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Abstract

In this thesis, the form of baryon-baryon interactions is investigated using 
a non-relativistic quark potential model, within the framework of the shell 
model. It describes the further development of the previous quark model stud­
ies carried out by the group. The two nucleon (or baryon) system is treated as 
a system of six quarks, split into two clusters. A two-body interaction poten­
tial based on gluon exchange between individual quarks is introduced, along 
with a phenomenological confinement potential. The energy of the system is 
calculated for different values of the cluster separation, to build up a picture 
of the overall interaction. The model is then extended to include 6q(qq) con­
figurations in the model space, as a crude approximation to describing the 
meson excitations which are essential to a full description of the interaction. 
An appropriate potential is included to describe these qq excitation effects.

Chapter 1 provides an introduction to the nucleon-nucleon interaction and 
the quark model in general, and describes non-relativistic quark potential mod­
els. Chapter 2 gives background information on the shell-model and its appli­
cations and goes on to describe how such models from nuclear physics have 
been carried over into quark model calculations. It also gives more details of 
previous work in the area. In chapter 3, the theory behind the model and the 
details of its implementation are discussed in detail. Chapter 4 describes the 
gluon exchange potentials used in the model and the calculation of the matrix 
elements associated with them. The results of the calculations and analysis of 
the wavefunctions are given in chapter 5. In chapter 6, we examine the results 
in more detail and end with a critique of the model as it currently stands.
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Chapter 1 

Introduction

1.1 The Nuclear Force and the Quark M odel

The atomic nucleus is built up of protons and neutrons (or nucleons) and is 
held together by the nuclear force between them - the nucleon-nucleon (N N )  
interaction. In 1935, Yukawa put forward his meson theory of the nuclear force 
[3, 4]. In analogy with the theory of the Coulomb force, which arises from the 
exchange of photons between charged particles, he postulated the existence 
of a new particle, the 7r-meson, or pion and suggested that the nuclear force 
was a result of these particles being exchanged between nucleons. The main 
difference is that the photon is massless, giving rise to an infinite range force, 
whereas the pion has a mass and the nuclear force only acts over a short 
range. Yukawa showed that the force was of the order e~^T/r  and he was able 
to obtain a reasonable estimate of the pion’s mass, p, using estimates of the 
range of the nuclear force which was roughly known at the time.

Later, the existence of other, much heavier mesons such as the p and u  was 
also predicted. These are exchanged at short range and also have an effect 
on the N N  interaction. The u  exchange is strongly repulsive and is thought 
to be one of the main ingredients of the strong repulsive core which is such a 
major feature of the interaction -  see figure 1.1.

At the Stanford Linear Accelerator Center (SLAC) in the late 1960’s, data 
from deep-inelastic electron-nucleon scattering experiments showed that nu­
cleons are themselves composite particles. These were analogous to Ruther-

1
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Figure 1.1: The Nucleon-Nucleon interaction (15o Channel)

ford’s famous alpha-particle scattering experiments which revealed the exis­
tence of the atomic nucleus at the beginning of the century. Since then, var­
ious neutrino-nuclear scattering experiments have also provided evidence for 
the existence of point-like particles within the nucleon [5]. The discovery of 
these so-called partons 1 gave a new physical significance to the quark model 
of Gell-Mann and Zweig, which we discuss below.

1.2 M ultiplets and Unitary Symmetry

Before the experimental evidence for partons was obtained, the known parti­
cles had been classified according to the symmetries they exhibited in their 
properties. On examining the spectrum of known particles, it was found that 
they could be grouped into families which had the same spin and parity, and 
almost the same mass, the only difference between the members of each fam-

1The name originally used by Richard Feynman for the point constituents of the nucleon
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ily being their electrical charge. The classic example of this is the well known 
isospin symmetry — the proton and neutron form an isospin doublet and the 
three pions (7r_ ,7r°,7r+) an isospin triplet. Isospin was originally described 
using the isospin quantum number, T, which obeyed the same mathematics 
as spin. The nucleon has T  = \  and comes in two forms: the proton (isospin 
up, Tz =  + |)  and the neutron (isospin down, Tz = — |) .  Similarly, the pion 
has T  =  1, and Tz can take the values 1, 0 or -1.

Symmetries of this kind in particle physics can also be depicted using 
group theory. Specifically, isospin is associated with an underlying SU(2) 
group structure 2. The multiplets of particles are then described by the rep­
resentations of the group. The fundamental representation -  called the 2 rep­
resentation -  of SU(2) is an object which can exist in two states, labelled up 
and down or (u, d). This describes the nucleons. The equivalent basic repre­
sentation (J, u) describes the antinucleons. Other representations of the group 
can be formed by combining these basic representations — in particular, com­
bining 2 and 2 gives a triplet (the pions) and also a singlet which is the rf  
meson 3.

In this way, SU(2) can be used to describe many of the hadrons using just 
the isospin quantum number. However, when strange particles were discov­
ered, a group of larger dimensionality was needed and the use of SU(3) was 
suggested, giving rise to the strangeness quantum number.

The fundamental representation of SU(3) is three dimensional. As be­
fore, combinations of the 3 representation describe the multiplets of particles. 
Mesons are combinations of 3 and 3, producing a singlet and an octet (often 
just called a nonet). Examples of these are the familiar pseudoscalar and vec­
tor meson nonets. Baryons are a combination of three 3 representations which 
leads to baryon singlets, octets and decuplets.

This system of describing hadrons using SU(3) multiplets was useful in 
bringing some order to the large numbers of particles which had been discov­
ered. It also led to the prediction of the existence of the Q-  as well as its mass 
and quantum numbers from its position in the baryon decuplet.

2SU(2) -  the Special Unitary group in 2-dimensions -  is the group of rotational transfor­
mations in isospin (or real) space

3 2 is the conjugate representation (d,u).
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1.3 The Quark M odel

In 1964, Gell-Mann and Zweig both independently realized that the 3 rep­
resentation could be thought of as describing a triplet of more fundamental 
constituent particles from which the known hadrons were constructed. Gell- 
Mann called these particles quarks. The three types, or flavours, of quark are 
labelled up, down and strange (u, d , s)4.

In this picture, baryons are systems of three quarks (qqq), while mesons 
consist of a quark-antiquark pair (qq). The quantum numbers of these new 
particles can be ascertained from those of the members of the baryon decuplet 
(details can be found in [5]). In particular to give each baryon the correct 
spin, the quarks must each have spin 1/2.

Although the idea of hadrons being constructed of quarks was not given 
much credence in the early days, this changed with the experiments mentioned 
above and the discovery that hadrons really did appear to be composite par­
ticles. Quarks are now seen as being the true constituents of mesons and 
baryons.

1.3.1 Further Flavours of Quark

The SU (3) quark model adequately describes the particles which were known 
at the time of its inception and is more than sufficient for the particles we 
shall be studying in this work. However, for completeness’ sake, it should be 
noted that further experimental discoveries and advances in theory have led to 
the introduction of an additional three quark flavours and associated quantum 
numbers — c, b and t, for charm, bottom (or beauty) and top (or truth). The 
quantum numbers of the full six-quark family are given in table 1.1.

1.4 Coloured Quarks

As we have described it so far, the quark model is in fact incomplete. We 
can see this immediately by examining some of the members of the baryon

4These three flavours were all that was required to describe the known hadrons at the 
time. Later discoveries of new particles necessitated the introduction of additional flavours
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u d s c b t
Charge, Q (units 2/3 -1/3 -1/3 +2/3 -1/3 + 2/3
Isospin, T 1/2 1/2 0 0 0 0
Tx z 1/2 -1/2 0 0 0 0
Strangeness, S 0 0 -1 0 0 0
Charm 0 0 0 1 0 0
Bottom 0 0 0 0 1 0
Top 0 0 0 0 0 1

Table 1.1: Properties of the different quark flavours

decuplet more closely. The A - , A++ and Cl~ are made up of three S-wave d, 
u and s quarks respectively. Like all the members of the decuplet, they have 
spin 3/2, so to achieve this the three quarks must all have their spins aligned 
in parallel.

On theoretical grounds, we expect quarks to be fermions since baryons 
(consisting of 3 quarks) are fermions. Therefore they should obey the Pauli 
exclusion principle and it should not be possible for them to exist in the same 
state. So the three baryons in question would appear to be forbidden states.

An alternative explanation is that there is another hidden degree of freedom 
for the quarks, which must have at least three different values. If the quarks 
are in different states of this additional degree of freedom then the states are 
no longer Pauli forbidden.

This additional quantum number is called colour and the three possible 
colours are usually labelled red, green and blue, the primary colours of white 
light. This analogy stems from the fact that hadrons are colourless — only 
those in which the colour quantum numbers of the quarks cancel to give zero 
are observed. This picture also explains why only combinations of 3 quarks or 
quark-antiquark pairs produce physical bound states, since only these combi­
nations can be colourless.

The significance of the colour quantum number goes much deeper than 
just satisfying the exclusion principle or explaining why quarks only bind in 
particular combinations. In fact, it is seen as being the true source of the strong 
interaction — the colour quantum number is the underlying “charge” , playing
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the same role as electric charge in the electromagnetic interaction. In the same 
way that the electromagnetic interaction is the exchange of photons emitted 
and absorbed by electric charge, the true strong interaction is the emission 
and absorption of bosons called gluons emitted and absorbed by colour charge. 
So the nuclear force which was once thought to be the fundamental force of 
the strong interaction is now seen as being due to the residual effects of the 
true strong force between quarks. A suitable analogy is the manner in which 
molecular forces between electrically neutral atoms arise as the remainder of 
the Coulomb force between charged objects.

There is also strong experimental evidence for the existence of colour. The 
results of electron-positron annihilation experiments are often quoted as an 
example, where the calculated value of

E = ^ (e+ e^ h ad ron s)  
a(e+e~ —» fi+ /x—)

is only consistent with experimental data if an extra factor of three is included 
to account for the colour degree of freedom. Details can be found in any good 
particle physics textbook, or see [6].

1.4.1 Quantum Chromodynamics

The theory of the strong interaction is called Quantum Chromodynamics (QCD), 
after the theory of Quantum Electrodynamics. The latter provides such an ex­
cellent description of the electromagnetic interaction that it was only natural 
that it should influence the search for the new theory. The most important 
features of QED that are taken over to QCD are gauge invariance and local 
gauge symmetry.

Like flavour, QCD is based on the idea that the three colours form the basis 
of an SU(3) group and it is hypothesised that only singlet representations of 
SU(3) colour are physically realised states. For states with three particles 
or less, only qq and qqq can form colour singlets, thus explaining why other 
combinations are not observed.

The gluons belong to an octet of SU(3) which means that they also carry 
colour. This is a major departure from the analogy with QED where the gauge 
boson which carries the force (the photon) does not have a charge. Gluons can
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thus interact with each other via the same colour forces that act on coloured 
quarks and should also be able to form colour singlet states composed of 
combinations of gluons or a mixture of gluons and quarks.

Gluon-gluon interactions have no analogue in QED, and lead to properties 
of the strong interaction which differ markedly from those of the electromag­
netic interaction.

In particular they are thought to be responsible for the property of asymp­
totic freedom whereby the strong coupling constant tends to zero as the mo­
mentum transfer of the scattering process increases — when looked at with 
very high energy probes, the quarks and gluons appear to be almost like free 
particles.

Traditionally in field theory, the calculation of quantities of physical in­
terest, such as scattering amplitudes and matrix elements, requires the use 
of perturbation theory where a power series in the coupling constant is used. 
Higher terms in the series represent more complicated possibilities for ex­
change of virtual gauge bosons between fermions. Collectively, these differing 
processes are represented by Feynman diagrams. In the case of QED, the char­
acteristic coupling constant (the fine structure constant) is small («  1/137) 
and the series converges rapidly and is relatively easy to sum.

A related consequence of the self-coupling of gluons in QCD is that the 
interaction between quarks increases with their separation. Higher order pro­
cesses will then become more important, making calculations using perturba­
tion theory impossible. This so-called infrared slavery is thought to be respon­
sible for the confinement of colour — the fact that we only observe colourless 
hadrons in nature and do not observe free quarks.

1.4.2 Quarkonium Potentials

A convenient illustration of these features of QCD can be found in the study of 
the heavy quark mesons charmonium (cc) and bottomonium (bb) which were 
first observed in the 1970’s. Their discovery was a major triumph of the quark 
model since the existence of the charmed quark had been predicted as far back 
as 1967.

As more charmonium states were detected, it was observed tha t its spec­
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trum bore a striking similarity to that of positronium (e+e“ ) which suggests 
that the potential describing the interactions might be of a similar form. The 
positronium spectrum can be described very well by solving the Schrodinger 
equation with a Coulomb potential and it was found that the energy levels 
of charmonium could be fitted using a “Coulomb plus linear” potential of the 
form

Vc(r) = ~  + br (1.4.2)

The first Coulomb-like term is due to one-gluon exchange, analogous to the 
1 /r potential arising from one-photon exchange in QED. The second term is 
negligible at short distances, in line with asymptotic freedom, but dominates as 
the particle separation increases, giving rise to a steadily increasing confining 
potential which prevents the particles from escaping.

Modern calculations use lattice gauge theory to give a proper interpretation 
of the mass of the nucleon and other hadrons. The hadron spectrum can now 
be obtained quite convincingly, but properties of multi-hadron systems such 
as the Deuteron, Triton and other nuclei are still beyond the scope of present- 
day calculations. Relativistic quark potential models have also been used. The 
simplest model however is the non-relativistic quark potential model in which 
the light quarks are given a mass of about 1/3 GeV. Although we believe that 
the quark masses are much less than 1/3 GeV and that this value is merely 
an effective mass, the model is surprisingly successful.

1.5 Non-Relativistic Quark Potential Models

“Astonishingly, the nucleon’s static properties appear to be quite 
successfully described by pretending that the nucleon is composed 
of three independent quarks each of 1/3 GeV” .

Frank Close

The quarkonium potentials discussed above work well for heavy quarks like c 
and b, but can potential models also be applied to light quarks systems such 
as the nucleon and other light baryons for which a non-relativistic treatment 
would seem to be difficult to justify? This might seem like a hopeless cause,
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but, as the above quotation from Frank Close indicates, a convincing fit of 
the light baryon spectrum can be obtained using models of this kind. This is

Baryon Theory Experimental
N 940 940
A 1110 1115
E 1190 1195

1325 1320
A 1240 1240
E* 1390 1385

1530 1535
n 1675 1670

Table 1.2: Comparison of non-relativistic quark model and experimental 
masses (in MeV) of ground-state baryons

illustrated in table 1.2, taken from [7]. The theoretical results agree very well 
with experimental values. As in the case of the quarkonium potential, colour 
confinement is achieved by means of a strong, confining potential which tends 
to infinity as the particle separation r tends to infinity. It is often expressed 
as an integer power of r. There is also a hyperfine interaction, as derived by

f\AAAAA/^

5

Figure 1.2: One-gluon exchange diagrams used in our model 

De Rujula, Georgi and Glashow [8], which is a non-relativistic approximation
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to the one-gluon exchange forces between two quarks. Its exact nature - the 
terms included and parameters used - varies between implementations.

This model can also be used for a calculation of the nucleon-nucleon in­
teraction [9], which is the remnant of gluon exchange between two 3-quark 
clusters, just as the Van der Waal’s forces between atoms are residues of the 
Coulomb interaction.

More details of the form of potential we use can be found in the discussion 
of potentials in chapter 4 — figure 1.2 shows Feynman diagrams for the terms 
relevant to our model. We include only one-gluon exchange terms for reasons 
given later. The first three terms are number conserving while the last two 
terms change the number of particles in the system. Term 1 in figure 1.2 
represents gluon exchange between two quarks, term 2 represents exchange 
between two anti-quarks and term 3 represents exchange between a quark and 
an anti-quark. Term 4 (5) represents processes in which a gluon, generated 
from a quark (anti-quark), annihilates to give a quark-antiquark pair. The 
quark masses used tend to be about a third of the nucleon mass, in contrast 
with relativistic models, where they are just a few MeV. These, so called 
constituent masses, can be thought of as being due to the energies associated 
with confinement [10].

In early calculations of this kind, the 3 quarks were confined to the OS 
shell and oscillator wavefunctions were often used. The next step was to try 
to calculate the spatial distributions of the baryons. An excited state requires 
a quark to be promoted from the OS shell to the P-shell - an energy of about 
500 MeV. The spectrum of excited states can be fitted quite well with the 
same potentials and spatial dimensions of wavefunctions.

It was found, however, that the rms charge radius of the proton was too 
small in these calculations and the question arises as to how it can be in­
creased. One possibility is that the proton wavefunction includes configu­
rations in which the quarks are excited into higher shells. Parity must be 
conserved, so one quark may be excited from the OS shell to the IS shell (or 
higher), or two quarks could be excited into the OP shell. Quite apart from a 
loss of potential binding energy, both these excitations require 2htu of kinetic 
energy («  1000 MeV) and are thus strongly inhibited.

An alternative process is the spontaneous creation of pions (which have
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free mass of only 140 MeV) in a P-state to conserve parity (as the pion has 
negative parity). These may be modelled as a qq pair and the most energet­
ically favourable configuration is to have the q in the OS shell along with 3 
quarks and the fourth quark in the P-shell tp give the correct parity. The 
energy required for this is low because of the strong attraction between the 
three quarks and the antiquark in the OS shell compensates for the mass energy 
increase associated with the two additional particles. The numerical estimates 
are strongly interaction dependent, but Ayat [11] finds that, for the nucleon, 
3q(qq) components contribute about 25% of the wavefunction while 3q excited 
states are an order of magnitude less. These qq components also improve the 
rms charge distribution. The length parameter can be too small to give the 
correct rms radius for a (OS)3 configuration on its own, but a quark in the OP 
shell increases the overall radius of the proton.

If antiquarks are pre-formed in the nucleon, it is a short step to speculate 
that they can couple with a quark to form a colourless pion-like object with 
a range unaffected by any colour confinement considerations. These objects 
cannot break free from the nucleon because this would violate conservation of 
energy, but they can exist for a time consistent with the Heisenberg uncertainty 
principle and this allows the possibility thet they are exchanged with another 
nucleon, giving rise to the possibility of an interaction mediated by colourless 
particles.

We will explore calculations of this kind in more detail at the end of chap­
ter 2, after we have discussed the use of the shell model, which underpins our 
implementation of the quark potential model for the N N  interaction.
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Chapter 2 

The Shell M odel

2.1 Introduction

In general, it is not possible to obtain exact mathematical solutions to describe 
a many-body system of n interacting particles. In some cases, however, it is 
possible to approximate the interaction of one particle with all the others by an 
average central potential. The problem is then reduced to solving this single 
particle problem for each of the particles in the system. The description of a 
system of interacting particles in terms of independent particles moving in a 
central field is called a shell model.

In this chapter, we first review the development of the shell model for 
systems of electrons, nucleons and quarks. In nuclear physics, the shell model 
gives very good answers for some types of data, and poor answers in other 
cases. The results are briefly discussed as they give some indication of what 
may be expected in quark shell model calculations.

2.2 The Hartree Approximation

Perhaps the best example of a shell model can be seen in the electron system 
of an atom. The atomic electrons can be thought of as moving in the Coulomb 
potential due to the nuclear charge. The solution for a single electron moving 
in such a field will display a familiar hydrogen-like series of orbits. As more 
electrons are included in the system, occupying these orbits, the spacing and

13
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order of these levels will change as the attractive field of the nucleus is modified 
by the mutual repulsion of the electrons. The Hartree theory [1 2 , 13] provides 
a means of calculating the net central potential V(r) experienced by each 
electron. A first approximation is made, namely

Ze2 r -»• 0
V’(r) =  { * * T  (2.2.1)

" W  r ^ ° °

with some interpolation between the two values for intermediate r values. This 
is based on the assumption that an electron very near the nucleus feels the full 
Coulomb attraction of the charge + Z e , while very far from the nucleus it would 
feel a net charge of +e due to the shielding effect of the charge —(Z  — l)e  of 
the other electrons surrounding the nucleus. The Schrodinger equation is then 
solved for a typical electron, obtaining a set of single particle eigenstates. The 
ground state of the atom is then constructed by filling these with its electrons, 
giving the lowest energy value which satisfies the Pauli principle that no two 
electrons should occupy the same state. The charge distribution of the atom 
can then be evaluated as the sum of the individual Z  — 1 electron charge 
distributions 1 and that of the point nucleus, as seen by a typical electron.

Gauss’s law is then used to calculate the electric field due to this distribu­
tion, allowing a new approximation to the original potential to be obtained. 
The above steps can then be repeated in an iterative process until a converged 
value of the net potential is obtained.

2.3 The Nuclear Shell M odel

The Coulomb potential of the nucleus forms an obvious dominant potential 
for the multi-electron atom and it isn’t too difficult to imagine that the system 
can be reasonably described by a net central potential obtained by modifying 
this. However, in the case of the nucleus, there is no equivalent potential and 
it is not immediately apparent that a central field will provide a good basis for 
a nuclear model. In fact, there was initially little hope that the application of 
a shell model to nuclei would be a success. The most popular nuclear models

1For each electron, this is just the product of the electric charge —e and the probability 
density of the electron ip*ip, (where ip is the electron’s eigenfunction).
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were of the “liquid-drop” type and the idea of the nucleus as an unstructured 
drop of incompressible liquid was at odds with the central assumption of the 
shell model, namely that the nucleons mover more or less independently. The 
short range nature of the nuclear force made the idea of an average field acting 
on each nucleon seem highly unreasonable and it was thought that the motion 
of a nucleon would be heavily influenced by the effects of its nearest neighbours 
and essentially unaffected by nucleons more than a few fermis away.

Experimental results, though, did point towards some shell structure of the 
nucleus, particularly the discovery in the 1930’s of so-called magic numbers of 
protons or neutrons

Z, N  = 2,8,20,28,50,82,126 (2.3.1)

which correspond to unusually stable nuclei. Nucleons with a magic number 
of protons and neutrons are exceptionally stable. This is directly analogous to 
the closed-shell effect displayed by the noble gases in atomic physics. It was 
also observed that the first proton or neutron beyond such a number was less 
tightly bound, again in direct analogy with atomic physics, where atoms with 
single electrons outside closed shells have the lowest ionization energy and are 
more chemically active.

Despite this evidence, no form of the central potential could be found which 
gave the correct ordering of energy levels to explain the magic numbers. A ma­
jor advance was made in 1949 by Mayer, and independently by Jensen [14, 15] 
who introduced the concept of a nuclear spin-orbit interaction -  much stronger 
than the equivalent interaction in atomic physics and opposite in sign. When 
combined with a harmonic oscillator or square well potential, the resultant 
splitting of the energy levels not only reproduces the magic numbers, but 
also gives a good description of many other nuclear properties. These single­
particle energy levels have the characteristic of occurring in groups separated 
from each other by energy intervals which are large compared with the typical 
energy difference between the levels of each group. These groups are the shells 
which nuclear physicists refer to.

The single-particle potential experienced by a nucleon is thought of as an 
average potential resulting from all the two-body interactions between the 
nucleon and the others in the nucleus. Such a potential cannot completely
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replace the physical interaction but can represent the main features.

