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Abstract
In this thesis a theoretical study is made of the behaviour of single- 

electronic devices and systems. It is argued that the properties of single- 

electronic systems can be determined if the densities of the legal soliton states 

are known. The dynamics of the tunnelling electrons in such systems are 

modelled as a traffic process. An exact analytical technique based on the 

conventional Traffic Theory is formulated in the thesis. This new technique is 

compared with the traditional Monte-Carlo method and is shown to be superior, 

both in accuracy and speed. An algorithm that correctly and efficiently 

determines the set of active soliton states and the relationship between the 

states is also described.

Tunnelling dynamics in a double-junction system are modelled as a 

Birth-Death process and an exact analytical solution is obtained. The model is 

then used to study the effects of discrete energy spectrum at the central dot of a 

double-junction system.

A numerical solution for the Fokker-Planck like equation of the charge 

density function in a single tunnel junction circuit is implemented and used to 

study the coherence of the single-electron tunnelling (SET) oscillations. To 

avoid the heavy computations involved in the numerical solution a simple 

technique based on the distribution of the time between successive tunnel 

events is presented. It is shown that the SET oscillations do exist but the 

predicted ensemble average oscillations damp out exponentially with time.

The regimes of operation of the double-junction system, the turnstile, are 

investigated. It is argued that the addition of resistive components to the circuit 

will enhance the reliability of the device and dramatically reduce the 

probability of unwanted events at the cost of reduced clocking rate. The 

Master-Equation formalism is extended to the double-junction system. The 

charge fluctuations are shown to be less than the fluctuations in a single­

junction case.

The processes degrading the reliability of single-electronic systems are 

studied. These include thermal and quantum fluctuations, the charge 

macroscopic quantum tunnelling and single charges that are being momentarily 

or permanently trapped in the vicinity of the system’s electrodes. The Traffic 

model is extended to include these processes
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Chapter (1) 

Introduction

Recent advances in fabrication technology have made it possible to 

fabricate ultra-small normal (non-superconducting) tunnel junctions in which the 

flow of the electric charge in the form of discrete single electrons can be observed 

and controlled. The new devices exhibit two distinct modes of operation; viz. (a) 

the Coulomb-blockade regime where the flow of electrons is completely 

suppressed by the Coulomb gap and (b) the correlated flow of single electrons 

where a single tunnel event will block other events until some certain charge is fed 

to the junction from the external source. These exciting properties suggest that 

these devices may be used in a wide range of applications including the single­

electron logic circuits and current standards.

This has motivated the investigation into the single junction as a basic 

element of the new class of single-electronic devices and into multi-junction 

systems which are expected to provide higher reliability and versatility.

The objective of this thesis is to study the properties of some devices that 

are expected to form the backbone of the wider range of the single-electronic 

systems and to develop some simulation tools to facilitate the studies.

The behaviour of single-electronic devices is affected by thermal and 

quantum fluctuations induced by the environment. Trapped charges in the bulk 

insulating medium or at the surface modulate the potential at the different nodes of 

the system. It is therefore an important issue to investigate these factors and look 

at ways of eliminating or reducing their detrimental effects.

1.1 Outlines of the Thesis:

Chapter (1): is an introductory chapter, a historical background of the field 

of Single-Electronics is presented, and the physics behind the Coulomb-blockade 

phenomenon is outlined.
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Chapter (2): the single junction is studied, two models are used to analyse 

the device; these are: (a) the solution of the Master Equation relating the charge 

distribution function to the parameters of the single-junction circuit and (b) a 

simpler technique based on the investigation of the distribution of the time 

between successive tunnel events.

Chapter (3): the double-junction structure has received a lot of attention in 

the last few years and several experiments have been performed on different 

double-junction structures. The device is described in this chapter with reference 

to several experimental structures. Modelling techniques used in this chapter 

include: (a) a semiclassical model describing the origin of Coulomb blockade in 

such circuits, ft)) Finite-State-Machine model describing the State-Input-Transition 

relationship in single-electronic systems, (c) static and dynamic Monte-Carlo 

methods and (d) Master-Equation model. Emphasis is placed on the double­

junction as a memory element in logic circuits (the turnstile).

Chapter (4): is intended to be an extended introduction to chapter (5). The 

long array of tunnel junctions is studied and is shown to sustain soliton modes. 

The conventional Monte-Carlo techniques, as applied to modelling single- 

electronic devices and circuits, are briefly outlined.

Chapter (5): an exact analytic technique based on the conventional Traffic 

Theory is presented as a solution of the model of multi-junction systems. This 

technique is shown to be much faster than the standard Monte-Carlo method. An 

algorithm which systematically and efficiently determines the set of active states is 

described and implemented. A version of this technique (the Birth-Death Model) is 

applied to the double-junction system.

Chapter (6 ): the flow of single electrons in single-electronic systems is 

affected by thermal and quantum fluctuations; unwanted tunnel events will 

degrade the reliability of these devices. Fluctuations of the potential due to single 

charges being trapped/detrapped in the vicinity of the junctions may also cause 

such events. These killer processes are investigated in this chapter.
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The following sections give a review of the field of single-electronics. The 

first structures in which the Coulomb-blockade phenomenon was observed are 

briefly described. In this chapter, the semiclassical model of tunnelling in a 

metallic tunnel junction is presented.

1.2 Historical Background:

The electrical conduction mechanism through small metal particles has 

been a subject of interest since the early fifties. The first studies were conducted 

on thin metal films a few tens of angstroms thick prepared by evaporation onto a 

substrate. These films consist of an array of small individual metallic islands 

separated by distances of the order of a few angstroms. The size of the islands and 

the separation between the granules determine the electrical properties of the film. 

The behaviour was found to be dominated by the bulk metal properties if the film 

contains large metal granules with small inter-grain separation. Due to strong 

scattering from the dielectric inclusions and grain boundaries, the electrical 

conductivity will be less than the crystalline value, see Abeles (1976) for a review.

In the metallic region, the resistivity is relatively low and the temperature 

coefficient of resistivity is positive. A film of small metallic particles imbedded in 

a continuum of a dielectric medium (the dielectric region) behave in a different 

way and its electrical properties are greatly affected by the isolated metal particles 

and the insulating medium as well. In the dielectric region, the resistivity 

decreases with temperature; and the resistivity is strongly field dependent at high 

electric fields and low temperatures. In the transitional region, between metallic 

and dielectric regions, the resistivity rises sharply because of the breaking up of 

the metal continuum and the subsequent formation of a series of isolated metal 

granules, see e.g. Abeles (1976).

For electrical conduction to occur in thin film structures, electrons must be 

transferred from one particle to the other across the gaps, and it is this mechanism 

of transfer that determines the electrical properties of the film. Such films were
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extensively studied, both in the normal state (e.g. by Neugebauer and Webb 

(1962)) and in the superconducting state (e.g. Giaever and Zeller (1968)). A recent 

study was conducted by Cohn et al (1990) on oxidised films of bismuth. A 

negative temperature coefficient of the resistance of such films was observed. 

This indicates that the conduction mechanism in these structures is an activated 

process; i.e. the addition of thermal energy to the system tends to enhance the 

conduction process.

As early as 1951, Gorter has pointed out the importance of the energy 

required to transfer an electronic charge from an initially neutral island to another. 

This energy is estimated to be of the order of e2 /4jt£r where r is the radius of the 

granule. Neugebauer and Webb (1962) argued that only electrons or holes excited 

to states o f at least this energy above the Fermi level will be able to tunnel from 

one neutral island to the other and referred to this energy as the 'activation energy', 

which is the energy required to charge a sphere of radius r by a single electronic 

charge.

The transfer of charge from an initially charged island to a neutral grain 

was assumed to be an inactivated process because it does not lead to a net increase 

in the energy of the system, in contrast to the case of two neutral islands. It will 

be shown that the transfer of electrons between the granules of such structures may 

be treated within a unified theory where no distinction between initially charged 

and initially neutral islands is needed. The activation-energy model used by 

Neugebauer and Webb predicted a (negative) exponential dependence of the (low 

temperature) low-bias conductance of the film on the reciprocal of temperature. 

Although this model neglected the interaction between the charged particles, the 

authors had pointed out the importance of the interaction energy when it becomes 

of the order of the thermal energy, kgT, or when the size of the islands and 

distance between the particles are made extremely small. This model also 

neglected the potential differences between neighbouring islands due to the 

existence of an excess electron at another grain.
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Hill (1969) suggested a model that accounts for the interaction energy 

between the grains. Hill assumed that the metallic granules are identical and all of 

spherical shape with equal distances apart. The interaction energy is then 

calculated from the knowledge of the capacitive coupling between the 

neighbouring grains. The interaction energy between the spheres was calculated 

as an approximate function of the geometry of the structure.

Full electrostatic considerations of the two-sphere model (Hill’s model) 

were taken into account by Abeles et al (1975) who obtained an exact expression 

for the capacitance between two neighbouring spheres. Roy (1993), in modelling 

single-electronic devices, has obtained similar expressions for the capacitance 

between two identical spheres. The structures studied by Roy consist of metallic 

dots (40nm diameter and 12nm apart) deposited on p-silicon substrate, Barker 

(1993).

All previous models neglected the solitary nature of the excess charges 

located at other grains. Electrons situated at any point in the coupled structure will 

polarise the whole structure, and the dynamics of charge transfer between two 

neighbouring grains will be affected by the distribution of charges on the whole 

array. Furthermore, the event- when accomplished- will induce potentials along 

the structure and will subsequently affect other events (what is normally called 

'space correlation').

In 1968, Zeller and Giaever experimentally studied the transport properties 

of an AI-AI2 O3 -AI structure containing Sn particles in the oxide layer, figure (1.1). 

They observed that the structure exhibits a small conductance at low voltages 

while the conductance saturates to a constant value at voltages greater than some 

threshold voltage level. This threshold voltage was found to strongly depend on 

the size of the Sn inclusions. Together with these very important observations, 

Zeller and Giaever explained the zero-bias anomalies in terms of the Coulomb 

interaction and derived the correct condition for the onset of conduction through
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these structures in the absence of thermal fluctuations (conditions will be 

discussed in the thesis).

Zeller and Giaever (1968) stated that the condition, at low temperatures, for 

the flow of current through the single tunnel junction is simply : | V | >e/2C. The 

voltage gap appearing in the TV characteristics of the single junction has since 

been known as the Coulomb gap. Another important feature of Zeller and 

Giaever's observations is the clear negative temperature coefficient of differential 

resistance (RCV^OjoG/T).

Oxide

Figure (1.1): Structure studied by Zeller and Giaever.

Droplei

Oxide

Figure (1.2): Lambe and Jaklevic's Structure.

Lambe and Jaklevic (1969) studied a structure of a metal electrode and a 

metallic droplet, figure (1.2). This structure has an equivalent circuit of a tunnel 

junction connected in series with a non-tunnel junction. They showed that the 

average number of electrons present on the droplet increases with the applied
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voltage. A model of a variable capacitor was introduced to account for the 

behaviour.

The structures of metallic grains imbedded in the oxide layer were later 

theoretically studied by Shekhter (1973) who showed that R(V=0)OC1/T in 

agreement with Zeller and Giaever's observations. Shekhter also predicted 

oscillations in the I-V characteristics of structures having a single grain in the 

oxide layer (a double-barrier system) due to single electrons being permanently 

trapped in the central island. It was later shown that the line current does increase 

with the terminal voltage but there are oscillations in the differential conductance 

of the double-barrier system that are attributed to more and more electrons 

contributing to the conduction process.

Kulik and Shekhter (1975) used the Gibbs distribution function to 

determine the occupation numbers of the central island in a double-barrier 

structure and then to calculate the I-V curves of the structure. They also used the 

concept of a varying capacitance to account for the non-linear relationship 

between the voltage and the average charge monitored at the central island. It was 

shown that the conductance of the double-junction structure oscillates in a uniform 

manner with the excess charge at the central electrode. The period of oscillations 

corresponds to the addition of an exact single electronic charge to the central 

electrode. The conclusions regarding the periodic increase of the average charge 

at the central island had later inspired many to think of a single-electron transistor 

in which the line current may be controlled by some ’gate' voltage that modifies the 

potential of the central grain. The single-electron transistor is also suggested to 

function as a memory element in the new class of single-electronic systems. 

Conditions of operation and problems associated with the this device w ill be 

discussed in chapter (3).

The Coulomb-blockade and single-electron tunnelling phenomena have 

attracted a lot of attention, both theoretically and experimentally, in the last few 

years as it became possible to fabricate junctions with capacitance of the order of,
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or less than, 10"15F (critical temperatures greater than ~1K). Very few 

experimental data have appeared for single tunnel junction circuits. The 

difficulties with such circuits arise from the detrimental effects introduced by the 

stray capacitance of the connecting leads. The stray capacitance, Cs, is usually 

comparable in value to the junction capacitance itself, and the charging energy, 

e2 /2(C+Cs) is therefore drastically reduced. The large stray capacitance will 

present an impedance of the order of 102 -103  Q  at high frequencies. This high 

capacitance together with a low series external resistance tend to smear out the 

Coulomb gap. The equivalent line impedance, Z, allows the junction to discharge 

its energy in a finite time «CZ(co). If the energy uncertainty associated with this 

time is comparable to the charging energy, e2 /2C, the blockade will be weakened, 

Girvin et al (1990). This implies that the condition to observe the Coulomb gap is: 

Z ( go) » R q  , where R q  is the universal quantum resistance. Under this condition, 

the time between successive tunnel events is long and coherence effects are 

neglected. The charge will be a well-defined variable.

Experiments on single Al junctions of area 0.01 (pm ) 2  and capacitance of 

few fF s were conducted by Geerligs et al (1989). The Coulomb gap was 

observed with junctions having high tunnel resistance. Cleland et al (1990) 

fabricated single junctions with metallic electrodes having area of the order of

0.02-0.04(pm)2 and capacitance l-10fF. These structures have revealed a 

Coulomb gap at T=20mK. The thermal and quantum fluctuations do wash out the 

Coulomb gap; but the existence of a voltage offset in the I-V curves at higher 

voltages is a clear indication of the Coulomb-blockade effects {I°c (V-e/2C), 

V » e/2 C }.

Concrete confirmation of the theory of Coulomb blockade and single­

electron tunnelling has been reported on double-junction structures, e.g. Fulton 

and Dolan (1987), Kuzmin and Likharev (1987), Thomas et al (1989), Meirav et al 

(1990), etc.,{some of these structures will be discussed in chapter (3)}. The 

Coulomb staircase has been observed using the Scanning Tunnelling Microscope,
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e.g. van Bentum et al (1988) and Wilkins et al (1989). Experiments on one­

dimensional arrays of tunnel junctions have also confirmed the oscillatory nature 

of the line conductance with gate voltage, see Kuzmin et al (1989) and Geerligs et 

al (1989).

13 The Semiclassical Model:

In the following part of the introduction, the single normal tunnel junction 

will be described. The understanding of the physics underlying the operation of 

the single junction is crucial to all parts of the thesis. Consider a tunnel junction 

with normal metallic electrodes. The properties of the junction can be investigated 

by examining the factors affecting the tunnelling process.

In the absence of an applied bias voltage, the potential energy diagram 

corresponding to the metal-insulator-metal (MIM) junction is shown in figure

(1.3). The shaded areas represent the eigenstates that are fully occupied at zero 

temperature. During the tunnelling process the electron will be found in the area 

between the plates; it will polarise the two electrodes and produce two image 

charges on them. These image charges will in turn polarise the facing electrodes 

and, consequently, an infinite number of image charges is formed. Each image 

charge contributes to the total potential sensed by the tunnelling electron. The 

total image potential, U(x), is a function of position and is given by:

In the absence of any image forces, the potential profile in the region 

between the plates is determined by the band structure of the insulating material 

and the applied voltage. The additional potential due to the image forces reduces 

the barrier between the electrodes, rounds off the sharp edges at the interfaces and 

reduces the width of the barrier. Equation (1.1) implies that the potential energy 

of the electron at the MI interfaces is =-°°. This can be circumvented by assuming 

that the image potential expressed by equation ( 1 .1 ) holds only in the range

na
na ( 1.1)
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Xq <,x<,a—x^ where x0 is some critical value, Simmons (1964). The barrier

potential shown in figure (1.3.A) can be expressed by:

U 0 ( x )  = Ef + <$> + U 1( x )  (1.2)

where Ep is the Fermi energy of the electrodes and <|> is the work function. The 

diagram of figure (1.3) represents a symmetrical MIM junction where the metallic 

electrodes have the same Fermi energy and hence the bottoms of the conduction 

bands lie at the same level. Asymmetrical junction, with electrodes made from 

different metals, can be described in a similar way taking the different Fermi 

energies into account, Duke (1969).

Figure(13): Potential Profile

If a voltage is applied across the symmetrical MIM junction, the Fermi 

levels of the two electrodes will be separated by a value eV, figure (1.3.B). The 

Fermi levels in the bulk metals of each electrode remain flat as the voltage drop 

across the metallic electrode is assumed negligibly small. In the case of a large 

capacitance junction with a charge on the electrodes just before the tunnelling 

event that is much larger than the electronic charge, | q | » e ,  the charges on the 

electrodes before, during and after the tunnel event can be assumed constant. The
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electric field strength due to the charges on the electrodes will not be affected by 

the changes of ±e; thus the barrier potential may be expressed as:

U‘(x) = EF+b + U , ( x ) - eV -  (1.3)
a

where a is the distance between the electrodes.

Now, consider the case of small tunnel junctions in which the initial charge 

on the electrodes is of the same order as the electronic charge. The changes of ±e 

can no longer be ignored in this case. Let the charges on the electrodes before the 

tunnelling event be +q and -q. During the tunnelling event the charge on the 

initially negatively charged electrode will be -(q-e) while the charge on the other 

electrode is maintained at -i-q, see figure (1.4). If the plates are considered to have 

large surface areas (A), then the electric field acting on the electron during the 

course of the tunnelling event is:

Figure (1.4)

(1.4)
2eA 2e/i e/1 2 a '

Investigating this electric field strength, one will realise the importance of 

this force. The term tells the fact that when the initial charge on the junction is 

less than e/2 the force acting on the electron during the course of the tunnelling 

event will be in a direction opposite to the direction of motion of the tunnelling 

electron. In other words, when q<e/2 the Coulomb force will suppress any electron 

trying to tunnel through the barrier and this is the origin of the so called 'Coulomb 

blockade of tunnelling'. On the other hand, the Coulomb force will act on the 

electron in the same direction of motion when the initial charge is greater than e/2.
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Knowing the electric field strength and the image force potential, the full 

barrier potential profile can be expressed as:

The classical picture of the image potential described above was used in 

modelling transport in thin metallic films, e.g. Simmons (1964), Simmons et al 

(1964), Williams et al (1972) and Uozomi et al (1977). Photon-assisted tunnelling 

measurements have shown that the classical image force theory is not adequate in 

describing the interaction between the tunnelling electrons and the metals from 

which they emerge, e.g. Weinberg and Hartstein (1976), Hartstein et al (1977 & 

1982) and Dietz (1980). Weinberg and Hartstein suggested a quantum 

mechanical model to calculate the transmission probability through the metal- 

insulator interface. This model assumes that the wave-fiinction of the plasma in 

the metal is the image of the part of the wave-function of the incident electron that 

lies in the insulator region.

The barrier potential described above ignores the penetration of the electric 

field into the metal electrodes and assumes that the whole voltage drop is 

maintained in the insulator region. The charge on the electrodes is then a surface 

charge accumulated on the metal-insulator interface. However, even in the 

presence of a surface charge, the field does not vanish abruptly at the M-I interface 

but drops rapidly to zero in the metal, Duke (1969).

The description of the Coulomb blockade phenomenon given so far is 

pivoted on the classical picture of the electric field during the course of the tunnel 

event. Simple considerations of the state of the junction prior to and after the 

event would lead to the same conclusions. Let the initial charge on the junction be 

equal to q. The electrostatic energy stored in the junction is then given as 

Ei=q2 /2C. If it is assumed that the tunnel event can occur only in the forward 

direction, i.e. an electron may tunnel from the electrode with the negative charge 

to the other, the charge on the junction after the event will drop to the value (q-e)

(1.5)
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and the electrostatic energy becomes Ef=(q-e)2 /2C. The change in the energy is 

then:

A = Ei- E f = ^ q ~ )  (1.6)

The event will be allowed if the final energy is less than the initial energy,

i.e. q>e/2. This argument is valid provided that the thermal and quantum 

fluctuations are negligibly small. At finite temperatures the thermal and/or 

quantum fluctuations may provide the energy required to make a tunnel event 

possible even if q<e/2. Thermal effects can be dramatically reduced by carefully 

choosing the operating temperature; and the condition:

t-2
<■B1 ^  Ec “knT «  Er = —— 

2 C

will reduce the possibility of occurrence of any thermally activated events. The 

thermal and quantum fluctuations and their effects on the performance of the 

single junction will be discussed in chapter (6 ).

It should be mentioned that the charge redistribution time is assumed to be 

negligibly small. Once the electron lands on the other electrode, the charge on the 

junction can be represented by q-e. The tunnelling process across the single 

junction in this case is not affected by the external circuit and the junction is 

assumed to be completely isolated from the environment. The external circuit will 

be sensed during the subsequent recharging process, that follows the tunnel event.

Finally, let the leads connecting the junction to the source have zero 

impedance, Z=0. Let the initial charge on the junction be equal to q where q is 

essentially the steady state charge delivered to the junction from the voltage 

source. Let a tunnel event occur at some time from an electrode to the other. The 

charge on the junction following the event will instantaneously relax to its 

previous value, i.e. it takes the system zero time to recharge the junction from the 

level q-e to the level q. Thus, the change in the energy is simply:

A =0, Vq

13



and it is concluded that: if the single junction is voltage-biased (Z=0), the 

tunnelling process may take place at any bias level and it is no longer possible to 

observe the Coulomb gap.

The former case, Z=°°, corresponds to the current-biased junction where 

the Coulomb gap will be observed. Effects of finite external impedance will be 

addressed in chapter (6 ).
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Chapter (2) 

Models of the Single Junction

2.1 Introduction:

The potential profile in a single-junction circuit was discussed in the 

previous chapter. In this chapter the tunnelling rate across the junction will be 

studied using the quantum golden rule. A numerical solution is implemented for 

the Master Equation that governs the evolution of the charge with time. It includes 

the fluctuations introduced by the thermal noise and by the stochastic nature of 

tunnelling. Another approach suggested to study the coherence of single-electron 

tunnelling events uses the distribution function of the time between successive 

tunnel events.

2.2 Tunnelling Rate:

Tunnelling through the barrier is a pure quantum mechanical process. If an 

electron with energy E<Vmax falls on the barrier from either side then there is a 

finite non-zero probability that this electron will penetrate the barrier and 

eventually be found at the other side of the barrier. The particle will spend some 

time beneath the barrier, a time that is referred to as the 'traversal time for 

tunnelling'. The traversal time for tunnelling is normally much smaller than other 

characteristic times in the systems under study, e.g. the time between tunnel 

events, and can be ignored. The transmission probability may be determined from 

the solution of the one dimensional Schrddinger equation in the regions to the left, 

right and under the barrier. Clearly, the transmission factor is a function of the 

form of the potential profile and the energy of the incident electron and can be 

written as D(E,V). An approximate expression for D(E,V) can be evaluated using 

the WKB approximation method. No expression for the transmission factor will 

be pursued in the thesis and a constant value, independent of the energy, will be 

used and then absorbed into a phenomenological parameter (the tunnel resistance) 

which can be determined from experiments.
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For the MIM junction, with the potential profile shown in figure (1.3), the 

total transmission probability can be obtained by adding the contributions of all 

conduction electrons in the metals, taking into account the occupancies of the 

energy levels involved.

