Aldosterone -0.38 N.S.
Waist Hip Ratio -0.52 <0.001

Table 7.2: Correlation between demographic, metabolic and haemodynamic 
measurements and insulin sensitivity derived from the euglycaemic hyperinsulinaemic 
clamp in the 75 individual subjects studied.
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Figure 7.1: Correlations of body mass index (top panel), age (middle panel) and 
fasting plasma glucose (lower panel) to whole body insulin sensitivity in all 75 
subjects studied.
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(ii) Patients with impaired glucose tolerance or NIDDM (n=30)

Table 7.3 shows the correlations between insulin sensitivity and the various 

individual parameters for the 30 patients with either impaired glucose tolerance or 

NIDDM. In these subjects, the strongest negative correlations were with waist hip 

ratio (r=-0.81), BMI (r=-0.59), fasting insulin (r=-0.53) and the ratio of the 120 

minute post load insulin to the fasting insulin (r=0.60). These correlations are 

represented diagramatically in figure 7.2. There was also a significant correlation for 

fasting cholesterol and fasting triglyceride concentrations.

7.3.2. Multiple linear regression analysis

For the group as a whole and the subgroup of patients with impaired glucose 

tolerance or NIDDM, insulin sensitivity was modelled with independent variables 

using stepwise least squares linear regression analysis [section 7.2.2]. The results are 

summarised in table 7.4, which presents the R2 values for each of the one-variable 

analyses and the combination of variables that was most appropriate for predicting the 

inter-subject differences in insulin sensitivity in the 2 groups. Thus, for all subjects, 

BMI was singularly the best predictor of insulin sensitivity, accounting for 45% of the 

variability in M, while age and diastolic blood pressure accounted for 41% and 38% 

respectively (table 7.4). Incorporating additional variables in more complex models 

improved the correlation; for example, the 3 variable model shown below explained 

67% of the variability in insulin sensitivity:

M value = 36.4 - 0.254 BMI - 0.126 DBP - 12.7 WHR

The prediction error for this equation was 1.8+1.6 mg glucose kg/min. Using 

regression analysis, fasting insulin alone explained only 27% of the variability in M 

values observed. The prediction error was 2.8+2.0 mg glucose/kg/min.
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r value gxalu£

Age
Weight
Height
BMI
Systolic BP 
Diastolic BP 
Mean Arterial BP 
Fasting glucose 
Fasting insulin 
AUC glucose (OGTT)
AUC insulin (OGTT)
Fast, glucose/fast, insulin
120 min insulin/fast insulin
30 min insulin/30 min glucose
Triglycerides
Cholesterol
Noradrenaline
Plasma renin activity
Potassium
Aldosterone
Waist Hip Ratio

-0.31 N.S.
-0.54 <0.001
-0.13 N.S.
-0.59 <0.001
-0.16 N.S.
0.06 N.S.
0.12 N.S.
-0.29 N.S.
-0.62 <0.001
-0.11 N.S.
-0.24 N.S.
-0.34 N.S.
0.60 <0.001
-0.21 N.S.
-0.54 <0.001
-0.54 <0.001
-0.38 N.S.
-0.19 N.S.
-0.17 N.S.
-0.24 N.S.
-0.81 <0.001

Table 7.3: Correlation between demographic, metabolic and haemodynamic 
measurements and insulin sensitivity derived from the euglycaemic 
hyperinsulinaemic clamp in the 30 patients with impaired glucose tolerance or 
NIDDM.
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For the patients with impaired glucose tolerance or NIDDM, waist hip ratio 

was singularly the best predictor of insulin sensitivity with a R2 value of 65%. 

However, the most appropriate model to describe the variability in insulin sensitivity 

was a 2 variable model incorporating waist hip ratio and BMI. This model accounted 

for 79% and was defined by the equation:

M value = 26.7 - 0.137 BMI -183  WHR

The prediction error for this equation was 1.1+1.4 mg glucose kg/min. Using 

regression analysis, fasting insulin alone explained only 24% of the variability in M 

values observed. The prediction error was 1.9±1.4 mg glucose/kg/min.

