
EFFECTS OF THE ANTI-ANDROGEN

FLUTAMIDE ON THE DESCENT OF THE

TESTIS

BY

NORMAD1AH M KASSIM

MBBS (Malaya), M Med. Sci. (Glasgow)

Submitted for the Degree of Doctor of Philosophy 

Laboratory of Human Anatomy 

Institutes of Biomedical Life Sciences (IBLS)

University of Glasgow 

December, 1996.



ProQuest Number: 13818587

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818587

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



GLASGOW
university
t.t b b a r y



Page number

TABLE OF CONTENTS: i

ACKNOWLEDGEMENT vi

SUMMARY vii

INTRODUCTION 1

1. Development of male reproductive organs: 3

a) Development of testis 5

b) Differentiation of the male genital ducts 13

2. Normal testicular descent: 16

a) Morphology of testicular descent in mammals

with strip-like cremaster muscle 19

b) Morphology of testicular descent in mammals

with sac-like cremaster muscle 26

3. Factors controlling testicular descent: 29

- Theories of testicular descent 29

- Hormonal control of testicular descent 32

i) The role of genitofemoral nerve (GFN) in descent

of testis 36

ii) The role of cranial suspensory ligament (CSL) in

testicular descent 38

4. Cryptorchidism and its implications:

- The postnatal effects of cryptorchidism 41

- The effects of cryptorchidism on sperm and hormone production 43

i



Page number

- Pathological changes leading to infertility and increase risk 

of malignancy 45

The aims of study 47

MATERIALS. METHODS AND RESULTS 48

Experiment 1:

- Aims of the experiment 49

- Prenatal flutamide administration 49

- Postnatal flutamide administration 50 

Experiment Ha): To determine the effects of prenatal exposure

to flutamide on the position, weight and structure of testes in 

adult rats and hamsters. 51

Methods 51

Results: 53

i) Development of male rats after prenatal exposure to flutamide 53

ii) Effects of prenatal exposure to flutamide on the structure of

the adult rat testis 54

iii) Development of male hamsters after prenatal exposure to 

flutamide 61

iv) Effects of prenatal exposure to flutamide on the structure of

the adult hamster testis 61

v) Effects of postnatal flutamide treatment in rats 65



Page number

Experiment l(bV To determine the plasma and intra-testicular 

testosterone levels in the rat and hamster. 66

Methods 66

Results 67

Experiment l(cV To determine the onset of testicular abnormality 

in experimental male rats exposed prenatally to flutamide. 68

Methods 68

Results 69

- Morphology of testes at 4 weeks 70

- Morphology of testes at 8 weeks 71

Experiment 2: To study the development and regression of the 

gubernaculum in rat fetuses and neonates. 73

Methods 74

Results 75

Development of the gubernaculum: 75

- at day 16 d.p.c. 75

- at 18-20 d.p.c.

- at birth and in the neonatal period 77

Length of gubernaculum in control males and males treated 

prenatally with flutamide 79



Page number

Experiment 3: To determine the effects of prenatal exposure to 

flutamide on the persistence of the cranial suspensory ligament. 81 

Methods 81

Results 82

Experiment 4: Immunostaining for androgen receptors. 83

Methods 83

Results 84

DISCUSSION

1. Is flutamide an appropriate choice of anti-androgen? 87

2. What evidence is there that flutamide has successfully 

crossed the placental barrier in the present study and

acted as an anti-androgen? 89

3. Maldescent 92

4. Consequences of maldescent on the adult testis 95

5. Structural factors in testicular descent: the cranial suspensory 

ligament and the gubernaculum 97

6. Effects of flutamide administered postnatally to rat pups 101

7. Effects of prenatal flutamide on hamsters 102

CONCLUSIONS 105

REFERENCES 107

iv



Page number

APPENDICES 136

1. Preparing glutaraldehyde fixative. 13 7

2. Processing tissue for transmission electron microscopy. 138

3. Periodic acid, Schiffs - Haematoxylin staining. 139

4. Radioimmunoassay of plasma and testicular testosterone. 141

5. Histokinette automatic tissue processor. 143

6. Haematoxylin and Eosin staining. 144

7. Processing tissue for scanning electron microscopy. 146

8. Immunocytochemical staining for androgen receptors. 147



ACKNOWLEDGEMENTS

First of all I would particularly like to thank my supervisors, Professor 

A P Payne and Dr S W McDonald for their constant guidance, helpful 

criticism and encouragement throughout the duration of this study.

I am also grateful to my employer, the University of Malaya, who 

allowed me a period of “study leave” and to Petronas Malaysia who awarded 

me a Postgraduate Scholarship that enabled me to carry out this research.

I would like to thank the technical assistance of Mr Neil Bennett, 

Mr Owen Reid, Mr Euan Milne, Mr James McGadey, Mr Andrew Lockhart 

and Mr Matthew Neilson. Additional thanks go to Miss Caroline Morris, Mrs 

Jane Paterson and Miss Margaret Hughes for photographic work, artistic skill 

and their sence of humour.

Last but not least, I would also like to thank my husband, Mr Jamel 

Arshad, for his constant support and encouragement and my children, Nurul, 

Iman and Ashraf for their understanding which provided me with a peaceful 

mind during this period of study.

vi



ABSTRACT

Exposure of male Albino Swiss rats to the non-steroidal anti-androgen 

flutamide during the period from gestational day 10 to birth resulted in 

feminization of the external genitalia and the suppression of growth of the male 

reproductive tract. In adulthood, testes were found to be located in diverse 

positions. True cryptorchidism occurred in 12% of cases, while 44% of testes 

descended to the scrotum and 44% were located in a suprainguinal ectopic 

region. Varying degrees of tubule abnormality were seen in the testes of 

flutamide-treated animals, ranging from completely normal tubules with full 

spermatogenesis (and the expected frequency of the stages of spermatogenesis) 

to severely abnormal tubules lined with Sertoli cells only. For each individual 

testis, the overall severity of tubule damage was strongly correlated with its 

adult location, with intra-abdominal testes worst affected and scrotally-located 

testes least; only the latter contained normal tubules. Similarly, intra-abdominal 

testes were the smallest in weight and contained the least testosterone. By 

contrast, postnatal treatment of male rats with flutamide from birth to postnatal 

day 14 did not impair development of the external genitalia, the process of 

testicular descent or adult spermatogenesis. These findings confirm that 

androgen blockade during embryonic development interferes with testicular 

descent but also demonstrate that i) prenatal flutamide treatment per se has a 

detrimental effect on adult testis morphology but ii) the degree of abnormality 

of the testes is strongly influenced by location, and iii) the varying degrees of 

seminiferous tubule damage are probably due to the stage-specific effects of 

reduced testicular testosterone on spermatogenesis. The findings of this study



also demonstrate that outgrowth of the gubernacular cone is not affected by 

flutamide; however, the regression phase (which occurs postnatally) was 

delayed. Furthermore, shortening of the gubernacular cord was inhibited in 

males treated prenatally with flutamide. Exposure of males rats to anti­

androgen flutamide resulted in the persistence of the cranial suspensory 

ligament. This persistence however, was irrespective of the position of the 

testes in the adult. Nor was there any difference in the structure of the cranial 

suspensory ligaments from these varying testis locations. This suggests that 

retention of the cranial suspensory ligament is not an important factor in 

testicular maldescent. Prenatal flutamide treatment to rats also interfered with 

Wolffian duct development since most of the offspring of flutamide-treated 

mothers exhibited varying degrees of inhibition/absence of Wolffian duct 

derivatives. Moreover, impaired development of the epididymis and vas 

deferens was not necessarily associated with testicular maldescent since 

(despite partial to complete absence of epididymis and vas deferens) 44% of 

testes descended normally into the scrotum in males treated prenatally with 

flutamide. In contrast to the rat, prenatal flutamide treatment to hamsters did 

not interfere with testicular descent although there was clear evidence of 

flutamide action during development including inhibition of development of the 

Wolffian duct and retention of cranial suspensory ligament.



INTRODUCTION



The process of testicular descent in mammals has been a classic problem 

of developmental biology since the time of John Hunter (1762) - cited by 

Backhouse (1964) who first described the gubernaculum testis and considered its 

involvement in testicular descent. Despite a great deal of research carried out on 

a variety of species by many workers, the mechanism of testes descent and its 

controlling factors remain matters of debate.

This thesis reports on the effects of prenatal exposure to the anti­

androgen flutamide on:-

1. the development of the male reproductive tract in two rodent species, the rat 

and hamster with particular reference to

a) the position of testes during adulthood,

b) the morphology of these testes,

c) the capacity of these testes to produce testosterone, and

d) the spermatogenic cycle in the seminiferous tubules.

2. the process of testis descent during the prenatal and neonatal period in the rat 

with particular reference to the developmental morphology of the gubernaculum 

during the outgrowth phase and the regression phase.

3. the persistence of the cranial suspensory ligament.
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1. DEVELOPMENT OF MALE REPRODUCTIVE ORGANS:

Normal sexual development consists of three sequential processes: Firstly. 

it involves the establishment of chromosomal sex at the time of fertilization, the 

heterogametic complement (XY) being male and the homogametic state (XX) 

female. Secondly, it involves the development of gonadal sex. The Y 

chromosome carries genetic determinants (SRY) in human (Sinclair, 1990) and 

(Sry) in mouse (Gubbay et ah 1990) that induce the indifferent gonad to 

differentiate into a testis. In the absence of this positive influence, as in the 

normal female and in some forms of gonadal dysgenesis, the indifferent gonad 

becomes an ovary. Thirdly, it involves the translation of gonadal sex into 

phenotypic sex; this is normally the direct consequence of the type of gonad 

formed and its secretions (for review see Hunter, 1995).

Development of the sexual phenotype normally conforms to chromosomal 

and gonadal sex. In the absence of the testis, as in the female or in the male 

embryo castrated before phenotypic differentiation, phenotypic development is 

female (Jost et_al, 1973). In mammals, development of the female pattern does 

not require the presence of gonad, whereas male development is induced by 

hormones from the fetal testis.

The internal accessory organs of reproduction in the two sexes are 

derived from separate anlagen, the Mullerian and Wolffian ducts, which are 

present in early embryos of both sexes. In normal development, the Wolffian 

ducts in the male give rise to the epididymis, vas deferens and seminal vesicles,

3



while the Mullerian ducts disappear. In the female, the Mullerian ducts give rise 

to the fallopian tubes, uterus and upper vagina, while the Wollfian ducts regress. 

In contrast, the external genitalia and the urethra in the two sexes develop from a 

common anlagen - the urogenital sinus. In the male, the urogenital sinus gives rise 

to the prostate and the prostatic urethra and, in the female, to the urethra and the 

lower portion of the vagina. The genital tubercle is the progenitor of the glans 

penis in the male and the clitoris in the female. The genital swellings become the 

scrotum or the labia majora, and the genital folds develop into the shaft of the 

penis or the labia minora.

Development of the male phenotype is the result of the action of three 

hormones: a) Mullerian inhibiting substance (MIS), b) testosterone and c) 

dihydrotestosterone (DHT). MIS supresses the Mullerian ducts and thereby 

prevents development of the uterus and fallopian tubes (Josso et al. 1993a). 

Testosterone promotes male development in two ways: 1) by acting directly on 

the Wolffran ducts to stimulate their conversion into epididymis, vas deferens and 

seminal vesicles; 2) by serving as a prohormone for the third fetal hormone 

dihydrotestosterone which induces both formation of prostate from the urogenital 

sinus and formation of the external genitalia (Wilson et al, 1981). Thus, 

androgens induce the formation of the entire male genital tract during fetal life. 

Finally, there is migration of the gonad to the position it will occupy in adult life. 

In the case of the testis this involves descent into the scrotum which will be dealt 

with in detail below.
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a) Development of testis:

Differentiation of the gonads is the first phenotypic evidence of sexual 

dimorphism. Gonadal development involves the migration, organisation and 

differentiation of both germinal and somatic cells, and numerous reviews are 

available on the processes involved in the formation of the gonads in mammals 

(Clermont and Huckins, 1961; Clark and Eddy, 1975; Jost et ak 1973; 

Eddy et ah 1981; Wartenberg, 1989; Jost and Magre, 1993; Hunter, 1995).

The presence of the testis-determining gene, SRY (human) and Sry 

(mouse) on the Y chromosome acts to programme the formation of the testis and 

thus the differentiation of the supporting cell lineage to form Sertoli cells. All 

other aspects of seminiferous tubule organisation would then be triggered and 

directed by the Sertoli cells without further Y chromosome involvement (for 

review see Hunter, 1995)

The somatic (i.e. non germ) cells of the developing gonads may involve 

contributions from 1) the coelomic epithelium and adjacent mesenchymal cells 

and 2) cells of the mesonephros. There is some controversy on the source of 

somatic cells in the developing gonad. Some authors believe that somatic cells are 

derived from the coelomic epithelium (Yoshinaga et ak 1988; Growney, 1994), 

while others believe that these cells arise from the mesonephros (Upadhyay 

et aK 1981a; 1981b; Zamboni and Upadhyay, 1982; Satoh, 1985; 1991; 

Mackay et ak 1989; Smith and Mackay, 1990; Buehr et ak 1993). A dual



origin for somatic components from both coelomic epithelium and mesonephros 

is proposed by Pelliniemi (1975) and Wartenberg (1981; 1982).

In the human embryo, PGCs are first identified in the dorsal endoderm of 

the yolk sac membrane (Figure la) at 4 weeks post-conception (~ 14-somite 

embryo), in the hindgut epithelium and mesentery at 5 weeks (~22-somite 

embryo) and then in the genital ridge (Figure lb-c) at 6 weeks (Fujimoto et aK 

1977). The latter authors found that germ cells migration is by active amoeboid 

movement and cells can be readily tracked by plasma membrane alkaline 

phosphatase activity. The presence of abundant extracellular fibronectin (FN) in 

the migratory pathway suggests that FN plays a significant role in the migration 

of PGCs (Fujimoto et al. 1985). However, Jeon and Kennedy (1973) who 

studied PGCs in mouse embryo suggested that PGCs may migrate passively 

following the morphogenetic movement of the yolk-sac endoderm to form the 

gut; thus PGCs are enclosed in the gut epithelium in the 4-week embryo as a 

result of invagination of the the yolk-sac endoderm into the embryo proper to 

form the gut.

The initial location of the earliest germ cells remains unclear; they have 

been identified in mouse embryo at 8-9 days post-coitum (d.p.c.) within the 

mesoderm at the base of the allantois, in the caudal end of the primitive streak 

(Eddy et al. 1981; Gardner et al. 1985; Ginsburg et al. 1990).
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FIGURE 1: Diagrams showing

(a) mid-sagittal view through an early embryo prior 

to primodial germ cell migration showing the origin 

of primordial germ cells,

(b) oblique view of the mid-gut and its mesentery 

showing route of migration of the germ cells and

(c) transverse section of an embryo at the beginning 

of gonadal differentiation.

(Adapted from Human Embryology and 

Developmental Biology by Bruce M. Carlson 

(1994).
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A number of suggestions have been put forward as to what initiates 

migration of germ cells from the extra-gonadal sites, and what informational 

cues are required for the successful completion of the process:

1). Godin et ah (1990) demonstrated two factors that control migration in 

mouse embryos in in vitro studies using PGCs from 8.5 d.p.c.: a) the intrinsic 

capacity of PGCs to spread and move, b) extrinsic (chemotropic) factors which 

were emitted from the genital ridges and which acted to guide the PGCs. In this 

study, culture medium conditioned by 10.5 d.p.c. genital ridges, limb buds and 

hindgut mesenteries showed that PGCs migrate towards the genital ridges in 

preference to other explanted organs.

2). PGCs express cell-specific and stage-specific molecules on their cell surface. 

These surface molecules, termed differentiation antigens, are thought to play a 

role in the events of recognition, attachment and interaction between cells during 

migration (Eddy et al. 1981; Thiery et al. 1984).

3). An extracellular glycoprotein, FN, may serve to stimulate translocation of the 

migrating cells since immunocytochemical study of mouse embryo (between 9.5 -

11.5 d.p.c.) showed that the migratory pathway of PGCs (i.e. the hindgut lining 

and mesentery) is rich in FN (Fujimoto et al. 1985; De Felici et al. 1992).

Primordial germ cells (PGCs) are large cells (15-20 pm in diameter) with 

a large, round nucleus and prominent nucleolus: the cytoplasm contains a 

substantial amount of glycogens, numerous lipid droplets, ribosomes and 

mitochondria (Fujimoto et al. 1977). They increase in number by mitotic



division during migration, but most conspicuously once the germ cells reach the 

presumptive gonads (Godin et ah 1990; Tam and Snow, 1981).

While the process of multiplication of germ cells proceeds in the fetal 

testis, the initiation of meiosis in the male is delayed until the time of puberty 

(Jost and Magre, 1993). The XY germ cells in the testis enter a state of mitotic 

arrest as (pro)spermatogonia at the same time as female germ cells enter meiosis 

(at 13-15 d.p.c. in the mouse), and they resume mitotic proliferation in the 

immediate post-natal period (McLaren, 1983; Jost and Magre, 1993).

The gonadal anlagen in vertebrates is bipotential, that is it is capable of 

developing into either an ovary or a testis. The superficial cortical region of the 

anlagen would differentiate into an ovary whereas the medulla would differentiate 

into a testis (Jost et al. 1973). Jost and his colleagues suggested that there 

should be an antagonism between the cortex and medulla (i.e. proliferation of one 

region and regression of the other) if a distinct ovary or testis is to form. Thus, in 

mammals, the development of the ovary can be viewed as a default pathway 

although it still requires a specific gene programme, while development of the 

testis requires definite activation and thus diversion from the default pathway.

Formation of a functional gonad requires the correct differentiation of 

both somatic and germ cells. The earliest histological indication of sexual 

dimorphism in the pattern of gonadal differentiation is the appearance of 

primordial Sertoli cells in genetic males and their organisation as presumptive 

seminiferous cords separated from the true epithelium by a basal lamina (Jost
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and Magre, 1993). Development of a testis is reflected in rapid growth of the 

organ and differentiation of cell types occurs earlier in the testis than in the ovary 

(Jost et ah 1973; Jost and Magre, 1988). The probable reason that male gonads 

grow sooner and faster is that testicular products such as androgens and MIS are 

necessary to prevent phenotypic feminization as the ‘default’ pattern. It is not 

surprising that the undifferentiated phase before an ovary is distinguishable in 

genetic females is prolonged compared with the relatively rapid development of a 

testis in genetic males (Jost et al, 1973) since there are no comparable pressures 

in the developing female fetus.

Testis differentiation begins in the centre of the genital ridge close to the 

mesonephric tubules. The PGCs are withdrawn towards the medulla and the sex 

cords become a prominent feature (about 12.5 d.p.c. in the mouse and 13.5 d.p.c. 

in the rat). Formation of sex cords is accompanied by mitotic multiplication of all 

cell types: somatic cells and PGCs. However, there is not a complete separation 

between the mesothelium and the underlying tissue since a basal lamina is only 

formed 24 hours later (i.e. at 14.5 d.p.c. in the rat) (Jost and Magre, 1993).

The primordial Sertoli cells are specialized somatic cells with clear 

abundant cytoplasm which surround the germ cells and achieve intimate contact 

by means of long cytoplasmic processes. Differentiation and alignment of Sertoli 

cells are the first steps in testicular cord formation in genetic males, simultaneous 

with a rapid proliferation and aggregation of PGCs (Jost et al, 1981; Magre and 

Jost, 1980; 1983)



Normal testis cord formation requires peritubular myoid cells, which 

migrate from the mesonephric region. The evidence in support for this is when

11.5 d.p.c. testes were grafted to mesonephric regions from mice carrying a 

marker, the marker was found in some of the peritubular myoid cells and 

interstitial cells (Buehr et al. 1993). These authors concluded that cells can 

migrate from the mesonephric region into the differentiating testis and contribute 

to the interstitial cell population that is necessary for the establishment of normal 

cord structure. The cords become the future seminiferous tubules once a central 

lumen develops and a basement membrane has formed. Further growth of the 

testis is then mainly due to proliferation of somatic and germ cells already within 

it rather than further invasions of mesonephric cells.

The periphery of the developing gonad becomes occupied by the 

membranous tunica albuginea, and a prominent blood supply is characteristic of 

the developing testis (Mackay et ak 1993). However, although the tunica 

albuginea and the interstitial tissue become extensively vascularised, the germ 

cells become isolated from direct contact with blood capillaries by a more or less 

complex basement membrane and junctional complexes between the Sertoli cells, 

the so-called blood-testis barrier (Dym and Fawcett, 1970).

After waves of mitotic divisions the male germ cell line remains relatively 

undifferentiated on the basement membrane as prospermatogonia or 

spermatogonia until shortly before puberty (Jost and Magre, 1993). Male germ 

cells do not usually start meiosis until this time, thus DNA replication and cell
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division are not usually resumed until after birth. The nature of the factor(s) 

causing such prolonged inhibition of meiosis remains uncertain, although it is 

thought to originate from the surrounding Sertoli cells since germ cells cannot 

proceed through differentiation unless in contact with somatic cells (Jost and 

Magre, 1988).