2.4 Two-Body Interactions

Mayer and Jensen’s shell-model identifies each nuclear level with a single con­
figuration, corresponding to one nucleon in one single-particle orbit. It can be 
further improved by the addition of a two-body interaction as a perturbation 
to the single-particle Hamiltonian. This represents part of the total interac­
tion experienced by the nucleons that is not described by the main central 
potential or the spin-orbit interaction. For this reason it is usually referred to 
as a residual interaction.

2.4.1 Configuration M ixing

Modern shell model calculations incorporate configurations that arise from 
protons and neutrons occupying several different partially filled orbits. The 
two-body interaction can change the orbits in which the particles move, giving 
rise to what is known as configuration mixing. The nuclear states are then no 
longer described by only one pure configuration. Instead, the nucleus has 
only a certain probability of being in a particular configuration for any given 
state. The most common approach is to apply the residual interaction to the 
valence nucleons 2  and treat those in filled shells as being part of an inert core. 
The implication is that the low energy properties of the nucleus are largely 
determined by the nucleons in the valence shell. In this model, the absolute 
binding energies are not usually of interest because they depend on features 
of the core which is not modelled in detail.

The inclusion of a residual interaction and configuration mixing produces 
a significant improvement in the results obtained using the shell model.

2.4.2 Form of the Two-Body Interaction

Two-body m atrix elements for use in the shell model can be obtained in dif­
ferent ways. The most common approaches are

2The nucleons in levels beyond the last, completely filled shell
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• To derive a nucleon-nucleon interaction from two-nucleon scattering data 
and the properties of the deuteron, or

• To fit the matrix elements to empirically known energy levels.

In the latter case, an explicit form of the interaction isn’t needed and it has 
the additional advantage that the matrix elements are automatically optimised 
for the particular shell-model space that is in use. However, the number of 
parameters in such a process may be considerable -  since there may be cases 
where the matrix elements are strongly dependent on the set of data being 
used, it is advisable to use many more data than the number of matrix elements 
being fitted. For example, Wildenthal has performed a fit to 447 energy levels 
of states in the sd-shell, which has 63 two-body matrix elements and obtains 
an rms error of only 2 0 0  keV per level. As might be expected, this method will 
generally give the best results in energy spectrum calculations. In addition, 
it is found, somewhat unexpectedly that the resulting wavefunctions also give 
good results for electromagnetic moments and transitions.

The other option is to start with a parametrized form of the free nucleon- 
nucleon interaction and attem pt to fit this to match the phase shifts which are 
observed in nucleon scattering experiments and some of the observed prop­
erties of the deuteron, such as its binding energy. Unfortunately this leads 
to problems which arise because of the “hard core” nature of the nucleon- 
nucleon potential -  i.e. it becomes highly repulsive at radial distances less 
than a certain core radius and tends to infinity as we approach the origin. 
This leads to divergent values of matrix elements when calculated with the 
unmodified single-particle wavefunctions. This problem can be avoided by 
carefully modifying the wavefunctions to make them vanish whenever the par­
ticles are within the hard core radius. Finally, the interaction must also take 
account, if possible, of the truncation of the model space (since higher shells 
will have some effect) and also of the presence of the “inert” core, which has 
an influence on the interaction between valence nucleons. Details of these 
complicated calculations can be found in [16].

It is because of these modifications that the interactions of this kind which 
are actually used in shell-model calculations are usually referred to as effective 
interactions.
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2.4.3 M agnetic M om ents

The nucleon has a magnetic dipole moment, /x, which is defined by the operator

where gs and gi are the nuclear spin and orbital p-factors respectively3. This 
operator depends only on the way in which the spin and orbital angular mo­
mentum are combined to form the total angular momentum. When used to 
calculate the magnetic moments of various nuclei, it provides an excellent in­
dication of the benefits of configuration mixing -  the calculations in a full 
IsOd-shell basis show a great improvement over the single-particle model, as 
shown in the top diagram of figure 2 .1 , which compares experimental results 
(y-axis) with those obtained from shell-model calculations (x-axis). The full-sd 
shell calculation results are shown on the right-hand side. This figure (bottom 
diagram) also shows that there is little difference between the results with 
the operator as used in its free-nucleon form (left-hand side) and an effective- 
operator version (right-hand side). In fact, the matrix elements calculated 
from the free-nucleon operator agree quite well with those predicted from ex­
perimental values of magnetic moments, though using the effective operator 
does give some improvement.

2.4.4 Electrom agnetic Transition Rates

Electromagnetic transition operators depend on the spatial extent of the par­
ticle wavefunctions. For example, the E2 transition operator is proportional 
to

where e is the charge, and r, 9, </> are the spherical-polar coordinates of the 
particle. The results are thus strongly dependent on the radial wavefunctions 
and the use of harmonic-oscillator wavefunctions is inadequate -  the results 
obtained are too small by a factor of about 4. The use of an oscillator basis 
is popular because it leads to an enormous simplification in the calculation

3These have different values for protons and neutrons, see for example [17].

M =  9sS +  gil (2.4.1)

er2Y20(ff, <j>) (2.4.2)
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Figure 2 .1 : Shell-model calculations of nuclear magnetic moments, from ref­
erence [1 ]

of matrix elements, due to the fact that the system can be split into co­
ordinates which describe the relative and centre-of-mass motion separately (see 
reference [18] and “the calculations in appendix A). The occasional excitation 
of particles into higher shells, or from the core have a large effect on (r2). This 
can be compensated for to some extent by the use of effective operators (most 
easily achieved by substituting effective charges for the free proton and neutron 
values) but the results are still not as good as those for nuclear magnetic 
moments, as can be seen from figure 2 .2 .

In a purely single particle model, two-body correlations are not well de­
scribed, as we would expect. The infinite repulsive core in the N N  potential
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Figure 2.2: Shell-model calculations of E2 transition matrix elements, from 
reference [2 ]

does not allow two nucleons to occupy the same point in space, but a single­
particle wavefunction does.

2.5 Quark Shell M odels

In this work, we are applying the shell model framework to a completely 
different sphere of physics -  the aim is to use it to perform calculations using 
the non-relativistic quark model. If we assume that a non-relativistic approach 
is justified in the first place (see section 1.5) then the shell model has some 
useful qualities which make it attractive for such calculations

• It provides a convenient means of handling a many-particle system -  
for a two-nucleon problem we have six quarks and when single-meson 
excitations are added, we can have up to 8  particles in the system.

• The Pauli Principle is automatically satisfied.
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• The gluon-exchange potential between the quarks can be incorporated 
as a two-body shell model interaction.

In addition, quarks in the standard model are considered to be point-like par­
ticles, so the shell model postulate that they move essentially as free particles 
in an average potential is perhaps less open to criticism than in the nuclear 
case. In moving from electron to nucleon calculations, the shell model had to 
be extended to include isospin. In moving to quark model calculations, the 
model has to be extended to include colour, intrinsic parity and strangeness if 
necessary. An implementation of the model must also cope with basis states 
having different numbers of particles (if qq pairs are being included), which is 
not addressed in traditional nuclear physics.

The single-nucleon system is the most obvious starting point for calcula­
tions of this kind and, indeed, it has been shown that a reasonable description 
of the light baryon spectrum can be obtained by a shell-model NRQPM 4  

treatment of a 3-quark system [11, 19, 20].

2.5.1 Nucleon-Nucleon Calculations

Attempts have also been made to describe two-nucleon system, using a six- 
quark system, also with some success. Investigations are often carried out in 
a similar fashion to that used in nucleon cluster models. An example would 
be the calculation of the interaction energy of two alpha particles [21]. The 
centres of the alpha particles are separated by a fixed distance, and a complete 
set of wavefunctions is constructed around each centre. Single particle orbits 
are then made from a linear combination of these wavefunctions [22]. The 
system is studied in a Born-Oppenheimer approximation which assumes that 
the relative motion between the two centres is slow compared with the internal 
motion of the quarks in each cluster [23].

Another technique which is frequently used in studying the N N  interaction 
is the resonating group method (RGM) calculation. This is another method, 
originally developed by Wheeler [24] which was used in nuclear physics to di­
rectly calculate the phase shifts in scattering experiments. Good agreement

4Non-Relativistic Quark Potential Model (see section 1.5)
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between the experimental and calculated results can be obtained for phenom­
ena such as a a  scattering and the results are insensitive to the exact nature 
of the potential used to describe the interaction between the nucleons. It was 
then speculated that such techniques could also be used to describe nucleon- 
nucleon scattering, using two three-quark clusters and specifying supplying 
a potential for the quark-quark interaction. Full details of the complicated 
calculations involved can be found in [25].

Liberman [9], in 1977, was the first to publish results of a calculation of this 
kind. He found repulsion at short distances with cores of heights 350 MeV and 
450 MeV for 3 5  and 1S  interactions, respectively. He concluded that it was 
indeed possible to qualitatively reproduce the saturation property of nuclei, 
that is, the repulsive core at short range. However, his work was criticised for 
only taking into account the fully symmetric spatial representation with all 
six quarks placed in the OS state and in 1981, Harvey [26] published results of 
his calculations which included configuration mixing -  as well as the pure NN  
configuration, he included NA, AA and hidden colour states 5. Unfortunately, 
this apparent improvement in the model space led to drastic reduction in the 
height of the repulsive core. In fact, with Harvey’s full set of configurations 
included, he found a slight attraction in evidence at the origin. He concluded 
that, although configuration mixing seemed to be the physically correct way 
to proceed, it led to disappointing results.

The situation was remedied in further calculations and was blamed on 
Harvey’s inappropriate choice of parameters for the model space he was using. 
In particular, the energy of the nucleon should be minimised with respect to 
the oscillator-length parameter used, the so-called “stability condition” [27]. 
The importance of this seems to depend on the nature of the basis used in 
the RQM calculations. Further calculations, including those done in Glasgow 
by Storm [28, 29] showed that the repulsive core could still be reproduced, 
although configuration mixing does reduce it substantially.

5 States which are colourless overall, but consist of two coloured fragments
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2.5.2 M eson Effects

One of the greatest drawbacks of quark cluster model calculations of this kind 
is that they are only capable of studying the very short range nature of the N N  
force, since the interaction is based purely on gluon exchange. It is already 
well established that the intermediate and long-range parts of the interaction 
are due mainly to the exchange of mesons so if we want to build a valid model 
of these regions, we cannot overlook the inclusion of meson effects. Many 
field theoretical studies of the N N  interaction have been performed where 
the quark degrees of freedom are ignored and the nucleons and mesons are 
considered as elementary particles. In fact Yukawa’s original theory of pion 
exchange mediating the nuclear force was inspired by the theory of quantum 
electrodynamics. This had shown that the long range of the Coulomb force is 
due to the fact that the photons which are the carriers of the force have zero 
rest mass. Yukawa adapted the theory to the case of the short-ranged nuclear 
force by assuming that the exchanged particle has a non-zero rest mass. The 
nuclear potential he derived can be written as

V(r)  =  —g2—^— (2.5.1)

where

The range, r ', of the potential was approximately known from experiment 
(«  1.5 fm), enabling the mass of the exchanged particle, (jl to be estimated. 
The constant g2 gives a measurement of the overall strength of the potential 
and can again be determined from experiment. This potential alone gives a 
good description of the long-range part of the nuclear force, since the pion is 
the lightest meson that can be exchanged. At medium range ( 2  - 4fm), the 
situation becomes more complicated, as the effects of forces due to heavier 
mesons and of multi-pion exchange come into play. Early studies of the two- 
nucleon problem, for example [30], were usually content to treat this region 
phenomenologically to avoid over-complex calculations. Later, however, it 
was realised that multi-meson systems often displayed strong resonances and 
could satisfactorily be treated as a single boson. An example of this approach 
is the use of the so-called a-meson which has been used to describe two-pion
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exchange. These meson-field calculations have been continually refined over 
the years and a large body of work exists in this area. Detailed reviews are 
given in [31, 32].

For the short-range force between nucleons, meson-effects alone are no 
longer enough for a complete description. The structure of the nucleons them­
selves has to be included and this involves developing models based on the 
quark sub-structure of the nucleons, as discussed above. A lot of work has 
also been done by the likes of Faessler [33] and Oka and Yazaki [25], in com­
bining the two approaches, leading to six-quark models supplemented by the 
addition of one and two-pion exchange potentials. These hybrid models have 
been able to give some remarkably good results, see for example [34, 35], but 
they are ultimately unsatisfactory in that they do not make a natural connec­
tion between the quark and mesonic degrees of freedom. We know that mesons 
are not fundamental particles, but are composed of quarks and antiquarks, so 
a full description must take this underlying structure into account.

An alternative approach has been adopted by Hecht and Fujiwara [36], 
who have applied the philosophy that a model in which baryons and mesons 
are described in terms of their common constituents is preferable to one in 
which quarks and meson fields are treated as separate entities. They have 
included mesonic degrees of freedom by incorporating quark-antiquark exci­
tations directly into the model space. Potentials derived from the qq creation 
terms of the basic quark-gluon Lagrangian can then be used to couple the Qq 
configurations of the system to the new Qq(qq) components.

Hecht and Fujiwara’s initial studies involved RGM calculations including 
single qq excitations in the model space. Their results showed a greatly reduced 
repulsive core from what would have been expected with an equivalent Qq 
model. There was also some evidence of medium range attraction though not 
enough to bind the deuteron. In later work, they extended these calculations 
to include two qq excitations, thus permitting the study of effects attributed 
to the <r and <5 mesons of conventional meson field theory (see above).
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2.5.3 Previous Work at Glasgow

The work in this thesis has its foundations in previous work carried out in the 
Glasgow group by Marion Storm [28, 29], Siraj Malik [37] and Leila Ayat [1 1 , 
38].

Storm’s work was motivated by the studies of Harvey and his contempo­
raries, the aim being to investigate what contributions could be made to the 
field by applying the shell-model method originally developed at Glasgow for 
studying nuclei [39]. She performed calculations of the N N  interaction with 
a six-quark system and showed that by choosing the oscillator parameter to 
minimise the nucleon mass, a repulsive core at the origin could be obtained, 
even with configuration mixing included.

As we have said above, the medium and long range part of the interaction 
cannot be described without including the mesonic degrees of freedom in the 
model. Ayat’s work made use of the ideas of Hecht and Fujiwara, including 
qq excitations in a study of single baryon systems. She implemented a shell 
model which could deal with a variable number of particles and could handle 
antiquarks as well as quarks. She also extended the model to include strange 
quarks, which meant the model also had to be able to handle particles with 
different masses. She was able to perform calculations with up to two qq 
excitations before basis sizes became prohibitively large. She was able to 
obtain measurements of different configuration mixings; in the case of the 
nucleon, the model predicted a dominant 3q component, accounting for 73 % 
of the wavefunction, with 3q(qq) and 3q{qq)(qq) making up 22 % and 5 % 
respectively. It predicted hardly any strangeness in the nucleon wavefunction.

The aim of the present work is to combinine the models of Storm and Ayat, 
incorporating the quark-antiquark excitations into the two-centre calculations, 
and studying the effect they have on the N N  interaction.

Mesons, explicitly included as qq pairs in the model give strongly interact­
ing objects of low mass which can be exchanged over relatively long distances 
because they are colourless. They are the appropriate vehicles of the long 
range part of the interaction — other effects such as excitation of the core 
quarks to form A particles may be important but will not contribute much 
to the long range interaction, so it is still of value to perform calculations of
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this kind without these other effects included in the model. In addition, it 
has already been shown in the work which preceded this study that the effects 
of expanding the shell-model space are substantially less than the effects of 
adding qq pairs. Ayat [11] found the nucleon mass to be 1249 MeV in the OS 
space. Adding the OP and (IS OD) shells gave an energy of 1198 MeV and 
adding the (IP  OF) and (2S ID OG) shells reduced it further to 1129.7 MeV.

As we move towards applying the quark shell model to more complex 
systems, such as those which include meson configurations, the inadequacies 
of the approach are more likely to manifest themselves in the results. A 
model which gives reasonable results when used to study single baryons, or 
when treating the N N  intraction as a six quark system may not be able to 
adequately describe the complexities of meson exchange between two baryons. 
Such effects are also more likely to depend on the spatial wavefunctions, so 
the inadequacy of the oscillator basis may become apparent, as in the case of 
the electromagnetic transition rates in the nuclear model (section 2.4.4).

Nevertheless, in the absence of more solid methods, it seems worthwhile 
pursuing such avenues of investigation as far as possible to find out just how 
much information on multiquark systems they are capable of providing.



Chapter 3

The M odel and its 
Im plem entation

“My means are sane, my motive and my object mad” .

Captain Ahab, Moby Dick.

3.1 Introduction

In this chapter we give a description of the main features of our model and the 
analytical and computational techniques required to carry out our calculations. 
More information as well as details of the program code used to implement 
the model can be found in the technical appendix C.

The basic process involves the construction of a Hamiltonian for our system 
of two baryons and its diagonalization to obtain the energy eigenvalues. This is 
carried out within the framework of the Glasgow Shell Model Code [39] which 
is characterised by the use of an “m-scheme” basis of Slater determinants for 
the model space and the use of the Lanczos Algorithm to find the eigenvalues.

Since we are dealing with two nucleons, the model uses a two centre ap­
proach. We use an oscillator basis for the spatial wavefunctions since this is 
physically reasonable for localised states and these wavefunctions greatly sim­
plify the calculation of matrix elements for the problem, since it enables the 
use of relative and centre-of-mass coordinates (see appendix A). Three dimen­
sional harmonic-oscillator wavefunctions are constructed around each centre

27
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and the addition of spin, isospin, colour and intrinsic parity—to differentiate 
between quarks and antiquarks—gives a complete set of quantum numbers for 
the single particle basis states.

These single particle states are then combined to make up the many par­
ticle basis of Slater determinants. Each Slater determinant has the same z- 
component of spin, z-component of isospin, parity and has two each of red, 
green and blue quarks, and any number of qq pairs (which must be colour and 
anti-colour). Individual slater determinants are not eigenstates of J 2, T 2 and 
the colour Casimir operator C 2.

The Hamiltonian can be written

+  <3 1 1 >I 1 % 1<J

The first two terms are the kinetic energy and centre-of-mass kinetic energy 
operators. These are discussed in more detail below in section 3.13. Term 
three is just the sum of the masses of the particles in the state. In addition 
to these, there is a two-body interaction potential, derived from QCD, which 
describes the interaction of quarks by gluon exchange and the creation of qq 
pairs. The Hamiltonian conserves angular momentum, isospin, parity and 
colour, but not particle number, and the resulting eigenstates of H  must be 
simultaneous eigenstates of J 2, T 2 and C 2.

The integrals for the various spatial matrix elements are calculated by hand 
(see chapter 4 and appendix A) and are used by the program to build the 
matrix representation of the Hamiltonian in the basis of Slater determinants. 
The Lanczos algorithm is used to reduce this to tri-diagonal form and it is 
then diagonalized using standard methods.

Once the eigenstates have been found, the expectation values of J 2, T 2 and 
C 2 are then evaluated to identify the states and also as a test for adequate 
convergence. Finally, projection operators are used to work out the number 
of particles and the quantum numbers for each cluster.

By performing the calculation for different cluster separations, the form of 
the interaction can be built up as a graph of the energy of the system against 
the two-centre separation.



3.2. THE SINGLE PARTICLE BASIS  29

3.2 The Single Particle Basis

Figure 3.1: Illustration of the model

3.2.1 Spatial Wavefunctions

If we choose our co-ordinate system so that the two centres lie on the z-axis 
at co-ordinates Z / 2  and —Z / 2 , then the normalised Gaussian wavefunctions 
for each of the clusters are

/+  =  ( ^ e x p ( ” ^ # 1 !)  (3 '2 -1}

/ -  = (^ p exp(“̂ # 1!) (3 -2 '2)

“C ” is the so called oscillator length parameter -  one of the main parameters
of the model. Here x  is the position vector of the particle and “k ” is the unit
vector in the direction of the z-axis. The situation is illustrated in figure 3.2.

As they stand, these are not orthogonal functions, and do not have definite 
parity, so we use a basis of the following normalised linear combinations of
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them in our calculations

with normalization factors N± given by

(3.2.3)

(3.2.4)

(3.2.5)

It should also be noted that <p+ and <f>- have even and odd parity respec-

is discussed in section 3.5.1.

3.2.2 Other Quantum Numbers

In addition to the spatial part, we require a string of other quantum numbers to 
represent a state completely: m s,m t are the ^-projections of spin and isospin 
respectively, c—the colour quantum number—which has three degrees of free­
dom, labelled red, green and blue (c € {r, g, b}  for quarks and c e {f, g, b} 
for antiquarks) and a number for the intrinsic parity of the particle; the value 
0 is assigned to a quark and 1 to an antiquark. If strange quarks are being 
included in the model space then the strangeness quantum number s is also 
required. Since we are only considering 5-states there are no orbital angular 
momentum quantum numbers (I, mi).
So the single particle basis states are

for antiquarks. To avoid confusion, such single particle states will be referred 
to as orbits.

tively. Transforming between the /  and (j) representations of the basis states

q) = | <f)±msmtcs0) (3.2.6)

for quarks, and
q) = | (f)±msm tcs 1 ) (3.2.7)
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3.3 The Many Particle Basis

3.3.1 Num ber of Particles

In all but the most trivial cases (ie without qq creation), our calculations 
involve using basis states with different numbers of particles and the final 
eigenvector which we obtain to represent our system will be a mixture of these 
components. For example, the wavefunction of a nucleon-nucleon system will 
take the form of a linear combination of 6 q, 6q(qq), 6q{qq)2, • • • states:

I N N ) =  I 69 )  +  E c /? 16t f t e ) >  +  E C 71 6q{qq) 2 ) +  •• • t3 -3 -1)
a p 7

Here | 6 g), | 6 q{qq) ) , . . .  are normalised and rapidly become more complicated 
as the number of qq pairs increases. The coefficients Cp and C7  provide a 
measurement of the importance in the wavefunction of the qq and q2q2 com­
ponents, respectively. In practice our ability to carry out calculations with 
two-meson excitations or more is limited, so the C7’s will usually be zero.

3.3.2 Slater Determ inants

The standard approach in the Glasgow Shell Model Code is to use Slater 
determinants (SDs) to represent the many-particle basis states. In the usual 
second quantization notation (see section 3.6), a determinant consisting of n 
quarks and n antiquarks is represented by

6 L + .6 L h .-i ' ' ■ ■ • ■ <4 1 0 ) (3-3-2)

Here | 0) is the vacuum state and a) and are creation operators for quarks 
and antiquarks respectively and the as represent a complete set of orbit quan­
tum numbers. To satisfy the Pauli Principle, the wavefunctions used must be 
antisymmetric and SDs are guaranteed to be antisymmetric. They also have
definite values of M s =  mSl+ m S2-| hmSn+s and Mt =   ,
but spin and isospin are not good quantum numbers.