7.4. DISCUSSION

When studying insulin sensitivity it is necessary for the investigator to have a 

precise measure of quantifying glucose disposal in response to insulin. Many recent 

epidemiological studies have inferred the presence of insulin resistance from OGTT 

data but few studies have validated the OGTT against formal measurements of insulin 

sensitivity derived from the euglycaemic hyperinsulinaemic clamp. The purpose of 

this study was therefore to investigate which variables, if  any, are the best 

determinants of insulin sensitivity in an individual.

A number of haemodynamic, morphometric, metabolic and biochemical 

markers were examined in relation to insulin sensitivity; the results clearly indicate 

that insulin sensitivity is correlated with age independently of BMI or blood pressure. 

This is consistent with previous reports that insulin resistance is a characteristic feature 

of the normal ageing process (Rowe et al, 1983). Likewise, blood pressure was 

correlated with insulin insensitivity independently of age and BMI, and glucose 

tolerance. However, for the whole group, by far the most important determinants of 

insulin sensitivity as derived by the euglycaemic hyperinsulinaemic clamp was the 

BMI. Of the data derived from the OGTT, the fasting insulin concentration showed the
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best correlation with insulin sensitivity; more complex calculations of AUC’s of 

insulin or glucose profiles, or ratios of insulin and glucose concentrations conferred 

no advantage.

In the patients with NIDDM or impaired glucose tolerance, fasting insulin 

concentrations correlated with insulin sensitivity but better predictors of insulin 

sensitivity were BMI and waist hip ratio. The insulin and glucose responses to an 

OGTT were poor predictors of insulin sensitivity. A possible explanation for this is the 

well recognised "Starling’s curve of the pancreas" in patients with NIDDM, whereby, 

in normal weight individuals with impaired glucose tolerance and in mild diabetics, 

the plasma insulin response to ingested glucose increases progressively until the 

fasting glucose reaches approximately 6.8 mmol/L when progressive increases in 

plasma glucose levels are associated with a progressive decline in insulin secretion 

(DeFronzo, 1988). Another possible explanation of the poor correlation of plasma 

insulin profiles during an OGTT is the possible confounding effect of defective insulin 

processing or secretion in patients with established NIDDM tending to discrepant 

measurements of insulin in these subjects (Temple et al, 1991) [chapter 1.1.3]. This is 

supported by a recent report that fasting levels of split proinsulin correlated well with 

insulin sensitivity (as measured by an insulin tolerance test) in both healthy subjects 

and patients with impaired glucose tolerance or NIDDM (Phillips et al, 1994).

In summary, these data suggest good correlation between BMI, WHR and 

fasting insulin concentrations and derived measurements of insulin sensitivity. Thus, 

these variables may individually explain up to 50% of the inter-subject variability in 

the M value. Unfortunately however, when these variables are used individually, they 

are insufficiently robust to predict insulin sensitivity in an individual subject. This is 

demonstrated by the prediction errors of the regression equations [section 7.3.2]. For 

example, if an attempt is made to predict the M value of an individual [e.g. volunteer 

no.l of the lacidipine study] in whom the M value as determined by the euglycaemic 

hyperinsulinaemic clamp was 13.9 mg glucose/kg/min, the regression equation 

incorporating BMI, diastolic blood pressure and waist hip ratio [section 7.3.2] predicts
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an M value of 11.4 mg glucose/kg/min. The 95% confidence intervals of this 

prediction are wide (6.0,16.8 mg glucose kg/min). Thus, these variables are imprecise 

when used as predictors of insulin sensitivity in an individual as they may 

underestimate or overestimate the M value by up to 50%.

