Computing Science
Ph.D Thests

UNIVERSITY
of
GLASGOW

Projection-based Program Analysis

Ker Davis

Submitted for the degree of

Doctor of Philosophy

©1994, Kei Davis

ProQuest Number: 13818517

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

Inthe unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13818517

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

AL

lcLascow
UNIVERSITY
LIBRARY

Abstract

Projection-based program analysis techniques are remarkable for their ability to give
highly detailed and useful information not obtainable by other methods. The first
proposed projection-based analysis techniques were those of Wadler and Hughes for
strictness analysis, and Launchbury for binding-time analysis; both techniques are
restricted to analysis of first-order monomorphic languages. Hughes and Launchbury
generalised the strictness analysis technique, and Launchbury the binding-time analy-
sis technique, to handle polymorphic languages, again restricted to first order. Other
than a general approach to higher-order analysis suggested by Hughes, and an ad hoc
implementation of higher-order binding-time analysis by Mogensen, neither of which
had any formal notion of correctness, there has been no successful generalisation to
higher-order analysis.

We present a complete redevelopment of monomorphic projection-based program
analysis from first principles, starting by considering the analysis of functions (rather
than programs) to establish bounds on the intrinsic power of projection-based anal-
ysis, showing also that projection-based analysis can capture interesting termination
properties. The development of program analysis proceeds in two distinct steps:
first for first-order, then higher order. Throughout we maintain a rigorous notion of
correctness and prove that our techniques satisfy their correctness conditions.

Our higher-order strictness analysis technique is-able to capture various so-called data-
structure-strictness properties such as head strictness—the fact that a function may
be safely assumed to evaluate the head of every cons cell in a list for which it evaluates
the cons cell. Our technique, and Hunt’s PER-based technique (originally proposed
at about the same time as ours), are the first techniques of any kind to capture such
properties at higher order. Both the first-order and higher-order techniques are the
first projection-based techniques to capture joint strictness properties—for example,
the fact that a function may be safely assumed to evaluate at least one of several
arguments. The first-order binding-time analysis technique is essentially the same as
Launchbury’s; the higher-order technique is the first such formally-based higher-order
generalisation. QOurs are the first projection-based termination analysis techniques,
and are the first techniques of any kind that are able to detect termination properties
such as head termination—the fact that termination of a cons cell implies termination
of the head.

A notable feature of the development is the method by which the first-order analysis
semantics are generalised to higher-order: except for the fixed-point constant the
higher-order semantics are all instances of a higher-order semantics parameterised by
the constants defining the various first-order semantics.

Acknowledgements

Thanks are due to several individuals and institutions; in order of their first involve-

ment:

e J. Mack Adams, for my first exposure to FP, and for catalysing my move to
Oxford;

e Philip Wadler, for my first involvement in FP research (at Oxford), and acting

as first supervisor (at Glasgow);

¢ John Hughes, for suggesting that I come to Glasgow, helping to get me here,

and acting as second supervisor;

e Committee of Chancellors and Vice Principals of the Universities of
the United Kingdom, for financial support (Ref. ORS/88/7022);

¢ Snell Committee of the University of Glasgow, for financial support;
e John Launchbury, for his open-door policy, FP wisdom, and sound advice;

e Keith Van Rijsbergen, for his benign influence on postgraduate welfare.

Kei Davis

February 1994

Contents

1 Introduction 1
1.1 OVeIVIEW o o e e e e e e e e e e e e e 2
1.2 Program Analysiso oo 2
1.3 Strictness Analysis o oL 3

1.3.1 Earlierwork 5
1.4 Termination Analysis L. 9
141 Earlierwork 10
1.5 Binding-time Analysis 11
1.5.1 Earlierwork 11

2 Domains, Functions, Projections, and Predicates 13
2.1 Domains e e e 13
2.2 Monotonicity, Continuity, and Inclusivity 14
2.3 Projections and Embeddings 0L 16
2.4 Domain Construction 17
2.5 Recursively Defined Domains 19

2.5.1 Defining continuous functions 21
2.5.2 Defining inclusive predicates 22
2.5.3 A simple recursively-defined predicate 23
2.5.4 A moregeneralapproach 28

3 Analysing Functions with Projections 33

3.1 Backward Strictness Abstraction 37
3.1.1 Analysis of lifted functions, 45
3.1.2 Stability and backward analysis 50
3.1.3 Functions of several arguments 54

3.2 Forward Strictness Abstraction Y
3.2.1 Relating forward and backward strictness abstraction 60

3.3 Forward Termination Abstraction 62
3.3.1 Analysis of lifted functions 62

3.4 Backward Termination Abstraction 63

3.5 Discussion and Related Work 64

il

Contents

4 Source Language and Standard Semantics

4.1

4.2

4.3

4.4

5.1
5.2

5.3

0.4

5.5

Source Languages e

4.1.1 The lazy lambda calculus
4.1.2 Expression language
413 Typing o o v i
SemantiCs i . e e e e e e e e e e e e e e e e
4.2.1 Domain definitions L.
4.2.2 Expression semantics

4.2.3 A generic expression semantics. L. L
4.2.4 Relating expression semantics

Standard Semantics L L oL e
4.3.1 Typesemantics « o v v v vt b it
4.3.2 Expression semantics o0 oL

4.3.3 Operational semantics

4.3.4 Interpretation of projections
Lifted Semantics v o v it e e
441 Typesemantics
4.4.2 Expressionsemantics
4.4.3 Operational interpretation of lifting
4.4.4 Operational interpretation of projections
4.45 Unboxedtypes
5 First-Order Analysis
Abstracting Dependency on the Environment
Strictness Analysis
5.2.1 First approach to first-order analysis
5.2.2 Abstraction of projection domains
5.2.3 Second approach to first-order analysis
5.2.4 Finite projection domains
5.2.5 More on case exXpressions4 . e e 00 e 0.
5.2.6 More on Wadler and Hughes’ technique
Binding-time Analysis 0oL,
5.3.1 First-orderanalysis
5.3.2 Abstraction of projection domains.
5.3.3 Finite projection domains, ...
534 Examplesofanalysis
Termination Analysis
5.4.1 Abstraction oL oo
5.4.2 First-order analysis,
Summary and Related Work e
Higherorder?

5.6

v

66
68
68
70
73
74
74
75
76
78
80
80
80
81
83
84
85
86
88
89
92

Contents

6 Higher-Order Analysis

6.1

6.2

6.3

6.4

6.5

6.6

Domain factorisation
6.1.1 Data dependency
6.1.2 Factored semantics
Data-dependency semantics . . .
6.2.1 Semantics of expressions .

6.2.2 Implications of the relation

6.23 Examples
6.2.4 Lifted data-dependency semantics
Strictness Analysis
6.3.1 Relation between S and B semantics
6.3.2 Examplesofanalysis
6.3.3 Abstraction
6.3.4 Better semanticsforcase?,
Binding-time Analysis L.
6.4.1 Abstraction Lo
Termination Analysis
6.5.1 Abstraction
Summary and Related Work,
6.6.1 Strictnessanalysis
6.6.2 Binding-timeanalysis.
6.6.3 Terminationanalysis

7 Conclusion

7.1
7.2
7.3
7.4
7.5
7.6

Summary
Loose Ends
Polymorphism

Implementation

....................

....................

Other Applications of the General Approach

Projections for Program Analysis

Bibliography

....................

157
157
164
165
171
173
174
176
178
179
180
181
183
189
190
191
193
194
195
195
197
198

199
199
200
201
202
202
203

203

Chapter 1

Introduction

This thesis presents new techniques for strictness analysis, termination analysié, and
binding-time analysis for higher-order monomorphically-typed non-strict functional
languages. Our concept of strictness is sufficiently broad that strictness analysis
subsumes liveness analysis. The analysis techniques are developed in a common

framework using projections as the basic abstract values.

We start by considering the analysis of functions (rather than programs) using projec-
tions, establishing results on the intrinsic power of projection-based analysis, thereby
establishing bounds on what could be hoped to be achieved by projection-based pro-
gram analysis. Additionally, we demonstrate some properties of the analyses that
are not only theoretically interesting but practically useful in that they enable more
efficient implementation of program analysis techniques based on them.

Program analysis is developed in two stages: first for first-order programs, then higher
order. This gives a neat factorisation of the development of the higher-order tech-
niques, allowing much of the machinery to be developed in the considerably simpler

setting of first-order analysis.

Besides laying a theoretical foundation for the analysis techniques there were three
further goals of this work. First, there should be formal statements of what it means
for the results of program analysis to be correct, and some proof that the techniques
produce correct results. These statements take the form of logical relations between
standard and analysis semantics; proving correctness requires little more than cleri-
cal work because the analysis techniques are, in effect, derived from the correctness
conditions. Second, there should be some indication of how strong the analysis fech-
niques are; for strictness analysis at least we can give a definite answer. Third, the
development of the analysis techniques should be reasoned and methodical; here the

reader will have to judge for himself.

CHAPTER 1. INTRODUCTION 2

1.1 Overview

The remainder of this chapter serves to describe how earlier work has led up to ours;
comparable or ‘competing’ work will be discussed retrospectively. Chapter 2 reviews
the mathematics on which our work is based: elementary domain theory including
the construction of recursively-defined domains and recursively-defined predicates.
Chapter 3 develops the theory of projection-based analysis of functions. Chapter 4
defines the source language and its standard semantics. Chapter 5 develops the first-
order analysis techniques. Chapter 6 develops the higher-order analysis techniques.
Chapter 7 concludes.

1.2 Program Analysis

The myriad proposed techniques for program analysis do not appear to admit to
any simple and precise taxonomic classification, but to give some perspective it is
useful to identify three general approaches. A language normally has associated
some standard type system and type inference (sometimes called the (standard) static
semantics, which for the purpose of this discussion includes ‘no type system’ and
‘no type inference’), denotational semantics, and operational semantics (embodying
the execution or reduction strategy), each of which assigns standard behaviours or
properties to programs. An analysis technique is typically based on a non-standard
version of the static, denotational, or operational semantics, from which standard
behaviour or properties may be inferred. We give an example of each. A classic
example of a non-standard denotational semantics (or non-standard interpretation) is
the rule of signs for arithmetic: the non-standard semantics maps numerals to their
signs and arithmetic operations to corresponding operations on signs. An example
of a non-standard type system is Wadler’s linear type system, which may be used to
infer operational behaviour for the purpose of update analysis for functional languages
[Wad90]. Non-standard operational semantics typically simulate some aspect of the
reduction process, in practice with some simplification to avoid infinite reduction. For
example, peephole optimisation of assembly- or machine-level code typically simulates
usage of registers and stacks.

Analysis techniques based on non-standard denotational semantics may be classified
according to the attributes of the source language (or attributes of the source language
on which they rely), in particular whether the source language is first order or higher
order; whether it is untyped, monomorphically typed, or (Hindley-Milner [Mil78§])

CHAPTER 1. INTRODUCTION 3

polymorphically typed; and whether it provides only so-called flat data types (such

as integers, characters, and booleans) or non-flat data types (such as lists and trees).

Our work falls precisely in the category of non-standard interpretation. Unless stated

otherwise, all analysis techniques mentioned are by non-standard interpretation.

1.3 Strictness Analysis

In its simplest form strictness analysis seeks to determine whether a function f, de-
noted by some programming-language expression f, is strict, that is, if f L = L.
(Throughout this thesis we use the typewriter font, e.g. “f”, to denote syntactic ob-
jects, and italics, e.g. “f”, to denote semantic objects.) The motivation for such analy-
sis is based on a correspondence between the operational behaviour of expressions and
the semantic values they denote. Again taking the simplest case, the correspondence
is that precisely those expressions whose evaluation fails to terminate have value L.
Then if f L = 1 we may deduce that non-termination of the argument of £ implies
non-termination of the application of f to its argument, hence that the argument may
be safely evaluated before or in parallel with £ without introducing non-termination
where it would not have occurred otherwise. This is often expressed by the state-
ment “f (or f) requires (or demands) its argument,” meaning that for the result
to be defined (terminate) it is necessary that the argument be defined (terminate).
Thus strictness analysis enables safe modification of evaluation order. Independent of
whether the implementation is parallel or serial, Peyton Jones and Partain [PJP94]
describe three distinct compile-time optimisations enabled by strictness analysis: the
elimination of creation, update, and garbage collection of closures; the manipulation
of unboxed rather than boxed values; and the elimination of redundant evaluations.

Though it has long been ‘known’ that if an expression denotes a strict function then it
is safe to evaluate its argument first or in parallel (e.g. [Myc81]), Burn claims [Bur90b)
to be the first to prove it in his thesis [Bur87b]. The point is, to formally justify the
safety of modification of evaluation order based on ser_nantic analysis requires a for-
mal operational model with a formal relation to the semantic model. For example,
Lester [Les89] provides these models, their correspondence, and proofs of safety for
changes in evaluation order based on strictness information for a state-of-the-art im-
plementation technology for lazy functional languages (the G-machine); Burn and
Le Métayer [BM92] consider the problem for a “simple-minded” compiler for lazy
functional languages. In this thesis operational concepts are introduced for intuitive

purposes only; we are only formal about (denotational) semantics, making standard

CHAPTER 1. INTRODUCTION . 4

assumptions (described as needed) about the operational model and its relation to

the semantics. .

The notion of strictness and the corresponding operational deductions can be gen-
eralised. If f denotes f and f is a function on pairs such that f (z, 1) = L for all
x we say that f is strict in in the second component of its argument (or its second
argument, thinking of the curried version of f), the operational conclusion being that
it is safe to evaluate the second argument early. If f (L, 1) = L the operational
conclusion is that the two arguments may be safely evaluated in parallel until one or
the other terminates, before or in parallel with evaluation of £. In this case f is said
to be jointly strict in its two arguments; the classic example of a function with joint
strictness properties is cond (b,z,y) = if b then z else y, which is jointly strict in
z and y. If f is a function on lists such that the result of f is undefined when its
argument is a partial or infinite list f is said to be tail strict; for example, the usual
length function on lists is tail strict. Operationally, if £ denotes a tail-strict function

it is safe to evaluate the entire spine of its argument before-or in parallel with £.

A particularly important form of strictness is head strictness. Operationally, a func-
tion on lists is head strict if, whenever it evaluates a cons cell, it is certain to evaluate
the head field of the cons cell. Define function H on lists by

H1 =1,
H] =1,
H(L:zs) = 1,
H(z:zs) =z:(H zs), z# L,
where [] denotes the empty list and infix : denotes the cons operation. Then H is

the identity on finite, partial, and infinite lists not containing bottom elements, but
truncates other lists at their first bottom element. For example,

H(@1:2:3:1L:5:[]) =1:2:3:L1.

Semantically, function f is head strict if f = f o H. For exarﬁple, a function that
searches a list from its beginning, element by element, for a particular value will be
head strict. Head strictness is important because in practice many functions have
this property and its detection would appear to enable a compile-time optimisation:
arguments of head-strict functions need not delay (build closures for) head elements.
Head strictness is also important because it is a special case (for lists of atomic values)
of the strictness property of any function that performs a depth-first traversal of a
data structure. In turn, depth-first traversal is a common pattern of computation; it
is precisely that of the output driver for real-world functional languages, as well as
being fundamental to the implementation of many graph algorithms [KL94].

CHAPTER 1. INTRODUCTION)

Our last general observation is that none of the strictness properties described are
decidable: determining any of them is reducible to the halting problem. Thus for any
algorithm (terminating procedure) for determining strictness properties of programs
there is always some notion of safe approzimation; for simple strictness an analyser
will typically return either ‘definitely strict’ or ‘unknown’; rather than ‘definitely

strict’ or ‘definitely not strict’, where ‘unknown’ safely approximates all possibilities.

Liveness analysis [ASU86] seeks to determine which expressions are dead—definitely
do not contribute to the final result of a computation, and which are live—possibly
contribute to the final result. Liveness analysis enables dead code elimination—
not generating code for expressions whose values do not contribute to the final re-
sult. Considering functions, in the simplest case liveness analysis seeks to determine
whether a function definitely does not require its argument, or possibly requires its
argument; contrast with simple strictness analysis which seeks to determine whether
a function definitely requires its argument, or possibly requires its argument. The
concept of liveness can be generalised to the determination of which parts of a func-
tion’s argument are not required given that given that parts of the result are not
required.

If we wanted to be more precise we could consistently distinguish strictness properties
(definite demands) from liveness properties (definite absence of demands), but as is
common these will be lumped together as strictness properties; beyond this section

there will be no further explicit mention of liveness properties or analysis.

Compile-time optimisation is not the only use for strictness and liveness analyses.
Wadler [Wad88] and Sands [San90a, San90b, San90c] demonstrate that strictness in-
formation is useful in analysing the time complexity of programs. Roughly, strictness
information is used to determine lower bounds and liveness information upper bounds;
Sands [San90c] gives a good overview. Launchbury [Lau90a] shows that strictness in-

formation is useful in inductive proofs that programs satisfy certain properties.

1.3.1 Earlier work

Following we give a brief overview of the strictness analysis techniques leading
up to ours. We assume the source language to be (sugared) lambda calculus
with constants, for which the reduction strategy is normal-order reduction to weak
head normal form (WHNF), that is, non-strict or lazy (non-strict with sharing)
functional languages. Complete development of these concepts may be found in
[Bar90, Abr89, Ong88, PJ87]. This restriction admits most (if not all) real-world

CHAPTER 1. INTRODUCTION 6

lazy purely-function languages, including Miranda! [Tur85, Tur86], Orwell [Wad85],
Lazy ML [Aug84, AJ89], Concurrent Clean [NS+91, SN+91}, and Haskell [HPW92].

The first strictness analysis technique for non-strict functional languages was pro-
posed by Mycroft [Myc81]. His non-standard interpretation is restricted to first-order
monomorphic languages with flat domains, using the two-point non-standard domain
{L, T} to distinguish two degrees of definedness at each base type, L representing

standard L and T representing all standard values.

Burn, Hankin, and Abramsky [BHA86] generalised Mycroft’s technique to higher or-
der. More than that, they provided a general framework for abstract interpretation—
a restricted form of non-standard interpretation—which does not fix the particular
choice of abstract domains (an excellent overview is given in [AH87b]). In this frame-
work Wadler [Wad87] introduced the now well-known and closely examined (e.g.
[NN92]) so-called “four-point” abstract list domain; more precisely, he introduced
double-lifting as an abstract list domain constructor. Given abstract list element
domain D, the abstract list domain comprised L, representing the completely un-
defined list; lift L, all partial and infinite lists; and for each v € D element lLft? v,
representing all partial and infinite lists, and all finite lists for which the least ab-
stract representation of the list elements is v, yielding four points when D is Mycroft’s
two-point domain. This innovation made possible the detection of tail strictness and
head-and-tail strictness: f is tail strict if it maps every list represented by lift L to
1, and head-and-tail strict if it maps every list represented by lift? L to L (further
examples of analysis are given in [DW91]). Wadler suggests that the construction gen-

eralises to other recursive data types; Jensen [Jen92], and to a lesser degree Seward

- [Sew94], develop this further.

Unfortunately, Wadler’s construction couldn’t capture head strictness. At the time
suspicion was growing that head strictness was not a property that could be captured
in the BHA framework regardless of the choice of abstract domains, prompting further

exploration outside the BHA framework. (This impossibility was shown much later
by Kamin [Kam92].)

The key to detecting properties such as head strictness was the use of objects that
represented degrees of required or demanded evaluation of expressions, and the re-
flection in the analysis techniques themselves that such demands naturally propagate
backward, that is, from the root of an expression to the leaves. The first such technique
was proposed by Johnson [Joh81]. Two demands were distinguished: evaluation to
WHNF and unknown. The technique was defined for higher-order polymorphically-

I1Miranda is a trademark of Research Software, Ltd.

CHAPTER 1. INTRODUCTION 7

typed languages and was implemented as part of the Lazy ML compiler, giving en-
couraging results on the practical value of strictness analysis: the compiler with the
strictness analyser could compile itself faster than the compiler without could compile

itself; in two senses strictness analysis more than paid for its cost.

Wray's strictness analysis technique [Wra85, FW86] introduced two more demands:
no demand and unsatisfiable demand. There demands take the form of non-standard
types and analysis is by type inference. This appears to be the first strictness analysis
technique based on non-standard typing (later methods based on non-standard typing
include Kuo and Mishra’s [KM89], Leung and Mishra’s [LM91], and Jensen’s [Jen91,
Jen92]). Wray’s technique is also interesting because the algorithm for type inference
uses both forward (from leaves of expression to root) and backward information flow
expressed in a functional style of implementing attribute grammars later described
by Johnson [Joh87]. An earlier version of this technique was implemented as part of
the Ponder compiler [Fai85, FW86], giving significant speedup [Fai85).

Hughes [Hug85] encoded demands as contezts—idempotent functions approximat-
ing the identity. He introduced a context for evaluating the entire spine of a list,
and described a strictness-analysis technique for a first-order monomorphically-typed
language.

Burn [Bur87a, Bur87b, Bur91a, Bur91b, Bur9lc] introduced evaluation transformers
to encode four demands: unknown, evaluation to WHNF, evaluation of the spine
of a list, and evaluation of every element of a list to WHNF (necessarily including
evaluation of the spine). He used the results of BHA strictness analysis using Wadler’s
four-point abstract domain to formally justify the backward propagation of evaluation
transformers. The technique is applicable to higher-order monomorphically-typed
languages.

Hughes [Hug87a] introduced the head-strictness context corresponding to the function
H. He also suggested an approach to analysis of higher-order languages, and hypothe-
sised a technique for polymorphic languages using polymorphic contexts. In [Hug87b]

he took a different approach: there contexts are abstractions of continuations.

Hall and Wise [HW87] gave an analysis technique using strictness patterns to encode
demands. The emphasis of their work was on discovering regular patterns of compu-
tation, for example, not just head strictness—strictness in every head—but strictness

in every second head, and so on. Strictness patterns, like contexts, are idempotent.

Wadler and Hughes [WH87] formalised contexts as domain projections, precisely those

functions which, like contexts, are idempotent and approximate the identity, such as

CHAPTER 1. INTRODUCTION 8

the function H. They presented a projection-based analysis technique for first-order
monomorphic languages that could not only detect such properties as head strictness,
but had a formal safety condition for the results of analysis, putting the work on a
much more sound theoretical footing than the earlier work. Wadler and Hughes’
work is very much the starting point for ours: we will reformulate (an analog of)

their analysis technique from first principles, and generalise it to higher order.

With the incorporation of ‘no demand’, strictness analysis effectively subsumes live-
ness analysis. Nielson and Nielson [NN89, Nie89] gave a liveness analysis technique
and showed how it enables compile-time optimisation. Jones and Le Métayer [JM89]
gave a liveness analysis technique (which they called necessity analysis) designed to
enable reuse of dynamically allocated storage without intervention by the garbage

collector—so-called compile-time garbage collection.

In the area of strictness analysis theory has tended to lead practice. Part of the reason
is simply that strictness analysis is an extra: it is not an essential part of the com-
pilation process. A more fundamental reason is that though information provided by
more sophisticated techniques, such as the presence of head or tail strictness, seems as
though it ought to be practically exploitable, in reality it is not always clear how to do
so. Burn [Bur90a] considers the problem of using the results of projection-based anal-
ysis in compilation, but for a limited class of projections not including H; in [Bur91b]
he makes clear that his evaluation transformer model cannot encode H. Recently
Hall [Hal94] has been investigating how to make effective practical use of such strict-
ness information, with real-world measurements of change in performance; Howe and
Burn [HB94] and Burn and Finne [BF93] have experimented with evaluation trans-
formers in state-of-the-art implementations (the Spineless Tagless G-Machine and the

Spineless G-Machine, respectively) with some good results.

Where practice has led theory is in the analysis of polymorphic languages. Many of the
analysis techniques proposed and implemented for polymorphic languages appear to
apply equally to untyped languages, that is, they make no essential use of polymorphic
type information; of those already mentioned these include Johnson’s [Joh81], Hughes’
[Hug85), and Wray’s [Wra85, FW86]. The first true polymorphic technique—one
that made essential use of polymorphic type information—is Abramsky’s [Abr85].
He defines a property of a polymorphically-typed expression to be polymorphically
invariant if that property holds for all monotyped instances of the expression, or
none. He shows that strictness as determined by a particular analysis technique for
a higher-order monomorphic language is polymorphically invariant. Abramsky and

Jensen [AJ91] strengthen the result by showing semantic (technique-independent)

CHAPTER 1. INTRODUCTION 9

polymorphic invariance of strictness for a polymorphic higher-order language. Though
this allows the strictness of a polymorphic function to be determined at any convenient
instance, in actual program analysis it may still be necessary to perform strictness
analysis at more than one instance (e.g. as illustrated by Baraki [Bar93]). What would
be ideal is a way of determining, or at least safely approximating, strictness propertielés
at all higher instances from those of the simplest. Hughes [Hug89] shows how this may
be done for first-order polymorphic functions; Baraki and Hughes [BH90] and Baraki
[Bar91, Bar93] extend this to higher order. Seward [Sew93] successfully employed
Baraki’s theory in a strictness analyser, making possible reasonably good analysis of

instances of polymorphic functions practically impossible to analyse directly.

We have mentioned strictness analysis techniques based on non-standard typing and
non-standard denotational semantics; it is worth pointing out that there exists a
method based on a non-standard operational semantics. Nocker [N6c93] describes
a strictness analyser based on abstract reduction [VE+493] which is implemented in
the Concurrent Clean compiler, giving significant improvement in performance. The
technique, as described and implemented, is limited to determining simple strictness,

tail strictness, and head-and-tail strictness in each argument.

1.4 Termination Analysis -

Like strictness analysis, the nominal goal of termination analysis is to determine
when it is safe to evaluate an expression before it is actually required. If a function’s
argument is certain to terminate then it is safe to evaluate it before or in parallel
with the function, regardless of whether the function actually requires its argument.
In practical terms there is the danger that the function would never evaluate its
argument and that the cost of evaluating it exceeds the savings (in time or space)
of passing it unevaluated. In practice, termination analysis may be combined with
an operation count analysis which determines an upper bound on the number of
operations required to evaluate an expression, so that only arguments that require a

small number of operations to evaluate are passed by value.

Termination analysis might be even more useful in a parallel implementation with
speculative evaluation. Typically, a speculative evaluation process is initiated when
processors are not needed for mandatory evaluation, and there is some mechanism
for changing the status of a speculative process: it may be upgraded to a mandatory
process, or stopped or killed if its processor(s) become needed for mandatory evalua-

tion. Making this bookkeeping efficient is one of the major problems in implementing

CHAPTER 1. INTRODUCTION 10

speculative evaluation [Mat94]. However, when speculative processes are known to

terminate this mechanism is no longer necessary (though it may still be desirable).

Termination analysis has received little attention compared to strictness analysis,
partly because it tends to give poor results. Very briefly, the problem is that to
show that a program terminates often requires an inductive proof, and non-standard
interpretations are not theorem provers. For example, to show that the usual factorial
function on natural numbers terminates requires numerical induction; showing that
the usual length function on lists terminates for finite lists requires induction on list
structure. Though our analysis techniques do not incorporate any notion of inductive
proof (as does e.g. Holst’s quasi-termination analysis technique [Hol91]), they dlo
break new ground: they yield potentially useful forms of information not previously
available, for example, head termination: the property of a list-valued expression that
if a cons cell terminates then so does its head. Ours are also the first projection-based
termination analysis techniques.

1.4.1 Earlier work

Mycroft [Myc81] proposed the first termination analysis technique for non-strict func-
tional languages. Just as for his strictness analysis the technique is restricted to
monomorphically-typed first-order languages with flat domains. He uses the same
two-point abstract domain {L, T} for each base type, this time with T representing
definite termination (all values except 1), and L representing possible termination

(all values). l

For those strictness analysis techniques in the BHA frar‘nework there are correqulid-
ing termination analysis techniques (this is implicit in [Abr90]); Mycroft’s analysis
techniques form such a pair. Hence there is an implicit generalisation of the termina-
tion analysis to higher order with arbitrary abstract domains. Then, for example, the
interpretation of Wadler’s abstract list domain, given abstract list-element domain
D, would contain elements denoting possible termination, termination of evaluation
to WHNF, and for each d € D termination of evaluation of the entire spine of the list
with termination property d for all of the list elements.

Young [You89] implemented termination analysis in conjunction with an operation-
count analysis as part of an optimising compiler for the non-strict functional language
ALFL, demonstrating genuine run-time improvement. The technique is applicable
to higher-order untyped languages and is restricted to determining termination in
evaluation to WHNF.

CHAPTER 1. INTRODUCTION 11

Hartel [Har91] uses a simple kind of termination analysis in the FAST compilerlto
justify speculative evaluation, again just to WHNF; implicit in the analysis technique
is a limitation to detecting expressions that require a small number of operations to

reduce.

1.5 Binding-time Analysis

The goal of partial evaluation is to evaluate a program with only part of its input
data—the static part—to yield a residual program that requires only the remaining—
or dynamic—part of its input at run time, so optimising the program by specialising
it to the static data and thereby performing once and for all evaluation of the static

part of the input.

Partial evaluation is a rich field with a large volume of associated literature, but this
is not our interest here; Jones, Gomard, and Sestoff [JGS93] provide an up-to-date
view of the subject. Rather, we are concerned with a particular problem of partial
evaluation known as binding-time analysis. Binding-time analysis seeks to determine
what part of a function’s (or program’s) output is static (determined) given that some
part of the input is static; this information can be used to guide the partial-evaluation

process.

For a simple example, consider the function swap (z,y) = (y, z). The entire result of
swap is static when the entire argument is static, the second component of the result
is static when the first component of the argument is static, and all of the result is
dynamic when all of the argument is dynamic. For binding-time analysis dynamic is

a safe approximation of static.

Binding-time analysis is not essential to the partial-evaluation process, but Bondorf,
Jones, Mogensen, and Sestoff [BJ+89] argue that it is essential for good partial eval-
uation, and binding-time analysis is performed by the current state-of-the-art partial
evaluators A\-mix [GJ91, Go92], Similix [BD91], and Schism [Con88, Con93]. We con-
sider only the central problem of binding-time analysis and not how the results of
analysis might be used (in particular, how a program might be annotated with the

results of analysis).

1.5.1 Earlier work

There is a strong sense in which binding-time analysis and strictness analysis are

dual problems, as shown by Launchbury [Lau91b] and shown later, and it seems to

CHAPTER 1. INTRODUCTION 12

be the case that for each proposed technique for binding-time analysis there exists an

analogous technique for strictness analysis, and vice versa.

Jones, Sestoff, and Sondergaard [JSS85] described the first binding-time analysis tech-
nique using non-standard denotational semantics. They used a two-point abstract
domain at each base type, one point representing static and the other representing
unknown; their method is roughly analogous to Mycroft’s. It is not hard to gener-
alise their method in the same way that the higher-order BHA technique generalises
Mycroft’s: for example, using Wadler’s abstract-list type constructor, given abstract
domain D for the list-element type, we may take L to mean unknown or dynamic,
lift L to mean determined up to WHNF, and for each d € D value lift? d to mean
that the entire spine of a list is static with all of the list elements having staticness
property d.

Mogensen [Mog88] generalised the technique to recursive data types using grammars
to represent patterns of staticness; in this respect his treatment is similar to Hall’s
use of strictness patterns. Bondorf [Bon89] extended Mogensen’s technique to richer
abstract domains.

Launchbury [Lau88] hit upon the idea of using projections to encode degrees of static-
ness. In his thesis he gives analysis techniques for first-order monomorphically-typed
and polymorphically-typed languages, which were implemented as part of working
partial evaluators [Lau91b]. His monomorphic analysis technique is the starting point
for our work, and like Wadler and Hughes’ strictness analysis technique will be refor-

mulated from first principles, and generalised to higher order.

As an aside we note that binding-time analysis techniques based on non-standard
typing also exist: Schmidt’s [Sch88] and Nielson and Nielson’s [NN88a, NN88b] tech-
niques are based on a form of type inference, Jensen briefly discusses this approach
[Jen92], and the binding-time analysis in A-mix is by type inference [Go92]. There
does not seem to be any reason that non-standard reduction could not be ﬁsed to

perform binding-time analysis but we do not know of any such analysis technique.

Chapter 2

Domains, Functions, Projections,
and Predicates

This chapter reviews some mathematical concepts and notation used in this thesis:
elementary domain theory including the construction of recursively-defined domains,
and the construction of recursively-defined predicates. The domain theory is entirely
standard, following [DP90, GS90, Sch86]. The development of the construction of
recursively-defined predicates is a translation of the development in [MS76] in terms
of a universal domain to an analogous development in terms of domains constructed
from primitive domains in the style of [Sch86]. This chapter may safely be skipped by
readers familiar with elementary domain theory and unconcerned about the details

of guaranteeing well-definedness of recursively-defined predicates.

2.1 Domains

A partially ordered set, or poset, is a set S with a binary relation C which is reflexive,
antisymmetric, and transitive. When = C y we will say that z is less than (or below
or approzimates or less defined than) y, or that y is greater (or above or more defined)
than z. We will write z C y to mean x C y and x # y, and say that x is strictly less
than y. When z C y or y C x we say that z and y are comparable, otherwise they are
incomparable.

A subset M C S of a poset S is consistent if there is an upper bound for M in S,
and directed if for every finite subset X C M there is an upper bound for X in M.
A poset S is pointed if it has a least element 1, and complete if it is pointed and
every directed subset M C S has a least upper bound (lub) | |M in S. A subset of
S in which every pair of elements is comparable is called a chain, typically written

13

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES14
{zo,z1,22,...},0r just {z;}. When ¢ < j implies z; T z; the chain is ascending; when

i < j implies z; O z; it is descending. Clearly every ascending chain is directed.

Let S be a complete poset. An element x € S is finite (or compact) if, whenever M
is a directed subset of S and = E || M, there is a point y € M such that z C y.
Let K(S) denote the set of finite elements of S. If for every x € S, the set M =
{y € K(S) | y C z} is directed and | JM = z, then S is algebraic (or continuous). If
S is algebraic and K(S) is countable (hence w-algebraic), then S is a domain.

A poset S is bounded complete (or consistently complete) if S has a least element and
every bounded subset has a least upper bound. A Scott domain is a bounded-complete
domain. An w-algebraic complete lattice is a Scott domain in which every subset has
a least upper bound. Since all domains in this thesis are Scott domains, “domain”
always means “Scott domain”; similarly “complete lattice” will always mean “w-
algebraic complete lattice.” The symbols U, V, and W always denote domains. A
complete lattice is a domain, and adding a new top element—an element strictly

greater than all others—to a domain yields a complete lattice.

In a domain, every non-empty set has a greatest lower bound (glb), and in a complete
lattice, every set has a lub and glb. Reversing the ordering in a complete lattice
(‘turning the lattice upside down’) yields a complete lattice.

2.2 Monotonicity, Continuity, and Inclusivity

Let f be a function from U to V. Then f is monotonic if z C y implies f z C f vy,
or equivalently f (LX) 3 LI(f X); inclusive if f (UX) C |J(f X); and continuous if
is both monotonic and inclusive, that is f (| X) = LU(f X); for all directed X C U.
Intuitively, for a function to be monotonic means that increasing the information in
its argument can only increase information in its result; to be inclusive means that it

cannot ‘generate information from nowhere’ at a limit.

Let the domain Truth of truth values be { True, False}, with True C False. Logical-or
(V) in this domain is glb, logical-and (A) is lub, and so on; we use the logical operators
and domain operators interchangeably. A predicate is any function (not necessarily
monotonic or continuous) from some S into Truth, and say that the predicate is on
S. An n-ary relation R may be converted into an n-ary predicate P by defining
P(zy,...,z,) = True iff (z1,...,2,) € R; similarly a predicate may be converted
into a relation, and we will be slightly sloppy and say (for example) that values are

related by a predicate when the predicate maps the tuple of those values to True.

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES15

For a predicate to be inclusive (or directed complete, or admissible) implies that if it
holds at every value in a chain then it also holds at the limit. Continuous functions
are inclusive, but in general continuity is too restrictive: equality on a domain with
infinite elements is inclusive but not continuous. Inclusivity may be thought of as
safe behaviour for a predicate, even though the predictable behaviour of continuous
functions at limit points may be lacking—an inclusive predicate may hold at the limit

of approximations that do not hold, e.g. equality.

The inclusive predicates on a given domain form a complete lattice with elements
ordered pointwise, and lub in this lattice is defined pointwise; we use % to construct
the domain of inclusive functions, so U 2 Truth is the complete lattice of inclusive
predicates on U. The composition of an inclusive function with a continuous function
(in either order) is always inclusive; in particular, when f in continuous and p is an
inclusive predicate then p o f is an inclusive predicate. When describing relations
between predicates, we will use the boolean operators promoted pointwise to operate

on functions.

Continuous functions, regarded as relations between their arguments and results,
thence as predicates, are also inclusive. The relational compositions fop and po f 71,
regarded as a predicate, of inclusive predicate p and continuous function f regarded

as relations, are inclusive.

We will say that an n-ary predicate is jointly inclusive in a given subset of its argu-
ments if it is inclusive in those arguments regarded as a tuple. For example, P(z,y, 2)
is jointly inclusive in z and y if for all chains {(z;, %) | ¢ > 0} with limit (0, ¥oo) and
fixed z we have P(Z oo, Yoo, 2) T Uiso P (2, ¥i,). We note that inclusivity in individual
arguments does not imply joint inclusivity; a counterexample is the binary predicate
defined like equality for finite arguments but returns False when either argument is
infinite. However, joint inclusivity in some set of arguments does imply inclusivity in

each argument in that set.

Following we give a set of constraints sufficient to guarantee that a logical assertion

is inclusive in a free variable.

Proposition 2.1 (adapted from [Sch86))

A logical assertion P(z) is inclusive in z if it can be expressed in the form
Vug € Uy ytm € Un - Aoy (Vio1 @)

for m,n,p > 0, where @Q;; is either a predicate using only the u; as free identifiers,
or an expression of the form F; C FE5, where F; and E5 involve only continuous

functions, constants, function application, and z and the u; as free identifiers. O

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES16

We note the absence of negation and existential quantification. Hence for example
if P, and P, are inclusive we may not conclude that P, = P, is inclusive: for a
counterexample suppose that P is false for every element of a chain and its limit,
and P, is false for every element of the chain but true at the limit.

Multiary predicates defined in this way will be jointly inclusive in every subset of

their arguments; this follows from the fact that projection from tuples is continuous.

2.3 Projections and Embeddings

A projection is a continuous idempotent function that approximates the identity. The
set of all projections on a given domain, ordered by the usual function ordering, forms
a complete lattice with the identity ID as the greatest element and the constant
bottom function BOT as the least. Since the glb of a set of projections in the
domain of continuous functions is not necessarily a projection, the glb in the lattice
of projections is defined to be the greatest projection approximating every element of
the set—this projection necessarily approximates the glb in the continuous function
space. A projection is finitary if its image is a domain. The set of finitary projections
on any domain U also forms a complete lattice, and will be denoted by |U|. All
projections in this thesis are finitary. The symbols a, 3, 7, and § will always denote
projections.

A retraction pair comprises two continuous functions f e U - Vand ge V = U,
abbreviated (f,g) € U <+ V, such that go f = idy and f o g C idy. From these two
conditions it is follows that f o g is a projection, f is an injection, g is surjection, f
determines g and vice versa (a retraction pair is a special case of a Galois connection,
in which the condition go f = idy is weakened to go f J idy), f and g both distribute
over Ll and M, and the range f(U) is a subdomain of V' isomorphic to U. It is usual to
call g a projection, since its range is a domain isomorphic to the range of the projection
fog, and retraction pairs are also called embedding/projection pairs. In this sense, any
function is a projection so long as there exists a corresponding embedding; similarly,
any function is an embedding so long as there is a corresponding projection. We use
the term projection in this sense exactly when the argument and result domains are
not the same domain. When fog = idy we say that f and g are isomorphisms; when
such f and g exist we write U & V and say that U and V are isomorphic; given f,

for all u € U we say that v and f u are equal up to isomorphism.

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES17

2.4 Domain Construction

We construct domains from primitive domains and various domain constructors. The
required domain constructors are lifting, sum, product, smash product, and various

function space constructors.

The n-ary product Sy X...x .S, of posets S;, 1 < ¢ < n, is the poset consisting of tuples
(s1,-..,8,) where s; € S;, with the ordering defined coordinatewise. We take unary
product to be the identity, that is, we do not differentiate between s and the one-tuple
(s). Nullary product is taken to be 1, the identity (up to isomorphism) of x.! For
n > 1 and 7 such that 1 < ¢ < n the function m; € (S; X ... X S,) = S; is defined by
m; (S1,...,8n) = 8;. When each S; is a domain, then so is the product, and each 7; is a
projection with corresponding embedding that mapseach s to (L,...,L,s, L,..., 1),

where s appears as the i** element of the tuple.

Given a poset S, the lifted set S| is defined to be { L} U ({0} x S) where L is a new
element which is not a pair, with ordering L C (0, s) for all s, and for all s and ¢t we
have (0,s) C (0,t) iff s © t. When S is a countable set of incomparable elements,
S, is a flat domain; we require three primitive domains constructed in this way: the
one-point domain 1 = {}, = {1}, the domain of booleans Bool = {true, false},,
and the domain of integers Int = Z, . (For readability we will use the more standard
notation for the values in Bool, namely L, tt, and ff.) The function lift from S to Sy
is defined by lift s = (0, s), and the function drop from S, to S by drop L = 1 and
drop (0,s) = s. When S is a domain S| is a domain and lift and drop form a Galois

connection. Henceforth we will denote each non-bottom element (0, s) of S; by lift s.

When U and V are domains, the set U — V of continuous functions from U to V
is a domain, with elements ordered pointwise, that is, f C g iff for all x we have
f z € g . Lub and glb are also defined pointwise. (Unfortunately, the symbol — is
overloaded: even when R and S are not domains we write R — S to mean some kin'd

of mapping from R to S to be specified in context.)
The n-ary smash product S; ® ... ® S, of pointed posets S; is the pointed poset
{LYU{(s1,...,8) | €8, s #L, 1<i<n},

where L is a new least element that is not a tuple. The ordering on tuples is coordi-

natewise. There is a surjection smash taking ordinary product into smash product,

1This is a slight abuse of the terminology since - x 1 is not a continuous function in our framework
(though it is in [MS76]); what we mean is that U and U x 1 are isomorphic.

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES18

defined by
smash € (S X...x8) = (51®...085,),
smash (815 8n) = 4, if s; = 1 for some 1 ,
smash (s1,...,8n) = (81,---,8n), otherwise .

The injection unsmash is defined by

unsmash € ($1Q®...80 S,) = (S1x...%x85,),

unsmash L = (L4,...,1),

unsmash (s1,...,55) = (S1y..45n) -
When the S; are domains, then their smash product is also a domain, unsmash and
smash comprise a retraction pair, and domains (S; X ... x S,). and (S1)1®...Q(S.)L

are isomorphic. Unary smash product is taken to be the identity. Nullary smash

product is taken to be 1, the identity (up to isomorphism) of ®.

The n-ary (coalesced) sum U @ ... ® U, of domains U; is the domain
{LYu{(G,w)|1<i<n, uel;, u# L}

where L is a new element that is not a pair, with L C (¢,u) for all ¢ and u, and
(t,u) E (4,v) iff i = j and u C v. For each 1 there are continuous functions n; and
out; defined by

mn; € U; — (Ul@@ Un))

n; L =1,

ing u = (4u), ifus#fl,
and

out; € (1 ®...0U,) = U;

out; L = 1,
out; (j,u) =1, ifi#j,
out; (J, uw) = u, ifi=7.

Then 4n; and out; comprise a retraction pair for each .

For each of the domain operators there is a corresponding operator on functions. For
f € U— V define

fi el - V.,
i 4L =1,
Lo (lftv) = Uft (f v) .
Let f; € U; = V; for 1 < ¢ < n. Define
AX.ooxfp €U x...xUp) » (Vi x...x V),
Ax...xf) (u,oow) = (Aw, . fotn).

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES19

Define i ®...® f, = smasho (fy X ... X f,) o unsmash. Then (fi), ®...® (fo)L is
equal to (fi X ... X fu)L up to isomorphism.

For sum, define

0. 0f c(h®...0U,) > (Vi®...0 V,),

he®..0f) L = 1,

A®...®fn) (i,v) = in; (fi v) .
This slight asymmetry in the definitions of functions on sums will be pervasive: since
in; L =1n; L for all ¢ and j, pattern-matching is done on L and pairs (¢, u); since

Az.(i,z) is not total, reinjection into the sum is done with in;.

For fe U— Vand g€ T — W define
f2ge(VaT) > (U>W),
(f—>9) h = gohof.

2.5 Recursively Defined Domains

Domains may be recursively defined; such domains are sometimes called reflezive.
Let a domain ezpression F(X) be an expression built using 1, Int, domain construc-
tors, and the domain-valued variable X. Then F has an obvious interpretation as a
mapping from domains to domains, and for F built using the domain constructors
used in this thesis (possibly with some given restrictions) there is always a domain
U such that U is isomorphic to F(U). Such domains are defined by the inverse limit
construction of Scott [Sco76]; we briefly outline the elements of this construction as
described by Schmidt [Sch86].

Given domain expression F', domains Uy and Vjp, and retraction pair (¢, %) € Up +
Vo, define U; = Fi(Up) and V; = Fi(Vg) for i > 0 (by convention F° is taken to
be the identity). By giving an alternative interpretation of the symbols comprising
F (defined in Section 2.5.4), we define the retraction pairs (¢;,%;), ¢ > 0, where
(Pit1, Yiv1) = F(¢s,1;), and (¢, ¢;) € U; + V;. By arranging that U; = Vp we have
(¢i, ;) € U; ¢ Uiy for all i. The pair

({0 | 120}, {(¢s,9:) € Ui &> Vi1 | i 2 0})
is a retraction sequence, and its inverse limit is the set of infinite tuples
Uo = {(20,21,...) | 7 € Uiy, 3 =1 iyy, i >0}

with ordering z Cy_ y iff (m z) Cy, (m; y) for all ¢ >0, that is, with elements

ordered coordinatewise just as for finite products. The essential result is that

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES20

Uy = F(Us). One nice feature of this construction is the representation of infinite
elements by infinite tuples of finite elements, which makes clear that infinite elements
are determined by their finite approximations. Slightly informally, we will say U, is
the limit of the sequence { U;}, and that U is a solution of the equation X = F(X),

since applications of the isomorphism map and its inverse are left implicit.

In our development the starting domain Uy will always either be 1, in which case
(¢o,%0) is (Az.L,Az.L), or 1, in which case each U; will be (isomorphic to) V; for
some V, and (o, v) is ((Az.L).,(Az.L1),) (up to isomorphism).

To describe the solution of a set of mutually recursive domain equations

U = A(Uy,...,0),

Un = Fo(Uy,..., U, ,

(where the domain equations have been generalised to allow more than one variable),

we construct n retraction sequences
({Ui; 1720}, {(¢ij,%ij) € Uij > Uijy1|320}), 1<i<n

in parallel, where the U;o and (¢io,%i) are given, U;;+1 = Fi(Uij,. .., Unj), and

(Mij+1,Vije1) = Fi((di1,%in)s-- -, (Pin, Yin)) are appropriately defined retraction
pairs. We may conveniently think of the tuple of inverse limits as comprising a

solution of the single equation
(Ul,..., Un) = (Fl(Ul,..., Un),...,Fn(Ul,..., Un)) .

The retraction pairs in a retraction sequence may be composed to yield new retraction

pairs. Let
({U:i [i20}, {(¢i, %) € Ui & Uia | i 20})
be a retraction sequence with inverse limit U, and define
Omn € Up = U, ,
Omn = G0 @p_10...0¢,, m<n,
Omn = YmoVYmy10...0%,, m>n,
Omn = idy,, m=n.

Then 8,,, is an embedding with corresponding projection 8,,, for m < n. Next we
generalise to allow m or n to be co. Recalling that the elements of U, are infinite
tuples we have

Omno € Unm = Us

Omoo = AZ.(Omo(z), Om1(2), Oma(z), ...)

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES21

and
Oorn € U = Up
ocom = Tm -

Then (Omoo,0oom) is a retraction pair, and oo = Ui>0(fico © Ocoi) is the identity on
Us.

Next we show that the domain operators are in a sense continuous. We consider the

particular case of —. Let

{Ui |20}, {(¢7,97) e Ui & Uiya | 1 2 0})
be a retraction sequence with inverse limit U, and similarly for V. Define

Wi =U -V,

¢ =9 =4,

' = ol o).
Then ({W;|i>0}, {(¢¥,v¥) e W, & W1 | i>0}) is a retraction sequence
with inverse limit Uy, = V. The essential fact required to show this is that for
oW =0V, — 0V, that U;>o(02 0 8%.) is the identity on U, — V4, as follows.

Uixo (8% o HQ‘Zi)

= Uizo((02: = 0i%) 0 (6% — 65:)) '

= Uizo((0% 0 05:) = (8% 0 6%:))

= Ui»0(07, 08Y,) = Ui>0(0Z,06Y,) [~ continuous]

= idUoo - ’idvoo

=1id .

Analogous results hold for the other domain operators.

2.5.1 Defining continuous functions

For each element z = (9, z1,...) of Uy we have z; = 0; . We will call {z; | i > 0}
a family of approzimations of z. The limit U;>¢(6;00 2;) is just another way of de-
scribing z. Slightly abusing the terminology we will call z the limit of the family of

approximations.

Next we consider particular instances of families of approximations and their limits:
continuous functions with argument and/or result domains that are inverse limits of

retraction sequences.

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES22

Let f € Uy, — V be a continuous function. Then f determines a tuple (fy, fi,...) of
continuous functions which is an element of the inverse limit of the retraction sequence

{U:=» V]ix0},

{(i = ddy,¢i » ddy) € (Ui = V) 0 (U1 = V) | 1 20}),
where the (¢;,v;) are the retraction pairs from the retraction sequence defining
Us, and f; = f 00,5 (and therefore f; = f;11 0 ¢;) for each i. Conversely, a func-
tion f € Uy — V is uniquely determined by the family of approximating func-
tions f; € U; = V, where f; = fi4;1 0 ¢;, by taking f = U;>o(f; 0 0i). The condition
fi = fiy1 0 ¢; guarantees that {fy 0 60, /i © 801, - - - } is an ascending chain and so has a
lub which is a continuous function—it may also be thought of as guaranteeing that the
approximations agree at common arguments. In this case f is said to be the mediat-
ing morphism of the family of approximations. Clearly families of approximations are
in one-to-one correspondence with the continuous functions. Analogous results hold
when the result domain, or both the argument and result domain, are the inverse limit
of a retraction sequences. The form of the definition of a recursively-defined function
often dictates whether we choose as its definition the mediating morphism of a family
of approximations, or the least upper bound of an ascending chain. As we will see, the
former approach is useful when the definition of the argument and/or result domain
is parallel to that of the function definition, such that each approximating function

is defined on the corresponding approximating domain(s).

2.5.2 Defining inclusive predicates

The intended relation between values in various semantics will be defined in terms
of type structure, and recursively-defined types will give rise to recursively-defined
predicates. To show that such predicates are well defined and inclusive requires
an appropriate theory which is described following. The source of this material is
Chapter 2 of [MS76], wherein domains are generated by projecting out of a universal
domain. Here the results are recast (hopefully much more understandably) in terms
of domain construction as described in [Sch86]. Chapter 13 of [Sto77] has a gentle
introduction by way of example to ‘the more general development in [MS76], again

in terms of a universal domain. A category-theoretic development may be found in
[Nie89).

In the following, the symbols p and ¢ always denote predicates.

It is often useful to define inclusive predicates recursively. For discussion we will take
a recursive definition to be an equation of the form f = F(f) and call F the defin-

ing functional. For defining continuous functions, typically F is itself a continuous

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES?23

function and f is taken to be some fixed point of F. When F is continuous, for
any continuous v such that vy C F(vp) the sequence {F°(w), F1(w), F?(w),...} is
ascending and U;>o F*(v) is well defined and is the least fixed point of F greater
than v. Unfortunately, recursive definitions of inclusive predicates will typically
have defining functionals that, like the predicates themselves, are not monotonic and
therefore not continuous; hence such functionals cannot be assumed to have least
fixed points, or any fixed points at all. Following, we give an example to highlight

the source (for us) of difficulty and motivate its solution.