Let E i  and E1r be the Fermi energy levels of the left and right electrodes 

just before the tunnel event. The levels are separated by an amount eV, (see figure

(1.3))

4 = 4 - e V  (2.2.1)

If a tunnel event takes place from the left to the right electrode, the Fermi levels

f fthen modify to EJL and EJR. The additional electron on the right electrode will

shift -up- all the electronic energy levels there by an amount equal to the electron
2 /

charging energy, /2 C '  r̂ lus’

ER =ER+e% c =EL-eV+e% c =Ei - A (2.2.2)

2 /where A is the change in the free energy, ~ e/ 2 0  d e fied  in equation (1.6).

2  /
The levels of the left electrode are reduced by the same amount, /> £ , i.e.

£ { = 4 - e% c  (2-2.3)

It is to be noticed that if the initial potential difference between the 

electrodes is less than the threshold value, V<e/2C, and an electron with energy 

E<E'i at T=0 K is to tunnel to the right electrode, it will arrive at a level below the
f

Fermi level, ejr - This implies that the tunnelling process is suppressed at low 

temperatures if the voltage is less than the threshold value, e/2C.

The wave-vectors of the electrons incident on the barrier from the left can 

be decomposed into transverse and longitudinal components. The total transition 

probability is calculated by adding the contributions of all possible vectors, taking 

into account their distribution, and can be written as:

T = J dEx\d E J L ( £ ) ( 1  -  / /  {E))D(E,V)pL(E)pR(E)vLvR (2.2.4)
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where:

Ex = the longitudinal component of the energy of the incident electron,

E_l = the transverse component of the energy, and the total energy is

therefore E=EX+E1.

fL = Fermi distribution function at the left electrode before the tunnel 

event. This function is characterised by the Fermi level ElL,

f ff R = Fermi function characterised by EJR,

pL, Pr are the densities of energy states on the left end right electrodes 

respectively,

vL, vR are the volumes of the left and right metallic electrodes and 

D(E,V) is the elastic transmission probability.

Equation (2.2.4) ensures the conservation of momentum and energy of the 

tunnelling electron. In general, the elastic transmission probability depends only 

on the longitudinal component of the wave-vector of the incident electron, thus the 

tunnel rate can be written as:

T = \ d E xE{Exy ) N { E x) (2.2.5)

where the function N(EX) is termed the supply function and is given by:

N(EX) = vLv*J r f £ iA ( £ ) { l - / /  (£)}pL(E)pR(£ ) (2.2.6)

The supply function can be simplified if it is assumed that the transverse 

component of the energy is much smaller than the longitudinal part, E±« E x , Duke

(1977), Mullen et al (1988) and Ueda (1990). Thus:

N{EX) = vLvR.pLl(£x )pfix(£'i ) /L(£'x) { l - / /  (£*)} (2.2.7)

This assumes that the density of states on the electrodes is:

p(E)=px(Ex).5(E1) (2.2.8)

The total tunnel rate can now be evaluated if the transmission factor 

o ( Ex y )  is known. To simplify the analysis further, this factor may be considered

as a constant that is equal to the value of the transmission factor at the Fermi
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surface. This assumption is valid if the change in the free energy of the tunnelling 

electron ,A, is much smaller than the Fermi energy. At low temperatures, all 

levels below the Fermi energy will be full, while those above will be empty. 

Therefore, for an electron to have a chance to tunnel through the barrier, it must 

have an energy E such that E[^E<,E‘r . Thus, the density of states in the integral 

can be approximated by a constant value corresponding to that at the Fermi level.

Substituting equation (2.2.7) in (2.2.5), the tunnel rate is found to be:

r * (Z 2 ,9 )

where p=(kBT) _ 1 and Rte is the tunnel resistance given by:

^  (2 .2.10)

Let the incident electron have a transverse component together with the 

longitudinal component. Again, the condition A «E p is imposed to allow the 

densities of states and the transmission constant to be approximated by their values 

at the Fermi surface. The supply function turns out to be:

n (e x, v ) = PlPrVlV* — L j -
' * ’ p l - e ~ ®

A p -ln (2 .2 .11)

— I /  I
'T™P£PrvlviP{E f*V)Ef ■ (2 .2 .12)

The tunnel rate,t low temperatures, can be evaluated using equation (2.2.5) 

and is found to have the following form:

\ —e

The dependence on the change of the free energy of the first term o f this 

equation is similar to relation (2.2.9). The second term is a small negative 

correction term due to the distribution of the total energy of the incident electrons 

in the transverse as well as longitudinal directions. For a metallic tunnel junction, 

the Fermi energy is of the order of few electron volts. If the capacitance of the 

junction is as small as 10"1 8 F, the charging energy will be of the order of 80 meV.
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Therefore, for a practical metallic tunnel junction the tunnel rate can be 

approximated by

r  *  PlPR vLvr E (EF yV  )EF   Z m  (2 -2 -13 )l - e  ^

and the tunnel resistance will then be given as

Rt ={e2PLPRViyRD(EF,V)EF)-1 (2.2.14)

Equation (2.2.14) agrees qualitatively with the results obtained by Fulton 

and Dolan (1987). Their data indicates that the tunnel resistance is lower for 

junctions with higher electrode area.(volume).

2.3 Master-Equation Formalism:

The Hamiltonian of a current-biased tunnel junction, figure (2.1), is:

H = QA c +Hi + H2 + Ht + H, (2.3.1)

where

Q2 /2C is the junction charging energy,

H!,H2  and Hs describe the internal degrees of freedom of the junction 

electrodes and the shunt path respectively and 

H j represents the single-electron tunnelling.

Q+e
I(tJ

Q-e

Figure (2.1): A: Current-biased Tunnel Junction. 
B: Possible tunnel events and their rates.
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If the tunnel and external shunt conductances are much smaller than the 

universal quantum conductance,

Gt,Gs« l /R Q  , (Rq*6.5kQ) (2.3.2)

the charge on the junction can be considered as a well-defined classical variable; 

and in this case, the flow of current from the source into the junction is a 

continuous process, Averin and Likharev (1986 & 1990). The Hamiltonian,

H0 = q 2/ ( c + h \ + h 2 + h s (2-3.3)

can be considered as a basic Hamiltonian and the remaining term can be treated as 

a weak perturbation. Averin and Likharev (1986) have shown that the equation of 

motion of the density matrix of the system in Q-space reduces to the following 

simple Master Equation:

I - ' - , - ) ! * ™

where s(Q,t) is the classical charge density function, Fs is a contribution from the 

shunt path and is given by the following expression:

F  - G > 8
C dQ

( ds }CkBT ^ -  + Qs (2.3.5)
dQ /

The tunnelling term, FT, in equation (2.3.4) depends on the distribution 

function as well as the tunnelling rates and is expressed as:

Ft  ~ + e ) + r 2s(Q -  e)- ( r 3 + 1 4 )^ 2 ) (2 .3 .6 )

where T i,..,^  are the tunnel rates defined according to figure (2.1.B). The first 

two terms of FT give the rate of increase of the density function due to the possible 

tunnel events from Q+e and Q-e levels to the Q level, at rates given by T i and Ti  

respectively, giving rise to a change of ±e in the initial charge on the junction. 

The last term is the decay rate of s(Q,t) due to tunnel events at charge Q into the 

levels Q±e, at a total rate of The tunnelling rates are evaluated according

to equation (2.2.9) or (2.2.12).

20



Equation (2.3.4), with the tunnelling term set equal to zero, is similar to the 

Fokker-Planck equation which was first used to represent the Brownian motion 

of small particles. It is also used to study the noise in lasers.

Equation (2.3.4) is an important and interesting relation as it incorporates 

the charge fluctuations and the variation of these fluctuations with time. It also 

includes the effect of the tunnelling events on the fluctuations. It serves as a basis 

for determining the ensemble time-average behaviour o f the junction and the 

steady-state I-V characteristics. Both the Coulomb blockade of tunnelling and 

single-electron tunnelling oscillations are described by this Master Equation.

Ben-Jacob et al (1988), Geigenmuller and Schdn (1988), and Muller et al 

(1988) investigated the fluctuation of the charge on the junction by looking at the 

possible events that can modify the state of the junction, viz. the charge delivered 

to the junction from the source and the tunnel events. It was shown that the charge 

distribution function satisfies the relation:

!  = - / „ ! ( 2 - 3 . 7 )

where FT is identical to the tunnelling term defined before. Clearly, the two 

expressions (2.3.4) and (2.3.7) will be equivalent if Fs is negligibly small, i.e. if Rs 

is sufficiendy large. Equation (2.3.7) contains no diffusion term and tells nothing 

about the thermal and quantum fluctuations of the charge; the only fluctuations 

involved in (2.3.7) are those introduced by the tunnelling process.

2.4 Solution of the Master Equation:

In this section the Master Equation is solved both in the Coulomb-blockade 

and in the single-electron tunnelling regimes. The charge fluctuations and the 

dependence on time are also investigated. It is important to note that the equation 

at hand does not include the fluctuations introduced by the charge-macroscopic 

quantum tunnelling process, which will be addressed in chapter (6 ).
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2.4.1 Coulomb-Blockade Regime:

The Fokker-Planck like Master Equation described above is a key relation 

in describing the behaviour of the single junction. It is possible to derive exact 

expressions for the total averaged charge and the charge fluctuations as a function 

of time if the junction is operated in the Coulomb-blockade region, i.e. / . < f a ,

where t s = RSC. Let the charge on the junction be gaussian distributed with mean 

Qa and variance cT0. It is assumed that as the charge is delivered to the junction,

the charge distribution will stay gaussian but the mean value and the fluctuations 

of the charge will evolve with time and are denoted by Qa and c^(t). The charge

distribution function at any time may be written as:

s(Q ,t)=  j —̂  exp - (Q ~ (2.4.1)
\ 2 n o ( t )  2 o  (t)

At low temperatures and low driving current conditions imposed above, the 

tails of the gaussian charge packet outside the range (-e/2 ,e/2 ) will be small and 

may be neglected. The tunnelling terms in equation (2.3.4) can be set equal to 

zero. In the Coulomb-blockade region the Master Equation can then be written as:

(V ^ \ds_ = j . [_ 
dt dQ

2 - iLo
lVT*s J

Cks T ds
s + - ~ ------- (2.4.2)

dQ

This is the continuity equation for the density function in the Coulomb-

dsblockade region. At t=°° both I(t) , the current through the junction, and — are
dt

equal to zero. Equation (2.4.2) gives

0  (2.4.3)
oQ

The steady-state fluctuations of the charge , the average total charge and 

hence the distribution function may be obtained by direct substitution of (2.4.1) in 

(2.4.3), giving:

Qss =  V o  (2.4.4)
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(2.4.5)

Clearly, the steady-state average charge is the total charge delivered to the

mean value. It is identical to the expression used by Averin and Likharev

(1985,1990). It will be shown in chapter (6 ) that the fluctuations used here 

correspond to the fluctuations induced in a single junction that is coupled to an 

external source via a line of infinitely large impedance ( a condition explicitly 

imposed when deriving the Master Equation).

It is also possible to study the time dependence of the fluctuations. The 

charge packet is assumed to be gaussian at any time. Direct substitution of this 

gaussian charge packet, equation (2.4.1), into the Master Equation for the 

Coulomb-blockade case, and subsequent equating of the coefficients o f equal 

powers of Q on both sides of the resulting relation gives,

Relation (2.4.7) shows that the width of the charge packet changes due to 

the diffusion process. The significance of (2.4.7) may be shown as follows: let the 

junction be initially held at temperature Tj, the uncertainty in Q will then be 

kBTiC. If, at t=0, the temperature is changed to T, the uncertainty in the charge 

level will evolve with time according to equation (2.4.7) and the steady-state 

spread will be kBTC. Connection or removal of a capacitor in series or in parallel 

with the tunnel junction gives rise to similar evolution of the fluctuations. 

Following a tunnel event or a charge measurement the fluctuations will grow with

The drift process of the charge packet is summarised in relation (2.4.6). It 

defines the charging curve of a conventional capacitor fed by a voltage or current

junction from the source. The quantitycr' is the charge fluctuation around the

(2.4.6)

(2.4.7)
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source, stressing the fact that the charge is continuously delivered to the junction. 

The solution of (2.4.6) is:

Looking back at equation (2.3.7) suggested by Ben-Jacob et al (1988) and 

using the same gaussian charge packet in a Coulomb-blockade regime, i.e.

2.4.2 Single-Electron Tunnelling:

SET events can take place, at kBT « e 2 /2C, when the total average charge 

exceeds e/2, i.e. 1̂ >g/2ts. The energy change associated with the tunnelling of a 

single electron blocks other electrons from tunnelling until the junction recharges 

to the e/2 level. This will lead to coherent SET oscillations of the charge giving 

rise to a relaxation-type of oscillations (continuous charging followed by a sudden 

discharge) at a frequency predicted to be fsET=V e> Averin and Likharev

(1986,1990), Mullen et al (1988) and Ben-Jacob et al (1988). In superconducting 

junctions, similar oscillations are expected to take place due to Coulomb blockade 

to tunnelling of Cooper pairs at a frequency fBioch= V ^ e- Yoshihiro (1988) 

reported observation of these Bloch oscillations in superconducting granular tin 

films.

For a finite external resistance and high tunnel conductance, the period of 

oscillations, ts, can be obtained from the relation:

(2.4.8)

, it is easy to show that the fluctuations are not be described by the this

equation; the solution of which is given by:

s(Q,t)=6(Q-e(0)

(2.4.9)

the solution o f which gives the frequency of SET oscillations(=l/ts) as:
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-1

(2.4.10)

Clearly, if 10R3C »  t îen ^ e  frequency of SET oscillations reduces to

f SET « = f SET. These results do not take into account the possible thermally

activated tunnelling events which will reduce the Coulomb-blockade life-time. 

Also the fluctuations introduced by the finite, non-zero, tunnel resistance are 

totally ignored.

Better insight can be achieved by solving the Master Equation for the SET 

case because the thermal noise and the stochastic nature of tunnelling are 

represented in that equation. Unfortunately, the full equation is quite complicated 

and an analytical solution seems very difficult. Numerical solution of the problem 

is sufficient to study the general features of SET oscillations.

The numerical solution given by Averin and Likharev (1986) looks at the 

distribution of the number of excess charges, {Pk(t)J, found on the junction. 

These probabilities are related by the following set of coupled equations:

and the charge distribution function, s(Q,t),is expressed in terms of {Pk(t)} as,

where g(Q,t) is a gaussian density function.

This method assumes a large driving current, IQ» e /2 T s, and an external 

resistance satisfying Rs» R t. However, in the regimes of operation, kBT « e 2 /2C, 

the variance of the charge, kgT^, will be much smaller than e2. This implies that 

the set of excess (integer) electronic charges {ke} will contain very few elements 

with appreciable probabilities, {P^}; and it will be unrealistic to represent the 

charge density by a series of such few terms.

Rk ~ + i-V*—i (i~3

^7T = I (t ) , Q t {t) = Q(t)  + ek 
at

(2.4.11)

(2.4.12)
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It was shown in the previous section that equation (2.3.7) does not account 

for the fluctuations. However, it contains the information necessary to run a 

dynamic Monte-Carlo simulation at T=0 K to trace the time evolution of the 

charge on the junction.

2.43  Numerical Solution:

In the previous sections, an analytical solution was obtained for the junction 

if operated entirely within the Coulomb-blockade region. A general description of 

the SET oscillations was also deduced. In both, the following conditions are 

supposed to be fulfilled:

a. the temperature is low enough that the tails of the density function lying

outside the Coulomb-blockade region could be ignored, i.e. no thermally 

activated tunnelling events are allowed to take place,

b. the SET events could only take place when the total average charge just 

exceeds e/2 ,

c. tunnel conductance is high and the fluctuations due to the finite 

conductance may be ignored.

All the above restrictions can be removed if a general method to solve the 

Master Equation in the Coulomb-blockade and SET regimes is developed. In this 

section a general numerical technique is outlined and implemented. It consists of 

defining a recursive discretised equation for the density function in the charge 

domain which will then be implemented in a computer model to propagate the 

charge packet into the time domain. If the charge domain is divided by equally 

spaced points indexed by the set of integers, {p}, the numerical solution would 

involve the calculation of the Q-density function at these points as time passes, 

provided that the initial distribution is known.

The equation to be solved, the Master Equation, can be rewritten in the 

following simple form:
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ds
—  =Ls (2.4.13)
at

where L is an operator defined as:

1 r) (  r) ^
Q - R sCJ0 + CkBT—

°QRsCdQ + r i^ W + r 2^(” e) ” (r 3 + r4)

(2.4.14)

and £(q) is a shift operator in Q-space defined by:

£(q).s(Q,t)=s(Q+q,t) (2.4.15)

Let s” be the be the value of the charge density at point p at the n-th time

step i.e. (t=n.At). Taylor series expansion can be used to evaluate the charge 

density function at the next time step, as:

Sp+l = exp(Ar. L).snp (2.4.16)

Cayley scheme can be used by first rewriting equation (2.4.16) in the following 

form:

s n + 1 = e x p ^ y L j.e x p ^ y L j.^  (2.4.17)

I  &  Athen, by the application of the operator e x d ——LI to left of both sides:

e x p ( ~ T  L ) '  5^ +1 =  e x p ( f  L )  s "p  (2 '4 ' 18)

If At is chosen to be sufficiently small, then (2.4.18) can be expanded to 

lowest order in At and the following approximate form follows:

( i - f  L}*p+1 * { 1+f L} sP (2A19)

Cranck-Nickolson representation of the differential operators in L allows 

the above relation to be expanded to the following final form:
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Al sn;_ lK + Blsn+_ \ + c lsn+l + D lS; : \  + E l snx lK =
(2.4.20)

A2 S p-K + S 2sp_! + C 2Sp + D 2sp + 1 + E 2snp +K

where K=e/AQ. The coefficients A lv .,Ei,A 2 ,..,E2  are constants that can be 

determined from At and AQ and are independent of n, see Appendix (A). The 

right hand side of the relation (2.4.20) is a function of time and is to be calculated 

at each time step. The set of linear equations defined by equation (2.4.20) above 

can be recursively solved for the charge density function. Once the charge density 

function is known at any time, the average characteristics of the tunnel junction 

can be calculated, e.g. the junction will have a mean charge and average 

fluctuations given by:

<2(0 -  £ p<2(p)j;A<2 (2.4.21 A)

o 2(t) = [fi(p ) -  Q(t)fs"pAQ (2.4.2 IB)

As t -» oo ? s(Q,t) reaches a steady-state shape, which can be obtained from 

the relation:

ds_
dt

= 0 , VQ (2.4.22)
oo

leading to the steady-state I-V characteristics, viz.:

v  = ^ „ Q ( p U PM2 (2.4.23A)

1 = I0 - V  Gs (2.4.23B)

The solution of the discretised set of linear equations (2.4.20) can be 

carried out using the standard relaxation techniques as the coefficient matrix is 

highly sparse. For the full CB problem, the tunnelling terms are identically zero; 

and, subsequently, Ai=A 2 =0, E pE ^O , and the coefficient matrix in (2.4.20) will 

be of the tridiagonal form. Thomas tridiagonal algorithm can then be used to 

calculate the density function.
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2.4.4 Results of Numerical Simulations:

The simulation of the Master Equation using the discretised form (2.4.20) 

in the Coulomb-blockade case, figure (2.4 & 2.5), shows the excellent agreement 

between the numerical and analytical results. In these calculations the time step 

and the increment in Q are chosen to be At=10_4 RsC and AQ=2xlO"3e respectively; 

thereby ensuring stability and convergence of the solution.

To study the SET oscillations, a current source with Io>e/2Ts was switched 

on at t=0 to drive a single junction that is maintained at a temperature T. At T=0 

the noise on the junction is assumed to be represented by a gaussian distribution 

function. The results obtained from these simulations reflect the statistical average 

of an ensemble of tunnel junctions operated simultaneously. In other words, the 

results predict the most probable behaviour of a single junction; and this type of 

results tells nothing about a typical run of a real single tunnel junction.

The curves of figure (2.6) show traces of damped oscillations. The portion 

of the packet lying at Q>e/2 forms another part at the Q'=Q-e due to the 

probability of tunnelling. This newly formed portion propagates towards the 

Q=e/2 end and mixes up with the part that was not reflected. This continuous 

mixing leads to a static charge packet and the loss of coherence of the tunnelling 

events. The steady-state average charge is related to the driving current by 

Q The average frequency of SET oscillations (at T^.OST^ obtained from

these plots is slightly (~5%) higher than the value obtained from simple theory. 

This is attributed to the thermally activated tunnelling events that can take place 

while Q <e / 2 .  Fourier analysing the signals obtained from the model, see figure

(2.7), it is clear that the SET oscillations are more coherent for small 1^ values 

than for larger driving currents, which is consistent with results obtained from 

other models, see next section.

The consequences of incoherence are very serious for the synchronised 

switching of charge in single-electronic circuits. The parallel arrangement of
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identical electron sources driven by a single control voltage would become 

incoherent over a certain period of time, Barker et al (1992).

2.5 Distribution of Time between Tunnel Events:

The coherence of the SET oscillations in a single junction can be studied by 

looking at the distribution of the time between tunnel events. If a Poisson process 

has an average rate of occurrence equal to 7 /sec, the probability that an event will 

take place in a small time interval, At, is given as "y.At and the probability that it 

will not take place in that time interval is therefore = l-̂ y.At.

At T=0K and due to Coulomb blockade, tunnelling is completely 

suppressed if Q<e/2. The probability that a tunnel event would take place in a time 

interval of At after t can then be expressed as:

where T(Q(t)) is the tunnel rate when the junction holds a charge Q(t). To 

simplify the problem, the tunnel rate, at T « T C, may be written in the following 

simple form:

Taking the logarithms of both sides of equation (2.5.1), and making use of 

the relation, ln (l-x)«-x  if x->0, equation (2.5.1) can be rewritten as:

The probability p(t) will be identically zero when the total charge is less 

than e/2 as T(Q<e/2)=0. The charge evolves classically inside the Coulomb- 

blockade region while the stochasticity is added once the charge becomes greater 

than e/2. It is then useful to study the distribution of the time spent above the 

Coulomb barrier before an electron manages to escape through the barrier. If this

(2.5.1)

, otherwise
(2.5.2)

(2.5.3)
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distribution is known, then all the average properties of the junction can be 

deduced.

Let t be the time spent above the barrier before a tunnel event occurs. The 

probability that a tunnel event takes place in time At around t is similarly given 

by:

l(t) = r(^(T)).A T.exp (2.5.4)

where the charge q(x) is obtained from the charging curve and is expressed by:

T

le RsC + I 0RSC (2.5.5)

Substituting (2.5.5) in (2.5.4), the distribution function of the time spent 

above the Coulomb barrier, f(x), is found to be:

/ W - * ' 1  -  exp-
R*C

a  r r r
.exp-f-X z - R sC

)  I K V

W
1  -  exp-

y j
(2.5.6)

where X=(CV-e/2)/RteC. Figure (2.8) shows the function f(x) at fixed bias 

conditions and different Rs/Rt ratios. Low external circuit conductance will result 

in more time spent above the CB barrier before an electron manages to tunnel 

through the barrier.

e/2

Time

-e/2

Figure(2.2): Evolution of the charge with time.
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Tunnelling is most likely to occur after a time t *  above the barrier, where 

this time ,t * ,  is obtained from 0  as:

x* = 2/? C.sinh-l 1

(2.5.7)
J4R SCX

The distribution function of t  has little significance on its own, but it is 

useful in determining the static properties of the junction and in the study of the 

SET oscillations.

