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Summary

This thesis reports the synthesis and initial evaluation of the substituted guanidine N-(l- 

Napthyl)-N'-(2-iodophenyl)-N'-methylguanidine (CNS 1261) as a potential agent to image 

N-methyl-D-aspartate (NMDA) receptor activation in vivo.

The pharmacology of unlabelled CNS 1261 was investigated in vitro using ligand binding 

assays and in vivo using autoradiographic procedures. Investigations were designed to 

examine the ability of CNS 1261 to inhibit radioligand binding to the NMDA receptor and 

to other neurotransmitter receptors. [14C]2-deoxyglucose autoradiography was used to 

measure local rates of glucose utilisation following systemic administration of CNS 1261. 

The effects of CNS 1261 on glucose utilisation were compared to those obtained in a 

previous study carried out by Kurumaji et al (1989) using MK801. Secondly, in order to 

assess the ability of [125I]CNS 1261 to measure levels of NMDA receptor activation in the 

brain, a modification of the [125I]MK801 in vivo binding technique described by 

McCulloch et al (1992) was used to investigate the uptake and retention of [125I]CNS 

1261 in the normal rat brain. The pattern of [125I]CNS 1261 uptake was compared to that 

of [125I]MK801 in parallel experiments. Finally, autoradiographic techniques were used to 

assess the utility of [125I]CNS 1261 in imaging changes in NMDA receptor activation in 

vivo. NMDA receptor activation was manipulated via proton blockade and microinjection 

of the excitatory amino acid agonist NMDA into the cortex

Pharmacology of CNS 1261

The ability of CNS 1261 to inhibit [3H]MK801 binding was investigated in crude synaptic 

rat brain membranes (Cambridge NeuroScience Inc.). CNS 1261 (lOnM) binds to the 

NMDA receptor in vitro with high affinity (Ki = 25nM for displacing [3H]MK801 

binding). The effects of unlabelled CNS 1261 (lOnM and lpM) on the binding of ligands 

to the NMDA receptor and to other neurotransmitter receptors was more extensively 

investigated by submitting the compound for commercial screening (Novascreen).



CNS 1261 (lfiM) was extremely selective showing activity (99% inhibition) only in the 

[3H]MK801 binding assay.

The effects of CNS 1261 (1, 3 and lOmg/kg) on local cerebral glucose use were 

examined in the conscious lightly restrained rat. The systemic administration of CNS 

1261 resulted in overt behavioural responses and marked alterations in glucose use 

within the central nervous system. Administration of CNS 1261 produced highly 

circumscribed changes in glucose utilisaion that could be readily visualised on 

autoradiograms. Decreases in glucose use (approximately 30%) were observed in layer 

IV of the frontal, sensory-motor and auditory cortices and in the inferior colliculus. 

Distinct, significant elevations in glucose use were observed in the hippocampus 

molecular layer, dentate gyrus, limbic system (posterior cingulate cortex, caudal 

entorhinal cortex, mamillary body, anteroventral thalamus), retrosplenial cortex and the 

myelinated fiber tract of the fornix. Correlation analysis revealed that the overall 

pharmacological effects of CNS 1261 were extremely similar to the overall effects of 

MK801, correlation coefficient, r = 0.87. Subtle differences were observed in a number 

of regions. A greater number of regions displayed extreme sensitivity to CNS 1261 than 

to MK801, such as the anteroventral thalamus, mamillary body and inferior colliculus. 

In contrast, the entorhinal cortex was much less sensitive to CNS 1261 than to MK801

[125I]CNS 1261 uptake in the normal rat brain

Radio-iodinated (*25I or *23I)CNS 1261 was synthesised at high specific activity 

(>2000Ci/mmol) and chemical purity (>97%) at the West of Scotland Radionuclide 

Dispensary, Glasgow. Investigation of the in vivo uptake and retention of [125I]CNS 

1261 was carried out in halothane anaesthetised rats. The initial uptake of [125I]CNS 

1261 reflected cerebral blood flow. At time points beyond 30 minutes the uptake of 

[125I]CNS 1261 reflected the classical pattern of NMDA receptor distribution with the 

highest levels of binding in the hippocampus and low levels in the hypothalamus and 

cerebellum. At 120 minutes, [125I]CNS 1261 uptake within hippocampal regions relative



to that in the cerebellum (a measure of non-specific binding) was 70-140% greater than 

that observed with [125I]MK801.

The mechanisms underlying the superior imaging capability of [125I]CNS 1261 was 

addressed by investigation of the lipophilicity and metabolism of this tracer.

Calculation of LogD values (the octano 1/buffer partition ratio at pH 7.4) showed that CNS 

1261 was substantially less lipophilic than iodo-MK801 (2.19 and 3.3 respectively). 

Brain/aqueous partition coefficients calculated from the non-specific binding component of 

in vitro binding experiments showed that both [125I]CNS 1261 and [125I[MK801 were 

highly lipophilic compounds however, partition ratios for [125I]CNS 1261 were 

approximately 40% lower than those for [125I]MK801 in both rat and man, suggesting a 

lower non-specific binding component with this tracer.

High performance liquid chromatography analysis of plasma samples after administration 

of [125I]CNS 1261 to halothane anaesthetised rats showed the presence of 2 species, 

identified as authentic CNS 1261 and free iodide. Almost all (95%) of the radioactivity in 

the brain at 120 minutes post-injection was authentic [125I]CNS 1261. [125I]CNS 1261 

was metabolised much more rapidly than [125I]MK801 such that five minutes after 

injection, 15% authentic [125I]CNS 1261 remained in the plasma compared to 55% for 

[125I]MK801. It is proposed that both the lower non-specific binding component observed 

with CNS 1261 and the rapid metabolism of this tracer confer significant advantage over 

MK801 as an imaging agent in the normal brain.

It was postulated that a reduction in [125I]CNS 1261 uptake by administration of 

unlabelled MK801 would confirm that enhanced uptake in areas of high receptor density 

such as the hippocampus, represents increased binding of this tracer to the NMDA receptor 

ion channel. The results presented here show displacement of [125I]CNS 1261 uptake 

from normal non-pathologic brain could not be demonstrated following administration of 

pharmacological doses of MK801. The precise mechanisms underlying this inability to 

demonstrate displacement are unknown, but it is recognised that this observation may 

impact on the future development of CNS 1261 as imaging agent in man.
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Imaging changes in NMDA receptor activation using [125I]CNS 1261 

The ability to image changes in NMDA receptor activation in vivo must be demonstrated 

for a tracer to be of any value in man. Varying the pH of the extracellular fluid has been 

shown to provide a mechanism of controlling the level of NMDA receptor activation 

without affecting agonist concentrations (through induction or relief of proton block of 

the ion channel). Hypercapnic acidosis was induced in halothane anaesthetised rats. 

Induction of hypercapnic acidosis (pH 6.9) caused a significant decresase in [125I]CNS 

1261 uptake within brain regions with a high density of NMDA receptors. [125I]MK801 

uptake within the same regions was not reduced by induction of hypercapnic acidosis. 

Demonstration of a reduction in [125I]CNS 1261 uptake may be attributed to the 

improved signal to noise ratio of this tracer.

The utility of [125I]CNS 1261 in measuring changes in NMDA receptor activation was 

further examined by measuring [125I]CNS 1261 uptake at different time points after 

intracortical injection of NMDA in the rat. The pattern of [125I]CNS 1261 distribution at 

the site of injection outlines a core area of reduced uptake (and hence receptor activation) 

surrounded by a narrow margin of increased uptake where isotope levels were 80% 

above contralateral values. Receptor activation was reduced within areas of decreased 

[125i]CNS 1261 uptake (as confirmed by [14C]2-deoxyglucose autoradiography). The 

increase in lesion size over time shows that [125I]CNS 1261 is capable of imaging 

dynamic processes such as the evolution of excitotoxic damage. In a separate pilot study 

[125I]CNS 1261 uptake and retention was also shown to be enhanced within the 

ischaemic caudate following permanent middle cerebral artery (MCA) occlusion in the rat. 

This regions are generally accepted to be areas of excessive NMDA receptor activation. 

[125I]CNS 1261 was also superior to [125I]MK801 in labelling non-ischaemic NMDA 

binding sites in the hippocampus.

These results suggest that CNS 1261 acts as a high affinity, selective non-competitive 

antagonist at the NMDA receptor. The relative uptake of [125I]CNS 1261 in regions with 

a high density of NMDA receptors was greater than that of [l25I]MK801 within the 

normal brain and, [125I]CNS 1261 can image subtle changes in NMDA receptor



activation in vivo in the rat. [125I]CNS 1261 uptake is determined by the activation state 

of the receptor and therefore appears to be a suitable candidate for evaluation as a SPECT 

agent to image excessive NMDA receptor activation in pathological situations in the living 

human patient.



Preface and Declaration
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1.1 Excitatory amino acids as neurotransmitters in the central 

nervous system

The successful treatment of petit mal seizures using orally administered glutamate was 

reported by Price and colleagues in 1943. This report was among the first to suggest 

that glutamate may have a function in the central nervous system and stimulated 

interest in the role of glutamate in brain metabolism. However, it was not until 1960 

when a direct excitatory effect of glutamate was documented by Curtis and Watkins 

and this acidic amino acid received consideration as a neurotransmitter candidate. The 

high concentration (4-10mmol/kg wet weight) and even distribution relative to other 

transmitters (Meldrum, 1985, Greenamyre, 1986) contributed to the long delay 

between the observations of Price and Curtis and the acceptance of glutamate as a 

major neurotransmitter of several clinically important pathways, including cortical 

association fibres, corticofugal pathways such as the pyramidal tract and 

hippocampal, cerebellar and spinal cord pathways (Greenamyre, 1986). It is now 

believed that approximately 70% of fast excitatory neurotransmission within the 

central nervous system is mediated by amino acids such as glutamate, aspartate and 

possibly homocysteate (Danysz et al, 1995)

The most direct anatomical evidence that glutamate functions as a neurotransmitter 

was the demonstration of enrichment of this amino acid in nerve terminals by a 

combination of anterograde labelling of primary afferent terminals and 

immunocytochemistry (for review see Cooper et al, 1996).

Glutamate satisfies the four main criteria for the classification of a neurotransmitter, 

presynaptic localisation in specific neurons where it is stored and released from 

synaptic vesicles, Ca2+-dependent release by physiological stimuli, identity of action 

with a naturally occurring transmitter and rapid termination of transmitter actions.

1



1.2 Metabolism and release of glutamate.

Glutamate is a nonessential amino acid and is ubiquitously distributed throughout the 

central nervous system. Glutamate has an important metabolic role in carbohydrate 

and nitrogen metabolism and is the major precursor for the inhibitory neurotransmitter 

g-aminobutyric acid (GABA). In view of the many roles attributed to glutamate, the 

synthesis and metabolism of this compound are categorised in a complex way (Figure 

1, for review see Fonnum, 1984, Fleck et al, 1993). A large compartment, localised 

to neuronal structures and nerve terminals, accounts for 85-98% of the total glutamate 

pool within the brain. A smaller compartment, containing mainly glutamine has been 

assigned to astroglial cells. The two compartments can be subdivided further into the 

'transmitter' pool (20-45%) and 'precursor' glutamate for GABA synthesis. Double

label experiments have shown that the majority of released glutamate is derived from 

glutamine (Fonnum, 1984).

The ability of glutamate to function as a neurotransmitter is intrinsically linked to two 

transport systems, uptake carriers located in neurons and glia and a specific 

transporter capable of packaging glutamate into synaptic vesicles (Cooper et al, 

1996). Glutamate transporters maintain low basal levels of extracellular glutamate 

and conserve released transmitter for reuse. The regional localisation and cellular 

distribution of different forms of these transporters may underlie the propensity of 

most diseases for specific brain areas (Torp et al, 1994). Under resting conditions 

glutamate concentrations are l|i.M, lOmM and lOOmM in the extracellular space, 

presynaptic cytoplasm and lumen of vesicles respectively.

The presence of a Na+-dependent uptake systems are common to the majority of 

transmitter amino acids such as GABA and glycine. The glutamate uptake systems 

terminate the post-synaptic action of the transmitter, recycle glutamate and maintain 

low extracellular glutamate concentrations. (Nicolls and Attwell, 1990).
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glutamine
synthase
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GluGlu

GluR

POSTSYNAPTIC CELL

FIGURE 1 : Pathways for glutamate utilisation and metabolism

Glutamate (Glu) is released into the synaptic cleft and is recaptured by neuronal-type 

(GT(n)) and glial-type (GT(g)) Na+-coupled transporters. Glial glutamate is converted 

to glutamine (Gin) by the enzyme glutamine synthase. Gin is present in high 

concentrations in the CSF and can enter the neuron to help replenish glutamate after 

hydrolysis by mitochondrial glutaminase.



It is suggested that removal of glutamate from the synaptic cleft involves, to differing 

extents, a combination of uptake into the presynaptic neuron, uptake into glial cells 

and diffusion down the concentration gradient maintained by glial uptake (Nicolls and 

Attwell, 1990, Cooper et a l , 1996).

Three glutamate genes have been identified and cloned, 2 of glial origin, GLT1 and 

GLAST (Torp et al, 1994) and a third found in neurons, EAAC1 (Cooper et al, 

1996). These transporters display -50% sequence identity and display different 

distribution patterns within the brain (Lehre et al, 1995). The uptake systems display 

high affinity (|iM) and transport L-glutamate and D- or L-aspartate. The uptake 

process is accompanied by cotransport of 2 or 3 Na+ ions and the counter transport 

of 1 K+ ion and either the cotransport of 1 H+ ion or the counter transport of 1 OH- 

ion. Recently, Trotti and colleagues (1997) reported that glutamate uptake is 

regulated by the redox state of the reactive sulphydryl groups present on the glutamate 

transporters, with reduced or even abolished uptake capacity in their most oxidised 

form.

Naito and Ueda (1993) were among the first groups to demonstrate ATP-dependent 

uptake of glutamate into synaptic vesicles. The vesicular transporter is Na+- 

independent, has low affinity (mM) and is selective for glutamate. Calcium- 

dependent glutamate release from synaptosomes has been demonstrated by a number 

of different depolarisation methods, including electrical stimulation and high K+ 

concentrations (Zhou et al 1995, Nicolls and Attwell, 1990). Approximately 15% of 

cortical/hippocampal synaptosomal glutamate release was found to be calcium- 

dependent. This glutamate release was also dependent on the maintenance of high 

energy levels. Vesicular glutamate release was triggered by localisation of high 

concentrations of free calcium in the cytoplasm near active release zones. 

Calcium-dependent glutamate release was biphasic and shows an initial brief phase 

and a slower phase (ti/2 = 70 seconds) when the majority of the glutamate is released. 

This is thought to reflect the initial exocytosis of vesicles already docked with the
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membrane and the detachment of the remaining vesicles from cytoskeletal elements 

(Wahl etaU 1994).

Glutamate release is regulated via the action of kainate and glutamate on presynaptic 

receptors controlling chloride channels. Glutamate and quisqualate inhibit neuronal 

calcium currents (through G-protein coupled mechanisms) providing a negative 

feedback control of glutamate release. The most established regulation is the 

inhibition of glutamate release by adenosine. Release is also inhibited by the 

GABAa agonist baclofen (Burke and Nadler, 1988).

Glutamate levels in the extracellular space are markedly increased in pathological 

conditions such as focal cerebral ischaemia and epilepsy (Butcher et al, 1990). The 

increase in glutamate levels is biphasic and the majority of the glutamate released is of 

metabolic origin, originating from neurons and glia (Wahl et al, 1994). The elevation 

of extracellular glutamate has been attributed to several mechanisms, alone or in 

concert, including calcium-dependent release from neurotransmitter stores (Drejer et 

al, 1985), calcium-independent release from cytosolic stores by reversal of the 

Na+/glutamate transporter (Butcher et al, 1987) and ultimately cellular lysis.

Recent studies investigating the neuroprotective effect of the k opioid agonist eliprodil 

(CI-977) in the cat showed that pretreatment prior to middle cerebral artery occlusion 

significantly attenuated the marked increase in extracellular glutamate, aspartate and 

GABA within the focal ischaemic penumbra. Eliprodil is thought to inhibit glutamate 

release via its action on k opioid receptors specifically located on vesicular glutamate 

stores. This suggests that a proportion of the glutamate arises from calcium- 

dependent glutamate release (MacKay et al, 1996).

Under normal conditions the Na+/glutamate transporter is the primary mechanism for 

glutamate reuptake by neurons, however, during depolarisation or when Na+ is 

entering the cell, this carrier can export glutamate into the extracellular space (Graham 

et al, 1993). The resulting glutamate potentiates a positive feedback system by 

depolarising more neurons.
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Exposure of astrocyte cultures to free radical generating systems has been shown to 

result in a marked decrease in high affinity glutamate transport. Long-lasting 

oxidation of protein sulphydryl groups has been proposed as the mechanism of 

inhibition of glutamate uptake. It is suggested therefore, that free radicals may 

induce accumulation of glutamate by reduction of glial uptake (Volterra et al, 1994). 

Regardless of the precise mechanisms involved, it is apparent that the overflow of 

excitatory amino acids into the extracellular space is an important step in genesis of 

neurotoxic damage.



1.3 Glutamate receptor subtype classification

The excitatory effects of glutamate and its congeners are mediated by several distinct 

receptor types. These receptors can be classified into two groups based on 

transduction mechanisms. Activation of ionotropic receptors leads to direct opening 

of ion channels characterised by their differing cation permeabilities. The activation 

of metabotropic receptors modifies phosphoinositide hydrolysis through a GTP- 

binding protein-dependent mechanism.

Four classes of ionotropic receptors have been defined by physiology and ligand 

binding techniques. The most common three are named according to the most 

specific agonist compound at each of these receptors, N-methyl-D-aspartate (NMDA), 

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate (Table 1). 

The fourth, L-2-amino-4-phosphonobutyrate (AP4) appears to represent an inhibitory 

autoreceptor.