2.5.3 A simple recursively-defined predicate

Anticipating later development we give yet another interpretation of the symbols
originally defined as domain operators, and subsequently as operators on functions,

this time as operators on binary predicates (that is, predicates on pairs). At this

point we adopt the diacritical convention of [MS76], wherein corresponding or related
objects (typically domains or domain elements) from two different semantics are given
the same base name, e.g. z, and differentiated by acute and grave accents, e.g. £ and
T. A pair (&, 2) of such objects may be abbreviated Z.

Let p e (U x U) % Truth. Then

n € (ULxU) & Truth,
p (L, 1) = True ,
o (lLift z, 1) = False ,
n (L, Lft y) = False ,

p (lift =, lift y) = p(z,y) .

Let p; € (l}, X (Z) 3y Truth for 1 < i < n. The product of these predicates relates
corresponding elements of each of its arguments.

N®...0p € (1h®..0 U)X (h ®...0 U,)) > Truth ,

(M®...0p,) (£,2) = (¢ X... X p,) (unsmash &, unsmash z) .
where

X Xpn € (U x...xUp) x (Uy X ... x Uy)) > Truth

(pr X ... X pn) ((F1y-.., %), (B1,--580)) = Pu(d, 81) A ... A Po(dn, 20) .
Then (p1)L ® ... ® (pa)L is equal to (p; X ... X p,)L up to isomorphism.

The n-ary coalesced predicate sum can hold only when the arguments come from the

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES24

same summand or are both bottom.

p®...®p, € (U1@..0U0,)x (1 &...0U,)) > Truth ,

(M®...®&pa) (L, 1) = True ,

(P ®...9p,) (L,(5,2)) = False,

(P @®...0ps) ((5,4),1) = False ,
(P1®...0pa) ((1,9),(4,2)) = False, if 1 £ ,
(P ®...®pa) ((1,2),(,2)) = pi(2,2), fi=7 .

For ge (V x V) 3 Truth the predicate p — ¢ holds on (f, g) if the results of f and

g are related by ¢ whenever the arguments are related by p.
p=oq € ((U=V)x (U=sV) D Truth,
(p—q) f =VEpE) = qf 4, f3).

All of these operators map inclusive predicates to inclusive predicates.

Our simple example involves defining equality on pairs of values from domains built
from the various domain operators and primitive domains, assuming equality already
defined on the primitive domains. If we interpret the symbols 1 and Int as equality
predicates on the corresponding primitive domains then any expression involving the
domain operators and the primitive sets can also be interpreted as a predicate on
pairs of elements from the corresponding domain, and this predicate is the equality
predicate. For example, Int ® Int interpreted as a predicate is equality on (Int ®
Int) x (IntQ® Int) interpreted as a domain. Now we try to extend the idea to recursive

domain equations. Our example will involve the equation
X =X = Int.

With the right-hand side interpreted as a domain expression with free variable X,
given a starting domain Uy this equation has a least solution greater than Up under
a suitable ordering for domains. Similarly, if the right-hand side is interpreted as
an expression involving continuous functions (given some interpretation of Int as a
continuous function) this equation has a least solution which is a continuous function.
We might hope that the interpretation of the equation as a predicate would define the
appropriate equality predicate, perhaps as its least fixed point. The corresponding
functional is

P(p) = M .VZ.p(3) = (f £) =m: (f 2) .

It is not hard to see that equality is a fixed point of this equation, and in fact that it
is the least fixed point, but we require a general theory about the existence of such

fixed points.

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES25

The least predicate py on X X X is Mf. True, which relates every pair of functions.
Let p;41 = P(p;) for i > 0. Then
p=M.VE. (fd)=mn(f2),

S0 p; requires its arguments to be the same constant function, which is stronger than
equality. Continuing, ps requires that its arguments map the same constant functions
to the same values, which is weaker than equality. It is now clear that P is not
monotonic. The operators -3, X, ®, and & are monotonic on predicates; the problem
is that — is not monotonic in its first argument. Though U;>qP*(po) is well defined
(since the inclusive predicates on X form a complete lattice), {po, p1, p2,...} is not a
chain and it is not clear that its lub is a fixed point of P; it is certainly not the least

fixed point since equality on X is strictly less than p;.

Recall that the essential properties of the family of approximations f; € U; =+ V of
a continuous function are that each f; is continuous, and f; = fi+1 0 ¢;. The second
condition may be thought of as requiring f; and f;,; to agree at common arguments; it
also guarantees that {fy 0 600, /i 0 0c01, ...} 18 a chain and so has a lub which is a con-
tinuous function. Now consider a set of inclusive predicates p; € U; A Truth. Just as
for continuous functions, let us require that any pair agree at common arguments, that
1s, that p; = p;41 0 ¢4, plus the extra condition that p;1 = p; o ¥;. This extra condi-
tion guarantees, in the absence of monotonicity of the p;, that {po 0 foco, P1 © o1, ...}
is chain and therefore has a limit which is necessarily an inclusive predicate. These

two conditions are usually given as p; = pi+1 0 ¢; and p;4+1 = p; o 9; for all ¢, since

Piy1 = Pi 0 Y;
= Di41 0@ => PioY; 0 P;
& Pit10¢; = p; ,

which together with p; = p;11 0 ¢; implies p; = p;41 0 é;.

The foregoing is summarised by the following statement, which is embodied in Propo-
sitions 2.5.2 and 2.5.3 of [MS76].

Proposition 2.2

Let G be a mapping of domains to domains, H a mapping of retraction pairs
to retraction pairs, and P a mapping from predicates to predicates, and suppose
starting values U, (¢o,%0), po, and for all ¢ >0 the definitions Uy = G(U;),
(Gir1, Yiv1) = H(Ps,%;), and p;y1 = P(p;), such that (¢s,v;) € U; & Uiyy is a re-
traction pair and p; € U; Jy Truth is an inclusive predicate with p; = p;41 0 ¢; and
Pit1 = P; 0 ;. Then po = Ui>o(pi © Oi) is inclusive and is the least fixed point of
P greater than pgo 0,0. O

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES26

Given such a set of p; with limit p.,, two useful consequences are that p; = pe 0 8ico
(the limit agrees with the approximations at common arguments) and po, = p; © Os0s,

for all i.

Returning to the example, we use Proposition 2.2'to show the existence of a least
fixed point of the defining functional. Rather than having separate names G, H,
and P for the various mappings as in the statement above, we use instead a single
(syntactic) entity F' for which we have various interpretations to yield the mappings.
Typically we are interested in relating values from two different domains U and U ,
as usual this is accomplished by defining a predicate on U x U. Nonetheless it will
be convenient to pretend that these two domains are built separately, in parallel, and
hence we define two versions F' and F' of the functions mapping domains to domains
and retraction pairs to retraction pairs. This is really just a syntactic convenience to

avoid building and decomposing various products.

Let the functions mapping domains to domains be
F(U) = F(U) = U—Int,
with
U= U =1, s
Uipg = Uiy = F(Uz), 12>0.
Let the functions mapping retraction pairs to retraction pairs be
F($,9) = F($¥) = (M. fow, M.fog)
with
¢ = do = Az.L,
1/;0 = ¢‘o = Az.l,
(Bir1,Yir1) = (Bip1,¥%ir1) = F(di,dhi), i>0,
and the function mapping predicates to predicates be
F(p) =X .VZ.p(®) = (f9)=(f2),
with
» € (Ui x Uy 5 Truth |
po = AZ.True
pit1 = F(pi), 120.
The goal is to show that for all ¢ that p; is inclusive, and p; = p;y; 0 (¢1. X ¢,) and
Di+1 = Pi © (1/)z X w,) First we observe that py is trivially inclusive, and — maps
inclusive predicates to inclusive predicates, hence by induction on ¢ we have that p; is
inclusive for all 7. The latter two conditions are proven together, again by induction
on .

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES27

Case i = 0. For the first part,

Po= P10 (450 X ¢0)
& Af.True = py o (q§0 X ¢g) [defn po)

& p1o(do x o) ~ [defn =]

< p(Az. L, Az. L) [defn o, <2>0]
&S p=>(L=1) [defn py]

& True .

For the second part,
P1= Po© (1/;0 X %50)
& p = M. Trueo (o x 1) [defn po]
& True .

Case i =n+ 1. Let (=) denote the (prefix) equality predicate on Int x Int. Let
f be fixed. Then

Pn+1(?)
& Po=> (=)meo (f x f) [defn p,y1]
& Pn0 (Yo X Un) = (=)me 0 (f X £) 0 (n X %) [¥hn X 2 is onto]
= Pat1 = (=)me 0 (f X f) 0 (W X ¥n) [LH.2]
& Pnt1 = (=)me 0 ((¢5n+1 f) X (¢;n+1 f)) [defn ¢§n+1, $n+1]
& (Pnt2 © (Bnt1 X Gnr))(F) [defn ppyo]

where I.H.2 stands for second part of the induction hypothesis p,4; = p, o (¢n X ¢n)
Since f was arbitrarily chosen, we conclude that p,+1 = pny20 (q§n+1 X (5n+1). For
the second half, writing I.H.1 for the first part p, = py41 0 (qbn X ¢n) of the induction

hypothesis,
pn+2(}:)
E Pot1 = (=)me 0 (f X f) [defn pp4o]
= Pa410 (¢n X ¢n) = (=)mt © (f X f) 0 (¢-n X (bn)
= po= (Do (F x £ o (Jn x 6) LH1)
& Pn = (=)t 0 (Ynt1) X (i1 f)) [defn Y1, Y]
& (P41 0 Wt X Yas1))(F) [defn pni]

SO Pry2 = Pnt10 (1/1’n+1 X 1ﬁn+1). We conclude that L;>o(p; o (0’00,- X éooi)) is the least
fixed point greater than AZ.True of F interpreted as a functional on predicates, and

is therefore its least fixed point.

It is instructive to compare the predicates p; o (0,001- X 9mi) with those generated in
the first attempt to find a fixed point of F—call them p;’. For example, the predicates

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES28

Do © (6’;00 X éwo) and po’ are the same, relating all argument pairs. However, as shown,
p1’ requires its arguments to agree at every pair of values, that is, be the same constant

function, while p; 0 6,1 requires it arguments to agree only at the pair (L, 1).

An important observation is that if we can show that some value satisfies some fixed
point of F then it certainly satisfies the least fixed point, since the least fixed point
is the one that holds for the largest set of arguments. More generally, if some value
satisfies some fixed point greater that a particular fixed point p then it satisfies the
least fixed greater than p. '

In summary, we have proven that the equation X = X — Int, interpreted as a predi-
cate equation, has a least fixed point which is a predicate on the the least fixed point
of the equation interpreted as a domain equation. This approach is too low-level for
our purposes: we would like to show at once that a whole class of such predicates is
well defined. A step in this direction would be to show the analogous result holds for
every equation of the form X = F(X) when F is built from 1, Int, -, , X, ®, ®, and —
(subject to a restriction on ® given later). We require predicates other than equality
predicates, in fact predicates between dissimilar domains. We give a more general
result that requires only that the construction of the domains be ‘sufficiently parallel’,

and an appropriate, similarly parallel construction of the corresponding predicate.

2.5.4 A more general approach

Interpretations of the symbols -|, X, ®, @, and — as operators on domains, functions,
and predicates have already been given. Interpretations as operators on retraction

pairs have been alluded to but not defined; those definitions are given following. °
Let (f;,9:) € U; ¢ V; for 1 < i < n. Then

(f)g)J_ € U..L‘_> V.L)
(fr9), = (),

(o) X oo . X (faygn) € (Ui x...xUp) & (V1 x...x V),
(f00) X oo . X (far) = (A X ... X fa, 1 X0 X Ga),

(flagl)®®(fnagn) € (U1®®Un)H(VI®® Vn),
(1:0)® ... ® (far9n) = (1 ®...0f, 31®...®),

(flagl)@@(fnvgn) € (U1®®Un)H(V1®@ Vn),
(flagl)@---@(fnagn) = (f1®®f'n-a 916969911),

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES29

(fioq) = (o, 92) € (U1 = Us) & (V1 = V),
(f,91) = (fos92) = (1 = fos i = @2) -

Defined this way, all of the operators map retraction pairs to retraction pairs. (This is
subject to a condition on @. Since U ® 1 = 1 there is in general no embedding from U
to U ® V when V is 1; hence we require that arguments of the domain operator ® not
be isomorphic to 1, and arguments of the retraction operator ® not be the constant
bottom function. This condition will always be met in our domain constructions and
we will not mention it further.) If F(X) is a domain expression built from these
operators and U and V' are domains with (¢,v¢) € U > V a retraction pair, then (by
induction on the structure of F), F(¢,v) € F(U) + F(V) is a retraction pair.

Let a predictor tuple be a tuple of operators (P,lj,D, R, R), each having the same
arity n > 0, where P maps n-tuples of inclusive predicates to inclusive predicates, D
and D map n-tuples of domains to domains, and Rand R map n-tuples of retraction
pairs to retraction pairs, satisfying the following properties. For all domains U;, V;,
1 <1 < n, and retraction pairs

(@i,9:) € Ui Vi, 1<i<m,

(¢i0) € Ui 0 Vi, 1< i<,
we have (¢,v) € U + V and (¢,9) € U ++ V, where

(6, 9) = R((é1,%1),- -, (bny¥n))
((;;,1/)‘) = R((élﬂ/}l)v"a(én,w\n)))

U =DU,...,U0,),
U =D(U,...,U,),
Vv =D(W,...,V.),
V. =D(V,..., V).

Further, for all inclusive predicates
pi € (Ui x Us) -5 Truth, 1<i<n,
% € (Vix Vi) Truth, 1<i<n,
we have
pe(Ux U) - Truth
e(Vx V) Truth

where p = P(p1,...,pn) and ¢ = P(qq,...,q,). Finally, assuming that p; = ¢; 0 (¢,
<}§,~) and ¢; = p;0 (w,xdj,) for 1 <z<nwehavep=>qo(¢x¢) a.ndq=>po(¢vx¢-).
Then, if Fp(X) is a domain expression built from the various D, expression Fp(X)
is the the same with each D replaced by the corresponding D, expression FR(X)
the same with each D replaced by the corresponding R, and similarly for FR(X)

?

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES30

and finally Fp(X) the same with each D replaced by the corresponding P, then by
induction on the structure of F we have that (Fp, FD, FD, F Ry }\7’3) is a predictor tuple.
Then for starting domains Dy, Dy, retraction pairs (g[)o,@éo), (d)o,@Z)O), and predicate
po such that

Do € (Do x Do) 2 Truth

Do = Fp(po) o (6o x do) ,

Fp(po) = poo (%o x ¢h) ,
by induction on i,

p;i € (151 X D,-) Ay Truth ,

pi = pigro (i x i),

pit1 = pio (¥ X %)
where p; = Fp(po), D; = Fi(Dy), D; = Fj(Do), (¢i,9) = Fiz(do, v0), and (¢, ;) =
Fi (o, vo), for i > 0. Hence

Uizo(ps © (fooi X Beoi) € (WinoFh(Do) x WinoFh(Do)) —» Truth

is an inclusive predicate and is the least fixed point of Fp.

Next we define a set of predictor tuples to cover our needs. The base cases introduce

primitive domains already equipped with inclusive predicates.

Proposition 2.3
Given domains E and E and inclusive predicate ¢ € (E X E) = Truth the following
defines a predictor tuple.

P(p) =4q,
D(X) =E,
D(X) =E,

R($,%) = (idg, idg) ,
R(¢,¢) = (idy, idy) .
Verification is trivial. O
Examples include
(Ap.AZ.True, AD.1, AD.1, X,).(idy, idy), A(¢,).(idy,idy))

which introduces the pair of one-point domains with the constant True predicate on

it, and
()‘p'(z)lnty)\Dl’ﬂt, /\DInta /\(¢a d))'(idlnt, id]nt)a)‘(¢a d))-(idlnt, Z'd]-nt)))
which introduces the pair of integer domains with the equal predicate between then.

Next we introduce the ‘building’ predictor tuples.

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES31

Proposition 2.4

The following are all predictor tuples:
('J_,’J_,'L,'J_,‘J_) ,
(®,8,8,8,8),
(X, X, X,X,X),
(0,9,9,9,9) ,
(=, >, =, =,),

where ®, X, and @ may be nullary, unary, or multiary.

Proof

Verifying that these are predictor tuples is actually very simple; the only interesting
case is —. We will do the verification for -, and —.

We consider (-1 ,1,1,1,-) first. Assuming p and q are inclusive predicates such that

we need to show
yus = q.Lo(qu.x¢\.L)’
@ = po(xy).

Verification is trivial.

Next we consider (—,—, —, =, —). Assuming
(d)ia 1/)1)
(¢i7 1/"1)
pi € (Ui

’

s X
¢ € (Vix

(j
c U oV
U;) i» Truth, i =1,2 ,
Vi) 2 Truth, i=1,2,
pi = qio((f;ixéi)a i=172’
q; = pio(lb,iX'/;i)y i=172,
we need to show that
(L= p2) = (6= @)o (W1 = d2) X (% = 69)) ,
(1 = @) = (p1 = p2)o((¢1 = ¥2) X (1 =) .

CHAPTER 2. DOMAINS, FUNCTIONS, PROJECTIONS, AND PREDICATES32

We show the first half.

(m = p2)(f)

& V3. p(3) = plf 4, f 2)

= V7 . p1(¢1 £, U z) = Pz(f (1/;1), f (7»51 z))

= VZ. q(2) =

pa(f (1/51 %), f (%)

= VE. qi(2) = g(d (f W D), ¢ (f @1 2)))

& Vi, q3) = qg((1/)1 — &) f £, (%1 = b2) f 2)

& (a = @)(f)o

(%1 = o) x (%1 = 62))(F)

[defn —]
[1/;1, W functions]
@1 =pio (1ﬁ1 X 1/’1)]

[p2 = g2 0 (¢ha X 6o)]
[defn —)

By symmetry the second half holds (p and ¢ and ¢ and v swap roles, thus the other

two assumptions are used). O

We make the final observation that there is nothing special about the predicates being

binary—it is simply that we will require binary predicates constructed in this way.

Chapter 3

Analysing Functions with
Projections

We consider four kinds of analysis: strictness analysis, binding-time analysis, termi-
nation analysis, and what we call security analysis. We start with an overview, then

consider each in more depth.

Backward Strictness Analysis. Projections may be used to specify upper and
lower bounds on the definedness of values—a semantic interpretation, and upper and
lower bounds on the degree of evaluation of expressions—an operational interpreta-
tion. Though it is possible to formalise the operational interpretation [Bur90al, in
this thesis we will treat it only as an informal source of intuition. We give three
examples. Let £ denote f € U — V such that f = f o BOT. This equation makes
clear that f requires no information from its argument, that is, the argument may be
completely undefined; operationally this says that any argument of f need never be
evaluated: if evaluation of an application of f requires evaluation of the argument,
evaluation of the argument may safely diverge or return a dummy value. Here we say
that f is BOT strict.

As another example, let swap denote swap, a function on pairs, such that swap (z,y) =
(y,). Define projections FST and SND by FST = ID x BOT, and SND = BOT x
ID. Then SND o swap = swap o FST, indicating that if the second component of the
result of swap need not be defined, then the first component of its argument need
not be defined. Operationally, if the second component of the result of swap will
not be evaluated then the first component of any argument of swap need never be
evaluated. Here we say that swap is FST strict in an SND-strict context. In the
previous example, we could have said that f was BOT strict in an ID-strict context.

33

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 34

In both examples, projections only specified upper bounds on required definedness (by

discarding unnecessary information) and therefore only upper bounds on evaluation.

We have already described the characterisation of head strictness using the projection
H. The projection H specifies both upper and lower bounds on definedness, though
in a conditional way: if the head of any cons cell is not defined, then the tail need

not be defined either, and if a cons cell is defined, then the head must be as well.

As shown in [WHS87], by defining the projection STR on every lifted domain U, by
STR L =1,
STR (Lift L) = L1,
STR (lift v) = lift v, if v# L,

we have that f is strict if and only if STRo fi C fi o STR. Projection STR specifies a

lower bound on definedness—must not be L—and a lower bound on evaluation—must
evaluate to WHNF.

Last we show that tail strictness can be captured using projections. Define projection
T on lists to map all partial and infinite lists to L and act as the identity on finite
lists. Then f is tail strict if f; = f; o (T} o STR). |

In projection-based backward strictness analysis, the central problem is, given ~ and
f, to find é such that yo f = o f o4, or equivalently, vo f E f o 4. This inequality
is the safety condition (for f, 7, and §). We may always take § to be ID, but this tells
nothing about f: smaller ¢ is more informative. The analysis is ‘backward’ because
information flow is from result to argument, the reverse of evaluation or application.

Forward Binding-time Analysis. Launchbury [Lau88] hit upon the idea of using
projections to encode the presence or absence of data. In the simplest case, a projec-
tion used for this purpose acts as the constant L function (signifying no information)
on that part of the data domain for which the data is unknown (dynamic), and acts
as the identity on that part for which it is known (static). We give a simple example.
Let swap denote swap as before, and suppose that the first component of its argument
pair is static, which is encoded by FST. Then the second component of the result is
determined, encoded by SND, and we have SND o swap = swap o FST. Determining
precisely what part of the output is determined is in general not computable, hence
the goal is, given § and f, to determine -y such that y o f C f 0 §. This may be read as
stating that if ’s worth of the input is known, then at least v’s worth of the output is
determined. Launchbury [Lau91a] showed that this safety condition satisfies, and in a
sense which he formalises, is equivalent to the correctness condition for binding-time

analysis in the general framework of Jones [Jon88].

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 35

It is also possible to obtain strictness information by reversing the direction of analy-
sis, that is, given é and f, to determine <y such that yo f C fo4; on the face of it the
safety condition has no obvious directional bias [Lau91b] but Hughes and Launch-
bury have suggested that for projection-based program analysis that the backward
direction is intrinsically the more powerful [HL91].

Forward Termination Analysis. Let us reverse the inequality in the safety con-
dition. The liveness condition® (for f, v, and) is yo f O f 0 6. Then, for example,
we have STRo fy O f, o STR iff x # 1 implies f £ # L. If £ denotes f, then in op-
erational terms this means that if the argument of £ terminates, then so does the
application of f to its argument. Turning this around, we have f z = 1 implies
z = 1; if the application does not terminate, then neither does the argument.

Next suppose that £ denotes f, and H o f J f o ID. Then for any application £ e,
if evaluation of a cons node of the result terminates, the evaluation of the head is
certain to terminate, so if evaluation of a cons node is ever forced, the head may be

safely evaluated as well. Here H captures the head-termination property.

If £ denotes f and (STRoT)) o fi 3 fiL o ID, then evaluation of the spine of any
application of f is guaranteed to terminate; we will call this the tail termination

property.

Finally, suppose BOT o f J f o ID and f denotes f. This means that applications
of £ always fail to terminate; if BOT o f 1 f o BOT then failure of the argument to

terminate implies failure of the application to terminate (that is, f is strict).

The natural direction for termination analysis seems to be forward: we know in ad-
vance the termination properties of the primitive constants and we wish to determine
how far an expression can be evaluated without risking divergence. Thus for forward
termination analysis the goal is, given f and 4, to determine as small a + as possible
such that yo f J f 0 é.

Backward Security Analysis. Reversing the inequality in the correctness condi-
tion for strictness analysis gives the correctness condition for termination analysis;
what kind of analysis has as its correctness condition the result of reversing the in-
equality in the correctness condition for binding-time analysis? It seems to be the

following: if we are certain that parts of the input are unknown, then we can show

!The meaning of “liveness” here is distinct from its meaning in Chapter 1 in connection with
liveness analysis. Hereafter we use the term only in the new sense.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 36

that certain parts of the output are unknowable; in the other direction, if we re-
quire certain parts of the output to be unknowable without supplying dynamic data,
we may determine a sufficient (ideally least) amount of information to exclude from
the input during partial evaluation. For example, if we were to partially evaluate
a program that produces some sensitive information, we might want to know what
information to exclude from the static data at partial-evaluation time so that the
sensitive information is not revealed until some particular input is given. Similarly, if
we wish to guarantee that input and output are correctly interleaved, but otherwise
provide as much information as possible at partial-evaluation time, it might be useful
to know what is the least information that can be excluded from the the static input.
Thus the goal of projection-based backward security analysis is, given f and 7, to
determine the greatest § that satisfies the liveness condition yo f 3 f o 4. Since
backward security analysis has no demonstrated practical use, except for a brief con-
sideration of finding projections ¢ satisfying the liveness condition (Section 3.4), it

will not be developed further.

The safety and liveness conditions are so named because of their similarity to the
safety and liveness conditions of Mycroft’s [Myc81] strictness and termination analysis
techniques (these conditions are nicely summarised in [Abr90]). There superscript #
denotes the abstraction maps for strictness analysis, and superscript b the abstraction

maps for termination analysis; the safety condition is

(f o) T 1# o#,
and the liveness condition is

(faP3fa.
Recall that | U | denotes the complete lattice of finitary projections on domain U. If for
all of the projection-based analyses we take the the abstraction map for the argument
domain to be é € | U |, for functions f € U — V the identity (or the restriction of
f to the range of | U|), and for the result domain v € | V |, we get Mycroft’s safety
and liveness conditions. Our case differs in that we are interested in more than one
abstraction of arguments and results, and that their interdependence depends on f.
Hence we take for each analysis the information to be recorded, the ‘abstraction’ of f,
to be the appropriate map between | U | and | V'|. Thus the abstraction of f for each
analysis is a projection transformer—a function from projections to projections. Any
projection transformer 7 such that yo f T fo (7) for all v will be called a backward

strictness abstraction (BSA) of f, and this inequality is the backward safety condition
for 7 and f. Similarly, any 7 such that (7 §)o f C fod for all § is a forward strictness

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 37

abstraction (FSA) of f; this inequality is the forward safety condition for 7 and f.
Any 7 such that (7 6) o f O fod for all § is a forward termination abstraction (FTA)
of f; and such that yo f O f o (7 «y) for all v is a backward termination abstraction
(BTA) of f. For uniformity all of these inequalities will henceforth be called safety

conditions (rather than liveness conditions for the latter two).

Next we consider each of these analysis techniques in more depth, the strictness
abstractions first, then the termination abstractions. We observe that all of tl‘le
safety and liveness conditions are (jointly) inclusive in all of their identifiers, and
that continuous projection transformers (between given projection domains) form a

complete lattice. All functions to be analysed are assumed continuous.

3.1 Backward Strictness Abstraction

For backward strictness abstraction, smaller is better. We start with some negative

results, showing ‘how well we can’t do’, then show what we can do.

No least BSAs. In general, a function has no minimal BSA. Before showing this

it is useful to develop some technical results.

Proposition 3.1
If g and h are monotonic, g C id, h C id, and g £ h, then goh, hogCg. O

Proposition 3.2

If ¢ and h are monotonic and approximate the identity, and yo f © f o g and
yofE foh,thenyo fE fohog.

Proof

Composing v with both sides of the inequality yo f E fog givesyo f Cyo fog
since 7 is idempotent. Composing each side of the inequality yo f € f o h with g
gives yo fog E fohog. Transitivity of C gives yo fC fohog. O

For all ¢,d € U with d C ¢ define 7.4 to be the greatest projection that maps c to d,
that is,

Ved € | UI)

Yaz =zNd, ifzCc,

Yed T = T, otherwise .

Then 7,4 is the largest monotonic function approximating the identity that maps ¢
to d.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 38

Proposition 3.3
For all projections § and values ¢ and d with d C ¢ the composition 0 y.,40 4 is a
projection; if d ¢ Z d then d o y,400 C 0.

Proof

Let 8, ¢, and d be fixed with d C ¢. Let v be any value and let v' be 6 v. If v/ [Z ¢
then v is a fixed point of .4 as well as of §. If v/ C ¢ then (6 o v.4) v approximates
d and so is a fixed point of .4 as well as of §. Hence the elements of the image of
0 07,4096 are fixed points of both § and 4.4, hence of §o7y,406. If § c £ d then d [C c,
SO Yeq C id and § [Z 7.4, 80 § 0 4,4 0 6 C § by Proposition 3.1. 0O

Proposition 3.4
If yofC foéd and yo f C fody and &, [Z do then there is a projection d3 T 4,
satisfying v o f C f o d3.

Proof

If 6; Z 8, then there is some ¢ such that &; ¢ £ 85 ¢. Let d = 85 ¢, so 8 C 7.4 and
vYea C id and yo f C fo+.. By Propositions 3.2 and 3.3 the composition &; 0 g 0 6;
is a projection satisfying yo f C f 0 6; 0 4.4 0 81. Since &; ¢ Z d it must be that
61 Z Yed, and since v.4 id, by Proposition 3.1 we have §; o y406; C 6. O

Now we define a function that has no least or minimal BSA. Let 2 = {1, T} with
L = T, and oo be the least solution of U = U, so that co = {lift' L |i>0}uU{T},
where lift* L T T for all i. Then oo is a complete lattice with a single infinite element
T. The dual 0o? is a complete lattice resulting from the reversing of the ordering in
00, 50 its top element is 12 and its bottom element is T?. (Interestingly, 0co? has no
infinite elements despite having infinite depth.) Let f € co® — 2 be the continuous
function defined by f T? = 1 and f z = T otherwise. Let § be any projection
such that ID o f C f o4, let ¢ be any fixed point of § other than T? and d be any
value strictly less than c other than T?. Then IDo f C f 0 v.4 and 6 Z 7cq, so by

Proposition 3.4 there is a projection strictly less than § satisfying the safety condition.

Leastness and equality. Even when a least BSA exists, it may not map projections
to pointwise-least, or even pointwise-minimal, functions. (In other words, when § is
the least projection such that yo f C f o4 there may be a function g strictly less that

4 lacking idempotence, continuity, or monotonicity such that yo f C fog.) Consider

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 39

parallel or, defined by
por € Bool — Bool

por (L,1) =

por (L,ff) = L
por (ff,1) = L,
por (ff.ff) = ff,
por (tt,y) = tt,

por (z,tt) = tt.
The least projection § such that ID o por C por o § acts as the identity on (tt, tt).
The function por maps (t, tt) and the two strictly smaller values (¢t, L) and (L, tt)
to tt, but § cannot map (tt, tt) to either (L, ¢t) or (tt, L), since if § mapped (tt, it)
to (L, t£) monotonicity of § would require that (¢, L) be mapped to (L, L), which

would violate the safety condition (the other case is symmetrical).

Finally, though it is possible to choose d small enough to get equality in the safety

condition in the last two examples, this is not generally possible. For example, let
f€3—-3 andvy, §€|3|,where3={L, @, T}with LCOCT,and

Fl=1, yl=1, §L=1,

fo =1, 70 =0, 60 =0,

fTr=1T, yT=0, T =T.
Then ¢ is the least projection such that yo f C f o 4, but

(rof) L=1, (fob) L=1,

(yof)0 =1, (fod)d =1,

(yof) T=0, (fod) T=T,

that is, yo f # f 0.

For por there are two pointwise minimal functions g satisfying ID o por C por o g;
both are idempotent but not monotonic. Next we show that if there is a minimal
monotonic function approximating the identity that satisfies the safety condition then

it is the least monotonic function satisfying the safety condition and is a projection.

Continuity. The continuous extension of a monotonic function f is the unique
continuous function that agrees with f at finite values; the continuous extension of f

approximates f.

Proposition 3.5
If g is a minimal monotonic function approximating the identity such that o f C fog

then g is a projection and is the least monotonic function satisfying the inequality.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 40

Proof

Let g be a minimal monotonic function approximating the identity such that §o f C
fog. Let ¢’ be the continuous extension of g. Since the predicate (o f) z C (fod')
is inclusive in z, and g is minimal, it must be that g = ¢’. By Proposition 3.2 we have
~vo f ; fogog;since g is minimal g must be idempotent. Suppose g were not least.
Then there would be some values ¢ and d with d C ¢ such that yo f € f o, and
9 Z Yed- Then yo f E fogo~eq0g by Proposition 3.2, and g o v, 0 g C g contrary
to the supposition that g is minimal. O

Proposition 3.6
If 7 is a minimal BSA of f then 7 is the least BSA of f and is continuous.

Proof .
That minimality implies leastness follows from Proposition 3.4. That leastness implies
monotonicity also follows from Proposition 3.4. Monotonicity and minimality imply

continuity by inclusivity of the safety condition. O

Henceforth we consider only continuous BSAs.

Ordering. For f; C f, and 7 a BSA of f,, there does not necessarily exist a BSA
71 of f; such that m; C 73, nor for 73 a BSA of f; does there necessarily exist a BSA
T of fp such that 75 © 7;. In particular, when least BSAs exist there is no order

guaranteed between them. For example, consider all of the monotonic functions from
2 to 2, defined by

bot L = L, idl =1, top L=T,

bot T =L, dT =T, top T=T.
There are only two projections on 2, namely ID and BOT. The least BSAs of bot and
top are the same, the function that maps both ID and BOT to BOT, and the least
BSA of id is the identity. Here id T top but there is no BSA of id that approximates
Aa.BOT; also, bot C id and again there is no BSA of id that approximates A\a.BOT.
Thus when least BSAs exist the mapping to them may not be monotonic. (In Sec-

tion 3.1.2 we will define an order on functions such that the mapping is monotonic.)

Non-monotonicity. It is this non-monotonicity that gives backward strictness a.b-
straction its unusual power. To make this clear we review some concepts from the
BHA framework for abstract interpretation. A property on a domain is characterised
by the set of domain elements that satisfies it, so a property may be regarded as
just a subset of a domain. In the BHA framework properties (abstract values) must

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 41

be Scott-closed sets—non-empty downward-closed sets which contain lubs for all di-
rected subsets. The property of function f that f = fo,BOT, and the head-strictness
property f = f o H, are not downward closed. Kamin [Kam92| gives a different ap-
proach to identifying properties that cannot be captured in the BHA framework,
based on the fact that abstraction maps—the maps from standard domains to ab-
stract domains—must be monotonic. He calls a property P on U monotonic abstract
if there exists a finite domain V' (the abstract domain) and monotonic function (the
abstraction map) from U to V such that there is a partitioning of V into two parts
such that all elements with property P are mapped into one part, and all elements
that do not have property P are mapped into the other part. He shows that head
strictness is not a monotonic abstract property, thereby showing that head strictness

cannot be captured in the BHA framework.

Restriction of projection transformer domains. The next two propositions

show that we may reasonably restrict the space of projection transformers used for
backward strictness abstraction.

Proposition 3.7
If 7 is a BSA of a function f, then there is a strict BSA 7’ of f such that 7/ C 7.

Proof
For all f we have BOT o f C f o BOT. Define ¥ BOT = BOT, and 7 § =7 6 if
0 # BOT, then 7 C 7 and 7' is continuous since 7 is. O

Corollary 3.8
The least BSA of a function (if it exists) is strict. O

If yofE foé; and ya0 f C fod,, then certainly y;0 f C fo(é; Uéde) and ye0 f E
fo(6,Udy). Since lub on projections is pointwise, we have (y;U~z) o f C fo (8 LI&p).
Now if 7 is some BSA of f that maps 7; to 4; and 4, to d2, then monotonicity of T
requires that 7 (6, U ;) be greater than ~; Li7,. In this sense we can do no better
than taking 7 (1 U~s) = & U 8. The following elaborates.

A projection transformer 7 is distributive if for all sets of projections X we have
7 (LX) = (7 X) (this property is sometimes called linearity). Distributivity is a
strictly stronger requirement than continuity since the set X need not be directed.
Now define for each finite value ¢ the characteristic projection -y, for ¢ as

Yoz =¢ ifcCzx,

Yoz =1, fclZz.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS . 42

Recall that K (U) is the set of finite elements of domain U. Given domain U the set
{vu|u € K(U), u# L} is the U-basis of | U |; every element of | U | is the lub of some
subset of the U-basis, and no element of the Li-basis is the lub of any subset not con-
taining that element. (The lub of the empty subset of a lattice is its least element, here
BOT, which is not in the U-basis.) In fact,y = U{yvu |y u =u, u € K({U), u# L}—
this shows that a projection is determined by its finite non-bottom fixed points.
Clearly every strict distributive 7 € |[U| — | V| is determined by its behaviour on
the U-basis of |U|.

Proposition 3.9
If 7is a BSA of f then f has a distributive BSA less than .

Proof

Let 7 be a BSA of f € U — V, and let 7/ be the distributive projection transformer
that agrees with 7 at BOT and on the U-basis of |V |. Continuity of 7 requires that
7' € 7. Let X be any subset of the U-basis for |V |. Then

VYeX .yofCfo(r'y)
=>VyeX . yofCfol(r X)
= (UX)ofC foll(r X) [lub pointwise]
e (UX)ofCfo(r (UX)) [defn 7]
Since every projection is the lub of some subset of the U-basis, 7/ is a BSA of f. O

Corollary 3.10
The least BSA of a function (if it exists) is distributive. 'O

The distributive projection transformers form a complete lattice, including the con-
stant ID and BOT functions, but this lattice is not a sublattice of the projection
transformers because the pointwise glb of two distributive projection transformers
may not be distributive. (The situation is analogous to the projections forming a
complete lattice that is not a sublattice of the continuous functions.) Hence (in the
context of backward strictness abstraction) we define 71 M 75 to be the greatest dis-
tributive projection transformer approximating their glb in the lattice of continuous
projection transformers. When least BSAs are known to exist and 7, and 7, are BSAs
of f, then the pointwise glb 7 of 7; and 7, is a BSA of f; by Proposition 3.9 there
is a distributive 7/ approximating 7 that is a BSA of 7, and 7, M 7, by definition is
approximated by 7/, hence 71 M7, is a BSA of f. Finallly, by Corollary 3.10 a least
BSA of f (if it exists) is distributive, so restriction to the distributive projection
transformers doesn’t exclude the ‘important’ ones. This is partially summarised by

the following.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 43

Proposition 3.11
If the pointwise glb of 7y and 75 is a BSA of f,thensois 3y M7n. O

The strict distributive projection transformers form a complete sublattice of the dis-
tributive projection transformers. This has important implications for practical anal-
ysis in which the projection domains are finite since we need only record the value of
a projection transformer at the Ll-basis of its argument domain. This also effectively
reduces the space of projection transformers under consideration. Henceforth, we will
consider only strict distributive BSAs.

Abstract composition. Next we state compositional properties of BSAs.

Proposition 3.12

If 7, and 7> are (strict/distributive) BSAs of f; and f, respectively, then 7, 07y is a
(strict/distributive) BSA of fio fp. O

We take backward-strictness abstract composition to be reverse composition, and
define o to be abstract composition, that is, 7, o8 7, = 75 0 71; abstract composition,
like ordinary composition, is associative. In general it is not the case that abstract

composition preserves leastness as the following example shows. Define
lub € (2x2)>2,
lub (z,y) = zUy .
There are seven projections on 2 x 2; their Ll-basis comprises ID x BOT, BOT x ID,

and y(t,1). The least BSA of lub maps BOT to BOT x BOT and ID to ID x ID.
The least BSA of A(z,y).(z, T) € (2 x 2) = (2 x 2) is determined by the mappings

YT, — ID x BOT ,
ID x BOT — ID x BOT ,
BOT x ID — BOT x BOT .

Reverse composition of corresponding least BSAs gives a BSA of lubo A(z,y).(z, T)
that maps BOT to BOT x BOT and ID to ID x BOT. However, the least BSA of
this function maps ID to BOT x BOT.

Least BSAs. One way to guarantee the existence of least BSAs is to restrict the
choice of functions’ argument domains. This is developed following. First we need

some technical results.

Burn [Bur90a] calls those projections that map each argument either to itself or L

smash projections. In general if §; and &, are projections it is not the case that &, 0 J,

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 44

is a projection, since the composition may not be idempotent. When é; and J, are

smash projections, their composition is idempotent and hence is a projection.

Proposition 3.13

If §; is a smash projection and &, any projection then é; o d is a projection equal to
8, M dy. Thus for yo f E fod; and yo f C fody and at least one of §; and 45 a
smash projection we have yo f C f o (§; M dy).

The first part is trivial; the second part then follows from Proposition 3.2. O

Proposition 3.14
If U is finite then f € U — V has a least BSA.

This follows from Proposition 3.4 and the fact that a function with a finite argument

domain cannot have an infinite strictly-decreasing sequence of BSAs. 0O

Next we consider functions from domains defined as inverse limits of a restricted class

of retraction sequences. Let
({U:i | 120}, {(¢i,9:) € Ui & Uiya | $20})

be a retraction sequence with inverse limit U, such that each U; is finite, and the
image of each ¢; is downward closed (intuitively, ¢; maps U; into the ‘bottom part’
of U;41, without creating any ‘holes’). Let f,, € U, — V be any continuous function
and 7 be a projection on V. Each element f; € U; =& V of the canonical family of
approximations of f,, has a least BSA 7, mapping -y to some §;. Just as the f; agree
at common arguments, that is, f; = fi41 0 ¢;, so each §; must agree at common
arguments, that is, §; = 4,41 o ¢;; this is a consequence of the images of the ¢; being
downward closed. Thus the §; form a family of approximations of a projection du;
similarly the 7; form a family of approximations. Further, since each §; is least, so is
Jso- We conclude that f has a least BSA that is determined by the canonical family

of approximations comprising the 7;.

For the various entities defined as above, the sequence {f; 0 6;} is ascending; the
sequence {(7; 0 (fooi = Bio)) — idy} is ascending; each element of the second is the
least BSA of the corresponding element of the first, and the limit of the second is
the least BSA of the limit of the first. In contrast, as shown for bot, id, and top in
2 — 2, the corresponding result does not hold for an arbitrary increasing sequence of

functions on such domains.

Proposition 3.15

If {f;} is an increasing sequence of functions and 7; is a BSA of f; for each i, thén

L{7:} is a BSA of LU{f;}.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 45

Proof

If {r;} is increasing then the result follows from the fact that the safety condition
is (jointly) inclusive in 7 and f. If {r;} is not increasing, let the sequence {77} be
defined by 75 = 79, and 7{,; = 7] U 7iy1. Then [|{7{} = {7}, and 7] is a BSA of f;
forall:. O

It is interesting to note that we can define (a domain isomorphic to) co? as the least
fixed point of D = DT, where - T on domains adds a new top element. Each embedding
¢; maps the bottom element to the bottom element; for all other elements, the top
element to the top element, next-to-top element to the next-to-top element, and so
on. Each projection ; does the reverse, and in addition maps the next-to-bottom
element to the bottom element. Note that the image of each ¢; for ¢ > 2 is not
downward closed since it does not include the next-to-bottom element. (It is helpful
to observe that each ¢; is like strictified lift, and each ©; is like drop.)

The retraction sequences defined by domain equations using the primitive domains
and the various domain operators discussed in Chapter 2 have the property just
described.? This will be important when we later analyse functions denoted by expres-
sions in programming languages, since the domains involved will all be constructed in
this way. In particular, when 7; and 7» are incomparable BSAs of a denoted function
f, perhaps determined by different means, we may safely conclude that 7, M 75 is also
a BSA of f, strictly better than either 7, or 7.

(As an aside, we believe that a sufficient condition for every function in U — V to
have a least BSA is that every element u € U have a complete minimal cover—a
set of elements S such that u C s for all s € S (cover), for all v O u there is some
s € § such that s C v (complete), and for all s,t € S we have s C ¢ implies s = ¢
(minimal). In 0o the bottom element has no complete minimal cover.)

3.1.1 Analysis of lifted functions

Even when a strict function has a least (most informative) BSA, that the function
is strict may not be determinable from this BSA. Thus a BSA of a function is an
abstraction in the sense that it may not contain all of the information in the function.
To see this, consider again bot, id, and top in 2 — 2. The least BSAs of bot and top
are the same, the constant BOT function, and bot is strict and top is not. Further,
so long as the result domain is not 1, no single BSA can determine that any function

2To make this work for Int we must define it using recursion, e.g. Int = 1, ® Int ® 1., since Int
is not finite.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 46

is strict, since any BSA of any function is a BSA of every constant function. This
example also shows that the least BSA (or set of all BSAs) of a function sometimes
determines that function (here id) and sometimes does not (here bot and top).

Recall that f is strict if and only if STR o fi C fi o STR. Put another way, a function
f is strict if and only if there is a BSA 7 of f. such that 7 STR T STR (define
7 BOT = BOT, 7 a = STRifa C STR and a # BOT, and 7 a = ID otherwise). For
any function f, the function f, is strict and bottom reflecting. For all domains U and
V, the operator -, is an isomorphism from the domain of continuous functions U — V
to the domain U, = V| of continuous, strict, bottom-reflecting functions. Though
the function f contains no more information than f, projections on the argument and
result domains of fi, and hence a BSA for f,, may contain more information than
those for f since the projections on the lifted domains have the additional degree
of freedom to map values to the new bottom element. Intuitively, a value that is
mapped to the new bottom element may be thought of as ‘not sufficiently defined’,
or ‘unacceptable’. Projections on lifted domains may then be regarded as specifying
lower bounds on the definedness of values in the corresponding unlifted domain, and
thus lower bounds on the degree of evaluation of expressions that take values in the
unlifted domains. For example, STR € | U, | maps lift L (which corresponds to L in
U) to L, indicating that L in U is not an acceptable value. If expression f denotes
function f, then STRo f, C fi o STR may be interpreted as “if the result of f must
be more defined than L, then the argument of f must be more defined than 1,” that
is, f is strict. This is another example of a direct operational reading of projections:
STR may be thought of as specifying evaluation of (the syntactic construct denoting)

its argument.

The BSAs of a function f; can reveal more than just simple strictness in f. On a

given domain, the smash projections form a complete sublattice of the projections

that includes ID and BOT.

Proposition 3.16
Given strict bottom-reflecting function f and projection -y there is a least smash
projection ¢ such that yo f C f o 4. If vy is a smash projection we have yo f = f 0 4.

Proof

We can describe § exactly. Let S be the set of values that v maps to 1, and let T
be the inverse image of f of that part of the range of f in S. Then § maps precisely
those elements in the downward closure of T to L. O

Proposition 3.17

Every strict bottom-reflecting function is determined by its least BSA with range in

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 47

the smash projections.

Proof
We show that for strict bottom-reflecting f and g with least BSAs 74 and 7, with
range in the smash projections that f # g implies 7¢ # 7,. Suppose f # g. Define
NOK, by

NOK,z =1, ifzCc,

NOK, x = z, otherwise .

Then NOK, is always a smash projection. Choose z such that f z # g z. Now
77 NOK(s o) ¢ = L1; if 7y NOKs ;) x # L then 77 and 7, are shown to differ. If
7 NOK(s ;) * = L then it must be that g x C f z, then 7, NOK, ;) = L, and
77 NOK(4 ;) = # 1, so 7y and 7, are shown to differ. O

Evidently, a strict bottom-reflecting function is determined by its least BSA with

both domain and range in the smash projections.

Corollary 3.18
Every BSA of strict bottom-reflecting function f is approximated by a BSA that
determines f. Hence f is determined by its least BSA if it exists. O

A simple consequence is that if f is strict and 7 is any BSA of f, then there is a
BSA 7' of f, such that 7 C 7 and 7 STRC STR.

Henceforth, when we wish to determine strictness properties of some function f we
will find BSAs of f| rather than of f.

Projections on lifted domains. Besides ID, BOT, and STR, there is one further
projection ABS defined on every lifted domain:

ABS 1 =1,

ABS (lift v) = lift L .
Operationally, ABS discards its argument: it maps all values corresponding to those
in the unlifted domain—those of the form lift v—to the value lift L corresponding

to L in the unlifted domain, indicating that no information is required. Then for
example, we have ABS o f| E f, o ABS for all f.

So long as U differs from the one-point domain, projections ID, ABS, STR, and BOT
on U, are all distinct and form a lattice in which ABS and STR are incomparable.
All other projections lie between ID and ABS or between STR and BOT. In fact,
there is an isomorphism between the lattice of projections between ID and ABS and

the projections between STR and BOT. This isomorphism maps each projection

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 48

between STR and BOT to its least upper bound with ABS; its inverse maps each
projection between ID and ABS to its greatest lower bound with STR. Further, every
projection in | U, | between ID and ABS is of the form 7, with v € |U |. Hence every
projection in | U, | is either of the form 7, or 4. M STR. (A revealing observation is
that | Uy | is isomorphic to |U | x 2, where (vy, L) and (v, lift 1) in the latter domain
correspond to 7, MSTR and v, in the former, respectively.) To get the effect of lifting
a projection and taking the glb with STR we introduce the operator -, defined by

ni =41,

u (ift 1) = L,

w (lft v) = Lft (yo), ifyv# L.
Then 7. = v M STR, and 7, = 7. U ABS. Further, we have STR = ID, and
ABS = BOT,; together with the facts (BOTy), = BOTy, and (IDy), = IDy, we
could dispense with the special names STR and ABS.

Operationally, projections of the form v, —those below STR—specify evaluation (“y’s
worth”), and projections of the form 7, —those above A BS—specify that if evaluation
is ever demanded, ’s worth will be performed. (Again, this is formalised in [Bur90a].)
The notion of “y’s worth” will be elaborated later. Hence projections of the form 7,
will be called eager since they demand evaluation, while those of the form 7, will be

called lazy since they don’t. Note that the smash projections are all eager.

The & operation. Though abstract composition does not preserve leastness, it '
does preserve leastness with respect to smash projections. Following this is made

precise; first we define a new operation & on projections:

(v&6) z = 1, ifyz=Llordzr=1,

(y&6) z = (yU) z, otherwise .
Thus & is like Ul except that if either of its arguments maps some value to L, then
so does its result, hence & approximates Ll. It is easy to show that & is continuous,
associative, commutative, idempotent, and distributes over L (but not vice versa).
The least projection BOT is a zero of & since BOT & v = BOT for all 7. On lifted
domains the identity for & is BOT, . For smash projections & coincides with M, and

for lazy projections & coincides with L.

Proposition 3.19
Given projection vy € | Uy | there is a least smash projection 7 and least lazy projec-
tion ! such that vy =~°*M~!, hence v* z = L iff y z = L.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 49

Proof
Define v* =y & ID, =y & (BOT UID,) =~yU (y& ID,), so if vy is lazy v* = ID,,
and if vy is eager v°* = y & ID,. Define 4/ =yU BOT,. O

Proposition 3.20
The projection 4 is least such that yo fi C f o § iff §° is the least smash projection
such that ¥* o fi C f. 04* and &' is a least lazy projection such that v o f, C f, 04"

The key facts are that yo fi C fL o8 iff v o fy C fL 06° and yo fL T f, o &8 iff
YofiEfiod O

We will say that a BSA 7 of f, is least with respect to smash projections if for all
and 6 = (7 v)® the projection 4 is the least smash projection such that yo f, = f, 04.
Proposition 3.16 shows that every lifted function has a BSA that is least with respect

to smash projections.

Proposition 3.21

Abstract composition preserves leastness with respect to smash projections, so the
abstract composition of such BSAs of strict bottom-reflecting functions determines
their composition. O

We have noted that for every f we have BOT o f C f o BOT; obviously BOT is the
least projection that can appear on the right-hand side. Also, ABSo f, C f, 0 ABS;
this follows from the fact that yo f C fod iff y o fy C fi 04, ; here ABS is the least
projection that can appear on the right-hand side. This suggests that in addition to
requiring every BSA to be strict and distributive, we require BSAs of lifted functions
to map ABS to ABS. In [WH87] an operator “guard” is defined to facilitate the
definition of projection transformers, in essence to guarantee that every BSA 7 is
strict, maps ABS to ABS, and if 7 v = 4, then 7 7, = § U ABS. Given the first
two properties, the third property is just a special case of distributivity. Here we will
say that a projection transformer has the guard property if it is strict, maps ABS to
ABS, and is distributive. The projection transformers with the guard property form

a complete lattice. The following partially summarises.

Proposition 3.22

Given any BSA of a lifted function f, there is a smaller BSA with the guard property.
Hence, the least BSA of f, if it exists, has the guard property, and every BSA of f
is approximated by a BSA with the guard property that determines f. O

The following states compositional properties of BSAs of lifted functions.

Proposition 3.23

B

If i and 75 have the guard property, then so has 13 0° 7. O

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 50

In summary, for continuous functions it is sensible to restrict attention to continuous,

strict, distributive BSAs, and for lifted functions to those with the guard property.

