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Abstract

This thesis examines the behaviour of a homogeneous and quasineutral, equal-mass (electron-
positron) plasma in the presence of a constant magnetic field. Two sets of comparisons
are made: between e~ e and e~-ion plasmas and between treatments of a progressively
more relativistic nature.

Fundamental plasma quantities: plasma frequency, wy; cyclotron frequency, Q; and
Debye length, Ap, are briefly introduced in Chapter 1.

The peculiar features of electron-positron plasmas are illustrated in Chapter 2. Quan-
tities defined in Chapter 1 are redefined for e~e* plasmas. Examples of physical situations
where e~ et plasmas may occur are given. The predictions of cold plasma theory for e~et
plasmas are summarized at the end of this chapter.

Chapter 3 embraces the kinetic theory upon which the remainder of the thesis relies.
After explaining the need for a kinetic theory, the development of that theory is reviewed.
The first part of the chapter shows the microscopic (Klimontovich) description. Next the
necessary concepts from Gibbs’ and Boltzmann’s statistical theory are presented. These
ideas are married in the BBGKY hierarchy. The lowest order expansion of the hierarchy
gives the Vlasov equation. A dielectric treatment can then be carried out using the
Vlasov equation and Maxwell’s equations. At this point the equilibrium conditions are
stated. After some analysis general dispersion relations are found for both e~ -ion and
e" et plasmas. These expressions are general in the sense that they permit a choice of
momentum distribution.

In Chapter 4 the momentum distribution function is the familiar Maxwellian distribu-

tion function. The dispersion relations are then used to derive the (electrostatic) Bernstein




modes. Bernstein modes propagate perpendicular to the magnetic field and resonate at
electron cyclotron harmonics (w = nfl.). In an electron-ion plasma, there are seen to
be gaps in the frequency spectrum away from n{), where these modes may not propa-
gate. e~ et plasmas are different: the theory leading to frequency gaps is exact and not a
consequence of approximation. These relations are then illustrated.

Original work begins in Chapter 5. In this thesis, interest in a weakly relativistic plasma
stems from the wish to observe the transition between the existing non-relativistic and fully
relativistic kinetic treatments. The relativistic nature of these treatments is governed by
the parameter a = moc?/kT: 10 < a < 100 corresponds to weakly relativistic conditions.
Chapter 5 is concerned with weakly relativistic e~et plasmas. A novel combination of
non-relativistic distribution function and otherwise fully relativistic dispersion relation
leads to the dispersion relation for weakly relativistic e"e* plasmas. This expression is
then prepared for inclusion in computer code: it is restated in dimensionless units and
rearranged so that double quadrature becomes single quadrature with a special function.

The design of the computer code is discussed in Chapter 6. The resulting dispersion
curves are shown and described in Chapter 7. It is demonstrated that, as for e -ion
plasmas, the introduction of a weakly (or fully) relativistic treatment sees a broadening
of the frequencies at which resonance occurs and a downshift in those frequencies. These
results have been described briefly in conference proceedings [1, 2]. This chapter goes on to
consider the possibility of an approximate analytical approach and suggests the direction
future work will take.

There are three appendices. They deal respectively with: the properties of certain
special functions; contour integration; and a listing of the code which is described in

Chapter 6.
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Chapter 1

Introduction

When a man gives himself up to the government of a ruling passion, — or,
in other words, when his HoBBY-HORSE grows headstrong, — farewel cool

reason and fair discretion!

Tristram Shandy, Laurence Sterne

While it is often remarked that plasma is the fourth state of matter, it is certainly
true that it is the least well-defined state. The consensus is that a plasma is an ionized
gas in which collective behaviour dominates. Electrons and ions exchange energy and
momentum with each other through their effects on, and reaction to, electromagnetic
fields. The fields can be external or the result of the motions of the charged particles
themselves, the so-called self-consistent field: often both types of field are involved.

This self-consistency is very important. Single particle interactions are treated as col-
lisions: while the dynamics of a plasma are pictured as the superposition of two clouds,
interacting only through the field to which both are coupled. If the coupling force is
extreme enough to keep the clouds more or less together, their relative velocity is propor-
tional to the electric current and the entire plasma is treated as a single, current-carrying
fluid. The study of such plasmas is known as magnetohydrodynamics (MHD). Langmuir
(or plasma) waves represent the other extreme: dynamics are so fast that the ions are

essentially stationary — all that oscillates is the electron cloud and with it the electric
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1.1. PLASMA FREQUENCY

field.

Plasmas often possess significant thermal energy. Relativistic particle velocities are
likely and complicate any kinetic description. This is especially true of low mass particles
such as electrons which reach relativistic velocities at lower energies. Nevertheless in this
investigation of electron-positron plasmas, we expect to reveal simplifications due to the
nature of the plasma.

Throughout this work various assumptions have been made about the conditions under
which the plasma exists. Namely, it is assumed that the plasma is locally neutral, homo-
geneous and hot. Note that under these conditions collisional terms may be neglected, see
Section 3.2.

The propagation of waves in a weakly relativistic e"et plasma perpendicular to a
uniform equilibrium magnetic field is of particular interest. Kinetic theory seems the most
appropriate approach to plasmas in this domain. The remainder of this chapter defines the
basic terms used throughout this work, no assumption is made about the species present

in plasmas.

1.1 Plasma Frequency

At a simplistic level one may describe plasmas in the cold approximation. One takes a
neutral assembly of negative and positive particles with a distribution which is initially
uniform throughout. In addition one assumes that there is no thermal motion. Under
such circumstances the effect of displacing a group of particles, say electrons, is to make
the plasma non-neutral around the displacement. The displaced particles store potential
energy and have a tendency to return to their equilibrium positions. Once they reach the
equilibrium position however the potential energy has converted to kinetic energy and the
particles overshoot. Away from equilibrium again the motion of the particles induces (and
is opposed by) an electric field. In a cold plasma there is no loss mechanism and once a
perturbation has been introduced the oscillations in the plasma will carry on indefinitely.

The root mean square of the frequencies of these fundamental plasma oscillations for each

11



1.2. DEBYE LENGTH

species, s, present is known as the plasma frequency and will be denoted w,.

w = prs = Z Z;(?)?fq:o (1.1)

In many electron-ion plasmas the ions may be treated as a stationary background to the
extent that ‘plasma frequency’ often refers to the electron plasma frequency, wp,.
Note that w, depends on both the properties of the particles themselves, ¢, and myo,

and the parameters of the plasma, ny.

1.2 Debye length

€0kT
ne?

ADp = (1.2)

The Debye length, Ap, can be pictured as the effective range of the Coulomb force in a
plasma. It is calculated by coupling an electrostatic formulation of Poisson’s equation and
the Boltzmann equation n(E) = nge~E/*T self-consistently through the charge density. A
test particle at a distance greater than Ap is effectively screened from the field due to the
source by intervening ambient particles.

The dominance of collective effects may be estimated from the typical number of
part.icles in a Debye sphere (a sphere of radius Ap). If the characteristic interparticle
distance, n~1/3, is small in comparison to Ap many particles are close enough to one
another that Coulomb forces are not shielded, the plasma must behave collectively. One

criterion for a plasma, then, is a large Np, where
Np = np®

Coulomb collisions scale with the Debye length while large-angle particle collisions
scale with interparticle distance. The former (long-range) force dominates in plasmas.

To behave as a plasma it is just as important that the Debye length be much less than
the characteristic length of the plasma. That way the plasma may be considered as a

continuum and effects may be treated locally.

12



1.3. CYCLOTRON FREQUENCY

1.3 Cyclotron Frequency

In the presence of a uniform magnetic field a single charged particle is accelerated in a
circular path perpendicular to the field. This circular motion has a frequency, the cyclotron

frequency, given by

_ ¢sBo
ms

Q, (1.3)

Unlike the plasma frequency, the cyclotron frequency depends on particle parameters
alone. Using this frequency one can create another useful quantity the characteristic
cyclotron length or Larmor radius, rz. This is the radius at which the force due to the

magnetic field is in balance with the centripetal force.

rp = ;’]—L (1.4)

13



Chapter 2

Equal mass Plasmas

In an equal mass plasma the masses of the two species are equal while the charges are
opposite. The study of equal mass plasmas is prompted by the possibility that mass
equality will lead to substantially different phenomena. This in turn might permit insight
into the physical behaviour of plasmas in general.

Mathematically there is a certain amount of cancellation in the calculation of dispersion
relations.

For an exact equal mass plasma the only possibility is that of a particle-antiparticle
plasma (Alfvén calls this ambiplasma [3]). The ambiplasma with the lightest component
species is the electron-positron plasma.

In reference [4] basic e~ et pair processes are discussed. In particular Lightman gives
a review of the various possible creation and annihilation reactions [5]: whilst Takahara

explores the realm of magnetized, relativistic e"et plasmas [6].

2.1 Electron-Positron Plasmas

The main positron annihilation path for positron temperatures above 100 eV is direct
two-body collision annihilation (see [7]).
When discussing e~ e plasmas it will be seen that particles will generally have a great

deal of thermal energy, so that relativistic particle velocities are likely. One might expect

14



2.1. ELECTRON-POSITRON PLASMAS

relativistic considerations to complicate the theory but by investigating electron-positron
plasmas, one hopes that the symmetries inherent to an ‘equal-mass, opposite charge’
plasma will permit simplification.

Over a large range of conditions, a system of electrons and positrons is definitely a
plasma. One important criterion is the number of particles in the Debye sphere, Np. This
is introduced on page 12. In the context of non-relativistic electrons and positrons the
Debye length has a slightly different definition:

€okT

Ap =
D 2ne?

(2.1)

For a typical weakly relativistic temperature of around 10® K and electron (positron)
density of say 10'®m~3, Ap~8 mm and Np~10'°. Densities up to 10°°m=3 still fulfill the
Np criterion.

At this point the special properties of the e~e* plasma may be illustrated by reviewing
the definitions of fundamental plasma frequencies: the cyclotron frequency and plasma
frequency. In the subscripts used e denotes electron and € represents positron quantities.

By definition (1.3) the electron cyclotron frequency, £, is identical to the positron

cyclotron frequency but has opposite sign.

= (9B _ _(H9)Bo _ o (2.2)
me meg

The plasma frequency for the pure neutral e"et plasma under consideration is given

by:

2n 062
wp = (Wl +wk = ?0:717 = V2upe (2.3)

In contrast to electron-ion plasmas the positrons certainly may not be treated as a sta-
tionary background. The positron contribution is identical to that of the electron.
Electron-positron plasmas may be found in many places: in the atmospheres of pulsars;
in extra-galactic jets; in the early universe; and recently, there has been an upsurge in
interest in creating them in the laboratory, now that trapping techniques have been vastly

improved.