Following a tunnel event the charge on the junction drops to q(x)-e, see 

figure (2.2). Let the time it takes the source to recharge the junction to e/2 be t̂ Oc) 

(the dwell time). It is easy to find tj(x) as:

C V + e - q { x )

CV - e.2 .
(2.5.8)

Let the next tunnel event take place during a time interval of At2  around t 2 

above the e/2 level. The time between tunnel events, t, is related to t  and t 2 by: 

t = t i ( x ) + T 2 (2.5.9)

The stochastic nature of tunnel events indicates that the time spent above 

the e/2 level in successive (or any) events is an independent random variable. The 

probability that the system stays for a time t  followed by a time t 2 above the 

barrier (and the time between these events is equal to t) is given by:

K ^ ) | „ 3 = / ( t ) .A t . / ( t 2 ).A t2  (2.5.10)

The marginal distribution function of the time between tunnel events, g(t), 

is evaluated by adding the contributions of all possible successive events 

characterised by t  and t 2 and are satisfying (2.5.9). Thus the distribution of t is:

(2.5.11)

32



The limits of integration in (2.5.11) are dependent on the applied voltage 

and t as well. If V<1.5e/C then any tunnel event will leave the junction at a state 

with - /4 < G < ^ 2  within the Coulomb-blockade region. On the other hand,

if V>1.5e/C then any tunnel event occurring with Q>1.5e will result in a state with 

Q>e/2 and an immediate tunnel event is possible. However, these possible events, 

(with t=0) are still independent and do not violate the previous analysis. To 

generalise the analysis, it is possible to redefine f(x) as f(T,qmill) where qmjn is the 

minimum charge level at which the next tunnel event can occur. For V<1.5e/C, 

Qmin is always equal to e/2. In the other case of V>1.5e/C, can take values in 

the range e/2<qmin<CV-e.

The integration in (2.5.11) can be carried out using numerical methods. 

The function g(t) is plotted in figure (2.9) for different Rs/Rt ratios at a fixed bias 

voltage. Increasing the charging time constant, RSC, results in an increased time 

spent in the CB region and, consequently, the mean time between tunnel events is 

increased. The plots in figure (2.9) give the indication that the SET oscillations 

become more coherent when the conductance of the environment is high. Ueda 

and Yamamoto (1990) and Ueda 1990 used the ratio mean/(s.d.) of the time 

between tunnel events to measure the degree of coherence of the SET oscillations. 

This shows that the coherence is enhanced at low coupling conductance which 

agrees with the results obtained from the frequency domain analysis extracted 

from the time-evolution of the charge discussed in the previous sections.

The uncertainty in the time spent above the e/2 level implies a 

corresponding spread in the charge level at which tunnelling may occur. If h(Q) is 

the density function of the tunnelling charge level, then:

h(Q).dQ=f(T).dT or h(Q)=f(x)/i(Q) (2.5.12)

and i(Q) is given from circuit analysis as i(Q)=(V-Q)/Rs. On substitution, h(Q) 

turns out to be:
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(2.5.13)

This relation is identical to the result obtained by Ueda and Yamamoto (1989) and 

Ueda (1990) and was used as a basis of their calculations 

2 .5 .1 1-V Characteristics:

At low temperatures, T « T C, the I-V curves of the single junction can be 

directly calculated from the density functions derived in the previous sections. 

The dwell time in the Coulomb-blockade region is a continuously decreasing 

function of t , and the average dwell time is calculated from

The average time between tunnel events is given from the simple relation 

/ = t  + tv In the case of a current biased junction the time ^ depends linearly on t  

and the average time between tunnel events is then t = t+ ^ (t) . The average 

current through the junction is evaluated from i - e ! t  and the average voltage

A family of I-V curves are shown in figure (2.10). For high Rs values the 

average voltage across the junction can be less than the threshold value, e/2C. 

Tunnelling in this regime occurs at charge levels slightly higher than e/2 and the 

system spends most of the time in the Coulomb-blockade regime; thus, the 

averaging process results in a small positive voltage value.

2.5.2 Voltage-biased Junction:

Let a fixed voltage bias be maintained across the single junction; a 

condition that can be realised by connecting the junction to a voltage source of 

zero internal impedance by a circuit of infinite conductance, Rs=0, thus,

h " J'lCO/COrfr (2.5.14)

across the junction is v = V - i R s .

/ v (x ) =  X exp(-X T ) (2.5.14A)
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hv(Q)=5(Q-CV) (2.5.14B)

Equation (2.5.14B) stresses the fact that tunnel events take place only at 

Q=CV which is imposed by the fixed voltage bias condition. Equation (2.5.14A) 

is a negative exponential distribution with mean time equal to 1/A,. The voltage 

bias condition implies zero dwell time. This allows the time between tunnel 

events to have a distribution exactly identical to that of the time spent above the 

e/ 2  level, i.e.

and the average time between tunnel events is 1/A,. The variance of the time 

between the events is 1/A,2. The Ueda measure of the coherence of SET 

oscillations (mean/s.d.) is equal to unity, indicating a poor quality. The average 

current passing in this case is:

and the average voltage is v = V .

2 .53  Current-biased Junction:

In the case of a current-biased junction, the external circuit conductance is 

vanishingly low whereas the supply voltage level is high and the current is 

I^ V /R s. Furthermore, let Rs» R t. The relationship between the current and 

voltage representation of the supplies is shown in figure(2.3) below,

gv(t)=fv(t)=A,.exp(-A,t) (2.5.15)

(2.5.16)

(A) (B)

Figure (2.3):Relationship between current and voltage sources.
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The distribution function f(x) then reduces to:

/c (T) = ~ ^ “ T exPI c eRtC 1

^  -T2

2 eRtC j
(2.5.17)

which still satisfies, J f c{i).dx  = 1 . The average time spent above the e/ 2  level 

before tunnelling is:

r  „ ^\Y i
T =

neRtC (2.5.18)
V 1 dc

and the average time between tunnel events is then found to be:

t = ■exp
■dc

\

RSC (2.5.19)

The average voltage across the current-biased junction turns out to be:

v  f *eR,IdcY 2
1 +' (2.5.20)

2  CRsIdc _

The first term in (2.5.20) is identical to the result obtained by Averin and 

Likharev (1987) and Mullen et al (1988). The second term is a correction term 

due to the finite impedance of the external circuit. The correlated SET events 

causes oscillations at a more or less fixed frequency that can be readily obtained 

as:

f = i e exP (- } rsc (2.5.21)

and is clearly less than the value obtained from the ’orthodox' theory. The 

discrepancy is, again, due to the finiteness of the external circuit resistance.

It is also straight-forward to show that:

\2

(2.5.22)hc(Q)= - « p - _ m - e / 2 )
eRfCIdc 2eRtCI(ic
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where u(x) is the unit step function. Equation (2.5.22) is an important relation in 

describing the SET oscillations in a current biased junction. The charge level at 

which tunnelling may occur has a dispersion:

from which it is deduced that the uncertainty is minimised at low driving currents. 

In the limit 1^=0, tunnelling takes place exclusively at Q=e/2 i.e.

The uncertainty in the time between tunnel events is derivable from f c (T ) 

defined in equation (2.5.17) and is found to be:

Equations (2.5.25) and (2.5.23) seem contradictory regarding the coherence 

of SET oscillations. Reducing the uncertainty in the level at which the event is 

expected to take place would increase the uncertainty in the timing of the event 

and, consequently, will increase the time between tunnel events. This is 

summarised in the uncertainty relation,

Furthermore, if a single junction is used in a circuit and a single tunnel 

event is required to cause some effect in the rest of the circuit, it will then be 

important to wait for some minimum time to ensure that the event occurs during 

that time. The stochastic nature of the process makes it impossible to ensure this 

to occur; however, if the event is required to occur with a probability, p, then the 

minimum time for this, in case of a current-biased junction , is:

(2.5.23)

(2.5.24)

(2.5.25)

(2.5.26)

(2.5.27)
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The time to elapse before a given certainty is reached will be less in case of 

larger currents.

2.5.4 Q-factor of SET Oscillations:

The quality of oscillations caused by the correlated SET events may be 

described in terms of the deviation of the frequency of oscillations from the central 

frequency. Let a t be the standard deviation of the time between tunnel events. 

The bandwidth of the SET oscillations is then estimated as:

A / - ( F - a , ) _1- ( f  +  CTf ) _ 1  (2.5.28)

and the Q-factor is evaluated as:

Qf^  df

For a voltage-biased junction, Qf has its minimum value of zero. The Q- 

factor for the current-biased junction is

e - R f C I d c ^ - n )  ...............
Qfc = — i ; N (2.5.29)

The Q-factor of SET oscillations is enhanced if the driving current satisfies 

Icfc«e/R(;C. Figure (2.11) shows the variations of Qf with the applied voltage for 

different values of Rs. For a specific value of Rs the coherence may be increased 

by a proper selection of the applied voltage bias.

Each tunnel event is accompanied by an uncertainty in time equals to a T.

Consecutive tunnel events will increase this uncertainty; after N tunnel events the
2

uncertainty will be Nctt . The uncertainty becomes of the order of the time 

between tunnel event after N 1 events where N ' * t 2 /o* .  For a current-biased 

junction: if  Idc=0.01e/RtC then N '«  100.

Time evolution of the voltage across the junction obtained from the 

simulation of the Master Equation supports the above mentioned loss of coherence 

as time passes. This is indicated in figure (2.6) by the decaying oscillations and
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the tendency to attain a constant average (expected) charge level and also in figure

(2.7) where the spread in the frequency spectrum reflects the decaying oscillations.

Summary:

In this chapter three models were used to study the properties of the single 

normal tunnel junction. Tunnelling phenomenon across the junction was 

investigated using a semiclassical method. The total tunnel rate was derived and 

shown to include a small correction term that is attributed to the distribution of 

wave-vectors of the incident electrons in the longitudinal and transverse directions. 

Numerical solution of the Master Equation was implemented to study the 

evolution of the charge on the junction with time. This was then used to inspect 

the coherence of the SET oscillations in the frequency domain. The coherence of 

the SET oscillations obtained from the current and voltage-biased junctions was 

studied via the distribution of time between tunnel events. This method was also 

used to derive the I-V characteristics of the single junction.
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Figure(2.4): Variation of the average charge on the single junction with time, 
calculated from the numerical solution and from the conventional charging curve.

Io=0.3e/(RsC), kBTC=0.05e2.
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120 160
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Figure(2.5): Standard dev. of the charge variable as a function of time calculated 
using the analytical and numerical solutions of the Master Equation in the Coulomb- 

blockade region. Io=0.3e/(RsC), kBTC=0.05e2.
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Figure(2.6): Evolution of the charge on a single tunnel junction with time: T=0.05TC,
Rj/Rt=30, i0=I0/(e/RtC)=l, 2 & 3.
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Figure (2.7): Frequency spectrum of the SET Oscillations. The parameters are: 
T=0.05 Tc, Rs/Rt=30, i0=I0/(e/RsC)=l,2 and 3.
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Figure (2.8): Distribution of the time spent above the e/2 charge level in a single 
junction-system before the tunnel event takes place, V=e/C, x=Rs/Rt=0.1,l,10,100.

0.5

0.4 x=0.1

0.3

0.2

0.1

100

120

Time/I^C

Figure (2.9): Distribution of the time between successive tunnel events across a single 
tunnel junction; parameters: V=e/C, x=0.1,l,10 & 100.
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Figure(2.10): I-V characteristics of the single junction calculated from the 

distribution of time between tunnel events.

Plots correspond to R j/R ^ lJO  and 100.
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Figure (2.11): Quality factor of the oscillations resulting form the tunnelling of single

electrons, curves correspond to: Rj/R.^1,5,10,20
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Chapter (3)

The Double-Junction System

3.1 Introduction:

The theory of Coulomb blockade and single-electron tunnelling has been

presented in the previous chapters. It was shown that the flow of discrete carriers

through the single junction can be controlled only by the driving source. This is a

disadvantage, as in electric circuits the bias source is normally fixed and the

variation of the bias level may cause unwanted transients in the circuit.

A first step towards the use of tunnel junctions in single-electronic circuits

is the gated double-junction structure, termed the turnstile, the simplest circuit of

which is shown in figure (3.1). Two tunnel junctions are connected in series and

gating is accomplished by coupling the central electrode to the control gate

voltage, Va.©

Figure (3.1):The Double-junction System (The Turnstile).

3.2 Experimental Structures:

In the following sections some experimental structures used by different 

groups to achieve the tumstiling action are briefly described. These structures 

were operated as single-electron transistors. Several experiments had been 

conducted to demonstrate the possibility to control the flow of single electrons
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through the turnstile of a modified version of the structure of figure (3.1), see e.g. 

Geerligs and Mooij (1990).

a. Fulton’s Structure: (Fulton and Dolan (1987))

This is basically a two-junction configuration, figure (3.2). It consists of 

three adjacent electrodes (a,b and c) sharing the same central electrode (m). Two 

electrodes are used to pass the current and the third to monitor the potential at the 

central point. The Al-Al junctions are typically (0.03pm)2 and the central 

electrode is 0.05*0.8(pm)2. These junctions have a tunnel resistance of the order 

of 40 kQ. The substrate is an oxidised silicon wafer with oxide thickness of 0.44 

pm. Gating is accomplished by an Au-Cr film on the other side of the substrate 

(point s in figure (3.2.B)). It is to be emphasised that all electrodes are metallic 

and such structures are important to study the basic theory of Coulomb blockade 

and single-electron tunnelling.

(B)(A)

m ma*

Figure(3.2) A: Fulton’s Structure, B: Equivalent circuit.

b. Scott-Thomas’s Structure: (Scott-Thomas et al (1989))

First direct observation of the conductance oscillations of a confined 1- 

DEG channel with the charge density were reported on these structures. The 

lower metallic gate, see figure (3.3), confines an inversion layer (25nm wide and 

l-10pm long) to the region beneath the gap. The upper gate overlaps the source
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and drain n+ pads; and contact to the narrow channel is made by wide 2-DEG 

regions. The upper gate provides the lateral control field to the 1-DEG.

This structure contains no clearly defined potential barriers to induce 

tunnel effects. Trapped charges at the Si-Si02 interface create potential barriers 

along the length of the channel; thus forming a double-junction configuration or a 

multi-junction structure. For the dimensions of this structure and typical density 

of trapped states, 1010/cm2, two potential barriers are most likely to be created and 

the structure will, therefore, be a double-junction structure.

i  r ~
Upper gatew Oxide

|] ||lll|Lpvver gate
Oxide

p-Silicon

Inversion 
• l a j e r

7̂0nm

flower I gate

Figure(3.3):Scott-Thomas Structure.

c. M e i r a v ’s  S t r u c t u r e : (Meirav et al (1990))

Metal electrodes with two constrictions are deposited on a GaAs-AlGaAs 

heterostructure, figure(3.4). The gap between the two electrodes defines the 

channel and the two constrictions in the gap define the isolated segment of the 

channel which corresponds to the central electrode of the turnstile.
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Metal

GaAs
AlGaAs

F i g u r e ( 3 . 4 ) :  Meirav's structure.

d .  P a s q u e i r ' s  S t r u c t u r e : (Pasqueir et al (1993))

This structure is similar to Meirav's structure. The confinement formed 

here figure (3.5), is a 2-DEG rather than the 1-DEG in Meirav's structure. The 

heights of the tunnel barriers, and hence the tunnel conductance of either junction, 

can be controlled by varying or V2  while V0 controls the size of the 2-DEG 

and the middle electrodes serve as a gate electrode, see figure (3.5.B).

(B )(A)

V,

F i g u r e  (3.5): A: Pasqueir's structure, B: Equivalent circuit.

3 .3  S e m i c l a s s i c a l  M o d e l :

The basic idea of single-electronic circuits is the Coulomb blockade of 

tunnelling and the correlated single-electron tunnelling. Correlation of tunnel 

events manifests itself in two ways:

(a) Time correlation: where a tunnel event will block other events until 

some charge is redelivered to that junction. In other words, if the exact

49



timing of the event is known, it is possible to know -roughly- the time the 

next event, this has been discussed in the previous chapter.

(b) Space correlation: in this case a tunnel event across a junction will 

induce charges on other junctions; thus affecting the tunnelling 

probabilities in the all junctions of the system.

It is important to know exactly the type of effects induced by a single 

tunnel act across any junction of the system. This is crucial to the understanding 

of the operation of single-electronic systems.

Geerligs (1991) and Kastner (1992) explained the Coulomb blockade in a 

structure consisting of a metal particle imbedded in the insulating gap between two 

metallic electrodes in terms of an energy gap in the tunnelling density of states of 

the particle. This succeeds in describing the onset of tunnelling into the metallic 

island but does not account for the subsequent behaviour.

Functioning of the double-junction system may be studied by investigating 

the potential profile of the device and the effects caused by single tunnelling acts. 

Tunnelling of electrons into and out from the central island changes the relative 

positions of the Fermi levels of the electrodes. This is due to the change in the 

electrostatic energy of the circuit due to the addition/removal of the charge 

to/from the electron gas. Let the turnstile of figure (3.1) be biased such that Vr- 

V pV . It is assumed that the circuit has no resistive components in any of its 

paths. The potential profile is shown in figure (3.6 .A) for an arbitrary gate 

voltage. Vi and V2  are the potential drops across the two junctions. If n excess 

electrons are assumed to occupy the central electrode, then:

V.OO = ^ -{ C K -(C + C0)V,+ C0vs -  nej (3.3.1 A)

V2(n) = -5 -{ (C + C > r - C V , - C 0Vg +ne}
X ^ y rp

(3.3.IB)
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(A)

eV

1 -

F i g u r e  ( 3 .6 ) :  Potential Profile of a Double-junction System.

Now, consider the tunnel events that may take place across the junctions 

of the double-barrier structure:

T(L,M,n): ( tunnelling of an electron from L to M when there are exactly n excess 

electrons at M before the event) the additional electron on the central electrode 

will be accommodated on a total capacitance of Cy=2C+C0; and the Fermi level at 

M will increase by e2/2CT, figure (3.6.B). The electron performing this event 

should find an empty energy state at M; this can happen at T=0K when:

and the event will, therefore, be completely blocked if ALM(n)<0.
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T(M,R,n): this event will lower the electron energy levels of the central electrode 

by e2 /2Cj. The energy levels of the left electrode will be lifted by the same 

amount while the energy difference between the Fermi levels in the left and right 

electrodes is still eV, figure (3.6.C). The event T(M,R,n) will be possible if:

The conditions leading to the occurrence or suppression of the events 

T(M,L,n) and T(R,M,n) can also be obtained.

The tunnel rate is obtained from the quantum golden rule and is found to 

be similar to equation (2.2.9) with A defined as:

The general case of a tunnel junction in a capacitive circuit was studied by 

Esteve (reported by Geerligs (1990)). The same arguments given above show that 

a minimum charge -termed the critical charge- should build on the tunnel junction 

before the event can take place.

Considering the initial and final energy levels participating in a single 

tunnel act across a junction in a system of tunnel and non-tunnel junctions, it can 

be shown that the critical charge is given as: (Geerligs (1990))

where Ce is the total shunt capacitance seen by the tunnel junction. This assumes 

that the charge relaxation time, Tr, is much smaller than the tunnelling time. The 

changes that will take place in the circuit immediately after the tunnel event will 

therefore affect the event. This is the non-local limit considered by Amman et al

(1989). Resistive components in the circuit increase the relaxation time, at least 

for some junctions, and a tunnelling electron will sense changes taking place in a 

segment of the circuit around the junction. In the local limit, the tunnelling 

electron senses variations in the potential of the junction across which the event is 

taking place. The critical charge is then:

>0 (3.3.2B)

(3.3.3)

(3.3.4)
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qc(local)-e!2 > qc(non-local)

For fixed bias voltages, Vr and V̂ , the number of excess electrons in the 

central electrode can be controlled by varying the gate voltage. From equations 

(3.3.2) it follows that the charge on the central electrode changes by ±e as a result 

of a change in the gate voltage of:

| AVg | = e/C0  (3.3.5)

a value that is independent of the parameters of the tunnel junctions. The periodic 

increase of the excess charge on the central electrode with the gate voltage results 

in periodic oscillations of the line conductance of the turnstile. In other words, the 

small signal transfer conductance,31/3Vg, is a periodic function of the gate voltage. 

These oscillations were first observed by Scott-Thomas et al (1989) in the 

conductance of a one dimensional electron gas using Si structures. Meirav et al

(1990) also observed these oscillations in a GaAs transistor with narrow 

constricted channel. The oscillations were identified to correspond to the addition 

of an exact electronic charge to the central electron gas. Similar oscillations were 

observed by Meurer et al (1992) on arrays of confined quantum dots in AlGaAs- 

GaAs heterostructure. Fulton’s structures, Fulton and Dolan (1987), revealed well- 

defined and persistent conductance oscillations that are in accord with the basic 

theory. The experiments carried out by Pasqueir et al (1993) on the structures of 

figure (3.5) also showed clear G-Vg oscillations indicating a stable 2-DEG island 

size in the given range of operation. The regular variation of the value of the 

conductance peaks is due to the modulation of the barriers by the adjacent gate 

potential, Pasqueir et al (1993)

.3.4 Finite-State Machine Model:

The voltage levels applied to the turnstile play a crucial role in guiding the 

overall behaviour of the device; ranging from complete Coulomb blockade to 

continuous random SET events. The Linear Programming (LP) method, Roy et al 

(1993), is a powerful tool in defining the voltage levels required to cause the pre­

53



defined transitions in simple single-electronic circuits. However, once the circuit 

gets complicated, the legal states of the system become more inter-related through 

the transition probabilities and extra care is needed when using the Linear- 

Programming technique.

If all transitions in the system are caused by externally controlled inputs, it 

will be desirable to model the effects of these inputs on the state of the system. It 

is to be mentioned that the same input may cause different effects on the system 

depending on the current state of the system. Studying such systems, one must 

consider all possible inputs and all possible legal states.

The Finite-State Machine (FSM) provides a frame-work in which such 

State-Input-Transition relationship can be studied with a good level of controlling 

the complexity of the system under consideration. The FSM has been widely used 

in designing digital circuits and communication systems, Mead and Conway 

(1980).

The FSM assumes that any input sensed by the system will invoke an 

action. This action may be taken by the system itself or by another system. 

Following this action the system changes its state, or the state is changed, 

accordingly. The transition from a state to another may be a physical transition or 

conceptual transition, e.g. to keep record of the history of events. Thus, the system 

must have a finite and well-defined set of states. The digital single-electronic 

systems, including the turnstile, may be modelled within the FSM. The FSM 

together with the LP methods form a powerful combination in designing single- 

electronic circuits.

The simple turnstile is suggested to provide a means of controlled flow of 

single electrons in a circuit, e.g. Geerligs and Mooij (1990) and Likharev (1988). 