Since the focus of this thesis is the NMDA receptor, this subclass will be discussed in 

greatest detail.

1.3.1 The NMDA receptor

The NMDA receptor is the most well characterised of all the ionotropic receptors, and 

plays a crucial role in many physiological, behavioural and pathological functions of 

the CNS including synaptic plasticity, information processing and memory. Like the 

GABAa receptor, the NMDA receptor is now recognised as having several distinct 

binding and modulatory sites (Figure 2). This complexity raises the suggestion that 

different combinations of modulatory sites may imply the existence of 

pharmacologically distinguishable receptor sites.
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TABLE 1 
Excitatory amino acid receptors

Receptor class Agonist Antagonist Radioligand

NMDA
recognition site NMDA

L-glutamate
L-aspartate
DJL(tetrazol-5-yl)glycine

D-AP5
CPP
CGS 19755

L-[3H] glutamate

channel ketamine 
TCP 
MK801 
CNS 1102

[3H]MK801
[125i]MK801
[3H]TCP

glycine site glycine 
D-serine 
D-alanine 
D-cycloserine (P)

HA-966 (P) [3r ] glycine
kynurenate
5,7-chloroky nurenate

polyamine site spermine
spermidine

argiotoxin-636

AMPA AMPA
L-glutamate
quisqualate

NBQX
CNQX
LY-293558
GYKI-52466

[3H]AMPA
[3H]quisqualate
[3H]glutamate

Kainate kainate
4-methyl glutamic acid
domoate
quisqualate

NS102
CNQX

[3H]kainate
[3H]glutamate

M etabotropic trans-ACPD
quisqualate
ibotenate

L-AP4

A summary of representative agonists, antagonists and radioligands for each of the 
excitatory amino acid receptor classes. Agents are not necessarily ranked in order of 
pharmacological potency. (P) partial agonist
AMPA : (RS)-a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, L-AP4 : S-2- 
amino-4-phosphonobutyrate, D-AP5: D(-)-2-amino-5-phosphonopentanoate, trans- 
ACPD : l-aminocyclopentane-lS,3R-dicarboxylate, CGS 19755 : 4-phosphonomethyl-2- 
piperidinecarboxylic acid, CNS 1102 : AL(l-naphthyl)-./V'-(3-ethylphenyl)-Ar'- 
methylguanidine hydrochloride, CNQX : 6-cyano-7-nitroquinoxalme-2,3-dione, C P P : 
(±)-(2-carboxypiperazine-4-yl)propyl- 1 -phosphonic acid, GYKI-53655 : l-(4- 
aminophenyl)-4-methyl-7,8-methylenedioxy-5//-(3N-methylcarbamate)-2,3- 
benzodiazepine, HA966 : (R)-3-amino-l-hydroxypyrrolid-2-one, LY-293558 : 
3S,4aR,6R,8aR-6[2(l//-tetrazol-5yl)ethyl]-decahydioisoquinoline-3-carboxylate, MK801: 
(+)-5-methyl-10,ll-dihydro-5//-dibenzo[a,d]cyclohepten-5,10-imine maleate, NMDA : N- 
methyl-D-aspartate, NBQX : 6-nitro-7-sulphamoyl-benz(f)quinoxaline-2,3-dione, NS102 :
5-nitro-6,7,8,9-tetrahydrobenzo-[Y]-inodole-2,3-dione-3-oxime, T C P : l-[l-(2- 
thienyl)cyclohexyl]-piperidine
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The transmitter binding site

The transmitter binding site binds L-glutamate (and L-aspartate) with high affinity 

promoting the opening of a high conductance channel permeable to Na+ and Ca2+. 

Two schemes have been suggested to describe channel responses to 

a brief pulse of L-glutamate.

1. Channel openings may occur with a moderately high probability (~ 10ms) soon 

after agonist binding and repeatedly open and close until the agonist dissociates 

several hundred milliseconds later.

2. The majority of NMDA channels open after a considerable delay and after the initial 

burst, the likelihood of subsequent openings is reduced. Results from concentration 

jump and patch-clamp analysis support the short first latency scheme, where a 

significant number of channels exhibit long-lasting bursting (Dzubay and Jahr, 

1996).

Two distinct binding sites are associated with the transmitter binding site, one which 

preferentially binds agonists and one which preferentially binds antagonists (Foster 

and Fagg 1987, Cooper et al 1996). Autoradiographic studies by Monaghan and 

colleagues (1988) examining [3H] glutamate and [3H]3-[(±)2-carboxypiperazine-4- 

yl]propyl-l-phosphonic acid ([3H]CPP) binding suggested that these may represent 2 

distinct receptors. More recently, ligand binding studies have identified 

pharmacologically distinct receptor subtypes which display differing preferences for 

agonists and antagonists (Bresink et a l , 1995, Sucher et a l , 1996).

A number of competitive antagonists exist for the transmitter binding site. The 

'prototype' compounds are co phosphono-substituted amino acids such as D-AP5 (2- 

amino-5-phosphonopentanoic acid) and D-AP7 (2-amino-7 -phosphonopentanoic acid) 

The construction of conformationally restricted analogues of these compounds 

produced antagonists with increased affinity such as D-CPP (4-(3-phosphono- 

propyl)piperazine-2-carboxylic acid and its unsaturated analogue D-CPPene ((E)-4- 

(3-phosphono-prop-2-enyl)piperazine-2-carboxylic acid). A novel class of 

competitive antagonists have been characterised in vitro (Urwyler et al, 1996a) and in
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vivo (Urwyler et al, 1996b). Structure-activity relationship of these biphenyl 

derivatives of 2-amino-7-phosphonoheptanoic acid have shown that the a-amino, a- 

carboxylate, and co-acidic moiety are necessary for high affinity binding to the 

transmitter recognition site (Urwyler et al, 1996a).

The glycine modulatory site

The glycine recognition site has been proposed as a potentiator of NMDA evoked 

currents in a variety of preparations including cultured cortical neurons (Kemp and 

Priestly, 1991) and Xenopus oocytes (Kleckner and Dingledine, 1988). L-glutamate 

is virtually ineffective in activating NMDA receptor channels unless the glycine site is 

also occupied (Johnson and Ascher, 1987). This potentiation of glutamate responses 

is detected at glycine concentrations as low as lOnM and is not mediated by the 

inhibitory strychnine-sensitive glycine site (Johnson and Ascher, 1987). The very 

low concentration of glycine required for this effect, in relation to the concentration 

normally present in brain, suggest that glycine may serve as a constant enabling factor 

rather than a regulatory mechanism for NMDA-mediated effects.

An increasing amount of evidence suggests that the glutamate and glycine sites of the 

NMDA receptor are allosterically coupled. Patch clamp studies in hippocampal 

neurons showed that saturating concentrations of glycine prevented desensitisation of 

NMDA receptor currents and that glutamate increased the dissociation of glutamate 

from NMDA receptors (Lester et al, 1993). The interaction between glutamate and 

glycine sites had also been examined using ligand binding studies. Initial studies 

showed that glycine enhanced L-[3H] glutamate binding and inhibited binding of the 

glutamate antagonist, D-[3H]AP5 (2-amino-5-phosphonopentanoic acid) at 

concentrations consistent with action at the glycine recognition site (Monaghan et al> 

1988). This observation suggests that glycine site agonists have opposite effects on 

the agonist or antagonist preferring states of the glutamate recognition site. More 

recent ligand binding studies propose a more complex interaction (Grimwood et al,

1993). Glycine, D-serine and D-cycloserine partially inhibited binding of the "C-5"
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glutamate antagonist [3H]CGS 19755 (cfy-4-phosphonomethyl-2-[3H]piperidine 

carboxylate) and had little effect on [3H] glutamate or the "C-7" glutamate antagonist 

[3H]CPP. These effects can be explained by the proposal that glutamate, CPP and 

CGS 19755 bind to overlapping but nonidentical sites, and that glycine site ligands 

induce a conformational change that differentially affects the binding of these ligands. 

In the same study, in contrast to a lack of effect on [3H] glycine binding, "C-7" 

antagonists partially inhibited binding of the glycine site antagonist [3H]L-689,560 

((±)-4-rra^-2-carboxy-5,7-dichloro-4-[3H]phenylaminocarbonylamino-1,2,3,4 tetra- 

hydroquinoline). These inter-actions cannot be explained by an allosteric interaction 

and it has been suggested that a steric inhibition where glutamate site antagonists 

physically prevent access of [3H]L-689,560 to its binding site may be responsible. 

Thus two mechanisms may operate in these interactions, depending on the size of the 

ligands involved, a true allosteric change of affinity and a steric inhibition.

Voltage-dependent Mg2* block

A unique feature of the NMDA receptor is that it exhibits a voltage-dependent Mg2+ 

block (Nowak et al, 1984, Mayer et al, 1984). In the presence of Mg2+, single 

channel currents measured at resting potential are chopped into bursts and the opening 

potential of the channel is reduced (Nowak et al, 1984). The channel current induced 

by a given amount of glutamate (or NMDA) is increased when the cell is depolarised 

and NMDA responses are also greatly potentiated by reducing the extracellular Mg2+ 

concentration below physiological levels (~lmM). In addition to this site -0.65 

through the electric field of the ion channel (Johnson and Ascher, 1990) a superficial, 

high affinity divalent cation binding site - 0 .2  through the electric field has also been 

identified (Premkumar and Auerbach, 1996). This external binding site is an 

important feature of the Ca2+ permeability of the NMDA receptor since it determines 

the fraction of NMDA receptor current carried by Ca2+

Recent studies by Wang and MacDonald (1995) have shown that, at positive 

potentials, Mg2+ can enhance NMDA responses in the presence of low glycine
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concentrations. This potentiation was associated with a increase in the affinity of the 

NMDA receptor for glycine (Wang and MacDonald, 1995, Paoletti et al, 1995). It 

was suggested that Mg2+ may be acting as an agonist at the spermine site to produce 

these effects (Paoletti et al, 1995) since Mg2+, like spermine relieved the inhibitory 

effect of protons on NMDA receptor responses (Traynelis et al, 1995).

Ion channel blockade

NMDA receptors are selectively blocked by a variety of dissociative anaesthetics such 

as ketamine, phencyclidine (PCP) and MK801 (Kemp et al, 1986). It is well 

established that this type of blockade is both voltage-dependent and dependent on the 

presence of agonist (use-dependent) (Javitt and Zukin, 1989, Rogawski, 1993). 

Therefore the state of the NMDA receptor determines the degree of antagonism in that 

binding is almost completely dependent on the activation of the receptor (Foster and 

Wong, 1987).

In the absence of channel blocking agent, the channel exists in one of two states, open

(O) or closed (C). Presence of the channel blocker induces additional states, open- 

blocked (OB) and closed-blocked (CB). It is suggested that the blocking agent can 

only dissociate from the open form of the channel as detailed in the kinetic scheme 

below (MacDonald et al, 1991).

(fast)
c  -------- ►  o

1
b

T
CB  ►OB

(fast)

kD  (slow)

where k is the forward rate constant of blockade, D is the concentration of blocker 

and b is the reverse rate constant of blockade.
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While a variety of binding studies have confirmed that dissociative anaesthetics 

interact most readily with the agonist-associated (open) state of the NMDA receptor 

(Huettner and Bean, 1988, MacDonald and Nowak, 1990), it has been proposed that 

PCP-like agents may gain access to their binding site when the channel is closed. 

Drugs that interact exclusively with open channels should display single exponential 

association and dissociation kinetics. Javitt and Zukin (1989) reported that in the 

presence of L-glutamate (10pM), the kinetics of [3H]MK801 association were fit 

better by 2 exponentials. Under control conditions (absence of glutamate or glycine) 

or in the presence of AP5 99% of [3H]MK801 association could be accounted for by 

a single exponential thus, a degree of slow association of [3H]MK801 occurs under 

conditions when few NMDA receptors would be expected to be open. These results 

suggest that PCP-like agents can gain access to their binding site when the NMDA 

receptor channels is closed as well as via open channels. Bioexponential kinetics can 

be explained by agents gaining access to their recognition site by two pathways, each 

corresponding to one of the observed kinetic components. Channel blocking agents 

with pKa values close to physiological pH associate via a fast hydrophilic path 

representing access via open channels and a slow hydrophobic path representing 

binding via a path associated with closed channels. Closed channel access 

presumably requires transfer across lipid bilayer, or diffusion through hydrophobic 

domains (Javitt and Zukin, 1989, Chen et al, 1992).

Ketamine, PCP and MK801 display high affinity for the NMDA receptor channel and 

block 90-99% of agonist evoked NMDA currents at low concentrations (Foster and 

Wong, 1987). High affinity coupled with use-dependent blockade allows only 

minimal basal levels of glutamatergic activity within the brain. These agents display 

high neurobehavioural toxicity such as cognitive and sensory impairments (for review 

see McCulloch, 1992). Dissociative anaesthetics also produce transient and 

reversible histopathological changes in the cingulate cortex (McCulloch and Iversen,

1991).

More recently certain phenylcyclohexylamines (PCA's, primary amine analogues of
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PCP), an analogue of MK801, ADCI and the anti-Parkinsonian, anti-viral agent 

memantine (1 -amino-3,5-dimethyladamantane hydrochloride) were found to display 

affinity for the NMDA receptor channel in the low micromolar range and to 

demonstrate more advantageous behavioural effects than PCP or MK801. These low 

affinity blockers display rapid rates of block and unblock, memantine reaches steady- 

state within 1 second of application (Chen et al, 1992). The proportion of current 

blocked increases with agonist concentration while a basal level of agonist evoked 

responses remains. The relatively rapid kinetics of these low affinity compounds may 

underlie this favourable profile (Rogawski, 1993, Chen et al, 1992).

A novel high affinity channel blocking agent WIN 63480 ((±)-12,12-diethoxy-13,13- 

dimethyl-6 ,ll-ethano-6 ,ll-dihydrobenzo[b]-quinolizinium chloride) has recently 

been reported to lack observable behavioural effects at high concentrations. While 

WIN 63480 was an effective NMDA receptor channel blocker, it is strongly 

hydrophilic (logD = -4.1) and was shown to have much less access to closed 

channels than MK801 (logD = +1.8), Ault et al, 1995). Access to closed channels 

results in a non-competitive profile of antagonism for MK801 and PCP, compared to 

a more uncompetitive profile for WIN 63480.

Consequently WIN 63480 may produce less inhibition of physiological NMDA- 

mediated processes.

The polyamine modulatory site

The highly regulated nature of polyamine biosynthesis, retroconversion and biosynthesis 

verify the critical role of these ubiquitous aliphatic polycations in cell growth and 

differentiation (Scott et al, 1993). It is now established that these low molecular weight 

nitrogenous bases do not perform a single function and the known roles of polyamines can 

be divided in to those dependent on their chemical or biological properties. Spermine and 

spermidine interact with negatively charged molecules such as nucleic acids or 

phospholipids, stabilising these highly charged structures (Wallace et al, 1987). 

Polyamines also have effects on voltage-gated cation currents, spermine and spermidine
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allosterically inhibit the binding of calcium channel ligands, and can modulate voltage- 

activated K+ current (for review see Scott et al, 1993, Johnson, 1996). Multiple 

recognition sites for polyamines have been reported to account for the complex actions 

ranging from antagonism to enhancement of glutamate responses mediated NMDA 

receptors (Johnson, 1996). Polyamines appear to exert dual effects with low 

concentrations enhancing and high concentrations inhibiting responses (Scott et al, 1993). 

The potentiating effects of polyamines (Munir et al, 1993, Fahey et al, 1993) can be 

subdivided into ’glycine-independent' stimulation where spermine increases NMDA 

currents in the presence of saturating glycine, and 'glycine -dependent' stimulation which 

increases the affinity of the receptor for glycine (Johnson, 1996). The inhibitory effect can 

also be further divided into voltage-dependent inhibition and a decreased affinity for 

glutamate (Figure 3). Ransom and Stec (1988) identified another polyamine binding site 

allosterically linked to the MK801 binding site, where low spermine concentrations 

enhance MK801 binding. In addition to endogenous polyamines, these compounds are 

also major constituents of venoms produced by a number of vertebrates.

The receptor-specific toxin sensitivity can be correlated with individual receptor 

subtype (see subunit-specific blockade).

Proton block

The strict regulation of pH within the brain is well established. It is of interest 

therefore that despite the wealth of homeostatic mechanism, neuronal activity gives 

rise to changes in intracellular and extracellular pH (Chesler and Kaila, 1992). These 

shifts occur rapidly in either the acid or alkaline direction. Alkaline and acid shifts 

typically lead to a respective increase or decrease in neuronal excitability and are of a 

large enough magnitude to influence the function of receptors.
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FIGURE 3 : The modulatory actions of polyamines on the NMDA receptor

(1) Glycine-independent stimulation : occurs at saturating glycine concentrations and 
involves an allosteric effect on the conformation of the channel protein to increase the 
frequency of channel opening. (2) Glycine-dependent stimulation : occurs at subsaturating 
glycine concentrations and increased NMDA receptor affinity for glycine. (3) Voltage- 
dependent inhibition : decreases channel conductance as a result of charge screening at the 
mouth of the channel, fast-open channel block at a site within the channel, possibly 
involving Mg2+. (4) Decreases affinity for agonist: occurs at sub-saturating concentrations 
of NMDA or glutamate



NMDA receptor responses were selectively inhibited by protons (H+) in cerebellar 

neurons. 50% inhibition of responses occurred at pH 7.3 implying that NMDA 

receptors are not fully activated under normal conditions (Traynelis and Cull-Candy,

1990). Non-competitive interactions at the agonist binding site, glycine site and 

Mg2+ site suggested that protons act at a specific site on or near the face of the NMDA 

receptor channel to decrease the frequency of channel opening. Strikingly similar 

results were obtained in cultured hippocampal neurons (Tang et al, 1990).