15



2.2. PULSARS

2.2 Pulsars

2.2.1 What is a pulsar?

The prevailing model of pulsars, the lighthouse model, assumes that a pulsar is a rapidly
rotating neutron star. Its magnetic field is exceptionally strong. Often the magnetic and
rotational axes do not coincide. Charged material is channelled along the tightly packed
magnetic field lines. Matter streaming from the pulsar at the poles collides violently
with matter streaming into the pulsar. Large amounts of radiation are produced and this
radiation in turn escapes from the vicinity of the pulsar. When observed from Earth the
polar radiation will appear as a pulse, once for each revolution. This is illustrated in
figure 2.1. The whole topic of pulsar magnetospheres is reviewed in many places including
articles by Michel [8, 9] and Lominadze [10].

Crucial here is the nature of the matter which streams from the pulsar; it consists
of electrons and positrons. This streams through a dense plasma magnetosphere, also
electron-positron (the presence of which was suggested by Sturrock as far back as 1971
[11]). The interaction between streaming particles and the plasma is at the centre of the

debate over the source of the exceptionally bright emission spectra of pulsars.

2.2.2 Current theories

The presence of e~et pairs in pulsars was predicted in the earliest models. Reviews may
be found in [8] and in more detail in articles by Arons [12] and Ray [13]. In outline the
mechanism of pair creation is as follows: the strong magnetic field separates particles of
opposite charge and leaves a layer immediately above the surface of the pulsar which is
relatively free of particles. This charge separation leads to a strong electric field along
which electrons are accelerated to very high energies. The electrons also experience the
dipolar magnetic field of the pulsar and because they are forced to move along these highly
curved field lines they must radiate. This radiation in turn encounters the gap region and
because of the electric field in that region produces pairs.

One of the major topics around pulsars is the mechanism of the radio emission observed

16



2.2. PULSARS

Charged particle fiow

Figure 2.1: A diagram of the ‘lighthouse’ model of pulsars

from pulsars. In the seminal article by Arons [14] the theory of wave propagation in pulsars,
i.e. in superstrong magnetic fields, is proposed. Many authors have worked on emission
mechanisms: one good candidate is the two-stream instability, see for instance [15]. There
are two regions in which researchers have considered this instability to take place: in
the high polar gaps and in the pair production gaps. The latter case is ruled out by
Egorenkov [16]. Usov [17] describes the creation of conditions for a two-stream instability
in the polar gaps. The production of pairs is strongly non-stationary — thus electrons (and
positrons) appear in clouds. These clouds disperse because of their velocity distribution
and eventually, the author estimates at around 10°m, the fastest particles from one cloud
catch up with the slowest of the previous cloud. Thus there is the two-humped distribution
necessary to cause the two-stream instability.

Lyubarskii too deals with the problem of the generation of pulsar radio emission [18].

He describes how emission due to the two-stream instability produces observable radio

17



2.3. EXTRAGALACTIC JETS AND GALACTIC NUCLEI

waves: induced scattering converts the original subluminal modes into superluminal waves.

These superluminal waves then transform easily into the observed electromagnetic waves.

2.3 Extragalactic Jets and Galactic Nuclei

Shrader [19] and Purcell [20] report the results from the Compton Gamma Ray Observa-
tory in which galactic sources of annihilation line radiation are mapped for the first time.
There is evidence for a central galactic emission bulge.

This is part of a body of evidence supporting the existence of e~et plasmas in the
nucleus of the galaxy [21, 22]. The topic is reviewed in reference [4] in the contribution of
MacCallum et al. [23].

Beyond this galaxy, observations of extragalactic jets suggest the presence of an e~e*
pair plasma [24]. The nuclei of other galaxies also appear to have annihilation line sources
[25].

Some current theories of black-holes include a surrounding medium which consists of

electrons and positrons. Observations of black-hole candidates agree [26, 27, 28].

2.4 Laboratory e et Plasmas

As early as 1978, there was interest in observing the properties of an e~ e’ plasma in the
laboratory, see reference [29]. Here too can be found the first mention of the characteristic
absence of Faraday rotation and thus whistler modes.

Since then the experimental work of groups specializing on positrons has made great ad-
vances. In particular the Greaves/Surko group (at the University of California, San Diego)
have produced one-component positron plasmas through a scheme of positron trapping
and cooling [30, 31, 32, 33, 34]. They collect and trap ~ 10® positrons and expose them
to a beam of a similar number of electrons: this situation is however unstable.

At present laboratory equal mass plasmas are imperfect due to the presence of residual
electrons. It is expected that the investigation of the properties of equal mass plasmas

will be vastly improved with the creation of e~et plasmas. As of 1997 [32], no true e~e™

18



2.5. ON COLD E~E* PLASMAS

plasmas have been created in the laboratory.

That the creation of e"et plasmas in the laboratory is even considered is due to the
recent improvements in trapping devices. The only trapping mechanism which might be
able to trap both electrons and positrons simultaneously for long confinement times is the

Paul trap (reviewed in [35]).

2.5 On Cold e e™ Plasmas

In broad terms, a plasma may be treated as a superposition of two fluids - by making a
cold assumption. This gives the simplest picture of the behaviour of waves in a magnetized
plasma. The well-known CMA diagram is useful in illustrating this behaviour. This is
general in that it does illustrate the way a mode would propagate at any angle to the
equilibrium magnetic field.

The specific case of cold electron-positron plasmas has already been described by Stew-
art & Laing [36]. Using this research, one can plot the (now substantially simplified) CMA
diagram (figure 2.2). For comparison, see the CMA diagram for a cold electron-ion plasma
(figure 2.3). This simplification means that in e~e* plasmas, Faraday rotation does not
exist and consequently nor does the whistler mode [29, 36]. These phenomena occur as
features of the difference in mass between plasma species. Any textbook will describe the
theory of cold plasmas, for example [37, 38, 39]

Figure 2.2 illustrates distinct regions of parameter space. Here the ordinate is propor-
tional to the magnetic field strength, By, and the abscissa is proportional to the electron

density, neg. The marked regions correspond to
I High Frequency Electromagnetic Region

IT Transition Region

IIT Highly Magnetized Region

IV Alfvén Wave Region

V Stop Region

19



2.5. ON COLD E-E* PLASMAS

111 IV

a.:]?,e/o.J2

Figure 2.2: The CMA Diagram for a cold electron-positron plasma

The Stop Region is so-called because no propagation may take place in this region of

parameter space.
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2.5. ON COLD E~E+ PLASMAS

R=0

R = *»

No solution in

this region

$=0

Figure 2.3: The CMA Diagram for a cold electron-ion plasma
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Chapter 3

Mathematical Formulation

Seh ich die Werke der Meister an,
So seh ich das, was sie getan;
Betracht ich meine Siebensache,

Seh ich, was ich hdtt’ sollen machen.

Johann Wolfgang von Goethe

3.1 A Brief Introduction to Kinetic Theory

The principal characteristic of hot plasmas which sets them apart from other plasmas is
the comparative length of their mean free path, Amfp. Other scale distances, such as the
dimensions of plasma devices or the wavelength of the mode to be studied, are significantly
smaller.

From the outset, this research was expected to deal with high frequency wave effects;
partly because of the short characteristic time of pair annihilation and creation and partly
because the main focus of study was the field of Bernstein modes. These conditions mean
that the fluid approximation is not appropriate. Instead we require a more fundamental
theory which accounts for combined distributions of all species, ion and electron, in both
configuration and velocity space; the kinetic theory. In this common approach to waves

in plasmas, plasmas are treated as a special class of gases. Just like a gas, a plasma is a
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3.2. PLASMA CONDITIONS

collection of particles, each with its own velocity and position at a particular time.

[40] gives an example. Consider the characteristic speed of one gas particle, say
100 ms™!, and the corresponding characteristic interaction distance, 1071°m. This gives a
time scale of about 107125, In this time the velocity and position of a particle will change
abruptly. Now treat each collision between each particle in the gas and the exact solu-
tion for all particles has become effectively impossible. This topic is introduced in many

textbooks. The notation here follows that of [41]; the treatment from [40, 41, 42, 43].

3.1.1 Microscopic Description

Consider a gas of N particles with coordinates X; = (x;,v;), with ¢ = 1...N. The

microscopic number density of gas particles may be represented intuitively by
N
N(X,t)=) 6(X-Xi(t)  where X=(x,v) (3.1)
=1

In this way, N(X,t) will be 1 if there is a particle at (X,t) and zero otherwise. Inte-
grating across all of six-dimensional p-space will thus give the number of particles present
in the volume. The microscopic number density is thus given by [ N(X,t)dv.

In addition an equation expressing the time dependence of this distribution can be
introduced.

dN _ON o ON

A AR Sl (32)

which is a shorthand for

aa_]:,+5c.a_N+{;.a_N.=0 (3,3)

3.2 Plasma Conditions

Plasma particles are charged. This single property ensures that plasmas behave rather
differently to an ordinary gas. Commonly a plasma is modelled as an assembly of charged
particles which is everywhere locally neutral. Non-neutral plasmas do exist but that

subject lies outwith the ambit of this thesis.

23



3.2. PLASMA CONDITIONS

Moving randomly, plasma particles interact with each other through (and indeed gener-
ate) electromagnetic forces. External electromagnetic disturbances give rise to correspond-
ing particle motion. This superposition of fields around plasma particles is expressed in

the equations:

E(x,t) E..:(x,t) + e(x,1) (3.4)

B(x,t) = Begn(x,t)+ b(x,t) (3.5)

The microscopic electric and magnetic fields (e, b) due to the particles themselves may

be written out explicitly using Maxwell’s equations.

db
Vxe = —E (36)
1 Oe
Vxb = MOJ+-C—25_£ (3.7)
Ve = ﬁ (3.8)
€0
Vb = 0 (3.9)

where charge and current density are given respectively by:

S 4 / N(X, ) dv
J = qufN(X,t)vdv

The x and v together define the motion of a particle. Assuming that acceleration of

p

a plasma particle is due solely to electromagnetic forces, the equations of motion of that

particle are given by

X = v (3.10)

e qs
—_ — + v . l

Assuming the particular case of a two-component locally neutral plasma, the Klimon-
tovich equation (3.3) with acceleration due to electric and magnetic fields can be written,
as proposed by Dupree, and described in [42]:

oN ON
e TV o

ON

+L2(E+vxB)-
ms
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3.2. PLASMA CONDITIONS

For future work it is useful to separate this equation into single particle and multiple

particle expression

[% LX) - / dX’V(X,X')N(X’)] N(X)=0 (3.13)

Here £(X) and V(X,X') are introduced. £(X) is the single particle operator:

0 4 0
LX) = v got - (Best +V X Best) - 50 (3.14)
V(X,X') expresses the two particle Coulomb interaction.
V(X,X') = —q-s—(e+v><b)-i (3.15)
’ ms ov ’

3.2.1 The Statistical Approach of Boltzmann and Gibbs

The statistical properties of a system are completely determined by the distribution of its
particles. Central to this approach is the concept of an average across equally probable and
similar arrangements of the N particles under the same macroscopic conditions (replicas).
This is Gibbs’ ensemble. Replacing the single, impossibly random, 6 N dimensional .I‘-
space point there is now a swarm of such points which is characterized by an average
point.