In conclusion, I have demonstrated that factors such as BMI, blood pressure 

and waist hip ratio may explain up to 50% of the observed inter-subject variability in 

M as determined by the euglycaemic hyperinsulinaemic clamp. It is evident, however, 

that these factors are of little value when used to predict the insulin sensitivity of an 

individual. Thus, an accurate measurement of insulin sensitivity requires a 

sophisticated technique such as the euglycaemic clamp; estimates of insulin resistance 

derived from OGTT and morphometric data in epidemiological studies of glucose 

tolerance should be viewed with caution.
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CHAPTER 8

GENERAL DISCUSSION

207



8.1. DISCUSSION

Reports from epidemiological studies (Modan et al, 1985) that patients with 

essential hypertension are hyperinsulinaemic when compared with controls, and from 

glucose clamp studies demonstrating that hypertensive patients are resistant to insulin 

stimulated glucose uptake (Ferrannini et al, 1987; Pollare et al, 1990) have fuelled an 

increasing recognition that high blood pressure is only one facet of a metabolic 

syndrome that represents a cluster of risk factors for long-term development of 

cardiovascular disease. Thus, glucose intolerance, hyperinsulinaemia, altered cell 

membrane structure and function, hypertriglyceridaemia and altered concentrations of 

cholesterol subfractions are frequently found in patients with primary hypertension, 

and may contribute to the risk of atherosclerosis conferred by high blood pressure. 

Failure to address these metabolic aspects may partly explain the shortfall in the 

reduction in morbidity and mortality from coronary heart disease which might have 

been anticipated in several of the large studies of the treatment of mild-to-moderate 

hypertension. Thus, in terms of the treatment of hypertension, much recent research 

has focussed on the m etabolic as well as the haem odynam ic effects of 

pharmacological intervention.

This thesis is comprised of a series of studies which have utilised the 

euglycaemic hyperinsulinaemic clamp to measure insulin sensitivity in normal 

subjects, patients with hypertension and patients with impaired glucose tolerance or 

NIDDM.

(i) Evaluation of the euglycaemic hyperinsulinaemic clamp

A comprehensive understanding of the prevalence of insulin resistance and the 

ability to evaluate the effects of pharmacological and non-pharmacological 

interventions on insulin sensitivity is dependent upon a precise and reproducible 

technique to quantify the body’s response to insulin. The simplest, and perhaps the 

crudest, estimation of insulin sensitivity is provided by the OGTT. However,the 

resultant plasma insulin and glucose concentrations following an OGTT are the result
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of insulin secretion as well as insulin action of an individual; thus, mean curves for a 

population are smooth but individual curves are notoriously erratic. Thus, techniques 

have been devised which provide a more accurate measurement of insulin action 

(euglycaemic hyperinsulinaemic clamp, IVGTT minimal model technique, CIGMA) 

and insulin secretion (hyperglycaemic technique and IVGTT).

It was recognised, however, that despite widespread use of the euglycaemic 

clamp in clinical research, key aspects of the technique remained to be validated. 

Thus, the intra- and inter- subject variability, the time for insulin mediated glucose 

disposal to reach steady state, the need to arterialise venous blood, and the 

haemodynamic and metabolic effects of hand warming were evaluated in 24 healthy 

male subjects and 6 patients with essential hypertension.

My data suggest that M values derived from clamps of 120 minute duration are 

10% less than those derived from 180 minute clamps. The intra-subject variability is 

less than 10% in both healthy subjects and patients with essential hypertension, 

whereas the inter subject variability is much greater at 20-30% even in a group of 

apparently homogeneous healthy subjects. Thus, the clamp lends itself to studies 

where subjects act as their own controls.

The haemodynamic and metabolic effects of a hand-warming box, an integral 

part of the clamp procedure designed to arterialise venous blood sampled from a 

dorsal hand vein, were evaluated in 12 healthy subjects. The box was shown to 

effectively arterialise venous blood with oxygen saturations of greater than 95%. Hand 

warming was associated with an increase in the derived measurement of insulin 

sensitivity, with an increase in heart rate and decrease in blood pressure. Thus, the 

hand warming device should be used with caution, as it may be associated with a 

confounding increase in the derived measurement of whole body insulin sensitivity 

from the euglycaemic hyperinsulinaemic clamp.

