
CHARACTERISATION OF THE 
HERPES SIMPLEX VIRUS TYPE 1 (HSV-1) 

TRIPLEX PROTEINS

BY

CHRISTOPHER JOHN BOUTELL

A THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 
IN THE FACULTY OF SCIENCE AT GLASGOW UNIVERSITY

MRC VIROLOGY UNIT 
INSTITUTE OF VIROLOGY 

CHURCH STREET 
GLASGOW 

G il 5JR

SEPTEMBER, 2000



ProQuest Number: 13818557

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818557

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



c  ' ,QQW
L i.iva ism r
liBHAHY



Contents

Contents

ACKNOWLEDGEMENTS 

ABSTRACT 

ABBREVIATIONS

1.0 INTRODUCTION...............................................................................................................................................1

1.1 Classifica tion  of the He r pe s v ir u se s ................................................................................................................... 1
1.1.1 Subfamily classification o f herpesviruses.............................................................................................. 2
1.1.2 Classification o f  herpesviruses based upon sequence analysis...........................................................3
1.1.3 Divergence o f  the Herpesviridae family................................................................................................ 4

1.2 H erpesviruses  w hich  infect  h u m a n s .................................................................................................................... 4
1.3 V irion  a r c h itec tu r e .....................................................................................................................................................5

1.3.1 The HSV-1 genome...................................................................................................................................5
1.3.2 The “a” sequence......................................................................................................................................5
1.3.3 DNA structure within the nucleocapsid..................................................................................................6

1.4 V irion  m o r ph o lo g y .......................................................................................................................................................7
1.4.1 The tegument.............................................................................................................................................7
1.4.1.1 Tegument assembly.............................................................................................................................. 8
1.4.1.2 Tegument structure............................................................................................................................... 8
1.4.3 The capsid.................................................................................................................................................9
1.4.3.1 Structural composition o f the capsid.................................................................................................10
1.4.3.2 Protein composition o f  the HSV-1 capsid........................................................................................ 11
1.4.3.3 Minor capsid proteins........................................................................................................................ 16

1.5 T he H S V -1 LYTIC LIFE CYCLE..................................................................................................................................... 17
1.5.1 Attachment and entry o f  HSV-1 into the cell.......................................................................................17
1.5.2 Nucleocapsid transport..........................................................................................................................18
1.5.3 Disruption o f host cell protein synthesis............................................................................................. 18
1.5.4 HSV-1 gene expression.......................................................................................................................... 19
1.5.5 DNA replication.....................................................................................................................................20
1.5.6 Packaging o f progeny DNA...................................................................................................................20
1.5.7 Tegument acquisition and virion egress.............................................................................................. 21

1.6 O verview  of HSV-1 l a t e n c y ................................................................................................................................. 23
1.6.1 Definition o f latency.............................................................................................................................. 23
1.6.2 Establishment o f  latency........................................................................................................................23
1.6.3 Maintenance o f  latency.........................................................................................................................24
1.6.4 Reactivation from latency..........................   25

1.7 Capsid  St r u c t u r e ....................................................  25
1.7.1 Capsid architecture and the requif&iftdnt fo r redundancy................................................................ 26
1.7.2 Quasi-equivalence..................................................................................................................................26
1.7.3 Departure from quasi-equivalence.......................................................................................................27
1.7.4 Flexibility o f proteins within capsid structures.................................................................................. 28
1.7.5 Flexibility o f proteins within quasi-equivalent capsid structures..................................................... 29
1.7.6 Symmetry mismatches in caps ids..........................................................................................................29

1. 8  HSV-1 CAPSID STRUCTURE...........................................................................................................................................31
1.8.1 Asymmetric unit......................................................................................................................................31
1.8.2 Protein composition o f  the capsomeres............................................................................................... 32
1.8.2.1 Pentons and hexons are composed o f VP5.......................................................................................32
1.8.2.2 Triplexes are heterotrimers o f  VP 19c and VP2 3 ............................................................................ 33
1.8.2.3 VP2 6 is located on the tips o f  the hexons.........................................................................................34
1.8.3 Internal scaffold composition................................................................................................................34
1.8.4 Quasi-equivalence within the HSV-1 capsid.......................................................................................36
1.8.5 The non-equivalence o f triplexes.......................................................................................................... 37



Contents

1.8.6 Quasi-equivalence within the procaps ids...................................................................................................... 37
1.9 Capsid  a s se m b l y ..........................................................................................................................................................38

1.9.1 Nuclear assembly o f  HSV-1 capsids................................................................................................................ 38
1.9.2 HSV-1 capsid assembly analysis within insect cells................................................................................... 39
1.9.3 In vitro HSV-1 capsid assembly andprocapsidform ation ....................................................................... 40
1.9.4 The structure o f  the procapsid...........................................................................................................................42
1.9.5 Identification o f  procapsids during HSV-1 infection.................................................................................. 42
1.9.6 Other capsid assembly m odels ..........................................................................................................................43
1.9.7 P22 capsid assem bly ............................................................................................................................................44
1.9.8 The molten globule-like characteristics o f  the P22 scaffold protein (gp8)......................................... 45

2.1 MATERIALS.................................................................................................................................................... 47

2.2 METHODS.........................................................................................................................................................55

2.2.1 Recom binan t  DNA m a n ipu l a tio n ....................................................................................................................55
2.2.1.1 Preparation o f  electrocompetent bacteria..................................................................................................55
2.2.1.2 Transformation o f  electrocompetent bacteria ...........................................................................................55
2.2.1.3 Glycerol stock preparation ............................................................................................................................. 56
2.2.1.4 Small scale plasm id DNA isolation ..............................................................................................................56
2.2.1.5 Phenol/chloroform extraction and ethanol precipitation o f  D N A ...................................................... 56
2.2.1.6 Large scale plasm id DNA isolation..............................................................................................................57
2.2.1.7 Restriction endonuclease digestion o f  D N A .............................................................................................. 57
2.2.1.8 Analytical DNA agarose gel electrophoresis............................................................................................58
2.2.1.9 Purification o f  DNA from  agarose ............................................................................................................... 58
2.2.1.10 DNA ligation .................................................................................................................................................... 58
2.2.1.11 Linker ligation ..................................................................................................................................................59
2.2.1.12 Oligonucleotide purification ........................................................................................................................59
2.2.1.13 PAGE o f  synthetic oligonucleotides........................................................................................................... 59

2.2.2 M13 PHAGE SITE DIRECTED MUTAGENESIS OF U L18......................................................................................... 60
2.2.2.1 Preparation o f  uracil enriched pETUL18 ssDNA ....................................................................................60
2.2.2.2 Oligonucleotide mutagenesis .........................................................................................................................61

2.2.3 G eneration  of m onoclonal a n t ib o d ies ........................................................................................................62
2.2.4 Im m unofluo rescence  a n a ly sis .........................................................................................................................64

2.2.4.1 Transfection o f  plasmid D N A .........................................................................................................................64
2.2.4.2 Immuno staining and microscopy analysis ................................................................................................64

2.2.5 Y east  m a n ipu la tio n ................................................................................................................................................65
2.2.5.1 Glycerol stock preparation ..............................................................................................................................65
2.2.5.2 Transformation o f  plasmid DNA into yeast............................................................................................... 66
2.2.5.2.1 Preparation o f  yeast cells............................................................................................................................ 66
2.2.5.2.2 Transformation o f  competent yeast cells.................................................................................................66
2.2.5.2.3 Yeast colony selection .................................................................................................................................. 67
2.2.5.3 Replica plating and picking o f  yeast colonies...........................................................................................67
2.2.5.4 f-galactosidase filter assay.............................................................................................................................68
2.2.5.5 Isolation o f  plasm id DNA from  yea st .......................................................................................................... 68
2.2.5.6 TCA extraction ofproteins from  yeast cells ...............................................................................................69
2.2.5.6.1 Yeast cell culture and preparation fo r  protein extraction..................................................................69
2.2.5.6.2 TCA protein extraction................................................................................................................................. 69
2.2.5.7 Random PCR mutagenesis..............................................................................................................................70

2.2.6 T issue culture  a nd  virus m a n ipu l a tio n .......................................................................................................71
2.2.6.1 Baculovirus manipulation ............................................................................................................................... 71
2.2.6.1.1 SF  cell culture ................................................................................................................................................. 71
2.2.6.1.2 Freezing and storage o f  SF  cells................................................................................................................71
2.2.6.1.3 Recovery ofSF21 cells ..................................................................................................................................71
2.2.6.1.4 Construction o f  recombinant baculoviruses........................................................................................... 72
2.2.6.1.5 Isolation o f  recombinant viruses................................................................................................................72
2.2.6.1.6 Production o f  low titre baculovirus stocks.............................................................................................. 73
2.2.6.1.7 Production o f  high titre baculovirus stocks.............................................................................................73
2.2.6.1.8 Baculovirus titration ..................................................................................................................................... 74
2.2.6.2 BHK-21 C l3 cell culture...............................................................................................................................74



Contents

2.2.6.3 Vero cell culture.................................................................................................................................................. 75
2.2.6.4 Complementation ofU L18 null mutant virus (K23Z)...............................................................................75
2.2.6.5 Titration o f  complemented HSV-1 UL18 null mutant virus (K23Z)....................................................76

2.2.7 Expression  of r ecom binant  p r o t e in s ............................................................................................................. 76
2.2.7.1 Protein expression in BL21 DE3 bacteria ..................................................................................................76
2.2.7.2 Protein expression using the baculovirus expression system ................................................................ 77

2.2.8 P u r i f ic a t io n  o f  6 xH is ep ito p e  t a g g e d  p r o t e i n s .........................................................................................77
2.2.8.1 Ni-NTA agarose column chromatography..................................................................................................77
2.2.8.2 Preparation o f  bacterial extracts fo r  Ni-NTA purification ....................................................................78
2.2.8.3 Preparation ofSF21 cell extracts fo r  Ni-NTA purification ....................................................................78
2.2.8.4 Ni-NTA agarose purification ...........................................................................................................................78
2.2.8.5 Ni-NTA agarose pu ll downs ............................................................................................................................ 79
2.2.8.6 Quantification o f  protein concentration......................................................................................................80

2.2.9 Analysis  of purified  pro tein s .............................................................................................................................80
2.2.9.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)......................................................................... 80
2.2.9.2 Semi-dry Western blot analysis......................................................................................................................81
2.2.9.2.1 Protein transfer...............................................................................................................................................81
2.2.9.2.2 Detection o f  proteins ..................................................................................................................................... 81
2.2.9.4 Stripping and re-probing nitro-cellulose membranes..........................................................................82
2.2.9.3 TCA precipitation ...............................................................................................................................................82
2.2.9.4 Sucrose gradient sedimentation .....................................................................................................................82
2.2.9.5 Capsid assembly analysis.................................................................................................................................83
2.2.9.5.1 In vitro capsid assembly............................................................................................................................... 83
2.2.9.5.2 In vivo capsid assembly.................................................................................................................................83

2.2.10 B iophysical characterisation  tec h n iq u es ...............................................................................................84
2.2.10.1 Fluorescence and ANS binding................................................................................................................... 84
2.2.10.2 Circular-dichroism (CD)............................................................................................................................... 85
2.2.10.3 Digital scanning calorimetry (DSC)...........................................................................................................85
2.2.10.4 Size exclusion chromatography....................................................................................................................85

3.1 REVERSE YEAST TWO HYBRID SYSTEM........................................................................................... 87

3.1.1 YEAST TWO HYBRID SYSTEM..................................................................................................................................... 87
3.1.1.1 Yeast two hybrid analysis o f  HSV-1 capsid protein interactions.........................................................87
3.1.1.2 Deletion mapping o f  protein-protein interactions within the yeast two hybrid system .................88

3.1.2 Reverse  yeast  tw o  hybrid  sy st em ................................................................................................................... 89
3.1.3 R everse  yeast  tw o  hybrid  analysis of VP 19c and  V P 2 3 ......................................................................89

3.1.3.1 Generation o f  mutant alleles ...........................................................................................................................89
3.1.3.2 Negative selection o f  mutant alleles............................................................................................................. 90
3.1.3.3 Regulation ofU RA3 and lacZ reporter genes within MaV103 cells ...................................................90
3.1.3.4 Other reporter genes within Ma V I03 cells ................................................................................................ 91
3.1.3.5 GAL4 fusion vectors used in the reverse yeast two hybrid system ......................................................91
3.1.3.6 Cloning o f  UL18 into p P c8 6 ...........................................................................................................................91
3.1.3.7 Cloning o f  VP 19c into pPc97 ......................................................................................................................... 92
3.1.3.8 Fusion protein C-terminal truncations.........................................................................................................92
3.1.3.9 Cloning strategy fo r  UL38 pp65 epitope tagged into p P c9 7 ................................................................92

3.1.6 C o n c lu sio n s ............................................................................................................................................................ 93
3.1.6.1 Yeast two hybrid analysis.................................................................................................................................93
3.1.6.2 Expression ofU L38 and UL38Epi in the yeast two hybrid system .....................................................94
3.1.6.3 Reverse yeast two hybrid analysis................................................................................................................. 95
3.1.6.4 FOA selection ...................................................................................................................................................... 95
3.1.6.5 Analysis o f  negatively selected mutant alleles............................................................................................96
3.1.6.6 Future work ..........................................................................................................................................................98

3.2 CHARACTERISATION OF MONOCLONAL ANTIBODIES........................................................... 100

3.2.1 Im m unisation  p r o to c o l .......................................................................................................................................100
3.2.2 A ntibody  screening  by  W estern  blot  a n a ly sis ......................................................................................101

3.2.2.1 Monoclonal antibodies generated from  BALB/c mouse #4..................................................................101
3.2.2.2 Monoclonal antibodies generatedfrom BALB/c mice #1 -3 ................................................................102

3.2.3 C onclusions and  future  w o r k .........................................................................................................................103



Contents

3.3 C H A R A C T E R IS A T IO N  O F  T H E  T R IP L E X  P R O T E IN  V P 2 3 .................................................................. 104

3.3.1 Construction  and  expression  of pETUL 1 8 ............................................................................................... 104
3.3.1.1 Cloning o f the UL18 ORF into pET28MOD ..................................................................................104
3.3.1.2 Bacterial expression o f VP23His in BL21 DE3 cells.....................................................................104

3.3.2 Purification  of V P23H is ......................................................................................................................................105
3.3.2.1 Nickle-nitrilotriacetic acid (Ni-NTA) agarose affinity chromatography.....................................105
3.3.2.2 Ni-NTA agarose purification ofVP23His...................................................................................... 105

3.3.3 Size  exclusion  chrom atography  and  sucrose  gradient  sed im en ta tio n .................................... 106
3.3.3.1 Size exclusion chromatography o f  purified VP23His in G-150 buffer........................................106
3.3.3.2 VP23His purification and characterisation in buffer 0 ................................................................108

3.3.5 Sucrose gradient  sedim entation  analysis of purified  V P23H is in  b uffer  0 ............................ 109
3.3.6 Characterisatio n  of purified  V P23H is d im e r s ........................................................................................ 110

3.3.6.1 Thermolability ofVP23 dimers....................................................................................................... 110
3.3.7 D isulphide  linkage  analysis of V P 2 3 .......................................................................................................... I l l

3.3.7.1 VP23 dimer formation in the absence o f reducing agents........................................................... I l l
3.3.7.2 VP23 sequence analysis...................................................................................................................112

3.3.8 VP23 CYSTEINE MUTAGENESIS.............................................................................................................................. 113
3.3.8.1 Expression o f  VP23His cysteine mutants........................................................................................113
3.3.8.2 Ni-NTA purification ofVP23 cysteine mutants..............................................................................114

3.3.9 IMMUNFLUORESCENCE ANALYSIS OF VP23 AND VP23CYS MUTANTS...................................................... 115
3.3.9.1 Cloning o f  UL18 and UL18CYS mutant ORFs into pCMVI0.......................................................115
3.3.9.1 Intracellular localisation ofVP23His and VP 19c......................................................................... 116

3.3.10 V iral grow th  analysis of U L 18CYS m u t a n t s ......................................................................................117
3.3.11 Co n c lu sio n s ........................................................................................................................................................... 118

3.3.11.1 VP23 dimerisation...........................................................................................................................118
3.3.11.2 VP23 cysteine analysis................................................................................................................... 120
3.3.11.3 Future Work....................................................................................................................................121

3.4 C H A R A C T E R IS A T IO N  O F  T H E  T R IP L E X  P R O T E IN  V P 1 9 C ...............................................................123

3.4.1 C onstruction  a nd  expression  of PETUL38................................................................................................ 123
3.4.1.1 Cloning o f  the UL38 ORF into pET28MOD ..................................................................................123
3.4.1.2 Bacterial expression ofVP19cHis...................................................................................................123

3.4.2 VP19CHIS ISOLATION FROM RECOMBINANTLY EXPRESSED TRIPLEXES...................................................... 124
3.4.3 Purification  of recom binantly  expressed  V P19cH is fro m  SF21 cells  in fected  w ith  A c381 
 126

3.4.3.1 Cloning o f the UL38 ORF into pAcCL29-l....................................................................................126
3.4.3.2 Expression and purification ofVP19cHis...................................................................................... 126

3.4.4 Ni-NTA PULL DOWN ASSAYS..................................................................................................................................128
3.4.4.1 Characterisation o f  in vitro triplex formation................................................................................129

3.4.5 Size  exclusion  chrom atography  of V P19cH i s ........................................................................................ 130
3.4.6 Sucrose  gradient  sed im en t a tio n ...................................................................................................................131

3.4.6.1 in vitro formation o f  triplexes from purified proteins....................................................................131
3.4.7 C o n c lu sio n s ..............................................................................................................................................................133

3.4.7.1 Future work....................................................................................................................................... 136

3.5 C H A R A C T E R IS A T IO N  O F  T H E  H SV-1 T R IP L E X .......................................................................................137

3.5.1 C onstruction  and  expression  of PETUL1838............................................................................................137
3.5.1.1 Cloning o f the 6xHis tagged UL18 ORF into pETUL38............................................................... 137
3.5.1.2 Expression o f  triplex proteins VP2 3 His and VP19cHis in BL21 DE3 bacteria.........................137
3.5.1.3 Ni-NTA agarose purification ofVP23His and VP19cHis from induced BL21 DE3 bacteria 
expressing pETUL1838................................................................................................................................. 138

3.5.2 C o -expression  of VP23 and  V P19c triplex  proteins w ithin  SF21 c ells .......................................139
3.5.2.1 Cloning o f  the UL18 ORF into the baculovirus transfer vector pAcAB3 containing the UL38 
ORF (pAcAB3.10).......................................................................................................................................... 139
3.5.2.2 Expression o f  Acl8638 within SF21 cells.......................................................................................140

3.5.3 Cloning  and  expression  of A c 18386..............................................................................................................140
3.5.3.1 Cloning o f  the 6x His epitoped tagged UL38 ORF and UL18 ORF into the baculovirus transfer 
vector pAcAB3................................................................................................................................................ 141



Contents

3.5.3.2 Expression o f  Ac18386 in SF21 cells.......................................................................................... 141
3.5.4 Ni-NTA AGAROSE PURIFICATION OF TRIPLEX PROTEINS EXPRESSED WITHIN SF21 CELLS INFECTED 
EITHER WITH A c 18638 ORAC18386............................................................................................................................... 142

3.5.4.1 Purification o f  triplexes....................................................................................................................142
3.5.4.2 Solubility o f  tirplexes at 4°C............................................................................................................ 142

3.5.5 D isulphide  bond  analysis  of purified  triplex  pro tein s ....................................................................... 144
3.5.6 Size exclusion  c hrom atography  analysis of purified  triplex  pr o t e in s .................................... 145
3.5.7 Sucrose  gradient  sedim entation  analysis of N i-NTA a g a ro se  purified  t r ip l e x e s ............. 147
3.5.8 C o n c lu sio n s ............................................................................................................................................................. 148

3.5.9.1 Future work....................................................................................................................................... 150

3.6 F U N C T IO N A L  AND B IO P H Y S IC A L  C H A R A C T E R IS A T IO N  O F  P U R IF IE D  T R IP L E X E S  
AND T R IP L E X  P R O T E IN S ...............................................................................................................................................151

3.6.1 In  vivo  and  in  vitro  c apsid  assem bly  a n a ly sis ........................................................................................151
3.6.2 B iophysical  characterisation  of the  H S V -1 triplexes  and  triplex  pro tein  constituents 
....................................................................................................................................................................................................153

3.6.2.1 Homogeneity o f Ni-NTA agarose purified triplexes and triplex proteins used for biophysical 
experimental analysis....................................................................................................................................153
3.6.2.2 Ni-NTA purified triplexes and triplex proteins are folded protein molecules............................154
3.6.2.3 GndHCl induced unfolding o f  triplexes and triplex proteins.......................................................155
3.6.2.4 Far-UV CD analysis o f  the secondary structure within triplexes and triplex proteins.............156
3.6.2.5 Near-UV CD analysis o f the tertiary structure within triplexes and triplex proteins...............159
3.6.2.6 DSC analysis o f  the tertiary structure within triplexes and triplex proteins..............................160
3.6.2.7 Partial folding within purified triplexes and triplex proteins.......................................................165

3.6.3 C o n c lu sio n s ............................................................................................................................................................. 166
3.6.3.1 Ni-NTA agarose purified triplexes and triplex proteins are functionally active........................ 166
3.6.3.2 Molten globularity o f  purified VP23His and VP19cHis............................................................... 167
3.6.3.3 Mutual protein co-folding within the triplex..................................................................................169
3.6.3.4 Partial folding within the triplex.....................................................................................................169
3.6.3.5 Future work....................................................................................................................................... 171

4.0 D IS C U S S IO N .................................................................................................................................................................... 173

4.1 Q uasi-equivalence  and  conform ational  flexibility  w ithin  th e  HSV-1 ca psid ..........................173
4.2 N on-equivalent  in teractions of triplexes within  th e  HSV-1 c a p sid ..............................................174
4.3 H ow  DO THE TRIPLEXES OCCUPY A 3-FOLD ROTATIONAL AXIS?......................................................................175
4.4 C onform ational  flexibility  within  the  t r ip l e x ........................................................................................176
4.5 M olten  globule  characteristics  of the  t r ip l e x .......................................................................................177
4.6 G ross conform ational  rearrangem ents and  the  c apsid  flo o r .........................................................178
4.7 HETEROTRIMER OPPOSED TO HOMOTRIMER, THE REQUIREMENT FOR VP23 WITHIN THE TRIPLEX 180

4.7.1 The function ofVP23 within the triplex...........................................................................................181
4.8 VP5 CAPSOMER FLEXIBILITY..................................................................................................................................... 182

5.0 S U M M A R Y ........................................................................................................................................................................ 185

5.1 Partial folding  and  capsid  a sse m b ly ............................................................................................................ 185
5.2 Partial  folding  and  HSV-1 capsid  a s s e m b l y ..............................................................................................186

REFERENCES



Contents: List of figures

List of figures:

Introduction:
Fig. Following
number: Title: page number:

Fig. 1.1 Electron micrograph of a frozen hydrated HSV-1 virion.................................... .............1
Fig. 1.2 Schematic illustration of the divergence over time for some of the

herpesviruses within the herpesviridae family.................................................... .............3
Fig. 1.3 Schematic illustration of the structure of the HSV-1 genome............................ .............5
Fig. 1.4 Cross-section through a cryo-EM reconstruction of the HSV-1 virion

resolved to 20A....................................................................................................... .............6
Fig. 1.5 Visualisation of the icosahedrally ordered tegument proteins............................ .............7
Fig. 1.6 Schematic illustration of the structural organisation o f the HSV-1 genes ................15

UL26 and UL26.5.
Fig. 1.7 Schematic overview of the lytic reproductive cycle o f HSV-1.  17
Fig. 1.8 Schematic diagram depicting triangulation symmetry.  26
Fig. 1.9 3D Surface reconstruction of the HSV-1 B-capsid at 8.5 A.  31
Fig. 1.10 Asymmetric unit of the HSV-1 capsid.  31
Fig. 1.11 3D reconstruction of the HSV-1 triplex to 13 A.  33
Fig. 1.12 Schematically illustration of the protein-protein interactions within the

HSV-1 capsid determined through immunofluorescence.  39
Fig. 1.13 EM analysis of negative stained in vitro formed procapsids and mature

B-capsids.  40
Fig. 1.14 Schematic representation of the intermediate stages in HSV-1 capsid

assembly.  41
Fig. 1.15 Structural changes that accompany HSV-1 procapsid maturation.  42
Fig. 1.16 Schematic illustration of the capsid assembly pathway of the

bacteriophage P22.  44
Fig. 1.17 Diagrammatic representation of a molten-globule state.  45

Results (section 3.1):
Fig. 3.1.1 Schematic representation of the yeast two hybrid system.  87
Fig. 3.1.2 Schematic representation of the reverse yeast two-hybrid system.  89
Fig. 3.1.3 Schematic representation of pPc86 and pPc97 GAL4 fusion vectors. ................ 91
Fig. 3.1.4 Cloning strategy of UL18 ORF into pPc86.  92
Fig. 3.1.5 Cloning strategy of UL38 ORF into pPc97.  92
Fig. 3.1.6 Cloning strategy of pPc97UL38Epi.  92
Fig. 3.1.7 Phenotypic characterisation of the MaV 103 yeast cells.  93
Fig. 3.1.8 Yeast two hybrid analysis and P-galactosidase filter assay.  93
Fig. 3.1.9 Analysis of pPc97UL38Epi(VP19cDB.Epi).  94
Fig. 3.1.10 Recombination and gap repair of mutant UL18 PCR alleles into

linearised pPc86 vector.  95
Fig. 3.1.11 FOA negatives selection of mutants UL18 alleles.  96
Fig. 3.1.12 Second round FOA selection of mutant UL18 alleles.  96
Fig. 3.1.13 SDS-PAGE and Western blot analysis of yeast cell protein extracts. ...............97
Fig. 3.1.14 1 % TBE gel of plasmid DNA purified from yeast.  97



Contents: List of figures

Results (section 3.2):
Fig. 3.2.1 Characterisation of monoclonal antibodies produced from BALB/c

mouse #4.  101
Fig. 3.2.2 Characterisation o f monoclonal antibodies produced from BALB/c

mice #1-3.  102

Results (section 3.3):
Fig. 3.3.1 Construction o f the pET28MOD expression vector.  104
Fig. 3.3.2 Schematic representation of the bacterial expression vector pETULl 8........................104
Fig. 3.3.3 SDS-PAGE and Western blot analysis of VP23His expression in BL21

DE3 bacteria. .............104
Fig. 3.3.4 Schematic representation of Ni-NTA and Ni-NTA binding to two His

residues from the 6xHis epitope tag.  105
Fig. 3.3.5 SDS-PAGE analysis o f Ni-NTA agarose purified VP23His in

sonication buffer.................................................................................................. .............105
Fig. 3.3.6 Size exclusion chromatography and SDS-PAGE analysis of Ni-NTA

agarose purified VP23His in G 150 buffer.  106
Fig. 3.3.7 Size exclusion chromatography of protein standards and generation of

a standard curve. .............107
Fig. 3.3.8 Size exclusion chromatography of purified VP23His analysed at 0.25,

0.5, and 1.5 mg/ml in G150 buffer.  107
Fig. 3.3.9 SDS-PAGE and Western blot analysis of Ni-NTA agarose purified

VP23His in buffer O.  108
Fig. 3.3.10 Size exclusion chromatography and SDS-PAGE analysis of Ni-NTA

agarose purified VP23His in buffer O.  108
Fig. 3.3.11 Sucrose gradient sedimentation and SDS-PAGE analysis of Ni-NTA

purified VP23His in buffer O. .............109
Fig. 3.3.12 Size exclusion chromatography of Ni-NTA agarose purified VP23His

in buffer O before and after incubation at 4°C.  110
Fig. 3.3.13 SDS-PAGE analysis of Ni-NTA agarose purified VP23His in the

presence and absence of 20mM (3-mercaptoethanol.  I l l
Fig. 3.3.14 Size exclusion chromatography of Ni-NTA agarose purified VP23His

in buffer O before and after incubation in the presence of 1 OmM DTT...................... 112
Fig. 3.3.15 Amino acid sequence alignment of VP23 homologues.  112
Fig. 3.3.16 Cysteine mutagenesis of UL18.  113
Fig. 3.3.17 Western blot and SDS-PAGE analysis of VP23His and VP23His

cysteine mutants.  114
Fig. 3.3.18 SDS-PAGE analysis of purified VP23His Cysteine mutants -1,-3, and

-4 in buffer O.  114
Fig. 3.3.19 Schematic representation of the cloning strategy for UL18 ORF and

mutant UL18CYS ORFs into pCMVi0.  115
Fig. 3.3.20 Immunofluorescence analysis showing the intracellular localisation of

VP23 and VP 19c.  116
Fig. 3.3.21 Immunofluorescence analysis showing intracellular localisation of

VP23 and VP 19c co-expressed within BHK-21 C13 cells.  116
Fig. 3.3.22 Immunofluorescence analysis showing the intracellular distribution of

VP23His and VP23HisCYS mutants 1, 3, and 4 with VP 19c.  116
Fig. 3.3.23 Titration of complemented UL18 null mutant virus K23Z in Vero cells

or G5-11 cells.  117



Contents: List of figures

Results (section 3.4):
Fig.3.4.1 Schematic representation of the bacterial expression vector pETUL38.........................123
Fig.3.4.2 SDS-PAGE and Western blot analysis of VP19cHis expression in

BL21 DE3 bacteria.  124
Fig.3.4.3 SDS-PAGE analysis of VP19cHis isolated from Ni-NTA agarose

purified triplexes denatured in 3M urea.  125
Fig.3.4.4 SDS-PAGE and fluorescence spectroscopy analysis of Ni-NTA

agarose purified VP19cHis isolated from denatured triplexes in 3M ...............125
urea.

Fig.3.4.5 Schematic representation of pAcCL29381.   126
Fig.3.4.6 SDS-PAGE analysis of SF21 cells infected with Ac381.  126
Fig.3.4.7 SDS-PAGE analysis of VP 19cHis purified in buffer O.  127
Fig.3.4.8 SDS-PAGE and Western blot analysis of Ni-NTA agarose purified

VP19cHis.  127
Fig.3.4.9 SDS-PAGE and Western blot analysis of Ni-NTA agarose VP19cHis

pull down of VP23.  128
Fig.3.4.10 SDS-PAGE analysis of VP19cHis/VP23 interaction in the presence or

absence of 1M NaCl.  129
Fig.3.4.11 SDS-PAGE analysis of VP19cHis/VP23 interaction at 0°C.  129
Fig.3.4.12 Size exclusion chromatography and SDS-PAGE analysis of Ni-NTA

agarose purified VP19cHis in buffer O.  130
Fig.3.4.13 SDS-PAGE analysis Ni-NTA agarose purified VP19cHis in the

presence or absence of 20mM P-mercaptoethanol.  130
Fig.3.4.14 Sucrose gradient sedimentation and SDS-PAGE analysis of Ni-NTA

purified VP 19cHis in buffer O.  131
Fig.3.4.15 Sucrose gradient sedimentation and SDS-PAGE/Westem blot analysis

of Ni-NTA purified VP19cHis and VP23His in buffer O.  132

Results (section 3.5):
Fig. 3.5.1 Schematic representation of the cloning strategy for UL18 ORF into

pETUL38 to generate pETUL1838.   137
Fig. 3.5.2 SDS-PAGE analysis of pETUL1838 expression in BL21 DE3 bacteria.......................137
Fig. 3.5.3 Western blot analysis of pETUL18 and pETUL1838 expression in

BL21 DE3 bacteria.  137
Fig. 3.5.4 SDS-PAGE analysis of Ni-NTA agarose purified bacterially expressed

triplex proteins (VP23His+VP 19cHis).  138
Fig. 3.5.5 Schematic representation of the cloning strategy for the insertion of the

UL18 ORF into the baculovirus transfer vector pAcAB3.10 to generate ...............139
pAcABUL 18638 (Ac 18638).

Fig. 3.5.6 SDS-PAGE analysis of [35S]methionine-labelled SF21 cell infected
with the recombinant baculovirus Ac 18638 co-expressing VP23His
and VP 19c.  139

Fig. 3.5.7 SDS-PAGE analysis of Ni-NTA agarose purified triplex proteins
VP23His and VP 19c from SF21 cells infected with Ac 1863 8.   140

Fig. 3.5.8 Schematic representation of the baculovirus transfer vector pAcAB3.
The red sites indicate the unique restriction sites used in the
construction of pAcABUL 18386.  141

Fig. 3.5.9 Schematic representation for the orientation of the UL18 and UL38
ORFs within the baculovirus transfer vector pAcAB3 to generate
pAcABUL 183 86 (Ac 183 86).   141

Fig. 3.5.10 SDS-PAGE analysis of SF21 cells infected with Acl8386
co-expressing the triplex proteins VP19cHis and VP23.  141

Fig. 3.5.11 SDS-PAGE analysis of Ni-NTA agarose purified triplex proteins upon
incubation at 4°C.  142

Fig. 3.5.12 SDS-PAGE analysis of Ni-NTA agarose purified triplex proteins in
buffer OG before and after o/n storage at 4°C.  143



Contents: List of figures

Fig. 3.5.13 Ni-NTA agarose purification of triplex proteins in the presence of 8M
urea.  144

Fig. 3.5.14 SDS-PAGE analysis of Ni-NTA agarose purified triplex proteins in the
presence (+) or absence (-) of 20mM P-mercaptoethanol.  144

Fig. 3.5.15 Ni-NTA agarose purification of triplex proteins and size exclusion
chromatography.  145

Fig. 3.5.16 SDS-PAGE and ratio analysis of triplex proteins.  146
Fig. 3.5.17 Sucrose gradient sedimentation analysis of Ni-NTA purified triplex

proteins.  147

Results (section 3.6):
Fig. 3.6.1 Functional analysis of recombinantly expressed 6xHis tagged proteins....................... 151
Fig. 3.6.2 Intrinsic fluorescence spectra of Ni-NTA agarose purified VP23His,

VP19cHis and triplexes.  154
Fig. 3.6.3 Structural stability analysis of Ni-NTA agarose purified VP23His,

VP19cHis and triplexes by GdnHCl induced unfolding.  155
Fig. 3.6.4 Far-UV CD analysis and CONTIN estimation of secondary structure of

purified VP23His, VP19cHis, and triplex.  156
Fig. 3.6.5 Near-UV CD analysis of monomeric, and dimeric VP23His and

triplexes.  159
Fig. 3.6.6 Differential scanning calorimetry (DSC) of Ni-NTA agarose purified

VP23His.  160
Fig. 3.6.7 Differential scanning calorimetry (DSC) of Ni-NTA agarose purified

VP19cHis.  161
Fig. 3.6.8 Differential scanning calorimetry (DSC) of Ni-NTA agarose purified

triplexes.  163
Fig. 3.6.9 Differential scanning calorimetry (DSC) of Ni-NTA agarose purified

triplexes.  165

Discussion:
Fig. 4.1 Surface reconstruction of the HSV-1 capsid at 8.5 A resolution.  174
Fig. 4.2 Heterotrimeric arrangement of VP23 and VP 19c interactions within the

triplex.  175
Fig. 4.3 Predicted a-helices within the two VP23 molecules of an averaged

triplex.  176
Fig. 4.4 Visualisation of the heterotrimeric interactions within the triplex.  176
Fig. 4.5 Model for the folding events and cellular localisation of the triplex

proteins during capsid assembly. .............184



Contents: List of tables

List of tables:

Table. Following
number: Title: page number:

Table 1.1 Summary o f human herpesviruses including primary and associated
illnesses................................................................................................................. .............4

Table 1.2 Summary o f the HSV-1 tegument proteins and their known properties.......................8
Table 1.3 Summary of HSV-1 glycoproteins and their known properties. .............9
Table 1.4 Summary of the major capsid proteins within HSV-1 A-, B-, and C-

capsids................................................................................................................... .............10
Table 1.5 Summary of the essential HSV-1 DNA replication proteins. .............20
Table 1.6 Summary of the HSV-1 DNA packaging proteins. .............21

Table 2.2.1 Summary of the immunisation regime of BALB/c mice for the
production of VP 19c and VP23 monoclonal antibodies.  63*

Table 2.2.2 Summary of antibody dilutions used in immunofluorescence analysis........................ 65*

Table 3.2.1 Summary of the monoclonal antibodies generated from BALB/c mouse
#4.  101

Table 3.2.2 Summary of the monoclonal antibodies generated from BALB/c mice
#l-#3.   102

Table 3.5.1 Summary table of buffers used in the solubilisation of Ni-NTA agarose
purified triplex proteins.  143

Table 3.6.1 Functional analysis of triplexes and triplex protein samples to support
in vitro and in vivo capsid formation.  152

* Table on page number shown.



Acknowledgemnts

Acknowledgements

I would like to thank all the members of lab 209 who have provided me with constant 

support, encouragement, and technical expertise. I would like to particularly thank Dr 

Frazer Rixon for his advice throughout the course of my project and for proof reading my 

thesis so thoroughly (if nothing else Frazer at least my spelling is getting better). I would 

also like to thank Joyce Mitchell and David McNab for being so patient over the years and 

providing their valuable and technical experience so willingly.

With regards to the biophysical characterisation experiments presented within this thesis I 

would especially like to thank Dr David McClelland, for his advice and help throughout 

the course of my PhD, Dr Marina Kirkitadze, for providing her technical expertise during 

the DSC analysis, Sharon Kelly and Professor Nick Price for all their help, advice, and 

great patience during the near and far-UV CD analysis.

I would also like to acknowledge Professor Wah Chiu, Dr Hong Zhou, and their respective 

groups (Baylor College of Medicine, Texas, USA), for providing all the cryo-EM image 

reconstructions, and generous hospitality during my visit.

All the results presented within this thesis were obtained by the author's own efforts, unless 

stated otherwise.

I would personally like to thank my family for all their support, the Siege Boy'z and Girl'z 

for their great friendships, laughter, and humorous outings to Dumby. I would also like to 

thank Angus Cameron for his love, friendship, and encouragement over the last four years 

in the good and the not so good times.

Last, but by no means least, I would like to thank Alison Kerr for giving her love 

unconditionally and for putting up with me over the past six months. This thesis is 

dedicated to you and our future together.



Abstract

Abstract

Within the herpes simplex type-1 (HSV-1) capsid the heterotrimeric protein complex, the 

triplex, plays an essential structural role in both the capsid assembly pathway and 

subsequent conformational changes involved in the maturation of the procapsid into the 

WT polyhedral T=16 icosahedral capsid. Cryo-EM has shown that the HSV-1 capsid 

contains 6 different types of triplexes (Ta-Tf) which contribute to a single asymmetric unit 

and occupy the local and, with respect to triplex ‘Tf, global 3-fold rotational axes. These 

triplexes in themselves represent unique asymmetrical structures within the HSV-1 capsid 

that violate the rules of quasi-equivalence. The triplexes have been shown not only to be 

involved in the interconnection of hexon and penton capsomers but also to interact with, 

and probably influence the development of, the capsid floor. This thesis analyses the 

structural relationship between the single copy of VP 19c and the two copies of VP23 

which make up the triplex and the means by which these unique asymmetric structures 

form their unusual interactions within the HSV-1 capsid.

The interactions between the triplex proteins were analysed by using a genetic approach 

based on the yeast two-hybrid system, termed the reverse yeast two- hybrid system 

(described in section 3.1). Using this system, VP23 and VP 19c were shown to interact 

within yeast.

Since little is known about the structure of the individual HSV-1 capsid proteins, it was 

decided to analyse their biophysical properties through the use of size exclusion 

chromatography, near and far-UV circular dichroism (CD), differential scanning 

calorimetry (DSC), fluorescence spectroscopy, and 8-anilino-l-naphthalene sulfonate 

(ANS) binding studies. In order to carry out these experiments both bacterial and 

baculovirus recombinant expression systems were employed to express the individual 

triplex proteins VP23 and VP 19c, as well as, co-expressing these proteins to form triplexes 

in vivo. Proteins were engineered to contain a 6xHis epitope tag at their N-termini. Using 

this tag, purification strategies were developed to maximise the recovery and solubility of 

the recombinantly expressed proteins. Monoclonal antibodies raised against these proteins 

were used in their characterisation.
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VP23 was shown to exist either as a monomer or a dimer, depending on the purification 

buffer used during the analysis, and both were shown to be functionally active in capsid 

assembly. Dimers were shown not to be linked by inter-molecular disulphide bonds. 

Conserved cysteine residues within VP23 were also shown not to be essential for either 

triplex formation or capsid assembly.

Biophysical experiments were performed on both triplexes and triplex proteins purified to 

homogeneity through the use of Ni-NTA agarose affinity chromatography and shown to be 

functionally active via in vitro capsid assembly experiments. Fluorescence and far-UV CD 

analysis demonstrated that these purified proteins and complexes were folded and 

contained high levels of secondary structure. DSC and near-UV CD analysis demonstrated 

that VP23, either as a monomer or dimer, contained little or no stable tertiary structure. 

This was also demonstrated for purified VP 19c. ANS binding studies demonstrated that 

these proteins were able to bind ANS and that the organic moiety could become 

fluorescent following excitation. This indicates that ANS had access to the hydrophobic 

core of these proteins suggesting that they were able to undergo further conformational 

rearrangements. Triplexes, in comparison, were shown to contain well-defined tertiary 

structure while still retaining the ability to bind ANS that could become fluorescent 

following excitation.

Taken together, the results show that the individual triplex proteins exist in a "molten 

globule" like intermediate state of folding. Molten globule-like proteins typically 

demonstrate a compact state with a high degree of secondary structure but with little or no 

rigid tertiary structure. Triplexes were shown to contain well-defined tertiary structure 

but still retained some of the characteristics of a molten globule. These results suggest that 

partial folding of the triplex proteins plays an important role in the formation of the triplex 

and its extensive interactions with other capsid proteins required for procapsid assembly 

and subsequent maturation. These results are discussed in relation to the known functions 

of the triplex and their overall importance to capsid structure.
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1.0 Introduction

1.1 Classification of the Herpesviruses

Herpesviruses belong to the family of Herpesviridae, a large family of viruses containing

over 112 known species that infect a wide variety of warm and cold blooded animals

(reviewed by Roizman and Sears, 1996). The virions of all species that belong to the

Herpesviridae consist of 4 morphological compartments:

I. The nucleic acid - a linear double stranded (ds) DNA molecule, typically 120- 

250kb in length, with variable G+C content (31-75%).

II. The capsid - an icosahedral protein shell which surrounds the nucleic acid.

III. The tegument - an amphorous protein shell that surrounds the capsid.

IV. The envelope - the outermost layer of the virion composed of a lipid bilayer 

containing glycoprotein spikes protruding from its surface.

The architecture of a typical HSV-1 virion is shown in fig: 1.1.

All members of the Herpesviridae also share 4 common biological properties (reviewed by

Roizman, 1992):

I. Their respective nucleic acid encodes all the enzymes and co-factors that are 

required for nucleic acid synthesis and metabolism.

II. The synthesis of viral DNA, capsid assembly, and packaging of viral DNA occurs 

within the nucleus. Envelopment of the capsid occurs by the budding of the capsid 

through the inner nuclear envelope. Viral membrane proteins within the envelope 

may become modified upon transit through the Golgi apparatus.

III. Production of infectious progeny virus invariably leads to the destruction of the 

infected cell.

1
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Fig. 1.1: Electron micrograph o f a frozen hydrated HSV-1 virion.

The major structural features o f the virion, including envelope, tegument, 

capsid, and DNA core are indicate by the appropriate arrows. The diameter 

o f capsid and the approximate diameter o f the virion are also indicated.

This figure was reproduced with permission from W. Chiu, Baylor College of 

Medicine, USA.
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IV. All herpesviruses examined to date are capable of establishing and maintaining a 

latent state of infection within their natural hosts where genome expression is 

restricted to a small subset of viral genes.

1.1.1 Subfamily classification o f herpesviruses

Herpesviruses are widely distributed throughout nature with most vertebrate animals so far 

examined being a natural reservoir to at least one herpesvirus. Historically herpesviruses 

have been classified into three subfamilies based upon their biological properties. The 

three subfamilies are the Alpha-, Beta-, and Gamma-herpesvirinae. The basis for such 

subfamily classification has historically included such characteristics as host range, 

duration of reproductive cycle, cytopathology, and characteristics of latent infection. 

However, more recently genome sequencing has provided a more detailed understanding 

of the evolutionary relatedness of herpesviruses within the Herpesviridae (Roizman, 1992; 

McGeoch et al., 1995). The three distinct subfamilies of herpesviruses are briefly 

summarised below:

• Alphaherpesvirinae

Herpesviruses within this subfamily demonstrate a variable host range in vitro, relative 

short reproductive cycle (<24 hours), rapid spread within tissue culture that results in the 

efficient destruction of infected cells, and a capacity to establish a latent state of infection 

predominantly within the sensory ganglia. The subfamily of Alphaherpesvirinae has been 

further divided into two genera; Simplexviruses, which include herpes simplex virus type-1 

and type-2 (HSV-1 and HSV-2), and Varicelloviruses, which includes varicella-zoster 

virus (VZV).

• Betaherpesvirinae

Herpesviruses within this subfamily demonstrate a restricted host range in vitro, a long 

reproductive cycle, and slow spread in tissue culture. Infected cells commonly 

demonstrate an enlarged appearance (cytomegalia). Viruses within this family 

predominantly maintain a latent state of infection within lymphoreticular cells. The

2
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subfamily of betaherpesvirinae has been further divided into three genera; 

Cytomegalovirus, which includes the human cytomegalovirus (HCMV-1),

Muromegalovirus, which includes murine cytomegalovirus, and Roseolovirus, which 

includes the human herpes virus type-6 and type-7 (HHV-6 and HHV-7).

• Gammaherpesvirinae

Herpesviruses within this subfamily typically demonstrate an in vitro host range restricted 

to the family or order to which the natural host belongs. In vitro all members of this 

subfamily replicate in lymphoblastoid cells and some also cause lytic infection within 

epitheliod and fibroblastic cells. Within the natural host, viruses tend to be specific for 

either T or B-lymphocytes. Viruses within this subfamily frequently maintain a latent state 

of infection within lymphoid tissue. The subfamily of Gammaherpesvirinae has been 

further divided into two genera; Lymphocryptovirus, which includes the Epstein-Barr virus 

(EBV), and Rhadinovirus, which includes human herpes virus type-8 (HHV-8).

1.1.2 Classification o f herpesviruses based upon sequence analysis

Mirroring the remarkable developments in DNA sequencing and sequence analysis over 

the past two decades the classification of herpesviruses within the three subfamilies has 

been reanalysed based upon DNA sequence homology and genome organisation. Factors 

taken into consideration include the arrangement of terminal sequences required for DNA 

packaging, conservation and positioning of genes and gene clusters, and the presence of 

nucleotides subject to methylation (reviewed by Roizman, 1992; McGeoch et al, 1995). 

Fortunately the historical classification based upon the biological properties of the viruses 

has proved remarkably accurate. However, there are a few notable exceptions. The most 

prominent is that of gallid herpesvirus type-1 (GHV-1, also known as Marek’s disease 

virus) which was originally classified as a member of the Gammaherpesvirinae. The 

assignment of GHV-1 to the Gammaherpesvirinae subfamily was based upon the virus’s 

ability to cause tumour like growths within lymphoid tissue of chickens. However, 

sequence analysis demonstrated that the GHV-1 genome arrangement resembled that of 

Alphaherpesvirinae rather then Gammaherpesvirinae and it was subsequently reassigned 

(Buckmaster et al., 1988). Similarly, both HHV-6 and HHV-7 were originally classified

3
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Fig. 1.2: This figure is reproduced from McGeoch et al., (1995) and 

illustrates the divergence over time for some of the herpesviruses 

within the herpesviridae family from a common ancestor. Horizontal 

lines of branches are proportional to their respective time of 

divergence. Subfamily groups are indicated by the presence of their 

appropriate Greek letter. The oldest parts of the tree are indicated by 

broken lines to represent the low confidence in the exact time scale of 

divergence.
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as Gammaherpesvirinae as they exhibited lymphotropism, but were subsequently 

reassigned to the Betaherpesvirinae following sequence analysis.

1.1.3 Divergence o f the Herpesviridae family

Detailed sequence examination and phylogenetic analysis of those herpesviruses that have 

been sequenced has clearly demonstrated a common ancestry among the Alpha-, Beta-, and 

Gamma-herpesvirinae (McGeoch et al, 1995). It has been estimated that the divergence of 

the three subfamilies arose approximately 180-200 million years ago with divergence 

within individual subfamilies occurring approximately 80 million years ago. Fig: 1.2 

schematically illustrates the sequence relatedness between some of the herpesviruses 

within the three subfamilies and demonstrates their evolutionary divergence over time.

1.2 Herpesviruses which infect humans

There are currently eight herpesviruses that have been isolated from humans (summarised 

in table 1.1). Most of these viruses are widespread and are distributed both in the 

developed and underdeveloped world. As with all herpesviruses, infection can result in the 

establishment of a latent infection. The viral DNA remains associated with the host for its 

entire life as a circular episome within the nuclei of cells. Sporadic reactivation from 

latency into a full lytic infection is poorly understood but usually requires external or 

internal stimulus. Such stimuli include; mental and physical stress, hormonal changes, 

immunocompromisation, and exposure to UV radiation (reviewed by Roizman and Sears, 

1996). HSV-1 latency is discussed in further detail within section 1.6.

4
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Introduction

1.3 Virion architecture

The architecture of the virion is conserved throughout the herpesviridae and comprises 

four distinct components; DNA core, nucleocapsid, tegument, and envelope (fig. 1.1) 

(Wildy et al., 1960). Attention will be paid to the architecture of the HSV-1 virion, 

especially the structure and composition of the capsid, as this forms the basis to the work 

presented within this thesis.

1.3.1 The HSV-1 genome

The entire genome of HSV-1 (strain 17) has been sequenced and consists of 152,260bp of 

dsDNA encoding a minimum of 73 open reading frames (ORFs) with an overall G+C 

content of 68.3% (McGeoch et al., 1988). The genome of HSV-1 consists of two regions, 

unique long (UL) and unique short (US). Genes within these unique sequences are prefixed 

with either UL or US and are numbered according to their relative position within the 

genome. These sequences are flanked by internal and terminal repeat sequences 

designated TRl/IRl and IRs/TRs (fig. 1.3, panel A). A sequence of variable length, termed 

the "a ” sequence, is present as a direct repeat at each terminus of the DNA molecule and 

as an inverted repeat at the L-S junction. During infection the UL and US sequences can 

invert relative to each other with progeny viral DNA typically being present in equimolar 

amounts of the four isomers. These isomers are termed; P (prototype), IL (inversion of L), 

IS (inversion of S), and ISL (inversion of both S and L) (summarised in fig. 1.3, panel B).

1.3.2 The “a” sequence.

The “a ” sequence mediates a number of important functions during the life cycle of 

herpesviruses and is composed of a number of repeat elements (reviewed in Roizman and 

Sears, 1996). It is directly involved in the inversion of L and S segments, the 

circularisation of DNA following infection, site specific recombination, and plays an 

integral role in the cleavage of replicated DNA during packaging. The HSV-1 “a ” 

sequence can be divided into both unique (U) and directly repeated (DR) elements. The 

structure of the “a ” sequence in HSV-1 (strain F) is represented as:
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DR1 -Ub-DR2n-DR4m-Uc-DRl

Where Ub and Uc consist of unique sequences of 65 and 68bp in length and DR1, DR2, and 

DR4 are direct repeats containing 20, 12, and 37bp respectively. DR2 is present in 19 to 

23 copies, and DR4 is present in 2 to 3 copies per “a ” sequence. The size of the “a ” 

sequence varies depending on the strain and generally reflects the number of repeats of 

DR2 and DR4. Linear virion DNA contains asymmetric ends with the terminal “a ” 

sequences of the L component ending in 18bp of DR1 and that of the S component ending 

in lbp of DR1. A single 3’ residue overhang occurs at both termini and allows the linear 

DNA molecule to circularise. The number of “a ” sequences at the L-S junction and at the 

L terminus can vary, although only a single “a ” sequence is present at the S terminus. The 

relevance of the “a ” sequence is discussed further in section 1.5.5.

1.3.3 DNA structure within the nucleocapsid

The DNA within the nucleocapsid of HSV-1 virions was originally proposed to exist as a 

toroid by Furlong et al., (1972). Analysis of thin sections of HSV-1 virions and gradient 

purified capsids by EM showed that the DNA within the nucleocapsids of these samples 

appeared as an electron-opaque toroid partially surrounding a less dense cylindrical mass. 

This lead the authors to speculate that the DNA was wound around a central protein plug. 

The plug was proposed to be composed of VP21 by Gibson and Roizman (1972). 

However, Puvion-Dutilleul et al., (1987) argued that the toroid structure of DNA observed 

within the core was a direct result of dehydrating agents used in the specimen preparation. 

Cryo-EM and computer reconstruction analysis of HSV-1 capsids has not provided any 

supporting evidence for a toroid arrangement of viral DNA coiled around a central protein 

plug. Booy et al., (1991) proposed that the DNA within the nucleocapsid was packaged in 

a liquid crystalline state, similar to that observed for bacteriophage X and T4, where the 

DNA is packaged in parallel bundles. The packaging of DNA in this manner into the core 

of icosahedral capsids circumvents the requirement for a central protein plug to wind the 

DNA around (Lepault et al., 1987). Recent cryo-EM analysis upon purified HSV-1 virions 

has provided additional support for the packaging of viral DNA into HSV-1 capsids in the 

absence of a central protein plug. Zhou et al., (1999) showed the DNA within HSV-1

6



Fig. 1.4: Cross-section through a cryo-EM reconstruction o f  the HSV-1 

virion

resolved to 20A.

The cross-section is viewed along a 2-fold axis and illustrates the 

concentric layers o f DNA packaged within the capsid (coloured in 

brown). The spacing between the concentric layers o f DNA is 

approximately 26A. The capsid is radially coloured from light 

(yellow/interior) to dark (purple/exterior). Inner and outer capsid shells 

are coloured yellow and green respectively. The icosahedrally ordered 

tegument is coloured blue and purple.

This figure was reproduced with permission from W. Chiu, Baylor 

College o f Medicine, USA.
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virions was packaged as regularly spaced concentric layers approximately 26A apart. Up 

to 10 concentric layers of DNA could be successfully resolved at the resolution of analysis 

with the DNA occupying 90% of the total internal volume of the capsid. The structure of 

the DNA within the HSV-1 capsid is consistent with a spooling model of DNA packaging, 

as seen within the T7 bacteriophage (Harrison, 1983; Cerritelli et al., 1997). However, 

unlike that of T7 bacteriophage, no central protein plug was observed around which the 

genome could be spooled. Instead, Zhou et al., (1999) speculated that the linear DNA 

molecule wrapped itself around the inner surface of the capsid shell accumulating one 

layer at a time with the DNA becoming less densely packaged further away from the inner 

surface of the capsid (fig. 1.4). Although the DNA is closely associated with the inner 

surface of the capsid shell no icosahedral symmetry could be detected and therefore it 

seems unlikely that the viral DNA makes any specific DNA/protein interactions (Zhou et 

al., 1999).

1.4 Virion morphology

The HSV-1 genome encodes over 73 major ORFs of which approximately 40 are reported 

to encode proteins that can be found within the mature virion. Therefore, over 50% of the 

HSV-1 genome encodes proteins that are utilised in the production of infectious progeny 

virions. However, it should be noted that not all of the proteins found within mature virion 

are required for infectivity. Indeed, transfection of naked HSV-1 DNA into cells is 

sufficient for initiating infection. The majority of the virion proteins are responsible for 

effectively delivering the viral DNA into the cell nucleus and directing the process of 

infection (Rixon, 1993).

1.4.1 The tegument

The tegument is an amorphous protein layer situated between the capsid and the envelope 

(see fig. 1.1) (Wildy et al., 1960). In comparison to the rest of the virion, little is known 

about the structural organisation of the tegument (reviewed by Rixon, 1993). However, 

the tegument accounts for approximately 50% of the total volume of the virion and 

consists of at least 18 viral proteins (Haarr and Skulstad, 1994). Although some of these 

proteins have yet to be assigned functional roles, proteins within the tegument are

7



Fig. 1.5: Visualisation o f the icosahedrally ordered tegument proteins.

The tegument proteins are coloured from light (green/low) to dark 

(purple/high) representing their radial distance from the center o f the 

capsid. Protein densities attributed to the B-capsid are coloured in gray. 

Structural components which make up one asymmetric unit, 1 penton 

(5), hexons (P, E, and C), and triplexes (Ta-Tf) are labeled in blue.

This figure was reproduced with permission from W. Chiu, Baylor 

College o f Medicine, USA.
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generally considered to be involved in virion morphogenesis, uncoating, and regulation of 

gene expression. The functions of the known tegument proteins are summarised in table 

1.2 .

1.4.1.1 Tegument assembly

Although little is known about tegument assembly and virion tegument acquisition it 

should be noted that the tegument does contain a degree of structural organisation. Szilagi 

and Cunningham (1991) demonstrated that tegument proteins could assemble into stable 

particles (L-particles) that sediment more slowly than normal HSV-1 virions during 

gradient purification. These particles were shown to consist solely of tegument and 

envelope proteins (Rixon et al., 1992). L-particles are unable to initiate infection, due to 

the lack of a viral genome, but are capable of penetrating cells and increasing the 

efficiency of HSV-1 lytic replication (McLauchlan et al., 1992; Dargan and Subak-Sharpe,

1997). The tegument proteins found within L-particles also appeared similar to those 

proteins found within mature virions indicating that the capsid is not required for tegument 

formation (McLauchlan and Rixon, 1992).

1.4.1.2 Tegument structure

Recent cryo-EM analysis performed by Zhou et al., (1999) upon gradient purified virions 

demonstrated that some of the tegument proteins associated with the capsid are 

icosahedrally ordered (see fig. 1.5). Although these proteins have yet to be identified their 

extensive interactions around the penton lead the authors to speculate that they may be 

involved in the regulation of DNA transport through the penton channel.

It is of interest to note that similar cryo-EM analysis performed upon purified HCMV 

virions reveals significant differences in the structural organisation of the icosahedrally 

ordered tegument proteins surrounding the capsid (Chen et al., 1999). The principle 

difference in HCMV can be seen in the extensive association of tegument protein 

complexes with both pentons and hexons. The tegument densities surrounding the HCMV 

capsid also appear conformationally distinct from those surrounding the penton in the 

HSV-1 virion. As with HSV-1 these icosahedrally ordered tegument proteins have yet to



Gene Protein Approx. 
Mr (kDa)

Properties Reference(s)

UL11 -  17-22 Myristylated, role in envelopment 
and virion transport

MacLean et al., (1989) 
Baines and Roizman,(1992)

UL13 VP18.5 57 Protein kinase, phosphorylates VP22 
(UL49)

Prod'hon et al., (1996)

UL21 * - Function unknown, dispensable in 
tissue culture

Baines et al., (1994)

UL25 - 63 Required for packaging but not 
cleavage of replicated viral DNA

McNabet al., (1998)

UL36 VP 1/2 270 Possible DNA binding protein McNabb and Courtney, (1992)
UL37 - 121 Phosphoprotein, function unknown Schmitz et al., (1995)
UL41 vhs 55 Virion host shut (vhs) off protein Everly and Read, (1999)

UL46 VP11/12 79 Modulates Vmw65 (a TIF/VP16) 
and TK transactivation

Zhang et al., (1991) 
Zhang and McKnight, (1993)

UL47 VP13/14 74 Modulates Vmw65 (a TIF/VP16) 
and TK transactivation

Zhang et al., (1991) 
Zhang and McKnight, (1993)

UL48 Vmw65 
(VP 16)

55 Transactivates IE genes Berket al., (1998)

UL49 VP22 32 Stabilises microtubule assembly Elliott and O'Hare, (1998)

UL54 Vmw63 55 IE2 transcription/post-transcriptional 
regulator

Sinclair et al., (1994)

UL56 _ _ Function unknown, Kehm et al., (1998)
RL2 Vmwl 10 

(ICPO)
110 IE1 transcriptional activator, blocks 

mitosis, disrupts ND10 domains
Lomonte and Everett, (1999) 
Muller and Dejean, (1999)

RSI Vmwl75
(ICP4)

133 Transcription activator Allen and Everett, (1997)

US3 " 53 Protein kinase, partial inhibitor of 
apoptosis

Jerome et al., (1999)

US9 “ 10 Ubiquitinated phosphoprotein, 
function unknown

Brandimarti and Roizman, (1997)

US10 - 34 Phosphoprotein, function unknown Yamada et al., (1997)
US11 " 18 RNA binding regulatory protein 

associated with 60S ribosome
Roller et al., (1996)

Table 1.2: Summary of the HSV-1 tegument proteins and their known properties.
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be identified. However, the substantial differences in their structural organisation are 

probably indicative of their divergent roles during infection.

1.4.2 The envelope

The outer layer of the HSV-1 virion is composed of a trilaminar envelope that contains a 

large number of prominent protein spikes protruding from its surface (fig. 1.1) (Wildy et 

al., 1960). Utilising immuno-gold labelling Stannard et al., (1987) demonstrated that these 

protruding spikes corresponded to HSV-1 glycoproteins which varied in length (80-240A) 

and shape. There are currently 11 glycoproteins which have been identified. Although no 

glycoprotein has been shown to be essential for virion assembly, four glycoproteins are 

necessary for infectivity (reviewed by Spears, 1993; Haarr and Skulstad, 1994). The 

properties of the 11 glycoproteins are summarised in table 1.3. The nomenclature of 

glycoproteins is alphabetical, with the prefix “g” denoting the protein as being fully 

processed. Originally the list contained glycoprotein A (gA). However, this glycoprotein 

was later shown to be indistinguishable from glycoprotein B (gB) (Eberle and Courtney, 

1980). Similarly, Glycoprotein F (gF) originally discovered in HSV-2 was subsequently 

shown to be the homologue of glycoprotein C (gC) in HSV-1 (Zezulak and Spear, 1984). 

Consequently both gA and gF are absent from the summary table.

1.4.3 The capsid

The HSV-1 capsid is an icosahedral protein shell (~125nm in diameter, see fig. 1.13) that 

directly surrounds the viral DNA (Wildy et al., 1960). Gibson and Roizman (1972) 

originally demonstrated that three distinct types of capsid could be isolated from HSV-1 

infected Hep-2 cells. Three types of capsids could be observed by EM within the nuclei of 

infected cells which appeared uniform in size and conformation. Two types of capsid 

could be separated based upon differences in their respective mass by gradient 

sedimentation. The upper band was termed A-capsids and the lower band B-capsids. 

Characterisation of the proteins found within these capsids lead Gibson and Roizman 

(1972) to propose that A-capsids, which lacked VP22a and VP21, differed from B-capsids 

in their internal core protein composition. B-capsids also appeared to contain 

approximately lOx more DNA than A-capsids. The third type of capsid, termed the C-
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Protein Gene Approx. 

Mr (kDa)

Properties

gB UL27 120 Forms homooligomers, required for viral 

penetration and cell fusion

gc UL44 120 Mediates cell attachment, may be required for 

entry on some polarised cell types

gD US6 60 Required for viral penetration and cell fusion

gE US8 80 Forms oligomers with gl, involved in cell-to- 

cell spread

gG US4 60 Non-essential for viral replication in cultured 

cells

gH UL22 115 Forms heterooligomers with gL, required for 

viral penetration and cell fusion

gl US7 70 Forms oligomers with gE, involved in cell-to- 

cell spread

gJ US5 10 Non-essential for viral replication in cultured 

cells

gK UL53 40 Involved in cell fusion

gL UL1 40 Forms heterooligomers with gH, required for 

viral penetration and cell fusion

gM UL10 60 Phosphorylated by US3 protein kinase, non- 

essentail for viral replication in cultured cells

Table 1.3: Summary of HSV-1 glycoproteins and their known properties. 

Those genes underlined are essential for viral infectivity.

(Subak-Sharpe and Dargan, 1998; Steven and Spear, 1997; Haarr and Skulstad, 1994).
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capsid, was isolated from infectious virions present within the cytoplasm of infected cells. 

Treatment of virions with the non-ionic detergent NP-40 and urea removed the 

surrounding envelope and tegument layers. C-capsids, as with B-capsids, were found to 

contained DNA and lack the internal protein VP22a. When C-capsids were sedimented on 

sucrose gradients in conjunction with A and B capsids they appeared as a faint band 

beneath B-capsids. Subsequent to this work, all three types of capsid have been purified 

from the nuclei of infected cells (reviewed by Rixon, 1993).

The three types of capsid are now defined as:

I. A capsids - empty capsids with no internal structure.

II. B capsids - intermediate capsids that lack viral DNA but contain a core in the form 

of a proteinaceous layer.

III. C capsids - capsids that contain the viral DNA and lack the internal proteinaceous 

core.

A fourth type of capsid, termed the procapsid, has recently been identified from in vitro 

capsid assembly experiments (Newcomb et al., 1996; Trus et al., 1996). This type of 

capsid was proposed to be a precursor to mature capsids. Procapsids have subsequently 

been characterised in and isolated from HSV-1 infected cells and therefore represent a true 

assembly intermediate during virion assembly (Rixon and McNab, 1999; Newcomb et al., 

2000). The procapsid is discussed in further detail within section 1.9.