In his treatment Boltzmann divides 6 dimensional configuration-velocity space (u-
space) into a number of small, finite cells of size w. The N particles are then distributed
amongst these cells so that there are ny in wq, n2 in w; and so on. The smallness of
the cells is still large enough that the n;s are large numbers. The number of ways, N, of

distributing the particles amongst the cells to give the same macroscopic conditions is

N!
Tl
provided : > .n; = N and >, nje; = E
Finding the maximum of A/ will give the most probable distribution function. For large
n; this maximum is very sharp. We now identify this most probable distribution function
with the equilibrium state. The identification is reasonable since almost the whole phase

space volume belongs to that state.
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3.2. PLASMA CONDITIONS

Now define the Liouville distribution function, D(q1,493,.-., 9N, P1, P2, .- -PN,t), in

6N dimensions, with the normalization

/.../quldqz...qudpldpz...de =1

This describes the distribution of replica I'-space phase points.
We now need only know that a system is in a small phase space volume, éI'. The

initial microscopic state of an assembly, at #g, is no longer given by a phase point. Now

const : within 6T'(¢o)
D(ql,q%'"anapl,pr'-pN,t): (316)
0 : outside 6T(to)
In other words since we are treating particles of any one species as identical it suffices
to know the number of particles which have velocities close to v at positions close to x.
The properties of any one such particle are assumed to be identical to those of any other
‘nearby’ particle.

It is then hypothesized that the macroscopic properties of an assembly of particles are

given by the average value across the ensemble.

Q) = /.../Qquldqz..-qudpldpz..-de (3.17)

By definition the distribution function and macroscopic properties are constant with
respect to time when the system is in equilibrium. Away from equilibrium phase points
do not interact with each other and in fact the replica phase points behave much like an

ideal gas. The time dependence of D is given by Liouville’s (continuity) equation:

0D & (aD. ap.)_o
=1

—-— + —q; + =—Pj 3.18
: aq]_% 3pj J ( )

ot

Note that (3.18) is time reversible - some further work is called for to add in, or at least
argue for, an arrow of time. A solution to this problem is the coarse-graining treatment
of Boltzmann and Gibbs. By arguing that while replica systems not at equilibrium will
evolve freely from any one state to any other, the fact that a great majority of these states
are equilibrium states means that it virtually never happens that a phase point evolves
from equilibrium to a particular (rare) state. The net result is the apparent preference of

systems for relaxation to equilibrium.
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3.2. PLASMA CONDITIONS

3.2.2 Reduced Distributions

Now that both the Klimontovich and Gibbs approaches have been introduced the next
logical step is to combine them so that there is a balance between microscopic detail
and statistical practicality. Reduced distributions do just that. Averaging the products
of successively more microscopic number densities gives a series of reduced distribution
functions with far fewer variables than D. Of course they also contain less information.
Now we may adopt the statistical approach of (3.17) to the most basic microscopic

property - the number density .
(N(X, 1)) = / / N(X,t) Ddqudas. . dandprdps. . dpy = Fi(X,8)  (3.19)
where we introduce the single particle distribution function F;. This by definition satisfies
/fl(Xl,t)Xm =N (3.20)

Thus F7(Xi,t)dX; describes how many single particles there are in the pu-space volume
element dX;.
Likewise the average of the product of the microscopic number densities at two points

in p-space is given by
(N(X,t)N(X, t)) = Fo(X, X/, 1) + 6(X - X') A1 (X, 1) (3.21)

The second term appears only if the two u-space points are one and the same.

Now for number conservation to hold F; must satisfy:
/ Fa(X1, Xp,1)dX3 = (N = DF1(X1, 1) (3.22)

Thus F2(X;, Xo,t) allows us to calculate how many pairs of particles there are such that
X, is in the p-space volume element dX; and X3 is in the p-space volume dXj. This then
is the two particle distribution function which governs the effects of two particle collisions.

This process could go on indefinitely for the products of successively more number

density expressions.
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3.3. THE VLASOV APPROXIMATION

Now if we take the Liouville average of the (microscopic) Klimontovich equation (3.13)

the averaged time-dependence of the number density is

l:% + E(Xl):l fl(Xl) = /ngV(X],X2)f2(X1>X2) (323)

Had we chosen, a longer equation of the same type as the Klimontovich equation (3.13)

could have been used:

P + L(X) + ﬁ(X’)] N(X)N(X') =

ot (3.24)
/ dX" (V(X,X") + (X', X")) N(X)N(X")N(X")

This would translate to:

[% + L(X1) + L(X3) = (V(X1, X2) + V(X2, X1)) | Fa(Xy, X3) =

/ dX; (V(X1, X3) + V(X3, X3)) Fa(X1, Xz, X5) (3.25)

Taking this idea to an arbitrary number of such Klimontovich type equations will lead

to a series of equations known as the BBGKY hierarchy.

=1 1#g

[-g—t +3 LX) - wai,xn} FoXy- - Xo) =

> / dX o1 V(Xi, Xop1) Fop1 (X1, - - -, Xy Xop1)  (3.26)
=1

Here again £(X;) is the single particle operator:

0 | g . 9
[’(XZ) =V a_xz + ;):(Ee:ct + szBemt) 'a";;‘ (327)

And V(X;,X;) expresses the two particle Coulomb interaction.

V(Xi, X;) = 95 (e+vixb)- 9

-~ Bv: (3.28)

3.3 The Vlasov approximation

In an ordinary gas, the dominant effect is collision. This is still true for plasmas, however

the dominant collision effect is fundamentally different. Whereas the forces between gas
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3.4. DYNAMIC PROCESSES

particles fall off with separation as 7~7 or 778, in plasmas the inter-particle (Coulomb)

force falls much less steeply (as 772). As a result plasma particles have a far greater chance
of interacting with a large number of other particles at longer range. Collision in plasmas
means Coulomb collision.

Arguments which hold when applied to gases lose their persuasiveness in the case of
plasmas. The BBGKY hierarchy (3.26) is an attempt to ground these equations more
firmly.

In hot plasmas, thermal motion may be so energetic that even the effects of Coulomb
collisions are negligible. In this case the most appropriate equation of motion has no
collision term at all! This is the Viasov equation. It contains information only about the
thermal behaviour of the plasma and the collective effect of external and self-consistent
fields.

As mentioned in the introduction on page 12, a large number of particles in the Debye
sphere is an essential criterion for the system to be considered a plasma. In the Vlasov
approximation the number of particles in the Debye sphere, Np, is very large (in the
continuum limit where particles are ‘smoothed out’, Np — 00). Given the typical value
of Np found on page 15, the Vlasov approximation is entirely appropriate for a typical

e~ et plasma.

3.4 Dynamic processes

Rather than describe the macroscopic properties of a plasma, (pressure, velocity, density,
etc.) we wish to investigate its (dynamical) microscopic properties. To do this appro-
priately we produce distribution functions which are closely related to the probability
functions mentioned before. The requirement is to approzimately describe how many
particles are in the phase space in the neighbourhood of a phase point X.

Relate the single particle distribution function f(x,v,t) with the reduced single particle

distribution function F; in (3.19) by

Fi =nof (3.29)

29



3.4. DYNAMIC PROCESSES

In general we must describe the distributions of more than one species of particle.
To that end we introduce the distribution function fs(x,v,t), where s is the label of the
particle species. f; is such that ngy fsdxdv is the probable number of particles of species
s in the configuration-velocity space volume element dxdv at time t, where ny is the
average particle density.

The usual fluid variables, density and fluid velocity etc., can be written as velocity

moments:

ns(X,t) = mng /fs(x,v,t)dv (3.30)
us(x,t) = /vfs(x,v,t)dv (3.31)

Furthermore for a homogeneous system this becomes

[fwav=1

making it equivalent to a probability distribution function for velocity. In later chapters

a different normalization is more appropriate:

/ Fy(p)dp =1 (3.32)

An informal approach to this problem is to state that particles in a system are con-
served, even in a e”et plasma this is true at the short timescales of plasma waves. In
other words the distribution obeys a six-dimensional analogue of the fluid equation for the

conservation of mass.

) . 0 . 0 _
b—tfs‘l'r'a_x(fS)‘l'V'%(fs)_O
Now f=vand V=2 (E+v xB)

ad

) \ 9
afs+v~a—x(fs)+%s—(E+va)-5;(fs)=0 (3.33)

the Vlasov equation for the velocity distribution function describing species s.
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3.5 Base Equations

The earlier sections of this chapter have illustrated the argument which leads to a Vlasov
equation expressed in configuration-velocity space (3.33). This form of the equation is ideal
for the development of a broad range of nonrelativistic theories. When casting a relativistic
theory, the most tractable form of the Vlasov equation is one where the distribution is

normalized in terms of momentum:

an+v-Q§+qs(E+va)-

OF, oF,
ot ox -

dp

0 (3.34)

where Fj is the distribution in configuration-momentum space, F; = F,(p,x,1).

Since we now wish all our expressions to be valid in a relativistic regime we must be
wary of our notation. From this point on, we must distinguish between m, and the rest
mass, myg. Ms = YMmso and therefore quantities which involve mass, such as the cyclotron

frequency, Q,, have associated rest values, (4.

ms TmMso v
Our notation is now appropriate to the task. The first stage in shaping this relativistic
theory is to consider our plasma to be at equilibrium with a small perturbation. This
means linearizing Maxwell’s equations and (3.34) and gives a set of equations for each
species coupled through self-consistent electric and magnetic fields.

Choose the equilibrium conditions to be:

= 0 (3.35)
= By (3.36)
F, = Fo(p) (3.37)

By convention the coordinate system is characterized by the direction of the equilibrium
B field, i.e. Bo = & Bo. Throughout this work the directions parallel and perpendicular

are relative to the direction of Bg.
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3.5. BASE EQUATIONS

At equilibrium, (3.34) becomes

6F30
op

(pxB)- =0 (3.38)

By expressing p in cylindrical polar coordinates (p J_,p”,qb) we find that the equilibrium
conditions require that Fio be independent of ¢ i.e. %‘1 = 0. The Maxwellian distribution
certainly fulfills this criterion.