Henceforth, when we wish to determine strictness properties of some function f €
U — V we will find BSAs 7 € |V | 5 |UL| of fL € U, Gl Vi, where 5 constructs
the lattice of projection transformers with the guard property. In practical terms
this means that we need only record the value of a BSA at the U-basis of its eager
arguments. As a simple example of the potential savings, there are 108 monotonic
projection transformers from {ID,,ID,, BOT., BOT,} to itself, but only four with
the guard property, determined by the mapping of the single projection ID, .

3.1.2 Stability and backward analysis

Though an arbitrary continuous function may not have a least BSA, there is a class
of functions, the stable functions, for which least BSAs always exist. The theory of
stability was developed by Berry [Ber78] in an attempt to extend the characterisation
of sequential functions to include higher order functions. At first order the stable
functions are a superset of the sequential functions, and this is hypothesised to be
the case at higher order. Hunt was the first to note that every stable function has a
least BSA [Hun90a]. This section recapitulates and extends his results: Hunt proved
Proposition 3.25, the other results are new.

Definition
A continuous function f is stable if for all z and y such that y C f z, there exists a
least value M(f,z,y) C « such that y C f (M(f,z,v)).

The simplest function that is continuous but not stable is lub € (2 x 2) — 2; there is
no least value that lub maps to T. However, parallel-or is regarded as the archetyp-
ical non-stable function, and it plays an important role in the development of the
theory of stability. An example (due to Berry) of a function that is stable but not
sequential is the least monotonic function h such that h (i, ff, L) = h (L, tt, ff) =
h (ff, L, tt) = tt. Note that h is not the three-argument analog of parallel-or (which
is not stable), since h (ff, ¢, L) = L. Curien [Cur86] states that the stable func-
tions are intermediate between the continuous functions and the functions denoted
by his concrete data structures, which seemingly characterise precisely the sequential

functions.
Following is a well-known and useful consequence of the definition of stability.

Proposition 3.24 _
Given stable f, for all z;, x5 such that there exists y such that z;, z2 C y (that is,

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 51

7; and 2, are consistent), we have f (z1 N xg) = (f z1) O (f z2).

Proof

We have (f z1) N (f 22) C f y (monotonicity of f), so there is a least 2’ C y such
that (f z1) M (f z2) C f &’. Since z;1, z2 C y it must be that 2’ C z;, z, and hence
' CxyMag, so f (z1MNxe) (f 1) M (f z2). However, f (21 MNax2) C f z1, f xq, s0
f(z1Mz9) C(f z1) N(f z2). We conclude that f (zy N z9) = (f 1) O (f z2). O

Proposition 3.25
Every stable function has a least BSA that maps projections to functions that are

pointwise least.

Proof

Given projection v and stable f there is a pointwise-least function g such that v o
f E fog. We need only show that g is monotonic, then the result follows from
Propositions 3.5 and 3.6. Suppose g were not monotonic, then for some z; C z5
we have g 1 Z g z3. Now v (f z1) E f (9 1) and v (f z1) E f (g9 x2), so
v (f21) C f (g21)Nf (g z2) = f (g 71Mg x2) since f is stable, but (g 2,Mg z2) C g 21,
contrary to g being least. O

We write | f| to denote the least BSA of f. When f is stable we get a stronger

composition property.

Proposition 3.26

For stable functions, abstract composition preserves leastness, that is, when f; and
f2 are stable we have | fy o fo| = | fi| o | f2|. If fi is stable with least BSA 7, and
f2 is continuous with least BSA 7 then 7, of 7, is the least BSA of f; o fs.

Note that this does not in general hold the other way around, that is, 7 o? 7, may
not be the least BSA of f; 0 f; (an example is lub o A(z,y).(z, T) given earlier). O

Recall that the mapping of functions to their least BSAs (when they exist) is not
monotonic in the standard ordering; it is however monotonic in the stable ordering.

Definition
For stable f and g the stable ordering L is defined by f C ¢ iff f C ¢ and for all z,

Thus the stable ordering (viewed as a relation on stable functions) is a subset of
the standard ordering. The set of stable functions between two domains forms a
domain under the stable ordering, with lub and glb defined pointwise just as for

continuous functions. In particular, a sequence of functions that is ascending in the

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 92

stable ordering is ascending in the standard ordering, the lub of the sequence is stable

and is the same as its lub in the space of continuous functions.

It is worth getting an intuitive understanding of the stable ordering. If f C; g, then
g may give more information than f for the same argument, but g requires the same
least amount of information M (f, z, y) below z to produce the information in y. Thus
bot s id and bot g top, but id [Zs top because id requires strictly more information
from its argument to produce T than does top. In the stable ordering id and top are
incomparable. This emphasises that the existence of the lub of two stable functions in
the standard ordering does not imply the existence of the lub in the stable ordering.

Indeed, arbitrary lubs are a prime source of parallel (non-sequential) functions.

The operations X, ®, @, -1, =, currying, and uncurrying, and composition are stable
and map stable functions to stable functions. The functions smash, unsmash, in;,
out;, lift, and drop are all stable, as are constant functions, identity, glb, and the

usual arithmetic, boolean, and comparison operations.

Proposition 3.27
For all stable functions f and g, we have that f C, g implies |f| C | g|.

Proof

Let f, g € U = V be stable functions with f C; g, and let ¥ € [V'|. Then by the def-
inition of &5 we have f C g and for all z we have M(f,z,v (f z)) = M(g,z,7 (f z)).
Now since f E g we have y (f z) E 7y (g z), so that M(f,z,v (f z)) C M(9,z,7 (9 z)),
since M is monotonic in its third argument. Since M(f,z,v (f z)) = |f| v =, and
similarly for g, we have that f C, g implies | f|C |g|. O

Proposition 3.28
If {f:} is directed in the stable ordering, then | |{| f; |} = | U{fi}|.

Proof

By Proposition 3.27 we have | f;| C | U{fi}| for all ¢, so L{| fi |} T | U{f:}|- On the
other hand, it is clear from the safety condition that | |{| f;|} is a BSA of f; for all
¢, hence by inclusivity (of the safety condition in f) | LU{f:}| C U{| f: |}, hence the
result. O

Thus the mapping of stable functions to their least BSAs is continuous in the stable
ordering. In other words the predicate P(f,7) that asserts that 7 is the least BSA of
stable f is inclusive in the stable ordering on f.

We might ask whether there is some ordering C; on arbitrary continuous functions
that makes the property yo f C f o (7 7) of f Scott closed. In fact there is, and it is

similar in spirit to the stable ordering.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 53

Definition
Let the ordering C; on continuous functions be define by f C; g if f C g and for all
z and y with y C f z, that 2’ C z and y C g 2/ implies y C f 2'.

Proposition 3.29
If fC; g and 7 is a BSA of g then 7 is a BSA of f.

Proof
Suppose yog C god. Let z be fixed, and let y = (yog) zand 2’ =6 z. Now y C g 2’
Soy T f o' since f T g. Also, (yof) 3 C (yog) = since f T g, 50 (70 f) 2 C (fo6) ,

as required. 0O

If {f:} is the canonical family of approximations of a function defined on the restricted
class of domains given before, we have that {f; 06} is increasing in the C; ordering,
fi0000i Ci L{ fio00i} for all i (where [| here is in the standard ordering), each f; 06
has a least BSA 7;, the sequence {7;} is ascending and 7,, = |J{;} is the least BSA
of foo = LU{fi © booi}-

Lastly, we observe that on the stable functions C; coincides with C,.

(We conjecture general limit properties for C; like those for Cs: if { f;} is increasing in
the C; ordering then f; C; LI{ f;} for all « (where || again is in the standard ordering),
and if {f;} is ascending in"the C; ordering and each f; has least BSA 7;, then {7;} is
ascending and 7., = |{7;} is the least BSA of f, = LI{fi}. We do not pursue this

further since it is not clearly of use: in particular, recursive function definitions do

not necessarily give rise to chains of approximations ascending in this ordering.)

Proposition 3.30

If 7 has the guard property then 7 is determined by the set of stable lifted functions
of which it is a BSA, and this set is Scott closed in the stable ordering. :

Proof

Let 1,72 € |V, | e |UL| with 74 # 75. Then V % 1, and for some finite v € V,
v # L1, it must be that 7 (v,)L # 72 (1w)L. Let 6y =71 (v,)L and 6, = 7» (7,).. For
some finite zo it must be that §; zy # 62 zg, so zg # L; without loss of generality
assume that &, zg 2 93 zo, 50 0 29 # L. Let g € U, % V. be defined by

gz =lbftv, if x4 x
gr=1Ubft L,ifzDd 2, z#L
gz =1 ifz=1.

Then g is a stable lifted function and 7, is a BSA of g. Now (7,)L (g ®o) = lift v, but
g (81 xo) C lift L because §; x¢ # b2 Tg, so 71 is not a BSA of g. We conclude that

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 54

every projection transformer 7 with the guard property is the lub of the least BSAs
of the lifted stable functions of which it is a BSA. That this set of functions is Scott
closed then follows from Propositions 3.27 and 3.28. 0O

Thus a projection transformer with the guard property which is not the least BSA of
any continuous function is determined by the set of stable lifted functions of which
it is a BSA. A simple example is the projection transformer in |1, | it | 1., | that
maps STR to ID, which is the lub of the least BSA of the identity (which maps STR
to STR) and the lifted constant top function (which maps STR to ABS).

Proposition 3.31

Suppose F' maps lifted continuous functions to lifted continuous functions such that
stable functions are mapped to stable functions. If T' maps projection transformers
with the guard property to projection transformers with the guard property, is dis-
tributive, and maps the least BSA of every stable function f to the least BSA of
F(f), then T is the least function such that if 7 is any BSA of any function f then
T(7) is a BSA of F(f).

Proof

Let 7 have the guard property and let S be the set of lifted stable functions of which
7 is a BSA. Then T'(7) must be at least as large as ||;cg | F(f)|. Now

Uses [F(f) I

= Ures T(fD) [IFA =TS
= T(Uses|f|) [T distributive]

= T(7) [Proposition 3.30] .
Hence T is least. O

We might have hoped to be able to define abstract composition to preserve leastness;

it is a simple corollary that this is not possible.

Corollary 3.32
Abstract composition of is the least function such that if 7; and 75 have the guard

property and are BSAs of lifted functions f; and f, respectively, then 7; o 7 is a
BSAof fiofs. O

3.1.3 Functions of several arguments

We write (f1,..., fu) to mean Az.(f1 z,..., f.), and {fi,..., f»)) to mean smasho
(f1,..., fa); both preserve stability. Given BSAs of the lifted functions f;, 1 <i < n,
we will need to find a BSA of (f1,..., f»)). This is developed following.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 55

The U-basis for the projections on a smash product domain is a subset of the projec-

tions that can be expressed as smash products.

Proposition 3.33
Foralla€e | U1 ®...Q U,|, we have a = | {1 ® ... ® @, C a}.

Proof

Recall that a projection is determined by its finite non-bottom fixed points. For
any finite non-bottom c there is a least projection that has c as a fixed point—it is
the characteristic projection v, (in fact c is its only non-bottom fixed point). For
notational simplicity we will consider the binary case. Let o € |U ® V' | and (u, v) be
a finite fixed point of a. It is simple to verify that y(u.) = Yu ® v, from which the

result follows. 0O

Thus distributive projection transformers from projections on smash product domains
are determined by their behaviour on arguments expressible as smash products. Use of
smash product is crucial; the corresponding result does not hold for ordinary product.

Proposition 3.34
If f is strict and bottom reflecting and if for some z and +y we have v (f) = L then
fhasa BSA 7suchthat Tz = L. ‘

This follows directly from Proposition 3.16 O

Proposition 3.35

If 7; is a (least) BSA of f; for 1 < i < n then a (least) BSA of (fi,..., f,) maps
o) X...Xagto(mpa)U...U(mm a,). O

Proposition 3.36

If 7; is a (least) BSA of strict and bottom-reflecting f; for 1 < ¢ < n then {fi,..., fo))
has (least) BSA

A H{(nmo)&...&(ay) | 1®...Qa, Ca}.
As a special case thismaps 01 ® ... ® o, to (11 1) & ... & (70).
Proof
We need only show that (13 a1) & ... & (7, a,) is (least) such that (o1 ® ... ® a,) 0
(frse s) E{f1y-- s fa)o((mar) & ... & (1 @,)). We show leastness for the
binary case. Let z, a1, ag, 71, and 7, be fixed and §; = 11 @; and B = ™ .
If (4 ® a2) ({(f1, f2))) = L then either a; (fy z) = L or az (f2) = L, so by

Proposition 3.34 either 71 @y £ = L or 72 ap £ = 1, hence ((11 a;) & (72 a2)) z = L.

If (al ® a2) («flaf?» :B) # L then (al ® Q'Z) «flafil) = ((11 (fl .'L‘), a2 (f2 :L’)), S0
(11 1)&(72) x = ((11 @1)U(72 @2)) z, and the result follows from Proposition 3.35.
O

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 56

Lastly, we look more closely at &. A projection transformer 7 is M-distributive if for
all sets of projections X we have [(7 X) =7 ([]X).

Proposition 3.37

If 41, v are projections, &, do are smash projections, and fi, fo are strict bottom-
reflecting functions such that y;0 f C foé; and 720 f C f oo, then (7 Myp) 0o f T
fo (6, Mdy), and 81 M 4y is least if 6; and &, are.

The proof differs only slightly from the proof of Proposition 3.16. O

In this sense the least BSA of a strict bottom-reflecting function is M-distributive with

respect to smash projections (recall that glb for smash projections is pointwise).

Proposition 3.38
For projections on lifted domains the operator & may be expressed in terms of Ll and

M as follows.

Y&y = (vUY) N (M) .
O

A projection transformer 7 is &-distributive if for all sets of projections X we have
7 (&X) = &(7 X). Following we show that if a BSA is least then it is &-distributive.
This is no surprise in view of the facts that least projection transformers are U-
distributive with respect to lazy projections and U- and M-distributive with respect to

smash projections, and that & is lub for lazy projections and glb for smash projections.

Proposition 3.39
If 7 is the least BSA of a lifted function then 7 is &-distributive.

Proof

Suppose that 4; and d, are least such that y;0 fi E fL 06; and yp0 fi C f, 065. Then
we need only show that &, & &5 is least such that (y; & 1) o fi C fL o (61 & 82). Notw
6§ and &3 are least such that v{o fL C fL 04§ and v§0 fL C fL 063, and 8! and &} are
least such that 4{ o fi C fL 04} and 7% o fi C fi o 65, by Proposition 3.20. Hence by
Corollary 3.10 we have that 6! U 6} is least such that (i L~4) o fi T fi o (6% L &),
and by Proposition 3.37 §; M & is least such that (y§M~$) o fu T fL 0 (821 65). Since
Y1 &y = (Y Us) N (¥ M~3) and 6 & 8o = (64 L &) M (65 M 83), the result follows
from Proposition 3.20. O

If a distributive projection transformer is &-distributive on the Li-basis of its argument
domain, then it is &-distributive everywhere; the key fact is that & distributes over
L. As we will show later, the &-distributive projection transformers (with or without
the guard property) do not in general form a lattice. Still, as the following shows the
fact that least BSAs are &-distributive is useful.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS o7

Proposition 3.40
If 7 has the guard property then 7 (y & 6) C (7 7) & (7 §).

Proof
Let S be the set of stable functions of which 7 is a BSA, and let X = {| f| | f € S}
80 that 7 = || X and each element of X is &-distributive. Then
7 (v & d)

= Urex 7 (7&9)

= Urex (T 7) & (7 9))

C Urex Urex ((T77) & (7' 9))

= (Urex 77) & (Urex 7 9)

= (17) & (7 6) ,

as required. O

This is not surprising since for v and & both lazy we get equality, and for v and §
both smash projections the result follows from the monotonicity of 7.

We conclude with a brief summary. A function may not have a least BSA, but least
BSAs are guaranteed to exist for stable functions, and for functions with argument
domains constructed using the primitive domain 1 and domain constructors -, X,
®, @, —, and recursion. A function may not be determined by its least BSA (when
it exists), but every strict bottom-reflecting function is determined by its least BSA,
hence so are lifted functions. Least BSAs of stable functions map projections to
pointwise least projections, and for BSAs of stable functions abstract composition

preserves leastness.

3.2 Forward Strictness Abstraction

For forward strictness abstraction, greater is better.

Proposition 3.41
Every function has a greatest FSA, and it is monotonic.

Proof

Let f and 6 be fixed. Let X be the set of projections -y such that yo f C fod. The set
X is not empty (it always contains BOT), and it is directed (since y; o f C f 0 § and
v20 f C foé implies (71 U~e) o f C f 046). Since the safety condition is inclusive in
v we have (L] X) o f C f o 6. We conclude that f has a greatest FSA, and it is clearly

monotonic. O

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS o8

The greatest FSA of a function may not be continuous; certainly the continuous
extension of a greatest FSA is safe. For practical analysis in which the projection

domains are finite this distinction disappears.

As the following shows, given f and 4 we cannot in general hope to choose 7y large

enough to get equality instead of inequality in the safety condition. Let
f € Bool— (2x2),

fLl= (J-’-L))
ft=(T,T),
fF=(LT).

The greatest FSA of f maps g to BOT x BOT and (BOT x BOT) (f ff) =
(L, L) C (L, T) = f (vg ff). This example also shows that the greatest FSA
may map projections to functions that are not pointwise greatest, even on the image
of f. Last, it shows that the greatest FSA is not U-distributive: 7, is mapped to
Yer,my U (ID x BOT) (this projection maps (L, T) to (L, L) and acts as the identity
otherwise), v, U vy = ID, and the greatest FSA of f maps ID to ID.

Next we state a compositional property for FSAs.

Proposition 3.42
If 1 and 7 are FSAs of f; and f5, respectively, then ;o isa FSAof fio . O

Thus forward-strictness abstract composition is taken to be ordinary composition.
Composition of FSAs does not in general preserve greatestness—this is not surprising
since the greatest FSA of a function f may not map projections to functions that are

pointwise greatest on the range of f.

We observe that ID o f C f o ID for all f. Hence the greatest FSA of any function
maps ID to ID.

Let us restrict attention to those functions f for which least BSAs exist. If y; 0 f C
fodiand ya0 fC fodythen (1M y2) o fC fody and (73 Mye) o f E f ods, hence
(m1 M) o f E fo(é Méz). Monotonicity of any FSA 7 of f requires 7 (§; M &) C
(r é1)N (7" d2), so we can do no better than to take 7 (& M d2) = (7 ;) M (7 &2).

Proposition 3.43
Function f has a least BSA iff the greatest FSA of f is M-distributive.

Proof

If f has a least BSA, showing that the greatest FSA of f is M-distributive is a simple
generalisation of the previous discussion to sets of projections rather than pairs. In
the other direction, suppose the greatest FSA 7 of f is M-distributive, let v be fixed,

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 59

and let X be the set of all projections é such that yo f C f od. Then 7 must map
every element of X to some projection greater than [|X,soyC [|(7 X) =7 ([]X).
Evidently, []X is the least projection such that v o f C f o ([]X); since least such
projections exist for each < it must be that f has a least BSA. 0O

Recall we have given one example of a function f € c0® = 2 that did not have a
least BSA. By the previous proposition the greatest FSA of f is not M-distributive;
it is interesting to show this directly. The greatest FSA 7 of f maps every bottom-
reflecting projection to /D and every other pro jection to BOT. Define

ODD € |0

ODD T? = T?

ODD (lift* 1)? = (Lft>*+ 1)?
ODD (lift?tt 1)% = (lift*+' 1)?

EVEN € |od?|
EVEN T® =T°

EVEN (Lft? 1)° = (lift* L1)?
EVEN (Lift>+! 1)% = (Lift¥+? 1)°

Then 7 ODD = 17 EVEN = ID,but ODDNEVEN = BOT, so 7 is not M-distributive.
Though 7 is monotonic it is not continuous: the sequence {NOK(h-ﬂ.- 1)8 | 2 >0} is
increasing and 7 maps every element of this sequence to BOT, but the limit of this
sequence is ID which 7 maps to ID. '

When least BSAs are known to exist we may take advantage of M-distributivity. The
set of y.q such that c is finite and d is immediately below ¢ (that is, such that there
does not exist d’ such that d C d’' C c; this is well-defined since c is finite) form a
M-basis for | U |: every element of | U | is the glb of some subset of the M-basis, and no
element of the M-basis is the glb of any set that does not contain it. (The glb of the
empty subset of a lattice is its greatest element, here ID, which is not in the M-basis.)
Hence the behaviour of a M-distributive projection transformer that maps ID to ID is
determined by its behaviour on the M-basis of its argument domain. In any case the
M-distributive extension of any FSA 7 of f—the M-distributive projection transformer
that agrees with 7 on the M-basis—is a FSA of f.

The M-distributive monotonic projection transformers form a complete lattice that is
not in general a sublattice of the monotonic projection transformers. In the lattice of
M-distributive projection transformers glb is defined pointwise; 7y LI 75 is defined to be
the least M-distributive projection transformer greater than the pointwise lub. When
greatest FSAs are M-distributive and 77 and 75 are FSAs of f, their pointwise lub,

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 60

hence 13 U 7, is a FSA of f. The same holds for M-distributive monotonic projection
transformers that map ID to ID. We use % to construct the space of M-distributive
projection transformers that map ID to ID; this space is closed under composition.

We can now neatly characterise the greatest FSA 7 of a function f € U — V, it is
TOo = l—l{"ym,r | ’U..—_f'U,, v’:f(a 'u,), uE U} .

For binding-time analysis, unlike strictness analysis, we do not require analysis of
lifted functions. For this reason, and because the analysis is forward, the treatment
of functions of multiple arguments is much simpler: if 7; is a (greatest) FSA of f; for
1 < i < n, then a (greatest) FSA of (fi,..., fn) is Aa.(nn @) X ... X (7, @).

3.2.1 Relating forward and backward strictness abstraction

We now briefly relate forward and backward strictness abstraction to the theory of

reversal and relational reversal of abstract interpretations [HL92b, HL92c]|.

If 7’ is any FSA of f then any 7 such that 7/ o 7 3 id is a BSA of f, and 7 is a reversal
of 7/. Similarly, if 7 is any BSA of f then any 7’ such that 7 o7’ C id is a FSA of
f, and 7' is a reversal of 7. When f has a least BSA 7 and greatest FSA 7’ we have
7" o7 3 id and 7 o 7 C id; then 7 and 7' form a Galois connection, each is a reversal
of the other, and by virtue of being a Galois connection each determines the other, 7
must map BOT to BOT and 7/ must map ID to ID.

Since least BSAs are not guaranteed to exist we may resort to relational reversal:
we relate a set of BSAs to each FSA. The relational reversal of FSA 7’ is the set of
all 7 such that 7/ o 7 J id; again this set contains the same information as 7, and

each determines the other. For example, referring again to f € oco?® — 2 for which no
least BSA exists, the greatest FSA maps BOT to BOT and ID to ID; its relational
reversal contains precisely the BSAs of f.

Were we to restrict attention to strict bottom-reflecting functions and projection
transformers from smash projections to smash projections only simple reversal would
need to be considered since least BSAs and greatest FSAs would always exist. How-

ever, many of the interesting projections, such as H, are not smash projections.

The theory of relational reversal in [HL92c] is restricted to finite lattices, though
their treatment would appear to extend smoothly to infinite lattices; continuity is not
required, only monotonicity. In the finite case the components of a Galois connection
are guaranteed to distribute over glb and lub respectively; our corresponding result

contains the essence of the proof for infinite domains. Since we are working in the

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 61

more general setting, we will prove some more (instances) of these results from first

principles.

Proposition 3.44
The greatest FSA of a function is determined by its BSAs.

Proof :

First we observe that yo f C f o ¢ iff there exists a continuous BSA 7 such that
d =7 v (define 7 a to be ¢ if @ C «y and ID otherwise). ‘Second, if X is the set of
projections 7 such that yo f C f o4, then as shown in the proof of Proposition 3.41,
the greatest forward abstraction of f mapsé to | JX. O

Proposition 3.45
The set of BSAs of a function is determined by its greatest FSA.

Proof

Let 7 be the greatest FSA of a function f. Then the projection transformer 7 is a
BSA of fif ' or Jid. O

Hence the greatest FSA of a function contains the same information as its set of
BSAs.

Proposition 3.46

Every strict bottom-reflecting function is determined by its greatest FSA.

Proof
Let f € U — V be continuous, strict, and bottom reflecting, and let 7 be the greatest
FSA of f. It is not hard to see that for z € U, it must be that 7 NOK, = NOKy ,).

Since NOK, determines c, it is straightforward to reconstruct f from . O

We observe that for strict bottom-reflecting functions and smash projections, we can
get equality in the safety condition in the backward direction but not the forward

direction; this asymmetry is a consequence of functions being many-to-one.

Proposition 3.47
Every strict bottom-reflecting function is determined by its BSAs.

Proof
That a strict bottom-reflecting function is determined by its BSAs follows from the

fact that a function is determined by its greatest FSA, which is in turn determined
by its BSAs. 0O

Hence every strict bottom-reflecting function is determined by its least BSA, if it
exists. We have proven this directly before; the point here is that we can do so
indirectly, by proving the corresponding result for forward analysis, then appealing
to the theory of reversal of abstract interpretation.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 62

3.3 Forward Termination Abstraction

Recall the nominal goal is, given f and 4, to find v such that yo f 3 fod. We
may always take 7y to be ID, so every function has a FTA, but this is completely
uninformative—smaller is better. In general a function does not have a least FTA or
even minimal FTA. For example, for f € 1 — oo with f L = T, there is no least
or minimal projection that acts as the identity on T and hence no least or minimal
FTA of f. More generally there is no least or minimal projection that acts as the
identity on any infinite element (hence characteristic projections are defined only for

finite values).

Even when least v exists such that yo f J f o4, in general + is not pointwise least,

or even pointwise least on the image of f.

When a least FTA exists it is not in general LI-distributive, for example, define

glb € 2x2)—>2,

gbrzy=zNy.
The least F'TA of glb maps ID x BOT and BOT x ID to BOT, but their lub, which
is ID, to ID.

Perhaps surprisingly, least FTAs are not M-distributive either, even for finite domains.

Consider lub € (2 X 2) — 2. Its least FTA maps ID x BOT and BOT x ID to ID,
but their glb BOT x BOT to BOT.

Proposition 3.48
If m and 7 are FTAs of f; and f; respectively, then 70 isa FTAof fiof,. O

Composition does not in general preserve leastness.

3.3.1 Analysis of lifted functions

Since we are interested in determining lower bounds on evaluation we will analyse
lifted functions.

Proposition 3.49
Every function f is determined by the FTAs of f.

Just as for forward and backward strictness abstraction, there are two ways to do
this. The easier way would be to relate forward and backward termination abstraction
and show the simple reconstruction of f, from its greatest BTA—in the backward

direction this is easy because we can get equality in the safety condition using smash

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 63

projections. (Note that though f may not have a BTA, f, always has.) The more

complex direct method requires an argument like that in Proposition 3.17. D

Just as for backward strictness abstraction, abstract composition for strict bottom-

reflecting functions preserves leastness with respect to smash projections.

Proposition 3.50
Every FTA of a lifted function is bottom reflecting. 0O

Proposition 3.51
Every FTA of a lifted function is approximated by a strict FTA. O

We will henceforth restrict attention to strict continuous bottom-reflecting FTAs of
lifted functions.

If a function is strict and its argument might not terminate, application of the function

to the argument might not terminate. This is embodied in the following.

Proposition 3.52
Every FTA of a lifted strict function is approximated by an FTA that maps BOT,
to BOT, and is distributive with respect to BOT,. 0O

For functions of multiple arguments we have the following.

Proposition 3.53
For strict bottom-reflecting function f; with (least) FTA 7; for 1 < i < n a (least)
FTA of (fi,...,fa) i8Aa(n1 @) ®...® (1, a). O '

3.4 Backward Termination Abstraction

In general there is no § satisfying yo f 3 f o §, for example, when 7 is BOT and
f is any non-bottom constant function. Even when solutions exist there may be no
greatest solution, for example, if f is any of the usual binary operations on Int and we
require that the result not be defined, there are many maximal projections § satisfying
BOT o f 3 f o é—for example, one maps the first component to L, another maps
pairs (z,y) of even numbers to (z, L) and all other pairs to (L,y). Generalising,
suppose sum sums the elements of a list, and the result of sum is required to be
undefined. Then we have the choice of mapping any element or the terminating [] of
the list to L. In general, every projection § meeting the safety condition is bounded
above by a maximal projection meeting the safety condition since lub on projections
is pointwise and the safety condition is inclusive in 4. Hence the set of maximal

elements satisfying the safety condition is complete.

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 64

It appears that to make effective projection-based analysis of this kind we would have
to move to a relational analysis, considering sets of projections rather than individual
projections. Let S be a set of projections on the result of some function, any one of
which removes a sufficient amount of information (to guarantee that each argument
is mapped to some value less than some value in a given set, for example, mapping
fully-defined lists to partially-defined lists). Then the set T of projections on the
argument should have the the property that for every é € T there exists some v € S
such that yo f J f o4, that is, each element of T removes a sufficient amount of
information to guarantee that some particular part of the output is not produced.
The sets S and T may be taken to be downward-closed and are characterised by
their maximal elements, hence an appropriate domain of sets of projections is the

Hoare (lower) powerdomain of projections.

As an aside, it is interesting to note that Wadler’s 4-point domain 2; , for lists appears
to give a starting point for such a relational analysis. For sum to be guaranteed to not
produce its result the appropriate ‘abstract’ projection (set of projections) is precisely
the one that maps lift? T to lift?> L and acts as the identity on lift L and L.

Without certainty that security analysis is of real practical use we choose to drop
it at this point, with the assertion that the subsequent development could be made
relational without too much effort.

3.5 Discussion and Related Work

We have shown that at least some properties of functions that can be captured with
projection analysis cannot be captured in the BHA framework, but this does not
answer the more general question of what the relationship is between the properties
that can be captured in each system. A refinement of this question is what properties
could actually be detected by a program analysis technique within each system.

Recall that abstract values in the BHA framework are Scott closed sets. Every Scott
closed subset S of domain D can be uniquely represented by a smash projection:

define vg by
s € |-D_L |)
vs (lift s) = 1, ifse S,
Ys T = z, otherwise .

An abstraction f# of function f can safely map S to T iff 7 o fi T fi ovs. Thus
every property that can be captured in the BHA framework can be captured using

projection analysis (this is also the essence of Burn’s argument [Bur90c]).

CHAPTER 3. ANALYSING FUNCTIONS WITH PROJECTIONS 65

A problem arises for higher-order projection-based program analysis: though in prin-
ciple there are representations of abstract functions as projections there does not seem
to be any way to give a compositional non-standard semantics that gives a reasonable
analysis—this is considered further in Section 5.6. Another observation is that if pro-
jections v and § are regarded as total relations (or equivalence relations) then v — 4,
where — is the operation on relations, is not in general a total (or equivalence) rela-
tion. Burn and Hunt [BH91] argue that this is the reason that projections cannot be
used to capture properties of higher-order functions in a natural way. Hunt [Hun90b],
and Hunt and Sands [HS91], solve this problem by using partial equivalence relations

(PERs) as non-standard values; we will consider their analysis techniques later.

We have observed an interesting parallel between BHA abstraction and backward-
strictness abstraction: in the former properties are Scott-closed sets; in the latter,
the projection transformers with the guard property are in one-to-one correspon-
dence with Scott-closed sets of stable functions. In a sense, the only difference is the
ordering; since the stable ordering is stronger than the standard ordering it is not

surprising that stronger properties can be characterised, e.g. head strictness.

One other notable attempt to generalise BHA strictness analysis is Dybjer’s inverse
image analysis [Dyb87]. Briefly, his analysis seeks to determine the set of function
inputs that could produce a given set of outﬁuts; it is a backward analysis. The
non-standard values are not just any sets but Scott open (upward closed) sets. It
does not appear possible to capture head strictness (for example) in this framework
because the head-strict lists (lists that do not contain bottom elements) do not form a
Scott open set. He also suggests that the technique could be readily modified to give
a termination analysis; presumably it would be unable to capture such properties as
head termination for the same reason.

Burn [Bur92] has attempted to give some perspective by considering just what prop-
erties various analysis techniques can manipulate. This kind of work is still at an

early stage; much remains to be done.

Chapter 4

Source Language and Standard
Semantics

The source language is a simple, strongly typed, monomorphic, functional language
with non-strict semantics. It differs from previously mentioned real-world lazy func-
tional languages in only one essential way: it is monomorphic rather than (Hindley-

Milner) polymorphic.

The restriction to monomorphic typing is essential because the analysis techniques
we develop require exact type information. This is in keeping with a common pat-
tern of development of program analysis techniques: techniques are invented first for
monomorphic first-order languages, then generalised (usually independently and in-
compatibly) to polymorphism and higher order, and finally to languages that are both
polymorphic and higher order; we view our techniques as steps along this path. As for
implementation, it is possible to translate a polymorphic program to a monomorphic
one by generating instances of functions at every required monomorphic type (the
number of required instances is finite and can be statically determined for Hindley-
Milner polymorphism [Hol83]), and hence we can regard our analysis as being appli-
cable, if indirectly, to a polymorphic version of our language. What’s more, for the
analysis techniques seemingly most closely related to ours the monomorphic versions
give more information than their polymorphic counterparts: for strictness analysis
Burn, Hankin, and Abramsky’s higher-order monomorphic forward analysis tech-
nique [BHAS86] is stronger than Abramsky’s [Abr85] or Baraki’s [Bar93] polymorphic
techniques, and Wadler and Hughes’ first-order monomorphic backward technique
[WHS7] is stronger than Hughes and Launchbury’s polymorphic technique [HL92a];
for binding-time analysis Launchbury’s monomorphic technique is stronger than the

polymorphic one [Lau9la).

Monomorphism aside, the differences between our toy language and real programming

66

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 67

languages amount to a lack of syntactic sugaring and a paucity of predefined types

and functions. We address these issues in turn.

Semantically, lack of syntactic sugar is a non-issue. Our language could be regarded
as simplification of Haskell’s Core language [HPW92], or the Core languages of Pey-
ton Jones [PJ87] or Peyton Jones and Lester [PJL92], in which such syntactic features
such as Haskell’s type classes; nested, guarded, sequential, overlapping, tagged, de-
fault, and irrefutable pattern matching; if-expressions; and list comprehensions of
various kinds have been transformed out. In a monomorphic language let and where
can be transformed into application without changing the semantics, as can letrec
and whererec using an explicit least fixed point construction. The strict constructors

of Lazy ML can be simulated in our language.

Finally, our language provides only a single predefined type Int to model the integers,
with a single operation, addition. From a theoretical point of view even the provision
of integers is unnecessary, since any computable function can be expressed in the
language without providing them as primitive. More practically, we acknowledge that
without it our type system would not likely allow an efficient implementation of the
integers and associated operations, and our language would poorly reflect real-world
practice. We claim that integer addition is representative in its strictness properties
of arithmetic operators in general, and of the comparison operators as well. Similarly,
we claim that the analysis for floating point numbers and their operators is essentially
the same as for integers. Commonly predefined types like booleans, characters, and
lists are expressible in a reasonable way in our type language and so are not provided
as primitive. At a more fundamental level, the analysis techniques developed require
only that predefined functions be continuous, for example, there would be no difficulty

in adding a parallel construct such as parallel conditional.

The provision of unbozed types in Haskell is a genuine feature because it introduces
so-called unpointed domains—roughly, domains without a bottom element. We be-
lieve that it would be a straightforward matter to extend our development to handle

unboxed types; this is discussed further in Section 4.4.5.!

!For uniformity of development we will have some unboxed types—those that do not give rise to
unpointed domains. Peyton Jones and Launchbury’s treatment provides unboxed primitive, sum,
and product types; ours unboxed product and function types.

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 68
4.1 Source Languages

We start with the language of types. The syntactic classes are

T € Type [Types|

A € TName [Type Names]

c € Con [Constructors]

D € TDefns [Type Definitions]

The grammar for types is

T = A [Type Name]
| Int [Integer]
| (T1,....Ta) [Unboxed product]
| ¢ T1+ ... + ¢, T, [Sum)]
| Ty #> Ty [Unboxed function]

The product type may be nullary, unary, or multiary. Nullary product () plays
a special role and will be called the unit type. A unary product (T) will in all
interpretations have the same meaning as T and is taken to be the same type, so
parentheses may be used in the usual way without confusing abstract and concrete

syntax. Integer and sum types will be called bozed types, and product and function
types unbozed.

The grammar for type definitions is
D:u=A=Tq; ...; Ap =T, [Type Definitions]

A set of type definitions must be closed: any A appearing in the definitions must be
defined (appear to the left of =) exactly once; furthermore, each ¢ may appear no

more than once.

4.1.1 The lazy lambda calculus

The standard expression semantics is intended to model some operational semantics in
which reduction is normal order to weak head normal form (WHNF) [PJ87, Ong88,
Abr89|, which may or may not terminate. For an expression of boxed type the
semantics is intended to give value L if it does not reduce to WHNF, and some value
different from L otherwise. This departs in an important way from the more usual
model of the lambda calculus [Bar90] in that reduction is to WHNF rather than
head normal form (HNF). In particular, every lambda expression is in WHNF even

though it may not have a HNF, so our semantics should give a non-bottom value

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 69

to a lambda expression even if it denotes the least (constant bottom) function. A
theory of normal-order reduction to WHNF in the strongly-typed lambda calculus has
been developed by Abramsky and Ong [Ong88, Abr89]; this system is called the lazy
lambda calculus. For our purposes, the significant feature of the lazy lambda calculus
is that expressions of function type take values from a lifted function space of the
form (U — V),. Then expressions of function type that do not have a WHNF should
be assigned value L by the semantics; any expression of function type that does have
a WHNF should be assigned value value lift f for some f. Though an expression of
function type has a different value depending on whether it does or does not have a
WHNF, when such an expression is applied, the expression with no WHNF (value
1) should behave just as an expression that does have a WHNF but still maps every
argument to bottom (value lift L). Thus application of a lazy function—a value from
a lifted function space—involves dropping the function (in effect, projecting back
into the conventional function domain), and applying the result to the argument. A
simplifying observation is that lazy functions are just ordinary functions embedded

in the simplest of lazy data structures, unary sum, for which the embedding is lifting.

The use of lifted function spaces has implications for the interpretation of the results of
analysis. For example, the function denoted by \x.\y.x will not be strict: argument

1 is mapped not to L but to lift L; this will be discussed in context.

The semantics of lazy functional languages usually map product types to lifted prod-
uct domains (a notable exception is Miranda); in the Core language of Haskell, or
Core of [PJL92], this is made explicit since product types can only be expressed as a
unary sum of the form ¢ T; ... T,. We will distinguish lifted products from unlifted
products; more precisely, we will treat sums and products independently. In our lan-
guage the type would be expressed ¢ (Ty,...,T,). In contrast, function types are
usually mapped to (unlifted) function domains. The reason is that without a pro-
gramming language construct such as seq e; ez, which evaluates e; to WHNF before
returning eq, it is not possible to detect that functions can be evaluated indeperll—
dently of being applied. At some point, however, the lifting of function spaces must
be recognised: if a function’s argument is to be evaluated early and that argument is
of function type we must recognise that it can be evaluated. Qur standard semantics
of types will map T, #> Ty to an unlifted function space; we will take T; -> T to be
shorthand for lam (T; #> Ty), a unary sum of unboxed function type.? A grammar

ZActually 1am is a family of constructors indexed by T; and To; this is left implicit.

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 70

SimpleSum = single Int

Bool = true () + false ()

IntList = nil () + cons (Int, IntList)

IntListList = 1lnil () + lcons (IntList, IntListList)
Funlist = fnil () + fcons (Int -> Int, FunList)
FunChoice = left (Int -> Int) + right (Int -> Int)

BoolTree = leaf Bool + node (BoolTree, BoolTree)

FunTree fleaf (Int -> Int) + fnode (FunTree, FunTree)

FunType = FunType -> Int -> Int

Figure 4.1: Example type definitions.

for a more conventional language is

T == A [Type Name]

) [Parenthesised Type]

| Int [Integer]

| Ty ->Ty [Function]

| s [Sum of Products]
S = ¢ (Ty1,..yTe) + oo * Cp (Tp,...,T1e,) [Sum of Products]
D = A =85;; ...; A, =S, [Type Definitions]

This is just a restriction of the first language to boxed types; our theory is developed
in terms of the first language and hence applies to any subset. Figure 4.1.1 defines

some of the types that will be used in later examples.

4.1.2 Expression language

This time we give a more conventional language first, then its embedding into the
actual source language. The additional syntactic classes required for expressions are
e € Expr [Expressions]
x € Var [Variables]

n € Num [Numerals]

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 71

The grammar for expressions is

e =X [Variable]
| n, [Numeral]
| e1 + e [Integer addition]
| ¢ (e1,...,en) [Sum construction]
| case e of [Sum decomposition]

c1 (X110, ...,%14) > €1

Cn (Rn1s...1Xpgq,) => en
| \x:T.e [Lambda abstraction]
| e1 e [Function application]
| seqe; e [Sequential evaluation]
| fix e [Fixed point]

To keep the semantics simple we require that in a case expression every constructor
in the corresponding type definition appear in exactly one pattern. Usually we will

write \x.e instead of \x:T.e when the type is clear from context.

A complete program consists of a sequence of type declarations followed by an ex-

pression.

p € Prog [Programs]
p:=D; e

We do not require that e be closed; for example e might have free variables such as
input, a standard or default input list of characters (as in Lazy ML or Miranda).
Free variables are assumed to be bound by a global environment. This concept is
important to our development: it allows every expression to be treated in the same

way—closed expressions are not special.

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 72

We regard expressions in the conventional expression language as shorthand for ex-

pressions in the actual source language defined by the following grammar.

e =X
n;
e; + ey

(e1,...,en)

let (%1,...,X,) = ey in e

case ey of ¢ x; > ep; ...

\#x:T.e

app# e; ez
fix# e

|
|
|
|
| cie
|
|
|
|

[Variable]
[Numeral]
[Integer addition]
[Tuple construction]
[Tuple decomposition]
[Sum construction]

; Cn Xp => e, [Sum decomposition]
[Lambda abstraction]
[Function application]
[Fixed point]

Like product types, tuples may be nullary, unary, or multiary. Since e will have the

same type and denotation as (e) parentheses may be used in the usual way. As before,

in a case expression every constructor of the selector type must guard a branch, and

\#x.e may be written instead of \#x:T.e.

Translation of the conventional language into the source language will make explicit

at the syntactic level the bozing and unbozing—the embedding into and projection

out of lifted spaces—of tuples and functions. In turn, this gives a simpler, more

uniform, and more general development of the semantics.

The conventional case expression

case ey of

¢ (X1, .-.5%1,4) => €

c (Xl,l, cee ,leal) -> e,
is shorthand for
case eg of

c X3 -> let (xl,I: ,xlyal)

C Xp > let (Xp1,...,%X1q,)
Application e; ej is translated to

case e; of

lam £ -> app# f eo,

= X1 in e

= X, in e, .

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 73

where T; -> T, is understood to be lam (T; #> T9). Sequential evaluation seq e; es
is translated to

case e; of ¢y x1 -> €e9; ...; Cph X, => €9,
where e; has type ¢; Ty + ... + ¢, T,. Lambda abstraction \x:T.e is translated
to lam (\#x:T.e). Last, fixed point fix e is translated to

case e of

lam f -> fix# f .

In all cases we take the variables introduced by translation to be fresh so that there

is no name capture.

Roughly speaking, evaluation is forced only by case and +; in particular, product

decomposition does not force evaluation.

4.1.3 Typing

We will typically use T, U, and V to denote types. The symbol I' denotes a set of

typing assumptions of the form x; : T;. The typing rules are given following.

I', x:T F x:T
T F n;:Int
I' F e;:Int T I ey:Int

I' - (e; +e3):1Int

' x:Ty F e: Ty
' F (\#x:T1.e) : Ty # Ty

IT'F e T # T, T'Fe: Ty

' - (app# e; e2) : Ty
'k e:Ty -+ T'F e,:T,

T + (el,...,en) . (Tl’---:Tn)

' + eO:(Tl,...,T,,) P, X12T1, ceny XnITn - 612U
' v (let (x1,...,%,) =egine;):U
' - e:T;

A=c¢Ti+...+¢c,T,
T F (c,e):A [P]

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 74

' F e:A ' xx:Ty F ¢:U0 -+ T, x,:T, F e,:U

I' + (caseeyof ci X1 => €1} ...; Cp X, => €,):U

[A=ci T+ ... +c, Ty

'Fe:T#H T
L F (fix# e):T

4.2 Semantics

We will give a number of type and expression semantics pairs 7 and &, typically
superscripted by the name of the semantics. For example, S is the name of the

standard semantics and the two semantic functions are 7> and &°.

4.2.1 Domain definitions

Each semantic function 7 maps types to domain environments to domains, so

T € Type — DEnv — Dom ,
DEnv = TName — Dom ,

where Dom is the class of all Scott domains; we may take it to be the category of
Scott domains, though we will not use any of the categoric structure. We use ¢ to
denote a typical domain environment, when necessary superscripted with the name

of the semantics.

For each such function there is an implicitly defined function 7,4, mapping type

definitions to domain environments, that is,
Taefns € TDefns — DEnv .

The function 7., is defined in terms of 7: given type definitions D equal to
A)=Ty; ...; A, =T,, define

G = M- TIT;]¢1<5<n]) G,
where
o =B~ T[O][]|1<j<n].

Then (;[A] is the i" canonical approximating domain for Ty, [D][A]. (If we re-
gard ¢ as a tuple indexed by type name then T, [D] is a solution of { = [A; —
TIT:] ¢ |1 <1< n]asdescribed in Section 2.5.) Note that the initial approximating

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 75

domains—¢p[A] for each A—are the interpretation of the unit type. The substitution
lemma will hold for all such definitions, that is, T[T] {[A — T[T’] ¢] will be equal
to T[T[T’/A]] ¢ when there is no variable capture. A useful consequence of these

two facts is that (;[A] can always be expressed by 7T[T] [] for some (closed) type T.

Even non-recursive type definitions give rise to retraction sequences; for example in

the standard semantics the type definition I = Int yields the retraction sequence
({1, Int, Int, Int, ...}, {(Az.L,z.1), (id, id), (id, id), (id, id), ...}),

the inverse limit of which is isomorphic to Int, but plainly not identical. Nonetheless,
we normally think of the type definition as defining I to be a synonym for Int,
and therefore think of the inverse limit of the retraction sequence as being simply
Int. On the other hand, every type, whether recursive or not, may be thought of as
denoting the inverse limit of some retraction sequence, simply by giving the type a
name and generating the appropriate type definition. This point of view makes clear
that non-recursive types are simply special cases of recursive types. The former view
is useful when giving semantic definitions: it would be confusing to write 5 sometimes
and (L,5,5,...) others, and explicitly define and apply the appropriate isomorphism
maps. The latter view is preferable when proving properties of functions defined in

terms of type structure, since we need only consider the more general case.

Often we will take the type definitions D and the corresponding domain environment
Taefns[D] to be implicitly fixed, in which case T[T] is shorthand for T T] (7g,.[D])-
The sole reference to the domain environment is always of the form 7[A] ¢ = ¢[A].
Hence we may economise on syntax by excluding this clause from the definitions of 7,
and excluding explicit passing of the domain environment parameter. For example,

in the standard semantics
T IT# T.] ¢ = (T°[T11] Q) = (T°[T2] Q) ,
which we abbreviate

7‘SI[T1 #> Tz]l = Tsl[Tl]] — TSI[T2ﬂ .

4.2.2 Expression semantics

For the purpose of generating programs we first fix a set D of type definitions. We
then suppose a supply of typed variables x; € Var, ¢ > 1, an infinite number at each
type. Since any given expression e contains only finitely many variablesx;, 1 <i < n,
value environments p for e and all of its subexpressions need contain bindings only

for some finite subset of these variables. It turns out to be very convenient to have

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 76

value environments come from domains corresponding to product types: for bindings
of variables x; : E;, 1 < ¢ < n the corresponding type is (Ey, ... ,E;), usually abbre-
viated E—the type of the environment. Then for p € T (Eq, ... ,E,)] environment
lookup p[x;] is defined to be sel; p, where sel; is the appropriate selector function for
products, defined for each type semantics. This view allows the functionality of the
evaluation function £ to be made precise: £ is a family of functions, indexed by the
type definitions D, the type E of its value environment argument, and the type T.of
the particular expression e to be evaluated. Then

Epgale] € TIE] (Tamo[PD = TITI (Taems[P]) -

Usually the subscripts of £ will be omitted. Value environments may be superscripted

the same as domain environments and the semantic functions.

By eschewing the use of a universal domain, we avoid the question of whether “typed
programs can’t go wrong” [Mil78]; instead the relevant question is whether each
expression semantics £ is well defined for well-typed arguments, which we assert to

be the case.

4.2.3 A generic expression semantics

Since several different expression semantics will be given, it is convenient to express
all of the semantics as a single schema, or generic semaﬂtics, that is parameterised
by a set of constants defined for each particular semantics. These constants will be
superscripted with the name of the semantics. The generic semantics is defined as
follows.

E[xi] p = plxi] = seli p,

E[O] p = mkunit p

E[ni] p = mhint; p

Elei + e2] p = plus (E[e1] p, E[e2] p) »

E[Cerr .. e)] p = tuple (E[er] p .., E[en] p) [i>1],

Ellet (x1,...,%,) =epine] p
= Efe1] p[xi — sel; (E[eo] p) |1 <i< n],

Elci el p = inc; (€[] p) ,

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 77

Elcase egof c; X1 =>e1; ...; € Xp ~> 5] p
= choose (E[eo] p,
Ele1] plx1 = oute (E[eo] p)],

Elen] plxn — outc, (E[eo] p)]) »

E[\#x.e] p = mkfun (\z.E[e] plx = 2], p),
E[app# e1 e2] p = apply (E[e1] p) (E[e2] o) ,

E[tixt e] p = (fiz o apply) (Efe] p) -
Recall that p[x;] is short for sel; p; environment update and extension is defined by
plxi — v] = tuple (sely p, ..., seli_i p, v, seliy1 p, ..., sel, p) .

Then the empty environment, denoted [], is the value of nullary tuple, which must
be the identity (up to isomorphism) of non-nullary tuple.

Now the boxing and unboxing of functions is explicit, for example,
E[\x.e] p = (inlam o mkfun) (Az.E[e] p[x — z], p)

and

E[e1 e2] p = choose (E[e1] p, (apply o outlam) (E[e1] p) (E[e2] p)) -

For each expression semantics we need only define the constants mkunit, mkint;, plus,
sel;, tuple, inc;, outc;, choose, mkfun, apply, and fix, which we refer to as the defining

constants for the expression semantics. Their generic functionality is as follows.
mkunit € T[E] = T[O],

mkint; € T[E] - T[Int],

plus € (T[Int] x T[Int]) —» T[Int],

tuple € (T[T1] x ... x T[T.]) = T[(T1,...,T)],
sely € T[(Ty,....,T.)] = T[T:],

inc; € T[] = TleiTi#+ ... +cu Tal,

outc; € Te1Ti+ ... +c, T,] = T[T:],

choose € (T[ciTi+ ... +¢c, T,] x T[T] x ... x T[T])) - T[T],

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 78

mkfun € (T[T1] = T[T2]) x T[E]) = T[T1 # T2],
apply € T[Ty #> T2] = T[T1] = T[T=],
fir € (T[T] = TI[T) — TIT].

Just like the evaluation function, each of these functions (except plus) is really a
family of functions, indexed by a set of type definitions and one or more types, tuple
additionally by its arity; this is only made explicit when necessary. The reason for
making mkunit, mkint;, and mkfun functions of the environment is to be able to
guarantee a dependence of £ on the environment at every expression (note that all of
the leaves of an expression are of the form x, (), or n;; the reason for the environment
argument to mkfun will be explained shortly). In the standard semantics there is no
special dependence on the environment and these constants ignore the environment
argument, but this will not generally be the case.