1.4.3.1 Structural composition o f the capsid

Gibson and Roizman (1972 and 1974) originally characterised the protein composition of 

B capsids and identified six virion proteins (VP); VP5, VP 19, VP21, VP22a, VP23, and 

VP24. Heilman et al., (1979) and Cohen et al., (1980) further identified the presence of a 

small (12kDa) capsid protein which they termed pl2 and NC-7 respectively. Newcomb 

and Brown (1991) standardised the nomenclature of the capsid proteins and renamed the 

pl2/NC-7 capsid protein as VP26. The virion protein VP 19 was also renamed to VP 19c in 

order to differentiate it from a glycosylated virion protein that co-migrated during SDS-

10



Gene Protein Mr (Da) Location 

in capsid

No. of copies 

per capsid

Presence in A-, B-, 

and C-capsids

UL18 VP23 34,268 Triplexes 640 A, B, C

UL19 VP5 149,075 Hexons & 

Pentons

960 A, B, C

UL26-N VP24 26,618 Internal

scaffold

~ 147 A, B, C

UL26-C VP21 39,875 Internal

scaffold

~ 87 B

UL26.5 VP22a 33,765 Internal

scaffold

~ 1153 B

UL35 VP26 12,095 Tips of 

Hexons

900 A, B, C

UL38 VP19c 50,260 Triplexes 320 A, B, C

Table 1.4: Summary of the major capsid proteins within HSV-1 A-, B-, and C-capsids 
(table modified from Homa and Brown, 1997).
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PAGE analysis (Heine et al., 1974; Newcomb and Brown, 1991). The individual capsid 

proteins are discussed in detail below and summarised in table 1.4.

1.4.3.2 Protein composition o f  the HSV-1 capsid

• VP5 (UL19)

The 155kDa capsid protein VP5 was first shown to be a constituent of the virion by Spear 

and Roizman (1972) and subsequently identified as a component of the capsid by Gibson 

and Roizman (1972).

VP5 is encoded by the UL19 ORF, initiating at 40528 and terminating at 36406, see fig.

1.3 (Costa et al., 1984; McGeoch et al., 1988). The UL19 ORF encodes a protein with a 

predict MW of approximately 150kDa which corresponds well to the observed MWs of 

150-155kDa indicating that the protein does not undergo any significant post-translational 

modification (Gibson and Roizman, 1972; Cohen et al., 1980; Rixon et al., 1990). VP5 has 

been shown to make up 60-70% of the protein mass of HSV capsids and commonly is 

referred to as the major capsid protein (MCP). Indeed, VP5 has been shown to make up 

the entire mass of the pentons and the majority of the mass of hexons (Gibson and 

Roizman 1972; Newcomb et al., 1993; Zhou et al., 1994).

As VP5 is the MCP it is not surprising therefore that it is essential for capsid formation. 

Weller et al., (1987) demonstrated that ts mutations within the UL19 ORF were sufficient 

to prevent the formation of capsids at non-permissive temperatures. Similarly, 

experiments performed by Desai et al., (1993) demonstrated that insertion of the lacZ gene 

into the beginning of the UL19 ORF to generate a VP5 null mutant virus (K5AZ) abolished 

the formation of capsid particles in non-permissive Vero cells. Furthermore, infection of 

non-permissive cells with the K5AZ mutant produced similar levels of concatameric viral 

DNA as was seen within permissive cells. However, mutant viruses were defective in the 

processing of concatameric DNA into genome length molecules suggesting that capsid 

formation is a prerequisite for DNA cleavage to occur. HSV-1 capsid assembly analysis 

utilising the baculovirus expression system has also demonstrated that VP5 is essential for 

the formation of capsids both in vivo and in vitro (Newcomb et al., 1994; Tatman et al.,

11
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1994; Thomsen et al., 1994; Newcomb et a l, 1999). The fact the VP5 is essential for 

capsid formation is consistent with the observation that VP5 is the MCP and present within 

all capsid types. The structural organisation of VP5 within the capsid is discussed in 

further detail within section 1.8. It is interesting to note that VP5 has been shown by non

reducing SDS-PAGE to be covalently linked to VP 19c within purified HSV-2 capsids 

(Zweig et al., 1979). The high degree of conservation between HSV-1 and HSV-2 would 

suggest that such an interaction should also exist in HSV-1 although attempts to identify it 

within HSV-1 capsids have failed so far (personal communication; Rixon, 1996).

VP5 has been directly implicated in binding to the C-terminal 25 amino acid of the internal 

scaffold proteins encoded by UL26 and UL26.5 (Thomsen et al., 1994; Kennard et al., 

1995; Desai and Person, 1996; Hong et al., 1996). The residues within VP5 that 

participate in this interaction have yet to be identified, although recent experiments 

utilising second site mutations within VP5 to rescue scaffold protein mutants that are 

unable to undergo maturational cleavage, have indicated that residues within the N- 

terminus of VP5 may be involved (Desai and Person, 1999).

• VP 19c (UL38)

The 53kDa capsid protein VP 19c was first shown to be a constituent of the virion by Spear 

and Roizman (1972) and subsequently identified as a component of the capsid by Gibson 

and Roizman (1972).

VP19c is encoded by the UL38 ORF, initiating at 84531 and terminating at 85926, see fig.

1.3 (McGeoch et al., 1988; Rixon et al., 1990). The UL38 ORF encodes a protein with a 

predicted MW of approximately 50kDa which corresponds well to the observed MWs of 

50-54kDa indicating that the protein does not undergo any significant post-translational 

modifications (Gibson and Roizman, 1972; Cohen et al., 1980; McGeoch et al., 1988; 

Rixon et al., 1990).

VP 19c forms part of the heterotrimeric complex termed the triplex, discussed in further 

detail within section 1.8.2 (Newcomb et al., 1993). The VP 19c homologue within HSV-2

12
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capsids has been reported to be covalently linked to VP5, although this has yet to be 

identified with HSV-1 capsids (Zweig et a l, 1979).

VP 19c has been shown to be essential for capsid formation and is present within A, B, and 

C-capsids. Pertuiset et al., (1989) demonstrated that a ts mutant (A44to2) that located to 

the UL38 ORF could not form capsids at the non-permissive temperature. Like the VP5 

mutants described above, A44ts2 mutant virus, although not defective in DNA replication, 

was defective in the processing of concatameric DNA into genome length molecules. 

Similarly, a VP 19c null mutant virus was shown to be inhibited in the formation of virions 

on non-permissive cells (Person and Desai, 1998). Furthermore, capsid assembly analysis 

utilising the baculovirus expression system has also demonstrated that VP 19c is essential 

for the formation of capsids both in vivo and in vitro (Newcomb et al., 1994; Tatman et al., 

1994; Thomsen et al., 1994; Newcomb et al., 1999).

• VP23 (UL18)

The 33kDa capsid protein VP23 was first shown to be a constituent of the virion by Spear 

and Roizman (1972) and subsequently identified as a component of the capsid by Gibson 

and Roizman (1972).

VP23 is encoded by the UL18 ORF (Rixon et al., 1990), initiating at 36051 and 

terminating at 35097, see fig. 1.3 (McGeoch et al., 1988). The UL18 ORF encodes a 

protein with a predicted MW of approximately 34kDa which corresponds well to the 

observed MWs of 30-34kDa indicating that the protein does not undergo any significant 

post-translational modifications (Gibson and Roizman, 1972; Cohen et al., 1980; McGeoch 

et al., 1988; Rixon et al., 1990).

Two copies of VP23 interact with a single copy of VP 19c to form a heterotrimeric 

complex termed the triplex, discussed in further detail within section 1.8.2 (Newcomb et 

al., 1993).

VP23 has also been shown to be essential for the formation of WT polyhedral capsids in 

the baculovirus expression system (Newcomb et al., 1994; Tatman et al., 1994; Thomsen et
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al., 1994; Newcomb et a l, 1999). A null mutant virus (K23Z) generated by the insertion 

of the lacZ gene into coding region of VP23 failed to produce capsids on non-permissive 

cells (Desai et al., 1993). K23Z mutant virus synthesised WT levels of DNA but was 

defective in the processing of concatameric DNA into genome length molecules. 

Furthermore, baculovirus analysis has shown that in the absence of VP23 VP5/VP19c 

particles form that are smaller and more densely stained than WT capsids (Tatman et al., 

1994; Thomsen et al., 1994; Rixon et al., 1996; Saad et al., 1999).

• VP2 6 (UL35)

VP26 is the smallest structural protein associated with the capsid and was originally 

identified by Heilman et al., (1979).

VP26 is encoded by the UL35 ORF, initiating at 70566 and terminating at 70902, see fig.

1.3 (McGeoch et al., 1988; Davison et al., 1992). The UL35 ORF encodes a protein of a 

predicted MW of approximately 12kDa which corresponds exactly to the observed MW of 

12kDa indicating that the protein does not undergo any post-translational modifications 

(Heilman et al., 1979; Cohen et al., 1980; McGeoch et al., 1988; Rixon et al., 1990).

VP26 is located on the tips of the hexons and is present within A, B, and C-capsids, 

discussed in further detail within section 1.8.2 (Trus et al., 1992; Booy et al., 1994; Zhou et 

al., 1994; Zhou et al., 1995; Wingfield et al., 1997; Desai and Person, 1998).

Capsid assembly analysis utilising the baculovirus expression system has shown VP26 to 

be non-essential for the formation of capsids both in vivo and in vitro (Tatman et al., 1994; 

Thomsen et al., 1994). VP26 has also been shown to be absent from purified HSV-1 

procapsids (Newcomb et al., 2000). The function of VP26 therefore remains ambiguous. 

However, Desai et al., (1998) demonstrated that a VP26 null mutant virus (KA26Z), which 

replicated at WT levels in tissue culture, had a 30- to 100-fold decrease in virus yield from 

the trigeminal ganglia compared to that of WT virus. Furthermore, latent KA26Z genomes 

also had a reduced ability in reactivate from latency compared to latent WT virus. VP26 

therefore appears to be important for infectious virus production within neuronal cells.
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• VP21, VP24, and VP22a (UL26/UL26.5)

VP21, VP24, and VP22a are the three major capsid scaffold proteins and are encoded by 

overlapping in-frame genes UL26 (VP21 and VP24) and UL26.5 (VP22a) (illustrated 

schematically in fig. 1.6; Liu and Roizman, 1991a and 1991b; reviewed by Rixon, 1993 

and Steven and Spear, 1997). Both genes are essential for the efficient maturation of 

capsids that are capable of packaging viral DNA (Gao et al., 1994; Sheaffer et al., 2000).

UL26 encodes an N-terminal protease (VP24) and a C-terminal oligomerisation and VP5 

binding protein domain (VP21) (Preston et al., 1992; Pelletier et al., 1997). The UL26 

ORF initiates at 50809 and terminates at 52714, see fig. 1.3 (Davison et al., 1992; 

McGeoch et al., 1988). Following translation the proteolytic activity of the N-terminal 

VP24 domain results in self-cleavage between alanine 247 and serine 248 to generate two 

cleavage products, namely VP24 and preVP21 (Dilanni et al., 1993; Weinheimer et al., 

1993). Further proteolytic cleavage of preVP21 by VP24 between alanine 610 and serine 

611 results in the removal of the C-terminal 25 amino acids and the production of mature 

VP21. VP24 and VP21 have observed MWs of 24-26kDa and 40-44kDa respectively 

(Gibson and Roizman, 1972, Cohen et al., 1980, and Rixon et al., 1990).

VP22a is encoded by the UL26.5 gene (Liu and Roizman (1991b); Davison et al., 1992). 

The UL26.5 ORF initiates at 51727 (within the UL26 ORF) and terminates at 52714 

(McGeoch et al., 1988). The full-length UL26.5 gene product is termed preVP22a and can 

be proteolytically processed by VP24 between alanine 610 and serine 611 resulting in the 

cleavage of the C-terminal 25 amino acids to produce mature VP22a, see fig. 1.6.

Differential regulation of the UL26 and UL26.5 promoters results in the increased 

expression of VP22a over that of VP21 and VP24. As a consequence VP22a is present in 

much higher quantities within B-capsids, approximately 1000-1500 copies per capsid, than 

either VP24 or VP21, approximately 100 copies per capsid (Liu and Roizman, 1991a, and 

1991b; Newcomb et al., 1993).

Mature forms of VP22a and VP21 are expelled from the capsid upon packaging of viral 

DNA (Gibson and Roizman, 1974; Addison et al., 1990). Consequently, VP21 and VP22a
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can only be detected within B-capsids. The relevance of the C-terminal 25 amino acids of 

preVP21 and preVP22a for HSV-1 capsid assembly is discussed in further detail within 

section 1.8.3. VP24 can be detected within all three types of capsids as well as within 

mature HSV-1 virions (Gibson and Roizman 1974, Sheaffer et al., 2000).

1.4.3.3 Minor capsid proteins

Six proteins encoded by UL6, UL12.5, UL15, UL17, UL25, and UL28 have recently been 

identified as minor constituent proteins of the capsid. However, both in vivo and in vitro 

capsid assembly analysis has shown that these proteins are not required for efficient capsid 

assembly to occur (Tatman et al., 1994; Thomsen et al., 1994; Newcomb et al., 1996; 

Newcomb et al., 1999). Although these proteins may not be required for the assembly of 

capsids they have a strong association with the capsid. For example, gene products of the 

UL6, UL12.5, and UL15 have been shown to be resistant to extraction from capsids treated 

with 2M GdnHCl (Patel and MacLean, 1995; Bronstein et al., 1997; Salmon and Baines, 

1998). Similar treatment of purified B-capsids capsids by Newcomb et al., (1993) 

demonstrated that 2M GdnHCl could induce the disassociation of VP26 from the tips of 

the hexons, pentons from the 5-fold vertices and strip triplexes Ta and Tc. These minor 

capsid proteins are associated with the cleavage and packaging of viral DNA into the 

capsid (discussed in further detail in section 1.5.5 and summarised in table 1.5). Therefore, 

although these proteins are not required for the assembly of viral capsids their strong 

association to the capsid highlights the direct correlation between capsid assembly and the 

efficient cleavage and packaging of viral DNA.

16



Introduction

1.5 The HSV-1 lytic life cycle

The processes involved in the lytic reproduction of HSV-1, from initial infection through 

to the release of progeny virions resulting in cell death, are briefly discussed below and 

summarised schematically in fig. 1.7.

1.5.1 Attachment and entry o f HSV-1 into the cell

Attachment of HSV-1 virions to the cell surface and subsequent fusion requires a chain of 

events involving several of the 11 glycoproteins within the envelope of the HSV-1 virion 

(reviewed by Spear, 1993; Steven and Spear, 1997). Initial attachment of the virion to the 

cell is thought to involve the glycoproteins gC and/or gB binding to cell surface 

glycosaminoglycans (GAGS), preferentially heparan sulfate (Shieh and Spear, 1994). 

However, the initial attachment to GAGS is not sufficient for virus penetration (Lee and 

Fuller, 1993). Recently a group of receptors termed the herpesvirus entry mediators 

(HveA-D) have been implicated in the entry of herpesviruses into a number of cell types. 

However, the specificity of these receptors varies and they can be cell specific. For 

example, HveA is a member of the tumour necrosis factor receptor family and has been 

shown to be the principle receptor for HSV-1 within human lymphoid cells but will not 

support the entry of other a-herpesviruses such as PRV (Montgomery et al., 1996). HveB- 

D are related to the poliovirus receptor proteins which belong to the immunoglobulin 

superfamily. Both HveB and HveD have been shown to be specific entry mediators for a 

number of a-herpesvirus but do not support the entry of various strains of WT HSV-1. 

Conversely, HveC has been shown to be an entry mediator of HSV-1 and binds strongly to 

gD. It has also been shown to be an active entry mediator for a number of other a- 

herpesviruses, including HSV-2, PRV and BHV-1 (Geraghty et al., 1998; Krummenacher 

et al., 1998).

Following attachment fusion of the viral envelope with the host cell membrane occurs in a 

pH-independent manner and requires the presence of number of glycoproteins including 

gD, gB, and the gH-gL complex (Wittels and Spear, 1991; Spear, 1993).
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Fig. 1.7: Schematic overview of the lytic reproductive cycle ofHSV-1

(1-3) Virions bind to the cell surface, initially through cell surface glycosaminoglycans, and Hve 

receptor-mediated fusion occurs (discussed in section 1.5.1). (4) Following internalisation, tegument 

proteins are released into the cytoplasm (discussed in section 1.5.3) and the capsid is transported along 

microtubules to the nucleus (discussed in section 1.5.2). (5a-5c) Tegument proteins become localised, 

either to the nucleus where they stimulate viral transcription or remain within the cytoplasm where they 

restrict host protein synthesis (discussed in section 1.5.3 and 1.5.4). (6+7) Transported capsids dock at 

the nuclear pore where the viral DNA is released into the nucleus and circularises to form an episome. 

(8+9) The gene cascade begins with immediate early (IE) transcription. Transcripts move into the 

cytoplasm and become translated. IE gene products are transported into the nucleus where they activate 

early gene transcription and regulate IE gene transcription. (10-12b) Early gene transcription results in 

the production of proteins primarily involved in viral DNA replication (gene expression cascade is 

discussed in section 1.5.4). (13) DNA replication results in the production of long concatamers

(discussed in section 1.5.5). (14+15) Late gene expression predominantly results in the production of 

structural proteins (late gene expression discussed in section 1.5.4). (16a-16d) Membrane associated 

structural proteins, predominantly glycoproteins, become incorporated into the rough endoplasmic 

reticulum. Membrane proteins may then become modified by glycosylation and localise to both inner 

and outer nuclear membranes and the endoplasmic reticulum. Further modification occurs within the 

Golgi apparatus. Mature glycoproteins become transported to the plasma membrane. (17) Some late 

proteins, including capsid proteins, are transported to the nucleus. (18) Capsid assembly initiates 

(discussed in section 1.9 and 4.0) and DNA packaging occurs (discussed in section and 1.4.3.3 and 

1.5.6). (19) DNA containing capsids, in association with tegument proteins, acquire an envelope by 

budding through the inner nuclear membrane and pass into the lumen of the endoplasmic reticulum. The 

exact processes concerning virion egress remain unresolved and much debated. However, two popular 

theories exist regarding virion transport to the cell surface. Both the de-envelopment and luminal 

pathways are discussed in further detail in section 1.5.7. (19a-19c) Depicts the de-envelopment pathway. 

The enveloped virus fuses to the endoplasmic reticulum membrane and naked capsids and associated 

tegument proteins become released into the cytoplasm. Further accumulation of tegument proteins 

occurs within the cytoplasm before fusing with late Golgi compartments containing mature viral 

membrane associated proteins. (20a-20e) Depicts the luminal pathway. Enveloped virus is engulfed by 

a transport vesicle and delivered to the Golgi compartments. The precursor viral envelope proteins are 

processed in situ as part of the virion. In both cases the mature virion is then transported to the plasma 

membrane and released via exocytosis. (23) Progeny virions in the extracellular space can infect 

surrounding epithelial cells or neuronal cells where they may become transported to the sensory ganglia 

and establish a latent state of infection (discussed in section 1.6). Diagram reproduced from Flint et al.,
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1.5.2 Nucleocapsid transport.

The events following fusion of the viral envelope with the cell membrane are not 

particularly well defined but must involve the release of the nucleocapsid from the 

envelope and subsequent release of tegument proteins into the cytoplasm of the host cell. 

Once inside the cell the capsid is rapidly transported to the vicinity of the nucleus. Due to 

the high viscosity and the presence of steric obstacles within the cytoplasm, capsids cannot 

diffuse efficiently to the nucleus from the cell membrane. Within neurones transport 

occurs by retrograde transport along the axon from the presynaptic membrane to the 

nucleus (Lycke et al., 1988; Penfold et al., 1994). However, the transport mechanism 

within other cell types, particularly epithelial cells, is less well understood. Cytoskeletal 

assisted transport has recently been implicated in the transport of capsids from the 

periphery of cells to the nucleus (Sodeik et al., 1997). Capsids are thought to bind to 

cytoplasmic dynein, a microtubule-dependent motor protein. This binding is thought in 

part to be mediated by a virion protein encoded by UL34 (Ye et al., 2000). Capsids are 

then propelled along microtubules towards the nucleus by an unknown mechanism and in 

an ATP dependent manner. Once at the nucleus the capsid attaches to the nuclear pore 

and the DNA is released into the nucleus where it circularises into an episome (Tognon et 

al., 1981; Batterson et al., 1983; Ojala et al., 2000).

1.5.3 Disruption o f host cell protein synthesis

Uncoating of the virion following fusion of the viral envelope with the cell membrane 

results in the release of the tegument proteins into the cytoplasm of the host cell. Some of 

these proteins serve to stall host protein synthesis and accelerate the activation of viral 

gene transcription (reviewed by Roizman and Sears, 1996). The primary mechanism that 

initiates the shut-off of host protein synthesis during the initial stages of infection is 

regulated by the virion associated host shut-off (VHS) protein. The 53kDa VHS protein, 

encoded by the UL41 ORF, has been shown to degrade both cellular and viral mRNAs in a 

non-specific manner. Although viral mRNA is also degraded, its rate of synthesis is 

greater than that of VHS-induced degradation (Schek and Bachenheimer, 1985; Kwong 

and Frenkel, 1987; Kwong et al., 1988; Elgadi et al., 1999). However, it should be noted 

that VHS is not solely responsible for regulating host protein synthesis. The IE protein
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ICP27 and the UL13 protein kinase have also been shown to play roles in the regulation of 

host cell protein synthesis (Overton et al., 1994; Sandri-Goldin, 1998; Laurent et a l, 

1998).

1.5.4 HSV-1 gene expression

Transcription of the viral DNA within the nucleus of host cells is carried out by DNA 

dependent RNA polymerase II and occurs in a regulated cascade (reviewed by Roizman 

and Sears, 1996). There are three main groups of genes that have been classified according 

to their time of expression during the viral replication cycle. These are: immediate early 

(IE or a), early (E or p), and late (L or y) genes (Honess and Roizman, 1974).

Following initial infection, the tegument protein VP 16 (aTIF) together with the cellular 

transcription factor oct-1 (octamer DNA-binding protein) induce the expression of IE (a) 

proteins by binding to the upstream consensus a-promoter element ‘TATGARAT’. There 

are five gene products that are expressed within the IE cascade: ICPO (VmwllO), ICP4 

(Vmwl75), ICP22 (Vmw68), ICP27 (Vmw63), and ICP47 (Vmwl2). IE protein 

expression serves to transactivate early (P) gene expression, with IE protein synthesis 

peaking at 2-4 hours post-infection. The early genes primarily encode proteins that are 

generally required for DNA replication such as: DNA polymerase, single stranded DNA- 

binding protein (SSB or ICP8), DNA helicase-primase, and the origin binding protein. 

Early genes also include enzymes that are required for nucleotide metabolism and DNA 

repair. The synthesis of early genes can be detected as early as 3 hours post-infection and 

reaches a peak at 5-7 hours post-infection. Viral DNA synthesis commences shortly after 

the onset of early gene expression and continues up to 15 hours post-infection, with a peak 

between 7-10 hours post-infection. The regulated cascade of gene expression ends with 

the expression of late genes that generally encode structural proteins of the virion, such as 

the capsid proteins. Late genes can be subdivided into leaky late, such as VP5 encoded by 

UL19, and true late, such as VP 19c encoded by UL38. Leaky late genes are expressed in 

the absence of DNA although their expression is enhanced during DNA replication 

whereas true late genes are only expressed after the onset of DNA replication. Late gene 

expression peaks at 8-10 hours post-infection and persists for the remainder of the lytic 

cycle (Harris-Hamilton and Bachenheimer, 1985).
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1.5.5 DNA replication

As early as 30 minutes post-infection the input viral DNA reaches the nucleus where it 

forms a circular episome. Following early gene expression the replication of the viral 

DNA occurs at specific sites within the nucleus (Quinlan et al., 1984; de Bruyn Kops and 

Knipe, 1994; de Bruyn Kops et al., 1998). DNA replication is thought to be initiated by a 

theta mode of replication. However, at some point, by an unknown mechanism, theta 

replication switches to the rolling circle mode of DNA replication (reviewed by Lehman 

and Boehmer, 1999; Boehmer and Lehman, 1997). Seven HSV-1 genes are required for 

ori (origin of replication) dependent DNA replication. These genes are UL5, UL8, UL9, 

UL29, UL30, UL42, and UL52. Their properties are summarised in table 1.5.

Initiation of replication occurs at one of the three cis-acting elements within the HSV-1 

genome that function as origins of replication (ori). The origin binding protein (UL9) 

forms a homodimer and binds to specific sequences within the ori in association with the 

single stranded DNA binding protein ICP8 (UL29). Helicase activity associated with UL9, 

stimulated by the presence of ICP8, separates the two DNA strands permitting entry of the 

DNA polymerase complex (a heterodimer of UL30/UL40). DNA replication commences 

by a Theta mode of replication before switching to a rolling circle mode of replication and 

the addition of the DNA helicase-primase (primosome) complex comprising of a 1:1:1 

ratio of UL5/UL8/UL52 gene products respectively. DNA synthesis is continuous along 

one strand and discontinuous along the other strand. The progeny viral DNA accumulates 

as large concatemeric molecules at specific sites within the nucleus (de Bruyn Kops et al.,

1998). Other HSV-1 viral proteins important in DNA replication include those involved in 

nucleic acid metabolism, such as thymidine kinase (UL23), ribonucleotide reductase 

(UL39 and UL40) and dUTPase (UL50), and proteins which have been implicated in DNA 

repair, such as uracil DNA glcosylase (UL2) and alkaline exonuclease (UL12).

1.5.6 Packaging o f  progeny DNA

Cleavage and packaging of DNA into capsids are tightly linked processes and require 6 

essential gene products (UL6, UL15, UL25, UL28, UL32, and UL33). Although the exact 

role of these individual gene products has yet to be identified, their correlation to DNA
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Gene Approx. 

Mr (kDa)

Properties

UL5 98 Subunit of the primosome holoenzyme 

required for DNA helicase-primase activity

UL8 79 Stimulates primer synthesis. Subunit of the primosome 

holoenzyme required for DNA helicase-primase activity. 

Required for optimal DNA-helicase and DNA-dependent 

ATPase activity

UL9 94 Homodimeric origin binding protein, complexes with

UL29

UL29 128 Commonly refered to as ICP8. Binds single stranded 

DNA, increases helicase and DNA-dependent ATPase 

activity of UL9

UL30 136 DNA polymerase with exonuclease (3’—>5’) and RNaseH 

activity, forms a heterodimer with UL42

UL42 51 phosphoprotein with dsDNA binding activity, forms a 

heterodimer with UL30; increases processivity of UL30

UL52 114 Subunit of the primosome holoenzyme required for DNA 

helicase-primase activity, proposed divalent metal 

binding motif

Table 1.5: Summary of the essential HSV-1 DNA replication proteins. 
(Boehmer and Lehman, 1997; Lehman and Boehmer, 1999).
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cleavage and/or packaging has typically been characterised through the use of ts mutants 

(the properties of these gene products are summarised in table 1.6 and reviewed by Homa 

and Brown, 1997).

DNA replication results in the production of large, branched, head-to-tail concatamers of 

viral DNA (Zhang et al., 1994). The UL12 and UL12.5 genes encode alkaline nucleases, 

which although not essential for cleavage or packaging of viral DNA, aid the processing of 

branched DNA molecules prior to cleavage. Mutants that fail to produce an alkaline 

nuclease have been shown to reduce viral yield by 100- to 1000-fold (Martinez et al., 

1996; Bronstein et al., 1997).

Replicated DNA is packaged into the capsid and cleaved into unit length monomers at the 

novel a-a junction. This results in a single copy of the genome being packaged per 

capsids, with an “a ” sequence being present at each terminus of the DNA molecule 

(Mocarski and Roizman, 1982). The “a ” sequence therefore appears to act as a marker in 

order to determine when a full genome length has been package and should be cleaved. 

The cleavage of DNA is also dependent upon capsid formation as mutants that fail to 

express either the UL19 (VP5) or UL18 (VP23) capsid proteins appear to be unable to 

cleave concatemeric DNA (Desai et al., 1993). Indeed, several of the DNA packaging 

proteins have been shown to be strongly associated to capsids (summarised in table 1.6). 

The exact mechanism by which DNA enters the capsid has yet to be identified. However, 

the structure of the DNA within virions (discussed in section 1.3.3) would suggest that the 

DNA is packaged by a spooling mechanism forming coiled layers (Zhou et al., 1999). 

During infection the DNA is thought to be released from the capsid in a reverse process, 

whereby the DNA uncoils from the centre outwards (Zhou et al., 1999).

1.5.7 Tegument acquisition and virion egress

Following DNA packaging the capsid leaves the nucleus and acquires tegument and 

envelope layers before mature virions leave the cell via the exocytic pathway (reviewed by 

Rixon, 1993 and Steven and Spear, 1996). Although the exact mode of tegument and 

envelope acquisition is not known there are currently two popular models to describe this 

stage in the HSV-1 lytic reproductive cycle (schematically illustrated in fig. 1.6). One
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Gene Approx 

Mr (kDa)

Capsid

association

Function Reference(s)

UL6 74 YES Associated with DNA cleavage and 

packaging

Patel et al., (1996)

UL12 67.5 NO Alkaline nuclease thought to be 

involved in DNA processing prior to 

encapsidation

Shao et al., (1993); 

Goldstein and Weller (1998)

UL12.5 67.5 YES Capsid associated alkaline nuclease 

thought to be involved in DNA 

processing during packaging

Bronstein et al., (1997)

UL15 81 YES Associated with DNA cleavage and 

packaging. Homologous to 

bacteriophage T4 terminase. Transports 

UL28 to the nucleus

Yu and Weller (1998); 

Koslowski et al., (1999)

UL17 77 YES Associated with DNA cleavage and 

packaging

Goshima et al., (2000); 

Salmon et al., (1998)

UL25 62.5 YES Associated with DNA packaging McNab et al.,(1998)

UL28 85.5 YES Associated with DNA cleavage and 

packaging

Cavalcoli et al., (1993)

UL32 64 Unknown Associated with DNA cleavage and 

packaging

Lamberti and Weller (1998)

UL33 19 NO Associated with DNA cleavage and 

packaging

Reynolds et al., (2000); 

Patel et al., (1996)

Table 1.6: Summary of the HSV-1 DNA packaging proteins. Genes that are 
underlined are essential for DNA cleavage and/or DNA packaging
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model, the luminal pathway, proposes that the capsids acquire an envelope at the inner 

nuclear membrane, with subsequent modifications to the tegument and envelope 

glycoproteins proteins occurring as the virion exits the cell through the Golgi apparatus by 

the exocytic pathway (schematically illustrated in fig. 1.6, 20a-20e). The second model, 

the envelopment, deenvelpoment, and reenvelopment (EDR) pathway, proposes that 

capsids exiting the nucleus acquire an envelope by budding through the inner nuclear 

membrane into the perinuclear space. These membrane bound capsids are then 

deenveloped at the outer nuclear membrane and naked capsids are released into the 

cytoplasm. Capsids acquire a tegument on route to the Golgi apparatus where they are 

reenveloped and acquire membrane-associated proteins before exiting the cell via an 

exocytic pathway (schematically illustrated in fig. 1.6, 19a-19c). EM analysis of infected 

cells supports both models with enveloped capsids within cytoplasmic vesicles and naked 

capsids having been observed (Campadelli-Fiume et al., 1991; Steven and Spear, 1997).

However, recently there is a growing body of data to support the EDR pathway of virion 

egress. Van Genderen et al., (1994) demonstrated that the phospholipid composition of 

extracellular virions resembles that of membranes derived from the Golgi apparatus and 

plasma membranes as opposed to that of membranes derived from the nuclei of infected 

cells. However, the authors could not rule out that the lipids present within extracellular 

virions were not typical of those associated with the inner nuclear membrane, nor could 

they rule out that the phospholipid composition was modified during virion egress.

The most conclusive evidence for the EDR pathway comes from the use of recombinant 

HSV-1 viruses. HSV-1 mutants expressing modified forms of the glycoproteins gD and 

gH that carry an ER retention signal to localise these proteins to the inner nuclear 

membrane have been shown to produce non-infectious progeny virions. This therefore 

supports the theory of deenvelopment at the outer nuclear membrane, with the loss of 

glycoproteins gD and gH, and the reenvelopment at the Golgi apparatus. The envelopment 

of virus particles in the absence of gD and gH therefore results in the production of non- 

infectious progeny virions (Browne et al., 1996; Whiteley et al., 1999). Furthermore, it has 

been recently shown through time lapse confocal microscopy that the tegument protein 

VP22 does not enter the nucleus of cells during the course of HSV-1 lytic infection (Elliot 

and O’Hare, 1999). This led the authors to conclude that at least some of the tegument

22



Introduction

proteins are acquired within the cytoplasm during egress and providing further evidence to 

substantiate the EDR pathway.

1.6 Overview of HSV-1 latency

One of the unusual characteristics of all herpesviruses is their ability to establish a life

long dormant or latent state of infection within the natural host. Sporadic reactivation of 

latent viral genomes can lead to recurrent lesions at the initial site of peripheral infection. 

The viral mechanisms involved in establishing and maintaining a latent state of infection 

have been, and still are, extensively studied and as such a detailed account is outside the 

remit of this general introduction into the HSV-1 life cycle. However, as latency is such 

an integral part of the viral life cycle a brief summary is given below (for detailed reviews 

see Preston, 2000; Wagner and Bloom, 1997; Steiner and Kennedy, 1995).

1.6.1 Definition o f latency

HSV-1 latency can be defined as the maintenance of viral genomes within the nuclei of 

infected cells without the production of virus particles. The genome is genetically 

equivalent to that present within the mature virus particle but the highly regulated cascade 

of gene expression (described above) does not occur. However, the virus genome retains 

the ability to reactivate and resume replication that can lead to the recurrence of disease.

1.6.2 Establishment o f latency

Following lytic replication at the site of peripheral infection HSV-1 enters the nerve 

termini and becomes transported intra-axonally to the sensory ganglia, frequently the 

trigeminal ganglia, by retrograde transport. Infected neurones can support viral 

replication. However, in most instances latency is soon established and the viral genome 

becomes sequestered in its non-replicative state within the nuclei of infected cells as a non

integrated circular episome. There are estimated to be 10-100 copies of the viral genome 

per latently infected neurone. Although the exact mode in which viral genomes become 

suppressed is not known, the lack of certain viral factors, such as Vmw65 (ICP27), and the
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presence of cellular regulatory factors, such as the transcription factor Oct-2, have been 

implicated in the down regulation of viral gene expression (Lillycrop et al., 1993; Steiner 

and Kennedy, 1995).

1.6.3 Maintenance o f latency

During latent infection no viral gene expression associated with the lytic replication cycle 

can be detected. The only detectable gene expression is that of a major class of transcripts 

termed the latency associated transcripts (LATs), the major accumulative products of 

which are 2.0 and 1.5-1.4kb RNAs that are transcribed anti-sense to, and partially 

overlapping the coding sequences of VmwllO (ICPO). These are thought to represent 

stable non-polyadenylated introns cleaved from a longer 8.3kb precursor RNA which is in 

part complementary to the entire coding sequence of Vmwl 10 (Wagner and Bloom, 1997). 

The number of LATs varies, ranging between 40,000-100,000 copies per neurone, and 

their stability is thought to be attributed to their non-linear structure making them resistant 

to degradation (Rodahl and Haarr, 1997). The exact biological role of LATs remains 

unclear and much debated, as they appear to have a minimal effect upon the establishment 

and reactivation of viral genomes. However, a number of popular theories exist. For

example, Pemg et al., (2000) recently demonstrated through the use of a LAT mutant

HSV-1 virus (dLAT2903), that infected neurones were more susceptible to apoptosis than 

neurones infected with LAT+ HSV-1. Thus, Pemg and co-workers postulated that LATs 

promote neuronal survival following HSV-1 infection. LATs contain a number of ORFs 

suggesting that they could possible encode an as yet, unidentified viral protein. Thomas et 

al., (1999) demonstrated that the deregulated expression of the 2 kb LAT, both in neuronal 

and non-neuronal cells, promoted the growth of HSV-1 in a protein rather then an RNA 

specific manner. Therefore, the LAT may encode a tightly regulated viral protein, the 

expression of which although non-essential, could enhance the reactivation of latent HS V- 

1 genomes. Alternatively, as LATs are partially complementary to the Vmwl 10 ORF they 

may act as antisense inhibitors repressing genome expression and therefore maintaining 

latency, as VmwllO has been shown to specifically enhance IE gene expression and 

consequently viral replication (reviewed by Preston, 2000; Everett, 2000).
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1.6.4 Reactivation from latency

HSV-1 reactivation, as with other elements of HSV-1 latency, is not fully understood. 

Reactivation of latent HSV-1 genomes within humans can be induced by local stimuli, for 

example tissue damage to surrounding neurones harbouring latent genomes, and by 

systemic conditions, such as UV radiation, stress, and immunosuppression. With such a 

wide variety of stimuli inducing reactivation it appears likely that both viral and cellular 

factors are involved in triggering the onset of reactivation. Reactivation results in the 

production of infectious progeny virions without significant destruction of the host 

neurones (Gominak et al., 1990). Furthermore, repeated recurrences of reactivation of 

HSV-1 appear to have no deleterious effects upon the function or physiology of the 

trigeminal ganglia (Wagner and Bloom, 1997).

1.7 Capsid Structure

Capsid assembly plays an essential role in the life cycle of most viruses characterised to 

date. Successful formation of the capsid is fundamental in order to provide a robust 

structure that can enclose and thus protect the viral nucleic acid. Therefore, viruses have 

evolved specific assembly pathways to produce regular macromolecular structures that are 

capable of packaging their viral genomes. Furthermore, these intricate and comparatively 

large structures are produced in the context of a limited coding capacity. For example, 

herpesvirus capsids are composed of approximately 4000 proteins that become associated 

to form a structure of -1250A in diameter. The construction of this complex piece of 

protein architecture only requires the expression of 7 virally encoded genes (Tatman et al., 

1994; Thomsen et al., 19994; Steven and Spear, 1997). As the processes involved in the 

assembly of viral capsids become better understood, principally through developments in 

image processing and a better understanding of protein folding pathways, the analysis of 

capsid assembly is beginning to provide general insights into the assembly of large cellular 

macromolecular multiprotein complexes.
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1.7.1 Capsid architecture and the requirement for redundancy

Crick and Watson (1956) realised that small viruses lacked sufficient coding capacity 

within their nucleic acid genomes to encode a single asymmetric coat protein molecule 

large enough to surround and protect the viral genome. From this observation they 

deduced that virus capsids, both helical and icosahedral, were comprised of one or a small 

number of protein molecules organised in symmetrical arrays where an individual subunit 

would have specific bonding properties that were repeated exactly throughout the particle. 

The repetition of a single subunit within a capsid structure was termed redundancy. Their 

hypothesis holds true for helical viruses such as tobacco mosaic virus (TMV). The inter

subunit connections within this capsid are essentially identical within the mature virion, 

with the exception of those subunits at the ends of the helical array which have unsatisfied 

bonding capacities. (Namba et al., 1989; Casjens, 1997). In relation to icosahedral 

viruses, Crick and Watson (1956) specifically proposed that these particles were composed 

of 60 subunits, where each subunit was identically bound to its neighbouring subunit. 

Although this theory holds true for small icosahedral capsids, such as satellite tobacco 

necrosis virus (STNV) which is composed of a single repeated polypeptide subunit, their 

theory could not account for icosahedral viruses which were observed to contain 

considerably more than 60 identical subunits.

1.7.2 Quasi-equivalence

Caspar and Klug (1962) subsequently suggested a hypothesis that circumvented this 

paradox. They postulated that if inter-subunit bonds could be “deformed” this would allow 

certain multiples of 60 subunits, termed the triangulation (T) number, to be incorporated 

into an icosahedral protein shell. T represents the total number of bonding differences a 

protein subunit would encounter within a single icosahedral face. The simplest 

icosahedron would therefore be created from 60 subunits (T=l) with 12 vertices, 20 

triangular facets, and 30 edges (see fig. 1.8). Caspar and Klug (1962) envisaged that 

within an icosahedral capsid where more than 60 identical subunits were used, subunits 

would be symmetrically inserted between the rings of five subunits (pentamers) at the 12 

vertices, as rings of six subunits (hexamers). Incorporation of pentamers at the 12- 

icosahedral vertices would therefore provide the curvature required, within a hexamer
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Fig. 1.8: Schematic diagram depicting triangulation symmetry

Following the theory of quasi-equivalence (Caspar and Klug, 1962) 

icosahedral capsids could be composed from multiples of 60 subunits 

by the insertion of hexons (represented by the red dots in b and c) 

between the pentons located at the 5-fold vertices. Where T would 

represent the total number of bonding differences a protein subunit 

would have to encounter within a icosahedral face. The simplest 

icosahedron (T=l) is composed of 60 subunits (a). (b) T=4

icosahedron would contain 240 (4x60) subunits via the insertion of 3 

hexons per icosahedral face, (c) T=16 icosahedron would contain 

960 subunits via the insertion of 12 hexons per icosahedral face. The 

global 5-, 3-, and 2-fold icosahedral axis of symmetry are 

highlighted in (c) by green circles.
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lattice, in order to form a closed spherical particle (see fig. 1.10, panel B). Thus, a T=4 

capsid would be composed of 240 (4x60) subunits where each subunit would have to take 

on 4 slightly different conformations within an icosahedral face. If the subunits assembled 

totally from hexamers then the surface lattice formed would be a flat sheet and would be 

unable to form a closed particle which could encapsidate nucleic acid. Caspar and Klug 

(1962) postulated that the individual protein molecules within a given subunit structure 

would have to display subtle differences in their bonding relationships, in order to form 

both hexons and pentons. The subtle non-equivalence in bonding capacity between 

individual protein molecules was subsequently labelled “quasi-equivalent” and defined as 

‘any small non-random variation in regular bonding pattern that leads to a more stable 

structure than does strictly equivalent bonding’ (Caspar and Klug, 1962; Johnson, 1996; 

Casjens, 1997; Johnson and Speir, 1997).

The general principles of quasi-equivalence have been applied to a number of virus 

structures that display icosahedral symmetry. A good example of quasi-equivalence is the 

core particle of blue tongue virus (BTV). The icosahedral BTV contains two layers, an 

outer layer, which is primarily involved in cell attachment and penetration, and a core layer 

that contains the segmented dsRNA genome (Mertens, et al., 1987). The 700A diameter 

core of BTV has recently been resolved to 3.5A by X-ray crystallography and has been 

shown to be segregated into a further two layers (Grimes et al., 1998). The outer core 

layer is composed of 780 copies of a single polypeptide (VP7) arranged in a lattice of 260 

essentially identical trimers. A single asymmetric unit comprises 13 VP7 molecules (T=13 

icosahedral symmetry) arranged into 5 quasi-equivalent trimers (P, Q, R, S, and T). The 

bonding interactions between these trimers follows the quasi-equivalent hypothesis put 

forward by Caspar and Klug (1962) and allows the outer core layer to form a robust 

structure. The size of the outer core layer is determined by the inner core (discussed below 

in section 1.7.1.5).

1.7.3 Departure from quasi-equivalence

The principle of quasi-equivalence put forward by Caspar and Klug (1962) showing how 

icosahedral viruses could be composed of more than 60 identical subunits, provides a 

convenient means by which capsid architecture can be described. However, increased
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structural data accumulated through X-ray crystallography and high-resolution electron 

microscopy analysis has challenged the universality of quasi-equivalence (Rossmann, 

1984; Casjens, 1997). Indeed, many capsid proteins demonstrate a remarkable ability to 

break the rules of geometrical symmetry, such that chemically identical subunits that 

occupy distinct lattice sites have significantly different conformational structures and 

bonding relationships.

1.7.4 Flexibility o f proteins within capsid structures

The breakdown in the principles of quasi-equivalence is dramatically highlighted within 

the icosahedral structure of polyoma virus. Low resolution X-ray crystallography of the 

polyoma virus capsid to 22.5k revealed that all the hexon positions were occupied by 

pentons thereby contradicting the rules of quasi-equivalence (Rayment et al, 1982). High- 

resolution structures of SV40 to 3.8A demonstrated that these pentamers, composed of 5 

copies of VP1, were inter-linked by their a-helical C-terminal arms which inserted into 

their adjacent pentamer subunits. The flexibility of these a-helical arms ensured the 

correct specificity of interaction with adjacent pentamers without requiring rigid capsomer 

geometry and strong symmetry restrictions (Liddington et al., 1991; Steven et al., 1997). 

The structure of papillomavirus, another member of the genus papovaviruses, has recently 

been solved to 9A and also demonstrates similar pentamer lattice arrangements and inter- 

pentameric connections (Trus et al., 1997). Although pentamers occupy both pentamer 

and hexamer positions within the icosahedral lattice, there are distinct conformational 

differences between the capsomers. In the centre of the hexavalent capsomers there is a 

25A hole that is occluded in the pentavalent capsomers. Both pentavalent and hexavalent 

capsomers are predominantly composed of LI protein but the occlusion of the hole in the 

pentavalent capsomers may be attributed to an additional protein mass from the minor 

capsid protein L2 (Trus et al., 1997). This would therefore suggest the LI protein exhibits 

conformational flexibility in order to accommodate the incorporation of the L2 protein into 

the pentavalent capsomer.
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1.7.5 Flexibility o f proteins within quasi-equivalent capsid structures

Even in those virus structures that display quasi-equivalence, flexibility between protein 

structures plays an essential role in virion assembly. This is particularly highlighted by the 

inner sub-core of BTV and the interactions it forms with the outer core. As previously 

discussed, the outer core of BTV forms a strictly quasi-equivalent T=13 icosahedral lattice 

(section 1.7.1.2). However, the inner core of BTV has been shown by X-ray 

crystallography to form a T=2 lattice (Grimes et al., 1998). This triangulation number 

should not occur under the rules of quasi-equivalence. However, the BTV inner subcore 

circumvents the rules of quasi-equivalence by forming a flexible, triangular shaped, 

elongated dimer, composed of two molecules of the same protein, designated VP3A and 

VP3B. Five of these dimers are arranged around the 5-fold rotational axis which bind 

together through different protein interfaces to form an intermediate decamer, with a total 

of 12 decamers forming the inner subcore. The conformational flexibility required for this 

arrangement is centred on an a-helix within the VP3 dimerisation domain. The modest 

pivoting provided by the a-helix and conformational differences within the loop regions of 

VP3A and VP3B allow the subunits to form close fitting interlocking decamers while still 

retaining a local two-fold symmetry axis (Grimes et al., 1998). Flexibility within the BTV 

virion is further highlighted by the interactions between the outer core composed of VP7 

trimers, and inner VP3 subcore. Due to the symmetry mismatch there are 13 different sets 

of contacts between the outer (T=13) and inner (T=2) cores. The polymerisation of trimers 

around the inner core is predominantly achieved through subtle alterations in the 

hydrophobic interactions between inner and outer cores. The flexibility in this protein- 

protein interface provides the outer core with a scaffold for assembly of the strict quasi

equivalent T= 13 shell.

1.7.6 Symmetry mismatches in caps ids.

Although such large deviations from quasi-equivalence have only been highlighted 

comparatively recently due to the advances in high-resolution imaging. Breakdowns in 

symmetry and consequent divergences from quasi-equivalence have been observed for 

some time. The basic capsid shell often requires the addition of specific proteins to the 

outer capsid layer, which contribute important functional attributes that are essential in the
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production of infectious virions. However, addition of further structural proteins into the 

geometrical capsid lattice can introduce symmetry mismatch at the point of introduction, 

commonly the 5-fold symmetry axis, and therefore requires capsomer flexibility in order to 

be accommodated (Steven et al., 1997). Viruses that have been well documented to have 

such symmetry mismatches include bacteriophages, such as P22, A,, and T4, and 

adenovirus (Valpuesta, 1994; Hendrix, 1978; Steven et al., 1997). Bacteriophages have a 

tail spike that protrudes from one of the 12 pentonal vertices and is responsible for the 

attachment to and delivery of the viral nucleic acid into the new bacterial host. The 

adenovirus capsid has 12 fibres, approximately 120 to 330A in length, that project out 

from the 12 pentons at each 5-fold axis. These are responsible for receptor binding and 

internalisation within the host cell (Philipson et al., 1968). Both adenovirus and 

bacteriophage capsids have been shown to assemble in the absence of their fibres and tail 

spikes respectively. Although virion infectivity in both cases is greatly impaired the 

attachment of these structural proteins is non-essential for the assembly of their respective 

capsid structures (Falgout and Ketner, 1988; Bazinet and King, 1988). Since they are not 

themselves pentamers, incorporation of fibres and tail spikes into their capsid structures 

must cause alterations in the symmetry of the bonding relationships between their 

surrounding capsomers. Tail and fibre attachment must therefore require capsomer 

flexibility at the site of attachment for efficient incorporation without subsequent 

disruption of the surrounding capsomer bonding interfaces. Indeed, this has been 

demonstrated to occur within the penton base and fibre attachment of adenovirus capsids. 

Recombinant expression within the baculovirus system of the penton base from adenovirus 

type 3 (Ad3) in the absence of other capsid proteins leads to the production of 

dodecahedral particles. Cryo-EM and computer reconstruction analysis of these particles 

in the presence and absence of fibres demonstrates a remarkable difference in the 

conformation of the penton base structure in the presence of the fibre (Schoehn et al., 

1996). The conformational rearrangements observed are thought to be due to the 

movement of densities attributed to flexible loops within the penton base. The degree of 

individual capsomer flexibility involved in these examples, far exceeds the limited 

deformable interactions implied by the theory of quasi-equivalence.
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1.8 HSV-1 capsid structure

The HSV-1 capsid is one of the largest and most complex of virus icosahedral particles and 

as such there has been considerable interest in analysing its three dimensional structure. 

Through the use of EM the HSV-1 capsid has long been known to consist of 150 hexons 

and 12 pentons, arranged in T=16 icosahedral symmetry (Wildy et al., 1960; Furlong et al., 

1978). The overall structure of the HSV-1 capsid appears to be well conserved throughout 

the herpesvirus family. Similar structures have been identified from a wide variety of 

herpesviruses whose natural hosts span those from mammals, such as HSV-1 (Schrag et 

al., 1989), SCMV (Trus et al., 1999), and HCMV (Butcher et al., 1998), to fish, such as the 

channel catfish virus (Booy et al., 1996), and invertebrates, such as oyster herpes virus 

(personal communication, Andrew Davison 2000). Cryo-EM analysis in conjunction with 

three-dimensional computer image processing has provided the clearest detail of the native 

structure of the HSV-1 capsid (to date) to a resolution of 8.5A, see fig. 1.9 (Zhou et al., 

2000). The capsid shell, comprising outer, middle, and inner (or floor) areas, is 125nm in 

diameter and approximately 15nm thick. The outer shell is composed of protruding 

capsomers, 150 hexons and 12 pentons, that are interconnected in the middle area by 320 

triplexes. These capsomeric subunits associate to form a densely packed network, which 

makes up the 4nm thick inner or capsid floor area (Wildy et al., 1960; Schrag et al., 1989; 

Booy et al., 1991; Zhou et al., 1994; Zhou et al., 1998).

1.8.1 Asymmetric unit

The asymmetric unit is a single building block that contains all the structural information 

required to build a capsid. With respect to the HSV-1 capsid, each of the 20 icosahedral 

faces is composed of three asymmetric subunits consisting of one fifth of a penton, one P- 

hexon, one C-hexon, one-half of an E-hexon, one of each of the five triplexes Ta-Te 

triplexes, and one third of the triplex Tf (Zhou et al., 1994; Zhou et al., 1998). A single 

asymmetric unit is illustrated schematically in relation to a single icosahedral face in fig. 

1.10 (panel B).
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Fig. 1.9: 3D Surface reconstruction o f the HSV-1 B-capsid at 8.5A, 

generated by cryo-EM and image processing.

The outer shell o f the HSV-1 capsid consists o f 162 capsomers 

arranged around T=16 icosahedral symmetry. Out o f  the 162 

capsomers; 150 are hexons (coloured blue) and 12 are pentons 

(coloured red). The capsomers are interconnected by 320 triplexes 

(coloured green).

This figure was reproduced with permission from W. Chiu, Baylor 

College o f Medicine, USA.





Fig. 1.10: Asymmetric unit of the HSV-1 capsid

3D reconstruction to 13A resolution of the contiguous morphological 

components making up a single asymmetric unit from the HSV-1 B- 

capsid. Shown in (A) are one penton (coloured in yellow), one P- 

hexon (coloured in blue), one C-hexon (coloured in green), one E- 

hexon (coloured in pink), and the six different types of triplexes (Ta, 

Tb, Tc, Td, Te, and Tf (highlighted in various colours). The arrows 

indicate the positions of external attachment above the capsid floor 

between triplexes and their adjacent hexons and/or penton. (B) 

Schematic diagram of one triangular face of the HSV-1 capsid 

illustrating the interactions between the VP5 subunits from the penton 

and hexons (1-16) with their respective triplexes Ta-Tf. Subunits 

comprising a single asymmetric unit are highlighted in the same 

colours as for (A). The four types of interaction between the triplex 

and VP5 are represent by the thickness of line; strong triplex head 

connection (thick solid line), weak triplex head connection (thick 

dashed line), triplex tail connection (thin solid line), and triplex arm 

connection (thin dashed line).

This figure was reproduced with permission from W. Chiu, Baylor 

College of Medicine, USA.
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1.8.2 Protein composition o f  the capsomers

Although the icosahedral structure of the HSV-1 capsid has been established for some time 

(Wildy et al., 1960; Schrag et ah, 1989) the protein composition of capsomers has only 

been resolved comparatively recently. Two approaches, namely antibody labelling (Trus 

et ah, 1992) and systematic depletion of structural components from purified capsids 

(Newcomb and Brown, 1989; Newcomb and Brown, 1991; Newcomb et ah, 1993) have 

been employed. Newcomb and Brown (1989) originally demonstrated through the use 

argon (Ar+) etching that VP5, VP 19c, and VP23 were more readily disassociate from the 

capsid than VP21, VP24, and VP22a when purified B-capsids were exposed to low doses 

of ion plasma. From this they concluded that VP5, VP 19c, and VP23 were present on the 

outer surface of the capsid whereas VP21, VP24, and VP22a were more likely to be 

internal components of the capsid as they required longer periods of exposure to become 

disassociated. Similar depletion analysis utilising denaturants, such as urea and GdnHCl, 

in conjunction with cryo-EM and SDS-PAGE analysis have determined which proteins 

make up the various structures.

1.8.2.1 Pentons and hexons are composed o f  VP5

Trus et ah, (1992) demonstrated through cryo-EM analysis of immune precipitated capsids, 

utilising monoclonal antibodies against VP5, that both the pentons and hexons within the 

HSV-1 capsid were composed of VP5. The fact that the pentons as well as the hexons 

were composed of VP5 was consistent with the observation that VP5 was the MCP 

(Gibson and Roizman, 1972). Newcomb and Brown (1991) went on to demonstrate that 

the pentons could be disassociated when purified capsids were treated with 2M GdnHCl. 

Subsequent SDS-PAGE analysis confirmed the findings of Trus et ah, (1992) that indeed 

the pentons were composed of VP5. Quantitative analysis of showed that pentons were 

composed of five copies of VP5 (Newcomb et ah, 1993). However, high-resolution cryo- 

EM analysis has provided the best insight into the structural arrangement of VP5 within 

capsomers. Each penton can be readily observed to be composed of five copies of VP5 

that form a cylindrical tower 145A in diameter and 140A in height. A channel runs 

through the centre of the penton tower with a diameter of 50A. Each VP5 subunit within 

the penton is well separated from its neighbouring subunits (Zhou et ah, 1994; Zhou et ah,
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1998). In comparison, each hexon is composed of six copies of VP5 that are not as well 

separated as those within the penton. The incorporation of an additional VP5 subunit into 

the hexon also highlights the conformationally flexible nature of VP5 (discussed in further 

detail within section 1.8.4 and 4.0). The quasi-equivalent P (peripentonal), E (edge) and C 

(central) hexons, are similar but not identical in their overall conformation, reflecting their 

slightly different quasi-equivalent environments within the icosahedral face. Each hexon 

is cylindrical in shape with a diameter of 170A and a height of 140A. Located on top of 

each hexon is a horn shape density attributed VP26 (Trus et al., 1995, Zhou et al., 1995). 

The hexons, as with the pentons, have a channel running throughout their centre. 

However, unlike the channel within the penton, the hexon channel is constricted by a 

bundle of short a-helices (Zhou et al., 1994; Zhou et al., 2000; personal communication 

Frazer Rixon 2000). As VP5 is the MCP and contributes the entire mass of pentons and 

the majority of the mass of hexons it is not surprising that VP5 also comprises the majority 

of the mass within the capsid floor area. Here it is thought that the termini of the VP5 

molecules from individual capsomers form an intricate network of connections (Baker et 

al., 1990; Zhou et al., 2000).

1.8.2.2 Triplexes are heterotrimers o f VP 19c and VP23

Early negative stain EM analysis of capsids originally identified triplexes, initial termed 

fibrils, as a component of the capsid lattice, interconnecting adjacent capsomers (Vernon et 

al., 1974). Mirroring the early developments in cryo-EM analysis, low-resolution images 

of the capsid identified the triplexes as Y-shaped masses located at the 3-fold axes of 

symmetry interconnecting adjacent capsomers (Schrag et al., 1989; Baker et al., 1990; 

Booy et al., 1991). However, it has only been comparatively recently that the composition 

and the structural nature of the triplex has been identified. Newcomb et al., (1993) 

demonstrated that 2M GdnHCl treatment of purified capsids could disassociate triplexes 

surrounding the penton, namely triplexes Ta and Tc. Quantitative analysis of the proteins 

associated with the removal of these triplexes suggested that the triplexes were probably a 

heterotrimer comprising of one copy of VP 19c and two copies of VP23. Furthermore, 

high-resolution cryo-EM analysis of the capsid has subsequently demonstrated that most of 

the triplexes are asymmetrical, and not Y-shaped (Zhou et al., 1994; Zhou et al., 1998). 

There are a total of six different types of triplex (termed Ta-Tf) that contribute to a single
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Fig. 1.11: 3D reconstruction of the HSV-1 triplex to 13 A.

Aerial view of an averaged triplex connecting two out of three 

surrounding hexons (A). Side view of a triplex connecting to 

an adjacent capsomer through protein densities in the head 

domain of the triplex attributed to VP 19c (B). Triplex leg and 

tail domains anchor the triplex to the capsid floor. Both (A) 

and (B) are coloured from light (yellow/high) to dark (red/low) 

representing their radial distance from the center of the capsid..

This figure was reproduced with permission from W. Chiu, 

Baylor College of Medicine, USA.



Introduction

asymmetric unit with a total of 16 triplexes within a single icosahedral face (see fig. 1.10). 

The extent of interaction between the triplexes and their surrounding capsomers varies and 

depends upon their position within the icosahedral lattice. For example, the head 

connection made by triplex Ta to the penton is significantly different to that of the head 

connections made by triplexes Tb-Te to their respective hexon capsomers (personal 

communication, Zhou, 1999). The exact nature of the interactions between triplex Tf and 

its surrounding hexons remains unresolved. Triplex Tf is located at the global 3-fold axis 

of symmetry (see fig. 1.10, panel B) and as a consequence image processing in conjunction 

with computer reconstructions makes it appear symmetrical. However, from triplexes Ta- 

Te four types of exterior triplex connections to surrounding VP5 capsomers have been 

shown to occur. These consist of strong and weak head connections, and tail and arm 

connections (Saad et al., 1999; Zhou et al., 1994; Zhou et al., 1998). The triplex is 

discussed in further detail within section 1.8.5 and section 4.0 in association with the 

findings presented within this thesis and other current published data.

1.8.2.3 VP2 6 is located on the tips o f the hexons

The location of VP26 within the capsid was initially suggested by comparison of penton 

and hexon subunits and through depletion analysis of purified capsids, in conjunction with 

cryo-EM (Zhou et al., 1994). Newcomb and Brown (1991) demonstrated that VP26 could 

be readily detached from purified capsids treated with either urea or GdnHCl. 

Subsequently, Booy et al., (1994) demonstrated by cryo-EM analysis of VP26 depleted and 

VP26 re-associated capsids that VP26 was specifically located to the tips of the hexons. 

Six copies of VP26 are thought to bind to each hexon and form a star-shaped ring at each 

hexon tip (Zhou et al., 1995; Wingfield, 1997).

1.8.3 Internal scaffold composition

Although the external characteristics of the HSV-1 capsid have been known for some time 

the internal core composition has only comparatively recently been resolved. As 

previously stated, Newcomb and Brown (1989) originally demonstrated through Ar+ 

etching of purified B-capsids that VP22a, VP21 and VP24 were relatively well protected 

from erosion by low intensity plasma. This led the authors to conclude that these proteins

34



Introduction

formed internal components of the capsid. Subsequent to this, cryo-EM comparison of A-, 

and B-capsids highlighted additional protein masses within the interior of B-capsids that 

correlated to the presence of internal core proteins (Baker et al., 1990). It is now known 

that the major internal scaffold component of B-capsids is VP22a, with over 1000 copies 

per capsid compared to VP21 and VP24, which are present in approximately 100 copies 

per capsid (Newcomb et al., 1993). The scaffold has been shown to exist in two forms 

within the interior of capsids. Large cored capsids, where the C-terminal 25 amino acids 

of either preVP22a and/or preVP21 have not been cleaved by the VP24 protease, or small 

cored capsids, where the C-terminal cleavage has taken place. Large cored capsids can be 

made using the baculovirus system by omitting the UL26 gene, encoding VP21 and the 

scaffold protease VP24 (Tatman et al., 1994; Thomsen et al., 1994). Temperature sensitive 

(to) mutants within the UL26 gene, such as til 201, that are defective in the processing of 

the UL26 into VP21 and VP24 at the non-permissive temperature also produce large cored 

capsids. Downshifting to 1201 infected cells to their permissive temperature results in the 

correct processing of UL26, and the production of small cored capsids (Preston et al., 

1983).

The interaction between preVP22a and VP5 has specifically been shown to occur through 

the C-terminal 25 amino acids and as such these residues are essential for capsid formation 

(Kennard et al., 1995; Matusick-Kumar et al., 1995; Hong et al., 1996). Cryo-EM has 

recently shown that the majority of the scaffold mass, either within large or small cored 

capsids, exhibits no icosahedral symmetry. However, some localised regions of the 

scaffold do appear to be icosahedrally arranged and form rod-like densities, approximately 

40A in length, protruding into the interior of the capsid. These densities appear to be 

located beneath the triplexes Tb, Tc, Td and Te and are thought to represent the positions at 

which the C-terminus of the scaffold interacts with capsid shell (Zhou et al., 1998).

Through baculovirus studies, the minor constituent scaffold protein, preVP21, has been 

shown to be able to substitute for preVP22a in the formation of capsids. However, the 

efficiency with which capsids were assembled was greatly impaired. Furthermore, larger 

numbers of aberrant shells were formed when compared to UL26.5 mediated assembly 

(Newcomb et al., 1993; Thomsen et al., 1994; Tatman et al., 1994). Sheaffer et al., (2000) 

went on to demonstrate that UL26 mediated capsid assembly, in the absence of UL26.5
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expression occurred without the increased incorporation of VP21 and VP24 into the 

capsid. This lead the authors to conclude that although preVP21 to preVP22a shared C- 

terminal sequence identity, capsid assembly could occur, although substantially less 

efficiently, on a minimal scaffold composed of VP21.

1.8.4 Quasi-equivalence within the HSV-1 capsid

As previously stated, VP5 comprises the entire mass of pentons (5 copies of VP5) and the 

majority of the mass of hexons (6 copies of VP5). Computational separation of VP5 

molecules from pentons and hexons demonstrates that the individual VP5 molecules have 

similar conformational arrangements that display overlapping mass densities (Zhou et al., 

1994). Although the exact bonding relationship between VP5 molecules within individual 

hexon and penton subunits remains unresolved at the current resolution, VP5 molecules 

clearly display similar interactions and therefore fit the criteria required by the theory of 

quasi-equivalence (Zhou et al., 1994; Zhou et al., 1998; Zhou et al., 2000; personal 

communication; Jing He, 2000; personal communication, Frazer Rixon). However, it 

should be noted that three distinct conformational differences have been identified between 

individual VP5 molecules from pentons and hexons. The most obvious is the presence of 

an additional horn shape density at the distal tip of VP5 from hexons attributed to VP26 

(Zhou et al., 1995). Hexons also contain an extra mass density in the middle domain of 

VP5, attributed to a bundle of seven short a-helices, which constricts the hexon channel 

(Zhou et al., 2000). Further differences in mass density can also be seen within the lower 

domains of VP5 molecules, in particular the predicted long N-terminal a-helix. 

Differences in the angle of this a-helix can be seen not only between VP5 molecules from 

pentons and hexons but also between VP5 molecules from the P, E and C hexons. Indeed, 

these quasi-equivalent hexons appear skewed in relation to each other, reflecting their 

slightly different locations within the icosahedral lattice (Zhou et al., 1994; Zhou et al., 

2000). Although subtle differences in the density masses do exist between the various 

quasi-equivalent hexons they typically display good 6-fold local symmetry throughout 

their structures, particularly in the tower regions which are highly conserved (personal 

communication, Jing He, 2000).
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1.8.5 The non-equivalence o f  triplexes

Triplexes occupy positions of local, and with respect to the triplex Tf> global, 3-fold 

symmetry. However, due to the apparent asymmetry of the triplex molecule, as 

determined by cryo-EM and computer reconstruction, and the heterotrimeric arrangement 

of this complex (2 copies of VP23:1 copy of VP 19c) it has been difficult to elucidate how 

this complex occupies a 3-fold symmetrical positions since rotation of a triplex around its 

axis would not result in equivalent interactions (Zhou et al., 1994; Zhou et al., 1998; Zhou 

et al., 2000). Furthermore, cryo-EM and computer reconstruction analysis of the HSV-1 

capsid has long since demonstrated that the triplexes Ta-Tf have slightly different degrees 

of interaction with their adjacent capsomers. The most significant different is that of 

triplex Ta compared to that of triplexes Tb-Te, (Zhou et al., 1994; Zhou et al., 1998). The 

variation in the degree of association between triplexes with pentons and hexons can also 

be detected biochemically possibly reflecting differences in their respective bonding 

interfaces. Newcomb et al., (1993) demonstrated that the peripentonal triplexes (Ta and 

Tc) were more readily disassociated from capsids treated with 2M GdnHCl than those 

triplexes surrounding adjacent hexons. Conway et al., (1993) demonstrated similar 

findings between perihexonal and peripentonal triplexes when capsids were treated with 

high doses of radiation.