(ii) Anti hypertensive therapy and insulin sensitivity

The fact that blood pressure tends to increase, and glucose tolerance and
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insulin sensitivity decrease throughout the middle to late years of life even in the 

absence of anti hypertensive treatment (Skarsfors et al, 1991) renders uncontrolled 

studies and epidemiological observations ill suited for the evaluation of the effects of 

anti hypertensive drugs in causing insulin resistance, impaired glucose tolerance or 

NIDDM. On review of the literature, however, there are few controlled studies of the 

effects of anti hypertensive drugs on insulin sensitivity and few direct comparisons 

with placebo. Despite well publicised studies of anti hypertensive drugs improving 

insulin sensitivity (Pollare et al, 1989a), many conflicting reports have been published. 

This thesis has incorporated two studies which have evaluated the effects of two anti 

hypertensive drugs, the dihydropyridine calcium antagonist, lacidipine, and the ACE 

inhibitor, trandolapril, on insulin sensitivity using a randomised, double-blind 

placebo-controlled crossover design.

Despite indirect evidence of vasodilatation as reflected by an increase in supine 

heart rate, there was no significant effect of 2 weeks treatment with lacidipine on 

insulin sensitivity in neither healthy male subjects nor patients with essential 

hypertension; the confidence intervals excluded a 15% change in insulin sensitivity in 

the volunteer group. This is one of the first placebo-controlled crossover studies to 

evaluate the effects of a calcium antagonist on insulin sensitivity.

The second study evaluated the effects of 4 weeks treatment with trandolapril 

on insulin sensitivity in patients with at least 2 cardiovascular risk factors, namely, 

glucose intolerance and essential hypertension. The hypothesis under test was that 

ACE inhibition would increase insulin sensitivity via a vasodilatory mechanism and 

angiotensin II "sparing" effect. Despite evidence of 70% ACE inhibition and blood 

pressure lowering effects of trandolapril, there was no evidence that trandolapril 

altered insulin sensitivity when compared with placebo. Confidence intervals excluded 

a 12% increase in insulin sensitivity.

Thus, my results suggest that treatment (2 to 5 weeks) with either a calcium 

antagonist or an ACE inhibitor exert neutral effects on whole-body insulin sensitivity. 

These results contrast with previous reports from uncontrolled studies of
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heterogeneous patient groups.

Despite the theoretical concern that certain classes of antihypertensive agent 

are associated with the exacerbation of insulin resistance, the available data suggest 

that any such effect, at best, is modest especially when compared with the magnitude 

of the pre-existing insulin resistance observed in NIDDM, obesity and essential 

hypertension. The pivotal concern is therefore: "Do these adverse metabolic effects 

matter?" Only when there are data demonstrating that long-term anti hypertensive 

therapy with different drug classes is associated with differential effects on coronary 

events will we be able to assess the overall importance of biochemical abnormalities in 

the treatment of the individual hypertensive patient.

(iii) Effects of angiotensin II on insulin sensitivity

Having evaluated the effects of pharmacological removal of angiotensin II with 

trandolapril, the angiotensin II infusion study was performed to test the hypothesis that 

acute administration of the vasoconstrictor would reduce insulin sensitivity in healthy 

subjects and patients with NIDDM.

It has been proposed that changes in glucose and insulin metabolism might be 

secondary to hypertensive microvascular complications, and much discussion has 

focussed on the importance of skeletal muscle blood flow as a determinant of glucose 

disposal rate and the potential insulin-antagonist effects of neuroendocrine 

mechanisms involved in cardiovascular regulation. Although activation of the 

sympathetic nervous system (via release of catecholamines) is diabetogenic, the 

effects of other vasoactive hormones on glucose and lipid metabolism have been 

poorly documented.