Morphological differentiation of Leydig cells within the interstitium 

occurs later, and is correlated with the onset of steroidogenesis. Leydig cell 

precursors migrate from the mesonephric region into the genital ridge before 12.5 

d.p.c and recognisable Leydig cells occur at 13.5 d.p.c. in the mouse (at 15.5 

d.p.c. in the rat). This correlates with activation of the gene for 3p- 

hydroxysteroid dehydrogenase, which is expressed in the mouse testis by 13.5 

d.p.c but not by 12.5 d.p.c. (Jost and Magre, 1993). Differentiation of Leydig 

cells from mesenchymal precursors is said to be under the influence of Sertoli 

cells (Jost and Magre, 1988)

By 14.5 d.p.c., the seminiferous cords of the fetal rat testis are well 

organised and made up of the primordial Sertoli cells and PGCs. These cords are 

disposed in double arcades in planes perpendicular to the length of the gonad 

(Clermont and Huckins, 1961; Magre and Jost, 1983). The germ cells have a 

round nucleus and one or more distinct nucleoli; the mitochondria are round and 

swollen. The tissue between the cords is scarce. A basal lamina forms as flattened 

mesenchymal cells around the seminiferous cords.



Further development of the seminiferous cords has been detailed in the rat 

by Clermont and Huckins (1961). Briefly, by 15.5 d.p.c., the seminiferous 

cords have become very large and obvious and are arranged in double arcades. 

The interstitial cells are packed together. By 16.5 d.p.c., the tissue surrounding 

the cords becomes less packed and the Leydig cells more conspicuous. The 

Sertoli cells migrate to the outer surface of the sex cords. The testis appears as an 

elongated and slightly cresentric organ running along the medial aspect of the 

mesonephros. The seminiferous cords remain in double arcades with their two 

extremities connected with the rete testis. By 19 d.p.c., the testis has become 

spherical, and the seminiferous cords begin to show some convolutions.

In neonates, the seminiferous cords maintain their circular pathway 

around the testis, though they become increasingly folded into tiny convolutions. 

There is a 4-fold lengthening of each cord between E l9 and birth. In pups at 12 

days after birth, the outer seminiferous tubules follow a circular pathway around 

the testis, but the tubules undergo extensive elongation. In the adult, the basic 

plan of the seminiferous tubules is maintained; the tubules show a large number 

of regular convolutions. Although many morphological features are highly 

modified during the extensive growth of the sex cords into adult seminiferous 

tubules, the architectural plan of tubules in the adult testis reflects the distribution 

of sex cords in the embryo.
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bl. Differentiation of the male genital ducts:

The embryonic duct system may also be viewed as bipotential in that it is 

duplicated during the initial stages of organogenesis. In the very young embryo, 

there are two sets of primitive reproductive tracts: the male (Wolffian) and 

female (Mullerian) duct system respectively (Figure 2a). These ducts can be 

distinguished alongside each other for a period of time during embryogenesis 

irrespective of the sex chromosome complement of the individual. Such 

duplication would imply that there is still the potential to promote formation of 

either a male or female duct system. The Wolffian (mesonephric) ducts appear 

first as the excretory ducts for the mesonephros. The Mullerian 

(paramesonephric) ducts develop later in the proximity of the Wolffian ducts 

(Jost et_al, 1973).

During normal development of the embryo, only one of the bilaterally 

paired duct systems develops whilst the other undergoes regression (Figure 2b). 

However, this may not be the situation in cases of chromosomal anomalies or 

hormonal disturbance. With the onset of sexual differentiation, the testis- 

determining gene (SRY) on the Y chromosome initiates testicular development 

(Sinclair, 1994) and the production of testicular hormones - Mullerian inhibiting 

substance (MIS) and testosterone (Lee and Donahoe, 1993; Josso et ah 

1993a). Under the influence of MIS, the Mullerian duct begins to regress so that 

the male is not bom with fallopian tube, uterus and vagina (Lee and Donahoe, 

1993; Behringer, 1995). Testosterone is responsible for stimulating the Wolffian

13



FIGURE 2: Diagrams showing

(a) the paired genital ducts at the indifferent stage; 

both the Mullerian and the Wolffian ducts are 

present

(b) the Mullerian ducts persist in the female but 

regress in the male while the Wolffian ducts persist 

in the male but regress in the female.

(Adapted from Jost and Magre, 1993).
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ducts to continue their development to form the epididymis, vas deferens and 

seminal vesicles (Wilson et ah 1981).

MIS is the first known molecule produced by fetal Sertoli cells (Tran, 

1977; Tran and Josso, 1982). Its synthesis begins before the appearance of 

Leydig cells. Furthermore, the Mullerian ducts of the developing male embryo are 

only sensitive to MIS during a limited early period after differentiation of the 

gonad. The critical period of responsiveness of Mullerian ducts to MIS in rats is

13.5 -15 d.p.c. and in man is about weeks 7-8 of gestation; exposure to MIS 

before or after this critical period is ineffective (for review see Josso et al. 

1993a).

The differentiation of the Wolffian duct to form the paired and 

convoluted epididymis, the muscular vas deferens and the seminal vesicles begins 

shortly after the formation of testicular cords and is under the influence of 

testosterone (Wilson, 1992). The paired Wolffian ducts do not contain 5a- 

reductase (Griffin and Wilson, 1980; Wilson, 1992). By contrast, virilisation of 

the urogenital sinus (to become the prostate and the membranous urethra) and 

external genitalia during embryogenesis do require dihydrotestosterone since the 

urogenital sinus and phallus contain high activity of 5a-reductase (the enzyme 

that converts testosterone to dihydrotestosterone) during the period of 

differentiation of the genitalia (Renfree et al. 1992).

Dihydrotestosterone has some lOx the affinity for androgen receptors 

than testosterone (Grino et ah 1990), enabling the external genitalia to
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be masculinised by very low concentrations of testosterone. The action of 

dihydrotestosterone stimulates the urogenital sinus to form the prostate and the 

membranous urethra, the urogenital tubercle to form the penis and penile urethra 

and urogenital swelling to form the scrotum (Wilson et al, 1981). However, the 

precise cellular mechanisms whereby testosterone acts to promote male duct 

differentiation and development remains uncertain.
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2. NORMAL TESTICULAR DESCENT:

Descent of the testis is one of the normal events during development of 

the male reproductive system in most (but not all) species of mammals 

(Backhouse, 1966; 1982; Wensing, 1986; Wensing and Colenbrander, 1986; 

Heyns, 1987; Hutson and Beasley, 1992). The process of testicular descent has 

received a great deal of attention because anomalies of testicular descent are 

frequently encountered in man (Backhouse, 1966; 1982; Scorer and 

Farrington, 1971; Heyns, 1987) and in other mammalian species (Spencer 

Barthold et ah 1994).

In man (Backhouse, 1982; Heyns, 1987) and in animals such as pig, calf 

and dog (Backhouse and Butler, 1960; Hullinger and Wensing, 1985; Heyns 

et ah 1986; Wensing, 1986; Fujikake et al, 1989) the gubernaculum is a 

structure extending from the caudal pole of the testis via the epididymis to the 

region of the future inguinal canal in the anterior abdominal wall and into the 

scrotal swelling (Figure 3a). A gutter forms around the junction between the 

gubernaculum and the anterior abdominal wall; this is the beginning of the 

processus vaginalis. The processus vaginalis thus divides the gubernaculum into 

three parts: a) the gubernaculum proper, consisting of an intra-abdominal part 

suspended in a peritoneal fold and an extra-abdominal part suspended by the 

visceral layer of the processus vaginalis, b) the vaginal part which receives the 

termination of the cremaster muscle, and c) the infra-vaginal part (Figure 3b). It 

is generally agreed that during testicular descent, there is never an organized
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FIGURE 3: Semi-diagramatic representation of the

gubernaculum in species with strip-like cremaster 

muscles

(a) The appearance of the gubernaculum during the 

outgrowth phase prior to testicular descent.

(b) The appearance of the gubernaculum at the 

beginning of testicular descent. Note: the processus 

vaginalis is formed and thus, at this stage, the 

gubernaculum may be divided into gubernaculum 

proper, a vaginal part and an infra-vaginal part.
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FIGURE 4: Semi-diagramatic representation of the

gubernaculum in species with sac-like cremaster 

muscles

(a) The gubernaculum during the outgrowth phase 

(at 18 d.p.c. in rat); it may be divided into an intra­

abdominal (i.e. the gubemacular cord and cone) and 

an extra-abdominal parts

(b) The gubernaculum (at birth) at the beginning of 

gubemacular regression and eversion to form the 

cremaster sac with the formation of the processus 

vaginalis.
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connection between the infra-vaginal part and the scrotum. In the gubernaculum 

proper, the mesenchymal cells are orientated in a longitudinal direction while, in 

the scrotal swelling, such orientation is lost and cells lie in a random fashion. 

However, towards the surface, the cells become orientated parallel to the skin 

(Backhouse, 1982).

In rodents such as the rat (Wensing, 1986) the gubernaculum may be 

divided into a) the cranial part (also called the gubemacular cord) which is an 

inconspicuous strand of mesenchyme, and b) the caudal part which is subdivided 

into i) intra-abdominal and ii) extra-abdominal parts (Figure 4a). The intra­

abdominal part (also called the gubemacular cone) is composed of a 

mesenchymal core surrounded by several layers of myoblasts which are 

continuous with myoblasts in the abdominal wall: they form the basis of the 

future cremaster muscle. The extra-abdominal part (not surrounded by 

myoblasts) is composed of relatively dense mesenchyme which extends from the 

inguinal area to the future scrotum. The mesenchyme and myoblasts of the intra­

abdominal segment are very conspicuous. Both the gubemacular cord and the 

cone are contained within the free margin of a peritoneal fold which extends from 

the testis to the inguinal region.
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In considering the gubernaculum and its possible role in testes descent, 

several factors must be borne in mind

i) The gubernaculum undergoes 2 distinct phases of development during

testicular descent; firstly, the outgrowth phase (also called the swelling reaction) 

and, secondly, the regression phase (Wensing, 1986).

ii) Wensing and Colenbrander (1986) described 2 forms of testicular

descent in mammals a) typical of those species with a strip-like cremaster muscle 

(i.e. ungulates, carnivores and man), and b) typical of those species with a 

sac-like cremaster muscle (i.e. rodents and lagomorphs).

iii) there are two phases of testicular descent:

The first or the transabdominal phase refers to migration of the testis from the 

caudal pole of the ipsilateral kidney to the inguinal region, while the second 

inguinoscrotal phase refers to migration of the testis through the inguinal ring 

down to the scrotum. Both phases of testicular descent occur prenatally in man 

(Backhouse, 1982; Heyns, 1987); in the rat, the transabdominal testicular 

descent occurs during the gubemacular outgrowth phase in the prenatal period 

with the inguinoscrotal phase completed by the end of the third week of life 

(Wensing and Colenbrander, 1986).

The transabdominal phase of testicular descent occurs between 1 0 - 1 5  

weeks of gestation in the human (Jirasek, 1971) and between 16 - 20 d.p.c. in 

the rat (Wensing and Colenbrander, 1986). The gubernaculum enlarges in the 

male, thereby anchoring the embryonic testis near the inguinal region as the
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embryo enlarges. By contrast, the gubernaculum remains small and thin in the 

female so that the ovary undergoes relative ascent with embryonic enlargement. 

In the human fetus, the ovary remains closely related to the uterus and fallopian 

tube, whereas, in the rat, it remains closely associated with the kidney 

(Backhouse, 1982; Wensing, 1986; Wensing and Colenbrander, 1986).

a). Morphology of testicular descent in mammals with strip-like cremaster 

muscle:

During early embryonic development of the human fetus (6 weeks), the 

gonad develops in the genital ridge between the mesonephros and the dorsal gut 

mesentery (Figure lc). The excretory system of the testis is derived from the 

adjacent mesonephros and the mesonephric duct. The head and body of the 

epididymis are formed from the mesonephros and subsequently bear a constant 

postero-lateral relationship to the testis. Initially, numerous mesonephric tubules 

pass to the primitive testis. Most of these atrophy, leaving between 5-12 

definitive vasa efferentia which drain from the rete testis to the head of the 

epididymis. The cephalic part of the mesonephric duct forms the tail of the 

epididymis, the caudal portion becoming the vas deferens (Scorer and 

Farrington, 1971).
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The gonad and the mesonephros together form the uro-genital ridge, 

which has connections above and below. These are>

i) a superior ‘plica vascularis’ contains the testicular artery and vein. With the 

involution of the cranial part of the mesonephros, the mesonephric ridge linking 

the mesonephros to the posterior body wall remains, thus linking the gonad with 

the developing diaphragm (Backhouse, 1982). This is the basis of the cranial 

suspensory ligament of the gonad.

ii) an inferior ‘plica inguinalis’, a mesodermal thickening which forms an 

elongated structure, and extends caudally from the lower end of the testis and 

mesonephros into the groin. This is the gubernaculum of the testis. Thus, the 

gubernaculum is established as a mesenchymatous column extending from the 

gonad through a preformed inguinal canal in the anterior abdominal wall into the 

scrotal swelling (Backhouse, 1982).

While the above changes are taking place, the anterior abdominal wall 

develops a trilaminar musculature. The body wall muscles and fascia differentiate 

around this mesenchymal core; hence, at the site where the gubernaculum meets 

(or passes through) the anterior abdominal wall, there is a mesenchymal gap in 

the musculature, which will become the future inguinal canal. In this mesenchyme 

the genital branch of the genitofemoral nerve also passes through the abdominal 

wall (Backhouse, 1982). By 8 weeks after conception, the human cremaster 

muscle develops as medial and lateral slips in the mesenchyme of the inguinal
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canal. Similarly, the gubernaculum of the domestic pig (Sus scrofa) is also a 

mesenchymal structure which first runs in a peritoneal fold extending from the 

testis to the anterior abdominal wall. This gubemacular mesenchyme is 

continuous with a core of mesenchyme which demarcates the future inguinal 

canal within the differentiating abdominal wall muscles; This core is, in turn, 

continuous externally with the mesenchyme of the scrotal swellings (Backhouse 

and Butler, 1960).

With further development of the fetus, the processus vaginalis invades 

deeper into the gubemacular mesenchyme in the inguinal canal region, and 

divides the gubernaculum into three parts as above (Figure 3b). There is no 

organized connection between the caudal tip of the gubernaculum and the area of 

the future scrotum during the early stages of testicular descent (Wensing, 1968).

During the first phase of testicular descent, the swelling reaction 

(outgrowth phase) of the gubernaculum is confined mainly to the extra-abdominal 

part of the gubernaculum proper. Gubemacular swelling is partly caused by 

active cell division (Wensing, 1968) but particularly by an increase of extra­

cellular substances, glycosaminoglycans (GAG) which may be responsible for the 

increase in water content in the gubernaculum (Backhouse, 1982; Heyns et_al,

1990). Thus, during the outgrowth phase, the gubemacular cell density 

decreases, especially in that part located in the inguinal canal. The increase in 

weight and volume of the gubernaculum continues for some time after the 

passage of the testis through the inguinal canal and remains maximal for some
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time before reduction commences (Backhouse, 1982; Hullinger and Wensing,

1985).

In pig and calf fetuses, the ratio of the intra- and extra-abdominal parts of 

the gubernaculum changes substantially during testicular migration. Concurrent 

with the outgrowth of the extra-abdominal part of the gubernaculum proper, the 

intra-abdominal part becomes shorter, thus bringing the testis and epididymis 

closer to the internal inguinal ring (Wensing, 1968; Hullinger and Wensing,

1985). The extra-abdominal part forms a progressively greater proportion of the 

whole gubernaculum as the testis approaches the internal inguinal ring. Shortly 

before the passage of the testis through the inguinal canal, the cranial part of the 

gubernaculum proper adjacent to the testis-epididymis reaches a diameter as wide 

or wider than the testis itself and in this way dilates the inguinal canal (Wensing, 

1968). Growth of the extra-abdominal part apparently exerts traction upon the 

abdominal part of the gubernaculum proper, and, as it shortens, it gradually 

carries the testis beyond the external inguinal ring into the future scrotum.

In the dog, intra-abdominal testicular migration during the outgrowth 

phase of the gubernaculum is far less pronounced (Baumans et ah 1981); 

however, the outgrowth of the extra-abdominal part is clear, albeit less 

spectacular than in ungulates. In the male human fetus the changes in the 

dimensions of the gubernaculum, together with the transabdominal migration of 

the testis, more or less resemble the situation in ungulates and carnivores 

(Backhouse, 1982). Growth of the processus vaginalis is due to direct invasion
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of the gubemacular mesenchyme by the coelomic epithelium to form an annular 

cavity dividing the gubernaculum into a central mesenchymal column and an 

outer parietal layer (Figure 3b), while growth of the cremaster muscle is by 

differentiation of gubemacular mesenchyme (Hutson and Beasley, 1992).

With subsequent regression of the gubernaculum proper and a shift in the 

relative positions of the superficial and deep inguinal rings, the testis descends 

within the peritoneal fold that carries the gubernaculum proper (Wensing and 

Colenbrander, 1986). The scrotum and the inguinal canal become dilated in 

advance of testicular descent and passage of testis through the inguinal canal is 

preceded by lengthening of the vas deferens and testicular vessels (Backhouse, 

1964). Subsequent descent of the testis to the floor of the scrotum is permitted 

by lengthening of the structures of the testicular cord and their coverings. 

Following complete descent of the testis, the central gubernaculum involutes by 

dissolution of the extra-cellular matrix. The residual parts of the column form the 

fibrous attachment of the testis to the scrotum (Hutson and Beasley, 1992).

In the human fetus, 75% of testes pass through the inguinal canal between 

24-28 weeks of gestation (Heyns, 1987) and 93% are through by 32 weeks 

(Birnholz, 1983). In the dog, passage of the testis through the inguinal canal 

takes place between 3-4 days after birth with a further 35-40 days before the final 

scrotal position is reached (Baumans et al, 1981). In normal descent, the inner, 

visceral layer of the processus vaginalis covers the testis, epididymis, and
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spermatic cord. At the inguinal ring, this layer becomes continuous with the 

peritoneal fold that carries the vas deferens. Caudally, it is reflected from the 

testis and epididymis as the mesorchium and mesoepididymis respectively to 

become the parietal layer which is continuous at the internal inguinal ring with the 

parietal peritoneum. The gubernaculum proper (together with the infra-vaginal 

parts) are converted into the ligament of the testis and the caudal ligament of the 

epididymis (Backhouse and Butler, 1960; Wensing, 1968).

In fetal pig and calf, and in the neonatal dog, it is possible to apply gentle 

traction to the abdominal portion of the gubernaculum and to partially evert the 

vaginal process, thus returning the extra-abdominal portion of the gubernaculum 

into the abdomen (Wensing and Colenbrander, 1986). In the pig (with a 28 

weeks gestation period), the transformation of the early mucoid gubernaculum 

into a small fibrous structure takes place between 16-17 weeks of gestation 

(Wensing, 1968); in the dog the process occurs in the neonatal period 

(Baumans et ah 1981).

Backhouse and Butler (1960) sought to explain the first phase of 

testicular descent from a position ventro-medial to the mesonephros to the deep 

inguinal ring by degeneration of the mesonephros and growth of the testis which 

expands to fill the space vacated by it. There are difficulties with this explanation 

especially the time difference between degeneration of the mesonephros and 

subsequent testicular migration in several species such as dog and horse 

(Wensing, 1968). In the dog, there is only a little increase in testicular size and
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the testis remains within the abdomen even though the mesonephros is largely 

degenerated. In the horse on the other hand, the testis undergoes an impressive 

enlargement during the period of migration. Wensing (1968) also noted the 

correlation between the outgrowth of the extra-abdominal part of the 

gubernaculum and the intra-abdominal migration. He suggested that intra­

abdominal migration is brought about by the outgrowth of the extra-abdominal 

part of the gubernaculum. However, it was suggested that the separation between 

the testis and kidney is caused by growth of the lumbar spine and pelvis since the 

position of the testis relative to the acetabulum remains constant in the early fetus 

(Backhouse, 1964).