Although the differences in bonding between triplexes with their surrounding capsomers, 

and their clear asymmetry, violate the rules of quasi-equivalence, analysis of the triplex 

connections to the capsid floor at 8.5A resolution has recently revealed how triplexes 

occupy a 3-fold rotational axis (Zhou et al., 2000). This is discussed in detail in section 

4.0 in relation to the results presented within this thesis.

1.8.6 Quasi-equivalence within the procapsids

During the assembly of HSV-1 capsids the initial assembly product is a transient 

intermediate termed the procapsid (discussed within section 1.9.3 and 1.9.4; Newcomb et 

al., 1996; Rixon and McNab, 1999; Newcomb et al., 1999; Newcomb et al., 2000). The 

procapsid is markedly rounder then the mature capsid and lacks the flat facets, angular 

edges, and vertices associated with the mature icosahedron (see fig. 1.13; Newcomb et al.,
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1996). The pentons and hexons within the procapsid are less compact than those of the 

mature capsid with individual VP5 subunits making little connection to each other or 

adjacent capsomers (Trus et al., 1996). Thus, although the capsomers are arranged on a 

T=16 icosahedral lattice, the general spherical and porous nature of the procapsid, in 

conjunction with the loose packing of individual capsomers, reflects a high degree of non

equivalence within the procapsid. The non-equivalent nature of VP5 subunits within 

hexon capsomers of the procapsid, opposed to that of mature capsid, also makes procapsid 

hexons unable to bind VP26 (Newcomb et al., 1999). Thus, the high degree of non

equivalence within the procapsid prevents the procapsid from fitting the criteria required 

by the theory of quasi-equivalence proposed by Caspar and Klug (1962).

1.9 Capsid assembly

Although the structure of the HSV-1 capsid has been extensively studied over a number of 

decades the mechanisms involved in the actual assembly of the capsid have only 

comparatively recently been examined. Developments in recombinant protein expression 

techniques, such as the baculovirus expression system, have provided a means by which 

the mechanisms involved in HSV-1 capsid assembly can be investigated. Utilising this 

approach the minimal protein components required for the assembly of HSV-1 capsids 

have been identified (discussed in section 1.9.2) and their structural locations within the 

capsid have been revealed (Tatman et al., 1994; Thomsen et al., 1994; Zhou et al., 1995). 

Furthermore, the assembly of HSV-1 capsids has been reconstituted in vitro using infected 

cell extracts and more recently from individual purified capsid protein components 

(Newcomb et al., 1994; Newcomb et al., 1996; Newcomb et al., 1999). Such recent 

developments have led to a better understanding of the protein-protein interactions 

associated with HSV-1 capsid assembly and of the protein folding pathways that are 

required to form such a large and architecturally complex structure.

1.9.1 Nuclear assembly o f  HSV-1 capsids

One of the defining characteristics of all herpesviruses is that DNA replication, capsid 

assembly and subsequent DNA packaging occur within the nucleus. This therefore,
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necessitates that HSV-1 capsid proteins translated within the cytoplasm must be 

transported to the nucleus. Immuofluorescent analysis performed by Nicholson et al, 

(1994) and Rixon et al., (1996) demonstrated how the major structural components of the 

capsid were localised to the nucleus. VP 19c and preVP22a were shown to be capable of 

localising to the nucleus independently, whereas VP5, VP23, and VP26 were unable to 

localise selectively to the nucleus. PreVP22a was shown to associate with VP5, whereas 

VP 19c could associate with either VP5 or VP23, and in turn localise these proteins to the 

nucleus. However, it was observed that VP26 did not localise to the nucleus when 

expressed with either preVP22a or VP19c. Co-expression of VP26 with VP5, and either 

VP 19c or preVP22a, did result in the nuclear localisation of VP26. This led the authors to 

conclude that VP26 binds directly to VP5 and subsequent interactions between VP5 and 

either VP 19c and/or preVP22a resulted in the efficient nuclear localisation of VP26. 

Furthermore, detailed analysis of capsid protein nuclear localisation utilising confocal 

microscopy has demonstrated that capsid assembly occurs at defined foci within the 

nucleus. This has led to suggestion that capsid assembly occurs at specific sites within the 

nucleus in close proximity to DNA replication compartments (Ward et al., 1996; de Bruyn 

Kops et al., 1998). The capsid protein interactions identified through their nuclear 

localisation capability are summarised in fig. 1.12.

1.9.2 HSV-1 capsid assembly analysis within insect cells

Comparatively recent advances in recombinant expression techniques have allowed the 

study of HSV-1 capsid protein interactions to be accomplished in greater detail than by 

electrophoretic and electron microscopy analysis alone. One approach that has been 

integral in the study of HSV-1 capsid assembly is that of the baculovirus expression 

system. Baculoviruses naturally infect arthropods and can be recombinantly manipulated 

to express single or multiple genes of interest within cultured insect cells. One of the most 

commonly utilised insect cell lines is that of Spodoptera frugiperda (SF). Infection of 

these cells with recombinant baculoviruses expressing gene(s) of interest under the strong 

late polyhedrin promoter results in high levels of protein expression. Tatman et al., (1994) 

and Thomsen et al., (1994) utilised the baculovirus expression system to analyse the 

requirement for HSV-1 gene products in the assembly of HSV-1 capsids. Capsid 

particles, resembling those of WT B-capsids, of normal composition and structure were
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interactions within the HSV-1 capsid determined through the re

localisation of HSV-1 capsid proteins from the cytoplasm to the 

nucleus (Nicholson et al., 1994; Rixon et al., 1996).
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produced by infecting insect cells with a panel of baculoviruses (designated Ac) expressing 

six capsid protein genes: AcUL19 (VP5), AcUL18 (VP23), AcUL38 (VP 19c), AcUL35 

(VP26), AcUL26 (VP21/VP24), and AcUL26.5 (preVP22a). Omission of AcUL35 

(VP26) had little effect on the production of capsids indicating that it is not required for the 

efficient formation of capsids. However, omission of either AcUL19 (VP5), AcUL18 

(VP23), or AcUL38 (VP 19c) prevented the formation of capsids.

These studies also demonstrated that capsid assembly was not prevented by the omission 

of either one of the scaffold protein genes, AcUL26 (VP21/VP24) or AcUL26.5 

(preVP22a). Therefore, the expression of preVP21 or preVP22a was sufficient to serve as 

a scaffold for the formation of capsids. However, omission of both scaffold protein genes 

prevented the formation of capsids leading instead to the formation of aberrant particles 

and curved capsid shells. Although co-infection with AcUL26 could support the assembly 

of capsids, in the absence UL26.5, the number of capsid produced was significantly lower 

than that of AcUL26.5 mediated assembly. This could possibly reflect the higher copy 

number incorporation of preVP22a, over 1000 copies per B-capsid, compared to that of 

preVP21, approximately 100 copies per B-capsid (Newcomb et al., 1993). Indeed, 

subsequent analysis into the specific incorporation of preVP21 into capsids during 

assembly was shown to be lower than that of preVP22a even in the presence of excess 

preVP21 protein. Thus, capsid formation can occur on a minimal scaffold but at reduced 

efficiency (Sheaffer et al., 2000). Expression of AcUL26.5 alone results in the production 

of large numbers of core-like structures indicating that preVP22a can self assemble in the 

absence of other capsid proteins (Newcomb and Brown, 1991; Preston et al., 1994). 

Gradient purified scaffold particles have been shown to be sufficient to act as scaffold 

material for the formation of capsid particles in vitro (personal communication, 

McClelland, 1999; Newcomb et al., 1999).

1.9.3 In vitro HSV-1 capsid assembly and procapsid formation

Recombinant expression of capsid proteins utilising the baculovirus system has led to the 

development of an in vitro based capsid assembly model. Newcomb et al., (1994) 

originally demonstrated through the mixing of lysed SF cell extracts, which had been 

individually infected with baculoviruses expressing VP5, VP 19c, VP23, and preVP22a,
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Fig. 1.13: EM analysis of negative stained in vitro formed procapsids 

and mature B-capsids

Purified capsid proteins VP5, triplexes (VP19cHis + VP23), and 

preVP22a were mixed and incubated at 28°C for either 1 hour (B) or o/n 

(A) before being immunoprecipitated with a VP5 monoclonal antibody 

(DM165). Pelleted capsids and related structures were subsequently 

analysed under negative staining by EM. Panel (A) demonstrates a 

typical field of view of in vitro assembled mature B-capsids. Capsomers 

can be readily identified in their icosahedral lattices. Panel (B) 

demonstrates a typical field of view of in vitro assembled procapsids. 

Capsids appear more spherical in nature with individual capsomers 

appearing less defined. Scale bar represents lOOnm.

This fig. was reproduced with permission from F. Rixon, MRC Virology 

Unit, Institute of Virology, Glasgow.
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that capsid formation could occur in vitro. EM analysis of extracts incubated o/n at 28°C 

demonstrated the presence of capsids that resembled WT capsids in their size, morphology 

(T=16), and presentation of specific surface epitopes to monoclonal antibodies. The in 

vitro formation of capsids was also shown to be cold sensitive with particle formation 

being inhibited when extracts were incubated at 4°C. Subsequently, Newcomb et al., 

(1996) went on to identify a series of intermediate capsid structures by immune 

precipitation of complexes from in vitro assembly-competent reaction mixtures in 

conjunction with EM analysis. Partial capsids, closed spherical particles (procapsids), and 

mature polyhedral capsids could be identified 1 min, 90 min, and 8 hours respectively after 

combined extract incubation. EM analysis revealed partial capsids as arc-shaped wedges 

with angles ranging from 30° to greater than 270°. These partial capsids were suggested to 

be precursors to procapsids as they were rarely identified in reactions incubated over 90 

min. Partial capsids consisted of an outer shell, composed of VP5, VP 19c, and VP23, 

surrounding a region of scaffold. Procapsids were the predominant assembly product 

following 90 minutes of incubation. EM analysis of procapsids revealed that they were 

highly uniform in morphology consisting of a round closed outer shell with identifiable 

capsomer protrusions (composed of VP5, VP 19c and VP23) surrounding a scaffold core 

(see fig. 1.13, panel B). Continued incubation of purified procapsids resulted in the 

production of mature, angularised, icosahedral particles (see fig. 1.13, panel A). This lead 

the authors to conclude that procapsids were indeed a true HSV-1 capsid assembly 

intermediate which does not require the association of further viral proteins to induce 

capsid maturation. Intriguingly, both partial capsids and procapsids disintegrated upon 

incubation at 2°C, whereas angularised particles resembling those of mature B-capsids 

appeared stable at 2°C. The cold sensitivity of these particles was consistent with other 

well documented dsDNA viruses which assembled through procapsid intermediates, such 

as T4 phage, and with earlier in vitro cell-free capsid assembly data (Steven et al., 1976; 

Newcomb et al., 1994). Newcomb and co-workers went on to propose a model for the 

assembly of HSV-1 capsids based upon their in vitro observations. Capsid assembly 

begins with the nuclear localisation of capsid proteins and the initial formation of partial 

arc-shaped capsids. These arcs grow in size by the addition of further capsomer subunits 

and triplexes until they form a closed spherical particle (procapsid). The procapsid then 

undergoes maturation to form a mature angularised polyhedral capsid. The stages in 

capsid assembly and morphogenesis are schematically depicted in fig. 1.14.
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1.9.4 The structure o f  the procapsid

Cryo-EM analysis of procapsids to 27A performed by Trus et al., (1996) revealed that 

procapsids were indeed spherical, and not polyhedral as with mature HSV-1 capsids, 

consisting of 162 capsomers lying on a T=16 icosahedral lattice. A large number of 

differences could be visualised between procapsids and mature polyhedral capsids. The 

most evident is that procapsid were more open and porous than mature capsids, with 

relatively little contact between the VP5 subunits within either the pentons or hexons 

except at their bases. The axial channels are fully open in both pentons and hexons with 

individual capsomers having no direct contact with surrounding capsomers. The 

capsomers are held together principally through the triplexes located at the local 3-fold 

axis of symmetry which appear more trimeric than the triplexes within mature polyhedral 

capsids. Large gaps are also evident within the procapsid floor which are absent from 

mature polyhedral capsids, indicating that capsid floor development occurs during capsid 

maturation and not initial assembly (see fig. 1.15). The hexons varied slightly in size 

within the procapsid and were not 6-fold symmetrical, but formed distorted oval (E-, and 

P-hexons) and triangular shaped (C-hexons) capsomers. The structure of the procapsid 

and procapsid maturation is discussed further in section 4.0.

1.9.5 Identification o f  procapsids during HSV-1 infection

Initial in vitro observations that HSV-1 capsids assembled through a procapsid 

intermediate stage prompted analysis of HSV-1 infected cells to identify such an 

intermediate during the lytic reproductive cycle. Rixon and McNab (1999) demonstrated 

through the use of the HSV-1 ts mutant (tel201) that capsids at the non-permissive 

temperature were cold sensitive and disassembled upon incubation at 0°C in the same 

manner as in vitro formed procapsids (Newcomb et al., 1996). 7H201 contains a ts lesion 

within the UL26 protease responsible for maturational cleavage of scaffold proteins 

(Addison et al., 1984). Infection of cells with tel201 at the non-permissive temperature 

results in the production of large cored B-capsids (Bjx-capsids) containing uncleaved 

scaffold core. Downshifting tel201 Bu:-capsids to their permissive temperature results in 

the reactivation of the protease and subsequent cleavage of the scaffolding proteins. These 

particles can then go on to mature into A-, B-, and C-capsids, and finally mature virions if
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Fig. 1.15: Structural changes that accompany HSV-1 procapsid maturation

Cryo-EM reconstruction to 18 A of procapsids before (panels A and C) and 

after (panels B and D) maturation. Procapsids were isolated from m l00 

infected cells (see section 1.9.5 for details). The outer shell surface is 

shown in each instance. Panels A and B represent protein masses surround 

the E-hexon. Panels C and D represent protein masses surrounding the 

penton. In the left hand side of panels A and C the less ordered density 

represents the protein mass associated with the monoclonal antibody 

utilised in procapsid precipitation (computationally removed in the right 

hand side of panels A and C). Procapsids demonstrate a more open and 

porous nature compared to that of the mature capsid with little 

intercapsomer connections other then through the triplexes located at the 3- 

fold axis of symmetry. The floor of the capsid remains undefined within 

the procapsid compared to that of the mature capsid. Triplexes also appear 

more Y-shaped than in the mature capsid where they form their unique 

asymmetric connections between their respective hexon and penton 

capsomers (picture modified from Newcomb et al., 2000).
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the infection is left to proceed (Preston et a l, 1983; Addison et al., 1990). Downshifting 

BLc-capsids to their permissive temperature resulted in the loss of their cold sensitive 

phenotype in the same manner as those in vitro purified procapsids that were allowed to 

angularise. Through the use of HSV-1 tel 201 mutant Rixon and McNab (1999) concluded 

that the procapsid had a biologically relevant role within the virus life cycle. They also 

speculated that the cleavage of the scaffold may be directly responsible for procapsid 

maturation and that, as BLc-capsids capsids can mature into DNA containing C-capsids, 

DNA packaging may occur during the procapsid state. Newcomb et al., (1999) went on to 

isolate procapids from cells infected with a HSV-1 mutant wlOO, which was deficient in 

the protease, and a second HSV-1 mutant teProt.A, which (as with te l201) contained a 

reversible temperature sensitive lesion within the protease. Isolated procapsids were 

shown by cryo-EM to be indistinguishable from those procapsids assembled in vitro. 

Furthermore, isolated procapsids from teProt.A infected cells that were down shifted to 

their permissive temperature matured into polyhedral capsids identical to those isolated 

from WT HSV-1 infected cells.

1.9.6 Other capsid assembly models

Although the general principles in HSV-1 capsid assembly are now becoming better 

understood, the precise mechanisms involved in the folding of proteins during the 

assembly of HSV-1 capsids remains largely unknown. As the HSV-1 capsid structure is 

determined to higher resolutions the greater the number of discrepancies away from the 

predicted quasi-equivalence structure become identified. Indeed, if individual protein 

subunits within capsomers can interact with their neighbouring subunits in a number of 

different bonding configurations, as depicted by quasi-equivalence or non-equivalent 

bonding, then in principle a myriad of “incorrect” capsid related structures as well as the 

“correct” capsid structure should be formed. However, capsid assembly appears to be 

universally economical in the production of effective structures that can package viral 

nucleic acid during the course of a normal infection. It is becoming increasingly evident 

that capsid subunits undergo a series of folding transitions as they assemble and 

polymerise into their respective native structures. Indeed, procapsid formation in some 

instances represents a late stage along the capsid protein folding-assembly pathway. For 

example, during P22 procapsid maturation little change in the secondary structure of
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individual capsid protein subunits occurs but extensive changes in the packing of their 

respective side chains takes place upon maturation (Prevelige et al., 1993a; Tuma et al., 

1998). Therefore, individual protein subunits of P22 represent partially folded proteins 

that only achieve their “true” native conformation within the mature capsid particle. Some 

of the principles involved in protein folding are discussed below in relation to P22 capsid 

assembly, one of the most comprehensively studied dsDNA viruses, in order to introduce 

terminology discussed elsewhere within this thesis and to provide a more general 

understanding of other capsid assembly pathways.

1.9.7 P22 capsid assembly

The bacteriophage P22 is a dsDNA virus of Salmonella typhimurium (reviewed by 

Hendrix and Garcea, 1994; King and Chiu, 1997). The capsid assembly pathway of P22 

has been extensively studied and is generally regarded as the prototype for capsid 

assembly in dsDNA bacteriophages (summarised schematically in fig. 1.16). Furthermore, 

the mechanisms involved in the protein folding pathways of individual capsid proteins 

have also been extensively studied.

The mature capsid of P22 is composed of 60 hexamers and 12 pentamers and conforms to 

T=7 icosahedral symmetry. The capsomers are linked by connecting arms which form 7 

distinct intercapsomeric connections reflecting each of the T=7 quasi-equivalent 

environments (Prasad et al., 1993). The capsid has been shown to pass through a 

procapsid intermediate stage during which the scaffold core is removed and the viral 

dsDNA becomes packaged (Prevelige and King, 1993). The P22 procapsid is composed of 

420 47kDa coat protein subunits (gp5) surrounding a scaffold core of 300 34kDa subunits 

(gp8). Assembly initiates around the portal complex, composed of 12 copies of the 90kDa 

portal protein (gpl), located on an eventual 5-fold axis of symmetry. Following procapsid 

assembly additional minor capsid proteins attach to the capsid, including gp l6, gp20, and 

gp7, which are required for the injection of the viral DNA into the new host following 

attachment. However, these proteins, and the portal complex, are dispensable for capsid 

assembly in vitro (Fuller and King, 1982; Prevelige et al., 1988; Prevelige et al., 1993a). 

The P22 procapsid, like the HSV-1 procapsid (described above), is spherical and contains 

holes at the 6-fold axes that are absent within the mature P22 capsid (Prasad et al., 1993;
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P h a g e

Fig. 1.16: Schematic illustration of the capsid assembly pathway o f  

the bacteriophage P22

Assembly initiates by multiple copies of the coat protein (gp5) and 

scaffold protein (gp8) locating around the portal complex (composed 

o f  12 copies o f  gpl). Further polymerisation o f  the capsid shell 

continues by subsequent addition of coat proteins surrounding a 

scaffold core until a closed spherical particle, the procapsid, is formed 

with T=7 icosahedral symmetry. Addition pilot proteins (g p l6, gp20, 

and gp7) are subsequently added and the scaffold protein is released 

through holes in the procapsid structure. Scaffold proteins can be 

utilised for future rounds of assembly. The dsDNA is packaged into 

the procapsid and the portal closed by the addition of  gp4, gp 10, and 

gp26. The procapsid subsequently undergoes maturation and 

expansion increasing in diameter by -10%  and becoming more 

polyhedral. Tail attachment represents the final stage in assembly. 

Diagram reproduced from Zhang et al., (2000).
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Zhang et al., 2000). The capsomers appear skewed in comparison to their larger and more 

regular mature form. The holes are thought to be the sites at which the internal scaffold 

protein exits the procapsid prior to or during maturation (Greene and King, 1994). 

Maturation is thought to be initiated by the packaging of the DNA genome through the 

portal complex and results in a 10% expansion in the total volume of the capsid in an ATP 

dependent manner (Eamshaw and Casjens, 1980; Galisteo and King, 1993). However, 

scaffold release can be triggered in vitro by treating procapsids with low concentrations of 

denaturants or by mild heating (Fuller and King, 1981; Prevelige et al., 1988; Galisteo and 

King, 1993). During maturation the most extensive conformational transformations to 

occur are around the trimer clusters, termed the trimer tips, located at the strict 3-fold axes 

on the procapsid inner surface. The trimer tips have been shown to be the positions at 

which the scaffold binds on the inner surface of the procapsid. As a consequence this 

implicates the scaffold protein not only in the assembly of the P22 capsids but also directly 

in the maturation of the capsid during DNA packaging (Zhang et al., 2000).

Interestingly, unlike HSV-1, the scaffold of P22 does not undergo any proteolytic cleavage 

and can therefore go on to aid the assembly of other P22 procapsids following its release 

(King and Casjens, 1974). The efficient release of scaffold proteins from the interior of the 

procapsid is thought to be due to its flexible nature (Tuma and Thomas, 1997).

1.9.8 The molten globule-like characteristics o f the P22 scaffold protein (gp8)

Recent characterisation of gp8 by Tuma and Thomas (1997) demonstrated that the scaffold 

protein contains a high degree of a-helical secondary structure but contains little 

measurable tertiary structure. Such characteristics are indicative of molten globule 

proteins, proteins that are in a intermediate stage of protein folding. The concept of molten 

globular proteins was originally introduced to describe equilibrium intermediates in protein 

folding pathways (reviewed by Ptitsyn, 1995a; Privalov, 1996). Molten globular proteins 

usually have a relatively compact and near native conformation, with much of their 

secondary structural features, in particular a-helices, having been formed. However, 

molten globules typically contain little defined tertiary structure due to an absence in the 

packing of amino acid side chains and terminal loops. Such folding characteristics give
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Native state Molten-globule state

Fig. 1.17: Diagrammatic representation o f  a molten-globule state.

The molten globule contains the overall structural features of its 

native state, in particular secondary structural elements such as a -  

helices (represented by shaded cylinders), but lacks tertiary 

structural features through the looser packing of amino acid side 

chains (represented by shaded blocks) and greater mobility of 

loops and ends of protein chains (represented by shaded lines). 

Diagram reproduced from Ptitsyn (1995).
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these proteins a large amount of domain flexibility (the molten globule-like state is 

schematically illustrated in fig. 1.17).

The native molten globule-like character of gp8 is likely therefore to play a fundamental 

role in the scaffold exit from procapsids, since an elongated and flexible gp8 molecule 

could exit through the 25A holes present at the 6-fold axes of symmetry. The lack of a 

rigid tertiary core would therefore make exiting these holes relatively easy. The 

interaction between the highly a-helical structure of gp8 is thought to be stabilised by the 

highly (3-stranded nature of the gp5 coat protein. Their interaction stabilises the a-helical 

nature of gp8, and provides sufficient structure to form the procapsid shell (Tuma and 

Thomas, 1997). The onset of DNA packaging is thought to disrupt this balance causing 

the scaffold protein to exit the procapsid shell resulting in the initiation of maturation.

The molten globule-like nature of other proteins are discussed in relation to the findings 

within this thesis in sections 3.0 and 4.0.
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Materials: 2.1

2.1 Materials

2.1.1 Chemicals

Chemicals and reagents used for EM analysis were purchased from either Agar Aids or 

TAAB laboratories. All other chemicals and reagents were purchased from either Sigma 

Chemical Company or BDH chemicals UK unless otherwise stated below or in subsequent 

sections:

Chemical 

Acetic acid

Ammonium hydroxide 

Ampacillin

APS (ammonium persulphate)

Butanol

Chloroform

Citifluor

Complete Protease Inhibitors 

Coomassie Brilliant Blue 

DMSO (dimethyl sulphoxide) 

dNTPs 

ECL

Ethanol (ultra pure)

Formaldehyde and formamide 

Glacial acetic acid 

Gluteraldehyde 

Glycerol

Hydrochloric acid 

IPTG

Isopropanol

Methanol

Nitro-cellulose membrane 

Octyl-P-glucoside 

Rainbow Markers™

S.O.C.

TEMED (N,N,N ’ ,N ’ -tetramethylethylene)

Supplier 

Rhone-poulenc Ltd 

Fisons

Beecham Research Laboratories Ltd

Aldrich

Prolabo

May and Baker Ltd 

Citifluor Ltd 

Boehringer Mannheim 

Aldrich

Koch-Light Laboratories Ltd 

Pharmacia

Amersham Pharmacia Biotech UK Ltd

Joseph Mills Ltd

Fluka

Prolabo

Agar Scientific Ltd 

Prolabo

Rhone-poulenc Ltd

Gibco-BRL

Prolabo

Joseph Mills Ltd

Hybond

Pierce

Amersham Pharmacia Biotech UK Ltd

Gibco-BRL

Aldrich
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• Radiochemicals

Chemical Supplier

[35S]-L-methionine (lOpCi/pl) Amersham

2.1.2 Enzymes

All enzymes and their appropriate buffers were purchased either from Boehringer

Mannheim, Gibco-BRL, or New England Biolabs (NEB).

2.1.3 Oligonucleotides

All oligonucleotides were synthesised in house (MRC Institute of Virology, Glasgow) by

D. McNab or A. Orr on a Biosearch 8600 DNA synthesiser.

2.1.4 Tissue culture

• Spodoptera frugiperda 21 (SF21) insect cells were derived from Ovarian tissue 

(Vaughn et al., 1977). SF21 cells were cultured in TCI00/5 medium which consists of 

TCI00 medium (Gibco/BRL) supplemented with 5% foetal calf serum (FCS) 

(Gibco/BRL) and 1% P/S (1000 units/ml penicillin, lOmg/ml streptomycin) 

(Gibco/BRL).

• Baby hamster kidney-21 C13 (BHK-21 C l3) fibroblast cells were derived from baby 

hamster’s kidney (MacPherson and Stoker, 1962). BHK-21 C13 cells were cultured in 

ETC/10 medium which consists of Glasgow-modified Eagles medium (GMEM) 

(Gibco-BRL) supplemented with 10% (v/v) tryptose phosphate broth, 10% newborn 

calf serum (NCS) (Gibco-BRL) and 1% P/S.

Variation: EMC/10 -  Eagles medium containing 1% carboxymethyl cellulose 

and 10%NCS

• Vero cells were derived from African green monkey’s kidney. Vero cells were grown 

in MEM/10 medium which consists of Dulbecco’s modified Eagle’s medium (DMEM)
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(Gibco-BRL) supplemented with 10% FCS and 1% P/S. G5-11 cells (UL18 

complementing Vero cell line) was a kind gift from P. Desai (Desai et al., 1993). G5- 

11 cells were grown in MEM/10.

2.1.5 Viruses

• Baculoviruses: Autographica californica nuclear polyhedrosis virus (AcNPV) and a 

polyhedrin negative derivative which has a lacL gene under the control of the 

polyhedrin promoter (AcPAK6) were both gifts to the MRC Institute of Virology 

(Glasgow) from R. Possee.

• HSV-1 UL18 null mutant virus (K23Z) was a kind gift from P. Desai (Desai et al, 

1993).

2.1.6 Bacterial culture medium

All bacteria were cultured using Lauria-Bertani medium (LB) described below: 

Medium Composition

L-Broth (pH7.5): 10g/l NaCl, 10g/l bactopeptone, 5g/l yeast extract

L-Broth agar L-Broth + 1.5% agar

Supplemented antibiotics: Ampicillin (50pg/ml), Kanamycin (25pg/ml)

2.1.7 Bacteria

• E.coli BL21 (DE3) pLysS: Commercially available bacterial cells (Promega) used for 

protein expression vectors under the control of the T7 promoter, for example pET28a.

• E.coli DH5a: Used for the maintenance and propagation of plasmid DNA.
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• E.coli CJ236 duf ung: Commercially available bacteria (New England Biolabs) used 

in site directed mutagenesis to produce uracil enriched ssDNA plasmid DNA (Kunkel 

et al., 1985).

• E.coli GM48 dam' dcm'\ Commercially available bacterial cells (New England 

Biolabs) used in the preparation of unmethylated DNA.

2.1.8 Yeast culture medium

Yeast were cultured using either YPD medium or synthetic dropout (SD) medium 

(Clontech) supplemented with the appropriate 10X dropout (DO) amino acid powder mix 

(Clontech) described below:

Medium Composition

YPD (pH5.8) 20g/L Bacto peptone (Difco) + lOg/L Yeast extract (Difco),

2.1.9 Yeast

• MaV103: Yeast strain used in all experiments, characterised in section 3.1. Gift from

M. Vidal (Vidal et al., 1996a).

• MaV103pPc97UL38: MaV103 cells transformed and propagated with the pPc97 GAL4 

DB fusion vector containing UL38. Used in the selection of FOA resistant colonies.

YPD agar 

SD

SD agar

1 OX DO supplement:

20g/L Dextrose 

YPD + 20g/L agar

26.7 g/L Minimal SD base + DO (Clontech)

46.7g/L Minimal SD agar base + DO (Clontech) 

-Leu (0.69g/L), -Trp (0.74g/L), -Leul-Trp (0.64g/L), 

-Leu/-Trp/-Ura (0.62g/L) (Clontech)
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2.1.10 Plasmids

• pAcAB3: Commercially available (Pharmingen) baculovirus transfer vector

• pCMVio: Transient expression plasmid containing the immediate early promoter of 

HCMV and the RNA processing signals of SV40 (Stow et al., 1993).

• pET28a(+): Commercially available expression plasmid (Novagen) containing T7 

RNA polymerase promoter.

• pPc86: Yeast expression plasmid containing a GAL4 activation domain (AD) 

downstream of the multicloning site. Gift from M. Vidal (Chevray and Nathans, 

1992).

• pPc97: Yeast expression vector containing a GAL4 DNA binding (DB) domain 

downstream of the multicloning site. Gift from M. Vidal (Vidal et al., 1996a).

2.1.11 Antibodies

• Penta His antibody: Commercially available (Qiagen) mouse monoclonal antibody 

used against 6xHis epitope tagged proteins.

• 187: Rabbit polyclonal antibody used against VP23 protein in HSV-1, gene product of 

UL18. Gift from David McClelland.

• TrpE/VP19c: Rabbit polyclonal antibody used against VP 19c protein in HSV-1, gene 

product of UL38. Antibody produced against TrpE- VP 19c fusion peptides. Gift from 

W. Wold (Yei et al., 1990).

• GAM-HRP: Commercially available (Sigma) goat anti-mouse conjugated to horse 

radish peroxidase used in Western blots.
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• FITC-GAM: Commercially available (Sigma) goat anti-mouse antibody conjugated to 

fluoroscein isothiocyanite used in immunofluorescence studies.

• Cy3-GAR: Commercially available (Amersham Pharmacia Biotech) goat anti-rabbit 

antibody conjugated to Cy3 used in immunofluorescence studies.

2.1.11 Buffer and solutions

Some of the commonly used buffers and solutions are detailed below:

• Commonly used buffers:

Buffer/Solution Composition

PBSa/T

PBSa/TN

PBScomplete

PBSa 170mM NaCl, 3.4mM KC1, 10mM Na2H P04, 

1.8mM KH2P 04 (pH7.2)

PBSa + 6.8 mM CaCl2, 4.9mM MgCl2 

PBSa, 0.05% Tween-20 

PBSa/T, 5% NCS (Gibco-BRL)

• DNA manipulation: 

Buffer/Solution 

Phenol/chloroform (1:1)

Composition

Mixed phenol/chloroform (1:1) saturated with 

lOmM Tris (pH8.0)

25mM Tris (pH8.0), lOmM EDTA, 50mM glucose 

0.2M NaOH, 1% SDS

150mM NaCl, 15mM trisodium citrate (pH7.5), 

40% sucrose, 0.25% bromophenol blue,

0.25% xylene cyanol

89mM Tris (pH8.0), 89mM boric acid, 2mM EDTA 

20mM Tris (pH7.5), 0.5M NaCl, ImM EDTA 

200mM Tris (pH8.0), 50mM MgCl2

Solution 1

Solution 2 

Solution 3 

Loading buffer

TBE

TAE

TM buffer
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• Yeast solutions: 

Buffer/Solution 

10X TE

10X Li Ac 

50% PEG 4000 

IX TE/LiAc 

PEG/LiAc/TE solution 

Z-buffer

X-gal (20mg/ml) stock 

Z buffer/X-gal Solution

Yeast plasmid lysis solution

TCA buffer

• Tissue culture: 

Buffer/Solution 

TBS

Trypsin

Versene

• SDS-PAGE: 

Buffer/Solution 

BM

RGB

SGB

Tank buffer

Coomassie Brilliant Blue 

Destain

Composition

lOOmM Tris-HCl, lOmM EDTA (pH7.5)

1M lithium acetate

50g PEG 4000 per 100ml of dH20

1:10 dilution of 1 OX TE + 1 OX LiAc

8:1:1 mix of 50% PEG 4000:1 OX LiAc: 1 OX TE

8.52g/L Na2HP04, 5.5g/L NaH2P 0 4, 0.75g/l KC1,

0.246g/L MgS04 (pH7.0).

lOOmg of X-gal made up in 5ml DMSO

100ml Z-buffer, 0.27% P-mercaptoethanol,

1.67ml X-gal stock solution

2% Triton X-100, 1% SDS, lOOmM NaCl,

lOmM Tris-HCl (pH8.0), ImM EDTA

20mM Tris-HCl (pH8.0), 50mM Ammonium acetate,

2mM EDTA

Composition

20mM Tris-HCl (pH7.5), 500mM NaCl 

TBS, 0.25% (w/v) trypsin, 0.0002% phenol red 

PBSa, 600mM EDTA, 0.0002% phenol red

Composition

40% SGB, 10% glycerol, 4.75% p-marcaptoethanol, 

2% SDS, 0.01% bromophenol blue 

0.74M Tris-HCl (pH8.0), 1% SDS 

0.122M Tris-HCl (pH6.7), 0.1% SDS 

52mM Tris, 53mM glycine, 0.1% SDS 

Methanol:H20:acetic acid (50:880:70),

0.2% Coomassie Brilliant Blue R250 

Methanol:H20:acetic acid (50:880:70)
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• Western blotting: 

Buffer/Solution 

Transfer buffer 

Stripping buffer

PBS/T

Blocking buffer

Composition

40mM Tris, 48mM glycine, 20% methanol, 0.4% SDS 

lOOmM P-mercaptoethanol, 2% SDS,

62.5 mM Tris pH6.7 

PBSa, 0.05% Tween-20 

PBS/T, 5% Marvel milk powder

• Common purification buffers: 

Buffer/Solution Composition

Sonication buffer 

G-150 buffer 

Buffer O

Buffer OL 

Buffer OG 

Buffer P

20mM Tris, 10% glycerol, 0.1% NP40

20mM Tris (pH8.0), 150mM NaCl, 0.1% Tween-20

150mM Na2HP04 (pH7.5), 0.1% glycerol,

0.1% Octyl-13-glucoside

Buffer O, 0.1% NP40, 150mM NaCl

Buffer O, 5% glycerol

20mM Na2HP04 (pH7.5), 0.004% NP40
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2.2 Methods

2.2.1 Recombinant DNA manipulation

2.2.1.1 Preparation o f  electrocompetent bacteria

50ml of pre-warmed L-broth was inoculated with approximately lOpil of a glycerol stock 

of DH5a or BL21 DE3 bacteria and incubated o/n in an orbital shaker at 37°C. This 50ml 

starter culture was used to inoculate 1 litre of pre-warmed L-broth media in a 2 litre flask 

and incubated at 37°C in an orbital shaker until the OD630nm reached 0.5-0.6. The culture 

was transferred to the appropriate number of pre-chilled 250ml Falcon tubes and allowed 

to chill on ice for 5 minutes. Bacteria were pelleted by centrifugation at 3500 r.p.m. for 15 

minutes at 4°C in a Sorvall RT7 centrifuge. The supernatant was removed and the 

individual bacterial pellets were resuspended in ice-cold dFLO to a final volume of 160ml 

before being pelleted by centrifugation (as described above). The supernatant was 

removed and the individual bacterial pellets were combined by progressive resuspension in 

ice-cold dE^O to a final volume of 500ml. Bacteria were pelleted (as described above), the 

supernatant removed, and the pellet resuspended in 40ml of ice-cold dFLO containing 10% 

sterile glycerol. The culture was transferred to a pre-chilled 50ml (SS-34) tube and the 

bacteria pelleted at 6,000 r.p.m. for 15 minutes at 4°C in a Sorvall SS-34 rotor. The 

supernatant was removed and the pellet resuspended in 2ml of ice-cold dFLO containing 

10% sterile glycerol, aliquoted (80pl) into pre-chilled 1.5ml reaction vials and frozen on 

dry ice before being stored at -70°C.

2.2.1.2 Transformation o f  electrocompetent bacteria

Typically 1-3 pi of DNA was mixed with approximately 80pl of electrocompetent bacteria 

and electroporated using a Hybond cell shock electroporator (following the manufacturers 

guidelines) in a 0.1cm gene pulser® cuvette (Bio-Rad). Following electroporation the 

bacteria were resuspended in 1ml of ultrapure S.O.C. medium (Gibco-BRL), and incubated 

a 37°C for 45 minutes in an orbital shaker. 50-200pl of this culture was plated out onto an
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L-Broth agar plate containing the appropriate antibiotic and incubated o/n at 37°C. Single 

colonies were used to generate starter cultures.

2.2.1.3 Glycerol stock preparation

For long term storage of bacteria containing recombinant plasmids, 1.5ml of a bacterial 

starter culture was centrifuged at 6,500 r.p.m. for 1 min at RT in a microfuge. The culture 

supernatant was removed and the cell pellet was resuspended in 1ml of a sterile mixture 

consisting of 80% glycerol and 20% bactopeptone. Glycerol stock cultures were 

subsequently frozen on dry ice and stored at -70°C.

2.2.1.4 Small scale plasmid DNA isolation

Small scale DNA preparations were performed using the alkaline lysis method (described 

by Maniatis et al., 1982). Briefly, 1.5ml of bacterial starter culture, grown from a single 

bacterial colony, was centrifuged at 6,500 r.p.m. for 1 minute at RT in a microfuge. The 

culture supernatant was removed and the cell pellet was resuspended in lOOpl of ice-cold 

solution 1 (see Materials for solution details) and incubated for 5 minutes at RT. 200pl of 

freshly prepared solution 2 was added to the mixture and briefly vortexed before 150pl of 

ice-cold solution 3 was added. The mixture was briefly vortexed and incubated on ice for 

5 minutes. The resulting white precipitate, consisting of cell debris, was pelleted by 

centrifugation at 14,000 r.p.m. for 5 minutes at RT in a microfuge. The supernatant was 

removed and the DNA recovered by phenol/chloroform extraction and ethanol 

precipitation (described below). DNA pellets were typically resuspended in 30pl of dt^O 

containing lOpg/ml ofRNaseA.

2.2.1.5 Phenol/chloroform extraction and ethanol precipitation o f  DNA

If the volume of the original DNA solution was <200pl then the volume was brought up to 

200pl by the addition of dt^O. An equal volume of phenol/chloroform (1:1) was added to 

the DNA solution and briefly vortexed before being centrifuged at 13,000 r.p.m. for 5 

minutes at RT in a microfuge and the upper aqueous phase removed. If the aqueous phase 

appeared cloudy then the phenol/chloroform extraction was repeated until the aqueous
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phase appeared clear. The DNA was precipitate by the addition of a 1/10th volume of 3M 

sodium acetate and 2 volumes of 100% ethanol. The mixture was vortexed and incubated 

for 20 minutes on dry ice. Precipitated DNA was pelleted by centrifugation at 13,000 

r.p.m. for 5 minutes at RT in a microfuge. DNA pellets were washed in approximately 

200-500pl of 70% ethanol to remove excess salts and the DNA pelleted by centrifugation 

at 13,000 r.p.m. for 5 minutes at RT DNA pellets were allowed to air dry before being 

resuspended in the appropriate volume of dELO containing lOpg/ml RNaseA and stored at 

-20°C until required.

2.2.1.6 Large scale plasmid DNA isolation

Either a single colony from an L-broth agar plate or approximately lOpl of glycerol stock 

was used to inoculate 10ml of pre-warmed L-broth containing the appropriate antibiotic. 

This was incubated for 4-8 hours in an orbital shaker at 37°C and used to inoculate 100ml 

of pre-warmed L-broth (containing the appropriate antibiotic) in a 500ml flask. This 

bacterial culture was incubated o/n in an orbital shaker at 37°C. Cultures were transferred 

to 50ml (SS-34) tubes and the bacteria pelleted by centrifugation at 6,000 r.p.m. for 10 

minutes at 4°C in a Sorvall SS-34 rotor. The supernatant was discarded and the DNA was 

extracted using a Qiagen midi prep kit following the manufacturer’s guidelines (Qiagen).

2.2.1.7 Restriction endonuclease digestion o f DNA

Restriction digests were carried out in the buffer and at the temperature specified by the 

manufacturer. The number of units of enzyme used was dependent upon the concentration 

of DNA, typically 10 units/1 pg of DNA. If the DNA was to be dephosphorylated then 1 

unit of calf intestinal phosphatase (CIP) was added to the reaction mixture following 

digestion and incubated for an additional hour at 37°C. In situations where double 

restriction digestions were required and the buffer specifications were incompatible, the 

DNA was phenol/chloroform extracted and ethanol precipitated (as described in section 

2.2.1.5) following the first digestion and resuspended in dELO before the second digestion 

was carried out in the appropriate buffer.
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2.2.1.8 Analytical DNA agarose gel electrophoresis

DNA that was to be analysed was mixed with a 1/5* volume of loading buffer and loaded 

onto a horizontal (10cm by 11cm) 1% agarose gel made in lx TBE containing EtBr (0.5 

pg/ml). lkb or lOObp size markers (Gibco-BRL) of known concentrations were run 

alongside the sample DNA in order to estimate fragment sizes. Electrophoresis was 

carried out with the gel submerged in lx TBE at 75V for approximately 30-45 minutes. 

DNA was visualised using a short wave UV transilluminator and photographed using a 

digital camera.

2.2.1.9 Purification o f  DNA from agarose

DNA fragments that were required for cloning procedures were purified from 1% agarose 

gels made in lx  TAE containing EtBr (0.5pg/ml). Electrophoresis was carried out (as 

described in section 2.2.1.8) with the gel submerged under lx TAE buffer. The DNA was 

visualised using a long wave UV transilluminator in order to prevent UV nicking. The 

appropriate DNA band(s) was excised from the gel using a sterile disposable scalpel and 

placed into the appropriate number of 1.5ml reaction vials. DNA was extracted from the 

agarose by a Qiaquick gel extraction kit (Qiagen) following the manufacturer’s guidelines. 

Extracted DNA was checked for its integrity by analysing it on a 1% agarose gel run in lx 

TBE buffer (as described in section 2.2.1.8).

2.2.1.10 DNA ligation

Vector and insert were digested with the relevant restriction endonucleases and purified. 

To prevent the vector from self-annealing it was typically treated with 1 unit of CIP per pg 

of DNA following the endonuclease digestion. DNA fragments were mixed at a vector to 

insert ration of 1:3 in the presence of lx ligation buffer (Gibco-BRL) and 1 unit of T4 

DNA ligase (Gibco-BRL) in a total volume of 20pl. The ligation mixture was incubated 

either at RT for 5 hours or o/n at 15°C. The DNA was subsequently electroporated into the 

appropriate electrocompetent bacteria or frozen at -20°C until required.
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2.2.1.11 Linker ligation

If the cloning strategy required the addition of non-phosphorylated oligonucleotide linkers 

to a blunt ended recombinant DNA molecule then essentially the same procedure was 

carried out as described in section 2.2.1.10. Oligonucleotide linkers were used in a 50-fold 

molar excess over that of the blunt ended recombinant DNA molecule. DNA were blunt 

ended by the addition of dNTPs (50pM/dNTP) and 2 units of DNA polymerase I Klenow 

to digestion mixtures and incubated for an additional 20-30 minutes at 37°C.

2.2.1.12 Oligonucleotide purification

Synthetic oligonucleotides were prepared using a Biosearch 8600 DNA synthesiser 

courtesy of D. McNab and A. Orr.

The oligonucleotides were eluted from the preparation column over a period of 

approximately 60 minutes in 1.5ml of concentrated ammonium solution (Fisons). The 

ammonia/oligonucleotide solution was then transferred to a 1.5ml screw cap reaction vial 

and incubated for 5 hours at 55°C before being placed on ice for approximately 2 minutes. 

The solution was then aliquoted into 4 equal volumes in 1.5ml reaction vials and the 

ammonia solution removed by o/n evaporation in a rotary evaporator. The dried

oligonucleotides were stored at -20°C until required.

2.2.1.13 PAGE o f synthetic oligonucleotides.

Oligonucleotide pellets were resuspended in lOOpl of a 1:1 mix of dH20/formamide. 

Typically 25pl of the resuspended pellet was loaded on to a 10% Sequagel (National 

diagnostics) in 0.5% TBE. lOpl of loading dye (containing 0.5% (x/v) xylene cyanol and 

0.5% (w/v) Bromophenol blue) was loaded into a neighbouring well to act as migration 

markers. The gel was electrophoresed in 0.5x TBE buffer at 50mA until the Bromophenol 

dye front had migrated to the bottom of the gel.

Following electrophoresis the gel was transferred on to cling film and the DNA visualised 

by short wave UV radiation. The oligonucleotides would appear as a dark band against an
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imager enhancer screen. The area of which was marked in the gel using a sterile scalpel. 

The band was excised from the acrylamide gel in the absence of UV radiation and 

transferred to a universal bottle containing 3ml of dLLO. The oligonucleotides were 

allowed to diffuse from the gel slice by incubating the gel in the dELO o/n at 37°C in an 

orbital shaker. The oligonucleotide solution was transferred to a 10ml snap cap tube and 

the DNA recovered by phenol/chloroform extraction and ethanol precipitation. 

Oligonucleotide pellets were typically resuspended in lOOpl of dELO and stored at -20°C 

until required. The concentration of the oligonucleotide was measured by absorbance at 

OD260 (1 OD260 unit = 20pg of ssDNA).

2.2.2 M13 phage site directed mutagenesis of UL18.

A modified version of the Kunkel method (Kunkel et al., 1985) was used to generate a 

panel of cysteine UL18 mutants. The specific oligonucleotides used during the 

mutagenesis are described in section 3.3. The stages involved in the mutagenesis are 

described below.

2.2.2.1 Preparation o f  uracil enriched pETUL18 ssDNA

Electrocompetent CJ236 duf ung bacteria (NEB) were electroporated in the presence of 

lpg of pETUL18 vector DNA and plated out on L-broth agar plates containing kanamycin 

(50pg/ml), as described in section 2.2.1.2. A single recombinant colony was used to 

inoculate 10ml of pre-warmed L-broth (containing 50pg/ml of kanamycin and lOOpg/ml 

of uridine) and incubated o/n at 37°C in an orbital shaker. This starter culture was used to 

inoculate 200ml of pre-warmed L-broth (containing 50pg/ml of kanamycin and 100pg/ml 

of uridine) in a 2 litre flask and incubated at 37°C for an additional 30 minutes in an orbital 

shaker. This culture was infected with 1011 p.f.u./flask of M13 R408 bacteriophage 

(Promega) which was incubate for a further 9 hours at 37°C. The bacteria were pelleted by 

centrifugation at 9,000 r.p.m. for 10 minutes at 4°C in a SS-34 rotor. The supernatant was 

transferred to a sterile 500ml GSA bottle and 0.25 volumes of a mixture containing 20% 

PEG 6000 in 2.5M NaCl was added, mixed by inversion, and incubated on ice for 30 

minutes. The bacteriophage were pelleted by centrifugation at 12,000 r.p.m. for 15
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minutes at 4°C in a SLA-3000 rotor. The supernatant was carefully removed and the 

phage pellet resuspended in 5 ml of the supernatant media. The resuspended phage were 

transferred to a 50 ml (SS-34) tube and pelleted by centrifugation at 7,000 r.p.m. for 15 

minutes at 4°C in a SS-34 rotor. The supernatant was removed and the pellet resuspended 

in 2ml of lx TE. This mixture was then transferred to a 10ml snap cap tube and an equal 

volume of phenol/chloroform was added and mixed for 1 hour on an end over end mixer 

with intermittent periods of vigorous vortexing. The mixture was then centrifuged at 4°C 

for 5 minutes at 3,000 rpm in a Sorvall RT7 centrifuge. The aqueous phase was removed 

to a fresh tube. The phenol/chloroform was re-extracted using 1ml of lx TE. The aqueous 

phases were pooled and re-extracted with phenol/chloroform until the aqueous phase 

appeared clear. The DNA was precipitated by adding 80pl/ml of 4M NaCl, 50mM EDTA, 

and 2.5 volumes of 100% ethanol and incubating at -20°C for a minimum of 2 hours. The 

precipitated DNA was pelleted by centrifugation at 7,000 r.p.m. for 20 minutes at 4°C in a 

SM-24 rotor. The supernatant was removed and the phage DNA resuspended in lOOpl of 

dELO and stored at-20°C until required.

2.2.2.2 Oligonucleotide mutagenesis

A series of oligonucleotides (sequences detailed in section 3.3) were phosphorylated in lx 

kinase buffer (Gibco-BRL) containing 20mM ATP + 2 units T4 kinase (Gibco-BRL) and 

were incubated for 40 minutes at 37°C. The reaction mixture was heat inactivated at 70°C 

for 10 minutes and stored at -20°C until required.

Approximately l.Opg of phosphorylated oligonucleotides were annealed separately to 

0.5pg of the uracil enriched ssDNA by heating the mixture in a hot block to 70°C and 

allowing the block to cool naturally to RT. 30pl of a solution containing lx ligation buffer 

(Gibco-BRL), 0.5 units of T4 ligase (Gibco-BRL), and 0.5 units of T7 polymerase (Gibco- 

BRL), was added to the annealed DNA. Samples were incubated for 1 hour at RT 

followed by an additional 1 hour at 37°C. The DNA was then phenol/chloroform extracted 

and ethanol precipitated (as described in section 2.2.1.5), resuspended in 20pl of dELO and 

stored at -20°C until required.
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The DNA was electroporated into electrocompetent DH5a bacteria (as described in section 

2.2.1.2) and individual colonies analysed for oligonucleotide incorporation by restriction 

mapping (as described in section 3.3). Those colonies that tested positive were 

subsequently sequenced in house on an ABI PRISM™ 377 DNA sequencer. 200ng of 

recombinant DNA was used per sequence analysis using commercially available T7 

primers (Novagen). Correctly mutated plasmids were subsequently electroporated into 

electrocompetent BL21 DE3 bacteria and analysed for recombinant protein expression (as 

described in section 3.3).

2.2.3 Generation of monoclonal antibodies

The production of monoclonal antibodies against the triplex proteins VP 19c and VP23 was 

carried out in house by Susan Graham. BALB/c mice were immunised with recombinantly 

expressed and Ni-NTA agarose purified triplex proteins (described in section 3.2) 

following the protocol outline in table 2.2.1. Test bleeds were performed and analysed for 

the presence of anti-sera against the triplex proteins by quantitative ELISA analysis. Mice 

that had positive anti-sera against the triplex proteins were subsequently used in the 

production of hybridoma cell lines. Quantitative ELISA analysis and the production of 

hybridoma cell lines were carried out by Susan Graham. The supernatants from these cell 

lines were tested for their specific reactivity towards VP 19c and VP23 by Western blot and 

immunofluorescence analysis (discussed in section 3.2).

62



Methods: 2.2

Days post- Immunisation/analysis details

immunisation

1 Primary immunisation in FCA (20pg/triplex) SC

29 Boost in FIA (20pg/triplex) SC

43 Boost in FIA (20pg/triplex) SC

57 Boost in FIA (20pg/triplex) SC

64 Test bleed animals #1-4 -  low ELISA titre (<1:50)

71 Boost in FIA (20pg/triplex) SC

86 Boost in FIA (20pg/triplex) SC

102 Final Boost in PBSa (200pg/triplex) IP

120 Test bleed animals #1-4. Fusion with spleen cells from animal #4

184 Boost in FIA (20pg/VP19cHis) SC

197 Boost in FIA (20pg/VP19cHis) SC

204 Test bleed animals #1-3

220 Final Boost in PBSa (200pg/VP19cHis) IP for animals #1 and #3

225 Fusion with spleen cells from animals #1 and #3

241 Final Boost in PBSa (200pg/VP19cHis) IP for animal #2

246 Fusion with spleen cells from animal #2

Table 2.2.1: Summary of the immunisation regime of BALB/c mice for the production of 

VP 19c and VP23 monoclonal antibodies. Mice were initially immunised with purified 

triplexes (Acl8638) in FCA (Freund’s complete adjuvant) and boosted in FIA (Freund’s 

incomplete adjuvant). Following poor test bleed analysis by ELISA for VP 19c, mice #1, 

#2, and #3 were subsequently immunised and boosted 184 days post-immunisation with 

VP 19c denatured in urea (described in section 3.2.1). SC and IP denote subcutaneous and 

intraperitonial injections respectively.
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2.2.4 Immunofluorescence analysis

2.2.4.1 Transfection o f  plasmid DNA

13mm sterile coverslips were placed into limbro wells, seeded with BHK-21 C13 cells in 

ETC 10 medium at lx l0 4 cells/well and left to grow o/n at 37°C. In separate 15ml Falcon 

tubes, 1 jag of plasmid DNA and 15pl of liposomes (Gibco-BRL) was mixed with 500pl of 

OPTIMEM (Gibco-BRL) and allowed to incubate for 15 minute at RT. The diluted 

liposomes were added to the DNA/OPTIMEM mixture, gently mixed by agitation, and 

allowed to incubate for a further 10 minutes at RT. Growth media was removed from the 

BHK-21 C13 cells and the cell monolayer (approximately 50% confluent) was washed in 

lml of serum-free OPTIMEM and drained thoroughly. 500pl of the liposome/DNA mix 

was added to each coverslip and incubated for 4 hours at 37°C before 500pl of ETC 10 

medium containing 10% FCS was added to each well and incubated for a further 16-24 

hours at 37°C. The transfection mixture was then removed and the coverslips washed in 

PBSa before being fixed in pre-chilled methanol (-20°C). Coverslips were stored at -20°C 

in methanol until they were required for analysis.

2.2.4.2 Immuno staining and microscopy analysis

All incubations were carried out in a humidified chamber and all dilutions were made in 

PBSa/TN (PBSa, 0.05% Tween-20, 5% NCS (Gibco-BRL)). Using microscope forceps, 

coverslips were removed from the methanol and rehydrated in PBSa/TN for 10 minutes at 

RT. The coverslips were blotted dry and 50pl of the appropriately diluted primary 

antibody (see table 2.2.1) was added to each coverslip and incubated for 45 minutes at RT. 

Coverslips were then washed 3x by immersion in a beaker containing PBSa/TN and 

blotted dry between each wash. After the final wash the coverslips were blotted dry and 

50pl of appropriately diluted secondary antibody was added and incubated for 45 minutes 

at RT. The coverslips were washed (as above) with a further 2 washes in dH20. The 

coverslips were blotted dry and mounted cell side down onto a glass slide in Citifluor 

(approximately lOpl) and stored a 4°C in the dark until required. For long-term storage 

clear nail varnish was applied to the outer edge of the coverslip. Immunofluorescence
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analysis was carried out on a Zeiss Axioplan fluorescence microscope. Photographs were 

taken using a mounted digital camera and edited using PhotoShop 3.1 software.

Antibody Dilution

CB040 (MAb. VP23) Neat

CB2017 (MAb. VP 19c) Neat

CB2032 (MAb. VP 19c) Neat

CB2034 (MAb. VP 19c) Neat

CB2040 (MAb. VP19c) Neat

CB2064 (MAb. VP 19c) Neat

CB2068 (MAb. VP 19c) Neat

CB2184 (MAb. VP 19c) Neat

CB2231 (MAb. VP 19c) Neat

187 (PolyAb. VP23) 1:200

FITC 1:100

Cy3 1:100

Table 2.2.2: Summary of antibody dilutions used in immunofluorescence analysis.

2.2.5 Yeast manipulation

2.2.5.1 Glycerol stock preparation

In order to preserve the viability of yeast containing plasmid DNA constructs and for long 

term storage of yeast strains and isolates, 1.5ml of an o/n culture grown in the appropriate 

drop out medium (Clontech) was centrifuged at 6,500 r.p.m. for 1 minute at 4°C in a 

microfuge. The culture supernatant was removed and the cell pellet was gently

resuspended in 1ml of 100% sterile glycerol, frozen on dry ice and stored at -70°C until 

required.
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2.2.5.2 Transformation o f plasmid DNA into yeast

Yeast transformation was carried out following the method described in Clontech 

Matchmaker™ Two-Hybrid System product protocol manual which is briefly described 

below.

2.2.5.2.1 Preparation o f yeast cells

A single colony, approximately 2-3mm in diameter, was used to inoculate 20ml of pre- 

warmed YPD medium and incubated o/n at 30°C in an orbital shaker. This starter culture 

was used to inoculate 300ml of pre-warmed YPD medium in a 1 litre flask to an OD600 of 

0.2. This culture was then incubated at 30°C in an orbital shaker for a further 3 hours 

before the yeast cells were transferred to a 250ml Falcon tube. The yeast cells were 

sedimented by centrifugation at 2,200 r.p.m. for 5 minutes at RT in a Sorvall RT7 

centrifuge. The supernatant was removed and the cell pellet resuspended in 50ml of dH20. 

The yeast cells were then pelleted (as described above), the supernatant removed, and the 

cell pellet resuspended in 1.5 ml of lx TE/LiAc buffer (see Materials).

2.2.5.2.2 Transformation o f  competent yeast cells

0.1 pg of the appropriate plasmid DNA and lOOpg of salmon sperm carrier DNA (Sigma) 

were mixed in a 1.5ml sterile reaction vial. lOOpl of competent yeast cells were added to 

each reaction vial, mixed thoroughly by pipetting, and 0.6ml of PEG/LiAc buffer (see 

Materials) was added. The reaction vials were placed into a 50ml Falcon tube and 

incubated for 30 minutes at 30°C in an orbital shaker. Following the incubation, 70pl of 

sterile DMSO was added to each reaction vial and gently mixed. The yeast cells were then 

heat shocked at 42°C for 15 minutes in a dry block before being transferred onto ice for 1 

minute. The yeast cells were pelleted by centrifugation at 14,000 r.p.m. for 5 seconds at 

RT in a microfuge. The supernatant was removed and the cell pellets resuspended in 0.5 

ml of lx TE buffer.
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2.2.5.2.3 Yeast colony selection

Yeast cells containing the appropriate plasmid construct(s) could be selected by their 

growth on the appropriate SD agar medium. For a 90mm Petri dish, lOOpl of transformed 

yeast cells were plated out onto the appropriate synthetic selection medium and spread 

evenly across the surface using a flamed glass rod. The plates were then inverted and 

transferred to a 30°C incubator. Incubation times for single colony development varied 

depending on the stringency of selection. For selection of leu or trp plasmids, colonies 

could typically be observed after 2-3 days. Selection of colonies containing plasmids 

expressing hybrid proteins which have interacting Gal4 domains to induce uracil 

biosynthesis typically required 6-10 days incubation.

2.2.5.3 Replica plating and picking o f yeast colonies

Replica plating was carried out using 220 x 220mm pieces of 100% cotton velvet. The 

velvets were placed over a 85mm wooden replica-plating block (made in house) and fixed 

into position using a metal ring. Master plates were inverted and gently lowered on to the 

velvet with even pressure to ensure a good lift of all yeast colonies across the entire plate. 

The master plate was then gently lifted off the velvet and a new selective plate containing 

the appropriate synthetic medium was lowered onto the velvet with even pressure. This 

plate was then replica cleaned to dilute the number of yeast cells on the plate by repeating 

the process with a sterile velvet. Replica plates were incubated at 30°C and colony 

formation would typically occur within 2-3 days. The velvets were cleaned by soaking 

them o/n in 1% Virkon, and washing thoroughly in warm water before being dried o/n at 

37°C. Sets of 10 velvets were then wrapped in tin foil and sterilised by autoclaving.

In some instances, a minimal number of yeast cells were transferred from a single yeast 

colony using sterile cocktail sticks. These cells were then transferred directly either to a 

new selection plate, nitro-cellulose filter, or the appropriate liquid culture medium, before 

being incubated at 30°C.
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2.2.5.4 fi-galactosidase filter assay

Colonies that were to be analysed for the presence of p-galactosidase were transferred by 

picking (as described above) onto their appropriate SD selective agar plate. These colonies 

were then incubated for 2 days at 30°C. A reinforced nitro-cellulose filter (Hybond) was 

cut to the appropriate size and pre-soaked in Z buffer/X-gal solution (see Materials). The 

filter was then transferred to the selective plate containing the transformed colonies and 

orientated to the plate by puncturing 3 holes at asymmetric points. The filter was gently 

lifted from the plate and submerged colony side up into a liquid nitrogen bath for 10 

seconds then allowed to thaw at RT (approximately 10 seconds). The filter was then 

placed in the lid of a Petri dish onto 2 pieces of Whatman filter paper (Whatman #541) pre

soaked in Z buffer/X-gal solution. The Petri dish was then covered and incubated o/n at 

37°C.

2.2.5.5 Isolation o f plasmid DNA from yeast

Plasmid isolation was carried out following the method described in Clontech 

Matchmaker™ Two-Hybrid System product protocol manual. Briefly, a single 

transformed yeast colony grown on the appropriate SD agar selection media was used to 

inoculate 2ml of YPD liquid medium and incubated o/n in an orbital shaker at 30°C. 1.5ml 

of this yeast suspension was transferred to a 1.5ml reaction vial and the yeast cells pelleted 

at 6,000 r.p.m. for 5 seconds at RT in a microfuge. The media was removed and the yeast 

cells resuspended in 200pl of yeast lysis solution (see Materials). To this mixture, 200pl 

of Phenol/Chloroform and 0.3g of acid washed glass beads (Sigma) were added. The 

mixture was vortexed continuously for a minimum of 2 minutes. The cellular debris was 

pelleted at 14,000 r.p.m. for 5 minutes at RT in a microfuge. The supernatant was 

transferred to a clean 1.5ml reaction vial and the DNA recovered by phenol/chloroform 

extraction and ethanol precipitation. The DNA pellets were typically resuspended in 20pl 

of dH20 and stored at -20°C.
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2.2.5.6 TCA extraction o f  proteins from yeast cells

Yeast cells were prepared and proteins extracted using the TCA protein extraction protocol 

described in Clontech Laboratories Inc. yeast protocols handbook and is briefly described 

below.

2.2.5.6.1 Yeast cell culture and preparation for protein extraction

A single colony was used to inoculate 5ml of the appropriate SD media and incubated o/n 

at 30°C in an orbital shaker. This starter culture was vortexed to break up any cell clumps 

and used to inoculate 50ml of pre-warmed YPD medium in a 500ml conical flask. This 

yeast culture was incubated for a further 4-8 hours until the OD600 reached 0.4-0.6. For 

each culture the total number of OD600 units was calculated using the equation below:

OD600 (lml sample) x Total volume of culture = Total OD600 units

The yeast culture was transferred to a pre-chilled 250ml Falcon tube containing 100ml of 

ice and the yeast cells were pelleted by centrifugation at 1000 r.p.m. for 5 minutes at 4°C 

in a Sorvall RT7 centrifuge. The supernatant and any unmelted ice was poured off and the 

yeast cell pellet resuspended in 50ml of ice-cold dFLO. The yeast cells were pelleted (as 

described above) and the supernatant removed before the cell pellet was frozen on dry ice 

and stored at -70°C until required.

2.2.5.6.2 TCA protein extraction

Unless otherwise stated all sample preparations were kept on ice. Frozen yeast cell pellets 

were thawed on ice and resuspended in 100pl/7.5 OD600 units of ice cold TCA buffer. The 

mixture was transferred to a 1.5ml reaction vial containing lOOpl of acid washed glass 

beads (Sigma) and lOOpl of ice cold 20% (w/v) TCA per 7.5 OD600 units. If the volume 

was greater than 1.5ml the sample was split between two 1.5ml reaction vials. The tubes 

were vortexed for 4x 1 minute intervals and were placed on ice between each period of 

vortexing for a minimum of 30 seconds. The glass beads were allowed to settle before the 

supernatant was transferred to a fresh pre-chilled 1.5ml reaction vial. 500pl of a 1:1 mix
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of 20% TCA and TCA buffer was added to the glass beads and vortexed for a further 2x 1 

minute intervals (as described above). The glass beads were allowed to settle and the 

supernatant was pooled with the first extract. The combined cell extracts were incubated 

on ice for an additional 1 minute to allow any glass beads carried over to settle. This 

supernatant was transferred to a fresh pre-chilled 1.5ml reaction vial and the proteins 

pelleted by centrifugation at 14,000 r.p.m. for 10 minutes at 4°C in a microfuge. The 

supernatant was removed and the pellet resuspended in 10pl/OD6oo unit of BM. The 

sample was heated in a dry block for 10 minutes at 100°C and stored at -70°C prior to 

SDS-PAGE analysis.