When compiling our table of basis states, we need to take into account all 
acceptable configurations of the single particle orbits which can be linked by 
the transition potential. By “acceptable” we mean any combination of orbits
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which have the specified quantum numbers (Ms, Mt and strangeness, S) and 
an appropriate number of quarks and antiquarks. These are chosen at the 
start of a calculation to match the system being studied.

As an example, consider how we construct the basis for a two-nucleon 
system. There are two possible spin values, S, for this system:

S' =  0, with Ms =  0 (3.3.3)

or
S =  1, with Ms =  1, 0 , - 1  (3.3.4)

If we choose basis states with Ms =  0, we will have both S =  0 and S =  1  

states represented in the calculation. This can lead to minor difficulties as 
they then have to be separated at the end of the calculation. This problem 
does not arise if we choose M s =  1 (or -1 ), in which case the S  = 0 state will 
not be obtained. Also, the number of basis states is smaller for Ms = 1  than 
for M s = 0. If the states with M s =  0 or -1 are required, they can be found 
from the one we have calculated by acting on it with lowering operators.

The selection of a value for Mt follows the same lines as choosing M s. The 
number of particles in the basis states will depend on whether we are allowing 
meson creation or not. If, for example, we are considering allowing single qq 
pairs to be created, then we will have n € {6 ,7} and n =  n — 6 .

3.3.3 Coding of Slater Determinants

An SD for n  particles is uniquely specified by the n labels of its occupied orbits 
and it can be stored by keeping a record of these occupation numbers. An 
obvious way of doing this is to map the orbits to the bits of a computer word 
and represent an occupied orbit by setting the corresponding bit of the word 
to 1 (see figure 3.2). This representation of the SD is efficient on storage space 
and is also very convenient when we come to apply creation and destruction 
operators to the SD.

0 0 0 0 1 0 0 0 0 0 1 0 1 0 1

Figure 3.2: Binary representation of a typical Slater Determinant.
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Our calculations require up to 16 single particle orbits, without taking colour 
into account. So with colour included, a standard 32-bit computer word ob­
viously isn’t large enough to store the orbits we need for calculations in the 
full space. In practice three separate words are used—one to store the orbits 
for particles of each colour. Since the colour symmetry of the strong force is 
exact, any number which is an acceptable value for the red code will also be 
acceptable for the green and blue codes. So all three codes are obtained from 
the same set of numbers and we only have to generate this set for one colour, 
e.g. red

We are only interested in colourless states, so this places restrictions on the 
number of particles which can be in any single-coloured code — in basic six 
and three quark states, the particles must be evenly distributed between the 
three colour codes, i.e. there are two red, two green, two blue, or one red, one 
green, one blue respectively. Any qq pairs which are created must occur in a 
single colour code as r r , gg or bb. Furthermore, colour symmetry means that 
permutations of the colours r, g , b, should leave any colourless state unchanged. 
This is equivalent to saying that, if we expand a state | ) in terms of our
basis, the coefficient of a basis vector made up of three colour codes, R , G 
and B , | R G B ),  and the coefficients of the basis vectors corresponding to 
permutations of these three codes must be the same, ie. for

| ) =  . . .  +  Ci | R G B )  + C2 | R B G ) + C3 | G R B )+

C4 | G B R ) +  C5 | B R G ) +  C6 | B G R )  + . . .  (3.3.5)

the values of C i , . . .  ,C q must be identical 1. This being the case, it might 
seem reasonable to ask whether we actually need to consider all these basis 
states in our calculations. In fact, it is possible to reduce the basis to include 
just one of the states from the set of permutations when we are assembling 
the basis and compensate for the effects of the others later. To achieve this 
reduction, we impose the condition

R < G < B  (3.3.6)

1Here we have assumed R, G  and B  to be different so that all permutations of the colours 
do actually correspond to different basis states
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when choosing the three codes making up one of the basis states to put in our 
list. States which do not satisfy this condition are referred to as ghost states 
and are not put in the list. Although these are not explicitly carried through 
the calculation, their presence is taken into account when expanding the eigen­
states, when constructing the Hamiltonian and when calculating expectation 
values of J 2 and other operators. To do this, the only additional information 
we require is the multiplicity of each state which satisfies the colour constraint. 
This can be 6 , 3, or 1 , corresponding respectively to none, two or all of the 
colour codes being the same. This procedure reduces the size of the basis by a 
factor close to 6 , making the calculation much easier. It also ensures that all 
the colourless eigenstates which would be found in the full space are retained, 
while most of the coloured ones are eliminated. Details of how the calculation 
is performed in the reduced basis are discussed in section 3.12.

3.3.4 G enerating the Basis States

To summarise, each SD we generate must satisfy the following conditions:

• It must have the right quantum numbers: ^-components of spin and 
isospin and correct parity (combination of intrinsic parities and the spa­
tial parity of the orbital wavefunctions).

•  It must obey our colour condition, equation 3.3.6.

•  It must not violate the occupancy numbers for a particular shell. (In 
practice this is not important in our model since the particles are not 
restricted to particular shells in a full calculation)

• It must have an acceptable number of quarks and antiquarks.

The last constraint also applies to the individual colour codes; in practice we 
generate the set of all possible red codes and, since the sets of all possible 
green and blue codes are the same as this set, we combine the red codes in 
threes to give determinants which satisfy the above list of conditions.

The process is probably best illustrated with an example so we return to 
our calculation for a proton-neutron system, with Ms = 1  and allowing one 
meson to be created. Overall parity must be even. The basis states must have
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at least six quarks and at most seven and the number of antiquarks can be 
zero or one. The number of red particles can be either two or four (since both 
particles in the created qq pair must have the same colour).

For the single particle orbits there are two possibilities for each of spin, 
isospin, spatial parity and intrinsic parity, giving 16 orbits in total. These are 
labelled such that the quarks occupy orbits 1 - 8  and the antiquarks lie in orbits 
9-16. The red codes are produced by sequentially shifting first two, and then 
four bits through a word, rejecting any codes which have too many antiquarks 
and storing the rest and their associated quantum numbers. It is not possible 
to reject red codes on the basis that M s = 1, for example, since M s depends on 
the green and blue codes as well as the red one. Figure 3.3 shows the process 
pictorially.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

Figure 3.3: Generation of codes by bit shifting (two-particle case)

In this way we end up with a numerically ordered list of codes - there are ‘ 
8 C2 + 8 C3 x 8  =  476 of them. Any codes which contain an antiquark will 
automatically be higher up in the list than those which don’t because of the 
way the orbits are numbered (the q orbits occupy the most-significant bits of 
the code).

We can then proceed to combine these single-colour codes in sets of three 
to make up the complete determinants; we pick a code for R, one for G and one 
for B. Since the codes are ordered numerically, it is very easy to implement 
the condition that R < G < B  and to maximise the efficiency of the program
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code. At this stage, the other conditions on M s etc. are tested, and if all the
tests are passed, the state is included in the list of basis states.

In the particular example discussed above, there are 6426 basis states. The 
usefulness of the colour condition is immediately obvious when you consider 
that, without it, there are 37560 states!

3.4 Transitions Between Basis States

In this section we discuss the transitions which are possible as a result of
the action of the Hamiltonian on the Slater determinants. As shown above 
in equation 3.1.1, the Hamiltonian contains several operators. These will be 
described in more detail when we come to talk about the actual evaluation of 
matrix elements but as far as we are concerned at the moment, they fall into 
two categories: those which conserve the number of particles in a state, and 
those which do not.

3.4.1 Num ber Conserving Operators

These involve the kinetic energy operator, the mass term and two-body tran­
sitions of the form qq —> qq, qq —»> qq and qq —> qq. The Pauli Principle must 
obviously be respected and, in addition, the transitions must also conserve 
spin, isospin, overall parity and both intrinsic and spatial parity separately. 
Colour must also be conserved so the colour of the created pair must be the 
same as that of the destroyed pair. However, this is not the full story. If a pair 
has the same colour and one particle is an antiquark, say r f ,  then in addition 
to r f  —* r f ,  we must also take into account the possibility of r f  —> gg and 
r f  —y bb which are allowed.

We proceed by constructing a table of sets of pairs of orbits, (a, /?), with 
the same values of the above quantum numbers. We introduce the concept of 
logical colour: if we have (C3 C4  | Vi2 \ Cic2) then we set C\ — 0. The values 
of C2 , c3, and C4  can then be either 0  or 1 , respectively, depending on whether 
they are the same or different colour as c\. The permissible transitions for 
the qq case can then be expressed as ( 0 0  | V\2 | 0 0 ), ( 0 1  | V\2 | 0 1 ), and 
( 1 1  1 ^ 1 2  | 0 0 )
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The number of pairs from N  single particle orbits will be ^ N ( N  + 1) of the 
same colour and N 2 different. We need some means of identifying any pair 
(i , j )  so we can store information associated with it (set number, position of 
matrix elements etc.). To this end we set up the following mappings

(1,2) ^  1, (1,3) —► 2 , . . . ,  (2,3) N , . . . ,  ( N  — 1 , N)  -> N ( N  -  l ) /2  (3.4.1)

if the colours are the same, and

(1,1) -> 1, (1 ,2 ) ->• 2 , . . . ,  (2 , 1 ) -> N  +  1 , . . . ,  (N, N)  -> N 2 (3.4.2)

if the colours are different. This gives a unique number for each pair which 
can be used to address an array in which the set number is stored. In practice 
the quantity ^ N ( N  +  1 ) is added to the addresses for the different coloured 
pairs so that the same array can be used for both. The above mappings are 
equivalent to evaluating the following quantities

Ŝame Colour =  (2iV ~ l){l ~  l ) /2 +  j  ~  I (3.4.3)

D̂ifferent Colour =  N ( N  +  l ) /2  +  N(i  ~  l) +  j  (3.4.4)

Records are also kept of the number of pairs in each set and the position in 
the list of pairs at which each set starts.

3.4.2 Number Non-Conserving Operator

This is the part of the interaction potential which permits meson creation and 
annihilation to take place, so transitions are of the form q —> qqq, qqq —>• q. 
Since the numerical values of the matrix elements are the same for both types, 
we only calculate them for q —>• qqq. If two meson states are included in the 
model space we would also have to consider transitions like q —> qqq, but this 
is not possible at the moment because the basis sizes are too large.

In this case we have to make up sets of triples associated with the de­
struction of a particle in each of our N  orbits. Spin and isospin must be 
conserved, as above. However, with the creation of the extra antiquark, it is 
necessary that the spatial and intrinsic parities of the created triple are op­
posite to those of the destroyed particle in order to conserve parity overall. 
Colour transitions will be of the form 0 —y 000 and 0 —»■ Oil, in the logical 
colour notation described in the previous section.
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3.5 Calculating M atrix Elements

The next chapter describes the calculation of the matrix elements for the 
various operators used in the model, so this section is just intended to give an 
outline of the procedure to clarify what follows.

As things stand, we have our sets of pairs and we require some means of 
calculating the matrix elements for the allowed transitions and storing them.

For each set, we locate the first pair in the list which belongs to it and step 
through each pair in turn, working out the two body matrix elements between 
this and all the subsequent pairs in the set and storing them sequentially. For 
each of these pairs, a pointer to the position of the first of its matrix elements 
is recorded. This makes it easy to recover the sequence when we actually come 
to use the matrix elements.

3.5.1 /-></> Transformation

When it comes to calculating our matrix elements, the integrals are performed 
in the basis, as defined in section 3.2. However, the basis states, <^, are 
used in the programs so we need to be able to switch easily between expressing 
one and two particle states in both the /  and <j> representations. This can be 
done using the following transformation matrix

T  =

So that

N+ N + 
iV_ - N _

u<£+ = T
. .

(3.5.1)

(3.5.2)

If is a one body operator and $  is the matrix ( ^  | Q | <j>v ), and F  is 
the matrix ( | \ f v ), then the one body matrix elements transform as

$  =  T F T t (3.5.3)

where T T is the transpose of T.
The situation with two body matrix elements is a bit more complicated 

because four single-particle states have to be transformed, but the method is 
obvious.
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3.5.2 Antisym m etrisation of M atrix Elements

The use of antisymmetrised wave functions in the calculation means that the 
two-body matrix elements must be properly antisymmetrised [40]. The anti­
symmetric form of a two body wavefunction | , ĉ 2 ), is given by

| Q?l, OJ2  )Antisymmetric =  ^  [| OiXa 2 )~  \ OL2OLl )] (3.5.4)

with the o;’s representing the set of single particle quantum numbers. To work 
out our matrix elements we have to sandwich our two-body operators between 
two such wavefunctions. So the antisymmetrised form of a matrix element 
( 0 :3 0 : 4  | V  | O1 O2 ) would be given by

( ^3^4 | U | OL\OL2 )Antisymmetric ^ [( ^3^4 | V  | 0 ^ 0 2  )

— ( 0 4 0 : 3  | V  | o i o 2 ) — ( 0 3 O 4  | V  | o 2o i ) +  ( 0 4 O 3  | V  | o 2o i )]

(3.5.5)

If we take advantage of the fact that ( 0 *0  ̂ | V  | o^Oj) =  ( 0 0̂  ̂ | V  | OjOj), 
then the outcome is that a matrix element can be expressed as the difference 
between a direct and an exchange term

< a 3a 4 | V  | a i a 2 ) A. t„ymm. tric =  (<*3^*4 | V  | <xi<*2) ~  < <̂ 3 ^ 4  I V  I <*2^ 1)

Direct Exchange
(3.5.6)

The presence of the exchange term takes care of the antisymmetrisation; if 
I 0 1 1 ) = | o 2), the matrix element is zero.

3.6 Second Quantization

The technique of second quantization provides a useful tool for use in many- 
body calculations. In the basic formalism, a many particle state is manipulated 
by means of creation and annihilation operators which create and destroy 
individual particles within the state.

A creation operator acting on a state | </>), produces an additional 
particle in the orbit a  within that state. In particular, if | 0 )  is the vacuum 
state, then \ </>) represents the single-particle state, | a ) .  If | <j>) is an SD
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containing N  particles, then aj, | </>) represents a new N + l  particle state, with 
the orbit a  added to the orbits which were occupied in | 4>). The conjugate 
operator aa, called the annihilation operator for the state a , removes a particle 
from the orbit a  in the state to which it is applied. So if | <j>) is an N  particle 
state as before, then aa \ (f>) represents the N  — 1 particle state obtained by 
eliminating the orbit a  from the state | </>).

The following special cases should be noted — if the orbit a is occupied, 
then to satisfy the Pauli Exclusion Principle2 we must have

because we can’t produce another particle in a state which is already occupied. 
Similarly, if the orbit a  is unoccupied, we cannot destroy a particle in it, so

It can be shown from these definitions, and the requirement that the wavefunc- 
tions be antisymmetric, that the creation and annihilation operators satisfy 
the following anti-commutation3 relations [41]

It follows tha t whenever we exchange two destruction or two creation oper­
ators we get a minus sign (which arises from the complete antisymmetry of 
our wavefunctions and corresponds to exchanging columns in a Slater deter­
minant). Because of this, there is a phase associated with the order in which 
we apply our operators. We must always arrange them to give some standard 
order and keep a note of the sign changes this involves.

In our case, we take the standard order to be that in which both creation 
and annihilation operators having ascending orbit number from left to right. 
This is different from the order given in most text books where the annihilation 
operators are usually sorted into descending order. This choice lets us calculate 
the phase more easily as we shall see below.

2 Second quantization techniques can also be applied to bosons but we are obviously 
talking about fermions here.

3The anti-commutator of a and b, {a, 6), is defined by (a , b] =  ab +  ba.

a], | <j>) =  0 (3.6.1)

(3.6.2)

(3.6.3)

(3.6.4)

(3.6.5)
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0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1

Figure 3.4: Slater determinant with orbits 1,2,3,5, 6  and 8  occupied.

As an example, suppose we have a six particle SD, | <j>) as shown in figure 3.4.
This has particles in orbits 1,2,3,5, 6  and 8 . We can write it as

| (j)) = a\a2a\alalal | 0) (3.6.6)

where | 0) is the vacuum state. If, for example, we than apply a two-body 
operator with a term then we have

| (f>) =  a 5 a 7 a 2 a 5 a { a 2 a 3 a 5 a 6 a 8 I 0 )

=  -\-ala\a\ala\al | 0)

=  — a\a\alala\al | 0) (3.6.7)

So the overall phase is negative. Determining these phase factors is quite a 
tricky business and we use a special representation to calculate it. This is 
explained in section 3.7.
In second quantization notation, a one-body operator is

F = ' E ( a \ f \ l 3 K al> (3-6.8)
a /3

and a two-body operator is written

G = ' 52( a 0 \ 9 \ ' Y $  )a]OLa^a8a1 (3.6.9)
a/? 7 6

In addition to these two standard forms, we also have our q —»• qqq interaction 
which is of the form

H  — (a/3 | h | 7 ^)a^a^aja 7  * (3.6.10)
a /?7 S

This is discussed in more detail in section 4.3.

3.7 Parity Representation

In constructing the many-body matrix elements from the two-body ones, there 
is a phase factor associated with the ordering of the creation and destruction
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operators acting on the state, as explained in section 3.6. The sequence in 
which they are applied must be compared with the “standard” order. Swap­
ping the operators around to match this order introduces the phase and the use 
of the so called parity representation, instead of the usual occupancy represen­
tation was introduced in the Glasgow Shell Model code to allow the phase to 
be calculated as efficiently as possible [42, 43]. This is of primary importance 
when the Hamiltonian is too large to be stored and has to be re-calculated bit- 
by-bit for each iteration of the Lanczos algorithm. In these circumstances, any 
additional overheads in the code can substantially increase the time required 
for the calculation.

In our case, the matrices we are dealing with are not overly large and only 
need to be calculated once, so the speed of the phase calculations is not of 
paramount importance. Nevertheless, we still use an implementation of the 
parity representation since it provides a suitably elegant method of finding the 
phase and allows for the possibility of future expansions of the code when the 
Hamiltonian may have to be rebuilt for each iteration. There are several ways 
of implementing the parity representation and our approach is not the same 
as that given in [42].

To form the parity representation of a SD, we start by setting the least 
significant bit to zero. We then work our way up through the corresponding 
bits of the occupancy representation. Every time a filled orbit is encountered, 
the state of the bits in the parity representation is toggled immediately after 
it. So the bits will be low until the first occupied orbit is found, they then 
change to high immediately after it, back to low after the next occupied orbit 
and so on.

When an operator is applied in second quantization notation, it must be 
moved to the correct position in the sequence of operators and each time it is 
moved past another operator, the phase toggles from +  to -. The toggling of 
the bits in the parity representation corresponds to this swapping of operators 
to achieve the standard order. We can work out the phase of an operator by 
examining the corresponding bit in the parity representation. If the bit is low, 
the phase is even, if it is high, the phase is odd.

In the case of a two-body operator, the phase due to both destroying and 
creating two particles can be worked out by comparing the two bits corre­
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sponding to the two destroyed or created orbits. If they are the same, the 
phase is even; if they are different, it is odd.

As an illustration, we use the example from section 3.6 again, where the 
state | </>) has orbits 1,2,3,5, 6  and 8  occupied — refer back to figure 3.4. We 
first construct the parity representation of this SD. The bit corresponding to 
orbit 1  is set to zero. Orbit 1  is occupied so bit 2  is set high. Orbit 2  is also 
occupied, so the parity rep. toggles back to zero at bit 3. Orbit 3 is occupied 
and bit 4 toggles back to high again. The next filled orbit is orbit 5, so the 
bits remain high until bit 6  which is low. Bit 7 goes back to high, because 
orbit 6  is filled and we remain high until immediately after the last occupied 
orbit, number 8 . Thereafter the bits return to low and remain so.

The resulting parity representation is shown at the top of figure 3.5. The 
subsequent diagrams show its alteration and the phase calculations, as the 
operators from the example are applied.

0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0

Applj 
Bits 2 and 5 hig’

T U2&5
i => phase =  + 1

0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0

Applj
Bit 5 low, bit 7 h

r alal
igh =>• phase =  - 1

0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

Figure 3.5: Operators and the Parity Representation

For an SD with one single occupied orbit a, say, the parity representation is 
given by (1 < a ) - l .  For many particle SD’s, it is easily formed by working out 
the parity representations of the constituent orbits as single-particle states and 
constructing the X O R of these 4. The application of annihilation operators is 
performed in the same way—using the parity representation of the destroyed 
orbit.

4bitwise exclusive OR operator
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In a language like ‘C’ which provides a comprehensive set of bitwise opera­
tors [44], these manipulations of the parity representation can easily be coded 
very efficiently.

3.8 Building the Hamiltonian

A matrix element of the Hamiltonian, ( j  \ H  | i), say, is found by adding up 
all the elements from the transitions which correspond to changing state | i ) 
into state | j ). By doing this for all i and j  in the basis we can assemble the 
full matrix.

W ith this in mind, we proceed as follows:

1. Select the SD for state i.

2. Destroy a pair of particles in this SD.

3. Create all the pairs from the same set in turn.

4. Check that the new state formed by creation of each of these pairs is 
valid (i.e. that none of the orbits we are trying to create are already 
occupied).

5. Locate the new state in the basis table.

6 . Store the number of the state and a pointer to the matrix element asso­
ciated with the transition.

Here the two-body case has been used as an example. The process is very 
similar for the 1 —» 3 case. Creation and destruction of particles is easily 
performed by the use of bitwise operations which are also very economical on 
computer time. To destroy a pair of particles, we shift bits to the appropriate 
positions in a word and form the exclusive-OR of this and the SD. A similar 
word can be set up for the pair we want to create and step 4 can be performed 
by taking the bitwise AND of this and the remnant of the SD. If this is zero, 
then neither of the orbits is already occupied. Finally, the pair can be inserted 
in the SD by an OR operation. Things are obviously a bit more complicated
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than this because we actually have three separate SDs—one for each colour— 
but the general principle is the same.

Step 5 is best done by using a binary search. This is easy because the basis 
is stored in numerical order. It is possible that a ghost state is formed, so the 
three codes of the newly created SD may not immediately satisfy the colour 
condition given in equation 3.3.6 and they have to be ordered correctly before 
performing the search.

3.9 The Hamiltonian Matrix

It has already been pointed out that the number of basis states in our calcula­
tions can run into thousands (or tens of thousands!), especially when we want 
to use a model space with meson excitations. At first sight, this might appear 
to make the Hamiltonian too large to handle since it will have hundreds of 
thousands of elements. However, we are saved by the fact that most of the 
matrix elements between basis states are in fact zero. In other words the ma­
trix is very sparse. This is illustrated by the plot in figure 3.6 which shows the 
intriguing structure of the matrix—in this case with 648 basis states. Non-zero 
elements are represented by points and the white space represents the zeroes.

This means that the number of elements we have to store is greatly reduced. 
In the present implementation, the matrix is stored row by row. Each non zero 
element is put in a file along with its position in the row.