Allowing small harmonic perturbations

E=E, = Ege&Ex« (3.39)

B =B, + B; By + By, €'tk x—v) (3.40)

Fs = FsO(P) + Fsl(P,x, t) FsO(P) + Fskwei(k'x_wt) (3-41)

Since a Fourier transform is implicit in the choice of expression for F,, a further
assumption is necessary to match the physical ‘arrow of time’. We must assume that
there was no perturbation Fjy;(t) before ¢ = 0. None of this is necessary if the time-
dependence is treated with the Laplace transforms. Implicitly a Laplace transform deals
only with ¢ > 0. For the treatment given here this difference of rigour does not affect the
outcome.

In (3.34) this gives to first order

0Fg ' 0Fq OF, 0Fq

s0 .
. ] L . 42
5t +v I + ¢;(Eq1 + v x By) 9p + ¢s(v X By) ap 0 (3.42)
. an an w
—twFskw + V- (1K) Fokw + ¢5(Exw + v X Bio) - Bpo + ¢s(v x Bo) - 31: =0 (3.43)

The next step is to deal with % expressions. It is useful to switch from a linear

(Pz, Py, Pz) to a cylindrical coordinate system (py,p, ¢). Now
oF dp, OF + dp, OF ¢ OF

8p$7'.‘!xz - 8p$|yxz ap-l- 6pza'.‘/az ap“ apa:,y,z a¢

(3.44)
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3.5. BASE EQUATIONS

The switch in coordinate systems explicitly gives:

oF cos & OF  sing 9F
Opz 31& pL 06
B_F — s ¢ cosqS oF
Opy BPJ. pL 09
oF _ oF
op. dp

Now due to (3.38) when F’' = Fyo this becomes

On the other hand for F =

0p: OpL
opy, op,
or _ or
9p; Ip|

the final expression on the left hand side of 3.43 can be rewritten:

aFS w S . A ~
gs(v x Bp) - k —gT(pJ_ sin ¢ BoX — py cos ¢ Boy) -

S aFS W
= %L p ook
m, 0¢

Now return to Maxwell’s equations at equilibrium:

0 0By

—xEy = 0= ———

ax 0 ot

so that:

0
57 XBo = o qunso f w0V dp

9 0B,

- ot

0 1 3E1

&XBI = 25 +#OZanso/ 51V dp

tk X Eg, = wBg,

. W
1k X Bkw = _6_2 Ekw + Ho qunso /Fskadp
s

(3.45)
(3.46)

(3.47)

(3.48)
(3.49)

(3.50)

Fix. the full expression must be used. This means that

ankw
op

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
(3.56)
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(3.54) may be restated by expressing the perturbed B and F; in terms of E. This is
achieved by eliminating By, using (3.55)

w2 W qs
k x (k X E) = _C_2E + 7,“40 Z'E'nso /Fskwp dP (357)

Broadly this approach views (3.57) as a dielectric equation:

2
kx(kxE)+‘;’—2e-E=o (3.58)

where € is the dielectric tensor can be reduced even further to the terse statement
R-E=0 (3.59)

where the tensor R contains all the physical information in the system. This becomes a
useful formalism in chapters 4 and 5.

To find F,k, one must likewise eliminate By, in (3.43)

ano _ s B ankw

. . 1 —
—’LwFskw + ik - VFskw + qs(Ekw + ;V X (k X Ekw)) . ap Es 0 a¢ =0 (360)
. 0 _ 1 0Fy
((w-k-v)+ QS%)FS]W = ¢s(Exw + ;V x (k x Ekw)) . op (3.61)

where the relativistic cyclotron frequency for species s, {15, has been substituted for brevity.
This quantity is introduced more formally on page 13.

In essence (3.61) is the first order partial differential equation:

%Fskw + XFoxw =Y (3.62)
where
X = &—X—ﬂ (3.63)
and
Y = & (B + 1v x (k x Eg)) - L0 (3.64)
Qs w op
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3.5. BASE EQUATIONS

3.5.1 Integrating Factor

The solution to (3.62) is found through an integrating factor el Xdo

('J%(ef "X ) = Vel XU (3.65)
é
Fa = e I* X% / veltXes (3.66)

Since v appears in Q; (2, = Q,y—"’) and v = 'y(p_L,p") the integrating factor is calculated

as follows:
X = -(—;:(w — kv — kLvy cos @) (3.67)
thus
ot P XD _ g (w—kyuy)d Filk e sing (3.68)

To clean up slightly introduce a; = kv, /s and a very useful identity:

o0
eFitssind = N T (a,)e™? (3.69)
n=-—0oo
So
. [e]
et [P Xdb = Fazl-km)e N7 (g,)eFin? (3.70)

3.5.2 The remaining part of the integrand

The term Y must similarly be dealt with:

E, %L cos ¢ ki E; a%,FsO
gs i
Y= Q. E, |+ | *sing | X 0 | x| E, %Fso (3.71)
v 3
|\ E: o k| E, | 3p; Fs0
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The expression in the square brackets is

E, %L cos ¢ —k)Ey
E, |t | %sing | X| -k E, +kE;
L\ E. A k.E, |
which leads to
[ E, “hMp ok gn gp, 4 EuuE,
E, | + (—E%J-coscf)— ﬂLﬂl)Ey
i E, ﬂ:—L cosdE, + ﬂ::—L- sinpE, — ﬂwﬂ-k cospF,

Or
(w— k”’v”)Ez + (kpvy sin ¢)Ey + (kLvy)E,

(w— kv cosd — ko)) Ey

€l

(kjvL cos ) Ey + (kyvosin @) Ey + (w — kLvy cos @) E,

Y now looks like this:

- =

(w = ko) Be + (koo sin ) By + (kivi)Es cos ¢%.Q

(w—Fkypvy cosg — k“v”)Ey - | sin qﬁ%—ﬁ‘l

=

sWw

| (kjvL cos §)E; + (kjvosin @) Ey + (w — kivy cos §)E; | %%lu

And gathering terms in the components of Ey,,

_ q_s _ ano ano]
Y = 0o {[(w ko) . + kv - cos ¢,
0

FsO
OpL

0F 0 anO] }
+(w—ky v cos E,
op. ( 104 cos ) o)

+ [(w = ko)

+ [(’C_L'I)” cos ¢)
That is

Qqsw {U cos $E, + Usin ¢E, + WE,}

Y=

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)
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where
0F 0Fy
U =W — k + k v 378
=k + R, (3.78)
and
ano anO

W = (k —_— -k 3.79
( 1Y) cos ®) . + (w LV COS @) 6p|| ( )

3.5.3 Substitutions

We have used the identity (A.4) on page 35. As may be seen in Appendix A this leads to

two more identities:

Z sin ¢Jp(a,)eT™é = i (—4)J! (a,)eTimé (3.80)
3 alJn(as)eimﬁ: 3 (cos §)n(as)e™® (3.81)

These two new identities (3.80) & (3.81) are immediately useful. Placing the new
expressions for the integrating factor (3.70) and Y (3.77) into (3.66) the expression for

Fix., becomes

Fokw = e~ a5 (W=FIv))¢ dassing

¢ o qs A (w—kyuy—nfls)é
/ Z Jn(as)m{U cos BE, + Usin ¢E, + WE,} efs“"Riri=n2)gq4 (3 89)

n=—oo

Look closer at the integral over ¢. Applying (3.80) & (3.81), gives a new expression
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¢ ‘
/ Z qs {Ukn(:;s Jn(as)Ez - 'lUJ,I,L(as)Ey + WJn(as)Ez} em(w—kl|v"—nﬂs)¢d¢
1YL

o] . |
Z s {U nil, Jn(as)Es — iUJ,'L(as)Ey+WJn(as)Ez}/ s (ko =n9)8 g s

n st k_L'UJ_
U2 7, (a,) Es \
- g Q L (w—kyuy—ni2s )
= > —iUJ! . s a0 (w—kjvy—ngs
Z st 2UJn(0,s) Ey i(w - k”’()“ - an)eﬂ
n=—00
WJ.(as) E. |
Ukl,f’fl_‘_‘] (a’s) \
= 5 s (wkyy)é i —iUJ!(as) Ex et (3.83)
w s n\"s (w-— k”v“ - nQ,)
Wi(as) )
Now substitute (3.83) into (3.82)
U 8], (a,)
Fyg = eiesine Lo i UJ! E e (3.84)
skw = zw = -1 n(as) kw ((JJ _ k“‘v” _ an) .
W (as)
Thus (3.57) is written:
w2
kx (k x Eg,) = _c_2Ek“’
U8, (ac)
Ho 50 w 2 —iUJ}(ae) kw (@ — Fyoy - an)P p
Wi, (ae)
(3.85)
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Its last term can now be expressed through (3.84)

U kﬂf?uj_ J (as)
—2 ¢
== tassing 1S Q.s . , E e~
(= )qu s / n__w iU T} (as) S Py oy
WJ,.(as)
e
= —lo Zm_snso /// . p_Ldp_Ldp”d¢
The p integral is developed as follows:
Uit dn P cos ¢
iaysing o o—ing
///e assin Z —iUJ)}, By (@~ ooy — %) pLsing | pidpidpdé
Wi Py
PL (ka.nw.)‘]’ Ukvj_?u_']n
dpdp am
ip1 J] —iUJ B i(l-n)é
// Z w — kv — nfls wpLd; WUJ, kw /(; € do
n,l=—00
pipydi Wi,
Note that

2
/ =% 4¢ = 276y,
0

So the full expression for a general plasma

Q ‘E w
k x (k X Eg,) = ——Ekw 2wu02—n50/ / dpLdp Z w—k’Tv“ l—(—nQ

(3.86)
where @, is the tensor
2
pZL (k’nfz}i) UJTZL(a's) —Zpi (kJ_’U_L) UJ (as)J;;,(as) P_L (k.l.’UJ_> WJ2(GIS)
ipi ( e ) UJn(as)Jy(as) PAU(J;(as))? ip? WL (a5)Jn(as)
ms ) 7 J2(a —ippLUJ. (a5)Jn(as) W JI2(as)
PPL Foog n(as) ippLUJp(as)JIn(as ppLWJz(as
(3.87)
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3.6 Assumptions

If we are to make progress we must now characterize the plasma we wish to study. Without
going as far as using a unique expression for the distribution of momentum one may choose

to investigate plasmas with isotropic distribution.