2.2.5.7 Random PCR mutagenesis

Random PCR mutagenesis was carried out using universal primers that encoded sequences 

flanking the multicloning site of pPc86 plasmid (primers detailed in section 3.1). The 5’ 

primer corresponds to sequences located within the activation domain (AD), approximately 

lOObp upstream of the multicloning site of pPc86. The 3’ primer corresponds to sequences 

located within the yeast transcriptional terminator (Term) approximately lOObp 

downstream of the multicloning site. Thus, a DNA fragment amplified using these two 

primers can be re-incorporated back into a linearised (Kpnl digested and CIP treated) 

pPC86 vector via gap repair by transforming yeast cells with the appropriate linearised 

vector and PCR products.

Random PCR mutagenesis was carried out using; lOOng of linear pPc86UL18 DNA (as a 

DNA template), lpM  of each of the AD and Term primers, 50pm of each dNTP, 50mM 

KC1, lOmM Tris (pH 9.0), 1.5mM MgCl2, and 5 units of Taq DNA polymerase. The PCR 

reaction was carried out in a final volume of 50pl initially for 10 elongation cycles 

(described below) before MnCh was added to a final concentration of IOOjjM. The 

reaction was continued for a further 30 cycles (1 min at 94°C, 1 min at 45°C, 2 min at 

72°C). Each PCR reaction was analysed by electrophoresis on a 1% agarose TBE gel.
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2.2.6 Tissue culture and virus manipulation

2.2.6.1 Baculovirus manipulation

2.2.6.1.1 SF cell culture

SF21 cells were passage every 3-4 days in large (600ml) tissue culture flasks containing 

50-75ml of TC100/5 medium. The cells were removed from the base of the flask by the 

addition of 10ml of TCI00/5 medium and gentle tapping of the flask against the hand. 

Cell clumps were broken up by pipetting the medium up and down. Confluent flasks were 

typically passaged using a 1:4 split. Where appropriate cell densities were calculated using 

a Nebauer counting chamber. Cells were counted using a inverted light microscope 

(Olympus).

2.2.6.1.2 Freezing and storage o f SF cells

SF21 cells were grown in large flasks (600ml) at 28°C until confluent. They were then 

harvested in 10ml of TCI00/5 medium and the cell suspension transferred to a 15ml 

Falcon tube. Cells were pelleted by centrifugation at 1,500 r.p.m. for 5 minutes in a 

Sorvall RT7 centrifuge. The supernatant was removed and the cells resuspended in 2ml 

TCI00/10 and a equal volume of ice cold freezing mix (80% (v/v) TCI00/10, 20% (v/v) 

DMSO). The cell suspension was aliquoted into cryogenic vials (1 ml/vial) before being

frozen o/n at -70°C. Frozen cells were then transferred to liquid nitrogen for long term 

storage.

2.2.6.1.3 Recovery ofSF21 cells

Aliquots of SF21 cells removed from liquid nitrogen were thawed quickly in a water bath 

at 37°C before being resuspended in a small volume of TCI 00/5 (approximately 5ml). The 

cell suspension was then transferred to a 15ml Falcon tube, and cells pelleted by 

centrifugation at 1,000 r.p.m. for 5 minutes in a Sorvall RT7 centrifuge. The supernatant 

was discarded and the cell pellet resuspended in 5ml of TCI00/5, which was used to seed
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to a medium flask (200ml). The flask was incubated at 28°C until the cells had firmly 

attached to the solid substrate before the medium was replaced with fresh TCI00/5. Once 

the monolayer had reached confluency the cells were passaged into a large (600ml) flask 

and cultured as normal.

2.2.6.1.4 Construction o f recombinant baculoviruses

Transfection of DNA into SF21 cells followed the method described by Rose et al (1991) 

utilising a synthetic lipid reagent. Transfections were performed in 35mm dishes at a cell 

density of 60-70%. 0.5pg of AcPAK6 DNA, which had been digested with Bsu361 and 

subsequently phosphatased using CIP, was mixed in a 15ml Falcon tube with 5pg of 

transfer vector DNA in 500pl of TC100 medium. To this mixture 15pl of liposomes was 

added, gently vortexed, and incubated at RT for 15 minutes. The medium from the SF21 

cell monolayer was removed and the cells were washed with 2ml of TCI00 medium 

containing no foetal calf serum. The wash medium was removed and the transfection 

mixture added to the cell monolayer with an additional 500pl of TCI 00 medium. The cells 

were incubated at 28°C for 4 hours before an additional 1ml of TCI00/10 media was 

added. The cells were then incubated for a further 65 hours at 28°C when the supernatant 

was removed and transferred to a sterile 1.5ml reaction vial. Any cells that were carried 

over were pelleted by centrifugation at 14,000 r.p.m. for 2 minutes in a microfuge. The 

supernatant was transferred to a fresh 1.5ml screw cap reaction vial, frozen on dry ice and 

stored at -70°C until required.

2.2.6.1.5 Isolation o f recombinant viruses

Recombinant viruses were selected on their /acZ-minus phenotype. 100pl of the harvested 

transfection supernatant was assayed for plaque formation and lacZ phenotype at dilutions 

from neat to 10' (described in section 2.2.6.1.8). Plaques that did not stain blue were 

picked under a plate microscope (WILD M7A, Heerbrugg) using a sterile Pasteur pipette 

and transferred to 1ml of TCI00/5 medium in a sterile 1.5ml screw cap tube. Virus was 

released from the agar by freeze/thawing the samples on dry ice 3x before being stored at -  

70°C. Baculoviruses were subsequently grown by infecting 50% confluent monolayers of 

SF21 cells (lxlO6 cells/plate) in 35mm dishes. The media was removed from the cells and
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500j l x 1 of released virus suspension was added and allowed to absorb for 1 hour at 28°C 

before an additional 1ml of TCI 00/5 media was added. After a further 4-5 day incubation 

the supernatant, termed plate harvest one (PHI), was harvested (as described above) and 

used for a second round of plaque purification. PH2 was used for a final round of plaque 

purification and the PH3 virus supernatant was subsequently used for generating low titre 

virus stocks. Cells from each round of plate harvests were analysed by SDS-PAGE and 

stained with Coomassie Brilliant Blue to assay for the continued expression of the 

recombinant protein of interest.

2.2.6.1.6 Production o f low titre baculovirus stocks.

Small tissue culture flasks (200ml) were seeded with SF21 cells in TCI00/5 media and 

allowed to grow at 28°C until the monolayer reached a confluency of 50%. The media was 

removed and 500pl of PH3 supernatant was inoculated onto the cells and allowed to 

absorb for 1 hour at 28°C. Following the incubation, 10ml of fresh TCI00/5 media was 

added to the cells and incubated for a further 4-5 days at 28°C. The media was transferred 

into a 15ml Falcon tube and the cells pelleted by centrifugation at 2,000 r.p.m. for 5 

minutes in a Sorvall RT7 centrifuge. The supernatant was transferred to a fresh 15ml 

Falcon tube and stored a -70°C until required. 5ml of this supernatant was used to infect a 

50% confluent monolayer of SF21 cells in a large (600ml) flasks (as described above). 

After absorption, 50ml of TCI 00/5 media was added to the cells, which were subsequently 

incubated for 4-5 days at 28°C, after which the supernatant was harvested (flask harvest, 

FH), as described above, and stored at -70°C. The FH was subsequently titered as 

described in section 2.2.6.1.8.

2.2.6.1.7 Production o f high titre baculovirus stocks

High titre stocks of parental (AcPAK6) and recombinant baculoviruses were routinely 

grown in roller bottles containing SF21 cells at a cell density of 5xl05 cells/ml (typically 

300ml/bottle). Cells were infected at a m.o.i. of 0.1 p.f.u./ml and cultured for 5 days at 

28°C. Cultures were transferred to 250ml Falcon tubes and the cells pelleted by 

centrifugation at 3,000 r.p.m. for 5 minutes in a Sorvall RT7 centrifuge. The supernatant 

was removed and baculovirus pelleted by centrifugation at 12,000 r.p.m. for 5 hours at 4°C
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in a Sorvall SLA-3000 rotor. Virus pellets were resuspended in TCI00/5 media (typically 

4ml/300ml supernatant), transferred to sterile 1.5ml screw cap tubes and stored at 4°C until 

required.

2.2.6.1.8 Baculovirus titration

Stocks of baculovirus were titrated by the method first described by Brown and Faulkner 

(1977). 35mm dishes were seeded with lxlO6 SF21 cells in 1.5ml of TC100/5 medium 

and allowed to grow o/n at 28°C to generate a 70-80% confluent monolayer. Serial 10 

fold dilutions of the virus were performed in TCI00/5 medium from neat to 10'6 for low 

titre stocks and from 10'5 to 10'10 for high titre stocks. The medium was removed from the 

cells and 100pl of the diluted virus was added to each 35mm dish and allowed to absorb 

for 1 hour at 28°C with occasional rocking to prevent the cell monolayer from drying out. 

Following absorption, 1ml of overlay medium was added (50% TCI00/5 and 50% 3% 

LTG agarose (SeaPlaque)), which had been previously melted and incubated at 45°C to 

prevent the agar from setting. Once the overlay medium had set (approximately 10 

minutes), 1.5ml of TCI 00/5 was added and the plates were incubated for a further 4-5 days 

at 28°C. The medium was removed and 1.5ml of neutral red stain (0.4% neutral chloride 

mixed 1:50 with TCI00/5) was added on top of the agar and the plates incubated for a 

further 5 hours at 28°C. The stain was removed and the plates inverted onto tissue paper 

and allowed to air dry o/n at RT. Plaques were counted and the titre calculated as 

p.f.u./ml. If the titration was required to identify recombinant viruses then 250pg of X- 

gal/ml (made up as a 3mg/ml stock solution in DMSO) was added to the initial stain. 

Recombinant virus plaques (clear plaques) were selected for their absence of (3- 

galactosidase activity due to the disruption of the lacZ gene within the parental baculovirus 

(AcPAK6).

2.2.6.2 BHK-21 C l3 cell culture.

BHK cells were typically passaged every 3-4 days in 850cm2 roller bottles. The cell 

monolayer was washed with 40ml of versene and the cells removed from the substrate by 

trypsinisation, 2x washes of a 20ml trypsin/versene (1:4) solution. The cells were left until 

the monolayer dispersed before 10ml of ETC/10 was added. A confluent monolayer

74



Methods: 2.2

typically yielded approximately lxlO8 cells. Sterile roller bottles were seeded with 2xl07 

cells in 100ml of ETC/10, gassed with 5% CO2 and incubated at 37°C with gentle rotation.

2.2.6.3 Vero cell culture.

Vero cells were typically passaged every 3-4 days in large (600ml) tissue culture flasks 

containing 50-75ml of MEM/10. The monolayer was washed in 20ml of versene and the 

cells removed from the substrate by trypsinisation, 2x washes of a 20ml trypsin/versene 

(1:4) solution. The cells were left until the monolayer dispersed before 10ml of MEM/10 

medium was added. Cell clumps were dispersed by pipetting the medium up and down. 

Confluent flasks were typically passaged 1:4. into sterile flasks containing fresh medium 

and gassed with5% CO2. Flasks were incubated at 37°C.

2.2.6.4 Complementation ofUL18 null mutant virus (K23Z)

35mm dishes were seeded with 4xl05 BHK-21 C13 cells in ETC 10 medium and allowed to 

grow o/n at 37°C in 5% CO2. 1 pig of the appropriate plasmid DNA was transfected into 

cells using the transfection procedure described in section 2.2.4.1. 18-24 hours post

transfection the medium was removed and the cell monolayer infected with the UL18 null 

mutant virus (K23Z) at a m.o.i. of 3 p.f.u./cell in lOOpl of ETC 10 medium. The 

construction of K23Z is described in Desai et al., (1993). The cells were incubated for 1 

hour at 37°C in 5% CO2 with occasional rocking to prevent the cell monolayer from drying 

out. Following the incubation the virus innoculum was removed and the cells washed with 

lml of sterile PBScomplete. Unpenetrated virus particles were removed from the surface 

of cells by acid washing in 500pl of pH3 buffer (see Materials) for 1 minute at RT. The 

cell monolayer was then washed in lml of ETC 10 medium before lml of ETC 10 medium 

was added to the cells and incubated for 24 hours at 37°C in 5% CO2. Following the 

incubation, the cells were removed from the plate by scraping into the culture medium, 

using a sterile lml syringe plunger. The medium was then transferred to a Bijoux bottle 

and briefly bath sonicated in a soni-bath (Kerry) to release virus particles.
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2.2.6.5 Titration o f  complemented HSV-1 UL18 null mutant virus (K23Z)

HSV-1 UL18 null mutant virus progeny (generated as described in section 2.2.6.4) were 

titred on 80% confluent monolayers of Vero cells or G5-11 Vero cells (a UL18 

complementing cell line, described in Desai et al., 1993) in 35mm dishes. The virus was 

diluted through 10-fold serial dilutions, the medium removed, and the cells inoculated with 

lOOpl of serial 10-fold dilutions from neat to 10'4 in MEM/10 medium. The plates were 

incubated at 37°C for 1 hour with occasional rocking to prevent the cell monolayer from 

drying out. Following the incubation 2ml of EMC/10 (see Materials) was gently added to 

each plate and they were incubated for a further 3-4 days at 37°C. To visualise plaques, 

the cells were fixed in 2ml of Giemsa stain for 4 hours at RT. Excess stain was removed 

by gentle washing in cold water before the plates were inverted and allow to air dry o/n on 

tissue paper. The plaques were then counted using a plate microscope (WILD M7A, 

Heerbrugg).

2.2.7 Expression of recombinant proteins

2.2.7.1 Protein expression in BL21 DE3 bacteria

A single colony or approximately lOpl of a glycerol stock was used to seed 5ml of pre

warmed L-Broth (containing the appropriate antibiotic) and incubated in an orbital shaker 

for 4-5 hours at 37°C. This starter culture was then used to inoculate 100ml of pre-warmed 

L-Broth (containing the appropriate antibiotic) in a 500ml flask and allowed to grow o/n at 

37°C in an orbital shaker. 50ml of the o/n culture was transferred to a 2 litre flask 

containing 1 litre of pre-warmed L-Broth (containing the appropriate antibiotic) and 

cultured until the OD630nm reached 0.5-0.6. Expression of the gene(s) of interest was 

induced by adding 0.1 mM IPTG and incubating for a further 16 hours at 18°C (unless 

otherwise stated). 600ml of the induced bacterial suspension was then transferred to a GS3 

centrifuge bottle and the bacteria pelleted by centrifugation at 6,000 r.p.m. for 15 minutes 

at 4°C in a Sorvall SLA-3000 rotor. The culture supernatant was removed and the 

bacterial pellets were frozen at -20°C until required.
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2.2.7.2 Protein expression using the baculovirus expression system

Recombinant protein expression was carried out using 35mm or 60mm dishes that were 

seeded with lxlO6 or 4xl06 SF21 cells respectively, or roller bottles containing 300ml of 

SF21 cells at a cell density of lx l0 6 cells/ml. In all instances, SF21 cells were infected 

with recombinant baculoviruses expressing the gene(s) of interest at 5 p.f.u./cell and 

incubated at 28°C for 48 hours. SF21 cells cultured on plates were allowed to reach a 

confluency of 80% (typically o/n post-seeding), after which the growth medium was 

removed. lOOpl (for a 35mm dish) or 200pl (for a 60mm dish), of the appropriately 

diluted baculovirus in TCI00/5, was added to the cell monolayer and incubated for 1 hour 

at 28°C with occasional rocking. Following absorption, 1.5ml (for a 35mm dish) or 3ml 

(for a 60mm dish) of TCI00/5 was added to the cell monolayer and incubated for 48 hours 

at 28°C. The plates were harvested in 1 ml of PBSa by gentle pipetting before being 

transferred to a 1.5ml reaction vial, and pelleted by centrifugation at 6,500 r.p.m. for 1 

minute at RT in a microfuge. The supernatant was removed and the cell pellet was frozen 

on dry ice and stored at -20°C until required. For SF21 cells cultured in roller bottles, 

baculovirus was added directly to the ell suspension. 48 hours post infection the cell 

suspension was transferred to a 250ml Falcon tube and the cells pelleted by centrifugation 

at 3,000 r.p.m. for 5 minutes at RT in a Sorvall RT7 centrifuge. The supernatant was 

removed and the cell pellets frozen on dry ice and store at -20°C until required.

2.2.8 Purification of 6xHis epitope tagged proteins

2.2.8.1 Ni-NTA agarose column chromatography

The majority of protein purification’s shown in this thesis utilised the expression of 

recombinant proteins that had a 6xHis amino acid tag located at their N-termini. This 

allowed the purification of both bacterial and baculovirus expressed proteins through the 

use of Ni-NTA affinity chromatography. The principles of which are discussed in detail in 

section 3.3. The protocols outlined below describe the general methods involved in 

extracting and purifying recombinantly expressed proteins from bacteria and SF21 cell
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extracts. The specific composition of buffers used in individual cases are detailed within 

the appropriate text sections and figure legend texts.

2.2.8.2 Preparation o f bacterial extracts for Ni-NTA purification

Frozen 600ml bacterial pellets (grown and induced as described in section 2.2.7.1) were 

typically resuspended in 20ml of the appropriate purification buffer (see fig. legends for 

details) and lysed using a Branson sonifier 450 soni-probe over approximately 5x 20 

second bursts set at the 50% duty cycle and an output of 5. The lysed bacterial suspension 

was then transferred to the appropriate number of 1.5ml reaction vials and clarified at

14,000 r.p.m. for 5 min at RT in a microfuge. The supernatant fraction was transferred to a 

15ml falcon tube for Ni-NTA agarose purification (described in section 2.2.8.4).

2.2.8.3 Preparation ofSF21 cell extracts for Ni-NTA purification

Frozen SF21 cell pellets from 300ml cultures (cultured and infected as described in section 

2.2.7.2) were typically resuspended in 5ml of the appropriate purification buffer (see fig. 

legends for details) containing Complete™ (EDTA-free) protease inhibitors (Boehringer

Mannheim) prepared following the manufacturer’s instructions. The cell suspension was

lysed by sonication in a soni-bath (Kerry) for approximately 5 minutes at RT. The cell 

suspension was then transferred to the appropriate number of 1.5ml reaction vials and 

clarified at 14,000 r.p.m. for 5 minutes at RT in a microfuge (unless otherwise stated). The 

supernatant fraction was then transferred to a 15ml Falcon tube for Ni-NTA agarose 

purification (described in section 2.2.8.4).

2.2.8.4 Ni-NTA agarose purification

350-700pl of Ni-NTA coupled to Sepharose® CL-6B (Qiagen), was typically equilibrated 

in a 1.5ml reaction vial over 4x 1.5ml washes in the appropriate purification buffer. After 

each wash stage the agarose was pelleted by centrifugation at 14,000 r.p.m. for 5 seconds 

at RT in a microfuge, the buffer phase removed, and the agarose gently resuspended in 

1.5ml of fresh purification buffer. Following the final wash stage the agarose was 

resuspended in 1.5ml of the appropriate purification buffer and added to the soluble protein

78



Methods: 2.2

fraction. The 6xHIS epitoped tagged recombinant proteins were allowed to bind by 

mixing end over end for 1 hour at RT (unless otherwise stated). The agarose and bound 

protein complexes were then pelleted by centrifugation at the appropriate temperature at

1,000 r.p.m. for 5 minutes in a Sorvall RT7 centrifuge. The supernatant was removed and 

the agarose gently resuspended in 10ml of the purification buffer. The agarose was 

pelleted and washed a further 2x (as described above) before being transfer to a disposable 

column (BIO-Rad) in 5ml of the appropriate buffer. The agarose was washed with a 

further 5ml of the appropriate purification buffer. When required the Ni-NTA agarose was 

washed with 10 ml of purification buffer containing low concentrations imidazole 

(typically <25mM) to remove cellular proteins that had non-specifically bound to the 

agarose. The 6xHIS epitoped tagged recombinant proteins were eluted from the Ni-NTA 

agarose using a suitable concentration of imidazole (typically between 100-250mM) in the 

desired volume of purification buffer and collected in 1.5ml reaction vials. Specific details 

for each protein purified using Ni-NTA agarose are described in their respective results 

sections.

2.2.8.5 Ni-NTA agarose pull downs

Frozen 35mm or 60mm plate harvests of SF21 cells infected with recombinant 

baculoviruses (as described in section 2.2.7.2) were resuspended in 150pl of the 

appropriate purification buffer (see fig. legends for details). The cell extracts were allowed 

to lyse on ice for 15 minutes with intermittent vortexing before being clarified by 

ultracentrifugation at 30,000 r.p.m. for 5 minutes at 4°C in a Beckman TLA 100.2 rotor. 

The supernatant was transferred to a fresh 1.5ml reaction vial and mixed with a second 

lysed and clarified extract or with 200pl of buffer. The extracts were incubated for 1 hour 

at an appropriate temperature before being mixed with 20pl of equilibrated Ni-NTA 

agarose (Qiagen). The extracts were incubated for a further 15 minutes with intermittent 

vortexing. The Ni-NTA agarose was pelleted at 14,000 r.p.m. for 5 seconds in a 

microfuge and washed in 3x lml and 2x 200pl of the appropriate buffer + 500mM NaCl. 

If the experiment was carried out at 4°C then all buffers were pre-chilled on ice before use. 

Following the final wash, the Ni-NTA agarose was resuspended in 30pl of BM + 250mM 

imidazole and heated in a dry block for 5 minutes at 100°C. The extracts were stored at -  

20°C until required.
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2.2.8.6 Quantification o f  protein concentration

Purified protein concentrations were calculated by measuring the OD280 and calculating the 

amount of protein in mg/ml using the following equation:

Extinction Co-efficient = OD280

MW X (mg/ml)

2.2.9 Analysis of purified proteins

2.2.9.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Protein samples in all cases were resolved using a 10% polyacrylamide gel (37.5:1 

acrylamide:bisacrylamide, Bio-Rad) prepared in lx resolving gel buffer (see materials) 

within a vertical mini gel plate system (Bio-Rad), on top of which a 5% polyacrylamide 

stacking gel prepared in lx stacking gel buffer (see Materials) was poured. Both resolving 

and stacking gels were polymerised by adding 200pl of 10% ammonium persulphate and 

1 O jj.1 of TEMED. Unless otherwise stated, protein samples were prepared in boiling mix 

(BM) buffer (see Materials) and heated at 100°C for 2 minutes prior to loading. Gels were 

typically electrophoresed at 150-200 volts until the dye front had reached the bottom of the 

resolving gel. If protein standards were required then 3 pi of Rainbow™ markers 

(Amersham Pharmacia Ltd) or 3 pi of purified capsids (prepared in house by J. Mitchell) 

were analysed next to the protein samples for comparison. Gels that were not going to be 

used for Western blotting were fixed and stained using Coomassie Brilliant Blue stain (see 

Materials) solution for 10-20 minutes before being transferred into a destain solution to 

remove excess back ground staining. Gels were photographed using a digital camera and 

images processed using PhotoShop 3.1 software (Adobe).
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2.2.9.2 Semi-dry Western blot analysis

2.2.9.2.1 Protein transfer

The transfer of proteins to a nitro-cellulose membrane was carried out by semi-dry 

transfer. SDS-PAGE was carried out (as described in section 2.2.9.1) and the stacking gel 

was separated from the resolving gel. 6 pieces of 3mm Whatman paper and the nitro

cellulose membrane (Hybond) were cut to the appropriate size and pre-soaked for 5-10 

minutes in transfer buffer. The nitro-cellulose membrane was placed on to a stack of 3 

pieces of 3mm Whatman paper and the resolving gel was placed on to the nitro-cellulose 

before an additional stack of 3 pieces of 3mm Whatman paper were placed on top of the 

resolving gel. The transfer of proteins on to the nitro-cellulose membrane was carried out 

using a 2117 Multiphor II Electrophoresis Unit (Pharmacia) typically at 40mA for 3-4 

hours.

2.2.9.2.2 Detection o f  proteins

When the transfer was complete, non-specific binding sites on the nitro-cellulose 

membrane were blocked by immersing the membrane in 100ml of 3% Marvel milk powder 

made up in PBSa/T and incubating at RT on a orbital shaker for a minimum of 1 hour. The 

blocked membrane was then washed 3x 15 minutes in approximately 50ml of PBSa/T. 

The membrane was subsequently probed at RT in approximately 10ml of PBSa/T, 

containing the appropriately diluted primary antibody, for a minimum of 1 hour on an 

orbital shaker. The membrane was then washed (as described above) before the addition 

of a secondary antibody, typically GAM-HRP or Protein A peroxidase (both used at 

1:1000 dilution), which was incubated for a minimum of 1 hour at RT on an orbital shaker. 

The membrane was then thoroughly washed, 3x 15 minutes and 4x 5 minutes in 

approximately 50ml of PBSa/T. Immuno-detection was carried out using ECL (Amersham 

Pharmacia Ltd) following the manufacturers instructions. Kodak XS-1 film was used for 

visualisation of immuno-complexes and was exposed for variable amounts of time.
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2.2.9.4 Stripping and re-probing nitro-cellulose membranes

Nitro-cellulose membranes were stripped by incubating the blot in 50ml of stripping buffer 

(see Materials) for 30-40 minutes at 55°C. Plots were then washed a minimum of 3x in 

30ml of PBSa/T before being blocked and re-probed (as described above).

2.2.9.3 TCA precipitation

50% (w/v) TCA was added to the protein solution in a 1.5ml reaction vial to give a final 

concentration of 5%. The mixture was incubated on ice for 10 minutes and the 

precipitated proteins were pelleted by centrifugation at 14,000 r.p.m. for 5 minutes at RT 

in a microfuge. The pellet was washed in 100% ethanol and pelleted (as above) and 

resuspended in the appropriate volume of BM buffer. Samples were either analysed 

directly by SDS-PAGE or frozen at -20°C until required.

2.2.9.4 Sucrose gradient sedimentation

5-20% sucrose gradients in buffer O were prepared in 13x51mm Ultra Clear tubes 

(Beckman) using a BIOCOMP gradient maker (Gradient Master# 106), following the 

manufacturers guidelines. The gradients were allowed to cool at 4°C for a minimum of 5 

hours before application of sample and ultracentrifugation. Typically 300pl of sample was 

mixed with 50pl of BSA (5mg/ml) and gently layered onto the top of the gradient. The 

gradient was then centrifuged at 40,000 r.p.m. for 16 hours at 4°C in a AH650 rotor. 

Following ultracentrifugation, the gradients were carefully removed from the rotor and 

placed into a clamp. A 1.5mm gauge needle (Microlance3) was used to pierce the 

centrifuge tube approximately 5mm from the base and successive 150pl fractions were 

collected into 1.5ml reaction vials (typically 35 fractions/gradient). Gradient protein 

profiles were analysed by SDS-PAGE, in conjunction with Coomassie Brilliant Blue 

staining or Western blot analysis, of every third fraction. Once the relative fractions 

containing the appropriate protein samples were identified, further SDS-PAGE analysis 

was carried out in conjunction with Coomassie Brilliant Blue staining or Western blot 

analysis. The relative intensity profile for each sample across the gradient was calculated 

by taking a digital picture of the appropriate SDS-PAGE gel or autoradiograph. This
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profile was analysed using Quantity ONE software (BIO-Rad, following the manufactures 

guidelines) to provide an intensity profile of the protein samples across the gradient. 

These profiles were then plotted as a percentage change in relative intensity for each 

sample against their appropriate fraction number using Origin 3.1 software.

2.2.9.5 Capsid assembly analysis

2.2.9.5.1 In vitro capsid assembly

To test the functionality of purified proteins, in vitro capsid assembly was carried out as 

described by Newcomb et al (1994). Briefly, frozen cell pellets (typical 30ml) of SF21 

cells infected singly at 5 p.f.u./cell with recombinant baculoviruses expressing one of the 

four essential capsid proteins; AcUL19 (VP5), AcUL26.5 (preVP22a), AcUL38 (VP19c), 

AcUL18 (VP23), were resuspended in 50pl of the appropriate buffer and freeze/thawed a 

minimum of 4x on dry ice. The lysates were clarified at 14,000 r.p.m. for 5 minutes at RT 

in a microfuge. The appropriate soluble lysate fractions were then mixed, typically lOpl 

of each clarified extract, and incubated o/n at 28°C to allow capsid formation to take place. 

Capsids were sedimented at 30,000 r.p.m. for 45 minutes at 4°C in a Beckman TLS-55 

rotor. Following sedimentation the supernatant was removed and the pellet resuspended in 

10-20pl of PBSa. Typically 5.0pl of the resuspended pellet was transferred to a parlodion 

coated copper grid and allowed to absorb for 2-3 minutes. Grids were then stained with 

1% phosphotungstic acid, analysed for the presence of capsids using a JEOL 100S electron 

microscope and photographed using Kodak 4489 film.

2.2.9.5.2 In vivo capsid assembly

35mm dishes of SF21 cells at 80% confluency were infected at 5 p.f.u./cell each with a 

panel of recombinant baculoviruses expressing individually one of the four essential capsid 

proteins; AcUL19 (VP5), AcUL26.5 (preVP22a), AcUL38 (VP 19c), AcUL18 (VP23). Or 

in the case of the dual expression baculoviruses Ac 1863 8 and 18386 which co-express 

VP19c/VP23His or VP19cHis/VP23 respectively, baculoviruses expressing AcUL18 

(VP23) and AcUL38 (VP 19c) were omitted. Infected cells were harvested at 48 hours 

post-infection in lml of PBScomplete and transferred to a BEEM capsule (TAAB
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Laboratories). The cells were pelleted by centrifugation at 1,000 r.p.m. for 5 minutes at 

RT in a vertical centrifuge (Beckman microfuge-12). The supernatant was carefully 

removed and the cell pellets fixed o/n at 4°C in 500pl of 2.5% glutaraldehyde (1:10 

dilution of 25% glutaraldehyde in PBScomplete). The pellets were subsequently washed 

3x in PBS complete before being overlayed for 1 hour at RT with lOOpl of osmium 

tetroxide. The fixed pellets were then wash 2x in PBScomplete before being dehydrated in 

consecutive 500pl washes of 30%, 50%, 70%, 90%, and 2x 100% ethanol. Each 

dehydration step was carried out for a minimum of 2 hours and care was taken not to 

dislodge the fixed cell pellet. After the final dehydration step the ethanol was removed and 

the fixed pellets were infiltrated with EponlOO resin and left o/n at RT. The resin was then 

removed by inverting the tube on to tissue paper and leaving it to drain for 30-60 minutes 

at RT. Fresh resin was overlayed and incubated o/n at RT and subsequently baked at 60°C 

for 2 days. The resin blocks were then cut into thin sections using a diamond knife on a 

ultra-microtome (Ultracut-E, Reichart-Jung) before being mounted on parlodion coated 

copper grids and stained for 1 hour with saturated uranyl acetate in 50% (v/v) ethanol. The 

grids were washed in dFLO and counter-stained with lead citrate for 1 minute before being 

gently rinsed in dFLO to remove excess stain. The sections were examined using a JEOL 

100S electron microscope and photographed on Kodak 4489 film.

2.2.10 Biophysical characterisation techniques

2.2.10.1 Fluorescence and ANS binding.

Proteins analysed by fluorescence were purified to homogeneity using Ni-NTA affinity 

chromatography (as described in section 2.2.8.4). Protein fluorescence was monitored at 

RT using a Perkin-Elmer LS-50B spectrofluorimeter in a lml semimicrocuvette with a 

path length of 1 cm. The excitation wavelength was 295nm and the emission spectra were 

recorded between 310-380nm. For ANS binding experiments, ANS was added to the 

protein samples to a final concentration of 20pM. The samples were then excited at 

370nm and the emission spectra were recorded between 440-540nm (unless otherwise 

stated). For both fluorescence and ANS spectra the appropriate buffer profiles were 

subtracted from the recorded emission spectra.
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2.2.10.2 Circular-dichroism (CD)

CD spectra were obtained on a Jasco-600 spectropolarimeter (Japan Spectroscopic Co., 

Tokyo, Japan). Near-UV CD spectra (320-260nm) were recorded using a cylindrical 

quartz cell with a path length of 0.5 cm. Far-UV CD spectra (260-190nm) were recorded 

using a cylindrical quartz cell with a path length of 0.5 cm. The content of secondary 

structure was estimated by using the CONTES! procedure. All experiments were carried 

out at 25°C with appropriate buffer only control spectra being subtracted from the recorded 

emission spectra.

2.2.10.3 Digital scanning calorimetry (DSC).

Calorimetric measurements were carried out using a MC-2 precision differential scanning 

micro-calorimeter (Microcalc). The rate of heating was l°C/min, and the excess pressure 

was kept at 8x106 Pa. Protein was analysed at a concentration of 0.5mg/ml in the 

appropriate buffer. The molar heat capacity of the protein was calculated by comparison 

with duplicate samples containing the identical buffer from which the protein had been 

omitted.

2.2.10.4 Size exclusion chromatography.

Chromatography was carried out using a 25ml (1 by 30 cm) superose-12 gel filtration 

column (Pharmacia) in the appropriate buffer that had been filter through a 0.2pm filter. 

All protein samples were clarified before analysis, either by filtration through a 0.2pm 

filter or by ultracentrifugation at 35,000 r.p.m. for 10 minutes at RT in a Beckman TLA

100.2 rotor. In all experiments the column was run at 0.5 ml/min. Protein size standards 

used to generate a standard curve were; p-amylase (MW, 200,000), alcohol dehydrogenase 

(MW, 150,000), bovine serum albumin (MW, 66,000), ovalbumin (MW, 45,000), and 

carbonic anhydrase (MW, 29,000) (SIGMA). Protein standards were analysed in the same 

buffer at the same concentration as the protein sample for comparative analysis. Standard 

curves were generated by plotting peak elution volumes against their given Logio MW 

(Sigma) using Origin 3.1 software. Linear regression analysis was performed upon the
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data utilising the spreadsheet software to generate a best-fit line, from which the native 

MW of purified sample proteins could be calculated.
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3.1 Reverse Yeast Two Hybrid System

Due to time constraints during my PhD the experimental work within this section was 

unable to be finished and is currently ongoing within the laboratory. However, as a record 

of work undertaken during the course of my PhD and for future reference the preliminary 

results are presented below and discussed in relation to published experimental findings.

3.1.1 Yeast two hybrid system

Fields and Song (1989) were the first group to describe the use of the yeast two hybrid 

system to analyse protein-protein interactions within yeast Saccharomyces cerevisiae. 

They took advantage of the yeast transcriptional activator GAL4 that is required for the 

efficient expression of enzymes involved in the galactose utilisation pathway (Johnston et 

al., 1987). The GAL4 activator can be separated into two functional domains: an N- 

terminal DNA binding (DB) domain, which specifically binds to UASg sequences; and a 

C-terminal activator domain (AD) containing acidic residues, which is required for 

efficient transcriptional activation (Ma and Ptashne, 1987). If these domains are expressed 

separately the activation domain cannot localise efficiently to the chromosome and activate 

gene expression. Fields and Song (1989) went onto describe the construction of plasmids 

expressing SNF1, a serine threonine protein kinase, fused to the DB domain of GAL4 and 

SNF4, a protein physically associated with SNF1, fused to the AD of GAL4. The 

interaction of these two proteins when expressed in Saccharomyces cerevisiae was 

sufficient to bring the AD and DB domains into close enough proximity to reconstitute 

GAL4 activity and induce the efficient expression of a lacZ reporter gene that was fused 

down stream of GALl. Fig. 3.1.1 summarises the theory of the yeast two hybrid system 

described by Field and Song (1989).

3.1.1.1 Yeast two hybrid analysis o f HSV-1 capsid protein interactions

Desai and Person (1996) utilised the yeast two-hybrid system in conjunction with deletion 

mutagenesis to investigate the protein-protein interactions amongst the HSV-1 capsid
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proteins. Interestingly, the experiments by Desai and Person did not detect all the HSV-1 

capsid protein interactions, specifically the interaction between VP 19c and VP5. The 

inability to detect such an interaction could be explained in a number of ways. It is now 

becoming clear that virus capsid assembly is a dynamic process involving a number of 

folding stages (Trus et al., 1996; Newcomb et al., 1996; Johnson, 1996). Therefore, in 

order to detect certain protein-protein interactions utilising the yeast two hybrid system 

there may be a requirement for additional capsid proteins, over that of the two 

recombinantly expressed hybrid capsid proteins. In other words, the ability to present 

specific residues required for a detectable interaction may require the presence of a third 

partner in order to ensure the correct conformation required for further protein interactions 

to develop. However, in this specific instance, the interaction between VP5/VP19c, the 

requirement for a third capsid protein partner would seem unlikely. Immunofluorescence 

experiments performed by Rixon et al., (1996) demonstrated that VP 19c can localise VP5 

in the nucleus of transfected cells. This would imply therefore that these two proteins 

alone can form a stable protein-protein interaction in the absence of other capsid proteins. 

The lack of a detectable interaction between VP5/VP19c may be a direct result of the 

fusion of AD and DB domains to the termini of these proteins. The fusion of such domains 

may interfere with their folding or prevent specific amino acids or epitopes from being 

presented in the correct conformational arrangement required for a detectable protein- 

protein interaction.

3.1.1.2 Deletion mapping o f protein-protein interactions within the yeast two hybrid 

system

i  It is worth noting that deletion mutagenesis, which is often applied in mapping protein-
i
! protein interactions, may affect protein stability. The deletion of an N- or C-terminal

|l domain for example may present hydrophobic residues to the solute which would

otherwise be buried within the interior of the protein or disrupt the protein backbone 

sufficiently to generate a mis-folded protein. Moreover, the sites of protein-protein 

interaction under analysis may be in broad non-overlapping domains and not condensed 

into a single specific domain. This would therefore not be detected using deletion 

mutagenesis and could lead to ambiguous and/or misleading results regarding sites of 

possible protein-protein interaction (Vidal and Legrain 1999; Desai and Person, 1996).
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3.1.2 Reverse yeast two hybrid system

Vidal et al., (1996a and 1996b) were the first group to describe a reverse genetic selection, 

yeast two-hybrid system, termed the reverse yeast two-hybrid system. This yeast two- 

hybrid system could select, through the use of a counter-selectable marker, discrete single 

amino acid mutations that disrupted a defined protein-protein interaction. Vidal et al., 

(1996b) analysed the interaction between the transcription factor E2F1 and its partner DPI. 

They utilised random PCR mutagenesis to generate libraries of mutant E2F1 alleles and 

reverse genetic selection within yeast cells to identify those alleles with mutated amino 

acids, which abolished the interaction between E2F1 and DPI. Using this system they 

could identify, not only site specific mutations which affected the interaction but also 

second site compensatory mutations within DPI which could restore the interaction. This 

ability to genetically select and map single mutations and compensatory mutations 

circumvented the typical problems associated with the yeast two hybrid system. For this 

reason, the reverse two-hybrid system was chosen to analyse the interaction between 

VP 19c and VP23 and is summarised schematically in fig. 3.1.2 and discussed below.

3.1.3 Reverse yeast two hybrid analysis of VP19c and VP23

3.1.3.1 Generation o f  mutant alleles

Libraries of mutant UL18 alleles were made by random PCR mutagenesis (as described in 

Methods) using generic forward and reverse primers (shown in fig. 3.1.10, panel B) 

located within the GAL4 AD and T Ad c i  (see fig. 3.1.3) sequences respectively (described 

by Vidal et al., 1996b). MaV103 cells that had already been transformed with pPc97UL38 

(MaV103pPc97UL38) were subsequently transformed with the mutant UL18 alleles and a 

linearised EcoRI/Notl digested and CIP treated pPc86 backbone vector. Due to the 

overlapping AD and T a d c i  sequences within the UL18 PCR products and the vector, 

recombination and gap repair can occur within yeast cells to regenerate a functional 

pPc86UL18Mut. plasmid. UL18 alleles that produced a mutated VP23AD fusion protein 

that abolished the interaction with VP19cDB were then selected for their resistance to the 

counter selectable marker.
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3.1.3.2 Negative selection o f mutant alleles

The reporter gene URA3 can act as both a negative and positive growth selection marker 

on medium containing 5-fluoroorotic acid (FOA) or on medium lacking uracil 

respectively. URA3 encodes orotidine-5’-phosphate decarboxylase, an enzyme required 

for the biosynthesis of uracil. Orotidine-5’-phosphate decarboxylase can also convert the 

non-toxic FOA into a toxic uridine analogue 5-fluorouracil. Therefore, any transcriptional 

activation of URA3 due to the interaction of hybrid AD and DB fusion proteins will result 

in the cell developing a FOA sensitive (FOA ) phenotype which will prevent growth.
r  n

Thus, a large population of FOA cells containing a few FOA resistant (FOA ) cells can be 

screened and those that are FOAR selected for further analysis.

3.1.3.3 Regulation ofURA3 and lacZ reporter genes within MaV103 cells

Basal levels of most GAL4 inducible promoters in S. cerevisiae are high enough to confer
o

an FOA phenotype. To counter this in MaV103 cells a URA3 reporter gene promoter was 

manufactured to contain a strong cis-acting upstream repression sequence (URS). The 

URS containing element within the URA3 reporter gene promoter is the yeast sporulation 

gene, SP013, promoter. SP013 is tightly repressed within yeast cells during mitotic 

growth and only activated under sporulation conditions. Therefore the fusion of the 

SP013 promoter to the wild type URA3 ORF confers a very tight Ura-, FOAR phenotype 

under normal growth conditions. To allow induction by GAL4 the SP013 promoter was 

modified to contain 10 GAL4-DNA binding sites (SPAL10::£/&43) to allow efficient 

GAL4 dependent activation. To ensure stability and reproducibility of results within 

MaV103 cells the SPAL10::(/&43 promoter construct was integrated into the yeast 

genome replacing the endogenous, disrupted Ty element at the ura3-52 locus on 

chromosome IV.
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3.1.3.4 Other reporter genes within MaV103 cells

The lacZ reported gene is fused to the full length GAL1 promoter to generate GALl::lacZ 

at an unknown locus within the yeast chromosome. MaV103 cells also contain an 

integrated single copy of the His3 reporter gene linked to its own promoter containing an 

integrated 125bp G A L u a s  sequence to generate GAL1::HIS3. HIS3 encodes imidazole 

glycerol phosphate dehydratase, an enzyme required in histidine biosynthesis. This 

enzyme can be inhibited in a dose dependent manner by 3-aminotriazole (3-AT). 

Therefore, the strength of GAL4 transcriptional activation can be titrated in a dose 

dependent manner by 3-AT, using the induction of transcriptional activation of 

GAL1::HIS3 as a positive selection for interacting fusion proteins. Reporter gene 

construction and regulation is discussed in detail in Vidal et al., (1996a); Kishore and Shah 

(1988); Fields and Song (1989); Durfee et al. (1993).

3.1.3.5 GAL4 fusion vectors used in the reverse yeast two hybrid system

pPc86 and pPc97 expression vectors were obtained from Marc Vidal and are illustrated 

schematically in fig. 3.1.3 (panels A and B respectively). pPc86 encodes the GAL4(AD) 

sequence and pPc97 encodes the GAL4(DB) sequence, which are expressed from the yeast 

constitutive promoter P a d c i -  The polylinker region is flanked by a terminator ( T a d c i )  

sequence from the yeast ADC1 gene. The pPc86 plasmid carries a Trpl selection marker 

and has a NLS sequence fused to the GAL4(AD) codons for efficient translocation of AD 

hybrid proteins to the nucleus. The pPc97 plasmid carries a Leu2 selection marker. Both 

pPc86 and pPc97 encode a bacterial origin of replication (ColEl ori), a yeast centromere 

(CEN6), a yeast origin of replication (ARSH4) and an ampicillin resistance gene {Amp). 

Unique restriction sites are marked in red. The construction of pPc86 and pPc97 is 

described in Chevray and Nathans (1992), and Vidal et al (1996b).

3.1.3.6 Cloning ofUL18 into pPc86

The UL18 ORF was subcloned from pETUL18 (described in section 3.3) as a EcoRI/Notl 

fragment. This removed the ATG start codon and the 6xHis tag from the ORF. The pPc86 

vector was digested with EcoRI/Notl and the overhanging ends dephosphorylated using
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CIP (as described in Methods). The UL18 fragment was ligated into the linear vector and 

electroporated into DH5a bacteria. Recombinant colonies were isolated and plasmid DNA 

obtained. Plasmids were analysed for the presence of the UL18 ORF by EcoRI/Notl 

digestion. The UL18 ORF cloning strategy is schematically represented in fig. 3.1.4.

3.1.3.7 Cloning o f VP 19c into pPc97

The UL38 ORF was sub cloned from pETUL38 as an EcoRI/Notl fragment, this removed 

the ATG and 6xHis tag from the ORF. This fragment was subcloned into the pPc86 vector 

to generate pPc86UL38 (as described above for the UL18 ORF cloning strategy). The 

UL38 ORF was then sub cloned out of pPc86UL38 as a Sall/Notl fragment and cloned in 

to Sall/Notl digested and CIP treated pPc97 vector. Recombinant plasmids were analysed 

for the presence of the UL38 ORF by a Sall/Notl digest. The UL38 ORF cloning strategy 

is schematically represented in fig. 3.1.5.

3.1.3.8 Fusion protein C-terminal truncations

One of the possible outcomes of random PCR mutagenesis is the generation of transcripts 

that encode a premature stop codon within the ORF and thus generate a truncated fusion 

protein. In order to screen out these truncated fusion proteins, and due to the lack of 

monoclonal antibodies against VP 19c, it was decided to clone a small epitope tag onto the 

C-terminus of VP 19c that could be screened for by Western blotting. The epitope chosen 

was pp65 from HCMV.

3.1.3.9 Cloning strategy for UL38 pp65 epitope tagged into pPc97

The UL38 ORF was sub cloned from the pETUL38 vector as a EcoRI/SphI fragment, 

removing the ATG and the 6xHis tag from the ORF. The SphI digest also removed the 

stop codon and the last 4bp of the UL38 ORF. The C-terminus was reconstructed by the 

ligation of an oligonucleotide (fig. 3.1.6, panel B) that encoded the pp65 epitope tag and 

contains an engineered Notl site down stream from the stop codon. The sense and anti

sense oligonucleotides were purified as described in Methods and heated in a dry block at 

100°C for 2 minutes in the presence of lx ligation buffer (Gibco-BRL). The
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oligonucleotides were annealed by allowing the dry block to cool naturally to RT. The 

EcoRI/Sphl UL38 ORF was ligated into EcoRI/Notl digested and CIP treated pPc86 vector 

in the presence of the annealed oligonucleotides. The ligation mix was electroporated into 

DH5a bacteria and single recombinant colonies were grown. The plasmid DNA was 

screened for the presence of the reconstituted UL38 ORF by EcoRI/Notl digestion. 

Plasmids containing the correct insert (pPc86UL38Epi) released a DNA fragment of 

~1500bp. The tagged UL38 ORF was sub cloned from pPc86UL38Epi as a Sall/Notl 

digest and ligated into Sall/Notl digested and CIP treated pPc97 vector. Recombinant 

plasmids were isolated and analysed for the presence of the UL38 ORF by a Sall/Notl 

digest. The cloning strategy is schematically represented in fig. 3.1.6, panel A.

3.1.6 Conclusions

3.1.6.1 Yeast two hybrid analysis

MaV103 cells were unable to grow on synthetic agar medium lacking either Leu or Trp 

(fig. 3.1.7). Growth of colonies was dependent on the successful transformation of either 

pPc86 or pPc97 yeast hybrid vectors when plated out on to synthetic medium lacking Trp 

or Leu respectively. Colony development of MaV103 cells only proceeded on synthetic 

agar medium lacking Leu/Trp/Ura when the MaV103 cells were co-transformed with 

plasmids expressing both the GAL4 AD and DB domains fused to VP23 and VP 19c 

respectively (figs. 3.1.8, panel A). MaV103 cells expressing plasmids encoding only 

VP 19c or VP23 but co-transformed with the appropriate complementing empty GAL4 

fusion plasmid did not induce the transcriptional activation of URA3 or p-galactosidase. 

This requirement for both capsid fusion proteins to be expressed indicates that the protein- 

protein interaction between VP 19c and VP23 within yeast cells is sufficient to co-localise 

AD and DB domains and restore GAL4 transcriptional activity. This result also 

demonstrates that the fusion of the AD and DB domains on to VP23 and VP 19c 

respectively does not appear to disrupt their interaction.

The interaction between VP 19c and VP23 was further validated colourmetrically by the p- 

galactosidase filter assay (fig. 3.1.8, panel B). Only those cells co-transformed with
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Fig. 3.1.7: Phenotypic characterisation of the MaV103 yeast cells

Single MaV103 colonies were isolated from a master YPD-agar plate 

and resuspended in 200pl of sterile dH20. A flamed loop was used to 

streak the individual resuspended colonies onto YPD agar or onto 

synthetic agar medium lacking Trp or Leu  (as indicated). Plates were 

incubated for 2 days at 30°C before being photographed.
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Fig. 3.1.8: Yeast two hybrid analysis and P-galactosidase filter 

assay.

MaV103 cells were co-transformed with the appropriate plasmids 

and plated out onto SD-agar plates deficient in Leu/Trp/Ura. Yeast 

colonies were allowed to grow for 10 days at 30°C before being 

photographed. MaV103 cells co-transformed with; (A) Panel 1: 

pPc86 and pPc97. Panel 2: pPc86 and pPc97UL38 (VP19cDB). 

Panel 3: pPc86UL18 (VP23AD) and pPC97. Panel 4: MaV103 

pPc86UL18 (VP23AD) and pPc97UL38 (VP19cDB). (B) p- 

galactosidase filter assay. Colonies containing the appropriate 

plasmids (2-3 days old) were transferred to a reinforced nitro

cellulose membrane and cultured as described in Methods. The 

cells were permeabilised in liquid nitrogen and assayed for the 

presence of p-galactosidase as described in Methods. MaV103 

cells were co-transformed with; Lane 1: pPc86 and pPc97. Lane 2: 

pPc86 and pPc97UL38 (VP19cDB). Lane 3: pPc86UL18 

(VP23AD) and pPC97. Lane 4: pPc86UL18 (VP23AD) and 

pPc97UL38 (VP19cDB).
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plasmids expressing both VP23AD (pPc86UL18) and VP19cDB (pPc97UL38) were able 

to induce the transcriptional activation of P-galactosidase. As with URA3, the 

transcriptional activation of p-galactosidase requires the GAL4 AD and DB domains to be 

fused to VP23 and VP 19c respectively. Cells expressing plasmids where one of the hybrid 

fusion proteins was absent were unable to reconstitute GAL4 binding and consequently 

failed to induce the transcriptional activation of lacZ. These results confirm the published 

findings of Desai and Person (1996) and demonstrate that VP23 and VP 19c capsid proteins 

interact efficiently within yeast cells. The N-terminal GAL4 fusion domains do not appear 

to affect the ability of VP23 and VP 19c to interact and bring the GAL4 domains together 

to reconstitute GAL4 transcriptional activity.

3.1.6.2 Expression ofUL38 and UL38Epi in the yeast two hybrid system

It is interesting to note that the UL38 ORF cloned from the bacterial plasmid pETUL38 

was able to restore GAL4 activity (fig. 3.1.9, panel 4), since pETUL38 expression of 

VP 19c within bacteria is very poor and only detectable by Western blot analysis. The fact 

that the UL38 ORF restored GAL4 activity within yeast cells with the appropriate hybrid 

partner suggests that the poor production of VP 19c in bacteria is not due to mutations 

within the UL38 ORF. However, the construction of a VP19cDB hybrid fusion protein 

containing a C-terminal pp65 epitope tag abolished the ability of VP 19c to interact with 

VP23AD. This is shown by the inability of MaV103 cells expressing pPc86UL18 and 

pPc97UL38Epi to grow on synthetic agar medium lacking LeulTrplUra (fig. 3.1.9), in 

contrast to the positive, pPc86UL18/pPc97UL38 control. This suggests that the C- 

terminal domain of VP 19c is essential for the interaction with VP23 and that the insertion 

of the pp65 epitope tag blocked or changed the conformational arrangement of the C- 

terminal residues required for the interaction. Indeed, there is some evidence for this from 

the literature. Desai and Person (1996) could not detect any interaction between VP 19c 

and VP23 utilising the yeast two-hybrid system when the C-terminal third of either protein 

was deleted. Spencer et al., (1998) also demonstrated by immune precipitation that 

deletion of just 15 amino acids from the C-terminus of VP 19c could abolish the interaction 

with VP23. The C-terminal deletion mutant of VP 19c was also unable to support in vitro 

capsid assembly from infected cell lysates demonstrating the essential requirement for 

these residues.
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Fig. 3.1.9: Analysis of  pPc97UL38Epi (VP19cDB.Epi).

MaV103 cells were co-transformed with the appropriate plasmids and 

plated out onto SD-agar plates deficient in Leu/Trp/U ra. Yeast colonies 

were allowed to grow for 10 days at 30°C before being photographed. 

MaV103 cells co-transformed with; Panel 1: pPc86 and pPc97. Panel 2: 

pPc86 and pPc97UL38 (VP19cDB). Panel 3: pPc86UL18 (VP23DB) and 

pPc97UL38Epi (VP19cDB.Epi). Panel 4: pPc86UL18 (VP23AD) and 

pPc97UL38 (VP19cDB).
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3.1.6.3 Reverse yeast two hybrid analysis

Co-transformation of the UL18 PCR products into MaV103 cells together with linear 

pPc86 vector DNA allowed homologous recombination and gap repair that regenerated 

replicating vectors that conferred a positive Trp selection phenotype (fig. 3.1.10, panel A). 

However, the only requirement for growth in this experiment is the regeneration of a 

replicating pPc86 plasmid with or without an insert. If the linearised vector was not 

dephosphorylated using CIP then the number of false positives increased (data not shown). 

Gap repair of linearised pPc86 was only detected when co-transformed with a UL18 PCR 

product (fig. 3.1.10, panel A). No gap repair was detected between the linearised pPc86 

plasmid and endogenous pPc97UL38 within the MaV103pPc97UL38 cells (MaV103 cells 

transformed with pPc97UL38), fig. 3.1.11 (panel 1). This is important since pPc86 and 

pPc97 are closely related plasmids with much sequence homology.

3.1.6.4 FOA selection

As previously described in section 3.1.3.2, FOA can act as counter selectable marker for 

transcriptional activation of URA3. To illustrate this fig. 3.1.11 shows the growth 

phenotypes on medium lacking Leu & Trp and containing 0.2% FOA of MaV103 cells 

transformed with appropriate plasmids. In the presence of FOA the growth of MaV103 

cells is dependent upon the disruption of the interaction between the GAL4 fusion proteins. 

This FOAr was demonstrated when the growth of MaV103pPc97UL38 cells transformed 

with pPc86 vector (fig. 3.1.11, panel 2) was compared to that of MaV103pPc97UL38 cells 

transformed with pPc86UL18 (fig. 3.1.11, panel 3). These experimental controls 

demonstrate that 0.2% FOA in the selection medium is sufficient to prevent the growth of
o

colonies displaying an FOA phenotype.

FOAr  colonies could be selected when mutated UL18 alleles produced by random PCR 

mutagenesis were co-transformed together with linearised pPc86 into MaV103pPc97UL38 

cells. MaV103 cells require both GAL4 hybrid vectors to be present in a circularised form 

in order to confer growth on media lacking Leu and Trp (fig. 3.1.11, panel 1 and 2). If one 

of the GAL4 hybrid vectors is present in a linear form then the cells cannot sustain growth 

due to the inability of the linear plasmid to replicate and confer selective growth (fig.
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Fig. 3.1.10: Recombination and gap repair of mutant UL18 PCR 

alleles into linearised pPc86 vector

MaV103 cells were co-transformed with the appropriate plasmids 

and PCR products and plated out onto SD-agar deficient in Trp. 

Yeast colonies were allowed to grow for 2 days at 30°C before 

being photographed (A). MaV103 cells transformed with; Panel 1: 

pPc86. Panel 2: pPc86UL18 (VP23AD). Panel 3: linear 

(EcoRI/Notl digested/CIP treated) pPc86. Panel 4: linear 

(EcoRI/Notl digested/CIP treated) pPc86 and Mut.UL18PCR 

product. (B) Generic forward (AD) and reverse (Term) PCR 

primers used in the generation of mutant UL18 alleles by random 

PCR mutagenesis (as described in Methods).
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3.1.11, panel 1). Colony growth is therefore dependent on the reconstitution of circular 

GAL4 hybrid vectors by homologous recombination and gap repair. FOA selection 

ensures that only those colonies with a reconstituted pPc86 vector expressing a VP23AD 

fusion protein that cannot interact with VP19cDB, display a FOAR phenotype. This non

interaction has a selective advantage on synthetic media containing FOA due to the lack of 

transcriptional activation of URA3 which prevents the formation of the toxic metabolite of 

FOA, 5-fluorouracil. The presence of uracil in the selective medium, ensures that colonies 

which contain the non-interacting proteins that confer the FOAR phenotype, are able to 

grow and form colonies. These colonies can subsequently be picked for further analysis.

It is worth noting that the number of colonies varied on plates where the pPc86 vector has 

been rescued by gap repair with different pools of mutated UL18 alleles (figs. 3.1.11, 

panels 4 and 5). This is unlikely to be due to variation in the final DNA concentration 

since the PCR reactions were analysed by agarose gel electrophoresis (data not shown) and 

the concentrations adjusted to keep an approximately uniform concentration of UL18 

alleles. The variation in the number of colonies observed is likely to reflect the frequency 

of reading errors induced by MnC^ during PCR mutagenesis. Similarly, more then one 

Taq MnCb induced error per UL18 ORF would also result in the amplification of multi

mutant alleles that had a greater chance of affecting protein-protein interactions between 

hybrid domain partners.

3.1.6.5 Analysis o f negatively selected mutant alleles.

To ensure that colony development was due to non-interacting GAL4 fusion hybrid 

proteins and not due to a failure in FOA to select FOAR colonies. Colonies were replica 

picked with the appropriate controls onto fresh synthetic agar medium lacking Leu!Trp and 

containing 0.2% FOA (fig. 3.1.12). The positive control for FOAR, MaV103 cells 

containing pPc86 + pPc97UL38 (fig.3.1.12, panel 3) grew successfully in these conditions. 

Conversely, the negative controls for FOAR, MaV103 cells containing 

pPc86UL 18+pPc97UL3 8 (fig. 3.1.12, panel 2) did not display any growth. It is clear from 

fig. 3.1.12 (panel 1) that most of the colonies containing putative mutant UL18 alleles had 

retained their FOAR phenotype in the second round of selection. 4 colonies that readily 

grew on the second round selection plate were chosen randomly and analysed further. The
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Fig. 3.1.11: FOA negatives selection of mutants UL18 alleles

MaV103pPc97UL38 cells were transformed with the appropriate 

plasmids and mutated UL18 PCR alleles (as describe in Methods) and 

plated out onto SD-agar medium lacking Leu/Trp  containing 0.2% 

FOA. Yeast colonies were allowed to grow for 4 days at 30°C before 

being photographed. MaV103pPc97UL38 cells were transformed with; 

Panel 1: linear (EcoRI/Notl digested/CIP treated) pPc86. Panel 2: 

pPc86. Panel 3: pPc86UL18 (VP23AD). Panel 4: linear pPc86 and 

mutated UL18 alleles (PCR1). Panel 5: linear pPc86 and mutated UL18 

alleles (PCR2).
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Fig. 3.1.12: Second round FOA selection o f  mutant U L 18 alleles.

A mixture o f  colonies from the first round of  negative selection 

were replica picked (as described in methods) with the appropriate 

controls onto a fresh SD-agar plate lacking Leu/Trp  containing 

0.2% FOA. Plates were incubated for 2 days at 30°C before 

being photographed. (1) Second round negative selection of 

picked colonies. (2) Negative control for non-interaction. Two 

individual replica picked colonies of MaV103pPc97UL38 cells 

transformed with pPc86UL18. (3) Positive control for non

interaction. Two individual replica picked colonies of 

MaV103pPc97UL38 cells transformed with pPc86.
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possible outcomes of random PCR mutagenesis upon UL18 alleles and the resulting FOA 

phenotypes are summarised schematically in fig. 3.1.2. The three types of mutant allele 

that could be generated are: (I) Alleles that are mutated in regions that do not affect 

protein conformation or affect the sites of interaction with VP 19c. These alleles will 

exhibit the same FOA phenotype as the WT fusion protein and will not grow in the 

presence of FOA. (II) Alleles which contain mutations that generate stop codons within 

the ORF, leading to the production of truncated fusion proteins. If the truncation is severe 

enough to disrupt the interaction, these mutations will prevent GAL4 transcriptional 

activation of URA3 and therefore confer a FOAR phenotype. (Ill) Alleles that have random 

mis-sense mutations within the ORF and generate full length proteins that cannot interact 

with their hybrid fusion partner. The disruption of interaction could be due, either to direct 

effects on specific sites involved in protein-protein interaction or to mutations elsewhere in 

the protein altering its conformation and disrupting the sites required for interaction. 

These mutations, like those generated in (II), would prevent GAL4 transcriptional 

activation of URA3 and therefore colonies containing such alleles would have a FOAR 

phenotype and consequently grow in the presence of FOA.

In order to characterise which type of mutation (II or III) was responsible for the FOAR 

phenotype of the selected colonies, it was decided to screen for any truncated mutant 

proteins by Western blotting, probing the nitro-cellulose membrane with a monoclonal 

antibody that specifically recognised VP23. Protein cell extracts were generated from 

cultures grown form a single colony arising from the second round of FOA selection. 

Extracts were then analysed by SDS-PAGE and Western blotting. Repeated attempts were 

made to generate good yeast cell extracts using a variety of methods; these included Y- 

PER (Pierce) extraction buffer, urea/SDS extraction and TCA protein extraction protocols. 

The most successful of which was the TCA protein extraction method (described in 

Methods). The typical recovery of proteins extracted from yeast cells is shown Fig. 3.1.13 

(panel A). The poor recovery of proteins from yeast cells is probably due to the thickness 

of the yeast cell wall and the inefficient cell lysis due to milling with acid washed glass 

beads. Repeated attempts were made to identify the VP23AD fusion protein by Western 

blotting, all of which failed (fig. 3.1.13, panel B). Therefore, in order to determine 

whether or not gap repair had worked plasmid DNA was purified from yeast cultures 

grown from single colonies derived from the second round FOA selection and digested
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Fig. 3.1.13: SDS-PAGE and Western blot analysis of yeast cell

protein extracts.

Proteins were extracted from yeast cells expressing the appropriate 

plasmids using the TCA extraction protocol as described in Methods. 

(A) 20pl of the appropriate extract and 3 pi of Rainbow markers (lane 

1) were analysed by SDS-PAGE and stained with Coomassie Brilliant 

Blue. MaV103pPc97UL38 cells transformed with; Lane 2: pPc86. 

Lane 3: pPc86UL18. Lane 4: A01 FOA resistant colony. Lane 5: A02 

FOA resistant colony. Lane 6: A03 FOA resistant colony. Lane 7: 

A04 FOA resistant colony. (B) 20pl of the appropriate extract and 

3 pi of B capsids (lane 1) were analysed by SDS-PAGE and 

transferred to a nitro-cellulose membrane as described in Methods. 

The nitro-cellulose membrane was probed with a monoclonal 

antibody (CB003), which specifically recognises VP23. Lane 2: 

MaV103 pPc86UL18 cell extract. Lane 3: MaV103 cell extract.
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Fig. 3.1.14: 1% TBE gel o f  plasmid DNA purified from yeast.

Single yeast colonies from the second round of FOA selection were 

used to seed 5ml of YPD medium and cultured o/n at 30°C in an orbital 

shaker. Plasmid DNA was isolated from each culture, as described in 

Methods and analysed for the presence o f  a -1000 bp UL18 fragment 

by an EcoRI/Notl restriction digest. 5pl o f  each analytical digest was 

electrophoresed on a 1% agarose gel in lxTBE. Lane 1: EcoRI/Notl 

digested pPc86UL18 stock DNA. Lane 2: 1 kb X BstEII marker. 

Lanes 3-6: EcoRI/Notl digested plasmid DNA from A01 - A04 FOA 

resistant colonies respectively.
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with EcoRI/Notl to release the UL18 ORF from the pPc86 expression vector. The results 

of this digest are shown in fig. 3.1.14. A control digestion was set up (fig. 3.1.14, lane 1) 

using plasmid stock DNA of pPc86UL18 to identify the appropriate UL18 ORF DNA 

fragment (indicated by an arrow in fig. 3.1.14). 3 out of the 4 FOA resistant colonies gave 

DNA fragments of the appropriate size, approximately lkb in length (A 1-3 FOAR 

colonies). This indicates that the gap repair and homologous recombination into the linear 

pPc86 vector was successful and that the FOA resistance was probably due to the VP23AD 

hybrid fusion protein containing mutation(s) which prevented interaction with VP19cDB. 

Unfortunately due to time constraints at the end of my PhD experiments to identify 

possible mutants could not be performed.