The passage of the testis through the inguinal canal is believed to be 

produced by an increase in intra-abdominal pressure, facilitated by the generous 

dimensions of the inguinal canal which is further dilated by the gubernaculum 

(Wensing and Colenbrander, 1986; Backhouse, 1964). The most important 

factor in the last phase of testicular descent is the regression of the gubernaculum 

proper and its infra-vaginal part together with the rapid growth in length of the 

vas deferens and the testicular vessels, thus allowing further migration of the 

testis within the peritoneal fold that formerly carried the gubernaculum proper.
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b). Morphology of testicular descent in mammals with sac-like cremaster

muscle:

The morphology of testicular descent in the ungulates (with a strip-like 

cremaster muscle) and rodents (with a sac-like one) are comparable in the 

following aspects:

i) The gubernaculum connects the testis and the epididymis to the inguinal

area before the process of testicular descent starts. During the outgrowth phase 

(i.e. at 18 d.p.c.), the gubernaculum of the rat may be divided into two parts as 

described above (Figure 4a) (Wensing, 1986; Wensing and Colenbrander,

1986).

ii) The gubemacular cord in the rat is essentially homologous with the intra­

abdominal part of the gubernaculum in the pig. During the first phase of testicular 

descent, when gubemacular swelling occurs, shortening of the cord takes place in 

both species, bringing the testis and epididymis closer to the enlarged 

gubemacular mesenchyme.

iii) The mesenchymal core of the gubemacular cone in the rat can be

compared with the extra-abdominal part of the gubernaculum proper and the 

vaginal part of the gubernaculum in the pig. The swelling reaction takes place 

mainly in these parts.

iv) The myoblasts of the gubemacular cone in the rat are essentially

homologous to the strip-like cremaster muscles terminating in the vaginal part of 

the gubernaculum in the pig. However, the muscular component of the cone in
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the rat is larger, more elaborate and voluminous than the comparable structure in 

the pig (Wensing, 1986).

v) The extra-abdominal segment of the gubernaculum in the rat can be

compared with the infra-vaginal part in the pig. These parts in both species 

extend towards the scrotal region, but have no organised connection with 

surrounding structures.

The differences between the two species are:

i) Formation of the processus vaginalis in the rat results from the eversion

of the cremaster sac during the regression of the gubemacular mesenchyme. The 

muscular wall of the gubemacular cone has everted into the space created by this 

regression (Figure 4b). Eversion begins around birth at the base of the 

gubemacular cone and gradually deepens (Habenicht and Neumann, 1983; 

Wensing, 1986) and the processus vaginalis is formed as a consequence of this 

eversion, while in the pig it is produced by an active peritoneal invasion into the 

mesenchyme of the extra-abdominal part of the gubernaculum proper during 

outgrowth phase of the gubernaculum. Once eversion of the gubemacular cone 

has been completed (at postnatal day 4 in the rat), the muscular coverings form 

the extra-abdominal cremaster sac. However, despite the difference in formation, 

the end results are remarkably similar, the main difference being the larger 

relative diameter of the inguinal canal in the rat. Because of this, movements of 

the testis from the scrotum to the abdominal cavity remain theoretically possible. 

However, in practice, when the testis is located scrotally, the epididymal fat pad
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blocks the inguinal canal, preventing the herniation of abdominal viscera 

(Wensing, 1986); this may also prevent the descended testis from returning into 

the abdominal cavity.

ii) In man, the bulk of the caudal enlargement of the gubernaculum is 

resorbed after the completion of testicular migration (Backhouse, 1966) while, in 

rodents, resorption begins prior to the commencement of migration (Fallat et ah 

1992a).

iii) The strip-like cremaster muscle of ungulates, carnivores and man is not 

very conspicuous during the process of testicular descent. In contrast, the sac- 

like cremaster muscle of rodents and lagomorphs increases in size, and continues 

to grow even after regression of the gubemacular mesenchyme (Wensing, 1986).

Intra-abdominal pressure seems to play a role in the completion of 

testicular descent into the scrotum in both species (Frey et ah 1983; Frey and 

Rajfer, 1984).
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3. FACTORS CONTROLLING TESTICULAR DESCENT:

Theories of testicular descent:

A number of diverse and often conflicting theories have been proposed to 

explain the mechanism by which the testis descends from the abdomen into the 

scrotum. In general, these theories have held that the testis is either pulled 

(traction) or pushed (propulsion) from the abdomen into the scrotum, or that it 

reaches its destination by a combination of growth and involution.

The traction theories propose that the contractions of muscle fibres of the 

gubernaculum act to pull the testis down (Wyndham, 1943). These theories rest 

upon the assumption that the gubernaculum has firm attachments both cranially 

and caudally. However, Backhouse (1966) found that the gubernaculum of a pig 

fetus lay free in the scrotum but attached to the abdominal wall around the 

inguinal canal and having the processus vaginalis extending from the abdomen 

into it. Another related theory is that swelling of the gubernaculum distal to the 

external inguinal ring exerts traction on the proximal part of the gubernaculum; 

This has been likened to the inflation of a balloon in a restricted passage exerting 

traction on the intra-abdominal testis (Wensing, 1968).

The epididymal theory of testicular descent is based on the fact that the 

gubernaculum is adherent to the cauda epididymis and the lower pole of the 

testis, thus the epididymis accompanies the testis during descent. Hadziselimovic 

(1983) proposed that it was actually the epididymis which descended carrying 

the testis with it as a result of changes in the centre of gravity due to i) the
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craniocaudal direction of differentiation of the epididymis, ii) peristaltic and 

secretory activity within the differentiating epididymis.

Theories of propulsion suggest that an increase in intra-abdominal 

pressure is the primary force that causes the testis to leave the abdomen and enter 

the inguinal ring. The increase in intra-abdominal pressure may be the result of 

growth of other abdominal viscera (Wells, 1943), closure of the physiological 

umbilical hernia (Rajfer and Walsh, 1977), contraction of the abdominal 

muscles, or respiratory effort by the fetus (Heyns, 1987). These pressures are 

supposed to cause herniation of the gubernaculum and the testis through the 

‘weak’ part of the abdominal wall, that is, the inguinal canal.

Recently, clinical conditions such as prune belly syndrome or abdominal 

wall defects which are associated with undescended testis (such as umbilical 

hernia, omphalocele) (Pagon et aK 1979; Moerman et_al, 1984; Hutson and 

Beasley, 1987; Kaplan et ah 1986; Hadziselimovic et ah 1987), together with 

experimental evidence such as the descent of prostheses into the scrotum, have 

appeared to support this concept (Frey et al. 1983; Frey and Rajfer, 1984). 

After closure of the internal ring, enlargement of the testis forces it to move 

down the funnel-shaped inguinal canal (Engle, 1932). However, Heyns (1987) 

disagreed with this idea since although the absolute size of the testis and 

epididymis increase, the size of the testis relative to that the fetus remains 

constant.
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The growth theory states that the differential growth of the lumbar 

vertebral column, pelvis and abdominal wall are responsible for the apparent 

transabdominal descent of the testis while the gubernaculum passively anchors it 

at the internal ring (Heyns, 1987). The relative movement of the gonads in male 

and female fetuses has produced debate, especially as it is difficult to know the 

‘fixed’ point it should be measured against. The absolute distance between the 

testis and the inguinal region in the fetal rat remained constant during this phase, 

suggesting that the testis did not descend but that, paradoxically, the ovary did 

ascend in the female fetus. Shono et al. (1994) also proposed that the ovary 

ascends and the testis never moves downward in the mouse, the distance between 

the testis and the bladder neck remaining constant during the transabdominal 

phase of descent. Van der Schoot (1993a) suggested that ovarian ascent is 

caused by persistence of the cranial suspensory ligament while ascent of the testis 

is prevented by its absence. In flutamide-treated male rats, the cranial suspensory 

ligament persists, but this is not necessarily associated with undescended testis 

(van der Schoot and Eiger, 1992).

Furthermore, persistence of these ligaments in androgen-resistant mice 

was not associated with failure of the transabdominal phase of descent (Hutson,

1986). Paradoxically, if impaired movement of the ovary is passive, then lack of 

movement of the testis must still be an active process (Hutson et al. 1996) 

because the testis would occupy the same position as the ovary if descent did not 

occur. Hutson et al (1996) have taken the ovary itself as the reference point for
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descent, rather than the inguinal region. Thus, with the ovarian position as the 

starting point for descent, the testis descends relative to the inguinal region with 

fetal growth.

Whatever the mechanical factors at work, a large number of clinical and 

experimental observations suggest that the process of testicular descent is under 

hormonal control (Elder et ah 1982; Backhouse, 1982; Habenicht and 

Neumann, 1983; Fentener van Vlissingen et_al, 1988; Heyns and Pape, 

1991; Heyns et al. 1993; Hutson and Donahoe, 1986; Hutson et al. 1990, 

1996).

Hormonal control of testicular descent

Hormonal control of testicular descent has been a subject of controversy 

since Engle (1932) originally noted premature descent of testis in the monkey 

after injection of pregnant monkey urine or anterior pituitary extracts. However, 

the mechanisms by which these hormones act remains controversial. Testicular 

descent involves two separate phases (see p. 18) which may occur under 

different hormonal controls.

In previous studies on the hormonal regulations of testicular descent, 

evidence has been presented that the first phase (that is, the outgrowth of the 

gubemacular mesenchyme) is androgen-independent (Wensing, 1973; 

Colenbrander et aK 1979; Habenicht and Neumann, 1983; Baumans et aK 

1983). However, the second (the regression of this mesenchyme), and possibly



the third (the development and growth of the cremaster muscle), may be 

androgen-dependent (Elder et al , 1982; Baumans et ah 1983; Wensing, 

1988).

The embryonic testis produces both testosterone and MIS (Lee and 

Donahoe, 1993; Josso et ah 1993a). Early evidence supported a role for 

testosterone and 5a-dihydrotestosterone (DHT) in promoting testicular descent. 

Treatment of immature rhesus monkeys, (which exhibit a cryptorchid condition 

until the onset of puberty) with testosterone induces testicular descent within 3 

weeks (Hamilton, 1938); Similarly, administration of DHT to bilaterally- 

orchidectomised rats (on day 14) induces descent of silicone prostheses (on day 

28) (Frey et aK 1983). Moreover, a high activity of the enzyme 5a-reductase 

(which converts testosterone to 5a-DHT) was found in day 18 fetal rat 

gubernaculum (George, 1989).

Investigations into the role of androgens on testicular descent in the rat 

have produced conflicting results. Evidence in support are the findings that 

premature testicular descent (in rat) can be induced by DHT, but not by 

testosterone (Rajfer and Walsh, 1977). Furthermore, daily injections of 

estradiol to rat pups from birth to postnatal day 21 inhibits testicular descent, and 

this inhibition by estradiol can be reversed by DHT, but not by testosterone 

(Rajfer and Walsh, 1977).

In attempting to clarify the role of androgens on descent of the testis, 

recent studies using the non-steroidal anti-androgen flutamide also have produced
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divergent results. When flutamide was administered prenatally, it inhibited 

testicular descent in rats (Spencer et al, 1991; van der Schoot, 1992b). The 

maximum effect was found with exposure between 16-17 d.p.c. (Husmann and 

McPhaul, 1991b) while administration of flutamide to fetal rats from 10 d.p.c. 

(i.e. prior to differentiation of the Wolffian duct), also prevented regression of the 

cranial suspensory ligament (van der Schoot and Eiger, 1992). While Husmann 

and McPhaul (1991b) found that the testes were either located at the bladder 

neck or in the inguinal region, van der Schoot and Eiger (1992) found that 

testicular descent was completely inhibited, with the testes located in the ovarian 

position near the lower pole of the kidneys, despite normal growth of the 

gubemaculum and its postnatal eversion to form the cremaster sac. Similar 

observations have been made in perinatal rabbits (van der Schoot and Eiger, 

1993).

Hutson et al (1996) have suggested that the difference between these 

studies may be due to the timing of prenatal flutamide treatment; Spencer et al 

(1991) and Husmann and McPhaul (1991b) gave flutamide after the Wolffian 

duct had been exposed to endogenous androgens while van der Schoot and 

Eiger (1992) gave flutamide prior to Wolffian duct stabilization. Hutson et al 

(1996) agreed that regression of the Wolffian duct, and hence absence of the 

epididymis, may cause the gubemacular cord to be unusually long, so that the 

testis is not held near the inguinal canal. By contrast, development of the 

gubemacular cone is independently controlled and occurs normally despite



flutamide. However, the subsequent migration of the everted cremaster muscle to 

form the cremaster sac is abnormal, and the sac fails to reach the scrotum in most 

animals (van der Schoot, 1992b).

Because of these contradictory conclusions, a number of authors 

(Wensing, 1973; Hutson and Donahoe, 1986) have suggested that testicular 

descent may be controlled, at least in its initial phases, by MIS. This is based on 

the observations that the completion of regression of the Mullerian duct (which is 

under MIS control) coincides with the onset of the rapid growth phase of 

gubemacular development, and almost all patients with persistent Mullerian duct 

syndrome (PMDS) have one or both testes undescended (for reviews see Hutson 

et ah 1990; 1996). In PMDS, the testes are located in the abdominal cavity in a 

position analogous to the ovary (Sloan and Walsh, 1976). However, in some 

patients with this anomaly, only one testis may remain within the abdomen and, in 

about 10% of patients, both testes were found in the groin on the same side. 

Josso et al. (1993b) found that the testes in patients with PMDS are tightly 

attached to the fallopian tubes, and the position of the gonads depends on the 

mobility of the Mullerian duct remnant, thus concluding that the failure of 

testicular descent is caused by mechanical constraint by the Mullerian ducts. 

Furthermore, the role of MIS in transabdominal descent has been doubted 

because testes may be located in the inguinal region in some patient with PMDS.

Controversy over the role of MIS in transabdominal descent of the testis 

remains. Contradictory evidence includes the failure of antibodies against MIS



administered to pregnant rabbits to prevent testicular descent in male offspring, 

despite persistence of the Mullerian ducts (Tran et ah 1986). By contrast, 

pregnant mice exposed to estrogens had male offspring with Mullerian ducts, 

high intra-abdominal testes and absence of the normal male gubemacular 

enlargement (Hutson et ah 1990).

il The role of genitofemoral nerve (GFN) in descent of testis

Inguinoscrotal testicular descent requires migration of the gubemaculum 

from the inguinal region to the scrotum (Heyns, 1987; Fallat et ah 1992a). This 

phase may be androgen dependent, since maldescent occurs in animals with 

complete androgen resistance (Hutson, 1986). The gubemaculum is innervated 

by the genitofemoral nerve (GFN). In human, the GFN arises from the ventral 

roots of segments L1-L2 of the spinal cord. It innervates the gubemaculum by 

the genital branch which leaves the main trunk cranial to the inguinal ligament. 

The genital branch of GFN descends through the inguinal canal and enters the 

gubemaculum proper through its caudal (Figure 4a-b) to supply both it and the 

cremaster muscle (Tayakkanonta, 1963). In the rat, the course of the genital 

branch of the GFN as confirmed by anterograde fluorescent and 

immunohistochemical tracing was similar to that in the human (Larkins and 

Hutson, 1991).

The GFN spinal nucleus has been shown to be sexually dimorphic because 

the GFN spinal nucleus in adult male mice contained more cells than in female
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mice (Larkins et aK 1991). Furthermore, immunohistochemical studies have 

shown that a neurotransmitter, calcitonin gene-related peptide (CGRP) is present 

within the cell bodies of GFN neurons in the lumbar spinal cord (Larkins et al,

1991) and its fibres in the scrotum and pelvis (Larkins and Hutson, 1991). 

Since division of the genitofemoral nerve not only prevents inguinoscrotal 

testicular descent but also prevents gubemacular migration (Beasley and 

Hutson, 1987; 1988; Fallat et al. 1992a), it has been suggested that androgens 

act indirectly on the GFN to cause the release of the specific neurotransmitter 

CGRP and the level of CGRP immunoreactivity in the GFN nucleus of flutamide- 

treated rats is significantly reduced compared to controls (Goh et ak 1993).

Calcitonin gene-related peptide causes rhythmic contractions in the 

gubemaculum of the neonatal mouse and rat (Momose et al. 1992): the role of 

these contractions remains uncertain, but is believed to be linked to normal 

inguinoscrotal descent. Since the developing cremaster muscle fibres in the 

gubemaculum contain specific binding sites for CGRP (Yamanaka et ak 1992), 

it was concluded that CGRP plays an important role as a neurotransmitter for 

migration of the gubemaculum and subsequent testicular descent.

By injecting exogenous CGRP into the suprapubic region of flutamide- 

treated rat pups, Abe and Hutson (1994) readily diverted the migrating 

gubemaculum leading to 77% of testes becoming located in the superficial 

inguinal pouch. They concluded that CGRP could modify the process of 

testicular descent postnatally.
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ii). The role of cranial suspensory ligament (CSL1 in testicular descent:

The embryonic gonads have both cranial and caudal attachments 

(Wydham, 1943; Backhouse, 1982) derived from peritoneal folds associated 

with the mesonephric ridge. The caudal attachment connects the gonad to the 

anterior abdominal wall at the region of the internal inguinal ring and has been 

described in detail above. Cranially, the gonad is connected to the posterior body 

wall by the cranial suspensory ligament inferior to the diaphragm at the junction 

of the middle and the lateral third of the last rib (for the rat; see Hebei and 

Strom berg, 1976; for the hamster; see Hoffman et ak 1968).

In normal development of the rat, the CSL persists in the adult female as 

a prominent structure containing smooth muscle and elastic fibres (Hebei and 

Stromberg, 1976), whereas in the adult male it disappears under the influence of 

androgens (van der Schoot and Eiger, 1992). Thus, when pregnant female rats 

were treated with testosterone, the female offspring had no CSL. Conversely, 

male rats exposed prenatally to flutamide (van der Schoot and Eiger, 1992) or 

Tfm rats (Spencer Barthold et al. 1994) have persistent CSLs and undescended 

testes. Van der Schoot and Eiger (1992) proposed that persistence of the CSL 

in the female leads to ovarian ascent, while loss of the CSL in the normal male 

allows the testis to descend.

Thus, the final position of the testis/ovary depends on both a) the 

gubemaculum, and b) the CSL. These two parts of the mesonephric ridge are
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envisaged as working together either for the testis to descend or for the ovary to 

ascend; that is, in the male, testicular descent occurs where there is a 

gubemacular swelling reaction and migration towards the scrotum together with 

disappearance of the CSL while, in the female, ovarian ascent occurs as a result 

of CSL retention coupled with a long and poorly developed gubemaculum. Thus, 

the CSL in female ‘holds’ the ovary near the pelvic brim (in human) or at the 

lower pole of the kidney (in rodents) (van der Schoot, 1993b)
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4. CRYPTORCHIDISM AND ITS IMPLICATIONS:

Not all mammals exhibit testicular descent: these animals are called 

testicondia. Examples of these animals are elephants (Schulte, 1937), cetaceans 

(dolphin) (van der Schoot, 1995) and hyrax (bear) (van der Schoot, 1996). 

Nevertheless, in the majority of mammals the testes are scrotal and maldescent is 

not without adverse consequences.

Cryptorchidism (that is, the failure of one or both testes to descend into 

the scrotum) is a common anomaly in man (Backhouse, 1982; Frey and Rajfer, 

1982; Heyns, 1987) and in some domestic animals (Wensing, 1986). In man the 

incidence is 3.4% at birth at term and 30.3% in premature births. Many of these 

testes subsequently descend spontaneously and the incidence has reduced to 

0.8% by one year of life and during adulthood (Scorer and Farrington, 1971). 

This means that if by the end of the first year the testis has not descended, it will 

never descend.

Cryptorchidism can occur as an isolated anomaly or associated with other 

defects (Griffin and Wilson, 1980; Elder, 1987; Fallat et al. 1992b). 

However, the causes of cryptorchidism remain essentially unknown. Most 

cryptorchid testes are located in the groin, so that transabdominal descent must 

be relatively normal and the defect occurs chiefly in the inguinoscrotal phase, that 

is, when the testis should move from the groin to the scrotum (Hutson et al. 

1996). Thus, the likely causes are defects in gubemacular migration either due to 

i) primary anomalies of the migratory mechanism itself such as connective tissue



anomalies interrupting migration through the inguinal mesenchyme (Backhouse, 

1964) or prune belly syndrome (Moerman et ak 1984; Hutson and Beasley, 

1987) or abdominal wall defects (Hadziselimovic et ak 1987) or ii) a 

consequence of androgen deficiency in utero (Hutson et ak 1996).

Not all cryptorchidisms are congenital (i.e. present from birth), some are 

acquired late in childhood. The latter anomaly may be due to failure of the 

spermatic cord to elongate in proportion to body growth (Hutson and Beasley, 

1992), or to a spastic cremaster muscle associated with cerebral palsy where 

there is progressive spasticity of muscles with increasing age (Smith et ak 1989). 

Retractile or ascending testes may be caused by persistence of a patent processus 

vaginalis (Atwell, 1985).

The postnatal effects of cryptorchidism

Abnormalities and pathological conditions often occur in cryptorchid 

testes. It is unclear whether the testis is primarily abnormal (and this leads to 

maldescent) or, becomes secondarily abnormal (with degeneration of 

seminiferous tubules leading to infertility and malignancy in young adult life) 

because it is undescended (Giwercman et al. 1988).