Except for the fact that no case expression for selector of type Int is provided, and
a single instance which is clearly noted, the treatment of Int in our development will
be entirely consistent with Int being defined by the infinite sum

Int = ... +n_; O +n O +n O+

Hence n; can be regarded as shorthand for n; (), and mkint; equal to inn; o mkunit,
where inn; is the corresponding injection function. Further, were Int defined as a
sum, e; + ey could be expressed (at least in principle) as an infinite nested case

expression, hence plus could be defined in terms of choose.

Factoring the semantics in this way has several benefits: proofs of certain relations
between the various semantics may be factored in the same way so that the details of
the proofs at the level of the generic part need be given only once; the presentation of
each version of the semantics is made concise; special dependence on the environment
(for mkunit, mkint;, and mkfun) is made clear; and the relationship between the
semantics of boxing and unboxing, application, and fixed point is disentangled.

4.2.4 Relating expression semantics

To relate two semantics £ g,z,r and £ I';',E,T (where G and H are arbitrary) we will define

a family of predicates

B} € (T[1] (T&sID]) x THIT] (Ti[D]) = Truth

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 79

indexed by a set of type definitions D and a type T. These predicates will be called
type predicates. We will require that the two semantics be logically related, as follows.

Recall that for e:T with environment type E,

Everlel € TOIE) (TEmID]) = TEIT] (TEmIDD)
81};{,E,T|[e]] € TH[[E]] (defns'[D]]) - 7—H|[TII (defnsl[D]])

Then we will require that

(RI?E - Rl?,l'}') (gg,z,'rl[e]lv EEE,TI[e]]))
where — is the operator on binary predicates defined in Section 2.5.2. Next we show
that if the defining constants are similarly related then the semantics are so related.
Just as for the expression semantics the relations between the constants are defined
in terms of their functionality as given above, and the underlying type predicates.
For example,

plus € (T[Int] x T[Int]) = T[Int],
and the required relation between plus® and plus

(Rg?m: X RD) = RD Int -
For a more complicated example, consider

mkfun € ((T[T1] — T[T2]) x T[E]) = T[T # T].
The required predicate between mkfun® and mkfun"

((Rn'n DT;) X R) Rnn»’rg-

When we state that some pair of semantics £° and £ or their defining constants are

“related by R®H” or “correctly related” we mean specifically by these predicates.

Proposition 4.1
If the defining constants of a pair of expression semantics £ and €M are related by

RCM, then so are the semantics.

Sketch Proof

The proof is by simple structural induction on expressions. We give some details of
two cases.

Case n; : Int. By assumption, mkint,® and mkint;" are related by Rg,';:' — Rﬁi‘m,
and &[n;] = mkint;, so £°[n;] is related to EM[n;] by the same predicate.

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 80

Case \#x.e : T; #> To. The interesting point about this case is the requirement
that if RSa (p¢,p") and RSy, (v°,v") then RSR (p8[x: = v€], pM[x; = v"]), where
E' is type of the (possibly) extended environment. This follows from the definition
of environment update and the fact that corresponding sel; and tuple functions are

correctly related. O

Defining expression semantics in terms of a set of constants and relating a pair of
semantics by relating their defining constants is a standard technique; Abramsky
gives a simpler example in the setting of BHA-style strictness analysis [Abr90], while

Nielson gives a much more sophisticated framework—a two-level semantics—for doing

this [Nie89].

4.3 Standard Semantics

4.3.1 Type semantics

As mentioned, the versions of the various functions defining the standard semantics

are indicated by superscript S. The semantics of types is
T3[Int] = Int,
T[Ty, ..., T] = T°[T1] x ... x T°[T.],
TlaaTi+ .o+ L] = (T[T ® ... (T[T.])
T[T #> T2] = T5[T1] — T3[T2]. |
Then 73[O] =1 and T5[T; -> To] = (T5[T1] = T5[T2]).. The standard seman-

tics of sum types is a coalesced sum of lifted domains rather than the more usual
separated sum (+) to make clear exactly where lifting occurs—separated sum is a
generalisation of lifting (unary separated sum is isomorphic to lifting) and thus tends
to disguise lifting; coalesced sum does no lifting (unary coalesced sum is identity up
to isomorphism), and separated sum can be defined in terms of coalesced sum and
lifting.

4.3.2 Expression semantics

The constants for the standard expression semantics are defined as follows.

In the standard semantics mkunit ignores the environment argument.

mkunit> p = () .

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 81

Recalling that Int = Z,,
mkint? p = lLift i .
Addition for Int is strict in both arguments,
plus® (L,y) =1,
plus® (z, L) = 1,
plus® (lift z, lift y) = lift (z+y) .
Values of product type are ordinary tuples.
tupleS (z1,...,%,) = (T1,...,Tn) ,
sel = m; .

Constructors lift their arguments and then inject into the appropriate sum.

inc; = in; o lift

outc; = drop o out; .

Recalling that (i,v) € U; @ ... ® U, is the image of non-bottom v under in;, we have
chooseS (L, z,...,2,) =1,
choose® ((i,v),T1,...,Tn) = Ti .

In the standard semantics mkfun ignores the environment argument.
mkfun® (f,p) = f .

Application is ordinary application.
apply® f = f .
The fixed-point constant is ordinary least fixed point, which we will denote by Ifp

rather than the more usual fiz to avoid confusion with the semantics-defining con-
stants.

fiz® = ifp .

4.3.3 Operational semantics

The standard (denotational) semantics is intended to correspond to an operational
semantics modelling normal-order reduction. Ideally, we would define an operational
semantics, give a congruence between the denotational and operational semantics
(e.g. in the style of Lester [Les89]), and for the strictness and termination analyses
show that the modifications of evaluation order they enable preserve observational

equivalence of programs. Such a treatment is beyond the scope of this thesis. Instead

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 82

we give as a source of intuition and guide to the development a very informal account

of the intended operational semantics and its relation to the standard semantics.

We acknowledge that our denotational semantics does not distinguish non-strict eval-
uation from lazy evaluation (non-strict evaluation with sharing), but, as Burn shows
[Bur90a], the difference is important when modifying evaluation order based on strict-
ness information. (Burn's observation is that if a function is head-strict and its
argument is shared, then it may not be safe to modify the evaluation order of the
argument in the seemingly natural way, that is, to evaluate the head of each evaluated
cons cell, since another function might not consume the list in a head-strict manner.)
Launchbury’s natural semantics for lazy evaluation [Lau93] would probably be an
appropriate operational semantics, precisely because it accurately models sharing.

As stated, the intended model of evaluation is normal-order reduction until weak
head normal form is reached, but this does not completely describe our world view.
In most real implementations, programs (top-level expressions) are not evaluated just
to WHNF, but as far as possible outside of lambda expressions (expressions of the
form \#x.e), with the (partial) result displayed as it is produced. For example, if the
result of a program is a string of characters, the output driver attempts to evaluate and
display the entire string. In the special case of character strings, this is evaluation
to WHNF, and if the result is non-nil, evaluation and display of the head, then
repeating the process with the tail until (if ever) the end of the list is reached. More
generally, the output driver performs a depth-first traversal and display of the result
of the program. This may be implicit, as in Miranda, or require explicit conversion
to character-string form first by a family of ‘show’ functions show_A for each type
name A as in Lazy ML. This is an important consideration because the demand of
the output driver can be accurately encoded by a projection, and we anticipate that

this would be a starting point for backward strictness analysis.

A closely related implementation decision for which there seems to be no consensus is
whether values of function type should be at all displayable. One solution is for the
implementation to write some special symbol, for example <function> in Miranda for
values of function type. The Lazy ML solution is to disallow show_A for A containing
->. We will hypothesise an output driver like that of Miranda that operates on any
type; in particular treating expressions of function type correctly as a unary sum,
printing the name 1am of the constructor upon successful evaluation to WHNF. Pro-
viding seq in the language makes it possible to define in the language a function with
the same demand on its argument as this output driver, and hence derive projections

encoding the demand of the output driver at any type in a systematic way.

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 83

Intuitively this serves to explain why mkfun, like mkunit and mkint;, requires an
environment argument: expressions of the form \#x.e cannot be evaluated and so

are like the leaf ()—this will become evident when we consider higher-order analysis.

4.3.4 Interpretation of projections

For domains arising from the standard semantics of types we are only interested in the
interpretation of projections for binding-time analysis; for strictness and termination
analysis we work with lifted domains (in the sense of Chapter 3) and projections on

them as developed in the next section.

Roughly, we intend that a projection act as the identity on those parts of a value that
are static, and map the dynamic parts to L. Hence, ID means ‘entirely static’, BOT
means ‘entirely dynamic’, and BOT x ID means that the first components of pairs are
dynamic and the second components static. The last example suggests a general goal:
the interpretation of projections (insofar as possible) should be defined recursively in
terms of type structure, that is, be compositional. We consider projections on a

type-by-type basis, regarding Int as a sum.

Case (). Since 7°[()] = 1, there is only one projection for this type: here ID =
BOT, telling nothing; since values of type () cannot be evaluated it is not useful to
regard them as either static or dynamic.

Casecy T; + ... + ¢, T,. Recall
7.S|[C1 T+ ... +¢, Tn]] = (7—S|[T1]})J_ ® ... & (TsllTn]])_]_ .

Every projection on this domain may be uniquely expressed in the form ;1 & ... ® 7,
where v; € | (T°[T:])L|, 1 < i < n. For each constructor c; define the projection

transformer c; by

c; € |7-SI[T,]|| — |7-SIIC1 Ti+ ... + ¢, Tn]”

C; (87 = BOT;@@BOT£®Q_L@BOT£@®BOT‘J__,
where o, appears in the i position on the right-hand side. The interpretation of

¢; a is ‘if the argument is of the form z'ncf’ v then the constructor is static and its

argument has staticness described by .’

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 84

Case (Ty,...,T,). Recall
TSII(Tl,...,Tn)]l _—"7-S|[T1]l X ... X 7—5‘[Tn]|

As discussed in Section 3.1.3, not all projections on a product space can be expressed
as a product of projections, nor as a lub or glb of products. The projections that
can be expressed as products form a complete lattice, and such projections are inter-
preted componentwise on their arguments. Projections that cannot be expressed as
products are precisely those for which the mappings of components of the argument
to corresponding components of the result are not independent. For example, the
projection on 2 x 2 that maps (T,.L) to (L, 1) and acts as the identity otherwise
specifies that second components are static, but first components are static only if

the second component is T.

Case T; #> To. The precise interpretation of projections on domains corresponding
to function types is considered later, but for the moment we take as given that it is
not useful to assign a degree of staticness to an unboxed function, but that values of

type T; -> Ty can be static or dynamic by virtue of being of unary sum type.

4.4 Lifted Semantics

Given expression e the nominal goal is to determine properties of SS[[e]I, a function
from value environments to values. This is potentially more informative than the more
usual approach of determining properties of functions denoted by expressions in a
particular environment: more information is available from £5[e] than from £5[e] p
for any given p. Though this shift in perspective is essential to our development,
the results may be used to obtain the corresponding information in the more usual

perspective, as will be shown.

We have shown that no BSA of a function f can determine even simple strictness in
f, but that there is always a BSA of f, that determines every property of f. For
termination analysis it is also f, rather than f that we wish to analyse. For these
analyses it makes sense to find abstractions of (£5[e]), rather than £3[e]. We
desire a compositional semantics like (£5[-]), that could subsequently be abstracted
in some way to yield a compositional semantics that yields BSAs or FTAs. To get such
a semantics would require lifting not just the domains corresponding to the types of
the environment and the expression, but also lifting all of the domains corresponding
to the types of all of its subexpressions. As observed in [WH87], the desired result (at
first order, anyway) may be obtained by ‘lifting every domain.” This generalises easily

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 85

to higher order, such that the result is a compositional, higher-order, lifted semantics.
We define a type semantics 7>+ and an expression semantics &5t such that 'TS*[[T]I
is isomorphic to (7°[T]), for all T, and for all e:T with environment type E we have

E5ife] € TSIE] B T5[T],

and £+ [e] is (5[e]), under the implied isomorphism between (7°[E] — 7T5[T]).
and TS:[E] 33 T5:[T]. (Recall that 3, as defined in Section 3.1.1, constructs the

space of continuous, strict, bottom-reflecting functions.)

4.4.1 Type semantics

For all domains U the domains U 33 1 and 1 33 U are isomorphic to 1. Just as for
®, to guarantee that domain equations involving 8 are well-defined it is sufficient to
guarantee that the argument domains are not isomorphic to 1; this will hold for all

definitions in which =8 is used.

The semantics of types is
T:[Int] = Int, ,
T[Ty T] = T[] © ..o ® T[T.],
TolaTi+ .+ T = (T[Tl & ... & T[],
TST #> To] = (T[T] 2B T[T2])

Then 75:f()] = 1, since 1, is the identity of ® up to isomorphism, and
TS > To] = (T[T] B T5[T2])., -

Proposition 4.2
For all types T and type definitions D, the domain 75:[T] (72%,[D]) is isomorphic

to (7-S|IT]| (mfnsIID]I))J_'

Sketch Proof

The essential fact is that -; on domains is continuous in the sense described in Sec-
tion 2.5. Using the isomorphisms U, ® V = (U x V'), and Uy BV =U - V), and
the definitions of 7° and 7+, it is a simple structural induction on types to show
that for each type definition, each approximating domain in the lifted semantics is
isomorphic to the lift of the corresponding domain in the standard semantics, hence
for each type definition, and therefore every type, the result holds. The base case for
a recursively-defined type is the interpretation of the unit type. O

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 86

There is a small notational difficulty to be resolved. For boxed type, the domain
T5:[T] is of the form U, for some U, and lift 1 denotes an element of this do-
main. For product type T the corresponding domain is isomorphic to U, for some
U, and it is not clear how the element equal to lift 1L € U, under the isomorphism
should be denoted without knowing the subcomponents of T. For example, for pairs
(lift L, lift L) would not be correct if either of the components were of product type.
We solve this problem by slight abuse of the notation and allow lift L to denote this
element. Similarly we may write v, and -y, to denote projections on domains corre-
sponding to product types, and define them as though they are on domains of the

form U, .

4.4.2 Expression semantics

Let h be the implied isomorphism from (7°[T]), to 7>[T]. Then there are functions
.11, lift’, and drop’, implicitly indexed by type definitions D and type T, equal to -,
lift, and drop up to isomorphism, respectively, defined by

lift € TS[1] » T%[T1],

lift = ho lift

drop’ € T>+[T] = T°[T],

drop’ = dropo h™!

and for f € T°[T1] = T°[T2],
fir € ’TS-'-[[T1]| % TSL[T2]! ’
fir L =1,

fir (ft' =) = Uft’ (f =) ,
Clearly we want £5:[e] = (5[e]),,. Now given two functions f € U — V and
g €U = V. we have g = f iff f and g are logically related by lift — lift and g
is strict; similarly £5[e] = (£3[e]),. iff £3[e] and £5:[e] are logically related by
lift’ — lift’ and £+ e] is strict. Proposition 4.1 guarantees that if for the standard-
and lifted-semantics versions of the constants the type relation at each type is lift’
then the same holds for the evaluation functions. We now claim that if all of the
lifted-semantics versions of the constants are strict in every argument then so is
&5+[e]—this can be proven by a simple induction on the structure of e. In the S;
semantics it is important that that mkunit and mkint; be functions of an environment

to guarantee this strictness.

For each defining constant con with functionality of the form 7[T,] = 7T[T2] we

define cont = (con®),,. For constants with functionality of the form (7[T;] x ... x

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 87

TIT.1) = T[T] we define con® = (con®),, o smash; this is just a generalisation of
L

the previous case, guaranteeing that conS: is strict in every argument. Finally, for

fiz>t € (T3+[T] = T>+[T]) = T>+[T] the argument must be either the constant

bottom function or some strict bottom-reflecting function since it is the result of
apply®-.
The definitions are detailed following. We use the symbol A, pronounced “strict
lambda,” to simplify definition of strict functions; A is defined by
(Az.fz) L =1,
Az.fz)v =fo, ifv#L.
The lifted semantics of the unit type is 1,, so
mkunit> = Ap.lift () .
For integers there is one more level of lifting than in the standard semantics, so
mkint?* = Ap.Lift? i .
The constant plus>* has two arguments, so
plus> (L, y) =1,
plusSt (z, 1) =1,
plus® (Lift z, lift y) = Uft (plus® (z,y)) .
The tuple constructor gives an element of a smash product:
tuple>t = smash ,
and nullary tupleSt is lift (), the identity (up to isomorphism) of smash. Also,
selis-L = m; o unsmash .
The sum constructor gives an element of a lifted coalesced sum.
inc,-sL 1 =1,
inc}t z = lift (in; z), if z # L,
and
outct L = 1,
outc?* (lift L) = L,
outc;* (lift ©) = out; (drop z), if z # L .
The function choose> is strict in every argument, otherwise
choose>: (lift L, =y, ..., z,) = lift L,
chooseS: (lift (i,v), Ty, ..., T,) = T; .

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 88

In the lifted function space value L acts as the constant L function and value Lft f
acts as f. Thus

apply> = drop .
The function mkfun®* is strict in both arguments, otherwise
mkfunSt (f,p) = lift f .

Finally, the argument of fiz> is either the constant bottom function or some strict

bottom-reflecting function, so
fi>t L= 1,
fig> f o= Uiso f* (lift L), iff#L.
The definition may be made total by expressing it as fit> f = Uis1 f* (lft L).

Proposition 4.3
For all e the function £5:[e] is strict, and £5[e] is related to £5+[e] by lift’ — lLft'.
O

4.4.3 Operational interpretation of lifting

There is an intuitive operational interpretation of the extra level of lifting in the
lifted semantics. Recall that in the standard semantics lifting at the top level (for
boxed types) distinguishes between expressions that do and do not have WHNFs.
In a simple-minded implementation of a lazy or non-strict language, a potential
computation—a means of producing a value if it is demanded—is embodied by a
closure: a pointer to an expression. (Product types give rise to tuples of closures;
unboxed function types the corresponding expression.) The value associated with a
closure in the standard semantics is just the value of the expression pointed to. The
lifted semantics explicitly models the pointer with the extra outer lifting.

Evaluating a closure requires dereferencing the pointer, reducing the expression, and
replacing the expression with its reduced equivalent, effectively returning the pointer
of a simplified closure. Semantically, dereferencing a pointer corresponds to the op-
eration drop. Reduction of the expression fails to terminate exactly when its value is
1 in the standard semantics, that is, when the value of the expression is lift L in the
lifted semantics; evaluating the closure—dropping lift 1—yields L, representing non-
termination as usual. Returning a pointer to the updated expression corresponds to
the semantic operation lift, but this only occurs if reduction terminates. Thus the se-

mantic model of evaluation of a closure is application of the function (Az.lift =)o drop.

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 89

In partial summary, in the lifted semantics, value L models non-termination (or error)
as usual. For boxed types value lift L models a pointer to an expression with no
WHNF, and values above lift L model pointers to expressions that do have WHNF.

For product types the interpretation is applied recursively to the tuple components.

4.4.4 Operational interpretation of projections

A projection maps every argument to one of its fixed points, so a projection determines
an equivalence relation on its argument domain, each equivalence class consisting of
those values mapped to a particular fixed point. We may think of projections as
equivalencing operational behaviour via the operational interpretation of (semantic)
values just described. For example, the operation of evaluating a closure was shown
to be semantically equivalent to (Az.lift =) o drop. This function is the projection
ID,, which equates non-termination with a closure that if evaluated would fail to
terminate, since values lift 1 and L are in the same equivalence class; ID, encodes
the operational notion of evaluation to WHNF. For backward strictness analysis
we think of projections as encoding demands for evaluation; for forward termination

abstraction as encoding assertions that evaluation will terminate.

Recall that if £ denotes f then f is strict iff ID, o f, C f, o ID,, or equivalently,
ID, o fi = ID, o f| o ID,. Giving operational interpretations to projections gives
a direct operational reading of such equations: here, rather than first deducing that
f 1s strict and from that an operational conclusion, we can read that if evaluation
of an application of £ is demanded then evaluation of its argument may be safely
demanded. .

For termination analysis, recall that if £ denotes f and IDy o f; 3 f, o IDy, or
equivalently, ID, o f; o ID, = f, o ID,, then if evaluation of the argument of £

terminates then so does evaluation of the application of £.

Next we consider the other three basic projections ID, , BOT,, and BOT,. The pro-
Jection ID, equivalences every value with itself and so tells nothing. The projection
BOT, equivalences all closures with the closure that fails to terminate if evaluated,
implying that if evaluation is ever initiated it may immediately diverge or produce an
error. For backward strictness analysis the interpretation is that evaluation is never
required, for forward termination analysis it encodes guaranteed non-termination. It
is useful to think of BOT, as modelling the operation of setting a pointer to a special
value null that causes divergence or an error if dereferenced. The projection BOT,
equivalences every value with 1, specifying automatic divergence or error. For back-

ward strictness analysis it may be thought of as specifying unsatisfiable demand (the

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 90

intersection of no demand and demand for evaluation to WHNF); for forward ter-
mination abstraction as specifying an impossible termination property (termination
with value L).

Next we consider the interpretation of projections between BOT, and ID, and be-
tween BOT, and ID,. The interpretation is defined compositionally in terms of type
structure. For the boxed types the basic interpretation is as follows. A projection of
the form -y, is less than ID,, so . maps lift 1 to L and so specifies evaluation at
least as far as WHNF. Once to WHNF, + tells what to do next (hence “y’s worth”).
A projection of the form v, means if evaluation is ever demanded, after reaching

WHNF apply the interpretation of v to the result.

Casec; Ty + ... + ¢, T,. Recall that
T [c1Ti+ ... +cy To]l = (TH[T1] & ... & T[Ta])s -

Now every projection on a domain of the form (U; @ ... ® U,), can be expressed as
either v, or . where + has the form v &...®~,. If evaluation to some WHNF c; e

occurs, the interpretation of 7; is applied to e.

For sum type ¢c; T; + ... + ¢, T, let the C; be the projection transformer defined by
Ci € |TH[T]l = |T*c1Ti+ ... +cn Ta]],

Then every eager element of | 7>[c; Ty + ... + ¢, T,]| can be expressed in the
form |l;<;<, Ci vi. Operationally, C; ; specifies evaluation to WHNF c; e with the
interpretation of 7; on e.

At this point it is worth performing a consistency check on the two interpretations of
projections for sum types given. We have stated that in general BOT, means “set
the pointer to null” and that (BOT, & BOT,), means “if ever evaluated to WHNF,
diverge for any result.” Now BOT, = (BOT. @ BOT,),, so these interpretations
should be equivalent, and in fact they are.

Case (Ty,...,T,). For product types, projections of the form 7 ® ... ® 7, are
interpreted componentwise on their arguments. For nullary products there are no
components to evaluate: the sole eager projection on 1, which may be denoted by
either D, or BOT,, maps every value to L, and hence specifies immediate termi-
nation or error; the sole lazy projection, which may be denoted by ID, or BOT,

requires nothing.

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 91

For product type not every projection is of the form 1, ®. . .®7,. We claim that there is
no natural sequential interpretation of projections other than those of this form, hence
for the purposes of sequential computation we take the operational interpretation of
any projection v to be that of the least projection of this form greater than v. We
claim that every projection has a unique parallel operational interpretation: every
projection can be expressed as the lub of a set of projections in this form, and the
operational interpretation is the parallel evaluation according to each element of the
set. For example, the projection ID, ® ID, specifies evaluation of the first component
of its argument pair, while ID; ® ID, specifies evaluation of the second. Their lub
is not expressible as a smash product: it specifies parallel evaluation until one or
the other of the components reaches WHNF; it is the least projection § such that
ID, o luby T lub, od. The least projection greater than their lub expressible as a
product is ID; @ ID;—the identity.

Case T; #> To. Recall that
TSLT #> To] = (T2[T] 3 T[Ta]). .

For unboxed functions the only operational choices are to do nothing or uncondition-
ally diverge or produce an error, so the operational interpretation of all projections
other than BOT, is that of ID,. In this context unboxed function types are treated
like the unit type, or equivalently, function spaces are treated like the one-point do-
main. Then for boxed functions with values from

T[T > To] = (T3[T1] 2 T5[T])y,

there are four distinct operational interpretations of projections, precisely those of
ID_L, IDL’ BOTJ_, and BOT._]__

We will alternate between two notations for projections. For example, for projections
on T>t[Bool] we may use the more readable constructor notation TRUE () for
(BOT. @ BOT.),, similarly for projections on 7°+[Int | the expression N; () denotes
the least projection that acts as the identity on lift?> 7; in this context () denotes
BOT,. Ouly in the constructor notation will we use the names STR and ABS;
further, following [WH87] we will use FAIL as a synonym for BOT,. Finally, for
projections corresponding to nullary constructors such as nil, true, false, and n;

we may omit the argument ().

CHAPTER 4. SOURCE LANGUAGE AND STANDARD SEMANTICS 92

4.4.5 Unboxed types

This discussion is motivated by Peyton Jones and Launchbury’s description of un-
boxed types [PJLI1].

We have shown that Int may be regarded as an infinite sum of nullary products.
Another approach to defining the integer type is to provide the unboxed integer type

Int# as primitive and define Int to the the unary sum int Int#, where

TS[Int#] =
and

'TSL[[Int#] - Z_L .
Then e; + e» would be short for

case e; of

int i# -> case ey of
int j# -> int (i# +# j#)

with generic semantics of e; +# ey being

Eler +# ex] p = plus# (E[e1] p, E[e2] p) ,

with plus#S ordinary addition on Z, and plus#5: defined like plus®. In turn, Int# is
imagined to be the infinite unboxed sum

unboxed Int# = ... +n_; () +ny O +n; () + ...

where finite unboxed sum unboxed ¢; T; + ... + ¢, T, has standard semantics
T3[unboxed ¢; Ty + ... + ¢, T,] = T [T1] + ... + T°[T.],
where + is categorical sum. The lifted semantics would be
T5:[unboxed ¢c; Ty + ... +c, T,] = TH[T1] & ... & T>[T.].
There is no problem with extending our treatment to handle general unboxed types
in the lifted world because all types are still mapped to domains. The problem is
that for binding-time analysis we want to work in the standard world, and the use of
categorical sum yields structures more general than domains (namely unpointed do-

mains), and the theory of Chapter 2 and Chapter 3 would have to be correspondingly
generalised.

Chapter 5

First-Order Analysis

For binding-time analysis the appropriate starting point is the standard expression
semantics—domain and function lifting is not required. The lifted semantics S; was
developed specifically so that backward strictness abstraction and forward termina-
tion abstraction of £5+[e] could reveal the desired strictness and termination prop-
erties of £5[e]; for these analyses the starting point is the lifted semantics. This
chapter presents non-standard semantics that yield these abstractions. The analysis
techniques are restricted to expressions (and free-variable environments) of zero-order
type, that is, with type not containing #>. Two methods of handling first-order func-
tions (that is, functions between domains corresponding to zero-order types) are also
given.

Though the first-order techniques do not generalise directly to higher order, the de-
velopment lays much of the groundwork for the higher-order techniques described in
Chapter 6, providing a bridge to understanding the more complicated higher-order
analysis—all of the development for zero-order analysis will carry over into the devel-

opment for higher-order.

A type is zero order if it does not contain #>. A value is zero order if it comes from a
domain corresponding to a zero-order type. An expression is zero order if it and all
of its subexpressions have zero-order type. Necessarily, a zero-order expression does
not contain the forms \#x.e, fix# e, or app# e; ey, and the values of the constants
mkfun, apply, and fiz need not be considered. The S and S, type and expression
semantics and defining constants restricted to zero-order types and expressions will
be indicated by Sg and S, respectively. In this chapter, unless specified otherwise,

all types and expressions are zero order.

93

CHAPTER 5. FIRST-ORDER ANALYSIS 94
5.1 Abstracting Dependency on the Environment

We require semantics that yield backward strictness, forward strictness, and forward-
termination abstractions of £5°[e]. We start by defining an intermediate Ng seman-
tics that abstracts the dependency of the standard value of e on the environment,

such that the value of e is a function from environments to standard values.

Let e be a ‘top-level’ expression, that is, one that is not a subexpression of some
other expression, and call the environment in which it is evaluated the top-level or
global environment. The function defining the dependency of the value of e on the
global environment is precisely Ap.£%[e] p, or just £%[e]. However, the value of
every subexpression of e depends on the value of a local environment which in general
differs from the global environment: it may contain new bindings introduced by sum
and tuple decomposition (and at first and higher order by function abstraction). Still,
every local environment is a function of the global environment, so the value of every
subexpression is, if indirectly, a function of the global environment. The Ny semantics
will allow us to make explicit the dependency of the value of every subexpression on

the global environment.

Let Eg be a fixed zero-order type, which we may conveniently think of as the type
of global environments. In the Ny semantics of zero-order expressions defined in this
section, the value of an expression of type T is a function from standard values in

T5[Eg] to standard values in 75°[T], so the Ng semantics of zero-order types is
TN[T] = T*[Eq] — T>[T].

The type predicate between standard and N values at each type T is parameferised
by a global environment o € T>°[E,] and denoted by R5Ne[T], defined by

R3oNo[T] € (T>[T] x TW[T]) = Truth,
RPM™[T] (d,9) = (d=g o).

For e:T with environment type E we have £N[e] € TN[E] — TN[T], that s,
gfe] € (T>[Ea] = T>[E]) = (T>[Ea] — T>[T]),

in other words EN°[e] maps functions from global environments to local environ-
ments to functions from global environments to standard values. (The families of
functions 7N, R3No and ENe have the global environment type as an additional im-
plicit type index.) Let p* range over local environments, o over global environments,
and pNo over Ny environments, that is, functions from global environments to local

environments. The required relation between the semantics is then

Vo.p*=pN o = (E5%[e] p*) = (EN[e] p™) o .

CHAPTER 5. FIRST-ORDER ANALYSIS 95

Thus for functions pN° from global environments to local environments
Vo . &2[e] (o' o) = (EV[e] ™) o,

so E%[e]opMNo = ENe[e] pNo. In particular, when pN° is the identity function id the
type E, coincides with E, and £>[e] = ENe[e] id. (Intuitively, id is the appropriate
environment for the top-level expression—it just maps the global environment to
itself. In general, subexpressions are evaluated in a different environment that is the

appropriate transformation of the global environment; examples will be given.)

It is straightforward to define Ny constants correctly related to the Sg constants: each
constant con¢ is defined by
con™ (gi,...,g,) = con>® o {gi,...,q) .

This is spelt out in detail following.

The constant mkunit™° is a constant function of its environment argument.

mkunitNo p = mkunit> o p

= (a.0)op
= Ao.() .

Numeric constants are similarly independent of their argument.
mkint}® p = mkz'ntis° op

= (Aa.lift i)op
= Ao.lift ¢ .

Expressions of integer type have values that yield integers when applied to the global

environment.

plus™ (g1, g2) = plus™ o (g1, g)
= Ao.plus™ (g1 0, g2 9) .

Tuple formation requires propagation of the global environment to each of the com-
ponents.

tupleNo (g1,...,9,) = tuple® o {g,...,gn)
= Xa.(g10,...,0, 0) .
Values of product type must be applied to a global environment to yield a tuple.
selz!\"’ g = selz-s° og.
The definitions of the other constants follow the same pattern.

. No — iy S0
inc;® g = inc’og,

outc,N“ g = outiso og,

CHAPTER 5. FIRST-ORDER ANALYSIS 96

chooseN° (go,...,9,) = choose® o {go,...,3n)

= \o.choose> (g 0,...,0, 0) .

Proposition 5.1
The semantics £%° and EN° are related by R%Ne, O

We give two detailed examples to make the idea clear. Here elements of Int will be
written without explicit lifting, for example 1 instead of lift 1, and addition for Int
will be written + instead of plus®. Let Ey be (Int,Int), and pNo =y X my = id, so
that pNe[x;] = 7, and pNe[x5] = ma. Then
ENo[xy + xp] po

= Aom o+ T 0

= E5%[x; + x9] 0 pNe

= E5%[x; + %3],

as required.

For the second example let E, be Int, and pNe = pNo[x;] = Ag.o + 6. Then
ENo[let x, = x; + 4 in x + 5] plo

+ 8] plofxg - EN[x; + 4] pMV] |
= Eo[x, + 5] Pz o> A0 (E%[x:] P) + (E%[4] P 0)]
+ 5] pNo[xa = Xo.(0 + 6) + ((Aa.4) 0)]

= ENo[xy + 5] pNo[x2 = Ao.o + 6 + 4]

= Ao.(ENo[x2] pNo[x2 > Ao.o + 6+ 4] o) + (EN[5] pNo[x2 + Ao.o + 4] 0)

= Ao.0+6+4+ ((Ao.5) 0)

=Xo+6+44+5,
which is equal to £5%[let x, = x; + 4 in xp + 5] 0 pN°, as required.
Bearing in mind that ENe[e] pNo = £5°[e] o pNo, we require abstractions of £ e]
for all e. This suggests the next step is to abstract the Ny semantics: for forward
strictness we require a semantics £ such that if 7 is a FSA of pNo then £Fo[e] T is a
FSA of ENo[e] pMo, and hence of £5[e] o pNo. For backward strictness and forward

termination we want abstractions of £5+[e], and hence require a corresponding lifted

version ENt° of ENo. The N, semantics of types is
TNoO[T] = TSe[Ey] B TS:e[T].
Then TMe[T] = TN[T] for all T. Also
glusfe] € (TPo[Eq]) 3 T*[E]) — (Too[Ey] B To[T]),

so ENo[e] and ENo[e] come from isomorphic domains; their respective argument and

result domains are isomorphic, and they are equal up to the implied isomorphism.

CHAPTER 5. FIRST-ORDER ANALYSIS 97

The required relation between the S;¢ and N, ¢ semantics is defined as follows.
RSN T] € (TSo[T] x TNo[T]) & Truth,
RoNo[T] (d,g9) = (d=g o) .

Given o € T5°[Ey], d € T50[T], and g € TNo[T] = T3[E,] = T[T], we
have g = hy/ for some h, and R3+°No[T] (d,g) holdsif 6 = L and d= 1, 0r o # L

and d # L and ng:;, oL T] (drop’ d, h).

The N, ¢ constants are defined in terms of the S, o constants exactly as the Ng constants

is defined in terms of the Sy constants: for each constant conNt we have

conNLo (G1s---10n) = con®0 o (91, 9n)

= (con™),, o smash o (g, ..., gn)

= (cons")J_, o {(g1,---y9n) -
The detailed definitions of the N, constants are similar to those given for the Ny

constants.

Proposition 5.2

The S,0 and Ny, defining constants, and therefore the semantic functions £3° and
ENoare related by RN, O

5.2 Strictness Analysis

We start with an overview of the development. First the N, semantics is abstracted
to yield the zero-order backward strictness semantics By; the By semantics yields
least BSAs and therefore determines the Sq semantics. We then define a first-order
language and its standard S; and lifted S;; semantics. The zero-order semantics By
is extended to a first-order semantics B; in the manner of [WHS87]; the B; semantics
still yields least BSAs and so determines the first-order semantics S;. Next is the
first abstraction step in which projection domains are restricted to the ‘sequential’
projections of Section 4.4.4, inducing abstract semantics B# and BY. The zero-order
abstract semantics BY still determines the Sy semantics, but the B‘# semantics does
not determine the S; semantics. We then give an alternative first-order backward
strictness semantics By in the manner of [DW90]; its abstraction Bf does determine
the S; semantics, suggesting that it is the ‘correct’ semantics at first order. Next comes
the second abstraction step in which finite projection domains are chosen at each type.
This gives a surprising result: when restricted to these finite projection domains the

By semantics of case expressions gives results that in general are incomparable to (the

CHAPTER 5. FIRST-ORDER ANALYSIS 98

analog of) the semantics of case given in [WH87]. We show how the two semantics
may be combined to yield a semantics that is strictly better than either.

As stated, the goal is to abstract the N, o semantics to yield the zero-order backward
strictness semantics Bg. We require that if pB is a BSA of pNio then £B°[e] pB be
a BSA of ENofe] pMio and hence of £50[e] o pMNic; in particular, when pMNio is the
identity its least BSA is the identity Aa.c, and B[e] (Aa.a) is a BSA of £5+[e].

Let Proj; denote the lattice of projections | 7°>+°[T] |, and let E,; be the type of global

environments, as before. Then 78[T] shall be the domain of BSAs for functions in

TNwo[], so
T®[T] = Proj, > Projg , .

For e:T with environment type E we have £[e] € TB[E] = TB[T], so
E®[e] € (Proj; 2 Projy,) — (Projy 5 Projg)

so £B[e] is a function from projection transformers to projection transformers.

The type predicate between values g and 7 in the N,y and By semantics requires that
T be a BSA of g, that is,

RNLoBo[T] € (TNeo[T] x T®[T]) > Truth,
RMBo[T] (9,7) = Vy.y0g L go(r 7).
Recall that each N constant con'° is defined by
con™o (gi,...,9s) = (con®), 0 {g1,---,0n) ,
and if 7; is a (least) BSA of g; for 1 < i < n then
dal{(na)& ... & (o) |1 ®...Q ay E'a}
is a (least) BSA of {(g1,...,9n)). Hence each By constant is defined by

con® (1y,...,7)

= |(con®) | oB A {(n a) & ... & (Th) |1 ® ...@ @, C o} .

When the constant has a single argument this simplifies to con® 7 = | (con®°),. |0 7.

The detailed definitions are given following.

We intend all BSAs 7 to have the guard property; in particular to map ABS to ABS
and to be distributive with respect to ABS, that is that 7 v, = 7 (BOT U~.) =
(t BOT) U (7T y) = BOT U (1). We will write Aey.f(a) to mean

(Aapf(a)) w = f(v),
(Aoy.f(@)) v = BOTLUf(y) .

CHAPTER 5. FIRST-ORDER ANALYSIS 99

Use of this pattern-matching lambda defines projection transformers that are dis-
tributive with respect to ABS, map ABS to ABS and FAIL to FAIL when f is strict,
and are distributive when f is distributive. Equivalently, we may write f o, = g(a)

to mean that f is equal to Aoy .g().

For v € V|, v # L, and given domain U, , define the characteristic projection trans-
former (for backward strictness abstraction) ACCEPT, to be the least BSA of the
lifted constant function Az.v € U, L V1, defined by

ACCEPT, € |Vi| B |U.|,

ACCEPT, «a = BOT,, fagv=1,

ACCEPTU a) = BOT_L, if a v ?é L.

Intuitively, ACCEPT, accepts (maps to BOT|) any projection that accepts v (that
is, does not map v to L), and maps all other projections to BOT,. Then ACCEPT,
maps every projection less than NOK, to BOT_, and all other projections to BOT .
Also, for all finite v we have that ACCEPT, v, is BOT, if v C v, and BOT,
otherwise. Then ACCEPT, determines v and is a continuous function of v.

The least BSA of mkunitSo = Mp.lift () is ACCEPT, , so
mkunit® 7 = ACCEPT,, oB r
= (AaL.BOT,) 0% 1.
For integer constants
mkint® T = ACCEPT,, ;0% T .
The other unary constants are defined similarly. The least BSA of sel,;s“’ is
|seiPe] € (Tl 3 (T @ ... ® (Tall
|sel*| o = BOT,®...9 BOT,®a ® BOT, ®...® BOT, ,

where o, appears in the i* position on the right-hand side. The least BSA of incf“’
is

inc*| € [(T)L @ & (Tala] B (Tl
linco| (1 @...0 o) = ;.
The least BSA of outf“’ is
lout? | € [(T)e] 3 [(T)L®...® (Ta)L)ul
|out?®| oy = (BOTL®...® BOT, ® o, ® BOT. &...® BOT,), ,
where o, appears in the i* position on the right-hand side.
Recall that N; is the least projection that acts as the identity on lift> i. The least
BSA of (plus>),, is

| (plus®) /| = Ao L{N:; ® Nj | Niyj Ty} .

CHAPTER 5. FIRST-ORDER ANALYSIS 100

Composition and simplification gives

plus® (m1,7) = oy U{(n Ni) & (2 Nj) | Nigy T} -
The function (tuple>®),, is the identity, so

tuple® (11,...,7) = A {na)& ... &(man) | 1®...@a, Ca} .
It is not hard to show that the least BSA of (choose™),, is

| (choose™) | oy
= lh<i<n ((C; BOT.) ® BOT, ® BOT, ® ¢, ® BOT, ® ...® BOT,) ,

where oy appears in position ¢ + 1. Intuitively, this means that to evaluate a case
expression in eager context oy, the selector must be evaluated to some WHNF and
the corresponding branch evaluated in context a;, and all other branches ignored.
Thus

choose®o (1y,...,7,) = Aow . Uicica (70 (Ci BOTL)) & (1; ay)) -

It is interesting to consider what the definition of plus® would be were Int defined as
an infinite sum, and plus® defined in terms of a case expression. From the definition

Bo

of choose®® we would get

= /\&__1___ . UiEZ UjeZ (7'1 Ni) & (TQ]VJ) & (ACCEPTHftz (i+7) a;) .
Now ACCEPT 4 ;) oo = BOT. exactly when Niy; Z ai. Recalling that
BOT, & v = BOT, for all v, it is a simple step to show that the two definitions

are equivalent.

Proposition 5.3

The semantic functions EV° and £B¢ are correctly related. O

Following, we make use of the fact that application of the Ny defining constants is

composition with the Sy defining constants.

Proposition 5.4

For all expressions e the functions £5°[e] and 5[e] are stable.

Proof

Recall that £>[e] = ENo[e] id; and ENo[e] id is defined entirely in terms of the
So constants, id, composition, and (,...,-); the S constants and id are stable; and
composition and (-, ...,-) preserve stability. For £5°[e | we need only observe that it

is equal to £%[e] up to isomorphism; alternatively, that smash is stable and lifting

preserves stability. O

CHAPTER 5. FIRST-ORDER ANALYSIS 101

Let 7Nio[T] be the restriction of 7™+ [T] to stable functions, and let RNLoBe[T] (g, 7)
assert that 7 is the least BSA of g.

Proposition 5.5
The functions EM° and €% are related by RNioBe,

Proof

Since 50 e] is stable, ENo[e] g = £39[e] o g, and composition preserves stability,
we have that £Nto[e | maps stable functions to stable functions for all e. Next, E8[e]
maps the least BSA of each stable function g to the least BSA of EMe[e] g; this
follows from the fact that the By constants preserve leastness. 0O

Thus the By semantics is optimal with respect to least abstractions of stable functions.
We can do better. Let DLST be the restriction of RNw0Be[T;] — RNeBo[T,] such
that DLST(F, T) asserts that F' maps stable functions to stable functions, T is
distributive, and T'(7) is the least BSA of F(g) when g is stable and 7 is the least
BSA of g, hence, by Proposition 3.31, that T is the least function related to F by
RMNuoBo[T,] — RN0Bo[T, .

Proposition 5.6
The functions EN+o[e] and £Bo[e] are related by DLST for all e.

Proof
We need only show that the By constants are distributive; this follows from the fact

that all projection transformers, composition, &, and lub are distributive. 0O

In other words, £®[e] is the least function correctly related to EMofe] =
Ag.E3%9[e] o g, hence EB[e] 7 = |£5o[e]| of 7. Since abstract composition pre-
serves leastness when its first argument is the least BSA of a stable function, we have
that for 7 the least BSA of g, the projection transformer £%[e] 7 is the least BSA
of ENwo[e] g and therefore of £5t0[e] o g, and in particular, when g is id its least
BSA is Aa.a, and €[e] (Aa.) is the least BSA of £5[e], and hence determines
E>[e].

If the language were extended with some parallel construct with an associated non-
stable defining constant, the corresponding backward strictness semantics would be

safe, optimal with respect to smash projections, and distributive.

Example. Recall Bool = true () + false (); let b:Bool, x:Int, and y:Int be
variables with corresponding type E of environments equal to (Bool, Int,Int), with
the values of b, x, and y in the first, second, and third positions, respectively. Let e

stand for the expression

CHAPTER 5. FIRST-ORDER ANALYSIS ‘ 102

case b of
true () -> x
false () ->y .

The generic semantics £ e] p of this expression is choose (sely p, sel, p, sels p). Let
pB be Aa.a, the least BSA of the identity. Then
pP[b] = self p® = Xay.(op ® ABS ® ABS)
pP[x] = sely® p® = oy .(ABS® ai ® ABS)
pP[y] = self® p% = Ao .(ABS® ABS®ay) .
Then
£ [e] p*
=)o, . ((TRUE ® ABS ® ABS) & (ABS ® ay ® ABS))
U ((FALSE ® ABS ® ABS) & (ABS ® ABS ® o))
= Xay . (TRUE ® o, ® ABS) Ll (FALSE ® ABS ® o) .

This is the least BSA of £5:°[e]. It reveals that in context o, that b is certain to
be evaluated, and that if b is true then x is evaluated in context ay, and if b is false

then y is evaluated in context o.

Now let g = A(b, z,y).(b, z, z), that is, a function from environments mapping the x
component into both the x and y positions. The least BSA p® of ¢ is given by
pBo[b] = Aar.(c. ® ABS ® ABS) ,
pPo[x] = Aoy .(ABS ® ou @ ABS) ,
pPly] = Aoy .(ABS @ o @ ABS) .

Then the least BSA of £5¢[e]o g is EB[e] pB, which is

oy . (TRUE ® a, ® ABS) U(FALSE ® o, ® ABS)
= XaL . (STR® oy ® ABS) ,

indicating that in context o, the x component of the argument of £3°[e]o g is
evaluated in context o, . In particular, this function is strict in the x component; this

demonstrates that £510] e] is jointly strict in the x and y components of its argument.

Example. Let x:Int be a variable with corresponding type E of environments be
Int. The expression to be analysed is x + 1. Let pB be Aa.a, the least BSA of the
identity, then £8[x + 1] pB maps, for example N; to N;_; for all 4, the lub U;cgN;
(where S C Z) to U;esN;—1, and in particular STR (the lub of all ;) to STR.

CHAPTER 5. FIRST-ORDER ANALYSIS 103

5.2.1 First approach to first-order analysis

The analysis technique given is only zero order rather than first order, since there is no
mechanism for defining functions, or applying non-primitive functions. In this section
we describe an approach to first-order analysis like that of [WH87]. We have been
careful to make the distinction between the zero order and first-order constructions
for two reasons. First, the first-order syntax and semantics is most easily handled
by moving outside (augmenting) the standard language. Second, the details of zero-
order analysis will carry over directly into the higher-order development, unlike the

first-order additions.

First we introduce the new syntactic class of function variables:
f € FVar [Function variables],

and extend the zero-order expression language to the first-order language by adding
the application form £ e. Since functions are not first class there are no expressions of
function type, no notion of evaluating a function, and hence no need for the function-
space lifting of the lazy lambda calculus, so each function variable has an associated
first-order unboxed function type, that is, a type of the form T, #> T, where T; and

T, are both zero order.

In the following G; indicates an arbitrary first-order semantics, which will be partially
defined in terms of a zero-order semantics Gy. For function variables f; : T; #> U;,

1 <t < n, we take function environments to be tuples from the domain
FEnv®S = TO[Ty #> U] x ... x T9[T, #> U,] .

As is usual, the first-order semantic functions will take as a separate argument a
function environment, so for expression e of type T with environment type E and

function environment from domain FEnv®
ES[e] € FEmv® — TO[E] — T%[T].

For all syntactic constructs other than £ e the semantics £% is defined like £% except
that the function environment must be passed along. The semantics of application is

defined in terms of the constant apply® by
£t e] ¢ p = apply® ¢[£] (E%[e] 6 p) ,

where function-environment lookup is indexing, that is ¢[£;] = m; ¢.

The required relation between two first-order semantics £ and €™ is, for expression

e of type T with environment type E and function environment from domains FEnv®:

CHAPTER 5. FIRST-ORDER ANALYSIS 104

and FEnv™ respectively,
(ROMT, #> U] x ... x ROM[T, U,]) =
REH[E] — |
REHe[1],
where
ROM[T, #> T,] € (T[T, #> To] x TH[T, #> To]) = Truth .
Now
apply® € T[T, #> To] — T[T1] — T%[T:],
and the required relation between apply® and applyt is
ROM[T, #> T,] — R&%M[T;] —» REMo[T,] .

As before, if all of the relevant defining constants are correctly related then so are the
semantics £ and ™ if we have already shown that Gy and H, defining constants

are correctly related then we need only define correctly related versions of apply.

Finally, we introduce a syntactic class of first-order function definitions:

F € FDefns [First-order function definitions]

F:=%£ : T U;

f1x=e1
f, : T, # U,
f,x=e,,

where each e; is a first-order expression of type U; that may have free variable x of
type T; (we omit the typing rules for function definitions and application—they are
straightforward). Given a function environment ¢ we take such a set of equations to
define a function environment mapping each £; to the value £%[e;] ¢—a function
from environments for e; (values of zero-order tuple type T; = (Ei1,...,E;,)) to
the value of e; (of zero-order type U;) in that environment; f; has type T; #> U,.
We define a function eggfns mapping function definitions F to value ngfm[[F]l in the
corresponding environment domain FEnv®. The required relation between two such
functions £g,,[F] and Eqns[F] is

ROM[T #> U] x ... x ROM[T, #>U,].

Now we define the standard and lifted first-order semantics. The standard semantics

of first-order types is
7-51":T1 #> T2]' = 7-S°|IT1]| — 7—S°|[T2]I .

CHAPTER 5. FIRST-ORDER ANALYSIS 105

The first-order lifted semantics S, of first-order types differs from the higher-order

lifted semantics S, in that lifting of the function space is omitted,! so
TSu[T, # T,] = T[T] B T5[T.].
The S; semantics of application is ordinary application.

apply> f = f .
The S; semantics of first-order function definitions is the usual least-fixed-point se-

mantics.

defnslIF]] - lfp ()‘¢ (ESIIIel]I QS’ T 851|[en]| d))) :

The S,; versions are the same, with S;; replacing S; in the definitions.?

The value denoted by a function symbol f in the backward strictness semantics is
to be a BSA of the value it denotes in the lifted semantics—we regard this as a
characterising feature of Wadler and Hughes’ approach to first-order analysis. The
No semantics is extended to the first-order N; semantics in such a way that first-order

function definitions denote the same functions as in the S; semantics, and so have the
same BSAs. Thus

TNll[Tl #> TQ]] = 'Tsll[Tl #> Tg]l R
and

ROM[T, #> T2] (f,9) = (F=19),

and N; application is composition:
applyNt f z = foux .

(In the second approach to first-order analysis described later, the corresponding
operation will be ordinary application rather than composition.) It is trivial to show
that apply™ and apply™ (and their lifted counterparts) are correctly related. The N;
semantics of a set F function definitions is

defm[[F] Up A\ . (EM[er] ¢ id, ..., EN[e,] ¢ id)) .

The N;; version has the same definition except that N ; replaces N;. Note that on
the right-hand side the EN'[e;] ¢ are applied to id, the identity of composition. It
is easy to show that the semantics é'defm and Sdefns (and their lifted counterparts) are
correctly related.

! Omitting function-space lifting is just a convenience. If function space lifting were retained then
1 would act as the constant bottom function with least BSA the constant bottom function, so the
space of corresponding BSAs—the projection transformers with the guard property—would have to
be lifted as well.

2Notice that we do not require a special fixed point operator as we did for the S; semantics.

CHAPTER 5. FIRST-ORDER ANALYSIS 106

Next we define the semantics for first-order backward strictness analysis. The required

relation between the N;; and B; semantics at function types is ‘is a BSA of’, so
T[T # T] = |T2[T]] 3 | T[],
and
RMBI[T, #> T,] (9,7) =V 7y .70g9gC go(17).
Thus if ¢°* and ¢®' are function environments such that ¢B1[£] is a BSA of
¢>11[£] for all £, and pB is a BSA of pNi1) then EBife] ¢B pBt is a BSA of
(EN1[e] ¢>1) pMNut, and hence of (E5:1]e] ¢%1) 0 pNui. In particular, when pNut
is the identity its least BSA is the identity Aa.a, and £B:[e] ¢B' (Aa.a) is a BSA of
85.1.1[[e]] ¢5¢1'
Since N, ; application is composition, B; application is abstract composition:
applyB 7y 7 = 7 0B 1 .
Then apply™t and apply®t are correctly related.
Proposition 5.7

The semantic functions EN** and £P! are correctly related. O
Just as at zero order we can do better.