3.1.6.6 Future work

Due to the difficulty in obtaining good protein extracts from yeast cells, and due to the 

relative low level of expression of the VP23AD fusion protein, the characterisation of 

possible mutants for truncations and/or mis-sense mutations could not be carried out 

directly on yeast extracts. Other methods for generating yeast cell protein extracts could 

be tested in order to characterise possible VP23AD mutants by Western blotting. For 

example, enzymatic digestion of the yeast cell walls utilising lyticase. An alternative route 

of analysis would be to subclone possible mutant UL18 ORFs back into the bacterial 

expression vector pET28MOD. Plasmid DNA isolated from yeast cells could be analysed 

for the presence of the UL18 ORF by Southern blot analysis. This would provide direct 

evidence to establish the success of gap repair within yeast cells and provide a further 

means of testing FOAR colonies for the incorporation of UL18 alleles before subcloning.

Following cloning into pET28MOD, the mutated UL18 inserts could be analysed for 

expression of full length VP23, either by Western blotting, or by direct visualisation of the 

protein by SDS-PAGE and Coomassie Brilliant Blue staining. Any mutant UL18 alleles 

identified, which were shown to produce full length VP23 AD, would need to be reanalysed 

for their ability to disrupt the VP19cDB interaction by re-introducing the isolated plasmid 

DNA back into the reverse yeast two hybrid system. The degree of disruption between the 

interacting hybrid partners could then be quantified using a P-galactosidase liquid culture 

assay and comparing the level of p-galactosidase activity to that of the WT hybrid
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VP23DB and VP19cAD level. Mutants that demonstrate a significant decrease in the 

levels of p-galactosidase transcriptional activation could then be sequenced in order to 

identify the specific amino acid residues that are mutated. This assay could have been 

used on those colonies selected in the second round of FOA negative selection had time 

permitted. Mutations identified within the UL18 ORF that disrupt the interaction between 

VP23 and VP 19c should be characterised further, either in vivo or in vitro, where the 

capsid proteins are expressed without the GAL4 AD and DB fusion domains, for example 

in in vitro capsid assembly experiments. Such experiments would demonstrate whether or 

not those mutations detected within the reverse two hybrid system directly affect protein- 

protein interactions between VP 19c and VP23 or whether they their effects are specific to 

the reverse two hybrid system and abolish GAL4 transcriptional activation by some other 

mechanism.
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3.2 Characterisation of monoclonal antibodies

One of the consistent problems throughout the course of my PhD was the lack of 

monoclonal antibodies that could be used to detect the triplex proteins VP 19c and VP23. 

Although the majority of analyses performed upon these proteins involved the recombinant 

expression of proteins with N-terminal 6x His epitope tags, to which monoclonal 

antibodies are commercially available (Qiagen), in some cases, such as 

immunofluorescence, antibodies that could detect untagged proteins were required.

Following the successful purification of 6xHis tagged triplexes in buffer O (see section

3.5.4 for details) from Ac 18638 infected SF cells, it was decided to generate a panel of 

monoclonal antibodies that could specifically recognise amino acid sequences within VP23 

and/or VP 19c.

3.2.1 Immunisation protocol

All immunisation, test bleeds, and fusion procedures were carried out by Susan Graham. 

BALB/c mice were immunised following the protocol described in Methods (section 2.2.3) 

and summarised in table 2.2.1. Immunisation was initially carried out using purified 

triplexes from Ac 18638 (VP23His/VP19c) infected SF cells (following the purification 

strategy described in section 3.5.4). However, following poor detection of anti VP 19c 

activity in test bleeds, it was decided to boost the remaining BALB/c mice with purified 

VP19cHis. Due to the difficulty associated at the time with purifying recombinantly 

expressed VP19cHis from SF cells infected with Ac381 (discussed in section 3.4.3), it was 

decided to purify VP19cHis by denaturing purified triplexes from Ac 183 86 

(VP19cHis/VP23) infected SF cells. As the N-terminal 6xHis epitope tag was located on 

VP 19c the majority of the VP23 was removed by denaturation in 3M urea. The urea was 

removed by washing the Ni-NTA agarose in buffer O. The bound protein, predominantly
<2 i

denatured VP19cHis, was eluted from the agarose by stripping the Ni from the NTA 

agarose resin in EDTA (see section 3.4.2 and fig. 3.4.3 for further details). The mice were 

boosted with denatured VP19cHis until test bleeds showed positive detection of VP19cHis
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Results: 3.2

(approximately 60 days post VP19cHis immunisation) as determined by quantitative 

ELSIA analysis. Spleen cells from selected mice were used to generate hybridoma cell 

lines and the supernatant medium from each cell line was tested for the presence of 

antibodies against VP 19c and VP23.

3.2.2 Antibody screening by Western blot analysis

3.2.2.1 Monoclonal antibodies generatedfrom BALB/c mouse #4.

Supernatants harvested from hybridoma cell lines generated from spleen cells of a BALB/c 

mouse (#4), immunised with purified triplexes only, were tested by Western blotting (as 

described in Methods) for the presence of monoclonal antibodies which recognised 

purified triplex proteins. Table 3.2.1 summarises the information generated from testing 

supernatants from 27 hybridoma cell lines. None of these supernatants gave a strong 

signal against VP 19c, which confirms the findings of ELISA analysis showing poor anti

sera response against VP 19c. 14 supernatants gave a strong signal against VP23His and 

these were tested by Western blotting against purified B-capsids in order to determine 

whether their specificity was directed towards the 6xHis epitope tag located on the N- 

terminus of VP23His. Fig. 3.2.1 (panel A) shows the results of the Western blot analysis 

against purified B-capsids. 7 out of the 12 supernatants tested gave a strong signal, 4 gave 

a good or detectable signal, and 1 (#CB092) failed to detect VP23 suggesting that it might 

be directed towards the N-terminal 6xHis epitope tag of VP23His. None of the antibodies 

tested against purified B-capsids recognised VP19c. Fig. 3.2.1 (panel B) shows the 

immunofluorescence analysis using CB040 to detect the cellular distribution of VP23His 

in BHK-21 C13 cells transfected with pE18H (a pCMVio based plasmid expressing 

VP23His, see section 3.3.9 for further details). In those cells expressing pE18H, VP23His 

could readily be detected throughout the cell as previously described by Nicholson et al., 

1994 and Rixon et al., 1996.



MAb. Western blot (18638) Western blot (B-capsids) IF
VP23 VP19c VP23 VP19c

CB003 +++ - ++ - n/t
CB023 +++ - ++ - n/t
CB040 +++ + +++ - +++
CB050 +++ - +++ - n/t
CB054 +++ + +++ - n/t
CB076 + - n/t n/t n/t
CB078 - - n/t n/t n/t
CB084 - - n/t n/t n/t
CB092 +++ - - - n/t
CB093 - - n/t n/t n/t
CB095 - - n/t n/t n/t
CB122 + - n/t n/t n/t
CB128 +++ - +++ - n/t
CB136 - - n/t n/t n/t
CB144 + - n/t n/t n/t
CB180 +++ - ++ - n/t
CB186 ++ - + - n/t
CB187 - - n/t n/t n/t
CB188 + - n/t n/t n/t
CB197 - - n/t n/t n/t
CB208 +++ - +H—h - n/t
CB211 +++ - +++ - n/t
CB293 +++ - +++ - n/t
CB318 - - n/t n/t n/t
CB341 +++ - n/t n/t n/t
CB351 +++ + n/t n/t n/t
CB495 + + n/t n/t n/t

Table 3.2.1: Summary of the monoclonal antibodies generated from 

BALB/c mouse #4 (120 days post-immunisation). The antibodies were 

rated for strength of signal by Western blotting against purified triplexes 

from SF cells infected with Ac 18638 (VP23His/VP19c) or purified B- 

capsids, and by immunofluorescence against cells transfected with pE18H 

(IF, as described in fig. 3.2.1); +++ (very good), ++ (good), + (weak), - 

(not detectable), and n/t (not tested).
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Fig. 3.2.1: Characterisation of monoclonal antibodies produced

from BALB/c mouse #4

Western blot analysis was performed (as described in Methods) 

against purified B-capsids. Following protein transfer and 

membrane blocking, the nitro-cellulose membrane was cut into 

strips using a sterile scalpel. The strips were individually 

probed with hybridoma cell supernatants in order to test for the 

presence of monoclonal antibodies that specifically recognised 

VP23 (A). The arrow indicates the predicted position of VP23 

as judged from transferred Rainbow markers. (B) BHK-21 C13 

cells were transfected with pE18H (VP23His), as described in 

Methods. The cellular distribution of VP23His was analysed by 

immunofluorescence using the hybridoma cell supernatant 

CB040 and a secondary goat anti-mouse IgG antibody 

conjugated to FITC (Sigma).



Results: 3.2

3.2.2.2 Monoclonal antibodies generatedfrom BALB/c mice #1-3

Supernatants harvested from hybridoma cell lines generated from spleen cells of the 

remaining three BALB/c mice (#1-3), boosted with denatured VP19cHis (designated by 

CB2), were analysed by Western blotting (as described in Methods). Fig. 3.2.2 (panel A) 

shows Western blot analysis of hybridoma supernatants tested for the presence of 

monoclonal antibodies that recognised purified VP19cHis from Ac381 infected SF cells. 6 

out of the 8 supernatants tested gave a strong signal and 2 (#CB2034 and #CB2184) failed 

to detect the presence of purified VP19cHis. In order to determine whether or not their 

antibody specificity was directed towards the 6xHis epitope tag located on the N-terminus 

of VP19cHis, immunofluorescence was performed on BHK-21 C13 cells transfected with 

pE38 (a pCMVio based plasmid expressing VP 19c, see section 3.3.9 for further details). 

Fig. 3.2.2 (panel B) shows the cellular distribution of VP19c as detected by CB2017, 

CB2032, CB2040, CB2068, and CB2231, compared to that of a control medium (sterile 

hybridoma growth medium) and CB2184 (negative controls). In those cells expressing 

pE38, VP 19c gave a characteristic nuclear staining pattern as previously described by 

Nicholson et al., 1994 and Rixon et al., 1996, which could readily be detected within the 

nucleus using CB2017, CB2032, CB2040, CB2068, and CB2231. Control media failed to 

detect the presence of VP 19c in pE38 transfected cells. As VP 19c does not contain a His 

tag this suggests that these antibodies specifically recognise epitopes within VP 19c and are 

not directed towards the N-terminal 6xHis tag of VP19cHis which was used during the 

immunisation process. CB2184, which failed to detect VP19cHis in Western blot analysis, 

gave an unusual staining pattern in BHK cells, demonstrating a predominantly 

cytoplasmic, rather than the typical nuclear, fluorescence. These results taken together 

would suggest that CB2184 has no specific activity towards VP 19c. The characteristics of 

the monoclonal antibodies generated from BALB/c mice #1-3 are summarised in table 

3.2.2.
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Fig. 3.2.2: Characterisation of monoclonal antibodies produced

from BALB/c mice #1-3

Western blot analysis was performed (as described in Methods) 

against VP19cHis purified from SF cells infected with Ac381 (as 

described in section 3.4.3). Following protein transfer and 

membrane blocking, the nitro-cellulose membrane was cut into 

strips using a sterile scalpel. The strips were individually probed 

with Hybridoma cell supernatants in order to test for the presence 

of monoclonal antibodies that specifically recognised VP19His 

(A). Control media (sterile hybridoma growth medium) and a 

commercially available monoclonal 6xHis antibody (Qiagen) 

were also analysed for comparative purposes. The arrow 

indicates the position of VP19cHis as detected by the 6xHis 

monoclonal antibody. (B) BHK-21 C l3 cells were transfected 

with pE38 (VP 19c), as described in Methods. The cellular 

distribution of VP 19c was analysed by immunofluorescence 

using the hybridoma cell supernatants of CB2017, CB2032, 

CB2040, CB2068, and CB2231 and a secondary goat anti-mouse 

IgG antibody conjugated to FITC (Sigma). Control media and 

the hybridoma cell supernatant of CB184 were used as negative 

controls. CB2064 hybridoma cell line was not established prior 

to IF analysis and therefore remains untested.



MAb. Western blot 

(381)

IF (pE38)

CB2017 +++ +++

CB2032 +++ +++

CB2034 - n/t

CB2040 +++ +++

CB2064 +++ n/t
CB2068 +++ +++

CB2184 - -

CB2231 +++ +++

Table 3.2.2: Summary of the monoclonal antibodies 

generated from BALB/c mice #l-#3 (225 days post

immunisation) and mouse #2 (246 days post

immunisation). The antibodies were rated for their 

respective strengths of signal by Western blotting and 

immunofluorescence; +++ (very good), ++ (good), + 

(weak), - (not detectable), and n/t (not tested).



Results: 3.2

3.2.3 Conclusions and future work

Following the solubilisation of triplex proteins a number of monoclonal antibodies were 

raised which specifically recognised amino acid sequence epitopes within either VP 19c or 

VP23. Some of these antibodies have been used in further immunofluorescence analyses 

described within this thesis (sections 3.3.9 and 3.3.10). However, all the characterisation 

analyses described above and elsewhere in this thesis were performed using neat 

hybridoma supernatants. Work is currently on going within our laboratory to concentrate 

and purify these antibodies from large-scale cultures of their hybridoma cell lines through 

the use of affinity chromatography. Once purified these antibodies could be used to further 

characterise the interactions between VP23 and VP 19c. This could be accomplished by 

antibody blocking studies, for example either using Ni-NTA agarose pull down analysis 

(described in section 3.4.4) or through ELISA blocking studies, and epitope mapping those 

antibodies which specifically prevent triplex formation.
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Results: 3.3

3.3 Characterisation of the triplex protein VP23

3.3.1 Construction and expression of pETUL18

3.3.1.1 Cloning o f the UL18 ORF into pET28MOD

The cloning of the UL18 ORF into a modified version of the bacterial expression vector 

pET28a (Novagen Ltd.) was carried out by David McNab and is described in Kirktadze et 

al. (1998). The cloning of the UL18 ORF into pET28MOD fuses 6 histidines (6x His) and 

a thrombin cleavage site onto the 5' end of the UL18 ORF (the pET28MOD expression 

vector is schematically illustrated in fig. 3.3.1). The T7 promoter controls gene regulation 

of the UL18 ORF. Expression of the pETUL18 vector within bacteria therefore results in 

the production of VP23 with an N-terminal 6xHis epitope tag (VP23His). The pETUL18 

expression vector is schematically illustrated in fig. 3.3.2.

3.3.1.2 Bacterial expression ofVP23His in BL21 DE3 cells.

BL21 DE3 bacteria were electroporated in the presence of approximately lpg of pETUL18 

or pET28MOD vector DNA and kanamycin resistant colonies were isolated. Single 

recombinant colonies were grown and induced (as described in Methods) and analysed for 

the expression of VP23His by SDS-PAGE analysis and Western blotting. Fig. 3.3.3 (panel

A) shows the presence of a novel band in the induced pETUL18 sample when compared to 

that of the pET28MOD expression vector control. This novel band migrates with a 

slightly higher MW than that of VP23 from purified B-capsids, reflecting the additional 

amino acid sequences located at its N-terminus of VP23. This band was confirmed to be 

VP23 by Western blot analysis using the polyclonal VP23 antibody 187 (fig. 3.3.3, panel

B).
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Fig. 3.3.1: Construction of the pET28MOD expression vector.

An oligonucleotide (A) was inserted into the Ndel and EcoRI sites of the 

bacterial expression vector pET28a (Novagen Ltd.) to generate 

pET28MOD. The insertion of this oligonucleotide resulted in the 

destruction of the existing EcoRI site and the incorporation of novel 

EcoRI and Spel restriction sites (highlighted in red). (B) Schematic 

representation of the bacterial expression vector pET28MOD showing the 

6xHis epitope tag, thrombin cleavage site, and some of the unique 

restriction sites.
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Fig. 3.3.3: SDS-PAGE and Western blot analysis of VP23His expression 

in BL21 DE3 bacteria.

(A) BL21 DE3 bacterial cultures containing either pET28MOD vector 

(lane 3) or pETULl8 (lane 2) were grown and induced (as described in 

Methods). 1.5 ml of each culture was centrifuged at 14,000 r.p.m. for 30 

seconds. The supernatant was removed and the bacterial pellet was 

resuspended in 200pl of BM and heated for 2 minutes at 100°C in a dry 

block. 15pl of each sample was analysed by SDS-PAGE and stained with 

Coomassie Brilliant Blue. Purified B-capsids were run for comparison 

(lane 1). Arrows indicate the relative positions of the capsid proteins as 

determined by the B-capsid profile. * indicates the induced bacterial 

expression of VP23His. (B) Western blot analysis was performed on 

extracts from BL21 DE3 bacteria containing pETULl8 (lane 1), 

pET28MOD (lane 2), or on B-capsids (lane 3). The nitro-cellulose 

membrane was probed with a 1:1000 dilution of a polyclonal VP23 

antibody (187). The arrow indicates the position of VP23.



Results: 3.3

3.3.2 Purification of VP23His

3.3.2.1 Nickle-nitrilotriacetic acid (Ni-NTA) agarose affinity chromatography.

NTA is a tetradentate metal chelating adsorbent and occupies four out of the six ligand
2"hbinding sites in a co-ordinated sphere around the Ni ion, see fig 3.3.4 (panel A). This

2+
leaves two free Ni sites to interact with the histidine residues from the 6x His epitope tag 

located on the terminus of a recombinantly expressed protein molecule (fig. 3.3.4, panel

B). The Ni-NTA is coupled to Sepharose® CL-6B, which confers a high binding capacity 

with low non-specific binding and allows easy manipulation and purification of 

recombinantly expressed 6xHis tagged proteins by affinity chromatography. Ni-NTA 

agarose used in the purification of recombinantly expressed triplexes and triplex proteins 

was purchased from Qiagen.

3.3.2.2 Ni-NTA agarose purification ofVP23His

VP23His was readily purified using Ni-NTA agarose affinity chromatography from large- 

scale cultures of induced pETULl8 transformed BL21 DE3 bacteria (as described in 

Methods and fig. 3.3.5 legend). Fig. 3.3.5 shows a typical SDS-PAGE profile of purified 

VP23His. A single prominent band of approximately 34kDa was detected by Coomassie 

Brilliant Blue staining. The protein concentration for purified VP23His was typically in 

the range of 1.5-3.0 mg/ml for elution fractions 1 and 2 (as determined by OD28o)- Two 

other proteins were also purified (fig. 3.3.5, lane 2). A 70kDa protein, which was 

subsequently shown to be dimeric VP23His, and a 29kDa protein that was shown to be a 

breakdown/truncated VP23His product (discussed in section 3.3.3.2 and figs. 3.3.9). The 

MW of 34kDa for VP23His, as determined by SDS-PAGE analysis and comparison to 

Rainbow markers was in good agreement with the MW of 34268Da predict from the amino 

acid sequence (McGeoch et al., 1988).
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Fig. 3.3.5: SDS-PAGE analysis o f  Ni-NTA agarose purified

VP23His in sonication buffer.

VP23His was purified using 700pl o f  Ni-NTA agarose 

equilibrated in sonication buffer (as described in Methods). Post

binding the Ni-NTA agarose was washed in 10ml o f  20mM 

imidazole in sonication buffer to remove proteins that had non- 

specifically bound to the Ni-NTA agarose. VP23His was eluted 

from the agarose in 5x 1ml fractions of 250mM imidazole in 

sonication buffer (lanes 2-6 respectively). 20pl of each fraction 

and Rainbow markers (lane 1) were then analysed by SDS-PAGE 

and stained with Coomassie Brilliant Blue. The position of 

VP23His is indicated by an arrow.



Results: 3.3

3.3.3 Size exclusion chromatography and sucrose gradient sedimentation

3.3.3.1 Size exclusion chromatography o f purified VP23His in G-150 buffer

GdnHCl stripping of purified B-capsids in conjunction with quantitative SDS-PAGE 

analysis (performed by Newcomb et al., 1993) demonstrated that two copies of VP23 were 

present within each triplex. In order to determine the oligomeric status of VP23His, size 

exclusion chromatography was performed utilising a 25ml (1 by 30 cm) Superose 12 gel 

filtration column (Pharmacia). This column could resolve proteins from 20-200kDa in 

size. Preliminary attempts to size VP23His in sonication buffer failed due to column 

pressure limits exceeding those recommended by the column manufacturer (>3.0 Mpa). 

The high pressure within the column was due to the buffer, as the column pressure also 

exceeded 3.0MPa during column buffer calibration. The severe increase in column 

pressure may be attributable to micelle formation between the NP-40 detergent and the 

glycerol components of the buffer. Filtration of buffers and protein samples through a 

0.2pM filter is standard procedure for column chromatography analysis (as described in 

Methods). However, filtration of sonication buffer did not prevent the column pressure 

from exceeding 3.0MPa.

As a consequence of this, VP23His was subsequently purified from bacteria using G-150 

buffer (described in Materials) which lacks NP-40. Fig. 3.3.6 (panel B, lanes 2-4) shows 

the elution profile of VP23His purified in G-150 buffer. The Ni-NTA agarose elution 

profile was the same as that for VP23His purified in sonication buffer (fig. 3.3.4) with a 

prominent band observed at approximately 34kDa. 1ml of purified VP23His from fraction 

1 (at a concentration of 0.5mg/ml) was analysed by size exclusion chromatography (fig. 

3.3.6, Panel A). A single prominent peak was detected which eluted from the column at 

14.03ml. 1.5ml fractions were collected from the column and the corresponding peak

fraction was analysed by SDS-PAGE and shown to contain VP23His (fig. 3.3.6, panel B, 

lane 6). In order to determine an accurate native MW for VP23His, commercially 

available protein standards were purchased from Sigma and analysed under the same 

conditions. Fig. 3.3.7 (panel A) shows a compilation trace of the chromatography profiles 

of the protein standards analysed on the Superose 12 gel filtration column. The

106



14.03 ml V P23H is  (0 .5m g/m l)100

D
<
a

Elution V olum e (ml.)

97.4 kDa - 

69 kDa -

46 kDa -

4

30 kDa -

« »21.5 kD a-

(B)



Fig. 3.3.6: Size exclusion chromatography and SDS-PAGE analysis of Ni- 

NTA agarose purified VP23His in G150 buffer.

VP23His was purified in G150 buffer (as described in Methods and in fig.

3.3.5). VP23His was eluted from the Ni-NTA agarose in 3x 1ml of G-150 

buffer containing 250mM EDTA. Elution fraction 1 (0.5mg/ml) was 

analysed on a 25ml (1 by 30 cm) Superose 12 gel filtration column 

(Pharmacia) using a 1 ml injection superloop (as described in Methods) and 

1.5ml fractions were collected. (A) Size exclusion chromatography profile for 

VP23His purified and analysed in G150 buffer + 250mM EDTA. (B) 20pl of 

purified VP23His from Ni-NTA agarose elution fractions 1-3 (lanes 2-4 

respectively) and 20pl of the size exclusion chromatography peak fraction 

(lane 6) were analysed against Rainbow markers (lane 1) and purified B 

capsids (lane 5) by SDS-PAGE and stained with Coomassie Brilliant Blue.



Results: 3.3

information collected from the elution profile plots and the MW of each protein standard is 

summarised fig. 3.3.7 (panel B). These data were used to generate a standard curve using 

Origin 3.5 software, plotting Logio MW against the elution volume for each protein 

standard. A best fit line was generated using linear regression analysis within the Origin

3.5 software package (fig. 3.3.7, panel C). Using the best fit line an accurate Logio MW 

reading from the VP23His elution volume was recorded and the native MW calculated to 

be 36kDa.

The native MW of 36kDa for VP23His purified in G-150 buffer is in good agreement with 

the MW predicted from the amino acid sequence and suggests that purified VP23His exists 

as a monomer. Hydrodynamic studies performed by Marina Kirkitadze (described in 

Kirkitadze et al. 1998) on purified VP23His obtained from our laboratory demonstrated 

that its oligomeric status was dependent on protein concentration. Sedimentation analysis 

revealed that it was predominantly monomeric at concentrations of up to 0.8 mg/ml. This, 

therefore, supports the size exclusion chromatography data for VP23His analysed at a 

concentration of 0.5 mg/ml. However, at higher concentrations (1 mg/ml) VP23His formed 

dimers with a MW of 70kDa, while at concentrations above 1.0 mg/ml it formed oligomers 

with a MWs of over lOOkDa. As the purified VP23His used in these experiments was 

diluted from a concentrated stock, the oligomeric status of VP23His was thought to be 

reversible (Kirkitadze et al., 1998).

In order to detect such increases in the oligomeric status of VP23His, purified VP23His 

was analysed at different protein concentrations using size exclusion chromatography. 

Fig. 3.3.8 shows a compilation plot of VP23His size exclusion chromatography profiles of 

VP23His analysed at 0.25, 0.5, and 1.5 mg/ml in G-150 buffer. From these profiles no 

observable shift in the peak elution volume could be detected for the three concentrations 

tested. This would suggest that VP23His exists as a monomer under the buffer conditions 

used in the analysis.
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Fig. 3.3.7: Size exclusion chromatography of protein standards and generation 

of a standard curve.

Size exclusion chromatography was carried out on commercially available 

protein standards (Sigma); (3-amylase (200,000 Da), alcohol dehydrogenase 

(150,000 Da), bovine serum albumin (66,000 Da), ovalbumin (45,000 Da), and 

catabolic anhydrase (29,000 Da). 0.5 mg of each protein standard was 

resuspended in 1ml of G150 buffer + 250mM EDTA and analysed individually 

on a 25 ml (1 by 30 cm) Superose 12 gel filtration column (Pharmacia) using a 

1 ml injection superloop (as described in Methods). (A) Compilation plot of the 

size exclusion chromatography profiles of the 5 protein standards described 

above. (B) Summary table of size exclusion data obtained from the protein 

standards. (C) Standard curve generated from the peak elution volumes for size 

standards with an overlay of the VP23His elution profile plot. The native MW 

(36,000 Da) for purified VP23His was calculated using linear regression 

analysis software within the Origin 3.5 software package.



Results: 3.3

3.3.3.2 VP23His purification and characterisation in buffer O

Solubilisation of recombinantly expressed triplexes (described in section 3.5) required 

them to be purified in a phosphate buffer, buffer O (described in Materials). It was 

consequently decided to re-examine VP23His in buffer O to allow legitimate biophysical 

comparison.

Fig. 3.3.9 (panel A) shows the Ni-NTA agarose purification profile of VP23His in buffer 

O. The same elution pattern was observed as that of VP23His in sonication buffer (fig.

3.3.5) and G-150 buffer (fig. 3.3.6, panel B). Western blot analysis demonstrated that both 

the 70 and 29kDa bands contained VP23 sequences (fig. 3.3.9, panel B) and were assumed 

to represent SDS resistant dimers and truncated or proteolytically cleaved versions of 

VP23His respectively.

In order to determine the oligomeric status of VP23His purified in buffer O, size exclusion 

chromatography analysis was repeated. Fig. 3.3.10 (panel A) shows the peak elution 

volume for VP23His and the standard curve generated from protein standards analysed in 

buffer O. VP23His was detected as a single prominent peak with a native MW of 

approximately 63kDa. This peak was confirmed to be VP23His by SDS-PAGE analysis 

(fig. 3.3.10, panel B). The detection of a single dimeric peak corresponding to VP23His at 

a concentration of 0.5 mg/ml implies that the reversibility in oligomeric status detected by 

hydrodynamic studies may have been a buffer related effect. Numerous size exclusion 

chromatography runs were performed on purified VP23His in buffer O and in all cases a 

single peak corresponding to dimeric VP23His was detected.
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Fig. 3.3.9: SDS-PAGE and Western blot analysis of Ni-NTA 

agarose purified VP23His in buffer O.

VP23His was purified in buffer O (150mM Na2HP04 (pH7.5), 0.1% 

octyl-p-glucoside, 0.1% glycerol) as described in Methods and fig. 

3.3.5. VP23His was eluted from the Ni-NTA agarose in 5x 1ml 

fractions of 250mM imidazole in buffer O. 20pl of VP23His 

elution fractions 1 and 2 (lanes 2 and 3) were analysed by SDS- 

PAGE against Rainbow markers (lane 1) and stained with 

Coomassie Brilliant Blue (A). (B) Western blot analysis of purified 

VP23His in buffer O (lane 2) and purified B-capsids (lane 1). The 

nitro-cellulose membrane was probed with a 1:1000 dilution of a 

polyclonal VP23 antibody (187). Monomeric and dimeric VP23His 

are indicated by the appropriate arrows.
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Fig. 3.3.10: Size exclusion chromatography and SDS-PAGE analysis of 

Ni-NTA agarose purified VP23His in buffer O.

VP23His was purified in buffer O (as described in Methods and fig. 3.3.5). 

Purified VP23His (0.5mg/ml) was analysed on a 25ml (1 by 30 cm) 

Superose 12 gel filtration column (Pharmacia) using a 1ml injection 

superloop (as described in Methods) and 1.5ml fractions were collected. 

(A) Size exclusion chromatography elution volume profile for VP23His 

purified and analysed in buffer O. A Standard curve was generated (as 

described in fig. 3.3.7). All protein standards were resuspended and 

analysed in buffer O at a concentration of 0.5 mg/ml. The native MW for 

VP23His purified in buffer O (63 kDa) was calculated using linear 

regression analysis software within the Origin 3.5 software package. (B) 

20pl of purified VP23His prior to analysis (lane 1) and 20pl of the size 

exclusion chromatography peak fraction (lane 3) was analysed by SDS- 

PAGE against purified B-capsids (lane 2) and stained with Coomassie 

Brilliant Blue.
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3.3.5 Sucrose gradient sedimentation analysis of purified VP23His in 

buffer O.

To confirm the dimeric status of VP23His purified in buffer O, it was co-sedimented with 

the protein standard BSA (66kDa) through a 5ml 5-25% sucrose gradient in buffer O.

Approximately 35x 150pl fractions were collected (as described in Methods) and every 

third fraction was analysis by SDS-PAGE in order to identify where VP23His localised 

within the gradient (data not shown).. VP23His could be detected over a number of 150pl 

fractions as determined by Coomassie Brilliant Blue staining. Fig. 3.3.10 (panel A) shows 

the SDS-PAGE analysis of fractions 17 to 26. The relative intensities were calculated for 

each fraction, for both VP23His and BSA, and plotted as a percentage (%) change in 

volume intensity against their appropriate fraction number (fig. 3.3.11, panel B). The 

VP23His peak intensity sediments to the same position on the gradient as that of the 

internal 66kDa BSA protein standard (indicated by a arrow in fig. 3.3.11, panel B). The 

sedimentation analysis data clearly indicates that purified VP23His in buffer O can form 

stable dimers and therefore supports the observations made by size exclusion 

chromatography that purified VP23His exists as a stable dimer in buffer O.

The ability to purify VP23His on Ni-NTA agarose implies that the N-terminal 6x His tag 

on VP23 must be exposed to the solvent and not buried within the interior of the VP23 

protein. The fact that VP23His exists as a purifiable dimer in buffer O would also imply 

that at least one of the N-termini is not directly involved in the dimerisation of VP23. 

While the work described in this thesis was in progress, Spencer et al. (1998) published 

that VP23 expressed in SF9 cells infected with a recombinant baculovirus could form 

stable dimers. This evidence supports the findings reported here, and demonstrates that 

these dimers are not attributed to the presence of the 6xHis tag utilised in the purification 

process. Monomeric VP23His which was detected by size exclusion chromatography and 

hydrodynamic studies is probably a result of the disassociation of VP23 dimers due to the 

non-physiological nature of the purification buffers used in the isolation of VP23His. The 

presence of NP-40 and/or NaCl in these buffers may be sufficient to interfere or compete
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Fig. 3.3.11: Sucrose gradient sedimentation and SDS-PAGE analysis of 

Ni-NTA purified VP23His in buffer O.

VP23His was purified in buffer O (as described in Methods and fig. 3.3.5). 

300pl of purified VP23His and 50jnl BSA (5mg/ml resuspended in buffer

O) were mixed and layer onto a 5ml 5-25% sucrose gradient and 

sedimented together at 4°C for 16 hours at 40,000 r.p.m. in a AH650 rotor 

and fractions collected (as described in Methods). (A) 20pl of fractions 

17-26 (lanes 2-11 respectively) and Rainbow markers (lane 1) were 

analysed by SDS-PAGE and stained with Coomassie Brilliant Blue. The 

position of BSA and VP23His are indicated by the appropriate arrows. The 

relative intensity of the Coomassie stained protein profiles was calculated 

individually for both VP23His and BSA protein profiles using Quantity 

ONE software (BIO-Rad) as described in Methods. The data was plotted 

as percentage (%) change in volume intensity for each individual protein 

profile against their eluted fraction number (B). An arrow indicates the 

gradient peak elution of VP23His.
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with any hydrophobic or electrostatic interactions between VP23 molecules and therefore 

result in the monomerisation of VP23.

3.3.6 Characterisation of purified VP23His dimers

3.3.6.1 Thermolability o f VP23 dimers

Newcomb et al., (1996) were the first group to identify a procapsid transition during the 

assembly of the HSV-1 capsids. Rixon and McNab (1999) subsequently showed that 

HSV-1 procapsids could be detected in vivo using a mutant of HSV-1 (/si 201) which had a 

temperature sensitive lesion in the UL26 protease. One of the defining characteristics of 

procapsids is their thermolability and they were shown to disassemble at 0°C (Newcomb et 

al., 1996; Rixon and McNab, 1999). In order to test whether or not this thermolability, and 

consequent disassembly at 0°C, was due to the disintegration of VP23 dimers, purified 

VP23His in buffer O was analysed by size exclusion chromatography before and after 

incubation at 4°C. Size exclusion chromatography was carried out on VP23His in buffer O 

and the peak elution fraction was collected and incubated o/n at 4°C to allow any 

disassociation to occur. This sample was subsequently re-analysed by size exclusion 

chromatography in buffer O at RT. Fig. 3.3.12 shows a compilation plot of the size 

exclusion chromatography profiles of dimeric VP23His purified in buffer O and the 

reanalysis of isolated VP23His dimers after a 4°C incubation. Both samples have the same 

peak elution volume. This would therefore indicate that VP23 dimers are not thermolabile 

at 4°C, as any VP23 monomers would have eluted at the approximate position indicated by 

the arrow on fig.3.3.12. The reduction in the size of the peak can be attributed to the 

dilution of the sample during its first passage through the column.
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Fig. 3.3.12: Size exclusion chromatography o f  Ni-NTA agarose 

purified VP23His in buffer O before and after incubation at 4°C.

VP23His was purified in buffer O as described in Methods and 

fig. 3.3.5. Purified VP23His in buffer O was analysed by size 

exclusion chromatography using a lml superloop and fractions 

collected (as described in Methods). The peak fraction was 

collected and subsequently incubated o/n at 4°C before being 

reanalysed. The arrow indicates the position of the protein 

standard carbonic anhydrase (29,000 Da).
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3.3.7 Disulphide linkage analysis of VP23

3.3.7.1 VP23 dimer formation in the absence o f reducing agents

Initial observations made by Dr Andrew Davison on purified B-capsids analysed by SDS- 

PAGE showed that VP23 migrated differently in the presence and absence of the reducing 

agent P-mercaptoethanol. Fig. 3.3.13 shows the protein profiles of purified B-capsids and 

of VP23His purified in sonication buffer analysed by SDS-PAGE in the presence or 

absence of 20mM p-mercaptoethanol. A distinct shift can be observed both for VP23 

present in B-capsids and for purified VP23His. Although no obvious dimeric band could 

be observed in the purified B-capsid sample when analysed in the absence of p- 

mercaptoethanol (fig. 3.3.13, lane A), a distinct dimeric band could be detected for purified 

VP23His (fig. 3.3.13, lane B and C). This dimeric band was the same MW as the dimeric 

bands observed by SDS-PAGE analysis of purified VP23His in buffer O (fig.3.3.9). 

However, it is interesting to note that not all the purified VP23His analysed by SDS-PAGE 

in the absence of P-mercaptoethanol showed a mobility shift from monomer to dimer. The 

majority of the purified VP23His remained in the monomeric form but appeared as 

multiple bands rather than the single species seen in the presence of p-mercaptoethanol. 

These observations suggest the possibility of intra-molecular disulphide bonds within 

VP23 rather than an inter-molecular disulphide bond between VP23 dimeric molecules. 

The apparent dimerisation of purified VP23His in the absence of p-mercaptoethanol may 

be due to an increased proportion of VP23 dimers being resistant to SDS denaturation as a 

direct result of the conformational stability generated by non-reduced internal disulphide 

bonds. The VP23His monomer doublet which is observed, could be due to different types 

of intra-molecular disulphide linkages, generating a population of VP23His molecules 

which have a different migratory speed through the acrylamide gel. Zweig et al., (1979) 

demonstrated using two dimensional gel electrophoresis, both in a reducing and a non

reducing plane, that the only inter-molecular disulphide linkages within HSV-2 capsids 

were those between VP5 and VP 19c and those between molecules of the scaffold protein 

VP22a. This supports the conclusion that dimerisation of VP23 is not due to inter- 

molecular disulphide linkage.
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In order to analyse further the suspected intra-molecular disulphide linkages within VP23, 

purified VP23His in buffer O was analysed by size exclusion chromatography in the 

absence or presence of the reducing agent DTT. Size exclusion chromatography was 

carried out on VP23His in buffer O and the peak elution fraction was collected. 1M DTT 

was added to this fraction to a final concentration of lOmM and incubated at RT for 30 

minutes to allow for disulphide bond reduction. This sample was subsequently re-analysed 

by size exclusion chromatography in buffer O. Fig. 3.3.14 shows a compilation plot of the 

size exclusion chromatography profiles of dimeric VP23His purified in buffer O 

(unreduced) and the reanalysis after DTT treatment. Both samples gave the same elution 

peak volume with no shift to the position expected for monomers being seen. This further 

confirms that inter-molecular disulphide linkages between VP23 molecules are not the 

cause of dimerisation. It cannot be ruled out however that intra-molecular disulphide 

linkages influence dimer stability as it is unlikely that reduction of buried disulphide 

linkages would occur. The reduction in the size of the peak can be attributed to the 

dilution of the sample during passage down the column. SDS-PAGE analysis in the 

presence of P-mercaptoethanol of the collected dimeric VP23His fraction before DTT 

reduction is shown in fig. 3.3.14 (panel B) and clearly demonstrates the presence of SDS 

resistant VP23His dimers (indicated by an *).

3.3.7.2 VP23 sequence analysis

Comparison of the VP23 related proteins from the alphaherpesvirus subfamily 

demonstrated relatively high sequence homology. The closest homologue of VP23 from 

HSV-1 is the HSV-2 UL18 protein, demonstrating 92% amino acid sequence identity. For 

the other viruses the sequence identities were significantly lower. These include; EHV-1 

43%, BHV-1 47 %, VZV 44% and PRV 48%. The full sequence alignment is shown in 

fig. 3.3.15. Examination of the pattern of cysteine residues in these proteins reveals 

several interesting trends. HSV-2 VP23 demonstrated 100% cysteine homology when 

compared to the HSV-1 protein. This is not unexpected due to the close relationship of 

these two viruses. However, comparison with the other four alphaherpesviruses revealed 

that only two out of the four cysteine residues in HSV-1 VP23 are conserved throughout. 

These are amino acid residues Cys27 and Cys297 (highlighted in red in fig. 3.3.15). 

Cysl 10 was conserved in five out of the six alphaherpesviruses tested but was not present
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Fig. 3.3.14: Size exclusion chromatography of Ni-NTA agarose purified 

VP23His in buffer O before and after incubation in the presence o f  lOmM 

DTT.

VP23His was purified in buffer O as described in Methods and fig. 3.3.5. 

Purified VP23His in buffer O was analysed by size exclusion 

chromatography (as described in Methods and fig. 3.3.7) using a 1ml 

superloop and 1.5ml fractions were collected. The peak fraction incubated 

in the presence o f  lOmM DTT for 30 minutes before being reanalysed. 

The arrow indicates the predicted position o f  the protein standard 

carbonic anhydrase (29,000 Da) (A). (B) 20pl o f  the peak elution fraction 

collected before DTT treatment was analysed by SDS-PAGE and stained 

with Coomassie Brilliant Blue. * indicates the presence o f  dimeric 

VP23His. The positions o f  the size markers are shown.



27 (c y s i )
HSVl MLADGFETDIAIPSGISRPDAAALQRCEGRVVFLPTIRRQLTLADVAHESFVSGGVSPDT 
HSV2 MITDCFEADIAIPSGISRPDAAALQRCEGRVVFLPTIRRQLALADVAHESFVSGGVSPDT 
HSVEB MASAAFEIDILLPSDLSPADLSALQKCEGKLVFLTALRRRVMLSSVTLSSYYVNGAPPDT 
VZVD -MAMPFEIEVLLPGELSPAETSALQKCEGKIITFSTLRHRASLVDIALSSYYINGAPPDT 
BHV1 MAQPEAFEVEIVLPGDLSHGDLAALQKCEGKVVFFTTLRRRVPLADVALASFSVNGVAPDT
PRV  MEVDIALPT-LSPGDLSALQRCEGRVVFLETLRRHATLREVA LPCGG DV
Con. -------- E----- LP —  LS----- ALQ-CEG--------- R---- L------------- G ----D-

8 6 (c y s 2) 1 1 0 (c y s 3)
HSVl LGLLLAYRRRFPAVITRVLPTRIVACPLDVGLTHAGTVNLRNTSPVDLCNGDPISLVPPV 
HSV2 LGLLLAYRRRFPAVITRVLPTRIVACPVDLGLTHAGTVNLRNTSPVDLCNGDPVSLVPPV 
HSVEB LSLMAAFRRRFPAIIQRVLPNKMIAAALGVAPLPPGAF-IQNTGPFDLCNGDSVCALPPI 
VZVD LSLLEAYRMRFAAVITRVIPGKLLAHAIGVGTPTPGLF-IQNTSPVDLCNGDYICLLPPV 
BHV1 LGLMAAYRCRFPAVVLRVAPGRMMAAPLGVGPMPRGAF-LQNTGPFDLCNGDAVCLLPPL 
PRV LAAM-ADRRRFAAVITRVTPHRMLATPLGVGGRGQSLV-LQNTGPFDLTNGDHVCLVPPL 
Con. L ---- A-R-RF-AV— RV-P---- A ------------------- NT-P-DL-NGD------ PP-

HSV1 FEGQATDVRLDSLDLTLRFPVPLPSPLAREIVARLVARGI-RDLNPSPRNPGG-LP--DL 
HSV2 FEGQATDVRLESLDLTLRFPVPLPTPLAREIVARLVARGI-RDLNPDPRTPGE-LP--DL
HSVEB LDVE-DKLRLGSVGEEILFPLTVPLAQARELIARLVARAV-QALTPNAQAQRG-A-----
VZVD F-GSADSIRLDSVGLEIVFPLTIPQTLMREIIAKVVARAVERTAAGAQILPHEVLR— GA 
BHV1 L-GPARALALASAGAELLFPMTVPLPQARALVARVVARAV-EALGDRAAAARA-RA--A-
PRV LGDEC--LRLTSANLELRFPMTLPLAQARELTARVVARAAETLR------- GGAPAR--GA
Con. -----------L-S------- FP--- P-----R ----A — VAR--------------------------

HSVl NVLYYNGSRLSLLADVQQLGPVNAELRSLVLNMVYSITEGTTIILTLIPRLFALSAQDGY 
HSV2 NVLYYNGARLSLVADVQQLASVNTELRSLVLNMVYSITEGTTLILTLIPRLLALSAQDGY 
HSVEB EVMFYNGRKYNVTPDLRHRDAVNGVARSLVLNMIFAMNEGSLVLLSLIPNLLTLGTQDGF 
VZVD DVICYNGRRYELETNLQHRDGSDAAIRTLVLNLMFSINEGCLLLLALIPTLLVQGAHDGY 
BHV1 DVMYHNGRRYQVTPDVLCREGADAAARTLVLNMVFNVNEGSLLLLSLIPNLLTQGLQDGV 
PRV DVVFSNGRRYQL--PPPHRDNAEAATRSLVLNMIFLLNEGAVILLSLIPNLLTLGAQDGY 
Con. -V NG----------------------- R-LVLN------- EG------- LIP-L------- DG-

HSV1 VNALLQMQSVTREAAQLIH-PEAPALMQDGERRLPLYEALVAWLTHAGQLGDTLALAPVV 
HSV2 VNALLQMQSVTREAAQLIH-PEAPMLMQDGERRLPLYEALVAWLAHAGQLGDILALAPAV 
HSVEB VNAIIQMGSATREVGQLVH-QQPVPQPQDGARRFCVYDALMSWISVASRLGDVVGGKPLV 
VZVD VNLLIQTANCVRETGQLINIPPMPRI-QDGHRRFPIYETISSWISTSSRLGDTLGTRAIL 
BHV1 ANAIVQLGSASREAGQLLR-LEPAEPRQDGGRRFCLYGALAAWISSATRLGDAVGARPLA 
PRV ANAVIQLGSATRELGQLVR-QPPPPLPQDHARRFCVFEALEAWIASASRLGDTLGTRPVA 
Con. -N Q ------RE— QL ------------ QD--RR---------- W --------LGD---------

297 (c y s  4)
HSVl RVCTFDGAAVVRSGDMAPVIRYP 
HSV2 RVCTFDGAAVVQSGDMAPVIRYP 
HSVEB RICTFEGQATISRGEKAPVIQTLL 
VZVD RVCVFDGPSTVHPGDRTAVIQV 
BHV1 KVCTFDGPSVVRVGEKAPIVVPL 
PRV RVCIFDGPPTVPPGEKAAVVEV 
Con. — C —F~G G



Fig. 3.3.15: Amino acid sequence alignment of VP23 homologues.

Compilation of the amino acid sequence alignment of VP23 

homologues from the alphaherpesvirus subfamily. HSVl (Herpes 

Simplex virus type-1, strain 17), HSV2 (Herpes Simplex virus type- 

2, strain HG52), EHV1 (equine herpesvirus type-1, strain AB4P), 

VZV (Varicella-Zoster virus, strain Dumas), BHV1 (Bovine 

Herpesvirus type-1), PRV (Pseudorabies virus (Suid herpesvirus

1)), and Con. (consensus sequence alignment). Cysteine residue 

are highlighted in red.
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in PRV, whereas Cys86 was only conserved in HSV-2. Several other cysteine residues 

were found in the other alphaherpesvirus VP23 homologues, which are not present in 

either HSV-1 or HSV-2. This high degree of conservation of Cys resides 27 and 297 

suggests that they may perform a specific functional role within the protein, which has 

been conserved despite the divergence of the alphaherpesvirus sequences. It is interesting 

to note that the Cys residue at 116 is conserved in all the alphaherpesviruses, except HSV- 

1 and HSV-2 where it is replaced by Ser .

3.3.8 VP23 cysteine mutagenesis

In order to determine whether or not the cysteine residues in VP23 were functionally 

important, site directed mutagenesis was performed on pETUL18 (as described in 

Methods). The synthetic oligonucleotides used in each case were designed to convert the 

cysteine residues to serine residues. This is a structurally conservative change since the 

only difference is that the S-H of cysteine is an O-H in serine. In order to select plasmids 

containing the mutations, unique restriction sites were incorporated into the 

oligonucleotide sequences (fig.3.3.16, panel A), which did not introduce any other changes 

into the primary amino acid sequence. Recombinant colonies were isolated and plasmid 

DNA purified as described in Methods. Clones were analysed by restriction enzyme 

mapping, utilising the appropriate unique restriction sites (data not shown). Colonies that 

proved positive by restriction digest were subsequently confirmed by sequencing using 

generic oligonucleotides for the T7 promoter (as described in Methods). The automated 

sequence analysis of their respective sequence changes is shown in fig. 3.3.16 (panels B- 

E).

3.3.8.1 Expression ofVP23His cysteine mutants.

In order to determine whether the cysteine mutants were expressed efficiently within 

induced BL21 DE3 bacteria, Western blot analysis was performed. Fig. 3.3.17 (panel A) 

shows the results of the Western blot analysis using a polyclonal VP23 antibody (187). 

Mutants pETUL18CYS-l, -3, and -4 expressed efficiently reaching levels comparable to 

that of the WT pETUL18. However, there was no detectable expression of
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Bglll

( 1 )  5 '  A TA CCACCCGCCCTTCAGATCTCTGCAGCGCCGCCGCATCGGGGC 3 '

Nhel

(2 )  5 '  GCCCACGTCCAGGGGGCTAGCGACGATTCGCGTGGG 3 '

BstBl

(3 )  5 '  GATGGGGTCCCCGTTCGAAAGATCAACGGGGGAGGTGTTG 3 '

Mlul

(4 )  5 '  CGCGCCGTCAAAGGTAGAAACGCGTACCACGGGAGCCAGGG 3 '

(A)

p E T U L 1 8  ( F w d )
R P D A A A L Q R C E G R V V

5 '  CGCCCCGATGCGGCGGCGCTGCAGCGCTGCGAAGGGCGGGTGGTA 3 '  
5 '  CGCCCCGATGCGGCGGCGCTGCAGAGATCTGAAGGGCGGGTGGTA 3 '

R P D A A A L Q R S E G R V V
p E T U L 1 8 C Y S l ( F w d )

(B)

p E T U L 1 8 ( F w d )
V L P T R I V A C P L D V G L

5 '  GTGCTTCCCA CG CG AA TCG TCG CCTG CCCCCTGG ACGTG G GCCTC 3 '  
5 '  G TG CTTCCCA CG CG AA TCG TCG CTA GCCCCCTG GA CG TG GG CCTC 3 '

V L P T R I V A S P L D V G L

p E T U L l 8 C Y S 2 ( F w d )

(C)



p E T U L l 8 (F w d )

R N T S  P V D L C N G D P I  S 

5 '  CG CAA CA CCTCCCCCGTAGATCTCTGTAACGGGGACCCCATCAGC 3 
5 '  CGCAACACCTCCCCCGTTGA TCTTTCG A ACG G GG A CCCCA TCA GC 3 

R N T S P V D L S N G D P I S  
p E T U L l 8 C Y S 3 ( F w d )

(D)

p E T U L l 8 ( R e v )

V V A A G D F T C V R V V P A
3 '  CACAACGGCCGCGCCGTCAAAGGTGCACACCCGAACCACGGGAGC 5 
3 '  CACAACGGCCGCGCCGTCAAAGGTAGAAACGCGTACCACGGGAGC 5

V V A A G D F T S V R V V P A
p E T U L l 8 C Y S 4 ( R e v )

(E)

Fig. 3.3.16: Cysteine mutagenesis of UL18

(A) Oligonucleotides used in the site directed mutagenesis o f  4 cysteine 

residues within the UL18 ORF (numbered 1-4 respectively from the VP23 

N-termini). The unique restriction sites incorporated into each 

oligonucleotide are highlighted in red. (B-E) Automated sequence 

analysis using standard T7 primers of pETULl8CYS mutants compared 

to the WT pE T U L l8 sequence. FWD (forward) and REV (reverse) 

indicate the direction of sequence analysis. Above and below each 

nucleotide sequence is the appropriately encoded amino acid sequence 

(site specific amino acid changes are highlighted in red).
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pETULl8CYS-2. It seemed possible that regeneration of the pET28MOD expression 

vector by T7 polymerase may have generated mutations outwith those desired in the UL18 

ORF, and consequently abolished expression activity. Therefore the UL18CYS2 ORF was 

subcloned out of its existing pET28MOD backbone vector, ligated into a new pET28MOD 

vector, and reanalysed for the expression of VP23HisCYS2 by SDS-PAGE and Western 

blot analysis (data not shown). However, this failed to produce detectable levels of full 

length VP23HisCYS2. Various strategies were employed in order to generate a functional 

expressing pETULl 8CYS2 vector, but all failed to produce detectable levels of full length 

protein. This would seem to suggest therefore that during mutagenesis a frame shift and/or 

the incorporation of a stop codon may have occurred within the UL18CYS2 ORF and thus 

preventing protein expression.

3.3.8.2 Ni-NTA purification ofVP23 cysteine mutants

VP23HisCYS mutants -1, -3, and -4 were readily purifiable from bacteria using Ni-NTA 

agarose affinity chromatography. Fig. 3.3.17 (panel B) shows the SDS-PAGE profile of 

elution faction 1 from each of the VP23HisCYS mutants -1,-3, and -4 compared to that of 

WT VP23His. The samples were purified in sonication buffer and analysed by SDS- 

PAGE in the presence or absence of 20mM P-mercaptoethanol. In the presence of P- 

mercaptoethanol a single prominent band was present both in VP23His and the 

VP23HisCYS mutants. A faint 70kDa band could be detected in mutants 1 and 3 

(fig.3.3.17, panel B, lane 2 and 3 (+) p-mercaptoethanol respectively). This band migrates 

with the same MW as dimeric VP23His (described in section 3.3.3.2 and figs.3.3.9 and 

3.3.10). The presence of dimeric VP23His could be seen clearly when the VP23HisCYS 

mutants were analysed in the absence of p-mercaptoethanol (fig.3.3.17, lanes 2, 3, and 4 (- 

) p-mercaptoethanol). However, rather than the single band usually associated with 

dimeric VP23, two bands could be detected that were also present in the WT VP23His (fig. 

3.3.17, lane 1). This probably represents different disulphide linkages within VP23. 

Differences in the oligomeric status of the VP23HisCYS mutants were further highlighted 

when they were purified in buffer O (fig. 3.3.18). Numerous prominent bands could be 

detected by SDS-PAGE analysis in the presence of p-mercaptoethanol which were absent 

from VP23His purified in sonication buffer (fig. 3.3.5, lane 2) and buffer O (figs. 3.3.9, 

panel A and 3.3.14, panel B), which resulted in the appearance of a single dimeric band.
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Fig. 3.3.17: Western blot and SDS-PAGE analysis of VP23His and

VP23His cysteine mutants

(A) BL21 DE3 bacteria containing either pETULl8 (lane 1) or a 

pETUL18CYSl-4 (lanes 3-6 respectively) mutant plasmid were grown and 

induced (as described in Methods). 1.5 ml of the culture supernatant was 

centrifuged at 14,000 r.p.m. for 30 seconds. The supernatant was removed 

and the bacterial pellet was resuspended in 200pl of BM and heated for 2 

minutes at 100°C in a dry block. 20pl of each sample were analysed by 

SDS-PAGE against purified B-capsids (lane 2) and transferred to a nitro

cellulose membrane (as described in Methods). The nitro-cellulose 

membrane was probed with a 1:1000 dilution of a polyclonal VP23 

antibody (187). The position of VP23 is indicated by the arrow. (B) 

VP23His (lane 1) and VP23HisCYS mutants 1, 3, and 4 (lanes 2-4 

respectively) were purified in sonication buffer (as described in Methods 

and fig. 3.3.5). 20jil of each elution fraction 1 was analysed by SDS- 

PAGE against Rainbow markers in the presence (+) or absence (-) of 

20mM p-mercaptoethanol and stained with Coomassie Brilliant Blue.
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Fig. 3.3.18: SDS-PAGE analysis o f  purified VP23His Cysteine 

mutants -1 ,-3, and -4 in buffer O.

VP23His cysteine mutants -1 (lane 2), -3 (lane 4), and -4 (lane 6) 

were purified by Ni-NTA affinity chromatography (as described in 

Methods and fig. 3.3.5) in buffer O. 20pl of the appropriate 

VP23HisCYS elution fraction 1 was analysed by SDS-PAGE 

against Rainbow markers (lanes 1 and 5) and purified B-capsids 

(lane 3), and stained with Coomassie Brilliant Blue.
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Western blot analysis of purified VP23HisCYS mutants failed to detect the presence of 

these higher MW bands (data not shown), unlike that of the dimeric VP23His band 

purified in buffer O (3.3.9, panel B). It is possible, but unlikely, that the epitope specificity 

of the antibody used did not recognise the oligomeric forms of purified VP23HisCYS 

protein. However, a more plausible explanation for the presence of these additional higher 

MW bands is that the cysteine mutagenesis resulted in non-specific disulphide bond 

formation between unlinked cysteine residues within VP23 and those present in bacterial 

proteins. In order to further characterise VP23HisCYS mutants and to determine whether 

or not they could interact with VP 19c, the mutated UL18 ORFs were subcloned into the 

pCMVio expression vector and analysed for their intracellular localisation by 

immunofluorescence.

3.3.9 Immunofluorescence analysis of VP23 and VP23CYS mutants

3.3.9.1 Cloning ofUL18 and UL18CYS mutant ORFs into pCMVjo

The construction of the pCMV10 expression vector is described by Stow et al., (1993). It 

utilises the immediate-early promoter from HCMV to regulate recombinant gene 

expression in mammalian cells. The appropriate UL18 ORFs were subcloned individually 

from their pET vector as Xbal/Hindlll fragments. This retained the 5' sequences encoding 

the 6x His epitope tag. The DNA fragments were purified from a 1% agarose TAE gel (as 

described in Methods) and ligated into Xbal/Hindlll digested and CIP treated pCMVio to 

generate pE18H and pE18HCYS-l, -3, and -4. Single colonies were screened for the 

presence of the UL18 ORF by Xbal/Hindlll digestion. The identity of mutant UL18 ORFs 

in each construct was confirmed by restriction mapping using restriction enzymes that 

recognised the unique sites incorporated into the CYS mutant primers (described in section 

3.3.8 and fig. 3.3.16, panel A). The cloning strategy is summarised schematically in fig. 

3.3.19. The cloning of the UL38 ORF into the pCMVio expression vector to generate pE38 

was performed by Dr Frazer Rixon and is described in Rixon et al., (1996).
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3.3.9.1 Intracellular localisation ofVP23His and VP 19c.

The intracellular localisation of both VP23 and VP 19c within BHK-21 C13 cells has been 

reported previously (Nicholson et al., 1994; Rixon et al., 1996). These experiments 

demonstrated that VP23, when expressed on its own, was present throughout the cell, 

whereas VP 19c had a predominantly nuclear localisation. When VP 19c and VP23 were 

co-expressed the localisation of VP23 altered to a predominantly nuclear distribution. This 

led the authors to conclude that VP 19c could interact with VP23 and redirect it to the 

nucleus where it would be required for capsid assembly. In order to confirm this 

behaviour and to examine the ability of VP 19c to direct VP23His to the nucleus, BHK 

cells were transformed with the appropriate plasmids expressing either VP 19c or VP23His 

(as described in Methods). The polyclonal VP23 antibody (187) and the monoclonal 

VP 19c antibody (CB2040) were used in conjunction with the appropriate secondary 

antibodies. Fig. 3.3.20 shows the distribution of VP23His when expressed individually 

within BHK cells. In the majority of cells VP23His could be detected throughout the cell 

(panel A). However, a few cells demonstrated a predominantly cytoplasmic VP23His 

distribution (fig. 3.3.20, panel B). When expressed alone, VP 19c was only found in the 

nucleus (fig. 3.3.20, panel C). Fig. 3.3.21 (panels A and C) show that VP23His was 

present within the nucleus of cells co-expressing both VP23His and VP 19c. These results 

repeat the observations of Nicholson et al., (1994) and Rixon et al., (1996) and show that 

the 6xHis tag does not alter the behaviour of the protein. BHK cells transformed with 

plasmids individually expressing VP23HisCYS mutants demonstrated the same cellular 

distribution as that of the parental VP23His (fig. 3.3.22, panels A, C, E, and G). Similarly, 

when co-expressed with VP 19c, all three cysteine mutants demonstrated a WT VP23 like 

nuclear distribution (fig. 3.3.22, panels B, D, F, and H). This therefore indicates that 

mutating the cysteine residues within VP23 does not affect the proteins ability to interact 

with VP 19c within the cytoplasm of BHK cells and become translocated to the nucleus. 

Furthermore, the 6xHis epitope tag present on the N-terminus of VP23 does not appear to 

affect the interaction with VP 19c. Since, the N-terminal tag on VP23 is probably present 

on the exterior of the protein this suggests that the N-terminus of VP23 is not directly 

involved in the interaction with VP 19c.
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Fig. 3.3.20: Immunofluorescence analysis showing the intracellular

localisation of VP23 and VP 19c.

BHK21 C13 cells were transfected with plasmids either expressing VP23His 

(pE18H) or VP 19c (pE38, panel C) as described in Methods. The cellular 

distribution of VP23 (panels A and B) was detected by using a polyclonal 

VP23 antibody (187). The immunofluorescence observed was due to a 

secondary goat-anti rabbit IgG conjugated to CY3. The cellular distribution 

of VP 19c (panel C) was detected using a monoclonal VP 19c antibody 

(CB2040). The immunofluorescence observed was due to a goat anti-mouse 

IgG secondary antibody that was conjugated to FITC. Specific details on 

antibody dilutions, transfection, and immunofluorescence procedures are 

detailed in Methods.
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Fig. 3.3.21: Immunofluorescence analysis showing intracellular localisation 

o f  VP23 and VP 19c co-expressed within BHK-21 C l 3 cells.

BHK-21 C l 3 cells were co-transfected with plasmids expressing VP23His 

(pE18H) and VP 19c (pE38), as described in Methods. The cellular 

distribution of VP23 and VP 19c was analysed by double immunolabelling. 

VP23 was detected using a polyclonal VP23 antibody (187). VP 19c was 

detected using a monoclonal VP 19c antibody (CB2040). 

Immunofluorescence observed was due to goat anti-mouse, and goat anti

rabbit IgG conjugated to FITC and CY3 respectively. Both primary and 

secondary antibodies were mixed at the appropriately dilutions (as described 

in Methods). Panels A shows the cellular distribution o f  VP23His. Panels B 

shows the cellular distribution of VP 19c. Panel C shows a merged image of 

panels A and B.
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Fig. 3.3.22: Immunofluorescence analysis showing the intracellular 

distribution o f  VP23His and VP23HisCYS mutants 1, 3, and 4 with 

VP19c.

BHK-21 C l 3 cells were transfected singly with plasmids pE18H 

(VP23His), pE18HCYSl (VP23HisCYSl), pE18HCYS3 

(VP23HisCys3), or pE18HCYS4 (VP23HisCys4 ), or co-transfected 

with pE38 (VP 19c ) as described in Methods. The cellular 

distribution o f  VP23His and VP23HisCYS mutants was detected 

using a monoclonal VP23 antibody (CB0040) and goat anti-mouse 

IgG conjugated to FITC. Panels A, C, E, and G show the cellular 

distribution of VP23His, VP23HisCYSl, VP23HisCYS3, and 

VP23HisCYS4 respectively. Panels B, D, F, and H show the cellular 

distribution of VP23His, VP23HisCYSl, VP23HisCYS3, and 

VP23HisCYS4 respectively when co-expressed with VP 19c.
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3.3.10 Viral growth analysis of UL18CYS mutants

Desai et al., (1993) performed experiments utilising a permissive Vero cell line expressing 

VP23 (G5-11 Vero cells) to demonstrate that a lacZ insertion mutant (K23Z) within the 

UL18 ORF of HSV-1 abolished capsid formation. Saad et al., (1999) have recently shown 

VP23 may play a role in development of the capsid floor after procapsid formation. It was 

therefore decided to test whether or not VP23 cysteine mutants were able to sustain capsid 

formation. A complementation assay was performed utilising the K23Z mutant and the 

permissive G5-11 Vero cell line to test the ability of VP23HisCYS mutants to produce 

infectious progeny virus. The construction of K23Z VP23 null mutant virus and the 

permissive G5-11 Vero cell line expressing VP23 is described in Desai et al., (1993).

To test the functionality of the VP23CYS mutants, BHK-21 C13 cells were transfected 

with lpg of the appropriate pCMVio plasmid DNA expressing either VP23His or a 

VP23HisCYS mutant protein (as described in Methods). 24 hours post-transfection the 

cells were infected with the K23Z VP23 null mutant virus at a m.o.i of 3. Progeny viruses 

were harvested at 24 hours post infection and titred on both permissive and non-permissive 

Vero cells (as described in Methods). Fig. 3.3.23 shows the titres of harvested virus in both 

permissive and non-permissive cells. No significant amount of revertant K23Z virus was 

isolated from the complementation assay, as shown by the very low titres of all the 

progeny virus on non-permissive Vero cells. Both WT and UL18CYS mutants were able 

to complement growth of K23Z. However, a considerable contrast was observed in the 

ability for the UL18CYS mutant 1 to produce infectious virus progeny compared to that of 

the WT and UL18CYS mutants 3 and 4. The assay was repeated and produced a similar 

titration profile (data not shown). It is possible that the VP23HisCYSl mutant is more 

efficient in capsid assembly leading to an increase in the number of infectious progeny 

produced and consequently a higher titre. However, it is more likely the differences reflect 

differing transfection efficiencies of the individual plasmid DNAs. Further analysis has to 

be performed in order to substantiate these findings.
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3.3.11 Conclusions

3.3.11.1 VP23 dimerisation

Newcomb et al., (1993) were the first group to demonstrate that VP23 was a component of 

the triplex of HSV-1 capsids and that it was present in two copies per triplex. However, it 

was not known whether VP23 within the triplex occurred as a dimer or two separate 

monomeric subunits interacting separately with VP 19c. Examining purified VP23 by size 

exclusion chromatography and sucrose gradient sedimentation has shown that it can exist 

as a stable dimer (figs. 3.3.10 and 3.3.11). The dimer is not held together by inter- 

molecular disulphide linkages and is stable at 4°C (figs. 3.3.12 and 3.3.14). Therefore, 

findings that capsid formation is inhibited in the presence of DTT (Newcomb et al., 1994) 

and procapsid disassociation is induced upon incubation at 0°C (Newcomb et al., 1996) 

cannot be attributed to VP23 dimer disassociation. Cryo-EM has also provided additional 

evidence that VP23 forms dimers in the capsid (Zhou et al., 2000). Utilising cryo-EM and 

difference mapping of HSV-1 B-capsids and VP5-VP19c particles, Saad et al., (1999) 

determined the position of VP 19c within WT B-capsids. From these data they concluded 

that VP 19c was located on the top of the triplex, interconnecting adjacent capsomers. The 

remaining mass, forming the two legs of the triplex which connect to the capsid floor, was 

proposed to be VP23. These two legs had an extensive interface suggesting that the two 

copies of VP23 formed a dimer within the triplex (discussed further within section 4.0).