3.9.1 Form of the M atrix

The matrix obtained above is actually complex Hermitian due to the nature 
of the interaction potential for q —> qqq (See section 4.3, below). If we ordered 
the basis, sorting it by the number of particles in each state, the matrix would 
take on the form

T Mi iM 2 
[ - i M l  M3

Where Mi, M2, M3 are real matrices and Mi and M3 are symmetric. The basis 
states from 1  to dim(Mi) are 6q configurations and those from dim(Mi) +  1

(3.9.1)
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Figure 3.6: Sparsity plot of a typical Hamiltonian Matrix

to dim(Mi) +  dim(M3) 

H  =

which we can write as 

where

and

are 6q(qq). We can write H  as

’ 1 o ' '  Mi M2 ' ' l 0 '
0  - i M l Ms _ 0 i

(3.9.2)

H  = P~lAP

A =
Mi M 2 

3M l  M,

P  =
1  0

0  i

(3.9.3)

(3.9.4)

(3.9.5)
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or in other words, H  is similar to A  [45] (Clearly P ~1P  =  / ,  the identity 
matrix). Similar matrices have the same eigenvalues 5, so we do not actually 
have to worry about the complex nature of H. Instead we just deal with the 
matrix A , which we refer to as H  from now on.

The coefficients of the SDs in an eigenvector of A  are purely real numbers. 
Those in the corresponding eigenvector of H  have the same numerical values, 
but some are real and some become pure imaginary, depending only on the 
number of antiquarks in the SD. If u  and v  are vectors associated with the 
matrix A  the P u  and P v  are the corresponding vectors associated with H. 
Since (P vY (P u)  — v T p  i p u  _  vt u sca]ar products are the same in both 
cases.

Since we are only interested in matrix elements, this irritation can be 
ignored entirely when performing the calculations.

3.10 The Lanczos Algorithm

Once we have the Hamiltonian safely under wraps, we are ready to find the 
eigenstates of the system using the iterative Lanczos Algorithm [46, 47]. Lanc­
zos diagonalization of the Hamiltonian is one of the central features of the 
Glasgow Shell Model Code, pioneered by Whitehead et. al [39] for use in full- 
basis calculations for sd-shell nuclei and now used in all other large scale shell 
model codes. Its use is almost essential if we are realistically to deal with the 
very large matrices which calculations of this kind produce.

The main attraction of using the Lanczos algorithm is that it gives ex­
tremely rapid convergence of the lowest eigenvalues (ie. the ones we want) 
with a small number of iterations and it is unnecessary to diagonalize the ma­
trix completely. If we choose a normalised starting vector Vi in the model space 
(of dimension n), then the algorithm proceeds as follows, with i =  1 , 2 , . . . ,  n

5 We have

H  -  XI =  P - ' A P  - X I  =  P ~ l A P  -  XP~l I P  =  P ~ l {A -  XI )P  (3.9.6)

So
| H  -  XI\ =  |P _1 ||A -  AJ||P| =  | A -  AJr||Jp - 1JP| =  |A -  XI\ (3.9.7)

i.e. H  and A  have the same eigenvalues.
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(3.10.1)

and fa = 0 :
on = V i • H v i  

Ui+1 =  H V i  — OLiVi -  P i-iV i-1

P i — \f'U>i+ 1 ' 'U'i+1
V i + 1 =  Pi~l u i + 1

This generates a set {v*} of orthonormal basis vectors, called Lanczos Vectors,
by repeatedly operating with the matrix H , and projecting out the compo­
nents orthogonal to the previous two vectors. For this it is useful to note that, 
because H  is Hermitian,

Pi =  v i+i • H v i  

= Vi • H v i + 1 (3.10.2)

so the component of H v i +i in the direction has magnitude Pi. It is only 
necessary to remove components in the directions of the two preceding vectors 
because all others are automatically zero, in the absence of numerical rounding 
errors. This is immediately apparent, because

2 • H V i  =  V i ’ H V i - 2

=  v i ■ (PiVi-3 +  &i-2v i-2 +  Pi-2^i-l) (3.10.3)

and this evaluates to zero since Vi is orthogonal to Vj_i,Vj_ 2  and v j_3 . This 
also means tha t the matrix elements of H  in the new basis are given by

H'i:j = Vi • H v j  = p i_ x $ij—1 T OLidij T Pi5ij_).x

So the matrix in this basis takes on a tri-diagonal form:

Oil P i  

P i  &2 P 2

P2 OL 3 /?3

(3.10.4)

H  =

P n —2 OLn —1 P n —1 

P n —1 Oin

(3.10.5)

Since the Lanczos vectors form a complete, orthonormal basis spanning the 
space, H '  has the same eigenvalues as H .  It is also the case that the eigen­
values of the leading submatrices of H '  converge very rapidly to the extremal
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eigenvalues of the full matrix as its dimension increases with successive itera­
tions. In practice, this means that we rarely need more than 100 iterations to 
get the answers we need.

3.10.1 Re-Orthogonalisation

In the world of real calculations, of course, things are rarely so simple and 
the assumption that the Lanczos vectors are orthogonal is likely to prove 
false because of rounding errors. The effects of this can be minimised by re- 
orthogonalising each new vector to all the previous ones. In addition, the 
orthogonalisation routine and accumulation of scalar products are always car­
ried out with double precision numbers.

3.10.2 Choice of Starting Vector

So far, nothing has been said about the choice of the Lanczos vector we begin 
with, V\.  It is possible to greatly reduce the number of iterations necessary by 
choosing a vector which contains a substantial component in the direction of 
an eigenstate. At first, this may seem like a rather useless piece of information 
since the eigenstates are what we are trying to find! However, we do know 
that the 6q part of an eigenfunction will be much stronger than the part with 
qq excited components, so if we take a note of the 6q states in the basis and 
set only these elements in V\ this should go some way to improving the rate 
of convergence.

An alternative method of fine-tuning the algorithm is to use an eigenvector 
from a previous calculation for the same system at a different separation. It 
is a reasonable assumption that a small change in the separation should not 
cause too drastic a change in the eigenvector. This approach does in fact make 
the calculation much more efficient than using a random vector. We simply 
store the ground state for each calculation and use it as our starting vector for 
the subsequent one. This is especially effective when we are only interested 
in finding the ground state. It might be feared that this could result in slow 
convergence for other low lying orthogonal states, but this has not been a 
problem.
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There may also be some concern that it is possible to accidentally start 
with an exact eigenvector of our system because in this case the algorithm 
will break down at the first step. In practice, though, this is highly unlikely 
because of rounding errors. Even if it did happen, we could just alter the 
vector slightly and repeat the calculation.

3.11 Eigenstates of H

We find the eigenvalues of H'  (and H)  by first obtaining an interval in which 
the desired eigenvalues lie, and then pinning them down to the required accu­
racy by using bisection combined with the Sturm sequence property described 
below [48, 49, 50]. This approach is efficient enough when we only want to 
find a few eigenstates.

3.11.1 Sturmian Sequence Property

With H'  defined as in equation 3.10.5, then the maximum value -/Vmax in the 
sequence of rownorms, of H ',

a i  +  /?1 , «2 +  0 2  +  P i ,  « 3  +  / ? 3  4- P 2 , • • • , & n +  P n —1 (3.11.1)

provides an upper and lower bound for our eigenvalue search [51] -  they lie 
in the interval [—N max, N max\. The characteristic polynomial pr(X) of the rth  
leading sub-matrix of H'  can be found from the recursion relation

P r { A) =  { a r -  A)pr_i(A) -  P r P r - 2 { A) (3.11.2)

where po(A) =  1 and Pi(A)  =  ai  — A. For any value of A, the number of sign 
changes in the sequence

P o ( A ) , p i ( A ) , . . . , p n (A) (3.11.3)

is equal to the number of eigenvalues of H'  which are less than A. This 
property can be combined with a binary search method to pin down any 
particular eigenvalue of the matrix.
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3.11.2 Eigenvectors

The eigenvector x corresponding to the eigenvalue A is found by solving

(H' — XI) x =  0 (3.11.4)

This is reasonably straightforward since the matrix has such a simple tri­
diagonal form and can be easily done using a standard algorithm such as LU
decomposition [52] or any of the other methods for tri-diagonal eigensystems 
given in chapter 1 1  of the same reference. We then have to convert the eigen­
vectors from the basis Vi of N  Lanczos vectors, back to the original basis of 
SDs.

N
V H =  Y l x i V i  (3.11.5)

2= 1

where x  is the eigenvector of H ' and Vi are the Lanczos vectors.

3.12 Treatment of Ghost States

“It doesn’t m atter what colour the cat is, as long as it catches 
mice” .

Deng Xiao-Ping

When we introduced the use of Slater Determinants in section 3.3.3 we men­
tioned the use of the colour condition R  < G < B  to take advantage of the 
colour symmetry of the problem. We now give more details of how this is put 
into effect.

Suppose we have an SD, | i) ,  in the basis, with multiplicity m. In the fully 
expanded basis we could represent it and its ghosts by the set

| z ) , | i  +  l ) , | z  +  2 ) , . . . , | z  +  m  — 2 ) , | z  +  r a — 1 )  (3.12.1)

Since these states differ only in the ordering of the colours, the colour invari­
ance of the Hamiltonian implies
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In the reduced basis, only | z), itself, needs to appear explicitly, because, 
in a colourless state, each of these basis vectors will have exactly the same 
coefficient, which only needs to be found once. To see this, first note that 
any colourless state must be unaltered by permutation operators acting on 
the colour indices r,g,b (i.e. changing RG B  into G R B , B R G , etc.). The set 
of a basis state and its ghosts is closed under operations of this kind—they 
merely alter the order of the basis. Thus any eigenstates found with the full 
basis which did not have the same coefficients for a state and its ghosts could 
not be colourless and would be unphysical.

With the use of the colour condition, a state and its ghosts are auto­
matically constrained to have the same coefficients in the full basis. So this 
approach of leaving out the ghost states has the additional benefit of throwing 
away these unphysical, coloured states right from the beginning without losing 
any of the colourless states which we are interested in.

Now suppose we have two such SDs in the full basis, | i)  and | j ) ,  with 
multiplicities ra*, rrij and coefficients ai and aj, respectively in some state 
vector. Suppose further that these same SDs appear in the reduced basis as 
| i')  and | j 1), respectively 6.

If we act on this state vector with a matrix operator H , then summing 
up all transitions which transform | j ) -  to \ i )  will contribute the amount 
( i  | H  | j  )a,j to the zth element of the new vector.

In starting with the SD | j ) ,  there will be additional transitions which 
create the ghost states of | i )  mentioned in equation 3.12.1. Consider (i  +  1 | 
H  | j ). If we are using the reduced basis, there is no element in our state 
vector corresponding to | i +  1 ) so this contribution cannot appear explicitly. 
However, in the full basis, there would have been an identical matrix element 
( j  | H  | i +  1) contributing to the j th element of the new state vector and 
it is essential that this is taken into account. This is done by adding all such 
transitions to the corresponding matrix element of the state of which | i +  1 ) 
is a ghost— ( j '  \ H  \ i ')  in this case. So, if we take account of the symmetry 
between a state and its ghosts, we end up with upper-triangular elements in

6The states are exactly the same, but their positions will obviously be different in the 
two bases, hence the different indices i'andj' for the reduced basis.
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the reduced matrix which have the form

( i ' \ H \ f )  = mj ( i \ H  \ j )  (3.12.3)

because of these additional transitions. This now means that the matrix we 
have is no-longer symmetric.

This is a nuisance as more complex diagonalisation techniques would be re­
quired, but fortunately symmetry can be restored. We multiply each coefficient 
ai in the reduced basis by y/rni and each element ( i' \ H  \ j ' )  by y/rrTi/y/frij. 

With these weighting factors, the symmetry of the matrix is restored and 
the calculation remains entirely consistent with the full basis version. Fur­
thermore, since a coefficient C{ in the reduced basis replaces rrii coefficients d{ 
(ci = y/midi) in the extended basis, there is no need for special scalar product 
or normalisation routines. We simply add up the products of corresponding 
elements’ amplitudes.

3.12.1 Reduced Basis Example

The above description may seem a bit obscure, so we consider a very basic 
example. Suppose we have have a reduced basis, consisting of two states with 
multiplicities 1  and 3, and coefficients ai and bi in some vector. The situation 
in the full basis would be

H n  H 12 H 12 H u  
H u  H22 H 23 H 23 

H u  H23 H22 H 23 
H u  H2s H 23 H22

fll a-2
bi ^ 2

bi b2
. h  . b2

(3.12.4)

where

a2 — H u Q-i +  3H12bi

b2 = H u ^ i  +  {H22 +  2H2s)bi

The situation in the reduced basis is then

H u 3Hu ai a2
H u  H 22 +  2 I / 2 3

.  6 1  .
b2

(3.12.5)
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Multiplying the vector elements by y/rn and matrix elements Hij by y/m^/^/ffij 
gives

1

cs

■

ai 0,2

y/3H \2 H 22 +  27^23 11 1

CM

1

So diagonalising the version of the reduced matrix weighted in this way will 
yield eigenvectors with the appropriate factors. The dot products and nor­
malisation of these vectors are automatically the same as those in the full 
basis.

3.13 Kinetic Energy Operator

The total kinetic energy operator, T, is the conventional kinetic energy minus 
the kinetic energy of the centre of mass of the system:

T  =  (3.13.1)

=  E

2  rrii 2  M

P? Hi Pi +2Li <j Pi -Pj
2  m,: 2  M

_  1__________ 2 _  ^ i<j Pi ' Pj
Y V 2 rrii 2M  J Pi M

So we require single particle matrix elements of p2 and two body matrix el­
ements of the form p 1 • p 2, in addition to the masses for each orbit. These 
are calculated in Section A.2. Armed with these, this operator can easily be 
added into the Hamiltonian during its assembly.

3.14 Expectation Values of J 2, T 2 and C 2

These operators all commute with the Hamiltonian, so have simultaneous 
eigenfunctions. Once we have found an eigenstate of the Hamiltonian, we can 
calculate the expectation values of these operators and use the corresponding 
quantum numbers, eg. the spin quantum number, j ,

(3.14.1)
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to help identify the state7. They also provide a good test of convergence, since 
they yield sharp half-integer or integer values for fully converged states. 
Using J 2 as an example, the operators have the form

A 2

J 2 = E Ji
\ i = l  /

= £ J ?  +  2 £ j , - J ,  (3.14.2)
i= 1 i<j

In our model, the one body part of these operators is diagonal and each term 
evaluates to a constant. For J 2 and T 2, the value is 3/4 per particle, since 
the quarks have spin and isospin 1/2. For C 2, the value is 16/3 per particle, 
which is the expectation value of the one-body colour operator, A2. So we' 
have

J 2 =  U  +  2 £ J W , (3.14.3)
i<j

t 2 =  - a  +  2 £ : z v t , (3.14.4)
i<j

C 2 = ^ - A  +  2  £  A* • A,
i<j

(3.14.5)

The two body matrix elements of J i  • J j ,  T i  • T j  and A; • A j are worked out 
along with those required for the Hamiltonian. It would be possible to obtain 
eigenvalues for the operators in the same way as we did above, but since we 
have already found the eigenstates, it is a much simpler m atter to evaluate 
them using a density matrix.

3.15 Density M atrix

The use of a density matrix greatly speeds up the calculation of expectation 
values for individual one and two-body operators. If we have an eigenstate, 
| $ )  in an N  dimensional basis,

10) = £ C i  1 0  (3.15.1)
i = l

7 Using units where h =  1
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the density matrix, for our purposes, can then be defined by the operator

P =\<t>)(<t>\ (3-15.2)

and its m atrix elements are given by

( * M i )  =  < * U ) ( 0 l i >
= CiC* (3.15.3)

A two-body operator O is represented by

O = O ^ x a la l^ a x  (3.15.4)

If we want to find the expectation value of O in the state | 4>), it is given by

{ } < * | 4>)

=  Y , C i C * ( i \ 0 \ j )  (3.15.5)

(</> \ </>) = 1 since our states are all normalised to unity. In our calculation, 
the two body matrix elements are stored for each operator. So, in the above 
equation,

< i I O \ j ) = Y ,  CiCj 0 ^ UKx(i | alalaKax \ j  ) (3.15.6)
i,j fJLUKX

In practice, the actual evaluation is carried out a bit differently. It will be
remembered that our system involves storing a list of transitions between basis 
states and a pointer to the matrix elements associated with these transitions 
(Section 3.4). W ith this in mind, we scan through this list, summing up all 
the factors CiCj for the listed states i, j  and storing them in an array, indexed 
by the corresponding matrix element labels.

Then the expectation value for any particular operator can be found by
summing its two body matrix elements, weighted with the factors from this
array. In addition, a density matrix of factors CiCj/m  is usually stored, where 
m  is the mass of the state | j  ). This is used when calculating the expectation 
value of the kinetic energy. It has to be done this way because the number of 
particles in the basis states can vary, so the mass is not constant.
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3.16 Projection Operators

These are used to extract information about the quantum numbers of the 
individual clusters in the model. When the separation is large enough, the 
eigenstates split into two 3-quark clusters and we can identify them as separate 
particles.

Projection operator matrix elements are calculated for particle number, 
spin, isospin and colour and their expectation values are found using the den­
sity matrix as described above. It is sufficient to do this for the /+  cluster—the 
/_  can then be identified by comparison with the overall quantum numbers of 
the system.

3.16.1 Num ber Projection

The aim is to find the number of particles in the positive cluster. Let a) be
a creation operator for the state /+ , centred on z =  Z / 2 , then if we use the
operator n + = a+a+

<II+e

n+\ / -  > =  0 (3.16.1)

and

( </>n 1 1 ^i/) =
1

2
(3.16.2)

( 1 1 <M =
1

2
(3.16.3)

( | 'H'+i'n'+j \ ) —
1

4
(3.16.4)

Unfortunately, if the operator Y ,0rbits n +i *s applied to any six particle state it 
will have the eigenvalue three, which doesn’t provide any useful information. 
Instead we can use the square of this operator,

M l  =  T  n +i +  2  T  n +in+i (3.16.5)
i i<j

When calculating the expectation value of this, the one-body term evaluates 
to {A)/2. Matrix elements for the two body term are zero unless spin, isospin,
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1 . m s i =  ras3, m S2 = m sA
2 . m t i =  rai3, m t 2 =  m tA
3 . P l = P 3 ,  P2 = P 4

4. Cj c3, C2 C4

Table 3.1: Quantum number conservation conditions for projection operators

intrinsic parity and colour of the two particles are individually conserved as 
shown in table 3.1.

The spin (<S2), isospin (7+) and colour (C2) operators all have a form 
similar to that for number projection

=  n+iOi +  2  5Z n+in+jOiOj (3.16.6)
i i<j

The n+ factors are included to ensure that the operators only act on particles 
in the /+  cluster.

For the spin case, the one body term is equal to 3/8. The two body 
terms are zero unless conditions 2-4 above are satisfied. In this case

=  (3.16.7)

For isospin and colour projection, the situation is exactly the same except that 
the conditions 1,3,4 for isospin, and 1-3 for colour, must be satisfied for the 
terms to be non-zero.

3.16.2 Eigenvalues of Projection Operators

W ith a system of six particles, there are four possible ways of splitting the
particles between two clusters. These are shown in table 3.2, along with the
corresponding eigenvalues of A/*+. The model is symmetric in that a separation 
into two clusters of 6  particles and 0  particles has equal probability of having 
6  particles centred on z = + Z/2  and 0 centred on z = —Z j 2, or 0 particles at 
z =  + Z /2  and 6  at z = —Z/2.  The eigenvalue of A/j: is then (6 2 +  0 2 ) / 2  =  18,
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Particles in Cluster 1 Particles in Cluster 2 m
6 0 18
5 1 13
4 2 1 0

3 3 9

Table 3.2: Eigenvalues of A/J

as shown in the table. The spin, isospin and colour of the /+  cluster are found 
from the operators in the same way as for the full system, taking the factor 
of 1/4 into account for the two-body matrix elements. Alternatively, one can

Cluster 1 Cluster 2 Eigenvalue of
Spin (Isospin) Spin (Isospin) ^ ( 7 ? )

0 0 0

1
2

1
2

0.75
1 0 1

1 1 2

1
2

3
2 2.25

3
2

3
2

3.75
2 1 4

Table 3.3: Spin and isospin projection eigenvalues

look directly at the eigenvalues of the projection operators; C\ will be zero in 
situations where each individual cluster is colourless and non-zero otherwise. 
It should be noted that these values only apply at large cluster separations. 
When the cluster wavefunctions overlap, the operators will not have clearly 
defined eigenvalues but still give information about the structure of the states. 
The spin and isospin projection eigenvalues are shown in table 3.3.
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Chapter 4 

Potentials and their M atrix  
Elem ents

4.1 Introduction

This chapter contains a more in depth discussion of the actual interaction 
potentials used in the Hamiltonian and the calculation of matrix elements 
for the operators they contain. More detail is also given of calculations for 
additional operators used in the model, many of which were introduced in 
Chapter 3.

As mentioned previously, the interaction has two main constituents: a two- 
body interaction describing the first three diagrams of figure 1 . 2  and a number 
non-conserving part describing the creation of qq pairs (diagrams 4 and 5).

4.2 Quark-Quark Interaction Potential

This provides a QCD-motivated, non-relativistic approximation to one-gluon 
exchange, analogous to the Breit-Fermi interaction arising from one-photon 
exchange in QED [53]. It also contains the confining potential. The exact 
form we use is taken from the papers by Hecht and Fujiwara on their studies 
of the N N  interaction [36, 54, 55]. The contribution to the Hamiltonian (ie 
V(rij) in equation 3.1.1) is:
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rij m 2c2
Confinement TermColour Magnetic Term ,

The A’s are the Gell-Mann matrices, the generators of SU(3) colour (see sec­
tion 4.7). The <Ti s are the spin operators for the particles, with components 
cTx,(7y,(jz -  the Pauli spin matrices. a s is the strong coupling constant, m  the 
quark mass, ac the strength of the confining potential, — Xj is the
vector spacing of the two particles.

In addition to the colour-magnetic interaction term, there are several other 
corrections to the 1 / r  gluon-exchange potential which have been left out of 
equation 4.2.1. The spin-orbit interaction does not appear since we are consid­
ering 5-states only. In any case, it is often neglected in many works because, 
experimentally, the spin-orbit effects in quark systems appear to be heavily 
suppressed; they are much smaller than the spin-spin interaction effects. This 
has not been adequately explained, although some bag model calculations for 
excited baryon states have shown a cancellation of the spin-orbit force [56]. 
There is also a tensor interaction term which appears in the Hamiltonian, but 
it has been shown to be of little importance in calculations of the baryon- 
baryon interaction [25].

The confinement term shown here is quadratic. The effect of different 
types of confinement potential have been investigated in other works [57] and 
do not alter the results appreciably. In the next chapter, we will use a linear 
confinement potential with some of the chosen parameter sets.

4.2.1 Evaluation of Spatial M atrix Elements

We are interested in finding matrix elements of two-body operators 1 / r ,  r, r 2 

and <53 (r) between two-particle states made up from the /+ and /_  functions 
previously intriduced in section 3.2. Full details for working out the integrals 
can be found in appendix A. The quantities corresponding to these terms,

(f»  1//X2 I term I Sujv2)term (4.2.2)
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which we have to evaluate in the program code, can be summarised as

h  ■

I

where

: ^ e^ e r f ( ^ )  (4.2.3)

: - l - ( 2  +  72C2) e ^ e r f ( ^ ) + ^ / | c  (4.2.4)

h  =  2 C2 ^  +  ^ e^  (4.2.5)

h  =  ---- - 3" (4-2.6)
(2 trC2)^

7 =  2y/2 C 2 ^  + V2)

and the n s and vs  take the values ± 1 .