A controlled gate voltage is first tuned to Vglj this allows only one electron to 

tunnel from the left, L, to the central island, M. The excess electron will stay at M 

as long as the voltage is held at Vgj. When the gate voltage is later switched to 

Vg2 , the electron will pop out through the other junction and no other event is to
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take place afterwards, until the voltage is switched back to Vgi. In this mode of 

operation Vr and Vj are kept constant. These performance specifications can be 

transformed into the FSM model as shown in figure (3.7).

In this model, the state of the turnstile is defined by the number of excess 

electrons at the central electrode. The inputs -the voltages- cause transitions from 

one state to another, or may not cause a transition, depending on the state of the 

device and the input level.

To simplify the LP manipulations, the following transformation can be

used:

where u and v are functions of the voltage levels and are defined according to 

equation (3.3.1). The full set of relations obtained from the LP method based on 

the FSM model are given in Appendix (B).

Clocking-Phase I: In figure (3.8 .A), one can identify two possible bias regions in 

which the number of unwanted, but possible, events is minimum. In these regions, 

beside the desired tunnel event, T(L,M,0), there is a possibility of occurrence of 

another unwanted event. In the area labelled A l in figure (3.8.A), the event 

T(R,M,0) may occur before T(L,M,0), while in A2 the excess electron may tunnel 

through the RHS junction giving rise to the event T(M,R,1).

Clocking-Phase II: In phase n , B1 and B2 areas in the u-v space are similar to 

A l and A2 in phase I. In B l, the event T(M,L,1) is possible, i.e. the electron may 

pop in the wrong direction. In B2, the event, T(L,M,0) may take place after the 

required event, T(M,R,1), has taken place. Thus, a continuous sequence of the 

events T(L,M,0)-T(M,R,1) will be observed if the turnstile is biased at any point in

(3.4.1)

B2.
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Figure(3.7): Finite State Machine for the turnstile action.

Figure (3.8) A: Clocking-In Phase, B: Clocking-out Phase.

The above analysis reveals the types of problems facing the single- 

electronic circuit designer. Choosing the border line between A l and A2 (or B1 

and B2) does not guarantee zero tunnelling rates for the two possible unwanted 

events; because these events will then be easily thermally activated. On the other 

hand, biasing the device away from these areas would lead to an enhanced 

controllability over the events.
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The addition of resistive and/or reactive components to the turnstile circuit 

dampens down the junctions' charging/discharging process, hopefully, in favour of 

the required tunnel event. For clocking-phase I, the device may be biased at A l 

and the damping elements chosen to force the charging process in favour of the 

event T(L,M,0); while in the clocking-phase II the circuit is biased at B1 and the 

process is forced to favour the event T(M,R,1).

A multi-level phased gate input, together with the damping elements, is an 

effective means of controlling the tunnel events. In the clocking-phase I, the 

turnstile may be biased first at a point in A2 and the damping elements are chosen 

to lead the charging process fast in favour of the event T(L,M,0). The condition 

for the unwanted event, T(M,R,1), is initially unsatisfied as the system is still 

found at the state S=0. Following the tunnel event, T(L,M,0), the condition for 

T(M,R,1) should not be satisfied until the bias point is switched to A l, which is 

the steady state point. In this area, the event T(R,M,0) is no longer a problem 

because the system has already changed its state.

3.5 Static Monte-Carlo Method:

Monte-Carlo methods have been widely used in studying the double­

junction structure. Other single-electronic systems studied using the Monte-Carlo 

methods include the triple-junction system (the electric pump) and the long 

homogeneous arrays of tunnel junctions, e.g. Mullen et al (1988 A&B) and 

Amman et al (1989). The static MC method implemented by Mullen and Amman 

assumes that the circuit will relax to its steady state following a tunnel event in a 

time negligibly shorter than the time till the next tunnel event. This assumes, in 

principle, zero resistance and inductance in the circuit.

Tunnelling process is assumed to be a Poisson point process; and only 

one tunnel event is, therefore, allowed to take place at a time, e.g. Levine (1976). 

This allows the state of the system, S(t), after an infinitesimal time interval At to 

be written as, see e.g. Mullen et al (1988) and Amman (1989):
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rt+i fp+ =[r(/?,M ,/i)+r(L,M ,n)].Ar 

S{t + At) = * n - 1 , p_ = [r(M ,R,n) + T(M, L, /i)]. At 

n ,Po = l-(p +  + P.)

(3.5.1)

Relation (3.5.1) represents three mutually exclusive events; viz. the charge 

at the central island may change by +e, change by -e or stay unchanged. Clearly, 

the probabilities satisfy: p++p_+p0 = l. The Monte-Carlo model will determine 

which of the three events is to take place during the time interval At and then 

modify the state of the turnstile accordingly ( note: system stays unchanged is 

assumed to be an event).

Let the turnstile circuit have infinitely large conductances in all its paths 

and zero inductance. The tunnel rates will be constant during the system's visit to 

any state and the probability of occurrence of any tunnel event during an 

infinitesimally small time interval, At, is equal to (ratexAt). It is this assumption 

and the assumption that the traversal time for tunnelling is negligibly small which 

allow the use of a negative exponential distribution to represent the time between 

tunnel events (and hence the Poisson nature of tunnel events). The latter 

assumption may be put differently as: the whole system is assumed to be frozen 

while a tunnel event is taking place until this event is completed.

For a Poisson point process that occurs at a fixed mean rate of X, the 

probability that the event takes place in a time interval t is given by: 

r=l-exp(-A,t).

Let the four tunnel rates appearing in equation (3.5.1) be denoted by 

4. In a Monte-Carlo simulation the event that is most likely to occur is selected 

and the state of the system is changed accordingly. Let the random numbers 

chosen from negative exponential distributions with means 1/A.j, i= l,..,4 , be {q; 

i= l,..,4 }. The system then changes its state after a time t where:

T=min { q ; i= l,..,4} (3.5.2)
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The Poisson processes have the property of being completely memoryless,

e.g. Beaumont (1983). This implies that the expected behaviour in the future will 

not be affected by the history of events. It is therefore justified to reset the whole 

system following any event and start a fresh observation.

The process described above should be iterated for a time long enough to 

allow the average properties of the device to be determined -with high degree of 

confidence- from the collected data. The simulation method described above uses 

the fact that each tunnelling process is independent of all other processes. The 

main function of the simulator is, therefore, to monitor the competition between 

the different processes and to select the event that is scheduled to occur first.

An equivalent approach is to combine all processes in a single process 

having an equivalent rate of occurrence, Hockney (1988). Let the double-junction 

system be in the state S=n at t=0; the probability that the system will remain in that 

state for a time t is:

p {S (t)=n} =exp (- A.! t) x exp (- Â t) x exp (-X3 1) x exp (- A4 t)

=exp(- [X i+A,2 +A,3 +A,4 ]t)

=exp(-XT(n)t) (3.5.3)

This simply tells the fact that the system, when in any state, will decay at a rate 

that is equivalent to the sum of the individual tunnel rates and the whole decay 

process will be another Poisson point process. Within this equivalent system, the 

i-th process has a probability of occurrence that is proportional to its tunnel rate.

The I-V curves of a double-junction structure calculated from the static 

Monte-Carlo methods described above are shown in figure (3.11) which reveal a 

sharp discontinuity at the critical voltage. The increased capacitance to ground, 

C0, reduces the critical voltage. The capacitance to ground plays an important role 

in the tumstiling action as the single electrons will be partially accommodated on 

this junction. Figure (3.12) displays the conductance oscillations as a function of 

the gate voltage at fixed terminal voltage. Each period corresponds to the addition 

of an electron to the central electrode; a fact that is revealed in figure (3.13).
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Static Monte-Carlo simulations have shown that the turnstile specifications, 

listed in section (3.4), can be met if the critical charges are increased above their 

non-local limit. This will create a zone in the u-v space (Vr-Vi-Vg spaces) in 

which the only condition satisfied is that of the required event. In figure (3.10) 

two areas in the u-v space are shown: in the area labelled X there is a possibility of 

occurrence of the event T(L,M,0) and all other events are blocked provided that 

the system was initially at the state S=0. In the area labelled Y in figure (3.10), 

the event T(M,R,1) is allowed at the state S=1 and all other events are blocked. 

The strict local limit (critical charge=e/2 for both junctions) is applicable.

3.6 Dynamic Monte-Carlo Simulation:

It was shown in the previous section that some performance uncertainties 

will arise when the undamped turnstile is operated as a memory element. This is 

attributed to the fast relaxation process following any event. Resistive and 

inductive components can be used to regulate the charge/discharge process in such 

a way that the probability of occurrence of certain event at a particular state-input 

combination is enhanced, while other events become less likely to occur. This 

will, in effect, enhance the reliability of such devices. It is therefore important to 

study the behaviour of the device in real time and try to select the combination of 

damping components that ensure the required behaviour. Figure (3.9) shows a 

simple turnstile circuit in which damping is provided by two equal external 

resistors. This circuit models the structure used by Pasqueir et al (1993) and is 

shown in figure (3.5). To simplify the analysis further, the circuit is supposed to 

be symmetrically biased, such that Vr=-Vj =V.

At any time, the total charge accumulated on any junction is equal to the 

sum of the charges due to the voltage sources (q*) and the charge (5 j) due to any 

excess charge at the central electrode. The two charging processes -as seen by 

each junction- are independent. Thus the superposition theorem can be used to 

determine the total charges on the different junctions.
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Figure (3.9): Damped Double-junction System.

Let a tunnel event take place. The tunnelling electron first causes changes 

in the state of the junction through which it is tunnelling; whereas, other junctions 

will sense this event later. In other words, the local limit is to be used.

The differential equations modelling the charging process due to the 

sources only have the solution:

where A{s, B^s are constants and % 's are the steady-state charges. If the initial 

charges on the junctions are {qio,i=0,l ,2}, the initial currents can be obtained 

from:

The currents also satisfy the boundary conditions, 1^=0, k=0,l,2. This 

allows the constants Aj's and B^s to be determined.

For the other process (the redistribution of the excess charge at M following 

a tunnel event), the charges are obtained by solving the following set of 

differential equations:

(3.6.1)

g C  C 0

2 V  = (<7l0 + ^ 2 o ) / C’ +  ^ ( A o  +  I 2o )

V + V  = ^ + ^  s r  r  1 (3.6.2)
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and these charges are subject to the following steady-state conditions: 5is= 52s= 

eC/CT and 5^= eCJCj ,  for each additional electron.

The evolution of the charges, 5j's, is found to be similar to that of cq 's ; the 

only difference being in the boundary conditions. The two processes can, 

therefore, be described by one curve, similar to equation (3.6.1), provided that the 

boundary conditions are properly defined.

Let n excess electrons exist at M. The charging curves are given by Qi(t,n), 

where t is the time since the last tunnel event, or measurement. Let the event 

T(L,M,n) take place at time t. This event will modify the initial conditions to: 

Ql0—>Qi(t,n)+e, Cho->Q2(fn) anc* Qoo“^Qo(fn)* The steady-state conditions 

become, Qos-+qos+(n+ l)5os, Q is->qis-(n+1)6 is and q2s+(n+1)62s-

V

2 : —  +  —
2C CT

o --------------
i

u

eC
4: o

ICC,T

Figure (3.10):Operational areas for the damped circuit. See Appendix (C).



Following a change of the bias conditions (from a point in X to a point in Y

of figure (3 .1 0 ) or vice versa), the time spent before a tunnel event becomes 

probable -the dwell time- is a deterministic variable and can be obtained by 

solving for the dwell time, t, in equation (3.6.1). Following this time, the charge 

level on that junction becomes a stochastic variable due to the uncertainties 

introduced by the tunnelling probability. The distribution of time spent above the 

critical charge before an event occurs can be obtained following the same steps 

used for the single junction case. It follows that the distribution of the time that 

elapses before the event takes place is:

The function f(t) together with a sample obtained from a dynamic Monte- 

Carlo simulation for a double-junction system are shown in figures (3.14 & 3.15).

assumed to exist. The steady state ensures the presence of an excess single 

electron at M and the state is therefore S(0)=1. At t=0, the bias conditions are 

changed to a point in Y. Figure (3.14) shows the evolution of the charges on the 

junctions with time. The event taking place is T(M,R,1). Following the event, the 

charges will be described by the same set of equations, but with different boundary 

conditions. It is important to notice that the steady-state total charges on each 

tunnel junction will be less than the critical charges for the junctions, i.e. no other 

tunnel event will take place and the system will relax at the new steady state at Y 

which is S=0.

Let the system be found at the state S(0)=0 and the system be initially 

biased at Y. If the conditions are changed to a point in X, the charges will evolve 

according to equation (3.6.1). Figure (3.16) shows a typical behaviour of the 

charges. The event taking place is T(L,M,0). No other event is expected to take

(3.6.4)
0

In this case the junction was initially biased at a point in X and a steady state is
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place, as the charging curves following the event will be confined to the region 

below the critical charges of each junction.

These curves indicate that the tumstiling action can be achieved by adding 

the resistive components to the bare turnstile circuit. The disadvantage of the 

resistive components in the circuit will be the a reduction in the operational 

frequency.

Figures (3.15 and 3.17) show the distribution of the time that elapses before 

the event T(M,R,1) or T(L,M,0) occurs. Such functions are important in designing 

and assessing the performance and reliability of SEE circuits. For the turnstile 

action, a square wave may be applied at the gate (alternates between X and Y). It 

is important to set a minimum period for these pulses to ensure a certain error rate 

(r per pulse). The error rate is related to the distribution function by,

u
i - n  = J//(x).dT 

0

(3.6.5)

where T0  is the duration of the pulse. If R » R t and C0  is of the same order as C, 

then:

f i ( t) « z.r.exp z 2 — r (3.6.6)

where z =
RR,C2e

A + BCt

'O
, A and B are the constants of equation (3.6.1).

Then equation (3.6.6) reduces to the form:

7j = exp'  z
— co O \  *

y t0« R C (3.6.7)

where to is the time spent above the Coulomb barrier.

3.7 Master Equation:

The models described so far in this chapter are applicable at zero 

temperature. These models do not take into account the thermal fluctuations of the
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charge. The charge fluctuations of possible thermally activated events can be 

taken into account by previous models if the distributions of charges at different 

junctions are known. Likharev (1987) suggested a general equation to represent 

the state o f any single-electronic system. The model relates the state of the system 

to the other states through the transition rates and the density of other states.

The Master-Equation model used to describe the single junction in the 

previous chapter can be extended to cover the double-junction and multi-junction 

systems.

Let the turnstile be coupled to the sources by external resistances satisfying 

the relations:

R i ,R2»  Rq

and let the tunnel resistances be high, Rt» R q . Under these conditions the 

charges on each junction will evolve slowly with time and can be regarded as well- 

defined variables. Let Sj(Q,t) be the distribution of the charge at any time on the i- 

th junction. Each junction can be regarded as a single isolated junction and can 

then be described by the Master Equation:

—  .i=0,l,2 (3.7.1)
dt RC VRC JdQ ' dt

At any time t, the total average charges on the junctions are given by:

Q(t) = J<2sl.dQ (3.7.2)

Simple circuit analysis gives:

/  (t) = f v  + V
8 C. c  J

h(t) = j { 2 V - { Q i + Q t ) l c ) - I l (3.7.3)

i M  = h - h

These currents imply that the three equations (3.7.1) are coupled differential 

equations. The tunnelling terms, FTi, are similar to the single junction terms.
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3.7.1 Charge Fluctuations:

The quantity in equation (3.7.1) is the steady-state variance of the charge 

at (junction i) around its mean value. The quantum Langevin approach can be 

used to determine these fluctuations. Let the inductance of each arm of the 

double-junction system shown in figure (3.9) be equal to L. Let i0,ii and 12 be the 

instantaneous currents due to the noise generated in the resistive elements. Then:

-v nI(t) = Lq + Rq1 + 5j-+ ^ - (3.7.4)

vn2 (t) = Lq2 + Rq2 + ^ — (3. 7. 5)

where vnl(t) and v ^ t)  are the instantaneous noise voltages. The two noise 

sources are independent and may be treated separately. Fourier transforming the 

above equations and ignoring the inductive elements, the total charge fluctuations 

are found to be equal to:

oo
< q\2 >= f----

’ 1(1 +
C4Sv((o).dco

J (1 + C2R W )(C 2t + C2C2R2a>2)

C2{(C + C0)2 + C2C20RW}S( cd). da)
(3.7.6)

I (1 + 'J0 (1 + C2RW )(C2 + CC2R W )

where Sv(co) is the noise power spectral density of a single source, given by:

Sv(co)= ^(oRxcoth(^co/2 kBT)/7i

If the external resistances are high and satisfy the relation: 

h/RC « k BT

then the integral in (3.7.6) can be evaluated by contour integration in the complex 

domains. It is approximately given by,

<q?,2 >=
n

( 2  + P)cot n
v2kBTRC

+ (2+3(3) cotr h( 1+2P)  ̂
v2kBTRC

(3.7.7)
8 R(l + p)

where p=C/C0. In the classical high temperature limit, the charge fluctuations will 

reduce to:
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< qf2 >= k „ T C -^ -  (3.7.8)
*'2 8 1 + 20

Clearly, the fluctuations of the charge variable in the tunnel junctions of the 

double-junction system are less than the fluctuations in the single junction case 

(kBTC). In the limit (3— corresponding to two series-connected tunnel junctions 

and no capacitance to ground, Co=0, equation (3.7.8) gives D=kBTC/2.

Summary:

The transistor action has been demonstrated using the double-junction 

system. Problems will arise if the double-junction structure is to be used as a 

memory element. Resistive elements in the circuit will help solve some of these 

problems, at the cost of additional delay and lowered operational frequency.

The Finite-State Machine model has been presented and suggested to model 

the State-Input-Transition relationships in digital single-electronic systems.
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Figure (3.11):I-V characteristics of a double-junction system obtained from static 

Monte Carlo simulations. No. of electrons allowed to exit = 500, curves upwards

correspond to C/Co=5,l,0.5.
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Figure(3.12):Oscillation of the line conductance of a double-junction system with 
gate voltage, parameters are: C/CG=1, V=0.1 e/C
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Figure(3.13):Average number of excess electrons at the central electrode of a 
double-junction system: C=C0, V=0.1e/C.
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Figure(3.14): Evolution of charges with time. The event taking place is 
T(M,R,l),when bias voltages change from a point in X to a point in Y. Parameters

are: (C/CG=1, Rj/Rt=100)
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Figure(3.15):Distribution of the time that elapses before the event T(M,R,1)
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Figure (3.16): Evolution of charges with time when the bias point is changed from a 
point in Y to a point in X. The event taking place is T(L,M,0). Parameters are

(C/C0=l, Rs/Rt=100).
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Figure(3.17):Distribution of the time elapsing before the event T(L,M,0).
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Chapter (4)

Single-E lectronic System s

4.1 Introduction:

This chapter is intended to be an extended introduction to the next chapter 

where an exact solution of some of the problems addressed will be presented. In 

the following sections, some multi-junction systems are described and the 

conventional techniques used to model these systems are briefly outlined. Some 

modelling techniques have already been described and applied to the double­

junction structure.

4.2 The Single-Electron Pump:

It was shown in the previous chapter that the double-junction system may 

be operated as a switching device and can also be used as a memory element in 

digital systems. The problems arising when clocking electrons in and out of the 

central electrode may be eliminated by adding a third tunnel junction to the 

double-junction structure. The electric pump is basically a shift register where the 

clocking of electrons through the device is achieved by two coupled gate voltages 

operated in a controlled sequence.

Figure (4.1): The Single-Electron Pump

Starting with the device at the state (0,0), where the integers correspond to 

the number of excess electrons at M]_ and M2  respectively, the voltage levels at 

Vgj and Vg2  are first selected such that the condition for the event T(L,Ml5(0,0)) is
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satisfied while all other events are blocked. In phase II of the 'pumping' action the 

system will force the event T(M1,M2,(1,0)) and in the final stage the electron will 

pop out at R as a result of the event T(M2,R,(0,1)). Repetition of this sequence 

gives rise to a stream of electrons at node R at a rate that is determined from the 

controlled sequence. The Vgl-Vg2 -V areas of the proper pumping action and the 

error rates were studied by Barker et al (1993) using the standard Linear 

Programming methods and the Monte-Carlo techniques. This three-phase device 

was shown to have a high frequency advantage compared to the two-phase device 

(turnstile), but it has smaller area of legal operation.

Geerligs (1990) achieved the shift-register action by applying a rf signal 

(4-20MHz) to the central island of a four-junction array. A current of I=ef was 

observed indicating that exactly one electron per rf cycle passes through the 

structure. Kouwenhoven et al (1991) fabricated a structure in which a single 

quantum dot is coupled to a 2-DEG by two tunnel barriers. The structure is 

effectively a double-junction system. The tumstiling action was achieved by 

modulating the heights of the barriers using two phase-shifted rf signals (5- 

20MHz). It was demonstrated that an integer number of electrons pass through the 

dot in each rf cycle, depending on the applied voltage level.

A four-junction shift register has been proposed by Barker et al (1992). 

This device is a three-phase register in which the electron will be localised at the 

inner three electrodes before it is finally received at the other side of the device.

4 3  Arrays of Tunnel Junctions:

A linear array of series connected tunnel junctions has features which are 

similar to a double-junction system in that the flow of charges through the array 

can be controlled by a single gate point. These arrays are of special interest 

because the circuit equations can be exactly solved in the limit of long 

homogeneous arrays.
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The Coulomb blockade of tunnelling was first observed in thin granular 

metal films which are characterised by a random distribution of tunnel junctions. 

Sheng et al (1973) used a linear array of tunnel junctions to model such granular 

structures. It was argued that the optimum conduction path through the film may 

be deduced from the grain dimensions and the ambient temperature. It was shown 

that the film resistance increases exponentially with T'0-5.

In the last few years it has become possible to fabricate tunnel junctions 

with well-defined dimensions. Overlap tunnel junctions having sizes down to 

0.06(p.m)2 and 20-25 A thick were fabricated by Delsing (1990) by evaporating 

aluminium at two different angles through a lift-off stencil defined by electron- 

beam lithography and a double-layer resist. The junctions have capacitances of 

the order of 1 O'16-10'15 F. This technique is limited to relatively large junction 

capacitance and consequently low operating temperatures ( Tc<10 K).

Recently, Schottky islands and dot arrays have been fabricated at Glasgow 

(Barker et al (1992)). These new structures have ultra-small capacitances (<10‘ 

17F) with critical temperatures in excess of 60 K and scalable to much larger than 

the room temperature.

(A) (B)

p-Silicon

Schottky-dot Transistor

Figure (4.2): Schottky-dot structures
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Figure (4.2 .A) shows a schematic representation of a 40nm diameter line of 

Al dots grown on a p-Si substrate and having an inter-dot separation of 12-15nm. 

Multiple arrays of Schottky dots of similar dimensions have also been fabricated. 

This technology is expected to provide a means of building a vast range of single- 

electronic devices and systems. Figure (4.2.B) shows a possible arrangement to 

achieve the transistor action. Other applications including the turnstile, inverter 

and other simple logic gates have been suggested as well, Barker (1993).

4.4 Modelling the Multi-Junction Systems:

The devices investigated so far (single junction, turnstile and the pump) are 

relatively simple, yet they are sensitive to variations of the parameters of the 

junctions and operating conditions, e.g. ambient temperature, bias levels and 

charges trapped in the vicinity of the junctions. Increasing the complexity of the 

systems at hand, e.g. by adding more junctions or modifying the connectivity of 

these devices, results in new devices or systems with different characteristics. 

These features of the general class of the single-electronic systems impose the 

need of a unified frame-work within which all such systems can be studied.