Desai and Person (1996) demonstrated that the deletion of the N-terminal 77 residues of 

VP23 prevented VP23 from interacting with VP 19c (as determined by the yeast two hybrid 

system). Similar deletion mutagenesis performed by Spencer et al., (1998) upon the N- 

terminus of VP23 also demonstrated that mutated VP23 inhibited in vivo capsid assembly 

within insect cells. These experiments clearly indicate an essential role for the N-terminal 

region of VP23. However, the removal of such a large number of residues from the N- 

terminus makes it difficult to determine whether these residues are required for a direct 

protein-protein interaction with VP 19c or simply to maintain the protein conformation 

required for interaction. Furthermore, interpretation of results from mutagenesis on VP23 

is complicated by the fact that VP23 forms dimers. Therefore, it is difficult to assess
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whether or not mutations in VP23 which prevent the interaction with VP 19c specifically 

disrupt this interaction or disrupt VP23 dimer formation leading to a shift in 

conformational stability. Functional analysis demonstrated that both dimeric and 

monomeric VP23 can form capsids which resemble those of WT B-capsids (discussed in 

section 3.6 and fig. 3.6.1). This would suggest that dimerisation of VP23 may not J>e 

essential for initial capsid protein interactions and procapsid assembly. However, the 

maturation into a polyhedral capsid would appear to require some form of VP23 

dimerisation as the mature triplex clearly show VP23 molecules in close proximity 

(discussed further in section 4.0, Saad et al., 1999). Desai and Person (1996) were unable 

to detect any such self-interaction between VP23 molecules utilising the yeast two-hybrid 

system. This could possibly be attributed to the GAL4 domains which are fused to the N- 

terminus of VP23 molecules which may interfere with dimerisation. It is interesting to 

note that the N-terminal 6xHis tag used in the purification of VP23His does not interfere 

with the dimerisation of VP23, or with its interaction with VP19c (fig. 3.3.10 and 3.6.1). 

This would suggest that the N-terminus itself might not be involved in these interactions 

but that steric inhibition may occur when larger domains are fused to the N-terminus.

Immunofluorescence analysis performed on BHK cells expressing pE18H demonstrated a 

small population of cells that had no intranuclear VP23 (fig. 3.3.20, panel B). It could be 

speculated that this distribution of VP23 to the nucleus is prevented due to the dimerisation 

of VP23 within the cytoplasm and as a consequence the increase in mass preventing 

diffusion through the nuclear pore into the nucleus. Immunofluorescent studies performed 

by Nicholson et al., (1994) and Rixon et al., (1996) on the cellular distribution of VP23 

within cells did not present any evidence to support this observation. However, it is 

unlikely that the cellular distribution of VP23 in these cells is an in vivo artefact due to the 

co-localisation of VP23 to the nucleus when expressed in BHK cells containing the pE38 

plasmid expressing VP 19c. The variation in the cellular distribution of VP23His is more 

likely to reflect differences in the level of expression of VP23His from the pCMVio vector 

within particular cells.
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3.3.11.2 VP23 cysteine analysis

Many viruses rely heavily on disulphide bonding to stabilise large capsid protein 

structures. Li et al., (1998) showed that mutating the papillomavirus capsid protein LI 

carboxy terminal Cys424 residue to a Gly prevented the formation of icosahedral capsids 

in vitro. The change from Cys to Gly did not prevent pentamer assembly but prevented 

papillomavirus capsids from forming stable structures via an inter-pentamer disulphide 

bond. Similarly, the simian virus 40 (SV40) Vpl capsid protein has a large network of 

cysteine linkages. Jao et al., (1999) demonstrated by mutating all 7 cysteine residues, that 

Cys residues at Cys9, Cys 104, and Cys207 were essential for the formation of multi- 

pentameric complexes through inter-pentamer disulphide bonds. Examination of the 

published X-ray crystal structure of Vpl (Liddington et al., 1991) revealed that residues 

Cys 104 and Cys207 reside in interconnecting pentamer loops positioning them in a ideal 

situation for capsid stabilisation through disulphide bonding. The Cys9 residue is located 

in the amino terminal arm of Vpl which is exposed on a Vpl pentamer. Although not 

visualised by X-ray crystallography it is proposed to be involved in disulphide bonding 

through interconnections at the pentamer base. Conversely, Fox et al., (1997) 

characterised the isolation of a mutant of the cowpea chlorotic mottle virus (CCMV) which 

was unable to disassemble during infection and therefore was uninfectious. Subsequent 

analysis revealed an Arg to Cys change at residue 26 within the coat protein. The N- 

terminus of the coat protein is directly involved in hexameric capsomer formation and 

demonstrated a six-fold related symmetry. The mutation of residue 26 to a Cys generates a 

disulphide bond at a three-fold axis and consequently increases virion stability to a point 

where it became non-infectious.

Comparison of VP23 homologues from the alphaherpesvirus demonstrated a strong 

conservation for three out of the four cysteine residues within the HSV-1 VP23. Size 

exclusion chromatography of purified dimeric VP23His following DTT reduction showed 

that the VP23 dimer was not held together by inter-molecular disulphide linkages (fig. 

3.3.14). Furthermore, site directed mutagenesis and functional analysis of three of these 

cysteine residues had no detectable effect on the ability of VP23 to interact with VP 19c or 

to produce infectious virus progeny (figs. 3.3.22 and 3.3.23). Analysis of purified 

VP23HisCYS mutants by non-reducing SDS-PAGE demonstrated that mutating the
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cysteine residues within VP23 did not prevent dimer formation but did result in slightly 

different banding patterns which might be attribute to different intra-molecular disulphide 

linkages formed within the VP23 dimer (figs. 3.3.17 and 3.3.18).

Although these cysteine residues do not play an essential role in the capsid assembly 

pathway of HSV-1, disulphide bond formation may help to strengthen the capsid post

assembly and thus stabilise progeny virions. Lee et al., (1996) reported similar findings 

during the dimerisation of the rubella virus capsid protein (C protein). Site directed 

mutagenesis on either Cys 152 or Cys 196 prevented dimerisation of the C protein but did 

not prevent virion assembly. They speculated that the disulphide mediated C protein 

association might be required for fixing the intersubunit interface, therefore locking the 

dimer into a specific conformation. The conservation of the 3 cysteine residues within the 

VP23 homologues would suggest some kind of structural involvement. Locking of the 

VP23 conformation may be an appropriate role due to its molten globule nature (discussed 

in section 3.6). However, to identify any specific requirement for these conserved cysteine 

residues and their possible implication in the folding of VP23 requires further analysis.

3.3.11.3 Future Work.

Further analysis is required to specifically identify the oligomeric status of VP23HisCYS 

mutants when purified in buffer O. The likelihood is that they are different disulphide 

linked oligomeric complexes of VP23, as VP23HisCYS mutants purified in sonication 

buffer yield similar but yet reducible bands corresponding to the same MWs. It would also 

be interesting therefore to analyse these complexes by two-dimensional gel 

electrophoresis, both in reducing and non-reducing conditions, in order to determine the 

exact composition of these higher MW complexes.

Deletion of individual cysteine residues might lead to non-specific disulphide bond 

formation with bacterial proteins present within lysed extracts. It would be interesting 

therefore to perform multiple mutagenesis to replace several or all of the cysteine residues 

within VP23, particularly those conserved throughout the alphaherpesvirus family, for 

example cysteine residues 27 (CYS1) and 297 (CYS2).
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Results presented within this thesis (section 3.1) and those by Desai and Person (1996) 

demonstrated that VP23 and VP 19c interact sufficiently within the yeast two-hybrid 

system to induce the transcriptional activation of GAL4. It would be interesting, therefore, 

to analyse the strength of interaction between VP23CYS mutants and VP 19c utilising the 

yeast two-hybrid system. Using this system any interactions detected could be accessed 

for their strength of association and compared to that of the WT interactions utilising a P- 

galactosidase liquid culture assay. This would therefore provide additional evidence as to 

the specific requirement of these conserved cysteine residues for the formation of capsid 

protein interactions.

It would also be interesting to map the positions of the cysteine residues within the triplex 

structure. This could be accomplished through the use of colloidal gold mapping and cryo- 

EM analysis on in vitro assembled capsids where VP23HisCYS protein(s) have been 

substituted in place of VP23His. This could provide additional structural information on 

the folding of VP23 within the triplex.
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3.4 Characterisation of the triplex protein VP19c

3.4.1 Construction and expression of pETUL38.

3.4.1.1 Cloning o f the UL38 ORF into pET28MOD

The cloning of UL38 ORF into the modified bacterial expression vector pET28MOD was 

carried out by David McNab. Briefly, the UL38 ORF was subcloned out of the transfer 

vector pBJ382 (constructed by Peter Nicholson and described in Nicholson, 1992) as a 

BamHI/Hindlll fragment and ligated into a BamHI/Hindlll digested pET28a bacterial 

expression vector to generate pETBJ382. pETBJ382 was then digested with 

BsrDl/EcoRV and ligated with a dsDNA oligonucleotide. This introduced a unique EcoRI 

site at the 5’ end of the UL38 ORF to generate pET38oli. The UL38 ORF was subcloned 

out of pET38oli as an EcoRI/Hindlll fragment and ligated into pET28MOD to generate 

pETUL38. The construction of pET28MOD is described in Kirkitadze et al., (1998) and 

schematically illustrated in section 3.3.1 (fig. 3.3.1). The expression plasmid pETUL38 is 

illustrated in fig. 3.4.1.

3.4.1.2 Bacterial expression ofVP19cHis

BL21 DE3 bacteria were electroporated in the presence of approximately lpg of pETUL38 

or pET28MOD vector DNA and recombinant colonies were isolated (as described in 

Methods). Single recombinant colonies were grown and induced, as described in methods 

and fig. 3.4.2, and analysed for the expression of VP19cHis by SDS-PAGE analysis. Fig.

3.4.2 (panel A) shows the comparative protein profiles of induced pETUL38 and 

pET28MOD transformed BL21 DE3 bacteria. No novel 50kDa band corresponding to 

VP19cHis could be detected in the pETUL38 sample by SDS-PAGE analysis and 

Coomassie Brilliant Blue staining (fig. 3.4.2, lanes 3 and 4). The absence of a 50kDa 

VP19cHis band suggests a poor level of expression from the pETUL38 vector. In order to 

ascertain whether there was any expression of VP19cHis in the induced cultures, Ni-NTA 

agarose affinity chromatography was performed (as described in Methods) and the
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Fig. 3.4.1: Schematic representation of the bacterial expression vector pETUL38
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protein(s) bound to the Ni-NTA agarose were eluted and analysed by Western blot. The 

principles of Ni-NTA chromatography are discussed in section 3.3. Due to the lack of a 

monoclonal antibody against VP 19c, a monoclonal Penta His antibody, which specifically 

recognises the 6xHis epitope tag, was used to detect purified VP19cHis. Fig. 3.4.2 (panel 

B) shows the presence of a band with an approximate MW of 50kDa. The MW of 50kDa 

is in good agreement with the predicted 50260Da MW of VP 19c from the amino acid 

sequence (McGeoch et al., 1988). This band was strongest in the Ni-NTA agarose elution 

fraction 1 (fig. 3.4.2, lane 4). However, low levels could be detected in the crude bacterial 

extracts, bacterial pellet and bacterial supernatant samples collected before Ni-NTA 

agarose purification. This suggests that the expression of the VP19cHis is extremely 

inefficient. The low recovery of VP19cHis was not due to the formation of insoluble 

inclusion bodies as little protein could be detected by Western blot analysis in either crude 

bacterial extracts or bacterial pellet samples post lysis. In an attempt to increase the 

efficiency of transcription and/or translation of pETUL38 within BL21 DE3 bacteria 

various induction conditions were tested. However, none of the conditions tested 

increased the level of VP19cHis expression (data not shown). The low level of expression 

of VP19cHis compared to that of VP23His, which is expressed from the same plasmid 

vector, may indicate a predominance of certain codons which are not recognised by the 

BL21 DE3 bacteria. Alternatively, VP19cHis expression may be toxic. This could 

possible be attributed to the presence of hydrophobic domains on the exterior of the 

VP19cHis protein leading to its incorporation into bacterial membranes thereby generating 

a toxic phenotype (Qiagen Ni-NTA trouble shooting protocol, 1998). Alternatively, 

VP19cHis expressed within bacteria may be broken down or degraded. Smaller MW 

bands are detected in the Ni-NTA VP19cHis elution fraction 1 (see fig. 3.4.2, lane 4) 

which could represent breakdown products. However, at the time no monoclonal antibody 

to VP 19c was available to conclusively demonstrate this.

3.4.2 VP19cHis isolation from recombinantly expressed triplexes

Due to the difficulty in preparing VP 19c from bacteria it was decided to investigate 

whether or not it would be possible to isolate VP19cHis from triplexes purified from SF21 

cells infected with Ac 18386. Triplex purification from Ac 18386 infected cells is discussed
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Fig. 3.4.2: SDS-PAGE and Western blot analysis of VP19cHis expression 

in BL21 DE3 bacteria.

BL21 DE3 bacterial cultures containing either pET28MOD vector (lane 3) 

or pETUL38 (lane 4) were grown and induced (as described in Methods). 

1.5 ml of the culture supernatant was centrifuged at 14,000 r.p.m. for 30 

seconds. The supernatant was removed and the bacterial pellet was 

resuspended in 200pl of BM and heated for 2 minutes at 100°C in a dry 

block. 15 pi of each sample was analysed against purified C-capsids (lane 

2) and Rainbow markers (lane 1) by SDS-PAGE and stained with 

Coomassie Brilliant Blue. Arrow indicates the position of VP 19c as 

determined from the C-capsid profile (A). VP19cHis was purified from a 

1200ml culture of induced BL21 DE3 bacteria containing pETUL38 using 

700pl of Ni-NTA agarose equilibrated in sonication buffer (as described in 

Methods). VP19cHis was eluted from the agarose in 3x 1ml fractions of 

250mM imidazole in sonication buffer. Western blot analysis was 

performed to detect the presence of purified VP19cHis using a 

monoclonal Penta His antibody (Qiagen; 1:1000 dilution) which 

specifically recognises the 6x His epitope tag. Lane 1; induced BL21 DE3 

bacteria containing pETUL38. Lane 2; pETUL38 pellet fraction after 

lysis. Lane 3; pETUL38 supernatant fraction after lysis. Lane 4; 20pl of 

elution fraction 1 of Ni-NTA agarose purified VP19cHis. The position of 

VP 19c is indicated by an arrow. * indicates possible break down products 

of VP 19c.
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in detail in section 3.5. The 6xHis epitope tag is located on the N-terminus of the VP19c 

component of the heterotrimer protein complex. This means that VP19cHis will bind to 

Ni-NTA agarose but VP23 will not if affinity chromatography is carried out on denatured 

triplexes. Fig. 3.4.3 shows the elution profile of VP19cHis following treatment of the Ni- 

NTA agarose with 3M urea. 3M urea was sufficient to disassociate the majority of VP23 

from triplexes. However, some VP23 could still be detected by Coomassie staining 

indicating substantial but not complete disassociation of triplexes in 3M urea.

Purified VP19cHis was dialysed against buffer O to remove any residual urea and to allow 

the VP19cHis the opportunity to undergo refolding. Fig. 3.4.4 (panel A) shows the SDS- 

PAGE profile of purified VP19cHis before and after dialysis (lanes 2 and 3 respectively). 

In order to analyse the conformational effects of urea denaturation on the VP19cHis 

purified by this method, fluorescence spectroscopy was performed (as described in 

Methods). Fluorescence spectroscopy can be used to measurer the extent to which 

tryptophan side chains are buried within the interior of a protein molecule. Fig. 3.4.4 

(panel B) shows the intrinsic tryptophan fluorescence spectra of the dialysed VP19cHis 

sample following excitation at 295nm. An emission maximum (Amax) at approximately 

356nm corresponds to the intrinsic >max value associated with tryptophan residues within 

small model compounds that are exposed to the solvent. A shift in Amax towards 330nm 

indicates tryptophan residues which are buried or partially buried within the interior of a 

folded protein molecule (Freifelder 1982; Grimmel et al., 1983). The Amax obtained from 

the fluorescence profile for VP19cHis purified by denaturation of triplexes was around 

360nm. This indicates that the tryptophan residues were exposed to the solvent and 

suggests that the urea treatment used in the isolation procedure for VP19cHis, denatured 

the molecule and that dialysis alone was not sufficient to induce the refolding of 

VP19cHis. Fluorescence spectroscopy analysis carried out subsequently on VP19cHis 

purified from SF21 cells infected with Ac381 gave a Amax of around 330nm showing that 

VP19cHis can be purified as a folded molecule (discussed in section 3.6, fig. 3.6.2).
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Fig. 3.4.3: SDS-PAGE analysis o f VP19cHis isolated from Ni-NTA agarose

purified triplexes denatured in 3M urea.

300ml of SF21 cells ( l x l 0 6 cells/ml) were infected with the recombinant 

baculovirus Ac 18386 co-expressing the triplex proteins VP23 and VP19cFIis 

(as described in Methods). Triplexes were purified using 700pl o f  Ni-NTA 

agarose equilibrated in buffer O. The Ni-NTA agarose was washed with 5 ml 

o f  buffer O containing 15mM imidazole to remove weakly bound cellular 

proteins from the agarose resin. The Ni-NTA agarose and associated proteins 

were then resuspended in 5ml o f  buffer OU (buffer O containing 10% glycerol 

+ 3M urea) and incubated for 30 minutes at RT. The supernatant was removed 

and the Ni-NTA agarose washed with a further 5ml o f  buffer O. Proteins were 

eluted from the Ni-NTA agarose by stripping the Ni2+ atoms in 500pl o f  buffer 

O containing 250mM EDTA (pH8.0). 20pl of elution fractions 1-5 (lanes 3-7 

respectively) and 5pl of Ac 18386 infected SF21 cell supernatant (lane 1) were 

analysed by SDS-PAGE against Rainbow markers (lane 2) and stained with 

Coomassie Brilliant Blue. The positions of VP 19c and VP23 are indicated by 

the arrows.
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Fig. 3.4.4: SDS-PAGE and fluorescence spectroscopy analysis of Ni-NTA

agarose purified VP19cHis isolated from denatured triplexes in 3M urea

VP19cHis was purified in buffer O (as described in Methods and fig. 5.4.3). 

(A) SDS-PAGE analysis of VP 19c stripped from triplexes, before and after 

dialysis (lane 2 and 3 respectively). 20pl of each sample was analysed 

against Rainbow markers and stained with Coomassie Brilliant Blue. (B) 

Intrinsic tryptophan fluorescence profile of dialysed VP19cHis (0.1 mg/ml) 

in buffer O following excitation at 295nm. Trace was corrected for the 

effect of buffer by subtraction of a blank buffer control spectrum.



Results: 3.4

3.4.3 Purification of recombinantly expressed VP19cHis from SF21 cells 

infected with Ac381

Attempts were made throughout my PhD to purify VP19cHis by Ni-NTA agarose affinity 

chromatography using a variety of purification buffers. Generally these attempts proved 

unsuccessful until the phosphate based purification buffer (buffer O), which was found to 

stabilise the solubility of Ni-NTA agarose purified triplexes from SF21 cells infected with 

either Ac 1863 8 or Ac 183 86, was utilised in the purification of VP19cHis from SF21 cells 

infected with Ac381.

3.4.3.1 Cloning o f the UL38 ORF into pAcCL29-l

Cloning of the UL38 ORF into the baculovirus expression vector pAcCL29-l was carried 

out by A. McGregor. Briefly, the UL38 ORF was amplified by PCR using forward and 

reverse primers, which encoded the unique restriction sites BamHI and PstI respectively. 

PCR amplification removed sequences which encoded the 13 N-terminal amino acids of 

VP 19c and replaced them with sequences encoding amino acids which reconstituted the 

methionine start codon followed by Arg, Ser and 6x His residues. The PCR product was 

subcloned into the pAcCL29-l baculovirus transfer vector as a BamHI/PstI fragment. This 

transfer vector was then used to generate recombinant baculoviruses by co-transformation 

into SF21 cells with parental baculovirus (PAK6) DNA (as described in Methods). 

Recombinant viruses were isolated and used to generate virus stocks. Virus stock 1 

(Ac381) was selected for the production of high titre virus stocks which were used for the 

recombinant expression of VP19cHis. The pAcCL29381 transfer vector is schematically 

represented in fig. 3.4.5.

3.4.3.2 Expression and purification ofVP19cHis

Fig. 3.4.6 shows the SDS-PAGE protein profiles of SF21 cells infected with Acl8386 or 

Ac381 which express the same UL38His ORF. The level of VP19cHis expression within 

Ac381 infected SF cells is comparable to that of VP19cHis when co-expressed with VP23 

in Ac 18386 infected cells (fig. 3.4.6, lanes 3 and 2 respectively). Early attempts to purify
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Fig. 3.4.6: SDS-PAGE analysis o f SF21 cells infected with Ac381

60mm dishes containing approximately 70% confluent SF21 cells were infected 

at an m.o.i. o f 5 with either Ac 18386 (lane 2), Ac381 (lane 3), or mock infected 

(lane 4) (as described in Methods). 48 hours post infection SF21 cells were 

harvested (as described in Methods) and pelleted by centrifugation at 14,000 

r.p.m. for 5 minutes at RT. The supernatant was removed and the cell pellet 

resuspended in 200pl o f BM buffer and heated for 2 minutes at 100°C in a dry 

block. 5pil o f each sample and purified B-capsids (lane 5) were analysed by SDS- 

PAGE against Rainbow markers and stained with Coomassie Brilliant Blue. The 

positions o f VP 19c and VP23 are indicated by the arrows.



Results: 3.4

VP19cHis through Ni-NTA agarose chromatography resulted in low levels of recovery. 

Fig. 3.4.7 shows a typical SDS-PAGE profile of VP19cHis purified in buffer O (150mM 

Na2HPC>4 (pH7.5), 0.1% Octyl-p-glucoside, 0.1% glycerol). The recovery of VP19cHis 

was significantly improved when the cell lysis was carried out in buffer OL (buffer O 

containing 150mM NaCl and 0.05% NP40). Fig. 3.4.8 (panel A) shows the typical SDS- 

PAGE profile of VP19cHis purified from SF21 cells infected with Ac381 when buffer OL 

was utilised in cell lysis. The presence of NaCl and NP40 in buffer OL evidently increases 

the availability of VP19cHis to the Ni-NTA agarose resin compared to that of buffer O 

(fig.3.4.7). Although the mechanism by which buffer OL accomplishes this is unclear, the 

presence of NaCl or NP40 within the buffer may increase the efficiency of cell lysis or 

prevent the aggregation of VP 19c during purification. Using buffer OL during the lysis of 

SF21 cells infected with the Ac381 results in the co-purification of a 90kDa protein that 

typically elutes from the Ni-NTA resin in the first elution fraction (see fig. 3.4.8, lane3). 

Western blot analysis using a VP 19c polyclonal antibody (TrpE/VP19c fusion) 

demonstrates that the prominent 50kDa protein band is VP 19c and but failed to detect the 

co-purified 90kDa protein. Purification of VP19cHis often resulted in the co-purification 

of breakdown products of VP 19c. The presence of such breakdown products is 

highlighted in fig. 3.8.4 (panels B and C). A prominent 40kDa MW band is readily 

detected as well as smaller breakdown products (indicated by *). Western blot analysis 

using the Penta His monoclonal antibody (Qiagen) demonstrated that the major breakdown 

product was formed by the loss of the C-terminal portion of VP 19c as the N-terminal His 

tag was readily detected (fig. 3.4.8, panel C). It is interesting to note the presence of 

similar MW VP 19c related breakdown bands within purified B-capsids (fig. 3.4.8, panel B, 

lane 1). Other groups have also described the formation of C-terminally truncated VP 19c 

products (Newcomb et al., 1996; Spencer et al., 1998). This suggests that the C-terminal 

truncation described here is not a direct result of the incorporation of the 6x His epitope tag 

making VP19cHis susceptible to proteolytic cleavage. The inclusion of a cocktail of 

protease inhibitors (see Materials and Methods for details) during the purification of 

VP19cHis did not prevent the accumulation of the C-terminally truncated VP 19c 

molecules. This does not preclude the generation of the C-terminally truncated forms of 

VP 19c by proteolytic digestion. One of the disadvantage in utilising Ni-NTA agarose 

affinity chromatography is that metal chelators, such as EDTA or EGTA that can inhibit 

metalloproteases, cannot be used as they strip Ni2+ ions from the NTA matrix.
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Fig. 3.4.7: SDS-PAGE analysis o f VP19cHis purified in buffer O.

VP19cHis was purified from 300mls o f SF21 cells ( lx l  06 cells/ml) infected with 

Ac381at an m.o.i. o f 5. Cells were resuspended in buffer O (150mM Na2H P 0 4 

(pH7.5), 0.1% glycerol, 0.1% Octyl-P-glucoside ) + protease inhibitors and lysed by 

bath sonication (as described in Methods). VP19cFlis was purified using 500pl o f 

Ni-NTA agarose equilibrated in buffer O. The Ni-NTA agarose was washed in 2x 

10 ml o f buffer O before VP19cFIis was eluted in 3x 350pl fractions o f lOOmM 

imidazole in buffer O. 20pl of each elution fraction (lanes 2-4) was analysed by 

SDS-PAGE against Rainbow markers and stained with Coomassie Brilliant Blue. 

The arrow indicates the position o f VP19cHis.

VP19cHis
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Fig. 3.4.8: SDS-PAGE and Western blot analysis of Ni-NTA agarose purified

VP19cHis.

VP19cHis was purified from 300mls of SF21 cells (lxlO6 cells/ml) infected 

with Ac381 (as described in Methods and fig. 5.4.7). Cells were resuspended 

and lysed in buffer OL (buffer O containing 150mM NaCl and 0.1% NP40) + 

protease inhibitors (as described in Methods). Subsequent steps in VP19cHi$ 

purification were carried out in buffer O (as described in fig.5.4.7). VP19cHi$ 

was eluted from the Ni-NTA agarose in 350pl fractions of lOOmM imidazole 

in buffer O. 20pl of each elution fraction (lanes 2-6) was analysed by SDS- 

PAGE against Rainbow markers (lane 1) and stained with Coomassie Brilliant 

Blue (A). (B) Western blot analysis of purified VP19cHis (lane 2) and 

purified B-capsids (lane 1). The nitro-cellulose membrane was probed with a 

1:1000 dilution of a polyclonal UL38 antibody (TrpE/VP19c fusion). The 

position of VP19cHis is indicated by an arrow. (C) Western blot analysis of 

purified VP19cHis. The nitro-cellulose membrane was probed with 1:1000 

dilution of the monoclonal Penta His antibody (Qiagen) which specifically 

recognises the 6x His epitope tag. (*) indicates the position of prominent break 

down products of VP19cHis.



Results: 3.4

Attempts to remove the 90kDa protein which co-purified with VP19cHis by washing the 

Ni-NTA agarose with low concentrations of imidazole in buffer O failed since washing 

with imidazole at concentrations as low as 5mM resulted in the elution of both the 90kDa 

protein and VP19cHis (data not shown). The relatively weak binding of VP19cHis to the 

Ni-NTA agarose could possibly be attributed to the N-terminal 6x His tag being partially 

buried within the interior of the VP19cHis molecule and therefore not totally accessible to 

the Ni-NTA agarose. Biophysical experiments described in section 3.6 were performed on 

third and subsequent VP19cHis elution fractions that were checked for the presence of the 

contaminating 90kDa higher MW protein by SDS-PAGE and Coomassie Brilliant Blue 

staining before analysis.

3.4.4 Ni-NTA pull down assays

In order to determine if purified VP19cHis could interact in vitro with VP23, a pull down 

assay was developed. Lysates from SF21 cells infected individually with Ac381 or 

AcUL18 expressing VP19cHis and VP23 respectively were mixed together with Ni-NTA 

agarose and pelleted (as described in Methods). Fig. 3.4.9 (panel A) shows the SDS- 

PAGE analysis of a Ni-NTA pull down assay using VP19cHis as bait to fish VP23 from 

the appropriately infected SF21 cell lysate. A novel band of approximately 34kDa was 

purified from mixed Ac381 and AcUL18 infected cell lysates that was not present in Ni- 

NTA agarose pull downs of individually infected AcUL18 or Ac381 infected cell lysates. 

Western blot analysis using a polyclonal anti VP23 antibody (187) confirmed that this 

34kDa band corresponded to VP23 (fig. 3.4.9, panel C). It is interesting to note that the 

40kDa C-terminal truncated version of VP19cHis (described above) was more abundant in 

Ni-NTA pull downs from infected cell lysates which contained VP19cHis alone compared 

to those from lysates containing both VP23 and VP19cHis (fig. 3.4.9, lanes 6 and 7 

respectively). This would suggest that VP23 may be able to protect full length VP19cHis 

from protease digestion. This result also confirms that the 13 amino acid residues deleted 

from the N-terminus of VP 19c during the construction of VP19cHis are not required for 

interaction with VP23 and that the 6x His epitope tag on the N-terminus of VP 19c does not 

inhibit this interaction.
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Fig. 3.4.9: SDS-PAGE and Western blot analysis of Ni-NTA agarose

VP19cHis pull down of VP23.

Pellets from 60mm plates of SF cells infected singly with either AcUL18 

(VP23) or Ac381 (VP19cHis) (as described in Methods) were resuspended 

in 150pl of buffer O containing lOOmM NaCl and 1% NP40. After 

incubating on ice for 15 minutes with intermittent vortexing they were 

clarified by ultracentrifugation at 35,000 r.p.m. for 10 minutes. 200pl of 

each extract was mixed or an additional 200pil of buffer O was added before 

being incubated for 1 hour at 28°C (as described in Methods). 30pl of Ni- 

NTA agarose equilibrated in buffer O was added to each sample and 

incubated for an additional 15 minutes at RT with intermittent vortexing. 

The Ni-NTA agarose was pelleted and washed (as described in Methods), 

resuspended in 30pl of BM loading buffer containing 250mM imidazole and 

heated for 10 minutes in a dry block at 100°C. 15pi of each sample was 

used for SDS-PAGE analysis or Western blotting. (A) SDS-PAGE analysis 

of cell lysates containing VP23 (lane 1), VP19cHis (lane 2), or mixed cell 

lysates containing VP23 and VP19cHis (lane 3). Ni-NTA pull downs were 

carried out on lysates containing either VP23 (lane 5) or VP19cHis (lane 6) 

or following mixing of VP23 and VP19cHis (lane 7). 5pl of cell lysate was 

analysed by SDS-PAGE against purified B-capsids (lane 4) and Rainbow 

markers (lane 8). Proteins were visualised by Coomassie Brilliant Blue 

staining. (B and C) Western blot analysis of purified B capsids (lane 1) and 

15pl of samples from the Ni-NTA pull down assay. Ni-NTA pull downs 

were carried out on lysates containing either VP23 (lane 2) or VP19cHis 

(lane3), or following mixing of VP23 and VP19cHis (lane 4). (B) Nitro

cellulose membrane was probed with a 1:1000 dilution of the polyclonal 

VP 19c antibody (TrpE/VP19c fusion). (C) Nitro-cellulose membrane probed 

with a 1:1000 dilution of the polyclonal VP23 antibody (187). Arrows 

indicate the positions of VP19cHis and VP23.



Results: 3.4

3.4.4.1 Characterisation o f  in vitro triplex formation

The in vitro pull down assay (described above) was used to analyse the association of 

VP19cHis and VP23 in the presence of high concentrations of NaCl. High NaCl 

concentrations have been reported to disrupt capsid protein interactions in other viruses. 

Parker and Prevelige (1998) demonstrated that procapsid assembly of P22 could be 

inhibited by 1M NaCl. They went onto demonstrate that this inhibition was specifically 

due to the disruption of electrostatic interactions between the C-terminus of the scaffold 

molecule and the coat protein of P22. Similarly, Fox et al., (1997) characterised the 

isolation of a mutant of cowpea chlorotic mottle virus (CCMV, K42R) which produced 

virions that were more stable in high NaCl concentrations than WT CCMV virions which 

disassembled in 1M NaCl. Preliminary experiments in our laboratory demonstrated that 

HSV-1 capsid assembly could also be inhibited by 1M NaCl thereby suggesting the 

involvement of electrostatic interactions between capsid proteins during capsid assembly. 

In order to examine whether or not the interaction between VP23 and VP 19c was affected, 

an Ni-NTA pull down assay was performed in the presence and absence of 1M NaCl (fig. 

3.4.10). This showed that VP23 could be co-purified with VP19cHis when lysates from 

SF21 cells individually infected with AcUL18 and Ac381 were mixed in the presence of 

1M NaCl (fig. 3.4.10, lanes 4 and 5 respectively). This result suggests that VP19cHis and 

VP23 do not interact primarily through electrostatic interactions.

Newcomb et al., (1996) and Rixon and McNab (1999) demonstrated that HSV-1 

procapsids disassemble at temperatures of 0°C (discussed further within the introduction of 

this thesis, section 1.9). It was therefore decided to examine the association of VP19cHis

and VP23 at 0°C. Fig. 3.4.11 shows the protein profiles of Ni-NTA agarose pull downs 

carried out on extracts of VP23 and VP19cHis incubated for 1 hour at 28°C or at 0°C. Co

purification of VP23 with VP19cHis was greatly reduced at 0°C (fig. 3.4.11, panel A, lane 

5) compared to 28°C (fig. 3.4.11, panel A, lane 4). However, Western blot analysis using

the polyclonal VP23 antibody 187 did detect VP23 in the 0°C sample (fig. 3.4.11, panel B, 

lane 5). This suggests that the association of VP19cHis with VP23 is partially inhibited at

0°C. It is interesting to note that once triplexes have formed they are not destabilised by 

incubation at 0°C (fig.3.4.11, panel C). Therefore, although the association of VP19cHis
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Fig. 3.4.10: SDS-PAGE analysis o f VP19cHis/VP23 interaction in the 

presence or absence o f 1M NaCl.

Ni-NTA agarose pull downs were performed (essentially as described in 

Methods and fig. 5.4.9) with 1M NaCl present in (lanes 2, 3, and 4) or 

absent (lane 5) all purification buffers. 15pl o f each sample was 

analysed by SDS-PAGE against purified B-capsids (lane 1) and stained 

with Coomassie Brilliant Blue. SF cells were infected singly with 

either AcUL 18 (VP23) or Ac381 (VP19cHis). Ni-NTA pull downs were 

carried out on lysates containing either VP23 (lane2) or VP19cHis (lane 

3) or following mixing o f VP23 and VP19cFlis (lanes 4 and 5). Arrows 

indicate the positions o f VP 19c and VP23
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Fig. 3.4.11: SDS-PAGE analysis of VP19cHis/VP23 interaction at 0°C.

Ni-NTA pull downs were performed essentially as described in Methods 

and fig. 5.4.9. Incubations were either carried out at 0°C on ice (lane 5) or 

28°C (lanes 2, 3, and 4) for 1 hour. For reactions carried out at 0°C all 

buffers were prechilled before use with clarification and washing stages 

performed at 4°C. 15pi of each sample was analysed by SDS-PAGE 

against purified B-capsids (lane 1) and stained with Coomassie Brilliant 

Blue (A). SF cells were infected singly with either AcUL18 (VP23) or 

Ac381 (VP19cHis). Ni-NTA pull downs were carried out on lysates 

containing either VP23 (lane2) or VP19cHis (lane 3) or following mixing 

of VP23 and VP19cHis (lanes 4 and 5) at the appropriate temperatures. 

(B) Western blot analysis of Ni-NTA pull downs carried out at 0°C or 

28°C. Samples were analysed by SDS-PAGE (as described for A) and 

transferred to a nitro-cellulose membrane. The membrane was probed 

with a 1:1000 dilution of the polyclonal VP23 antibody (187). (C) SDS- 

PAGE analysis of Ni-NTA purified triplexes carried out at 28°C (lane 2) 

or 0°C (lane 3). SF cells were infected with Ac 18386 co-expressing 

VP19cHis and VP23. Ni-NTA triplex purifications were carried out at 

28°C or 0°C and analysed by SDS-PAGE against purified B-capsids and 

stained with Coomassie Brilliant Blue. The positions of VP 19c and VP23 

are indicated by the arrows.



Results: 3.4

and VP23 may be less efficient at 0°C, the intact triplexes are not cold labile, in as much

that they do not disassemble at 0°C. It is unlikely therefore, that this accounts for the 

thermolability of the procapsid.

3.4.5 Size exclusion chromatography of VP19cHis

In order to determine an accurate native MW, size exclusion chromatography was carried 

out on purified VP19cHis utilising a 25ml (1 by 30 cm) Superose 12 gel filtration column 

(Pharmacia), as described in Methods. Fig. 3.4.12 (panel A) shows the elution profile of 

VP19cHis analysed in buffer O. No distinct elution peak could be detected. SDS-PAGE 

analysis confirmed that the material loaded onto the column contained purified VP19cHis 

(fig. 3.4.12, panel B, lane 1). The small peak (indicated by an arrow in fig. 3.4.12, panel 

A) was collected and TCA precipitated (as described in Methods). SDS-PAGE analysis of 

this peak demonstrated that it corresponded to VP19cHis (fig. 3.4.12, panel B, lane 3). 

However, the amount of VP 19c in this peak was far less than the amount injected onto the 

column for analysis. The poor recovery of VP19cHis may be due to non-specific binding 

to the Superose or formation of aggregates which could not pass through in situ filters 

before entering the column. However, purified VP19cHis was clarified by 

ultracentrifugation before size exclusion chromatography analysis to remove insoluble 

aggregated material and no detectable precipitate was recovered. Numerous attempts were 

made to determine the native MW for VP19cHis by size exclusion chromatography 

including the addition of 150mM NaCl to the purification and column buffers to minimise 

non-specific binding to the Superose (as recommended by the manufacturer’s guidelines). 

However, all attempts failed to generate a reproducible elution spectrum for VP19cHis. 

Indeed, consecutive attempts to size purified VP19cHis in buffer O resulted in an increase 

of column pressure above the limits recommended by the manufacturer. Since VP19cHis 

is reasonably stable in buffer O and shows good solubility over the time periods required 

for size exclusion chromatography analysis, these results suggest that VP19cHis is non- 

specifically binding to the Superose.

In order to determine if the cysteine residues within VP 19c were forming random 

intermolecular disulphide bonds which could be responsible for generating protein
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Fig. 3.4.12: Size exclusion chromatography and SDS-PAGE

analysis of Ni-NTA agarose purified VP19cHis in buffer O.

VP19cHis was purified in buffer O from 300ml of SF cells (lxlO6 

cells/ml) infected with Ac381 (as described in Methods and in fig. 

5.4.7). Elution fractions 1-4 were combined (total concentration of 

0.3mg/ml), and analysed on a 25 ml (1 by 30 cm) Superose 12 gel 

filtration column (Pharmacia) using a 1 ml injection superloop (as 

described in Methods). (A) Size exclusion chromatography 

profile for VP19cHis purified and analysed in buffer O. The 

fractions containing the peak marked with the arrow were TCA 

precipitated and the protein pellet was resuspended in 20pl of BM.

(B) 20pl of purified VP19cHis combined elution fractions 1-4 

(lane 1) and 20pl of the TCA precipitated size exclusion 

chromatography peak elution fraction (lane 3) were analysed by 

SDS-PAGE against purified B-capsids (lane 2) and stained with 

Coomassie Brilliant Blue.
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Fig. 3.4.13: SDS-PAGE analysis Ni-NTA agarose purified VP19cHis in 

the presence or absence o f 20mM P-mercaptoethanol.

VP19cHis was purified from 300mls o f SF21 cells ( lx lO6 cells/ml) 

infected with Ac381 (as described in Methods and fig. 5.4.7). 20pl of 

elution fraction 1 (lane 2) was analysed by SDS-PAGE and Coomassie 

Brilliant Blue staining in the presence (+) or absence (-) o f 20mM  p- 

mercaptoethanol. Purified B capsids (lane 1) were analysed in the 

presence or absence o f 20mM p-mercaptoethanol for comparison.



Results: 3.4

aggregates and thereby preventing effective sizing, SDS-PAGE analysis was performed on 

purified VP19cHis in the presence and absence of p-mercaptoethanol (fig. 3.4.13). No 

VP19cHis oligomers were detected in the absence of P-mercaptoethanol suggesting that 

inter-molecular disulphide bonds were not formed. VP19cHis also appeared to behave in a 

similar manner to VP 19c from purified B-capsids during SDS-PAGE analysis in the 

absence of reducing agents (fig. 3.4.13, lanes 1 and 2, no P-mercaptoethanol).

3.4.6 Sucrose gradient sedimentation

Sucrose gradient sedimentation was employed to analyse the native MW of purified 

VP19cHis in buffer O. Purified VP19cHis was co-sedimented with the protein standard, 

BSA (66kDa) through a 5ml 5-25% sucrose gradient made in buffer O and 150pl fractions 

were collected (as described in Methods). The fraction distribution of VP19cHis was 

determined by Western blot analysis of every third fraction (data not shown). Fig. 3.4.14 

(panel A) shows the SDS-PAGE analysis of fractions 17 to 28, out of a total of 35 

fractions, collected from the gradient. The relative intensities were calculated for each 

fraction for both VP19cHis and BSA and plotted as a percentage (%) change in volume 

intensity against the appropriate fraction number for each individual protein profile (fig.

3.4.14, panel B). BSA was detected over a number of fractions with the peak intensity 

corresponding to fraction 20. VP19cHis sedimented through the gradient as a single 

species which had a peak intensity in fraction 24. Therefore, VP19cHis demonstrated a 

four fraction shift in peak intensity compared to BSA. As fractions were collected from 

the bottom of the gradient this indicates that VP19cHis has a lower MW than BSA 

(66kDa). This would suggest that the native MW for VP19cHis cannot be significantly 

different from the predicted 50kDa MW derived amino acid sequence (McGeoch et al., 

1988). On this basis, purified VP19cHis is likely to be in the form of a monomer of 

approximately 50kDa rather than a dimer (lOOkDa) or larger complex.

3.4.6.1 in vitro formation o f triplexes from purified proteins

In order to determine whether purified VP19cHis and purified bacterially expressed 

VP23His could form triplexes in vitro, the proteins were mixed and analysed by sucrose
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Fig. 3.4.14: Sucrose gradient sedimentation and SDS-PAGE analysis

of Ni-NTA purified VP19cHis in buffer O.

VP19cHis was purified in buffer O from 300mls of SF cells (lxlO6 

cells/ml) infected with Ac381 (as described in Methods and fig. 5.4.7). 

300pl of purified VP19cHis from elution fraction 1 and 50pl BSA 

(5mg/ml) resuspended in buffer O were mixed and sedimented together 

on a 5ml 5-25% sucrose gradient at 40,000 r.p.m. for 16 hours at 4°C in 

a AH650 rotor and fractions collected (as described in Methods). (A) 

20pl of fractions 17-28 (lanes 2-13 respectively) were analysed by 

SDS-PAGE against Rainbow markers (lane 1) and stained with 

Coomassie Brilliant Blue. The positions of BSA and VP19cHis are 

indicated by the appropriate arrows. The relative intensity of the 

Coomassie stained bands was calculated individually for both 

VP19cHis and BSA protein profiles using Quantity ONE software 

(Bio-Rad) as described in Methods. The data for VP19cHis and BSA 

was plotted as percentage (%) change in volume intensity for each 

individual protein profile against their eluted fraction number (B). The 

peak fraction for VP19cHis is indicated by an arrow.



Results: 3.4

gradient sedimentation in buffer O. Purified VP23His was added in excess to encourage 

all VP19cHis molecules to participate in triplex formation. Therefore, VP23His and 

VP19cHis were mixed in a 3:1 ratio and incubated for 1 hour at 28°C to allow the 

formation of triplexes to occur. The samples were subsequently sedimented together with 

the internal protein standard BSA (66kDa) through a 5ml 5-25% sucrose gradient made in 

buffer O and 150pl fractions were collected (as described in Methods). Fig. 3.4.15 (panel 

A) shows the SDS-PAGE profile of BSA for fractions 17-28 collected from the gradient. 

Western blot analysis was performed on the same fractions using the Penta His monoclonal 

antibody (Qiagen) which specifically recognises the 6xHis epitope tags on VP23His and 

VP19cHis. Fig. 3.4.15 (panel B) shows the Western blot analysis of fractions 17-28. Both 

VP23His and VP19cHis sedimented profiles are visible. The relative intensities of each 

fraction were calculated for both VP19cHis and BSA and plotted as a percentage (%) 

change in volume intensity against the appropriate fraction number (fig. 3.4.13, panel B). 

When mixed with VP23His, VP19cHis was found throughout a large proportion of the 

gradient. The peak intensity was in fraction 18, which in contrast to VP19cHis alone (fig.

3.4.14, panel B), is further down the gradient than the BSA peak fractions (fractions 21- 

22). The position of this peak with respect to the BSA standard is similar to that of 

purified triplexes (fig. 3.5.16) and suggests that the purified VP19cHis and VP23His are 

able to interact to form heterotrimeric complexes in the absence of other capsid proteins. It 

is interesting to note that two additional peaks could be detected (arrows b and c 

respectively in fig. 3.4.15). Peak b could correspond to VP19cHis interacting with a single 

copy of VP23His generating a protein complex which sediments further through the 

gradient then BSA. Peak c probably corresponds to uncomplexed VP19cHis as its 

positions on the gradient is similar to that of purified VP19cHis when sedimented without 

VP23. The fact that some of VP19cHis remained uncomplexed, in the presence of excess 

VP23His, suggests that either the interaction between VP23 and VP 19c is in an 

equilibrium or that the interaction in vitro is not particularly efficient. Size exclusion 

chromatography of triplexes purified from SF21 cells infected with Ac 183 86 and analysed 

in buffer O (section 3.5, fig. 3.5.15, panel A) suggests that triplexes do not exist in 

equilibrium with their constituent proteins. This would seem to suggest therefore either 

that a proportion of VP19cHis maybe mis-folded and unable to interact with VP23His, or 

that, the association of purified VP19cHis and VP23His in vitro may require additional 

factors, such as chaperones, for efficient complex formation.
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Fig. 3.4.15: Sucrose gradient sedimentation and SDS-PAGE/Westem blot analysis

of Ni-NTA purified VP19cHis and VP23His in buffer O.

VP19cHis and bacterially expressed VP23His were purified in buffer O (as 

described in Methods and figs. 5.4.7). VP23His and VP19cHis were mixed in a 

3:1 ratio to a final volume of 300pl and incubated for 1 hour at 28°C. 50pl of BSA 

(5mg/ml resuspended in buffer O) was then added to the VP23His/VP19cHis 

mixture, which was sedimented on a 5ml 5-25% sucrose gradient at 40,000 r.p.m. 

for 16 hours at 4°C in a AH650 rotor and fractions collected (as described in 

Methods). (A) SDS-PAGE profile of fractions 17-28 (lanes 1-12 respectively) 

stained for BSA with Coomassie Brilliant Blue (20pl/fraction analysed). (B) 

Western blot analysis of fractions 17-28 (lanes 1-12 respectively) probed with a 

monoclonal Penta His antibody (at a 1:1000 dilution, Qiagen) which specifically 

recognises the 6xHis epitope tag on VP23His and VP19cHis. The position of 

BSA, VP19cHis and VP23His are indicated by the appropriate arrow. The relative 

intensities of the Coomassie stained protein profile for BSA and of the VP19cHis 

detected by Western blot was calculated individually using Quantity ONE 

software (Bio-Rad) as described in Methods. The data for VP19cHis and BSA 

profiles was plotted as percentage (%) change in volume intensity for each 

individual protein profile against their eluted fraction number (B). The peak 

intensities for VP19cHis are indicated by arrows a-c.
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3.4.7 Conclusions

Recombinantly expressed VP19cHis has consistently proven to be difficult to purify 

utilising Ni-NTA agarose affinity chromatography from either bacterial or baculovirus 

expression systems. Newcomb described similar difficulties when attempting to purify 

untagged VP 19c from insect cells (personal communication, Newcomb, 1998). The reason 

why VP 19c is difficult to purify is unclear but sensitivity to proteolytic digestion and poor 

solubility seem to be consistent factors. Published observations by Spencer et al., (1998) 

and Newcomb et al., (1996) demonstrated by SDS-PAGE and Western blot analysis, that 

purified VP 19c samples consistently contained a smaller product. This is probably due to 

proteolytic digestion of VP 19c as opposed to poor translation of the UL38 ORF since a 

similar sized form of VP 19c can be found within purified capsids (fig. 3.4.8, panel B). The 

same UL38 ORF when present in both Ac381 and Ac 18386 results in similar levels of 

recombinant expression of VP19cHis. Despite this it is much easier to purify triplexes 

than isolate VP 19c. This suggests that VP23 may stabilise recombinantly expressed 

VP19cHis. In part this seems to be due to the reduction of proteolytic digestion by 

endogenous protease’s since less of the 40kDa breakdown product is seen when VP23 

present. However, another major factor appears to be the increased solubility of triplexes 

compared to VP 19c.

Chowdhury and Batterson (1994) fused small segments of VP 19c to p-galactosidase and 

demonstrated that two domains (amino acid residues 1-30 and 302-327) could translocate 

P-galactosidase to the nucleus of Vero cells. Analysis of the amino acid sequence between 

residues 1-30 of VP 19c identified a sequence homology to a small canonical sequence 

responsible for transporting proteins to the endoplasmic reticulum (ER). From this and 

immunofluorescence data the authors concluded that VP 19c was transported from the 

perinuclear space into the nucleus via the inner nuclear membrane and therefore bypassed 

the nuclear pore complex. If this is correct it could provide an explanation of why 

VP19cHis is difficult to purify, since VP 19c might be aggregating at membrane sites 

within or around the nucleus and therefore become immobilised and prevented from 

entering the soluble fraction of cell lysates used during Ni-NTA agarose affinity 

purification. However, it should be noted that this would be an unprecedented route for 

transport to the nucleus and seems especially unlikely as VP 19c is also partly responsible
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for the selective nuclear localisation of VP5 and VP23 (Nicholson et al., 1994; Rixon et 

al., 1996). An alternative explanation of Chowdhury and Batterson’s results could be due 

to the instability and mis-folding of over expressed VP 19c within Vero cells. The ER 

lumen has been shown to be the site at which mis-folded or unfolded proteins are directed 

for corrective folding by the ‘unfolded protein response’ (UPR) pathway. Here, ER- 

resident proteins, such as heat shock chaperone proteins, assist the refolding of proteins, or 

induce the specific degradation of incorrectly folded proteins thereby removing them from 

the cell (reviewed by Hampton, 2000). As VP 19c appears to be less stable in the absence 

of other capsid proteins, in particular VP23, over expressed VP 19c may become mis- 

folded and as a consequence become directed to the ER for refolding. Such mis-folding 

could itself contribute to the difficulty in purifying VP19cHis in the absence of VP23.

Immunofluorescence studies performed by Ward et al., (1996) and de Bruyn Kops et al., 

(1998) have also demonstrated that VP 19c can localise to specific sites within the nucleus 

near the nuclear membrane where capsid assembly is thought to take place. The presence 

of NP40 and NaCl in buffer OL, compared to buffer O, may therefore be sufficient to 

disassociate or disrupt any VP 19c associated with membrane structures, for example mis- 

folded VP 19c within the ER or nuclear membranes. Alternatively, the presence of NaCl or 

NP40 within buffer OL may be sufficient to disassociate any aggregated complexes of 

VP19cHis and/or increase the solubility of VP19cHis during Ni-NTA agarose purification. 

The cloning strategy for VP19cHis involved the deletion of the N-terminal 13 amino acids 

of VP 19c. Removing these residues and incorporating the 6x His tag in their place did not 

affect the protein’s ability to interact with VP23 in vitro as demonstrated by Ni-NTA pull 

downs (fig. 3.4.9). Nor did it prevent the formation of triplexes that could be purified by 

Ni-NTA agarose affinity chromatography (fig. 3.4.11, panel C). This indicates that the N- 

terminus of VP 19c is not essential for the interaction with VP23 and is not deeply buried 

within the interior of the protein molecule. These findings are supported by deletion 

mutagenesis performed by Spencer et al., (1998) who demonstrated that the N-terminal 45 

amino acids were not required for VP 19c to participate effectively in the production of 

capsids in vivo.

The isolation of VP19cHis from purified triplexes by denaturation in urea yields 

interesting structural data. Newcomb et al., (1993) tested the resistance of purified B-
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capsids to denaturation by both urea and GdnHCl. Using SDS-PAGE and cryo-EM 

analysis they could not detect any significant structural changes in B-capsids when 

analysed in the presence of 3M urea. However, treating capsids with 6M urea resulted in 

the loss of the pentons and the triplexes Ta and Tc. Urea denaturation experiments 

performed during my project on recombinantly purified triplexes to isolate VP19cHis, 

demonstrated that VP23 and VP 19c disassociated when they were incubated in the 

presence of 3M urea for 30 minutes at RT (fig. 3.4.3). This suggests that the extra stability 

of the triplex to urea induced denaturation in the context of the capsid may come from 

contacts formed between the triplex and VP5 from surrounding capsomers. Such contacts 

may enforce a greater stability upon the triplex and therefore increase the resistance of the 

triplex to denaturation. Denaturation of triplexes is discussed in further detail in section 

3.6.

It is interesting to note that VP19cHis isolated by urea denaturation of triplexes remained 

unfolded even when dialysed to remove residual urea, as shown by the intrinsic tryptophan 

fluorescence spectra (fig. 3.4.4). This implies that the 50kDa VP 19c molecule is unable to 

refold by itself in vitro.

Although no reproducible data could be obtained from size exclusion chromatography 

analysis of purified VP19cHis, the native MW could be estimated from sucrose gradient 

sedimentation analysis. This suggests that VP19cHis was purified as a monomer with a 

native MW smaller than that of the 66kDa internal protein standard, BSA (fig. 3.4.14, 

panel B). This is in agreement with published GdnHCl denaturation experiments on HSV- 

1 B-capsids (Newcomb et al., 1993). From these experiments Newcomb and co-workers 

proposed that the triplexes are composed of a single copy of VP 19c and two copies of 

VP23. More recently, Spencer et al., (1998) demonstrated through sucrose gradient 

sedimentation analysis of baculovirus infected SF9 extracts that contained VP 19c and 

VP23 that in vivo formed triplexes had a native MW greater than that of BSA. The 

calculated sedimentation co-efficient was consistent with the formation of a heterotrimer 

complex composed of one copy of VP 19c and two copies of VP23. Data presented within 

this chapter utilising similar sucrose gradient sedimentation analyses upon complexes 

formed from purified VP23His and VP19cHis showed that these two proteins could indeed 

form triplexes in the absence of other capsid and cellular proteins (fig.3.4.15, panel B).
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However, the interaction did not appear particularly efficient with two secondary peaks 

being detected (fig. 3.4.15, panel B, peaks b and c). Newcomb et al., (1999) reported that 

capsids could be formed from individually purified capsid components. However, they 

used pre-assembled purified triplexes and their conclusion, that capsids could be formed in 

the absence of other cellular proteins, in particular chaperone proteins, cannot be applied to 

the formation of triplexes. The results presented within this thesis do suggest that cellular 

proteins are not required for triplex formation and the low efficiency of the process in this 

case may simply reflect the conditions under which the experiments were performed. For 

example, the use of detergents within the purification protocol may hinder possible 

hydrophobic interactions that are required for triplex formation. Alternatively, since 

sucrose has also been shown to disassemble procapsids (Newcomb et al., 1999), some of 

the triplexes which had not completely folded into a stable conformation may have 

disassembled during sucrose sedimentation analysis. Furthermore, Ni-NTA pull downs 

have shown that triplex formation is partially inhibited at 0°C (fig. 3.4.11). This raises the 

possibility that complexes, which are not conformationally stable, may disassemble during 

the 4°C sedimentation analysis. The complexities of triplex formation are discussed in 

subsequent chapters within this thesis.

3.4.7.1 Future work

Further investigation of the conditions for purifying of VP19cHis may be required in order 

to purify it at high enough concentrations to perform comprehensive biophysical 

characterisation experiments (discussed within section 3.6). It would also be interesting to 

characterise the 90kDa MW band which co-purified with VP19cHis using Ni-NTA agarose 

affinity chromatography (fig. 3.4.8, panel A). Since this band was not detected by Western 

blotting with a polyclonal VP 19c antibody it is unlikely to represent an 

oligomeric/aggregated form of purified VP19cHis which is resistant to SDS denaturation. 

It would be interesting therefore to determine whether or not this 90kDa protein interacts 

specifically with VP19cHis.
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3.5 Characterisation of the HSV-1 triplex

Triplexes can be stripped from purified capsids, in particular the triplexes Ta and Tc, in low 

concentrations of GdnHCl (Newcomb et al., 1991; Newcomb et al., 1993). It was 

considered unlikely that this technique would provide sufficient quantities of material in a 

suitable condition for subsequent analyses following purification. Therefore, attempts 

were made to co-express triplex proteins utilising both prokaryotic and eukaryotic 

expression systems.

3.5.1 Construction and expression of pETUL1838.

Recombinant expression of the single triplex protein VP19cHis within induced BL21 DE3 

bacteria was very poor (previously described in section 3.4). In an attempt to increase the 

protein production and/or stability of VP19cHis within bacteria it was decided to co

express both VP23His and VP19cHis from the same expression vector.

3.5.1.1 Cloning o f the 6xHis tagged UL18 ORF into pETUL38.

As the cloning strategy required the use of a methylation sensitive Xbal restriction site at 

the 3’ end of the UL18 ORF, pETUL18 was electroporated into GM48 (DAM-) bacteria 

and unmethylated pETUL18 DNA was isolated (as described in Methods). The UL18 

ORF, including sequences encoding the 6xHis epitope tag, was subcloned out of pETUL18 

as an Xbal fragment and ligated into Xbal digested and CIP treated pETUL38 to generate 

pETUL1838. The strategy for cloning the UL18 ORF into pETUL38 is illustrated 

schematically in fig. 3.5.1.

3.5.1.2 Expression o f triplex proteins VP23His and VP19cHis in BL21 DE3 bacteria.

BL21 DE3 bacteria were electroporated in the presence of approximately lpg of 

pETUL1838 or pET28MOD DNA and colonies were isolated from a L-broth agar plate 

containing kanamycin (50mg/ml). Single colonies were grown and induced (as described
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Fig. 3.5.2: SDS-PAGE analysis o f pETUL1838 expression in BL21

DE3 bacteria.

BL21 DE3 bacterial cultures containing either pET28MOD (lane 2) or 

pETUL 1838 (lane 3) were grown and induced (as described in 

Methods). 1.5 ml o f the culture was centrifuged at 14,000 r.p.m. for 30 

seconds in a microfuge. The supernatant was removed and the bacterial 

pellet was resuspended in 200pl o f BM and heated for 2 minutes at 

100°C in a dry block. 15pl o f each sample was analysed against purified 

C-capsids (lane 1) by SDS-PAGE and stained with Coomassie Brilliant 

Blue. The presence o f novel bands is indicated by arrows.
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Fig. 3.5.3: Western blot analysis of pETUL 18 and pETUL 1838

expression in BL21 DE3 bacteria.

BL21 DE3 bacterial cultures containing either pETUL 18 (lane 1) or 

pETUL1838 (lane 3) were grown and induced (as described in 

Methods). 1.5 ml of the culture was centrifuged at 14,000 r.p.m. for 30 

seconds in a microfuge. The supernatant was removed and the 

bacterial pellet was resuspended in 200pl of BM and heated for 2 

minutes at 100°C in a dry block. Western blot analysis was performed 

on 40pl of each sample and purified C-capsids (lane 2). (A) 

Nitrocellulose membrane was probed with 1:1000 dilution of the Penta 

His monoclonal antibody (Qiagen). (B) Nitrocellulose membrane was 

stripped (as described in Methods) and re-probed with a 1:1000 dilution 

of the polyclonal VP23 antibody 187. The arrow indicates the position 

of VP23His.
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in Methods) and analysed for the expression of VP19cHis and VP23His by SDS-PAGE 

and Coomassie Brilliant Blue staining. Fig. 3.5.2 shows the comparative protein profile of 

induced BL21 DE3 bacteria containing either the pETUL 183 8 or pET28MOD bacterial 

expression vectors. Two bands could be detected by Coomassie Brilliant Blue staining in 

the pETUL 1838 sample that were not present in the pET28MOD sample (indicated by a 

(+) in fig. 3.5.2). These bands migrated with a MW just higher than that of VP23 and 

VP 19c from purified C-capsids (indicated by arrows in fig. 3.5.2) and reflects the addition 

of extra sequences on their respective N-termini. Western blot analysis utilising a 

commercial Penta His monoclonal antibody (Qiagen) detected the presence of two protein 

bands in bacterial extracts expressing pETUL1838 (fig.3.5.3, panel A, lane 3). In 

comparison, only a single band could be detected within bacterial extracts expressing 

pETUL18 (fig.3.5.3, panel A, lane 1). Western blot analysis utilising a polyclonal VP23 

antibody (187) confirmed this lower MW band within the pETUL 183 8 sample was 

VP23His (fig.3.5.3, panel B, lane 3). This data therefore confirms that the successful 

cloning and expression of the UL18 ORF within the pETUL 1838 expression vector. 

However, due to the lack of a specific antibody against VP 19c it was not possible at this 

time to determine whether or not the higher MW band detected by the monoclonal Penta 

HIS antibody corresponded to the bacterial expression of VP19cHis. Nevertheless, the 

estimated MW of 50kDa and the co-migration with VP 19c from purified C-capsids 

supported the case for this being VP19cHis.

3.5.1.3 Ni-NTA agarose purification o f VP23His and VP19cHis from induced BL21 DE3 

bacteria expressingpETUL1838.

Various attempts were made to purify the bacterially expressed triplex proteins utilising 

different buffers (data not shown). However, in each case only VP23His could be purified 

by Ni-NTA agarose affinity chromatography with little or no purification of VP19cHis 

detectable by Coomassie Brilliant Blue staining. Fig. 3.5.4 shows a typical SDS-PAGE 

profile of Ni-NTA purified triplex proteins in PBSa. No VP19cHis could be observed in 

either the 20mM imidazole washes (lanes 1 and 2) or 250mM imidazole elution fractions 1 

and 2 (lanes 4 and 5). In subsequent experiments attempts were made to purify triplex 

proteins without washing the Ni-NTA agarose in 20mM imidazole to ensure that 

VP19cHis was not eluted from the Ni-NTA resin in low concentrations of imidazole.
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Fig. 3.5.4: SDS-PAGE analysis o f Ni-NTA agarose purified bacterially 

expressed triplex proteins (VP23His+VP19cHis).

BL21 DE3 bacteria cultures containing the pETUL1838 were grown and 

induced (as described in Methods). Proteins purified using 700pl o f Ni- 

NTA agarose equilibrated in PBSa. The Ni-NTA agarose was washed in 

10ml (lOx 1ml) o f 20mM imidazole in PBSa to remove non-specifically 

bound proteins from the Ni-NTA matrix. Samples were eluted from the 

Ni-NTA agarose in 3ml (3x lm l fractions) o f 250mM imidazole in PBSa. 

20pl o f the 20mM imidazole wash fractions 1 and 2 (lanes 1 and 2 

respectively) and 20pl o f the 250mM elution fractions 1 and 2 (lanes 4 

and 5 respectively) were analysed by SDS-PAGE and stained with 

Coomassie Brilliant Blue. Eluted Ni-NTA agarose proteins were 

analysed against purified B-capsids (lane 3).
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However, in all cases SDS-PAGE analysis and Coomassie Brilliant Blue staining failed to 

reveal the presence of a 50kDa protein band corresponding to VP19cHis (data not shown).

Previous Western blot analysis utilising the monoclonal Penta His antibody (Qiagen) did 

not detected the presence of a 50kDa MW protein in bacterial extracts expressing 

pETUL38 (discussed in section 3.4). Therefore, the detection of a 50kDa band in bacterial 

extracts expressing the pETUL1838 seems to imply that the expression and/or stability of 

this 50kDa protein is enhanced when co-expressed in the presence of VP23His. This 

resembles the stabilisation of VP19cHis by VP23 seen in the recombinant baculovirus 

expression (discussed below). The difficulty associated with the purification of bacterially 

expressed VP19cHis suggests that it may be forming insoluble aggregates which may 

prevent its purification under the buffering conditions employed. Attempts to purify 

VP23His and VP19cHis under denaturing conditions, for example in 8M urea, which could 

solubilise any aggregated and insoluble proteins, were not pursued. Instead efforts were 

directed towards the expression and purification of triplex proteins within SF21 cells 

utilising recombinant baculoviruses.

3.5.2 Co-expression of VP23 and VP19c triplex proteins within SF21 

cells.

Due to the apparent insolubility of VP19cHis within the prokaryotic expression system it 

was decided to co-express VP 19c and VP23His within the eukaryotic baculovirus 

expression system in an attempt to produce triplexes for purification and analysis.

3.5.2.1 Cloning o f the UL18 ORF into the baculovirus transfer vector pAcAB3 containing 

the UL38 ORF (PAcAB3.10).