3.6.1 Isotropy

Since subsequent sections deal with relativistic effects, the y-factor is introduced in the
usual way: p = ymgsv. One direct consequence of any isotropic distribution is that

pU = pLW. This can be shown as follows:

U —p W = ymeo(yU —v W)

anO anO
= TYMmso [(wv” — k“'l)lzl) a + k”v“v_L ap”

+ (—vn€s ) + (—wvy + v 08, ) o7y ]

OF, OF;
= mso [(w — Ky — n8ds) [v“ Bpf — v 0]]

Kz
J0F anO]
= (w— kyvy — nf, - 3.88
(w = Ky —n )[Pn 5oL - oy (3.88)
With this isotropic distribution, Q, may be written:
2
P (£2) Uake)) ik (B) Udn(an)a(as) pupy (7£25) UJT2(es)
i} () Uln(as)Jh(e0) PAU(J4(a,))? ipLp|UT4(a.)Jn(as)
pyps (PL) UI3(a) —ipypL U T (as)Jn(as) PRUJ2(a,)
(3.89)

As stated in the introduction this is the case throughout this work. This expression
for Q,, is substituted in (3.86). All work presented here entails an isotropic distribution.

In addition the novel work assumes an e~ et plasma.
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3.7. ELECTRON-POSITRON PLASMA

3.7 Electron-positron plasma

In a plasma of electrons and positrons in equal number densities and temperatures, the
mathematics may be simplified, as was pointed out in the introduction (see Section 2.1 on
page 14 and references [36, 44, 45, 46]).

Fzo = Fo therefore U (defined at (3.78)) is independent of species. ¢z = |e| = —¢. and

so Qz = —Q,: similarly ag = —a.. In consequence the following results are true:
Jiaz) = JXa.) (3.90)
In(az)dn(az) = —Jn(ac)/p(ac) (3.91)
(Jn(a)? = (Jn(ae))’ (3.92)

Here the basic Bessel function identities (A.2) and (A.3) are employed.
All this feeds in to the expression for the last term of (3.86)

2 0 00 oo
—27T,uoe—neo Z / / dp_j_dp“K:n . Ekw (3.93)
Me n=—o0 Y0 =00
with I,
2
Pl (—ﬁ’;‘h) UJac)o  —ip} (ﬁ’ff,l) UJn(ae)Ti(ae)o pop) (—Lk’l‘fu) UJ2(a.)6
ip? (%) UlJn(ae)Jl(ae)o P2 U(J!(ac))%o ip1p U J;(ac)In(ac)d
pips (£9) UJ2(a.)s —ipypL U (ac)Tn(ac)8 pUIX(ac)o
(3.94)
where
_ 1 + 1
g = w - k”’t]" -nly w-— k”v“ + nfd,
2(w - k“v”)
= 3.95
(w = k)2 = (n2e)? (3.95)
P 1 _ 1
T ow-— k”’U” -nle w-— k”v" + n8l,
2n8d.

& =R = (e (3.96)
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3.7. ELECTRON-POSITRON PLASMA

3.7.1 Eliminating the off-diagonal elements of C,

The sum over the n’s, > > _ ..., can be separated into } >, ...and >, 27, ... and the
n=0 term. For the (xy,yx) and (xz,zx) elements of K,, the n=0 term is itself zero. The
two remaining parts exactly cancel one another, due to (3.90) & (3.91).

Rewriting (3.86), multiplied through by c%, now gives

2,2 s 00 0O
2k x (k x Ey,) + w? Exo = —QW—%E Z /0 / dp_Ldp”/Cn - Exw (3.97)
¢ n=-oo -0

The left hand side of this equation may be expanded:

w2 — czkﬁ 0 Czklk” Em
2k x (k X Exo) + W Ey, = 0 w? — ck? 0 | By
CZk_Lk” 0 w2 - Czki Ez Kw
(3.98)

Some of the remaining elements of the tensors on both sides depend on k|, this suggests
that the case where k)—0 would be informative. In this choice the focus of this research
has become Bernstein modes. These are wavemodes which propagate perpendicular to the

equilibrium magnetic field, By.

3.7.2 Perpendicular propagation

Apart from the obvious disappearance of elements dependent solely on kj), the expression

for U found at (3.78) is made simpler by this choice:

6FeO
U—-w 3.99
N (3.99)
Overall this means that (3.97) may be written in the form:
w? 0 0 F;
c2e2ne s 00 o0
0 w?—c%? 0 | By = —QWHO—T"ne—O Z /0 / dprdpKr - Exu
n=—00 -
2 _ 212
0 0 w c“k; FE, o
(3.100)
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3.7. ELECTRON-POSITRON PLASMA

with K,, equivalent to:

P (£2) U2 (a)o 0 0
0 RUL(a))o  ipipUJh(ac)la(ac)s | (3.101)
0 —ipypLUJ;(ae)Jn(ae)d pﬁUJ,%(ae)cr
© = Ty
N 100
w? = (nf.)?

To make further progress we must also supply an isotropic expression for the equilib-

rium momentum distribution.

3.7.3 Relativistic Distribution Functions

This section concentrates on the possible choices of distribution function. As mentioned in
the preamble, the only plasmas which will be discussed here will have locally Maxwellian
distributions. This still permits a degree of freedom of interpretation. The classical

(homogeneous) Maxwellian momentum distribution function has the form:
Fy(p) = veP’/2ms kT (3.103)

The value of v is defined by the choice of normalization. In this case equation (3.32)

gives:
v = (2rma kT)™? (3.104)

To facilitate discussion we define the dimensionless inverse temperature: a = mqoc?/kT.
As an illustration an a of 100 is the equivalent of a temperature of 6x107 K; a = 1 is

equivalent to T = 6x10° K. Thus v could be written in terms of this parameter, a.

v= a )} (_a 3.105
- 2rmic? mic? (3.105)
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3.7. ELECTRON-POSITRON PLASMA

The fully relativistic Maxwellian distribution is discussed in many textbooks including
[43]. As they point out, for the same configuration-momentum space normalization, (3.32),

the fully relativistic Maxwellian distribution is:
Fy(p) = ve ™ (3.106)

v’ is given by an expression involving the modified Bessel function of the second kind of

order two (K3(a)):

W = ( - - 3.107
— \4mm3,c® ) Ka(a) (3.107)

This distribution is also known as the Maxwell-Boltzmann-Jittner distribution. As

usual v is defined by:

2

o \?
7=Q+m2) (3.108)

2
o€

For a non-relativistic plasma v = 1 and there is no momentum dependence at all; in which
case the MBJ distribution is identical to the classical Maxwellian.

Rooney [44] used the MBJ distribution to produce a theory of fully relativistic e"e™
Bernstein modes. Rooney’s theory treated plasmas for which a < 10. The present study
of weakly relativistic plasmas (where 10 < a < 100) is explained by the desire to bridge
the gap between the unphysical classical Bernstein modes and Bernstein modes in more
extremely relativistic plasmas.

Which distribution to adopt depends on the energy regime. The expression must ac-
curately model the conditions and be easily incorporated in the analysis. In the weakly
relativistic range there is little difference between the normalized classical and MBJ dis-
tribution functions. This can be seen in figures 3.1 and 3.2.

The present development accepts that the factors most strongly affected by relativistic
factors are dependent on mass through the cyclotron frequency. This shows in the common

denominator of (3.102).
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0y

f non-relativistic f ."'.‘_ non-relativistic
o - - - relativistic 3 - - - relativistic
Momentum, p Momentum, p
Figure 3.1: a = 100 Figure 3.2: a = 10

It is essential to note that . is not the rest cyclotron frequency. It can however be written

in terms of the rest cyclotron frequency:

Furthermore note that because of this denominator the whole expression for any element of
R resonates at frequencies close to the the relativistic cyclotron frequency and harmonics
thereof. This becomes central in the appearance of modes such as the Bernstein modes.

One approach to the weakly relativistic regime, that taken by Robinson [47, 48] is to
make an approximation for 4 in an MBJ distribution. This method invokes the binomial
expansion of v,

p2

~14+ ——
7 +2m§c2

(3.109)

Other approximations are made which result in a dispersion relation which is classical at
frequencies away from harmonics, w # n{leo, and finite at harmonics, w = n{l., where a
classical theory would place discontinuities (n, an integer).

However the present treatment takes a different approach and retains just the non-

relativistic Maxwellian, for reasons spelt out above. The strong relativistic effects are
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3.7. ELECTRON-POSITRON PLASMA

retained in treatment of the denominator of the p integrals in R. Rather than make an
approximation, this treatment retains the full relativistic expression for .

It is useful to register that no matter which expression is used for relativistic v, it is
always an even function of momentum: this feature stems from the isotropic condition

laid down in the early stages.

3.7.4 A New Approach

Up to this point we have developed a general theory and left certain decisions unmade. To
advance in the theory of weakly relativistic wave propagation we must specify an additional
set of conditions:
. aF,
L k=0 (ie U—wze)
2. F, is a non-relativistic Maxwellian distribution

3. the denominator in (3.102) is expressed with a fully relativistic

This is an approach which has never been made before. These conditions immediately

mean that:

U=—wupe Pnia (3.110)

where, as before

VW

o= a
- 271'm(2,c2

Now look at the yz element of K., (3.101).

(mgcz) (3.111)

iP.LP||UJ1IL(%)Jn(ae)6

The zy element has the same expression except for a change in sign. Recall now that
each of these elements is under a double integral. In each case the integrand is odd in p

and the range of the p) integral is (—o0, c0). Splitting the range at zero the contributions
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3.7. ELECTRON-POSITRON PLASMA

of the two parts of the integral exactly cancel. The K, of (3.101) is therefore equivalent
to a simpler form with no off-diagonal elements.

In summary (3.100) is

w? 0 0 E,
62827'& s 00 poo
0 w?-—c%? 0 | E, = —2W¥ Z /o / dpdp| Ky, - Bk
€ n=—00 -0
0 0 w? — czk"i E,

kw
(3.112)

where K, is equivalent to the expression in (3.101) with only the diagonal elements:

2
(ﬁ—%) J2(ae)pd 0 0
2
“rkz 2w’
—ve T T () 0 (Jn(ae))?pl 0
0 0 J2(ae)pipL

3.7.5 Diagonalized R

Rearranging (3.112) into dielectric form (as in (3.59)) shows that the only non-zero ele-
ments of R are the diagonal elements. For perturbations of the electric field in the x-, y-
and z-directions these correspond to three equations where the diagonal elements of R are
zero. When R.; = 0 the dispersion relation which results corresponds to the Bernstein

modes. Likewise R,, = 0 to the Extraordinary mode and R, = 0 to the Ordinary mode.
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3.7. ELECTRON-POSITRON PLASMA

Written out these are:

[ee] 00 00 Q 2 __a# wz
_ 2 2 2 3 e 2 m2 2 _
Ryr = w* — 47wy, v Z n /0 /_oodpldp“pl (k_l_'v.L) Ja(ae)e e ST = (RO = 0
n=-—oco ’
(3.113)
o 2
oo foo 2" md < W
Ry’y =w? = c2ki - 47['&)36’0 n;mL /_oodpJ_dﬂ]piJfrlz(ae) e 2mipct T (nQe)z =0
(3.114)
S “mha__ W
R.. = w? = 2k} — 4rwl v Z /0 /_oodpidP||PlpﬁJ72L(ae)e 2o W% — (nQ,)? =0
n=-—oo
(3.115)

3.7.6 Introducing Dimensionless Variables

To simplify the expressions which follow (and the computer code which will eventually

calculate the solutions) let us adopt dimensionless variables.