More recently , supporting evidence for the negative modulation by protons of 

NMDA receptors was provided by ligand binding studies. Increasing extracellular 

pH from 6.5-8.0 increased the association and dissociation rate of [3H]MK801 

binding (Rajdev and Reynolds, 1993). Yoneda and colleagues (1994) also showed 

that glutamate-dependent [3H]MK801 binding to synaptic membranes increased with 

decreasing proton concentration over the pH range 6.0-9.0. These observations 

suggest that [3H]MK801 binding is controlled by the level of NMDA receptor 

activation.

Mild acidosis (pH 6.8-7.4) has been shown to inhibit the rise in intracellular Ca2+ 

(Takadera et al, 1992, Ebine et al, 1994) and to delay spreading depression and 

improve neuronal recovery following hypoxia in hippocampal slices (Tombaugh,

1994). This beneficial effect may be dependent on the severity of the acidosis since 

Ca2+ influx in hippocampal slices at pH 6.2 was twice that measured at pH 7.3 

(O'Donnell and Bidder, 1994).

Acidosis has also been shown to be neuroprotective in ischaemia. Simon et al (1993) 

reported that mild acidosis (pH 6 .8) induced by increasing the CO2 tension in inspired 

air, attenuates ischaemic injury in the rat. However, this reduction in infarct volume 

was biphasic and the beneficial effect of acidosis was lost at pH 6.5. This is in  

agreement with the observation that a more severe acidosis (pH 6.3) induced by 

hypercapnia, exaggerated ischaemic damage in the rat (Katsura et al, 1994). It is 

suggested that inhibition of glial glutamate uptake is likely a major factor in 

attenuating the neuroprotective effect of acidosis. A toxic effect of acidosis on glia
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was described by Giffard et al (1990), with a 9 hour exposure at pH 6.4 resulting in 

death of a third of the glial population.

It is noted that induction of hypercapnia has wider reaching effects within the central 

nervous system beyond those on NMDA receptors. An increase in cerebral blood 

flow occurs in all brain region following induction of hypercapnia (Simon et al, 1993) 

however, this vasoreactivity is lost in ischaemic areas (Dettmers et al, 1993).

In summary, modulation of the divalent ion-carrying NMDA current by protons may 

serve as a negative feedback mechanism controlling neuronal excitability under 

normal conditions and, as an intrinsic protective mechanism by which Ca2+ entry into 

neurons is regulated in pathological conditions. In situations where acidosis worsens 

the overall outcome of ischaemic damage, it may decrease the specific component of 

neuronal injury mediated by NMDA receptors.

The redox modulatory site

NMDA-evoked currents have been shown to be enhanced by disulphide-reducing 

agents (DTT, dithiothreitol) and inhibited (but not completely) by thiol-oxidising 

agents (DTNB, 5,5'-dithiobis-2-nitrobenzoic acid). Both reducing and oxidising 

agents modifiy the native receptor implying that the NMDA receptors are in 

equilibrium between a fully oxidised (disulphide) and fully oxidised (thiol) form (for 

review see Gozlan and Ben-Ari, 1995). DTT reacts at sites on the extracellular 

domain of the receptor to increase the frequency of single channel openings, the 

potentiation of NMDA-evoked currents correlates with an influx of Ca2+ through the 

NMDA channel (Aizenman and Harnett, 1992).

The variation in reports of the existence and variation in proportion of the 2 redox 

states in different preparations suggests the presence of endogenous compounds 

which interact at these sites. Potential candidates are thiol reagents such as cysteine, 

homocysteine which are released during depolarisation (Zangerle et al> 1992), and 

dihydrolipoic acid which increase NMDA responses. Disulphide reagents like lipoic 

acid and methoxalin react with free sulphydryl (SH) groups to inhibit responses. The
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endogenous reducing agent ascorbic acid has also been shown to inhibit NMDA- 

induced currents. Free radicals are also known to interact with thiol groups. Free 

radicals generated by xanthine oxidase inhibit NMDA responses. Particular attention 

has focused on nitric oxide which displays a direct action on SF1 groups of the redox 

site (Lei et al, 1992). Dynorphin, an endogenous opioid reduces NMDA-activated 

currents without involving opioid receptors. Dynorphin interacts with a site 

conformationally liked with the redox site(s) on the NMDA receptor altering the gating 

properties of the channel (Chen et al, 1995).

Fully oxidised receptors are functional, indicating redox modulation is not a switch 

turning NMDA receptors on or off, but is rather a buffer of NMDA receptor 

overactivity (Gozlan and Ben-Ari, 1995). This redox system can buffer small 

changes in redox potential that occur in relation to electrical activity thus maintaining 

activity within a controlled range. However, the buffering capacity probably plays a 

limited role in pathological conditions since it cannot overcome large changes in redox 

potential.

Modulation by zinc

The presence in high concentrations of zinc in the synaptic vesicles of mossy fibres 

within the hippocampus and it's release in to the extracellular space during neuronal 

excitation lead to the proposal that zinc could modulate neuronal excitability (Assaf et 

al, 1984). The demonstration of preferential uptake and Ca2+-dependent release of 

zinc within hippocampal slices added weight to the hypothesis that zinc was involved 

in synaptic transmission (Howell et al, 1984). Studies by Westbrook and Mayer 

(1987) in hippocampal neurons confirmed that zinc (50|iM) produced an almost 

complete inhibition of NMDA activated current via a direct effect on the receptor 

channel complex an in a voltage-insensitive manner. At this concentration zinc was 

found to potentiate kainate and quisqualate mediated currents. More recently zinc has 

also been shown to modulate the binding of antagonists at the NMDA receptor (Terse 

and Komiskey, 1997). Zinc (12.5|i.M) significantly inhibited [3H]CGP 39653
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binding to rat brain homogenate by increasing the Kj of this compound. It was 

suggested from these results that the zinc concentration of the brain may influence the 

therapeutic effects of competitive NMDA receptor antagonists.

fi opioid interactions

|i opioid receptor activation had been reported to increase NMDA receptor currents 

postsynaptically (Martin et al, 1997). The mechanism of potentiation is unclear 

however, the effects of |x opioid receptor agonists on NMDA responses have been 

proposed to be linked to this voltage-dependent Mg2+ blockade (Cheng and Huang, 

1992). p. opioid agonists cause sustained increases in NMDA-induced currents by 

activating protein kinase C (PKC). In this study PKC was found to potentiate 

NMDA receptor responses by increasing the open probability of the channel by 

reducing the voltage-dependent Mg2+ block.

Modulation by phosphorylation

Phosphorylation of glutamate receptors has been postulated as an important 

mechanism for modulating excitatory transmission (Ben-Ari et al, 1992), however the 

precise phosphatases involved were unknown. More recently Wang et al (1994) 

demonstrated that NMDA receptors were regulated by endogenous serine/threonine 

protein phosphatases in cultured hippocampal neurons. Protein phosphatases 1 and 

2A decreased the open probability of the NMDA receptor and phosphatase inhibitors 

were shown to enhance NMDA-induced currents. These observations were supported 

by the demonstration that activation of calcineurin (Ca2+/calmodulin-dependent 

phosphatase) by calcium entry through NMDA receptor channels shortens the duration 

of channel opening in rat dentate gyrus granule cells (Lieberman and Mody, 1994). It 

is apparent therefore that a negative feedback mechanism exists in vitro where 

phosphorylation of the NMDA receptor channel modulates neuronal excitability.
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Molecular biology

Two families of NMDA receptor subunits have been cloned and sequenced in the rat, 

consisting of 5 receptor subunits NMDAR1 (NR1) and 4 NMDAR2 subunits (NR2A- 

D, Nakanishi, 1992, for review see Sucher et al, 1996). An NMDA receptor-like 

subunit has also been cloned (NRL) which is closely related to NMDAR1 (Sucher et 

al, 1996). Isolated cDNA encoding a full length NMDA receptor subunit from human 

brain (nNRl) shares high sequence homology (99%) with rat brain NR1 and murine 

£1 (Nakanishi, 1992), suggesting that the cDNA clone of hNRl which codes for a 

human brain NMDA receptor subunit is descendent from rodent and murine brain 

NR1 subunits (Planells-Cases et al, 1993). Alternative splicing of the single gene can 

generate at least 8 NR1 isoforms with distinct functional properties. One of these 

splice variants coded by exon 5, exists in 2 different forms with the presence (NRlb) 

or absence (NRla) of a 21 amino acid N-terminal insert sequence, which is predicted 

to form a loop on the extracellular surface of the NR1 protein (Traynelis et al, 1995, 

Johnson, 1996). The human NR1 subunit, NMDAR1 or the murine homolog form 

homo-oligomers and exhibit electrophysiological and pharmacological properties 

characteristic of NMDA receptors when expressed in Xenopus oocytes (Seeburg, 

1993, Planells-Cases et al, 1993) but not in mammalian cells (Sucher et al, 1996). It 

is suggested that the in vivo biological activity of the NMDA receptor is dependent on 

this essential subunit, since mice carrying a disrupted allele of NMDAR1 (Grin 1) 

possessed no NMDA responses and die when neonates (Forrest, 1994). NR1 

subunits require co-assembly with NR2 subunits to yield currents of the magnitude 

found in neurons (for review see Seeburg, 1993, Sucher, 1996).

NR2 subunits therefore appear to have a modulatory role, with each recombinantly 

expressed, heteromeric NR1-NR2 receptor combination possessing distinct 

biophysical and pharmacological signatures. Subunit dependent properties include the 

strength of the Mg2+ block (Kuner and Schoeper, 1996), sensitivity to modulation by 

glycine (Monaghan et al, 1988), and affinities for agonists and antagonists (Marti et 

al, 1993, Lynch et al, 1995). Heterogeneity within the NR2 subunit family results
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from expression of 4 closely related genes, NR2 subunits share 15% homology with 

NR1 subunits (Figure 4).

Natively expressed receptors are thought to comprise NR1 and at least one other 

member of the NR2 class but the exact stoichiometry remains unknown. It has been 

suggested that NMDA receptors may form pentamers like nicotinic acetylcholine 

receptors or follow the tetrameric structure of ion channels with pore loops. It has 

been reported that NR2A and NR2B can be immunoprecipitated with NR1 

suggesting a portion of NMDA receptors form heterooligomers with at least 3 

subunits (Sheng et al 1994) however it remains unknown if these subunits represent 

functional receptors.

Previously, ideas on the transmembrane topology of ligand-gated ion channels was 

based on data from nicotinic acetylcholine receptors and the majority of glutamate 

receptor sequences were interpreted on this framework. The NR1 primary amino 

acid sequence was originally interpreted to indicate 4 transmembrane domains (TMI- 

TMTV). A long N terminal extracellular segment before TMI has been postulated to 

contain the agonist binding site. Site directed mutagenesis had highlighted three 

charged residues within this region which are critical for glutamate binding 

(Planells-Cases et al, 1993). The putative TMII was designated the channel forming 

region, with highly conserved asparagine residue in the N position (also found in 

NMDAR2 subunits) mediating Ca2+ permeability and the voltage sensitivity of the 

Mg2+ block (Seeburg, 1993, Kuner and Schoepfer, 1996). The extensive C terminal 

sequence is currently modelled to be intracellular. An interaction has recently been 

reported between the C terminus of NR2A and NR2B subunits and the domains of 

PSD-95/SAP90, an abundant synaptic protein associated with the cytoskeleton 

(Niethammer et al, 1996).
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FIGURE 4 : Phylogenic tree of ionotropic glutamate receptor subunits in the rat

NR1 and NR2A-D are NMDA receptor subunits. GluRA-GluRD are AMPA subunits. 

KA1, KA2 and GluR5-GluR7 are subunits of kainate receptors. The d subunits have yet to 

be assigned. The line length separating any pair of subunits represents the distance 

between their sequences.



It is proposed that the PSD-95 family of guanylate kinases may anchor NMDA 

receptor subunits to the cytoskeleton and assist in the assembly of receptor complexes. 

Recently several groups have put forward indirect evidence, inferred from the 

structure of the non-NMDA receptor subunit GluRl that the NR1 subunit has 3 

transmembrane domains with TMII forming a loop in the membrane to participate in 

the formation of a channel pore (Sucher et al, 1996).

Subunit specific block

Radioligand binding and electrophysiology studies have described 4 distinct 

populations of native NMDA receptors. Discrete populations are found within the 

cerebellum (Perkins and Stone, 1983, Widdowson et al, 1995) and the midline 

thalamic nuclei, while the remaining 2  differ in their affinities for agonists and 

antagonists (Monaghan et al, 1988). The anatomical distribution of each of the 

subtypes show striking parallels to the distribution of individual NR2 subunit mRNA. 

NR2A mRNA is localised in the cortex and hippocampus and distribution was similar 

to that of 'antagonist preferring' NMDA receptors, as defined by [3H]CPP binding 

(correlation coefficient 0.88). 'Agonist preferring' NMDA receptors were localised to 

forebrain regions expressing NR2B and NR1 mRNA. NR2C mRNA is almost 

exclusively localised within the cerebellum and NR2D to midline thalamic nuclei. The 

marked anatomical correspondence between distribution of mRNA and expression of 

NMDA receptors with different pharmacological profiles implies that a molecular basis 

underlies the heterogeneity in NMDA receptor properties and that the distinct 

properties of these subtypes are determined by NR2 subunits (Buller et al, 1994). 

Kutsuwada and colleagues (1992) demonstrated that different subunits are distinct 

with respect to affinities for agonists and competitive antagonists and this was 

confirmed by autoradiographic studies (Yoneda and Ogita, 1991, Bresink et al, 1995). 

[3H]MK801 binds with lower affinity in the cerebellum compared to the cortex.
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This observation was explained by preferential binding to distinct NMDA receptor 

subunits, [3H]MK801 may have a decreased affinity for NMDA receptors containing 

NR2C or NR2D subunits which are abundant within the cerebellum (Nakanishi,

1992).

It has also been suggested that the observation that low affinity NMDA channel 

blockers like amantadine and memantine bind with similar affinity to cortical and 

cerebellar binding sites may also be attributable to preferential binding to certain 

receptor subtypes (Porter and Greenamyre, 1995).

In addition to their uneven distribution throughout the brain, distinct NMDA receptor 

subtypes may be differentially involved in neurological disorders. Proton inhibition 

of NMDA receptors is determined by the presence or absence of exon 5 in the NR1 

subunit (Traynelis et al, 1995). Brain regions that express exon 5 (brainstem, 

thalamus, cerebellum, hippocampus) may be uniquely vulnerable to glutamate induced 

neuronal damage inasmuch as the attenuation of proton inhibition by NR1 exon 5 

enhances neuronal excitability and reduces the negative feedback of extracellular 

acidification occurring after excessive NMDA receptor activation (Traynelis et al,

1995). The development of subtype-specific antagonists has thus gained considerable 

interest.

A number of compounds have been identified that appear to discriminate between 

NMDA receptors composed of different subunit combinations, the best characterised 

is ifenprodil. Ifenprodil is an atypical, non-competitive NMDA antagonist which 

displays 400-fold higher affinity for NR1-NR2B than NR1-NR2A receptors 

(Williams, 1993). This agent was originally proposed to act at the polyamine site 

however, the interaction between ifenprodil and polyamines is non-competitive. 

Ifenprodil, in the presence of saturating concentrations of glycine, can potentiate the 

effect of NMDA receptor activation by low concentrations of agonist Little effect on 

NMDA responses is detected at intermediate agonist concentrations, and profound 

block is observed at high agonist concentrations (Kew et al, 1996).
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Ifenprodil inhibition of recombinant NR1-NR2B receptors in Xenopus oocytes was 

found to be pH sensitive, with less inhibition occurring at alkaline pH. The pH 

sensitivity of ifenprodil block occurs at NRlb-NR2B as well as NRla-NR2B 

receptors suggesting that it is not influenced by the presence or absence of exon 5.

The attractive pharmacological profile of ifenprodil which lacks the side effects 

exhibited by other NMDA antagonists is attributable in part to both subunit 

selectivity and, the ability of this compound to block channels during periods of high 

activity while leaving resting channels relatively unaffected. Investigation of the 

mechanisms of action of such subunit specific compounds not only provides 

attractive therapeutic strategies with minimal side effects, but helps to refine our 

understanding of the complex interactions between various modulators of the 

NMDA receptor.

1.3.2 The AMPA receptor

AMPA receptors are found in the majority of excitatory synapses, with a similar 

distribution to NMDA receptors however AMPA receptors predominate in the 

molecular layer of the cerebellum whereas NMDA receptors are localised within the 

granule cell layer (for review see Farooqui and Horrocks, 1991). Investigation of 

AMPA binding kinetics revealed the presence of a high affinity and a low affinity 

binding site. The AMPA antagonist [3H]CNQX labels both sites with the same 

affinity. Due to the low calcium permeability of these receptors they do not carry 

sufficient ions to initiate biochemical and biological processes triggered by an 

increase in calcium levels. These receptors mediate fast excitatory transmission and 

are voltage-independent. Treatment of rat brain membranes with phospholipase A2

has been shown to cause a significant increase in the affinity of the receptor for 

AMPA, without changing the number of binding sites (Farooqui and Horrocks,

1991).
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Three selective AMPA antagonists exist DNQX (6,7-dinitroquinoxaline-2,3-dione), 

CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) and the most selective NBQX (6- 

nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione). The large body of neuroprotective 

data from studies using NBQX shows that AMPA receptors play an important role in 

the neuropathological effects of glutamate in cerebral ischaemia (Nellgard and 

Wieloch, 1992). More recently a selective AMPA antagonist LY 215490 

(decahydroisoquinoline) has also been shown to be neuroprotective (Gill and Lodge,

1994)

Molecular biology

AMPA receptors can be reconstituted in vivo by expressing 1 or coexpressing 2 of 4 

subunits, GluRl-GluR4 (Nakanishi, 1992). AMPA receptors are proposed to consist 

of pentameric assemblies. The GluR subunits are widely but differentially distributed 

throughout the CNS. The type of subunits expressed determines both the biophysical 

and pharmacological properties of the receptors. There is considerable sequence 

conservation across the 4 TM regions and subunits differ mainly in extracellular 

regions (Sheardown, 1993). All AMPA receptors are permeable to Na+ and K+ 

however only those receptors lacking a GluR2 subunit are permeable to Ca2+ (Danysz 

et al, 1995). The Ca2+ permeability can be linked to a single amino acid residue in 

the putative channel forming subunit TMII (McEntee and Crook, 1993). In GluR2 

subunits the glutamine residue is replaced by arginine (Seeburg, 1993)

GluR subunits are 900 amino acids in length and can occur in two forms with respect 

to an alternatively spliced exonic sequence of 38 residues, 'flip' and 'flop' (for review 

see Seeburg, 1993). The prenatal brain expresses mostly 'flip' and this expression 

persists throughout life. 'Flop' forms appears from postnatal stages onwards and are 

coexpressed with 'flip' forms in many cells. These developmental changes are 

proposed to have functional significance. Adults receptors display currents with a 

fast desensitising component and a steady-state component. Receptors with a 'flip' 

module display slower desensitising kinetics than adult receptors (Seeburg, 1993).