The UL18 ORF plus sequences containing the 6xHis tag was subcloned out of the bacterial 

expression vector pETUL18. The pETUL18 plasmid was Xbal digested at a unique Xbal 

restriction site. Following digestion, the DNA was phenol/chloroform extracted and 

ethanol precipitated (as described in Methods). The linear DNA molecule was then blunt 

ended using T4 polymerase and BamHI linkers were inserted (as described in Methods).
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Fig. 3.5.6: SDS-PAGE analysis o f [35S]methionine-labelled SF21 cell 

infected with the recombinant baculovirus Ac 18638 co-expressing 

VP23His and VP 19c.

35mm dishes containing approximately 70% confluent SF21 cells were 

infected with lOOpl o f plaque purified Ac 18386 recombinant baculovirus 

(lane 1), AcUL26.5 at an m.o.i. o f 5 (lane 2), or mock infected (lane 3). 

24 hours post infection SF21 cells were labelled with [35S]methionine (as 

described in Methods) and incubated for a further 24 hours. The cells 

were harvested and pelleted by centrifugation in a 1.5ml reaction vial at

14,000 r.p.m. for 5 minutes at RT in a microfuge. The supernatant was 

removed and the cell pellets resuspended in 200pl o f BM buffer and 

heated for 2 minutes at 100°C in a dry block. 20pl o f each sample and 3pl 

o f Rainbow markers were analysed by SDS-PAGE and stained with 

Coomassie Brilliant Blue. The gel was dried onto W hatmann 3mm paper 

and [35S]methionine labelled proteins were detected by exposing the gel 

o/n to Kodak film (as described in Methods). The arrows mark the 

position o f recombinantly expressed triplex proteins VP 19c and VP23Flis. 

The positions o f the size markers are indicated.
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The BamHI linker insertion procedure was repeated utilising a unique Hindlll restriction 

site (fig. 3.5.5) to generate pETUL18BamHI. The UL18 ORF and sequences encoding the 

6xHis epitope tag was then subcloned out of the pETUL18BamHI vector as a BamHI 

fragment and ligated into a BamHI digested and CIP treated baculovirus transfer vector 

(pPAcAB3.10), which already contained the UL38 ORF. This generated pAcABUL18638. 

The cloning strategy for the insertion of the UL18 ORF into pAcAB3.10 is schematically 

illustrated in fig. 3.5.5. The cloning of the UL38 ORF into the baculovirus transfer vector 

pAcAB3 was performed by Jacqueline Tatman (previously described in Tatman, 1996). 

Briefly, the UL38 ORF was cloned out of pBJ382 (described in section 3.4) as a 

Xbal/HincII fragment and ligated into Xbal/StuI digested and CIP treated pPAcAB3 

(Pharmingen) baculovirus transfer vector to generate pAcAB3.10.

3.5.2.2 Expression o f Acl8638 within SF21 cells.

Recombinant baculoviruses expressing VP23His and VP 19c were obtained by co

transforming SF21 cells with the pAcABUL18638 baculovirus transfer vector and parental 

baculovirus (PAK6) DNA (as described in Methods). Fig. 3.5.6 shows the [35S] 

methionine-labelled profiles of SF21 cells infected with a third round plaque purified 

isolate of Acl8638 virus (lane 1). For comparison AcUL26.5 (lane 2) and mock (lane 3) 

infected samples are shown. In Ac 1863 8 infected SF21 cells two novel protein bands of 

34 and 50kDa (corresponding to VP23His and VP 19c respectively) could be detected 

which were not present in either the mock or AcUL26.5 infected SF21 cells.

3.5.3 Cloning and expression of Acl8386

During the course of working out a solubilisation strategy for Ni-NTA agarose purified 

triplex proteins from SF21 cells infected with Ac 18638, it was noted that the ratio of 

VP23His to VP 19c was higher than the predicted 2:1 ratio of VP23 and VP 19c in triplexes 

(Newcomb et al., 1993). Furthermore, purification of triplexes utilising the 6xHis epitope 

tag on VP23 resulted in the co-purification of truncated forms of VP 19c (indicated by * in 

fig. 3.5.7). In an attempt to produce a homogenous population of recombinant triplexes 

and avoid an excess purification of VP23, it was decided to express the 6xHis tag on
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VP 19c rather than VP23. Purification of triplexes through the use of Ni-NTA agarose 

affinity chromatography would therefore result in the co-purification of only those VP23 

molecules that were associated with VP 19c as part of a heterotrimer complex.

3.5.3.1 Cloning o f the 6x His epitoped tagged UL38 ORF and UL18 ORF into the 

baculovirus transfer vector pAcAB3.

The cloning of the UL18 ORF and the UL38 ORF, which contained sequences encoding 

the 6xHis epitope tag, was performed by D. McNab. The UL38 ORF was cloned by PCR 

amplification and ligated into the transfer vector pTZ18U as a BamHI/PstI fragment 

(described in section 3.4 and Nicholson, 1992) to generate pTZ386. The UL38 6xHis ORF 

was then subcloned out of pTZ386 as a Hindlll fragment and filled in using Klenow (as 

described in Methods). BamHI linkers were inserted and the fragment ligated into a 

BamHI digested and CIP treated pTZ18U to generate pTZ386BamHI. The UL38 6xHis 

ORF was then isolated from pTZ386BamHI as a BamHI fragment and ligated into a 

BamHI digested and CIP treated pPAcAB3 baculovirus transfer vector (Pharmingen) to 

generate pAcAB386. The UL18 ORF had been previously cloned into the pT3T7 vector 

(described in Tatman, 1996). The pT3T7 vector containing the UL18 ORF was digested 

with Sail and filled in using Klenow (as described in Methods). A BamHI linker was 

inserted and the vector ligated to generate pT3T7UL18BamHI. The UL18 ORF was then 

subcloned out of pT3T7UL18BamHI as a BamHI fragment and ligated into a Bglll 

digested and CIP treated pAcAB386 transfer vector to generate pAcABUL18386. The 

baculovirus transfer vector pAcAB3 and the pAcABUL18386 transfer vector are 

schematically illustrated in fig. 3.5.8 and 3.5.9.

3.5.3.2 Expression o f Ac18386 in SF21 cells

Recombinant baculovirus (Ac 183 86) co-expressing VP19cHis and VP23 was obtained by 

co-transforming SF21 cells with pAcABUL18386 and parental baculovirus (PAK6) DNA 

(as described in Methods). Fig.3.5.10 shows the SDS-PAGE protein profile of SF21 cells 

either mock infected (lane 2), infected with Acl8386 (lane 3), or infected with AcUL26.5 

(lane 4). Two proteins (indicated by the appropriate arrows) could be detected by 

Coomassie Brilliant Blue staining which were not present in either mock infected or
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Fig. 3.5.10: SDS-PAGE analysis o f SF21 cells infected with Ac 18386 

co-expressing the triplex proteins VP19cHis and VP23.

60mm dishes containing approximately 70% confluent SF21 cells were 

infected at an m.o.i. o f 5 with either Ac 18386 (lane 3), AcUL26.5 (lane 

4), or mock infected (lane 2). 48 hours post infection SF21 cells were 

harvested (as described in Methods) and the cells pelleted by 

centrifugation at 14,000 r.p.m. for 5 minutes at RT in a microfuge. The 

supernatant was removed and the cell pellet resuspended in 200pl o f BM 

buffer and heated for 2 minutes at 100°C in a dry block. 5pl o f each 

sample and 3pi o f purified B capsids (lane 1) were analysed by SDS- 

PAGE and stained with Coomassie Brilliant Blue. The arrows indicate 

the positions o f VP23 and VP19cFlis.



Results: 3.5

AcUL26.5 infected, SF21 cell extracts. These protein bands migrated with the same MW 

as VP 19c and VP23 from purified B-capsids (lane 1). This would, therefore, imply that 

infection of SF21 cells with Ac 183 86 results the successful co-expression of VP23 and 

VP19cHis.

3.5.4 Ni-NTA agarose purification of triplex proteins expressed within 

SF21 cells infected either with Acl8638 or Acl8386.

3.5.4.1 Purification o f triplexes

Utilising Ni-NTA agarose affinity chromatography, triplex proteins were readily purified 

from SF21 cells infected with either Ac 18638 or Ac 18386 (fig. 3.5.11, panel A lanes 2 and 

3; panel B lanes 2-4 respectively) at protein concentrations of 0.5-2.0 mg/ml for elution 

fraction 1 (as determined by OD28o)- This would imply, therefore, that the N-terminus of 

both VP23His (Ac 18638) and VP19cHis (Ac 18386), where the 6xHis epitope tags are 

located are freely exposed to the solvent and readily available to bind to the Ni-NTA 

agarose. This suggests that the N-termini of these proteins are neither directly involved in 

the interaction with their appropriate triplex partner nor buried within the interior of their 

respective proteins. Furthermore, in each case, co-purification of the untagged triplex 

protein partner demonstrated that these proteins can interact in the absence of other capsid 

proteins and confirms previous experimental findings from Ni-NTA pull downs (described 

in section 3.4).

3.5.4.2 Solubility o f triplexes at 4°C

Although the triplex proteins could be readily purified their long-terms solubility, in 

particular that of VP 19c, at either RT or 4°C was poor. Visible precipitates were observed 

over different periods of time post column elution, ranging from a few minutes to several 

hours depending on the purification buffer employed and their initial concentration of the 

eluted samples. Fig. 3.5.11 (panels A and B) shows the solubility of Ni-NTA agarose 

purified triplex proteins from SF21 cells infected with Ac 18638 (panel A) or Ac 18386 

(panel B) respectively. Purified triplex proteins were incubation o/n at 4°C. Precipitates
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Fig. 3.5.11: SDS-PAGE analysis of Ni-NTA agarose purified triplex

proteins upon incubation at 4°C.

Triplex proteins were purified from SF21 cells infected with either 

Ac 1863 8 (panel A) or Ac 183 86 (panel B), as described in Methods and fig. 

3.5.7. Triplex proteins in (A) were purified in TB2 buffer (lOOmM 

Na2HP04, 50mM NaCl, 0.1% glycerol, 1% DMSO, 0.05% Triton X-100). 

The Ni-NTA agarose was washed with 25ml of 20mM imidazole and the 

proteins were eluted in 6ml (4x 1.5ml fractions) of 250mM imidazole in 

buffer TB2. Triplex proteins in (B) were purified in TB3 buffer (20mM 

Na2HP04, lOOmM Na2S04, 0.05% NP40). The Ni-NTA agarose was 

washed with 25ml of 20mM imidazole and the proteins eluted in 5ml (5x 

lml fractions) of 250mM imidazole in TB3 buffer. In each instance 20pl 

of the appropriate elution fraction was immediately transferred into BM 

and stored at -20°C. The elution fractions were then stored o/n at 4°C. 

Precipitated proteins were sedimented by ultracentrifugation either at

50.000 r.p.m. for 5 minutes at 4°C in a Beckman TLA 100.2 rotor (A) or at

14.000 r.p.m. for 5 minutes at RT in a bench top microfuge (B). The 

supernatant containing the soluble protein fraction was transferred to a 

fresh 1.5ml reaction vial immediately following centrifugation. 20pl of the 

appropriate soluble protein fractions were compared with 20pl of the 

original protein elution fractions by SDS-PAGE and stained with 

Coomassie Brilliant Blue. (A) Lanes 1 and 4: Rainbow markers. Lanes 2 

and 3: 250mM imidazole elution fractions 1 and 2 respectively. Lanes 5 

and 6: soluble protein fraction from elution fractions 1 and 2 respectively 

after incubation o/n at 4°C . (B) Lanes 1 and 5: Rainbow markers. Lanes 

2-4: 250mM imidazole elution fractions 1-3 respectively. Lanes 6-8: 

soluble protein fraction from elution fractions 1-3 respectively after 

incubation o/n at 4°C .



Results: 3.5

were sedimented by centrifugation (as described in legend) and the soluble protein 

fractions were analysed by SDS-PAGE to investigate which triplex protein constituents 

had precipitated out of solution during their respective incubations. In all incidences 

precipitation primarily affected VP19cHis and VP 19c, while VP23His and VP23 generally 

remained more soluble (fig. 3.5.11, panel A, lanes 5 and 6, panel B, lanes 6-7). In an 

attempt to increase the solubility and stability of the purified triplexes a range of 

purification buffers were tested. It should be noted that in some instances purification 

buffers, although retaining triplex solubility, were unsuitable for many biophysical 

characterisation experiments (described in section 3.6), in particular Far-UV CD. These 

buffers tended to include comparatively high concentrations of NaCl (typically >150mM) 

and/or glycerol (>1%) which can lead to excessive noise within absorption spectra. In 

particular, Cf ions absorb strongly below 195nm (Kelly and Price, 1996; Price, 1995). 

Such affects could be countered in most instances by analysis and subtracting buffer 

control spectra. However, buffer constituents including certain detergents, such as Triton 

X-100, and imidazole were completely unsuitable for Far-UV CD analysis. Table 3.5.1 

shows a summary of the buffers used in the analysis of purification and solubilisation of 

Ni-NTA agarose purified triplex proteins.

Comparatively good triplex solubility was maintained utilising buffer OG (150mM 

Na2HPC>4 (pH7.5), 0.1% octyl-p-glucoside, 5% glycerol). Fig. 3.5.12 shows the solubility 

following a 48 hour incubation at 4°C of Ni-NTA agarose purified triplex proteins from 

SF21 cells infected with Ac 18386. The triplex proteins appeared to remain completely 

soluble under these conditions. Further analysis revealed that the triplex proteins purified 

in buffer OG remained soluble for up to 4-5 days at 4°C (data not shown). However, far- 

UV CD analysis of triplex proteins in buffer OG (in the absence of imidazole) still proved 

problematic, possibly due to the high absorption factor of the glycerol component of 

buffer. Reduction in the concentration of glycerol from 5% to 0.1% (buffer O) removed
1
i this problem and still permitted triplex purification while maintaining good solubility.
i
j  Buffer O was, therefore, used for all biophysical characterisation experiments employed.

j

i
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Buffer
compositon

Purification 
of VP23

Purification 
of VP19c

Analysis Comments

Sonication buffer
(20 mM Tris (pH 7.0), 

10% Glycerol, 0.1% NP40)

+++ + SDS-
PAGE

PBSa
(170mM NaCl, 3.5mM 
KC1, lOmM NaH2P 0 4, 

3mM KH,P04)

+++ ++ SDS-
PAGE

ppt. at RT

G-150 buffer
(150mM NaCl, 20mM Tris 

(pH 8.0), 0.1% Tween)

+ + SDS-
PAGE

30mM Tris (pH 8.0), 2M 
urea, 200mM NaCl, 

10% glycerol

++++ + SDS-
PAGE

G-150 + 1M urea ++ + SDS-
PAGE

500mM NaCl, 20mM Tris, 
3M Urea, 0.5% NP40, 

pH 7.0

+ + SDS-
PAGE

TB4: 20mM Tris (pH 7.5), 
0.1% NP40, 1M Urea

+++ ++ SDS-
PAGE
FPLC

o/n 4°C 
VP 19c ppt.

20mM Tris (pH7.5), 0.25M 
Urea, 0.05% NP40

+++ +++ SDS-
PAGE

CD -VE

0.5M Urea, 20mM Tris 
(pH7.5), 0.05% NP40

+++ +++ SDS-
PAGE
FPLC

CD -VE

20mM Tris (pH7.5), 0.05% 
NP40, 500mM NaCl

++++ ++++ SDS-
PAGE
FPLC
DSC

CD -VE

20mM Tris (pH7.5), 0.05% 
NP40, 500mM NaCl, 8M 

Urea

++++ SDS-
PAGE

No
inter

disulphide
bond

20 mM Tris (pH7.5), 
250mM NaCl, 0.05% NP40

++++ ++++ SDS-
PAGE
FPLC

Peak frac. 
(2 mg/ml)

20mM Na2HP04(pH 7.5), 
0.1% glycerol, 0.05% 

NP40

++++ ++++ SDS-
PAGE
FPLC

o/n 4°C 
VP 19c ppt.

Cont.



20mM Na2HP04 (pH6.0), 
lOOmM Na2S 04, 0.05% 

NP40

N/A N/A FPLC o/n RT & 
4°C 

VP 19c ppt.
TB3: 20mM Na2HP04 

(pH8.0), lOOmMNa2S 04, 
0.05% NP40

++++ ++++ SDS-
PAGE

o/n RT & 
4°C 

VP 19c ppt.
20mM Na2H P04, 0.05% 

triton, 0.1% glycerol, 10% 
DMSO

++++ +++ SDS-
PAGE

o/n RT & 
4°C 

VP 19c ppt.

TB1: PBScomplete, 
l%glycerol, lOmM 

Na2S04, 2.5% DMSO, 
0.05% Triton X-100

++++ +++ SDS-
PAGE
FPLC:
+++

Low 4°C 
VP 19c ppt. 

CD -VE

TB2: lOOmMNa2HP04, 
50mM NaCl, 0.1% 

glycerol, 1 % DMSO, 
0.05% Triton X-100

++++ ++++ SDS-
PAGE

o/n 4°C 
VP 19c ppt.

lOOmM Na2HP04, 0.1% 
glycerol, 1 % DMSO, 
0.05% Triton X-100

++++ ++++ SDS-
PAGE
FPLC

CD -VE

lOOmM Na2HP04, 0.001% 
NP40 (pH 8.65)

++++ + SDS-
PAGE

lOOmM Na2HP04, 0.001% 
Octyl-p-glucoside, 0.1% 

glycerol, 1% DMSO, 
30mM NaCL (pH 8.65)

+++ + SDS-
PAGE

20mM Tris, 0.1% Octyl-p- 
glucoside, 20mM NaCl, 

1% glycerol

++++ +++ SDS-
PAGE

VP 19c ppt. 
on dialysis

Buffer OG
150mM Na2HP04 0.1% 
Octyl-p-glucoside, 5% 

glycerol (pH7.75)

++++ ++++ SDS-
PAGE
FPLC

VP19c 
Soluable 

o/n at 4°C 
CD -VE

Buffer O
150mM Na2HP04 0.1% 
Octyl-p-glucoside, 0.1% 

glycerol (pH7.75)

++++ ++++ SDS-
PAGE
FPLC

CD +VE 
DSC +VE

Table 3.5.1: Summary table of buffers used in the solubilisation of Ni-NTA agarose purified triplex 
proteins. Triplex proteins were purified from SF cells infected with either Acl8638 or Acl8386 
(as described in Methods and fig. 3.5.7). Purified proteins were analysed (as described in table) 
and rated for the presence of both VP 19c and VP23; ++++ (very good), +++ (good), ++ (poor), + 
(detectable), - (not detectable).
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Fig. 3.5.12: SDS-PAGE analysis o f Ni-NTA agarose purified triplex proteins in 

buffer OG before and after o/n storage at 4°C.

Triplex proteins were purified from SF21 cells infected with Ac 18386 in buffer 

OG (as described in Methods and fig. 3.5.7). 20pl o f each 250mM imidazole 

elution fraction 1-3 (lanes 2-4 respectively) and Rainbow markers (lane 1) were 

analysed by SDS-PAGE and stained with Coomassie Brilliant Blue. Elution 

fraction 2 was subsequently incubated at 4°C for 48 hours. Following 

incubation, 25pi o f elution fraction 2 was transferred into BM buffer. 

Precipitated proteins were sedimented by ultracentrifugation at 80,000 r.p.m. 

for 5 minutes at 4°C in a Beckman TLA 100.2 rotor. The supernatant fraction 

containing soluble proteins was immediately transferred to a fresh 1.5ml 

reaction vial. 25pl o f the pre-incubation elution fraction 2 and 25pl o f the 

supernatant fraction post incubation was analysed by SDS-PAGE (lanes 5 and 

6 respectively) and stained with Coomassie Brilliant Blue.
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Results: 3.5

3.5.5 Disulphide bond analysis of purified triplex proteins.

Zweig et al., (1979) demonstrated through the use of non-reducing SDS-PAGE analysis 

that VP 19c and VP5 from purified HSV-2 capsids were disulphide linked. In order to 

determine whether or not HSV-1 encoded VP 19c and VP23 were also disulphide linked, 

the triplex proteins were purified from SF21 cells infected with Ac 1863 8 in the presence 

(fig. 3.5.13, lanes 4 and 6) or absence (fig. 3.5.13, lanes 3 and 5) of 8M urea. Only a single 

prominent band corresponding to VP23His was purified in the presence of 8M urea. This 

indicates that inter-molecular disulphide bonds do not link VP 19c and VP23His. This 

result is in agreement with published observations by Zweig et al., (1979) who could not 

detect any alteration in the behaviour of VP23 from purified HSV-2 capsids when analysed 

by non-reducing SDS-PAGE. This result also demonstrates that interaction between 

VP23His and VP 19c is specific and conformation dependent and not a result of VP 19c 

non-specifically binding to the Ni-NTA agarose.

SDS-PAGE analysis of purified triplex proteins in the presence and absence of p* 

mercaptoethanol demonstrated a minor shift in migratory position of these purified 

complexes. Fig. 3.5.14 shows the non-reducing SDS-PAGE analysis of Ni-NTA agarose 

purified triplex proteins from SF21 cells infected with Acl8386. In the absence of 20mM 

P-mercaptoethanol two faint bands, corresponding to approximately 150 and 175kDa, can 

be observed by Coomassie Brilliant Blue staining (fig. 3.5.14, lanes 2 and 3, (-) p- 

mercaptoethanol). The homogeneity of the reduced triplex proteins (fig. 3.5.14, lanes 2 

and 3, (+) P-mercaptoethanol) strongly suggests that these bands are related to the 

VP23/VP19cHis complexes but their nature is unclear. This data, therefore, supports the 

evidence from triplex purification in 8M urea (fig. 3.5.13) and suggests that no intra

molecular disulphide linkages are formed between VP23 and VP 19c within the triplex. 

However, there may be cysteine residues within either VP23 or VP19cHis that are required 

for the formation of intra-molecular disulphide linkages. Such linkages may be required 

for maintaining a suitable conformation for the interaction with the complementing triplex 

protein partner and as a consequence generating SDS resistant complexes, as seen by SDS- 

PAGE in the absence of p-mercaptoethanol.
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Fig. 3.5.13: Ni-NTA agarose purification o f triplex proteins in the

presence o f 8M urea.

Triplex proteins were purified form SF21 cells infected with Ac 18638 as 

described in Methods. The cells were split into two fractions and 

sedimented by centrifugation at 3,000 r.p.m. in a Sorval RT7 centrifuge for 

5 minutes at RT. The supernatants were removed and the cell pellets 

resuspended in either TB4 buffer (20mM Tris pH7.5, 0.1% NP40, 500mM 

NaCl) (lanes 3 and 5) or TB4 buffer + 8M urea (lanes 4 and 6). Triplex 

proteins were subsequent purified (as described in Methods and fig. 3.5.7) 

in their respective buffers. The Ni-NTA agarose was sequentially washed 

in 10ml o f TB4 buffer and 5ml o f 20mM imidazole in TB4 buffer to 

remove any non-specifically bound proteins and residual urea from the Ni- 

NTA matrix. Proteins were eluted in 1.5ml (5x 300pl) o f 250mM 

imidazole in buffer TB4. 20pl o f the appropriate elution fraction and 5pl 

o f Ac 18638 infected SF21 total cell extract (lane 1) was analysed against 

Rainbow markers (lane 2) by SDS-PAGE and stained with Coomassie 

Brilliant Blue.
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Fig. 3.5.14: SDS-PAGE analysis o f Ni-NTA agarose purified 

triplex proteins in the presence (+) or absence (-) o f 20mM P- 

mercaptoethanol.

Triplex proteins were purified from SF21 cells infected with 

Ac 18386 as described in Methods and fig. 3.5.7 in buffer OG. 

Rainbow markers (lane 1) and 20pl o f elution fractions 1 and 2 

(lanes 2 and 3 respectively) were analysed in the presence (+) 

or absence (-) o f 20mM P-mercaptoethanol. Samples were 

analysed by SDS-PAGE and stained with Coomassie Brilliant 

Blue.



Results: 3.5

3.5.6 Size exclusion chromatography analysis of purified triplex proteins

In order to determine whether or not Ni-NTA agarose purified triplex proteins formed 

heterotrimeric complexes and to determine an accurate native MW for the triplex size 

exclusion chromatography analysis was performed on Ni-NTA agarose purified triplex 

proteins in buffer O. Fig. 3.5.15 (panel A) shows a single elution peak obtained with Ni- 

NTA agarose purified triplexes purified from SF21 cells infected with Ac 18386. The 

elution profile is plotted against a standard curve generated by analysis of protein 

standards (as described in Methods). The elution volume of the single peak detected 

corresponded to a native MW of 103kDa. This is a shift from the predicted MW of 

approximately 118kDa estimated from the amino acid sequence of VP23 and VP 19c in a 

2:1 ratio (McGeoch et al., 1988). Furthermore, the native MW of 103kDa for purified 

triplexes is also considerably different from the estimated triplex mass determined by 

Newcomb and co-workers of 115kDa to 135kDa by STEM density mapping of hexon 

associated triplexes (Newcomb et al., 1993). Although several N-terminal amino acids of 

VP 19c were removed during the cloning of the UL38 ORF this would not account for a 

15kDa shift in observed and predicted triplex MW. The shift in MW may represent 

resolving limitations in separation of the Superose 12 column or alternatively reflect the 

compact native structure of in vivo preformed triplexes. A more likely explanation for the 

apparent low MW of the triplexes is the anomalous behaviour of the BSA protein standard 

(66kDa, highlighted in red in fig. 3.5.15). The elution volume from this standard reduces 

the slope of the standard curve away from that of the other protein standards and therefore 

alters the Logio MW reading derived from the triplex elution volume. Indeed, if the 

standard curve is plotted without BSA elution volume the triplex MW increases to 

approximately 115kDa. Recently, Spencer et al., (1998) published data on the 

sedimentation coefficients of triplexes and triplex proteins analysed on sucrose gradients. 

The triplexes analysed were formed in vitro by mixing SF9 cell extracts individually 

expressing VP23 and VP 19c. Sedimentation analysis determined their triplexes to have a 

MW of 129kDa, 1 lkDa larger then that of the predicted MW derived from the amino acid 

sequence. However, experiments performed by Spencer et al., (1998) relied on a single 

protein standard (BSA) to act as a MW marker during sedimentation analysis and therefore 

inaccuracies in estimating the MW of triplexes may have occurred.
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Fig. 3.5.15: Ni-NTA agarose purification of triplex proteins and 

size exclusion chromatography.

(A) Triplexes were purified in buffer O from SF21 cells infected 

with Acl8386 (as described in Methods and in fig. 3.5.7). Triplex 

proteins (0.5mg/ml) were analysed on a 25ml (1 by 30 cm) 

Superose 12 gel filtration column (Pharmacia) using a 1ml injection 

superloop. The column was equilibrated and run in buffer O at a 

constant flow rate of 0.5 ml/min. 0.5 mg/ml of commercially 

available protein standards; P-amylase (MW, 200,000), alcohol 

dehydrogenase (MW, 150,000), bovine serum albumin (MW,

66.000), ovalbumin (MW, 45,000), and carbonic anhydrase (MW,

29.000) were analysed individually in buffer O (as described in 

Methods and fig. 3.3.7). A standard curve was generated plotting 

Log10 MW against peak elution volume using Origin 3.5 software. 

The triplex MW was calculated using linear regression analysis 

software within the Origin 3.5 software package from the standard 

curve using the peak elution volume from the triplex elution 

profile. The position of the BSA standard is highlighted by a red 

square. (B) 20pl of the Ni-NTA agarose purified triplexes ( lane 2) 

and 20pl of the peak elution fraction (lane 3) following gel 

filtration was analysed against purified B-capsids by SDS-PAGE 

and Coomassie Brilliant Blue staining. The arrows indicate the 

position of the triplex proteins VP23 and VP19cHis.



Results: 3.5

By size exclusion chromatography analysis only a single peak could be detected 

corresponding to purified triplexes. This would imply therefore that preformed 

VP19cHis/VP23 complexes do not exist in equilibrium with their individual components. 

SDS-PAGE analysis of the peak elution fraction (fig. 3.5.15, panel B, lane 3) indicated the 

presence of both VP19cHis and VP23 and confirms that the triplex proteins VP19cHis and 

VP23 are interacting to form a specific complex. The calculated native MW of 103kDa 

suggests a 2:1 ratio of VP23 to VP19c within the triplex using the predicted MWs of 

34268 (VP23) and 50260 (VP19c) Da respectively (McGeoch et al., 1988). In order to 

confirm this ratio the intensity of Coomassie Brilliant Blue staining was compared for 

triplex proteins within purified B-capsids, Ni-NTA agarose purified triplex proteins, and 

triplex proteins collected from the peak fraction collected during size exclusion 

chromatography. Fig. 3.5.16 (panel A) shows the SDS-PAGE elution profiles used in the 

analysis and (panel B) shows the quantitative estimates of Coomassie Brilliant Blue bound 

to the triplex proteins. Using these analyses and determining their intensities relative to 

the total predicted triplex mass, copy numbers could be estimated for VP 19c and VP23 

within the triplex. Analysis of triplex proteins from purified B-capsids demonstrated that 

VP23 and VP 19c exist in a 1.8:1.0 ratio which is in agreement with the 2:1 ratio reported 

by Newcomb et al, (1993). Analysis of the peak fraction from size exclusion 

chromatography showed a similar ratio (1.7:1.0) of VP23 to VP 19c to that obtained from 

purified B-capsids. This therefore confirms that the single triplex peak seen by size 

exclusion chromatography represents a VP23/VP19cHis 2:1 heterotrimeric complex.

Analysis of the Ni-NTA purified triplex protein profile before size exclusion 

chromatography demonstrated a 1.4:1.0 ratio of VP23 to VP19cHis. The slight increase in 

the proportion of VP19cHis compared to that within purified B-capsids is probably due to 

the presence of a truncated VP 19c molecule which co-purifies with the full length 

VP19cHis. It is interesting to note that the truncated VP 19c protein was not present in the 

peak fraction purified by size exclusion chromatography. This suggests it is not a 

component of a triplex complex. The retention in the ability to bind to Ni-NTA agarose 

would imply that this lower MW form of VP 19c is due to the truncation of the C-terminus, 

resembling those truncation forms of VP19cHis from Ac381 infected cells (section 3.4). 

The fact that the truncated VP 19c molecule does not produce an elution peak during size 

exclusion chromatography is probably due to the non-specific binding of VP 19c to the
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Sample % Adj. Vol. Relative intensity to 
triplex mass (%)

Copy number per 
triplex

VP 19c VP23 VP 19c VP23 VP19c VP23
B-Capsid (A l) (A2) (A l) (A2) (A l) (A2)

45.14 54.86 53.63 65.17 1.0 1.8
Elution (B l) (B2) (B l) (B2) (B l) (B2)
frac. 1 50.88 49.12 60.44 58.35 1.0 1.4
FPLC (C l) (C2) (C l) (C2) (Cl )  (C2)

peak frac. 45.84 54.16 54.46 64.34 1.0 1.7
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Fig. 3.5.16: SDS-PAGE and ratio analysis of triplex proteins.

Triplexes were purified in buffer O from SF21 cells infected with 

Acl8386 (as described in Methods and in fig. 3.5.7). (A) 20pl of 

purified triplex proteins (lane 2) and 20pl of the peak elution 

fraction collected post gel filtration (lane 3) were analysed against 

purified B-capsids (lane 1) by SDS-PAGE and stained with 

Coomassie Brilliant Blue. (B) Using Quantity ONE software 

(BIO-Rad) the intensity of Coomassie Brilliant Blue binding to the 

triplex proteins was analysed and adjusted against the appropriate 

background (BG) control. Using the predicted MWs for triplex 

proteins (McGeoch et al., 1988) in a 2:1 ratio of VP23 (34268 Da) 

to VP 19c (50260 Da) a total predicted MW could be calculated for 

a single triplex molecule (118796 Da). Using the predicted MW 

of the triplex a percentage (%) intensity relative to triplex mass 

could be calculated for each band analysed. Using the individual 

predicted MW for the corresponding triplex protein the copy 

number per triplex could be calculated. Copy numbers are 

highlighted in bold type.



Results: 3.5

Superose column (discussed in the size exclusion chromatography of VP19cHis in section 

3.4). Taken together, these observations suggest that the C-terminus of VP19c is required 

for interaction with VP23 and confirms published deletion mutagenesis studies performed 

by Desai and Person (1996) and Spencer et al., (1998). Spencer et al., (1998) 

demonstrated that the removal of 15 amino acids from the C-terminus of VP 19c, abolished 

the interaction with VP23 and as a consequence prevented capsid formation.

3.5.7 Sucrose gradient sedimentation analysis of Ni-NTA agarose purified 

triplexes

Sucrose gradient sedimentation of Ni-NTA agarose purified triplex proteins from SF21 

cells infected with Ac 18386 generated a profile which resembled that of individually 

purified and mixed VP23His and VP19cHis triplex proteins in buffer O (fig. 3.5.17, panel 

C compared to fig. 3.4.15, panel C). Fig. 3.5.17 (panels A and B) shows the SDS-PAGE 

and Western blot profiles of BSA and purified triplexes respectively following sucrose 

gradient centrifugation. The relative intensities were calculated for each fraction for both 

BSA and VP19cHis and plotted as a percentage (%) change in volume intensity against 

their appropriate fraction number (fig. 3.5.17, panel C). As with the in vitro mixing of 

individually purified triplex proteins the Ni-NTA co-purification of VP19cHis and VP23 

gave rise to three detectable peaks (arrows a-c) with the peak intensity occurring in 

fraction 18 (indicated by arrow a). This peak sediments substantially further through the 

gradient than BSA and represents the majority of the purified protein present on the 

gradient. This presumably represents the expected heterotrimeric triplex complex. The 

two additional peaks (arrows b and c) could represent partially assembled triplexes (a 1:1 

ratio ofVP23/VP19cHis for peak b) or uncomplexed VP19cHis (peak c). Indeed, peak c 

corresponds exactly to the position on the sucrose gradient (fraction 24) of individually 

purified VP19cHis in buffer O (fig. 3.4.14, panel B). Size exclusion chromatography 

analysis of purified triplexes demonstrated that triplexes do not exist in equilibrium with 

their basic protein constituents. Furthermore, Coomassie Brilliant Blue binding analysis 

demonstrated that the Ni-NTA purified triplex proteins existed primarily in a 2:1 ratio if 

the C-terminal break down product of VP 19c is taken into consideration. As no evidence 

of the C-terminal truncated product could be detected by Western blot analysis the two
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Fig. 3.5.17: Sucrose gradient sedimentation analysis of Ni-NTA

purified triplex proteins.

Triplexes were purified in buffer O from SF cells infected with 

Acl8386 (as described in Methods and fig. 3.5.7). 300pl of 

purified protein (~0.2mg/ml) and 50pl BSA (5mg/ml) resuspended 

in buffer O was layered onto a 5ml 5-25% sucrose gradient. The 

proteins were centrifuged at 4°C for 16 hours at 40,000 r.p.m. in a 

AH650 rotor and 150pl fractions collected (as described in 

Methods). To analyse the distribution of BSA across the gradient 

20pl of fractions 17-28 (lanes 1-12) were analysed by SDS-PAGE 

and stained with Coomassie Brilliant Blue (A). To analyse the 

distribution of triplexes across the gradient 20pl of fractions 17-28 

were resolved by SDS-PAGE and analysed by Western blotting

(B). VP19cHis distribution was detected by probing the 

Nitrocellulose membrane with a 1:1000 dilution of the Penta His 

antibody (Qiagen). The relative intensity of the protein profiles 

was calculated individually for both VP19cHis and BSA using 

Quantity ONE software (BIO-Rad) (as described in Methods). 

The data for the triplex and BSA protein profiles was individually 

plotted as % change in relative intensity against their appropriate 

elution fraction number (C). The arrows (a-c) mark the peak 

intensities in the distribution of VP19cHis across the gradient.
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additional peaks observed (peaks b and c) might represent the break up of in vivo formed 

Ni-NTA purified triplexes. As previously discussed in section 3.4 sucrose has been 

implicated in the disassembly of procapsids isolated by immune precipitation and 

centrifugation through a 30% sucrose cushion (personal communication, Newcomb, 1999; 

Newcomb et al., 1999; Newcomb et al., 2000). Taking this into consideration sucrose may 

be able to disrupt triplex protein-protein interactions. Although the sedimentation analysis 

demonstrated a distinct triplex peak (fig. 3.5.17, peak a), the sucrose in the gradient may be 

able to disassemble complexes, which have not completely associated, or complexes that 

have not correctly folded into a native heterotrimeric complex. Alternatively, Ni-NTA 

agarose purification of triplexes from Ac 18386 infected SF cells may result in the 

purification of uncomplexed VP19cHis. Although, the expression of VP19cHis is 

generally lower than that of VP23 (as determined by Coomassie Brilliant Blue staining), 

some of the VP19cHis molecules may be mis-folded as individual molecules. Thus, 

although these molecules may not be able to form triplexes they could be purified using 

Ni-NTA agarose. Size exclusion chromatography would be unable to detect the presence 

of such mis-folded molecules due to the non-specific binding of VP 19c to the Superose 

column (discussed in section 3.4). However, further analysis is required in order to 

specifically identify these lower MW peaks.

3.5.8 Conclusions

Triplexes could be readily purified from SF21 cells infected with either Acl8638 or 

Ac 183 86 utilising Ni-NTA agarose affinity chromatography that maintained reasonable 

solubility in buffer O. The insolubility of the purified triplex proteins in other purification 

buffers probably reflects the aggregation of triplexes and/or VP 19c molecules due to non

specific hydrophobic interactions. The non-ionic detergent octyl-p-glucoside is apparently 

able to bind to exposed hydrophobic domains and prevent the aggregation of triplexes 

during purification. Indeed, octyl-p-glucoside has been shown to be efficient in the 

solubilisation of a number of membrane associated glycoproteins (Rohrer et al., 1990). 

The generally poor solubility of purified triplexes is not surprising considering the number 

of functions VP 19c performs during procapsid formation, capsid maturation, and 

ultimately virion assembly. VP 19c has been shown not only to form extensive interactions
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with VP23 within the triplex but also to interact with VP5 from adjacent capsomers (Zhou 

et al., 1994; Saad et al., 1999; Zhou et a l, 2000). Recent cryo-EM analysis has revealed 

that VP 19c may also play an integral role within the structural organisation of the 

tegument that surrounds the capsid during virus infection (Zhou et al., 1999). Although 

the relevant tegument proteins have yet to be identified, cryo-EM analysis has revealed 

extensive interactions between tegument proteins and the triplexes (Ta and Tc). 

Furthermore, cryo-EM can only detect those protein-protein interactions that display an 

icosahedrally ordered symmetry. It is possible therefore that the other triplexes (Tb, Td, Te 

and, Tf) may also play a role in the structural organisation of the tegument. Indeed, cryo- 

EM analysis of the SCMV virion has established that the triplex protein homologues 

within SCMV B-capsids binds to a tegument protein dimer postulated to be the 119kDa 

basic phosphoprotein (BPP). These protein dimers were present on all of the triplexes 

within the SCMV B-capsid (Trus et al., 1999). Furthermore, cryo-EM analysis of HCMV 

virions demonstrates that the VP 19c homologue component within the triplex of HMCV 

capsid, the minor capsid protein (mCP), also demonstrates a significant amount of 

interaction with as yet unknown HCMV tegument capsid proteins. Although the mCP 

binding protein is 17kDa smaller than its HSV counterpart VP 19c (50kDa), the function of 

the mCP binding protein within the HCMV capsid as part of a heterotrimeric complex 

appears similar (Butcher et al., 1998). The mCP binding protein interacts with and joins 

adjacent pentons and hexons through the interaction with the major capsid protein (MCP), 

the homologue to VP5 within the HSV capsid, within the HCMV capsid. The mCP 

binding protein also interacts with several tegument proteins within the HCMV virion in 

the same manner in which VP 19c appears to within the HSV-1 virion and therefore 

demonstrates the conserved nature of the triplex function throughout the herpesvirus 

family.

Ni-NTA agarose purification in the presence of 8M urea showed that the triplex proteins 

VP23 and VP 19c were not linked by inter-molecular disulphide bonds (fig. 3.5.13). 

However, non-reducing SDS-PAGE analysis demonstrated that there may be some intra

molecular disulphide bonding in triplexes (fig. 3.5.14). Size exclusion chromatography 

analysis of Ni-NTA purified triplexes gave a native MW of 103kDa and suggested that 

triplexes do not exist in equilibrium with their constituent protein. Measuring the intensity 

of Coomassie Brilliant Blue stain binding to triplex proteins from purified B-capsids and
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from the peak elution fraction from size exclusion chromatography analysis of Ni-NTA 

purified triplex proteins confirmed that the triplex was indeed composed of one copy of 

VP 19c to two copies of VP23. This is in agreement with the 2:1 ratio of VP23 to VP 19c 

determined by comparing 2M GdnHCl treated B-capsids with WT B-capsid by STEM 

analysis (Newcomb et al., 1993). More recently, high-resolution cryo-EM analysis of 

HSV-1 B capsids and difference mapping using VP5-VP19c particles has determined the 

locations of VP 19c and VP23 proteins within the triplex (Saad et al., 1999). By 

computationally comparing the triplex and VP 19c connecting densities, Saad and co

workers could identify masses within the triplex that corresponded to a single copy of 

VP 19c and two copies of VP23 (discussed in detail within section 4).

3.5.9.1 Future work

Much work has been done to solubilise the Ni-NTA purified triplexes from both Acl8638 

and Acl8386 infected SF cells (table 3.5.1). It would be interesting, therefore, to continue 

and improve upon this solubilisation strategy utilising octyl-p-glucoside in order to 

produce higher concentrations of purified triplexes. This would allow further structural 

analysis to be performed, such as NMR or X-ray crystallography, which could provide 

further information into the triplexes unique asymmetrical structure within the HSV-1 

capsid.
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3.6 Functional and biophysical characterisation of 

purified triplexes and triplex proteins

3.6.1 In vivo and in vitro capsid assembly analysis

To test whether or not recombinantly expressed and Ni-NTA agarose purified 6xHis 

tagged proteins were functional, purified triplexes and triplex proteins were analysed for 

their ability to participate in the formation of capsids particles in vitro. Tatman et al., 

(1994) and Thomsen et al., (1994) characterised the formation of capsid particles in vivo 

by co-infecting insect cells with panels of recombinant baculoviruses individually 

expressing the major structural capsid proteins. Newcomb et al., (1994) went onto to 

demonstrate that capsid assembly could occur in vitro when lysed, individually infected 

SF9 cell extracts expressing VP5, VP 19c, VP23, and preVP22a were mixed and incubated 

o/n at 27°C. Subsequently, Newcomb et al., (1999) has shown that in vitro assembly could 

occur using purified VP5, preVP22a and VP23/VP19c (triplexes), and concluded that 

capsid assembly did not require additional cellular proteins.

In order to test whether or not the 6xHis tag affected essential protein-protein interactions 

required for capsid assembly, in vivo capsid assembly was examined in SF21 cells, which 

were co-infected with the appropriate set of recombinant baculoviruses (as described in 

Methods and fig. 3.6.1). Thin sections were obtained from SF21 cell pellets harvested 48 

hours post infection and analysed for the presence of capsids by EM (as described in 

Methods). The presence of the 6xHis tag on either VP23 or VP 19c, when co-expressed 

together (Ac 18638 or Ac 18386) or expressed individually in the case of VP19cHis 

(Ac381), did not appear to effect the formation of capsids in vivo. Fig. 3.6.1 (panel A), 

shows a typical thin section micrograph of in vivo formed capsids from SF21 cells co

infected with a three baculoviruses expressing the capsid proteins VP5 (AcUL19), 

preVP22a (AcUL26.5) and co-expressing VP23His and VP 19c (AcUL18638) respectively. 

In vivo formed capsids had similar morphological characteristics to those of WT HSV-1 

capsids. Most contained either a scaffold core (panel A, arrow 1), although a small number 

of coreless particles were also observed (panel A, arrow 2).
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Fig. 3.6.1: Functional analysis of recombinantly expressed 6xHis

tagged proteins.

Capsid assembly was performed either in vivo (panels A and F) or in 

vitro (panels B to E) (as described in Methods). Capsid particles were 

detected by electron microscopy either from thin sections of pelleted 

infected cells (panel A) or by negative stain of pelleted material 

(panels B to F) as described in Methods. Panel A; SF21 cells were 

co-infected with a panel of recombinant baculoviruses, AcUL19 

(VP5), AcUL26 (VP21/VP24), and Ac 18638 (co-expressing 

VP23His and VP 19c). 48 hours post infection the cells were

harvested, fixed and analysed by thin section for the presence of 

capsid particles. Small cored B-capsids (1), empty A-capsids (2) and 

baculovirus capsids (3) are indicated by the appropriate arrows. 

Panels B to E represent negative stained images of capsid particles 

assembled in vitro from lysed crude SF cell extracts individually 

infected with; AcUL19 (VP5), AcUL26.5 (preVP22a), and Acl8386 

(co-expressing VP19cHis and VP23) (panel B); AcUL19 (VP5) and 

AcUL26.5 (preVP22a), supplemented with purified (VP19cHis/VP23) 

triplexes (Panel C); AcUL19 (VP5), AcUL26.5 (preVP22a), AcUL18 

(VP23), supplemented with purified VP19cHis (Ac381) (Panel D); 

AcUL19 (VP5), AcUL26.5 (preVP22a), supplemented with 

individually purified VP19cHis (Ac381) and VP23His (bacterially 

expressed) (Panel E). (Panel F) Positive control of capsids prepared 

from SF cells that were co-infected with a panel of baculoviruses, 

AcUL19 (VP5), AcUL26.5 (preVP22a), AcUL18 (VP23), and 

AcUL38 (VP 19c), which expressed recombinant proteins without any 

epitope tags. Capsid particles assembled in vivo were released from 

cells by bath sonication and prepared for EM analysis (as described in 

Methods). Scale bars represent 500 nm.
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Utilising the in vitro assembly procedure described by Newcomb et al., (1994) Ni-NTA 

agarose purified triplexes and triplex proteins were analysed for their ability to form 

capsids. In vitro capsid assembly analysis was particularly important for purified VP23His 

since it was expressed in bacteria and its functionality in vivo could not be analysed. It 

was also important to establish that purification of the proteins did not inhibit their ability 

to participate in capsid assembly. Typically, 1/10th of an SF21 burrler extract(s) was used 

to supplement the appropriately purified capsid protein(s) under analysis (as described in 

Methods). Mixed extracts were left o/n at 28°C before the sample was prepared for 

electron microscopy (as described in Methods). Fig. 3.6.1 (panel B) shows a negative 

stained image of capsids assembled in vitro from lysed SF21 cell extracts individually 

infected with recombinant baculoviruses expressing VP5 (AcUL19), preVP22a 

(AcUL26.5), and triplexes (AcUL18386). Distinctive capsid particles are evident, which 

are identical to those of in vivo formed negatively stained capsids (fig. 3.6.1, panel F). Fig.

3.6.1 (panels C-E) show typical examples of the negative stained images obtained from in 

vitro assembled capsids when purified triplexes (VP19cHis/VP23, panel C), purified 

VP19cHis (panel D), and separately purified VP23His (bacterially expressed pETUL18) + 

purified VP19cHis (panel E), were mixed with the appropriate infected SF21 cell extracts. 

In all incidences capsid assembly only occurred when Ni-NTA agarose purified protein(s) 

were supplemented with the appropriate complementing infected SF21 cell extracts. This 

clearly demonstrates that the 6x His tag does not inhibit the formation of capsids in vitro. 

The bacterially expressed and purified VP23His participated in in vitro capsid assembly in 

both of the purification buffers used. This suggests that both monomeric (purified in 

sonication buffer, see section 3.3.3.1) and dimeric (purified in Buffer O, see section 

3.3.3.2) VP23His participate effectively in capsid assembly. Furthermore, individually 

purified VP23His (bacterially expressed) and VP19cHis (baculovirus expressed) were 

j shown to participate in in vitro capsid assembly when mixed together (fig. 3.6.1, panel E).

j  Therefore, the purified VP23His and VP19cHis must be capable of forming functional
I
| triplexes in vitro. Table 3.5.1 summarises both the in vivo and in vitro capsid assembly
!

data for the Ni-NTA agarose purified triplexes and triplex proteins, and the purification 

buffers in which the analyses were performed.
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Test Sample Buffer In vitro 
capsid assembly

In vivo 
capsid assembly

Purified VP23His Sonication buffer + N/A

Purified VP23His Buffer 0 + N/A

Ac 1863 8 infected 
SF21 cells/extracts

PBSa + +

Ac 183 86 infected 
SF21 cells/extracts

PBSa + +

Purified triplexes 
(Ac18638)

Buffer 0 + N/A

Purified triplexes 
(Ac 183 86)

Buffer 0 + N/A

Ac381 infected 
SF21 cells/extracts

Buffer 0 + +

Purified VP23His + 
purified VP19cHis

Buffer 0 + N/A

Table 3.6.1: Functional analysis of triplexes and triplex protein samples to 
support in vitro and in vivo capsid formation
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It should be noted that in vitro capsid formation using Ni-NTA agarose purified triplexes 

and triplex proteins was particularly sensitive to protein concentration. The formation of 

capsids in vitro was much less efficient when purified protein samples were <0.3mg/ml. 

This probably represents a limiting factor during the formation of capsids and/or the 

polymerisation of capsid protein subunits. Thus, although capsid assembly may begin 

there may not be a sufficient local concentrations of uncomplexed purified protein 

immediately available to drive capsid assembly to completion (Zlotnick, 1994). Indeed, 

concentration dependent in vitro capsid assembly has also been reported for P22 and (|)29 

bacteriophages (Prevelige et al., 1993b; Lee and Guo, 1995).

3.6.2 Biophysical characterisation of the HSV-1 triplexes and triplex 

protein constituents

Although the individual protein components of the HSV-1 capsid have been known for 

some time (Gibson and Roizman, 1972) virtually nothing is known about their properties 

before they become associated within the mature icosahedral capsid. It is now becoming 

clear that capsid assembly in icosahedral viruses requires numerous complex folding 

stages where a capsid protein’s conformation may change throughout the course of capsid 

assembly (Johnson, 1996; Tuma et al., 1998). Techniques such as fluorescence, near/far- 

UV circular dichroism (CD), nuclear magnetic resonance (NMR), differential scanning 

calorimetry (DSC), and 8-anilino-l-naphthalenesulfonate (ANS) binding studies are 

becoming increasing popular for studying the dynamics of protein folding and 

conformational stability of proteins. These techniques were applied whenever possible to 

Ni-NTA agarose purified triplexes and triplex proteins in an attempt to understand their 

properties better.

3.6.2.1 Homogeneity o f Ni-NTA agarose purified triplexes and triplex proteins used for  

biophysical experimental analysis

Purification protocols for the isolation and solubilisation of triplexes and triplex proteins 

have been discussed in detail in previous sections. Biophysical characterisation 

experiments were carried out on Ni-NTA agarose purified triplexes from SF21 cells
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infected with Acl8386. To ensure an accurate 2:1 ratio of VP23 to VP19cHis within the 

heterotrimer complex, triplexes were further purified by size exclusion chromatography. 

The peak elution fraction was collected and used for biophysical analysis. In Ni-NTA 

agarose purified VP19cHis samples a 90kDa protein typically eluted from the Ni-NTA 

agarose in the first and second elution fractions. Therefore, for all VP 19c biophysical 

characterisation experiments only the third and subsequent elution fractions were used for 

experimental analysis. Due to the importance of maintaining protein sample homogeneity 

in order to obtain consistent and reproducible biophysical data, all Ni-NTA agarose 

purified samples were analysed by SDS-PAGE and Coomassie Brilliant Blue staining. 

Accurate protein concentrations were obtained by measuring protein absorbance at OD280 

using a Beckman DU-60 spectrophotometer (as described in Methods).

3.6.2.2 Ni-NTA purified triplexes and triplex proteins are folded protein molecules

As previously discussed in section 3.4, fluorescence spectroscopy can be used to measure 

the extent of which tryptophan (Trp) side chains are buried within the interior of a protein 

molecule. Fig. 3.6.2 (panels A-C) shows the fluorescence emission spectra for purified 

VP23His, VP19cHis, and purified triplexes following excitation at 295nm. The emission 

spectra all demonstrate a significant shift in Xmax from the value of 356nm which is 

associated with exposed Trp side chains within small model compounds. This indicates 

that the single Trp residue within VP23His and the 7 Trp residues within VP19cHis are 

buried or partially buried within the interior of a folded protein molecule. This is 

confirmed by comparing the tanax value of 335nm for purified native VP19cHis (fig. 

3.6.2, panel B) with the value of approximately 360nm for VP19cHis purified by urea 

denaturation of triplexes isolated from SF21 cells infected with Ac 18386 (fig.3.4.4, panel 

B). The Xmax for purified triplexes (331nm) also demonstrates that the 9 Trp residues (2 

Trp residues from 2x VP23 molecules and 7 from lx VP 19c molecule) are buried or 

partially buried within the interior of the complex. This implies that the protein-protein 

interaction between VP23 and VP19cHis within the triplex does not lead to conformational 

rearrangements that result in the exposure of these Trp residues to the solvent.
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Fig. 3.6.2: Intrinsic fluorescence spectra of Ni-NTA agarose purified

VP23His, VP19cHis and triplexes.

Fluorescence profiles for purified VP23His (0.2mg/ml) in buffer P (A), 

purified VP19cHis (0.1 mg/ml) in buffer O (B), purified triplexes (0.2 mg/ml) 

in buffer O (C) were monitored following excitation at 295nm (as described 

in Methods). All spectra were corrected for buffer absorbance by subtraction 

of the appropriate buffer-only spectra. The peak values are marked by the 

appropriate arrows.
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3.6.2.3 GndHCl induced unfolding o f triplexes and triplex proteins

Fluorescence spectroscopy can also be used to monitor the induced unfolding of protein 

molecules and complexes by measuring the fluorescence of a protein or protein complex in 

the presence of guanidine hydrochloride (GdnHCl). Exposure to increasing concentrations 

of GdnHCl results in the loss of protein structure and will eventually lead to a protein 

molecule adopting a random coil conformation where all the Trp residues are exposed to 

the solvent (Nishina et al., 1977). Unfolding of purified triplexes and triplex proteins 

induced by GdnHCl denaturation was therefore monitored by measuring their intrinsic Trp 

fluorescence. Fig. 3.6.3 (panels A-C) shows the spectra of purified VP23His, VP19cHis 

and triplexes in the presence of increasing concentrations of GdnHCl. VP23His, 

VP19cHis, and triplexes all demonstrated a shift in Xmax towards 356nm which clearly 

indicates the progressive unfolding of protein structure, resulting in the increased exposure 

of Trp side chains to the solvent. Fig. 3.6.3 (panel D) shows the profile of GdnHCl 

induced protein unfolding of as a plot of the percentage change in A,max against the 

molarity of GdnHCl. VP23His exhibited a rapid loss in protein structure with 70% of the 

total shift occurring in the presence of 2M GdnHCl, compared to a shift of 30% and 20% 

for VP19His and triplexes respectively. Increasing the concentration of GdnHCl to 4M 

resulted in little further shift in Xmax for VP23His but had a major effect on protein 

structure for VP19cHis and triplexes. Increasing the GdnHCl concentration above 4M 

GdnHCl resulted in a gradual loss of the remaining protein structure for VP23His with 

little further effect on VP19cHis and triplexes. These data suggest that VP23His unfolds 

in the presence of low concentrations of GdnHCl (1-2M GdnHCl), while the induced 

protein unfolding of triplexes and VP19cHis proves to be more resistant to GdnHCl 

denaturation with the loss of the majority of protein structure occurring between 2-3 M 

GdnHCl. Ni-NTA agarose purification experiments of VP19cHis performed by 

denaturation of triplexes in 3M urea (approximately 1.5M GdnHCl) resulted in the almost 

complete loss of the VP23/VP19cHis heterotrimer interaction, as determined by SDS- 

PAGE and Coomassie Brilliant Blue staining (fig. 3.4.3). This suggests that the transition 

observed for purified triplexes between 1-2M GdnHCl might be attributed to the 

denaturation of structural elements that are involved in the association of VP23 with 

VP19cHis. Furthermore, VP19cHis can be seen to begin unfolding in 1M GdnHCl 

whereas triplexes do not appear to undergo any significant transitions in unfolding until
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Fig. 3.6.3: Structural stability analysis of Ni-NTA agarose purified

VP23His, VP19cHis and triplexes by GdnHCl induced unfolding.

Trp fluorescence was monitored for purified VP23His (0.2mg/ml) in 

buffer P (A); VP19cHis (0.2mg/ml) in buffer O (B); triplexes (0.2mg/ml) 

in buffer O (C); in the presence of increasing concentrations of GdnHCl 

(0-6M). (D) The observed change in Xmax was plotted as a percentage 

change in tanax against the appropriate concentration of GdnHCl used to 

induce unfolding. All traces were corrected for buffer absorbance by 

subtraction of the appropriate buffer only spectra.
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incubated in the presence of 2M GdnHCl. It is interesting to note that GdnHCl 

denaturation experiments performed by Newcomb et al., (1993) on purified B-capsids 

resulted in the loss of pentons and the triplexes Ta and Tc in the presence of 2M GdnHCl. 

Newcomb and co-workers further reported that increasing the GdnHCl concentration to 

2.5M GdnHCl did not lead to the additional loss of triplexes from the capsid but did result 

in the partial disintegration in hexon structure, although no hexons were removed from the 

capsids. Incubating purified B-capsids in the presence of 3M GdnHCl resulted in the 

complete solubilisation of capsids (Newcomb and Brown, 1991). Incubating purified 

triplexes in the presence of 2-3M GdnHCl resulted in the largest shift in Xmax. Although 

it is tempting to speculate that the loss of Ta and Tc triplexes in 2M GdnHCl was a direct 

result of triplex unfolding not all triplexes were disassociated from treated capsids 

(Newcomb et al., 1993). This implies that the stability of the triplex varies depending 

upon their position within the capsid. Observations made by cryo-EM analysis of HSV-1 

capsids demonstrates that this stability may be attributable to significant differences in the 

intercapsomeric connections formed by the triplexes Ta-Tf with their surrounding 

capsomers (Zhou et al., 1994; Zhou et al., 1998; Zhou et al., 2000). Furthermore, triplexes 

have recently been shown to form substantial interactions with the capsid floor (Saad et al., 

1999; Zhou et al., 2000). Although these interactions have yet to be fully characterised, 

the observed differences in the various triplex connections highlights the increased 

conformational stability that could to be gained by the triplex when in association with 

other capsid proteins.

3.6.2.4 Far-UV CD analysis o f the secondary structure within triplexes and triplex 

proteins

Circular dichroism (CD) can be used to determine the extent of secondary and tertiary 

structure within a protein molecule or complex by measuring the differential absorbance of 

chromophores. The chirality of these chromophores can either be intrinsic or because they 

a placed within an asymmetric environment within the protein structure. Proteins contain a 

range of chromophores, in particular the aromatic amino acid side chains of phenylalanine 

(Phe), tyrosine (Try), and tryptophan (Trp). Such aromatic side chains and the disulphide 

bonds between cysteine residues absorb strongly over the near-UV region of 250-290nm.
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Fig. 3.6.4: Far-UV CD analysis and CONTIN estimation of

secondary structure of purified VP23His, VP19cHis, and triplex.

Absorbance spectra in the Far-UV CD region (180-240nm) for 

purified VP23His (0.2mg/ml) in buffer P (A); triplexes 

(0.05mg/ml) in buffer O (B); VP19cHis (0.1 mg/ml) in buffer O

(C). All traces were corrected for buffer absorbance by 

subtraction of the appropriate buffer-only spectra. (D) 

Comparison of secondary structure content of purified triplexes 

and triplex proteins derived from amino acid sequences submitted 

to PHD predict (WWW.embl-heidelberg.de/predictprotein) and 

CONTIN estimations of secondary structure content of a-helix 

and |3-sheet from Far-UV CD analysis of A, B, and C.

http://WWW.embl-heidelberg.de/predictprotein
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However, the strongest absorption within the UV range is that of peptide bonds which 

absorb in the far-UV region (180-240nm) (Price, 1995; Kelly and Price, 1996). Far-UV 

CD analysis can be used to assess quantitatively the overall secondary structure content of 

a protein due to the characteristically different absorption’s of a-helix and p-sheet within 

the far-UV region. For example, a-helices give characteristic absorption peaks at 208 and 

222nm (Hirst and Brooks, 1994). By applying the CONTIN procedure of Provencher and 

Glockner (1981) the amount of secondary structure within a protein molecule can be 

determined. The CONTIN procedure utilises the far-UV CD absorption spectrum and 

applies a linear combination of CD spectra from 16 proteins that have had their structures 

resolved by X-ray crystallography. Within this procedure greater weight is automatically 

applied to those reference spectra that closely resemble those of the analysed sample. This 

therefore allows reliable and quantitative measurement of the amount of secondary 

structure a protein molecule or protein complex contains. Fig. 3.6.4 (panels A-C) shows 

the far-UV CD spectra for Ni-NTA purified VP23His, VP19cHis and triplexes after 

subtraction of the appropriate buffer control spectra. VP23His, VP19cHis and triplexes all 

produce absorption spectra that demonstrate significant amounts of secondary structure 

associated with folded protein molecules (Kelly and Price, 1996). Application of the 

CONTIN procedure to these spectra provides a quantitative assessment of the secondary 

structure content of a-helix and (3-sheet within these protein molecules. Fig. 3.6.4 (panel 

D) shows the comparison between the estimated secondary structures determined from the 

application of the CONTIN procedure and the predicted secondary structures from the 

secondary structure prediction program PHD (Rost and Sander, 1993). PHD predictions 

were acquired by submitting the amino acid sequences of VP23 and VP 19c, or in the case 

of the triplex a compilation made by assembling a VP 19c and two VP23 sequences. It 

should be noted that experimental values obtained by CD can be affected by small errors in 

protein concentration determination and high levels of noise, particularly in the absorption 

region below 190nm, which may be brought about by components within purification 

buffers, especially imidazole and Cl" ions. Utilising Ni-NTA agarose affinity 

chromatography to purify recombinantly expressed 6x His tagged proteins resulted in the 

presence of imidazole within the elution buffer (typically >100mM). In all incidences the 

imidazole was removed from the protein samples prior to analysis by dialysis or gel 

filtration of purified protein samples. Far-UV CD analysis was repeated multiple times on 

different samples. Both VP23His and triplexes gave reproducible spectra and consistent
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CONTIN estimations for the content of secondary structure (fig.3.6.4, panel D). However, 

attempts to obtain a reproducible far-UV CD spectra for VP19cHis proved difficult. 

Dialysis of purified VP19cHis (o/n at 4°C) to remove imidazole from the elution buffer 

resulted in the majority of VP19cHis precipitating out of solution. Shorter periods of 

dialysis were employed, both at RT and 4°C, but either resulted in the protein precipitating 

out of solution or were ineffective in lowering the concentration of imidazole sufficiently 

to reduce the high level of noise in the far-UV absorption region. Attempts to remove 

imidazole from purified VP19cHis protein samples by size exclusion chromatography also 

failed due to the non-specific binding of VP19cHis to the Superose matrix (discussed in 

section 3.4.5). Similarly, attempts to remove imidazole through the use of desalting 

columns failed due to non-specific binding of VP19cHis to the various column matrices 

(data not shown). A CONTIN prediction of secondary structure obtained from a 

successful scan of purified and dialysed VP19cHis is shown in fig. 3.6.4 (panel D 

highlighted in red). However, it should be noted that this result has yet to be confirmed.

Furthermore, it should also be noted that protein prediction programs such as PHD rely 

heavily on the degree of similarity between the submitted amino acid sequences and that of 

protein sequences compiled within the database. Therefore, errors in the estimation of 

secondary structure content for a given amino acid sequence may occur due to no suitable 

sequence counterpart within the database.

Comparison of the secondary structure of VP23His and triplexes derived experimentally 

from far-UV CD/CONTIN analysis with the predicted secondary structure reveals a 

reasonably close correlation although the figures for VP 19c are more divergent. 

Nevertheless, the spectra for both VP23His and triplexes, as well as the spectra obtained 

for purified VP19cHis, demonstrated that triplexes and individual triplex proteins contain a 

significant degree of secondary structure. Purified triplexes and triplex proteins therefore 

represent, at least, partially folded protein molecules. Although difficulties were 

experienced in obtaining far-UV CD spectra for VP19cHis, the CONTIN prediction for 

secondary structure for purified triplexes has approximately 10% more a-helix content 

compared to that of purified VP23His. This would suggest, therefore, that VP19cHis is 

contributing to the level of secondary structure within the triplex.
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3.6.2.5 Near-UV CD analysis o f  the tertiary structure within triplexes and triplex proteins

Near-UV CD (250-320nm) can be used to analyse the tertiary structure of a protein 

molecule by measuring the absorbance of the aromatic amino acid side chains, principally 

those of Phe (255nm), Tyr (275nm), and Trp (290nm). The folding of a polypeptide chain 

places the aromatic amino acids side chains of these amino acids in a variety of 

environments which affect their ability to absorb in the near-UV region. The intensity of 

absorbance by these aromatic side chains reflects the degree to which they are incorporated 

within a given protein structure. If the protein contains rigid tertiary structure and tightly 

packed aromatic amino acid side chains then their absorbance within the near-UV CD 

region is high. Conversely, if the protein lacks substantial tertiary structure and the 

aromatic side chains can move more freely, then the intensity of absorbance is lower 

(Kelly and Price, 1996). The near-UV CD spectrum therefore reflects the degree to which 

stable interactions occur between amino acids and provides a measure of the tertiary 

structure of a protein molecule.