4.3 qq Creation Interaction

As we have already discussed, our aim is to investigate the effects of including 
qq excitations in our 6 # model so we need some sort of potential to describe 
diagrams four and five of figure 1 .2 , depicting the processes q —> qqq and 
q —> qqq. Again we follow [36] and use the potential derived by Yu and Zhang 
in their work on nucleon-meson coupling constants [58]. It takes the form

i a sh 2 (Ai  • A , - )  f  n (r2 • r  .. . r
"12 = 4m 4 l " 2" ^  +  *(<Tl X ^  ^  + (4'3'1)

4.3.1 Evaluation of 1 —> 3 M atrix Elements

Although the qq creation terms involve transitions in which one particle is 
destroyed and three are created, it is possible to evaluate the matrix element 
as a two-body one by converting the odd particle (usually the antiquark) into 
its conjugate [36], as illustrated in figure 4.1.

Suppose we have a  —>■ /3y5, and (3 is the odd particle to which we apply 
the time reversal operator. If the state | (3) has quantum numbers m s and m t,
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Y

a

(3

a P
Figure 4.1: Conjugation of the odd particle

then the conjugate state | /?) will have — m s and —m t, and will have opposite 
intrinsic parity to | (3). In addition, there is a phase factor

1 \ l + m s + m f( - i ) (4.3.2)

which must be taken into account [36]. We can then proceed to work out the 
m atrix elements in the form

( j S  | V\2  | a/ 3)

4.3.2 Spatial M atrix Elements

(4.3.3)

In this case the operators are r / r 3 and V i/r .  Again full details are given in 
appendix A. The matrix elements, ( f ^ f ^  \V(.r ) I fvxfv2), can be calculated 
from these basic quantities1

h  = 7 C 3
expl exp2 ^erf ^ (4.3.4)

1 Ji corresponds to the integral for the first term. I2 +  I3 +  h  gives the integral for the 
second term.
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where

h

h

h

2(j3 -^expl^exp2 ^erf

1  ^  [ / W
7 C 3  expl [y  2

V \Z rp rn - no
^/2C* exp * exp  ̂ er^

^  ^ e x p 2^ e rf  +

•^expl

^exp2

=  e
i

2Ĉ +a' !+62]

■ydCz 
— e 4

^erf

^  =  V f ^ 1 + ^ 6 3

°  ~2spO^X ~ ^ e3 
B  =  A |^ ( y i  +  ^2 )e 3

6  =  2 7 2 Z ^ 1 _ I / 2 ^ e 3  

4.4 M atrix Elements of a \ • a 2

Calculating these spin matrix elements is straightforward. The spin 
cr is given by

’  0  1  ’ ’ 0  - i  ' ’  1  0  '

<7 =  e\
1  0

+ e 2
i 0

+ e3
0  - 1
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(4.3.5)

(4.3.6)

(4.3.7)

(4.3.8)

(4.3.9)

(4.3.10)

(4.3.11)

(4.3.12)

(4.3.13)

(4.3.14)

(4.3.15)

operator

(4.4.1)
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So the m atrix elements between spin states | m s\m S2) are2

(Ul CTl • O’ 2 I I I )  - 1

mi CTl • cr 2 m> = -1

mi CTl • <x2 IU> = 2
mi CTl • cr 2 in) = 2
mi CTl 02 in) = -1

< t t i CTl • cr 2 I t t )  = 1

All others are zero, as cr\ • < 7 2  is a scalar operator.

1<r+ ■ "71
1

cr_ ~ "71
=  crz

4.5 M atrix Elem ents of a 2

We adopt the approach given in [11]. It is advantageous to express the operator 
o  in terms of the components

■ + i(Jy) (4.5.1)

: -  ICTy) (4.5.2)

(4.5.3)

Composing similar terms, r+, r_  and ro for r ,  we can then write the term 
0 2  - r,  which appears in the potential as

o 2 • r  =  - c r + r _  -  cr_ r+  4 - cr0r 0 (4.5.4)

and evaluate the spin matrix elements which occur in this equation 3

( msimS2 | | n 2 S377iS4 ) — ^msi,mS3 {m S2 I I m s 4 ) (4.5.5)

since the operator acts only on the second particle, and

( m s2 | cr+ | m sA) =  -V & W .f 'W u  (4.5.6)

( m s 2 | cr_ | ’oIsa) 72$ms2 r|,5ma4 >-f- (4.5.7)

( m s2 | cr0 | m s4) =  mS2 <W,ms4 (4.5.8)

2Here we use f  to represent spin-up particles and 4 to represent spin-down particles.
3W i t h / x €  { + , - , 0 } .
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4.6 M atrix Elements of i (cri x  <7 2 )

The operator is

i (a  1 x tr2) =  (criycr2z ~  m z^2y) ex

+  ( 0 1  z0 2 x -  icrixcr2z) ey +  (<7ixa2y -  io\yo2x) e z (4.6.1)

Again we switch from using cartesian coordinates to the components given in 
equation 4.5.3. These reduce to

i (cri x er2)+ =  oi+<t2 0  -  0 -1 0 0 2 + (4.6.2)

z (<Ti x <t2 ) 0 =  a1+a2-  -  a1- a 2+ (4.6.3)

i (<Ti x er2)_ =  cr10a2-  -  cr1_a20 (4.6.4)

Using the results from the last section we can proceed immediately to write 
down the matrix elements of these operators.

X <t2)+ | t l )  =  y/2 

( t t h ( c r i  X er2)+ | ; t )  = - \ / 2  

( t l h ( 0 i  x  cr2) +  | U )  =  y/2 

( 4 4 1  X <r2)+ 1 4 4 )  =  - y / 2  

( t | |  i ((Ti  x  <t2 ) 0 1 4 4 )  =  - 2  

( 4 4 1  i(<ri  x  <r2) 0 | U )  =  2  

( 1 4 1  i(<ri  x  cr2 ) _  | t t > =  \ / 2  

( 4 4 1  i (<*1 x  0*2) — | t t ) =  - \ / 2  

( U l * ( ^ i  x  cr2 ) _  1 1 4 )  =  V 2 

( U M ( 0*1 x  o-2)_  | 4 - t )  =  —y/2

All others are zero.
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4.7 M atrix Elem ents of Ai • A;

The colour degree of freedom is described by the fundamental representation 
(j), of the group SU(3),

r r

4> = (4.7.1)

An object in this representation has three degrees of freedom and since we 
are talking about colour, it is normal to label these red, green and blue (rgb). 
Analogous to the Pauli spin matrices of SU(2 ) the generators of SU(3) are the 
Gell-Mann matrices, Ai

I
O 1 O

i 1

o —i

Io

’ 1 0

1o

Ai = 1 0 0 a 2 — i 0 0

IICO 0 - 1 0

o
1 0 0  _ 1 o 0 1

o o
1 0 1

o

1
o 0 1 '

1

0 0

1• <s> 1

1
0 0

10

a 4  = 0 0 0 A5 — 0 0 0

II

0 0 1

1 0 0  . _ % 0 0  . .  0 1 0  _

'  0 0 0 '  1 0 0  '

II 0 0 —i As “  x/3 0 1 0

0 i 0 0 0  - - 2

(4.7.2)

We are interested in finding matrix elements of the operator Ai • A2 be­
tween two-particle states consisting of quarks and antiquarks. In group theory 
parlance, this means we must first look at the combination 3 ® 3 of the fun­
damental representation. This yields 6  symmetric and three antisymmetric 
combinations ( 6  © 3). The symmetric ones are

rr 
rg + gr) 

99
^-(rb + br)

7 2  (Sb + bg) 
bb

(4.7.3)
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and the antisymmetric ones are

b =  -  gr)
9 = 7 5  (br -  rb) (4-7-4)

f  = 7 5 ( 5 6  -  bg)

These states form a conjugate representation of SU(3) and can be interpreted
as denoting the antiparticles of the states r, g and b. We are also interested
in states which have a quark and an antiquark. These are obtained from

3(8)3 =  1 © 8  

The octet of states is made up of the states [59]

rb gb rg 
g f bg br

and

The singlet state is

=  72 (r r  +  99)
=  7S (2bb + 9 9 ~  rr)

i>3 = A  (rr - 9 9  + bb)

(4.7.5)

(4.7.6)

(4.7.7)

(4.7.8)

The coefficients in these relations are just SU(3) Clebsch-Gordan coefficients. 
The uncoupled states | r f ), \ gg) and | bb) can then be obtained from linear 
combinations of equations 4.7.7 and 4.7.8 via the following transformation

(4.7.9)

We now have descriptions of all the states we need in terms of SU(3) 
representations and we can proceed to find numerical values for our matrix 
elements.

The values of the SU(3) Casimir operator, A2, depend on the dimension of 
the representation and those which concern us are shown in table 4.1. Details 
of their calculation can be found in [60]4. The operator Ai • A2  can be rewritten

rr

99 =
. bb .

i
y/2

1
v/6

i
\/3 Ipl

1
V2

1
v/6

1
v/3 f a

0 A
1

v/3 J . ^3 .

4The Casimir operators are often defined as F 2 where Fi =  |A * In this case the expec­
tation values will be smaller by a factor of four.
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Dimension

<v> 0 16
3

16
3 12 40

3

Table 4.1: Casimir Operator Values in SU(3)

as
Ai • A$ = I [(*+ A2 ) 2 — Ai2 — Aj (4.7.10)

which is a sum of Casimir operators. The (Ai +  A2 ) 2 operator has the val­
ues in table 4.1 and the one-body operators have expectation values of y  
because they act on the triplet representations. We can immediately proceed 
to evaluate equation 4.7.10.

(Ai to M II 1

(Ai A2)3 — —
(Ai > to CO

I II 1

(Ai A2>6 -  I
<Ai A2)s = 1

(4.7.11)

4.7.1 q q  States

For states with two quarks, when both colours are the same, we are obviously 
dealing with the sextet given in equation 4.7.3 and the matrix elements are 
(A r A2)6- When the colours are different, we express the states as combinations 
of 4.7.3 and 4.7.4. So, for example,

and

{f'Q | Ai • A2 | rg) — -  [(Ai • A2 ) 6  +  (Ai • A2)s] 

(rg  | Ai • A2 I g r ) = -  [(Ai • A2)6 — (Ai • A2)g]

In terms of logical colour (introduced in section 3.4.1),

< 00 | A, • A2 | 00) =  ^

(01 | Ai - A2 I 01) — ——

(01 | Ai * A2 | 10) —

<11 | Ai • A2 I 00) =  0

(4.7.12)

(4.7.13)

(4.7.14)

(4.7.15)

(4.7.16)

(4.7.17)
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4.7.2 qq  States

The situation with qq states with the same colour is worth mentioning explic­
itly. In all other cases, different states are orthogonal and the matrix elements 
are zero. However, in addition to ( r f  | Ai • A2 | r f ), there are also matrix 
elements such as ( r f  | Ai • A2 | bb) which are non-zero. From equation 4.7.9, 
we have

bb =  +  (4.7.18)

So

and

( r f  | A, • A2 | r f )  = H(Ai • A2>8 + i(A , • A2)x (4.7.19)

( r f  | Ax • A2 | bb) = - i(A x  • A2>8 +  j(Ax • A2)x (4.7.20)

Again writing these in terms of logical colour, we get

(00 11 Ai ■• A2 1 00)
(111 Ai'■ A; 1 00)
(Oil ■ a2 1 01)
(10 I V • a2 1 01)

4 
_ 3
- 2  (4.7.22)
1 
6
0 (4.7.24)

(4.7.21)

(4.7.22)

(4.7.23)
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Chapter 5 

Calculations and R esults

“I have had my results for a long time: but I do not yet know how 
I am to arrive at them” .

Karl Friedrich Gauss.

5.1 Introduction

We are now interested in finding out what the model is actually capable of. 
Having written the program and calculated the matrix elements for it to use, 
what can it be expected to do and what can we hope to find?

To start with, some simple test calculations are described and carried out. 
Next, we attem pt to reproduce the kind of results obtained by Storm for Qq 
calculations [28, 29] but with the interaction potential given in the previous 
chapter, which is different from her original one. Several sets of parameters, 
gleaned from the literature are used to test the robustness of the model and 
the stability of the results obtained.

We use projection operator techniques to analyse the states which appear 
in the spectra from these calculations, and study mixing effects in the states 
at small cluster separations. We do some investigations into the importance 
of the stability condition, mentioned in chapter 1 and check to what extent it 
is satisfied by the parameters we have used.

Finally, we move on to including qq excitation effects and see what dif­
ference these make to the NN  potential. The proportion of Qq in the wave-

73
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functions of the states in the new space is calculated and compared with the 
findings of other studies [11].

5.2 Choice of M odel Parameters

“You have a choice — death or bongo”.

Popular joke — Death by Bongo

“While relativistic effects are important in these systems, it seems 
that they can for the most part be hidden in the choice of such 
potential model parameters as the constituent quark mass. When 
all the dust settles, apparently it is ‘better to have the right degrees 
of freedom moving at the wrong speed than the wrong degrees of 
freedom moving at the right speed’ ” .

Nathan Isgur [61]

The above quotation from Nathan Isgur is included as a reminder that we 
are dealing with a model which is by no means perfect. In many ways we 
are pushing theories to their limits and possibly beyond, and it is unrealistic 
to expect more than qualitative results from our calculations. The choice of 
parameters can go some way towards “hiding” this problem but it is hardly 
satisfactory if all we are doing is fitting them to make the model give the best 
answers.

There has to be some justification of the choice of parameters but the 
approach taken in fitting them seems to vary quite a bit between implemen­
tations. Different groups place the emphasis on different conditions to justify 
the importance of their particular method.

In addition, there are certain physical constraints which must be taken into 
account when we pick our four parameters. An ideal set of parameters should 
have the following properties:

1. It should give the correct mass of the nucleon

E n = 939MeV (5.2.1)
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2. It should fit the nucleon delta mass difference correctly

E a - E n  = 293MeV (5.2.2)

3. The value of the oscillator parameter, C, should be consistent with the 
size of the nucleon (ie. about 0.8fm).

4. The constituent quark mass should be in the region of raw/3 =  313MeV.

5. The “stability condition” , that the mass of the nucleon should be min­
imised with respect to the oscillator length parameter, should be satis­
fied.

In practice, it isn’t possible to satisfy all these simultaneously. We don’t 
worry about the absolute values of the energies in our calculations since it is 
unreasonable to expect a non-relativistic treatment to give the correct masses, 
so we can relax condition 1 and don’t expect to obtain the correct mass of the 
nucleon in all cases.

Although the size of the nucleon places an upper bound on the value of the 
oscillator parameter, it may be satisfactory to use lower values since this can be 
taken to represent the “core” of the nucleon. Even so, the choice is still rather 
arbitrary. The commonly used value of 0.6 fm corresponds to assigning about 
half the mean square charge radius of the proton to meson clouds surrounding 
the quark core [62].

The coefficient of the colour magnetic, spin-spin interaction, ie. the quark- 
gluon coupling constant, a s, is fitted to give the NA  mass difference.

Finally, the strength of the confining potential, ac, is usually chosen so 
that the stability condition is satisfied. The emphasis placed on this condition 
varies between implementations and it’s importance seems to depend on the 
details of the model. In most cases the discussion revolves around the details 
of the RGM 1 calculations and whether the channel is pure N N  or mixing 
of other states is included [27]. The exact implications for our model are 
not immediately clear, although the original studies with our model [28, 29] 
did indicate that it made a substantial difference to the potentials. In this 
case, however, the minimisation of the nucleon energy was done by varying C  
directly and keeping ac constant.

1 Resonating group method
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m q cxs QiC C
313 MeV 1.517 23.67 MeV/fm2 0.6 fm

Table 5.1: The model parameters

To begin with, in line with our choice of potential, we use a set of pa­
rameters given in [36] and also used in [11]. They are shown in table 5.1. In 
choosing these, Hecht and Fujiwara don’t minimise the oscillator parameter at 
all. They use quite a complicated fitting procedure which is described in [36]— 
the variation of several quantities, such as the nucleon magnetic moments, is 
drawn on a C  versus m  plot and the oscillator length and mass values are 
selected from this.

The value of ac is picked to give the real nucleon mass of 939 MeV, purely 
for convenience, claiming that their final results are very insensitive to the 
choice of this parameter—a claim which is borne out by other works.

5.3 Test Calculations

The potential used by Storm is slightly different from the current one, but it is 
a simple m atter to alter the parameters and the terms used. An obvious means 
of testing the program code was to try to repeat some of her calculations. The 
program successfully reproduced the numerical results given in her thesis [28]. 
Details of the potential and the parameters she used can be found there, if 
required. In addition, the following set of consistency checks can be made.

1. A 3  q system is used with very small separation (O.OOOlfm) and only one 
shell ($+) to simulate a one-centre calculation. This gives us the nucleon 
and delta masses and the splitting (E& — E n ).

2. W ith 6q at large separation (eg. 5.0fm) we check the energies difference 
of the two lowest states (10) and (12)2. These should be a N N  and 
N A  respectively so the energy difference should equal the N -A mass 
difference.

2 Spin and isospin values (J T )
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3. The N N  system at large separation should be consistent with the nucleon 
mass, ie  It should satisfy

E$q = 2 E]\[ +  (5.3.1)

The last term arises because the centre-of-mass kinetic energy is sub­
tracted twice in the term 2E N, but only once in E6q.

4. The third state in the N N  — 6q system has all the quarks in one cluster. 
This should have the same energy as the equivalent one centre calcula­
tion.

Doing these simple calculations with our initial parameter set gives the 
following results:

1. The Nucleon and Delta energies are 938.96 MeV and 1231.96 MeV re­
spectively, giving E& — E n = 293.0MeV.

2. The energies of the first and second states in a system of six quarks are 
2137.097 MeV and 2430.093 MeV. The splitting is the same (292.0 MeV), 
which is consistent with these being a N N  and a NA  respectively.

3. The value of huj is obtained by using

ft* =  A -  (5.3.2)

With the values in table 5.1, we get

=  (M M eV fm )f =
m(MeV)C2(fm ) v '

giving 2E n +  = 1830.42MeV, so this condition is satisfied.

4. With 6q in the $ + shell, and Z  = 0.0001 fm, the energy is 2478.935 MeV. 
The third state in the N N  spectrum at Z  =  5.0 fm has the same eigen­
value correct to the fifth decimal place.

These tests all give consistent results, providing some reassurance that the 
code is functioning satisfactorily.
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5.4 Six Quark Calculations of Baryon-Baryon 
Interactions

In this section we perform calculations of interactions with a six quark system, 
along the same lines as those performed by Storm, but using the new potential. 
We would expect that this should give qualitatively the same results as she 
obtained, including some evidence of repulsion at low separations and little or 
no intermediate attraction in the N N  channel.

When using the m-scheme, we specify the projections of spin and isospin, 
and the eigenstates obtained from the calculation will have values of J  and 
T  consistent with these. To illustrate this, the eight low lying states in the 
spectrum obtained from a calculation with both projections equal to zero is 
shown in figures 5.1 and 5.2. A similar spectrum for the same calculation with 
m s = 1 is shown in figures 5.3 and 5.4.

The energies, E 0, E \ . . .  for these spectra are ordered such that Eq < E\ < 
E2 < . . .  at large separations (see table 5.2 below). The (J,T)  values are 
shown in brackets. It can be seen that the states with J  =  0, such as the 
N N (0 ,1) state are no longer present in the second (m s = 1) spectrum. This 
is obviously the case because J  — 0 states can only have m s = 0.

Taking a look at the full spectrum, the two states of lowest energy, E0 
and E l in figures 5.1 and 5.2 are the x5o and 3Si nucleon-nucleon systems. 
Above these, there are four N A  states, E2, E3, E4, E5, with varying amounts 
of repulsion in evidence at low separations. The state labelled E6 consists of 6 
particles in one cluster, with deuteron quantum numbers. The higher energy 
state, E7, with J  = 0, T  = 0 is also of this form. There are eight degenerate 
states with the mass of a two delta particle system at large separations, some 
of which are incomplete at the origin, due to the scope of the calculation, 
which is set up to request a particular number of eigenvalues; the energies of 
these states at lower separations were thus too high to be found.

The other states shown in the spectra have rapidly rising energies at clus­
ter spacings greater than 1.5 fm. These are hidden colour states—which are 
colourless overall, but consist of two coloured fragments. At large r values, 
this leads to an interaction between the clusters which take on the form of 
the confining potential. So this case, the energy varies as A t2 , for some con-
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stant k. The importance of the hidden colour states at small separation has 
been stressed in other works [26, 63]. They make up a sizeable portion of the 
wavefunction near the origin, contributing to the repulsive core [36], but are 
unphysical at large separations.

5.4.1 Projection Analysis of the States

The most important states in the spectra have been identified in terms of their 
constituent particles (N N ,N A , etc) using the projection operators described 
in section 3.16. They are only clearly defined at large cluster separations. As 
the value of Z  decreases, mixing of the states with the same quantum numbers 
will occur, and we can measure the degree to which this happens by recording 
how the amplitudes vary with separation. Table 5.2 shows the spectrum of 
states at a large cluster separation (Z  = 3.5fm) and their composition. We 
can then work out the components of any eigenstate in terms of these states. 
In line with [28], we use the square of the amplitude of the component to 
measure the amount of mixing. Figures 5.5,5.6,5.8 show the situation for a 
selection of the lower lying states in the spectrum.

If we look at the first two graphs, at separations above about 2 fm, the 
wavefunctions are entirely N N  but as the clusters are moved together, the 
proportion of the “pure” state in the wavefunction drops rapidly and higher 
energy states begin to get mixed in, including the hidden coloured states which 
form quite a large part of the wavefunctions near the origin.

Mixing should only occur, between states with the same quantum numbers— 
parity, J  and T, as is confirmed in the results.

5.4.2 Alternative Parameter Sets for 6q

To test the sensitivity of the model to variations in the parameters, we re­
peat the 6# calculations with some alternative parameters. We obtain spec­
tra  using the values given in table 5.3 which is a reproduction of Table 1 
from reference [64]—one of many works on the N N  interaction by Oka and 
Yazaki [65, 27, 25, 66, 67]. The values of ac in this table were chosen for a
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State (J,T) Eigenvalue Particle Split Composition
E0 (1.0) 2137.0964 3,3 NN
E l (0,1) 2137.0965 3,3 NN
E2 (2,1) 2430.0926 3,3 N A
E3 (1,2) 2430.0926 3,3 N A
E4 (1,1) 2430.0927 3,3 N A
E5 (2,2) 2430.0927 3,3 N A
E6 (1,0) 2478.9353 6,0
E7 (0,1) 2576.5907 6,0
E8 (3,0) 2723.0887 3,3 A A
E9 (1,0) 2723.0888 3,3 A A

E10 (1,2) 2723.0889 3,3 A A
E l l (2,1) 2723.0888 6,0
E12 (3,0) 2723.0888 6,0
E13 (2,1) 2723.0888 3,3 A A
E14 (3,2) 2723.0889 3,3 A A
E15 (2,3) 2723.0889 3,3 A A
E16 (1,2) 2918.4195 6,0
E17 (0,3) 3309.0811 6,0
E18 (1,0) 4002.5998 4,2
E19 (0,1) 4100.2651 4,2

Table 5.2: Properties of the first 20 states at Z  = 3.5fm
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Figure 5.5: Components of first eigenstate, EO

linear confinement potential 3 but it is a simple enough m atter to alter the 
program to accomodate this—the appropriate matrix elements were evaluated 
in the previous chapter. The spectra using these sets are shown in figures 5.9, 
5.10, 5.11, 5.12, 5.13 and 5.14.