1.3.3 The Kainate receptor

The distribution of kainate receptors is complementary to that of NMDA and AMPA 

receptors with a high density of kainate sites present in the stratum lucidum of the 

hippocampus (mossy fibre system), striatum, thalamus and the inner and outer layers 

of the cortex (Farooqui and Horrocks, 1991).

Despite the presence of functional kainate receptors in neuronal cultures, synaptic 

responses were completely blocked by the 2,3-benzodiazepine GYKI 1536559, a 

selective AMPA antagonist. This evidence and the observation that kainate-elicited 

responses undergo rapid and total desensitisation (Seeburg, 1993) suggests that 

kainate receptors do not participate in conventional synaptic transmission in cultured 

cells, or in adult neuronal populations (Lerma et al, 1997). Thus, the significance for 

the CNS of receptors exhibiting high affinity kainate sites is unclear. Studies by 

Chittajallu et al (1996) showed that kainate elicits a dose-dependent decrease in L- 

glutamate release from hippocampal synaptosome and also depressed glutamatergic 

synaptic transmission.

Molecular biology

Kainate receptors can be generated in vitro from GluR5,6 ,7  and KA1 or 2 subunits 

(Seeburg, 1993). The 5 subunits form a complex mosaic of expression in rat brain 

and the combined pattern of distribution approximates the pattern of high affinity 

[3H]kainate binding sites. KA1 or 2 expression alone does not generate functional 

channels. Combined with GluR5/6, receptor properties are different from homomeric 

channels, GluR5-KA2 channels show rapid desensitisation and display a different 

current/voltage relationship compared to GluR5 channels.
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1.3.4 The AP4 receptor

AP4 receptors are characterised by the antagonistic action of AP4 on certain 

glutamate-using synapses. It has been suggested that AP4 may act at both pre- and 

post synaptic sites. Very little is known about the molecular biology of the of the 

AP4 receptor.

1.3.5 The Metabotropic receptor

Metabotropic glutamate receptors (mGluRs) are a novel family of recently cloned G 

protein-coupled receptors. These receptors are coupled to multiple second messenger 

systems including phosphoinositide hydrolysis and changes in cAMP formation (for 

review see Schoepp and Conn, 1993, Pin and Duvoisin, 1995). mGluRs can be 

classified into three groups (see molecular biology) which display different 

pharmacology. The rank order of agonist potency for group I receptors is 

quisqualate > glutamate > ibotenate > ACPD (l-amino-cyclopentane-1,3- 

dicarboxylate). The relative order of potency of group II receptors is reversed 

compared to group I. Group II receptors are distinctive in their sensitivity to L-AP4 

and their insensitivity to ACPD. mGluRs have recently been considered as a putative 

target for neuroprotective strategies because their activation affects multiple 

intracellular events contributing to both the induction and progression of neuronal 

damage. Activation of group II and group III mGluRs protects neurons against 

excitotoxic damage (Bruno et al, 1995). This effect is partly ascribed to neuronal 

mGluR2 receptors which are located presynaptically and inhibit glutamate release (Pin 

and Duvoisin, 1995). It appears that new protein synthesis and neuronal-glial 

signalling are also required for this neuroprotective activity (Bruno et al, 1997)
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Molecular biology

At least 6 subtypes of mGluRs exist termed, mGluRl-mGluR6 . These receptors are 

larger than any other G protein-coupled receptors and possess a common structural 

architecture. mGluRs possess a large extracellular NH2 terminal domain and seven 

putative transmembrane spanning domains. A number of cysteine residues are highly 

conserved in the NH2 terminal and may play a structural role (Nakanishi, 1992). 

Despite interactions being mediated through the same G protein molecules, mGluR's 

show no sequence homology with any other G protein linked receptors. mGluRs can 

be classified into three groups according to sequence similarities (Nakanishi, 1992, 

Figure 5). This classification is supported by the respective transduction mechanisms 

(Schoepp and Conn, 1993). Group I (mGluRl, MGluR5) stimulate phospholipase C 

resulting in increased IP3 formation and mobilisation of Ca2+ from intracellular 

stores. These responses are only partly sensitive to pertussis toxin (PTX) implying 

the Gi-G0 family of G proteins is involved. Group II (mGluR2, mGluR3) and 

Group III (mGluR4, mGluR6 , mGluR7, mGluR8) are coupled to the inhibition of 

adenylate cyclase. Group II receptors show a strong inhibition of forskolin stimulated 

cAMP production however, group II receptors show less than 50% inhibition, 

implying inappropriate coupling to the G protein. mGluRs of the same group show 

70% sequence identity whereas identity between groups is around 45% (Pin and 

Duvoisin, 1995).

27



40 50 60 70 80 90%

mGluRl

mGluR5

mGluR2

mGluR3

mGluR4

mGluR7

mGluR8

mGluR6

transduction group

+ PLC I

] -A C II

-A C III

FIGURE 5 : Phylogenic tree of Metabotropic glutamate receptor subunits

The division of the metabotropic subunits into three groups is underpinned by 

structural homology and transduction mechanism. The sequence homology of 
subunits within and between groups is shown by the scale bar at the top of the 
diagram (%).



It is suggested that mGluRs perform regulatory functions throughout the brain 

(Nakanishi, 1992). Quisqualate stimulation of Group I mGluRs has been shown to 

inhibit voltage sensitive Ca2+ channels in cultured neurons while ACPD inhibits 

GABAa receptor mediated currents and potentiates AMPA and NMDA curents (Pin 

and Duvoisin, 1995). It is therefore proposed that mGluRs have two opposing 

effects on excitotoxic cell death. A potentiating effect arises due to neuronal excitation 

and potentiation of NMDA receptor responses and a protective effect exists due to 

presynaptic inhibition of glutamate release (Pin and Duvoisin, 1995).
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1.4 Excitotoxicity

1.4.1 NMDA-mediated neurotoxicity

Central nervous system neurons degenerate when exposed to abnormally high 

concentrations of excitatory amino acids such as L-glutamate and L-aspartete (Olney et al, 

1971). This effect appears not to be direct, and depends on excitation of glutamate- 

releasing neurons (Medrum and Garthwaite, 1990). Excitatory amino acid induced 

lesions have a characteristic cytopathology where postsynaptic structures are destroyed 

and axons and presynaptic terminals are spared (Foster et al, 1988, Meldrum and 

Garthwaite, 1990). Structure-activity studies revealed a strong correlation between the 

excitatory potency and toxic actions of these excitatory amino acids (Olney et al, 1971) 

suggesting that 'excitotoxicity ' is a consequence of excessive activation of excitatory 

amino acid receptors (for review see Choi, 1987 and Meldrum and Garthwaite, 1990). 

The intrinsic potency of glutamate (at NMDA receptors) is high, however the effective 

potency in vivo is reduced by the presence of uptake mechanisms (Torp et al, 1994). 

Impairment of this uptake by energy depletion is probably a major cause of the increase in 

glutamate found in ischaemia. It is well documented that different neuronal populations 

display marked variations in vulnerability to glutamate (Swan et al, 1988, Swan and 

Meldrum, 1990). Different excitatory amino acid receptor agonists also selectively kill 

different populations of neurons. It appears that this variability reflects the differences in 

glutamate receptor expression throughout the brain, rat cerebellar Purkinje cells in vivo 

and in vitro are resistant to NMDA toxicity and express few NMDA receptors, however 

kainate preferentially destroys hippocampal CA3 neurons which are rich in high affinity 

kainate binding sites (Meldrum and Garthwaite, 1990). The effect of different toxins on 

the same neuronal type can also be distinguished histopathologically. NMDA induces a 

rapid progression into typical necrotic profile, with swelling and vacuolisation. AMPA 

and quisqualate produce a more gradual 'dark-cell degeneration’. Both types of 

histopathology are observed in acute degeneration in vivo , status epilepticus and cerebral 

ischaemia (for review see Meldrum and Garthwaite, 1990).
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Two processes are thought to be involved in excitotoxic cell death, however the final 

common pathway underlying these processes is likely to be excessive Ca2+ influx. 

NMDA toxicity towards all vulnerable neurons in cerebellar and hippocampal slices was 

abolished in Ca2+-free medium, or when Ca2+ buffering is increased. Ca2 + 

accumulation in neurons also parallels the cytopathalogical changes in both time course 

and the sites involved, from swelling of the Golgi apparatus, chromatin clumping within 

the nucleus, mitochondrial swelling and changes in the cytoplasm. The main piece of 

evidence for the role of Ca2+ in excitotoxicity is that NMDA antagonists like MK801 

provide dramatic protection against damage (Foster et al, 1988).

The initial phase of glutamate neurotoxicity is dependent on both Na+ and Cl". 

Continuous exposure of neurons to toxic concentrations of glutamate opens membrane 

cation channels to an ecessive influx of Na+ and a secondary passive influx of Cl- and 

water, resulting in acute neuronal swelling (Rothman, 1985). Acute neuronal swelling 

was absent in cultures when Na+ was removed from the medium (Choi, 1987, Goldberg 

and Choi, 1993).

The second phase of neurotoxicity is not dependent on the continued presence of the 

NMDA agonist and this delayed toxicity is markedly reduced in the absence of Ca2+ 

(Garthwaite and Garthwaite, 1986, Murphy et al, 1988). Delayed neurotoxicity is 

triggered primarily by the entry of Ca2+ through NMDA receptors. The activation of 

glutamate receptors is associated with the initiation of a number of secondary processes 

facilitated by the physical colocalisation of NMDA receptors with Ca2+ dependent rate- 

limiting substrates and enzymes (Tymianski et al, 1993). The secondary rise which 

precedes cell death is due to the loss of Ca2+ homeostasis. These secondary processes 

include the formation of free radicals and the activation of lipases and proteases. The 

activation of lipolytic enzymes such as phospholipase A leads to formation of arachidonic 

acid from neuronal membrane phospholipids which can be metabolised to form free 

radicals and lipid hydroperoxides (Farooqui and Horrocks, 1991).

The activation of proteases may lead to cellular damage. Intense stimulation of NMDA 

receptors has been shown to activate Ca2+-activated neural proteases (calpains) in
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hippocampal cultures (del Cerro et al, 1994). The two isoforms, calpain I and II are 

activated by micromolar and millimolar Ca2+ respectively (for review see Saido et al, 

1994, Bartus et al, 1995). Calpains degrade spectrin, microtubules, and neurofilaments 

and may be involved in breakdown of the cytoskeleton (Saatman et al, 1996). Calpains 

also convert xanthine dehydrogenase to xanthine oxidase generating free radicals (Wems 

and Lucchesi, 1990). Other targets of Ca2+-induced injury may be Ca2+-calmodulin- 

dependent protein kinases and protein kinase which cause enhanced glutamate release 

and prolonged Ca2+ influx respectively (Nichols et al, 1990). Nitric oxide synthesis can 

also lead to free radical formation. Reactions with superoxide ions produces highly toxic 

hydroxyl radicals which cause lipid peroxidation of plasma membranes (Pellegrini- 

Giampietro et al, 1990). Ca2+ also activate endonucleases which cause fragmentation of 

DNA and may have a role in programmed cell death (Onenius et al, 1989).

1.4.2 Non-NMDA mediated excitotoxicity

Two types of AMPA excitotoxicity are proposed to exist, a direct effect resulting from 

long exposures at low concentrations and, a delayed effect resulting from short exposures 

(Meldrum and Garthwaite, 1990). Application of the antagonist CNQX (6-cyano-7- 

dinitroquinoxaline-2,3-dione) during exposure to AMPA in cerebellar slices had no effect 

on neurodegeneration. However, after a 90 minute recovery period, CNQX was highly 

effective in preventing AMPA induced neuronal degeneration (Garthwaite and 

Garthwaite, 1991). It is suggested that receptor desensitisation prevents an immediate 

toxic effect AMPA induced degeneration can be inhibited by nifedipine, implying that 

Ca2+ entry through voltage operated Ca2+ channels may be involved (Weiss et al, 1990). 

Kainate-induced excitotoxicity is similar to NMDA toxicity in that it is Ca2+ dependent 

and Cl" independent In contrast to AMPA-induced degeneration, CNQX inhibits kainate 

induced toxicity during the exposure period (Garthwaite and Garthwaite, 1990).
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1.4.3 The ischaemic penumbra

Occlusion of a major intracerebral artery causes a decrease in cerebral blood flow, the 

density of which is dependent on collateral circulation and local perfusion pressure. 

Complete arrest of the cerebral circulation leads to cessation of neuronal activity and 

subsequently to deterioration of ion homeostasis. If this situation persists for more than 

5-10 minutes, irreversible cell damage is likely. The classical concept of ischaemic 

thresholds states that cell death occurs when the cerebral blood flow is less than 15-20% 

of control values (Astrup et al, 1977). That is, a threshold flow rate is required to supply 

the minimum amount of oxygen and substrates to prevent complete cell membrane 

depolarisation. The concept of the ‘ischaemic penumbra’ was introduced to define brain 

tissue perfused at a level of blood flow below that needed to sustain electrical activity but 

above that required to maintain ionic gradients. A more recent concept defines 

‘penumbra’ as viable tissue with an undetermined fate which may lead to necrosis , but 

has the capacity to recover if perfusion is improved (Heiss and Graf, 1994). The 

progression from penumbra to infarction is a function of the intensity and the duration of 

ischaemia (Jones et al, 1981). Simultaneous measurement of cerebral blood flow, 

protein synthesis and ATP concentrations following MCA occlusion showed that the 

limiting factor for cell survival within the ischaemic penumbra is the presistence of 

supressed protein synthesis (Mies et al, 1991). A number of biochemical alterations 

contribute to ischaemic cell damage and several of these features are characteristic of the 

ischaemic penumbra (for review see Obrenovitch, 1995). PET studies in both humans 

and animals have shown that increased oxygen extraction is a reliable feature for the early 

identification of viable tissue surrounding the ischaemic core. Tissue acidosis is also a 

well established feature of ischaemic tissue. In the ischaemic core, tissue depolarises 

permanently within a few minutes while spreading depression-like waves of transient 

neuronal depression are consistently observed in peri-infarct areas. Speading depression 

has been shown to contribute to ischaemic damage (Gill et al, 1992). High extracellular 

K+ is the driving force for SD propagation and Ca2+ entry through NMDA channels is 

also required for propagation (Obrenovitch, 1995).
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1.5 Therapeutic intervention in cerebral ischaemia

The adult central nervous system has minimal capacity for regeneration following 

damage. Cells at risk do not die immediately and damage can take hours or days to 

occur. Tissue damage progresses from regions most metabolically compromised to 

regions less compromised. The concept of the ischaemic penumbra therefore offers a 

window for therapeutic intervention.

1.5.1 Strategies for improving perfusion

The target of therapeutic strategies in acute CNS damage is to prevent irreversible 

damage or at least to limit its extent by therapeutic intervention. Stroke therapy can be 

directed at a wide range of pathophysiological mechanisms and there has been a great 

deal of interest in strategies improving blood flow to the ischaemic tissue. Drugs which 

improve blood flow e.g. nimodipine, are of benefit to subarachnoid haemorrhage patients 

at risk of delayed ischaemia due to vasospasm. The Intravenous Nimodipine West 

European Stroke Trial (INWEST) was abandoned due to hypotension associated 

worsening of the outcome in the nimodipine treated group (Muir and Lees, 1995). A 

second general approach applies to a subset of stroke patients.Where cerebral blood 

vessels are blocked by blood clots, it is possible to restore blood supply to ischaemic 

tissue using thrombolytic enzymes. Success has been reported following treatment with 

recombinant human tissue plasminogen activator (rt-PA). Restricting patients to those 

which could be treated within three hours from the onset of the stroke was probably an 

important determinant in the positive outcome of this trial. Other trials administering 

thrombolytic agents later than three hours (urokinase, streptokinase, rt-PA) failed to 

show any beneficial effect (Muir and Lees, 1995, McBumey, 1997). It has now been 

deemed unethical to withhold this treatment from suitable patients and all other clinical 

trials of neuroprotectivre agents in the United States must be carried out in tandem with 

rt-PA.

Tirilizad mesylate (U74006F), a lipid peroxidation inhibitor has been shown to reduce 

cortical infarct size intransient ischaemia. This effect is related to an improvement in
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regional blood flow. This agent has been suggested as a useful adjunct to thrombolysis 

in the treatment of acute stroke patients (Xue et al, 1992).

1.5.2 NMDA antagonists

A third approach , not dependent on an improvement of blood flow (McCulloch et al, 

1992) is to limit Ca2+ overload by shutting down the main pathways through which it 

enters the cell. The predominant pathway is through NMDA receptors. From the mid to 

late 80's a large number of drug candidates which demonstrated the ability to limit the 

extent of brain damage in animal models of stroke became available. The common 

feature of these agents was blockade of the NMDA receptor (for review see McCulloch, 

1992, 1994a, 1994b). Neuroprotective effects have been demonstrated in all species 

studied (mouse, rat, cat, baboon) and the magnitude of reduction in infarct is similar 

regardless of the site targeted (approximately 50%).