Fig. 3.6.5 shows the near-UV CD spectra for monomeric and dimeric VP23His and 

triplexes. The near-UV CD spectra for both monomeric and dimeric VP23His (panels A 

and B) appear as flat traces. There is no evidence of the distinct peaks expected if the 

aromatic amino acid side chains occupy fixed positions within the protein structure. This 

suggests that any tertiary interactions within VP23His are weak and do not result in the 

formation of rigid tertiary structural domains. Conversely, the near-UV CD spectrum for 

purified triplexes (fig. 3.6.5, panel C) demonstrated a strong absorbance peak. Therefore, 

some or all of the aromatic amino acid side chains within the heterotrimeric protein 

complex occupy fixed positions suggesting that defined tertiary structure exists within the 

triplex. Because of the relatively high protein concentrations required for near-UV CD 

analysis, typically 0.5-2 mg/ml, no trace could be obtained for purified VP19cHis due to its 

relative poor recovery from SF21 cells infected with Ac381 (discussed previously in 

section 3.4). Therefore, it was impossible to determine whether the near-UV CD spectrum 

of the triplex solely represents the contribution of VP 19c to the heterotrimer complex, or if 

the tertiary structure observed is at least partly a result of the interaction between the
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Fig. 3.6.5: Near-UV CD analysis of monomeric, and dimeric 

VP23His and triplexes

Near-UV CD absorbance spectra for purified monomeric VP23His 

(1.5mg/ml) in buffer P (A), dimeric VP23His (1.5mg/ml) in buffer 

O (B), and triplexes (1.5mg/ml) in buffer O (C). All traces were 

corrected for buffer absorbance by subtraction of the appropriate 

buffer-only spectra.
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VP 19c and VP23 protein molecules. For example, if tertiary structure within the triplex is 

developed through mutual co-folding of VP 19c and VP23 during triplex formation.

3.6.2.6 DSC analysis o f the tertiary structure within triplexes and triplex proteins

The tertiary structure of protein molecules and protein complexes can also be analysed by 

temperature-induced denaturation through the use of differential scanning calorimetry 

(DSC). Analysing the heat capacity of a protein molecule provides a thermodynamic 

description of its conformational stability and provides valuable information on the state of 

folding adopted under specific conditions (Privalov et al., 1995). The presence of an 

endothermic transition on a plot of heat capacity versus temperature is usually considered 

to be a result of co-operative melting of a protein’s tertiary structure (Privalov and 

Potekhin, 1986). A positive enthalpy transition primarily represents the exposure of buried 

hydrophobic amino acids to the solvent due to the heat induced disruption of van der 

Waals interactions within the interior of a protein molecule (Dill, 1990; Murphy et al., 

1990; Makhatadze and Privalov, 1993; Privalov, 1997). Fig. 3.6.6 (panel A) shows the 

DSC profile obtained for monomeric VP23His (0.7 mg/ml) purified in buffer P. The 

profile shows no heat absorption peak suggesting that no endothermic transition has 

occurred due to the co-operative melting of tertiary structure. The decline in heat capacity 

above 60°C is due to the irreversible exothermic aggregation of VP23His molecules post- 

denaturation and reflects the precipitation of unfolded VP23His molecules out of solution 

(Cooper, 1999). The DSC spectrum for VP23His therefore confirms observations made by 

near-UV CD analysis and indicates the lack of a rigid tertiary structure within the VP23His 

protein molecule. Hydrodynamic studies performed by Marina Kirkitadze (Kirkitadze et 

al., 1998) demonstrated that Ni-NTA agarose purification of VP23His in sonication buffer 

and subsequent dialysis into buffer P resulted in a predominantly monomeric population of 

VP23His molecules at concentrations below 0.8mg/ml. Therefore, the DSC analysis 

described above for VP23His in buffer P represents the native level of tertiary structure 

within a single monomeric molecule of VP23His. Ni-NTA agarose purification of 

VP23His in buffer O resulted in the isolation of VP23His dimers (discussed in section 3.3). 

Fig. 3.6.6 (panel B) shows the DSC profile for dimeric VP23His (0.5mg/ml) purified in
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Fig. 3.6.6: Differential scanning calorimetry (DSC) of Ni-NTA

agarose purified VP23His.

Heat absorption profiles of VP23His (0.7mg/ml) purified in buffer P 

(A), and VP23His (0.5mg/ml) purified in buffer O + 250mM 

imidazole (B). Profiles were obtained by heating the protein solutions 

through a temperature range of 10 to 100°C at a scan rate of l°C/min. 

The spectrum was corrected by subtracting the buffer control 

spectrum for the appropriate buffer heated in the same manner.
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buffer O. A small heat absorption peak was observed at approximately 58°C suggesting 

that a small endothermic transition had occurred. However, as the near-UV CD trace for 

dimeric VP23 in buffer O was flat, suggesting an absence of tertiary structure within 

dimeric VP23, the endothermic transition observed probably represents the exposure of 

hydrophobic surfaces at the interface between the VP23 molecules and not the co

operative melting of tertiary structure. As with the monomeric VP23His DSC spectra, 

dimeric VP23His also showed a sharp decline in heat capacity above 60°C demonstrating 

the irreversible unfolding of VP23His molecules during temperature denaturation.

One of the advantages of DSC analysis over far-UV and near-UV CD analysis, is that the 

experimental procedure can be carried out in the presence of imidazole. DSC therefore 

provides a means of analysing of the conformational stability of purified VP19cHis, which 

circumvents the difficulties associated with removing imidazole from the protein sample. 

Fig. 3.6.7 shows the DSC profile of Ni-NTA agarose purified VP19cHis (0.5mg/ml) in 

buffer O. The temperature-induced denaturation of VP19cHis produced an 

uncharacteristic, but reproducible, DSC spectrum. Typically, a buffer normalised DSC 

profile for a compact globular protein is comparatively flat with a defined peak, or peaks, 

representing the co-operative unfolding of tertiary structure upon temperature induced 

denaturation. However, no distinctive peak could be detected from DSC analysis of 

purified VP19cHis, with different samples consistently producing a similar curve. 

Throughout the purification procedure and preceding DSC analysis the solubility of the 

VP19cHis was examined to ensure that it had not precipitated out of solution. Special care 

was also taken during loading of the sample into the cell to prevent complications, for 

example the presence of air bubbles within the cell, that could have affected the DSC 

analysis. Despite this, different batches of VP19cHis produced the same profile over a 

range of protein concentrations (0.2-0.5mg/ml, data not shown). Therefore, the DSC 

profiles generated for purified VP19cHis must be assumed to provide an indication of the 

native conformational stability of VP19cHis during temperature induced denaturation. As 

no endothermic transition was observed for purified VP19cHis this would suggest that 

VP19cHis has little or no stable tertiary structure.

The uncharacteristic DSC profiles could possibly be explained by conformational 

instability of purified VP19cHis molecules. If the native state of purified VP19cHis 

molecules is never fully populated by a particular conformation, due to the protein’s
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Fig. 3.6.7: Differential scanning calorimetry (DSC) of Ni-NTA agarose 

purified VP19cHis.

Heat absorption profile of VP19cHis (0.5mg/ml) purified in buffer O + 

lOOmM imidazole. The profile was obtained by heating the protein solution 

through a temperature range of 10 to 100°C at a scan rate of l°C/min. The 

spectrum was corrected by subtracting the control spectrum for the 

purification buffer heated in the same manner.
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conformational instability, then the conventional baseline subtraction cannot be performed 

to provide accurate temperature transitions (Privalov et a l, 1995). Indeed, this can be seen 

to occur in proteins that show cold denaturation, very specific and strong temperature- 

dependent interactions of non-polar groups with water. Hydration of these residues is 

atypical, in that it is thermodynamically favourable, and as a result a cold sensitive protein 

will unfold at sufficiently low temperatures exposing its internal non-polar residues to the 

environment (Privalov, 1990). Experiments performed by Privalov et al., (1986) 

demonstrated that the tertiary structure of metmyoglobin unfolds completely upon cooling. 

This results in the polypeptide demonstrating similar characteristics to those of a random 

coil with only residual helicity remaining in the unfolded polypeptide, as determined by 

NMR and CD analysis. The transition in unfolding of metmyoglobin due to cold 

denaturation was monitored by DSC and was shown to occur when metmyoglobin was 

cooled between 10°C and -7°C. A transition could be detected between 10 and 0°C, 

similar to, but not as broad as, the DSC profile of VP19cHis. Although there is no direct 

evidence to show that purified VP19cHis undergoes cold denaturation there may be 

exposed hydrophobic residues, which might be required for future protein interactions with 

VP23, VP5, and HSV-1 tegument proteins. These may promote protein instability in the 

absence of these other proteins. In vitro purification of VP19cHis is also likely to promote 

the possible hydration of non-polar residues, due to the removal of cellular factors within 

the cytosol that could maintain protein conformation and stability, for example cellular 

chaperones. Chaperone proteins have been implicated in the stabilisation of cold labile 

proteins, in preventing irreversible aggregation by stabilising intermediate folded protein 

structures during their assembly, and in some circumstances disassembly, of oligomeric 

complexes (Guy et al., 1998). Indeed, molecular chaperones GroEL and GroES have been 

implicated in the in vivo capsid assembly pathway of ts mutants of P22 bacteriophage 

(Nakonechny and Teschke, 1998). Thus, the instability of purified VP19cHis in vitro may 

result in a population of protein molecules in different states of unfolding which do not 

conform to a particular conformation and therefore are unable to provide a uniform 

endothermic transition to which a buffer base line can be subtracted.

It is noteworthy that Ni-NTA agarose pull downs have shown that the interaction between 

VP23 and VP19c is partially inhibited at 0°C (discussed in section 3.4 and fig. 3.4.11). 

This could be explained if the conformational stability of VP19cHis is altered at low
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temperatures. However, it should be emphasised that further analysis is required in order 

to accurately determine the conformational stability of purified VP19cHis and determine 

whether it undergoes cold-denaturation similar to that of previously characterised cold 

labile proteins.

Fig. 3.5.8 (panel A) shows the DSC profile for triplexes (0.5mg/ml) purified in buffer O. 

A distinct heat absorption peak was observed at approximately 60°C. This represents a 

substantial endothermic transition indicating the co-operative melting of tertiary structure 

leading to the exposure of non-polar residues to the solvent. This confirms the 

experimental observations made by near-UV CD analysis, which suggested that the triplex 

contains rigid tertiary structure. DSC analyses of multi-domain proteins sometimes 

demonstrate the presence of several endothermic transitions during heat denaturation. 

Experiments performed by Novokhatny et al., (1984) on plasminogen, demonstrated seven 

independent co-operative transitions which were specifically associated with the co

operative unfolding of structural domains linked together by disulphide bonds. In contrast, 

only a single endothermic transition was detected during the heat denaturation of the 

triplex. This would suggest that the purified triplexes may only contain a single rigid 

tertiary structural domain which co-operatively unfolds in a manner similar to that of small 

compact globular proteins (Privalov, 1997). If the VP23 and VP19cHis molecules within 

the triplex had independent rigid tertiary structures, then two or more endothermic 

transitions might be expected due to the co-operative unfolding of the complex followed 

by the unfolding of tertiary structure within the individual triplex protein molecules. The 

fact that only a single transition was detected would further imply that VP19cHis and 

VP2His lack any rigid tertiary structure as individual triplex proteins. It is likely therefore 

that some form of mutual co-folding between VP 19c and VP23 triplex proteins is 

occurring during triplex formation.

In order to analyse the association of purified VP23His and VP19cHis molecules, DSC 

analysis was performed on in vitro formed triplexes. VP23His and VP19cHis were 

individually purified by Ni-NTA agarose affinity chromatography in buffer O, mixed in a 

2:1 molar ratio to a final protein concentration of 0.5mg/ml and allowed to associate for 1 

hour at 28°C. Fig. 3.6.8 (panel B) shows the DSC profile of the samples, following this 

procedure. A distinctive heat absorption peak could be detected at approximately 55°C. 

Although this peak is smaller than that for an equivalent amount of purified in vivo formed
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Fig. 3.6.8: Differential scanning calorimetry (DSC) of Ni-NTA 

agarose purified triplexes

Heat absorption profile of triplexes (0.5mg/ml) purified in buffer O

(A) and in vitro assembled triplexes (0.5mg/ml) (B). In vitro 

assembled triplexes were made by mixing a 2:1 ratio of individually 

purified VP23His and VP19cHis in buffer O + 250mM imidazole for 

1 hour at 28°C before analysis. Profiles were obtained by heating the 

protein solutions through a temperature range of 10 to 100°C at a scan 

rate of l°C/min. The spectrum was corrected by subtracting the 

control spectrum for the appropriate buffer heated in the same manner.
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triplexes, it demonstrates that individually purified triplex proteins can interact to form 

complexes that have tertiary structure which undergoes co-operative unfolding upon heat 

denaturation. The endothermic transition occurs at a slightly lower temperature than that 

of purified in vivo formed triplexes (60°C). The smaller heat absorption peak seen with the 

in vitro formed complexes could mean that some, but not all, of the individually purified 

triplex proteins form complexes in vitro. This would appear to mirror the behaviour of the 

in vitro assembled triplexes analysed on sucrose gradients (fig. 3.4.15). The reason for the 

incomplete association of purified triplex proteins and the observed lower temperature of 

co-operative unfolding remains unclear.

Sucrose gradient sedimentation analysis has shown that individually purified triplex 

proteins mixed in vitro form complexes which sediment to the same position as purified in 

vivo formed triplexes (section 3.4.6, fig. 3.4.15). This, together with their ability to 

support in vitro capsid assembly, demonstrates that the individual proteins are capable of 

assembling into functional heterotrimeric complexes. Protein concentration has been 

shown to be important for the successful formation of capsid structures. Prevelige et al., 

(1993b) demonstrated that P22 capsid assembly could not occur below a critical protein 

concentration (0.3mg/ml) due to the unsuccessful polymerisation of coat and scaffold 

protein subunits. The same could be true for triplex formation. The equilibrium 

established between individual protein subunits (VP23His and VP19cHis) and polymerised 

complexes (triplexes) may be stalled when the concentration of free triplex subunits 

required to drive the formation of triplexes falls below a concentration critical for subunit 

polymerisation (Zlotnick, 1994). Alternatively, the purification procedure of VP23His and 

VP19cHis may affect their ability to form complexes. For example, the presence of 

detergents may inhibit formation by concealing external hydrophobic residues required for 

efficient complex formation. The purification of individual triplex proteins could also 

remove cellular components required for efficient interaction.

The endothermic transition of in vitro assembled triplexes occurs at a slightly lower 

temperature than for triplexes formed in vivo. This implies that the tertiary structure of in 

vitro formed triplexes is not as stable as that of purified in vivo triplexes. Alternatively, the 

lack of a sharp transition may indicate that in vitro triplexes represent a partially folded 

intermediate state in triplex assembly. Fuchs et al., (1991) demonstrated that the refolding 

of the trimeric tail spike of P22 bacteriophage produced a non-native trimer intermediate
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(Tp). Although the monomeric subunits associated into trimers comparatively quickly (1.5 

hours) without passing through a detectable dimeric intermediate state, the native SDS- 

resistant trimers took 3 days to form at 10°C. The formation of triplexes in vitro may 

therefore require longer periods of incubation. Although, incubation for 1 hour at 28°C 

may be sufficient time to allow the association of triplex protein molecules, which may 

undergo some degree of co-operative folding, but insufficient to form the specific native 

tertiary structure as seen within the in vivo formed purified triplexes. One of, or a 

combination of, these factors may be responsible for the incomplete polymerisation of all 

the individual purified triplex protein constituents and consequently a reduction in the heat 

absorption capacity of in vitro formed triplexes compared to that of purified in vivo formed 

triplexes.

3.6.2.7 Partial folding within purified triplexes and triplex proteins

The use of non-covalent probes, such as 8-anilino-l-naphthalinenesulfonate (ANS), has 

become increasingly popular in analysing protein conformation. The binding of ANS to a 

protein molecule was generally regarded as a sensitive test for partial folding which allows 

ANS access to the hydrophobic interior of a protein molecule where it can become 

fluorescent upon excitation at 370nm. Indeed, ANS has been used in the detection and 

analysis of molten globules (protein molecules in an intermediate state of protein folding) 

which have a compact conformation with pronounced secondary structure but with little or 

no rigid tertiary structure (Semisotnov et al., 1991; Ptitsyn, 1995a). The increased ability 

of ANS to bind to proteins that are in a molten globule-like state, which can become 

fluorescent upon excitation, is primarily due to an increase in the number of exposed 

binding sites within the hydrophobic core of molten globule-like proteins where ANS is 

not exposed to the quenching effect of the surrounding solvent.

Fig. 3.6.9 (panels A-C) shows the ANS binding profiles of Ni-NTA agarose purified 

VP23His, VP19cHis and triplexes receptively. Triplexes and the individual triplex 

proteins all demonstrated a large increase in ANS fluorescence at 470nm over that seen for 

ANS in buffer or for protein samples analysed in the absence ANS. This indicates that 

ANS molecules were binding to the protein molecules and that the organic moiety 

responsible for ANS fluorescence was buried within their hydrophobic interiors. As
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Fig. 3.6.9: ANS binding analysis to Ni-NTA agarose purified

VP23His, VP19cHis, and triplexes.

ANS fluorescence at 440-540nm was monitored following 

excitation at 370nm (as described in Methods). ANS was mixed 

(to a final concentration o f 20pM ) with purified VP23His 

(0.2mg/ml) in buffer P (A); purified VP19cHis (0.1 mg/ml) in 

buffer O (B); and purified triplexes (0.2mg/ml) in buffer O (C). 

Control fluorescence spectra were measured for ANS in the 

appropriate buffer and for protein samples in the absence o f ANS.
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purified triplexes demonstrate ANS fluorescence, there must be additional accessible 

internal areas of hydrophobicity within VP23 and VP19cHis, which are not lost due to the 

interactions between VP19cHis and VP23. This would indicate that triplexes still contain 

a degree of partial folding allowing ANS access to hydrophobic pockets away from the 

quenching environment of the solvent. It should be noted that recent studies have shown 

that ANS can bind to solvent accessible polar groups on native, non-molten globular 

proteins through electrostatic interactions. However, the fluorescence of such ANS 

molecules binding to exposed sites is typically quenched by water molecules within the 

solvent (Matulis and Lovrien, 1998; Matulis et al., 1999). Denatured VP23His and VP5, 

unfolded in the presence of 6M GdnHCl, have been shown not to produce an increase in 

ANS fluorescence following excitation (Kirkitadze et al., 1998). This would suggest that 

ANS only becomes fluorescent following excitation when in association with capsid 

proteins that have a degree of folding, where ANS molecules can gain access to a 

hydrophobic core.

3.6.3 Conclusions

3.6.3.1 Ni-NTA agarose purified triplexes and triplex proteins are functionally active.

Utilising in vitro capsid assembly analyses it has been demonstrated that Ni-NTA agarose 

purified triplexes and triplex proteins are capable of participating in the formation of 

capsid particles that morphologically resemble WT HSV-1 capsids (as determined by 

electron microscopy). Capsid formation only occurred when VP5, VP19c, VP23, and the 

scaffold component preVP22a were present as purified proteins or in SF21 whole cell 

extracts. This confirms previously published observations which reported that the in vitro 

formation of capsids does not require the presence of VP26 (UL35) (Newcomb et al., 

1994; Newcomb et al., 1999; Newcomb et al., 2000).

In vitro capsid assembly utilising purified triplexes and triplex proteins demonstrated that 

the 6x His epitope tag located on the N-terminus of VP19cHis or VP23His, either as an 

individual protein molecule or as part of the heterotrimer complex, did not affect protein

166



Results: 3.6

functionality. This ability to form capsid particles indicates that the N-termini are not 

directly involved in the interactions occurring during capsid assembly. Indeed, Desai and 

Person (1996) and Spencer et al., (1998) have shown that small deletions from the N- 

termini of VP23 and VP 19c do not affect protein functionality, as determined by the yeast 

two hybrid system and in vivo capsid assembly respectively.

The purification protocols/buffers used in the isolation of the recombinantly expressed 

proteins do not appear to affect protein functionality. However, in the case of VP23His, 

the oligomeric status of VP23 appears to be buffer dependent. Both monomeric VP23His 

(purified in sonication buffer) and dimeric VP23His (purified in buffer O), appeared 

equally efficient at forming capsids. The buffer dependency on the oligomeric status of 

VP23His would imply that the VP23His molecules within the dimer are weakly associated 

and that dimer formation is not specifically required for triplex and capsid formation. This 

relatively weak intra-molecular association is highlighted by the absence of a near-UV CD 

signal and the small endothermic transition observed during DSC analysis of dimeric 

VP23His purified in buffer O (figs. 3.6.5, panel B and 3.6.6, panel B respectively).

3.6.3.2 Molten globularity o f purified VP23His and VP19cHis

Far-UV CD and fluorescence analysis of purified VP23His and VP19cHis demonstrated 

that these molecules are folded and contain pronounced secondary structure. However, 

DSC and near-UV CD revealed that both these proteins lacked rigid tertiary structure. 

Moreover, both VP23His and VP19cHis bound ANS and demonstrated an increase in 

fluorescence following excitation. These data, taken together, indicate that both VP23His 

and VP19cHis are in partially folded states and fit the defining criteria of molten globule 

like-proteins. Molten globule-like proteins are partially folded protein molecules that have 

a compact state with distinct secondary structure elements but lack rigid tertiary structure 

(Ptitsyn, 1995a; Privalov, 1996). The lack of rigid tertiary structure in the molten globule

like state is generally considered to reflect the absence of tight packing of amino acid side 

chains within the hydrophobic core of the protein molecule (Ptitsyn, 1995a; Privalov, 

1996). This allows a greater degree of domain flexibility, in particular by allowing the 

secondary structural elements to move in relation to each other (Semisotnov et al., 1991).
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Many proteins have been shown to adopt a molten globular state during induced protein 

unfolding under non-physiological conditions, for example at low pH and/or in the 

presence of denaturants. The partially folded state is thought to represent an equilibrium 

intermediate in the protein folding pathway (Ptitsyn et al., 1990). One of the most 

extensively studied proteins to demonstrate a partially folded intermediate state, is apo-a- 

lactalbumin, which adopts a molten globule-like form when incubated in the presence of

denaturants such as GdnHCl or low pH. Yutani et al., (1992) also demonstrated that apo-
21

a-lactalbumin could form a molten globule-like state at neutral pH in the absence of Ca 

ions. Utilising DSC and CD analysis they characterised this partially folded intermediate 

state and demonstrated that it contained no detectable tertiary structure. However, it 

retained a comparable amount of secondary structure to that of the native apo-a- 

lactalbumin when analysed by Far-UV CD. Similar observations were reported when 

structural studies were performed by Uversky et al., (1995) on the glycoprotein a- 

fetoprotein (AFP). AFP demonstrates significant conformational rearrangements when 

subject to low pH (pH3.1) which lead to the development of attributes characteristic of a 

molten globule-like state. Far-UV CD analysis demonstrated that AFP contained similar 

levels of secondary structure at pH 3.1 to that of native AFP, while AFP denatured in 9M 

urea contained no detectable secondary structure. Conversely, the lack of a distinct 

endothermic transition detectable by DSC analysis showed that at pH 3.1 AFP contained 

no rigid tertiary structure. This was in contrast to native AFP molecules analysed at pH 

7.2. This led the authors to conclude that the transition from native to molten globule-like 

state for AFP might play an important role in the proteins functionality. They 

hypothesised that the increased flexibility of the molten globule state could facilitate ligand 

disassociation at membrane structures, where the intracellular pH is lower than that of the 

cytsol.

Molten globule-like states have not been widely characterised within virus structural 

proteins. This is probably due to the relatively limited investigations of the folding 

pathways of such proteins compared to those of smaller more amenable globular proteins. 

However, a partially folded intermediate state has been proposed for the coat protein 

subunit of P22 bacteriophage. Teschke and King (1993) analysed the ability of denatured 

P22 coat protein to refold in vitro. Upon refolding the coat protein molecule was fully 

functional and actively participated in capsid assembly when associated with its scaffold
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protein counterpart. During refolding an intermediate was identified which exhibited an 

increase in both intrinsic fluorescence and the number of sites that bound ANS compared 

with the fully folded form. The increased number of ANS sites led the authors to propose 

that this folding intermediate was in an molten globule-like transitional state. They further 

proposed that the native coat protein, which had not associated with a scaffold subunit, was 

in a partially folded intermediate state and only became fully folded when polymerised 

within the capsid during assembly in association with scaffold protein molecules.

3.6.3.3 Mutual protein co-folding within the triplex

DSC analysis of purified VP19cHis and VP23His demonstrated that they contain little or 

no rigid tertiary structure. Conversely, DSC analysis of purified in vivo and in vitro 

formed triplexes, and near-UV CD analysis of in vivo purified triplexes, showed that they 

contain considerable tertiary structure. As the individual triplex proteins appear to lack 

any independent tertiary structure, the tertiary structure within the triplex would appear to 

be formed by the association of VP 19c and VP23 during triplex formation. The formation 

of such rigid tertiary structure is probably a direct result of mutual co-folding of secondary 

structural elements from each protein during complex formation (discussed further in 

section 4).

3.6.3.4 Partial folding within the triplex

Although the classical definition of the molten globule-like state does not apply to the 

triplex, it still binds the hydrophobic probe ANS strongly and shows enhanced 

fluorescence following excitation (fig. 3.6.9, panel C). This indicates that ANS has access 

to the hydrophobic interior of the heterotrimer and suggests that although the triplex is 

fully folded and contains rigid tertiary structure, other regions within the complex still 

retain the characteristics of a partially folded molten globule-like intermediate.

Although there are few examples of trimeric protein complexes that exhibit partial folding, 

one example is that of the cytokine tumour necrosis factor-a (TNFa). TNFa is a 52kDa
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globular trimeric protein composed of identical subunits of approximately 17.3kDa 

(Wingfield et al., 1987). TNFa has been shown to partially unfold at low pH and 

demonstrates the usual characteristics of an acid induced molten globule-like state (Hlodan 

and Pain, 1994). Experiments performed by Hlodan and Pain (1995) demonstrated that 

TNFa could be denatured into unfolded monomers in 3M GdnHCl and upon refolding 

passed through a transient trimeric intermediate (I3) molten globule-like state. This I3 

intermediate bound ANS more effectively than the native compact conformation. During 

refolding there was desorption of ANS which was thought to reflect the conformational 

rearrangement and re-packing of side chains into the native trimeric conformation. The 

fact that HSV triplexes still retain the ability to bind strongly to ANS could therefore 

indicate that further conformational rearrangements have yet to occur within the triplex. 

The triplex itself may therefore represent a partially flexible intermediate in respect to 

capsid assembly, which only adopts its final native conformation following capsid 

maturation (discussed further in section 4.0).

Although the classical definition of the molten globule is associated with a lack of rigid 

tertiary structure, some proteins have been shown to have a bipartite structure comprised of 

both molten globule-like and fully folded protein domains. For example, the molten 

globule-like state of a-lactalbumin contains two domains, an a-helical and P-sheet 

domains, which exhibit different degrees of folding. The P-sheet domain is largely 

unstructured whilst the structure of the a-helical domain closely resembles that of the 

native protein (Peng et al., 1995). This folded structure is thought to be due to a small 

subset of hydrophobic residues within the a-helical domain which form a densely packed 

core. This step is thought to direct the overall folding of the protein molecule in the early 

stages of folding before specific packing of amino acid side chains occurs (Peng and Kim, 

1994; Wu and Kim, 1998; Song et al., 1998). Therefore, in a multi-domain polypeptide, 

molten globule properties can be limited to portions of the polypeptide with individual 

domains folding independently (Peng and Kim, 1994; Peng et al., 1995). Indeed, it is now 

becoming clear that folding of some protein molecules requires a number of folding stages 

with the protein molecule passing through several conformational intermediates before it 

takes on its final native structure. For example, interleukin-4 at low pH has been shown by 

NMR studies to take on a late folding intermediate conformation that contains extensive 

tertiary interactions within a highly ordered hydrophobic core but still displays extensive
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disorder within regions which link the structural domains. This has lead to the 

terminology of the ‘highly ordered molten globule’ (Redfield et al., 1994). Similar NMR 

analysis of cytochrome b562) with (halo-) and without (apo-) the prosthetic haem group, has 

revealed that the overall topology of the molecule is conserved between apo- and halo- 

forms (Feng et al., 1994). However, significant differences were detected in the helix- 

helix packing, in particular around the haem-binding pocket of apo-cytochrome b562 which, 

although conserved, was exposed to the solvent.

Purified in vivo formed triplexes seem to belong to this class of proteins which contains 

both highly structured and flexible domains. The flexible domains may assist further 

protein folding events during the course of capsid assembly (discussed further in section 

4.0). In the absence of a high resolution structure, it is difficult to speculate where the 

structured and flexible portions are located within the triplex. The highly structured 

component of the triplex may represent the product of mutual co-folding between VP23 

and VP 19c and/or be the direct result of tertiary structure developed within the individual 

triplex proteins during triplex formation. Cryo-EM analysis to 8A resolution has shown 

that the triplex appears as a compact globular heterotrimer (Zhou et al., 2000). However, 

this triplex structure is derived from a mature icosahedral B-capsid and is likely to differ 

from that of isolated triplexes, due to possible additional conformational rearrangements 

that occur during association of the triplex with other capsid protein subunits during capsid 

assembly. Indeed, as described in the introduction to this thesis, such conformational 

changes are evident, albeit at comparatively low resolution, when comparing the triplex 

conformation within procapsids to that of mature capsids (triplex conformational flexibility 

is discussed in further detail within section 4.0).

3.6.3.5 Future work

The stability of purified VP19cHis in vitro is poor compared to that of VP23His and 

triplexes. It has therefore been consistently difficult to perform biophysical analysis upon 

VP 19cHis due to the low concentrations of homogenous samples. Further biophysical 

analysis is therefore required on VP19cHis, such as near and far-UV CD, in order to 

accurately determine the degree of secondary and tertiary structure. Although attempts to
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concentrate purified VP19cHis have failed, primarily due to non-specific binding to 

various agarose matrixes, it would be worth attempting to concentrate VP19cHis through 

other methods, such as micro-dialysis. Similarly, it would also be beneficial to develop 

other suitable purification buffers utilising octyl-p-glucoside in order to increase the 

solubility of VP19cHis at higher concentrations.

Teschke and King (1993) demonstrated that the coat protein of bacteriophage P22 passed 

through a kinetic molten globule-like intermediate and that the binding of ANS to either 

the coat protein or scaffold subunits prevented the formation of icosahedral capsid particles 

in vitro. Although the binding of ANS had no affect upon the overall secondary structure 

of the coat protein, it did induce conformational changes within the secondary structure of 

the scaffold protein molecule, which altered its ability to undergo maturation. It would be 

interesting, therefore, to compare the number of ANS molecules that bound to VP23 and 

VP 19c with the number bound to triplexes and to determine whether or not ANS prevented 

triplex polymerisation. This might provide a clearer insight into how these two triplex 

proteins interact and to further elucidate the role in which the triplex plays within capsid 

assembly. Similarly, it would be interesting to determine, as with P22 capsid assembly, 

whether or not ANS inhibited the polymerisation of capsid particles, as little is currently 

known about the folding processes of other HSV-1 capsid proteins molecules, in particular 

VP5.

Furthermore, it would also be interesting to analyse by DSC the endothermic transition of 

triplexes in the presence of increasing concentrations of denaturants such as urea and 

GdnHCl. 3M urea has been shown to disassociate triplex molecules into their basic 

constituent proteins (section 5.42). DSC analysis of triplexes in the presence of 

denaturants would therefore provide more information upon the co-operative unfolding of 

these two molecules and might reveal whether or not the tertiary structure within the 

triplex is derived specifically from the association of VP23 with VP 19c. Similarly, it 

would be interesting to follow the changes in the tertiary structure of purified capsid 

proteins in real time by near-UV CD analysis. This could be accomplished by separately 

purifying individual capsid proteins and mixing them just prior to analysis. This would 

provide a sequence of folding events involved during procapsid assembly and subsequent 

procapsid maturation.
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4.0 Discussion

4.1 Quasi-equivalence and conformational flexibility within the HSV-1 

capsid.

The HSV-1 capsid is among the largest and most complex of virus particles and as such 

there has been considerable interest in analysing its three dimensional structure. However, 

to date there has been no X-ray crystallography structure published of the complete capsid, 

nor any of its individual outer shell structural components. This, in part, reflects the 

complexity of the HSV-1 capsid, in particular its size (-1250A in diameter), and the 

difficulties associated with acquiring high concentrations of homogenous and intact 

samples from infected cell nuclei (Gibson and Roizman, 1972; Steven et al., 1997). 

Attempts to recombinantly express and purify individual full length capsid polypeptides at 

concentrations required for X-ray crystallography (typically >10mg/ml) have also proved 

to be difficult due to their relative insolubility at high concentrations (personal 

communication, Bowman, 1999). Consequently, the majority of the structural information 

derived from the HSV-1 capsid has been determined through the use of cryo-EM 

examination in conjunction with image processing and computer reconstruction analysis 

(Schrag et al., 1989; Booy et al., 1991; Newcomb et al., 1993; Zhou et al., 1994, Zhou et 

al., 1995, Zhou et al., 1998; Zhou et al., 2000). Through the use of cryo-EM the structure 

of the HSV-1 B capsid has recently been resolved to a resolution of 8.5A (fig. 4.1, Zhou et 

al., 2000). Although the strict bonding relationships between protein molecules within the 

HSV-1 capsid still remains unresolved at this resolution, it has been possible to determine 

mass boundaries of individual protein molecules and predict secondary structural elements, 

in particular a-helices, within subunit structures. EM and cryo-EM analysis has long since 

established that the outer capsid shell of the HSV-1 capsid is composed of 150 hexons and 

12 pentons that are interconnected by 320 triplexes (Wildy et al., 1960; Schrag et al., 

1989). The interactions between these individual capsomeric subunits, in particular the 

triplexes, within the T=16 icosahedral lattice and their deviations away from their 

predicted quasi-equivalent bonding arrangements are discussed below in relation to the 

molten globule-like characteristics of the triplex and triplex protein constituents.
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4.2 Non-equivalent interactions of triplexes within the HSV-1 capsid

Cryo-EM analysis of the HSV-1 capsid has established that triplexes occupy the local and, 

with respect to the triplex ‘Tf’, global 3-fold rotational symmetry axes. However, the 

asymmetry of the triplex and its heterotrimeric nature (2 copies of VP23:1 copy of VP 19c) 

make it difficult to envisage how this complex can occupy a position of 3-fold rotational 

symmetry, since rotation of a triplex around its axis would not lead to equivalent 3-fold 

symmetries and bonding arrangements with adjacent capsomers (Schrag et al., 1989; Booy 

et al., 1991; Conway et al., 1993; Zhou et al., 1994; Zhou et al., 1998). The apparent 3- 

fold symmetry observed for triplex ‘Tf’ is a direct result of 3-fold averaging during the 

computer reconstruction process. The inter-capsomeric bonding of triplex ‘Tf’ within the 

HSV-1 capsid is, therefore, currently unresolved and shall not be discussed further here 

(Schrag et al., 1989; Conway et al., 1993; Zhou et al., 1994).

Early low-resolution cryo-EM analysis of the HSV-1 capsid demonstrated different 

bonding interfaces between the triplexes ‘Ta-Te* and their surrounding capsomers. The 

most different of these inter-capsomeric connections is that of the triplex ‘Ta’ compared to 

that of triplexes ‘Tb-Te’. Triplex ‘Ta’ appears to make a single prominent head connection 

compared to that of two head connections observed for triplexes ‘Tb-Te’ to their respective 

capsomers (fig. 4.1) (Zhou et al., 1994; Zhou et al., 1998; personal communication, Zhou, 

1999). The substantial differences in the inter-capsomeric bonding arrangements of 

triplexes ‘Ta-Te’ and the general asymmetry of these complexes clearly violate the rules 

depicted by the theory of quasi-equivalence proposed by Caspar and Klug (1962). 

Furthermore, this degree of variation in triplex inter-capsomeric bonding can be detected 

biochemically. Structural and biochemical analysis performed by Newcomb et al., (1993) 

on purified HSV-1 B capsids treated with various concentrations of denaturants 

demonstrated that the peripentonal triplex ‘Ta‘ and the perihexonal triplex ‘Tc‘ were more 

readily disassociated from capsids than those perihexonal ‘Tb, Td, Te, Tf’ triplexes. 

Conway et al., (1993) reported similar observations when comparing low and high dose 

irradiated HSV-1 B-capsids. It is clear therefore from both biochemical and structural 

analysis of HSV-1 capsids that triplexes *Ta-Tf have distinctly different inter-capsomeric 

bonding arrangements to their surrounding capsomeric subunits within the HSV-1 capsid.

174





Fig. 4.1: Surface reconstruction of the HSV-1 capsid at 8.5A

resolution

Radially colour-coded representation of the HSV-1 capsid at 8.5A 

(dark to light colours represent low to high positions of mass 

density respectively). A single asymmetric unit is enclosed by the 

white outline connecting the five, three, and two-fold axes 

(indicated by 5, 3, and 2 respectively). The penton (at the 5-fold 

axes), the three types of hexon (designated P, E, and C) and the six 

types of triplexes (Ta, Tb, Tc, Td, Te, and Tf) are appropriately 

labelled.

This picture was reproduced with permission from W. Chiu, Baylor 

college of medicine, USA.
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4.3 How do the triplexes occupy a 3-fold rotational axis?

Cryo-EM and computer image processing analysis of the triplex connections to the capsid 

floor at 8.5A resolution has suggested how the asymmetrical triplex occupies a 3-fold 

symmetrical position. The densities at the base of the triplex appear to exhibit a limited 3- 

fold symmetry. The lower third of the triplex molecule consists of two legs, assigned to 

VP23, and a tail formed by VP 19c. These are triangularly related with two copies of VP23 

forming an angle of approximately 120° and VP 19c occupying the third triangular position 

(fig. 4.2, panel B(l)). The triplex therefore forms a pseudo-trimer at its base with each of 

the triplex proteins interacting with the floor densities provided by surrounding hexon 

capsomer subunits (Zhou et al., 2000). However, the pseudo-trimer relationship within the 

triplex becomes significantly altered further up the triplex away from the capsid floor. 

Within the middle domain of the triplex the triangular arrangement of the triplex proteins 

is lost and the dimeric relationship between the VP23 molecules becomes more evident. 

The relative angle between VP23 molecules within the middle domain changes from 120° 

to approximately 180° with the mass density attributed to VP 19c no longer having an 

equivalent relationship to that of the dimer of VP23 molecules (fig. 4.2, panel B(2)). The 

upper domain of the triplex is entirely composed of protein mass relating to VP 19c and is 

responsible for interconnecting adjacent capsomers above the capsid floor (fig. 4.2, panel 

A and panel B(3)) (Saad et al., 1999, Zhou et al,. 2000). Computer analysis of the local 

symmetry within the hexon demonstrated a high 6-fold local symmetry running throughout 

the entire structure with the tower region being particularly conserved (personal 

communication, Jing He, 2000). Computer analysis of the local symmetry within the 

triplex has demonstrated that they have no detectable mathematical local 3-fold symmetry 

(personal communication, Jing He, 2000). However, there does appear to be some 

functional symmetry between the triplex proteins, especially at the points of contact the 

triplex makes with the capsid floor (personal communication, Jing He, 2000). The ‘Ta-Tf’ 

triplexes therefore represent highly unusual but essential building blocks within the mature 

HSV-1 capsid particle (Tatman et al., 1994, Thomsen et al., 1994, Zhou et al., 2000).
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Fig. 4.2: Heterotrimeric arrangement of VP23 and VP 19c interactions

within the triplex

(A) Side view of a triplex obtained by averaging the four triplexes (Tb, Tc, 

Td, Te) around the C-hexon. The different colours represent individual 

capsid proteins; VP 19c (green), VP23 (white), and the capsid floor 

composed of VP5 (blue). Red lines numbered 1-3 represent the position 

of cross sections taken through the averaged triplex shown in panel B.

(B) Three cross sections representing 1.4A slices through the averaged 

triplex at positions 1-3 (indicated by red lines above). Contour colouring 

represents high (red), median (purple) and low (green) density levels. 

Slice (1) illustrates the pseudo 3-fold symmetry at the base of the triplex 

(highlighted by the orange lines). The two copies of VP23 (highlighted 

by yellow dotted circles) have an approximate 120° relationship to one 

another with the single copy of VP 19c occupying the third position. Slice 

(2) indicates the conformation change in the orientation of VP23 

molecules which now have an approximate 180° relationship to one 

another (highlighted by the orange line). Slice (3) shows the asymmetric 

appearance of the density at the top of the averaged triplex mass relating 

to VP 19c. The scale bar represents 20A in length.

This picture was reproduced with permission from W. Chiu, Baylor 

College of medicine, USA.
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4.4 Conformational flexibility within the triplex

Computational averaging of triplexes resolved to 8.5A has demonstrated that triplexes 

contain a degree of domain variation between the two VP23 molecules within each 

individual triplex. Computational alignment of the individual VP23 molecules obtained 

from averaging triplexes ‘Ta-Te’ demonstrated an overall conservation of the gross 

conformation and putative a-helical content. However, significant domain movements 

were evident between individual VP23 molecules within the triplex, in particular the 

degree of orientation for the predicted upper a-helix (fig. 4.3). This implies that these 

protein molecules have non-equivalent bonding relationships within individual triplexes 

and therefore must possess a degree of conformational flexibility in order to accommodate 

the observed domain movements. Indeed, the non-equivalent relationship between VP23 

molecules within the triplex is particularly highlighted by their respective interfaces with 

VP 19c. One side of a VP23 molecule (coloured in white in fig. 4.4) forms an extensive 

protein interface with VP 19c, while the equivalent side of the other VP23 molecule 

(coloured in grey in fig. 4.4) interacts directly with the opposing VP23 molecule (also 

highlighted in fig. 4.2, panel B(l)). Thus, the dimer of VP23 within the heterotrimer is 

itself asymmetrical with the VP23 molecules taking on different conformations and 

presumably different bonding attributes within the triplex. This arrangement is structurally 

irregular as dimeric molecules, or subunits composed of dimers, generally demonstrate 

identical bonding interfaces. Furthermore, the few instances where such non-equivalent 

dimeric interfaces occur necessitate the appropriate subunit to have a degree of flexibility. 

For example, the inner subcore of BTV forms a T=2 shell from dimers of the polypeptide 

VP3. The VP3 interacts through non-equivalent interfaces and these provide the flexibility 

to form a closed spherical shell. The inherent flexibility of VP3 therefore circumvents the 

geometrical constrictions placed upon capsomer subunits within spherical particles 

predicted by Caspar and Klug (1962) (discussed in further detail within the introduction of 

this thesis and in Grimes et al., 1998). Such asymmetry within dimeric molecules can also 

be seen within the black widow neurotoxin a-latrotoxin (LTX). LTX is a hydrophilic 

pore-forming toxin where the pore subunit is a tetramer composed of two asymmetrical 

dimers of LTX. In the presence of divalent cations the dimers associate to form a pore 

complex that contains a 25A channel running through its centre. Although the relative
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Fig. 4.3: Predicted a-helices within the two VP23 molecules o f an averaged 

triplex

The putative a-helices within the two VP23 molecules o f an averaged triplex 

are indicated as red and orange cylinders respectively o f 5A in diameter. 

Protein mass densities relating to the capsid floor (composed o f VP5) and 

VP 19c have been removed. The remaining mass density attributed to the 

VP23 dimer was extracted and the two VP23 molecules aligned to a similar 

orientation. The white * highlights the difference in the angle o f the upper 

a-helix  between VP23 molecules.

This picture was reproduced with permission from W. Chiu, Baylor College 

o f medicine, USA.
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Fig. 4.4: Visualisation of the heterotrimeric interactions within the

triplex

(A) Side view of an averaged triplex obtained by averaging the four 

triplexes (Tb, Tc, Td, Te) around the C-hexon (opposite view from fig. 

4.2). The different colours represent individual capsid proteins; 

VP 19c (green), VP23 (white and grey), and the capsid floor composed 

of VP5 (blue). (B) Averaged triplex rotated 120° around the 3-fold 

local axis from position (A). (C) Same view of the averaged triplex as 

in (B) but VP 19c and VP23 molecules separated to demonstrate their 

conformational organisation within the triplex.

This picture was reproduced with permission from W. Chiu, Baylor 

College of medicine, USA.
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structural domains are similar within the dimer and tetramer, consisting of body, head and 

wing domains, the relative angle of orientation of these domains between dimer and 

tetramer is considerably different, ranging between 10-20° (Saibil, 2000). Thus, 

oligomerisation from dimer to tetramer must require flexibility within the dimeric subunit 

in order to accommodate these domain movements. The need for this substantial 

conformational change remains ambiguous but may reflect a functional role in the 

penetration of the pore complex through membrane structures (Orlova et al., 2000).

4.5 Molten globule characteristics of the triplex

As previously discussed (within section 3.6) the individual triplex protein molecules 

represent partially folded protein structures that contain a high degree of secondary 

structure with little or no stable tertiary structure. These characteristics are similar to those 

of molten globules, proteins that are in an intermediate state of protein folding. The lack 

of rigid tertiary structure within proteins in this partially folded state is thought to be 

necessary to accommodate the arrangement of certain secondary structural elements, such 

as a-helices, during folding (Ptitsyn, 1995b). The protein-protein interactions that occur 

upon association of VP 19c and VP23 during triplex formation, result in the development 

of rigid tertiary structure (as determined by DSC analysis). The generation of this tertiary 

structure appears to involve the mutual co-folding of protein domains from both VP23 and 

VP 19c, as dimeric VP23 has little rigid tertiary structure of its own. However, the 

triplexes still appear to retain a degree of partial folding, with the fluorescent hydrophobic 

probe ANS having access to the interior of the triplex molecule. Thus, although at least 

some domains of the triplex have defined tertiary structure, the triplex as a whole retains 

flexible elements that can undergo further conformational rearrangement and folding. In 

relation to the macromolecular assembly of the capsid the triplex would therefore represent 

a flexible intermediate protein subunit and as such could be defined as a ‘highly ordered 

molten globule-like’ protein complex (Redfield et al., 1994). The plasticity inherent in 

such from such a molten globule-like state would provide the flexibility necessary to attain 

such non-equivalent interactions as those seen within the mature polyhedral HSV-1 capsid.
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4.6 Gross conformational rearrangements and the capsid floor

One of the largest conformational changes to regularly occur during virus assembly is the 

transition from procapsid to mature capsid (figs. 1.13 and 1.15). Procapsids have been 

documented in a number of dsDNA viruses, such as the bacteriophage P22 (discussed in 

the introduction of this thesis), and more recently within HSV-1 capsids (Newcomb et al., 

1996; Trus et al., 1996; Tuma and Thomas, 1997; Newcomb et al., 2000). However, 

procapsids are not limited to dsDNA viruses and have recently been observed as assembly 

intermediates of non-enveloped small RNA viruses such as Nudaurelia capensis at virus 

(Canady et al., 2000). In dsDNA viruses, procapsids are thought to represent an 

intermediate capsid assembly stage at which point the scaffold protein subunits are 

removed from the precursor capsid shell before the packaging of the nucleic acid genome 

(King et al., 1976; Prevelige and King, 1993; Iiag et al., 1995). DNA packaging during 

bacteriophage assembly has been demonstrated to occur specifically during the procapsid 

transition and this is also thought to be the stage at which DNA packaging occurs within 

the HSV-1 capsid. During assembly, the HSV-1 capsid has been shown to be 

progressively built up by the incremental addition of VP5 and scaffold subunits inter

linked by triplexes. The increasing addition of subunits to the growing structure leads to 

the formation of partial capsids and eventually to closed spherical particles ‘procapsids’ 

(fig. 1.14) (Newcomb et al., 1996; Newcomb et al., 1999). Procapsids are spherical, 

lacking the flat facets, angular edges and vertices associated with the mature polyhedral 

form. They exhibit no local 6-fold symmetry, for example the P, E, and C hexon capsomer 

subunits taking on oval, highly oval, and triangular appearances respectively, and their 

respective protomers have little or no interconnecting density. In comparison, their 

structures within the mature polyhedral capsid are hexagonal and tightly packed in 

appearance, with strong interconnecting densities (Trus et al., 1996; Zhou et al., 1994; 

Zhou et al., 1998). Thus, the procapsid of HSV-1 could in itself be considered as a flexible 

protein intermediate on a macromolecular scale where considerable protein rearrangements 

occur upon procapsid maturation.

One of the most significant differences between procapsids and mature polyhedral capsid 

is within the floor domain. Capsomers in the HSV-1 procapsid have little contact with 

each other except through the triplexes located at the 3-fold axes. The capsid floor is
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largely undefined and contains large gaps between the capsomeric subunits. The triplexes 

connecting adjacent capsomers appear to make no contact with the floor domain unlike 

triplexes within the mature capsid. Furthermore, triplexes in the procapsid appear to 

interact triangularly with all three adjacent capsomers. Maturation of the procapsid 

therefore results in large-scale conformational changes. Individual capsomeric subunits 

become more compact taking on their respective hexavalent or pentavalent structures and 

develop connections leading to the formation of the capsid floor, thought in part to be 

interconnected by the N-terminal a-helices of VP5 protomers (Zhou et al., 2000). The 

triplexes become anchored to the capsid floor and develop their unique non-equivalent 

connections between capsomeric subunits (Trus et al., 1996; Zhou et al., 2000). At the 

current resolution of the HSV-1 procapsid structure the processes involved in such radical 

conformational changes remain unclear. However, it is clear that the observed changes 

would require particular flexibility within subunit structures in order to accommodate such 

gross conformational rearrangements in inter/intra-capsomer interactions. Therefore, the 

experimental findings described above, that the triplex forms a partially flexible protein 

subunit with both highly ordered and molten globule-like characteristics, are consistent 

with the known procapsid and mature HSV-1 capsid structures.

Once maturation is complete further stability may be provided through the formation of 

disulphide bonds. Zweig et al., (1979) demonstrated that VP5 and VP 19c were disulphide 

linked within mature HSV-2 icosahedral capsids. Although the VP5/VP19c disulphide 

linkage has yet to be identified within HSV-1 capsid, significant band shifts can be 

detected when analysing purified HSV-1 capsids by non-reducing SDS-PAGE analysis 

(for an example see fig. 3.3.13). This would therefore indicate a role for disulphide 

bonding within the HSV-1 capsid. However, Newcomb et al., (1994) demonstrated that 

the assembly of capsids could occur in the presence of lOmM DTT, which would imply 

that disulphide bond formation is not essential for capsid polymerisation to occur. As 

disulphide bond formation is generally considered to occur as a late event in the protein- 

folding pathway, these disulphide connections could be seen to fix the partially flexible 

structures into rigid conformations in order to provide structural reinforcement leading to a 

more robust capsid structure. Cysteine residues within the triplex, in particular those 

conserved cysteines within VP23 molecules, might also aid the inter-molecular locking of 

the triplex structure through the formation of intra-molecular disulphide bonds once
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maturation is completed and stability is required over flexibility. Such a late role could 

explain why the highly conserved cysteine residues within VP23 are not essential for 

capsid formation (discussed further in the conclusion of section 3.3).

4.7 Heterotrimer opposed to homotrimer, the requirement for VP23 

within the triplex

Ever since the composition of the triplex was postulated by Newcomb et al., (1993) to be a 

ratio of 2:1 of VP23 to VP 19c, one of the fundamental questions in respect to HSV-1 

capsid structure has been; ‘why are triplexes organised as heterotrimers rather than 

homotrimers’? Viruses have strict limitations in their coding capacity and therefore the 

evolution of the triplex as a heterotrimer of two unrelated proteins seems inefficient. 

Furthermore, small homotrimers have been identified at those local 3-fold symmetry 

positions interconnecting hexons in other icosahedral virus capsids, for example 

bacteriophages T4 (soc) and X (gpD), and animal viruses such as adenovirus (polypeptide 

IX) (Ishii and Yanagida, 1977; Colby and Shenk, 1981; van Oostrum and Burnett, 1985; 

Perucchetti et al., 1988; Dokland and Murialdo, 1993). In such cases these homotrimers 

have been shown to bind to their respective capsids post-assembly and although not 

specifically required for assembly are thought to stabilise the capsid by providing 

structural reinforcement (Furcinitti et al., 1989). DSC analysis on T4 capsids showed that 

the presence or absence of soc proteins altered their thermostability during temperature 

denaturation, reinforcing the idea that these homotrimeric proteins are specifically 

involved in capsid stabilisation (Ross et al., 1985; Steven et al., 1992).

However, all herpes viruses studied to date contain triplexes at all local 3-fold positions 

and where the capsid composition is known they are composed of heterotrimers of two 

unrelated proteins (Davison, 1993; Davison 1995). Although their relative sequence 

homology is not particularly conserved their structural position at the 3-fold symmetry axis 

and their stoichiometry within their appropriate capsid structures appears to be well 

conserved in those capsid structures analysed to date (Baker et al., 1990; Booy et al., 1996; 

Davison et al., 1995).
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4.7.1 The function o f VP23 within the triplex

It has been established through cryo-EM analysis that one of the primary functions of 

VP 19c during capsid assembly is to interconnect adjacent capsomers and that this function 

is essential for the assembly of capsids. Indeed, the expression of VP5 and VP 19c in the 

baculovirus system has been shown to lead to the production of smaller icosahedral 

particles with T=7 symmetry (Tatman et al., 1994; Saad et al., 1999). One might assume 

therefore that the addition of the scaffold protein subunits would be sufficient to direct 

capsid assembly to produce T=16 icosahedral particles. However, the baculovirus system 

has demonstrated that the co-expression of VP5, VP 19c, and scaffold (either preVP22a or 

VP21 /VP24) without VP23 results in the formation of irregular capsids. VP23 is therefore 

essential for the production of mature T=16 polyhedral capsids (Tatman et al., 1994; 

Thomsen et al., 1994).

Analysis of VP5/VP19c particles has also demonstrated that T=7 particles lack the intricate 

network of interactions found within the capsid floor of polyhedral HSV-1 capsids (Saad et 

al., 1999). Procapsids have also been shown to lack such interconnecting densities within 

the capsid floor (Trus et al., 1996; Newcomb et al., 2000). As VP23 appears to make 

contact with VP5 within the floor domain of mature capsids, VP23 may be responsible for 

initiating or directing the conformational rearrangements of protein densities within the 

capsid floor from surrounding capsomers during procapsid maturation.

It is of interest to note that homotrimers associated with capsid assembly, for example 

polypeptide IX homotrimers from adenovirus capsids, have only been shown to interact 

around the local 3-fold axes of symmetry surrounding hexon capsomeric subunits (van 

Oostrum and Burnett, 1985). The conformational differences in the bonding arrangements 

within the floor domains surrounding pentons and hexons may therefore require additional 

flexibility within subunits occupying the 3-fold symmetry axes surrounding the penton 

capsomers. The non-equivalent nature of VP23 molecules within the triplex and their 

molten globule like structure may provide the conformational flexibility needed to direct 

folding events during floor development at all 3-fold axes surrounding both pentons and 

hexons. In a similar manner to the homotrimers found in other icosahedral capsids, the 

contacts made by VP23 and VP 19c to the capsid floor act as cement by interlocking the
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floor protein interfaces and providing increased rigidity throughout the capsid. Such 

conformational variation in protein interfaces within the capsid floor between pentons and 

hexons, and between the different quasi-equivalent hexons, may also account for the 

observed differences in the bonding of VP 19c within triplexes ‘Ta-Te’ to their respective 

capsomers. For example, although the triplex appears to be partially flexible the 

constrictions placed upon VP23 during floor maturation could force VP 19c to alter its 

triangular capsomeric arrangement within the procapsid so that VP 19c becomes anchored 

to the capsid floor. The differences observed in the binding of VP 19c to its surrounding 

capsomers would therefore reflect the degree of conformational variation in VP23 

interactions made during floor development. Indeed, those triplexes that appear to have 

the most variation in their VP 19c capsomer binding interfaces, namely ‘Ta* and ‘Tc’, are 

located at peripentonal or close to peripentonal positions respectively within the 

icosahedral lattice (Zhou et al., 2000). The flexibility derived from the molten globule-like 

state of individual triplex protein molecules, in particular VP23, would provide the 

conformational flexibility to form contacts at all positions 3-fold axes of symmetry within 

the icosahedral lattice.

It seems reasonable to speculate that, as a trimeric complex appears essential at all 

positions of 3-fold symmetry within the HSV-1, the virus has evolved the triplex complex 

as a conformationally flexible heterotrimer. The development of such conformational 

flexibility through the association of VP23 and VP 19c as a heterotrimer allows the triplex 

to play an essential and dynamic role in the assembly and maturation of the HSV-1 capsid. 

The transitions in triplex conformation during capsid assembly are schematically 

illustrated in fig. 4.5.

4.8 VP5 capsomer flexibility

As previously discussed in the introduction to this thesis VP5 makes up the entire mass of 

pentons (5 copies of VP5) and the majority of the mass of hexons (6 copies of VP5). 

Computational comparison of VP5 molecules from pentons and hexons has demonstrated 

that they have similar overall conformations. However, pentons and hexons have 

distinctly different properties. For example, pentons interact with tegument proteins
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following capsids assembly while VP26 only binds to hexons (Zhou et a l, 1995; Zhou et 

al., 1999). Such differences in biological properties between pentons and hexons can be 

attributed to conformational differences between their VP5 subunits. These differences are 

evident post-assembly and consequently when VP5 is fully folded. Thus, the attachment of 

VP26 to the tips of the hexons requires VP5 molecules within the hexavalent capsomers to 

have undergone their conformational rearrangement, as VP26 molecules do not associate 

with the hexons in purified HSV-1 procapsids (Newcomb et al., 1999; Newcomb et al., 

2000; Chi and Wilson, 2000). The conformational differences between VP5 protomers in 

hexons and pentons have also been detected immunogenically. Trus et al., (1992) 

demonstrated that monoclonal antibodies raised against purified VP5 recognised specific 

capsomer epitopes on hexons or pentons but not both.

VP5 molecules within pentons have also been shown to contain an extra density of mass 

within the middle domain of the penton that is absent from hexons thought to be attributed 

to the closure of the penton channel following the packaging of viral DNA. This extra 

density has been attributed to the movement of a bundle of short a-helices, which 

constricts and thus closes the 25A channel running through the penton (Zhou et al., 1994; 

Zhou et al., 2000; personal communication, Frazer Rixon, 2000). Further differences have 

been seen within the lower domain of the VP5 molecule, in particular the orientation of the 

predicted long N-terminal a-helix. Differences in the angle of this a-helix can be seen not 

only between VP5 molecules from pentons and hexons but also seen between VP5 

molecules from P, E and C hexons (Zhou et al., 1994; Zhou et al., 2000). The 

conformational differences between VP5 molecules from hexons and pentons, and between 

the various quasi-equivalent hexons would therefore require a degree of flexibility within 

specific domains of VP5 during capsid assembly and procapsid maturation. Like the 

triplex, VP5 must be partially folded as an individual capsid protein in order to account for 

such conformational flexibility. Indeed, VP5 has been shown to bind ANS and to produce 

a characteristic increase in fluorescence following excitation (McCelland, 1999 

unpublished observations). This would therefore imply that the hydrophobic core of VP5, 

like that of the triplex, is exposed or partially exposed to the solvent and can undergo 

further folding. As purified VP5 has been shown to exist as a monomer in solution 

(Newcomb et al., 1999) this would indicate that VP5 forms hexons and pentons as a 

partially folded intermediate within the nucleus during the progressive assembly of the
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capsid. This is consistent with the evidence generated through cryo-EM analysis of 

procapsids where individual capsomers appear rounded making little or no intra- 

capsomeric connections (Trus et al., 1996; Newcomb et al., 2000) and supports the notion 

that VP5 must be able to form a flexible intermediate that can undergo conformational 

rearrangements during capsid maturation. Like the triplex, VP5 is likely to undergo 

several changes in conformation before mature capsomers are formed and take on their 

respective appearances as hexons and pentons within the polyhedral capsid. The final step 

in the conformational maturation of VP5 protomers presumably creates the structural 

epitope specificity required for VP26 subunits to bind to the tips of hexons, thereby 

completing the procapsid maturation transition into WT polyhedral capsids.
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Fig. 4.5: Model for the folding events and cellular localisation of the 

triplex proteins during capsid assembly

Late gene expression results in the translation of triplex proteins VP23 and 

VP 19c within the cytoplasm of infected cells. Individual triplex proteins 

are partially folded and take on their respective molten globule like 

conformations with no rigid tertiary structure. VP23 dimerises, developing 

some independent tertiary structure, and associates with VP 19c resulting in 

further folding and the development of significant tertiary structure 

possible through mutual co-folding. Triplexes become localised to the 

nucleus and associate with VP5 and scaffold proteins resulting in the 

initiation of capsid assembly. Progressive assembly of triplexes, VP5 

complexes, and scaffold occurs until procapsid formation is complete. 

Scaffold particles exit the procapsid and maturation begins resulting in the 

angularisation of the capsid and the packaging of the viral dsDNA genome 

at an unknown point during maturation. Successful packaging of the 

genome results in mature polyhedral C-capsids that can then go on to 

produce infectious progeny virions. Unsuccessful attempts in the 

packaging of the viral DNA or scaffold disassembly results in the 

production of A and B-capsids respectively. The coloured bar represents 

the transitions in folding of the triplex proteins during capsid assembly 

from molten globule (yellow), to “highly ordered molten globule” (orange), 

to fully folded (red).
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5.0 Summary

5.1 Partial folding and capsid assembly

High-resolution analysis of various viral capsid structures, either by X-ray crystallography 

or cryo-EM, has demonstrated that capsids are architecturally complex macromolecular 

assemblies. It is becoming increasing evident that the assembly of such capsids does not 

represent the straightforward geometrical association of static protein subunits. In other 

words, it is becoming appreciated that capsid assembly is a dynamic folding cascade on a 

macromolecular level and not just the progressive association of fully folded rigid building 

blocks. This is particularly evident in those capsid structures that do not conform to the 

classic quasi-equivalence model, such as the SV40 capsid (Liddington et al., 1991). The 

nature of the association between subunits within such structures requires that individual 

molecules must have a degree of flexibility in order to accommodate the differing 

interactions with their surrounding subunits that are required to produce a closed spherical 

particle. Similarly, the intricate network of associations between complex subunit or 

protomer structures seen within a number of viral capsids must require the association of 

these capsomer structures to pass through a series of partially folded intermediate stages 

before forming the conformationally mature structures seen in a high-resolution image. 

For example, X-ray crystallography analysis of the adenovirus type-2 hexon has 

demonstrated that it is composed of three copies of the major coat protein. The three major 

coat protein molecules have been shown to interpenetrate each other to form a compact 

homotrimer (Athappilly et al., 1994). The association of rigid coat protein subunits could 

not account for such an intricate association, which could only be achieved by extensive 

mutual co-folding of individual coat protein molecules during hexon formation. Therefore, 

it is likely that individual hexon protein molecules are partially folded and pass through a 

number of intermediate folding stages to form a conformational mature hexon subunit 

structure. In addition, all capsids that undergo large-scale conformational changes during 

assembly, for example during procapsid maturation, must by definition, contain flexible 

elements in order to accommodate the necessary domain movements. Partial folding of 

individual capsid protein components could provide the flexibility required for such gross 

conformational rearrangements during capsid assembly.
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5.2 Partial folding and HSV-1 capsid assembly

Unlike the adenovirus hexon and SV40 capsid, the structure of the HSV-1 capsid has yet to 

be resolved by X-ray crystallography and therefore little can be specifically concluded 

about the exact protein-protein interactions within the mature polyhedral capsid. However, 

high-resolution cryo-EM analysis has provided clear indications of specific protein mass 

densities within the HSV-1 capsid and has highlighted significant differences in capsomer 

interactions throughout the icosahedral lattice. Although it is difficult to speculate whether 

or not the differences in bonding arrangements of quasi-equivalent VP5 protomers between 

hexons and pentons exceeds those predicted by quasi-equivalence, it is clear that domain 

flexibility throughout individual VP5 molecules is required. Such flexibility could be 

achieved by individual VP5 molecules existing in a ‘highly ordered molten globule-like’ 

state post-translation (currently under analysis within our laboratory).

However, it is clear from cryo-EM analysis of HSV-1 capsids that the asymmetry of the 

‘Ta-Te* triplexes and the transitions observed from procapsid to polyhedral capsid do 

violate the rules of deformable bonds predicted by the theory of quasi-equivalence (Caspar 

and Klug, 1962). The assembly of the HSV-1 capsid has been shown to occur through the 

progressive addition of subunits to a growing shell (Newcomb et al., 1996). As discussed 

above, proteins within this growing macromolecular structure must posses a degree of 

domain flexibility in order to assemble efficiently and mature into polyhedral capsids that 

are capable of packaging the viral nucleic acid. Triplexes play a fundamental role in the 

assembly of the HSV-1 capsid from the initiation of precursor shells, to procapsid 

formation, and eventually to the maturation into polyhedral capsids. Although the 

energetics of the folding transitions of proteins involved in the assembly of the HSV-1 

capsid have yet to be analysed, folding though flexible intermediates would provide a basis 

for efficient polymerisation of viral capsids without resulting in cumulative dead end 

abortive structures incapable of producing infectious progeny virions. The molten globule

like characteristics of the individual triplex proteins and the highly ordered molten 

globule-like characteristics of the triplex provide some explanation to how these observed 

structural transitions can occur and provide a deeper insight into the complexities of 

folding pathways for large macromolecular structures.
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