Proposition 5.8

Let ¢>+ and #B' be function environments such that ¢>:1[£] is the least BSA of
stable function ¢®'[£] for each f. Then £B1[e] ¢® is related to ENt1[e] ¢Ner by
DLST.

The proof is the same as for Proposition 5.6, with an additional case for the application
form. 0O

Again we could forgo stability and retain leastness with respect to smash projections.

Next we define £gY;,,. The least function in 7M°[T] is Az.lift L with least BSA the
least function Aay .BOT, in T®[T], and the least BSA of id is the identity Aa.a, so

the semantics of function definitions F is

EauslF1 = Ufp (A8 . (EB[e1] ¢ (M), ..., EP[en] ¢ (M) .
Each semantics defines the function environment as'the limit of an ascending chain.
Let us denote the elements of these chains by ¢2* and ¢f“ for i > 0, with limits ¢°12
and @B respectively, where
¢ = (M. (E%[er] ¢ (M), ..., EB[en] & (Aaa)))’ o5
where
5 = (A\ey.BOTy,...,\a,.BOT,) ,

CHAPTER 5. FIRST-ORDER ANALYSIS 107

and
g = (A . (€ [e] @, ..., E]en] 9) B
where
sr = (Azlift L,... Az.lift 1),

Now @5 is correctly related to 8“; by Proposition 5.7 and induction ¢¥* is correctly

related to ngf“ for all ¢, and by Proposition 3.15 the limits are correctly related.

Proposition 5.9

The N,; and B, semantics are correctly related. O

Just as for zero-order analysis this does not depend on stability, but stability gives
stronger results.

Proposition 5.10
If > and ¢°* map every function variable to a stable function, then for all e the
functions £51[e] ¢° and £5+1[e] ¢°4t are stable.

The proof is the same as that for Proposition 5.4, with an extra case for first-order

function application. O

Proposition 5.11

For all F the function environment Ssgfnsl[F]l is the least environment that is correctly
related to Egi,[F1. -

Proof

Consider the approximating environments just defined: @5 is the least value correctly
related to ¢3‘*°; by Proposition 5.8 and induction ¢',-3‘ is the least value correctly related
to d)?“’ for all 7; the qS?“’ are increasing in the stable ordering (which follows from

the fact that composition is monotonic in the stable ordering); the result follows from
Proposition 3.28. 0O

Thus ngfns yields least BSAs, and we conclude that the B; semantics determines the
S; semantics. In light of this, examples would not be very interesting until fidelity
is lost by abstracting the projection domains. Nonetheless we give an example that
is commonly used to highlight a weakness of backward strictness analysis, to show
that the loss of accuracy derives from the treatment of first-order functions and from

abstracting the projection domains and is not inherent in the method itself.

Example. Consider the functional abstraction of the case expression:

cond (b,x,y) = case b of
true () -> x
false () ->y ,

CHAPTER 5. FIRST-ORDER ANALYSIS 108

where we write f (x1,...,X,) = e as convenient shorthand for

f x = let (X1,...,%X,) = x in e,

and rhs for the right-hand side of the definition. Let cond>: and cond® be the

values of this definition in the S;; and B; semantics, respectively, so
cond® = EB[rhs] [] (Aa.a) ,

which is exactly what was calculated before functional abstraction: cond®! is the least
BSA of cond®11,

5.2.2 Abstraction of projection domains

In non-standard interpretation in general there are two basic approaches to choosing
the working set of abstract values for an implementation. The simpler, which we will
adopt, is to fix in advance a finite set of abstract values at each type. The other
approach involves symbolic (algebraic) manipulation of representations of abstract
values with approximation performed ‘on the fly’, as required by space and time con-
siderations, typically guided by some heuristics. Such methods tend to be complex,
and the nature of the approximations hard to predict. In some contexts these approx-
imations may tend to be quite good, e.g. as show by Cousot and Cousot for abstract
interpretation [CC91], Seward for term-rewriting [Sew94], and Nocker for abstract
reduction [N6c93]. On the other hand, Hughes shows that in a context very similar

to ours, seemingly natural approximations can lead to very poor results [Hug85).

Choosing a particular finite abstract domain for a particular analysis technique is an
engineering problem—a balance of tradeoffs. Though we would like the domains to
be as large as possible to obtain high accuracy, the time complexity of analysis is
typically exponential in the sizes of the domains chosen, suggesting that for practical
purposes the domains should be as small as possible. Another consideration is of
what information (here strictness information) is actually exploitable by a compiler.
We will not explore these design spaces, which are research issues in their own right,
instead we will appeal to tradition in the field and choose domains that appear to
give potentially useful information. For backward strictness analysis our reference
points are [WH87, KHL92]. For forward binding-time analysis we will be on more
solid ground: the choice will be that of Launchbury [Lau91a] which has been shown
to be of genuine practical use. For forward termination analysis we will use the same
domains as for backward strictness analysis since they appear to give potentially

useful information in that context as well.

|

CHAPTER 5. FIRST-ORDER ANALYSIS 109

The abstraction of full projection domains to finite abstract domains is performed
in two steps. For backward strictness analysis we first identify for each type T those
projections SProj, that have natural sequential interpretations in the sense described
in Section 4.4.4; in essence this amounts to excluding projections on product domains
that cannot be expressed as products of projections on the component domains. From
each such set we choose a finite subset FProj,, which amounts to restricting the
projection domains for Int and recursively-defined types. For backward strictness
analysis there are two reasons for performing abstraction in two steps. First, SProj
appears to be the largest set from which we might reasonably choose a finite subset for
analysing sequential languages.® Second, it will allow us to pin down more precisely

sources of inaccuracy.

For fixed type definitions D and each zero-order type T we define SProj; to be the
domain P5:o[T] (ijf‘;w[D]]), where 'ngﬁns is defined in terms of P> just as Ty, is
defined in terms of 7, and P> is defined as follows.

P3[()] = Proj, = {BOT.,BOT.},

PSo[Int] = Projiy, ,

PO (Ty, ..., T)] = {1 ®...®a, | s € PSo[T;], 1 < i< n},
PSrofe; Ty + ... + ¢, Ty

= U{{as,ar} |a=(Bo®...®Bn), Bi € PS[T;], 1< i< n}.

The same set of projections would be defined for Int were Int defined as an infinite
sum; the set comprises the projections BOT,, N; for all i € Z, and all possible lubs.

In Proj(,,.. r,) the glb of two projections expressible as smash products is compo-
nentwise on their representation, e.g. (y1 ® 12) M (61 ® §2) = (71 M 1) ® (72N J2), and
glb in SProj; coincides with glb in Proj; for all T. The preceding also holds for & in
place of M. In contrast, in Proj,, . r,, lub is not necessarily componentwise, even
when BOT), is excluded. To see this, consider

(m®&) U (128 8)) (u,v)

= (smash o (y; X 61) o unsmash) (u,v) U

(smash o (3 X 82) o unsmash) (u, v)

= smash (71 u, 61 v) U smash (2 u, &2 v) .

3This is assuming a sequential implementation without speculative evaluation, otherwise projec-
tions that correspond to parallel evaluation might be useful; these could be conveniently be taken
to be the Hoare powerdomain of FProj,.

CHAPTER 5. FIRST-ORDER ANALYSIS 110

If, for example, only y; maps its argument to L, then lub is not componentwise.
What’s more, in Proj (r,, . r,) the lub of two projections expressible as smash products

may not be expressible as a smash product; for example
(ID, ® ID{)U(ID, ® IDy) ,

which is ID, on pairs, cannot be expressed as a smash product. Since SProj(; | . 1)
only contains projections that can be expressed as smash products, lub in SProj,
will not in general be the same as lub in Proj, and the former will not necessarily
be a sublattice of the latter. However (since glb does coincide), for any v in Proj;
there is a least element of SProj, greater than +; the lub of two elements of SProj,
is the least element greater than their lub in Proj, and this lub is componentwise on
smash products other than BOT,. (A helpful observation is that ’Ps“’[(Ty,...,Ta)]
is isomorphic to P5[T;] ® ... ® PS1o[T,]: the projection v; ® ... ® v, is equal to
BOT, exactly when +; is BOT, for some ¢. If we identify all such expressions with
BOT, ®...® BOT, then lub is componentwise.) Then SProj is a complete lattice
for all T (this follows from the fact that glbs exist for all sets, including the empty set,
for which the glb is ID). Further, SProj; always contains BOT,, BOT,, ID,, ID,,
though these projections may not be distinct (e.g. for the unit type (), or other types
with the same interpretation (up to isomorphism), such as A given the type definition
A=(A,A)—the same holds in Proj,).

For v € Proj. let v# be the least projection in SProj greater than y. For every projec-
tion transformer 7 € Proj; — Projy define 7# € SProj; — SProj, by 7 a = (1 a)#;
then 7 approximates 7# at common arguments and 7# is a safe abstraction of 7. To
get a backward strictness semantics B in these new domains (to which we will re-
fer generally as SProj) is simply a matter of replacing each projection transformer
[(con®),, | appearing in the definitions of the By constants by its abstraction in the

new domains.

Proposition 5.12

The abstraction # is a semi-homomorphism of the semantics, that is
(E%[e] p)* T £%¥[e] p* .

This follows from the fact that £ is a monotonic function of its defining constants.
O

In other words, the Bf semantics is a safe abstraction of the By semantics.

We need to clarify the B# semantics for case expressions of product type. A pro-
jection in SProjr,, 1,y i8 lazy—above BOT, —when every component is lazy, and

CHAPTER 5. FIRST-ORDER ANALYSIS 111

BOT, is BOT, ® ... ® BOT,. The projection ID; is not in SProj,, 1, forn >2;

in Proj, 1, itis

(ID.®ID,®ID, ®...® ID,)
U (D, ®ID,®ID, ®...® ID))

U(D.®...® ID, ® ID, ® ID,) .
For components of lifted type the projection corresponds to parallel evaluation of the
components until one of them reaches WHNF (for components of product type the

interpretation is applied recursively). Its abstraction in SProj(r,, . 1,y is ID;. The

eager version of a lazy projection on products is
()L ®...®(ya)L) N IDL

= ((M)L®)L®...Q (v.)L)U
(M1 ®(2)L® .- @ (a)L)U

(M) ®)L ®...0 (1a)L) -
The abstraction of the right-hand side to SProj ;. 1.y isjust (1)L ®...® (Va)L)-
To avoid this approximation we exploit distributivity. For lazy arguments the relevant
definitions may be expressed as follows.
B (roy-..17a) (1)L ® ... ® (an)1)
= BOT. U (Ui<i<n (70 (G BOTL) & (Ui<j<a (i 75))))
where 7; = (1)1 ® ... ® (@j—1)L @ (4)L ® (j+1)L ® ... @ (an)s-

choose

The definitions of the other constants are textually the same except that B# every-
where replaces By. The definition of tupleB# can be simplified to

tupleBs (T1,0-3Ta) (1@ ...Qa,) = (M ay)& ... & (1, an) -

We repeat the last example in the abstract domains. Recall the expression e is

case b of
true () -> x
false) >y .

Let pB# be the identity function, so
pBE[b] = Aay.(ay ® ABS ® ABS) ,
PP [x] = Ao .(ABS ® oy ® ABS) ,
PP [y] = Aow.(ABS® ABS®a,) ,

as before. Then

% e]

CHAPTER 5. FIRST-ORDER ANALYSIS 112

= Aoy . ((TRUE ® ABS ® ABS) & (ABS ® ay ® ABS))
U ((FALSE ® ABS ® ABS) & (ABS ® ABS ® o))

= Xo, . (TRUE ® o, ® ABS) U (FALSE ® ABS ® o)

= AQ‘J__ . STR@C!J_@(XJ_ .

This is a BSA of £%°[e]. It reveals that in context oy that b is certain to be
evaluated, and that if x or y is evaluated then it is evaluated in context oy . Notice

this is weaker than before because of the approximation introduced by abstract lub.

Now let g = A(b,z,y).(b,z,z), that is, a function from environments mapping
the x component into both the x and y positions. The least BSA /)'336E of g is
Aoy ® ax @ ay).(a ® (0x & ay) ® ABS), so that

pB¥[b] = Aov.(or ® ABS ® ABS) ,
pB#[[x]] = Aoy .(ABS ® o ® ABS)
PP [y] = Aay.(ABS ® o, ® ABS) ,

as before. Then a BSA of £5:0[e Jog, is SB#[e]] B8 , which is Aoy .(STR®oy ® ABS),
indicating that in eager context ay, the x component of the argument of £3+[e]o g,
is evaluated in context oy . In particular, this function is strict in the x component; we
are still able to demonstrate that £+ e] is jointly strict in the x and y components

of its argument.

Inaccuracy has been introduced by the abstract lub operation of SProj, giving rise
to two seemingly contradictory facts: lifted functions are not in general determined
by their least BSAs in SProj, yet the abstract backward strictness semantics still
determines the standard semantics; this is elaborated following.

Proposition 5.13
If 7 is the least BSA of f, then 7# may not determine f.

A simple counterexample is cond>t1: the abstraction of its least BSA is Ao .STR ®
a; ® ap, which is also the abstraction of the least BSA of the function like
cond>t with the roles of the second and third arguments reversed, that is,
cond>+ o (\(z,y,2).(z,2,9)),,. O

Proposition 5.14
For all v the projection transformer (ACCEPT,)# determines v.

This follows from the fact that all characteristic projections are in SProj. O

CHAPTER 5. FIRST-ORDER ANALYSIS 113

Proposition 5.15

For all zero-order expressions e, the function £3+°[e] is determined by £ 87 [e]-

This follows from Proposition 5.14 and the fact that the Bf semantics maps charac-
teristic projection transformers to least characteristic projection transformers, that
is,

g% [e] (ACCEPT,)* = (ACCEP)#

Tesfe] o
In turn, this follows from the fact that the abstract constants map characteristic

projection transformers to least characteristic projection transformers, for example

(mkint2)# (ACCEPT,)* = (mkinty® ACCEPT,)#. O

Example. Analysing the same expression again, let pSio = (true,3,4) and pB85 =
(ACCEPTP)*. Then

Sio

p®[b] = Aoy . ((ACCEPT,,)* o)) ® ABS ® ABS = (ACCEPT,,,

0% [x] = Mo, . ABS® ((ACCEPT,)* o) ® ABS = (ACCEPT,)#
pB8[y] = Aoy . ABS ® ABS ® ((ACCEPT,)* o) = (ACCEPT,)#* ,

)#

?

and
%[e] o

= Xy . (((ACCEPT,,)* TRUE)® ABS ® ABS
& ABS ® ((ACCEPT,)* o) ® ABS)

U (((ACCEPT,,.)* TRUE)® ABS ® ABS
& ABS ® ABS ® ((ACCEPT,)* ay))

=)Xoy . ABS ® ((ACCEPT,)* o)) ® ABS
= (ACCEPT,)* .

So, lifted functions are not in general determined by their least BSAs in SProj, but
the abstract Bf semantics determines the Sy semantics. This is possible because
88 [e] is not a projection transformer, but a function from projection transformers
to projection transformers. In contrast, the S; semantics is not determined by the
abstract first-order backward strictness semantics Bf:, as shown by the abstraction
of cond>1. What’s more, the Bf semantics does not in general yield least abstract
BSAs, for example, for the identity defined by

id : Int #> Int

id x = cond (true (), x, 1) ,
we have 1d® STR = ID . This suggests that at first order the abstraction of functions

is not ideal.

CHAPTER 5. FIRST-ORDER ANALYSIS 114

5.2.3 Second approach to first-order analysis

Following we describe our approach to first-order analysis taken in [DW90].

One way of thinking about how information was lost in abstracting an expression to
a function is that function environments were constructed by evaluating the function

body in a single abstract environment, the identity, for example, we had
cond® = £B1fcase b of ...][] (Ma.0).

We were able to determine the zero-order standard semantics from the By semantics
by sampling at every abstract environment (ACCEPTP)#. Where we ‘went wrong’
is the peculiar N; semantics of function types, and the corresponding definition of -
application as composition. Let the new N, semantics of first-order types instead be
such that N, application is ordinary application, so
T[T, #> To]
= TN[T;] — TN[T,]
= (T*[Eq] = T*[Ti]) = (T™[Eq] = T>[T2]),
and
TN2[T #> Ty]
= TNo[T;] — TNe[T,]
= (TSo[Eq] B3 TSo[T]) - (TS[Ex] 3 TS[T.]) .
Now the Ny and N,, semantics of first-order functions will map functions of the
(lifted) standard environment to functions of the (lifted) standard environment just

as do ENo[e] and ENto[e]. The required relation between the S; and Ny semantics

at function types follows the same pattern: it is
RN [Ty #> To] = Vo . RPW[Ti] » RPM[T.],

and similarly for R3+*Ne2[T; #> T,]. Then function environments ¢t and ¢N? are

correctly related if for all function variables f and functions g we have ¢>![£] o g =

#V2[£] g. The semantics of first-order function application is ordinary application:
apply™ fz = [z,

and the same for applyNs2,

Least fixed point was used to give the S; semantics of function definitions; the initial
approximation of each function is Az.L which is correctly related to the least value

Ag.Az.L in the N, semantics, so

ExislFl = Ufp (Mg . (EM[ei] @, ..., EM[en] ¢)) -

CHAPTER 5. FIRST-ORDER ANALYSIS 115

and the same for N;,. It is not hard to show that the S; and Ny (and S;; and N,5)

semantics are correctly related.

The definition of the corresponding first-order backward strictness semantics B fol-
lows the same pattern. If an expression (in a given environment) denotes a projection
transformer, then a function variable should denote a function from projection trans-

formers to projection transformers, just as does £8¢[e]. Thus
T[T, #> To] = T%[T,] = TB[T,]
= (Projy, 5 Prongl) - (Projy, 5 Prongl) ,
and
RN2B2 [Ty #> Ty] = RNoBo[T;] —» RMoBo[T,],
and function application is ordinary application
apply®? fz = fz .

The required relation between N5 and B, first-order functions is the same as that
between ENto[e] and £B¢[e] for e of type Ty with environment type T;. Then function
environments ¢°11, N2, and ¢B? are correctly related if ¢°Lt is correctly related to
#N+2| and for all function symbols f and any 7 a BSA of any function g we have that
¢Bi[£] 7 is a BSA of ¢":2[£] g and therefore of ¢>:1[£] 0 g.

Proposition 5.16
The semantic functions E+? and £B2 are correctly related. O

Stability allows a stronger result. Define RN1252 by
RN:B2[T) #> To] = RMLP[T;] - RMB[T,] .

Proposition 5.17
The functions EM2[e] and £B2[e] are related by

(RNL:B2[Ty #> U] x ... x RNLB[T, #>U,]) - RMLB[E #> T]
for all e:T with environment type E and function environments from
T[T, #> U;] x ... x T[T, # U,] .
Better, EVi2[e] and £B2[e] are related by (DLST X ... x DLST) = DLST for all e.

The proofs are the same as for Propositions 5.5 and 5.6 with an additional case for

the application form. O

Last we define Egém, For the N, semantics of function definitions the initial approx-
imation of each function is the least value Ag.Az.lift L; the least BSA of Az.lift L is

CHAPTER 5. FIRST-ORDER ANALYSIS 116

Aoy .BOT,, and At.Aay.BOT, is the least value in TB2[T, #> T,] for all T, and To,

so the By semantics of function definitions F is

EamlF]1 = Up 00 . (E%[e1] ¢,...,E[en] ¢)) -
Proposition 5.18

The N5 and B; semantics are correctly related. O
Again stability allows a stronger result.

Proposition 5.19
For all F the environments £g%,,[F] and é'defm[F] are related by DLST x...x DLST.

Proof

Given F let ¢2° and ¢Ni2 be the approximations of the function environments arising
from the definitions, with limits ¢® and ¢Ni2 respectively. Now ¢52 is the least value
correctly related to ¢3‘“ by Proposition 5.17 and induction ¢%? is the least value
correctly related to ¢~N“ By inclusivity ¢®2 is correctly related to ¢N+2. Moreover,
#B? is the least value correctly related to ¢Ni2: this follows from Proposition 3.28, the
fact that lub for products is defined componentwise and lub for functions pointwise,
and Proposition 3.31. DO

It is clear that the B, semantics determines the S; semantics. Again we could forgo

stability and retain leastness with respect to smash projections.

Example. Let cond® and cond® be the functions denoted by the definition of
cond in the By and S;; semantics, respectively. Then cond®? (Aa.a) is the least BSA

of condS+1.

Just as we could restrict the projection transformers to th<;se with the guard
property, so we may similarly restrict 752[T; #> T,] to the distributive func-
tions. Further, it is easy to show that for all function definitions F that
EXms[FI[£] (Aa.ABS) = Aa.ABS and £3%,,[F1[£] (Aar.BOTL) = Ao .BOT,
for each £, and £%[e] ¢® (Aa.ABS) = Aa.ABS and E%[e] ¢® (Aa..BOT,) =
Aay.BOT, for all e when ¢®[£](da.ABS) = Aa.ABS and ¢®2[£](Aay.BOT,) =
Ay .BOT, for each £, hence that we may further restrict 7B2[T; #> T,] to those
functions that are strict and map Aa.ABS to Aa.ABS.

Abstraction to SProj to yield the abstract first-order semantics B’; is induced in the
natural way. Then, for example, cond®? = g8% [rhs], where rhs is the right-hand
side of the definition of cond, hence cond®? determines condS'. More generally, the
B¥ semantics, unlike the B¥ semantics, determines the S; semantics. The proof that

CHAPTER 5. FIRST-ORDER ANALYSIS 117

£ B} determines £' is the same as that for Proposition 5.15 with an additional case
#
for the application form. To show that £ Ejfns determines Sgéﬁw we need the facts that

on projection transformers is continuous and that ACCEPT, is continuous in v.

5.2.4 Finite projection domains

For each type T we choose a finite sublattice FProj, of SProj, suitable for examples
and implementation. Because of the treatment of recursively-defined types it is easier
to give the definition of FProj; as a set of deduction rules rather than as a composi-
tional semantics of types like P5°. A projection ~ is in FProj, if v fproj T can be
inferred by the rules given following.

This is the sole instance in which it is not appropriate to treat Int as though it were
an infinite sum. A correct treatment is given by regarding Int as though it were the
unary sum int Int#. For primitive unboxed types there are projections BOT, and
BOT,, so

BOT, fproj O , BOT, fproj Int# ,
BOT, fproj O , BOT, fproj Int# .

The domains for product types are defined in terms of those of their component types
exactly as in the definition of P>, that is, there are all of the projections that can
be expressed as products of projections on the components.

m fproj T, .-+ yn fproj T,

MR- ®v, fproj (Tq,...,T,) '

The domains of projections for sum types are similarly induced by the component
types.
7 fproj Ty -+ v, fproj T,
(M® - ®v)L fproj ciTi+ ... +¢, T,

?

7 fproj Ty --- 7, fproj T,
(M®- @) fproj c; Ty + ... +c, Ty

For recursively-defined types, roughly speaking, we choose only those projections
that act on each recursive instance of a data structure of the same type in the same

way. More precisely, given type definitions A; = Ty; ...; A, = T,, which we will

CHAPTER 5. FIRST-ORDER ANALYSIS | 118

write A; = T;(Ay,...,A,), 1 <1< n, if by assuming ~v; fproj A; for 1 < i < n we
may deduce Pi(7y,...,7.) fproj T;(A;...A,) for 1 < i < n, then
[”'(717 s a’)’n)(Pl ([BOT.LU]’YI’ (RS [BOT.LU],)/‘H.)’

P.([BOT Um,...,[BOT UlYa))

where each instance of [BOT L] is optional, is a tuple (71, ...,vs) of projections such

that v; fproj A; for 1 <7 < m.

It is a fact that F'Proj; is always a finite sublattice of SProj, for all T and for boxed
types includes the projections BOT,, BOT,, ID,, ID,.

In both approaches to first-order analysis, the non-standard value of each function
definition is a first-order strict distributive function. As previously mentioned, for
practical analysis this considerably reduces the sizes of the finite abstract domains
and allows more compact representations of functions. There are additional bene-
fits. Recall that given function definitions F, the non-standard function environments
EqimsIF] and Egjfm\[F]] are defined to be limits of ascending chains {¢?* | i > 0} and
{422 | i > 0}, respectively, where the ¢2! and ¢? are approximating function envi-
ronments. Nielson and Nielson [NN91] show that in this context, the least k such that

2= el (or ¢ = ¢r24), for all F of the same type, may be considerably smaller
than could be assumed if the projection transformers (or functions from projection

transformers to projection transformers) were assumed only to be monotonic.

Example. For Int the abstract projection domain FProj;,, is comprises BOTy,
BOT,, ID,, and ID,. The U-basis of the eager elements consists of the single ele-
ment ID, . There are, for example, four strict projection transformers from the eager
projections in FProj;,, to FProji,., all of which have the guard property and are
&-distributive.

Example. For type T not involving Int or recursion FProj, is the same as SProj.
For example, for type Lift = summand () the corresponding domain in the lifted
semantics is isomorphic to 1, with four projections BOT,, BOT,, ID,, and ID,.

CHAPTER 5. FIRST-ORDER ANALYSIS 119

Example. For Bool we have

(BOT, @ BOT.), , (BOT,.® BOT.),,
(BOTL &, BOTL)A , (BOTJ_ o) BOTL)L ,
(BOTJ__@BOTJ_)£ , (BOT&@BOTJ_)_L ,
(BOT, & BOT,), , (BOT, & BOT,), .

Translating this into the constructor notation, these are FAIL, TRUE, FALSE, STR,
and their lazy counterparts. The Ll-basis of the eager projections comprises TRUFE
and FALSE. There are 125 monotonic projection transformers from the eager pro-
jections in FProjg,,; to FProjg.,; (these are the ones with the weaker guard prop-
erty of [WHS87]), but only 64 from the L-basis of the eager projections to FProjg,.;,
all of which have the guard property. Since TRUFE & FALSE = FAIL, and for
7,0 € FProjg,,, we have v & § = FAIL iff v = TRUE and 6 = FALSE or vice versa,
or one of v or ¢ is FAIL. Thus there are 17 &-distributive projection transform-
ers with the guard property (compared with 11 monotonic functions from Bool to
Bool), but they do not form a lattice: for example, there is no upper bound of the
projection transformers determined by { TRUE — TRUE, FALSE — FALSE} and
{TRUE — FALSE, FALSE — TRUE}.

Example. For IntList, each projection is defined by an expression of the form
M’Y[BOTJ_U]([BOT_LU]BOTL @ (a ® [BOTJ_U]’)/))__]___

where a ranges over FProj;,.. This gives 32 expressions denoting projections in

FProj..; s, but many of these are redundant. Using the constructor notation, define

FIN @ = py.NIL U CONS (a®7),
INF a = py.CONS (a® (ABS U¥%)) ,
FINF o = wy.NIL U CONS (a® (ABSU¥%)) .

All of the eager projections in FProjp,; ;s are of the form FIN «, INF a, or FINF «
for a in FProj;,,. For a ranging over ABS, ID, and STR these give nine distinct
projections; for FAIL we have FIN FAIL = INF FAIL = FAIL and FINF FAIL =
NIL, for a total of 11 eager projections. Projections of the form FIN o demand finite
lists, and demand o of each list element. Similarly, projections of the form INF «
demand partial or infinite lists with at least one cons node, and « of each list element
for which the cons node is defined. Finally, those of the form FINF a demand finite,
partial, or infinite lists with at least one defined cons or nil node, and a of each
list element for which the cons node is defined. Here STR is FINF ID; the eager
form of the projection encoding head strictness is FINF STR; the eager form the the

CHAPTER 5. FIRST-ORDER ANALYSIS 120

projection encoding tail-strictness is FIN ABS, and the eager head-and-tail-strict
projection is FIN STR.

There is one set of expressions seemingly missing from the pattern, that is, those of the
form py.CONS (o ® v)—those that demand infinite lists. In fact, the value of such
expressions is FAIL. This is reasonable: intuitively, demanding full evaluation of an
infinite list (before producing any of the list) is equivalent to divergence; semantically,
a function that maps infinite lists to non-bottom values but maps partial lists to

bottom is not continuous.

In total there are 22 projections in FProj ;s but the U-basis of the eager projections
comprises only five of these, namely

NIL ,

FIN STR ,

FIN ABS |

INF STR

INF ABS .

There are 607420 monotonic projection transformers from the eager projections other
than FAIL to FProj;,.; s (again, these are the ones with the weaker guard property
of [WHS87]), of which only 50809 are distributive, that is, have the guard property.

Example. The elements of FProji,.;iciiist are of the same form as those for
FProj ;... €xcept that @ may be any element of FProjy,. .., giving 130 projections
of which 16 comprise the L-basis of the eager elements.

Example. Last we consider BoolTree. Each projection in FProjg,,11ree i defined

by an expression of the form
py.[BOT,U](e & ([BOT. U}y ® [BOT. Uy))L ,

where o ranges over FProjy.,,. All of the eager projections can be expressed by one

of the forms
FF a = py . (LEAF a) U BRANCH (y®7) ,
FI o = py . (LEAF o) U BRANCH (yQ (ABSUv)),
IF o = py.(LEAF o) U BRANCH ((ABSUY)®7) ,

IIa = py.(LEAF o) U BRANCH ((ABSU~)® (ABSU~)) ,

for o ranging over FProjg,;- For a not equal to FAIL these give 28 distinct
projections; for FAIL we have FF FAIL = FI FAIL = IF FAIL = FAIL, but

CHAPTER 5. FIRST-ORDER ANALYSIS 121

II FAIL # FAIL. Thus there are 30 eager projections, of which the following ten

comprise the L-basis of the eager elements.

II FAIL ,
FF TRUE ,
IF TRUE ,

FI TRUE ,

FF FALSE ,
IF FALSE ,
FI FALSE ,
FF ABS ,

IF ABS ,
FI ABS .

The projections FF STR demands evaluation of the entire tree and all of the leaves;
the projection FF ABS demands evaluation of the entire branch and leaf structure
but none of the boolean values at the leaves. The projection FI STR corresponds to
evaluation required by a depth-first search of the tree, left branch first. The projection
ABS U (IT STR) encodes ‘leaf-value strictness”: when a leaf node is evaluated, so is

the associated boolean value.

These abstract domains are rather large, and in particular FProj,,, ;.. is larger than
the abstract domain proposed in [WH87] which does not contain projections of the
form INF o for a # FAIL. (Note INF in [WH87] is FINF here.) One way to reduce
the sizes of the domains is to allow, other than FAIL, only those eager projections
that accept all nullary constructors. This would make the treatment of Int entirely
consistent with its definition as a sum type: the projections on Int would be the four
basic ones, and the same for Bool. For IntList the eager projections would be the
same as before, less INF' STR, INF ABS, and INF ID, giving 16 projections, still
including the four basic ones and the projections for head, tail, and head-and-tail
strictness, in both eager and lazy forms, the U-basis of the eager elements compris-
ing NIL, FIN STR, FIN ABS, FINF STR, and FINF ABS. There are 6740 strict
monotonic projection transformers from the eager projections to the full 16, of which
2864 have the guard property. The abstract projection domain for BoolTree would
then have 14 instead of 30 eager projections, of which the following seven would

CHAPTER 5. FIRST-ORDER ANALYSIS 122

comprise the Ll-basis.

II FAIL ,
FF STR ,
FI STR,
IF STR ,
FF ABS ,
FI ABS ,
IF ABS .

Next we give some examples of analysis in FProj, using the second approach to
first-order analysis.

Example. The function sum to produce the sum of an integer list is defined by

sum : IntList #> Int
sum xs8 = case xs of
nil O =>0
cons (y,y8) -> y + sum ys .

The generic semantics is

sum zs = choose (sel} zs,
mkinty s,
plus ((sely o outcons o sely) s,

apply sum ((sel o outcons o sely) zs))) .

Then sumB (Aa.q) is determined by the mapping STR +— FIN ID. This is clearly
not optimal, since the least BSA of sum® is determined by STR — FIN STR, the
result given by Wadler and Hughes’ analysis.

Example. The function or is boolean or; it examines its second argument only if
the first is false.
or : (Bool,Bool) #> Bool

or (x,y) = case x of
true () -> true ()
false () >y .

The function dfs returns the boolean or of all of the leaves of its argument tree.

dfs : BoolTree #> Bool
dfs t = case t of
leaf b ->b
branch (1,r) -> or (dfs 1, dfs r)

CHAPTER 5. FIRST-ORDER ANALYSIS 123

Then or®? (Aa.a) is determined by the mappings

TRUE +— STR® (TRUE U ABS) ,
FALSE — FALSE ® FALSE ,

which is optimal, so STR + (STR ® ID). Then dfsB? (Aa.a) is determined by the
mappings

TRUE ~ II STR,

FALSE — II FALSE .

This too is suboptimal: the least BSA of dfs>1 is determined by

TRUE w FI STR,
FALSE w FF FALSE .

Example.

interleave : (IntList,IntList) #> IntList
interleave (xs,ys)
= case xs of
nil O ->
nil O
cons (z,z8) ->
case ys of
nil () -> nil ()

cons (t,ts) -> cons (z, cons (t, interleave (zs,ts)))

We seek the strictness properties of interleave® o (Az.(z,z))., that is, how
interleave>' behaves when its arguments are the same. The least BSA 7 of
(Az.(z, 7))L is AM(a ® B).(a & B), and interleave®? T is determined by the mappings

NIL — NIL ,

FIN STR — FIN ID ,

FIN ABS — FIN ABS ,

INF STR — INF ID ,

INF ABS — INF ABS .

This is suboptimal at arguments FIN STR and INF STR, for which FIN STR and
INF STR would be optimal results.

In brief, we have defined a perfect backward-strictness semantics, abstracted to finite
domains in a straightforward way, giving an analysis technique that in some cases is
worse than Wadler and Hughes’. Following, we show how to improve our technique
to give results strictly better than theirs.

CHAPTER 5. FIRST-ORDER ANALYSIS 124

5.2.5 More on case expressions

When working in the full projection domains the B; (and B;) semantics give strictly
better results than that of [WHS87|, and we conjecture that the same holds when
working in SProj. However, when working in FProj the results of the two methods
become incomparable: it is because of the non-standard semantics of case expres-
sions that the technique of [WH87] can give better results. In this section we derive
an analog of the semantics of case expressions given in [WH87] and give examples
showing how it can give results better, worse, and incomparable to our method. Since
least BSAs always exist in the domains with which we are working we may safely de-
fine the semantics to be the glb of the results of these two methods, yielding results
strictly better than either.

We use an inequality to transform our semantics of case expressions to an analog
of the semantics given in [WHS87]. First we extend the definition of & to projec-
tion transformers: 73 & 7, is defined to be the projection transformer with the guard
property that agrees with Aa.(m; @) & (7, @) on the eager lub-basis of its argument
domain (this is smaller than defining & on projection transformers pointwise since

the result may not be distributive).

Proposition 5.20

For all e, 7y, and 7,
EBofe] (m&m) C (E%[e] n) & (E%[e] m) .
Sketch Proof

The proof is by induction on the structure of expressions using the definitions of

the By constants. For each constant we need to show the corresponding result, for

Bo we show

example, for choose
choose® (& !, m &', &)

C chooseBo (19,11, m) & choose®o (1, n!, ') .
Let oy be an eager element of the lub-basis of its domain, ag; = 70 (C; ABS),
Bo1 = 1o (C1 ABS), a2 = 7o (Ca ABS), fog =1y (C2 ABS), 01 =71 oy, fr = 1] au,
as =7 oy, and fo = 75 ay. Then

choose® (& 7!, m& 7', &) ay
(0,1 & Boy & a1 & B1) U (a2 & o2 & ag & o)
C ((c01 & aq) U(ap2 & 1)) & ((Bo,1 & B1) U (Bo2 & B1))

= (choose® (19,m,72) & choose® (1o, ', ') oy ,

as required. O

CHAPTER 5. FIRST-ORDER ANALYSIS 125

This allows us to split the information in the environment, giving for example
EB[e] [x1— 71, X2 > T2, X3+ T3]
C(&%[e][x1= 7, X2 Aa.ABS, x3 = Aa.ABS]
& EB[e] [x1 = Aa.ABS, x99 7, x3 T3)) .
for all e, 71, 79, and 73, since A\a.ABS is the identity for &. Intuitively, the &

operation has been pulled from the ‘inside’ on the left-hand side to the ‘outside’ on

the right-hand side, ‘unrelationalising’, and thereby weakening, the analysis.

Proposition 5.21

For all expressions e and projection transformers 7; and 7,
EBo[e] (1108 7)) = (EB[e] m) o8B 1,
and as a special case, EP[e] 7 =70 (£B[e] (Aa.c)).

This follows from the definition of of and the fact that £B°[e] 7 is equal to
|E50e]|0Br. O

Bo Bo

More generally, for each By constant con® we have con® (r 0 7,... 7, 0B 7)

con® (71,...,7,) o8 7, from which the last result could also be shown.

We now proceed with the transformation. From the definition of choose®® we have
EP[case ey of c1 X1 ->e1; ...; ChXn D en]pay
= lh<i<a(70 (C; ABS) & £P[e;] plxi = oute™® 1] o)
where 1o = EB[eq] p .
Let us consider just the i** subterm on the right-hand side, that is
(10 (Ci ABS)) & (£%[e:] plxi = outc® 7] ap) .
By Proposition 5.20 this approximates
7 (C; ABS)
& EB[e;] (Aa.ABS)[x; — outc? 7] oy
& EB[e;] p[xi = Aa.ABS] oy .
We want to concentrate on the subterm
70 (C; ABS)
& EB[e;] (Aa.ABS)[x; = outc® o] ay .
Assume that environments for e; are m-tuples with the value of x; in the 3% position.
Then
(Aa.ABS)[x; — outc?®]
= tuple® (Aa.ABS, ..., M.ABS, outc® 1y, Aa.ABS, Aa.ABS)
= (outc® mp) o tuple® (Aa.ABS, ..., Ada.ABS, \a.c, Aa.ABS, Ao.ABS)
= (outc?® 1) o (Aa.ABS)[x; = Xa.q]) ,

CHAPTER 5. FIRST-ORDER ANALYSIS 126

so
E%[e;] (Aa.ABS)[x; — outc® 7o)
= EB[e;] (outc® 79) o (Aa.ABS)[x; = Aa.a])
= (outc?® 75) 0 E%[e;] (A ABS)[x; = Aev.q]) .

Let OUTC; be the least BSA of outcis“’, then OUTC; agrees with C; for ea-
ger arguments. Let v = &EB[e;] (Aa.ABS)[x; = Aa.a] . Now outcP® 7 7 is
170 (OUTC;), and we need to simplify

(10 (C; ABS)) & (7 (OUTGC; 7)) .

Let us assume that p is the least BSA of some stable function, so 7y and outc™ 7,
are the least BSAs of some stable functions, hence have the guard property and are

&-distributive (this will be relaxed shortly). Then the last expression becomes

If v is of the form B8, then OUTC; v= C; v, and in general (C; ;) & (C; é2) =
C; (6, & 62), so the expression simplifies to 79 (C; 7). If 7 is of the form (3, then
OUTCIL ,B_L =ABSU (C, ,3;), and

(Ci ABS) & (ABSU(C; By))
= (C; ABS)U(C; By)
= G B,
since in general (C; 6;) U (C; d2) = C; (61 U d3). In either case the expression simpli-
fies to 79 (C;). Putting this all together gives a new backward strictness semantics

for case expressions:

EBo[case eg of C1 Xy => €1} ...} Cn X =D €4] p
= /\Oté . UlsiSn (SBDI[G()]] P (C, (EBol[e,-]l(Aa.ABS)[x,- — Aa.a] Of___|__))
& E%[e;] plxi = Aa.ABS] ay) .

This is the analog of the semantics for case given in [WH87]. The new semantics is
correct for p the least BSA of a stable function; since every projection transformer
with guard property is the lub of the least BSAs of some set of stable functions, both
semantics are monotonic, and the first is distributive, it must be that this semantics
safely approximations the first. We conjecture that the same holds in SProj, but in
FProj the two semantics are incomparable: the second may produce better results
than the first when recursive types are involved. We give two examples, one in which
the first semantics is better, and one in which the second is better. Pairing the
expressions from the two examples gives an expression for which the two semantics
give incomparable results.

CHAPTER 5. FIRST-ORDER ANALYSIS 127

Let SimpleSum = single Int, and variables b:Bool and x:Int. The expression to
be analysed is

case (single x) of
single y -> cond (b,x,y) ,

where cond (b,x,y) is shorthand for a case expression. Let the environment for
this expression have type (Bool,SimpleSum). In the full projection domains both

backward strictness semantics give
EBle] (Aa.a) = Ao .STRQ o,

as expected. The first semantics gives the same result in SProj but the second gives
a poorer result. We have
EB[e](Na.a)
= Xa,. EP[single x] (Aa.a) (SINGLE (1 @)
& EB[cond (b,x,y)] (Aa.a)ly = Ac.ABS]
= Aa.. ((TRUE ® ABS) U (FALSE Q))
& ((TRUE ® a) U (FALSE ® ABS)),

where 7 = EB°[cond (b,x,y)] (Aa.ABS)[y = Aa.a]. In the full projection domains
this simplifies to Aay.STR ® a, but in SProj it is Aa .STR ® o

Next we consider an example for which the second semantics is better. Let
xs:IntList and the environment contain a single entry for xs. The expression e
to be analysed is

case xs of
nil O -> nil
cons (z,zs) -> cons (z,zs) .

Then £5°[e] is the identity. Performing the calculations in FProj the second seman-
tics gives

EB[e] (Aa.a) = Aa.a
as expected. The calculations for the first semantics are sketched following.

EBe] (Aa.a)

=Xa. (EP[xs] (Aa.e) NIL
& EB[nil O] (Aa.a) ar)
U (&B[xs] (\a.c) (CONS ABS)
& EB[1let ...] (Aa.a)lys — outcons® (EB[xs] (Aa.@))] ap)

CHAPTER 5. FIRST-ORDER ANALYSIS 128

=X, (NIL
& ACCEPTZ} o))
U(CONS ABS
& EB[let ...] (Ma.a)lys = outcons® (Aa.@)] ay)

Now
EP[1let ...] (Ae.a)[ys = outcons® (Ma.a)]
= EB[cons (z,z8)] [xs » Aa.q,
z - sel?® (outcons®™ (Aa.)),

zs > sels® (outcons® (\a.))].

The projection transformer self® (outcons® (Aa.c)) is the least BSA of self™ o

outcons>+°, and is equal to
Aoy . CONS (oy ® ABS) ,
and sely° (outcons® (\a.a)) is
\ay . CONS (ABS®a,) .

In FProj the approximation of these projection transformers is poor. The first is
determined by

STR v INF STR ,

and the second by

NIL — FAIL |
FIN STR — FIN ID ,
FIN ABS — FIN ABS ,
INF STR — INF ID ,
INF ABS — INF ABS .

Then £B[cons (z,zs)] [...] is determined by

NIL — FAIL ,
FIN STR — INF STR & FIN ID = FIN ID ,
FIN ABS — ABS & FIN ABS = FIN ABS ,
INF STR — INF STR & INF ID = INF ID ,
INF ABS — ABS & INF ABS = INF ABS .

Putting this together we have £%[e] (Aa.a) is determined by the same mappings,
except that NIL — NIL. In particular, for arguments FIN STR and INF' STR accu-
racy has been lost.

CHAPTER 5. FIRST-ORDER ANALYSIS 129

Since least BSAs always exist, we may safely combine these two semantics by taking
their glb, yielding a semantics strictly better than either. In fact, the glb may be

safely taken branch-wise between the two semantics, yielding
EBocase eg of c1 X1 > ey} ...; CuXn D en]pay
= Uicica ((E%[eo] p (Ci (E%[ei](Ac-4BS)[x; = Ae.0] ay))
& EBo[e;] plxi — Aa.ABS] ay)
n(&%[eo] p (C; ABS)
& E%[e;] plxi = outc® 1) ay)) -
This is better than simply taking the new semantics of case to be the lub of the first
two, that is,
EPo[case eg of ¢ X1 => €1} ...; Cp Xp => €]
M EB[case eg of ¢1 X1 => €1 ...; Cp X => €,],

since in general in a lattice (u; Mug) U (v; Mue) & (uy Uvy) M (ug U vg).

We repeat the examples involving sum, dfs, and interleave using the new semantics.

Example. Now sumP? (Aa.a) is determined by the mapping STR — FIN STR,
which is optimal.

Example. Now dfs%: (\a.a) is determined by the mappings

TRUE w~ FI STR,
FALSE — FF FALSE ,

which is optimal.
Example. The result for interleave does not improve.

We make an observation regarding program transformation. If a case expression is

transformed from
case ey of ci X1 ->e1; ...; Cp Xy, > e,
to
case ey of ¢; X1 -> ejfoutc; ep/x1]; ...; ¢n X, => enfoute, eo/x,],

before analysis, where outc; denotes the usual projection from the sum type, then
the second case semantics of the transformed expression is the same as the first case

semantics of both the original and transformed expressions. This follows from the

CHAPTER 5. FIRST-ORDER ANALYSIS ‘ 130

facts that £B[e] (Aa.ABS) is Aa.ABS for all e in both semantics, e;[outc; eg/x;]
has no free occurrences of x;, and that the substitution lemma holds for the first
semantics (in FProj), that is, £2[e] p[x — EB[e’] p] is equal to EB[ele’/x]] p
for all e and e’ (assuming no variable capture). Thus such a transformation would
nullify the benefit of combining the case semantics. This also demonstrates that the
substitution lemma does not hold for the second or combined semantics in F'Proj.

Before going on it is worth taking one last look at the transformation. In essence, we
started with

E%[eo] p (Ci ABS)
& EBfe;] plx; — outc®) ay
and transformed to
EB[eg] p (Ci (B[e;](Aa. ABS)[x; — Aa.a] ay))
& EBofe;] plxi — Aa.ABS| ay .
This may be thought of as ‘unrelationalising’ the analysis with respect to variable
x;, which as shown can improve analysis in FProj by avoiding bad approximations
to certain projection transformers. A natural question is whether this process can be
carried any further, and if so, with any benefits. In other words, can the binding for
not just x; be ‘moved’ from the environment of the second instance of £%°[e;] to the
first, but all of the bindings so moved, yielding, for some p’
E®[eo] p (Ci (E®[ei] P)
& EBo[e;] [xi > A ABS | 1< i < n a ,
which would then be equal to just

£%[eo] p (Ci (E%[e:] /' o)) -

The answer to both questions appears to be affirmative, but we leave this interesting
topic for further research.

9.2.6 More on Wadler and Hughes’ technique

Roughly speaking, the basic abstract values in Wadler and Hughes’ analysis are pro-
jections, and in ours they are projection transformers. The difference is reflected in
the semantics that are abstracted: for theirs, the S, ¢ semantics in which basic values
are just (lifted) values; for ours, the Ny o semantics in which basic values are functions
from (lifted) values to (lifted) values. At zero-order their semantics shows how pro-
jections propagate through values, while ours gives BSAs of functions. This difference
is more than just notational as the following comparison of the treatment of products
shows.

CHAPTER 5. FIRST-ORDER ANALYSIS 131

It has been observed that projections on (smash) product domains cannot in general
be represented by (smash) products of projections and hence there is an inherent loss
of accuracy in backward analysis of products, wherein a projection on products must
be (over-) approximated by a product of projections, that is, given a € | U @ V| we
choose a (preferably least) product a; ® as such that a (u,v) C smash (a; u, az v)
for all v and v. This loss of accuracy in inherent in the analysis technique given
in [WH87] (in the semantics of cons). Our method avoids this approximation by
working at the level of projection transformers: given expression (e;,ez), in the Ny
semantics e; and e, denote functions f; and f, and the expression denotes ({f1, f2)),
and from least BSAs of f; and f, we may obtain a least BSA of {(fi, f2)). Another
way to see this is to observe that tupleB° (sellB" 7, sels® T) is equal to 7. It is only in

abstracting to SProj that such approximations are introduced into our analyses.

This difference also manifests itself at first-order, where their abstract functions are
projection transformers, and ours are functions from projection transformers to pro-
jection transformers.

Another difference in the analysis techniques is that theirs is manifestly backward—
projections clearly propagate backward. Ours is less easy to classify: the semantics
is forward—projection transformers propagate forward, but basic values are BSAs
which give ‘backward’ information. This is most clear where variables are bound: in

function abstraction and let and case expressions.

There are at least three senses in which our analysis technique is relational where
Wadler and Hughes’ is not. The first is the result of manipulating projection trans-
formers instead of projections as just described. Second is in the semantics of case
expressions as discussed. Third is in the treatment of functions of more than one
argument: our analysis technique (using the first approach to first-order analysis)
assigns to each function a single projection transformer; theirs assigns one for each
argument and the result is their combination with &. We give an analog of their
approach in our framework. For binary function f with non-standard value fB' the
two functions would be

fO = da.(sel fB o) ® ABS ,

f® = Xa.ABS @ (sel® fB1 a) ,

then f) & f@ 3 fB1. One manifestation of our analysis technique being more re-
lational than theirs was highlighted in the abstraction to SProj where our analysis
of cond could detect joint strictness in the second and third arguments, while theirs
could not. As shown in [DW91], by ‘un-relationalising’ our technique in this way, the

improvement in computational complexity gained by considering abstract arguments

CHAPTER 5. FIRST-ORDER ANALYSIS 132

independently (as also described by Hughes [Hug87a]) can be realised.

5.3 Binding-time Analysis

The nominal goal of binding-time analysis is, given f, to determine as large a 7 as
possible such that (7) o f C f o é for all §; in terms of (zero-order) expression
semantics, given e, to determine 7 such that (7 §) o £%[e] C £%[e] 0 § for all 6.
The development of the zero-order binding-time analysis semantics Fo parallels that
of the Bj semantics; because we are interested in abstractions of functions from the
standard rather than lifted semantics we take the Ny semantics rather than the N,
semantics as the starting point. Since in general a function is not determined by its
greatest FSA, and abstract composition does not preserve greatestness, there are no
strong results corresponding to those for the backward strictness semantics: the Fq

semantics will neither yield greatest FSAs nor determine the Sy semantics.

The binding-time semantics is essentially the same as Launchbury’s [Lau9la] if we
take (the analog of) the first approach to first-order analysis described for strictness
analysis, that is, abstract the N; rather than the Ny semantics; our contribution
here is its development from first principles in the same setting as the other analysis
techniques, and in such a way as to facilitate the development of the semantics for
higher-order binding-time analysis given in Chapter 6.

We require that if pfo is a FSA of pNo then £F°[e] p™ be a FSA of ENo[e] pNo and
therefore of £%[e] o pNo; in particular when pNo is the identity its greatest FSA is
the identity Aa.a and £F°[e] (Aa.a) is a FSA of £%[e].

We intend all FSAs 7 to map ID to ID and be M-distributive and so use the func-
tion space constructor <+ to build the domains of FSAs of functions in TNe[T] and
TN[T]. In the context of binding-time analysis we take Proj; to be | 75°[T]| and
| f| to be the greatest FSA of f.

Let Ey be the type of global environments, then
TF[T] = Projg, L Proj, .

For e:T with environment type E we have £M[e] € THP[E] = T[T], so
EPole] € (Projg,, 5 Projg) — (Projg,, 5 Proj,)

so Efe[e] is a function from projection transformers to projection transformers.

CHAPTER 5. FIRST-ORDER ANALYSIS 133

The type predicate between values g and 7 in the Ny and Fy semantics requires that
T be a FSA of g, that is,

RNoFo[T] (g,7) = V8. (1 8)ogE god.
Recall that each Ny constant con™¢ is defined by
conNo (g1, ..., g,) = con® o (gi,...,0n) .

If 7; is a (greatest) FSA of g; for 1 < ¢ < n then Aa.((r1 @) X ... X (7, @)) is a (great-
est) FSA of (g1, ..., gn); abstract composition is ordinary composition; hence each Fy

constant is defined by
confo (11,...,7,) = | con®|oXa.((n @) X ... x (1, @)) .

When the constant has a single argument this simplifies to con™ 7 = | con> | o 7.
The detailed definitions are given following.

The greatest FSA of every constant function is Aa.ID, so

mkunitfe 7 = (Aa.ID)o T ,
mkint{® 7 = (Aa.ID)oT .