Competitive antagonists

Conceptually, the simplest site to block is the neurotransmitter recognition site. Pre

treatment with competitive antagonists such as DCPP-ene have shown anti-ischaemic 

efficacy in models of intracranial haemorrhage (Chen et al, 1991) and are 

neuroprotective against ischaemic brain damage and swelling following focal ischaemia 

in the rat (Park et al, 1994). NCP 17747 (2R,4R,5S-2-amino-4,5-(l,2-cyclohexyl)-7- 

phosphonoheptanoic acid) also afforded protection when administered before transient 

focal ischaemia and during reperfusion in the cat (Nishikawa et al, 1994).

Non-competitive antagonists

Non-competitive antagonists acting at the NMDA channel have also been widely 

investigated. A number of studies have reported that pre and post treatment with 

MK801 is protective against ischaemic damage in focal ischaemia (Park et al, 1988, 

Gill et al, 1991). Some controversy existed regarding the effects of non-competitive 

antagonists in global ischaemia. MK801 pretreatment prevented hippocampal
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neurodegeneration following unilateral carotid occlusion in the hands of Gill et al, 

(1987), but no protection was observed by Buchan and colleagues against CA1 damage 

following transient forebrain ischaemia (1991). More recently Yao et al (1994) 

demonstrated that the volume of infarction was decreased in MK801 treated groups 

following incomplete but not complete ischaemia. It appears therefore that the efficacy of 

these agents is not due to the focality, but the severity of the insult. This suggests a 

minimum level of blood flow is required for anti-ischaemic efficacy and supports the 

ability to salvage tissue in regions of moderately severe ischaemia (penumbra) and, the 

lack of efficacy in densely ischaemic core regions (McCulloch et al, 1994).
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1 . 6 NMDA antagonists as clinically useful drugs

1.6.1 Safety and tolerability

Anti-ischaemic efficacy is only one element in the selection of drugs for clinical 

evaluation. Safety and adverse effects are also of paramount importance. While NMDA 

antagonists are the furthest advanced agents in clinical development for stroke treatment, 

the number of compounds advancing towards definitive proof of efficacy in the clinic has 

decreased. Clinical development of MK801, the agent with highest affinity for NMDA 

ion channels and the first consistently shown to be neuroprotective in vivo, was 

abandoned after safety concerns over changes in brain histology in the rat (Muir and 

Lees, 1995, see below).

1.6.2 Animal studies

Administration of NMDA antagonists produces a number of effects on physiological 

parameters (for review see McCulloch et al, 1992). Competitive and non-competitive 

NMDA antagonists decrease respiration and induce hypercapnia (Kurumaji et al, 1989). 

Non-competitive antagonists produce disparate effects on blood pressure, MK801 

administration increases blood pressure in conscious animals and decreases blood 

pressure in halothane anaesthetised animals. At high doses, competitive antagonists 

induce hypotension. Administration of NMDA antagonists also produces profound 

behavioural effects. Non-competitive antagonists produce disruption of learning and 

memory, ataxia, sedation and ultimately anaesthesia (Kurumaji et al, 1991). These 

effects are apparent at concentrations required for anti-ischaemic effects. Competitive 

antagonists produce similar behavioural effects but at concentrations 3-10 times greater 

than neuroprotective doses (Kurumaji et al, 1989).

Autoradiographic studies mapping changes in local cerebral glucose utilisation following 

administration of NMDA antagonists describe markedly dissimilar alterations in function- 

related glucose use for non-competitive and competitive agents (Kurumaji et al, 1989, 

1991). Non-competitive agents like MK801 produce dose-related increases in glucose
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utilisation throughout the limbic system and widespread decreases in the neocortex. 

Competitive antagonists (like DCPPene) induce small and anatomically circumscribed 

alterations in glucose utilisation in areas such as the hippocampus, olfactory areas, 

cerebellar nucleus and superior olives. These functional changes are thought to be 

predictive of morphological alterations, since the occurrence of transient neuronal 

vacuolation coincides with areas showing hypermetabolism. This dose-dependent, 

reversible swelling and vacuolisation in medium and large sized neurones within the 

cingulate and retrosplenial cortex following administration of non-competitive NMDA 

antagonists was first described by Olney and colleagues (1989). Similar effects were 

observed with competitive antagonists (CGS 19755) but at a much higher dose relative to 

the neuroprotective dose, compared to MK801 (Hargreaves et al, 1994).

1.6.3 Human studies

All competitive and non-competitive agents cause similar symptoms and signs in humans 

regardless of the pharmacology of action, if used in large enough doses. Selfotel (CGS 

19755) has been extensively investigated in normal subjects and patients with stroke 

(Grotta et al, 1995). While a single intravenous dose was well tolerated, higher doses 

produced agitation, hallucinations, confusion and paranoia. Low doses of non

competitive antagonist cause altered sensory perception, dysphoria, hypertension, 

nystagmus and disorientation leading to agitation, paranoia, hallucinations, severe motor 

retardation and catatonia at higher doses (Muir and Lees, 1995).
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1.7 Development of a novel NMDA antagonist

1.7.1 Basic concepts

Molecules which are cation channel blockers generally possess 2 chemical characteristics, 

a cationic region, centered on a protonatable nitrogen and a hydrophobic region. Such 

agents need to possess a high enough affinity to be selective for the ion channel, but not 

so high that its effects cannot be reversed. A relatively short half life combined with good 

blood brain barrier permeability are also desirable (McBumey, 1997).

An extensive cross-reactivity exists between a  receptor ligands and ligands acting at the 

NMDA receptor ion channel and vice-versa. It was reasoned that chemical alterations to 

the chemical structure of N,N'-di-otolylguanidine (DTG), a potent a  site ligand, might 

generate compounds that were selective for the NMDA receptor ion channel over the a  

site (Reddy et al, 1994). More than 50 diarylguanidines were synthesised in an effort to 

find high affinity ligands for the NMDA ion channel. It was found that tri-and 

tetrasubstituted versions of N,N-dinaphthyl- and N-naphthyl-N'-(3-substitutedphenyl)- 

guanidines exhibited remarkably high affinity and selectivity for the NMDA receptor ion 

channel site. One of these compounds N-l-naphthyl-N'(3-ethylphenyl)-N’N- 

methylguanidine (aptiganel hydro-chloride, CNS 1102, Ceres tat®) was selected as a 

candidate for development as a treatment to limit ischaemic brain damage (Figure 6).

1.7.2 Preclinical studies

The efficacy of aptiganel has been demonstrated in vitro and in vivo. Aptiganel protects 

cultured neurons against exposure to glutamate (ED50 = 0.38|iM) at a concentration 

consistent with its affinity (Kj = 28nm) for the NMDA receptor. Aptiganel is also 

effective in reducing the volume of ischaemic damage (by 40-70%) produced by 

permanent MCA occlusion (Minematsu et al, 1993a, Cohen et al, 1994)) and reduces 

early postischaemic injury and improves perfusion in reversible ischaemia (Minematsu et 

al, 1993b).
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(a) cHo
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(b)

CH3 c h 3

(c)

CQ„
m t x r

FIGURE 6  : Chemical structures of NMDA and a  site ligands

(a) MK801 (dizocilpine) : (+)-5-methyl-10,ll-dihydro-5i/-dibenzo[a,<f|cyclohepten 
5,10-imine and (c) CNS 1102 (Aptiganel, CERESTAT®): N-(l-naphthyl)-N’-(3 
ethylphenyl)methyl guanidine are ligands at the NMDA receptor ion channel.
(b) DTG : N,N'-di-cKolylguanidine is a a  site ligand



The pharmacokinetics of Aptiganel have been examined in a number of species 

(McBumey, 1997). Aptiganel distributes rapidly into a large volume of distribution. The 

plasma has life of aptiganel is approximately 60 minutes in rat and 90 minutes in non

human primates. Six minutes after administration of [14C] Aptiganel hydrochloride, the 

level of radioactivity within the brain was approximately 12-fold higher than in plasma. 

All the radioactivity within the brain could be attributed to the parent compound.

1.7.3 Clinical studies

The safety and tolerability of Aptiganel in normal volunteers has been examined 

clinically. The most common side effects reported were dizziness, numbness and 

increased heart rate and blood pressure at higher doses. All effects subsided without 

medical intervention (Muir et al> 1994).

It appeared from these results that Aptiganel was well positioned to advance to a 

definitive test of the hypothesis that NMDA antagonists can limit the extent of brain 

damage. A statistically significant beneficial effect on the outcome of drug-treated 

patients would provide support for the concept of neuroprotection.

The international stroke trial was initiated in July 1996 and was designed to examine 

efficacy. However, the acquisition of new patients into this Phase HI trial was stopped in 

June 1997, when concerns were raised during an interim analysis of data over the benefit 

to risk ratio of the drug treatment (Reuters, June 1997). In September, 1997, Cambridge 

Neuroscience Inc. announced the discontinuation of their 500 patient Phase m  traumatic 

brain injury clinical trial. While interim analysis of the data showed the drug was safe 

and well tolerated on a number of safety parameters, there was insufficient evidence if its 

clinical efficacy. Despite the forward looking statements included in the press release 

such as the continuation of data analysis for possible future clinical development and to 

"explore the viability of other clinical applications" the effect of these announcements on 

the value of the company stock was undeniable (Reuters, PR Newswire, September 

1997).
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The NASDAQ forecast from recent months (Figure 7) shows a marked drop in share 

prices and a consequent increase in the volume of shares available on the market 

corresponding to the stroke trial press release at the end of June and the discontinuation 

of the TBI trial in Sepember, culminating in an overall 6 -fold decrease in share prices. 

The impact of the failure of Aptiganel highlights both the profound financial interest in 

the development of an effective neuroprotective therapy and, the clinical requirement for 

such an agent.
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Share Price ($ )

- 1 5 . 0 0

- 1 4 . 0 0

- 1 3 . 0 0

- 1 2 . 0 0

- 1  1 . 0 0

- 1 0 . 0 0

- 8 . 0 0 0

- 7 . 0 0 0

- 6 . 0 0 0

4 . 0 0 0

— 3 . 0 0 0

FIGURE 7 : Cambridge NeuroScience Inc share prices from Oct ‘96 to Sept ‘97

The solid line shows the change in Cambridge NeuroScience Inc. share prices ($) in 

relation to the average stock price on the NASDAQ market index (broken line). Marked 

decreases in value were observed in July 1997 and in September 1997, which 

correspond to announcements of the termination of the traumatic brain injury and stroke 

clinical trials of Cerestat (CNS 1102)



1.8 Receptor imaging in the central nervous system

No other factor has influenced the study of receptors more than the development of 

tritiated and radioiodinated ligands with high affinity and specific activity for target sites. 

This ability to localise radioactivity labelled compounds in thin sections of tissue by 

autoradiography offers the opportunity to study drug receptors with good spatial 

resolution. Localising neurotransmitter receptors by autoradiograpic techniques has 

several important applications. It allows a unique view of the biochemical organisation of 

the brain and it provides an adjunct to histochemical methods for the study of 

neurotransmitters per se. Autoradiography can also be used as a neuropathological tool, 

since receptors are primarily localised to neurons and receptor changes may reflect 

underlying pathological processes (Kuhar, 1986).

1.8.1 Autoradiography

The NMDA receptor subtype of glutamate receptors has been subject to intense 

investigation due to its key role in a variety of physiological and pathophysiological 

processes. Radioligand binding studies have contributed to the understanding of ligand 

interactions at a number of ligand binding sites on the NMDA receptor complex. The 

most potent and selective ligands for NMDA receptors are those which bind non- 

competitively to a site within the associated ion channel e.g. [3H ] l - [ l- (2 -  

thienyl)cyclohexyl]piperidine (pH]TCP) and [3H]MK801. The utility of these ligands is 

partly dependent on their use-dependency and sensitivity to the state of activation of the 

receptor (Hosford et al, 1990* MacDonald and Nowak, 1990).

Quantitative localisation of [3H]TCP binding to rat brain sections (Sircar and Zukin,

1985) showed a distribution pattern of binding sites that was similar to that observed with 

[3H]phencyclidine (PCP), but more sharply defined. Highest levels were observed 

within the hipocampus and intermediate levels in the frontal cortex, striatum, amygdala 

and cerebellum. No specific binding was observed within the corpus callosum.
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The application of autoradiography to map the distribution of drug receptors in target 

tissues depends on the ability to demonstrate specific receptor binding. Further studies 

confirmed a striking similarity between the relative density of [3H]TCP and NMDA 

receptor binding sites labelled with L-[3H] glutamate (r = 0.95, p < 0.001, Maragos et al,

1986), while Jarvis and colleagues (1987) showed a significant relationship existed 

between binding sites labelled by the competitive NMDA antagonist [3H]CPP and 

[3H]TCP (r = 0.88, p < 0.01).

The underlying aim of these studies was to develop a radioligand which could ultimately 

be used to investigate the role of NMDA receptors in a number of neurological diseases in 

man and, the majority of attention focused on MK801, the most potent compound at the 

channel binding site. Early studies with [3H]MK801 in rat brain sections confirmed that 

this ligand produced a map of binding sites which corresponded to the map of NMDA- 

type glutamate receptors obtained with L-[3H]glutamate (Bowery et al, 1988). Specific 

[3H]MK801 binding was prevented by PCP and ketamine. The distribution of 

[3H]MK801 binding sites was similar to that previously described for [3H]TCP, with 

highest levels in the hippocampal formation, cerebral cortex, olfactory bulb and thalamus 

and low levels in the cerebellum and hypothalamus. This data was supported by the 

uneven distribution of [3H]MK801 binding sites observed in rat brain membranes (Wong 

et al, 1988). A decrease in the density of [3H]MK801 binding sites within CA1 region of 

the hippocampus after unilateral carotid artery occlusion indicated that their presence was 

vulnerable to ischaemia (Bowery et al, 1988). More recently, [3H]dextrorphan 

recognition sites have been characterised in rat brain. [3H]dextrorphan binding is 

localised to the same site as MK801 and TCP and is both glutamate and glycine 

dependent (Franklin and Murray, 1992). The distribution of [3H]dextrorphan binding 

sites is similar to that reported for [3H]MK801, with the greatest levels of binding within 

the hippocampus and intermediate levels within the cortex, thalamus and striatum (Roth 

etal, 1996).

The criteria for receptor binding in in vivo imaging studies is similar to those for in vitro 

homogenate binding studies. The receptor site should be saturable by the radioligand of
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interest and, increasing doses of unlabelled ligand should reduce the binding of the 

radiolabelled ligand in a dose-dependent fashion. Appropriate competition by various 

receptor ligands known to bind to the receptor of interest should be demonstrated. The 

regional distribution of the radioligand should be consistent with the known pattern of 

receptors.

Wallace et al (1992) used quantitative autoradiography to assess the in vivo uptake of 

pH]MK801 and to compare it with in vitro pH]MK801 binding after focal ischaemia. 

These investigations showed that in vitro binding does not determine the in vivo uptake 

of [3H]MK801. Fifteen minutes post-ischaemia, in vivo uptake of [3H]MK801 was 

similar to cerebral blood flow autoradiograms obtained with [14C]iodoantipyrene, with 

uptake in regions of middle cerebral artery territory approximately 75% lower than 

contralateral regions. At 60 minutes, [3H]MK801 uptake was 60% greater in middle 

cerebral artery territory than in contralateral region. The increased levels of [3H]MK801 

in ischaemic areas is consistent with the effect of glutamate on [3H]MK801 binding to the 

NMDA receptor complex in synaptosomes (Foster and Wong, 1987). Uptake was 

therefore determined by both the regional density of receptors (little uptake was observed 

within white matter) and, local extracellular glutamate concentrations. pH]MK801 

uptake in areas outwith the middle cerebral artery territory was different from in vitro 

autoradiograms, no laminar heterogeneity in pH]MK801 uptake was observed within 

the contralateral cortex.

In vitro, the concentrations of glutamate and glycine are relatively constant, therefore 

autoradiograms reflect the regional heterogeneity of NMDA receptors. These 

observations suggest that in vivo, at constant glutamate levels, factors other than the 

number of.receptors (lipophilicity) influence local radioisotope levels and uptake reflects 

receptor activation. An increase in extracellular pH has been shown to increase the rate of 

association and dissociation of pH]MK801. This supports the hypothesis that the rates 

of pH]MK801 binding are controlled by the level of activation of the NMDA receptor 

(Rajdev and Reynolds, 1993)
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A number of problems have been described using tritiated ligands in autoradiography. 

Significant tissue quenching or absorbtion occurs due to the low energy of the (3 

emissions produced by tritium. The amount of energy reaching the film emulsion is 

dependent on the density of material from which the (3 particle is emitted. White matter 

has a higher density than grey and therefore produces more quenching (Kuhar and 

Unnerstall, 1985). A long exposure time (4-8 weeks) is also required due to the low 

energy (3 emissions. In addition to these problems, [3H]MK801 binding has been 

reported to be differentially modulated by the presence of divalent cations, implying this 

ligand is unsuitable for the study of NMDA receptors in intact cellular systems (Enomoto 

et aly 1992). Iodinated analogues of MK801 have preferential properties over 

[3H]MK801. The higher energy of some emissions from 125I overcome the problems of 

quenching and, the extremely high specific activity of iodinated ligand allows 

visualisation of autoradiograms with high anatomical resolution following 24-48 hours of 

exposure (Jacobson and Cottrell, 1993). Iodo-MK801 is also relatively insensitive to the 

inhibitory actions of divalent cations (Rajdev and Reynolds, 1992).

The use of (+)-3-[125I]iodo-MK801 ([125I]MK801) to study in vivo labelling of the 

NMDA receptor complex in the normal rat brain was described by Gibson et al (1992). 