The development of single-electronic systems requires the proper design of 

the junctions in order to achieve the desired capacitance values. The direct 

measurement of the ultra-small capacitances involved in these systems is very 

difficult. Asenov (1993) used a parallelised 3-D Poisson solver to estimate the 

parameters of the Schottky structures shown in figure (4.2), see also Roy et al 

(1993).

4.5 Single-Electron Solitons:

The dynamics of electron transfer in a single-electronic system are studied 

here with reference to the long array of tunnel junctions, the equivalent circuit of 

which is shown in figure (4.3). The array is assumed to be homogeneous and 

infinitely long. Let {<|>} denotes the set of potential values at the nodes of the
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array. The nodal-voltage equations in the presence of the excess charges at some 

nodes can be written as:

4>l=VL (4.5.1 A)

♦n+1=Vr (4.5.IB)

-C(^i+i^ i)+C 0̂ i+ C ( ^ i. 1)=Qi (4.5.1C)

where Qi is the total excess charge at the i-th node.

The set of equations (4.5.1) is valid for long as well as short homogeneous 

arrays of tunnel junctions. The inhomogeneous arrays can be described by a 

similar set of equations, see e.g. Amman et al (1989).

Consider a long array fed at one end, e.g. VR=0, and Vl*0 . The potential 

profile along the array at any state is obtained by solving (4.5.1). Equivalently, the 

potential at any node due to a single source can be evaluated, then the 

superposition theorem is used to find the total potential distribution (sources 

include the excess charges at different nodes and the bias sources). Let a single 

unit electronic charge (±e) be located at the node i=k that lies away from the edges 

of the array. Equations (4.5.1) can now be written as:

C(<Li + 4>/—i “ 2*,.) -  C04>,. = ±ebik (4.5.2)

This is a discretised form of the following differential equation:

C(Ax)2 ^ - - C  A = ±e5U - x ) (4.5.3)
ox2

where Ax is the step size, x=iAx. It is not difficult to show that the solution of the 

differential equation (4.5.2) is:

( 4 5 ' 4 )

where: X = cosh

From (4.5.3) and (4.5.4) it is clear that the excess charge at i=k represents a 

soliton with length X (in units of number of junctions) with total charge of ±e. The 

centre of the soliton is located at i=k. The soliton causes a substantial polarisation
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of the junctions that lie within % away from the centre. It is also straight-forward 

to show that the total energy of the single soliton is given by: (see e.g. Bakhvalov 

(1989))

Ess= ~ ^  Ceff= (C2 +4CC0)%  (4.5.5)
2 Ceff

c
11 H II n i l  11^ 11*+in ii n
11

Co=
11 H 11T1u ii u

“ C0

Figure (4.3): Equivalent circuit of the multi-junction array

The potential induced at any node due to the voltage source can also be 

obtained as:
ŝoured _  v, exp(-Ai) (4.5.6)

and the total potential at any node in the presence of any soliton distribution is 

evaluated as:

(4.5.7)
k

where n̂  is the number of solitons or anti-solitons at node k (assumed positive for 

solitons and negative for anti-solitons if <|> is evaluated for a soliton), and k is

assumed to lie far away from the edges of the array.

From the above analysis it becomes clear that a soliton or anti-soliton at any 

node will be affected by all other solitons and anti-solitons together with the 

applied voltages; and therefore, the tunnelling events will depend on all these 

factors. The tunnelling rate from node i to node i± l can be obtained using the 

quantum golden rule as:
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where A = eVii±l  » K«±i = <t)/±i_(l)/» u(x) is unit steP function, G is the
2Ci,i±i

tunnel conductance of the junction and Q j±i is the total capacitance between the 

neighbouring nodes i and i± l.

Successive injection of electrons into the array is achieved for voltages 

greater than a threshold value which is determined from the relation:

Relation (4.5.9) was found to be in excellent agreement with the threshold 

voltage obtained from (3.3.4) for long arrays (N>10). The agreement is quite 

reasonable (within less than 10%) for arrays with N as small as five junctions.

4.6 Monte-Carlo Modelling:

It was shown in the previous section that it is possible to analytically 

describe (approximately) the homogeneous long array of tunnel junction by a set 

of differential equations, which are exactly solvable. This is, in general, not 

possible for inhomogeneous arrays and other configurations, and the Monte-Carlo 

techniques offer the obvious route to model such structures. In this section, a brief 

description of the Monte-Carlo method is given and some of the results obtained 

from such simulations will be discussed. Full description of the Monte-Carlo 

model as applied to a linear array of junctions is given by Amman et al (1989) and 

Bakhvalov (1989). The main features are:

This assumes an array with an initial soliton distribution of

{n}={0} and thus the threshold voltage is:

v ,h =^(exp(X)-ir‘ (4.5.9)



• the state of the particular system under study at any time is represented by

the set of integers, {n}, corresponding to the number of excess 

electronic charges at all nodes,

• the nodal voltages, {<])}, are determined from the circuit equations,

• the tunnel rates of all possible events are calculated using (4.5.8),

• the time that elapses before the next tunnel event is determined from the

tunnel rates; exploiting the exponential distribution of the time between 

events and the memoryless property of the system,

• the soliton distribution, {n}, is modified following any event, and

• the whole process is repeated for a time long enough to allow the steady-

state properties to be extracted from the collected statistics.

Figure (4.4) shows the I-V curves of a homogeneous 8-junction array for 

different C/C0 ratios at T=0 K. The observed critical voltages are in good 

agreement with relation (4.5.9). In figure (4.5), the transfer characteristics of a 3- 

junction system are shown. The plots of the average number of excess electrons 

observed at the 'internal1 nodes indicate that the oscillations correspond to the 

addition of exactly two electrons to the system. Monte-Carlo simulations have 

also shown that linear arrays with N tunnel junctions will exhibit a Vg period that 

corresponds to the addition/removal of exactly (N -l) electrons to/from the system. 

For a long homogeneous array, the change in the potential in a typical period is 

given as:

and this value is equal to the change of the gate voltage in that period. Substituting 

the value of X defined in (4.5.4) in (4.6.1), it follows that:

(4.6.1)

(4.6.2)
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Monte-Carlo simulations have also shown that the soliton structures are 

normally formed and destroyed in some regular patterns; at more or less regular 

time intervals. This gives rise to regular voltage patterns across each junction.

Summary:

Soliton states do exist in single-electronic systems. Elements of the 

capacitance matrices representing such systems should be properly estimated and 

the full 3-D Poisson solvers are needed in most cases. Exact analytical solutions 

exist for a limited class of systems and Monte-Carlo methods have been 

extensively used to model the single-electronic systems.
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Figure(4.4): I-V characteristics of an 8-junction array calculated using the static 

Monte-Carlo methods: Vg=0 , C/Co=l,5,10.
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Figure (4.5): Dependence of the average number of excess charges at the inner 

electrodes of a three-junction array and the variation of the line conductance with the

gate voltage.
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Chapter (5)

Traffic Theory

5.1 Introduction:

The Monte-Carlo simulation method described in chapter (4), as applied to 

simulating the single-electronic systems, monitors the behaviour of the stochastic 

tunnel events and traces the evolution of the whole system. The data obtained 

from long observations is then used to produce representative measures for the 

behaviour of the system.

Monte-Carlo simulations have revealed that the conduction process through 

a single-electronic system passes through a finite set of soliton states. These 

soliton states and the relationships between them are strongly dependent on the 

bias conditions together with the parameters of the system at hand. It was also 

observed that the stationary properties of the single-electronic system can be 

determined if the densities of the different soliton states that occur during the 

conduction process are known. It is an easy task to list the set of active states from 

a Monte-Carlo simulation and to trace the relationship between the different states 

as well.

The objective of this chapter is to look into some analytical routes to 

determine the distribution of the states without resorting to the Monte-Carlo 

methods. Some applications are given to show the efficiency of the new 

technique.

5.2 Traffic Model for Tunnelling Dynamics:

The system studied in this chapter is a network of tunnel junctions; which 

can be a double-junction structure, a linear array of tunnel junctions, a two- 

dimensional array of tunnel junctions or any other combination of tunnel and non­

tunnel junctions, see figure (5.1).

The state of the system at any time may be described by the set of nodal 

voltages {Vi(t); i= l,2 ,..,N n} where Nn is the number of physical nodes in the
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(C)(A) (B)

“ 11-

Rest of Network Rest of Network

F i g u r e  ( 5 .1 ) :  Single Electronic Circuits: A: Circuit elements, B : Examples of 
tunnel nodes (1,2,3) & C: Examples of non-tunnel nodes (4,5,6,7).

F i g u r e  ( 5 .2 ) :  Traffic Model for the flow of electrons between tunnel nodes: 
Circles represent tunnel nodes and lines are bilateral.

84



system. Alternatively, the state of the system may be represented by a state-vector 

corresponding to the set of the number of excess electrons present at the nodes at 

the specified time:

v|/(t)=n={ni(t);i=l,2,...,N}, n{(t)= integer (5.2.1)

where N is the number of nodes capable of accommodating excess electrons. Let 

the set of nodes through which electrons can tunnel be denoted by D. A node in 

the network is considered to be a tunnel node if at least one tunnel junction is 

connected to that node. Thus, the node will be able to accommodate excess 

charge, i.e. the total charge at that node (at some time during the steady-state 

behaviour under some bias conditions) may be different from zero. It is clear that 

the set D is essentially a subset of the physical nodes in the system and therefore, 

N £ N n.

The two ways of representing the state of the system are equivalent, 

because the nodal voltages are linearly related to the bias voltages and excess 

charges at the tunnel nodes. This is clearly reflected from the analysis given in the 

previous chapter in connection with the linear array of tunnel junctions, see in 

particular equation (4.5.7).

The Monte-Carlo method assumes that the charge relaxes to the (new) 

steady state in a short period of time, xr<Tb; where Tb is the time to the next tunnel 

event. The relaxation time depends on the low-frequency impedance of the 

circuit. Let the total impedance seen by a single junction in a multi-junction 

system be Z(co). The relaxation process will be fast if Z(co) is small for co<eV/ft 

where V is the p.d. across the junction just before the tunnel event. The charges 

on the junctions and the various tunnel rates will be constant as long as the system 

is found at the state n.

The tunnelling conductances of all junctions are taken to be small such that 

the system will relax to the steady state well before any tunnel event may take 

place. It implies that there is no correlation between successive tunnel events.
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During any period of time, while the system is at \i/=n, electrons may 

tunnel (with some probability that can be equal to zero) from the i-th tunnel node 

to the j-th tunnel node if there is a single tunnel junction between the two nodes 

(this condition will be relaxed when the charge-macroscopic quantum tunnelling is 

taken into account). Tunnelling can occur between the nearest neighbouring nodes 

(elements of the set D).

It is convenient to treat all tunnel and non-tunnel nodes in a unified way. 

This can be achieved by defining the (NnxNn) node connection matrix ,X, such 

that:

1 inode; & node: are connected via a tunnel in
J (5.2.2)

0 i otherwise

In a single-electronic system with the connectivity as defined in (5.2.2), 

electrons can tunnel from node i to j, or vice versa, if these nodes are connected 

via a single tunnel junction. This is mathematically represented by the relation:

xij=Xji (5.2.3)

Given the node connection matrix, the tunnel nodes are those satisfying the 

following condition:

If 3 j  such that x^-1 then node i is a tunnel node, and relation (5.2.3) 

implies that node j  is a tunnel node too.

In figure (5.2), each tunnel node is represented by a circle. Two nodes are 

joined by a line if the connection matrix element, x ,̂ is equal to unity; indicating 

that electrons may tunnel between these nodes. Each line connecting two nodes is 

a bilateral line due to the property (5.2.3) above.

Let a tunnel event takes place from node i to some other tunnel node in the 

system. The probability that the electron is destined to node j is given by:

where

(5.2.4)
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r̂ (n)= £rtu,s).
k:xik=1

Relation (5.2.4) is an important relation that is extensively used by the 

Monte-Carlo simulators. It was shown in chapter (3) that the collective tunnelling 

process is a Poisson point process, having a total rate of occurrence -at any state- 

that is equal to the sum of the individual tunnel rates at that state. The quantity 

r  {n) is the throughput at the node at the given soliton state and represents the

outgoing traffic from node i at that state. On the other hand, the same node -at \y 

=nj- receives incoming traffic given by the sum of all traffic destined to this node, 

i.e.

A ,.(s)=  £ r ( * , i , / D  (5 .2 .5)
k\xu m\

The model described above is similar to a typical Traffic Model, having the 

following general features:

a. the entities -electrons- move stochastically between a finite set of centres, 

which are the tunnel nodes of the system,

b. on arriving at a node, the entities join a queue and wait for some sort of 

service,

c. the tunnel nodes serve as service centres, at which the electrons receive 

some service; which in effect delays the movement of these electrons,

d. number of electrons is large and conserved,

e. no external entities are allowed to join the activities,

f. service is provided to entities in a random way.

In the conventional Traffic Models, entities may depart from a node only if  

that entity has arrived to that node some time in the past; i.e. empty nodes will not 

contribute to the departure process in any way. In contrast, the tunnel nodes 

always contain a large number of conduction electrons, any of which can 

contribute to the ’Traffic' process. This implies that the queues are always 'full'
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even if that node has already 'served' n electrons and is left with a total charge of 

+ne. The departure process at a node is affected by the varying 'service rate' (the 

tunnel rate from a node to another) which is a function of the state of the whole 

system. Most systems that are represented by Traffic Models have 'service rates' at 

the nodes that are load-dependent and are not affected by loads at other nodes. 

For the model under study, the departure rate at a node is dependent on the load at 

all nodes in the system.

The nodes do not distinguish between the electrons in the 'queue', i.e. the 

system has no way of keeping a record of the history of the electrons that arrive at 

that particular node. Thus, a random selection queue discipline is used to provide 

service to the incoming electrons, Schwartz (1977).

At any state ,\|/=n, the arrival process -as seen by any node- is a Poisson 

point process; and the service time (time between tunnel events) at that node has a 

negative exponential distribution. This statement assumes that any departure or 

arrival event will not affect the two processes in any way. This is not true for the 

systems under study because any event will change the state of the system and will 

modify all tunnel rates in the system. However, if the system is kept frozen at a 

particular state, then the arrival and departure processes will be of the Poisson 

nature.

In Traffic Theory, the traffic intensity factor defined as apA /̂T  ̂represents 

a measure of stability at node i. Stability is attained at node i during the steady- 

state behaviour if the condition a^<l is satisfied while the queue size will grow 

without limit if aj>l. For the model under consideration this factor has a different 

role: aj(n)>l indicates that an electron is more likely to tunnel into this node 

because electrons are arriving at this node at a rate that is greater than their 

departure rate. The other case, aj(n)<l, implies the tendency of the node to lose an 

electron to some other node in the system.

The above analysis assumes that the system is stationary at a state, n, and 

the properties of the system do no change with the flow of traffic. In fact, any
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tunnel event will change the state of the system and all state-dependent variables,

e.g. T's, will be affected. This is analogous to the adaptive routing policy in 

communication systems where the state of any node is (frequently) distributed to 

all other nodes and the routing policy is changed accordingly, Schwartz (1977).

So far, only electrons are assumed to exist, as jobs, in the network. In fact, 

electrons and holes coexist inside the network. If there are rig electrons in the 

network at time t, then there must be the same number of holes in the network to 

maintain charge neutrality, i.e. nh=ne. Theoretically speaking, the system can 

sustain an infinite number of electrons and the same number of holes. One then 

speaks about a system of two classes of jobs; the traffic dynamics of the two types 

of entities are correlated; created or annihilated depending on the sort of event 

undertaken. Strangely, the two classes of jobs are created within the network, and 

destroyed by simple collision inside the network too. Tackling the traffic problem 

via this route seemed confusing and leading to more problems and questions than 

to simplifications and solutions.

Looking back at the simple model for system dynamics, it is reiterated that 

the occurrence of any tunnel event, while the system is found at state \|/ will 

terminate that state and will give birth to a new one. This implies that the system 

will be described by a different state-vector each time a tunnel event occurs. 

Energy considerations show that the set of state-vectors is a finite set, which can 

be represented by:

{'V}={ni,n2,- ,n M} (5.2.6)

and M is the number of legal stationary soliton states (M ^l).

The finite number of states and, furthermore, the regular state patterns 

formed during a conduction process in a single-electronic system was observed in 

a Monte-Carlo simulator. The set of active states and the relationship between 

these states is primarily dependent on the bias conditions applied to the system. If 

the bias conditions change while the system is occupying the state ^1/^, the system 

will then pass through some transient states not ^  ° f  which may be
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attainable during the subsequent steady-state behaviour. The new bias conditions 

may also lead to a static state; and the system will therefore stay forever in that 

static state. It is therefore important to discover the intermediate states together 

with the stationary states (if these states do exist). A unified algorithm will be 

discussed in section (5.8).

Define the occupancy (density) of a state to be the proportion of time this 

state is occupied. It then defines the probability of finding the system at that state. 

Let the occupancy o f the legal soliton state \|/j be denoted by P*. All stationary 

properties of the network can be calculated in terms of the occupancy vector {P}. 

The current passing between the tunnel nodes labelled £ and m is given as the sum 

of the contributions of all legal states, i.e.

where û  is a unit vector in the direction of node I ( dot product is performed). 

Other steady-state properties, e.g. differential conductance, may similarly be 

evaluated.

Relation (5.2.7) is similar to the equation used by Beenakker (1991) in the 

study of the properties of a single quantum dot. Odintsov et al (1991) used the 

above equation to describe the tunnelling dynamics in a generalised system. They 

applied it to the evaluation of the conductance of a double-junction system. Each 

junction was treated independently and assumed to be connected to an equivalent 

impedance.

Thus far, the problem has reduced to that of determining the set of active 

states and the density of each active state; which are the subjects of the following

M

(5.2.7)

The average number of excess electrons at node £ is given by:

M
< m > = ^  'Hi » node £e D (5.2.8)

sections.
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5.3 Density of Soliton States:

In equations (5.2.7 & 5.2.8), the state-dependent variables, F s, can be 

easily calculated from the knowledge of the junctions' parameters and the changes 

in the free energy, see equation (4.5.8). It still remains a problem to discover the 

set of legal stationary states, {T }, and the density of each soliton state, Pj.

The problems encountered when dealing with the Traffic Model suggested 

to represent the tunnelling dynamics are eliminated in the following model. The 

inconveniences introduced by the different classes of jobs and the theoretically 

unlimited number of jobs involved are removed.

During the steady-state behaviour, the system is known to form a finite set 

o f soliton structures. The dynamics of formation and destruction of these soliton 

states can be described by another Traffic Model.

The soliton structures may be thought of as service centres that provide 

some sort of service to the system; and the system will spend some time at the 

state each time that state is visited. The system itself is represented by a particle 

or a job that travels stochastically between the service centres (states) and receives 

service (delay) at these nodes.

The mechanism of the conduction process via the tunnelling events leads to 

the formation of the soliton state at an average rate On the other hand, the 

system would emerge from the particular state, \\i-v at a rate that is equal to the rate 

of entering that state, Kleinrock (1976). On leaving this state, the system may 

form (enter) any other soliton state. This is quite abstract; as it is known that a 

single tunnel event is responsible for the transition and this will limit the possible 

end soliton structures to a finite subset of the universal set of soliton states. Figure 

(5.3) shows a diagrammatic representation of the relationship between the soliton 

states. Each line in the diagram represents a unidirectional relationship, i.e. the 

legality of the transition \|/f—>\|/j does not necessarily imply the possibility of 

transition in the reverse direction.
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Figure (5.3): Soliton States in a Single-Electronic System. Circles represent the states 
and the unidirectional lines indicate the direction of possible transition.

i+l
i+ l

Figure (5.4): Soliton States in a Double-Junction System (The Birth-Death Model).
Transition rates are shown here.
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In fact, the academic infinite number of soliton states corresponds to the 

academic infinite number of electrons and holes mentioned in connection with the 

model for electron-tunnelling dynamics. The advantage of the current model over 

the previous one is that the dynamics of state transitions are well-understood and 

can be easily modelled; unlike the dynamics of a system with two correlated 

classes of jobs.

Let the system be found at the state \\fv the system will be described by this 

state-vector until a tunnel event takes place and the system will then be described 

by another state-vector. Let a single tunnel event from the tunnel node k to node I 

be responsible for the transition from the soliton state Wi=Q[ to the state \pj=nj. 

Looking at the soliton states as service centres, the departure rate from state \\f-x to 

state \|/j when the system occupies state \|/j is defined as:

which is a state-dependent variable that can be obtained from equation (4.5.8). In 

the spirit of (5.3.1) and exploiting the Poisson nature of tunnelling events (as being 

responsible for the transitions between states), the total departure rate (service rate 

at state \|/j) is therefore given by the sum of the departure rates from this node 

(state) to all other service nodes:

As a result of this finite service rate at the state, the system will spend an 

average time of 1/pj at ^  each time it visits that state. This residence time has no 

direct implication on the rate at which this state is visited.

The transition probability from node \j/j to node \|/j is obtained similar to

\ig =r(*,/,\|0 ,X̂ = 1 (5.3.1)

M
Vi  = I > y (5.3.2)

7=1
M

(5.2.4) as:

(5.3.3)
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provided that the system is already found at Again, ry is state-dependent and 

can be calculated from the system's parameters and the soliton structures. These 

transition probabilities can be collected into a single (MxM) routing matrix R.

Now that the routing probabilities are known, the input traffic, to node i 

is calculated as the superposition of the proportion of each departure stream from 

all other nodes. This allows the arrival rate to node i to be expressed in terms of 

other arrival rates as:

where X is the row vector (Xi,X2,..,X^) and I is the unit MxM identity matrix. On 

writing equation (5.3.4) it should be recalled that the steady-state incoming traffic 

to a node is equal to the total outgoing traffic from that node. This is necessary to 

ensure stability. The set of equations (5.3.4) above is called the traffic equations',; 

the solution of which gives the average traffic entering and leaving each centre.

The occupancy, Pj, of the soliton structure, \\rv is given by the following 

simple relation:

Unfortunately, the matrix (I-R) has a zero-valued determinant and the set of 

traffic equations will have an infinite number of solutions, Lipschutz (1981).

In the following part, the conventional route used in Traffic Theory to 

tackle this type of problems is followed. It is also possible to arrive at the same 

conclusions making use of the definition of the density of states given above and 

any of the solutions of the traffic equations.

(5.3.4A)
J

and in matrix form, this set of equations can be written as

A.Q-R)=Q (5.3.4B)

Pl= visit rate to this state x residence time per visit = Xj/jlj.
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The network forms a closed network of servers in which there is exactly

the network. This single job is not allowed to leave the network and, obviously, 

there are no exogenous arrivals.

Define the vector m(t)=(m1̂ n2v»mM) where m^t) is the number of jobs 

(systems) found at state \|/j at time t. It is clear that:

and, as there is exactly one system -job- travelling inside the network, it becomes 

clear that the elements of m(t) will satisfy:

M

£"% (') = ! (5.3.5B)
1=1

In summary, the Traffic Model described above for soliton states in single- 

electronic systems has the following general properties:

a. service completion time (delay) that is state-dependent (load-dependent)

and has a negative exponential distribution (for a particular state),

b. number of jobs found in the network is fixed (equal to unity),

c. routing is random and can be described in terms of well-defined

probabilities (R).