The other unary constants are defined similarly. The greatest FSA of self” is
|sel®| € [Ty x...x To| B | Ti|,
|sel,-S°| Q = Hau|aax...xa, Ca}.
The greatest FSA of inci® = in; o lift is | inc}® | = | in; | o | lift |, where the greatest
FSAs of in; and lift are
lini| € |Ti| B | Tvd...0 T,
|inis] a =ID®..8ID®a®ID®...0ID,
where o appears in the i** position on the right-hand side, and

lufe) e |T| 5|1,

llthl o = a,
S0
linc®| € |T:| B () @... @ (Tl
linc°| o =1ID,®..®ID, & ®ID,®...0ID, .
The greatest FSA of outc}® = drop o out; is | outc]® | = | drop | o | out; |, where the

greatest FSAs of drop and out; are
|drop| € |TL| & | T],
|drop| « = dropoao lift ,

CHAPTER 5. FIRST-ORDER ANALYSIS 134

so | drop| @ = |drop| oy = e, and

lout;] € |Tv®... 0 T.| 5T,

|0Uti| (ale)...@ozn) = & .
Then

loutc?® | € (T ®... @ (To)L| = | Ti|,

loute?®| (1 ®...®a,) = dropo oo lift .
Given 4, to satisfy v o plus® C plus> o 6, for every pair (lift i, lift j) on which 0
does not act as the identity v must map lift (¢ + j) to L. Recall that n; is the least
projection that acts as the identity on lift i. The greatest FSA of plus> is

| plus> | @ = Uigs ni, where S = {i+7 | vun s, up j) € @} .
Composition and simplification gives
plus™ (r,m) a = ID, ifn a=IDandm a=ID,
BOT, otherwise .
Since tuple®° is the identity we have
tuple™ (1,...,m)a = (na)X...x (1, a) .

We will not attempt to give a detailed definition of the greatest FSA of chooseS°
at arbitrary arguments (as we did for plus*) since the semantics only gives rise to
arguments of the form a; X ... X a,.

| choose® | (ap X ... X a,) = BOT, if ag 2 Ui<icn (¢; BOT)

[1i<i<n @i, otherwise .

Thus

choosef (my,...,7,) o = BOT, if (70 @) 2 (Ui<i<n ¢ BOT)

[Ti<i<a Ti @, otherwise .

Proposition 5.22
The semantic functions EN° and £ are correctly related. O

In the context of forward strictness abstraction we will write CON to denote the

greatest FSA of Sy constant cone.

Example. Let e stand for the the body of the boolean or function, that is,

case x of
true () -> true ()
false () ->y

CHAPTER 5. FIRST-ORDER ANALYSIS 135

with environment type (Bool,Bool) with the first component corresponding to vari-

able x and the second to y. The generic semantics E[e] is
Az . choose (sely z, (intrue o mkunit) z, sel x) .

Let pf° be the identity, the greatest FSA of the identity, then we have seliF° id =
SEL; o id = SEL,. Also (intrue™ o mkunitfe) id = (Aa.ID) o (Aa.ID) o id = Aa.ID,

SO
EFo[e] pfo = choosefo (SEL,, Aa.ID, SEL,) ,

which maps ID x ID to ID and every other projection to' BOT. This is not optimal
since false o £5°[e] C £%[e] o (false x false). One reason for this lack of accuracy is
that functions are not determined by their greatest FSAs; here Aa.ID is not just the

greatest FSA of the constant true function but of every constant function.

5.3.1 First-order analysis

We develop the analog of the first approach to first-order analysis given for strictness
analysis. The value denoted by a function symbol £ in the first-order forward binding-
time semantics F; is to be a FSA of the value it denotes in the S; semantics; the desired
result is obtained by abstracting the N; semantics. The F; semantics of first-order
types is then

TH[T, #> To] = Proj;, 5 Projy, .
The required relation at function types is ‘is a FSA of’, so
RMFE[T #> To] (9,7) =V36.(T8ogEgod.

Thus if ¢* and ¢7* are function environments such that ¢F[£] is a FSA of ¢51[£]
for each £, and p™ is a FSA of pMi, then EF1[e] ¢F* pFt isa FSA of (EM[e] ¢%) pMt,
and hence of (£51[e] #°) o pN1. In particular, when pN! is the identity its greatest
FSA is the identity Aa.a, and EF1[e] ¢ (Aa.a) is a FSA of £5[e] ¢.

Application in F; is abstract (ordinary) composition:
apply™ 71 = o7y,
and apply™* and apply™* are correctly related.

Proposition 5.23

The semantic functions EV and £ are correctly related. 0O

CHAPTER 5. FIRST-ORDER ANALYSIS 136

Next we give the semantics of a set of first-order function definitions. As before let
M be the i*» approximation of the N; semantics Sye}m[[F] of function definitions F.
Then ¢M1[£] = Az.L, which has greatest FSA Aa.ID, for all f. Let

(ﬁfl = (Ao . (5F1|[e1]] ¢ (Aa.q),... ,EFll[en]] ¢ ()\a.a)))" ¢§1
where
' = (\a.ID,...,Aa.ID) .

By Proposition 5.23 and induction ¢{*[£] is a FSA of ¢3*[£] for all ¢ and £. The
¢ form an ascending chain with a limit ¢", but the ¢7* form a descending chain
since Aa.ID is the greatest projection transformer. We take the limit ¢ of the latter

chain to be its glb, so
EimslF1 = afp (A¢ . (EP[e1] ¢ (Naua),...,ER[en] ¢ (Maa))

where gfp denotes greatest fixed point. Further, ¢ maps each function variable £
to a FSA of the standard value ¢"1[£] for all £; this follows from inclusivity of the
safety condition, and the fact that ¢F1[£] is a FSA of ¢M*[£] for all i since the ¢

are decreasing.

Proposition 5.24
The F, and N; semantics are correctly related. O

Example. Recall the definition of the boolean or function.

or : (Bool,Bool) #> Bool

or (x,y) = case x of
true (O -> true Q)
false () -> y

Then orf is maps ID x ID to ID and all other projections to BOT.

Example. Define the length function for integer lists as follows.

length : IntList #> IntList
length xs = case xs of
nil O ->0

cons (z,zs) -> 1 + length zs
Define SPINE by
SPINE o = puy.ID, & (a X 7),
= wy.nilU (cons (a x 7)) .
Then SPINE ID = ID. The projection SPINE BOT acts as the identity on the

spines (cons and nil nodes) of all lists but maps all heads to L, specifying static
spines and dynamic elements. The greatest FSA of the standard denotation sum>

CHAPTER 5. FIRST-ORDER ANALYSIS 137

of sum maps SPINE ID to ID and all other projections to BOT, and the greatest
FSA of length> maps SPINE BOT and all greater projections to ID, and all other
projections to BOT. The interesting point is that there are no projections that
specify that a list is of a certain fixed length, for example nil does not specify a static
list of zero length, but that if a list is of zero length then it is static. Hence the
greatest FSAs of sumS! and length' are not continuous. Analysis of the two function

definitions gives optimal results, for example, the generic semantics of length is
length = Az . choose (z,
mkinty z,
plus (mkint; z, apply length ((sel o outcons) z))) ,
so lengthF is the greatest fixed point of
A7 . chooseFe (Aa.a, Aa.ID, 70 SEL,o OUTCONS) ,

which maps SPINE BOT and all greater projections to ID, and all other projections
to BOT, so length™ is optimal. Analysis of sum is also optimal (it couldn’t be

otherwise since the optimal value is the least value in the relevant domain).

Example. Define the tail function for lists by

tl : IntList #> Intlist

tl xs = case xs of
nil () -> tl xs
cons (y,ys) -> ys

Then the greatest FSA of ¢/°! is determined by the mappings
nil — BOT
cons o =

nil U (cons @) —

but the result of analysis is suboptimal: ¢ maps projections of the form
nil U (cons a) to a, but those of the form cons a to BOT.

The second approach to first-order analysis—abstraction of the Ny semantics—is anal-
ogous to that for backward strictness analysis. Since we have no examples to contrast
the two approaches, and since the second is a specialisation of the higher-order tech-

nique developed later, we omit the details.

5.3.2 Abstraction of projection domains

The definition of choosefe shows that if the projection on the value of a selector in a

case expression does not encode staticness in all constructors, that is, is not greater

CHAPTER 5. FIRST-ORDER ANALYSIS 138

than Uj<i<n ¢; BOT for selector of type ¢; Ty + ... + ¢, Ty, the projection on the
result of the case expression is BOT; this is one way of explaining the loss of ac-
curacy in the last example. This is consistent with the definition of plus® if Int
is regarded as an infinite sum and e; + e as being defined by nested case expres-
sions. Another revealing observation is that decomposition of products effectively
approximates each projection on a product domain by the greatest approximating
projection expressible as a product of projections on the component domains; unlike
the analogous situation for backward strictness abstraction tuple™ (self® 7, selj° T)
may strictly approximate 7. Excluding those projections on products that cannot
be expressed as products of projections, and those projections on sums (other than
BOT) that do not encode staticness in all constructors, would arguably leave the
largest set of projections from which we might reasonably choose a finite subset for

implementation.

As before, abstraction of full projection domains to finite domains will be performed
in two steps. For each type T the domain SProj, will be the full domain of projec-
tions less those just described. Abstraction to finite domains requires only restricting
projections for recursively-defined types. Our particular choice of finite projection
domains will be the same as Launchbury’s [Lau91a).

For fixed type definitions D and each zero-order type T define SProj, to be
P3>[T] (PﬁgﬁwﬂD]]) with P> defined as follows.

PR[O] = |T>[O]] = |1]| = {ID},

PS[(Ty,...,T)] = {1 X ... X @ | i € P>[T;], 1 < i< n},

Psol[cl T+ ... + ¢, Tn]l
= {BOT}U{(ci &5)U...U(cp @) | ;s € P>[T;], 1 <i<n}.

Here it does not matter whether we regard Int as defined by an infinite sum or by
int Int#, but formally we take the former view since we have no theory of projections

on unpointed domains.
PSe[Int] = {BOT,ID} .

For all T the domain SProj; is a complete sublattice of Proj; containing ID and BOT

(though they may not be distinct).

For 7y € Proj; let v¥ be the greatest projection in SProj, less than vy. For every projec-
tion transformer 7 € Proj; — Projy define 7# € SProjz — SProj, by 7 a = (1 a)¥;
then 7# is less than 7 at common arguments and 7# is a safe abstraction of 7. To

get an abstract semantics FO# in SProj is simply a matter of replacing each projection

CHAPTER 5. FIRST-ORDER ANALYSIS 139

transformer | con> | appearing in the definitions of the Fo constants by its abstraction

in the new domains.

Proposition 5.25
The F# semantics safely abstracts the F(semantics, that is

(E[e] p)* T £Fe] p* .
O
Abstraction of both versions of the first-order semantics is induced in the natural way,

and the corresponding safety results hold. The results of analysis of or, sum, length,

and tl in SProj are as before.

5.3.3 Finite projection domains

For each type T we choose a finite sublattice FProj;. of SProj; suitable for exam-
ples and implementation. As before FProj, is defined by a set of deduction rules;
projection 7 is in FProj, if v fproj T can be inferred by the rules given following.

There is only one projection for ().
ID fproj () .

For product types there are all of the projections that can be expressed as products
of projections on the components.

7 fproj Ty --- 7. fproj T,

XXy, fproj (Ty,...,T,)
Sums, like products, follow the pattern of P.
BOT fproj ¢; T1+ ... +¢c, T, ,
v fproj T, .-+ ~, fproj T,
(ML ® @ (). fproj c; Ty + ... + ¢y Tn

Again the treatment of Int is consistent with either hypothetical definition.
BOT fproj Int , ID fproj Int .

For recursively-defined types we choose only those projections that act on each re-
cursive instance of a data structure of the same type in the same way. Given
A=T;(4y,...,4,), 1 <1 < n, if by assuming +; fproj A; for 1 < i< n we may
deduce Pi(vy1,...,7¥a) fProj T;(A;, ... ,A,) for 1 < i < n, then

B 1) -(PLY, 3 Y0)y - Pa(y -3 1))

CHAPTER 5. FIRST-ORDER ANALYSIS 140

is a tuple (71,...,7vn) of projections such that v; fproj A; for 1 < i < n.

Then FProj; is a sublattice of SProjr, for all T, containing BOT and ID.
Example. The abstract projection domain FProj, is {ID}; its M-basis is empty.
Example. The domain FProj,,, is { BOT, ID}; its M-basis is { BOT}.
Example. The domain FProj,, is also {BOT,ID}.

Example. For (Int,Bool) the abstract projection domain is { BOT x BOT, ID x
BOT, BOT x ID, ID x ID} with M-basis {ID x BOT, BOT x ID}.

Example. For IntList the abstract projection domain comprises BOT and two
projections SPINE BOT and SPINE ID; the N-basis is {BOT, SPINE BOT}.

Example. The elements of FProjintristrist are SPINE (SPINE ID) which is ID,
SPINE (SPINE BOT), SPINE BOT, and BOT.

Example. The elements of FProjp..110e ate BOT, BRANCH BOT, and
BRANCH ID, where

BRANCH o = py.o & (v x7), -

Then BRANCH ID is ID and BRANCH BOT acts as the identity on the branch
nodes of all trees but maps all leaves to L.

Again, abstraction of the zero- and first-order semantics to the finite projection do-

mains is in the obvious way.

5.3.4 Examples of analysis

We give some examples of analysis in F'Proj.

CHAPTER 5. FIRST-ORDER ANALYSIS 141

Example. Let or be defined as before. In FProj we may express SEL; by
AMay X ... X ay).c;. Then
orfi = choose™ (A(a x 3).a,
(intruef o mkunit™) id,
Aa x p).6),
which is determined by

BOT x ID — BOT ,
ID x BOT - BOT ,

so we have BOT x BOT — BOT and ID x ID — ID. This reveals that the result of
ors! is static if both of its arguments are static and dynamic otherwise. Note that this
result is optimal in FProj, though as shown, analysis (of the body of the definition)

in the full domain of projections is suboptimal.

Example. Let length be defined as before. Then lengthf: is the greatest fixed
point of

AT . choose™ (Aa.a, Aa.ID, 7o SEL,o OUTCONS) ,

which is determined by

BOT — BOT ,
SPINE BOT w ID ,

which is optimal.

Example. Let append denote the function that appends two integer lists.

append : (IntList,IntList) #> IntList
append (xs,ys) = case xs of
nil O -> ys
cons (z,zs) -> cons (z, append (zs,ys))

Then the generic semantics is

Az . choose (sel, z,
seh z,
incons (tuple ((sely o outcons o sely) z,

apply append (tuple ((sel o outcons o sely) =,

sely z)))))

CHAPTER 5. FIRST-ORDER ANALYSIS

Then append™ is the greatest fixed point of

AT . choosef (SEL,,
SEL,,
INCONSF® o Aa.((SEL, o OUTCONS o SEL,) a x

70 Aa.((SEL, o OUTCONS o SEL,) a

SEL, a)))
which is determined by

(SPINE ID) x (SPINE BOT) — SPINE BOT ,
(SPINE BOT) x (SPINE ID) — SPINE BOT ,
(SPINE ID) x BOT — BOT ,
BOT x (SPINE ID) — BOT ,

which is optimal.

Example. Let reversel denote the simple reverse function for lists.

reversel : IntList #> IntList
reversel xs = case xs of
nil O ~> nil ()
cons (y,ys) -> append (reversel ys,
cons (y, nil ())) .

Then reversel® is the identity, which is optimal.

142

Example. Let reverse2 denote the usual two-argument function to reverse a list.

reverse? : (IntList,IntList) #> IntList
reverse2 (xs,ys) = case ys of
nil () -> xs

cons (z,zs) -> reverse2 (cons (z,xs), zs) .

Then reverse2f is A(a x §).(a N B), which is optimal.

Example. Let concat denote the function that concatenates a list of lists.

concat : IntListList #> IntListList
concat xss = case xss of
1nil O -> nil ()
lcons (ys,yss) -> append (ys, concat yss) .

Then concat™ maps BOT to BOT and SPINE « to a, which is optimal.

Recall the definition of dfs.

CHAPTER 5. FIRST-ORDER ANALYSIS 143

dfs : BoolTree #> Bool
dfs t = case t of
leaf O ->Db

branch (1,r) -> or (dfs 1, dfs r) .

Then dfs" is the least function, which is optimal.

Let countleaves denote the function that returns the number of leaves in trees of
type BoolTree.

countleaves : BoolTree #> Int
countleaves t = case t of
leaf () -> 1
branch (1,r) -> countleaves 1 + countleaves r .

Then countleaves™ maps BRANCH BOT to ID and BOT to BOT, which is optimal.

5.4 Termination Analysis

Recall that the nominal goal of termination analysis is, given f, to determine as small
7 as possible such that (7 §) o fy 3 f) o4 for all §; in terms of (zero-order) expression
semantics, given e, to determine 7 such that (7 &) o £50[e] 3 5[e] 0 4 for all 6.
The development of the zero-order forward termination semantics Lg is parallel to that
for the By semantics; the starting point is the N, o semantics. Since a lifted function is
not in general determined by any single FTA, least FTAs are not guaranteed to exist,
and abstract composition does not preserve leastness, the first-order L; semantics will
not yield least FTAs or determine the S; semantics. The Ly and L; semantics are the

same as that described in [Dav94].

The type predicate between values g and 7 in the N o and Ly semantics requires that
7 be a FTA of ¢, so

RNwL[T] (9,7) = V8. (1 6)ogdgoéd.

Hence we require that if p' is a FTA of pMo then L[e] ple be a FTA of £ Nio[e] pNeo
and hence of £5:°[e] o pNio; in particular, when pNio is the identity its least FTA is
the identity Ae.a, and €[e] (Aa.a) will be a FTA of £3¢[e].

All FTAs of lifted functions will be strict, and are necessarily bottom-reflecting; we
will use A to facilitate their definition and 8 to construct the projection transformer
domains. Here Projy is | T T]].

Let Ey be the type of global environments. Then
Tr[T] = Projg, & Proj, .

CHAPTER 5. FIRST-ORDER ANALYSIS 144

For e:T with environment type E we have £°[e] € T[E] — Tt[T], that is
Efe] € (Proje,, X Projg) — (Projg, 8 Projq) ,
again, a function from projection transformers to projection transformers.

Recall that each N, constant con™Mto is defined by

con™o (g,...,9.) = (con®2) 0 {gr,...,0n)) -

If 7; is a (least with respect to smash projections) FTA of g; for 1 < i < n then
Aa.((r1 @) ®...® (1, @) is a (least with respect to smash projections) FTA of
{g1,---,9a)), and abstract composition is ordinary composition (and preserves least-

ness with respect to smash projections). Hence each Ly constant is defined by
conte (1q,...,7.) = |[(con®),, |0 Xa.((11 @) ®...® (1. @)) ,

where in the context of forward termination analysis | f | is the least FTA of f. De-

tailed definitions of the constants are given following.

For v € V|, v# L, and v finite, and given domain U, define the characteristic
projection transformer (for forward termination abstraction) ACCEPT, to be the
least FTA of the lifted constant function Az.v € U} L V., defined by

ACCEPT, € |U.| B | V.|,

ACCEPT, = dayy -
Then ACCEPT, is the projection transformer that maps projections other than

BOT, to the projection v, that specifies termination with value v, and ACCEPT,
determines v. The least FTA of mkunit>o = \p.lift () is ACCEPTy, (), so

mkunit"® 7 = ACCEPTy, (o7
= (Aa.BOT,)o7.

For integer constants,

mkint® T = ACCEPT,, ;0T

= (Aa.N;) o7 .

The other unary constants are defined similarly. The least FTA of sel,-s“’ is

|sel?*] € [(T)L®...® (Tu| 3 |(Tl,

]selisl°| a = [{i|1®...Qa, Ja}.
The least FTA of inc*® is C;. The least FTA of out?e is

lout? | € [(T)L®...® (T 3 [(T).],

|outis*°| (alea...@an); a; .

CHAPTER 5. FIRST-ORDER ANALYSIS 145

Since (tupleN?),, is the identity we have
tuple*® (1y,...,7) = da.(n @) ®...® (1, a) .

We use a variant of the case function in which the guards are of the form Uq, and
the result of the function is the lub of all of the instances of all of the branches for
which the pattern a approximates the selector. The least FTA of (plus™) .+ is then

Aa . case a of
LU(ABS ® 8) — ABS
U(g ® ABS) - ABS
U(N; @ N;) — Niyj,
S0
pluste (11,7) = da . case (11 @) ® (12 @) of
U(ABS®) — ABS
U(8 ® ABS) — ABS
U(N; @ N;) — Niyj .
The least FTA of (choose), is

Aa . case o of
UW(BOT, Qa1 ®...8 a,) = BOT,
U((C /)@ ®...0 a,) = a; .
Intuitively, if the selector in a case expression may fail to terminate, so may the

result, otherwise termination is determined by all patterns that can match. We have
choose' (19,...,7,)
= da.case (10 @) ®...Q (1, @) of
UWBOT, ® 1 ®...®a,) - BOT,
U(C: B)®au®...0 ar) = a5 .

Again it is straightforward to derive the definition of plus‘® from the definition of
choose'°.

Proposition 5.26

The Ny and L, semantics are correctly related. More, if p'° is a FTA of pNwo that
is least with respect to smash projections then £[e] p'° is a FTA of ENto[e] pNeo
that is least with respect to smash projections. O

Example. Let x:Int be a variable with corresponding type E of environments equal
to Int. The expression to be analysed is x + 1. Let p‘¢ be the identity function
Aa.a, the least FTA of the identity, so that p'°[x] = Aa.a. Let the projection

CHAPTER 5. FIRST-ORDER ANALYSIS 146

OKs € |T>[Int]| for S CZ be defined by OKg = |l;cs Ni, so OKg specifies
termination with some value in S. Then £[x + 1] p'° maps OKg to OK(it1 | ies};
in particular it maps N; to N;4; for all 1 € Z, ABS to ABS, STR (which is OKz) to
STR, and ID to ID.

Example. Let the environment p' be as in the last example. Then

E%[cons (1, cons (x, nil ()))] p‘
= Aa.CONS (N, @ CONS (a ® NIL)) .
This shows that with the possible exception of the second element the entire structure

of the list is guaranteed to terminate, the first element with value 1; the second element

has the termination properties of x.

5.4.1 Abstraction

Abstraction to SProj or FProj is the same as for backward strictness analysis except
that the projection transformer domains are constructed using X instead of 3. We

consider two examples in FProj.

Example. Repeating the last example gives
EY%[cons (1, cons (x, nil ()))] p~ = Aa.FIN (aUSTR) .

This shows that the spine of the list terminates, and all of the elements terminate if

x does.

Example. Let b:Bool, x:Int, and y:Int be variables with corresponding type E
of environments equal to (Bool,Int,Int) with the values of b, x, and y in the first,
second, and third positions, respectively. Let e stand for the expression

case b of
true () -> x
false) >y .

Let pto be the identity function Aa.c, the least FTA of the identity. Then
p[b] = Aaw ® a2 ® ay).n
polx] = Mo ® & ® 0y).az
ply] = M@ ® ay).ay .

CHAPTER 5. FIRST-ORDER ANALYSIS 147

Then
Eole] po = Ao ® ax ® @) . case ay, of
UABS — ABS
UTRUE — o
UFALSE = oy .

This reveals, for example, that for x and y with termination properties o, and oy
respectively, if b is certain to terminate with value true then the termination property
of the whole expression is a,; if b is certain to not terminate then the whole expression
is certain not to terminate; and if b is certain to terminate (with an unknown value)
then the termination property of the whole expression includes the possibilities for
both x and y.

5.4.2 First-order analysis

For first-order analysis we may abstract either the N;; or N, semantics. Since the
latter yields a specialisation of the higher-order analysis developed in Chapter 6 and

we have no examples to contrast the two approaches we consider only the former.

The value denoted by a function symbol £ in the first-order forward termination
semantics L; semantics is to be a FTA of the value it denotes in the S;; and Ny,

semantics. The L; semantics of first-order types is then
TH[T, #> T,] = Projq, LY Proj,, .

The required relation between values ¢ and 7 in the N;; and L; semantics is that 7
be a FTA of g, so

RNLbLT) #> To] (9,7) = V6. (1 8)ogTdgod.

Thus, if ¢Nt* and ¢'* are function environments such that ¢*1[£] is a FTA of pNt1[£]
for each £, and p'o is a FTA of pNio, we require that £1[e] ¢ p‘ be a FTA of
(ENu[e] ¢N1) pNio and therefore of (£5+1[e] ¢Nit) o pNo. In particular, when pNeo
is the identity on variable environments, its least FTA is the identity Aa.a, and
Ehfe] ¢4 (Ma.a) must be a FTA of £511]e] ¢Na1.

Application in L, is abstract (ordinary) composition:
apply* T 9 = T 0Ty .
Then applyN:t and apply"r are correctly related.

Proposition 5.27

The semantic functions EN* and EY are correctly related. Further, if ¢Ntt and ¢l

CHAPTER 5. FIRST-ORDER ANALYSIS 148

are function environments such that ¢N+1[£] is a FTA of ¢*[£] that is least with
respect to smash projections for each £, and p*° is a FTA of pMo that is least with
respect to smash projections, then £ e] ¢\t p'o is a FTA of (E541[e] ¢N+1) o pMio
that is least with respect to smash projections. O

Next we give the L; semantics of a set of first-order function definitions. This is not

as straightforward as for the other semantics.

Let function definitions F be fixed and let ¢2’“, i > 0 be the approximations of the
function environment ¢N:1 given by the N,; semantics. Then ¢3‘“[[f]| = Az.lift L
for each £ with least FTA Aa.BOT], so we define the initial approximation of the L,
function environment by ¢*[£] = Aa. BOT, for all £, which is least with respect to
smash projections. Now Aa.a is the least FTA of id, and we define the function F
from function environments to function environments by
F ¢ = (E1]e1] ¢ (Qa.a), ..., E1[e,] ¢ (Aa.)) ,

and define ¢;* = F ¢§' for i > 0. By Proposition 5.27 and induction ¢;* is correctly
related to ,',-\'“ for all 4, and is least with respect to smash projections. The prob-
lem is that the sequence {¢:'} is not guaranteed to be monotonically increasing (or
decreasing) so we cannot give a straightforward fixed-point semantics for E;;fm. We

give some examples. Consider

one : () #> Int
one) =1,

Let one!“ denote the i** value of function one in the sequence. Then
oney' = Aa.ABS |
o= MMV, fori>1.

Though the sequence is not increasing a fixed point is reached after one step. Next

one

consider the simultaneous definitions

fa : () #> IntList
fa () = cons (1, fb)

fb : () #> IntList
fb () = cons (1, fc)

fc : () #> IntList
fc O =nil O .

Then
fa§* = Ma.ABS |
faf' = Aa.CONS (N, ® ABS) ,
fay' = Aa.CONS (N, ® (CONS (N, ® ABS))) ,
fas' = M\a.CONS (N, ® (CONS (N, ® NIL))), fori>3.

CHAPTER 5. FIRST-ORDER ANALYSIS 149

So a fixed point is eventually reached. Next consider the constant function that
returns the infinite list of ones.

ones : () #> IntlList

ones () = cons (1, ones ()) .
We have
ones! = Aa.ABS
onesi® = Ma.CONS (N, ® ABS) ,
onesy’ = Aa.CONS (N, ® (CONS (N, ® ABS))) ,

and generally
onesi' = Aa.(A\3.CONS(N;, (§))* ABS, i >0.
Every approximation is incomparable to every other and a fixed point is never reached.

Finally, consider the function zero that returns zero for non-positive arguments,

zero X = case (x = 0) of
true O >0
false () -> zero (x + 1) .

Then

zerog* = Aa.BOT,
zeroiL_h = choose'® (19, Aa.Ny, zeroiLl om),

where 79 and 7 have the guard property, 7 maps Ny to TRUE and maps N; for ¢ # 0
to FALSE, and 7, maps N; to N;4; for all i. Then zev"oiL1 has the guard property and
maps N_; to Ny for 0 < j < %, and to ABS otherwise. Again every approximation is
incomparable to every other and a fixed point is never reached.

We give two closely related approaches to solving this problem using widening and
narrowing [CC91]. Recall that over-approximation is safe, and the domains of pro-

jection transformers are complete lattices so lubs always exist. If we define ¢}’ by

L L
0ll — ¢01

b
L L L .
¢ii1’ = ¢ U ¢it1, fori >1,

then the ¢5*' form an increasing sequence, each ¢}’ is a safe approximation of ¢\,
and by inclusivity their limit is correctly related to ¢™+1. Here the widening operator
is L.4

“In the full projection domains our widening operator does not fully conform with the Cousots’
definition because it does not guarantee convergence in a finite number of steps, but it does when
working with the finite projection domains.

CHAPTER 5. FIRST-ORDER ANALYSIS 150

Repeating the examples we have
onelr = Ma.ABSUN; ,
fa'' = Xa.ABS U CONS (N, ® (ABSU(CONS (N, ® (ABS U NIL))))) ,
onestt = Ma.ABSU INF N,

and zero" has the guard property, maps projections below |J;>; N; other than FAIL
to ABS and all other eager projections other than FAIL to ID. In no case is absolute
termination determined, though for fa and ones head termination is determined.

We could leave it at this, but following [CC91] we use the widening operator to define

a new function wF' that has the desired fixed point and safely approximates F':

wF ¢ = ¢U(F @) .
Now wF is greater than the identity so {wF* ¢ | i > 0} is increasing for all ¢. We
define €3, by

EqimalF1 = Liso wF* 65 .
In general this gives a greater (worse) result than the last solution, but gives the same
results for the examples given. The advantage is that it allows an easy improvement
of the result. Let ¢! be the least fixed point of wF greater than ¢5‘ , 50 ¢! is correctly
related to ¢Nt1. Then {F? ¢! | i > 0} is a decreasing sequence, every element of which
is correctly related to ¢"N+1. (This is narrowing; here the narrowing operator is the
identity.) When the depth of the projection transformer domain is finite the sequence
must reach a fixed point in a finite number of steps. We consider the examples again,
first in the full projection domains. Let F comprise the given definitions of one, fa,
b, fc, ones, and zero. Now let @5 be St';;fns[F]] and d’:’-lu be F ¢; for i > 0, so
the ¢! form a decreasing sequence. Finally, let one,-L‘ be qﬁiLl[[one]I for 7+ > 0, and
similarly for the other functions. Then

one(',“ =v Aa.ABS U N, ,

onel-'1 = da.Nj, fori2>1.
Here the optimal solution is reached in one extra step. For fa,

fay* = Aa.ABS U CONS (N; ® (ABS U (CONS (N, ® (ABS U NIL))))) ,
far* = X\a.CONS (N; ® (ABS U (CONS (N, ® (ABS U NIL))))) ,
fai' = A\a.CONS (N; ® (CONS (N; ® (ABS U NIL)))) ,
fai* = XAa.CONS (N; ® (CONS (N, ® NIL))), for i >3 .
So the optimal answer is reached in three extra steps. For ones,
onesy! = Aa.ABS U (INF N) ,
ones;’ = Aa.CONS (N, ® (ABS U (INF N,))) ,
onesi' = Aa.CONS (N, ® (CONS (N, ® ABS))) ,

CHAPTER 5. FIRST-ORDER ANALYSIS 151

and generally
onest = Ma.(A3.CONS(Ny, B))* (ABS U (INF Ny)), i >0,

so we can determine that any finite prefix of ones () terminates. We can determine

that zero terminates for any given non-positive argument.

Repeating the examples in FProj we get

onel' = da.N;

fa = Ma.FIN STR,
ones'' = \a.INF STR .

Function zero'' has the guard property and maps STR to ID; all four results are

optimal.

Though the first approach gives a better widened result ¢*/ than the second, there is
no guarantee that the sequence { F* ¢'*' | i > 0} is decreasing, though every element

of the sequence will be correctly related to ¢Ni1,

When working in FProj we define
Eimsl F1 = [Tizo F* (Uizo wF* 65') .
Proposition 5.28

The N;; and L; semantics are correctly related. O

We give more examples in FProj.

Example. Define the identity on lists by

listid : IntList #> IntList
listid xs8 = case xs of
nil O -> nil O
cons (y,ys) -> cons (y, listid ys) .

Then
listid“ = Ao . case o of
LUABS — ABS
UNIL — NIL

LI(CONS (v,6)) = CONS (v, listid“ 6)
Then listid“! has the guard property and is determined by

FIN a —» FINF a,
INF o — INF a,

for o in FProj,,.

CHAPTER 5. FIRST-ORDER ANALYSIS 152

Example. Let append be defined as before, then

append“
= A oxs ® ays) . case axg Of
UABS — ABS
UNIL — oy

U(CONS (a, ® azs))
— CONS (a, ® (append™ (azs ® ays))) -

Then append-* has the guard property, maps NIL ® § to (3 for all 3, for a # FAIL

maps arguments as follows:

((FIN o) ® (FIN B)) — FINF (aUB),
((FIN @) ® (INF B)) + FINF (aUPp),
((INF o) ® (FIN §)) = FINF (aUp),
((INF o) ® (INF B)) ~ INF (aUpB),

for lazy first argument,
(ABSUay) ® B) = ABS U append"* (oy ® B) .
and for all other arguments

(¢ ® (ABSUBy)) — append“ (@@ fy) .

Example. Let reversel be defined as befqre, then reversel'* has the guard prop-
erty, hence is determined by

reversel't (FIN o) = FINF a ,
reversel** (INF a) = INF « .

We conclude with some informal observations. When working in the full projection
domains, analysis will reveal termination of a function only when it occurs in a number
of steps bounded by some constant (in addition to how much evaluation might be
required to evaluate the arguments). Thus we can determine that one () terminates
and that the entire structure of fa () terminates, that any finite prefix of ones ()
terminates, and that zero terminates for any given non-positive argument, but not
that it terminates for all non-positive arguments—the latter requires an inductive
proof. In FProj, very roughly, this is further restricted to values that are not built
up using recursion and do not depend on the particular values of integers. We believe
that for an implementation this is exactly the information we would want to use: we

do not want early evaluation of the entire spine of a list knowing only that it is finite,

CHAPTER 5. FIRST-ORDER ANALYSIS 153

or to eagerly evaluate zero -10000000; the very limitations of the technique appear

to obviate the need for operation count analysis.

We conjecture that in FProj the sequence {F* ¢§* | « > 0}, though not increasing,
does reach a fixed point, that is, does not cycle—if so, the result could only be
better than by the method given. The following is an informal argument for why
this should be so. Suppose that for the purpose of comparing the results of successive
iterations that the relative ordering of eager and lazy projections in the result domains
of projection transformers is reversed, then the results of successive iterations will be
increasing: intuitively, better approximations of functions fail to terminate with a
decreasing subset of the argument domain and have an increasing subset of the result

domain as possible results.

5.5 Summary and Related Work

We have given non-standard interpretations for projection-based strictness, binding-
time, and termination analysis of a simple first-order non-strict monomorphic func-

tional language. Following we consider each in the context of related work in the
field.

Strictness analysis. We have reformulated an analog of Wadler and Hughes’ anal-
ysis technique [WH87] and shown that before abstracting the projection domains our
technique gives the best possible results. We have implemented a prototype strictness
analyser using the second approach to first-order analysis [Dav89].

We have shown that it is possible to uniquely encode abstract values in the BHA
framework for strictness analysis as projections, and we have shown that some of
these properties (e.g. head-and-tail strictness) can be determined by program analysis.
At first order with flat domains Neuberger and Mishra [NM92] show that projection-
based backward strictness analysis, when restricted to the projections ID, ABS, STR,
and BOT, is as strong as Mycroft’s analysis. A more general question is whether for
any choice of finite abstract domains there is a finite abstract projection domain
such that our technique always gives as informative results as BHA analysis; we
suspect that this is true, and that the results regarding leastness with respect to

smash projections would be useful in proving such an assertion.

Hughes and Launchbury [HL92a] have generalised Wadler and Hughes’ approach to

polymorphic first-order languages using polymorphic projections with only a slight

CHAPTER 5. FIRST-ORDER ANALYSIS 154

loss in accuracy. Kubiak [KHL92] has implemented, as part of the Haskell compiler,
their technique for a first-order subset of the Haskell Core language.

Hughes argued [Hug87a, Hug87b] that backward strictness analysis is intrinsically
more efficient than forward analysis because it only considers independent strictness—
strictness in individual arguments—and therefore cannot capture relational, or joint,
strictness in two or more arguments. This is in fact an artefact of his and Wadler’s
analysis techniques; we have shown [DW90] that BHA-style strictness analysis can

also be ‘un-relationalised’ to get more efficient but less accurate analysis techniques.

Binding-time analysis. Our first approach to first-order analysis is essentially a
reformulation of Launchbury’s monomorphic technique [Lau9la]. Launchbury also
gave a polymorphic generalisation of the technique and an implementation of each as
part of a partial evaluator. The generalisation to polymorphism, again using polymor-
phic projections, is based on essentially the same theory as Hughes and Launchbury’s

strictness analysis technique.

Termination analysis. Ours is the first projection-based termination analysis
technique. It is interesting because it can detect such properties as head termination,
which, to be best of our knowledge, has not been captured by any other technique. It
would be worthwhile to determine whether this technique can be generalised to poly-

morphism in the same way as are the strictness and binding-time analysis techniques.

Again there is the question of whether any information that can be determined in
the BHA framework can always be captured by our technique; again, we suspect that
this is true.

5.6 Higher order?

This section gives very informal and intuitive indications of why the first-order tech-
niques don’t generalise directly to higher order, and the key to higher-order general-
isation. The higher-order techniques are properly developed in Chapter 6. Since the
problems and their solutions are essentially the same for all of the analysis techniques
we use binding-time analysis as the example since it involves simpler domains.

The problem boils down to finding a compositional semantics. Consider the expression
(app# (\#x.b) 1) where x:Int, b:Bool, and the environment has a single entry for
b and is therefore of type Bool. Let Bool be T>[Bool]. If the abstract value of an

CHAPTER 5. FIRST-ORDER ANALYSIS 155

expression e is to be a FSA of £5[e], then the abstract values of (\#x.b) and 1 will
come from domains | Bool | 5 | Int — Bool| and | Bool| 5 | Int |, respectively. We
expect the non-standard semantics to be compositional and so require a function apply
that takes a value from each of these domains and returns a value from | Bool| 5
| Int|. There seems no obvious way to get the desired result. Our first working
premise is that at higher order, forward-strictness abstraction of £3[e] is the wrong

abstraction.

A key observation is that evaluation is never performed inside a lambda body—
lambda expressions \#x.e cannot be evaluated, only applied. For example, for the
simple data structure lam (\#x.b), evaluation can only proceed as far as WHNF,
and there are only two distinguishable degrees of staticness. The projection domain
| (Int — Bool), | is vastly richer than necessary to specify two degrees of staticness—
the projections ID and BOT are sufficient. Denotationally, evaluation to WHNF
corresponds to determination of the outermost lifting, which may be represented in
the domain 1, ; the two distinct projectionson 1, are ID and BOT. When values from
(Int — Bool), are to be applied, they are first dropped to yield a value in Int — Bool,
effectively ignoring the lifting. This suggests factorising the domain (Int — Bool),
into 1, and Int — Bool; more generally, factorising domains into two parts: one to
encode the evaluable, or data parts of values, and the other to encode the unevaluable

but applicable, or forward parts of values.

There is an embedding of (Int — Bool), into 1; x (Int — Bool), defined by
emb L =(L,1),
emb (lift f) = (lift (), f) ,

and hence an embedding of Bool — (Int — Bool), into Bool = (1, X (Int — Bool));

the latter domain is isomorphic to
(Bool = 1,) x (Bool — (Int — Bool)) .

Under the implied embedding and isomorphism the value £5[lam \#x.b] becomes
(Ap.lift (), Ap.dz.p[b]). We claim that it is a FSA of Ap.lift () that we want; for
example, its greatest FSA is Aa.ID which indicates that the result is static regardless

of the staticness of the environment.

There is a further complication that the environment may contain higher-order values;
looking ahead, our point of view is that staticness is an attribute of the data part of
a value, so the goal is to determine how the staticness of the data part of £5[e] p
depends on the staticness of the data part of p. For strictness analysis we seek to

determine how demand on the data part of £5[e] p is propagated to demand on the

CHAPTER 5. FIRST-ORDER ANALYSIS 156

data part of p; for termination analysis, how the termination properties of the data
part of p affect the termination properties of the data part of £5[e] p. Our second
working premise is that a factorisation of standard domains into data and forward

domains is in order, and that we are only interested in projections on data domains.

Chapter 6

Higher-Order Analysis

The higher-order analysis techniques are developed as follows. First we define the
factorisation of standard domains, the embedding of standard domains into factored
domains, and the projection back into the standard domains. To clearly separate the
roles of the data and forward parts of values in the standard semantics, we define a
factored semantics D such that the standard expression semantics £° is the homomor-
phic image of £° under the projection from factored domains onto standard domains.
Except for the constant fix the D semantics is defined in terms of the Sy semantics in
such a way that obtaining the higher-order intermediate and analysis semantics—the
higher-order analogs of the Ny, N,o, By, Fp, and Ly semantics—amounts to replac-
ing the Sg entities by their Ng, Nyg, By, Fo, and Ly counterparts, respectively. More
precisely, we define semantics that are parameterised by the zero-order entities and a

constant fiz.

6.1 Domain factorisation

Given type T with corresponding domain 7' in the standard semantics, we wish to
factor each value in T into its data and forward parts. To this end we define for
each T a data domain D and forward domain F, and functions data; € T — D and
funy € T — F to isolate the data and forward parts of values, respectively. The
data domain D is constructed just like T except that the one-point domain 1 replaces
function spaces, and the function datar is a projection that, roughly speaking, discards
function components of data structures by mapping them into 1, and leaves everything
else unchanged. The forward domain F' carries the information discarded by datar.
The factorisation function fac; = {datar, fun;) € T — (D X F) is an embedding with
corresponding projection unfacy, and D X F is therefore a factorisation of 7.

157

CHAPTER 6. HIGHER-ORDER ANALYSIS 158

Recall that the zero-order type semantics 7, for all G (more precisely, for G ranging
over the symbols S, S;, N, Ny, B, F, and L) are defined only for integer, sum, and
product types. They are extended to function types by

To[T, #> To] = T[O].

The predicates R are similarly extended: REM[T, #> T,] is defined to be
RCoMo[()] for all combinations of G and H for which R®" was defined.

To avoid a name clash later we will henceforth use Dy as a replacement for the symbol
So (and Dy as a replacement for S;). The function 72 (formerly 7°) maps.types
to standard data domains; TP° is exactly the same as 7> except that function spaces
are replaced by 1, so for zero-order types T the data domain 7P°[T] is the same as
the standard domain 7°[T]. For function type T; -> Ty the standard domain is the
lifted function space (7°[T1] = 7°[T2]). but the data domain comprises just the
outer lifting: it is 1, . Further examples are given in Figure 6.1.

Given type definitions D we define datar to be DATA[T] (DATA,,,[D]), where
DATA 4.4, is defined in terms of DATA, and DATA[T] is defined compositionally in

terms of the structure of T. For domain environment ¢* and function environment 7
such that

’7[[“]] € gsl[A]] - defnsl[D]”[A]
for each type name A, the functionality of DATA is such that
DATA[T] n € T°[T]1 ¢ - T™[T] (Tep.[PD)

for each type T. The function DATA is defined following; it is just like the identity
except that values from function spaces are mapped into 1.

DATA[A] n = n[A],
DATA[Int] n = idp, ,
DATA[(Ty,...,Ta)] n = (DATA[T:] n) x ... x (DATA[T.] n),

DATA[c; Ty + ... + cu Ta] 7
= (DATA[T\]n). ® ... ® (DATA[T.] n).

DATA[T, #> T2] n = Az.() .

Here DATA[)] n = Az.L. Given type definitionsD = A; = Ty; ...; A, = T,, define
m = (Mp.[Aiw DATA[T;] n | 1<i<n]) n,

CHAPTER 6. HIGHER-ORDER ANALYSIS

159

Bool = true () + false ()
TS[Bool] = L, &1,
TP[Bool] = 1, &1,
TP[Bool] = 1x1

datageey = id

fungor = Az.((), ()

IntList = nil () + cons (Int, IntList)
T>[IntList] = pX.1, & (Int x X);
TPo[IntList] = uX.1, ® (Int x X),.
TP[IntList] = pX1x(1xX) =1
datarnerise = id

funingriee = /\.’L‘((),((),((),))) = Az.L

FunChoice = left (Int -> Int) + right (Int -> Int)
T°[FunChoice] = (Int — Int), & (Int — Int);,
TP°[FunChoice] = 1, &1,
T;°[FunChoice] = ((Int x 1) = (Int x 1)) x ((Int x 1) = (Int x 1))
datapynchoice = AZ.case T of

1L - 1

(i, bLft L) — (3, Uft ()

(5, Uf* f) = (4, Lft* ())
funpuncnoice = AZT-(Av.(v,()) o (outy z) o A(v,u).v,

Av.(v,()) o (outp z))

FunList = fnil () + fcons (Int -> Int, Funlist)
TS[FunList] = pX.1, & ((Int = Int), x X),

TPo[FunList] = pX.1, & (1. x X),

TP[FunList] = pX.1x (((Int x 1) = (Int x 1)) X X)

datorurisy = pf.(A2.()L © ((Az.()L x flL

Junpgrsee = B AT((), (funtpne-s1ae © T1 0 0Uty) T, (f 0 73 0 0ULy) 7))

Figure 6.1: Examples of domain factorisation.

CHAPTER 6. HIGHER-ORDER ANALYSIS 160

where
m = [A: = DATA[O][]|1<i<n].

Let data; = n,[A] for any A. Then data; € ¢F[A] = T22,[D][A], where (F[A]
is the i** canonical approximating domain for 73, [D][A]. Also, data; = (¢7 —
id) data;; where ¢} is the canonical embedding from (?[A] to ¢2,,[A], so the data;
constitute the family of approximations of (and therefore define) DATA,,., [D][A].

We give some examples. For all zero-order types T the projection datar is the identity.
For type T; -> T, we have

datar,->t, L =1,

datar,->t, (lift f) = lift () .

The projection datagu,pist preserves the spine of its list argument and the lifting of
the list elements, and discards the rest, so

datapunrssy (Wft f 2 L 2 Uft L : []) = e () - L - Lt () « [],
where f is any unary function on Int. Further examples are given in Figure 6.1.

The next question is how to represent the forward part of a value. Certainly a value
itself contains its forward information, but our goal is for the designated forward
part to contain exactly that part of the original information missing from the data
part. A complement of a projection 7 is any projection ¥ such that yU% = ID,
and if v, ¥ € | U| then (v,%) is an embedding of U into v(U) X 7(U). In other
words, any information removed by a projection is retained by its complement. Not
every projection has a least complement—one that retains as little information as
possible—but it turns out that those of the form datar do. Unfortunately, even least
complements may retain redundant information. Here the problem arises when the

defining type T is a sum of types containing function types. To be concrete, recall
FunChoice = left (Int -> Int) + right (Int -> Int) , |
so
T°[FunChoice] = (Int — Int),, @ (Int — Int), ,
and
datapencnoice(T>[FunChoice]) = L, 81 ,

datapunchoice(T [FunChoice]) = (Int — Int) ® (Int — Int) .

Both datapunchoice v and dat@runcnoice ¥ may contain information about which sum-
mand v belongs to, for example if v = inl (lift> (=)), where (—) is unary negation on
Int, then datapuncpoice v = inl (lift? (), and datapumcnoice v = inl (=).

I

CHAPTER 6. HIGHER-ORDER ANALYSIS 161

Another possibility is dependent sum decomposition (as described by Launchbury
[Lau90b, Lau9la]). In brief, if T = T5[T] then

T 3" (datar)™'{v} .

v € datat(T)

1R

Elements of the dependent sum are pairs, where the value v € datar(T) of the first
component of a pair dictates the domain (data-l-)_1 {v} from which the second compo-
nent comes. This will not serve our purposes because (roughly speaking) we will need
to be able to manipulate the data and forward components independently, which will
require knowing from what domain the second component comes without knowing
the value of the first.

The mapping fun; of values to their function parts will be the least complement
of datar followed by an embedding. The embedding maps sums 71 & ... & T, into
products 7 X ... x T, and for convenience of presentation, function spaces 77 —
T5 to spaces of function from factored values to factored values, that is, to (D; X
Fy) = (Dy x F5) where D; x Fy and Dy X Fy are the factorisations of Ty and T,

respectively. (Intuitively, mapping sums into products discards the information about

which summands injected values belong to.)

At this point we define a type semantics parameterised by a zero-order type semantics.
Given zero-order type semantics 7% and type definitions D, define 7© by

TOITI ¢ = (T[T] (T [DD) x (TE[T1),
where 7€ is defined by
Te[Int] = 1,
TE[(Ty, ..., T] = T[] x ... x TE[T.],
TeleiTi+ ...+ cn To] = TE[Ti] x ... x TE[T.],
TE[TL #> To] = TC[T] —» TO[T.].
Here 75, is defined in terms of 7, (as T3, is defined in terms of 7).

Now for T' = T°[T], the factors D and F of T are 7°°[T] and TL[T] respectively;
TP[T] is the the standard forward domain at type T. Note that TP[T, #> T2] is a
domain of functions from factored values to factored values, not forward values to
forward values. For all zero-order types T the domain 7;°[T] is isomorphic to 1.
For type T; -> Ty the standard domain is (7°[T;] = 7°[T2]).; the forward domain
lacks the lifting, it is 7°[T;] = T°[To]. Further examples are given in Figure 6.1.

CHAPTER 6. HIGHER-ORDER ANALYSIS 162

The definitions of fun, and unfac; are interdependent and so are taken to be simul-
taneous. Given type definitions D the function fun, is defined to be FUN[T] m, and
the unfactorisation function unfac; is UNFAC[T] np, where np is determined by its
family of approximations {7;} defined by

n: = (M.[A; = (FUN[T;] n, UNFAC[T:] n) _| 1<i<n])n,
where
no = [A;+— (FUN[O] (], UNFAC[O][D)]1<i<n].

Here function environments map type names to pairs of functions, so FUN[A] n =
71 (n[A]) and UNFAC[A] n = w2 (n[A]). Just as for other semantic functions we
abbreviate by omitting the environment parameter. Then

FUN[T] € T5[1] - TP[T],

FUN[Int] = Xz.(),

FUN[(Ty,...,T.)] = FUN[T;] x ... x FUN[T.],

FUN[c; Ti+ ... +¢, T,] L
FUN[[Cl T,+ ... + ¢, Tn] (Z, lift ’U)

(L,...,L, L, 1,...,1)
(L,...,L, FUN[T;] v, L,...,1)
[FUN[T;] v in the i** position] ,

FUN|[T, #> To] = UNFAC[T,] — (datar,, FUN[T,]) ,
and
UNFAC[T] € T°[T] —» T°[T],

UNFAC[Int] (z,() = =

)

UNFACI[(Tl,,Tn)]] ((dl,...,dn), (fl,,fn)) = ('l)l,...,’ljn)
where
v = UNFAC'[T,]I (di,ﬁ), 1 < i S n,

UNFAC[c; Ty + ... + ¢, T,] (L, (fi,---,fu) = L,
UNFAC[ci Ty + ... *+ ¢, T.] ((¢, lft d), (fi,--,fa)) = (i, Lft v)
where

v = UNFAC[T;] (d,f) ,

UNFAC[T, #> 1] ((),f) = ({dataz,, FUN[T;]) — UNFAC[T.]) f .

CHAPTER 6. HIGHER-ORDER ANALYSIS 163

Proposition 6.1
For all type definitions D and types T the pair

((DATA[T] (DATA,,,,[D]), FUN[T] m), UNFAC[T] m)

is a retraction pair.