The results show a reasonable degree of stability between parameter sets 
and are qualitatively in agreement with those obtained with our original pa­
rameter set, though there are quite substantial differences in the amount short 
distance repulsion in the states. Obviously, the absolute energies also vary 
quite dramatically but, as mentioned above, we do not expect to obtain cor-

3We retain the symbol ac for the linear confinement strength parameter as this is almost 
universally standard throughout the literature
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rect masses for the system—we are interested in the variation of the energy 
with cluster spacing.

5.4.3 The Stability Condition

We discussed this in section 5.2 when choosing our sets of parameters. Here 
we investigate how well our these sets conform to the condition

d E N

a # - °  <5“ »
and to what extent the satisfaction of the stability condition, or lack of it, 
affects our results. Initial impressions, from the results we have obtained so
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far, would seem to indicate that it is not of major importance.
It will be recalled that the parameters used by Oka and Yazaki were sup­

posedly chosen to satisfy this equation, but it isn’t immediately obvious that 
they will do so in our model and in fact, they don’t. For example, the variation 
of nucleon mass with C 4 for set II, used above, is shown in figure 5.15 and it 
can be seen that the minimum in energy occurs at 0.5 fm rather than at 0.6 fm. 
They have admitted [65] that the relation they use to calculate ac neglects the 
presence of the OGE potential and might have to be adjusted accordingly. 
This was deemed unnecessary, however, since the results they obtained are so

4 A golden section search routine [68] was used to do the minimisation
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insensitive to even quite substantial variations in the strength of the confining 
potential.

Figure 5.16 shows the graph obtained by minimising the mass of a nucleon 
with our original set of parameters which, in fact, only differs from Oka and 
Yazaki’s parameter set II in the choice of ac and the use of a quadratic con­
fining potential. Our calculation shows the minimum occurring at 0.61 fm. 
The energy is minimised at C = 0.6 fm if we make a slight alteration to the 
confining strength, changing it to ac = 27.8 MeV/fm2, as shown in figure 5.17. 
Such a minor alteration to the parameter will not have any significant effect 
on the results.
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m q
MeV

Gs ac
MeV/fm

C
fm

I
II
III

313
313
313

0.878
1.517
2.409

234.0
135.3
85.2

0.5
0.6
0.7

Table 5.3: Oka-Yazaki quark model parameters
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Figure 5.17: Nucleon mass minimisation with ac = 27.8MeV/fm2.

5.5 Quark-Antiquark Excitation Effects

We are now ready to move onto using the extended model space with qq 
excitations. The calculations are much larger and take considerably longer— 
the model space with Jz =  0,TZ =  0 has 8452 basis states, if we allow one 
meson to be created.

Another problem is that it is not immediately obvious in what way the 
parameters should be altered, if indeed they need to be at all. Hecht and 
Fujiwara have fitted a second set for calculations with qq pairs, shown in 
table 5.4, so we try both these, and our original set and compare the results. 
The spectra obtained are shown in figures 5.18 and 5.19.
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m q a s dc C
471.2 MeV 2.973 335.7 MeV/fm2 0.5235 fm

Table 5.4: Extended model parameters

It is possible to directly compare the states in figure 5.18 with those in 
figures 5.1 and 5.2, since both calculations used the same parameters, and 
immediately see the effects of the qq excitations. At large separations, where 
there is little overlap between the wavefunctions of each cluster, the qq effects 
become negligible and the states are the same as the six quark ones.

The most noticeable difference is that the energy at the origin has been 
lowered substantially (by about 200 MeV) in all the states. This effect was 
also observed by Hecht and Fujiwara, in [36], in comparing the potentials 
they obtained with the equivalent 6 # potentials. These 6q calculations yielded 
much higher repulsive cores than ours, so the lowering of the energy left a 
small repulsive core of about 100 MeV.

In our case, the lowering of the energy has introduced an attraction at the 
origin, but the effect is broadly in agreement with their work. They record a 
lowering of about 600-800 MeV which, in fact, agrees very well with the results 
in figure 5.19 which we obtained using the same parameters, but why the core 
size in the 6q calculations should differ so much is not known. As before, the 
form of the interactions obtained is reasonably stable when the parameters are 
changed, although the depth and width of the potential wells vary quite a bit 
between sets.

5.5.1 Am plitudes of 6 q ( q q )  in the W avefunction

The graphs in figures 5.20 and 5.21 show the amplitude of 6q components 
in the eigenvectors obtained from the calculations we performed in the last 
section.

Examining these, we see that the proportion of the wavefunction containing 
qq varies similarly for all the states. It reaches a maximum of about 25% 
at small separations and tends to zero as the separation increases and the 
overlap between the wavefunctions becomes negligible. Obviously this happens 
sooner—at about 1.5 fm as opposed to 2.0 fm—for the system with the smaller
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value of the oscillator parameter, which has narrower gaussian wavefunctions.
This doesn’t mean that free nucleons do not have associated qq or pion 

clouds, but tha t the spatial wavefunctions of our model are too few to allow 
their excitation. Having 75% Qq components in the wavefunction near the 
origin is consistent with Ayat’s results for the single nucleon [1 1 ] — she quotes 
a 73% 3q component in the nucleon wavefunction. We would not, however, 
expect the energy of our system at large separations to be consistent with her 
nucleon masses because of the difference in the spatial wavefunctions.



Chapter 6 

Conclusion

6.1 Six Quark Calculations

Before attempting calculations in the full space, including qq pairs, we per­
formed some studies along the same lines as the original 6 # calculations done 
by Storm [28, 29]. The form of the new potential differs from the one she used 
but the results are qualitatively in agreement with those she obtained, display­
ing some degree of repulsion at the origin, with little or no attraction present. 
There does not seem to be any strong dependence in our results on the stabil­
ity condition (section 5.4.3) which was imposed on the oscillator parameter in 
her work. This is a consequence of the fact that with our parameters, stability 
occurs at much higher (and more realistic) values (C  «  0.7fm) than Storm 
obtained with Harvey’s system which gave C  ~  0 . 2  fm. The characteristic 
length is much longer and so quark distributions are more diffuse and changes 
occur more slowly with separation.

6.2 NN Interaction with qq Excitations

The main aim of the present work was to incorporate quark-antiquark exci­
tations into the two-centre calculations and examine the resulting effects on 
the N N  interaction. This was the next logical step in the series of quark 
model studies carried out using the Glasgow shell-model framework — com­
bining the two-centre model with the cloudy baryon calculations performed

103
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by Ayat [1 1 , 38]. The main motivation is the possibility of obtaining results 
which are a first step towards describing the medium and long-range parts of 
the interaction with both the mesons and baryons modelled in terms of their 
constituent quarks.

Our calculations are currently restricted to S-states. The inclusion of ex­
cited states was possible in the single-centre calculations but is not currently 
feasible in the two-centre model because of the exponential increase in basis 
size which results. Ayat’s calculations showed that the effects of such states 
on the baryon energies was substantially less than the changes brought about 
by including qq excitations. In addition, our aim is the study of the inter­
action between baryons, where the role of mesons is of prime importance, so 
hopefully such restrictions on the space should not be too serious.

As in Ayat’s work, the inclusion of qq excitation effects was achieved by 
the use of an additional excitation potential (equation 4.3.1) which couples the 
6 q configurations to the new 6 q(qq) configurations which have been included 
in the basis. Unlike Ayat we did not include strange quarks in the model, 
though most of the groundwork for this has been laid. The effects on the 
N N  potential are unlikely to be of much significance and, in any case, the 
additional configurations would again lead to basis size problems.

In figures 6.1 and 6.2 we have plotted our various calculated NN  poten­
tials (x5o and 3 5i states) together with the corresponding Reid “soft-core” 
potentials [69], the formulae for which are reproduced in [70]. This is one 
of the most comprehensive fits available to the nucleon-nucleon potential and 
clearly displays the familiar features of this part of the interaction - it has 
an extremely strong repulsive region at short range, attraction at intermedi­
ate separations and takes on the form of the standard OPEP at long range. 
The 3 *S'i diagram only includes the central term. There is an additional ten­
sor component which leads to greater intermediate attraction in this channel 
but which has been omitted in our study. The tensor interaction could be 
included by adding additional terms from the qq or q —> qqq interactions but 
the additional complexity did not seem justified at this stage.

It has already been shown that the short-range repulsion of the interac­
tion can be reproduced, at least to some extent, by studies using a pure 6 q 
model. Most implementations have shown that a simple gluon-exchange po-
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Figure 6.1: Comparison of x5o Calculated States with Reid Potential

tential does lead to a repulsive core of limited height, even if it cannot be 
regarded as a complete description of the processes involved; meson effects 
are also important at short range — the exchange of the heavy u  vector me­
son is effective at distances less than 1  fm and is thought to provide a strong 
repulsive contribution.

It can be seen from figures 6.1 and 6.2 that the effect of including the 
6q(qq) configurations is purely attractive. There is no longer any short-range 
repulsion. Instead both channels (with both sets of parameters) exhibit a 
strong negative potential at the origin, so the model in its present form does 
not reproduce any of the repulsive effects of meson exchange. Moving away 
from the origin, the potential becomes less attractive and decays to zero, as 
would be expected. The potentials all have a similar range which is consistent 
with the Reid potential. This is mainly governed by the oscillator parameter 
which defines the separations for which there will be an overlap between the 
two clusters. The lower oscillator parameter (i.e. C  =  0.5235fm, from Hecht
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Figure 6.2: Comparison of 3 Si Calculated States with Reid Potential

and Fujiwara’s second set of parameters) gives the best fit of the two to the 
long-range part, though it does not match it exactly. The potentials are not 
very stable with changes in parameters — there is quite a large variation 
between the two sets. The second set displays much stronger attraction at the 
origin and decays more rapidly at intermediate distances.

For 6q calculations these results are comparable to other studies and repro­
duce the expected features of the interaction but the extension to the system 
with meson-excitations has not been very successful and may be pushing things 
too far.

In particular, the feasibility of describing mesons as simple qq pairs is ques­
tionable. A qq pair with the quantum numbers of a pion cannot be expected 
to give a realistic description of a real pion, with the correct pion mass, so 
a fit to the long-range OPEP is not likely to be readily achievable. This is 
likely to be exacerbated by the inadequacy of the spatial wavefunctions which 
limit the range of the potential and do not allow meson exchange to take place
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when the clusters are separated. The nature of the region of overlap is likely 
to be of crucial importance when we are trying to model the interaction at 
intermediate and long range and the oscillator wavefunctions we use may not 
provide a sufficiently detailed description of this distinctive area. Our Gaus­
sian wavefunctions fall off too rapidly with distance and simple exponentials 
would be better from the purely physical point of view. However, as explained 
earlier, it is very much easier ot calculate matrix elements with Gaussians and 
it was decided that for an exploratory investigation of this kind, Gaussians 
would be sufficient to give qualitative results.

At intermediate separations, the situation becomes too complicated for our 
model to handle. The heavier mesons come into play and two-pion exchange 
becomes important. Even if it were possible to include two meson configu­
rations in the model, it is unlikely that simple qq excitations will provide an 
adequate description of the meson exchange process. The different lifetimes 
and masses of the mesons and resonances involved will all have an effect on 
the interaction which we cannot reproduce.

A more realistic model would also take account of the colour singlet nature 
of the exchanged meson -  our model only specifies that the overall system 
should be a colour singlet but it should be possible for a colour singlet meson 
to be exchanged between two separated clusters and there is currently no 
mechanism in the model to enable this.

Although the shell-model approach allows a larger set of basis states to 
be used than for similar resonating group method calculations, the results are 
more difficult to analyse. In their RGM studies, Hecht and Fujiwara were 
eventually able to separate the contributions of different meson exchanges 
to the overall interaction, comparing the separate potentials with those of 
conventional meson theory [71]. This is not possible with our model where 
the results cannot readily be interpreted in this way. However, the form of 
the effective potentials which they obtained is broadly in agreement with our 
results, as can be seen from figure 2a of reference [71]. The main disagreement, 
as we have mentioned before, is in the amount of repulsion obtained in the 
pure 6q model where they have a repulsive core which is nearly 700 MeV at the 
origin, much larger than we obtain. Their 6q(qq) channel is purely attractive 
(-300 MeV at the origin) and this effect is increased with the addition of the
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6q(qq) 2 channel which has a value of about -500 MeV at the origin. Initial 
attempts we have made at performing calculations with two qq excitations 
added to the model give results similar to these, showing largely increased 
attraction in the overall potential.

Another weakness of the model is the non-relativistic approximation, the 
validity of which is doubtful. As we mentioned earlier, it is surprising that the 
non-relativistic quark model produces such good results in 3q and 6 q systems, 
but even if it is possible to hide relativistic effects in such cases, it doesn’t 
necessarily follow that the approximation can be extended to include meson 
effects.

It was hoped that by performing calculations with qq excitations, it would 
be possible to expand on the limited information which the 6q model is capable 
of providing and to extend the non-relativistic quark model to study some of 
the effects of meson exchange on the N N  interaction. However, the results we 
have obtained are not particularly enlightening and do not really provide any 
further insight into the nature of the interaction. The apparent failure of the 
model at this stage leads us to doubt its suitability for work of this kind and 
brings into question the wisdom of pursuing further studies in this area.
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Spatial M atrix Element 
Integrals

This section contains details of the calculation of the matrix elements for the 
various spatial operators in the model. Recall that,

U  = ( ^ j ^  eXP ( - (a ~2cT8) ) (A-°'1)
where fi — ± l .

We perform the integrals in the basis / M and then Use the transformation 
given in section 3.5.1 to change the matrix elements to the basis which is 
used in the calculations.

A .l  Some Useful Results

We will make use of these results in what follows. The hyperbolic sine and 
cosine integrals can be found in [72].

/oo _  x 2

e dx = cypK (A.1 .1 )
-oo

r  se “ “ ± 2  dx = 0 (A .I.2)
J —OO

f  x 2ex2dx = ^ ~  (A.1.3)
J—oo 2
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r e'px2 sinh(7x) dx= ^ / i exp k ed f e )  (a-i4)

r  x2e~0x'1 sinHyx) d x = e x p  b ed f e ) + w  (A-t5)

^  xe~^z2 sinh(7 x) dx =  J j j J j j  exP Jjj (A.1 .6 )

x2e~Px2 cosh(7 x) dx =  exp ^  (A.1.7)

By differentiating A.1.6 with respect to /3, we get

r  X*e~0x2 sinh(7a;) dx=i { l expi { i + h )  (A-1-8)
Differentiating A. 1.4 with respect to 7  gives

r ^  c°sh(7i) dx= \[w4 exp f e ) erf ( 2^ ) + ^  (a-i-9)
The error function, erf(rr), is defined by

erf(x) =  -^= [  e~u2 du (A.1 .1 0 )
V7T Jo

Where this occurs, it is approximated in the program by using the formula 
[73]

erf(z) =  —----------------- ---------------rrr +  e(z) (A .I.1 1 )
v ' ( 1  +  a\X +  a2x 2 +  . . .  +  ^6 )

Where
(mod e(a:)) < 3 x 10- 7  (A.1.12)

0 1  =  0.0705230784 a2 =  0.0422820123
a 3 =  0.0092705272 aA = 0.0001520143 (A.I.13)
a5 = 0.0002765672 a 6 =  0.0000430638

We have also used
-^-erf(a;) — ~^=e~x2 (A.1.14)
dx a / 7 T

when differentiating the above integrals.
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A .2 Miscellaneous Operators 

A .2.1 The Operator ‘x ’

This operator is used in the calculation of the centre of mass operator matrix 
elements.

( f i i \ x \ fv )  = {fn\%iei+x2e2 + x 3e3\fu)
= 1  [  x e - ^ (2 X -X + \ ( ^ W ) Z 2-(fi+^)Zx3) d3x

(ttC 2)I J

The e\ and e2 components will be zero because the integrands are odd func­
tions (see Equation A. 1 .2 ). The X\ and x 2 integrals of the e 3 component give
a factor of 7rC 2 from Equation A. 1 .1 . This leaves us with

(fn\x\f„) = y/nC [  z 3 e_ 5 c*(2xH M+,/)Zx3+̂ ' dx3e3
J — oo

=  y/nC [  x 3e " ^ ( I 3 _ 4 z('i+1/))2 e_ y _e~4c? dx3e 3
J  —o o

r—~  Z2 Z2(n+v)2 r°° (/̂  +  v ) Z  \
=  y/'KCe 4c*e lee* / [y - 1--------  )e c * d y e 3

J — o o  4

Zi l l  +  v) Z2(n-v)2
=  —   e  is  c 2 e3

4

A .2.2 The Operator p  =  — i h V

The momentum operator occurs in both the kinetic energy and centre-of-mass 
operators.

( U W v )  =  ~ % U A Xl e l +  X2e2 ~  (S3 -  ~ ^ )e 3 |/i/)
l h  Z2(n2+V2) fOO

e
( V * c )

i h  z 2
e 4ĉ

(v ^C )
z/i N z^ -v f

/*+•') f°° , v Z . _  1 (x2 _Z(jj±v)_ \
8C2 /  ( x 3 --------— ) e  3 2 ; d :r3 e 3

J —oo 2

A0 0 , Z ( i i  +  v)  v Z  z 2^+u)2
/ (2/ + ------ ------------ —)e d?/e3

j  —oo 4  Z
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A .2.3 The Operator x 2

This is part of the centre of mass operator.

< / > U >  =
ih ■e 4C2 [ (x  • x ) e ~ c ^ ^ +x^  

( 2  f  x2e& dx

dsx

ih z^-u)2 
-e i6 c 2

y/nC
2 (fi + v)2 Z 2 _ 4  '

+  J  y  + -------- Yq— e dy

Z{»-vf ( SC2 (fl + v)2 2

=  e ^ ( ^  + J L u L z 2

A .2.4 The Operator p 2

This one-body operator is needed to obtain matrix elements of kinetic energy. 
We have

( U \ p 2 \ f*)  =  (/a
!Z 2 X2 v Z x ,a

-  +C 2 4C 4 C 4 C 4
I/,)

3 ẑ 2 Z 2  1  /3  C2 {ii + v)2Z 2
C 2 4C 4 ~  C 4 \ ~ 2  16

=  (

- i / Z  

3

e i6 c2

(/x — ẑ )2)e i6c2
2C2 24C 2

A .3 Integrals for the Main Two-Body Inter­
action

In this section, we deal with the operators in the qq interaction potental. The 
integrals are all of the form
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In obvious notation, the argument of the exponential in this integral is a factor 
of —1 / 2 C2 times

A exp = (*i -  aie 3 ) 2 +  ( x2 -  a2e 3)2 + (x x -  bie 3 ) 2 +  ( x2 -  b2e 3) 2 (A.3.2)

In situations like this, where two particles are interacting via an internal force, 
the centre of mass will move like a free particle and the relative motion will
be determined by the interaction potential, V (r). The standard approach is
to transform to relative and centre of mass coordinates:

R  = ~^=(xi + x 2) (A.3.3)
V 2

P = - ^ = ( x i - x 2) (A.3.4)

This becomes

A -e x p  —  2(p2 +  R 2) — \/2 (a i T a2 +  bi +  b2) R  • e 3

—\p2{a,\ 4 - b\ — a2 — b2)p  • e3 +  Z 2 
( ai +  a2 +  bi +  b2 2

“  2(jR 2 j 2  63)
+ 2 ( p 2  _  «i +  t i - o » - f c p  < ej) +  ^

The integral with respect to R  reduces to
roo  f f 2 r-n p2tt .
/  R 2ec7 dR  /  sin(0) d6 d(j> — (irC2 ) 3 / 2 (A.3.5)

7o J o  J o
The integral with respect to p  is given by

2 tt f°° r  p2V { V 2 p ) e ^ e ^ {ai+bl~a2~b2)pcosdp2 sin9 dp de (A.3.6) 
J o  J o

If we simplify this by changing variables from 9 to cos 9, the full integral, A.3.1, 
can now be written as

< W m  I V ir ) I f n  f n )  =
z\  ( 1  ^ j + ^ 2 + ^ 1 + ^ 2 ) 2 A 4  roo  p2

e 2C v 16 J - = - r -  /  e c*pV(y/2p) sinh(7 p) dp( A.3.7)
y / l t C  '"y JoV v ^

I
where

7 =  —^  ( 0 1  + 1>1 -  0 2  -  I's) (A.3.8)

Now all we have to do is work out the integral / ,  indicated in A.3.7, for the 
terms, V(r),  in the potential.
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A .3.1 V ( r )  — 1 / r  

Here we have
"OO „2

I  =
4 r00

— — — ^  / e sinh(7 p) dp 
v '7tc,37 \ / 2  -/o

\ / 2  / 7 C \
=  4 “ H t J

by using A. 1.4 

A .3.2 V ( r )  =  r

roo j)2
/  p e ~ & sinh(7 p) dp 
Jo

v/2 7

A.3.3 V ( r )  =  r 2

v/7tc37 Jo

/  =
8  f°° ■ o _£*

— —— 7= / sinh(7 p) dp
V'7rc,17 v 2  -m)

A .3.4 V(r) =  53(r)

The three dimensional delta function is equivalent to

53 (a;) =  5(zi)<S(x2)<Ka;3)

With
J  63(x)d3(x) = 1

In polar coordinates

s3{r) = i 5(r)
=

8 V 2 ^ (P)

(A.3.9)

(A.3.10)

(A.3.11)

(A.3.12)

(A.3.13)

(A.3.14)

(A.3.15)

(A.3.16)

(A.3.17)
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Since

So

I  =

6(ax) =  -5(a;) (A.3.18)
a

1  (A.3.19)
(2 trC2) ’

A.4 Integrals for the Yu-Zhang Potential

In this section, the integrals necessary for the use of the qq excitation potential, 
equation 4.3.1, are evaluated. As above, we change to relative and centre of 
mass coordinates to evaluate ( / Ml /]U2 | V(r)  | fvxfv2 )• The integral then splits 
into a term in R

J  e M R - ^ Y v i R )  £ R  (A.4.1)

multiplied by a term in p

1 —  J  e M P - ^ Y v ( p ) d 3p  (A.4.2)
(v^FC2 ) 3 / 2

where

A — ^ = Z ( p i  +  ^ 2 ) 6 3  (A.4.3)

a =  ~  ^ e 3 (A.4.4)

B  =  2 v ^ Z ^ 1 +  ^ e 3  (A.4.5)

b = (A.4.6)

The integrals in R  which we have to deal with are trivial to evaluate. If
we then change to polar coordinates, we can rewrite the integral in p as 

2 ?r
(7rC2)3/2 eicz(a2+b2) J  e c?eP{c> ) cos9V(p} 6)p2 sin OdpdO (A.4.7)

1

We now proceed to work out expressions for these integrals for each of the 
terms in the potential.
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A .4.1 The Term r / r

We can write this as V(p,6) = cos 6/p2. The integral, I , from the previous 
section then becomes

roo  p2 pTT
I  = J dp J  eypcose cos 6 sin 6 d6 (A.4.8)

where 7  =  (a +  b) /C2 (the same as equation A.3.8 . After integrating with 
respect to 0 we get

I
- 1

OO ^ 2

ec1 A C0Sh(7p)_ £ ^ M
IP IP

dp

2  f°° _ y2. 2  d /sinhw 

7 •
Integrating by parts gives

= — [  e -<2c2 [ — —  I du
j  Jo udu  \  u

2 4 f°° ;a2
I  — ------ 1— —— / e ^ 2 sinhudu

7  7 *G2 7o
which can be solved using equation A. 1.4 to give

7  7 2C
W ith u(i2) =  1 in A.4.1, the integral in R  just gives a factor

p - ( A - B ) 2/4 C 2

So the complete integral is then

z1 = -L e- M
7  c6

-y
e 4

e r f ^  2

^  A .