It was shown by Jackson (1959) that, for systems satisfying the above 

conditions, the joint probability distribution of m(t) for the network in equilibrium 

is separable. Baskett et al (1975) extended the theorem and showed that systems 

with a number of selection policies, including the First-In-First-Out policy 

applicable to this model, are still separable.

In general, the joint probability distribution is given by:

one job trapped inside. At any time, the job (system) will be found somewhere in

1 ; system found in \|/,- 

0 ; otherwise.
(5.3.5A)

p ( m )  = a  l (ml )a 2 (™2 )• • • a  m  (m M ) (5.3.6)
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where G is a normalisation constant and ai depends on the traffic properties at 

node i.

For this solution, the functions oq (j) for the system under study are defined as:

and the normalisation factor, G, is selected such that the sum of the densities of 

states defined in (5.3.6) should sum to unity. It is, hence, calculated as:

M

where the summation is realised over all possible sets {m} satisfying (5.3.5).

For a closed network of queues with exactly K jobs being trapped inside, 

the normalisation constant is normally calculated using a convolution algorithm of 

a recursive nature, e.g. Eade (1987). However, the system under study forms a 

simple version of the general class of closed networks, as K=1 here. Using the 

definition (5.3.7) and the condition (5.3.5B), the following expression for G is 

obtained:

It is to be noticed that if m p l then mj=0 for all j*i, i.e. nij=5ij.

It is then easy to show that probability of finding the system at the soliton 

state \j/j is given as;

Let A* = (a,i,A,2 ,..,A*m) be some non-zero solution of the traffic equations.

(5.3.7)

(5.3.8)

$M \
(5.3.9)

(5.3.10)

which is the key result of this section and it is an important result in studying the 

steady-state characteristics of the single-electronic systems.
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The technique makes no assumption about the tunnel rates apart from the 

Poisson nature of all tunnel events. This allows the model to be used in a wide 

range of applications, provided that the various tunnel rates can be determined 

from the knowledge of the tunnel characteristics.

5.4 Birth-Death Model:

It was shown in chapter (3) that the flow of electrons through a turnstile or 

a single quantum dot system can be controlled by an external gate electrode. The 

classical theory presented in chapter (3) ignores the discreteness of energy 

spectrum in the confined region, an assumption that is valid in the case of large 

metallic dots. In the 2-DEG of an inversion layer or heterostructure the energy 

level separation may be comparable to the charging energy and the continuum 

approximation is no longer valid. Kulik and Shekhter (1975) studied the 

conductance oscillations using the Gibbs distribution function to evaluate the 

equilibrium distribution of the number of excess electrons at the central island. 

Beenakker (1991) investigated the distribution of electrons among the available 

energy levels together with the distribution of excess electrons on the dot. The 

equilibrium distribution was calculated via the Gibbs function. For the non­

equilibrium (V=*0) distribution the detailed balance equations were used. Linear 

response theory was then used to estimate the non-equilibrium distribution from 

the known equilibrium values. This technique is accurate for small values of 

applied voltages and can be used to determine the low-bias characteristics, e.g. the 

zero-bias conductance.

The Traffic Theory presented in the previous section provides an exact 

analytical solution to the problem of current flow in a double-junction system and 

other systems as well. It was shown in the previous section that the steady-state 

characteristics of the single-electronic systems can be evaluated from the densities 

of legal soliton states.
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In this section a modified version of the theory is applied to the double­

junction system and then extended to investigate the effects of the discrete energy 

spectrum of a single quantum dot.

The state o f the double-junction system can be described by \|/(t)=n, where 

n is the number o f excess electrons occupying the central node at time t. Let the 

system be found at the soliton state \|/=n at time t. Following the same line of 

reasoning used in developing the general Traffic Model, one can find all traffic 

parameters for the two-junction system and then determine all steady-state 

characteristics o f this system. Instead, analogy is established between this model 

and the conventional Birth-Death model (a model that has been extensively 

studied). The occupancies of states are then determined from the resulting model.

In the double-junction system, each state is related to, at most, two soliton 

states. Leaving state \j/=n the system can enter (form) either \|/=n-l or \j/=n+l. 

The process is therefore a Markovian Birth-Death process in which the stochastic 

variable, n, can either increase or decrease by unity. Let ^  be the transition rate 

from state \|/=n-l to state \j/=n when the system is found at \j/=n-l:

A ^ rC L ^ n -lH rC R ^ n -l) (5.4.1)

and Xn corresponds to the birth coefficient of \|/=n. It represents the rate at which 

the system will try to increase the population at the central electrode by unity 

provided that there are already (n-1) electrons at that electrode. The death 

coefficient, JIq, is similarly defined as:

p^TQVl^nHrOVLILn) (5.4.2)

and again, this is the rate of losing an electron when there are exactly n electrons 

inhabiting the central electrode. A birth or a death event at a particular state will 

terminate that state and will leave the system in a new state.

In the conventional Birth-Death processes the stochastic variable can 

acquire only non-negative integer values. In contrast, the number of excess 

electrons at the central node, M, may assume both positive and negative values. 

Nevertheless, the process possesses the properties of the Birth-Death processes
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and the standard solutions are applicable. Figure (5.4) shows a diagrammatic 

representation of the Birth-Death process and the relationship between the various 

soliton states.

Before proceeding to seek a solution, it is important to determine the set of 

active states that will be created and annihilated during the conduction process. In 

the double-junction case, the active states are discovered according to the 

following simple rule:

i f \ i  >0 and  Pu> 0 then both and \|/n are legal active states 

The set of active states can be discovered using this criterion if at least one 

state is known to be active. A general algorithm to discover the set of active 

states in a single-electronic system will be discussed in section (5.8).

Now, let k1 and k2  be respectively the minimum and maximum number of 

excess electrons that can be accommodated on the central electrode during the 

steady-state behaviour. Detailed-balance equations of states show that the 

occupancy of the state \|/=n is given by: (see e.g. Schwartz (1977))

Equations (5.4.3 & 5.4.4) are the key results of this section. To use this 

model, the active soliton states should first be discovered and the Birth-Death 

coefficients are then calculated according to the nature of the problem at hand. 

The static characteristics of the double-junction system can be obtained once the 

occupancies of all states are known.

,n = kx

P =< n 'k
" lG II -L ’ k i < n ^ k 2

1=1+*!

(5.4.3)

where G is a normalisation factor given by:

n-ki+l i=k]+l
(5.4.4)

99



The average current passing through the double-junction structure is 

evaluated from:

k 2
I = e  (5.4.5A)

n=ki

and currents satisfy:

current through the left junction = current though right junction 

The dc and the differential conductances of the double-junction system can 

be calculated from (5.4.5A).

The average excess charge on the charge dot is:

k2

? « - « £ » • * » . (5.4.5B)
h

The I-V characteristics of a symmetrical double-junction were investigated 

in chapter (3) using Monte-Carlo simulations. The curves were found to exhibit a 

well-defined discontinuity corresponding to the onset of conduction at the critical 

voltage. At higher voltages the line conductance approaches the limiting value 

G=Gt/2. For a symmetrically-biased double junction, Vr=-V^=V and Vg=0, the

number of legal states is always an odd number. At \|/=0 the events T(L,M,0) and 

T(M,R,0) are equally likely to occur. The densities are then related by: Pn=P_n. 

The average excess charge at M is zero. The application of a gate voltage disturbs 

the symmetry of states and, as a result, both odd and even total number o f states 

are attainable at different bias conditions. With the application of a gate voltage of 

Vg=ke/C0, where k is an integer, the average excess charge will be = ±ke and the 

states will be related by: Pn=Pn+k-

The Birth-Death model gives an exact solution to the double-junction 

system and the details of the I-V curves are easily obtained. For a symmetrical 

double junction, Ci=C2 =C & Rt 1 =1^ 2 , the differential line conductance 01/dV) 

exhibits peaked structures; the largest peak is located at the critical voltage, figure
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(5.6.A). Examining another system with Rt2 » R ti & Ci=C2, the peaks of the 

differential conductance are more clearly observed and the I-V curve exhibits a 

step-like shape. The peaks correspond to the onset of new soliton states and the 

addition of new paths to the conduction process. Let the maximum number of 

soliton states, at a certain step, be equal to n. The creation of a new soliton state, 

\|/=n+l, requires T(L,M,n)>0. The three states {n-l,n,n+l} will be potentially 

active in the transitional regime between the two steps. The system may be 

modelled by a three-state Birth-Death model with the following coefficients: 

(backward tunnel events not allowed)

A,!=r(L,M,n-l), A.2=r(L,M,n)

^li=r(MJR,n) î2=T(M,R,n+l)

Using the relation (5.4.5), the dc current passing through the double­

junction system is found to be:

T A<iLIiU2 + XiX2L12
7 = e — ^ -------  \  1 ; R2C2» R iC 1 (5.4.6)

If and X2 are much greater than and ji2, the current will be 

approximated by I«ep2. The differential conductance obtained from the above 

equation was found to be in excellent agreement with the results of the general 

model where all legal active states are taken into consideration.

For the symmetrical-bias conditions assumed here, the state Max{\j/}=n 

would persist for a voltage AV(n) given by, (see equation (3.3.1)),

&V(n) = -pr (5.4.7)
L/j*

For structures with R2C2» R 1C1 the density of soliton states will be highly 

localised at the state M ax{\|/}. This is clearly reflected by the integer-valued step­

like shape of the average number of excess electrons given in figure (5.6.B). The 

current though the device will be mainly determined by the junction that has the 

larger RtC value; J2 in this example, and it forms the bottle-neck in the path of the
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charge. Following the increase of the charge by +e at M, the potential difference 

across the junction J2 changes by:

A V 2 = -^  (5.4.8)
CT

This causes a change in the total current of:

A /= ^ 7 “  (5.4.9)

The step size of the current obtained by Amman et al (1988) is similar to

(5.4.9) with the capacitance (C1+C2 ) replacing C j. The tunnelling rate across the 

junction J2 becomes larger at higher voltages and the density of soliton states 

becomes distributed between a number of states. This smears out the steps and 

reduces the value of the conductance peaks.

The plots of figure (5.7) show the excellent agreement between the transfer 

characteristics obtained from the Traffic Theory and those obtained using the usual 

Monte-Carlo techniques. The superiority of the Traffic Model appears in the 

approximate 1/300 ratio of CPU execution time of the two methods. This is the 

ratio when the Monte-Carlo simulation monitors the departure of 750 particles.

Inspecting the transfer characteristics, it is easy to identify the oscillations 

in the dc conductance with the gate voltage at fixed terminal voltages. These 

oscillations are in accord with the classical theory in the low bias regime where

transport is always achieved through the same number of soliton states. Transport 

in the first segment of figure (5.7.A) forms the states {0,1} while the second 

segment creates the set of states {1,2} and the third segment will then form the 

states {2,3} and so on. In the regime V-cV^ the average charge at the central 

electrode at Vg=0 is always zero. An average of an integer number of electronic 

charges will be observed at the central electrode for Vg=ne/C0 where n is an 

integer. The conductance peaks occur at Vg=(n+l)e/2C0. At higher terminal 

voltages, e.g. the case of V=0.5e/C shown in figure (5.7.B), more states can be 

generated leading to the splitting of the segments. In this example, the soliton
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states formed during the conduction process in the first, second, third and forth 

segments are respectively: {0,1}, {0,1,2}, {1,2} and {1,2,3}. In figure (5.7.C), the 

segments of the curve correspond respectively to: {-1 ,0 ,1 ,2 }, {0 ,1 ,2 ,3} and 

{ 1 ,2 ,3 ,4}. At Vg=0 the terminal voltage V=e/C will lead to an average charge of 

e/ 2  at the central electrode, which is the condition for maximum dc conductance 

where the Coulomb blockade effects are minimum. The other peaks are observed 

at Vg=ne/C0, n=±l,±2,±3 etc. The maximum of the conductance peaks increases

with the applied voltage while the maximum to minimum decreases. At V » V ti1 

the conductance approaches a constant value given by Goo«Gt/2.

Recently, Shikhin et al (1993) studied the I-V-Vg relationship for the 

double-junction system using an approximate iterative relation to calculate the 

density of states (suggested by Kulik and Sheckter (1975) from the Gibbs 

distribution function). Their results show a similar I-Vg phase relationship, but the 

technique is valid for small V and Vg values.

The structures studied by Thomas et al (1989), and shown in figure (3.3), 

revealed a conductance peak corresponding to the critical voltage. The tunnel 

barriers in this structure are randomly formed by the electrostatic potential due to 

single trapped charges. However, their data corresponds to the case C1Rtl«C2 Rt2 - 

Concrete evidence of the differential conductance oscillations was reported for the 

first time by Bamer and Ruggiero (1987). Their structures consisted of Ag 

granules embedded in AI2 O3  between Ag films. Steps in the I-V curves were also 

observed by Wilkins et al (1989) on a double-junction structure formed using a 

Scanning Tunnelling Microscope probing a lOnm diameter In droplet deposited on 

an oxidised metal substrate.

5.5 The Quantum Dot:

A metallic dot of lOnm diameter has approximately 40X104 conduction 

electrons with an average energy spacing between the levels of lO^eV. The 

energy spectrum can be considered as a continuum of levels, and the occupancy
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of these levels is approximated by the Fermi-Dirac distribution function. 

Decreasing the size o f the dot increases the energy separation, A, and decreases the 

total number, N0, o f conduction electrons on the dot. With few electrons on the 

dot, the Fermi-Dirac distribution can no longer model the occupancy of the 

discrete levels.

At T=0 K, the levels on the isolated dot will be occupied up to some 

maximum energy level just below the Fermi level and all other levels will be 

empty. It will be assumed that the conduction process would take place entirely 

within the unoccupied levels of the dot. This assumption suggests that at \|/=0 

only the events T(L,M,0) or T(R,M,0) are to be expected; whereas, at this state, 

the events T(M,L,0) and T(M,R,0) can never occur. In other words, the excess 

number of electrons on the dot will always satisfy n ^0. This simplifies the 

analysis of transport through the dot.

The Birth-Death model described in the previous section is a general and 

efficient method in studying the stationary properties of double-junction systems. 

The application to metallic structures is straight-forward as the tunnel rates can be 

directly evaluated from the free energy and the tunnel resistance. The discrete 

energy levels of the quantum dots restrict the active levels that may contribute to 

the tunnelling process. Figure (5.5) shows a diagrammatic representation of the 

energy spectrum in the quantum dot and the contact reservoirs. Such structures 

were studied by Averin and Korothov (1990) and Beenakker (1991). Transport 

through the double-junction system with discrete energy levels is treated here in a 

way reminiscent to the sequential resonant tunnelling process in a semiconductor 

double-barrier structure, e.g. Chang et al (1974). The dot has energy levels 

labelled Ep (p=l,2,..) measured from the bottom of the well. Conservation of 

energy constraints predicts that for the event T(L,p,n) the tunnelling electron must 

have emanated from an initial level on the left reservoir given by,

T(L,p,n)  EtL{n) = Ep + E X + e/ ( CT + eVl (n) (5.5.1)
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Figure (5.5): (a) Single Quantum dot imbedded in the insulating layer 

between metallic electrodes.

(b) Energy spectrum of the electrodes and the dot at equilibrium.
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where Ex is the maximum filled level of the isolated dot, Ex and are 

measured with respect to the bottom of the conduction band of the metallic 

reservoir. Although this model assumes a symmetric structure, systems with 

dissimilar metals may be investigated in a similar fashion. Similarly, the initial 

and final energies on the left and right electrodes participating in tunnel events are 

given by:

T {p ,L ,n )^  Ej?(n) = Ep + Ex -  eV,(n) (5.5.2)

T(p,R,n) -> E lf {n) = Ep + Ex - e 2/ c ^ -eV 2(n) (5.5.3)

T{R,p,n) E? = E p + Ex + e/ 2Cj, +eV2{n) (5.5.4)

Equations describing resonant tunnelling in semiconductor double-barrier 

structures may be retrieved from the above set of equations if the charging energy 

term, e2/2Cx, is set equal to zero. Consider a tunnel event T(L,p,n) and let the 

incident electrons have wave-vectors confined to the longitudinal direction. Using 

the quantum golden rule, the tunnel rate may be approximated by:

T(L,p,n) = y.< 1+exp
f E ^ E F ^

k' T yj
■ . ( l - / 0n) (5.5.5)

where y depends on the elastic transmission coefficient and density of states, and

f p  is the probability that level p is occupied if the dot is inhabited by n electrons.

Energy considerations show that the event T(L,p,n) will be blocked, at T=0 while 

the p-th level is empty, if

Ep > EF -e V \(n ) - ey 2 C  ̂ (5.5.6)

The average tunnel rate at a certain state, \|/=n, can be evaluated once the 

occupancies of the energy levels on the dot are known, e.g.

r(L, M ,n) = £r(L,p,rt) (5.5.7)
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The state \|/=n+l with the p-th level occupied can be constructed from the 

state \\f=n with this level empty and then adding an electron to the p-th level. The 

difference between the energies of the two states is:

( n  +  l ) V _ ( n e £  (

p 2 CT 2 CT

The occupation factors of the energy levels are related by: (e.g. Ashcroft and 

Mermin 1976),

= (1-/" ).exp
A"-n(n + l)

kBT
(5.5.9)

where |i(n) is the chemical potential of the dot when occupied by n excess 

electrons. The general solution of (5.5.9) gives the Gibbs grand canonical

distribution which was used by Beenakker (1991) to evaluate The

disadvantage of the Gibbs formulation is that a record of all possible combinations 

is required before the occupancy of a certain state may be calculated. This is not 

the case when using (5.5.9). For bulk metals, the number of conduction electrons 

is very large, of the order of 1022/cm3, and the addition or removal of a single

electron will not alter the distribution, i.e. /^ +1 = fp  = / (Ep ) which gives rise to

the Fermi-Dirac distribution. In quantum dots, the number of electrons is small 

and hence the chemical potential varies significantly with n. The relation (5.5.9), 

together with the following relations, can be recursively used to calculate the 

occupation numbers

/ ; = 0  ,Vp
£ ^ ' = n + l  (5.5.10)
t

The solution of the second equation of (5.5.10) gives the chemical potential of the 

dot, Jl(n+1).

At equilibrium, with no voltage applied across the double-junction, 

electrons can flow into empty levels on the dot. Each additional electron modifies
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the positions of the Fermi levels with respect to the vacuum level. This process 

accumulates a maximum charge, enQ, on the dot such that the addition/removal of 

one electron to/from the dot will increase the total free energy of the system. In 

equilibrium, the Fermi levels will be closest to alignment but there may be some 

difference. The resulting voltage difference between the dot and the metallic 

reservoirs will be accounted for in the solution of the circuit equations. Tunnelling 

into or out from the dot with no voltage applied to the system is not only 

determined by the closest alignment of the Fermi levels but also by energy 

considerations for the individual tunnel events, starting with a neutral dot. The 

equilibrium number of excess electrons on the dot is the largest integer (n  ̂0) 

satisfying the following relations, 

r(L,M,n-l)>0,

T(L,M,n) = 0 &

T(MJL,n) = 0 (5.5.11)

The previous arguments are also true for the case of a dot having a 

continuum of energy levels. Following the exchange of electrons between the 

metallic reservoir and the dot, the Fermi levels need not be in full alignment. The 

reason for this is that the addition/removal of a single electron to/from the dot 

causes a shift in the relative positions of the Fermi levels in the dot and the 

reservoirs of a discrete amount equals to e2/CT, (provided that the conditions for 

tunnelling are fulfilled in the first place).

To examine the effects of the discrete energy levels on the I-V curves the 

following hypothetical parameters are assumed: Ep=7Ec, Ex=3Ec, C/C0=l and A is 

taken to be of the same order as Ec. The equilibrium number obtained from 

(5.5.11) is n0=2; and these electrons occupy the levels p=l and p=2. Figure (5.8) 

shows the I-V characteristics of this quantum dot structure. In the region of the 

first step, a, an electron first tunnels from the left into the first empty level in the 

dot, i.e. there are two possible events, due to spin degeneracy, viz. T(L,3,2) or
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T(L,4,2). This event is then followed by either T(3,R,3) or T(4,R,3). The levels 

involved in the conduction process in this regime are p=3,4.

As the applied voltage is increased, more single electron levels on the dot 

become accessible to the conduction process giving rise to the step like structure 

shown in figure (5.8). In the second step, b, the first energy level becomes 

available and contributes to the conduction mechanism. In this regime, electrons 

may tunnel from the left electrode into the first empty energy level, giving rise to 

the event T(L,3,2) or T(L,4,2). The electrons monitored at the right electrode may 

emerge through one of the following set of events: T(1,R,3), T(2,R,3), T(3,R,3) or 

T(4,R,3). Thermodynamic equilibrium will be regained following the event 

T(M,R,3). In the regimes a & b, the state of the dot oscillates between \|/=2 and \\f 

=3. In the third step, c, the state \j/=4 becomes accessible and this would increase 

the set of possible tunnel paths.

On the experimental side, transport through semiconducting quantum dots 

was examined by Reed et al (1988). Their structure consisted of an InGaAs 

quantum dot embedded between n+ GaAs contacts. Reed and co-workers 

explained the observed step-wise structure, similar to the curve in figure (5.8), in 

terms of resonant tunnelling and used these I-V characteristics to infer the density 

of states of the quantum dot.

The classical theory predicts oscillations in the line conductance of the 

double-junction structure. The dynamics of the conduction process via discrete 

energy levels are complicated, even in simple structures. For the quantum dot, the 

discrete energy spectrum changes the shape of the transfer characteristics and the 

periodicity of oscillations, figure (5.9). Let the dot initially host n excess electrons 

at a gate voltage = Vg. The levels up to the n-th level will be occupied. Changing 

the gate voltage to Vg+AVg(n) increases n by one and the additional electron will 

be accommodated in the (n+l)-st level. The period of conductance oscillations 

then satisfies the following relation:

109



En + l ~ E n = 4 Vl(” - 1 ’V* ) -V l( /I’V* +AFs (n))} (5.5.12)

from which the period is obtained as:

A double junction with large central electrode has En+1«En and the above relation 

gives the classical periodicity of |AVg|=e/C0. Recently, Foxman et al (1993) 

studied the transfer characteristics of a semiconductor double-barrier system. The 

energy separation between the levels in their structure is A=0.4EC and the system 

has shown a well-defined step-like structure in the Va-G relationship that is similar 

to the relation shown in figure (5.9).

The differential conductance deduced from the model described here forms 

a series of delta functions located at the points of discontinuities. However, the 

thermal fluctuations tend to broaden these conductance peaks. Lorentzian line 

shape has been suggested and shown to fit the conductance peaks in 

semiconductor double-barrier structures, see e.g. Meirav et al (1990), Beenakker 

(1991) and Foxman (1993).

5.6 Multi-Junction Systems:

Increasing the complexity of a single-electronic system, e.g. by adding more 

tunnel junctions, will increase the set of possible states that will contribute to 

conduction and will generate new paths through which charge can travel from a 

point to another. The interaction between the various soliton states affects the 

characteristics of the system. This is investigated here by adding another tunnel 

junction to the double-junction system studied in the previous sections.

In this 3-junction system, the tunnel junctions are taken to be identical; 

each with a value C. The capacitances to ground are also identical and have a 

value C0. Let Vr=0 and V p-V . The I-V characteristics obtained from the Traffic 

Model are shown in figure (5.10). The total dc conductance, in the case of
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identical tunnel resistances, approaches the classical series conductance at high 

bias voltages. However, the differential conductance at low bias voltages 

oscillates in a manner similar to the oscillations observed for the double-junction 

case. The magnitudes of the conductance peaks are enhanced if one of the 

junctions has a dominant R^C value. Figure (5.11) corresponds to a system with 

Rt3» R tl,Rt2. In the region (a) of figure (5.11), conduction passes through the 

following set of states {\|/a}= {(0,0),(1,0),(0,1)} and the system is found to stay 

most of the time at the state (0,1). In this region a maximum of one electron can 

be found inside the system. The number of electrons is then: {na}= {0 ,l}.