O 2
o = d PL meC kl — Ck_j_
e = —l 0 (3.116)
- . Wpe P = m.c 5 '
@ T B 2 _ yagap =0
7" = 14p+51
The argument of the Bessel functions is
k k ~
_kivL _ RicyViMeo _ EipL (3.117)

e = =
Qe Qe:O meoC

It is convenient too to define a dimensionless element of R, Rii = Ry /9%.

Now look at the integrand of R,

Q. \?2 - w?
3 € 2 2mg c2 .
PL (kuu) Tu(ac)e "o w? — (nQe)? (3.118)

In particular
Q. \?2 (Q eV )2 (Q m )2 m2,c?
3 e e0 YMeoVL €00 )
— 0 JT7e07L ) _ =) = € 3.119
PL (k_LU.L) PLAYkL  os PPk PL k2 ( )
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3.7. ELECTRON-POSITRON PLASMA

and
2 2
o2 _Uznne)z = (;le)z = ( 2’1 7) (3.120)

This leaves expressions for the three decoupled modes which correspond to Rgq = 0,

Ryy =0 and Rzz =0.

o0 f00 ap? 2
Reo=ot-C 3wt [ [ apudpnae miE LEEC (3121)
— 0 —00 2_n
=, -8
where
4 m2,c? 4w a\; 1 a
C=wiv|—2—)=—w(—)" — (3.122)
Q%7 ( k2 ) Q2,7 (27r) m3e® \ k2
o il o foo ap? 2
Ry =0? -k} —4nif0 Y / / dpLdpypi Il (ac) e 5 —L—  (3.123)
n=oo /0 Jeo 7= (2)

2

~2 72 ~2 - % 45 dbus . 3272 -2
R, =0 — k| —4ro,.v Z dPLdP“P.LP”Jn(ae)e 2
0 —00

Y
—_— (3.124)
n=—00 72 - (%)2
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Chapter 4

Classical Bernstein Modes

The crucial equation in the following chapters is (3.59):
R-E=0

As seen in Section 3.7.5 three independent modes of propagation are available: E, # 0,
E, # 0, and E, # 0. The first of these means, since propagation is perpendicular:
E L B and k || E - a longitudinal mode. Similarly E, # 0 implies that E L B and
k L E - a transverse mode. Finally E, # 0 will give E || B and k L E - likewise,
a transverse mode. The longitudinal mode corresponds to a purely electrostatic mode,
whose dispersion relation is given by R,, = 0, the Bernstein mode. The two transverse

modes are respectively Ry, = 0, the Eztraordinary, and R,, = 0, the Ordinary Modes.

4.1 Classical Bernstein Mode

The Bernstein mode propagates perpendicular to the magnetic field and resonates at
electron cyclotron harmonics (w = nf)., with n an integer). This mode was first described
by Bernstein [49] and is treated in most textbooks, however all these textbooks endeavour
to treat only an electron-ion plasma. The usual static ion assumption is invoked early in
the treatment, see [37, 38, 39, 42, 50, 51].

There is a whole body of research into Bernstein modes in electron-ion plasmas. As

will be seen the e~et modes are very similar in form to electron Bernstein modes. The
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4.2. DISPERSION RELATIONS

equation for the latter is usually derived with the assumption of stationary ions. If this
is not done, a low frequency phenomenon due to the ions must be accounted for - the
ion Bernstein modes. Since some schemes of plasma heating in tokamaks rely on mode
conversion into ion Bernstein modes, these modes are an important research topic, see for
instance [52]. They are reviewed in a recent paper [53].

The early experimental work on Bernstein modes is described in reviews by Crawford
[54] and Stix [55]. Recent experiments on NASA’s Space Shuttle show electron Bernstein

modes very clearly in the Earth’s ionosphere [56].

4.2 Dispersion Relations

4.2.1 Electron-ion plasma

The electron-ion result may be derived here from the general dispersion equation (3.86)
with an isotropic distribution function — thus (3.89) holds.

If the ion contribution to the sum across species is neglected (the static ion assumption)
the three modes approximately decouple for perpendicular propagation. Put another
way the resistivity tensor is essentially diagonalized. This approximation is handled in
textbooks.

For the present purpose note that the R,; element is decoupled from the other modes
so it is sufficient to examine this element in isolation. Assuming the isotropic momentum
distribution is the non-relativistic Maxwellian, U is defined at (3.110). Thus equation
(3.86) gives the following expression for Rg,:

2 ‘.52

2 _ 2 _ § E J.L"')/U an 2 T 2m2c2
“ ¢ k" 27rc Ho nSO/ / dpldp“n___oo w — k“’U“ - 'n,Q (kJ_’U_L) Jn(GS)e ’
(4.1)

where as before v is defined as

3
a 2 a
= 4.2
? (27rm%c2> (m%cz) (2

Now if low frequencies are avoided, the fact that m;>m. means that to a good ap-

proximation, the ion contribution to the sum over species is zero. Mathematically that
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is

2 oo 3 2 ap?
2 _ 2 € e Z plwv nfde 9 -
- k d d Zm‘1 g
w C “ Wmeoéo '/0 \/_ PL P|| w — k“v” _ nQe (kL'I)J_) Jn(a/e)e 0 0

n=—0oo

(4.3)

For perpendicular propagation (i.e. k—0) the last term from the equation above

becomes:

ap

00 2 2 proo poo
mZwv [ nfd 2 v o2
ot B 2 (50) [ mmitieon T

n=—oo

The non-relativistic assumption has permitted the separation of the double integral.

Taking each integral in turn:

2

o) __F
/ dpje e = V L ineoc (4.5)
- 2m5002

The very convenient identity mentioned in Appendix A applies directly to the p;
integral — (A.10).

2 2
2 ky k
oo k __ZJ_GP 2 ('m.e Qe ) (me Qg )
/ dp_LpJ_J,'zL (.{#l_) e 2mc? —1——exp - 0770 In 0770
me —a —2 —a
: o (=) \ 4(mEe) ) (=)
2 2 k2 2 k2 2
Mgl 1€ LC
= - I | —— 4.6
a P ( ane) (aﬂgo) (+6)

So that (4.3) is

® 2 2 3.3 2 .2 2,2
migwv [ nlle 21 mige” kic kic
_ § : el —_— V| =] = 4.
W'~ 2me, ‘ w—nle ( ki ) e a P ( a2, ) " a2, 0 (&7)

n=-—

Using dimensionless parameters defined in (3.116) (so that for instance kL = kic/Qe0)
and introducing A = I;;i /a, one can write out the whole expression for Ryw = Rus /%, = 0.

Note that there has been a great deal of cancellation.

& Z et (A) (4.8)

E>|§

Figure 4.1 illustrates one example of the dispersion curves which result (here &, = 3).
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The Bernstein Mode in non-relativistic plasmas
T 10 T T

10 T T T T T T
B- 8
2 °f T e g
¢ = 1
| g ]
L o0 ]
gy s :
 Portvnn, 2 Ry b
I
o_ s 1 a1 | i IR ] 0 1. 1 —l PO Y
0 2 4 bor 6 8 10 0 2 4 wevenumber 6 8 10
Figure 4.1: e~-ion plasma Figure 4.2: e"et plasma
Note too that
——vIa(A) = ———1a(A) (4.9)
So that (4.8) may also be written
A 2 2
~2 _ ~2 € Z nIn(A)
o = O, — —n (4.10)
A n=—oo 1 = (%)

4.2.2 Electron-positron plasma

For the e~ et case on the other hand the static ion assumption is not valid, however the
equal mass assumption is. To construct the non-relativistic equations one must return to
the equation for the R, (3.113). Recall that this equation comes after the adoption of
the non-relativistic Maxwellian distribution and take the non-relativistic limit, 7.e. vy =1,
throughout.

0 0o poo Q 2 _ agzz w?
2 2 2 3 € 2 m2, c2
Ryp = w* — dnwy v E n /0 ﬁwdpLdp|]pl (hm) Ji(ae)e 2™ m

n=-—0oo

where v is defined in (4.2).
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Now rearranged this is:

Q0Meo 2 w2n? 0 oo _ as_:_z
R — 2 — 4 2 2 € 2 2me c2
oz = W MWV <_k1. ) n;w g () -/0 /_oodpldp"p_LJn(ae)e 0
(4.11)

Note that the double integral here is exactly that found for the electron-ion case (4.4)

and so may be replaced by the expression

2 meoc kic2 k_2Lc2
g XP (—GQEO I, 20z, (4.12)

Switch to dimensionless parameters again (see (3.116)). The expression for the com-

plete term involving the double integral now reads

1 > n? 27rmc 12:2 12:2
Cdrelo [ L 0 LIS P ,
’“"””(ki)n;wl—(%)z @ a ‘”‘"( ) ( (419

Now for clarity introduce A = IAcZl /a and write out the whole expression for Rew =

Raow/ 0

. A n? 2T myc® _
R =0?—4rilp 3 ( ) Ve ALL(A) (4.14)
n=-—oo w
Gathering all the constants in the rightmost term above gives some reassuring cancel-
lation.
iriZn 3 e Apay= 202,50 3 ™
7rw e )2 e a2 ° mT A 1_ n
n=-—00 w n=—00

When R, = 0 for perpendicular propagation in an e~et plasma, the dispersion rela-
g )

tion for Bernstein Modes is given by

2e~d I\ nlIL(A)
~2 A2 § :
W = peT 2 1:1% (4.15)

This relation is illustrated in figure 4.2 and again in the diagrams of Section 4.2.

4.2.3 Comparison of e~-ion and e~et dispersion relations

Comparing the dispersion relations for each case (4.10) & (4.15) shows that they are almost

identical - the sole difference is a factor of two in (4.15).
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A point in a dispersion curve corresponds to an oscillation at a permitted pair of
frequency and wavenumber. When these points lie on curves in frequency-wavenumber
parameter space, as they do here, each curve defines a mode.