(A.4.9)

(A.4.10)

(A.4.11)

(A.4.12)

A .4.2 The Term 51r
This momentum operator only acts on particle 1 in the two particle wavefunc- 

tion I fv\ fv 2 ) • We have

v ie- ^ {x' - u- ¥ e*)2 = Vi Z

So we can write
Vi
r

2C> V*1 " ~ T eV e 2C

1  ( T* A. P l ZR  +  P  ~ e3

(A.4.13)

(A.4.14)
2 pC2 V  ' r 2

and we now have to work out the integral for each of the terms on the right 
of this equation.
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A .4.3 The Term R / p

Putting v(R)  =  R  in A.4.1, we find that the integral with respect to R  is 
equal to

(A-B) 2 1
e 4c2 -  (A +  B )  e% (A.4.15)

2

The integral I  from A.4.7 is

I  = J  e~c^e P{c2 ) cos 6p sin 6 dpdO

Integrating with respect to cos 6 leaves

2  r°°
7 Jo

with 7  =  (a +  b)/C2 as before. Using A. 1.4 gives

2 roo _ ^ 2

I  = — / e c* sinh p j  dp 
7  JO

T_  v ^ C 2 ^ e r f ( f )  
2 6  4 7 C/2

Combining the above results gives the result for the term — ̂ 7 2

A + B  ^ erf3̂

1 f t

4C3

A .4.4 The Term p / p

The R  integral is the same as A.4.1 1 . We are then left with

I  = J  e~c?e Pi<c2 ) cos 6p2 sin 6 dpdO 

The 6 integral is the same as in section A.4.1 leaving

I
- 1

00 2
e c1 — cosh (7 /?) —

sinh(7 p)
' 0  7 P 

Using A. 1.4 and A. 1.9 and simplifying gives

IP
p2dp

I  = T*
7 2 C 2 / 7 2 C 2

1 1 ^
—  l i e  4

e r f f
l £

2
+  7  2 C 2

(A.4.16)

(A.4.17)

(A.4.18)

(A.4.19)

(A.4.20)

(A.4.21)

(A.4.22)
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A .4.5 Term u i Z e s / ( 2 1 2̂p)

Here the p integral takes exactly the same form as A.4.19 and the R  integral 
is the same as A.4.1 1 .

A .4.6 Summary

Gathering together the information from this section we see that the quantities 
we have to evaluate can be summarised as follows

where

II ~  7 £ 3 Texpl Texp2 Terf ^

1

1 T  '-^expl7  C 3 
V\Z

2  1 1 r exp2 r e rf+

4̂ — ^/2^3^expl^exp2^erf

■^expl

^exp2

■̂ erf

=  e2C
^=P-+a2+b2

=  e 4

1  * ( 1 °  
=  tC  \ T

(A.4.23) 

(A.4.24) 

(A.4.25) 

(A.4.26)

(A.4.27)

(A.4.28)

(A.4.29)

These are the expressions which worked out in the computer program.
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Binding Energy of the D euteron

To illustrate the excessive binding resulting from the attraction evident in 
figures 5.18 and 5.19, we have calculated the binding energies of the deuteron 
(3 5i) and the other neutron-proton state (1 5o).

The Woods-Saxon form is used for the potential as it has roughly the same 
shape as the graphs in question

w(r) = ----- 'V  ,:i (B.o.i)
1  +  exp

Here Vo is the difference between the energy at large separation and at the 
minimum at r «  0 . tq is the value of r at which v(r) = — uq/ 2  and a is 
obtained from the gradient at r = r0 using

dv(r)
dr =  — (B.0.2)

4ar—r o

In figure 5.18, the graph E0 is approximated by vq = 280, r$ = 1.25, a =  0.25. 
Inserting this potential in Schrodinger’s equation for the relative wavefunction 
of a proton and a neutron with angular momentum I =  0

gives E  = — llOMeV for the ground state, which does not compare well with 
-2.225MeV, the energy of the deuteron. In addition, there is a second state 
with I — 1  and energy -4.5MeV which does not exist in nature.

119
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The graph E l (1 S'o) is approximated by vq =  215, r$ = 1.25 and a =  0.25. 
This time the state of lowest energy has E = —66MeV.

The parameter set of table 5.4 does not improve matters. For E0, we have 
Vo = 600, ro =  0.8 and a =  0 .2 2 . Thus the attraction is much stronger though 
of shorter range. There is one bound state of energy -196MeV.

For E l, the potential is fitted by Vq =  530, 7~o =  0.8 and a =  0.22, and the 
energy of the single bound state is -156MeV.



A ppendix C 

Technical Information

Here we give details of the program used to implement the model. The calcu­
lation can be roughly separated into the following stages:

•  Constructing the single particle basis.

• Assembling the many-particle basis states.

• Finding the sets of orbit pairs for two-body transitions.

•  Calculating the two-body matrix elements of all necessary operators.

•  Finding the number-conserving (2 —>■ 2) set of possible many-body tran­
sitions between the basis states

•  Calculating matrix elements for the qq excitation potential, if applicable, 
and the table of triples associated with it.

•  Finding the additional (1 -H- 3) many-body transitions which do not 
conserve the number of particles.

• Assembling the elements of the Hamiltonian.

• Applying the Lanczos algorithm to tri-diagonalize the Hamiltonian.

•  Finding the eigenvalues and eigenvectors of the Lanczos matrix.

•  Performing density matrix calculations to obtain the quantum numbers 
of the eigenstates.

121
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Each one of these can be implemented as a separate program module which 
reads in data from files and produces further output for use at a later stage. 
It should be noted that a single pass through the above cycle will only give 
us one set of eigenvalues for a particular value of the two-centre separation, 
Z  as discussed in section 3.1. In practice we want to accumulate a set of 
enough data points to give us a graph of the interaction, so the whole process 
is wrapped within a loop over a range of Z  values specified in the initial data 
file and the calculation is performed for each value.

Not all of the steps need to be repeated when the input data has been 
altered (for example, if only the separation is changed it isn’t necessary to re­
build the table of basis states and the sets of pairs and triples), so the program 
always stores a log of the details of its previous calculation and consults this 
before proceeding, enabling it to skip unnecessary steps and reuse the data 
files from the previous run.

We will first discuss the starting data required for the program and then 
follow the process through in sequence, providing skeleton sections of code (in 
‘C’) to illustrate each stage. Details such as memory management, allocation 
of arrays, file handling, function templates and global data declarations have 
been omitted.

C .l Program Input

The initial data can be split into roughly three parts

• Data defining the model space

• Parameters needed to calculate the matrix elements

•  Program control parameters and flags

C.1.1 M odel Space Data

The model space is determined by the shells we are using, their occupancies, 
the values of Ms, M t and parity, and the minimum (MINQ) and maximum 
(MAXQ) number of quarks in the calculation, all of which are inputs to the
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program. By “shells” in this case, we mean the spatial wavefunctions </>+ 
and </>_ defined in section 3.2. Distinct shells are considered for quarks and 
antiquarks. A full set, with occupancy values for a full calculation is shown in 
table C.l. So in this case we have a maximum seven quarks and minimum of

Shell Spatial Parity Intrinsic Parity Min. Occ. Max. Occ.

<P+{q) 0 0 0 7
1 0 0 7
0 1 0 1

<t>-(Q) 1 1 0 1

Table C.l: Shells and Occupancies

six. They are all allowed to move freely throughout the space so the minimum 
occupancy for each quark shell is zero and the maximum is 7. Similarly, the 
occupancies for the antiquark shells are a minimum of zero and maximum of 
one.

C .l .2 M odel Param eter Data

These are basically just the model parameters discussed in section 5.2. The 
constant values of C, m, q;s and ac are all read in and used for matrix element 
calculations. A boolean flag value is used to ascertain whether a linear, rather 
than the default quadratic confinement potential should be used. The range 
of Z  values is also specified, in the form of minimum and maximum values 
and an increment value to determine the size of the steps between them.

C .l .3 Program Control Parameters

The most important of these are the ones which affect the diagonalization of 
the Hamiltonian and the calculation of eigenstates. These are the number of 
required iterations, the desired number of eigenstates and a flag to determine 
whether a starting vector obtained from a previous calculation should be used 
(see section 3.10.2). It should be remembered that the Lanczos algorithm gives 
most rapid convergence for the extremal eigenvalues, so more iterations may 
be needed if a larger number of eigenstates are requested. The program has
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a safety mechanism built in to check for convergence of the eigenvalues, and 
more iterations will be performed if the states have not fully converged.

In addition, several flags can be used to override the program’s decisions on 
which parts it needs to carry out, based on i t ’s log of data from the previous 
full calculation performed. For example, the computer on which the program is 
running may crash while our calculation is busy diagonalizing the Hamiltonian. 
By this stage the Hamiltonian will have been assembled and stored and we 
would not wish to have to repeat the stages leading up to this, so we can 
set control flags to indicate that the stored data files should be used and the 
calculation should re-commence at the Lanczos algorithm routine.

C.2 Single Particle Orbits

This simple routine merely constructs an array of the orbits and their quantum 
numbers. Here, as elsewhere in the program, half-integer quantum numbers 
are doubled to ease handling. The spatial (n) and intrinsic (p) parities of each 
shell in the calculation are read in and combined with z-components of spin 
and isospin, giving four quantum numbers for each orbit. Strangeness and 
mass would also be added for calculations involving strange quarks.

The orbits can either be set up as ‘C’ structures or as separate quantum 
number arrays indexed by the orbit number. We will assume the former. So at 
the end of the routine we have a single array, o rb its  [n O rb its], each element 
of which is a structure with four fields p , n , ms, mt.

C.3 M any-Particle Basis

Constructing the many particle basis states can be split into two main sub­
processes:

• Finding the valid single-colour SDs. We usually refer to these as “red 
states” .

•  Combining these in threes to make up the actual basis.

as discussed in section 3.3.4.
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C.3.1 Generating the Red States

The red states are found by means of the bit-shifting mechanism in sec­
tion 3.3.4. This is performed for each valid number of red particles, i.e.,

int nRed;
int minRed = MINQ/3;
int maxRed = minRed + 2*(MAXQ-MINQ);

for(nRed = minRed; nRed <= maxRed; nRed += 2)
{

generateRedStates(nRed);
>

The shifting is done by recursive calls to a particle moving function. We start 
with the lowest nRed orbits filled and attem pt to move the first particle to the 
next orbit. If the orbit above is filled, the move function calls itself recursively 
for subsequent particles, until it either succeeds in moving one or the last 
particle is reached. In the latter case the process terminates. The number 
of quarks and antiquarks in the red state resulting from each valid move are 
noted and, if acceptable, the binary representation of the red state is stored in 
an array, redStates[nRedStates], ready for use in the combination process. 
It is important to realise that this procedure generates an ordered list of red 
states. When interpreted as binary numbers redStates[i] <redStates[i +  1], 
for all i in the range 1 , . . . , nRedStates.

C.3.2 Combining the Red States

The red, green and blue codes are selected from the redStates array by means 
of three nested loops of indices. So we have:

int R, G, B;
for(R = 0; R < nRedStates; R++)
{

for(G = R; G< nRedStates; G++)
{

for(B = G; B < nRedStates; B++)
{ // check combined quantum numbers here.

// If OK, write the three codes and 
// multiplicity to the basis file
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The quantum numbers of each colour code are calculated from its orbits at 
the start of each loop and used to work out those of the overall state. If 
these match the spin, isospin and parity values from the input data, the state 
information is written to a data file in the form of the three colour codes and 
the multiplicity of the state. Note the starting values of the indices R,G,B of 
the loops impose the ordering of the colour codes R , G, B  in a three-colour 
SD: R < G < B .

C.4 The Pair Sets

In this part of the program, we assemble the sets of pairs of orbits with the 
same quantum numbers, which may have non-zero matrix elements of the 
two-body Hamiltonian, as discussed in section 3.4.1. The two-body transitions 
must conserve M s, M t overall parity and spatial and intrinsic parity separately, 
so all pairs in a set must satisfy these conditions. The quantum numers of the 
individual particles in a pair may be changed by the action of the Hamiltonian 
but the sums must remain unchanged. The colour of the particles is also 
important, and the sets are also differentiated by whether the two particles in 
the pair have the same or different colour. When the particles have different 
colour, we must also differentiate between two-particle states of the form | qq) 
and | qq) because we cannot have e.g. rg —> fg. Separate sets will also be used 
for these different pair types. For the qq case when the colours are the same, 
the possibility of r f  —► gg and r f  —> bb must be considered as well as r f  —>■ rf. 
This is done by adding an extra pair into the set, marked by an extra large 
packing value (see below). Later code is designed to notice this and include 
the extra transitions and different matrix elements as appropriate.

The sets are obtained by a series of nested loops giving values for c (logical 
colour) x, Mt, Ms, spatial parity and intrinsic parity. There is also an extra 
loop which comes into play for the rg case discussed above.

W ithin these, a further two loops define the two orbit numbers of the pair. 
Each possible pair is tested to see whether it has the correct quantum numbers 
for the set. If it does, the pair is stored in an array (pa irs) (the orbits are

1See section 3.4.1. Logical colour 0 means colours are the same, 1 means they are different
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packed into one number to enable this) and the set number of the pair is stored 
in another array, using equations 3.4.4 to calculate the index. The code would 
look like this

#define PACK 256

void pairSets(void)
{

int i,j,imax,jmin;
int np, tnp=0; // tnp = total number of pairs
int c,mt,mj,p,ps,index,extra,set=0,extraSet,p_of_i;

nPairs = 0;
for(c = 0; c <= 1; C++) // colours the same/different

for(mt=-2; mt<=2; mt+=2)
{

for(mj=-2; mj<=2; mj+=2)
for(ps=0; ps <=1; ps++) // spatial parity

for(p=0; p <= MAXQ-MINQ; p++) // intrinsic Parity
{

extraSet = p && c ? 1 : 0; 
for(extra=0; extra <= extraSet; extra++)
{

p_of_i = -99; // intrinsic parity of orbit i 
np = 0;
iMax = c ? nOrbits : nOrbits-1; 
for(i =1 ;  i <= iMax; i++)
{

jMin = c ? 1 : i+1;
for(j = jMin; j <= nOrbits; j++)
{

if(orb[i].mj + orb[j].mj != mj
I I orb[i] .p + orb[j] .p != p
I I orb[i] .f + orb[j] .f != f
I I orb[j] .n != (ps + orb[i] .n)'/,2)

continue; 
if(c == 1 && p_of_i == -99) 

p_of_i = orb[i].p; 
if(c == 1 && orb[i].p != p_of_i) 

continue; 
if(c == 0)

index=((2*n0rbits-i)*(i-l))/2 + j —i; 
else
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index=(nOrbits*(nOrbits + l))/2 +
nOrbits*(i-l) + j; 

pairSet[index] = set + 1; 
np++; tnp++; 
pairs[tnp] = PACK*i + j;

// add extra pair for different coloured mesons i.e. <11|vI00>
if(c == 0 && p == 1)
•C

np ++; tnp ++;
pairs[tnp]=PACK*PACK + PACK*i + j;

>
>

>
if(np != 0) // if the set isn’t empty

pairsInSet[ ++set ] = np; 
startPairs[set] = nPairs + 1; 
nPairs += np;

>
>

>
}
if(c == 0)

lastOset = set;
>
nSets = set;

>

where we have assumed that the arrays which store the properties of the sets 
are defined globally. These are

pairs -  the array of packed pairs of orbit numbers.

pairSet -  the set number for a particular pair.

p a i r s InSet -  the number of pairs in a particular set.

startP a irs  -  the position in the pair array where a particular set of pairs 
begins.

Other global variables which are used later are the number of pairs (nPairs), 
the number of sets (nSets) and the last set with c =  0 (lastO set).
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C.5 Two-Body M atrix Elements

This routine works its way through all the pairs in each set and works out all 
matrix elements of the form ( kl \ vu  | i j ) for all the two-body operators in 
the model, using the formulae from chapter 4. The routines for assembling 
the Hamiltonian and for density matrix calculations use the matrix elements 
from this section. In the sections discussing these, we will assume that the 
matrix elements for the potential are stored in an array called r e a ls  [] with an 
another array called s ta r tR e a ls  [] giving the position of the elements for each 
pair. The elements for additional operators are stored in other appropriately 
named arrays.

C.6 M any-Body Transitions

Here we use convert the two-body transitions (which we have stored in terms 
of our sets of orbit pairs) into the transitions between the actual basis states of 
the model, enabling us to construct the many-body Hamiltonian. This routine 
takes each basis state in turn, and destroys all possible pairs of particles in 
it. For each destroyed pair, it locates the set in which the pair occurs (by 
consulting the array p a irS e t)  and creates all possible pairs in the same set. 
Each new SD thus created is searched for in the table of basis states and its 
number is stored in a file along with a pointer to the matrix element associated 
with the transition (i.e. an index into the s ta r tR e a ls  array).

The pair destruction and creation for each basis state is divided into two 
separate routines -  one for pairs of the same colour, and one for those of 
different colour. So the basic form of the routine would look like this

#define Red 0 
#define Green 1 
#define Blue 2

void manyBodyHamilton(void)
{

int state, zero = 0;

for(state = 1; state <= basisSize; state++)
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// write the state number to the file
fwrite(festate, sizeof(int),l,componentfile) ; 
destroySameColour(state); 
destroyDifferentColour(state);

// write a zero to mark the end of transitions for this state 
fwrite(&zero,sizeof(int) , 1,componentfile);

>
>

In what follows, we also assume that the basis of SDs has been loaded into 
a two dimensional array b asis [3] [b a sisS ize ] , indexed by the state number 
and the colour (Red = 0, Green = 1, Blue = 2). The elements give the 
binary representation of the orbits of the specified colour in the given state. 
For each cycle of the loop, the state being acted on is further broken down -  the 
details of the SDs particles are stored in an array called orbits [3] [] indexed 
by the particle number and colour and the number of particles of each colour is 
stored in an array called n P artic les [3]. At this stage, we use the unpacked 
orbits to form the parity representation of the state (stored in parityRep [3]), 
for calculating the phase of the operators (see section 3.7). The elements are 
formed using the following code, for each value of the variable colour

int i, code=0;

for(i = 1; i <= nParticles[colour]; i++) 
code~= (1 «  orbits [colour] [i]) - 1; 

parityRep[colour] = code;

W ith these extra details, we are ready to move onto the routines which do 
the annihilation and creation of pairs, converting the state into others in the 
basis.

C.6.1 Same-Colour Pair Annihilation

The code for the same-colour routine looks something like this

void destroySameColour(int state)
{

int i,col,co,creCol; // colour indices
int dphase, cphase; // phases for destruction and creation ops 
int partl,part2; // destroyed pair particle numbers
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int orbl,orb2; // the destroyed orbit pair
int crorbl,crorb2; // the created orbit pair
int pairlndex, set;
int changingColour; // boolean value
int pr,minPr,maxPr;
int newbin; // binary rep of created orbits

for(col = Red; col <= Blue; col++)
{

for(parti = 1; partl<=nParticles[col]-1; partl++)

orbl = orbits[col][parti]; 
dphase = 1;
for(part2 = partl+1; part2<=nParticles[col]; part2++)

orb2 = orbits[col][part2]; 
for(co = Red; co <= Blue; co++)
{

residue[co] = basis[co][state]; 
parResidue[co] = parityRep[co];

>
residue [col] ~= (l«orbl) + (l«orb2); 
parResidue [col] “= (l«orbl) - 1;
parResidue [col] ~= (l«orb2) - 1;
pairlndex = ((2*norbits - orbl)*(orbl-l))/2

- orbl + orb2;
set = pairSet[pairlndex] ;
minPr = startPairs[set]; // First Pair in the Set
maxPr = pairsInSet[set] + pi - 1; // Last Pair
realPtr = startReals[pairlndex]-1;
for(pr = minPr; pr <= maxPr ; pr++)// Create pair pr 
{

realPtr ++;
crorbl = pairs[pr]/PACK; 
crorb2 = pairs [pr]'/.PACK; 
changingColour = crorbl > PACK; 
if(changingColour)

crorbl = crorbl'/.PACK; 
newbin = (1 «  crorbl) + (1 «  crorb2); 
creCol = col;
for d  = 1; i <= (changingColour ? 2 : 1); i++)
{

if(changingColour)
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creCol = (creCol + 1)7,3;
/* If these orbits */ if((residue[creCol] & newbin) == 0)
/* aren't occupied */ {

if((1 «  crorbl) & parResidue[creCol]) 
cphase = -1;

else
cphase = 1; 

if((1 «  crorb2) & parResidue[creCol]) 
cphase = -cphase;

// Create the new state and locate 
// its position in the basis. Write 
// the details to the output file.
/ /  . . . .

locate(newState, dphase*cphase);
>

>
>
dphase = -dphase;

The code selects each single-colour SD for the states in question and steps 
through all the pairs of particles in it. The orbits of the destroyed pair are 
removed from both the occupancy and parity representations of the state and 
the results stored in the arrays re sid u e  and parResidue respectively. The 
orbit numbers of the destroyed particles are used with equations 3.4.4 to work 
out an index for the pair, giving us a handle on the set which the pair belongs to 
and its associated information, as stored by the pair-finding routine discussed 
above in section C.4. Each pair in the set is then created in turn (the fo r  loop 
over the variable pr). The orbits are unpacked from the pair array, checking 
for the colour-changing case {rf —> g g ,r f  -> bb) and a binary representation 
of the created orbits is formed (newbin). We then proceed to check the new 
state is valid {i.e. the created orbits aren’t already occupied) and work out 
the phase for the creation of the two particles as detailed in section 3.7.