In the second region, labelled (b) in figure (5.11), the system has a total 

number of states equals to 4,5,6 or 7; increasing with the increase of applied 

voltage. The transition from a set to another, e.g. 5 to 6, is smooth and no changes 

in current or in conductance are observed. The number of excess electrons in the 

system here forms the set: {nb}={0,1,2}. The dominant state is (1,1). Eleven 

states contribute to the conduction process in region (c) with the dominant state 

being (1,2). The spectrum of the number of electrons expected is {nc}= {0,1,2,3}. 

Finally, in the region (d) twelve states are observed with the state (1,2) still being 

dominant and a set of {n(j}={-1,0,1,2,3}.

It is concluded from this analysis that the conductance peaks each time the 

system becomes able to accommodate one more electron or hole, and the 

additional electron/hole need not be permanently hosted in the system. The size of 

current rise, if a bottle-neck exists in the circuit, can be found using the changes 

of the dominant state as found for the double-junction case.

5.6 Time Evolution of States:

The general Queuing Theory applied so far describes the steady-state 

behaviour of the system; the densities of states obtained from by (5.3.10) 

correspond to the densities at t=°° viz. Pi(°°). Let a measurement be made at time 

t=0 and the system be at the state \|/=\|/k, then the densities can be written as:
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(5.6.1)

At a later time the state of the system will be a mixture of all possible legal 

states, each with a density Pi(t). Take a small time interval At around t. The 

probability of finding the system at the state \|/£ then satisfies:

where |ly is the departure rate from state \|/j to state \|/j defined in (5.3.1). In the 

limit At—>0, the above relation reduces to the following partial differential 

equation:

and the densities should sum to unity at any time. The first term in the RHS of 

the above relation is the rate at which other states are entering the state \|/j at time 

t; while the other term is the rate of leaving this state. At t-»°° all derivatives are 

equal to zero and the set of equations (5.6.3) reduces to the set of traffic equations

The relation (5.6.3) derived above is an interesting result. Its solution can 

be used to determine the most probable evolution of the variables of the single- 

electronic system with time.

Let the conduction mechanism through a single quantum dot be described 

by two soliton states, {\|/}={n,n+l}, with the birth and death coefficients being X 

and Ji respectively. If the system is known to occupy the state \|/=n at t=0 then the 

solution of the differential equations (5.6.3) will show that the density of the two 

soliton states will evolve according to:

(5.6.2)

(5.6.3)

given by (5.3.4), {Pj \Lji = P j\ l j .^ L = Xj.rj i ; Pjj0j=Aj}.

(5.6.4A)
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pn+l(‘) = T -^ -{1- e xp[-C'.+l4*]} (5.6.4B)
A +  jJ.

and in the limit t—>°°, the densities approach the values:

Pn=ji/(X+tl) and 

Pn+l=^/(^+M-)

coinciding with the results obtained from the Birth-Death model.

5.7 Algorithm to discover the Active States:

The technique described in this chapter assumes that the set of states 

contributing to the conduction process is known or can be discovered. A simple 

algorithm to list the active states for the double-junction was mentioned in section 

(5.5). For a complicated system, the most popular states can be spotted from a 

Monte-Carlo simulation running for a relatively short time.

A simple way is to choose a large set, T1, such that the active states are 

guaranteed to be contained in this set. The solution of the traffic equations for 

these states will then help enumerate the list of active states according to:

P(active state) > 0 while P(redundant state)=0 .

The disadvantage of this method is that a large set is to be chosen in the 

first place, which is not an easy guess as it may appear. Besides, one should also 

trace the relationship between these states.

The algorithm used in this study dynamically allocates memory space to 

states and links the states together as these states are discovered. The main data 

structure is a list o f state records with the following data types:

State_Record =

\|/ : State_Vector;

Aux : AAuxiliary_Record;

P : R ea l; { D ensity}

Next : AState_Record ;{ Next state in lis t}

end;
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The Auxiliary_Record list is another data structure of the states linked to 

this state via the tunnelling probabilities. It has the following data types:

Auxiliary_Record =

State : AState_Record ;

\i : R ea l; {Transition rate}

Next : AAuxiliary_Record;

end;

The algorithm starts by any initial state and determines the states of the 

Auxiliary_Record from the conditions of tunnelling. Any state discovered in the 

auxiliary list must have its own record in the State_Record list. The list of records 

builds this way. It is to be noticed that some states discovered in the 

State_Record list using this algorithm may not be active during the conduction 

process. This depends on the initial state, i.e. if the initial state is an active state 

then all states in the list will be active while choosing an inactive initial state will 

lead to the accumulation of some inactive states in the list. This suggests that 

choosing any state from a Monte-Carlo simulation running in its steady state will 

guarantee the accumulation of only active states in the list.

If the bias conditions do not lead to current flow, the system will pass 

through some transient states and eventually remain in a static state, Astatic* which 

can be discovered from the list using,

(i) If 3 State: StateA.Aux=nil then State € {Astatic/•

Finally, the set of active states can be determined from:

(ii) If state \|/a is known to be active, then all states in the Auxiliary_Record

related to this state are necessarily active.

It is therefore sufficient to determine, at least, one active state and then the

above rule can be used to discover all other active states. This can be done by first 

making sure that the system is conducting, i.e. there are no static states in the list.

Let the algorithm be started with an initial state = ^init- Using the above 

data structures, it is possible to find the states that may be active during the steady-
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state behaviour. If the system is known to be conducting (by checking (i)) then it 

will be known that the last state discovered in the list will -definitely- be active. 

This is the state satisfying StateA.Next=nil. Starting with this state as a 

first_active_state, and using rule (ii) mentioned above, it is possible to determine 

set of all active states.

Summary:

In this chapter an exact and efficient technique for modelling the single- 

electronic systems has been presented. A version of the technique is applied to the 

double-junction system and has proved high efficiency compared with the 

conventional Monte-Carlo methods. The Birth-Death model was applied to a 

quantum dot structure with discrete energy spectrum. The CPU time reduction 

was found to be of the order of 1/400 against the Monte-Carlo model that monitors 

the passage of 1000 particles. The efficiency increases fast with increased system 

complexity.

An efficient algorithm that determines the set of active states during the 

conduction process and the relationship between these states has been 

implemented. The technique is quite general and extendible to include thermal 

and quantum fluctuations, macroscopic quantum tunnelling and charge 

trapping/detrapping effects.
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F i g u r e  ( 5 . 6 . A  ): I-V characteristics of a symmetrical double-junction structure. 

Shown also the conductance. The limiting value of the line conductance is 

G=Gt/2. The current approaches a linear relationship (W V -V ^) ).
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F i g u r e  ( 5 . 6 . B ) :  The differential line conductance and average number of excess 

electrons at the central electrode of an asymmetrical double-junction structure:

^t2>>^tl’ Ci=C2-
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F i g u r e ( 5 . 7 ) :  Line conductance of a double-junction system calculated using the Birth- 
Death model (solid lines) and Monte-Carlo techniques (circles). A: V=0.2e/C,

B:V=0.5e/C and C: V=e/C
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C urrent

V/(e/C)

F i g u r e ( 5 . 8 ) :  I-V curves of a double-junction system and the number of soliton states 
(NSS) contributing to the conduction process in case of discrete energy levels at the 

central electrode: EF=7Ec, C/CQ=1 ,EX=3EC & AE=EC.

Vg/(e/C)

F i g u r e ( 5 . 9 ) :  Effect of the discrete energy levels at the dot on the conductance of the 
double-junction system; C/CG=1, E=0.5EC.
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Figure(5.10):Differential conductance of asymmetric 3-junction array: 
Rt3» R tl 2- Shown also the number of active soliton states. The symmetric structure 
exhibits the same shape for number of soliton states but less pronounced peaks for the

differential conductance.
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Figure (5.11): I-V characteristics of an asymmetrical three junction array.
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Chapter (6) 

Killer Processes

6.1 Introduction:

It was shown in chapter (2) that the Coulomb-blockade phenomenon and 

SET oscillations may be studied within a semiclassical model. The 

charging/discharging processes are represented by the classical capacitor 

charge/discharge curves; while the tunnel events are treated quantum- 

mechanically. The charge/discharge processes are represented by well-defined 

curves, if the initial and bias conditions of the circuit are known.

The semiclassical picture is extended in this chapter to cover the decay rate 

of the Coulomb-blockade state due to the thermal and quantum fluctuations. The 

macroscopic quantum tunnelling of the charge variable is also investigated using 

the same semiclassical approach. The acts of trapping/detrapping of single 

electronic charges near the junctions will also be treated in a classical way. The 

potential difference induced across the junction electrodes is calculated from 

simple electrostatic considerations.

6.2 General Model:

Several models have been used by different groups to study the 

characteristics of the single junction in the low-bias regime. Averin and Likharev 

(1986) and Likharev (1987) used a series RC circuit to represent the coupling 

leads and the tunnel junction and derived a Master Equation governing both the 

charge and tunnel processes. This technique was used in chapter (2) and a 

numerical solution was implemented and used to study the time evolution of the 

system. Girvin and co-workers (1990) used a transmission-line model where the 

line is characterised by a resistance, inductance and capacitance of r QJm, 1 H/m 

and c F/m respectively. The transmission line is then treated as a collection of 

harmonic oscillators. Cleland et al (1990 & 1992) adopted a simplified version of
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the full transmission-line model and used lumped components in place of the 

distributed parameters of the line. Hu and O'Connell (1992) used a similar model 

and assumed that the tunnel resistance does contribute to the total fluctuations in 

the circuit and treated the tunnel resistance as an ohmic resistance connected in 

parallel with the tunnel junction. Hu and O'Connell and Cleland et al used the 

quantum Langevin equation approach to evaluate the charge fluctuations in the 

circuit.

In the following sections, it is assumed that the circuit in the Coulomb- 

blockade region may be represented by a simple RLC model, where R is the line 

resistance, L is the total line inductance and C is the junction capacitance. The 

capacitance of the line is modelled as a lumped component at the input of the line, 

and is then absorbed into the junction capacitance and represented by the 

normalised capacitance, C.

Using circuit analysis it is straight-forward to show that the classical 

charging/discharging processes for this model circuit may be described by the 

following differential equation:

L^ l + R * l + ± - V = F 0 )  (6.2.1)
d t * d t C

where q is the instantaneous charge observed across the junction at time t, F(t) is 

the instantaneous noise voltage level, satisfying:

<F(t)>=0.

The evolution of the charge with time in the single-junction system under 

study is analogous to the motion of a particle of mass m in a potential U(x) in a 

medium of friction T|. The motion of this particle is described by the following 

differential equation:

d2x dx dU _
m - — + T}— + —-  = 0 (6.2.2)

dt 2 dt dx
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U ( q )

F i g u r e  ( 6 .1 ) :  Potential profile if the tunnel event is thermally activated. The event
takes place over the barrier.

U(q)

Figure (6.2): Potential profile in case of a Macroscopic Quantum Tunnelling event.
The event takes place through the barrier.
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It follows from direct comparison of (6.2.2) with (6.2.1) that the single­

junction system may be described by a particle of mass L moving in a quadratic 

potential in a medium of friction R. The potential, U(q), is given as:

It is clear that the point q=Q is the metastable point of the potential.

6.3 Thermal and Quantum Fluctuations:

The electron tunnelling rate from an electrode to another was derived in 

chapter (2). Formula (4.5.8) was shown to represent the tunnelling rate across any 

junction in a network of tunnel and non-tunnel junctions, provided that the 

electrodes have energy separation between the single-electron energy levels 

satisfying the relation: A « E C and hence, a continuum of states can be adopted. 

The thermal effects are included in this formula through the Fermi-Dirac 

distribution function; thus accounting only for the energy levels that may 

contribute to the conduction process. The charge fluctuations are completely 

ignored and the charge is assumed localised at q=Q. This expression for the tunnel 

rate is also used within the Master-Equation formalism, considered in section 

(2.3), and the charge fluctuations are accounted for in the charge distribution 

function, s(q,t).

A quantitative study of the effects introduced by the resistive and inductive 

elements can be performed by solving the quantum Langevin equation (6.2.1), e.g. 

Cleland et al (1990), which gives the fluctuations as:

U ( q ) = ^ r { q - Q ) 2 , Q=CV (6.2.3)

(6.3.1)

where Sv(cd) is the noise power spectral density given by:

(6.3.2)
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The integral in (6.3.1) can be evaluated using contour methods in the 

complex domains. The value turns out to be a sum of an infinite series. It is 

possible to find an exact analytical expression for the integral in the high- 

temperature limit. Cleland et al (1990, 1992) evaluated the fluctuations at low 

temperatures assuming that the zero-temperature approximation is adequate at low 

temperatures. It will be shown that their approximation leads to large errors when 

this approximate value is used to evaluate the total tunnel rate and the low-bias 

resistance.

In the low-temperature regime Sv(co) can be replaced by hR(o/n for co>co' 

where co' is some positive value for which coth(^co//2kBT )«l. The integration

(6.3.1) may be split into two parts, viz.:

co' 00
< q 2 > = j  +J  = /! + /2 (6.3.3)

0  CO'

It is now possible to evaluate an exact expression for I2 , and is found to be 

equal to:

The dependence of this term, I2 , on temperature appears in cut-off 

frequency ©'. This term is sensitive to variations of temperature for high values of 

p. The zero-temperature approximation used by Cleland et al and Hu and 

O'Connell assumes co'=0.

The first part of (6.3.3) retains the same integrand as in (6.3.1) and it may 

be evaluated using numerical methods. Splitting the integration into two parts

(6.3.4)

where

and
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allows the investigation of the thermal effects on the low-bias properties. The 

charge fluctuations obtained using this method is always greater than the zero- 

temperature approximation (co'=0) used by Cleland et al and Hu and O'Connell. 

The low-bias resistance, R0, is therefore less than the value obtained in the T=0 

approximation. It is to be pointed out that the low-bias resistance is a strong 

function of the charge fluctuations, <q2>, which is in turn a function of 

temperature and it will not be a fair approximation to use the zero-temperature 

value at all low temperatures.

Let the charge fluctuations at any temperature, a 2(T), be represented by an 

equivalent temperature, Te, such that:

a 2(T)=kBTeC (6.3.5)

The equivalent temperature satisfies Te^T; and the equality holds in the 

high-temperature limit where the charge fluctuation is given by the classical value 

kBTC, which is used within the Master-Equation formalism , section (2.3).

At finite temperatures, a system that is biased inside the Coulomb-blockade 

region picks up energy from the thermodynamic fluctuations of the environment. 

If the electrostatic potential energy is overcome by the energy gained from the 

environment then there is a finite probability that an electron will tunnel through 

the dielectric barrier.

The behaviour of the charge variable during the motion can be divided into 

two sections, viz.:

a. the region |q |< e/2  where tunnelling is completely blocked due to the 

Coulomb interactions,

b. the region | q | >e/2 where tunnelling of a single electron is possible.

The behaviour in the region q>e/2 is described by the stochastic nature of 

tunnelling; i.e. a junction that is driven from its metastable state, q=Q, to q>e/2 

will allow a tunnel event to occur during a short time, At, with a probability 

equals to T(q)At, see figure (6.1). The total probability of decay of the blockade 

state due to the charge fluctuations can thus be obtained by summing the
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contributions of all charge levels outside the Coulomb-blockade region. The total 

forward tunnel rate in case of a charge packet defined by the distribution s(q,T) is 

then equal to:

The charge density can be modelled by a gaussian function, e.g. Schon 

(1985), characterised by a mean Q and a variance of CT2(T)=<(q-Q)2>=kBTeC. 

Results obtained by numerical integration of (6.3.6) show that the tunnel rate, in 

the low-bias regime and at Te« T c, decreases exponentially with decreasing Te. 

The noise removes the sharp discontinuity in the I-V characteristics, at the critical 

voltage, and hence a non-zero conductance will be observed inside the Coulomb- 

blockade region. In the high-temperature regime, the charge fluctuations change 

linearly with temperature ; and increasing the temperature above the critical value, 

Tc, tends to wash out, and eventually remove, the Coulomb gap and an ohmic I-V 

relationship is regained.

The effectiveness of the Coulomb-blockade state in the presence of 

fluctuations is reflected in the low-bias conductance or resistance. The ideal 

junction is one that presents an infinite resistance in the circuit if the charge on 

that junction is less than half the electronic charge. The fluctuations will cause 

random tunnel events across the junction and will, therefore, reduce the 

resistance.

The conductance in the Coulomb-blockade region can be evaluated from 

the total current due to the noise. This current is simply given by:

oo
(6.3.6)

i = e

from which the conductance is evaluated as:
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<3(Q)-C| -

c;SHrw - K
q-Q 2 \

+ (q + Q)exp q+Q 2 \
dq

(6.3.7)

where K=Ec/kBTe. Figure (6.6) shows the dependence of the junction conductance 

on the applied terminal voltage. The conductance asymptotically approaches the 

classical value at high voltages; and attains the maximum level faster in the low- 

temperature regime. At TJTQ&1, the conductance is equal to ~0.75Gt inside the 

Coulomb-blockade region and increases slowly towards the G=Gt limit; the I-V 

relationship approaches the ohmic behaviour at T>TC.

In the regime Tc/T » l ,  T(q) may be replaced by its value at zero 

temperature and the thermal contribution can be retained in the distribution 

function. The integral (6.3.1) then evaluates to:

( t
V

2\
- k(

1 V J
Gt,dq +  p=.exp

2 e

2 \
(6.3.8)2CVSk

Inside the Coulomb-blockade region, | Q| « e /2 , the first term in (6.3.8) is 
vanishingly small and the second term approximately gives the rate of thermally 
excited events. This is written as:

T » —  exp
2CVttk

- k

l2\

Gt=  7=exg
2CV71K

U( e / 2p  

kBTe J
Q « e /2  & k» 1 (6.3.9)

The zero-bias conductance is approximately given by:

Bi
G° = C ^ \  = Gt J— exp ,k » 1= Gt j

K f  K >— exp A
(2=0 ' n \

(6.3.10)

which indicates a fast decrease in the zero-bias conductance with decreasing 

temperature, e.g. with k=50 the conductance has the value Go»1.5xl0"6Gt.
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Relation (6.3.9) is similar to the well-known Kramer's rule for tunnelling at 

temperature T across a barrier of height VQ: rate

The effect of the environment on the low-bias characteristics is clearly 

observed in figure (6.7). The noise power spectral density (6.3.2) indicates that 

the total fluctuations in the circuit increase with the increase of the external 

resistance (as this resistance is the source of the noise). It is also this resistance 

that effectively reduces the total average fluctuations that are monitored across the 

tunnel junction.

The method suggested here for calculating the fluctuations gives improved 

agreement with experimental data. The high-resistance single junctions studied by 

Cleland et al are reported to have the following parameters: C=5fF, L=4.5nH, 

R=130KQ and the measurements were carried out at T=20mK. The method of 

splitting the integration gives a ZBR of RJRf=4.7; in good agreement with the 

experimental result of Ro/Rt=4. The zero-temperature approximation gives 

R0/Rt=7 and <q2> is 22% less than the value obtained using (6.3.3).

Hu and O'Connell (1992) treated the tunnel resistance of the junction as an 

ohmic resistance and used the zero-temperature approximation to find the ZBR of 

the above-mentioned junction as Ro/Rt=3.75.

The zero-bias resistance (ZBR) of the single junction increases with the 

increase in the impedance of the environment. This is the result of the reduced 

total averaged noise power delivered to the junction. For moderate values of p, 

e.g. p=3 and 10 corresponding to R=30K£2 and 100RQ respectively, the 

fluctuations vary slowly with temperature and the ZBR saturates at low 

temperatures indicating a weak dependence of <q2> on T. For p » 2 , the 

fluctuations are linearly related to temperature, Te»T, and the ZBR increases 

exponentially with the decreasing temperature, indicating that the noise in this 

regime is dominated by the thermal fluctuations.
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With low external circuit impedance, the discrepancy between the two 

schemes is small, e.g. for R=9KQ, the difference in <q2> is only 0.4% and 

Ro/Rt= l .17 is obtained for this junction compared with the experimental value of 

1.3. The data presented by Cleland and co-workers shows that the quantum 

Langevin approach allows good predictions for junctions with high tunnel 

resistance coupled to a high impedance environment.

6.4 Charge Macroscopic Quantum Tunnelling:

The fluctuations of the charge variable due to quantum and thermal noise in 

the environment were investigated. These fluctuations give rise to the increase of 

the junction energy and the system will oscillate along the potential profile around 

the metastable minimum. The quantum Langevin approach showed that the low- 

bias conductance decays exponentially with decreasing equivalent temperature. At 

Te«0 K, formula (6.3.9) gives a negligible escape rate from the metastable state 

q=Q, for | Q | <e/2, and the charge will be localised at q=Q. The principal 

mechanism by which the system can leave the metastable state in this regime is the 

quantum tunnelling of the charge variable through the electrostatic barrier. The 

electron has to tunnel not only through the barrier associated with the insulating 

region between the electrodes but also through the barrier arising due to the 

Coulomb interactions.

Quantum fluctuations of the charge will have the dominant effect in the 

low-temperature regime when kQTe« h (o J 2  where escape rate due to thermal 

fluctuations can be ignored. Quantum tunnelling of the charge takes place through 

the barrier (not above the barrier) when ĉ0 o/2 <U(e/2 ); which defines the range of 

validity of the following analysis.

Equation (6.2.1), governing the classical evolution of the charge, represents 

the motion of a particle of mass L attracted to a fixed centre, q=Q, by a force 

F=q/C (Hook's law). This is a typical linear harmonic oscillator system; the 

Schrodinger equation for which is:
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ft2 dV 1
2C

-■+— ( q - Q ) 2v  = EY  
2L dq2

(6.4.1)

The solution of the above equation is a well-known result, e.g. Bransden 

and Joachain (1989); the wave-fimctions are expressed in terms of the Hermite 

polynomials, viz.:

'vn(‘l) = (,J%i2nn'] ^ exp
(

a r g - Q ) 2 ]
H n

f

V c c ( q ~ Q \  \

2V {  e  )  j V I  e  J )
(6.4.2)

where a=2Ec/h(o0. The energy spectrum of the system is given by the set 

E n = ( " + K K > ,  n=0,l,2,...

Let the system be at the ground state n=0; the wave-fimction is then given

by:

¥ o ( ‘?) =
a

K \e  n j

Yi
exp

(  ,  ^2\  <x( q - Q \

\
(6.4.3)

/

The probability density, p(q), can be calculated from the wave-fimction in 

the usual way:

p(q)= I V0(<l) 12 (6-4.4)
which is a gaussian distribution function. The fluctuations of the charge level can

be calculated from the distribution function, giving:

<(q-Q)2>=ft©0C/2 (6.4.5)

The above analysis is valid only in the absence of dissipation, R=0. Finite 

external resistance dampens the charging/discharging processes and reduces the 

quantum fluctuations. When the charging process is completed the charge variable 

will be localised at <q>=Q.