Sketch Proof
For each A with (fun;, unfac;) = n;[A], and data; the i* canonical approximation of
data,, we have (by induction on i, with inner induction on the structure of types)

that fac; = (data;, fun;) and unfac; form a retraction pair, with

(faci, unfac;) € GIA] ¢ (TapIDIAT x CPLAD),

where ¢? and (P are the " canonical approximations of mfw[[D]] and 7:12fn.s|ID]]’
respectively. The fac; and unfac; form families of approximations. We have fun; =
(7 — ¢P) fun,,,, where ¢; is the canonical embedding of {?[A] into (3, ,[A], and 4P
is the canonical projection from (2 [A] to (P[A], so fac; = (¢7 — (¥2° x¥P)) fac;,4,
where 97° is the canonical projection from (2% [A] to (?°[A]. The details for unfac;
are similar. Finally, we claim that fac; and unfac; form a retraction pair for all T. The
key fact required is that if {(f;,9:) € U; & V; | i > 0} is a family of approximations
of (f,g), and each (f;, g;) is a retraction pair, then so is their limit. By induction on
the structure of types we have that ((DATA[T] [], FUN[T] []), UNFAC[T][]) is
a retraction pair for all closed T. Since the initial approximations of these functions
at recursive types is the interpretation of the unit type, and the substitution lemma

holds for all three semantic functions, each approximation data;, fun;, and unfac; can
be expressed as DATA[T’] [], FUN[T’] [], and UNFAC[T’] [] for some T, hence
the result. O

We give some examples. For any zero-order type T the forward domain is isomor-
phic to 1 and fun; is equal to Az.Ll. For any function type T; -> Ty the standard
domain is (T°[Ty] = T°[T2]). and funy sy, is funq, gr, 0 drop; function funy, gy, is
an embedding of functions from standard values to standard values to functions from
factored values to factored values. Further examples are given in Figure 6.1. Note

that sum types become products, so for FunList we have, for example,
fungosee (Gft (=) ¢ UGft L @ Uft (=) - [
= ((), (funiaeertns (=),
(0, (L,
(0 (fun testae (=),
(0, (L,

(
L) -

CHAPTER 6. HIGHER-ORDER ANALYSIS 164

For unfac; we have for example unfac, ((),()) = (), unfacy,5g, (L, f) = L forall f,
and unfacy oy, (lift (), f) = lift (unfacy, o f o facy,).

The projection unfac, acts like the identity on the data part of its argument and as a
projection on the forward part, since for all data values d and forward values f with

(d, f') = facy (unfac; (d, f)) we have d = d' and f' C f.

6.1.1 Data dependency

Given expression e:T with environment type E, consider the equation

(d.f') = (facTof,'S[[e]o unfacg) (d,f) ,

where d’ and f’ are the data and forward parts of the standard value of e for d
and f the data and forward parts of the environment. In operational terms d and
d’ represent the evaluable part of the argument and result, and from an operational
point of view it is the mapping from d to d’—the data-dependency function—that we
are primarily interested in: it describes how much of d will be demanded given some
demand on d’ (for strictness analysis), how much of d’ will be determined given that
a certain amount of d is determined (for binding-time analysis), and what parts of
d’ will terminate given that certain parts of d terminate (for termination analysis).
Clearly d’, and therefore the data-dependency function, is a function of f, which will
be considered shortly. For zero-order expressions e, or more generally, expressions
e of zero-order type and environment type, the data-dependency function is £5]e]
since for argument and result values each value and its data part are the same. For
a concrete example consider again lam (\#x:Int.b) where the type of b and the
environment is Bool. There is only one possible value of the forward part of the
environment, namely (), and the data-dependency function is Ab.inlamPe (), which
shows that the data part of the value of the expression is defined regardless of whether
b is defined. The greatest FSA of Ab.inlam® () is A\a.LAM ID, which we interpret
to mean that the constructor is static regardless of the environment (ID on 1 tells
nothing). The least BSA of the lift of Ab.inlam® (), that is of Ab.lift (inlam®e ()), is
Aa.ABS, indicating that the environment is not required to evaluate the expression
to WHNF. The least FTA of Ab.lift (inlam®e ()) is Ada.LAM ABS, indicating that
regardless of the environment the expression is certain to terminate. This does not
mean, for example, that

(LAM ID)o E5[1lam \#x.b] T £5[lam \#x.b]o BOT

for binding-time analysis (note the functionality of LAM ID has changed). Our view

is that we are not interested in strictness or termination abstractions of the evaluation

CHAPTER 6. HIGHER-ORDER ANALYSIS 165

function, only of the data-dependency function; this is fundamental to our approach.

The data-dependency function may be strongly dependent on the forward part of the
environment. For example, let apptol be short for \g:Int->T.g 1 for some type T,
and let the environment type E be Int->T, containing a single entry for a variable f.

Then the data-dependency function of apptol f is
gr = datar o E5[apptol f] o unfacyy, or 0 Ad.(d, f)
= Ad.datar (f (lift 1)),

where g is parameterised by the forward part f of the value associated with f. For
strictness analysis we seek a BSA of (gf).; if we know nothing about f we may
safely take this BSA to be the lub, over all f, of the least BSA of (gf),. This
would still reveal that appto1l is strict in its argument. Thus the dependency of the
data-dependency function on the forward part of the argument will give flexibility in
the use of the analysis semantics developed: it will be possible to determine (using
Burn’s terminology) both “context free” and “context sensitive” information, that
is, information valid across all arguments as well as more precise information when
something is known about the argument or range of arguments. In other terms,
this will allow the analysis semantics to form the basis of both monovariant and
polyvariant analysers/specialisers.

6.1.2 Factored semantics

To clarify some subtle points we define an expression semantics £° such that £° is
the homomorphic image of P under the unfactorisation. Precisely, for expression

e:T with environment type E we require

E3[e] o unfacg = unfacyo EP[e],
then

datar o E3[e] o unfac; = datar o unfacy o EP[e],
80

datar o E5[e] o unfac; = m o0EP[e],

which implies
datar o E3[e] o unfacg o Ad.(d,f) = m 0EP[e]oAd.(d,f),

so that £P faithfully describes the data-dependency behaviour of £5.

CHAPTER 6. HIGHER-ORDER ANALYSIS 166

Let RSP[T] be the continuous function unfac; regarded as a relation. Then the

condition is
(R°P[E] — RP[T]) (&3[e], EP[e]) ,

so we need to define D constants that are similarly related to the S constants. An
easy way to do this would be to define £P[e] to be facy 0 £°[e] o unfacg; this could
be done by similarly defining each D constant in terms of its S counterpart, yielding
the smallest constants and expression semantics satisfying the relation. This will not
do because we wish to express the D defining constants in terms of the Dy constants
in such a way that the defining constants (except fiz) for the higher-order semantics

EC, for all G, are defined in terms of their zero-order counterparts in the same way;
the resulting D constants will not be least.

The functionality of the Gy constants, for all G, are implicitly extended to include
function types Ty #> Ts; in all respects function types are treated exactly like the unit

type. The parameterised defining constants, except for mkfun, inc;, outc;, choose,
and fiz, are defined as follows.

mkunit® (d,f) = (mkunit® d, (),

mkintS (d,f) = (mkint® d, () ,

plus® ((dr,), (&2, () = (plus® (di,), () ,
tupleG ((dl,fl)a"'a(dnafn)) = (tupleGO (dlv---ad'n), (1""af1l.)) ’
self (d, f) = (sel™ d, m; f) .

It is simple to verify that D instances of these defining constants are correctly related
to their S counterparts.

Since the data domain for T; #> T, is the same as for (), the data component of the
result of mkfun® is generated by mkunitPe.

mkfun® (h,(d,f)) = (mkunit® d, h),
apply® (d,f) = f.

The interesting constant is choose®. It could simply be defined by

choose® ((do, fo),- -+, (dm, fn)) = (choose® (dy,...,dy),
choose? (do, fi, ..., fm)) ,

where
choose? (L, fA,.-yfm) = L,
choose? ((4,v),fiy-. fm) = fi -

CHAPTER 6. HIGHER-ORDER ANALYSIS 167

It is clear that chooseP defined in this way is correctly related to choose®. However, a
different form of the definition will be required to be able to define the other instances

of choose in the same way. In view of this choose® and chooseiG are expressed as
functions CHOOSEC[T] and CH OOSE?[[T]I of the result type T, defined by

CHOOSE®[T] ((do, fo);- - -, (dmy f)) = (choose® (dy,...,dn),
CHOOSES[T] (do, fi,-- -, fm)) »

where

CHOOSE{[Int] (d,fi,....fu) = (),

CHOOSES[(Ty,T)) (4, fi, - o fm)
= (CHOOSES[T1] (d, m fi, ...y 71 f),

CHOOSES[T.] (d, ma fis -+, Tn fm))

CHOOSES[ci T1 + ... + ¢a Ta] (d,fiy- . fm)
= (CHOOSES[T:] (d, m1 fi, ..., 1 fu)s

CHOOSEZ[T,] (d, mn fis -, Ta fm))

CHOOSES[T, #> T2] (d, A1, .., fn)
= Az . CHOOSES[T,] ((d, 1), fi z, ..., fn %) .

We need to show that the two definitions of chooseP are equal, that is, that
CHOOSEJ[T]) (L, A, fa) = L,
CHOOSE[T] ((3,v), /- fm) = fis
for all T. For finite types this may be shown by induction on type structure. Folr
recursively-defined types the first equation holds by straightforward fixed-point in-
duction; the problem with the second equation is that it does not in general hold for
any finite approximation of CHOOSEiD [T]. It is not hard to see that the equation
holds for all finite f;, and hence holds for infinite f; since CH OOSE? [T] is continuous,

and equality is (jointly) inclusive in both arguments.

Recall that

u"faccl Ty + .. + cp Tn (L4, (fi,-.-)
unfaccl Ty + ..+ ¢cn Tn ((17 l’Lﬂ d)7 (fla o af'n.)) =

so inc? may be defined to be the D instance of

J_',
(i? hﬂ (unfacT; (d7ft))) ’

inct (d,f) = (incf" dy (Z1y. oy Tict, fy Titty ooy Tn))

CHAPTER 6. HIGHER-ORDER ANALYSIS 168

for any choice of the z;. Rather than choose arbitrary values we define the z; in terms
of a new family of constants bot® € T [T], implicitly indexed by type T. (Later we
will show that bot®® can be defined in terms of the other constants.) We take z; to
be BOT{[T:], where BOT® is defined by

BOT®[T] € T°[T],
BOTC[T] = (bot®, BOT{[T]),
and
BOT¢[T] € To[T],
BOTS[Int] = (),
BOT{[(Ty,...,Ta)] = (BOT{[T1],...,BOT[T.]) ,
BOTS§[ci Ty + ... + ¢, T,] = (BOT§[Tu],...,BOTS[T.]) ,
BOT§[T; -> To] = Az . BOT®[T.].

Here bot®, BOTP[T], and BOT?I[T]I are L for all T. We may write bot® for
BOT®[T] and botl for BOTS[T] when the type T is understood.
We define outc? by

outc® (d,f) = choose® ((d,f),(d,f"),...,(d,)

where
(d',f") = (outc® d, m; f) .

The function choose® is used here to make outc? strict in its first argument.
Constant fiz® is least fixed point, and R°P[T] (L, L) for all T, so we take

fiz® = lfp .
Proposition 6.2

The S and D defining constants are correctly related, hence so are £ and E°. O

We could leave it at this, but it is possible to simplify outc?, and to simplify choose®
in special but useful cases. Recall that we do not actually require that the defining
constants be related, only that the semantics be related.

We redefine outc? by
outcS (d,f) = (outc™ d, m; f) .

So defined outc is not correctly related to outc} exactly when the constructor c is

the innermost enclosing an unboxed function type: consider the simplest example

CHAPTER 6. HIGHER-ORDER ANALYSIS 169

lam (T; #> Tp). We have L related to (L, f) by RS?[lam (T; #> T5)] for all £, but
outlam® L = 1 is related to (outlam®™ L, m f) = ((),f) by RSP[T; #> To] only
when f is L. The first definition gave a correctly related constant by using choose® to
make outc? strict in its first argument. Inspection of the generic expression semantics
shows that this is redundant since constant outc; only arises in the semantics of case
expressions; there will always be an enclosing chooseP that is strict in the same value.
We conclude that though the new definition of outc? is not correctly related to outc?,

the £° and E£P semantics are still correctly related.

Next we consider choose®. When the result type is such that any instance of T; #> ‘T2
is enclosed by a constructor, for example pp (T; #> To,T; #> T) (and in particular
when T; #> Ty appears only as T; => Ty); or when all of the branches of choose® have
the same value (in particular as the result of translating seq e; e or decomposing a

unary sum, for example T; -> Ty), we define choose® by
choose® ((do, fo), (d1, f1),---,(d1,£1)) = (chooseS (do,dy), fi) .

If dy is not L the two definitions give the same result. When d; is 1L we have
choose® ((L,d1), fi) = (L,f),

and
(choose® (L,dy), choosel (L,f1)) = (L,L1).

For all such restricted types T and for all f € 7;D[[T]| we have unfacy (L, f) = L.

Proposition 6.3

The semantic functions £ and EP are correctly related. O

Finally, we give a general definition of bot%, botf, and bot® in terms of fiz®: it is
bot® = fiz® id, bot® = m botG, and botiG = my bot®. Note that this is consistent with
the earlier definitions of the D instances of these constants. Now all of the higher-
order constants are defined in terms of the zero-order constants and fiz. We have
given the definition of botP before fiz® because for other instances of fiz® it will be

convenient to define the corresponding instance of bot® first.

In partial summary we give the semantics of the source languages directly.
ES[x:] (d,f) = self (d,f) = (sel d, m; f),
ESTO] (d,f) = (mkunit® d, (),

£S[m] (d,f) = (mkin® d, () ,

CHAPTER 6. HIGHER-ORDER ANALYSIS 170

EC[e1 + e2] p = (plus® (dy, da), ()
where

(dﬂ()) = gGlleiIl p, 1=1,2,

8G[[(eq, ... :en)]] p = (tupleGo (dla"'adn)a (fla"' ,fn)) [Z > 1]
where

(di, ;) = E%[ei] p, 1< i<,

E[1et (x1,...,%,) =egine;] p
= €5[e,] plxs v selS (E[eo] p) [1< i < n)

E[cie] p = (inc™ d, (botIG,...,bottc,f,botf,...,botf)) [f in i*h position]
where

(d,f) =¢&%[e] p,
ES[case eg of c1 X1 => €15 ...; Cn Xn > €,] p
= choose® (E¢[eq] p,
E8er] plxs > outef (E%[en] p)],

EC[en] plxn = outcS (E[eon] p)))
where
outc? (d,f) = (Outc,gu d, m f),

EC[\#x.e] (d,f) = (mkunit® d, A\z.£%e] (d,f)[x z]),

E[app# e e2] p = f (E%[e2] p)
Where

(d,f) =E%er] o,
EC[fix# e] p = fiz® f
where
(d,f)=E%[e] p.
From these, and the simplifications given, we have the following.

EC[\x.e] (d,f) = ((inlam® o mkunit®) d, Az.E%[e] (d,f)[x - z]),
E%[e1 ea] p = (choose® (di, dy), f)

where
(di, /i) =E%er] p
(d3,f3) = fi (E%[e2] p) ,

CHAPTER 6. HIGHER-ORDER ANALYSIS 171

EC[seq e ea] p = (choose® (dy,dy,...,ds), fo)

where

(&, f;) =E%eil p, i=1,2,

EC[£fix e] p = (choose®™ (di, &), fo)
where

(1,) = E%[e] p

(92, b)) = fiz® Iy .

6.2 Data-dependency semantics

For all G, we have defined 7° and all of the defining constants for £ except fiz®,
but given no indication of how they should be related. We use the higher-order

data-dependency semantics N as the motivating example.

Just as the Ny semantics abstracted the dependency of the standard value of every
subexpression on the value of the environment, the N semantics will abstract the
dependency of the data part of the standard value on the data part of the environment.
The latter is a generalisation of the former since at zero order a value and its data

part are the same.

Let Eg be the type of global environments, and let e:T have environment type E.
Let g be a function from the data parts of global environments to the data parts of
environments for e, so g € TP°[Ey] — TP°[E] = TN[E]. Let standard forward
value f € 7;0[[E]| be fixed, and let ¢’ be defined by
g € TP°[Ey] — TP[T] = Th[T],
"= mo&Ple]oAd.(d,f)og.
By analogy with the relation between the Dy and Ny semantics, we expect that for

value h appropriately related to f to have

(¢ 0) = Ee] (g,h) ,
for some A’, so that when g is the identity ¢’ is precisely the data-dependency function,
that is,

g = mo&P[e]oAd.(d,f).
Next we make this relation precise.

Let (d,f) € T°[T] and (g,h) € TN[T]. Then (d, f) is related to (g,h) if for a
given data part of a global environment ¢ € TP[E,] we have d = g o, that is

CHAPTER 6. HIGHER-ORDER ANALYSIS 172

RDoNe[T] (d,g), and f and h are logically related. Thus the relation is a function of
type. Following we define the relation REH in terms of R for all combinations of
G and H for which R®" has been defined.

For predicate environments ¢ and domain environments (¢ and ¢" such that for each

type name A,

[a] € (¢S[A] x CM[A]) & Truth,
we will have

RM[T] € € (TC[T] ¢®) x (TH[T]CM) > Truth
and

REU[T] € € (TE[T] ¢6) x (TITI¢H) S Truth .
Define R by

RE[T] € = RO™[T] x (RP'[T]¢) .

Note that the type definitions D must be fixed because R®" is implicitly defined in
terms of D. The logical part of the relation is

R§H[Int] € = Af.True,
RE[(Ty, ..., T] € = RE[T] € x ... x (R§U[T.]9),
RM[ci Ty + oo +cn T,] € = (RV[T1]€) x ... x (R§A[T,] ¢),
R #> T2] € = (R[T1] §) - (RM[T2] ¢) .

We define RS!Y,,, in terms of REH. Let
&= M R[T]E[1<i<n]) &,

where
b=~ RIOI[]1<i<n].

Let p; = &[A] for i > 0, then p; € (¢F x ¢) %y Truth is a binary predicate on the i**
canonical approximating domains for 7.6[A] and T'[A], and p; = piy10(4¢ x ') and
Pit1 = pio (YF x), where (¢¢,94¢) € (F[A] ¢ (5 ,[A] are the canonical retraction
pairs in the inverse limit construction of 7;°[A] (and similarly for the H versions).
Hence {p; | i > 0} is a family of approximating predicates with limit RS;MI[DMA]]
which is the least inclusive predicate greater than REH[()] o (85, x 6%).

Just as for the other semantic functions we write R°H[T] and REH[T] as abbrevia-
tions for RE[T] (R§,,[D]) and REM[T] (RS, [D]), respectively.

CHAPTER 6. HIGHER-ORDER ANALYSIS 173

Proposition 6.4
For all T the predicates R°*[T] and R{M[T] are inclusive when RE%Me[T] is.

This follows from the definition of these predicates in terms of the predictor tuples

and recursion as developed in Section 2.5.2. O

Like the relation between Dy and Ny values the relation between D and N values (and
therefore S and N values) is parameterised by a value o; as before this is indicated by

subscript, so
RMT] = R™[T] x RPLIT],

and each instance of R°" and RPN in the definition has the same subscript, so o
is effectively global over the definition. Then the relation R3N[T] between S and N
values is the relational composition of RS°[T] and RPV[T]; this relation is inclusive

since R°P[T] is the continuous function unfac, regarded as a relation.

6.2.1 Semantics of expressions

Proposition 6.5

If the constants defining zero-order expression semantics £%° and £ are related by
ROMo and fiz® and fiz" are related by R, then £° is related to £ by REH.

Proof

We need to show that the higher-order constants other than fiz are related by RCH.
For constants mkunit, mkint;, outc;, tuple, sel, mkfun, and apply verification is simple.
The interesting cases are inc; because it is defined in terms of fiz, and choose because
it is recursively defined. Recall

incf (d,f) = (inc® d, (bot?,..., botS, h, bot?, ..., botf)) ,

and bot® = 7, (fiz® id), and similarly for the H versions. Now fiz € (T[T] —
TIT]) — TIT], and (id,id) satisfies RH[T] — RCH[T], so (fiz® id, fiz" id)
satisfies RSM[T], so (my (fiz® id), m, (fiz" id)) satisfies R{U[T]. The remaining

verification is simple.

For choose we need to show that (CHOOSE®[T,], CHOOSE"[T,]) satisfies
(RM[To] x ROM[T1] x ... x RS[T,]) = RM[T.],

which holds if (CHOOSE[T,], CHOOSEY[T]) satisfies
(P x Q@ X ... x Q) = @

CHAPTER 6. HIGHER-ORDER ANALYSIS 174

where P is RS[To] and Q is R$"[T;]. This predicate is equal to
U'iZO ((P X Q X ... X Q) — qz) [¢) ('ld — 900,-),

where 0.; = 0%, x 61, and the S, and 0%, are the canonical projections in the

001 001 001

inverse limit construction of 7ﬂ[Tﬂ] and 7;H|[T1]|, respectively, and ¢; is the i
canonical approximation of @. In fact (CHOOSE%I[Tl]l, CHOOSES[T1]) satisfies

the much stronger condition
Uiso (P X @ X ... X @) = @) 0 ((id X Oui ... X Oooi) = boci)

which can be shown by induction on the structure of T;. O

Finally we need to define fizN. Now botDo = 1, and we define bot"° to be Az.L so
that RPoNe[T] (bot®, bot"°) holds for all T and o, and bot" = L. So, like fiz? we
define fiz" to be least fixed point.

Proposition 6.6

The D and N semantics are correctly related. O

6.2.2 Implications of the relation

Let e:T with environment type E and global environment type E;. Writing out the
required relation between £P[e] and EN[e] gives

Vo . RN[E] ((d,£),(9,h) = RN[T] (€P[e] (d,f), EN[e] (g, 1)) ,
which is equivalent to

Vo.(d=go A RIE](,H) = (@=¢ o A RIT] (F,K)),
where (d', f') = EP[e] (d, f) and (¢, 1) = EN[e] (g, h). Suppose that f and h are
related by RPY[E] for all data parts of global environments o € 72[Ey]. Then

for all functions g € TN°[E] from the data parts of global environments to the data
parts of local environments we have

Vo . ROV[E] ((g o, £), (g, 1)) -

Then it must be that EP[e] (g o, f) is related to EN[e] (g,h) by RON[T] for all
o; in particular for (¢/,h’) = EN[e] (Ao.0,h) it must be that ¢ = datar o E3[e] o
unfacg o Md.(d, f), that is, ¢’ is the desired data-dependency function.

Let a value v € T°[T] in a given semantics G be denotable if there exists a closed
expression e such that v = £5[e] []. There is no trouble finding such k for denotable
values: empty environments []5 = ((), () and [N = (Xo.(), () are related by RIN[)]

CHAPTER 6. HIGHER-ORDER ANALYSIS 175

for all o, so for all e: T with (d, f) = £P[e] [] and (g,h) = EN[e] [] we have (d, f)
related to (g, h) by RV[T], hence f related to h by RYN[T], for all o.

Before giving a general mapping of each f to such A we give some simple examples.
For zero-order types f and h necessarily come from domains isomorphic to 1. For first-
order types h is A(g, u).(f o g, L) where argument u is necessarily L from a domain
isomorphic to 1; more generally for type T;->...->T,, where the T; are zero-order
types, h is

Agr, w)- (Ao ift (),
Mgz, u)- (Ao lift (),

A(gn-1, v). (Ao lift (),
A(gn,u).(fogno...0og, 1))...),

where all of the arguments u come from domains isomorphic to 1.

Now we define the general mapping of each value f € 7;°[T] to a value h € TN[T]
related by RYN[T] for all o, and more generally, from values (d, f) € TP[T] to values
(g,h) € TN[T] related by RPN[T] for all 0. To make this work we ‘strengthen the
hypothesis’—we give a mapping of such (d, f) to such (g, h) satisfying the stronger
property RTSN[T], where RN is the +SoNy instance of RH, defined by

R¥5No[T] (d,g9) = Vo.d = go.

At each type T we define two pairs of functions EM and PR, and EM; and PRy, such

that for 7 a function from type names to pairs of functions with
n[A] € ¢P[A] & (M[A],
for each type name A, we have
(EM[T]#n, PR[T]n) € (T°[T](P) « (TM[TICY),
and
(EM[T] m, PR{[T]m) € (TP[T]¢P) & (TN[TICY).

for all T. We take EM;[A] n = m (n[A]) and PRy[A] n = w3 (n[A]). Eliding the
function environment as usual define

EMIT] (4.5) = (od, BM[T]),
PR[T] (g,h) = (g9 L, PRT] #),
and

EMIIIInt]] =)\()()a

CHAPTER 6. HIGHER-ORDER ANALYSIS 176

EM[(Ty,....,T)] = EM{[T:] x ... x EM{[T,],
EMi[ci T1+ ... + ¢, T,] = EMi[T:] x ... x EM{[T,],
EM{[T, -> To] = PR[T:] — EM[T.],
and |
PRi[Int] = A().0 ,
PR (Ty,....T)] = PR{[T1] x ... x PR{T.],
PRi[c1 Ty #+ ... +¢, T,] = PR[T1] x ... x PR[T,],
PR[T, -> T;] = EM[T,] — PR[T.].
Given type definitions D, environment 7, is determined by its family of approximations
{n:}, defined by
n = (M [(BM[Ti] m, PRy[Tilm) | 1<i<n])' mo,
where

m = [(EM[O]I[], PRIO][]) |1<i<n].
Proposition 6.7
The pairs (EM[T] my, PR[T] mp) and (EMy[T] m, PRy[T] mp) are retraction pairs,
and RON[T] & (v, EM[T] mp v) for all v and o, and REJ[T] & (f, EM;[T] mp f)
for all f and o, where & = R3Y,.[D].
Sketch Proof
The proof that the pairs of functions form retraction pairs is similar to the proof
that fac; and unfac; form a retraction pair. To show the relation between f and

EMy[T] m f, and between v and EM[T] np v, we observe that for all ¢ and T that
EM;[T] n; is equal to EM;[T?] [] for some T’ (and similarly for EM, PR;, and PR),
and the result holds for all closed types T’>. O

6.2.3 Examples

We give some examples of calculations using the N semantics.

Example. Given zero-order expression e:T with zero-order environment type E,
function g € TM[E], for

(g,0) = &N[e] (9,0) ,

we have ¢’ = ENe[e] g, so the Ng semantics is just a special case of the N semantics.

CHAPTER 6. HIGHER-ORDER ANALYSIS 177

Example. First-order function definition £ x = e is rewritten as fix (\f.\x.e)
with the implicit translation of first-order application form £ e to the higher-order

application form £ e. Let
(g,h) = EN[£fix (\f.\x.e)][].
Then g = Ao.lift (), which indicates that this expression has WHNF regardless of the

environment, and function h can be expressed in the form A(g,()).(h' g, ()) where
function A’ is the value of the function definition in the N, semantics. This generalises
in a straightforward way to sets of first-order function definitions: given

f1 T #> Uy

fi1x=¢

£, : T, #> U,
f,.x =e,
let e be the expression

fix (\f.let (fy,...,f,) = f in (e;,...,e,))
then for (g,h) = EN[e] [] the function g is Ao.(lft (),...,Lft () and h is a tuple

(h1,...,hy) of functions like h above. We conclude that the N, semantics is a special
case of the N semantics.

Example. We give two examples involving chooseN. For clarity lifting of integers

is implicit and +j,; is written +. Let e be the expression

\x . case b of
trueu ->x + 1
false u -> x + 2

with environment type Bool. Then EN[e] [b— (g5, ())] is

(Ao lift (),
A(gz, () - chooser, (s, (),
((A\y.y+1)0g,(),
(Ay.y+2)0g.,()) -
The first component indicates that e has WHNF in all environments. The second

component is

A9z, () - (Ao . case gy o of
1L 51

(1,v) = (Ay.y+1l)og,
(2,v) = (Ay.y+2)og,
() -

CHAPTER 6. HIGHER-ORDER ANALYSIS 178

To contrast, let e now be

case b of
true () -> \x.x+1
false () => \x.x+2

then EN[e] [b = (g5, ()] is

| Choose{\lnt->1nt ((glh ())7
| (Ao.lift (), Mgz, ())-(Ay.y +1) 0 gz, ()))
(Aa.lift (), A(ge, ())-((Ay.y +2) 0 g2, ())))

- (chooseN° (gb, Aa.lift (), Ao.lift ()),
CHOOSEY[Int->Int] (g,

A9z, ()-((Ay-y +1) 0 gz, ()),
Mgz, ()-(Ay-y +2) 0 gz, ())))

the first component of which is

Ao . case gy 0 of
1 — 1
(1,9) = Gift ()
(2,v) = Lft (),
indicating that the expression has WHNF if variable b is defined; the second compo-
nent is the same as before. This shows that the expressions are operationally different

if simply evaluated, but equivalent if applied.

Example. Here we show the N value of a closed expression denoting a list of func-
tions.
EN[fcons (\x.x+1, fcons (\x.x+2, fnil ()))]]
= (Ao bt () : Uit () : [},
(0, (AMg,0) - ((Az.z+1)0g, (),
(0, (Mg,0) - (Az.z +2) 09, (),
(0, (L,
L)

6.2.4 Lifted data-dependency semantics

The N semantics yields the data-dependency functions, and for binding-time analysis
it is forward strictness abstractions of these functions that we require. For strictness
analysis and termination analysis, however, we require abstractions of the lifts of the

data-dependency functions.

CHAPTER 6. HIGHER-ORDER ANALYSIS 179

There is little to be gained by repeating the entire development of domain factorisation
and the factored semantics in ‘lifted’ form; we give the important points. Recall
T5+[T] = (T3[T])L for all T: in effect values from the lifted semantics have one
more outermost lifting than their counterparts in the standard semantics, so the
data domain 7P+[T] for type T corresponding to the lifted semantics 7°* should
be isomorphic to (7P°[T]),, which is the case. Thus the data domains for the lifted
semantics encode the extra level of lifting, and for e:T with environment type E the
data-dependency function comes from 7P[E] 3 7Pw0[T], that is, from TMo[T].

Not only is TNto[T] isomorphic to 7N[T], and the Ny and N, constants (and
hence EN° and & N*O) equal up to isomorphism, but their respective argument and
result domains are isomorphic as well. The same holds at higher order: TN:[T] is
isomorphic to TN[T] for all T, and by defining fizN+ to be least fixed point, the N
and N constants (and hence N and £M) are equal up to isomorphism, and their
respective argument and result domains are also isomorphic. The isomorphism from
TN[T] to TN+[T] is induced by the isomorphism from 7No[T] to 7No[T]—the
mapping of data-dependency functions g to their lifts g, ..

6.3 Strictness Analysis

We need only define fiz®. Recall that bot"*° is Az.lift L, the least value in TNw[T]
at each T. We define b0t™ to be Aay.BOT,, the least BSA of bot":° and the least
element in 7] T] at each T. Hence bot®, like bot"*, is the least value in its domain,
and we take fiz® to be least fixed point.

Proposition 6.8

The N, and B semantics are correctly related. O

For every N, value there is always a related B value, namely the top value. Better,
there is always a least related B value; the essential facts are that the data-dependency
(first) components of Ny values have least BSAs, glb is componentwise for products,
and glb is pointwise for functions. Since the mapping of N, values to least related B
values is not in general monotonic, it is not clear that the least value in ’GBI[T, #> Tz]
correctly related to a given value in 7N[T; #> Ty] is pointwise least because values

in 7;B|[T1 #> T,] are necessarily monotonic.

At zero order we showed first that for all e that £%[e] 7 is the least value correctly
related to (that is, is the least BSA of) ENto[e] g when 7 is the least value correctly
related to (is the least BSA of) stable function g. Using this result we were able to

CHAPTER 6. HIGHER-ORDER ANALYSIS 180

show a stronger second result, that £8°[e] is the pointwise least function correctly
related to ENt[e]. We show a straightforward generalisation of the first result to

higher order, but do not attempt to give a generalisation of the second.

Let TNio[T] be TNwo[T] restricted to stable functions, and 7M. be the N, instance
of TC. Let C on TNi[T] be the standard ordering and T, be the ordering induced
by taking the ordering on stable function spaces to be the stable ordering. Then g
is stronger than the standard ordering, chains ascending in the stronger ordering are
ascending in the standard ordering and have the same limits in both orderings. The
mapping of N} values to least related B values is injective, and is continuous when
the ordering on N} values is g, in other words, the leastness property is inclusive
in the stronger ordering.

The N} domains are closed under the N; constants, and the constants are continuous
in the stronger ordering, hence the N domains are closed under EN:[e] for all e, and

in particular all denotable values are in the N} domains.

The result is the following. Given e:T with environment type E, value pMt € TNL[E],
and least correctly related value p® € TB[E], we have that £ B[e] pB is the least value
correctly related to ENt[e] pNi; this follows from the fact that the corresponding
result holds for each N; constant.

Finally, we observe that if we restrict attention to denotable values then the function
space 7'1'5[[T1 #> To] = T®[T1] — TB[T2] may be restricted to the distributive
functions.

6.3.1 Relation between S and B semantics <

i
'
[}

Let Eg be the type of global environments. Suppose that f € 7,°[E] and h € TNE]
such that RPY[E] (f,h) for all 0 € TP[Ey]. Then for g € TN[E], and (¢, 4) =
EN[e] for e: T with environment type E we have that

g' = datay o 85|[e]] Ounfacg o)\d(dvf) ° g,

and when g is the identity, ¢’ is the data-dependency function. The isomorphism
from TN[E] to TNe[E] maps each g to g, /; slightly abusing the notation, let b, be
the image of A under the induced isomorphism from 7{'[E] to 7;N*|[Eﬂ. Then

((g,)_L”(h,)_L’) = 8NLl[e] (gl’ahJ.') 3

so when g, and therefore g,/, is the identity, the function (¢'),, is the lift of the data-
dependency function. Now if (7,k) € TB[E] is correctly related to (g,s,h,/), then

CHAPTER 6. HIGHER-ORDER ANALYSIS 181

for (7',k') = EB[e] (7, %) we have that (7, ') is correctly related to ((¢'),+, (R'))-
In particular, when g is the identity, g,- is then identity with least BSA the identity
Aa.a, and 7' is a BSA of the lift of the data-dependency function.

6.3.2 Examples of analysis

Example. Given zero-order expression e with zero-order environment type E, (sta-
ble) function pNte € TNo[E], and 7 a (least) BSA of pNio, for 7/ defined by

(TI’) = EBIIe]] (r, ()))
we have that 7’ is a (least) BSA of £5%0[e] o pNio. Also, 7’ is equal to £B[e] 7, so

the zero-order analysis is a special case of the higher-order analysis.

It is also straightforward to show that the second approach to first-order analysis is
a special case of the higher-order analysis; the demonstration is essentially the same

as that of the analogous result for the N, and N semantics.

Example. Suppose any is any closed expression of type T; -> T, and we wish
to determine the strictness properties of the function denoted by any. To do this
we introduce a variable x:T; and determine the strictness properties of £ s[[any x],
where the environment is taken to have a single entry for x and therefore have type
T;. Let any be defined by

any = &[any x] = Az . &[any x] [x— 2] .
We determine a BSA of the lift of
Ad . (m 0 EP[any x]) [x = (d,f)]

assuming that nothing is known about f. For all values f € T,°[E] there is a value
h € TN'[E] such that f is related to A by RPY[E] for all o, and every value hy/ is
correctly related to value T € TB[E]. Hence we take the B value of x to be (Aa.a, T).

Let
(1,6) = EP[any x] [x+ (Aa.a,T)] .
Then any is strict if 7 STR T STR, head strict if 7 ID C ABS U (FINF STR), and
so on. This procedure can be streamlined. We have
gB[[anY x] p® = (Aay . (Teny LAM) & (73 ay), Ky)
where
(Tanyv’fany) = EB[[any]I (]
(Tya’fy) = Kany (gBllx]] pB) .

CHAPTER 6. HIGHER-ORDER ANALYSIS 182

If any is of the form \x.e, then 7.y is Aa.ABS, and the expression simplifies to
Kany (Ao, T).

If any were \x.\y.x then 7 would be Aa.ABS, indicating that any is not strict: it
always returns something that evaluates to WHNF. In an implementation in which
functions are only (necessarily) evaluated when applied we would like to regard any
as being strict. This may be determined by abstractly applying any to all of its
arguments: in general if any has type T1->...->T, 1, let the value of x; : T; be in
position 7 of environment p® of type (Ty, ...,T,) with value p® = (Aa.a, T) so that

pP[x;] =(Aa.ABS®...@ ABS® a® ABS®...® ABS, T)
[in i* position]
then for 7 and « defined by
(r,6) = EB[any x; ... x,] p®
if 7 maps projection STR to projection « and

aCID®...ID®STR®ID®...® ID [STR in the i* position]

then any is strict in its i** argument.

Example. Let (o) be short for \f.\g.\x.f (g x), let id be short for \x.x, let

funfoldr be short for

fix (\funfoldr .
\f . \a . \fs . case fs of
fnil O -> a
fcons (g,gs) -> £ g (funfoldr f a gs)) ,

and let compose be short for funfoldr (o) id. The function denoted by compose
maps lists of functions to the composition of the list elements. Folding right allows

the composition of partial or infinite lists of functions to have non-bottom values.
Then

EB[compose (fcons (\x.x+1, fcoms (\x.x+2, fnil ())))]

is equal to £B[\x.x+3]; the point is, there are no surprises because the B semantics

loses no information present in the standard semantics.
Now let
(Tes, kes) = EB[fcons (\x.x+1, fcons (\x.x+2, fnil O]][].

Then 7¢s = Aa.ABS and k¢ is the abstract forward value of the list of functions.
Next we determine strictness of compose fs x in both fs and x when fs has the
value of the given list of functions, so we find a BSA of the lift of

A(dss, dy) - EDI[compose fs x] ((des, dx), (f1s,())) »

CHAPTER 6. HIGHER-ORDER ANALYSIS 183

when the forward part f,, of the list argument is the given list of functions. Let
p® = (Aa.q, (Kss, () so that pB[5] = (Aa.(a® ABS), ks,) and pB[x] = (Aa.(ABS®
a),()), and let 7 be defined by

(1,()) = EB[compose fs x] pB .
Then 7 is determined by the mappings
N; — (FCONS (LAM ® (FCONS (LAM ® FNIL)))) ® N;_3, alli.

Because all of the functions in the list are strict, argument x and the entire
list £s and all of its elements may be evaluated if the result is. If fs had
the value of fcons (\x.1, fcons (\x.x+2, fnil ()) then 7 would map N; to
(FCONS (LAM ® ABS)) ® ABS and N; to FAIL for 1 # 1.

Example. We consider the strictness properties of application in both of its argu-
ments when the actual values of the arguments are unknown. If apply is \f.\x.f x
then we wish to determine the strictness of apply f x in f and x. Let the val-
ues of £ and x be in the first and second positions of the environment, respec-

tively; assuming nothing about the arguments we take p® to be (Aa.a, T), so
PP[£] = (Aa.(a ® ABS), T) and pB[x] = (Aa.(ABS ® @), T). Now EB[apply £ x]
is just £EB[f x], and ‘
EB[£ x] p® = (Aar.(mn LAM) & (13 o), k3)
where

(r11) = £°[£] §°

(73, k3) = k1 (EB[x] 0®) ,
which simplifies to

(Aay.(LAM @ ID), T) ,

which shows that application is strict in its first argument.

6.3.3 Abstraction

The abstract projection domains SProj, are extended to all types T by
'Ps“’l['h #> T2]I = 'PSJ'O[[O] = |1L]| = {ID,BOT} .

Then SProjy, sy, = | T°+°[Ty -> To]| = |1y, | = {IDy,ID,, BOT,, BOT,}, other-
wise know as { LAM, ID, ABS, FAIL}. The restriction of projection domains to SProj

induces abstract domains of projection transformers, just as at zero order; abstract

CHAPTER 6. HIGHER-ORDER ANALYSIS 184

domains of B values, denoted SAbst at each type T; and an abstraction of the B ex-
pression semantics. We conjecture that this abstract expression semantics determines

the standard semantics (as it does when restricted to zero or first order).

From each abstract domain SAbsy we choose a finite subdomain FAbs;. First we

extend FProj, to function types by adding the inference rules
BOT, fproj T, #> T, , BOT, fproj T, #> T, .
Then FProjr, s»r, = SProjr g»r, and FProjy, _yr, = SProjr, »r,.

Given type Eg define the abstract domain of projection transformers FTran: to be
FProj, & FProjg . 1If T8¢ [T] were defined to be FTrany then so long as recursive
types were not involved the higher-order abstract semantics could be taken to be
the B# instances of the parameterised semantics. For recursive types however these
abstract domains may not be finite, for example for FunList. We take the abstract
domain FAbst to be FTrany X FAbsFy, where FAbsFr is the finite abstraction of 7;8 [T]
defined by the following set of inference rules: value « is in FAbsFr if k fabsf T can
be inferred from the following.

There is only one forward value at type Int.

() fabsf Int .

For products,
k, fabsf T, --- k, fabsf T,

(K)l,. .. ,K)n) fabsf (Tl, e ,Tn)

For the unit type this reduces to () fabsf () .

Since TB[cy Ty + ... + ¢u To] = TB[(T1, ..., Ta)] the rule for sums is the same as
the rule for products:

k, fabsf T; --- k, fabsf T,

(Kl,...,lﬁn) fabsf ¢ T1+ ... +¢, T, '

Function spaces consist of a set of step functions closed under lub.
71 € FTrany, k1 fabsf T T2 € FTran,, ko fabsf Ty

step ((11,K1), (T2,K2)) fabsf (T; #> Ty)
where
step (v,) T = w, f yCx

T
step (n,w) £ = L, otherwise,

CHAPTER 6. HIGHER-ORDER ANALYSIS 185

and

k, fabsf (T; #> To) ko fabsf (T, #> T,)

(k1 Ukg) fabsf (T #> Ty)

This gives the full space of monotonic functions on the abstract domains.

For recursively-defined types, roughly speaking, we choose those forward values that
represent each component of the same type by the same value. Given type defini-
tions Ay = Ty; ...; A, = T,, which we will write A;=T;(A;,...,A,), 1 <i< n,ifby
assuming «; fabsf A; for 1 < 1 < n we may deduce P(«y,...,k,) fabsf T;(A;...A,)
for 1 <1 < n, then

WK1y oy kn) (Pr(K1y ooy Bn)y ooy Pa(K1,y . oy Ka))

is a tuple (ki,...,kn) of values such that «; fabsf A; for 1 < i < n.

For all T the lattice FAbsy is a sublattice of SAbst which contains the top and bottom
elements of TB[T].

Example. For zero-order types T the abstract domain FAbsy is of the form
FTrant x D, where D is isomorphic to 1.

Example. The abstract domain FAbSpt->1nt 1S
FTraniag->int X FAbSFing->1nt

where
FAbsFing-stat = (FTranie X 1) = (FTranme X 1) .

Let the type Ey of global environments be Bool, and let e be

\Xx . case b of
true () > x + 1
false () -> x + 2

with environment type Bool. Here
FTranips->me = FProjiue s 3 FpP T0J Boo1
FTranyy, = FProj,, 5 FProjy., ,

and EB[e] [b = (m,())] is

(1, 0 Aa.ABS,
A7z, () - choosepy (5, (), (Aaw.x STR,()), (Aew.7x STR,()))) -

CHAPTER 6. HIGHER-ORDER ANALYSIS 186

The second component is
M7, () - (Aay - (e TRUE) & (75) U (15 FALSE) & (72 o)), ()) -

For 7, = Aa.a the first component simplifies to Aa.ABS, indicating that no demand
is made on the environment in evaluating the expression to WHNF, and the second

component simplifies to
M7e, () - (A .STR & (12 1), () -

Now let e be

case b of
true () -> \x.x+1
false () -> \x.x+2

then £8[e] [b — (7, ()] is

chooser s1ny ((Tos ()5
(7o 0 Aa.ABS, A(7y,()).(Aow.7x STR,()))

(16 0 A. ABS, A(7x,()).(Aar.7x STR,())))

= ChooseIBnt->Int ((Tb’ ())’
(A ABS, A7, (

» 0)-(7, 0))
(Aa.ABS, A(7x, (

).
)-(1x,())))

= (chooseB (1,, Aa.ABS, Aa.ABS),

CHOOSEY[Int->Int] (7o, A(7x, ())-(7x,()s A7, 0)-(7%,()))

)
)

the first component of which is
Aoy . (7o TRUE) & (, FALSE) ,

which is safely approximated by Aay.m, STR; for i, = Aa.a it is just Aa,.STR,
which maps ID to ID, STR to STR, ABS to ABS, and FAIL to FAIL. The second

component is the same as in the previous example.

Example. The abstract domain FProjg,.; ;. is isomorphic to FProj.; .., and
TP[FunList] = 1 x (7f[Int->Int] x T®[FunList]),

so the values in FAbsFrunist are of the form px.((),(v,k)) for v € FAbsFine->1at,
hence FAbsFgyyyisy is isomorphic to FAbsFiys-s1ns. If We represent FAbsFrurist by
FAbsF1pt->1nt then the relevant constants are

infnil® (7,()) = (infnilBo 7, 1),

outfnil® (1,5) = (outfnil® 7, (),

CHAPTER 6. HIGHER-ORDER ANALYSIS 187

infecons® (1, (k1,K2)) = (infeons® 7, (k1 UK2)) ,
outfcons® (1,k) = (outfcons® 7, (k,k)) .

The projection transformer Aoy .STR is a BSA of every lifted strict function: it has
the guard property and maps every eager projection other than FAIL to STR. When
the functions are in Int; 8 Int 1 and we are working in FProj this simplifies to Aa.a.
For any closed expression £ denoting a strict function, a safe approximation of the
second component of its B value is

Mr1,k) . (Aar.STROB 7, T) .
When £ :Int->Int this simplifies to A(7, (}).(7, ()); this value in FAbsFr 115t 18 a safe

abstraction of all finite, partial, and infinite lists of strict functions. We have
EB[compose fs] [fs — (Aa.a, A(7,())-(1,()))]
= (Aar.STR, A(7,()),(7,())) -

In other words, compose maps all finite, partial, and infinite lists of strict functions
to a strict function, and evaluation of compose fs forces evaluation of fs to WHNF.

Now let

(r,0) = EP[compose fs x] (Aa.a, (A(7,()-(,()),0))) -
Now 7 is Ao .(FIN ID) ® STR, which reveals that when fs is a list of strict functions

compose fs x is strict in the spine of fs and x. We might expect strictness in the
elements of £s but this information is lost because of abstraction; performing the same
calculation in the full domains yields the expected Aay.(FIN STR) ® STR. Just as
at zero order the loss of information may be regarded as arising from the particular

semantics of case expressions.

Example. Recall the type definition
FunTree = fleaf (Int -> Int) + fbranch (FunTree, FunTree) .

The eager elements of the LI-basis of FProjg,rree COMprise

II FAIL ,
FF LAM ,
IF LAM ,
FI LAM ,
FF ABS ,
IF ABS ,
FI ABS

CHAPTER 6. HIGHER-ORDER ANALYSIS 188

where

FF a = py . (FLEAF o) U FBRANCH (y®7),

FI a = uy . (FLEAF &) ! FBRANCH (y® (ABSU%)),

IF o = uy . (FLEAF o) U FBRANCH ((ABSU~)®~),

I « = pvy.(FLEAF o) U FBRANCH ((ABSU~v)® (ABSU"Y)) .
Now FAbsFryntree is isomorphic to FAbsFip¢-»>14t, SO the abstraction of a forward value
of type FunTree must be a safe approximation of all of the leaves. The values in
FAbsFryntree are of the form uk.(v, (k,k)) for v € FAbSFipt->1at, and are represented
by values from FAbsFin¢-s>1nt-

Let treecomp be short for

fix (\treecomp .
\t . case t of
fleaf f -> f
fbranch (tl,tr) -> (o) (treecomp tl) (treecomp tr)) .

First we consider strictness of treecomp t x when t is a tree of strict functions.

Let the values of t and x be in the first and second positions of the environment,
respectively, and let 7 be defined by
(1,0) = &P[treecomp t x] (Aawa, (A(7,5).(,()), () -

Then 7 maps STR to (II LAM) ® STR, revealing that the expression is strict in x,
and leaf-value strict in the tree, but not that it is strict in the branch structure of
the tree: the optimal result would be (FF LAM) ® STR; again this is a result of
abstraction, arising from the semantics of case. Next we consider the result for a
tree of (possibly) non-strict functions: let 7 be defined by

(1,()) = EB[treecomp t x] (Ma.a, (A(7,x).(Aa.ID,()),())) .
Then 7 maps STR to II LAM ® ID, which is optimal.

Example (adapted from [Sto82].). Let FunType = FunType -> Int -> Int,
let g be short for

\f:FunType . \x:Int . case (x=0) of
true O ->1
false () -=> x * (f £ (x - 1)) ,

and let fac be short for g g. Now FAbspunrype = FTranpuntype X FAbSFruntype, and
TP[FunType] = pX . ((T®[FunType] x X) — TB[Int -> Int}]),
and we wish to determine FAbsFrunrype. Suppose T € FTranpurype and v €

FAbS1n¢->1nt, then we may deduce

step ((7,k),v) fabsf FunType ,

CHAPTER 6. HIGHER-ORDER ANALYSIS 189

hence the least fixed point of Ak.step ((7,k),v) is an element of FAbsFrynrype. The
fact that this function is not monotonic (ultimately because FunType appears in a
contravariant argument position of #>) is not a problem if the fixed point is de-
termined as the limit of the canonical approximations on the approximating do-
mains for 785 [FunType]. (So, for example, the first approximation is () in 1, the
second step ((7,()),v) in FTranguyrype X 1) — FAbSipe->1mt, and so on.) The re-
sult is determined by 7 and v; the abstract domain FAbsFrurype is isomorphic to
(FTranpurype X 1) = Fabsype->1ae. Abstract application of k to (7/,«') yields v if
7' 371 and & Ok, and L otherwise.

Now £B[g] [] is
(Aa.ABS, A(7¢,Ke) -
(Aa.ABS, \(x,()) .
(Aay.(rx STR)U ((rz STR) & (7" STR)), ())
where
(7, 0) =€%[f £ (x - D][E = (12,51), x> (1,())]) -
Then £8[g g] [] is
(e, k¢) . (Aa.ABS, A(7%,()) -
(Aay.(rx STR) U ((rx STR) & (7' STR)), ()
where
7' = Aoy (1: LAM) & (m; (k¢ (Aay.7x STR)))) ,

which is equal to (Aa.ABS, A(7,()).(7x, (), showing that Az.E5[fac x] [x ~ z] is
strict.

6.3.4 Better semantics for case?

Using the unimproved semantics of case at first order, working in the finite abstract
domains we were able to show that sum is strict in the spine of its list argument but
not that it is strict in the elements of the list, and that dfs in a FALSE-strict context
is leaf-strict but not that it is strict in the branch structure of the tree. At higher
order we have an analogous loss of information: given a list of strict functions we
can show that their composition, when applied, forces evaluation of the spine of the
list but not of the elements; given a tree of strict functions we can show that their
composition, when applied, forces evaluation of each function if its enclosing leaf
node is ever examined, but not that every leaf node (and hence the branch structure)
is evaluated. At zero-order (and both approaches to first order) we were able to

improve the abstract semantics for case expressions to give optimal results for sum

CHAPTER 6. HIGHER-ORDER ANALYSIS 190

and dfs. Proceeding ‘by analogy’ with the zero-order case it is not too hard to give
an improved semantics for case at higher order that gives optimal results for compose
and treecomp. However, showing that this semantics is correctly related to the N
semantics appears to be considerably more involved than the corresponding task at

zero order and we leave this for future investigation.

6.4 Binding-time Analysis

We define fiz" to be greatest fixed point, hence bot, botIF, and bot™ are all T. The

F semantics is essentially the same as that described in [Dav93b].

Proposition 6.9

The semantic functions EN and &EF are correctly related.

Proof
We need only verify that fiz\ and fiz® are correctly related. Now botNe and botf are

related by RNoFo[T] at each type T, hence botN and botF are correctly related. As
defined we have

ﬁZ'N h = UiZO h“ bOtN)
ﬁIEF K = H’iZO k* bot" y

Let h and x be correctly related arguments of fizN and fizF, respectively, and let
%; = h' botN and ¥; = k' bot" for all i > 0. Now 4 is correctly related to vy, by
induction ¥; is correctly related to ¥; for all ¢ > 0, the 9; are increasing and the ¥; are
decreasing. Then M;>¥; is correctly related to 9; for all ¢ since under-approximation

of F values is safe; so M;»o¥; is correctly related to U;»o?; since the relation is inclusive.
O

For each value in TN[T] there is a greatest related value in 7F[T], but in general
the F semantics does not preserve greatestness. If we restrict attention to denotable

values then the function space 7,7 [T, #> To] = TF[T;1] = TF[T2] may be restricted
to the M-distributive functions.