The variable creCol gives the colour of the created pair which will normally 
be in the same single-colour SD as the destroyed pair. In the changing-colour 
case, though, we have to create it in each of the other two SDs, hence the
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inclusion of the loop over i, which is performed once or twice as necessary.
The new state is located in the b as is  array by means of a standard binary 

search over its three single-colour SD values. It is possible that the created 
state may be a ghost, in which case the red, green and blue SD values must 
be rearranged into ascending order prior to the search. The number of the 
new state and the index (rea lP tr)an d  phase factor of the associated matrix 
element for the transition are stored to disc.

C.6.2 Different-Colour Pair Annihilation

The code for this part has essentially the same form as the same-colour case. 
There are a few obvious changes to deal with the fact that the created and 
destroyed particles are now in different single-colour SDs. These SDs have 
been labelled red, green and blue, for convenience. The actual colours vary, 
but that isn’t important.

void destroyDifferentColour(int state)
{

int red,green,blue; // the SDs
int pairlndex,set;
int parti,part2;
int coll,col2;
int orbl,orb2;
int crorbl,crorb2;
int pr,minPr,maxPr;
int newbinl, newbin2;
int redPhase,greenPhase,dphase1,dphase2,cphase;

for(coll = Red; coll <= Green; coll++)

for(col2 = coll+1; col2 <= Blue; col2 ++)

blue = basis[3-coll-col2][state]; 
dphase1 = 1;
for(parti = 1; parti <= nParticles[coll]; partl++)
{

orbl = orbits[coll][particlel]; 
red = basis[coll][state] - (1 «  orbl); 
redphase = parityRep[coll] ~ ((1 «  orbl) - 1); 
dphase2 = 1;
for(part2 = 1; part2 <= nParticles[col2]; part2 ++)
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orb2 = orbits [col2][part2] ; 
green = basis [col2] [state] - (1 «  orb2); 
greenPhase = parityRep[col2] ~ ((l«orb2)-l); 
pairlndex = nOrbits*(n0rbits+l)/2

+ nOrbits * (orbl-1) + orb2; 
set = pairSet[pairlndex];

/* First Pair */ minPr = startPairs[set];
/* Last Pair */ maxPr = pairsInSet [set] + minPr - 1;

realPtr = startReals[pairlndex] - 1;
for(pr = minPr; pr <= maxPr; pr ++)

realPtr ++;
crorbl = pair [pr]/pack; 
crorb2 = pair[pr] '/, pack; 
newbinRed = 1 «  crorbl; 
if((red & newbinRed) != 0) 

continue; 
newbinGreen = 1 «  crorb2; 
if((green & newbinGreen) != 0) 

continue; 
newState[Red] = red + newbinRed; 
newState[Green] = green + newbinGreen; 
newState[Blue] = blue;

if(redPhase & newbinRed) 
cphase = -1;

else
cphase = 1; 

if(greenPhase & newbinGreen) 
cphase = -cphase; 

locate (newState, dphasel*dphase2*cphase);
>
dphase2 = -dphase2;

>
dphase1 = -dphase1;

>
>

>
>
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C.7 Quark-Antiquark Excitations

The part of the calculation implementing the Yu-Zhang (1 —* 3)potential into 
the model bears a strong resemblance to the parts of the program which have 
already been described for the 2 —> 2 case. The arrays t r i p l e s ,  s t a r t  T rip le s , 
tr ip le s In S e t  function in much the same way as the corresponding arrays for 
the sets of pairs. The main difference in the approach is that the array of 
matrix elements for the potential is calculated in the same routine which finds 
the sets of triples. In many ways, the process is simpler than that for the pairs 
-  we are only destroying one particle, so the number of sets is just equal to 
the number of orbits, and we fill each set with the triples which match the 
quantum numbers of the destroyed orbit.

The code is shown below and follows the same sort of structure as the 
pair-finding routine. There is a loop for the destroyed orbit, i, and then three 
nested loops for the created orbits j  ,k and 1. In all cases, at least one of the 
created particles will have the same colour as i  so we assume that j  always 
has the same colour. If j happens to be the odd particle 2, we must take care 
not to allow transitions in which k and 1 do not have the same colour as i, 
because r — > fgg etc. are not permitted. If the particles are all the same
colour, then the k loop no longer starts from 1 but begins at j  +  1. This is to
prevent identical triples being generated more than once. The three created 
orbits are packed into one number and then stored in the triple array.

#define triple(a) ( orb[j].a + orbfk].a + orbfl].a ) 

void YuZhang(void)
-C

int i,j,k,l; // orbit numbers
int cj,ck,cl; // logical colour values
int jOdd; // boolean - true if j is the ‘odd’ particle
int realPtr=0;
int tnt=0,nt; // triple counters

// Destroy loop
cj = 0; // j always has the same colour as i
ford = 1; i <= nOrbits; i++)

2For single meson creations, the odd particle is just the antiquark. We keep the case 
general, though, to allow q -)■ qqq.
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I
nt = 0;
startTriples [i] = tnt + 1;

// Create loops j,k,l
for(ck = 0; ck <= 1; ck++)

cl = ck; // the other two must also be same colour 
for(j =1; j <= nOrbits; j++)
{

jOdd = (orb[i].p != orb[j].p); 
if(jOdd && (ck == 1)) 

continue;
for(k = (ck == 0 ? j+1 : 1); k <= nOrbits; k++)
{

for(l = k+1; 1 <= nOrbits; 1++)
{

if(triple(p) != orb[i].p + 1
II triple(n)'/,2 != (orbits[i].n + l)'/.2 
II triple(mt) != orbits[i].mt 
II triple(mj) != orbits[i].mj) 

continue;
triples[++tnt] = i000000*(10*j+cj)+

1000*(10*k+ck)+(10*l+cl);
nt++;
YZreals[++realPtr] =

conjugateParticle(i,j,k,l»cj,ck,cl);
>

>
>

}
triplesInSet [i] = nt;

>
>

The function c o n ju g a te P a r tic le  performs the conjugation of the odd par­
ticle to allow the matrix elements to be calculated in two-body form (see 
section 4.3.1). It assumes particle 1 is the odd particle and, if necessary, j or 
k are swapped with it to ensure that this is the case. It also calls the finds 
the m atrix element associated with the transition, which is then stored in the 
array YZReals.

float
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conjugateParticle(int i,int j,int k,int l,int cj,int ck,int cl)
{

int pl,mtl,nl,mjl;
float Vdir,Vexc,Cdir,Cexc,lphase;

if(orbits[j].p != orbits[i].p) // j odd 
{

swap(l,j); 
swap(cl,cj);

>
else if(orbits[k].p != orbits[i].p) // k odd 
{

swap(l,k); 
swap(cl,ck);

>
pi = 1 - orbits [1].p ; // Conjugate quantum numbers
mtl = -orbits[1].mt; 
nl = orbits[1].n; 
mjl = -orbits[1].mj; 
if(pi == 0)

lphase = pow(-l,(l - (mjl + mtl)/2));
else

lphase = pow(-l,(l + (mjl + mtl)/2));
Vdir = YZspace_spin(j,k,i,mtl,nl,mjl) ;
Vexc = YZspace_spin(k,j,i,mtl,nl,mjl);
Cdir = colval[0][cj][ck][0][cl]/4; // <j,k| L1.L2 |i,l>
Cexc = colval[0] [ck] [cj] [0] [cl]/4;
return (Vdir * Cdir - Vexc * Cexc) * lphase;

>

C.7.1 M any-Body Hamiltonian

The assembly of the 1 -H- 3 part of the many-body Hamiltonian is virtually the 
same as the 2 —> 2 case, discussed above in section C.6. For each state in the 
basis, a single particle is annihilated and the triples from the corresponding set 
are created in turn, locating the resulting new states in the basis and storing 
the details as before.
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C.8 Building the Hamiltonian

This routine is concerned with assembling the elements of the Hamiltonian 
from the many-body data accumulated in the previous sections. This is done 
a row at a time, starting from the diagonal element. There are essentially two 
sets of input data -  one for the number-conserving part of the interaction (sec­
tion C.6) and one from the transitions relating to the Yu-Zhang interaction 
(section C.7.1). Each of these data files consists of a set of lists of “compo­
nents” for each state (i.e. row) in the basis. Each component consists of the 
number of another state in the basis (i.e. the column) and the matrix element 
and phase factor for the transition between the two basis states. To assemble 
a row, we just have to add up the effects of all the components. There are a 
few other bits and pieces to be dealt with, such as the single particle energies 
and the multiplication factors mentioned in section 3.12 which arise from our 
treatment of the ghost states. Even so, the code is reasonably simple.

static float sqrtFactor [3] = { 1.0, SQRT3, SQRT6 >; 
int YZRow = 0;
extern FILE *Hamiltonfile, // the output file

*componentfile; // many body data file 
♦YZFile; // the Yu-Zhang components

void makeHamiltonian(H_elt *buffer)

int j, row; 
int state;
int nParticles; // number of particles in state 
int Mass; // sum of particle masses in state
int stateOrbits[10]; // array to store orbits in state 
float kfactor, spe; // spe = single particle energy

kf actor = 10*hbar_c_MeV_fm * hbar_c_MeV_fm / (C * C); 
for(row = 1; row <= basisSize; row++)

fread(&state,sizeof(int),1,componentfile);
// assign nParticles and Mass here ...
// load stateOrbits [] with the orbit numbers of the state 
spe = 0;
for(j =1; j <= nParticles; j++)
-C

int o = stateOrbits [j]; // Single Particle KE Operator
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spe += orbits[o].p2*(l.0/orbits [o].m - 1.0/Mass);
}
spe *= 0.5*kfactor;
spe += Mass;
element[row] = spe; // diagonal element
makeRow(row, buffer, kfactor/Mass);

>
>

We have assumed that the single particle kinetic operator matrix elements are 
stored in the p2 field of the orbit structure. An additional structure type called 
H _elt has also been defined to hold store the elements of the Hamiltonian. It 
has two fields -  a floating point number (e lt)  for the numerical value and an
integer (index) to store the column number. The following code is used to
build each row.

void makeRow(int row, H_elt *buffer,float kfoverM)
{

int eltsInRow,j,state,column,nComponents=0,phase,rpt;
H_elt *startBuffer = buffer;
fread(&state, sizeof(int), 1, componentfile);
while(state != 0)

if(state < 0)
{

phase = -1;
state = -state;

} // elt[state] is <state|H|row>
else

phase = 1;
rpt = state & 0x7fff; // unpack state and rpt 
state » =  15;
elt [state] += phase*(reals[rpt] +

plp2[rpt]*kfoverM); // Two body KE operator
column0f[ ++nComponents ] = state; 
fread(&state, sizeof(int), 1, componentfile);

>
if(YZRow == row)

fread(&state, sizeof(int), 1, YZFile); 
fread(&rpt, sizeof(int), 1, YZFile); 
while(state != 0)
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I
if(rpt < 0)
{

phase = -1; 
rpt = -rpt;

>
else

phase = 1;
elt[state] += yzfactor * YZreals[rpt] * phase; 
columnOf[ ++nComponents ] = state; 
fread(&state,sizeof(int),1,YZFile); 
fread(&rpt,sizeof(int),1,YZFile);

>
fread(&YZRow,sizeof(int),1,YZFile);

>
buffer -> index = 0; 
buffer++ -> elt = 0; 
buffer -> index = row;
buffer++ -> elt = elt[row]; // Diagonal Element
eltsInRow = 2; 
elt [row] = 0.0;
for(j = 1; j <= nComponents; j++)
{

column = columnOf[j];
if(elt [column] != 0.0) // Store non-zero elts and their 
{ // position (column)

eltsInRow++;
buffer -> index = column;
buffer++ -> elt = elt[column]*sqrtFactor[mplty[row] /3]

/ sqrtFactor[mplty[column]/3];
elt[column] = 0.0;

>
>
fwrite( startBuffer, sizeof(H_elt), eltsInRow, Hamiltonfile);

>

The components for the row are read in and the matrix element for each is 
added to the appropriate element of the array e l t  []. This is then repeated for 
the Yu-Zhang data. It would then be possible to go through the row a column 
at a time and write the accumulated elements to the Hamiltonian data file. 
However, because of the sparsity of the matrix, it is found in practice that 
the number of components is smaller than the size of the basis, so it is faster
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to find the columns which have non-zero matrix elements by looping through 
these components instead. To do this, a counter is kept of the number of 
components and the column of each is kept in a separate array columnOf []. In 
this way, all the non-zero elements of the row are found, their column position 
and value are written to a buffer where they are stored prior to being written 
to the Hamiltonian file. The value is first multiplied by the weighting factor 
( J m /y / fn j)  from section 3.12. The array mplty [] holds the multiplicities of 
the states, as stored in the basis file.

C.9 Tri-Diagonalizing the Hamiltonian

We are now in a position to apply the Lanczos algorithm and find the eigen­
values and eigenvectors of the Hamiltonian. The Lanczos algorithm is widely 
used and details of its application are readily available. Nevertheless, we will 
discuss it briefly because it is such a central feature of the Glasgow shell-model 
code.

This part of the program is by far the most time consuming. The multipli­
cation of the Lanczos vectors by the Hamiltonian matrix, the normalization, 
orthogonalization and re-orthogonalization of vectors are all very labour inten­
sive processes. The latter obviously becomes more important as the diagonal- 
ization proceeds and the number of Lanczos vectors increases. Unfortunately 
the scope for heavy optimization is somewhat limited and would rely mainly 
on standard methods for matrix and vector operations. These might include 
loop unrolling, where more work is done in each cycle of a loop to avoid 
the pipeline overheads caused by comparison operations in the code. Matrix 
multiplications can be optimized to make the most efficient use of on-chip and 
secondary-cache memory to avoid the significantly larger times needed to fetch 
data from conventional memory. Such optimizations can drastically improve 
performance of procedures such as matrix-vector multiplications and dot prod­
ucts. However, to a large extent they are dependent on the architecture being 
used and the exact details of the implementation are often best established by 
trial and error (using a time-profiling compiler option to establish the amount 
of time taken in functions) rather than by theoretical means. Moreover, they 
are by no means specific to our application so we will not pursue them here.
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We also have to read and write vectors and parts of the Hamiltonian to 
disc throughout the process, so this must also be done as efficiently as pos­
sible. This will obviously depend on what memory resources are available. 
We present here a generic implementation of the Lanczos algorithm to which 
further machine-specific optimizations may be added as required. The main 
function looks like this

#define BUFFERSIZE 200000

void Lanczoslterations(float *alpha, float *beta, H_elt *H)
-C

int it, k ;
float a,*v0,*vl,*v2,*vtemp;

vO = zeroVector(l,basisSize); // allocate vectors
vl = zeroVector(l,basisSize);
v2 = vector(1,basisSize);
beta[0] = 0;
setFirstVector(vl);
normalize(vl,basisSize);
writeVector(vl,lancfile,basisSize);
for(it =1; it <= nlterations; it++)
•C

H_mult(v2,H,vl); // v2 = H.vl
alpha[it] = orthogonalize(vl,v2) ; 
addVectors(v2, -beta[it-l], vO, 1, basisSize); 
beta[it] = normalize(v2,basisSize); 
if (it > 1)
{

a = k = 0;
while(a < 0.1 && k++ < 3)
{

if (it == basisSize) 
break;

a = reorthogonalize(v2,vl,it); 
if (k > 1)

printf ("Re-reorthogonalizing, */,d\n" , it) ;
>
if(a < 0.1 && it < basisSize)

printf(" Reorthogonalization Failed\n\a"); 
break;
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>
>
writeVector(v2,lancfile,basisSize);
vtemp = vO; // arrange vectors for next iteration
vO = vl;
vl = v2;
v2 = vtemp;

>
beta[nlterations] = 0;
fclose(Hamiltonfile);

>

The arguments passed are vectors to store the a  and (I values as introduced 
in section 3.10 and a pointer to the buffer (as used in the previous section) 
in which the elements of the Hamiltonian are to be stored. First, memory 
for the Lanczos vectors is allocated (we need space for three vectors for each 
iteration) and a function is called to set the elements of the starting vector, as 
described in section 3.10.2. This is then written to the file of Lanczos vectors 
(lan cf i le ) .

The main loop of the procedure carries out the iterations, applying the 
equations from section 3.10 and generating the new Lanczos vectors. The 
middle block of code deals with the re-orthogonalization process, performed 
by the reo rth o g o n a lize  routine which orthogonalizes v 2 to each of the previ­
ous Lanczos vectors in turn. At this stage the value of the norm of the new v 2 
is checked to ensure that it is not too close to zero. v 2 is initially normalized 
before re-orthogonalization, but if the accumulation of rounding errors leads 
to a vector being generated which is almost spanned by the previous vectors, 
this will be shown by a low norm value for the new, re-orthogonalized vector. 
If it is too low, the size of the vector may have been reduced to the extent 
that we may not be able to rely on its orthogonality when rounding errors 
are taken into account. An attem pt to redress the situation is made by re­
peatedly re-orthogonalizing up to three times until a norm larger than 0.1 is 
found. Otherwise the algorithm terminates, but this never actually happened 
in practice.

Once a satisfactory vector v 2 has been obtained, it is stored and becomes 
the next vi, V\ becoming the next Vo ready for the following iteration.

The routine which performs the matrix multiplication v2 — H v\ is shown
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below, along with the orthogonalization and re-orthogonalization functions. 
They are largely self-explanatory. The function normalize is also assumed to 
exist. This just normalizes the vector argument and returns the value of the 
norm (given by ^ v  • v).

static void H.mult(float *v2, H_elt *buffer, float *vl)
-C

int i, buffelts, row = 0, column; 
float element;
H_elt *start.buffer = buffer;

setVector(v2, ZERO, 1, basisSize);

rewind(Hamiltonfile); 
while( Ifeof(Hamiltonfile) )
{

buffer = start.buffer;
buffelts = fread(buffer,sizeof(H_elt),

BUFFERSIZE,Hamiltonfile); 
for(i = 0; i < buffelts; i++)
{

column = buffer -> index; 
element = buffer++ -> elt; 
if(column == 0) // new row
-C

row++; 
i++;
v2[row] += buffer++ -> elt * vl[row];

>
v2[row] += element * vl[column]; 
v2[column] += element * vl [row];

>
>

}

double orthogonalize(float *vl,float *v2)
{ // orthogonalize v2 to vl

int i;
double scalar=0;
for(i=l; i <= basisSize; i++) // Dot Product

scalar += vl[i] * v2[i]; 
for(i=l; i <= basisSize; i++) 

v2[i] -= scalar * vl[i];
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return(scalar);
>

double reorthogonalize(float *v2,float *vl,int nVecs)
{

int vec;
rewind(lancfile);
for(vec = 1; vec <= nVecs; vec++)
{

readVector(vl,lancfile,basisSize); 
orthogonalize(vl,v2);

>
return(normalize(v2.basisSize));

>

The orthogonalization and normalization routines would probably benefit 
substantially from the loop-unrolling procedure mentioned above. In this case, 
we would have something along the lines of

for(i=l; i <= basisSize; i += n)

scalar += vl[i] * v2[i]
+ vl[i+l] * v2 [i+1]
+ vl [i+2] * v2 [i+2] + ... + vl [i+n] *v2 [i+n] ;

}

instead of the simple loop shown above in the orthogonalization function. 
Obviously additional loops would be required if b as isS ize  was not an exact 
multiple of the constant n.

C.10 Diagonalizing the Lanczos M atrix

When the Lanczos algorithm has been completed, the tri-diagonal Lanczos 
matrix can easily be diagonalized using the methods described in section 3.11 
and the references contained therein.

C .l l  Density Matrix Calculations
The final stage is to analyse the composition of the eigenstates in terms of the 
number of particles and the quantum numbers for the overall state and for.
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each cluster. This carries out the procedures from section 3.14 and subsequent 
sections.
void density(void)
{

int i, j, nParticles, eigenState; 
int rpt;
float evalue, exvalA;
float element,*evector, *density, *mult;

// allocate vectors here
for(eigenState = 1; eigenState <= KEEP; eigenState++)
{

readVector(evector, eigenfile, basisSize); 
evalue = evector[0]; 
for(j =1 ;  j <= nReals; j++) 

density[j] = 0.0; 
exvalA = 0.0;

// Now form the density matrix elements 
f o r d  = 1; i <= basisSize; i++)

fread(&j,sizeof(int),1,componentfile); 
exvalA += nParticles * evector [i]*evector[i]; 
fread(&j,sizeof(int),1,componentfile); 
while(j != 0)
{

if (j < 0)
■C

element = -1;
j = -j;

>
else

element = 1; 
rpt = j & 0x7fff; 
j » =  15;
element *= (evector [i] * evector [j]) *

(sqrtFactor[mult[i]]/sqrtFactor[mult[j] ] ) ; 
if(i != j) // Off diagonal elements 

element *= 2; 
density[rpt] += element; 
fread(&j,sizeof(int),1.componentfile);

>
>
printf ("Eigenvalue '/,.4f:\n", evalue);
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quantumNumbers(density, exvalA);
>

>

The above piece of code is basically a loop over the eigenstates which we want 
to examine (KEEP is the number of required states, specified in the starting 
data). The eigenvector (evector) is read in and the density matrix elements 
are calculated and stores in the array density . This process follows a similar 
line to the construction of the rows of the Hamiltonian, discussed above. The 
appropriate factors are added in to deal with the ghost states (sq r tF a c to r  is 
assumed to be the same as in section C.8).

The function quantumNumbers then makes use of the density matrix for 
each state to calculate the expectation values of spin, isospin and colour oper­
ators for the overall state and also for the “half” state (i.e. the positive clus­
ter). The latter part makes use of the projection operators from section 3.16. 
The variable N gives the value of the number-projection operator defined in 
section 3.16.1.

void quantumNumbers(float *density, float exvalA)
{

int i ;
float Jwhole,Twhole,Cwhole,N ,f act or,Chalf,Thalf,Jhalf;

Jwhole = Twhole = exvalA * (3.0/4); // One body terms 
Cwhole = exvalA * (16.0/3);
N = 0.5 * exvalA;
Jhalf = Thalf = 3*N;
Chalf = 2 * Cwhole; // 0.5 * 4 
f ord = 1; i <= nReals; i++)

factor = dens[i];
Jwhole += Jelt[i] * factor;
Twhole += Telt[i] * factor;
Cwhole += Celt[i] * factor;
N += Nprojection[i] * factor;
Jhalf += Jprojection[i] * factor;
Thalf += Tprojection[i] * factor;
Chalf += Cprojection[i] * factor;

>
Jwhole = 0.5 * (sqrt(l + 4*Jwhole) - 1);
Twhole = 0.5 * (sqrt(l + 4*Twhole) - 1);
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Chalf /= 4;
Thalf = 0.5 * (sqrt(l + Thalf) - 1);
Jhalf = 0.5 * (sqrt(l + Jhalf) - 1);
printf ("J=7,.2f T='/,.2f C=7,.2f\n" , Jwhole,Twhole,Cwhole);
printf ("Half of State N=7,.2f J=7..2f T=7..2f C=7..2f\n",

N,Jhalf,Thalf,Chalf);
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