Using doses that produced systemic angiotensin II concentrations within the 

pathophysiological range, (20 to 140 pg/ml), angiotensin II had no effect of insulin 

sensitivity in healthy subjects. When the identical experimental protocol was repeated 

in patients with NIDDM, angiotensin II significantly increased whole body insulin 

sensitivity. Other investigators (Buchanan et al, 1993; Townsend & DiPette, 1993),
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using much higher doses of the octapeptide in healthy subjects, have reported a 

dose-related increase in insulin sensitivity.

The dissociation of metabolic and blood pressure effects of angiotensin II 

suggests that haemodynamic alterations and redistribution of cardiac output might not 

be the sole (or principal) underlying mechanism explaining the observed increase in 

insulin mediated glucose uptake in patients with NIDDM.

(iv) Determinants of insulin sensitivity

Having evaluated the methodology of the euglycaemic hyperinsulinaemic 

clamp and characterised insulin sensitivity not only in hypertensive, diabetic and 

diabetic hypertensive patients but also in healthy subjects, analysis of the entire data 

base was performed to identify factors which may account for the large inter-subject 

variability in insulin sensitivity.

The most important determinant of insulin sensitivity as derived by the 

euglycaemic hyperinsulinaemic clamp was the BMI. Of the data derived from the 

OGTT, the fasting insulin concentration showed the best correlation with insulin 

sensitivity; more complex calculations of AUC’s of insulin or glucose profiles, or 

ratios of insulin and glucose concentrations conferred no advantage.

In patients with NIDDM or impaired glucose tolerance, the fasting insulin 

concentrations correlated with insulin sensitivity but the best predictors of insulin 

sensitivity were BMI and waist hip ratio. The insulin and glucose responses to an 

OGTT were poor predictors of insulin sensitivity.

Thus, my data suggest good correlation between BMI, WHR and fasting 

insulin concentrations and derived measurements of insulin sensitivity, and these 

variables may individually explain up to 50% of the inter-subject variability in the M 

value. When these variables are analysed on an individual basis, however, they are 

insufficiently robust to predict insulin sensitivity in an individual subject. Thus, 

estimates of insulin resistance derived from OGTT or morphometric data in 

epidemiological studies of glucose tolerance should be viewed with caution.
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(v) Summary

The last ten years has seen an increase in interest and research into the 

phenomenon of insulin resistance and hyperinsulinaemia and their importance in the 

pathogenesis of disease. Not only is insulin resistance and hyperinsulinaemia of 

primary importance in the development of NIDDM, it also occurs in other conditions, 

most notably obesity and essential hypertension.

This thesis has evaluated the euglycaemic clamp as a method of reproducibly 

measuring insulin-mediated metabolic responses. In two separate studies, two 

anti hypertensive agents have been shown to exert neutral effects on insulin-stimulated 

responses, casting further doubt on the importance of iatrogenic "worsening" of insulin 

sensitivity associated with the treatment of hypertension. The effects of angiotensin II 

on whole-body insulin sensitivity have been evaluated in both healthy subjects and 

patients with NIDDM. Contrary to general expectations, the vasoconstrictor increased 

insulin sensitivity in patients with NIDDM, suggesting a possible dissociation of 

haemodynamic and metabolic effects of angiotensin II. Lastly, using the entire 

database of all 75 subjects studied, major determinants of insulin sensitivity in man 

have been evaluated.

In conclusion, there is increasing recognition that high blood pressure is only 

one facet of a metabolic syndrome that represents a cluster of risk factors for 

long-term development of cardiovascular disease. The true impact of insulin resistance 

and hyperinsulinaemia on the promotion of an atherogenic lipid profile, elevation of 

blood pressure and acceleration of the atherosclerotic process remains to be clearly 

defined.
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