The degeneration seen in undescended testes is believed to be caused by 

the increased temperature compared to the scrotum (Steinberger, 1991). The 

scrotum is a low-temperature environment with heat exchange mechanisms such 

as the pampiniform plexus, pigmentation of the scrotal skin, absence of
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subcutaneous fat, and regulation by the temperature sensitive cremaster and 

dartos muscles (Hutson and Beasley, 1992). Most enzymes and cellular 

mechanisms within the testis appear to be well adapted to this lower body 

temperature (Steinberger, 1991). It is not surprising, therefore, that in 

undescended testes the increase in ambient temperature is often associated with 

degeneration and dysfunction, for example, normal differentiation of 

spermatogenic cells requires a temperature lower than the body temperature. In 

the human, the normal scrotal temperature is 33°C and the intra-abdominal is 

37°C (Hutson and Beasley, 1992).

Relocation of rat scrotal testes into the abdomen (artificial 

cryptorchidism) (Clegg, 1963; Blackshaw and Massey, 1972); or elevation of 

the temperature of a normal rat scrotal testis by heating in water at 42°C for 30 

minutes (Blackshaw and Massey, 1972) resulted in regression of the 

seminiferous epithelium. On the other hand, continuous cooling of abdominal 

testes by implanting a cooling device into the tunica albuginea of naturally 

cryptorchid pig testes for 45 days resulted in induction of spermatogenesis in 

most seminiferous tubules (Frankenhuis and Wensing, 1979). These authors 

subsequently suggested that spermatogenic arrest in an abdominally located testis 

is not due to an inborn defect of the testis, but is caused by the maintenance of 

the testis at abdominal temperature.
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The effects of cryptorchidism on sperm and hormone production

Immediately after birth, the undescended human testis is physiologically 

and morphologically normal. Abnormality of hormone secretion can be detected 

within a few months. In normal infants, plasma luteinizing hormone (LH) and 

testosterone levels rise between 1 and 3 months postnatally (Gendrel et ah 1978; 

1980), while MIS is normally high between 4 and 12 months after birth (Baker 

et al. 1990). In contrast, plasma levels of testosterone are significantly decreased 

and the postnatal peak of MIS is inhibited in cryptorchid infants (Yamanaka 

et al. 1991)

Morphological changes become evident at a slightly later age but this 

may be complicated by late diagnosis (e.g. not until children go to school - at 

which time the undescended testis appears small and soft at operation or by 

palpation (Hutson et al. 1996). Histologically, this is correlated with severe 

degeneration, loss of germ cells, atrophy of the seminiferous tubules, thickening 

of the basement membrane and increase in peritubular fibrosis (Mengel et al. 

1974; 1982). Where diagnosis is made at birth, histological changes can be seen 

during the second year of life, when there is a significant fall in the number of 

spermatogonia per tubule. Mengel et al (1974) proposed that orchidopexy 

should be performed in the second year of life with the aim of preventing 

degeneration.

Studies on postnatal development of human germ cells at 4 to 8 months 

of age reveal that the gonocytes which are initially located in the centre of the
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testicular cord migrate to the periphery adjacent to the basement membrane 

where they are transformed into A-spermatogonia (Hadziselimovic et ah 1984). 

Biopsies from undescended testes (HufF et ak 1989; 1993) reveal that decreased 

numbers of germ cells and Leydig cells together with delayed and defective 

maturation of germ cells are detectable from the first year of life onwards; these 

features undoubtedly underlie the increased infertility associated with 

cryptorchidism.

Similar findings were reported by Hadziselimovic et al (1986) who 

postulated that a postnatal surge of gonadotrophins may be responsible for 

priming the testes for subsequent development and fertility. Huff and colleagues 

(1989) proposed that lack of androgens was the reason for these deficiencies 

because the testes showed features of hypogonadotrophic hypogonadism (that is, 

failure of gonadal development secondary to deficiency in gonadotrophic 

hormones such as LH and FSH).

It has also been suggested that there is an association between a postnatal 

surge of MIS secretion (which occurs between 4 - 1 2  months of age) and the 

normal development of germ cells (Baker et ak 1990). There is no deficiency in 

MIS secretion in cryptorchid testes between 1-3 months. However, the 

subsequent postnatal peak is inhibited in cryptorchid infants (Yamanaka et ak 

1991). These authors therefore suggested that the inhibition must be secondary 

rather than reflecting a primary abnormality (Hutson and Beasley, 1992).
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The association between postnatal MIS secretion and the development of 

germ cells as suggested by Baker and his co-workers was investigated in mouse 

testes of the same development stages as seen in humans (Zhou et ah 1993), 

with transformation of gonocytes to Type A spermatogonia occuring during the 

first postnatal week. In in vitro studies of type A spermatogonia taken from 

neonatal mouse testis, the germ cells were found to develop normally as long as 

MIS was added: addition of antibodies to MIS (or failure to add exogenous MIS) 

blocked germ cell development. By contrast, hCG failed to stimulate 

transformation of neonatal gonocytes to type A spermatogonia in neonatal organ 

culture (Zhou and Hutson, 1995). However, when hCG was given in vivo to 

immature mice at 12 days post-partum, precocious spermatogenesis was 

produced. Thus, Hutson et al (1996) suggested that germ cell maturation in the 

mouse is likely to be controlled by MIS rather than by hCG or androgens. It is 

not known whether human germ cells are under similar regulation, but the 

postnatal peaking of MIS secretion in human is consistent with this possibility.

Pathological changes leading to infertility and increase risk of malignancy

It is a common finding in experimental animals that undescended testes 

exhibit degeneration (van der Schoot, 1992b; Blackshaw and Massey, 1972). 

In man, a high incidence of infertility is common in patients with unilateral or 

bilateral cryptorchidism (Toth et ak 1987; Hutson and Beasley, 1992; Hutson 

et ak 1996). In a retrospective study of patients who had undergone orchidopexy
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for a unilateral cryptorchid testis, the mean sperm density (26.8 million per ml) 

was significantly lower than that of a normal control group (73.6 million per ml) 

(Lipshultz et al, 1976).

Of more concern, the risk of malignancy in an adult testis which was 

cryptorchid in childhood is 5-10 times greater than normal population (Hutson 

and Beasley, 1992). The histological changes of progressive dysplasia in 

undescended testes are the putative cause of this increased risk of malignancy 

(Krabbe et al. 1979; Giwercman et al. 1988; 1989). These tumours tend to 

occur between 20 - 40 years of age and the incidence of malignancy in patients 

with maldescended testes is around 8% (Skakkebaek et ak 1982). Furthermore, 

secondary histological abnormalities have been documented in the contralateral 

descended testis in males with unilateral undescended testis. Whether 

orchidopexy can prevent dysplasia is not known in humans, but is demonstrable 

in animal models (Hutson and Beasley, 1992).

46



The aims of the present study

Since maldescent of the testis is a common human congenital abnormality 

and undescended testes are at risk of developing morphological changes leading 

to sterility and malignancy, it is of great importance to understand the process of 

testicular descent and its controlling mechanisms in great detail. Although much 

data regarding testicular descent in mammals including man are available, the 

mechanism and the factors involved are still poorly understood. There are 

indications that androgens play an role in testicular descent, at least in the 

inguinoscrotal phase. However, the exact mechanisms of action and the target 

tissue involved are still a subject of debate. Therefore, the present study is 

intended to add to the understanding of this subject by examining the effects of 

pre- and postnatal administration of the non-steroidal anti-androgen flutamide 

(a-a-a-trifluoro-2-methyl-4’-nitro-m-propionotoluidide) on:

a) the process of testicular descent in the rats and hamsters,

b) the morphology of the adult testes in both species,

c) the level of testosterone in plasma and within testes,

d) growth and development of the gubemaculum in rats,

e) growth and regression of the cranial suspensory ligaments in rats.
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MATERIALS AND METHODS

AND

RESULTS



EXPERIMENT 1

The aims of this experiment were to examine:

a), the effects of pre- and postnatal exposure to flutamide on testis position, 

weight and structure in Albino Swiss rats and golden hamsters (Experiment la)

b). the effects of prenatal exposure to flutamide on adult androgen production in 

Albino Swiss rats and golden hamsters (Experiment lb)

c). the onset of tubular damage in rats* exposed pre-natally to flutamide 

(Experiment lc)

'•'Initially, these experiments were planned for two species - rats and hamsters. 

However, it became clear after the initial parts of Experimental 1 that flutamide 

did not prevent testicular descent in the hamster, so this species was dropped 

from subsequent parts of the investigation.

Animals;

The following groups of animals were examined:

A. Prenatal flutamide administration

1) Experimental animals for the prenatal treatment group (54 adult male Albino 

Swiss rats; 12 adult male hamsters) were obtained by giving subcutaneous 

injections of the non-steroidal anti-androgen flutamide to time-mated pregnant 

female rats (10 mg/day in 0.1 ml propylene glycol from E10 to birth), and to 

time-mated pregnant female hamsters (10 mg/day from E8 to birth). These 

starting points for flutamide treatment were chosen to ensure exposure of the 

fetuses to flutamide throughout the period of androgen-dependent male sexual
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differentiation which starts after day 13 of gestation in rat (Magre and Jost, 

1980), and the dose was chosen as a maximum one not visibly impairing the 

health of the pregnant females (eg. van der Schoot, 1992b for the rat).

2) Control animals (32 adult male Albino Swiss rats; 12 adult male hamsters) 

whose mothers received 0.1 ml propylene glycol vehicle only.

B. Postnatal flutamide administration

3) The postnatal treatment group received subcutaneous injections of flutamide 

(5 mg/day in 0.05 ml propylene glycol) from the day of birth to P14.

4) Control animals for the postnatal group were injected with 0.05 ml propylene 

glycol vehicle only.

From the outset, it became clear that there was no impairment of 

testicular descent in rats exposed postnatally to flutamide, so numbers were 

limited to 6 experimental and 6 control rat pups; furthermore the study was not 

carried out on hamsters where even pre-natal flutamide exposure did not result in 

failure of descent and subsequent experiments dealt with the rat only. The 

efficacy of the pre-natal flutamide treatment was verified by examining the degree 

of feminization of the genitalia of the male offspring.
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EXPERIMENT 1(a)

To determine the effects of prenatal exposure to flutamide on the position.

weight and structure of testes in adult rats and hamsters 

Methods:

As adults (16-20 weeks) the males of both species were killed by 

intraperitoneal injection of a lethal dose of pentobarbitone sodium B.P. (VET) 

(Sagatal 60 mg/ml). The animals were then transcardially perfused with 

mammalian Ringer containing 0.2% of the vasodilator xylocaine before perfusion 

fixation with a mixture of 3% glutaraldehyde and 1% paraformaldehyde in 0.1 M 

phosphate buffer (pH 7.4) (Appendix 1). The position of the testes was 

determined in these animals and photographs were taken for a permanent record. 

The testes were then removed, weighed individually (because testes from 

different positions in the same animal have different weights) and immersed in the 

same fixative for 24 hours before processing for light or transmission electron 

microscopy.

For each testis, two 1 mm slices were removed from the mid-transverse 

region, cut into blocks approximately 2mm x 3 mm x 1mm and each slice 

processed separately to give an osmicated and unosmicated set of blocks. One set 

was rinsed in 0.1M phosphate buffer (pH 7.4) for 2 hours (changing the solution 

every 1/2 hour) before post-fixing with 1% buffered 0 s 0 4 solution for 1 hour; the 

other set was left in buffer. After rinsing the osmicated set with buffer solution 

for 1 hour (changing the solution every 1/2 hour), both sets were dehydrated in
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ascending concentrations of ethanol, followed by three changes of propylene 

oxide and a descending ratio of propylene oxide to araldite (1:1, 1:3 and three 

changes of araldite), before embedding in araldite (Appendix 2).

The degree of tubular abnormality was assessed on at least 200 tubule 

profiles per testis using semithin sections cut at a thickness of 1 pm from the 

unosmicated blocks and stained with toluidine blue. Light micrographs were 

taken at low magnification (x25) and enlarged photographic prints (x50) were 

made. Each tubular profile was assigned to one of 3 categories:- i) normal 

tubules with Sertoli cells and all stages of spermatogenic cells up to and including 

mature spermatozoa, ii) tubules with spermatogenic cells but with no (or only 

damaged) maturing spermatids, and iii) tubules lined either only with Sertoli cells 

or by Sertoli cells with occasional spermatogenic cells limited to the 

spermatogonium stage. Tubules were assessed as appropriate for inclusion in the 

study provided they possessed a circularity shape factor of at least 0.8 (1.0 = a 

perfect circle) as determined using a Kontron Vidas Image analyser. This was to 

eliminate longitudinal profiles which might exhibit different degrees of damage 

along their length.

Those tubule profiles assessed as normal were further analysed for the 14 

stages of the spermatogenic cycle as reported by Leblond and Clermont (1952). 

Again, the use of circular profiles is essential since different stages might occur in 

neighbouring regions of the same tubule. Staging of the spermatogenic cycle was
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carried out on adjacent semithin sections cut at a thickness of 2 pm and stained 

with PAS-Haematoxylin (Appendix 3).

Detailed morphological studies of each testis were carried out using ultra- 

thin sections (60-80 nm) cut from the osmicated blocks and stained with uranyl 

acetate followed by lead citrate (Reynolds, 1963). A Phillips CMIOO.BIO 

transmission electron microscope was used to examine and photograph the 

prepared material.

RESULTS

(i). Development of male rats after prenatal exposure to flutamide

Male rats exposed prenatally to flutamide from gestational day 10 to birth 

had feminized external genitalia as adults, including vaginae and nipples (Figures 

5a-d and 6a-d). Moreover, in these adults males, 44% (48/108) of testes 

occupied a normal scrotal position (25 right, 23 left), while 44% (47/108) were 

ectopic suprainguinal (19 right, 28 left) and 12% (13/108) remained intra­

abdominal (10 right, 3 left) (Figure 7a-d). All intra-abdominal testes were 

located close to the neck of the bladder except one which was located close to 

the caudal pole of the right kidney. The epididymis and vas deferens were absent 

in most animals although isolated portions of both were sometimes present. All 

the testes from this experimental group were smaller than those of controls, 

particularly testes which remained intra-abdominal (Table 1). If the 3 groups of 

testes from flutamide-treated animals are analysed by a one-way analysis of
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A N A LY SIS OF VARIANCE

SOURCE DF SS MS F p
FACTOR 3 14.3078 4.7693 59.52 <0.001
ERROR 123 9.8566 0.0801
TOTAL 126 24.1644

INDIVIDUAL 95% Cl'S FOR MEAN 
BASED ON POOLED STDEV

control (— *— )
scrotal (— *-)
ectopic (-*— )
abdominal (---- *---)

0.35 0.70 1.05 1.40

Analysis of variance for testicular weights (g) in control 
males (n=3 8) and males treated prenatally with flutamide 
where testes in the latter were located scrotally (n=48), 
in an ectopic suprainguinal position (n=47) or retained 
within the abdomen (n=12). Individual inter-group 
comparisons were made using 95% Confidence Intervals.



variance, this is highly significant, with abdominal testes much smaller than those 

in the scrotal or ectopic suprainguinal positions.

Testes Mean weight (a ± SEMI Testosterone ('nmol/testis')

Control 1.47 ±0.02 (n = 32) 0.47 ± 0.03 (n=  10)

Flutamide

scrotal 0.87 ±0.05 (n = 48) 0.49 ± 0.09 (n = 6)

suprainguinal 0.78 ±0.06 (n = 47) 0.32 ± 0.06 (n = 6)

intra-abdominal 0.44 ± 0.07 (n = 12) 0.15 ± 0.04 (n = 6)

Table 1 : Weight of testes and their testosterone content in control adult male 

Albino Swiss rats and adult males treated pre-natally with flutamide.

(ii). Effects of prenatal exposure of flutamide on the structure of the adult 

rat testis

Testes from rats exposed pre-natally to flutamide exhibited varying 

degrees of tubular damage. As described in the Materials and Methods section 

above, damage was divided into three categories:

• Category 1 - normal tubules with all the expected cell types and normal 

spermatogenesis;
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•  Category 2 - moderately damaged tubules ranging from tubules with most of 

the cell types (but without normal spermatogenesis) to tubules with minimal 

numbers of germ cells in the spermatocyte stage; and

• Category 3 - severely damaged tubules, with the tubular epithelium consisting 

mainly (or solely) of Sertoli cells with minimal numbers of germ cells restricted to 

the spermatogonium stage.

There could be a mixture of different categories of damage within an individual 

testis.

Normal tubules

Normal tubules (designated here as Category 1) not only contained 

Sertoli cells, but also exhibited full spermatogenesis with spermatogonia, primary 

and secondary spermatocytes, round, elongating and maturing spermatids 

(Figure 8a-b). The Sertoli cells of Category 1 tubules appeared normal and 

extended upward through the full thickness of the epithelium to its luminal 

surface. They possessed thin processes which surrounded the spermatogenic cells 

and occupied the interstices between them. They had ovoid nuclei (often with one 

or more deep infoldings), homogeneous nucleoplasm and a large round or oval 

nucleolus. The cytoplasm contained numerous slender elongated mitochondria 

orientated parallel to the long axis of the cell (Figure 8c). Granular and agranular 

endoplasmic reticulum were sparse, and lipid droplets and inclusion bodies were 

sometimes present.
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The most primitive spermatogonia (Type A) and the later, more 

differentiated spermatogonia (Type B) appeared normal. The Type A 

spermatogonium had a spherical or ellipsoid nucleus with very fine chromatin 

granules and one or more nucleoli attached to the inner aspect of the nuclear 

envelope. The cytoplasm was homogeneous. Type A spermatogonia were present 

in all stages of the spermatogenic cycle. The Type B spermatogonium also 

possessed a spherical nucleus with a single nucleolus which was centrally located 

and chromatin granules of larger size than in Type A. Type B spermatogonia 

were present only in stages IV-VI of the spermatogenic cycle. Spermatogonia 

were usually located adjacent to the basement membrane.

The primary spermatocytes exhibited varying degrees of maturation. 

Resting (non-dividing) spermatocytes were readily seen in tubules at stage VII 

and VIII of the cycle. Leptotene and zygotene spermatocytes were seen in 

tubules during stages IX-X and in stage XIII respectively, together with the older 

(pachytene) spermatocytes. Pachytene spermatocytes divide by a first 

maturational meiotic division in stage XIV to give rise to secondary 

spermatocytes. The latter soon divide again by a second maturational mitotic 

division to produce young spermatids at the end of stage XIV.

The round (steps 1-3) spermatids were present in tubules in the golgi 

phase (Stages I - III) of the spermatogenic cycle and (steps 4-7) spermatids in the 

cap phase (Stages IV-VII). The elongating (steps 8-14) spermatids in the 

acrosome phase (Stages VIII-XIV) had their head caps orientated towards the
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tubular basement membrane and their cytoplasm displaced towards the tubule 

lumen. The maturing spermatids (also called the immature spermatozoa), which 

were seen in stages XV-XIX, undergo the terminal changes in shape before 

release from the seminiferous epithelium as free spermatozoa (Leblond and 

Clermont, 1952).

Tubules with moderate damage

These tubules (designated here as Category 2) exhibited most of the 

expected cell types, i.e. Sertoli cells, primary and secondary spermatocytes and 

first generation (steps 1-7) spermatids. Elongating (steps 8-14) spermatids were 

usually damaged or absent and second generation (steps 15-19) spermatids were 

usually absent. There was increased intercellular spacing both between germ cells 

and between germ and Sertoli cells: This appeared to be the result of 

degenerating germ cells within the tubule wall. Some of the tubules exhibited 

‘free’ germ cells in the lumen while others possessed luminal polynuclear giant 

cells (Figure 9a-b). These ‘free’ cells were held by small processes of Sertoli 

cells as revealed by scanning electron microscopy (Figure 9d). In tubules of this 

category, the Sertoli cells not only contained mitochondria, but also contained 

lipid droplets and several inclusion bodies and vacuoles in their cytoplasm 

(Figure 9c).
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Tubules with severe damage

These tubules (designated here as Category 3) were lined almost 

exclusively by cells which electron microscopic examination showed to be Sertoli 

cells (Figure lOa-b). There were occasional spermatogonia. In these tubules, the 

Sertoli cells had highly lobulated nuclei with many deep infoldings. The 

cytoplasm contained minimal numbers of mitochondria or inclusion bodies 

(Figure lOc-d).

Lamina propria

Tubule profiles designated as moderately or severely damaged 

(categories 2 and 3) could have dimensions similar to controls, but many were 

very small and separated from each other by wide interstitial spaces filled with 

lymphoprotein and increased numbers of interstitial cells. Regarding the latter, 

mean counts of Leydig cells per mm2 of interstitium were significantly higher in 

flutamide-treated animals (849.9 ± 58) than in controls (683.3 ± 37) (t = 2.42, 

df — 8, p < 0.05) based on 5 areas per testis from 5 experimental and 5 control 

testes.