At 15 minutes, the pattern of [125I]MK801 uptake was essentially the same as that 

obtained using a blood flow tracer. Blockade of [125I]MK801 uptake by unlableeled 

MK801 was demonstrable, when examined 4 hours post-injection. No blockade was 

observed at times before 4 hours. While in vitro autoradiography was consistent with 

previous reports on NMDA receptor distribution this study provided no systematic 

validation of the [125I]MK801 binding site as a true receptor. Jacobson and Cottrell 

(1993) showed that [125I]MK801 binding to thin sections could be displaced by 

(+)MK801 but not by (-)MK801. Binding was also displaced by PCP but not by 

naloxone, GABA or kainic acid. [125I]MK801 binding was completely eliminated by 

heat treatment, providing further evidence of binding to a traditional receptor.
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The utility of [125I]MK801 in pathological situations was examined by McCulloch et al 

(1992). In the presence of increased glutamate concentrations [125I]MK801 binding to 

normal and ischaemic tissue is increased. Following MCA occlusion, the initial uptake of 

[125I]MK801 reflects cerebral blood flow. At later time points the retention of the tracer 

is increased within the MCA territory, reflecting the elevated concentrations of glutamate 

in ischaemia and the glutamate dependence of MK801 binding (McCulloch et al, 1992). 

Coadministration of MK801 significantly reduced [125I]MK801 in ischaemic areas and 

only slightly in non-ischaemic areas. It was concluded from these results that highly 

lipophilic agents such as MK801 are not suitable in vivo ligands in the normal brain, due 

to high non-specific binding and a failure to reliably demonstrate displacement. The 

enhanced uptake in ischaemic areas appears to map the extent of NMDA receptor 

activation (increased uptake in areas of increased extracellular glutamate) implying 

[125i]MK801 autoradiography can be used to map dynamic processes, providing a 

strategy for defining the localisation of areas of NMDA receptor activation.

1.8.2 SPECT and PET

Postmortem autoradiographic studies of human brain receptors are flawed by 

methodological limitations such as small population samples, conditions of death, 

premortem effects of drugs, and postmorten or age-related non-specific receptor changes. 

In vivo characterisation of receptor density and functional state would preclude most of 

these limitations.

Two main categories of functional imaging exist PET (Positron Emission Tomography) 

and SPECT (Single Photon Emission Computed Tomography), based on the properties of 

the radionuclides used. Positron emitting radionuclides decay releasing a positively 

charged particle (P+). This positron interacts rapidly with a neighbouring electron and 

emits two 51 IKeV photons 180_ apart. A single photon is a y radiation usually emitted 

in random directions. The imaging devices, positron scanners and single photon cameras, 

measure the location and density of different y rays emitted by PET and SPECT ligands 

respectively. While PET imaging has higher sensitivity and a better quantification

45



capacity, SPECT imaging is more readily available and does not require a local cyclotron 

to manufacture radioligands.

The majority of routine imaging procedures are performed using single photon 

radionuclides in conjunction with gamma cameras or single photon emission computed 

tomography (SPECT). Technetium (99mTc) is the most widely used, in over 85% of 

imaging procedures (for review see Kung, 1993, Masdeu et al, 1994), however Iodine-123 

with a half life of 13 hours and 159KeV y rays is also well suited for SPECT imaging. 

The most widely used radiopharmaceuticals targeted to the brain generally measure 

perfusion and are detailed below (Gibson et al, 1993). A less common application of 

[123I]iodoamphetamine has been to image patients with systemic lupus erythematosus. 

Scans from patients with psychiatric manifestations of the disease showed areas of 

hypoperfusion (Kodama et al, 1995)

Target Radiopharmaceutical Parameter measured
Brain [99mTc]HMPAO relative cerebral blood flow

[ " mTc]ECD relative cerebral blood flow
[123I]iodoamphetamine relative cerebral blood flow

["mXcjDTPA lesions (stroke, tumours)

In addition to their use in determining perfusion, the non-invasive imaging techniques of 

nuclear medicine provide a powerful tool to map biochemical interactions in man with 

high sensitivity and can be used in the discovery and development of new drugs. An 

important application of these imaging techniques is to monitor the occupancy of 

receptors by therapeutic drugs and to relate the findings to clinical status, providing a 

better adjustment of drug dosage and an indication of therapeutic efficacy. So far the 

measurement of receptor occupancy has been most extensively applied to the study of 

anti-psychotic drug binding (Farde, 1996).

Baron et al (1985) were among the first to demonstrate the feasibility of studying specific 

receptors in the human brain with PET, using [* iCJpimozide to label dopamine receptors. 

More recently, clinical studies have been carried out using iodinated benzamide
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derivatives to image D2 dopamine receptors, especially [123I]iodobenzamide (IBZM,

Kung et al, 1990). [123I]IBZM SPECT images have been useful in relating antipsychotic 

drug D2 receptor occupancy with the administered dose in schizophrenic patients,

showing qualitatively diminished activity in the basal ganglia following haloperidol 

treatment (Vallabhajosula et al, 1997).

The number of radioligands for imaging neuroreceptors systems is increasing and it is 

now possible to image GABAa receptors using [123I]Iomazenil (Busatto et al, 1994) and

muscarinic cholinergic receptors, among others. [123I]quinuclidinylbenzilate (QNB) has 

been employed to image muscarinic receptors. Kinetic modelling indicated that this 

ligand take a long time (approximately 18 hours) to reach optimal specific to non-specific 

binding ratios. Clinical studies in Alzheimer patients have shown that deficit regions 

could be visualised by RS-QNB. Much effort has been applied to the development of 

other stereoisomers of QNB with lower affinity for the receptor which may produce 

imaging agents which are more readily displaced by endogenous transmitter. More 

recently [123I]Iododexetamine has been reported as a potential SPECT ligand to image 

muscarinic receptors (Boundy et al, 1995)

Much interest has been devoted to the development of radiotracers with the ability to trace 

NMDA receptor activation and ongoing neurodegenerative processes. The whole 

understanding of excitotoxicity in man is largely based on extrapolation from rodent data, 

so clarification of the mechanisms involved in man would help assess neuroprotective 

agents in clinical trials.

The first PET studies, TCP and a number of analogues were fluorinated to provide 

potential in vivo radioligands for the NMDA receptor. l-(l-[5-(2'-[18F]fluoroethyl)-2- 

thienyl]-cyclohexyl)piperidine ([18F]FE-TCP) showed heterogeneous distribution in the 

brain following intravenous administration in the rat which was similar to the know 

distribution of PCP-labelled sites (Blin et al, 1989). Brain regions were normalised to the 

cerebellum and ratios for CA1, striatum and cortex were 2.08, 1.7 and 1.5 respectively 15 

minutes after administration. This localised regional cerebral distribution was blocked by 

coinjection of unlabelled FE-TCP with largest reductions observed within the 

hippocampus followed by the striatum and cortex. It was suggested that the



low affinity for the NMDA receptor and the high non-specific binding (due to 

lipophilicity) may make this an unsuitable radioigand for PET investigations of the 

NMDA receptor complex. Fluorinated analogues of TCP such as l-[l-2-thienyl)-4- 

([l8F]fluoro)-cyclohexyl]-l, 2, 5, 6 , tetrahydropyridine showed good uptake into rat brain 

following intravenous injection (Ouyang et al, 1996). However specific uptake improved 

only marginally with time compared to the cerebellum. Preliminary PET studies in the 

Rhesus monkey showed good uptake but little retention in receptor rich areas. (1S*,2R*)-

2-(hydroxymethyl)- and (IS*,2R*)-2-(methoxymethoxymethy 1)-1 -(N-piperidy 1) -l-[2-(2'- 

[18F]fluoroethyl)thiophenyl]cyclohexane also showed no selective accumulation of 

radioactivity (Shibayama et al, 1996).

Other studies investigated analogues of MK801 to image the NMDA receptor complex, 

Orita etal (1993) used 5b-fluoroethyl-MK801 ([18F]FE-MK801), labelled with 18F. The 

in vitro affinity of this ligand was similar to that of MK801, IC50 for displacing [3H]TCP

binding to homogenates was 20nM. Fifteen minutes after intravenous injection uptake 

ratios (relative to the cerebellum) for cortex and striatum were 1.1 and 1 .6  respectively. 

The uptake of [18F]FE-MK801 was also examined in non-basal conditions. Pretreatment 

with PCP did not measurably decrease specific binding. Transient arterial hypoxia was 

used to induce acute glutamate release in an attemp to increase specific binding to open 

receptors, however no clear cut increase in specific binding was observed.

The synthesis of (+)-3-[123I]MK801 with high purity and good yield provided the potential 

to imaging of NMDA receptor activation in man by SPECT (Owens et al, 1997). Clinical 

assessment of [123I]MK801 was carried out in 5 patients, 4 with subarachnoid 

haemorrhage and 1 with intracranial haemorrhage. All patients had clinical indications of 

ischaemia and images were taken at post-ictus times between 1 and 5 days. Initial uptake 

of [123I]MK801 into the ipsilateral hemisphere was decreased which was consistent with 

reduced blood flow. In 2 patients increased retention of [123I]MK801 was observed at 

later time points in cortical areas adjacent to the site of the haematoma, consistent with 

receptor activation. The remaining three patients displayed no evidence of increased
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retention. These results propose that it may be possible to image excessive NMDA 

receptor activation following an ischaemic episode. The utility of this tracer is limited by 

the high lipophilicity and reported non-specific accumulation in white matter areas. 

[123i]MK801 is therefore not a suitable agent for imaging in the normal brain, or to 

image moderate alterations in NMDA receptor activation. An agent with lower 

lipophilicity is therefore necessary to pursue further investigation of glutamate NMDA 

receptor mediated processes in the human brain
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1.9  Synthesis of A -(l-N ap thyI)-A '-(3 -[125I]iodophenyl)-/V , - 

methylguanidine ([125I]CNS 1261)

Development of a suitable radioiodinated agents for use as NMDA radiotracers in SPECT 

would provide a valuable tool to investigate mechanisms of excitotoxicity in man and to 

evaluate neuroprotective therapies. To this end, an analogue of N-(l-napthyl)-N'-(3- 

ethylphenyl)-A'-methylguanidine (Cerestat, CNS 1102), N-(l-napthyl)-Af'-(3- 

[125I]iodophenyl)-N'-methylguanidine ([125I]CNS 1261), was synthesised by J. Owens 

and A.Tebbutt at the West of Scotland Radioisotope Dispensary, Glasgow, Scotland, as 

a potential radioligand to image NMDA receptor activation in vivo. Radioiodination of 

the iodine moiety on the phenyl ring of CNS 1261 produced a radioligand with high 

specific activity which is suitable for in vivo autoradiography.

Precursor synthesis

The synthetic route to //-(l-naphthyl)-//’-(3-tributylstannylphenyl)-N’-methyl- 

guanidine (3) is summarised in Figure 8, scheme 1.

3-Iodo-N-methylaniline (1) was prepared in a 79% overall yield by protection with 

formic acid followed by a borane reduction. N  -methyl-3-tributylstannylaniline (2) 

was synthesised in 71% yield using a palladium catalysed substitution with 

hexabutylditin. It was found necessary to use the free base of N-methyl-3-Iodo-aniline 

(1) to ensure reasonable yields (> 70 %), if the hydrochoride salt was used the product 

yield decreased substantially. Synthesis of N - ( l - n a p h t h y l ) - N ’- (3 -  

tributylstannylphenyl)-//'-methyl guanidine (3) was achieved by the acid catalysed 

addition of N-methyl-3-tributylstannylaniline (2) to 1-naphthylcyanamide (5). A low 

yield (20 %) was recorded due to competing protodestannylation.
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Chemistry

Scheme 1

NH2

(X

(a) i. formic acid, toluenne ii. BH3.THF

(b) Pd(PPh3)4, (SnBu3)2

(c) H+, 1-naphthylcyanimide

Radiochem istry

Scheme 2

NHChL NHCH,

A" „ A . 'SV?-.IX ~iX    hnt nw
SnBu3 NH

(1) (2) (3)

FIGURE 8 : Synthesis of [l25l]CNS 1261



Radiochemistry

Electrophilic iododestannylation and iododesilylation provide an effective method for the 

introduction of iodine into complex organic molecules with high specific activities. 

Various oxidants have been used including Chloramine-T, N-chlorosuccinimide, 

iodogen, and peracetic acid.

Radioiodinated [125I]CNS 1261 (4) was prepared by iododestannylation of N-(l- 

naphthyl)-N’-(3-tributylstannylphenyl)-N’-methylguanidine (3). Peracetic acid as the 

oxidant consistently gave the best results, with a 59 % isolated radiochemical yield and > 

99 % radiochemical purity after semi-preparative HPLC purification, with a synthesis 

time of 1 h (Figure 8, scheme 2). Aliquots of the [125I]CNS 1261 were dried under a 

stream of nitrogen and reconstituted in physiological buffer as required.



CHAPTER n  

METHODS



2.1 Affinity and selectivity of CNS 1261

2.1.1 Whole crude synaptosomal membrane (WCSM) preparation

Frozen whole rat brains were thawed on ice, cerebella and brain stems were removed and 

the forebrains placed in ice cold 0.32M sucrose and weighed. 2-3 forebrains were 

transferred to 40ml fresh 0.32M sucrose then homogenised with a teflon-glass 

homogeniser (Thomas C) for 8 strokes on setting 3.

The homogenate was centrifuged in a J6-B Beckmann centrifuge at 1,000 x g for 10 

minutes at 4°C. The supernatant was decanted and centrifuged in the J2-21M Beckmann 

centrifuge at 20,000 x g for 20 minutes at 4°C.

The pellet was pooled and resuspended in 40ml ice-cold Milli-Q purified H20 and 

homogenised (Brinkmanm polytron) for 30s. The homogenate was then centrifuged at

8.000 x g for 20 minutes at 4°C. The upper third layer of supernatant and the upper 

buffy coat (upper tannish layer of pellet) were pooled and homogenised for 30s, then 

decanted into 40ml tubes for centrifugation at 48,000 x g for 10 minutes at 4°C.

The pellet was resuspended in 20ml of ice-cold 50mm Tris acetate, pH 7.4 and 

homogenised for 10s. Another 20ml of Tris acetate was added to the homogente, mixed, 

then centrifuged at 48,000 x g for 10 minutes at 4°C. The pellet was resuspended in 

20ml 50mm Tris acetate, homogenised for 10s and diluted 1:10 with artificial 

cerebrospinal fluid (ACSF) assay buffer (final composition: 147mm NaCl, 2.5mm KC1, 

2.5mM CaC12, 1.3mm MgC12, and 10mm HEPES, brought to pH, 6.4, 7.4 or 8.4 at 

room temperature with NaOH). 1% Triton X-100 was added to a final concentration of 

0.01% and the tubes were vortexed then incubated at 37°C for 15 minutes.

An additional 20ml of ACSF assay buffer was added and the homogentate allowed to 

cool on ice for 10-15 minutes before it was centrifuged at 48,000 x g for 10 minutes at 

4°C. The resulting pellet was resuspended in 20ml ACSF assay buffer, homogenised for 

5s, then a further 20ml ACSF assay buffer added. The homogenate was centrifuged at

48.000 x g for 10 minutes at 4°C. The protein content of the pellet was determined after 

a further two further cycles of washing.
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2.1.2 Assay procedure

The binding assay was performed in triplicate in a total volume of 500pl Glutamate and 

glycine were added at a concentration of l|im each in 5mM Tris acetate and at IOjiM 

each in ACSF assay buffer to maximally stimulate [3H]MK801 binding. [3H]MK801 

was added at a final concentration InM in Tris acetate buffer and at 12nM in ACSF buffer 

in the presence or absence of various concentrations of CNS 1261. The binding reaction 

was initiated by adding lOOjig of WCSM preparation to each tube, vortexing the tubes 

and incubating for 4 hours at room temperature.

The incubation was terminated by rapid filtration under vacuum through glass fibre filters 

(presoaked in 0.05% PEI for 45 minutes), followed by three 4ml washes, using a 

Brandel 48-well cell harvester. Filters were transferred to vials and 5ml of Cytoscint ES 

scintillation cocktail added. Vials were shaken for 15 minutes prior to counting. 

Non-specific binding was defined as binding measured in the presence of glutamate, 

glycine and IOjiM PCP. This value was subtracted from all other conditions to yield 

specific binding.

IC50 values and Hill coefficients were calculated in RS-1 (BBN Software products) by 

fitting displacement curves using non-linear least squares regression analysis. The 

association affinity constant (KO was calculated using the Cheng-Prusoff equation:

Ki = IC50 / 1 + ([[3H]MK801] / Kd)

where the [3H]MK801 concentration = InM in Tris acetate, 12nm in ACSF assay buffer.

2 .1 .3  Commercial screening of CNS 1261

The effect of CNS 1261 on the binding of ligands to the NMDA receptor, and to other 

neurotransmitter receptors was further investigated by submitting the compound for 

commercial screening (NovaScreen, Maryland, USA). The effect of two doses of CNS 

1261 (lOnM and ljiM) were examined in a total of 42 radioligand binding assays.
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The individual protocols for each of the 42 binding assay are not detailed here, however a 

brief outline of the basic assay procedure is detailed below.

Binding assays were performed in duplicate under conditions known to maximally 

stimulate binding of the radioligand of interest. Radioligands were added in a final 

concentration of 0.5-20nM in the appropriate buffer in the presence or absence of various 

concentrations of CNS 1261. In the absence of CNS 1261 all radioligands displayed 

between 60 and 90% specific binding. The binding reaction was initiated by adding an 

aliquot of receptor preparation (generally rat forebrain membranes) to the assay mix. 

Reactions were terminated by rapid filtration onto glass fibre filters. Radioactivity 

trapped onto the filters was determined and compared to control values in order to 

assertain any interactions of CNS 1261 with the binding site in question. ‘Activity* was 

defined as > 50% inhibition of radioligand binding. Assays in which activity was 

detected were repeated twice to confirm findings.