For both types of plasma there is a critical frequency above which the shape of the
Bernstein modes changes. Modes above this frequency display gaps in the frequency
spectrum away from n{l.; below this, the frequency spectrum is continuous. The special
symmetry involved in the theoretical treatment of the e~et plasma still allows such fre-
quency gaps to occur, though in this case the theory leading to these gaps is exact and
not a consequence of approximation. The only visible difference is the ‘doubling’ of the
critical frequency. As can be seen by comparing the figures 4.1 and 4.2 for the same plasma
frequency.

It is instructive to treat the low wavenumber/nonrelativistic limit: note that for a — oo
ork; — 0 (i.e. A - 0) — I4+1(A)/A—1/2 and I,(A)/A—0 (for n # £1,0), (4.10) and

(4.15) respectively reduce to simple equations:

M=o +1 (4.16)
and

? =202, +1 (4.17)

In both cases the result is the hybrid frequency, w = /w2 + Q2.
The hybrid frequency and the critical frequency are one and the same.
4.2.4 Dispersion curves

The diagrams which follow illustrate classical Bernstein modes in e~ et plasmas, as calcu-

lated in (4.15). They show curves for different values of plasma frequency.
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Figure 4.3: A plot ofwep = 1
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Figure 4.4: A plot ofue = 1.5
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Figure 4.5: A plot of Coep = 2
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Figure 4.6: A plot of Gep = 2.5
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Figure 4.8: A plot ofuep = 3.5
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Figure 4.9: A plot of d¥p = 4
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Chapter 5

Relativistic Bernstein Modes

All sorts of funny thoughts
Run around my head:

“It isn’t really

Anywhere!

It’s somewhere else

Instead!”

in Halfway down by A.A. Milne

For e~-ion plasmas, the introduction of a weakly (or fully) relativistic treatment sees
a broadening of the frequencies at which resonance occurs, and a downshift in those
frequencies as thermal velocities become more relativistic. Waves at resonant frequencies
are damped as a direct result of modifying the classical static ion dispersion relation to
accommodate relativistic corrections [47, 48].

Previous work in e~e*t plasmas has handled the fully relativistic regime (where a <
10)[44] but not a weakly relativistic regime (10<a<100).

The purpose of this chapter is to develop the novel treatment for weakly relativistic
e~ et plasmas outlined earlier (see Section 3.7.4). Our goal is a treatment which results
in figures which compare directly with those of chapter 4. At the risk of anticipating the

theory, we present one such figure, figure 5.1.
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Figure 5.1: The Bernstein Mode in weakly relativistic e"e* plasma (a = 10)

The effects noted in the weakly relativistic e~-ion plasma are mirrored in the e~e*
treatment. However no approximation dependent on the disparate masses of species is re-
quired and the damping is consequently not present. Furthermore in the ultrarelativistic
limit (@ — 0) of the weakly relativistic dispersion relation for e~e* plasmas, the Bernstein
modes are not present and only the plasma oscillation remains perpendicular to the mag-
netic field, consistent with the predictions of the fully relativistic analysis of [44]. In the

classical limit, the dispersion relation can be shown to relax to the non-relativistic form.

5.1 The Expression for R,,

5.1.1 Simplification

For now, let’s narrow our interest to the expression for Rw found at the end of Chapter

3 (3.121):

s =02—C Z / / dpJ_dp“(Jn(ae)) € z_mgFJ_—Y—p'L—

wEho (r-%)
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where

C:47rw2v mgoc2 =47rw2 <i)% 1 a
0% 7 k2 0% P\2m) mged \ B2
Rearrange the part of the integrand in (3.120)
72 (72 - Z:%) + %; n? 1
A " —_— (5.1)
NN
So that:

e B L (552

n=-—00

5.1.2 Bessel Identities
To tidy up a few more items use the identity (A.1)
T-n(@) = (~1)"Jn(a)

Now the integrals are summed over index n; with the range (—o0,o). Compare
the parts of the sum 322, --- and >-%°, -+ (n = 0 gives zero). Since J2 (a) =
(=1)2"J2(a) = J2(a) and all the other occurrences of n are of even order both parts will

have identical elements.

o0

Z ...=2i... (5.3)

n=-o00 n=1

Thus

~ 0.2
Rae = 0% =2 (me cZ[ / [ dbrippuntaaye ¥

/ / dpudiy (0 (ac))%e™ ]

Now 2 (myc®) € = 4&2,a%/%/ (\/27r IEE_), which leaves:
~ ~2 CL? 1 i el -~ - A 2 _E’Lz
R, = — 40 pe = Zn dp1dp) pi(Jn(ac))’e” 2
_L n=1 -
- n* PO Py g o
D /0 /_ i e

n=1
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Now examine the first sum:

5 00
~92 af 1 2 > o ~ ~ ~ by - 2 _gﬁ
i () S [ [ emniin®] oo

n=1

The double integral may be simplified here. First deal with the ) integral by quoting

52
| /27
/ dp“ e 2z = 7 (55)

The p; integral requires a different identity:
.2 ~
o . w2 _wh 1 -(& k2
/ dpL pi(Jn(kipi)) e 5 = e ( )In (i) (5.6)
0

Thus the whole double integral expression is:

~2 a% 1 - \/ﬁ - E;" 1}2
—4wpeﬁ (zal-) Z [nz - e ( )In (—i)] (5.7)

n=1

the identity:

W]

Now according to [57], there is a further identity

ad “Ar.(A) 1
nze ( )____

. - (5.8)

n=1

with A = k2 /a. This means the first term of the sum becomes

\ .
z Vor (1 k2

a2, 2 (L) V2T LA g (5.9)
V2 ki az \2 a

And so we have the expression

ap
- 42 a,% X pt [ apd oo e__?“'
R =U:)2—2L:’26 - == re T/ ﬁ.L Jn(ae 26_ 2 dﬁl/ —dﬁ
- TR (%)Qp | Pu(In(ec) )™
(5.10)
5.2 Theoretical treatment
The integral part of the final term of (5.10) is a double integral in p, and p:
. |
o0 . . R _aﬁ R o0 e— R
/ p-L(Jn(kJ-pJ-))ze —2LdPJ./ T dp“ (5.11)
: = (r-%)
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5.2. THEORETICAL TREATMENT

Bearing this in mind we now aim to replace one of the parts of this double integral
with a special function. In the event one special function is not enough but the principle
is the same: there are good routines for calculating special functions which can then be
adopted by the code.

Now it can been seen that the p integral has a discontinuity when 7% = 2. The
denominator takes the form:

2
R ) n . . N .
1+p+p1 — 5 =pf+ 91 - b3 =5t + 51 + 42 (5.12)

Two related quantities are defined here:

2 n? . -~
b, = i 1 if o<n (5.13)

nZ
¢ = 1-= i @o>n (5.14)

Three situations may arise
CaseI @ <nandp; <b,
Case IT & <mand p, > b,
Case IIl w > n

The first two cases must be considered together. Here @ < n and b, is used.

For each n the p, integral is split around b,

/Ooo[...]:/(an[...]+/bj[...]

In the case of fg"[ -+-], case one, the denominator (5.12) may become zero. Conse-
quently evaluating the p integral must be done by contour integration so that poles are
correctly handled. On the other hand, for f;°[---] has no such problem, (5.12) may never
be zero.

The third case is separate: again there are no singularities to worry about. ¢2 is always

greater than 0 by (5.14).
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5.2, THEORETICAL TREATMENT

5.2.1 Case I. w <n and p; <b,

52

bn > i * e“%"'
/ ﬁJ_(Jn(k.LﬁJ_))Ze— 2 dﬁJ_/ ——-dp” (5.15)
0 (7 - %)

Of primary interest here is the behaviour around the zeros of the denominator (5.12).
Make a change of variable: 8% = b,% — ﬁi hence pydp, = —pdg
The whole double integral is:

=2

ﬂ

/Obnﬂ(J( (82 /37‘)%))2 L) 4 / ] (5.16)

Now the P) integral may be written

52
ap
L e_—zu

lim ——=dp . (6.17

L—oo -L

As stated previously there is a discontinuity for ﬁﬁ = % and contour integration is
necessary.

The integral has two simple poles. Take a closed integration path as follows: a semi-
circular path in the upper half of the complex plane; return along the real axis making a
small semicircular indentation into the UHP above each pole (either +3). The residues

at the poles are:

22

4 og?

R e 2 e "2
eSp=p | 573 | =

Y 28

il ag?

R e 2 e "2
Sp=—p | = _m | =

P” g 20

Contour integration is described in more detail in Appendix B. Using the results

described in that appendix for poles lying on the contour of integration means that the
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5.2. THEORETICAL TREATMENT

corresponding closed path integral may be calculated

wl='u.

®© T2 ® e~ e~ "2 e~ "2
§ s = P - ¥
—00 p2 - /62 00 “ /82 216 _213

~N

Q)

(o] e—
= P/ ———dp
oop _ﬁZ p“

Nl;.

(5.18)

The integral which corresponds to the integral in (5.17) is the principal part integral

as defined in the appendix.

We intend to ‘cancel out’ the denominator of (5.17). To this end propose a new

substitution, p = Bu. This leads to

L -2
ngrle _LmﬂdU—ﬂLqu/LuZ_l :,BA(
If = af3%/2, this manipulation defines the function A(z), i.e.:
L —wzu?
Ale) = fim P | 1™

The double integral is now written

/Obn( n(kj_( _ )} ))2 ‘MdﬂA (aﬂz)

2

Taking the derivative of A(z) with respect to z gives

L —zu?
(')A_(z) = lim P/ —u? ¢ du

oz L—oo -L u? -1
so that
dA(z) _ L N
i G T - d
A+ = Jm [ (1me)

L 2 ™
— lim P/ e du:—’/—
Lo -L T

Now show that A(0) =

du

L
40) = fm 7

_LU2 -1

af?

5 ) (5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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5.2. THEORETICAL TREATMENT

Split the denominator by partial fractions

i
| 1 1] 1 1
u2—1_§[u—1_u+1] (5-25)
Thus
A(O)—-l- lim P g du— lim P g d (5.26)
DY Pl v el [T b ’

Now the second term in the expression on the right hand side is identical to the first

under a sign change in the dummy variable. That is to say

w=L { w'=-L 1 w'=L 1
— lim P/ du:—]ij/ (—dv') = lim P/ du’

L—oo ——ru+1 L—ooo -, —u+1 Looo r—_pu —1
(5.27)
Leaving just
A(0) = lim P/L L du=0 (5.28)
Looo J_pu-—1

This is true because we can make a substitution x = v — 1 giving an odd integrand.