Tubules in control male testes were surrounded by a smooth lamina 

propria consisting of a single layer of flattened peritubular myoid cells separated 

from Sertoli cells by 2 layers of slightly undulating basal lamina (Figure 11a); 

normal (category 1) tubules from flutamide-treated males were similar. Tubules 

from moderately (category 2) and severely (category 3) damaged tubules differed
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from this pattern, but the nature of the difference depended on the size of the 

tubule. Thus, tubules which achieved normal size had increased layers of basal 

laminae (up to 5 - see Figure lib ), while shrunken tubules had only 2 highly 

convoluted layers and their peritubular myoid cells possessed pyramidal nuclei 

(Figure 11c).

In control rats, the Leydig cells were distributed close to the blood vessels 

of the interstitium. They had lobulated nuclei containing a single nucleolus. The 

cytoplasm contained numerous mitochondria and agranular endoplasmic 

reticulum. In contrast, the Leydig cells in the flutamide-treated rats appeared in 

clusters. Their nuclei were less lobulated and the cytoplasm contained 

mitochondria but less agranular endoplasmic reticulum. Granular endoplasmic 

reticulum was minimal in both control and flutamide-treated animals (Figure 

12a-b).

Tubule damage in relation to testis position

A total of 6,906 tubules was examined from scrotally-located testes, 

6,027 from suprainguinal ectopic testes and 1,679 from intra-abdominal testes 

(the latter being a lower figure as there were fewer examples of these testes). 

There was a clear gradation of damage according to testis location, with scrotal 

testes being least affected and intra-abdominal testes the worst (Figure 13).

The abnormality of cryptorchid testes has often been ascribed to their 

exposure to elevated temperatures. In the case of supra-inguinal ectopic testes, it 

might be expected that greater damage would be seen in areas close to the



anterior abdominal musculature rather than in the potentially cooler subcutaneous 

areas. This was not the case. Least damage occurred in the central regions with 

greater damage observed uniformly around the periphery.

Staging of the spermatogenic cycle

Tubules with the most damage (Category 3) had few or no spermatogenic 

cells. Those with moderate damage (Category 2) had arrested spermatogenesis at 

the spermatid stage: Tubules in stages I-VIII of the cycle of the seminiferous 

epithelium showed apparently normal Steps 1-8 of spermiogenesis but lack 

second generation maturing (Steps 15-19) spermatids, while tubules in stages 

IX -X3V showed damaged or absent elongated acrosome-phase (Steps 9-14) 

spermatids.

For tubular profiles from controls (together with those tubules rated as 

Category 1 in flutamide-treated male rats), the percentage of profiles at each 

stage of the cycle of the seminiferous epithelium as defined by Leblond and 

Clermont (1952) was determined (Figure 14). There were no major differences 

in the percentage of occurrence of the different stages of the spermatogenic cycle 

between the normal tubules of the flutamide-treated males and those from control 

testes. This demonstrates that tubules which appear normal in terms of possessing 

all cell types are also normal in terms of stages of the spermatogenic cycle.
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FIGURE 5: (a-d) Light micrographs of four consecutive sections

(30 pm intervals) of the genito-urinary tract in a 

male Albino Swiss rat treated prenatally with 

flutamide. Note:

(i) the urethra (U) opens beneath the prepuce on the 

ventral aspect of the phallus (P),

(ii) the persistence of a vagina (V).

Magnification: all x 6.3





FIGURE 6: Computer reconstruction of sections of the same

specimen as shown in Figure 5:

(a) made up of 27 serial sections across the phallus 

Red - urethra and preputial space; Blue - vagina; 

Green - urethral glands; Yellow - prostate

(b) made up of 3 consecutive sections (14 - 16) to 

show opening of the urethra (U) into the preputial 

space below the phallus (P).
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FIGURE 7; Various positions of the testis in male Albino Swiss 

rats treated prenatally with flutamide:

a) bilateral descent of testes into the scrotum,

b) unilateral scrotal descent of right testis and 

descent of left testis to an ectopic suprainguinal 

position,

c) bilateral descent to ectopic suprainguinal 

positions, and

d) unilateral descent of left testis to an ectopic 

suprainguinal position and right undescended testis 

(arrow).

Magnification: all x 0.8





FIGURE 8: Normal (Category 1) seminiferous tubules from the

testes of Albino Swiss rats treated prenatally with 

flutamide:

a) Light micrograph showing normal tubules with 

full spermatogenesis. Note that the tails of maturing 

spermatids occupy the lumen and their nuclei 

(heads) lie in the apical region of the epithelium. 

Magnification: x 230

b) Transmission electron micrograph of a Category 

1 tubule. Bar = 2 pm.

(c) Transmission electron micrograph of a Sertoli 

cell within a Category 1 tubule. Bar = 2 pm.

Sn, Sertoli cell nucleus; Pm, peritubular myoid cell; 

L, Leydig cell; Sp, spermatocyte; S7, step 7 

spermatid; Arrows indicate lipid droplets; 

M, mitochondria.
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FIGURE 9: Moderately damaged (Category 2) seminiferous

tubules from the testes of Albino Swiss rats treated 

prenatally with flutamide:

a) The lumen of the tubules are lined by round cap- 

phase spermatids. The maturing spermatids which 

should lie internal to these have been lost. Instead a 

few ‘free’ cells (arrows) occupy the lumen. A 

multinucleate giant cell is seen in the lumen 

(arrowhead).

Magnification: x 230.

b) Transmission electron micrograph of a Category 

2 tubule. Bar = 2 pm.

(c) Transmission electron micrograph of Sertoli cells 

in a Category 2 tubule. Bar = 2 pm.

Sn, Sertoli cell nucleus; S8, Step 8 spermatid; 

Asterisks indicate degenerating cells; V, vacuole; 

Arrows indicate lipid droplets.
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FIGURE 9: continued:

(d) Scanning electron micrograph of a Category 2 

tubule showing the luminal surface of the tubule. 

Note: ‘free’ cells (F) noted on light and transmission 

electron microsopy are actually held by the apical 

processes of the Sertoli cells (Sp). Bar = 10 pm





FIGURE 10: Severely damaged (Category 3) seminiferous tubules 

from the testes of Albino Swiss rats treated 

prenatally with flutamide:

a) thin walled, and (b) thick walled tubules 

These tubules are lined almost exclusively by Sertoli 

cells.

Magnification: x 230





FIGURE 10: continued:

Transmission electron micrographs of Sertoli cells 

from (c) thin walled, and (d) thick walled tubules in 

Category 3 tubules.

Sn, Sertoli cell nucleus. Bar = 2 pm.
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FIGURE 11: Transmission electron micrographs of limiting 

membranes in

a) a normal seminiferous tubule;

b) a severely damaged (Category 3) tubule of normal 

dimensions;

c) a severely damaged (Category 3) tubule of greatly 

reduced diameter.

S, Sertoli cell; PM, peritubular myoid cell; 

E, endothelial cell, Arrows indicate basal lamina;

Lc, Leydig cell.

Bar = 2 pm.





FIGURE 12: Transmission electron micrographs of the 

interstitium showing Leydig cells of (a) a normal 

control male Albino Swiss rats, and (b) a male 

treated prenatally with flutamide.

Ln, Leydig cell nucleus; M, mitochondria; 

Q, macrophage.

Bar = 2 pm.
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Figure 13: Percentage of seminiferous tubules in
different categories of damage in relation to testis 

position in control male Albino Swiss rats and males 
treated prenatally with flutamide (percent ± SEM).



Figure 14: Percentage of seminiferous tubules in 
different stages of the spermatogenic cycle in 

normal tubules of control male Albino Swiss rats 
( ■) and males treated prenatally with flutamide

( ■ )(percent ± SEM).



flip. Development of male hamsters after prenatal exposure to flutamide

In contrast to the rat, male hamsters exposed prenatally to flutamide from 

gestational day 8 to birth did not have feminized external genitalia; there were no 

nipples or vaginae as seen in flutamide-treated male rats. However, the 

development of the epididymis and vas deferens was inhibited to varying degrees 

in most animals. Furthermore, like the controls, all the testes of flutamide-treated 

males were located within the scrotum (Figure 15a-b). The testes of the 

flutamide-treated males were in general smaller than those of the controls: mean 

weights of testes (g ± SEM) in the control males (n = 24) = 1.33 ± 0.08; and in 

the flutamide-treated males (n = 24) = 0.80 ± 0.07 (t = 4.84, df = 33, p < 0.005).

(ivl. Effects of prenatal exposure to flutamide on the structure of the adult 

hamster testes:-

Testes from the flutamide-treated hamsters exhibited varying degrees of 

tubular damage similar to that observed in the rats. A total of 5710 tubular cross- 

sectional profiles from flutamide-treated testes were examined, and the number of 

tubular profiles in the three different categories of damage already established for 

the rat were determined. Percentage of tubules in the different categories were: 

Category 1 (normal) = 15.69 ± 5.26, Category 2 (moderate damage) = 57.04 ± 

6.24, and Category 3 (severe damage) = 27.25 ±5.57. All the tubular profiles in 

the control testes (n = 4026) were normal (Figure 16).



Normal tubules

The normal (Category 1) tubules were lined by all the expected cell types 

and exhibited normal spermatogenesis. The Sertoli cells which were located 

adjacent to the basement membrane had a single nucleus containing a nucleolus. 

The cytoplasm contained considerable agranular endoplasmic reticulum (SER) 

and elongated mitochondria which were distributed in the apical cytoplasm. Lipid 

droplets and small vacuoles were sometimes present. The spermatogonia were 

located adjacent to the basement membrane together with the Sertoli cells. The 

primary spermatocytes were in the intermediate layer with the secondary 

spermatocytes and the round or elongating (i.e. first generation) spermatids in the 

innermost layer of the tubular epithelium. The maturing (i.e. second generation) 

spermatids (or immature spermatozoa) lay in rows between the spermatocytes 

and the first generation spermatids and were surrounded by a network of the 

apical processes of Sertoli cells (Figure 17a-c).

Moderately damaged tubules

Moderately damaged (Category 2) tubules were lined by most of the 

expected cell types, but spermatogenesis was arrested and the tubular epithelium 

consisted of Sertoli cells, spermatogonia and spermatocytes; round spermatids 

were few or absent. Elongating and maturing spermatids were usually absent. The 

Sertoli cells which were located adjacent to the basement membrane (interspersed
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with spermatogonia) often contained increased amount of SER, lipid droplets and 

inclusion bodies in their cytoplasm (Figure 18a-c).

Severely damaged tubule

Tubules in Category 3 (severely damaged) were lined by Sertoli cells with 

minimal numbers of germ cells usually limited to the spermatogonium stage. 

Some Sertoli cells contained increased numbers of mitochondria, and many 

contained large vacuoles in their cytoplasm (Figure 19a-b).

Lamina propria

Normal (Category 1) seminiferous tubules of the flutamide-treated 

hamsters and those of the controls were surrounded by a smooth-contoured 

lamina propria consisting of a) an inner cellular layer of flattened peritubular 

myoid cells separated from the Sertoli cells by 2 layers of slightly undulating basal 

lamina, and b) an outer cellular layer of endothelial cells, separated from the 

peritubular myoid cells by a single layer of basal lamina (Figure 20a). For the 

moderately or severely damaged (Category 2 and 3) tubules, the lamina propria 

varied according to their size. In tubules with normal dimensions, the flattened 

peritubular myoid cells were separated from the Sertoli cells by 3-4 layers of 

slightly undulating basal lamina but, where tubule size was greatly reduced, 

tubules were surrounded by a lamina propria consisting of peritubular myoid cells
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with “thickened” nuclear profiles and separated from the Sertoli cells by 2-3 

layers of highly undulating basal lamina (Figure 20b).

The interstitial spaces were filled with lymphoprotein and interstitial cells, 

chiefly Leydig cells which were concentrated adjacent to the blood vessels. These 

Leydig cells were normal with lobulated nuclei, and a cytoplasm containing 

agranular endoplasmic reticulum and mitochondria. Lipid droplets were 

sometimes present.

Staging of seminiferous tubules

The stages of the seminiferous tubules of the control testes and the 

normal (category 1) tubules of flutamide-treated testes were analysed according 

to the criteria used by Leblond and Clermont (1952). The percentages of 

occurrence of the different stages of the tubular cycle of the flutamide-treated and 

of the control testes are shown in Figure 21. Briefly, 1) some stages occur more 

often than others in both groups: This is because certain stages of the 

spermatogenic cycle are of longer duration than others (i.e. stage VII has the 

longest duration) (Clermont and Harvey, 1965), 2) there were no differences 

between groups in the frequency of any stage.
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FIGURE 15: Position of the testes (T) in (a) a control male 

hamster, and (b) a male hamster treated prenatally 

with flutamide.

Note the well-developed epididymis (E) and seminal 

vesicles (Sv) in the control compared to the 

flutamide-treated male.

Magnification: all x 1.4





c a t e g o r y  1 c a t e g o r y  2 c a t e g o r y  3 

T y p e  of  t u b u l e s

Figure 16: Percentage of seminiferous 
tubules in different categories of damage in 

control male golden hamsters ( ■) and 
males treated prenatally with flutamide ( ■ )

(percent ± SEM).

C a t e g o r y  1 - n o r m a l  t u b u l e s ;  C a t e g o r y  2 - mi ld;  
C a t e g o r y  3 - s e v e r e  d a m a g e .  See t e x t  f o r  d e t a i l s .



FIGURE 17: Normal (Category 1) seminiferous tubules in male 

hamsters treated prenatally with flutamide.

a) Light micrograph of normal tubules with full 

spermatogenesis. Note that the tails of maturing 

spermatids occupy the lumen and their nuclei 

(heads) lie in the apical region of the epithelium. 

Magnification: x 230.

b) Transmission electron micrograph of Category 1 

tubule in Stage VII of the spermatogenic cycle. Sn, 

Sertoli cell nucleus; S7, Step 7 spermatid; Sg, 

spermatogonium.

Bar = 2 pm.

(c) Transmission electron micrograph of a Sertoli 

cell from a Category 1 tubule. Sn, Sertoli cell 

nucleus. Bar = 2 pm.





FIGURE 18: Moderately damaged (Category 2) seminiferous 

tubules from male hamsters treated prenatally with 

flutamide.

a) The lumen of tubules are lined by round 

spermatids but mature sperms are absent. 

Magnification: x 230.

b) Transmission electron micrograph of a Category 

2 tubule.

S3, Step 3 spermatid; V, vacuole.

Bar = 2 pm.

(c) Transmission electron micrograph of Sertoli cells 

from a Category 2 tubule. Sn, Sertoli cell nucleus; 

Arrows indicate lipid droplets; Thick arrows indicate 

residual bodies; SER, smooth endoplasmic 

reticulum; Pm, peritubular myoid cell.

Bar = 2 pm.
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FIGURE 19: Category 3 (severe damage) seminiferous tubules 

from hamsters treated prenatally with flutamide.

a) Light micrograph of Category 3 tubules, lined 

almost exclusively by Sertoli cells.

Magnification: x 230.

(b) Transmission electron micrograph of Sertoli cells 

from a Category 3 tubule. Sn, Sertoli cell nucleus; 

M, mitochondria. Bar = 2 pm.





FIGURE 20; Transmission electron micrographs of limiting 

membranes from the testes of male hamsters treated 

prenatally with flutamide:

(a) from a normal seminiferous tubule,

(b) from a ‘small’ severely damaged (Category 3) 

tubule.

Sn, Sertoli cell; Pm, peritubular myoid cell;

E, endothelial cell, Arrows indicate basal lamina.

Bar = 2 pm.
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Figure 21: Percentage of seminiferous tubules 
in different stages of the spermatogenic cycle 

in control male golden hamsters ( ■ )  and 
males treated prenatal ly with f lutamide ( ■ )

(percent ± SEM).



v). Effects of postnatal flutamide treatment in rats:

Postnatal administration of flutamide (birth - P I4) to rats did not interfere with 

the development of the genitalia and all males in this group exhibited normal 

bilateral descent of testes into the scrotum. The testes were of normal size with 

mean weight (g ± SEM) : postnatal flutamide-treated males = 1.38 ± 0.02; 

control males = 1.40 ± 0.03. Morphological examination of these testes revealed 

that the seminiferous tubule profiles were normal and exhibited normal 

spermatogenesis. The Sertoli cells and Leydig cells were also normal (Figure 

22a-c).
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FIGURE 22: Category 1 (= normal) seminiferous tubules of male 

AS rats exposed to flutamide during the early 

postnatal period:

a) Light micrograph of cross-sections of tubules 

with normal spermatogenesis. Magnification: x 230

b) Transmission electron micrograph of a Sertoli 

cell. Sn, Sertoli cell nucleus; Arrows indicate lipid 

droplets. Bar = 2 pm.

(c) Transmission electron micrograph of Leydig 

cells. Ln, nucleus; M, mitochondria; SER, smooth 

endoplasmic reticulum. Bar = 2 pm.
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EXPERIMENT 1(b)

Plasma and intra-testicular testosterone levels in the rat and hamster: 

Methods:

0. Blood collection

Blood samples were obtained by cardiac puncture from pre-natal flutamide- 

treated males (20 rats; 6 hamsters) and from control males (16 rats; 6 hamsters). 

The blood samples were subsequently centrifuged at 3,000 rpm for 5 minutes at 

4°C. The separated plasma was then stored at -20°C until assayed for 

testosterone. 

lit. Testis collection

Testes from control males (10 rats; 6 hamsters) and from pre-natal flutamide- 

treated males (18 rats; 6 hamsters) were removed immediately after blood 

collection and weighed. The larger number of rats in the latter group was to 

ensure that sufficient testes were available from all three possible locations. Each 

testis was then decapsulated and a testicular sample (weighing 0.1 - 0.2 g) was 

obtained and homogenized in 1.0 ml 0.9% saline in a Jencons Uniform 

Homogenizer. After centrifugation at 3,000 rpm for 5 minutes at 4°C, the 

supernatant fraction was stored at -20°C until assayed for testosterone. 

in). Radioimmunoassay (RIA) of testosterone

Plasma and testicular concentrations of testosterone were determined in ether 

extracts of serum and testicular homogenate respectively, using a double antibody 

radioimmunoassay (Appendix 4) based on a rabbit anti-testosterone-3-0-
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A NA LY SIS OF VARIANCE

SOURCE DF SS MS F PFACTOR 3 5068 1689 8.43 <0.001
ERROR 24 4811 200
TOTAL 27 9879

INDIVIDUAL 95% Cl'S FOR MEAN 
BASED ON POOLED STDEV

control (----- *---- )
scrotal (------- *------ )
ectopic (------- *------ )
abdominal (------ *--------)

16 32 48

Figure 24: Analysis of variance for testicular testos­
terone levels (nmol/testis) in control males (n=10) and 
males treated prenatally with flutamide where testes in 
the latter were located scrotally (n=6), in an ectopic 
suprainguinal position (n=6) or retained within the 
abdomen (n=6). Individual inter-group comparisons were 
made using 95% Confidence Intervals.



carboxymethyl oxime-BSA serum and a 125I radioligand prepared from the 

histamine derivative of testosterone-3-O-carboxymethyl oxime (Semple et_al, 

1988).

RESULTS

Plasma and intra-testicular concentrations of testosterone

Plasma concentrations of testosterone in the male rats treated with 

flutamide were not significantly different from those in the controls (t = 1.23, 

df = 31, p > 0.05). Mean plasma concentrations: for controls = 6.9 ± 0.6, and 

flutamide-treated males = 5.9 ± 0.5 (nmol/1 ± SEM).

The mean intra-testicular testosterone concentrations in control male rats 

were not significantly higher than the mean concentrations of the scrotally located 

testes in flutamide-treated animals. However, the mean concentrations in testes 

located in the scrotal and ectopic suprainguinal position of the flutamide-treated 

males was significantly higher than those testes which remained in the abdomen 

(see Table 1). If the 3 groups of testes from flutamide-treated animals are 

analysed by a one-way analysis of variance, the intratesticular testosterone 

concentrations in the abdominal testes is significantly lower than those in the 

scrotal or ectopic suprainguinal positions.

Similarly, there was no difference between the mean plasma testosterone 

concentrations in the control and the flutamide-treated hamsters (t = 0.78, d f= 5, 

p > 0.05). The mean plasma testosterone concentrations: for controls
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= 9.37 ± 0.32; for flutamide-treated males = 8.15 ± 0.15 (nmol/1 ± SEM). There 

was also no difference between the mean testosterone concentrations per testis in 

the control males and those of the flutamide-treated groups (t = 0.38, df = 7, 

p > 0.5). Mean testosterone concentration per testis in controls hamsters 

= 0.23 ± 0.05, and flutamide-treated males = 0.21 ±0.03 (nmol/testis ± SEM).