In the case of no dissipation, R=0, the quantum fluctuations cause the 

system to oscillate in a charge region Q±e in the classically allowed region, where 

e is given from the relation: Ch(oQ=e2. The fluctuations may drive the charge 

variable to q>Q+£ and the system will spend some time below the barrier. An
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electron may tunnel from one side of the junction to the other (with probability = 

rxAt) if the system spends a time At at the state q>e/2, thus causing the system to 

escape from its metastable state. The exit point in this case may be defined by the 

set {q'—»q'-e}. The quantum fluctuations are responsible for the transition, below 

the barrier, from Q to q’ and the possible tunnel event eventually takes the system 

to the state q'-e. The recharging process takes the system back to the metastable 

state, q=Q, in a finite time determined from the classical charging curve. The total 

escape rate from the metastable state is therefore given as the sum of the 

contributions of all states satisfying q>e/2, viz.:

where T(q) is the zero-temperature tunnelling rate. It is straight forward to use the 

same method implemented in section (5.3) to show that the tunnel junction at zero 

temperature will have a non zero conductance, Gm, given by:

where a=2E0/ftco0. The dependence of Gm on the ground-state energy, /zcOq/2, is 

similar to the variation of the conductance with the thermal energy. The 

conductance decreases exponentially with the ratio a; in other words, the

because the inductance, L, plays the role of the mass attached to the string. If the 

inductance of the connecting leads satisfies the relation a » l ,  the quantum 

fluctuations will be equivalent to the thermal fluctuations at an equivalent 

temperature Te defined by the relation:

oo

(6.4.6)

/2

(6.4.7)

conductance decreases exponentially with increasing 4~L. This is expected

k BT Q=h(oJ2 (6.4.8)
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The single-junction circuits studied by Cleland et al (1990) are reported to 

have capacitances «4fF and inductances in the connecting paths of the order of 

4.5nH. Ignoring the dissipative elements in the circuit, the quantum fluctuations 

are equivalent to a temperature of Te=0.9K corresponding to the value a=0.26, 

which indicates that the quantum fluctuations are higher than the charging energy 

and the charge-MQT can not be observed in such circuits. The quantum 

fluctuations are dominant at the low-temperature regime; and are responsible for 

the fixed low-bias conductance.

It has been argued that the tunnelling electron will probe the 

electromagnetic environment that lies in an area of some radius around the 

junction. Thus, a tunnelling electron will be affected by the environmental modes 

in this area and will excite some modes as well. Devoret et al (1990) studied the 

transport characteristics in an R-L environment taking these modes into account 

and found the tunnel rate in the case of zero dissipation as:

where nmax corresponds to the highest excited mode. The above equation suggests 

that the differential conductance displays a series of steps located at voltage levels 

Vn=n/z cOo/e. At low voltages the I-V curves will be dominated by the mode n=0 

corresponding to the elastic channel and the differential conductance is estimated

6.5 Effect of External Resistance:

The problem of tunnelling in a dissipative medium was studied by Caldeira 

and Leggett (1981 & 1983) and Waxman and Leggett (1985). It was shown that 

the effect of dissipation in a circuit is to suppress the tunnelling process in that

that interact with the system. The tunnelling rate out of the metastable state into 

the continuum of states is calculated using path integral methods. Ford et al

(6.4.9)

from this model to be Gd  =  G, exp( - a  /2 ) .

circuit. The dissipative environment is treated as a collection of linear oscillators
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(1988) also studied the tunnelling process through a local maximum of a potential 

barrier in the presence of dissipation using the quantum Langevin equation 

approach. They assumed that the dissipative system can be replaced by a non-

This technique resulted in the same conclusion: the dissipative element tends to 

reduce the macroscopic quantum tunnelling rate.

The potential profile studied here is well defined in the range (-e/2,e/2). 

For charges satisfying: | q | >e/2, the potential is modified due to the stochastic 

nature of tunnelling. A tunnel event at q' takes the system from the point q=q' on 

the potential (6.2.3) to the point q=q'-e on the same potential. Subsequently, the 

system moves classically on the potential profile and the behaviour can be 

determined by the charging curves of a normal capacitor.

Let it be assumed that it is possible to replace the potential profile in which 

the charge variable moves by an equivalent continuous cubic potential satisfying at 

least the conditions:

where U'(q) is the modified potential, q̂  is a value of the order of e/2 and ^  is the 

charge level at which tunnelling is most likely to occur. The value ^  is obtained 

from (6.4.6) as:

Under the new potential, the exit point, {q'—>q'-e}, is replaced by a single 

exit point, viz. q\ Such an approximation was used by Averin and Odintsov

(1989), on dealing with the charge macroscopic quantum tunnelling in Josephson 

junctions where the potential profile is basically quadratic. Caldeira and Leggett

dissipative system if a modified potential is used in place of the original potential.

U(q)» U'(q) , q<qi; 

and U(Q)=U’(qm)

(6.5.1)

If U(e/2)»/jc0o/2 then
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(1983) showed that the dissipative element in a cubic potential will reduce the

tunnelling rate by a factor « e x p  , where £ is a factor of the order unity

and Aq is the distance under the barrier. For the model under study, Aq is given 

by:

Aq = | - Q + - ^ ^ £ -  , Q « e /2  (6.5.2)
2 e /2  —Q

The suppression factor in the low-bias regime is approximately given by

r e2RA
e x p

V 4 h y 

(1990), viz.:

which is comparable to the exponential term obtained by Devoret et al

r D =
e C  r(2 +  r ) v  2 e  )

_  G tQ  1 ( T trQ Y  e " R
e x p (6.5.3)

5.44/^

where r=R/Rq and T(x) on the RHS is the gamma function. The relation (6.5.3) 

above suggests a weak power-law zero-bias anomaly, dl/dV^V1-.

Averin and Odintsov (1989), treated the tunnel term in the Hamiltonian 

(2.3.4) as a perturbation term and showed that the tunnel rate in the regime 

R « R q , for small voltages is expressed by:

_ G tQ 1 (w Q )r

T a d ~ ^ t ^ ) U )  ( 6 -5 ' 4 )

which is similar to (6.5.3) in the limit of vanishing dissipation and identical zero- 

bias anomalies are obtained.

6.6 MQT in Multi-Junction Arrays:

The charge-MQT in a multi-junction system is an important process that 

should be carefully considered if the system is to be used in digital logic circuits. 

At voltages less than the threshold voltage, a tunnel event across any junction will 

result in an increase in the total Coulomb energy of the system and, therefore, the 

event is classically suppressed by the Coulomb interactions. However, the thermal
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fluctuations can cause a tunnel event despite the Coulomb gap as explained for the 

single junction. Any junction may be treated as an isolated single junction probing 

an environment of total impedance Z(co). The total tunnel rate across this junction 

can be evaluated in a way similar to that discussed in section (6.3) where it was 

found to decrease exponentially with the decrease in temperature. Therefore, the 

decay of the Coulomb-blockade state due to thermal noise can be neglected if 

T « T C.

In an array of N tunnel junctions, at low temperatures, the quantum 

fluctuations of the charge across each tunnel junction can cause simultaneous 

tunnel events across each junction. This is equivalent to a single-electron tunnel 

act through the whole array. It was shown by Averin and Odintsov (1989) using 

the quantum golden rule that the inelastic charge-MQT rate through the array of N 

tunnel junctions may be expressed as:

which suggests that the charge-MQT rate in an array of identical junctions 

decreases as the N-th power of Gt/GQ. Longer arrays are more reliable than

MQT has been observed by Geerligs et al (1990) in a double-junction 

configuration. Their data showed reasonable agreement with the inelastic charge- 

MQT formula given above which predicts an I-V relationship of the form I«V 3 

inside the Coulomb-blockade region. Elastic charge-MQT is predicted to result in 

a current that is linearly related to V. This has been observed by Hanna et al

In chapter (3) the double-junction system -the turnstile- was studied as a 

candidate device for a memory element in logic systems. The charge-MQT 

presents a menace that will degrade the reliability of this device. It was mentioned 

above that increasing the tunnel resistance would result in enhanced suppression of

Ta o W (2V -1)!

shorter arrays and the low-bias anomaly has the form oĉ 2N 2- Charge-

(1992).
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MQT events. On the other hand, this increased Rt would impose a longer waiting 

time, at the Store and Retrieve states, to ensure that the required event will occur 

during that period (with a high probability).

Series resistive components in the turnstile circuit were proposed to favour 

the occurrence of the wanted events and dramatically reduce the chances of the 

unwanted events. Fortunately, resistive elements in the turnstile circuit tend to 

suppress the MQT of the charge.

Golubev and Zaikin (1992) used the Caldeira-Leggett formulation to show 

that in the presence of a dissipative element the tunnel rate across an array of N 

tunnel junctions is given by:

6.7 Charge Trapping Effects:

It was shown that the conductance of a multi-junction system is greatly 

affected by slight changes in the gate potential. This is due to the modulation of 

the potential of the inner nodes with respect to the fixed-potential outer nodes. A 

system will also be affected by other systems if mounted on the same chip; the 

degree of coupling being dependent on the stray capacitances between adjacent 

nodes, Roy (1992).

Modulation of the potential at the nodes may be caused by single charges 

being trapped or released in the vicinity of the nodes. This process has been 

studied in semiconductor devices. The charge trapping/detrapping in the 

semiconductor-oxide interface of MOSFETs is responsible for the 1/f noise 

observed in the drain current of the device, e.g. Reimbold (1984) and Uren et al 

(1985). When a trap centre is charged it acts as a scatterer producing a change in 

the channel conductance. In short devices, with few trap centres, the phenomenon

rGZ(A0
T (2N + r/2 )
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F i g u r e  (6.3): The distribution of the induced charges at the three segments of the one­

dimensional electron gas due to a single electronic charge located at P. Shown also 

the induced potential difference between the electrodes.
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is seen as a telegraphic noise superimposed on the current through the channel, 

Ralls et al (1984) and Skocpol (1986).

The effects of single trapped charges at the surface of, or inside, the 

material on which single-electronic devices are built are studied here with 

reference to the double-junction structures used by Meirav et al (1990), see section 

(3.2). Current flow takes place through the electron gas at the GaAs-AlGaAs 

interface. The negative bias on the top gates depletes the electron gas beneath 

these electrodes and creates a one-dimensional electron gas. The experiments 

carried out on these structures showed that the behaviour of the device changes 

each time the device is cycled to room temperature and back to low temperatures. 

The changes are visible in the conductance oscillation peaks and positions of the 

peaks. The variations may be explained in terms of charges being permanently 

trapped at the surface of the semiconductor.

The conducting channel is modelled as a conducting line divided by the 

tunnel barriers into three segments: left, central and right. The left and right 

portions are connected to the voltage source and will always be held at fixed 

potentials. The potential of the central segment is controlled by the GaAs 

substrate potential. Single trapped charges will modify the potential of the central 

1-DEG and hence affect the characteristics of the device.

Let a single electron be trapped at point P at a distance d from the 1-DEG. 

The circuit may be investigated under zero-bias conditions: V^=Vr=Vg=0, and the

conducting channel is assumed to be independent of the voltage sources, i.e. the 

three-segment structure shown in figure (6.3) will be preserved under these 

conditions. The trapped charge at P will induce charges on the left and right 

segments which are assumed to be evenly distributed on each segment creating 

charge densities of and pr on the left and right segments respectively. The

central electrode develops zero net charge, but will be polarised as shown in the 

figure.
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p  C / m

Figure (6.4): Electric field strength due to a uniformly distributed charge

Let E i ,  E r  and E m  be respectively the electric field strength at a point (e.g. 

A) due to the left, right and central sections of the 1-DEG. The total field strength 

at this point (A) in the direction RP is then calculated as:

Epp = ------- - +  iKEl + Er +  Em). uRP (6.7.1)
47i£\r

where is a unit vector in the direction RP and x is measured from P. Similar 

expressions are readily obtainable for the fields in the directions LP and MP.

Consider a uniform distribution of charge (p C/m) on a line of finite length, 

L  The field strength in a direction making an angle a  with the line at a point A, 

figure (6.4), can be obtained from Coulomb's law as:

£ a = T ^ - r ( sin(02 - a ) - sin(0 i - a ) )  (6.7.2)471 m

where d is the distance between the point and the line, 0! and 02 are defined as in 

the figure. This relation can be used to evaluate the field strength (at any point in 

space at any direction) due to the induced charge distribution. The fields due to 

the left and right segments are obtained directly from relation (6.7.2). The central 

segment can be divided into two sections each with a different charge density and 

different 0's.

Under the zero-bias conditions considered here, the left and right segments 

of the 1-DEG will lie on an equi-potential surface. The distribution of the charge

140



on the channel can be obtained by equating the potential differences between the 

trap centre and the left and right segments:

where r* is the radius of the 1-DEG. The induced potential difference between the 

outer and central segments is then calculated as:

Figure (6.9.A) shows the variation of the induced potential difference, Vi„d. 

as a function of the location of the trapped electron on the surface of the (Meirav) 

double-junction system. The parameters of the device are ^=^r=ljim, m̂=0.8jnm, 

d=50nm. The capacitances are taken to be C=Co=10aF. The critical voltage with 

no trapped charges is 4mV. The induced voltage attains the extreme values when 

the trapped electron is located nearest to any of the three segments. The induced 

voltage modifies the p.d.'s across the left and right junctions; the critical voltage is 

then related to the induced voltage by:

For an induced p.d. greater than e/2Cj, an electron can tunnel into or out 

from the central segment, thus changing the charge distribution on the electrodes at 

the zero-bias condition. The critical voltage is then given as:

Figure (6.9) indicates that an electron trapped nearest to the central segment 

induces the maximum negative potential difference between the outer and central 

electrodes and the critical voltage is then minimum, (0.3 mV). Increasing the 

separation between the 1-DEG and the semiconductor surface reduces the induced

R

(6.7.3)

(6.7.4)

(6.7.5)

! |Vindl>e/2CT (6.7.6)
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p.d. between the segments and hence reduces the variability of the critical voltage. 

Figure (6.9.B) shows the variation of the critical voltage for a device with 

d=100nm. The device is found to have a critical voltage varying in the range (2.5- 

5.3mV) and is clearly less sensitive to the single trapped charges when compared 

with the previous device (d=50nm and in the range 0.3-5.3mV). The data 

shown in figure (6.9.C) is taken for a similar device with d=100nm but the 

capacitance is chosen as C=C0=laF. The device is more stable 

(37mV<Vth<44mV).

It is clear from the above analysis that the performance of the double­

junction system is sensitive to single charges being trapped near the electrodes. 

The behaviour is also a function of the exact location of the trapped charge and 

the geometry of the system. In the above arguments, only negative charges were 

considered. However, the extension to cover positive charges is straight-forward 

and similar results are expected. The induced p.d.'s are of the same magnitude as 

the p.d.'s due to negative charges. The effect on the critical voltages can be 

obtained using relations (6.7.5 & 6.7.6).

Trapping a charge while the system is in operation will shift to a new 

level and this will either (a) switch the device on, (b) switch the device off or (c) 

cause a change in the current that is already passing through the device (in general: 

IocflVl-Vtn) if | V |>V ^ . The acts of trapping and detrapping single electronic 

charges in localised trap centres produce telegraphic type of noise in the current 

passing through the device, similar to the noise in short channel MOSFETs; see 

e.g. Skocpol (1986). The behaviour depends on the initial state of the system and 

the location of the trapped charge. The trapping/detrapping processes are of prime 

importance if the device is intended to be used in logic circuits.

The effect of surface trap centres on single electronic systems has been 

studied by Asenov (1993) on a system of metallic particles deposited on p-type 

silicon, figure (6.5.A). It is assumed that the effects may be determined if the 

capacitances of the junctions, which are modified due to the presence of the
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trapped charges, are known. The trap centres are assumed to lie in the middle of 

the band gap. The potential profile is determined from the self-consistent solution 

of Poisson's equation for the system.

40nm 12nm

Figure(6.5): a: Model used to determine the effects of surface charges on the 

metallic quantum dot structures, b: Modified structure to reduce the effects.

Asenov has shown that the capacitance between the metallic dots remains 

fairly unchanged in the presence of both donor and acceptor surface states (of 

concentration = 1010/cm2). The capacitance to ground, CG, is found to be constant 

in the presence of donor states while it is (~25%) higher with acceptor surface 

states. It was also suggested that the capacitance to ground may be stabilised by 

using etched structures similar to those shown in figure (6.5.B), see Roy et al

(1993).

Finally, it must be pointed out that such results reflect only the average 

expected properties of these arrays. Solution of Poisson's equation in the presence 

of single or few trapped charges will be required to determine the exact effects of 

these charges.

6.8 Killer Processes and the Traffic Model:

The decay of the Coulomb-blockade state due to the several processes 

mentioned in this chapter can be easily embodied in the Traffic Model discussed in
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the previous chapter. The effect of thermal and quantum fluctuations at any bias 

condition is to modify the tunnel rate from a given node to the other (normally, 

rate in presence of thermal and quantum fluctuations > rate with no fluctuations). 

The modified tunnel rates simply replace all rates defining the parameters of the 

Traffic Model. Similarly, the charge trapping/detrapping effects can be 

accommodated in the model, except that the tunnel rate may increase or decrease 

according to the type and location of the trapped charges.

A macroscopic quantum tunnel event in a multi-junction system (e.g. array) 

is accomplished by several tunnel events taking place simultaneously. Such an 

event will leave the state of the system unchanged. A system that is initially found 

at state \\!x will leave this state and enter other states with different probabilities 

that can be calculated by solving the traffic equations. However, there is also a 

non-zero probability that the system will re-enter the same state at a rate that is 

equal to the charge-MQT rate, i.e.

H'/i =

and the occupancy of states are then calculated in the usual way.

Summary:

The thermal and quantum fluctuations have been studied using the 

Langevin equation approach. The fluctuations are calculated using an accurate 

numerical technique and proved to yield better agreement with experimental data. 

It is shown that the low-bias resistance is enhanced when the junction is coupled to 

the source via a higher impedance environment. The charge-MQT is investigated 

and shown to decrease exponentially with dissipation in a single-junction circuit.

The effect of charges being momentarily or permanently trapped in the 

vicinity of tunnel junctions is found to have detrimental effects on the performance 

of the circuit. The effects can be reduced by keeping the junctions away from the 

surface and by using high quality materials, with the minimum possible trap 

centres.
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Figure (6.6): Effect of temperature on the conductance of a single tunnel junction.

k = 1,10,20,50 and 100.
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Figure(6.6A): Conductance of the single junction due to the macroscopic quantum 
tunnelling of the charge variable: a=2Ec//zcoo=l,10,20,50 & 100.
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Figure (6.7): Effect of the environmental impedance on the zero-bias resistance of a 
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Figure (6.8): Variation of zero-bias resistance with temperature: C=0.5af, L=5nH,

Rs=30,100 and 300kQ.
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Conclusion

In this thesis a new technique to model the steady-state behaviour of single- 

electronic systems has been introduced. The technique was successfully used to 

study the properties of the double-junction structure and linear arrays of tunnel 

junctions. It is to be emphasised that the technique formulated in chapter (5) is 

quite general and is applicable to any network of normal tunnel junctions. 

Tunnelling dynamics in networks of superconducting tunnel junctions may also be 

studied within this new formalism.

Although the Traffic Model has been extensively used to study the flow 

of messages and calls in communication systems, it was largely ignored in other 

fields. In fact, this method seems promising in areas where the systems under 

study contain few interacting or non-interacting objects and can be found in finite 

and well-defined set of states. It can be used, e.g., in modelling transport in 

systems where few electrons are involved in the process.

Another important feature of the new technique is that it allows the most 

probable evolution of the system to be determined. This is crucial in systems 

where the single-electronic device is intended to control other events in the 

system according to a given input. The technique helps study these events in the 

time domain and the possible delays in the circuit can thus be obtained.

Some single-electronic devices are shown to function efficiently and 

effectively as switching elements in analogue circuits. On the other hand, their 

performance in digital circuits is not very promising. This is due to the high 

sensitivity of these devices to slight changes of the potential at the electrodes. It is 

possible to dramatically reduce the thermal and quantum fluctuations in single- 

electronic circuits, viz. by keeping the operational temperature much lower than 

the critical temperature and by coupling to a high impedance environment. The 

charge-macroscopic quantum tunnelling process is another fatal process that
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should be carefully considered. It is shown that this process can be reduced by the 

addition of resistive components to the circuit.

Charges being momentarily or permanently trapped in the vicinity of the 

electrodes are shown to introduce the most severe effect in the circuit. The other 

fluctuations; viz. thermal and quantum fluctuations, cause occasional tunnel events 

(in the Coulomb-blockade regime) while the basic behaviour is preserved. 

Trapped charges change the overall characteristics of the system. It is shown that 

the effect, in turnstile circuits, is manifested as a shift in the threshold voltage of 

the device. This, in effect, shifts the I-V characteristics of the device and the 

current is either increased or decreased depending on the type of the trapped 

charge and its location. The device may also change is state.

Elimination or reduction of the effects of trapped charges can be achieved 

by using high quality materials and by keeping the (tunnel and non-tunnel) nodes 

away from the surface. The method used to calculate the effects of the trapped 

charges at the surface of (or inside) the device is an approximate method that gives 

a qualitative idea about the induced potential difference between the electrodes 

and hence the modified critical voltage. An accurate technique would be the self- 

consistent solution of the Poisson’s equation in the presence of the trapped 

charges.
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Appendices

Appendix (A): Coefficients o f the set of equations (2.4.20)

To simplify the calculations the following transformations are used:

Q=qe, t=RsCx; giving 7(f) = — i(x)

where q and t  are dimensionless quantities. The coefficients are then obtained as:

A2 = -A lAt
A = — r2 1 2 2

fi.=- At D
b2= - s ,

Q  = 1 -
At

1 +  Y — — -
p 2D

A q (A<7 ) 2
C2 =1 +

At
1 +  Y ------------

G 2D
M  (A?)2

_ At
A = -----1 2

G D 
+ ■

A? (A<7)2

At£, = — r. 
1 2 1

where

D2 =-D,

E2=-E,

k  T V  R
y = r3+r4, G = q - q - i ( t ) ,  D = -4—  and|3 = -^ .

Appendix(B): Linear Programming relations for the operational areas of the 

undamped turnstile:

Clocking-in Phase:

At bias voltages Vg, Vr and Vj, using the transformation,

u=-±-{cvr - ( c + c 0)Vi+c0vg}
CT

V = T~{(C + C0)vr -C V i-C 0Vg}
CT

the voltages and V2 can be written as:
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Vi(».) = u - n f a  

V2{n) = v + n</CT

The first phase of the clocking cycle requires only one event to take place; 

while all other events are to be blocked, see FSM model shown in figure (3.7). 

This event is chosen to be T(L,M,0). Using the transition conditions defined in 

equation (3.3.2) together with the transformation defined above, the following 

relations are obtained,

Clocking-out Phase:

In Phase-II, Vg2  is to excite the excess electron already stored at M to 

tunnel through the RHS junction and the event is therefore T(M,R,1). Again, all 

other events should be blocked. Using the same transformation mentioned above, 

the following set of relations should hold:

7. T{R,M,  l) -» v> —

2 CT
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Appendix (C): Damped double-junction system:

In this case the tunnelling electron senses the change of the charge on the 

junction through which the event is performed. Using the strict local limit (critical 

charge=e!2) the following set of relations is obtained:

Clocking-In Phase:

The required event is T(L,M,0) and all other events should be eliminated.

Clocking-out Phase:

The event expected to take place here is T(M,R,1). The most important 

relations in this case are given below:
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