To solve (5.23) we propose an integrating factor. Try e”.

4 (eA) = —€” z (5.29)

dz T

thus

T ea:’
A = € ° — dz' +C
e /D(\/F)\/Pz+

= —re® {/Ox j;d:c'}

Finally, substitute 2’ = w?, and this becomes

Ve guw?
A = —ﬁe"z/ —(2wdw)
o W
Ve
= —2yme”" / e dw
0

The full expression for the double integral is:

i [ (s =D)L () Gan

For computational purposes note that the integral function D(7n) is the Dawson inte-

gral. The definition is given along with an illustration in Appendix A
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5.2. THEORETICAL TREATMENT

5.2.2 Case II: ® <n and p;, > b,

o0 - f
. s _ery ® g2 .
/ Pi(Jn(kipL))’e '5Ldp¢/ ——49) (5.31)
b —o0 (72 _ %2_)

Here as before the first stage is to change the variable ﬁi = b2+ 6% so that p, dp, = 6dé

The p) integral is now

P/oo c * _dp / £ g (5.32)
—ooﬁ“ + 62 = L—»oo Lp“ + 62 Il ’

To simplify this another change of variables is called for: § = 6u thus (5.32) becomes

b et o1 ()
lim [ " dj = lim —/ e’
~L u? +1

33
L% ) [ 6%42 1 62 Lo 8 du (5.33)

Using these variable changes together means that the double integral is re-expressed
as:
9 2 9 a b2 +62 L —(
i - .34
Jimn [0k (82 + ) )e @z [ ot u2+1 du (5.30)

which simplifies to:

1 a( b2 +62 §2
/ (e (2 1 ) e 45 (“2 ) (5.35)
where
as?), 2
052 ) L e"(T)”
B (7) = Jim [ (5.36)
Now let y = %= and examine B(y) on its own. What is B(0)?
L
B(O) - Lh—Irnoo _Lu2 + ].du
L
= 2 lim du

L—oo 0 ’Uzz + 1
= 2 lim [1;am_1 L]
L—oo

B(O) = =«
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5.2. THEORETICAL TREATMENT

l Now take the derivative of B with respect to y:

dB(y) _ .. /L N
T—Lh—{%o _L( u)u2+1du (5.37)
It follows that:

dB (3/) L 2 eV . . L —yu? g T
ke B(y) = ngnoo _L(—u - 1) o 1du = —Lh_r)r;o _Le du = —\/g (5.38)

Thus the problem is reduced to the differential equation:

dB T
— —B=—,/— 5.39
a7 ” (5.39)

As before the standard approach is to propose an integrating factor (here e™¥) that

way:
d , _ -
— (e7YB) = —e7Y, |- (5.40)

thus

]
3
3]
<
—N—
|
S
o
<
ﬂ’I
§
u
Q\
+
—
——

Make one last substitution, 4’ = w?, and this becomes

REYE
o

me? (1 — erf (\/Y))

B

}

Note that in the final stage of this algebra, the error function, erf, appears. For more
information about this function see Section A.4.1 in the appendix.

Write out the full expression

/ooo(Jn(icL (02 + 52)%))2 - d6 mes (1 — erf ( -g—2>) (5.41)

So that the final expression for the double integral is then

re=p / do(Jn(ky (b2 + 82)%))2 S {l—erf <\/ gz ,} (5:42)
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5.2. THEORETICAL TREATMENT

5.2.3 CaselIll: v >n

The solution of this case is close to that of Case II. In this regime the quantity ¢, defined

at (5.14) is appropriate. The double integral is

as:

-2

|

2

OOA 7 A 2 22;. ~ 0 € o
/ Pr(Jn(kipyr))e™ 2 dPJ./ 9B (5.43)
0 —oo (72 _ ?72)

Here as before the first stage is to change the variable p% = €2 — ¢2 hence p; dp, = ede

So that the ) integral is now

a.ﬁz aﬁz
0 o= —2]L L e —2"-
4P ——dp (5.44)
“ Pi+ € €2 = L—boo Lp“ + €2 “

To simplify this another change of variables is called for: 5| = eu thus (5.44) becomes

du (5.45)

Losat [ (2)

im _ - —_—
L—ooo J_p €2u? + € - u:+1

Using these variable changes together means that the double integral is re-expressed

00 . a!c —q?;! 1 /L e_(g_;i)u'l

. 2 2 - z
lim A e(In(ky (¢ - ) ))2%e de = e du (5.46)

L—oo

which simplifies to:

al gnte -
_KE___lde c (at

/ (JnlkL (2 + €42 ))2e ;) (5.47)

where

C (T) = lim Lﬂdu (5.48)

Lo J_p, u2+l

This C is identical to B(y) at (5.36).

C(z) = me* (1 — erf (Vz)) (5.49)

Write out the full expression

af 2 —q,zl

o0 ~ = a€2
(Jn(kyL (€ - qﬁ);))%‘ z de mez (1—erf ( = ) (5.50)

9n
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5.3. A SINGLE INTEGRAL FORM OF Rxx

So that the final expression for the double integral is then
agz [ - 1 2
e / de(Jn(kL (€ — ¢2)?))? {1 — erf ( 3;—) } (5.51)
an

5.3 A Single Integral Form of R,,

Recall that the aim of the previous section was to reformulate the expression for Rys.
Quadrature of a single integral with a special function is more efficient than quadrature of
the original double integral in (5.10). The form of the dispersion relation used from this

point on is:

. 402, a3 X nt
= -2}, - = — {Case I II :
Rpp = 0% ~ 20, ] \/E;nz__:l =2 {Case I + Case I}, or {Case III},, (5.52)

where the cases refer to (5.30), (5.42), & (5.51) respectively. Cases I and II arose from

either side of p; = b,: as a result their contributions are summed. Which cases are
involved is decided by the index value of the infinite sum, n, (7.e. whether it is greater

than or less than the value of the frequency, @).
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Chapter 6

The Computational Strategy

With expressions for the dispersion relations for e~e* plasmas in both the non-relativistic
and weakly relativistic cases, the next step is to plot the dispersion relations for a range
of parameters. Naturally this job falls to the computer. Any code then must perform two
tasks: it must calculate the value of an expression for R, on a grid in (&, k L) space; and
it must locate the points at which that surface intersects the R;, = 0 plane. This code
should take as input a set of basic parameters: &y and if necessary a = mc?/kT. The
output should be a series of (, k) pairs for which Rz = 0.

Such a program was eventually written in a modular form and can be found listed in
Appendix C. The ‘front end’ is the module bmodes.c. The main function in bmodes. c calls
functions in either of two function files non.c or weakly.c depending on which routine is
needed. In each of non.c and weakly.c there is a routine which calculates the value of
Ry for a (&, k) ) pair.

While a regularly spaced grid of values of R, is generated for pairs of parameters, the
sign at each point on the grid is monitored. More precisely, for each k. column of that
grid, any change of sign of R,; between sequential values of & denotes a potential intersect
point. Provided R, is continuous we can be certain that these values of & bracket root,
which corresponds to the true intersection, R, = 0.

Zero-finding is then performed by the routine zbrent() in zbrent.c. This routine is

called in bmodes.c. The algorithm used in this routine, Brent’s algorithm, is a hybrid of
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6.1. THE FRONT END

one-dimensional methods: bisection and inverse quadratic interpolation. If the function
behaves smoothly an inverse quadratic approach is very effective at zero-finding. As
described in Numerical Recipes [58], the algorithm switches to a bisection step if the
function is not smooth.

In addition to zero-finding this code makes use of a number of other Numerical Recipes
routines, namely those for Bessel functions (standard and modified - first kind), for the
Dawson integral and for quadrature. The interaction of the various functions is summa-

rized in 6.1:

I bmodes.h I

'
——’{ bmodes.c }‘—

!
———I zbrent.c p—

Figure 6.1: Modular structure

6.1 The Front End

The code in this file deals with the user options and ensures that the correct routine
(non-relativistic or weakly relativistic) is adopted.

Using command line information the program then opens and names a data file; adds
informative comments; loops through wavenumber and frequency; finds and records the
R, = 0 contour in (/Ac 1,®) space; and all the while, tells the user what it is doing.

Some basic errors are trapped: if the datafile is unclosed for whatever reason at the
end of an execution a warning is given; or, if too few or too many arguments are given at

the command line, the usage message is given.
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6.2. THE CLASSICAL ROUTINE

On the very first pass through the kL loop, comments are written to the data file.
That way an immediate record is made of the parameters under which the subsequent
data was produced.

Each first pass through the @ loop skips all the commands in that loop due to the
condition on check. On every other pass the values of two successive R;,(&) are compared.
If they are of opposite sign the zero finding routine is started and a best value for @, root,
is found. Just in case this is a discontinuity (and not a zero) the value of R,,(root) is
squared and only if that number is still less than 1.0 is the (k.,root) pair written to the

data file.

6.2 The Classical Routine

non.c contains a routine that numerically calculates R for non-relativistic e"et plasmas.

This section of code simply calculates:

10
Rop=1- 4025 n?2F E\_A) [n(A)
n=1

o2 — n2

This is a version of (4.15) with the sum truncated at n = 10.

6.3 The Weakly Relativistic Routine

weakly.c contains a routine that numerically calculates R, for weakly relativistic e~e*t
plasmas. In particular this routine calculates a value of R;, for a given @: the value of kL
is determined externally in the main routine.

The additional problem for the weakly relativistic routine is that of quadrature. The
expression for Ry, (5.52), contains three integrals which must themselves be performed.
To solve the equations (5.30), (5.42), & (5.51), a practical scheme had to be devised.

This section of code calculates:
402, a3
B Vir

This is simply a statement of (5.52) with the infinite sum truncated at n» = 6. Case I
refers to (5.30); Case II to (5.42); and Case III to (5.51).

Hh o 2 ~2
Ryp = 0° = 2w, —

6. 4
Z % {Case I+ Case II}, or {Case III}
n=1
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6.4 Quadrature

The equations (5.30), (5.42) and (5.51) do not permit analytical solution in any obvious
way. The next step is naturally to attempt a numerical approximation to the solution.
The midpoint rule for integration was initially chosen because the limits of the integrals
to be calculated were indefinite.

Quadrature is performed using the Midpoint routine (midpnt () ) from Numerical Recipes

[58].

6.5 Truncations

Our aim is to be able to plot the zeros of R,, for frequencies as high as 10Q,. We
would rather not exclude any details of behaviour: neither do we wish to spend hours of
computing time for details which are only marginally more accurate. A b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>