EXPERIMENT l(c l

The onset of testicular abnormality in experimental male rats exposed 

prenatallv to flutamide:

Since the testes in adult flutamide-treated rats showed varying degree of 

tubular damage, a limited study was conducted to determine the onset of tubular 

damage in these experimental animals.

Methods:

Male rats were killed at 4 and 8 weeks post-partum (n = 2 in each age 

group for controls and for flutamide-treated males) and processed as in 

Experiment 1 fa) for light and electron microscopy. The first evidence of 

spermiation in the rat is normally seen in the seventh week of postnatal life 

(Clermont and Perey, 1957). Thus the chosen times are before and just after 

complete spermiogenesis is established.
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RESULTS

As already noted, male rats exposed prenatally to flutamide had feminized 

genitalia. All control males exhibited normal bilateral descent of testes into the 

scrotum while flutamide-treated males had their testes located in various 

positions (see below). Testes of flutamide-treated males at 4 weeks (2 scrotal; 

2 intra-abdominal) were about the same size as those of the controls (t = 2.39, 

df = 5, p > 0.05); however, the testes at 8 weeks (1 scrotal; 2 supra-inguinal 

ectopic; 1 intra-abdominal) appeared much smaller than those of the controls 

(t = 3.34, df = 3, p < 0.05) (Table 2).

Age group position (n = 4) weieht (a ± SEM)

4 weeks - Control 4 - S 0.17 ± 0.01

- Flutamide 2-A, 0-E, 2-S 0.13 ±0.01

8 weeks - Control 4 - S 1.29 ±0.03

- Flutamide 1-A, 2-E, 1-S 0.64 ± 0.20

Table 2: Shows the position of testes and their weights in control male Albino 

Swiss rats and males treated prenatally with flutamide at 4 and 8 weeks after 

birth. Note:- S, scrotal; E, suprainguinal ectopic; A, intra-abdominal

69



Morphology of testes at 4 weeks:

The tubules were close together, separated by narrow interstitial spaces; 

most tubules had acquired a lumen (Figure 23a and 24a). The tubular epithelium 

was composed of Sertoli cells, spermatogonia (Type A and B) and 

spermatocytes; some tubules had early spermatids. The seminiferous tubules of 

the flutamide-treated testes were at approximately the same stage of development 

as in controls. However, there were increased amounts of lipid droplets in the 

epithelium of most seminiferous tubules of flutamide-treated males, together with 

increased numbers of degenerating cells and enlarged intercellular spaces (Figure 

23b and 24b). There were no badly damaged tubules (which could be designated 

as Category 3) at this stage of development. The Sertoli cells of both control and 

flutamide-treated males had numerous round to elongated mitochondria and SER 

distributed throughout the cytoplasm.

Each tubule was surrounded by a lamina propria similar to that seen in the 

adult. There was no apparent difference between the lamina propria of the 

controls and flutamide-treated males, and those of the normal adult males. The 

interstitial cells (mainly Leydig cells) of control and flutamide-treated males were 

grouped together in clusters; in both groups they possessed spherical to ovoid 

nuclei, and their cytoplasm contained numerous SER and mitochondria. 

However, lipid inclusions were prominent features in the flutamide-treated males 

(Figure 25a-b).
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FIGURE 23: Seminiferous tubules of 4 week old male control 

Albino Swiss rats:

(a) Light micrograph. Magnification (x 230), and

(b) Transmission electron micrograph.

Sn, Sertoli cell nucleus; Sg, spermatogonia; 

Sp, primary spermatocyte; Arrows indicate lipid 

droplets.

Bar = 10 pm.
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FIGURE 24: Seminiferous tubules of flutamide-treated 4 week 

old male Albino Swiss rats:

(a) Light micrograph. Magnification (x 230), and

(b) Transmission electron micrograph

Sn, Sertoli cell nucleus; Sg, spermatogonia; 

Sp, primary spermatocyte; Asterisks indicate

degenerating cells; Arrows indicate lipid droplets. 

Bar =10 pm.





FIGURE 25: Transmission electron micrographs of Leydig cells 

of 4 week old male Albino Swiss rats:

(a) a control male, and (b) a male treated prenatally 

with flutamide.

Ln, Leydig cell nuclei; M, mitochondria;

Arrows indicate lipid droplets.

Bar = 1 pm.





Morphology of testes at 8 weeks:

At 8 weeks the seminiferous tubules of control males appeared similar to 

those of the adult (Figure 26a). They were lined by all the expected cell types 

including spermatids at different steps of maturation which corresponded to the 

stages of the spermatogenic cycle as described by Leblond and Clermont 

(1952). In contrast, most of the seminiferous tubule profiles of flutamide-treated 

males appeared smaller and these tubules were surrounded by wide interstitial 

spaces (Figure 26b). Spermatogenesis was disrupted. Most tubules only 

contained Sertoli cells, spermatogonia and spermatocytes in their tubular 

epithelium, together with numerous degenerating cells.

The Sertoli cells of the control males were similar to those of the adult in 

that their nuclei (with their prominent nucleoli) were located close to the 

basement membrane, and their cytoplasm contained mitochondria, lipid inclusions 

and several small vacuoles. In contrast, the nuclei of the Sertoli cells of the 

flutamide-treated males appeared in different layers of the tubule epithelium and 

the cytoplasm contained lipid inclusions and large vacuoles.

The lamina propria of the seminiferous tubules in the 8 week control and 

flutamide-treated testes were similar to those of the adults as described earlier. 

Leydig cells in the control males appeared singly and possessed nuclei which 

were slightly lobulated. In contrast, the Leydig cells of the flutamide-treated 

males appeared in clusters, had spherical to ovoid nuclei. Other cell organelles 

including numerous mitochondria, SER and RER appeared similar in both



groups, There was an increased amount of collagen fibres in the interstitium of 

the flutamide-treated males.
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FIGURE 26: Light micrographs of seminiferous tubules of 8 week 

old male Albino Swiss rats:

(a) a control, and (b) a male treated prenatally with 

flutamide.

Magnification: all x 230.
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EXPERIMENT 2

The development and regression of the eubernaculum in rat fetuses and 

neonates.

Results from Experiment 1 showed that prenatal (but not postnatal) exposure to 

the non-steroidal anti-androgen flutamide affected testis descent in male Albino 

Swiss rats, with testes occupying a variety of positions in adulthood (intra­

abdominal, ectopic supra-inguinal, scrotal). Because the gubernaculum has often 

been considered an important structure in testis descent, Experiment 2 was 

undertaken to examine the effects of flutamide on gubemacular development and 

subsequent regression.

Animals:

A total of 40 experimental and 40 control male fetuses and neonates were 

used for this experiment. The experimental males were bom to mothers which 

received injections of the non-steroidal anti-androgen flutamide (lOmg/day in 0.1 

ml propylene glycol from E10 to birth) while control pregnant females received 

0.1 ml propylene glycol vehicle only. Day 10 post-coitum was chosen to start 

treatment to ensure exposure of the fetuses to flutamide before the period of 

testis-dependent male sexual differentiation which begins after day 13 of gestation 

in the rat (Magre and Jost, 1980).

Five control and experimental males were examined at each of the 

following ages: i) 16 days of gestation, ii) 18 days of gestation, iii) 20 days of
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gestation, iv) the day of birth, v) 2 days post-partum, vi) 4 days post-partum, vii) 

8 days post-partum, and viii) 12 days post-partum.

Methods:

Pregnant females were killed by an overdose of carbon dioxide at 2-day 

intervals from day 16 to day 20 of gestation. The fetuses were removed, 

decapitated and the lower half of the body was immersed in fixative. Animals 

intended for paraffin sectioning were immersed in 10% buffered formalin fixitive 

for 3 days, while animals intended for scanning and transmission electron 

microscopy were immersed in a mixture of 3% glutaraldehyde and 1% 

paraformaldehyde in 0.1M phosphate buffer for 3 days (Appendix 1).

Neonates were killed by a lethal i.p. dose of pentobarbitone sodium B.P. 

VET (Sagatal 60mg/ml) and subsequently perfusion-fixed using the appropriate 

fixative (see above) by transcardiac infusion. The lower half of the body was 

again immersed in the same fixative overnight before further processing when 

these animals were initially rinsed in 0.1M phosphate buffer for 2 hours before 

being dissected.

Animals intended for LM serial sectioning were subsequently immersed in 

10% buffered EDTA for 1-2 weeks (changing the EDTA daily) to decalcify any 

bony parts. The specimens were then gradually dehydrated in a Reichert-Jung 

Histokinette 2000 automatic tissue processor (Appendix 5), and subsequently 

vacuum-embedded in paraffin wax and sectioned serially at 6 pm. The sections
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were mounted as a 1 in 5 series on glass slides (i.e. 30 (am intervals between two 

adjacent sections) and stained with Hematoxylin and Eosin (Appendix 6). Light 

micrographs were taken from representative areas. Measurement of the 

gubemaculum was carried out on the corresponding sections using a Wild 

microscope with appropriate attachments.

The animals for scanning electron microscopy were processed accordingly 

(Appendix 7). Specimens were viewed using a Jeol JSM-T300 scanning electron 

microscope and micrographs were taken from representative areas.

RESULTS

Development of the gubernaculum in the male rat fetus 

At day 16 post-coitum

At 16 day post-coitum (d.p.c.), the male fetus possessed elongated testes 

located antero-lateral to the kidney (Figure 27). Superiorly, the testis and 

Wolffian duct were attached to the posterior abdominal wall behind (i.e. cranio- 

lateral to) the kidney by means of the cranial suspensory ligament. Inferiorly, the 

testis and epididymis were attached to the inguinal region of the anterior 

abdominal wall by means of the gubemaculum. There was no obvious difference 

between the gubemacula of flutamide-treated males and controls at this stage of 

fetal development. The gubemaculum appeared as a long slender structure (the 

cord) with a small distal swelling (the cone) which was not as prominent as in 

later stages of development (Figure 28). The gubemaculum (both the cone and 

cord) was composed largely of mesenchymal cells and numerous fibroblast-like
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cells. There were no myoblasts in either the control or the flutamide-treated 

gubemaculum at this stage.

The testis contained a few testicular cords, each surrounded by a distinct 

basement membrane. The testicular cords contained two types of cells: the large 

cells (i.e. the gonocytes) possessed a deep-staining eosinophilic cytoplasm (from 

H&E stained sections), and the smaller pale staining cells were the supporting or 

pre-Sertoli cells.

At day 18 -20  post-coitum

At 18 d.p.c., the gubemacular cone had become more prominent and the 

gubemacular cord had elongated (Figure 28). However, by 20 d.p.c. (Figure 

29), while the gubemacular cone became increasingly prominent, the length of the 

gubemacular cord remained relatively constant in both control and flutamide- 

treated males. With the continued growth of the body, the testes thus appear to 

approach the apex of the gubemacular cone about half-way between the caudal 

pole of the ipsilateral kidney and the inguinal ring in the control animals. The 

gubemaculum had become more cellular and distinct layers of myoblasts were 

clearly seen. These cells proliferated at the periphery of the gubemaculum while 

the core still had the loose organization of mesenchymal cells (Figure 30a-d). 

These mesenchymal cells were oriented parallel to the long axis of the 

gubemaculum.
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By 20 d.p.c., the testis became more ovoid in shape and contained 

increased numbers of testicular cords. There was a variable degree of inhibition of 

Wolffian duct development in flutamide-treated males.

At birth and in the neonatal period

Control male and female rats were easily distinguishable at birth by the 

difference in the ano-genital distance. Normal males did not have nipples at birth 

while normal females had 2-3 pairs. Both male and female offspring of flutamide- 

treated mothers appeared identical to normal females; they had feminized 

genitalia, their ano-genital distance was similar to normal females (i.e. circa 

1 mm) and they had 2-3 pairs of nipples.

The testes of the normal male neonates were located in the lower 

abdomen, held close to the neck of the bladder by the gubemaculum. The 

gubemacular cones started to undergo marked structural changes at birth: a) the 

myoblasts differentiated resulting in distinct layers of muscle cells surrounding a 

mesenchymal core, b) cavitations were formed within the mesenchymal core and 

base of the gubemacular cone, and c) formation of the tunica vaginalis began 

(Figure 31a). Examination of semithin sections showed that the testicular cords 

in flutamide-treated males appeared similar to those of the controls. Within the 

testicular cords, the supporting cells were located peripherally adjacent to the 

basement membrane while the primordial germ cells with large spherical nuclei 

were located centrally. The limiting membrane was composed of distinct layers of



elongated cells (presumably the precursors of peritubular myoid cells and 

endothelial cells) surrounding each cord (Figure 31b).

By post-natal day two, the loose mesenchymatous core of the 

gubemaculum had become the mesenchymatous outer layer to the everting 

(cremaster) muscle layers. It was separated from the remaining connective tissue 

of the scrotum by tissue spaces (the cavitations formed earlier at the begining of 

gubemacular eversion). Gubemacular eversion (and progressive descent of the 

testes) continued in the control and in most of the flutamide-treated males. In the 

control males and some flutamide-treated males, eversion was completed by day 

4 post-partum (Figure 32a-b), while in some of the flutamide-treated males 

eversion was not completed until day 8 post-partum. The organization of cells in 

the testicular cords at day 4 post-partum appeared similar in both groups. While 

some of the primordial germ cells remained unchanged, others showed changes 

suggestive of degeneration; their nuclei appeared swollen and poorly stained, and 

the nuclear membranes were wrinkled.

While the gubemacular cone was everting, the gubemacular cord in some 

flutamide-treated males had become excessively long, stretching from the caudal 

end of the testis to the base of the cremaster sac (Figure 33). By day 12 post­

partum, eversion of the gubemaculum was completed in all animals of both 

groups. Testis descent was accompanied by descent of the epididymis which, in 

control males, was located within the inguinal canal attached to the scrotal floor 

by a short gubemacular cord while the testis itself was located close to the
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inguinal ring. Thus, the epididymis reaches the scrotum in advance of the testis. 

At this stage, the testicular cords contained both supporting cells and 

spermatogonia (Type A and Type B), and some tubules contained resting 

spermatocytes. There was little change in the appearance of the supporting cells.

Length of gubemacular cone and cord in control and flutamide-treated 

males

In the early stages of gubemacular development, the gubemacular cones 

of flutamide-exposed fetuses appeared indistinguishable from those of the 

controls. As development proceeds (i.e. up to 20 d.p.c.), the gubemacular cones 

in both control and flutamide-treated males became bigger and longer. While the 

length of the gubemacular cord in control males remained relatively constant after 

18 d.p.c. in both groups, the gubemacular cords in some of the flutamide-treated 

males were significantly longer than those of controls. In particular, the 

gubemacular cords in some of the flutamide-treated males became excessively 

long structures connecting testes which remained in the abdomen to the base of 

the scrotal (cremaster) sac (Figure 33).

The length of the gubemacular cones and cords of the flutamide-exposed 

males were measured and compared to those of controls. Measurement of the 

cord was made from its epididymal attachment to the apex of the cone while the 

cone was measured from the apex to its base. The base corresponds to the 

anterior abdominal wall in pre-natal males and the lowest point of the tunica
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vaginalis in post-natal males, i.e. when eversion had started. It was found that the 

mean length of the gubemacular cone in flutamide-treated males was not different 

from that of controls at least up to the day of birth. However, the eversion 

process in flutamide-treated males was delayed; eversion was completed by post­

natal day 4 in control males, but not until post-natal day 8 in the flutamide-treated 

males.

The mean length of the gubemacular cord increased slightly in both 

groups between 1 6 -2 0  d.p.c. and remained relatively constant thereafter until 

the day of birth. The mean cord length prior to birth was similar in both the 

flutamide-treated and control males. However after birth, while the mean cord 

length of control males remained constant, the cord of flutamide-treated males 

became longer at post-natal day 2 and remained constant thereafter at least up to 

day 8 post-partum. However, the cords in both groups appeared to become 

longer at day 12 post-partum (Figure 34a-c). While there was no difference 

between the mean cord length of both groups prior to birth, the mean cord length 

of flutamide-treated males became significantly longer than that of controls after 

post-natal day 2 (t = -2.51, df = 11, p < 0.05).
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FIGURE 27: Scanning electron micrograph of a fetal rat at 16 

d.p.c. showing the testis (T), kidney (K), adrenal 

(A), Wolffian duct (W), cranial suspensory ligament 

(L), gubemacular cord (D), gubemacular cone (N) 

and urinary bladder (B).

Bar =100 |im.





FIGURE 28: Scanning electron micrograph of a fetal rat at 18 

d.p.c. showing the testis (T), kidney (K), cranial 

suspensory ligament (L), gubemacular cord (D), 

gubemacular cone (N) and bladder neck (B).

Bar = 100 |im.





FIGURE 29: Scanning electron micrograph of a fetal rat at 20 

d.p.c. showing the testis (T), epididymis (E), kidney 

(K), cranial suspensory ligament (L), gubemacular 

cord (D), gubemacular cone (N) and bladder 

neck (B).

Bar =100 pm.





FIGURE 30: The gubemacular cone during the outgrowth phase:

(a) and (b) Light micrographs of gubemacular cone 

at 18 and 20 d.p.c. respectively, showing myoblasts 

(which are more developed in the latter stage) at the 

periphery of the cone.

Magnification: x 170

(c) and (d) Transmission electron micrographs of 

gubemacular cone at the corresponding stages as 

above. Sm, myofibrils; Mn, nucleus of myoblast.

Bar = 1 pm.
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FIGURE 31: Light micrograph of a newborn Albino Swiss rat 

showing

(a) right gubemaculum cone (N) and cord (D), testis 

(T) and epididymis (E) at the beginning of testicular 

descent. Note that the testis is located close to the 

bladder neck (B); Arrows indicate ‘cavitations’ in 

the mesenchymal core of gubemaculum. 

Magnification: x 36

(b) testicular cords with primordial germ cells (G) 

and pre-Sertoli cells (S). Mitotic figures (M) are 

commonly seen. Magnification: x 580
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FIGURE 32: Light micrographs of the gubemaculum of 4 day-old 

male Albino Swiss rats showing

(a) control male in which the gubemaculum is 

completely everted with a short gubemacular cord 

(D) and descended epididymis (E), but testis (T) still 

at the inguinal ring, and

(b) flutamide-treated male with a long gubemacular 

cord and testis close to bladder neck (B). 

Magnification: x 30
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FIGURE 33: Scanning electron micrograph of an 8 day-old 

flutamide-treated male showing a long gubemacular 

cord (D) and testis (T) located close to the caudal 

pole of the kidney (K).

Bar = 200 pm.
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Figure 34a: Graph showing the length of the 
gubernacular cone of control male Albino Swiss 

rats (—■ -) and males treated prenatally with 
flutamide (—■ -) (mean length ± SEM)
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FIGURE 34b:Graph showing the length of the 
gubernacular cord of control male Albino Swiss 

rats and males treated prenatally with 
flutamide (-■ —) (mean length ± SEM).
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EXPERIMENT 3

The effects of prenatal exposure to flutamide on the persistence of the 

cranial suspensory li2ament

A cranial suspensory ligament (CSL) of the testis was found in all adult 

male rats and hamsters exposed prenatally to flutamide, but in none of the control 

males. This experiment aimed to study: a) the development of the CSL in the 

male rat and b) the composition of this ligament in fetal, neonatal and adult males.

Methods:

1) Fetal and neonatal CSL were studied from the same animals used in 

Experiment 2 (see p. 74) using serial sections and scanning electron microscopy.

2) Specimens of CSL were also obtained from a variety of adult flutamide- 

treated males (with testes in the three different locations) fixed with a mixture of 

glutaraldehyde and paraformaldehyde and processed for general histology and 

electron microscopy.
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RESULTS

In animals at 16 d.p.c., the CSL was a short, thick structure connecting 

the cranial part of testis to the diaphragm at the posterior abdominal wall (Figure 

35a). As the testis moved caudally with growth of the body, the CSL became 

longer and thinner (Figure 35b). From parasagittal sections of the fetus at 18 

d.p.c. (Figure 36a), the CSL at this stage was composed of mesenchymal cells, 

fibroblast-like cells (readily seen at higher magnification) and numerous blood 

vessels. By 20 d.p.c., the CSL in control males had become much thinner than 

those in flutamide-treated males (Figure 36b-c), and disappeared thereafter. By 

contrast, the CSL in the flutamide-treated males persisted through to adult life.

All flutamide-treated adult males used in this study possessed CSL which 

were fine structures extending from the testes (no matter where the testes were 

located) to the posterior abdominal wall cranial to the kidney (Figure 37a-b). 

The CSLs were located retroperitoneally in the dorsolateral fat pad of the 

posterior abdominal wall and contained smooth muscle fibres, fibroblasts, blood 

vessels and nerves (Figure 38a-c and Figure 39a-c). No difference could be 

found between the morphology of the CSL associated with testes in different 

adult locations.
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FIGURE 35: Scanning electron micrographs of cranial suspensory 

ligaments (L) of (a) 16 d.p.c., and (b) 18 d.p.c. male 

Albino Swiss rats. K, kidney; A, adrenal; W, 

Wolffian duct; T, testis.