2 .2  Effect of CNS 1261 on local cerebral glucose utilisation

2 .2 .1  Surgical preparation of animals

Rats were initially anaesthetised with 5% halothane in a nitrous oxide and oxygen gas 

mixture (70%:30%). Anaesthesia was subsequently maintained by administration of 0.5- 

1% halothane via a face mask. The femoral vessels were exposed bilaterally by blunt 

dissection. Polyethylene cannulae (Portex, external diameter 0.96mm, internal 0.58mm, 

15cm long) were inserted approximately 2cm into the femoral arteries and veins and 

secured by silk threads. Incision sites were infiltrated with local anaesthetic gel 

(Xylocaine, 2%), sutured and covered with gauze pads. Animals were covered using a 

surgical stocking and a plaster of Paris bandage (Gypsona, Smith and Nephew Medical 

Ltd.) applied to the pelvis and lower abdomen to immobilise the animal. Care was taken 

to avoid restriction of thoracic movements. The plaster was taped to a lead brick for 

support At this point the halothane was discontinued and the animals allowed to recover 

for at least 2 hours before any further manipulations were performed. A pressure 

transducer was connected to one femoral artery in order to measure arterial blood

54



pressure. Animals were maintained normothermic by means of a rectal thermometer and 

an external heating lamp.

2 .2 .2  The [14C]2-deoxygIucose technique

Local rates of cerebral glucose use were measured in conscious rats using the method 

developed by Sokoloff (1977). The procedure was initiated by an intravenous injection 

of [14C]2-deoxy glucose (specific activity 55mCi/mmol, 50p.Ci in 0.7ml) at a constant 

rate over 30 seconds. Fourteen timed arterial blood samples (100|il) were taken over the 

subsequent 45 minutes and immediately centrifuged. Plasma aliquots were assayed to 

determine 14C and glucose concentrations by means of scintillation analysis and semi

automated glucose oxidase enzyme assay (Beckman, Glucose Analyzer 2) respectively. 

Further arterial blood samples were taken at predetermined intervals before and after 

tracer administration for analysis of pCC>2, pC>2 and pH using a blood gas analyser (Ciba 

Coming, Blood gas system 288). Forty-five minutes post-tracer administration, animals 

were killed by decapitation. Brains were removed, frozen in isopentane at -42°C and 

processed for quantitative autoradiography.

2 .2 .3  Preparation of autoradiograms

At the end of the 45 minute experimental period, rats were decapitated and the brains 

removed. Brains were frozen in isopentane chilled to -42°C for ten minutes. Frozen 

brains were mounted onto microtome chucks using embedding matrix (Gurr) and covered 

in cryoprotectant (Lipshaw). The entire procedure was performed within 5 minutes of 

decapitation. Brains were stored at -20°C (for no longer than 3 days) prior to being cut 

into 20|im coronal cryostat sections. Triplicate sections were collected at 200|im 

intervals throughout the brain. Sections were thaw-mounted onto heated glass cover 

slips and dried rapidly on a hot plate at 60°C. The coverslips were then glued onto card. 

Autoradiograms were generated by exposing the sections together with precalibrated 

epoxy resin 14C standards (11 standards with concentration range 44-1886nCi/g tissue 

equivalents) to Biomax film (Kodak) in light tight cassettes for 7-14 days. At the end of
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the exposure time film were developed manually in LX-24 X-ray developer (Kodak) for 

5 minutes. Development was stopped by a 30 second rinse in Indicator stop-bath (85% 

acetic acid, Kodak). After fixing for 10 minutes (FX-40 fixative, HX-40 hardener, 

Kodak), films were washed for 30 minutes in filtered running water. Films were briefly 

rinsed in Photo-flo glaze (Kodak) and suspended in a drying cabinet.

2.2.4 Quantification of autoradiograms

Autoradiograms were analysed using a computer based image analysis system (M4 

MCID, Imaging Research Inc.). The optical densities of images produced by 

precalibrated epoxy resin 14C standards were measured providing a calibration curve of 

optical density against isotope concentration and allowing subsequent quantification of 

tissue isotope concentration for 36 regions of interest in nCi/g. In general six bilateral 

readings were taken from sections where structures could be identified from the rat 

brain atlas of Paxinos and Watson (1986).

Sokoloff and colleagues (1977) described a theoretical model based on an operational 

equation (Figure 9) where the rate of glucose utilisation can be calculated from (1) the 

levels of glucose and [14C]2-deoxyglucose in the plasma during the experimental period 

and (2) the total concentration of 14C within a given region at the end of the experiment, 

provided the values of predetermined constants are known.

Standard values for the rate constants ki* , k2*, k3* and K are detailed below 

grey matter white matter

ki* 0.189 0.079

k2* 0.245 0.133

k3* 0.052 0.020

Lumped constant (K) 0.483

56



Ci * (T) - ki * e “(k 2* + k 3 * ) T I Cp* e ' ( k 2* + k 3 * )1 dt
J 0

Ri = ----------------------------------------------------------------------------------------

K  [I  T(C p*/C p ) dt - e  - (k 2* +  k 3 * )T  ■ I T (C p * /C p )  e  “(k 2 * +  k 3 * > 1 dt]
J 0 J o

FIGURE 9 : The Operational Equation

The rate of glucose utilisation (Ri) in any region of cerebral tissue is calculated from 
Q * , the total tissue concentration of 14C in that region measured by densitometry at the 
end of the experiment (T).
Cp* and Cp , the concentrations of [14C]2-deoxyglucose and glucose in the plasma at 
given times throughout the experiment (t).
ki*, k2* and k3 *, the rate constants for deoxyglucose transport to and from the plasma 
and tissue precursor pools and for the phosphorylation of deoxyglucose by hexokinase.
K , the lumped constant (Sokoloff et al, 1977)



2 .2 .5  Experimental protocol

Prior to drug administration animals were prepared for [14C]2-deoxyglucose 

autoradiography as described in section 2.2.1. The 2-deoxyglucose procedure was 

performed according to protocol outlined in section 2.2.2 after the injection of the 

following compound. CNS 1261 (1, 3 and lOmg/kg) was administered by intravenous 

injection at a constant rate over 1 minute, 15 minutes prior to the administration of 2- 

deoxyglucose. Control animals received an intravenous injection of saline 15 minutes 

prior to tracer injection.

2 .2 .6  Data analysis
«

LCGU values measured in 36 regions of interest following intravenous injection of CNS 

1261 (1,3 and lOmg/kg) were compared with LCGU values of corresponding regions 

on control animals for multiple comparisons. One-way analysis of variance (ANOVA) 

was used initially to identify the anatomical regions in which significant alterations in 

glucose use occurred, followed by independent Student's t-tests to identify the drug 

groups producing significant changes relative to control values.

A Bonferroni correction factor was applied to probability values from the t-tests, to take 

into consideration the multiple comparisons between treated and control groups.

2 .2 .7  /  ranking

Alterations in glucose utilisation produced by CNS 1261 admimistration were compared 

to those of MK801 (from an experiment performed by Kurumaji et al, 1989) by 

examination o f"/" ranking function values generated in each region independently for 

the effects of CNS 1261 (1,3 and lOmg/kg) or MK801 (0.05.0.5 and 5mg/kg).
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"f" is an arithmetic function which provides an index of the degree of responsiveness of 

each CNS region to each of the 2 drugs, taking into consideration the entire dose- 

response data available following administration of multiple drug doses (Forder al, 1985)

/ =  I  ( xc - xTi )2

Xc is the mean of loge (glucose use) for control group members

xxi is the mean of loge (glucose use) for the ith dose of the treatment group in question

T is either CNS 1261 (1, 3and lOmg/kg) or MK801 (0.1, 1 and lOmg/kg)

2 .3  In vivo [125I]MK801 autoradiography

2 .3 .1  Surgical preparation of animals

Rats were initially anaesthetised in a perspex chamber with 5% halothane in a nitrous 

oxide and oxygen gas mixture (70%:30%). A tracheotomy was performed and animals 

were artificially ventilated. Anaesthesia was subsequently maintained by administration 

of 0.5-1% halothane. The femoral vessels were exposed bilaterally by blunt dissection. 

Polyethylene cannulae (Portex, external diameter 0.96mm, internal 0.58mm, 15cm long) 

were inserted approximately 2cm into the femoral arteries and veins and secured by silk 

threads.

2 .3 .2  The [125l]MK801 technique

The amount of radioactivity in discrete brain regions after intravenous injection of 

[l25i]MK801 was measured in halothane anaesthetised rats by a modification of the 

technique described by McCulloch (1992).

The procedure was initiated by intravenous injection of [125I]MK801, specific activity 

2200Ci/mmol, at a constant rate over 30 seconds (200pCi in 0.8ml). Fourteen timed 

arterial samples (100|il) were taken over the subsequent 120 minutes and immediately 

centrifuged. Plasma aliquots were assayed to determine 1251 and glucose concentrations 

by means of liquid scintillation analysis and semi-automated glucose oxidase enzyme
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assay (Beckman, Glucose Analyzer 2) respectively. Further arterial blood samples were 

taken at predetermined intervals before and after tracer administration for analysis of 

PC 0 2, p0 2 and pH using a blood gas analyser (Ciba Coming, Blood Gas System 288). 

Blood pressure was monitored throughout the experimental period and animals were 

maintained normothermic by means of a rectal thermometer and external heating lamp. 

Animals were killed by decapitation 120 minutes after tracer administration and the brain 

removed and processed for quantitative autoradiography as described below in section 

2.3.3.

2 .3 .3  Preparation of autoradiograms

Brains were removed and frozen in isopentane chilled to -42°C for ten minutes. Frozen 

brains were mounted onto microtome chucks using embedding matrix (Gurr) and covered 

in cryoprotectant (Lipshaw). The entire procedure was performed within 5 minutes of 

decapitation. Brains were stored at -20°C (for no longer than 3 days) prior to being cut 

into 20|im coronal cryostat sections. Triplicate serial sections were taken at 200|im 

intervals throughout the brain. Triplicate sections were thaw-mounted onto heated glass 

coverslips and dried rapidly on a hot plate at 60°C. The coverslips were then glued onto 

card. Autoradiograms were generated by exposing the sections together with 1251 

microscales (10 standards in the concentration range 660-31300nCi/g tissue equivalents) 

to SB-5 or Biomax MR film (Kodak) in light tight cassettes for 7-21 days. At the end of 

the exposure time films were developed manually in LX-24 X-ray developer (Kodak) for 

5 minutes. Development was stopped by a 30 second rinse in Indicator stop-bath (85% 

acetic acid, Kodak). After fixing for 10 minutes (FX-40 fixative, HX-40 hardener, 

Kodak), films were washed for 30 minutes in filtered running water. Films were briefly 

rinsed in Photo-flo glaze (Kodak) and suspended in a drying cabinet

2 . 3 .4  Quantification of autoradiograms

Autoradiograms were analysed using a computer based image analysis system (M4 

MCID, Imaging Research Inc.). The optical density of images produced by precalibrated
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[125I] microscales were measured providing a calibration curve of optical density against 

isotope concentration in nCi/g, allowing subsequent quantification of tissue isotope 

concentration for the regions of interest in nCi/g. Six bilateral readings were taken from 

sections where structures could be identified from the rat brain atlas of Paxinos and 

Watson (1986).

Regional 125I concentrations (nCi/g) were corrected for isotope decay (60 day half-life) 

allowing direct comparison between non-contemporaneous experiments.

2 .4  In vivo [125I]CNS 1261 autoradiography

2 .4 .1  Surgical preparation of animals

Animals were prepared for [125I]CNS 1261 autoradiography according to the method 

described in section 2.3.1.

2 . 4 . 2  The [125I]CNS 1261 technique

The amount of radioactivity in discrete brain regions after intravenous injection of 

[125I]CNS 1261 was measured in halothane anaesthetised rats according to the technique 

described in section 2.3.2. for the [125I]MK801 procedure. However in this case, the 

procedure was initiated by intravenous injection of [125I]CNS 1261 (specific activity > 

2200Ci/mmol, 200|iCi in 0.8ml) over 30s.

2 . 4 . 3  Preparation of autoradiograms

Brains were removed and frozen in isopentane chilled to -42°C for ten minutes. Frozen 

brains were mounted onto microtome chucks using embedding matrix (Gurr) and covered 

in cryoprotectant (Lipshaw). The entire procedure was performed within 5 minutes of 

decapitation. Brains were stored at -20°C (for no longer than 3 days) prior to being cut 

into 20pm coronal cryostat sections. Triplicate sections were collected at 200pm 

intervals throughout the brain. Section were thaw-mounted onto heated glass coverslips 

and dried rapidly on a hot plate at 60°C. The coverslips were then glued onto card.
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Autoradiograms were generated by exposing the sections together with 1251 microscales 

(10 standards, concentration range 660-31300nCi/g tissue equivalents) to Biomax MR 

film (Kodak) in light tight cassettes for 5-9 days. At the end of the exposure, time films 

were developed manually in LX-24 X-ray developer (Kodak) for 5 minutes. 

Development was stopped by a 30 second rinse in Indicator stop-bath (85% acetic acid, 

Kodak). After fixing for 10 minutes (FX-40 fixative, HX-40 hardener, Kodak), films 

were washed for 30 minutes in filtered running water. Films were briefly rinsed in 

Photo-flo glaze (Kodak) and suspended in a drying cabinet.

2 .4 .4  Quantification of autoradiograms

Autoradiograms were analysed using a computer based image analysis system (M4 

MCID, Imaging Research Inc.). The optical density of images produced by precalibrated 

[125I] microscales were measured providing a calibration curve of optical density against 

isotope concentration in nCi/g, allowing subsequent quantification of tissue isotope 

concentration within regions of interest Six bilateral readings were taken from sections 

where structures could be identified from the rat brain atlas of Paxinos and Watson 

(1986). Regional 125I concentraions (nci/g) were corrected for isotope decay (60 day 

half-life) allowing direct comparison between non-contemporaneous experiments.

2 .5  Uptake and retention of [l^IJCNS 1261 and [125l]MK801 in 

normal rat brain

2 .5 .1  Experimental design

Animals were surgically prepared for in vivo autoradiography as described in sections

2.3.1. and 2.4.1. [125I]CNS 1261 or [125l]MK801 (200pCi, 0.8ml) was administered at 

time 0 and autoradiographic techniques were carried out as described in sections 2.3.2. 

and 2.4.2. Animals were killed 5, 30, 60 and 120 minutes after administration of the 

tracers and the brains removed and processed as detailed in section 2.4.3.
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2 .5 .2  Data analysis

[125I]CNS 1261 uptake (strictly the amount of radioactivity following intravenous 

injection of [125I]CNS 1261, in nCi/g) was measured in 37 discrete brain regions for 

each time point and corrected for isotope decay. The correceted values were expressed as 

a ratio of [125I]CNS 1261 uptake in regions of interest relative to [125I]CNS 1261 uptake 

within the cerebellum. Region of interest/cerebellar ratios for [125I]CNS 1261 were 

compared to corresponding ratios from animals receiving [125I]MK801by Student's 

unpaired t-tesL

2 .6  Relative lipophilicity of [125I]CNS 1261 and [125I]MK801

2 .6 .1  Calculation of LogD values for [l25I]CNS 1261 and [125I]M K801

Calculation of LogD values was carried out at Cambridge NeuroScience Inc. Precise 

experimental details were unavailable.

2.6.2. Calculation of brain/aqueous partition ratios

Male Sprague-Dawley rats were killed by an overdose of halothane and the brains 

removed and frozen in isopentane at -42°C for 10 minutes. Brains were stored, mounted 

on swivel-headed chucks at -20°C until required. Serial coronal sections (20jim) were 

cut at the level of the caudate nucleus and thaw mounted onto microscope slides.

Serial sections (20pm) were cut from a block of cortex from a human control brain. 

Sections were thaw-mounted onto microscope slides. White matter was removed from 

the sections by dissecting with a scalpel blade. Both rat and human sections were stored 

at -20°C until required.

Sections from rat and human brain were washed for 1 hour in 50mm Tris HC1 buffer, 

pH7.4 at 4°C. Total binding was assayed by applying 0.5nM [125I]CNS 1261 or 

[125j]MK801 in a volume of 0.2ml to each rat brain section (0.4ml for human sections). 

Non-specific binding was determined in adjacent sections using a solution containing 

0.5nM radiolabelled ligand and 0.5|iM unlabelled MK801. Aliquots of the incubation
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solutions were taken for liquid scintillation analysis. Triplicate sections were incubated 

with their respective solutions for 2, 5, 10, 20, 30 or 60 minutes. Excess solution was 

poured off and the sections dipped in fresh buffer at 4°C. Sections were wiped from the 

slides using glass filter disks. The filters were placed in glass scintillation vials and 

allowed to dry overnight. Scintillation fluid was added to the vials and the amount of 

radioactivity bound assayed by liquid scintillation analysis

2 .6 .3  Data analysis

The amount of non-specifically bound radioactivity on each filter was expressed as nCi/g 

of brain tissue. The average weight of a brain section was obtained from the volume of 

the section (average area of the section, measured by MCID image analysis system, 

multiplied by the thickness of the section) assuming that the specific gravity of brain is 1. 

The brain/aqueous partition ratio (g/ml) at each time point was calculated by dividing the 

radioactivity bound per g of brain tissue by the amount of radioactivity present per ml of 

incubation solution at each time point

2 .7  Metabolism of [125I]CNS 1261 and [125I]MK801 in the rat

2 .7 .1  Determination of metabolites in rat plasma

Male Sprague-Dawley rats were anaesthetised with halothane and the left femoral artery 

and vein cannulated. Blood samples (1ml) were taken 5, 15, 60, 120 minutes after 

administration of 7.4MBq (200pCi) of tracer. The volume of blood removed at each time 

point was replaced by a slow intravenous injection of saline. Samples were immediately 

centrifuged and the plasma removed and stored on ice.