It is easy to show that the zero-order analysis technique is a special case of the

higher-order technique.

CHAPTER 6. HIGHER-ORDER ANALYSIS 191

Example. Let FSPINE be the projection transformer defined by
FSPINE a = py.ID, & (a X), -
Then FSPINE ID is ID, specifying completely static lists, and FSPINE BOT

acts as the identity on the spines of all lists but maps all list ele-
ments to L, specifying static spines and dynamic elements. Let fs be
fcons (\x.x+1, fcons (\x.x+2, fnil ())), a list of functions that map static

values to static values and dynamic values to dynamic values, and let
(Tfsa K:fs) = gFI[fSII [] .

Then 7¢5 is Aa.ID and Kgg 18

(0, (A (0).(7" 07,0,
(0, A, 0)-(7" 0 7,0),
™))

where 7/ maps ID to ID and all other projections to BOT.

Let compose be defined as before. Here there is no guarantee that £ compose £s] is
the same as £F[\x.x+3] but in fact it is; EF[\x.x+3] [] is (Aa.ID, (7, ()).(7" o7,()))

where 7’ is defined as before.

Now let the the values of £s and x be in the first and second position of the environ-
ment, respectively, and let 7 be defined by

(1,()) = EF[compose fs x] (Aa.q, (Kts,())) -
Then 7 is the least element in its domain: it maps (FSPINE ID) ® ID to ID and all

other projections to BOT. Had fs been a list of functions each mapping all values

to static values, for example
fcons (\x.1, fcons (\x.2, fnil ())),

then 7 would map all projections greater than (FSPINE ID) @ BOT to ID and all
other projections to BOT.

6.4.1 Abstraction

The abstract projection domains SProj, are extended to all types T by
PS[T, #> T,] = P*[O] = |1| = {ID}.

Then SProj;,_yr, = |1.| = {ID,BOT}. The restriction of projection domains to
SProj induces abstract domains of projection transformers, just as at zero order;
abstract domains of F values, denoted SAbst at each type T; and an abstraction of

CHAPTER 6. HIGHER-ORDER ANALYSIS 192

the F expression semantics. From these abstract domains of F values we choose finite
subdomains FAbsy at each type T. First we extend FProj to function types by adding

the inference rule
BOT fproj (T, #>Tp) .
Then FProjr, 51, = SProjy es1,, and FProjp ¢, = SProjp _,q,.

Given type E, define the abstract domain of projection transformers FTran: to be
FProngl LN FProj;. Then FAbsy is FTrany X FAbsFy, where FAbsFy is the finite
abstract domain of values from 7 [T]. The domain FAbsFy is defined by a set of

inference rules; their definition is the same as that for strictness analysis.

Example. Just as in the lifted case the abstract domain FAbsF rynrsst 18 isomorphic
to FAbsF1n¢->1ns- The greatest abstract forward value safely abstracting all lists of
functions that map static arguments to static results is A(7, ()).(7, ()). Let the values

of £s and x be in the first and second positions of the environment, respectively, and
let 7 be defined by

(,0) = 8F|[compose fs x]l (Aa.a, (A(T7 ())(Ta ())’())) .

Then 7 maps (FSPINE ID) x ID to ID and all other projections to BOT. The
greatest abstract forward value safely abstracting all lists of functions that map all
arguments to static results is A(7, ()).(Aa.ID, ()); for 7 defined by

(,()) = & [compose s x] (Aa.a, (A(7,())-(Ae.ID,()),())) ,

the projection transformer 7 maps projections greater than (FSPINE ID) x BOT to
ID and all other projections to BOT. Both results are optimal.

Example. The projection domain FProjg,r.e, is isomorphic to FProjp..i1ree; the
elements are BOT, FBRANCH BOT, and FBRANCH ID, where

FBRANCH o = py.0u & (7 X7), -
Then FBRANCH ID is ID and FBRANCH BOT acts as the identity on the branch

nodes of all trees but maps all leaves to L. Again, just as in the lifted case, the
abstract domain FAbSFpyprree is isomorphic to FAbSF 1pt-s1ne- The greatest abstract
forward value safely abstracting all trees of functions that map static arguments to
static results is A(T,()).(7,()). Let the values of £s and x be in the first and second
positions of the environment, respectively, and let 7 be defined by

(r,()) = €[compose £s x] (A, (A(7,())-(7.()),())) -

CHAPTER 6. HIGHER-ORDER ANALYSIS 193

Then 7 maps (FBRANCH ID) x ID to ID and all other projections to BOT. The
greatest abstract forward value safely abstracting all trees of functions that map all
arguments to static results is A(7, ()).(Aa.ID,()); for 7 defined by

(7,()) = Ef[compose fs x] (Aae, (A(7,().(Ae-ID,()),()))

Then 7 maps projections greater than (FBRANCH ID) x BOT to ID and all other
projections to BOT. Just as for lists of functions, both results are optimal.

Example. We consider fac as previously defined. Analysis gives optimal results:
fac denotes a function that maps static arguments to static results and dynamic

arguments to dynamic results.

6.5 Termination Analysis

We need only define fiz". We take bot" to be the least FTA Aa.ABS of bot"+°, then
bot*e, boty, and bot- are correctly related to bot™s, bot;*, and botN:, respectively.
Then fiz* is defined by

fish f = Uipo wf* bot*
where wf z =z U (f z) .
Proposition 6.10

The semantic functions EV- and & are correctly related.
The proof is trivial. O

Just as at first order the result of fiz" may be improved by narrowing: every element of
the descending sequence {f* (fiz" f)} is correctly related to fiz" f. When the domains
are finite this sequence has a fixed point, which we take as the definition fiz" f when
working in the finite abstract domains. We conjecture that when the domains are
finite that the sequence {f* bot' | i > 0} reaches a fixed point; this would necessarily

be a better result than the result of narrowing.

Example. It is straightforward to show that zero-order analysis and the second
approach to first-order analysis is a special case of higher-order analysis; the key
fact is that application of lambda expressions (both \#x.e and \x.e) behaves like

substitution. A simple example is

E'\x:Int. 1] [] = Aa.LAM, X(7,()).(Aa-vup2 107, ()))
= (Qa.LAM, X7, ()-QAevugz 1,()) -

CHAPTER 6. HIGHER-ORDER ANALYSIS 194

This reveals that evaluation of \x:Int.1 terminates. When applied we have

gL|[(\X: Int. 1) Y]I [Y = (Aa'a7 ())] = (Aa'%iﬁz 1s ()) ’

which reveals that regardless of the argument application of \x:Int.1 always termi-

nates with value 1.

Example. Let fs be
fcons (\x.1, fcons (\x.2, fnil ())).
Let (T¢s, K2s) = EY[£5] [], s0
Tts = Ao . FCONS (LAM ® FCONS (LAM ® FNIL)) ,

Kes = ((), ()‘(7-7 ())'(-A--CV"Ylift2 ls())y
(0, (A, 0)-Qearige 2.0),
BOT'I'[[Intlist]))),
which shows that fs is head- and tail terminating.

Now let funfoldr be defined as before. Before narrowing we have

EY compose fs] [fs = (Aa.a,kss)]
= (Aa.LAM U ABS, X7,()).(Aavupe 1 U ABS, () ,

which fails to reveal that either funfoldr fs terminates or that funfoldr fs x
terminates for any value of x. Narrowing gives the expected value

(Aa. LAM, X(7,())-(Aayig2 15 ()))
so for the values of £fs and x in the first and second positions of the environment,
E'[compose fs x| (Ae.o, (Kss, ()
= (Aa-’)’uﬁ? 1 ()

after narrowing, showing that the result is certain to terminate with value 1.

6.5.1 Abstraction

The abstract domains are the same as those for strictness analysis. We consider

results in the finite domains after narrowing.

CHAPTER 6. HIGHER-ORDER ANALYSIS 195

Example. The abstract injection and projection operators for FunList are
innil* (1,()) = (innile 7, BOTY[Int -> Int]),
outnil' (1,k) = (outnil 7, (),

incons" (1, (ky1,k2)) = (incons*® 7, k1 U kKy) ,

L

outconst (1,k) = (outcons*® 1, (k,K)) .

Let £s be defined as before. Now

EYfnil O] (] = Qa.FNIL, X(1,()).(Aa.ABS,())) ,
80 for (Ts, kes) = EY[£s] [] we have

Tts = A . FINF LAM ,

kes = A, ()2 1D, () |

so termination and head-termination is determined, but nothing else, for example,

E compose fs x] [x = (Aa.a,())] is (Aa.ID,()), which tells nothing.

Analysis of treecomp gives similarly good results before abstraction and similarly
poor results after abstraction. The essence of the problem is that the least L value
BOT}[T] correctly related to the bottom N, value BOT;\'*[T]] is not L, that is, it
is not the identity for L. For recursive definitions this forced us to use a widening
operator, but we were able to improve the results by narrowing. It is not clear how

to improve results for recursive data types.

6.6 Summary and Related Work

We have successfully generalised the zero-order analysis techniques to higher order.
We briefly discuss related work.

6.6.1 Strictness analysis

Hughes’ technique. As mentioned, Hughes [Hug87a] suggested an approach to
higher-order backward strictness analysis using contexts. With the power of a great
deal of hindsight we can recast his non-standard semantic equations in terms of pro-
jections and suitably transform them to obtain a non-standard semantics that is
roughly parallel to ours, and specialises to Wadler and Hughes’ first-order technique.
This technique appears to be considerably weaker than ours (and therefore correct),
but when abstracted to our choice of finite domains would be incomparable to ours

because of the semantics of case expressions.

CHAPTER 6. HIGHER-ORDER ANALYSIS 196

PER-based analysis. Hunt [Hun90b, Hun91a, Hun91b] proposed a strictness anal-
ysis technique for monomorphic languages in which the basic non-standard values are
partial equivalence relations (PERs). A PER on a domain D is a binary relation on
D (a subset of D x D) that is transitive and symmetric; it is partial because it need
not be reflexive. For strictness analysis the abstract domain of PERs at each ‘base
type’ T (for illustration, type Int) is {BOT, ID, ALL}, where BOT [C ID C ALL and

AL = {(z,y) | z,y e T°[T]},
D = {(z,2) | z€ T3[T]},
BoT = {(L,1)}.

Following Hunt, given R we write v : R to mean (v,v) € R. Then, for example,
function f is strict if f : BOT — BOT, constant if f : ALL — ID, and the constant
bottom function if f : ALL — BOT; binary function f is strict in its first argument if
f : (BOT X ID) — BOT, ignores its first argument if f (ALL x ID) — ID, and so on.
(Here = and X are the standard operators on binary relations.)

Recall that a projection v determines an equivalence relation (which we will write as
just) in which the canonical representatives of the equivalence classes are the fixed
points of 7; two values are related if they are mapped to the same fixed point. Hunt
shows that yo f C fodiff f: v — §, and claims that PER-based analysis of functions
is therefore strictly more general the projection-based analysis.

A crucial fact is that if ¢ and R are PERs then so are @ x R and Q — R; this
does not hold for equivalence relations, or in particular those equivalence relations
defined by projections, for example BOT — ID is not an equivalence relation. As
Hunt shows this makes straightforward the definition of a compositional PER-based
higher-order program analysis technique: abstract function spaces are induced in the
straightforward way, for example, at type Int #> Int it is the set of monotonic maps
from {BOT, ID, ALL} to itself, and there is an interpretation of such functions as
PERs on 7°[Int #> Int]. Hunt’s technique is able to discover, for example, head
strictness.

It is far easier to compare PER-based and projection-based function analysis than
the corresponding program analysis techniques. Certainly a function f is determined
by the set of PERs of the form @ — R such that f : Q@ — R; domain lifting is not
required. Presumably the PER-based analysis semantics in the full spaces of PERs
determines the standard expression semantics, so before abstraction to finite domains
both approaches are in a sense equally powerful. Their relative power when abstracted
to particular finite domains is not clear but certainly warrants further investigation.

CHAPTER 6. HIGHER-ORDER ANALYSIS 197

6.6.2 Binding-time analysis

PER-based analysis. Hunt [Hun91b] and with Sands [HS91] shows how PER-
based analysis can be used for binding-time analysis. In [HS91] PERs have been
refined to complete PERs—those that relate L to L (strict) and are chain complete
(inductive). The abstract PER domain at each base type is {D,S} where s intuitively
indicates staticness and is equal to ALL, and D indicates dynamicness and is equal to
ID. Then, for example, function f maps static arguments to static resultsif f : s — 8,
dynamic arguments to dynamic results if f : D — D, and so on. The abstract list
domain constructor is the topping operation: given abstract list element domain P
the abstract list domain comprises the new top element D and values SPINE(P) for
all P € P. The PER SPINE(P) relates all finite, partial, and infinite lists of the
same length with corresponding elements related by P; intuitively SPINE(P) indicates
staticness in the spines of lists and staticness property P in all of the elements. At
both base types and list types these abstract domains are in 1-1 correspondence with

our abstract projection domains.

Hunt does not consider the staticness of functions or that functions can be evaluated,
that is, he considers only unlifted function spaces. It is a simple matter to extend his
treatment. We define the operator LIFT(:) on PERs to be the usual lifting operation on
binary relations, and abstract domain lifting is again topping: given abstract function
domain P the abstract lifted function domain comprises the new top element D and
elements LIFT(P) for all P € P. Intuitively D indicates that the constructor lam is
dynamic, and LIFT(P) indicates static functions that map their argument according
to P. Abstract application of LIFT(P) to Q yields P Q, and abstract application of D
to Q necessarily yields D.

Mogensen’s technique. Mogensen [Mog89] describes his technique as a higher-
order generalisation of Launchbury’s polymorphic binding-time analysis. Higher-
order functions are represented by abstract closures—symbolic representations of
functions which are manipulated algebraically. Approximation of recursively-defined
abstract closures is performed ‘on-the-fly’ according to time and space considerations.
The nature of these approximations is strongly dependent on the syntax of the cor-
responding function definitions, so non-standard values are not functions of standard
values, making precise comparison with our method difficult. Unlike our approach,
the abstract values of higher-order functions are their projection abstractions, where
projections on functions are operations that map (parts of) abstract closures to L.

We regard this as somewhat ‘quick and dirty’ since there is no formal notion of cor-

CHAPTER 6. HIGHER-ORDER ANALYSIS 198

rectness.

6.6.3 Termination analysis

There do not appear to be any termination analysis techniques comparable to ours.
Further, it is not clear how the PER-based approach might be adapted to termination

analysis.

Chapter 7

Conclusion

We conclude with a summary of the contributions of this thesis and some directions

for future work.

7.1 Summary

The presentations of the first projection-based program analysis techniques—Wadler
and Hughes’ for strictness analysis, Launchbury’s for binding-time analysis——showéd
very promising results but gave little indication of the potential power of projection-
based analysis, or how close to ideal their techniques are. To lessen this deficiency,
in our treatment we started by considering the intrinsic power of projection-based
analysis of functions (rather than programs) in order to give some bounds on what
could be possibly achieved by projection-based program analysis. We showed that a
function is determined by a single forward or backward strictness abstraction, hence
that it might be possible to define projection-based analysis semantics that determine
the standard semantics, that is, lose no information given by the standard semantics.

We also showed that termination properties may be captured with projections.

Before abstraction to finite projection domains, the first-order strictness-analysis se-
mantics yields best non-standard values and determines the standard semantics, real-
ising the potential suggested above. When restricted to the finite projection domains
used by Wadler and Hughes [WHS87] our technique, unlike theirs, is able to detect
joint strictness properties. Nonetheless, in certain cases their technique yields results
better than ours; we showed how the strengths of both techniques could be combined

to yield a technique strictly better than either.

Our first-order binding-time analysis technique is essentially the same as Launchbury’s

monomorphic technique [Lau9lal.

199

CHAPTER 7. CONCLUSION 200

While our first-order termination analysis technique is not as strong as might be
hoped, it appears to serendipitously lose information that could not reasonably be
expected to be exploited by a compiler, yielding only information that could. It is able
to capture potentially useful information, such as head termination, never captured

before.

All three techniques were generalised to higher order; their merits read the same as
those for the first-order techniques. They are the first formally-based higher-order
projection-based techniques, Hughes’ [Hug87a] and Mogensen’s [Mog89] being the

notable earlier attempts.

We assiduously avoided an ad hoc approach to the development of the analysis seman-
tics; we have striven for a general and uniform approach. The benefits of this approach
are more than aesthetic: the correctness conditions are in some sense parallel and the
analysis semantics are essentially derived from the correctness conditions. More, the
higher-order correctness conditions and analysis semantics are parameterised by their
first-order counterparts in such a way that, once the parameterised semantics were
defined, the three higher-order correctness conditions and analysis semantics came

almost for free.

The correctness conditions for the higher-order analyses take the form of recursivefy-
defined predicates. While the underlying theory of recursively-defined predicates was
developed by Milne and Strachey [MS76], their presentation is considered rough going
and is cast in terms of a universal domain. We have recast their theory in terms of
domains constructed from primitive domains (following Schmidt [Sch86]) yielding, we

believe, a more comprehensible presentation.

7.2 Loose Ends

Before mentioning some general areas for future work we summarise some loose ends
that could reasonably be developed in a continuation of thi$ work.

Our use of unboxed function and product types was simply to give a more uniform
development, and did not involve the unpointed domains arising from a general treat-
ment of unboxed types [PJL91]. A proper treatment would be a useful generalisa.tioh
since they may be used explicitly by programs, or implicitly by the compiler (for
example, when ordinary (boxed) integers are used in Glasgow Haskell). We have
given some indications that such a generalisation would be straightforward, in par-

ticular for strictness analysis: where relevant in Chapter 3 we considered the analysis

CHAPTER 7. CONCLUSION 201

of strict bottom-reflecting functions rather than just the special case of functions
fLel, ® Vi where U and V are (pointed) domains.

For backward strictness analysis the treatment of case expressions could be explored
further. This was pursued with positive results at first order, with the suggestion that
further exploration might be worthwhile. Short of that, a worthwhile improvement
would be the modification of the semantics of case expressions at higher order (as
was done at first order) to improve the results of analysis in the finite domains; this

is discussed further in the next section.

7.3 Polymorphism

The chief deficiency of our entire approach is the inability to handle polymorphism;
for our analysis techniques to be genuinely useful this problem must be overcome.

Following we suggest a possible approach.

Hughes’ early work on the abstract interpretation of first-order polymorphic functions
[Hug89] has since been developed in two directions. The first is Hughes and Launch-
bury’s [HL92a] polymorphic projection-based backward strictness analysis technique
and Launchbury’s [Lau91a] polymorphic projection-based forward binding-time anal-
ysis technique. The second is Hughes and Baraki’s generalisation to abstract interpre-
tation of higher-order polymorphic functions [BH90, Bar91, Bar93]. Recalling that
the values arising from our analysis techniques consist of a projection abstraction of a
first-order function, and a function (or tuple of functions) from a lattice to a lattice,
we conjecture that the two developments could be combined: Hughes and Launclh-
bury’s theory to handle polymorphism in the projection abstractions, and Baraki’s

to handle polymorphism in the forward components.

One possible source of difficulty in this approach is the presence of CHOOSE since it
is defined in terms of type structure (Section 6.1.2). One way around this would be
to find a definition for CHOOSE that does not depend on the type. For backward
strictness analysis it appears that CH OOSEtB defined by

CHOOSEZ[T] (7o,K1,...,kn) = K1 U... Uk,

is safe, in the sense that it is correctly related to CH OOSE?‘*[[T]], and hence would
yield a correct analysis semantics. (And similarly for termination analysis; for
binding-time analysis M replaces U.) This is also interesting because such a definition

is needed to allow the improvement for case expressions suggested in Section 6.3.4.

CHAPTER 7. CONCLUSION 202

Further, Hughes’ approach to higher-order backward analysis [Hug87a] depends on

the correctness of essentially the same definition.

On a more modest scale, we conjecture that the generalisation of our first-order
termination analysis technique to polymorphism would be straightforward using the

theory developed by Hughes and Launchbury.

7.4 Implementation

As is often the case with non-standard interpretation, implementation is problematic
at higher order because the domains associated with higher-order types become very

large, so that the time and space costs of analysis become prohibitive.

Conceptually, implementation of our techniques is feasible. As previously mentioned,
we have implemented a prototype monomorphic first-order backward strictness anal-
yser, Kubiak has implemented a polymorphic analyser for a first-order subset of the
Haskell Core language, and Launchbury has implemented both monomorphic and
polymorphic versions of a first-order binding-time analyser. There are two indica-
tions that if our analysis techniques could be generalised to polymorphism in the
manner suggested then implementation would be less problematic: first, Launch-
bury reported that implementing the polymorphic version was actually simpler than
the monomorphic one [Lau89]; sécond, Baraki’s theory allows the implementation
of a higher-order strictness analyser to be vastly more efficient than a comparable

monomorphic analyser, as demonstrated by Seward [Sew93].

Although there is no formal argument for the correctness of Mogensen’s [Mog89] im-
plementation of a higher-order generalisation of Launchbury’s polymorphic analyser,
it appears to produce correct results and to run acceptably fast; adapting his ap-
proach to strictness analysis and termination analysis might give practical, if rather

quick and dirty, analysers.

7.5 Other Applications of the General Approach

Taking a step back, we believe that there is much wider scope for our general approach

to promoting first-order analysis techniques to higher order. We give two examples.

We considered forward strictness abstraction of both lifted and unlifted functions, but
corresponding semantics for program analysis were developed only with respect to the

unlifted case; this was appropriate for binding-time analysis. It is clear that giving

CHAPTER 7. CONCLUSION 203

the corresponding analysis semantics for the lifted case would yield semantics suitable
for forward strictness analysis; it would be worthwhile to develop these techniques for

comparison with the backward techniques.

It seems clear that we could also promote first-order BHA strictness and termination
analysis techniques to higher order in our framework; except for fiz (which would be
least fixed point) we would get for free analysis techniques essentially the same as
the higher-order BHA techniques. It is interesting to consider why this works: the
answer seems to be that the corresponding higher-order correctness conditions would
be, in essence, instances of the logical relations Abramsky used to so concisely prove
correctness of higher-order BHA analysis [Abr90]. This is also interesting because the
generalisation of such a technique to polymorphism using Baraki’s theory would be a
natural stepping-stone to the more complex problem for higher-order projection-based

analysis.

7.6 Projections for Program Analysis

Both our work and others’ has shown the use of projections to be a powerful tool for
program analysis. Our work is neither the beginning of the story—which is properly
credited to Hughes, Wadler, and Launchbury—nor hopefully the end—there remains
much to do. We have contributed, we believe, significant forward steps on three
fronts: by providing results on the intrinsic power of projection-based analysis; by
generalising, strengthening, and making more efficient existing techniques; and by
extending the scope of projection-based program analysis by giving projection-based
termination analysis techniques. We look forward to the day when such techniques are

usefully employed in compilers and partial evaluators for lazy functional languages.

Bibliography

[Abr85]

[Abr89]

[Abr90]

[AH87D]

[AJ91]

[ASUS6]

[Aug84]

[AJ89]

[BHO0]

S. Abramsky. Strictness analysis and polymorphic invariance. Proceedings
of the Workshop on Programs a Data Objects (Copenhagen). H. Ganzinger
and N. Jones, eds. LNCS 217. Springer-Verlag, 1985.

S. Abramsky. The lazy lambda calculus. In D.A. Turner, ed. Research Top-
ics in Functional Programming. Addison-Wesley, 1989.

S. Abramsky. Abstract interpretation, logical relations and Kan extensions.
Journal of Logic and Computation, 1, 1990.

S. Abramsky and C. Hankin. An introduction to abstract interpretation.
Chapter 1 of S. Abramsky and C. Hankin, eds. Abstract Interpretation of
Declarative Languages. Ellis-Horwood, 1987.

S. Abramsky and T. Jensen. A relational approach to strictness analysis for
higher-order polymorphic functions. Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL ’91). ACM Press, 1991.

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers—Principles, Techniques,
and Tools. Addison-Wesley, 1986.

L. Augustsson. A compiler for Lazy ML. Proceedings of the ACM Confer-
ence on Lisp and Functional Programming (Lisp and FP ’84). ACM Press,
1984.

L. Augustsson and T. Johnson. The Chalmers Lazy ML compiler. Computer
Journal, Special Issue on Lazy Functional Programming, 32(2), 1989.

G. Baraki and J. Hughes. Abstract interpretation of polymorphic func-
tions. In K. Davis and J. Hughes, eds. Functional Programming, Glasgow
1989: Proceedings of the 1989 Glasgow Workshop on Functional Program-
ming, 21-23 August 1989, Fraserburgh, Scotland. Springer Workshops in
Computing. Springer-Verlag, 1990.

204

Bibliography 205

[Bar91]

[Bar93]

[Bar90]

[Ber78]

[Bon89]

[BJ+89]

[BDY1]

[Bur87al

[Bur87b]

[Bur90a]

[Bur90b]

G. Baraki. A note on abstract interpretation of polymorphic functions.
In J. Hughes, ed. Proceedings of the ACM Conference on Functional Pro-
gramming Languages and Computer Architecture (FPCA ’91). LNCS 523,
Springer-Verlag, 1991.

G. Baraki. Abstract Interpretation of Polymorphic Higher-Order Functions.
Ph.D. thesis, Research report FP-1993-7, Department of Computing Sci-
ence, University of Glasgow, 1993. '

H. Barendregt. Functional Programming and Lambda Calculus. Chapter 7
of J. van Leeuwen, ed. Handbook of Theoretical Computer Science, Vol. B
Elsevier Science Publishers B.V.,; Amsterdam, 1990.

G. Berry. Stable models of typed lambda-calculi. Proceedings of the 5th
ICALP. LNCS 62. Springer-Verlag, 1978.

A. Bondorf. Binding-time analysis for polymorphically typed higher order
languages. International Joint Conference on Theory and Practice of Soft-
ware Development, J. Diaz and F. Orejas, eds. LNCS 352. Springer-Verlag,
1989. '

A. Bondorf, N.D. Jones, T. Mogensen, P. Sestoff. Binding-time analysis and
the taming of self-application. (Appeared as DIKU tech report in 1988.)

A. Bondorf and O. Danvy. Automatic autoprojection of recursive equa-
tions with global variables and abstract data types. Science of Computer
Programming. North Holland, 1991.

G.L. Burn. Evaluation transformers—A model for the parallel evaluation
of functional languages. Proceedings of the ACM Conference on Functional
Programming Languages and Computer Architecture (FPCA ’87). LNCS
274. Springer-Verlag, 1987.

G.L. Burn. Abstract Interpretation and the Parallel Evaluation of Func-
tional Languages, Ph.D. thesis, Department of Computing, Imperial Col-
lege, London, March 1987.

G.L. Burn. Using projection analysis in compiling lazy functional programs.
Proceedings of the ACM Conference on Lisp and Functional Programming
(Lisp and FP ’90). ACM Press, 1990.

G.L. Burn. Strictness is not needed in order to evaluate arguments strictly.

Posting to comp.lang.functional newsgroup, 1990.

Bibliography 206

[Bur90c]

[Bur91la]

[Bur91b)

[Bur9lc]

[Bur92]

[BHY1]

[BM92]

[BHASG6]

[Con88|

[Con90]

[Con93]

G.L. Burn. A relationship between abstract interpretation and projection

analysis. Proceedings of the ACM Symposium on Principles of Programming
Languages (POPL ’90). ACM Press, 1990.

G.L. Burn. Implementing the evaluation transformer model of reduction on

parallel machines. Journal of Functional Programming, 1(2), April 1991,
CUP, 1991.

G.L. Burn. Lazy Functional Languages: Abstract Interpretation and Com-
pilation. Pitman, 1991.

G.L. Burn. The evaluation transformer model of reduction and its correct-
ness. TAPSOFT '91.

G. Burn. The abstract interpretation of higher-order functional languages:
From properties to abstract domains. In P. Wadler et al., eds. Functional
Programming, Glasgow 1991: Proceedings of the 1991 Glasgow Workshop
on Functional Programming, 13-15 August 1991, Isle of Skye, Scotland.
Springer Workshops in Computing. Springer-Verlag, 1992.

G. Burn and S. Hunt. Relating projection- and abstract interpretation-
based analyses. Draft manuscript, Department of Computing, Imperial Col-
lege, London, July 1991.

G. Burn and D. Le Métayer. Proving the correctness of compiler optimisa-
tions based on strictness analysis.

G. Burn, C. Hankin, and S. Abramsky. The theory of strictness analysis
for higher-order functions. Proceedings of the Workshop on Programs as
Data Objects (Copenhagen). H. Ganzinger and N. Jones, eds. LNCS 217.
Springer-Verlag, 1986.

C. Consel. New insights into partial evaluation: The SCHISM experiment.
European Symposium on Programming (ESOP ’88), LNCS 300. Springer-
Verlag, 1988.

C. Consel. Binding time analysis for higher order untyped functional lan-

guages. Proceedings of the ACM Conference on Lisp and Functional Pro-
gramming (Lisp and FP ’90), ACM Press, 1990.

C. Consel. A tour of Schism: A partial evaluation system for higher-order
applicative languages. Proceedings of the ACM Symposium on Partial Eval-

Bibliography 207

[CCo1]

[Cur86]

[DPYO]

[Dav89]

[DH90]

[DW90]

[DWO1]

[Dav92]

[Dav93a]

uation and Semantics-Based Program Manipulation (PEPM ’93), ACM
Press, 1993.

P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation (preliminary draft).
LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, France, May 15, 1991.

P-L. Curien. Categorical Combinators, Sequential Algorithms and Func-
tional Programming, Research Notes in Theoretical Computer Science, Pit-
man, 1986.

B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 1990.

K. Davis. Second year Ph.D. progress report, Computing Science Depart-
ment, University of Glasgow, 1989.

K. Davis and J. Hughes, eds. Functional Programming, Glasgow 1989: Pro-
ceedings of the 1989 Glasgow Workshop on Functional Programming, 21-
23 August 1989, Fraserburgh, Scotland. Springer Workshops in Computing.
Springer-Verlag, 1990.

K. Davis and P. Wadler. Strictness analysis: Proved and improved. In K.
Davis and J. Hughes, eds. Functional Programming, Glasgow 1989: Pro-
ceedings of the 1989 Glasgow Workshop on Functional Programming, 21-
23 August 1989, Fraserburgh, Scotland. Springer Workshops in Computing.
Springer-Verlag, 1990.

K. Davis and P. Wadler. Strictness analysis in 4D. In S.L. Peyton Jones et
al., eds. Functional Programming, Glasgow 1990: Proceedings of the 1990
Glasgow Workshop on Functional Programming, 13-15 August 1990, Ul-
lapool, Scotland. Springer Workshops in Computing. Springer-Verlag, 1991.

K. Davis. A note on the choice of domains for projection-based program
analysis. In P. Wadler et al., eds. Functional Programming, Glasgow 1991:
Proceedings of the 1991 Glasgow Workshop on Functional Programming,
13-15 August 1991, Isle of Skye, Scotland. Springer Workshops in Comput-
ing. Springer-Verlag, 1992.

K. Davis. Analysing functions by projection-based backward abstraction.
Functional Programming, Glasgow 1992: Proceedings of the 1992 Glas-

Bibliography 208

[Dav93b)

[Dav94]

[Dyb87]

[VE+93]

[Fai85]

[FWS6]

[BF93]

[Go92]

[GJ91]

gow Workshop on Functional Programming, 6-8 July 1992, Ayr, Scotland.
Springer Workshops in Computing. Springer-Verlag, 1993.

K. Davis. Higher-order binding-time analysis. Proceedings of the ACM Sym-

posium on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM ’93), ACM Press, 1993. ‘

K. Davis. Projection-based termination analysis. In K. Hammond and J.
O’Donnell, eds. Functional Programming, Glasgow 1993: Proceedings of the
1993 Glasgow Workshop on Functional Programming, 5-7 July 1993, Ayr,
Scotland. Springer Workshops in Computing, Springer-Verlag, 1994.

P. Dybjer. Inverse image analysis generalises strictness analysis. Proceedings
of the 14th ICALP (Karlsruhe, July 1987). LNCS 267, Springer-Verlag,
1987.

M. van Eekelen, E. Goubault, C. Hankin, E. Nocker. Abstract reduction:
towards a theory via abstract interpretation. Term Graph Rewriting Theory
and Practice, R. Sleep, M. Plasmeijer, M. van Eekelen, eds. John Wiley &
Sons, 1993.

J. Fairbairn. Removing redundant laziness from super-combinators. Pro-
ceedings of the Workshop on Implementation of Functional Languages (As-
pends, Sweden). Report 17, Programming Methodology Group, Depart-
ment of Computer Sciences, Chalmers University of Technology and Uni-
versity of Goteborg, Goteborg, Sweden, 1985.

J. Fairbairn and S. Wray. Code generation techniques for functional lan-
guages. Proceedings of the ACM Conference on Lisp and Functional Pro-
gramming (Lisp and FP ’86). ACM Press, 1986.

S. Finne and G. Burn. Assessing the evaluation transformer model of re-
duction on the Spineless G-Machine. Proceedings of the ACM Conference
on Functional Programming Languages and Computer Architecture (FPCA
’93). ACM Press, 1993.

C.K. Gomard. A self-applicable partial evaluator for the lambda calculus:
Correctness and pragmatics. ACM TOPLAS 14(2), April 1992.

C.K. Gomard and N.D. Jones. A partial evaluator for the untyped lambda-
calculus. Journal of Functional Programming 1 (1), January 1991, CUP,
1991.

Bibliography 209

[GS90]

[HW87]

[Hal94]

[Har91]

[Hol83]

[Hol91]

[HB94]

[HPW92]

[Hug85]

[Hug87a]

C.A. Gunter and D.A. Scott. Semantic Domains. Chapter 11 of J. van
Leeuwen, ed. Handbook of Theoretical Computer Science, Vol. B Elsevier
Science Publishers B.V., Amsterdam, 1990.

C.V. Hall and D.S. Wise. Compiling strictness into streams. Proceedings
of the ACM Symposium on Principles of Programming Languages (POPL
’87). ACM Press, 1987.

C. Hall. Using strictness analysis in practice for data structures. In K.
Hammond and J. O’Donnell, eds. Functional Programming, Glasgow 1993:
Proceedings of the 1993 Glasgow Workshop on Functional Programming,
5-7 July 1993, Ayr, Scotland. Springer Workshops in Computing, Springer-
Verlag, 1994.

P.H. Hartel. On the benefits of different analyses in the compilation of lazy
functional languages. 8rd Informal International Workshop on the Parallel
Implementation of Functional Languages, Southampton, 1991.

S. Holmstrom. A Flexible Type System. Report 8, Programming Method-
ology Group. Institutionen for Informationsbehandling, Chalmers Tekniska
Hogskola, Goteborg, Sweden, 1983.

C. Holst. Finiteness analysis. In J. Hughes, ed. Proceedings of the ACM
Conference on Functional Programming Languages and Computer Archi-
tecture (FPCA ’91). LNCS 523, Springer-Verlag, 1991.

D.B. Howe and G.L. Burn. Using strictness in the STG machine. In K.
Hammond and J. O’Donnell, eds. Functional Programming, Glasgow 1993:
Proceedings of the 1993 Glasgow Workshop on Functional Programming,
5-7 July 1993, Ayr, Scotland. Springer Workshops in Computing, Springer-
Verlag, 1994.

P. Hudak, S.L. Peyton Jones, and P. Wadler, eds. Report on the program-
ming language Haskell. ACM SIGPLAN Notices 27(5), May 1992.

R.J.M. Hughes. Strictness detection in non-flat domains. Proceedings of the

Workshop on Programs a Data Objects (Copenhagen). H. Ganzinger and
N. Jones, eds. LNCS 217. Springer-Verlag, 1985

R.J.M. Hughes. Backwards analysis of functional programs. In D. Bjgrner,
A.P. Ershov, and N.D. Jones, eds. Partial Evaluation and Mized Com-

Bibliography 210

[Hug87b]

[Hug89]

[Hug89)]

[HL91]

[HL92a]

[HL92b]

[HL92¢]

[Hun90a]

[Hun90b]

[Hun91a]

putation, Proceedings IFIP TC2 Workshop, Gammel Avernes, Denmark,
October 1987. North-Holland, 1988.

R.J.M. Hughes. Analysing strictness by abstract interpretation of continua-
tions. Chapter 4 of S. Abramsky and C. Hankin, eds. Abstract Interpretation
of Declarative Languages. Ellis-Horwood, 1987.

R.J.M. Hughes. Abstract interpretation of first-order polymorphic func-
tions. Functional Programming, Glasgow 1988: Proceedings of the 1988

Glasgow Workshop on Functional Programming, Research report 89/R4,
University of Glasgow, 1989.

R.J.M. Hughes. Compile-time analysis of functional programs. In D.A.
Turner, ed. Research Topics in Functional Programming. Addison-Wesley,
1989.

R.J.M. Hughes and J. Launchbury. Towards relating forwards and back-
wards analyses. In S.L.. Peyton Jones et al., eds. Functional Programming,
Glasgow 1990: Proceedings of the 1990 Glasgow Workshop on Functional
Programming, 13-15 August 1990, Ullapool, Scotland. Springer Workshops
in Computing. Springer-Verlag, 1991.

R.J.M. Hughes and J. Launchbury. Projections for polymorphic first-order
strictness analysis. Math. Struct. in Comp. Science, Vol. 2, CUP, 1992.

R.J.M. Hughes and J. Launchbury. Reversing abstract interpretation. Eu-
ropean Symposium on Programming (ESOP ’92), Springer-Verlag, 1992.

R.J.M. Hughes and J. Launchbury. Relational reversal of abstract interpre-
tation. J. Logic Comput. 2(4), OUP, 1992.

S. Hunt. Projection analysis and stable functions. Draft manuscript, De-
partment of Computing, Imperial College, London, 1990.

S. Hunt. PERs generalise projections for strictness analysis. Technical re-

port DOC 90/14, Department of Computing, Imperial College, London,
1990. |

S. Hunt. PERs generalise projections for strictness analysis (extended ab-
stract). In S.L. Peyton Jones et al., eds. Functional Programming, Glasgow
1990: Proceedings of the 1990 Glasgow Workshop on Functional Program-
ming, 13-15 August 1990, Ullapool, Scotland. Springer Workshops in Com-
puting. Springer-Verlag, 1991.

Bibliography 211

[Hun91b] S. Hunt. Abstract Interpretation of Functional Languages: From Theory to

[HS91]

[Jen91]

[Jen92]

[Joh81]

[Joh87]

[Jon88|

[JSS85]

[1GS93]

[IM89]

[Kam92]

Practice. Ph.D. thesis, Department of Computing, Imperial College, Lon-
don, 1991.

S. Hunt and D. Sands. Binding time analysis: a new PERspective. Proceed-
ings of the ACM Symposium on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM ’91), ACM SIGPLAN Notices 26(9), 1991.

T. Jensen. Strictness analysis in logical form. In J. Hughes, ed. Proceed-
ings of the ACM Conference on Functional Programming Languages and
Computer Architecture (FPCA ’91). LNCS 523, Springer-Verlag, 1991.

T. Jensen. Abstract Interpretation in Logical Form. Ph.D. thesis, Report
93/11, Department of Computer Science, University of Copenhagen, 1992.

T. Johnsson. Detecting when call-by-value can be used instead of call-by-
need. Programming Methodology Group Memo PMG-14, Institutionen for

Informationsbehandling, Chalmers Tekniska Hogskola, Goteborg, Sweden,
1981.

T. Johnsson. Attribute grammars as a functional programming paradigm.
Proceedings of the ACM Conference on Functional Programming Languages
and Computer Architecture (FPCA ’87). LNCS 274. Springer-Verlag, 1987.

N.D. Jones. Automatic program specialization: A re-examination from ba-
sic principles. In D. Bjgrner, A.P. Ershov, and N.D. Jones, eds. Partial Eval-
uation and Mized Computation, Proceedings IFIP TC2 Workshop, Gammel
Avernes, Denmark, October 1987. North-Holland, 1988.

N.D. Jones, P. Sestoff, H. Sondergaard. An experiment in partial evalu-

ation: the generation of a compiler generator. Rewriting Techniques and
Applications, LNCS 202, Springer-Verlag, 1985.

N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Auto-

matic Program Generation. Prentice Hall International, 1993.

S.B. Jones and D. Le Métayer. Compile-time garbage collection by sharing
analysis. Proceedings of the ACM Conference on Functional Programming
Languages and Computer Architecture (FPCA ’89). ACM Press, 1989.

S. Kamin. Head strictness is not monotonic abstract property. Information
Processing Letters, North Holland, 1992.

Bibliography 212

[KL94]

[KHL92]

[KMS89)]

[Lau88)

[Lau89]

[Lau90al

[Lau90b)

[Lau9la]

[Lau91b]

D. King and J. Launchbury, Functional graph algorithms with depth-first
search. In K. Hammond and J. O’Donnell, eds. Functional Programming,
Glasgow 1993: Proceedings of the 1993 Glasgow Workshop on Functional
Programming, 5-7 July 1993, Ayr, Scotland. Springer Workshops in Com-
puting, Springer-Verlag, 1994.

R. Kubiak, J. Hughes, and J. Launchbury. Implementing projection-based
strictness analysis. Departmental Research Report 1992/R3, Department
of Computing Science, University of Glasgow, 1992.

T-M. Kuo and P. Mishra. Strictness analysis: A new perspective based
on type inference. Proceedings of the ACM Conference on Functional Pro-
gramming Languages and Computer Architecture (FPCA ’89). ACM Press,
1989.

J. Launchbury. Projections for specialisation. In D. Bjgrner, A.P. Ershov,
and N.D. Jones, eds. Partial Evaluation and Mized Computation, Pro-
ceedings IFIP TC2 Workshop, Gammel Avernes, Denmark, October 1987.
North-Holland, 1988.

J. Launchbury. Private communication.

J. Launchbury. Strictness analysis aids inductive proofs. Information Pro-
cessing Letters 35, North Holland, 1990.

J. Launchbury. Dependent sums express separation of binding times. In K.
Davis and J. Hughes, eds. Functional Programming, Glasgow 1989: Pro-
ceedings of the 1989 Glasgow Workshop on Functional Programming, 21-
23 August 1989, Fraserburgh, Scotland. Springer Workshops in Computing.
Springer-Verlag, 1990.

J. Launchbury. Projection Factorisations in Partial Evaluation, Ph.D. the-
sis, Research report CSC 90/R2, Department of Computing Science, Uni-
versity of Glasgow, 1989. Distinguished Dissertations in Computer Science,
Vol. 1, CUP, 1991.

J. Launchbury. Strictness and binding-time analyses: Two for the price of
one, Proceedings of the ACM Conference on Programming Language Design
and Implementation (PLDI ’91), ACM Press, 1991.

Bibliography 213

[Lau93]

[Les89]

[LMO91]

[Mat94]

[MS76]

[Mil78}

[Mog88]

[Mog89]

[Myc81]

[NM92]

J. Launchbury. A natural semantics for lazy evaluation. Proceedings of the
ACM Symposium on Principles of Programming Languages (POPL ’93).
ACM Press, 1993.

D. Lester. Combinator Graph Reduction: A Congruence and its Appli-
cations. D.Phil thesis, Technical Monograph PRG 73, Oxford University
Computing Laboratory, Programming Research Group, Oxford University,
1989.

A. Leung and P. Mishra. Reasoning about simple and exhaustive demand
in higher-order lazy languages. In J. Hughes, ed. Proceedings of the ACM
Conference on Functional Programming Languages and Computer Archi-
tecture (FPCA ’91). LNCS 523, Springer-Verlag, 1991.

J. Mattson. Local speculative evaluation for distributed graph reduction.
In K. Hammond and J. O’Donnell, eds. Functional Programming, Glasgow
1993: Proceedings of the 1993 Glasgow Workshop on Functional Program-
ming, 5-7 July 1993, Ayr, Scotland. Springer Workshops in Computing,
Springer-Verlag, 1994. '

R. Milne and C. Strachey. A Theory of Programming Language Semantics.
Chapman and Hall, 1976.

R. Milner. A theory of type polymorphism in programming. J. Comput.
Syst. Sci. 17, pages 348-375, 1978.

T. Mogensen. Partially static structures in a self-applicable partial evalu-
ator. In D. Bjgrner, A.P. Ershov, and N.D. Jones, eds. Partial Evaluation
and Mized Computation, Proceedings IFIP TC2 Workshop, Gammel Av-
ernes, Denmark, October 1987. North-Holland, 1988.

T. Mogensen. Binding-time analysis for polymorphically typed higher order
languages. International Joint Conference on Theory and Practice of Soft-

ware Development, J. Diaz and F. Orejas, eds. LNCS 352. Springer-Verlag,
1989. |

A. Mycroft. Abstract Interpretation and Optimising Transformations for
Applicative Programs. Ph.D. thesis, University of Edinburgh, 1981.

M. Neuberger and P. Mishra. A precise relationship between the deductive

power of forward and backward strictness analysis. Proceedings of the ACM

Bibliography 214

[Nie89]

[NN88a]

[NN88b]

[NN8Y]

[NNO1]

[NN92]

[N6c93]

[NS+91]

[Ong88]

[PJ87]

[PILO1]

Conference on Lisp and Functional Programming (Lisp and FP ’92). ACM
Press, 1992.

F. Nielson. Two-level semantics and abstract interpretation. Theoretical
Computer Science 69, pages 117-242. North-Holland, 1989.

H.R. Nielson and F. Nielson. Automatic binding-time analysis for a typed
A-calculus. Science of Computer Programming 10, North Holland, 1988.

H.R. Nielson and F. Nielson. Automatic binding-time analysis for a typed
A-calculus (Extended abstract). Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL ’88). ACM Press, 1988.

H.R. Nielson and F. Nielson. Transformations on higher-order functions.

Proceedings of the ACM Conference on Functional Programming Languages
and Computer Architecture (FPCA ’89). ACM Press, 1989.

H.R. Nielson and F. Nielson. Bounded fixed point iteration. Report
DAIMI PB-359, Computer Science Department, Aarhus University, Ny
Munkegade, Building 540, DK-8000 Aarhus C, Denmark, July 1991.

F. Nielson and H.R. Nielson. Two-Level Functional Languages. Cambridge
Tracts in Theoretical Computer Science, Vol. 34, Cambridge University
Press, New York, 1992.

E. Nocker. Strictness analysis using abstract reduction. Proceedings of the

ACM Conference on Functional Programming Languages and Computer

Architecture (FPCA ’93). ACM Press, 1993.

E. Nocker, J. Smesters, M. van Eekelen, and M. Plasmeijer. Concurrent
Clean. Parallel Architectures and Languages Europe (PARLE 19), LNCS
506, Springer-Verlag, 1991.

C.-H.L. Ong. The Lazy Lambda Calculus: An Investigation in the Founda-

tions of Functional Programming, Ph.D. thesis, Imperial College, London,
1988.

S.L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice-Hall International (UK) Ltd., London, 1987.

S.L. Peyton Jones and J. Launchbury. Unboxed values as first class citizens

in a non-strict functional language. In J. Hughes, ed. Proceedings bf the

Bibliography 215

[PJL92]

[PIP94]

[San90a]

[San90b]

[San90c]

[Sch86]

[Sch88]

[Sco76]

[Sew94]

ACM Conference on Functional Programming Languages and Computer
Architecture (FPCA ’91). LNCS 523, Springer-Verlag, 1991.

S.L. Peyton Jones and D. Lester. Implementing Functional Languages.
Prentice Hall International (UK) Ltd., London, 1992.

S.L. Peyton Jones and W. Partain. Measuring the effectiveness of a sim-
ple strictness analyser. In K. Hammond and J. O’Donnell, eds. Functional
Programming, Glasgow 1993: Proceedings of the 1993 Glasgow Workshop
on Functional Programming, 5-7 July 1993, Ayr, Scotland. Springer Work-
shops in Computing, Springer-Verlag, 1994.

D. Sands. Complexity analysis for a lazy higher-order language. In K. Davis
and J. Hughes, eds. Functional Programming, Glasgow 1989: Proceedings
of the 1989 Glasgow Workshop on Functional Programming, 21-23 August
1989, Fraserburgh, Scotland. Springer Workshops in Computing. Springer-
Verlag, 1990.

D. Sands. Complexity analysis for a lazy higher-order language. Proceedings
of the Third European Symposium on Programming. LNCS 432. Springer-
Verlag, 1990.

D. Sands. Calculi for Time Analysis of Functional Programs. Ph.D. thesis,
Department of Computing, Imperial College, London, September 1990.

D.A. Schmidt. Denotational Semantics. Allyn and Bacon, Inc., Newton,
Massachussetts, 1986.

D.A. Schmidt. Static properties of partial reduction. In D. Bjgrner, A.P.
Ershov, and N.D. Jones, eds. Partial Evaluation and Mized Computation,
Proceedings IFIP TC2 Workshop, Gammel Avernes, Denmark, October
1987. North-Holland, 1988.

D.S. Scott. Data types as lattices. SIAM Journal of Computing 5, 1976.

J. Seward. Solving recursive domain equations by term rewriting. In K.
Hammond and J. O’Donnell, eds. Functional Programming, Glasgow 1993:
Proceedings of the 1993 Glasgow Workshop on Functional Programming,
5-7 July 1993, Ayr, Scotland. Springer Workshops in Computing, Springer-
Verlag, 1994.

Bibliography ' 216

[Sew93]

[SN+91]

[Sto77]

[Sto82]

[Tur8s)

[Tur86]

[Wads5]

[Wad87]

[Wad88]

[Wad90]

[WHS7]

J. Seward. Polymorphic strictness analysis using frontiers. Proceedings of
the ACM Symposium on Partial Fvaluation and Semantics-Based Program
Manipulation (PEPM ’93), ACM Press, 1993.

S. Smesters, E. Nocker, J. van Groningen, and R. Plasmeijer. Generating
efficient code for lazy functional languages. In J. Hughes, ed. Proceedings of
the ACM Conference on Functional Programming Languages and Computer

Architecture (FPCA ’91). LNCS 523, Springer-Verlag, 1991.

J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. The MIT Press, Cambridge, Massachusetts,
1977.

J.E. Stoy. Some mathematical aspects of functional programming. Func-
tional Programming and its Applications. J. Darlington, P. Henderson, and
D.A. Turner, eds. Cambridge University Press, 1982.

D.A. Turner. Miranda: A non-strict functional language with polymorphic
types. LNCS 201, Springer-Verlag, 1985.

D.A. Turner. An overview of Miranda. SIGPLAN Notices 21(12), 1986. Also
in D.A. Turner, ed. Research Topics in Functional Programming. Addison-
Wesley, 1989.

P. Wadler. An Introduction to Orwell 4.07S. Programming Research Group,
Oxford University, 1985.

P. Wadler. Strictness analysis on non-flat domains by abstract interpreta-
tion over finite domains. Chapter 12 of S. Abramsky and C. Hankin, eds.
Abstract Interpretation of Declarative Languages. Ellis-Horwood, 1987.

P. Wadler. Strictness analysis aids time analysis. Proceedings of the ACM
Symposium on Principles of Programming Languages (POPL ’88). ACM
Press, 1988.

P. Wadler. Comprehending monads. Proceedings of the ACM Conference on
Lisp and Functional Programming (Lisp and FP ’90). ACM Press, 1990.

P. Wadler and J. Hughes. Projections for strictness analysis. Proceedings of
the ACM Conference on Functional Programming Languages and Computer
Architecture (FPCA '87). LNCS 274. Springer-Verlag, 1987.

Bibliography 217

[Wad90] P. Wadler. Linear types can change the world! Programming Concepts and
Methods, M. Broy and C. Jones, eds. North Holland, 1990.

[Wra85] S. Wray. A new strictness detection algorithm. Proceedings of the Work-
shop on Implementation of Functional Languages (Aspends, Sweden). L.
Augustsson et. al., eds. Report 17, Programming Methodology Group, De-
partment of Computer Sciences, Chalmers University of Technology ahd

University of Goteborg, Goteborg, Sweden.

[You89] J. Young. The Theory and Practice of Semantic Program Analysis for
Higher-Order Functional Programming Languages. Ph.D. thesis, Research
report YALEU/DCS/RR-669, Yale University, 1989.