Bar =100 pm.





FIGURE 36: Cranial suspensory ligaments of male Albino Swiss 

rats:

(a) light micrograph of a sagittal section of cranial 

suspensory ligament of 18 d.p.c. male AS rats. 

Cranial suspensory ligament (L), testis (T), 

gubemacular cone (N).

Magnification: x 50

(b) and (c) Scanning electron micrographs of cranial 

suspensory ligament of 20 d.p.c. control and 

flutamide-treated males respectively. Kidney (K), 

cranial suspensory ligament (L), epididymis (E).

Bar = 100 pm.
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FIGURE 37: A dissection to show the cranial suspensory ligament 

(L) of (a) an adult male AS rat treated prenatally 

with flutamide.

K - kidney; T - testis, B - urinary bladder. 

Magnification: x 0.9





FIGURE 37: continued:

(b) an adult golden hamster treated prenatally with 

flutamide. Magnification: x 1.4 

K - kidney; T - testis, B - urinary bladder, 

L - cranial suspensory ligament.





FIGURE 38: Light micrographs of sections of the cranial 

suspensory ligaments from adult male Albino swiss 

rats:

(a) the cranial part,

(b) the middle part, and

(c) the caudal part near the testis.

L - abdominal cavity, V - blood vessels. 

Magnification: x 160





FIGURE 39; Transmission electron micrographs of cranial 

suspensory ligaments:

(a) showing ‘septation’ in the cranial suspensory 

ligament. Bar = 1 pm.

(b) showing smooth muscle. Bar = 0.5 pm.

(c) showing microtubules. Bar = 0.1 pm.

Sm, smooth muscle; N, nucleus of smooth muscle; 

M, mitochondria; Arrows indicate microtubules.
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EXPERIMENT 4

Immunostaining for androgen receptors

The aim of this study was to confirm that androgen receptor is present in

a) the gubemaculum of fetal and neonatal rats,

b) the cranial suspensory ligament of fetal and adult rats,

c) the testes of fetal and adult rats.

Methods

i) Fetal and neonatal specimens were obtained from the serial sections of 

Experiment 2 (see p. 74).

ii) Adult specimens were obtained by perfusion of adult males with 10% 

buffered formalin after flushing out the circulation with Mammalian ringer 

containing the vasodilator 0.2 % xylocaine. The animals were dissected and 

samples were taken and immersed in the same fixative overnight and rinsed in 

buffer (x 3), before dehydrating in a Reichert-Jung Histokinette 2000 (see 

Appendix 5). The specimens were embedded in paraffin wax and sectioned at 

6 pm.
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Staining for androgen receptor

Immunostaining for androgen receptors was carried out according to the 

methods devised in the ICC laboratory in the Laboratory of Human Anatomy, 

Glasgow University. The primary antibody used in this study was a polyclonal 

androgen receptor antibody raised in rabbit (NCL-AR70 from NovoCastra) and 

was diluted at 1:30 with the antibody diluent 1% NGS (normal goat serum) in

0.3% Triton (Appendix 8).

Briefly, the paraffin sections were deparaffinised, hydrated to water and 

washed in 3 x 5 minute changes with 0.1 M phosphate buffer saline (PBS). The 

sections were then incubated in 1% NGS for 1 hour at room temperature prior to 

incubation in the primary antibody for 24 hours. The control sections (i.e. 

adjacent sections) were incubated in 1% NGS for the same duration. 

Subsequently, the excess 1° antibody was washed off, followed by incubation in 

horse anti-rabbit IgG coupled to biotin (2° antibody) for 1 hour. After the excess 

2° antibody was washed off, the sections were incubated in avidin-biotin 

horseradish-peroxidase complex (ABC complex) for 1 hour. The horseradish 

peroxidase was revealed by the diaminobenzidine (DAB) reaction.

RESULTS

Staining sections with this polyclonal androgen receptor antibody resulted 

in dark brown staining (positive reaction) and light golden brown background
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staining. The sections from the controls which were not incubated in the primary 

antibody were stained light golden brown.

Gubernaculum, testes and epididymis

Staining of androgen receptor was demonstrated in the nuclei of the 

mesenchymal cells of the gubemaculum (both cone and cord) (Figure 40a-b), 

testicular cords and in the epididymal epithelium in both control and flutamide- 

treated fetuses and neonates. In adult testes, staining was demonstrated in the 

seminiferous tubule epithelium and in some cells of the interstitium. The positive 

staining in the tubular epithelium was limited to the acrosome (i.e. the head cap 

on the nuclei) of round and elongating spermatids and the heads of the maturing 

spermatids (Figure 41a-d).

Cranial suspensory ligament

While the fetal cranial suspensory ligament (at 18 d.p.c.) showed positive 

staining for androgen receptor (Figure 42a-b), the cranial suspensory ligament of 

adult flutamide-treated males showed negative staining.
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FIGURE 40: Androgen receptor staining of the gubemaculum of 

20 d.p.c. male Albino Swiss rats

(a) positive androgen receptor staining of the nuclei 

of cells (arrows) in the mesenchymal core of the 

gubemaculum, and

(b) negative staining of an adjacent section incubated 

in the absence of primary antibody.

Magnification: all x 120
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FIGURE 41: Androgen receptor staining of testes in

(a) a control adult Albino Swiss rat, and (c) a male 

treated prenatally with flutamide.

Note positive staining of the acrosomal cap of round 

spermatids (arrows) and heads of maturing 

spermatids (arrowheads) and some cells in the 

interstitium. Sections incubated in the absence of the 

primary antibody are also shown - (b) and (d). 

Magnification: all x 200
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FIGURE 42: Androgen receptor staining of the cranial suspensory 

ligament of Albino Swiss rats at 18 d.p.c

(a) stained for androgen receptor, and

(b) negative control incubated in the absence of the 

primary antibody.

Note positive androgen receptor staining of nuclei of 

cells in the cranial suspensory ligament (arrows) and 

testicular cords (T) in (a).

Magnification: all x 80





DISCUSSION



The aim of the present study was to examine the effects of exposure to the 

anti-androgen flutamide on testis descent in view of the continuing uncertainty 

over whether androgens are involved in this process. The study examined the 

effects of flutamide on the location and viability of testes in two species (the rat 

and the hamster) and examined both gubemacular growth and regression and 

persistence of the cranial suspensory ligament, two fetal structures which may 

influence descent.

1. Is flutamide an appropriate choice of anti-androgen ?

Anti-androgens are drugs that inhibit the biological activity of androgens 

(Lerner, 1964). They may be steroidal or non-steroidal compounds. Their 

mechanism(s) of action is to compete for androgen receptor sites in target tissues 

(McLeod, 1993). Steroidal anti-androgenic drugs include cyproterone, 

cyproterone acetate and megestrol acetate while non-steroidal anti-androgenic 

drugs include flutamide, casedox and nilutamide (McLeod, 1993). Both steroidal 

and non-steroidal anti-androgenic drugs compete with naturally occurring 

androgens such as testosterone and DHT for an androgen receptor which is 

predominantly a nuclear protein (Husmann et_al, 1990). These drugs suppress the 

uptake and retention of androgens by target tissues, and inhibit the formation of 

the nuclear binding of androgens (Peets et ah 1974). However, while steroidal 

anti-androgens also have progestational activity which inhibits testosterone 

production by Leydig cells as a result of suppression of pituitary luteinizing 

hormone, non-steroidal anti-androgens block cellular binding of androgens only
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(Neumann eta], 1977; McLeod, 1993). Thus, with non-steroidal anti-androgens, 

there is no primary reduction of testosterone production, there may even be an 

increase of LH resulting in increased plasma testosterone levels (McLeod, 1993). 

The non-steroidal anti-androgen flutamide is metabolised to form its active 

metabolite (flutamide-OH) in the target cells before it is able to compete effectively 

for androgen binding sites (Katchen and Buxbaum, 1975).

Other anti-androgens have been used in the past to examine many aspects 

of reproductive tract development. For example, cyproterone and cyproterone 

acetate developed by Schering (for review see Neumann et_al, 1970) have been 

used to study

i) Differentiation of the reproductive tract and external genitalia in male 

rabbit and dog fetuses. This led to failure of Wolffian duct maintenance, inhibition 

of prostate and scrotal development, shortening of the anogenital distance and 

formation of a vagina.

ii) Adult testicular functions: Treatment with cyproterone led to inhibition of 

spermatogenesis in animals and man with stimulation of Leydig cell activity and the 

secretion of testosterone.

These are not compounds of choice because they are steroidal in nature 

themselves and therefore have less predictable actions (Peets et_al, 1974; Poyet 

and Labrie, 1985). For example, cyproterone acetate may not only compete with 

testosterone and DHT for androgen receptors, but also may have progestational



activity which reduces pituitary luteinizing hormone and subsequently reduces 

plasma testosterone.

2. What evidence is there that flutamide has successfully crossed the 

placental barrier in the present study and acted as an anti-androgen ?

Since the results of the present study demonstrate pronounced effects of 

flutamide on testis descent, gubemacular development and cranial suspensory 

ligament retention (all of which will be discussed below), it is important to be able 

to demonstrate that flutamide has acted in its expected manner as an anti­

androgen. The most obvious confirmation of this comes from the marked 

feminization of the external genitalia of prenatally exposed males and the failure of 

the internal reproductive tract to develop normally. It is well established in the 

male fetus that

i) differentiation of the indifferent gonad into the testis is genetic, requiring 

the presence of Sry (mouse) or SRY (human) gene on the Y chromosome 

(Gubbay et ah 1990; Sinclair, 1990) and that

ii) inhibition of development of the Mullerian ducts depends on the 

production of MIS by the pre-Sertoli cells of the testis (Jost and Magre, 1993; 

Josso e ta l, 1993a).

Naturally, administration of flutamide cannot alter the genetic constitution 

of rat fetuses so that all treated males possessed testes. Furthermore, flutamide 

neither interferes with MIS production nor, apparently, blocks MIS receptor sites.



As might be expected, no derivatives of the Mullerian duct were present in treated 

males. On the other hand,

iii) virilization of the Wolffian ducts to form the epididymis, vas deferens and 

seminal vesicles is under the influence of testosterone, while differentiation of the 

urogenital sinus to form the prostate and prostatic urethra, and of the genital 

tubercle/swelling to become the penis and penile urethra/scrotum respectively, are 

under the influence of DHT (the 5a-reduced derivative of testosterone) (Wilson, 

1992).

Synthesis of testosterone begins soon after the differentiation of Leydig 

cells which begins at 15.5 d.p.c. in rat (Jost and Magre, 1993). Testosterone is 

the principle androgen secreted by the testes and enters target cells by passive 

diffusion (Wilson, 1992). Within the cells, testosterone may a) combine with the 

androgen receptor to form a testosterone-receptor complex in the nucleus which 

influences the expression of certain genes, b) be converted to dihydrotestosterone 

by the enzyme 5a-reductase; this hormone then combines with the same receptor 

to form a dihydrotestosterone-receptor complex, which modulate the expression of 

other genes, or c) be aromatized to estradiol in target tissues which then acts via its 

own receptor (Wilson, 1992).

Individuals with X-linked androgen insensitivity due to mutation of the 

androgen receptor have impairment of all aspects of androgen action; both 

testosterone and DHT are present but these individuals have a phenotype which
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varies from wholly feminine (testicular feminization) to men with ambiguous 

genitalia or with infertility (Brown et ah 1982; Wilson, 1992).

The fact that testosterone influences Wolffian duct development whereas 

DHT influences virilization of the urogenital sinus and genitalia are based on the 

following observations: a) high activity of the enzyme 5a-reductase in the 

urogenital sinus and the phallus during the period of sexual differentiation but not 

in the Wolffian duct (Wilson, 1973; Renfree et ah 1992), b) treatment with a 

5a-reductase inhibitor inhibits development of rat prostate (George and Peterson, 

1988), c) human males with 5a-reductase deficiency (an autosomal recessive 

abnormality) have normal testes, androgen levels and development of Wolffian 

duct derivatives but impaired phallic development (Walsh et ah 1974; Wilson, 

1992).

In experimental studies where animals are exposed to anti-androgens, the 

development of the Wolffian duct and urogenital sinus derivatives are both affected 

(Spencer et al. 1991; van der Schoot, 1992b; van der Schoot and Eiger, 1993). 

Briefly, exposure of male rats to flutamide during prenatal life inhibits virilisation 

of the Wolffian duct, so that they exhibit poor development (or absence) of the 

epididymis, vas deferens and seminal vesicle as well as feminized genitalia and 

hypospadias. Similar results were obtained in this study where the urethra opens 

onto the ventral aspect of the phallus, the vagina persists and seminal vesicles and 

prostate (which lie ventral to the urinary bladder) are extremely small In the 

present study feminization of the genitalia and underdevelopment (or absence) of
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the epididymis and vas deferens are good indicators that flutamide was not only 

crossing the placental barrier but also acting as an anti-androgen at target tissues 

(van der Schoot, 1992b; Husmann and McPhaul, 1991b).

3. Maldescent

One aim of the present investigation was to examine the effects of 

flutamide exposure on testicular descent in Albino Swiss rats and on the functional 

morphology of testes in different final locations. In Experiment 1, 44% of testes 

descended into the scrotum, while 44% occupied a suprainguinal ectopic position 

and 12% remained in the abdomen. All control males (exposed to propylene 

glycol vehicle only) exhibited normal descent of the testes into the scrotum. These 

findings differ somewhat from those of van der Schoot (1992b) who reported that 

in Sprague-Dawley rats exposed to flutamide from gestational day 11 - birth, 50% 

of testes descended into the scrotum while 50% of testes remained intra­

abdominal. Nevertheless, the finding that 50% of testes occupy a normal scrotal 

position is common to both studies.

In the present study, cryptorchidism in the rat occurred either unilaterally 

(nine) or bilaterally (two) and most cases were on the right side (10 right, 3 left). 

This asymmetry of descent has been documented in human fetuses (Heyns, 1987) 

and in Sprague-Dawley rats (van der Schoot, 1992b). There is no agreed reason 

for this asymmetry. However, van der Schoot (1992b) has commented that 

development of the reproductive organs occurs close to the umbilical vessels.



During the later part of development, there is difference in suppression of the right 

and left umbilical arteries. While the left umbilical artery atrophies, the right artery 

hypertrophies. Thus, the two sides of the embryo may receive different amount of 

exposure to flutamide. This may offer a possible explanation to the asymmetry of 

undescended testes.

It has been suggested that the process of testicular descent can be divided 

into two phases which are controlled by separate hormones (Hutson, 1985). The 

first, transabdominal phase which involves the migration of the testis from the 

caudal pole of the kidney to the inguinal region about the level of the bladder neck 

is widely held to be androgen-independent (Baumans et ah 1983; Hutson and 

Donahoe, 1986; Fentener van Vlissingen et ah 1988; van der Schoot, 1992a). 

The present study supports this view since most of the intra-abdominal testes of 

flutamide-treated males were located close to the neck of the bladder. Fentener 

van Vlissingen et al (1988) suggested the name “descendin’’ for a non-androgenic 

fetal testicular factor (which could be MIS) that controls the first phase of 

testicular descent. Furthermore, individuals with MIS insufficiency (confirmed by 

persistence of the Mullerian ducts) have their testes in an ovarian position (Hutson 

et al. 1990; 1996).

The second, inguinoscrotal phase (which involves the migration of the 

testis from the inguinal region through the inguinal canal and down to the scrotum) 

is believed to be androgen-dependent. Investigations on laboratory species such as 

rat (Rajfer and Walsh, 1977) and rabbit (Rajfer, 1982), revealed that testicular
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descent can be induced by administration of human chorionic gonadotrophin 

(hCG) or DHT, or inhibited by estradiol.

However, the use of anti-androgens has produced conflicting results; 

cyproterone acetate failed to prevent testicular descent (Wensing, 1973) while 

flutamide did (Husmann and McPhaul, 1991b; Spencer et al. 1991; van der 

Schoot, 1992b; McMahon et al. 1995). Experimental investigations such as the 

present one (and previous reports such as Husmann and McPhaul, 1991b; 

Husmann et al. 1994; van der Schoot 1992b) support a role for androgens in 

controlling normal testicular descent.

Although much experimental evidence suggests a role for androgens in 

testicular descent, the exact mechanism responsible is undetermined, nor is it 

completely accepted which target tissues are involved. The gubemaculum (which 

connects the testis and epididymis to the scrotum, and is common to all animals 

exhibiting testicular descent) has long been the most likely candidate.

If the gubemaculum is indeed the androgen-dependent target tissue 

responsible for testicular descent, then it must possess androgen receptors. Partial 

characterisation of an androgen receptor has indeed been made in the gubemacula 

of the neonatal rat (George and Peterson, 1988; Husmann and McPhaul, 

1991a) and the fetal and neonatal pig (Oprins et ah 1988). In the present study, 

the attempted demonstration of an androgen receptor in the gubemaculum using a 

polyclonal androgen receptor antibody raised in rabbit did not yield a wholly 

convincing result due to relatively strong background staining. Nevertheless, there
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was staining of the nuclei of the cells in the mesenchymal core of the 

gubemaculum at 20 d.p.c. and staining of the nuclei of the cells in the gubemacular 

cord. The appropriateness of the antibody was confirmed by staining of the nuclei 

of the epithelium of the epididymis and of the vas deferens.

Not only does the gubemaculum possess androgen receptors, but also the 

enzyme 5a-reductase necessary for the conversion of testosterone to DHT (Rajfer 

and Walsh, 1977; Rajfer, 1982; Renfree et ah 1992). George (1989) found a 

relatively high 5a-reductase activity in 18 d.p.c. rat gubemaculum (when it is 

composed of mesenchyme); however, the enzyme activity rapidly declines as the 

gubemaculum becomes predominantly muscular during postnatal life.

4. Consequences of maldescent on the adult testis

All testes from flutamide-treated males were reduced in size compared with 

controls. Moreover, intra-abdominal testes were even smaller than those which 

eventually reached scrotal or ectopic suprainguinal positions. In the present study, 

all males exposed prenatally to flutamide possessed seminiferous tubules exhibiting 

varying degrees of damage. This is probably due to long term disruption of 

hypothalamo-pituitary-gonadal axis function where a variety of experimental 

manipulations adversely affect sperm production (Russell and Clermont, 1977; 

Awoniyi et ah 1989; Huang et al. 1991; Sinha-Hikim and Swerdloff, 1993; 

1994; Billig et al. 1995). In the present study, androgen receptor was 

demonstrated in the acrosome of round (steps 4-7) and elongating spermatids as
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well as the heads of maturing spermatids. Given the positive correlation between 

low androgen levels and high rates of tubule damage seen in Experiment 1, this is 

in agreement with the suggestion that the damage seen is due to stage-specific 

effects of lowered testosterone on spermatogenesis (Kerr et al, 1993; O’Donnell 

et al. 1994) and that in diverse studies, spermatogenesis could be restored by 

testosterone replacement (Awoniyi, 1989; Kerr et al. 1993; O’Donnell et al. 

1994) or by cessation of gonadotropin-RH antagonist treatment (Sinha-Hikim 

and SwerdlofT, 1994).

Androgens promote the maturational transition of round to elongated 

spermatids by maintenance of the Sertoli cell-spermatid binding (McLachlan et al.

1994) particularly where Sertoli cells have been rendered “binding competent” by 

FSH (O’Donnell et al. 1994; Sinha-Hikim and SwerdlofT, 1995). This priming 

effect of FSH on normal spermatogenesis has been specifically associated with 

restoration of the junction-related Sertoli cell cytoskeleton (O’Donnell et al. 

1994; Muflly et al. 1994).

In the most recent studies, the expression of the FSH receptor gene in the 

rat seminiferous epithelium has been shown to be stage-specific (Rannikko et al. 

1996) where the level of receptor mRNA in stages XIII-I was sixfold compared 

with stage VI of the spermatogenic cycle which has the lowest level. In the present 

study, where testicular androgen levels are reduced, there is marked disruption of 

the acrosome and maturation phases (Steps 8-19) of spermiogenesis. The cap 

phases (Steps 4-7) were moderately affected while the Golgi phases (Steps 1-3)
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seemed normal. However, where tubules were categorised as “normal” in males 

exposed prenatally to flutamide, the percentage of occurrence of different stages of 

spermatogenesis was also normal and, in general corresponded to those recorded 

in the Albino Swiss rat by McDonald and Scothorne (1988).

The results of Experiment la  suggest that the degree of tubular damage 

was maximum in cryptorchid testes where no normal tubules were seen at all. This 

could be due to the increased temperature of the testes (Clegg, 1963) which may 

lead to direct damage of germ cells, or inhibition of mitosis, or may block the 

action of gonadotrophins on the seminiferous tubules.

It should be appreciated that flutamide does not in itself reduce androgen 

production. Indeed, flutamide administration to an adult male usually results in 

increased LH release and elevated levels of circulating testosterone (Sardanons 

et al. 1989; Sodersten et al. 1975) in rat and (Knuth et al. 1984) in man.

5. Structural factors in testicular descent: the cranial suspensory ligament 

and the gubemaculum

The cranial suspensory ligament, an embryonic structure derived from the 

cranial mesonephric ridge, is initially present in both sexes. It connects the gonad, 

mesonephros and mesonephric duct to the posterior abdominal wall at the junction 

between the middle and the lateral thirds of the lowest rib (Hebei and Stromberg, 

1976; van der Schoot and Eiger, 1992). During normal development, while the 

CSL persists in the female, it disappears in the male exhibiting testicular descent.
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Disappearance of the CSL is thought to be influenced by androgens and 

this is consistent with persistence of the CSL in flutamide-treated male rats (van 

der Schoot and Eiger, 1992) and rabbits (van der Schoot and Eiger, 1993) as 

well as in Tfm mice (Hutson, 1986) and rats (Spencer Barthold et ah 1994). 

Van der Schoot and Eiger, (1993) have suggested that persistence of the CSLs in 

these cases prevents testicular descent. In studies of “intersexuality” (Greene, 

1939) the ovaries descend to a varying degree in female rats exposed prenatally to 

androgens. Although there is no mention of the CSL in the latter study, it could be 

that androgens interfered with maintenance of the female CSL.

Kersten et al (1996) reported persistence of the CSLs in a dog associated 

with cryptorchidism and again suggested that the CSL could be a major factor in 

preventing testicular descent. However, in the present study, the CSL persisted in 

all flutamide-treated male rats despite 44% of testes descending normally into the 

scrotum. Furthermore, it was present in all hamsters, even though they exhibited 

full descent into the scrotum in all cases. These findings do not support the notion 

(van der Schoot and Eiger, 1992; 1993) that the CSL can hold the testis firmly to 

the caudal pole of the kidney despite the normal outgrowth of the gubemaculum.

Transabdominal migration of the testis occurs even in mice with complete 

androgen resistance and in which the CSL persists (Hutson, 1986). In the present 

study, I have examined the histology of the CSL and found that there was no 

difference - either in persistence, size or structure - in the CSL from the three
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possible locations of the testes. Taken as a whole, these findings suggest that the 

CSL is not a major factor in preventing testicular descent.

In contrast to the CSL, the gubemaculum is a structure derived from the 

caudal mesonephric ridge connecting the lower pole of the gonad to the anterior 

abdominal wall. The gubemaculum is also present in early embryos of both sexes. 

During normal development, while the gubemaculum in the male begins an 

outgrowth phase, the gubemaculum in the female regresses (van der Schoot et ah

1995).

The gubemaculum is believed to play a major role in the process of 

testicular descent (Backhouse, 1982; Wensing and Colenbrander, 1986; Heyns, 

1987). Thus when the gubemaculum of neonatal rats was removed, or it’s distal 

attachments were severed, testicular descent was prevented (Frey and Rajfer, 

1984). However, when the proximal attachments to the testis / epididymis was 

severed, testicular descent occurred normally. In addition, when one testis was 

removed and was replaced with a prosthesis, and the gubemaculum was left intact, 

there was normal descent of the prosthesis into the scrotum. Thus, a gubemaculum 

with intact distal attachments (i.e. with an intact genitofemoral nerve) is a 

prerequisite for cremaster sac formation and the subsequent testicular descent to 

occur.

In the male fetus, growth and subsequent regression of the 

mesenchymatous core of the gubemaculum play a key role in the mechanism for 

perinatal gubemacular cone eversion and subsequent testicular descent (Wensing



and Colenbrander, 1986). During the first, transabdominal phase of testicular 

descent, the testis migrates from the caudal pole of the kidney to the inguinal 

region at the level of the bladder neck. This caudal migration of the testis is 

accompanied by outgrowth of the gubemacular cone and relative shortening of the 

gubemacular cord.

In the present study, the outgrowth of the gubemacular cone in flutamide- 

treated males was normal compared to controls, however, gubemacular cone 

regression was delayed. Furthermore, the gubemacular cords failed to shorten 

(Figure 34a-c). Thus, the gubemaculum in flutamide-treated males is different 

from that of controls. It is not clear from the present experiments a) How this 

difference arises, b) What its significance may be. Nevertheless, it suggests that 

further research should be focussed on the gubemaculum (and not the CSL). Why 

does eversion takes longer? Why are the cords elongated? Among other factors, 

attention should be paid to:

i). Whether there is any difference in the ratio of cells to matrix content in the 

gubemaculum of control males and males treated prenatally with flutamide.

ii) Whether there are differences in the rates of cell division or of cell death 

(necrosis or apoptosis)?

iii) Whether there are differences in the extra-cellular matrix composition 

e.g. the expression of extracellular matrix molecules?
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iv) Whether there is any difference in the time of invasion of the gubemaculum 

by myoblasts, formation of the definitive cremaster muscles or innervation by the 

genitofemoral nerve?

It is also a frequent observation in man that epididymal abnormalities are 

associated with testicular maldescent (Marshall and Shermeta, 1979; Mininberg 

and Schlossberg, 1983; Heath et ah 1984; Merksz and Toth, 1987). In the 

present study, regression of the Wolffian duct (and hence absence of the 

epididymis) may have been one of the factors responsible for an unusually long 

gubemacular cord in some of the flutamide-treated males, so that the testis is not 

held close to the inguinal canal. However, impaired development of the epididymis 

and vas deferens was not necessarily associated with testicular maldescent on the 

same side confirming the suggestion (Spencer et al. 1991) that an intact 

epididymis is not required for descent of the testis. This is an important point 

because it has occasionally been proposed that, since the gubemaculum is attached 

to the cauda epididymidis as well as the lower pole of the testis, it is the 

movements of the epididymis which are responsible for testicular descent 

(Mininberg and Schlossberg, 1983; Hadziselimovic, 1983).

61 Effects of flutamide administered postnatallv to rat p u p s

Postnatal treatment with flutamide did not prevent testicular descent nor 

had it any effect on the masculization of the accessory sex organs: thus the 

epididymis and vas deferens developed normally and there was no feminization of
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of the external genitalia. These findings support the suggestion (Spencer et ah 

1993) that androgens act early (i.e. during gubemacular outgrowth): these authors 

found complete descent of the testes when flutamide was administered during late 

gubemacular outgrowth and early regression in the rat. The present study also 

supports the view (van der Schoot, 1992b; Husmann and McPhaul, 1991b) 

that by the time of birth or early in postnatal life the “critical period” of 

development in which androgens can act on the developing reproductive system 

has been passed. Van der Schoot (1992b) found an increase in testicular weights 

of rats treated postnatally with flutamide and suggested that the possibility of a 

failure of the feedback control of gonadotrophin secretion leading to increased 

gonadotrophin secretion and enhanced testosterone production. However, no 

evidence to support this was given.

7. Effects of prenatal flutamide on hamsters

Prenatal administration of flutamide to hamsters (lOmg/day from E8 to 

birth) did not affect the process of testicular descent despite various degrees of 

impairment of masculinization of the male reproductive tract including partial to 

complete absence of epididymis, vas deferens and seminal vesicles. Treated males 

also possessed small testes and a small phallus, but no vagina.

Previous studies on prenatal exposure to the anti-androgen cyproterone 

acetate (Swanson, pers comm) resulted in male offspring with a small phallus 

(with a urethral opening at its base), so that the genitalia were neither completely
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male nor female; testicular descent was completed by 3 weeks post-partum. 

However, in a study examining guinea pigs (G raf and Neumann, 1972), 

cyproterone acetate induced regression of the Wolffian duct but failed to induce 

persistence of the vagina or to interfere with testicular descent in this species. 

These findings lead to the important question: what factors control testicular 

descent in rodents such as hamsters? One main difference between hamsters and 

rats is that the hamster is a seasonal breeder which exhibits ascent of the testes 

during the non-breeding season; It may be that the factors controlling descent are 

different. Several possibilities must be considered, all leading to further avenues of 

study

i). Androgens plav no part in testis descent.

Although testes clearly descended in hamsters treated with flutamide, it 

was equally clear that flutamide was getting across the placental barrier and 

preventing development of the Wolffian duct derivatives. We need to know a) 

whether the gubemaculum and CSL possessed androgen receptors during 

development in this species, b) what happens to the hamster gubemaculum and 

CSL during development in normal and flutamide-treated males.

ii). Androgens play a part, but it is postnatal.

Although I did not try giving flutamide postnatally, there is no reason to 

think that the period for testis descent is very different in the hamsters compared to 

the rat. For example, the postnatal administration of estrogens had no effect on 

phenotypic sex - even though testis weight was reduced in adulthood (Swanson,
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1966). Secondly, prenatal administration of cyproterone acetate (20 mg/day from 

E10 to birth) did lead to testicular maldescent (Swanson, pers comm). This would 

seem to established the timing of events which culminate in descent.

iii). Dose was too low.

The dose used in the present study was that which proved effective 

in the rat. Given the difference in body weight, hamsters would have received a 

higher dose than rats. While there may be species differences in the ability of 

flutamide to cross the placental barrier, the absence of Wolffian duct derivatives is 

itself a guarantee of flutamide exposure.
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CONCLUSIONS

The present study has demonstrated

• that administration of the non-steroidal anti-androgen flutamide to pregnant 

female Albino Swiss rats from gestational day 10 to birth resulted in disturbance of 

the process of testicular descent in male offspring. These males also exhibited small 

testes, reduced testosterone levels within the testes (despite higher numbers of 

Leydig cells) and varying degrees of seminiferous tubule damage probably due to 

the stage-specific effects of reduced testicular testosterone on spermatogenesis. 

The overall degree of damage was strongly correlated with the final location of the 

testis, with scrotal testes being least affected, supra-inguinal ectopic testes 

intermediate, and intra-abdominal testes severely affected.

• that outgrowth of the gubemacular cone is not affected by flutamide; however, 

the regression phase (which occurs postnatally) was delayed.

• that shortening of the gubemacular cord was inhibited in males treated 

prenatally with flutamide.

• that males rats exposed to flutamide exhibit persistence of the cranial 

suspensory ligament. This persistence however, was irrespective of the position of 

the testes in the adult. Nor was there any difference in the structure of the cranial 

suspensory ligaments from these varying testis locations. This suggests that 

retention of the cranial suspensory ligament is not an important factor in testicular 

maldescent.



• that prenatal flutamide treatment to rats also interfered with Wolffian duct 

development since most of the offspring of flutamide-treated mothers exhibited 

varying degrees of inhibition/absence of Wolffian duct derivatives.

• that impaired development of the epididymis and vas deferens was not 

necessarily associated with testicular maldescent since (despite partial to complete 

absence of epididymis and vas deferens) 44% of testes descended normally into the 

scrotum in males treated prenatally with flutamide.

• that prenatal flutamide treatment to hamsters did not interfere with testicular 

descent although there was evidence of flutamide action during development 

(partial/complete inhibition of development of the Wolffian duct) and retention of 

CSL.

• that postnatal treatment with flutamide did not interfere with testicular descent.
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APPENDIX 1

PREPARING GI.IITARAT.DEHYDE FIXATIVE

To prepare 1000 ml of 3% glutaraldehyde and 1% paraformaldehyde in 0.1 M

phosphate buffer:

1) Heat 350 ml distilled water in a conical flask until water temperature 

reaches 68 - 70 °C.

2) Measure 10 mg of paraformaldehyde and empty into the above flask and 

stir. Add concentrated sodium hydroxide solution drop-by-drop (about 10- 12  

drops) into it until all dissolved.

3) Measure and add 120 ml of 25% glutaraldehyde.

4) Add 4 ml of 0.5% calcium chloride.

5) Add 500 ml of 0.2M phosphate buffer.

6) Make the volume to 1000 ml by adding distilled water.

7) Filter the solution.
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APPENDIX 2

PROCESSING TISSUE FOR TRANSMISSION ELECTRON

MICROSCOPY

Specimens must be small (about lx 2 x 3  mm)

1) Rinse in 0.1M phosphate buffer

2) Osmicate with 1% osmium tetrahydroxide

3) Rinse in 0.1M phosphate buffer 

Dehydrate:

4) 70% ethanol

5) 90% ethanol

6) Absolute alcohol

7) Propylene oxide (PO)

8) Mixture of PO : Araldite (1 :1)

9) Mixture of PO : Araldite (1 :3 )

10) Araldite

30 min (x 3)

1 - 1 V2 hours 

30 min (x3)

2 hours 

2 hours

2 hours (x 4)

15 min (x 3)

4 hours 

overnight 

48 hours (x 2)

11) Embed in araldite and leave to polymerise in an oven at 60°C for 24 hours
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APPENDIX 3

Periodic acid, SchifTs - Haematoxvlin (PAS - HI staining

Paraffin sections cut at 5 pm thick, mounted on glass slide and dehydrated in 

an oven at 37°C overnight. For fragile tissue a further 2 hrs in an oven at 56° 

C is necessary to prevent sections floating off.

1) Place slides in xylene to deparaffinize 10 min.

OR:

Resin sections cut at 2 pm thick, mounted on glass slides and dehydrated on a 

hotplate.

1) Deresinate resin sections in ethoxide 30 min.

(saturated sodium hydroxide in ethanol)

Hydrate:

2) 1 st Absolute Alcohol

3) 2nd Absolute Alcohol

4) 90% Alcohol

5) 70% Alcohol

6) Wash in running water

7) Periodic Acid

8) Wash in running water

9) SchifFs (Feulgens) stain

30 sec - 1 min. 

30 sec - 1 min.

1 min.

2 min.

5 min. (x 2)

10 min.

5 min.

10 - 30 min. 

(Until brick red)

10) Wash in running water until clear
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11) Celestine Blue 5 min.

12) Haematoxylin (Meyer's) 5 min.

13) Wash in running water until blue

14) Dehydrate to absolute alcohol

15) Clear in xylene 5 min.

16) Mount in histomount

RESULTS

Glycogen, mucin, etc bright red

Nuclei blue

General connective tissues yellowish
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APPENDIX 4

RADIOIMMUNOASSAY (RIA) OF PLASMA AND TESTICULAR

TESTOSTERONE:

Extraction of testosterone

All tubes are set up in duplicate. For the standard curve, the tubes 

consisted of total counts, normal bovine serum and standards TO to T9, and 

the quality control (QC) pools (low, medium, high, normal male and high 

female).

For the samples, testosterone was extracted from plasma and testicular 

homogenates: 2 measure of 100 pi of plasma (or 50 pi of testicular 

homogenates) were placed in two separate tubes. (For testicular homogenates 

- dilute with an equal amount (50 pi) of distilled water to make the volume to 

100 pi). Then, 3 ml of diethyl ether was added before agitating the mixture 

using a multi-tube vortexer for 3 minutes with a speed set to ensure that the 

lower aqueous phase is spun off the bottom of the tube.

The tubes were allowed to stand for 5 minutes at room temperature to 

separate the different phases (i.e. the lower aqueous phase and the upper ether 

phase); the lower phase was then allowed to freeze in a bath of methanol 

containing carbon dioxide pellets for about 30 seconds before decanting the 

solvent phase into another assay tube. The solvent was then allowed to 

evaporate in the ‘Buchler Vortex Evaporator’, thus leaving the testosterone as 

sediment at the bottom of the tube.
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Staining the testosterone

300 pi of 0.25% bovine serum albumen (NSB) in buffer pH 7.4 

(prepared fresh for each assay) was added to each tube containing the dried 

testosterone sediment or control (without testosterone) followed by 100 pi of 

the primary antibody (1° antibody against testosterone raised in rabbit with 

titre 1:6000) and 100 pi of the radioactive tracer (125I-histamine-testosterone). 

The mixture was then briefly agitated and incubated for 1-2 hours at room 

temperature. Afterwards, 500 pi of doubled antibody reagent (Donkey anti- 

rabbit in rabbit serum) was added and then incubated at 4° C overnight.

Separation:

Finally, the assay tubes were centrifuged at 2,500 rpm for 25 minutes 

at 4°C. The supernatant fraction was then removed using a finely drawn out 

glass Pasteur pipette. Assay tubes were counted for sufficient time on the 

NEN 1600 gamma counter (linked to the Commodore 4032 computer and 

printer 4022) to accumulate 10,000 counts in the total count tubes. (NB: 

Where a 50 pi sample has been extracted, the result obtained should be 

multiplied by 2).
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APPENDIX 5

HTSTOKTNETTE AUTOMATIC TISSUE PROCESSOR

Fixed specimens were rinsed to remove as much fixitive as possible 

with three changes of 0.1 M phosphate buffer. Any bony components were 

decalcified with buffered 10% EDTA to facilitate cutting. Specimens were 

placed in separate histokinette baskets and labelled.

1) 70% ethanol 2 hours

2) 90% ethanol 2 hours

3) Absolute alcohol 2 hours (x 3)

4) Amyl acetate 2 hours (x 3)

5) Wax bath 2 hours (x 2)

Multi-tissue specimens were subjected to vacuum extraction to get rid of air 

which may be present. After embedding in wax they could then be sectioned 

once properly set.
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APPENDIX 6

HAEMATOXYLIN & EOSIN STAINING

Slides should always be left overnight in an oven at 37° C (for fragile tissue a 

further 2 hrs in an oven at 56° C) to prevent sections floating off.

1) Place slides in xylene to dewax 10 min.

Hvdrate:

2) 1 st Absolute Alcohol 30 sec - 1 min.

3) 2nd Absolute Alcohol 30 sec - 1 min.

4) 90% Alcohol 1 min.

5) 70% Alcohol 2 min.

6) Wash in water 5 min. (x 2)

7) Haematoxylin (Mayer’s or Harris’s) 4 - 5  min.

8) Wash in water 30 sec - 1 min. (x 2)

9) Differentiate in 1% Acid Alcohol a dip

10) Wash in water 30 sec - 1 min.

11) Blue in Scotts. Microscopic check. If haematoxylin is too heavy further 

differentiation in acid alcohol is required

12) Wash in water 30 sec -1 min. (x 2)

13)Eosin 1 - 2 min.

14) Wash in water 30 sec -1 min. (x 2)

15) Dehydrate to alcohols

16) Mount in histomount
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Staining times are a guide. Microscopic examination is essential

RESULTS

Nuclei - Blue

Other tissues - Varying shades of pink and red
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APPENDIX 7

PROCESSING TISSUE FOR SCANNING ELECTRON MICROSCOPY

1) Specimens rinsed with 0.1M phosphate buffer 30 min. (x 3)

2) Post-fixed with 1.0% buffered OsC>4 30 min. - 1 hours

(osmium tetrahydroxide)

3) Rinse again in 0.1M phosphate buffer 

Dehydrate:

4) 50 % Acetone

5) 70 % Acetone

6) Acetone

7) *HexaMethyl-DiSilazane

8) Leave to evaporate

9) Mount on stub and coat with gold

* For smaller specimens, HexaMethyl-Disilazane is sufficient to dry the 

specimens. Bigger specimens require critical point drying using liquid CO2 .

30 min. (x 3)

2 hours 

2 hours 

2 hours (x 3)

1 - 1 V2 hours 

overnight (-16 hours)
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APPENDIX 8

IMMUNOCYTOCHEMICAL STAINING FOR ANDROGEN

RECEPTORS

1) Dewax sections and hydrate to water

2) Ring individual sections with a wax pen

3) PBS rinse

4) Blocking serum (1% NGS)

5) Primary antibody in diluent

6) PBS rinse

7) Biotinylated secondary antibody in diluent

8) PBS rinse

9) ABC complex

10) PBS rinse

11) Phosphate buffer 0.1M PB

12) DAB + 1% H20 2 to conc. of 0.01%

13) PB rinse

14) Dehydrate, clear and mount.

5 min. (x 3) 

60 min. 

overnight 

5 min. (x 3) 

60 min.

5 min. (x 3) 

60 min.

5 min. (x 3) 

5 min.

5-10 min.

5 min. (x 2)
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0.3% Triton in PBS: 30 pi Triton in 10 ml PBS 

Blocking serum: 1% goat serum in PBS with 0.3% Triton 

10 pi goat serum + 990 pi 0.3% Triton/PBS 

Antiserum diluent: 1% goat serum in PBS with 0.3% Triton 

10 pi goat serum + 990 pi 0.3% Triton/PBS 

Primary antibody: Androgen Receptor antibody

Dilute in above diluent - dilution used was 1:30 

Biotinvlated second antibody: (anti-Rabbit Ig)

5 pi antibody in 1 ml diluent 

ABC reagent: 1 ml PBS + 20 pi reagent A + 20 pi reagent B

Mix well immediately and allow to stand for > 30 min 

DAB solution: 1 aliquot DAB + 50 ml PB + 7.5 pi H20 2 and filter (used 

immediately)

Dip sections between 5 - 2 0  min - depends on colour.
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