A 20fil aliquot of plasma was removed from each sample for gamma counting. 300pl of 

acetonitrile was added to 300|il of plasma from each time point Acetonitrile removes 

tracer which is weakly bound to protein (’bioavailable tracer'). The mixture was 

vortexed then centrifuged at 2000 x g for lOmin and the supernatant removed. 300fil of 

the supernatant was injected on to a 250 X 4.6mm Genesis C18 column (Jones
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Chromatography). The column was eluted with the following solvent system : 0.1% 

Trifluoroacetic acid in water; 0.1% trifluoroacetic acid in acetonitrile (50 / 50); flow rate 

lml / min., UV detection at 230nm, radionuclide detection set for 125I.

2 .7 .2  Determination of metabolites in rat brain

Animals were decapitated 120 minutes post intravenous injection of radioiodinated tracer 

and the brain removed and homogenised in lml of 0.9% saline using a small hand-held 

glass homogeniser. Equal volumes of homogenate and acetonitrile were mixed and 

centrifuged at 2000 x g for 10 minutes to give a clear supernatant. The supernatant was 

injected directly onto the hplc column and processed in the same way as the plasma 

samples.

2 .7 .3  Experimental analysis

All chromatographic data was analysed using Packard FLO-ONE software. The 

background signal was subtracted from each trace and the start and end times of each 

peak assigned manually.

2 .8  Effect of pharmacological doses of MK801 on the uptake and 

retention of [125I]CNS 1261 in the normal rat brain

2 .8 .1  Experimental design

Animals were surgically prepared for [125I]CNS 1261 autoradiography as detailed in 

section 2.4.1. MK801 was administered as an intravenous bolus dose followed by an 

infusion (0.4mg/kg + 6pg/kg/min or 1.2mg/kg + 16|ig/kg/min.) at a rate of 7.9|il/min. 

[125I]CNS 1261 (200pCi) was administered 30 minutes after the start of the infusion. 

Animals were killed 120 minutes post-injection of tracer and their brains removed and 

processed as detailed in section 2.4.3.
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2 .8 .2  Data analysis

[125I]CNS 1261 uptake was measured in 37 discrete brain areas in each treatment group 

and the values compared to [125I]CNS 1261 uptake in corresponding regions of animals 

killed 120 minutes after administration of the tracer (controls). As described previously 

values were expressed as a ratio of the concentration of radioactivity (nCi/g) uptake in 

each region of interest relative to concentration of radioactivity within the cerebellar 

cortex. Ratios from treated groups were compared to control values by ANOVA 

followed by Student's unpaired t-test with a Bonferroni correction to take into account 

simultaneous multiple comparisons.

2 .9  Uptake and retention of [125I]MK801 and [125I]CNS 1261 

following changes in arterial CO2 tension

2 .9 .1  [125I]MK801 uptake following changes in arterial CO2 tension

Prior to manipulations, animals were surgically prepared as described in section 2.3.1. 

Hypercapnic acidosis or hypocapnic alkalosis was induced via adjustment of the 

respiratory status of the animals, since brain extracellular fluid is not buffered against 

changes in CO2 tension. Hypercapnic acidosis was induced by increasing the 

concentration of CO2 in the inspired air to approximately 20% (paC0 2  = 180mmHg, pH 

= 6.9). Hypocapnia was induced in a second group of animals via hyperventilation to 

give a paCC>2 of 20mmHg. Changes were induced 15 minutes prior to intravenous 

administration of [125I]MK801 (200pCi) and were maintained throughout the 

experimental period. The [125I]MK801 autoradiographic procedure was then carried out 

as described in section 2.3.3. however in these experiments, fifteen serial sections were 

collected from 3 predetermined planes, at the level of the striatum, dorsal hippocampus 

and cerebellum.

65



2 .9 .2  Data analysis

[125i]MK801 uptake (strictly the amount of radioactivity following intravenous injection 

of [125I]MK801 in nCi/g)) was measured in 9 discrete brain areas in each treatment group 

and corrected for isotope decay. The corrected values were expressed as a ratio of 

[125i]MK801 uptake in regions of interest relative to uptake within the cerebellum. 

Region of interest/cerebellar ratios were compared to corresponding values from 

normocapnic animals (ANOVA and subsequent Student's unpaired t-test with Bonferroni 

correction applied for simultaneous multiple comparisons).

2 . 9 . 3  [125I]CNS 1261 uptake following changes in arterial CO2 tension

Prior to manipulations, animals were surgically prepared as described in section 2.4.1. 

Hypercapnic acidosis was induced via adjustment of the respiratory status of the animals. 

Hypercapnic acidosis was induced by increasing the concentration of CO2 in inspired air 

to approximately 20% (paCC>2 = 180mmHg, pH = 6.9). Changes were induced 15 

minutes prior to intravenous administration of [125I]CNS 1261 (200jiCi) and were 

maintained for the remainder of the experimental period. The [125I]CNS 1261 

autoradiographic technique was then carried out as detailed in section 2.4.2.

2 . 9 . 4  Data analysis

[125I]CNS 1261 uptake (strictly the amount of radioactivity following intravenous 

injection of [125I]CNS 1261 in nCi/g)) was measured in discrete brain areas in each 

treatment group and corrected for isotope decay. The corrected values were expressed as 

a ratio of [125I]CNS 1261 uptake in regions of interest relative to uptake within the 

cerebellum.
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2 .10  Uptake and retention of [125I]CNS 1261 following 

intracortical injection of NMDA

2 .10 .1  Experimental design

Animals were surgically prepared as detailed in section 2.4.1. Animals were then turned 

prone and the head fixed in a stereotaxic frame. A burr hole was drilled in the skull 4mm 

lateral to Bregma (co-ordinates taken from Paxinos and Watson, 1996). A fine needle 

was used to make a small hole in the dura without damaging any underlying vessels. A 

needle (20 gauge) attached to a Hamilton syringe was inserted into the left parietal cortex. 

Coordinates for injection (relative to Bregma) were: anterior posterior +0.0mm; lateral 

+4.0mm. The needle was lowered to a depth of 1.5mm (below the dura) over 2 minutes 

to minimise mechanical damage. NMDA (27 nmoles, volume = 3pl)) was injected at a 

constant rate over 2 minutes. Solutions for injection were made up in CSF (composition: 

NaCl 124mm; NaHC03 25.5mM; KC1 1.2.mM; KH2 PO4 1.2mM; CaCl2 2.5mM; 

MgCl2 l.OmM; 0.01% Evan's Blue dye. A second group of animals received an 

injection of CSF only. In both cases the needle was left in position for the remainder of 

the experiment Fifteen minutes after injection of NMDA (or CSF), [125I]CNS 1261 

(200pCi) was administered intravenously to initiate the [125I]CNS 1261 technique. 

Animals were killed 5, 60 or 120 minutes after injection of tracer and the brains 

processed for autoradiography as detailed in section 2.6.3.

2 .10 .2  Histological examination of lesion

Sections adjacent to those taken for autoradiography were stained with haematoxylin and 

eosin. Briefly, sections were dehydrated in alcohol, stained in haematoxylin for 5 

minutes, washed and stained in eosin for 30 seconds. Sections were examined by light 

microscopy to determine the anatomical extent of cell loss following injection of CSF or 

NMDA. The size of the lesion, identified by an area of pallor, was compared to the 

lesion size delineated by alterations in [l25I]CNS 1261 uptake.
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2 .1 0 .3  Data analysis

The lesions evident on autoradiograms were initially described by their appearance. The 

size and extent of each lesion was also measured. The area of the lesion (mm2) was 

measured in triplicate at the level of its first appearance by area analysis using an M4 

image analyser and precalibrated area standards. This was repeated at 400}im intervals 

throughout the extent of the lesion. A stereotaxic atlas was used to designate stereotaxic 

coordinates (relative to bregma) to the brain levels to produce 2-D maps which could be 

used to compare the lesions

[125I]CNS 1261 uptake was measured in 37 discrete brain areas following injection of 

NMDA or CSF. As described previously values were expressed as a ratio of the 

concentration of radioactivity (nCi/g) uptake in each region of interest relative to 

concentration of radioactivity within the cerebellar cortex.
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3.1  CNS 1261 binds to the NMDA receptor complex with high 

affinity and selectivity

3 .1 .1  Affinity of CNS 1261

CNS 1261 was found to displace [3H]MK801 binding to homogenates with 

Ki = 25nM in tris buffer and 44nm in CSF(Cambridge Neuroscience in house data).

3 .1 .2  Selectivity of CNS 1261

The effect of CNS 1261 on the binding of ligands to the NMDA receptor, and to other 

neurotransmitter receptors was more extensively investigated by submitting the 

compound for commercial screening (NovaScreen, Maryland, USA).

CNS 1261 (lOnM) inhibited [3H]MK801 binding by 26.7 ± 2.2%, which was consistent 

with the reported Ki for this compound. At this concentration, CNS 1261 did not 

produce any biologically significant effects in any of the other assays investigated.

CNS 1261 (lpM) was extremely selective and only showed activity (>50% inhibition of 

binding) in the MK801 binding site assay (Table 2). CNS 1261 (1|JM) produced a 99% 

inhibition of [3H]MK801 binding. The effect of CNS 1261 on [3H]MK801 binding was 

confirmed by repeating the assay a further 2 times. The results from these assays were 

consistent with the initial results (lOnM: 27 ± 2%, lpM: 99 ± 1%) At this concentration 

(l|iM), some 40 times in excess of its affinity for the MK801 binding site on the NMDA 

receptor, CNS 1261 displayed marginal effects (£ 20% inhibition) in three assays (Table 

2). CNS 1261 had no effect (< 20% ) on the remaining 38 radioligand binding assays 

examined (Table 3).

In an extensive commercial screen at the concentrations examined, CNS 1261 binding 

appears to be selective for the MK801 binding site on the NMDA receptor.
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TABLE 2
Inhibition of ligand binding by CNS 1261

% inhibition of binding

ASSAY RADIOLIGAND lOnM l|iM

MK801 binding site [3H]MK801 11 ± 2 99 ± 1

Na+ channel 2 [3H]batrachotoxin -1 ± 3 38 ± 1

oc-1 adrenoceptor [3H]prazosin 20 ± 1 33 ±1

GAB A uptake [3H]GABA 16 ± 8 21 ± 2

CNS 1261 (l|iM ) was extremely selective and only demonstrated activity (> 50% 
inhibition) in the MK801 binding site assay. Marginal effects (> 20% inhibition) were 
observed at three of the other 41 assays examined. Data are expressed as mean ± 
S.E.M., n = 2. Negative values indicate stimulation of binding. Data taken from 
commercial screen carried out by NovaScreen, Maryland, USA.
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TABLE 3
CNS 1261 displayed no activity in a range of radioligand binding assays

% inhibition
ASSAY RADIOLIGAND lOnM luM
AMPA [3H]AMPA -2 ± 5 3 ± 5
Adenosine (ns) pH]NECA -9 ± 3 -4 ± 4
a-2 adreneoceptor pH]RX 821002 4 ± 4 13 ± 4

p-adreneoceptor pHJDHA -2 ± 2 8 ± 2
Dopamine 1 pH]SCH 23390 7 ± 3 1 ± 4
Dopamine 2 pH] sulpiride 1 ± 0 9 ± 1
GABAa pH]GABA 0 ± 7 9 + 4
UABAb pH]GABA (+ isoguavacine) 20 ± 1 9 ± 4
Glycine (strychnine sensitive) [3H]strychnine 4 ± 3 2 ± 1
Histamine 1 [3H]pyrilamine 3 ± 0 17 ± 2
Histamine 2 [3H]tiotidine 10 ± 8 14 ± 3
Histamine 3 pHJN^methylhistamine 12 ± 4 8 ± 6
Angiotensin II [125I]Sarl, Ile8-angiotensin II -10 ±1 -11 ± 2
Noradrenaline uptake [3H]desmethylimipramine -2 ± 0 11 ± 3
Serotonin uptake [3H]citalopram 1 ± 0 6 ± 1
Choline uptake pHJcholine chloride 6 ± 6 1±1
Dopamine uptake [3H]WIN 35,428 -10 ± 5 10 ±1
Adenosine uptake [3H]nitrobenzylthioinosine 1 ± 6 -1± 1
Glutamate uptake pH] glutamate 6 ± 2 12 ± 3
Chloride channel PH]TB0B 2 ± 0 1 ± 0
Ca2+ channel (type T &L) [3H]nitrendipine 2 ± 0 2 ±  1
Ca2+ channel (type N) [125I] co-conotoxin 0 ± 2 2 ± 1
K+ (low conductance) [125I]apamin -11 ± 3 -2 ± 1
K+channel (ATP) pH] glibenclamide 7 ± 1 8 ± 2
Kainicacid pH]kainic acid -1 ± 4 5 ± 0
Muscarinic (c) pH]quinuclidinylbenzilate 1 ± 4 6 ± 2
Muscarinic (p) pH]quinuclidinylbenzilate -22 ± 1 -22 ± 12
Nicotinic (neuronal) pH]N-methylcarbamylcholine 19 ± 0 16 ± 1
NMDA PH]CGP 39653 -13 ± 0 -15 ±1
Serotonin (5-HTi) pH]hydroxyltryptamine binoxylate 9 ± 3 8 ± 0
Serotonin (5-HT2) pH]ketanserin 9 ± 3 8 ± 0
Seroronin (5 -HT3) r3H]GR65630 2 ± 1 16 ± 2
Glycine (strychnine insensitive) pH] glycine -4±  2 1 ± 2
Benzodiazepine (c) pH]flunitrazepam 9 ± 1 15 ± 3
Opiate (ns) [3H]naloxone 0 ± 2 5 ± 2
Vasopressin-1 [3H] phenylalanyl-3,4,5-vasopressin -19 ± 3 -2 ± 3
K+ channel (voltage dependent) [125I]charybdotoxin -16 ± 5 13 ±1
Na+ channel 1 pHJsaxitoxin 3 ± 1 -12±3

38 radioligand binding assays 
displayed as mean ± S.E.M., n= 
binding, ns = non-specific, c =

. 'Activity' was defined as >50% inhibition. Data are 
■2. Negative values indicate a stimulation of radio-ligand 
central and p = peripheral (NovaScreen)
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3.2. Effect of CNS 1261 on local cerebral glucose utilisation

The effect of three doses of CNS 1261 (1, 3 and lOmg/kg) on local cerebral glucose 

utilisation were examined in the conscious lightly restrained rat. The pattern of alterations 

in glucose utilisation produced by CNS 1261 were compared to those obtained in a 

previous study using MK801 carried out by Kurumaji et al (1989).

3.2.1. General observations

Administration of CNS 1261 produced changes in overt behaviour of the animals at all of 

the doses examined. A degree of sedation and a reduced response to external stimuli was 

observed in all animals however, animals remained conscious throughout the 

experimental period. These effects appeared at around 5 minutes post-injection of CNS 

1261 and lasted for the duration of the experiment The normal grooming, sniffing and 

exploratory behaviour (displayed by all control rats) was absent in animals treated with 

CNS 1261. CNS 1261-treated animals exhibited stereotypical behaviour consisting of 

neck stretching and repetitive side-to-side and cyclical head movements. The severity of 

these effects was dose related and was most pronounced in the group receiving the 

highest dose of CNS 1261.

Administration of CNS 1261 (lmg/kg) had no significant effects on any of the 

cardiovascular and respiratory variables measured (Table 4). Treatment with CNS 1261 

(lOmg/kg) induced a modest, significant increase in arterial carbon dioxide tension. CNS 

1261 administration produced an immediate, transient hypotension . However at each 

dose examined CNS 1261 ultimately effected a sustained increase in mean arterial blood 

pressure relative to control values at times beyond 10 minutes (Figure 10). Arterial 

plasma glucose concentration was unaffected by administration of CNS 1261.
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TABLE 4

Effect of CNS 1261 adminstration on physiological variables

CNS 1261
PARAMETER VEHICLE 1 mg/kg 3mg/kg lOmg/kg
paC02 (mmHg) 34 ± 1 37 ± 1 38 ±1 41 ± 1*
arterial pH 7.43 ± 0.01 7.41 ± 0.01 7.41 ± 0.01 7.3 ± 0.01
pa02 (mmHg) 94 ± 3 98 ± 2 95 + 2 88 ± 2
MABP (mmHg) 136 ± 4 142 ± 5 151 ±3* 157 ±3**
temperature (°C) 36.4 ± 0.3 36.2 ± 0.5 36.1 ±0.4 36.0 ± 0.4
glucose (mM) 9.6 ± 0.7 8.6 ± 0.7 9.9 ± 0.2 10 ± 1
weight (g) 347 ± 16 323 ±11 345 ± 12 366 ±14
n 8 6 6 6

Arterial plasma glucose concentration was measured immediately prior to administration 
of [14C]2-deoxyglucose. Other physiological variables were assessed 30 minutes after 
radioisotope administration. *p<0.05, **p<0.01 for statistical comparison between each 
drug treated group and saline-treated controls (ANOVA, Srudent's t-teist with Bonferroni 
correction). Data are derived from 26 animals and are expressed as mean ± S.E.M. (n = 
6- 8).
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3.2.2. Local cerebral glucose utilisation

Administration of CNS 1261 produced highly circumscribed changes in glucose 

utilisation. The glucose use alterations associated with systemic administration of CNS 

1261 (1 ,3  and lOmg/kg) in 36 regions of interest are presented in Tables 5-7 (see 

Figures 11-13).

Following intravenous administration of CNS 1261 (1 mg/kg) 6 of the regions examined 

displayed significant alterations in glucose use. Moderate decreases were observed in 

the auditory cortex, posterior cingulate cortex, retrosplenial cortex and inferior colliculus. 

Glucose use was elevated in entorhinal cortex (caudal) and within the fornix. 

Administration of CNS 1261 (3mg/kg) caused significant alterations in glucose use in 11 

of the 36 regions examined. Glucose use was decreased in layer IV of the auditory 

cortex and the inferior colliculus. Prominent increases in glucose use were observed in 

layer IV of the visual cortex, anteroventral thalamus, hippocampus molecular layer, 

dentate gyrus, entorhinal cortex (caudal), mamillary body, posterior cingulate cortex, 

retrosplenial cortex and fornix.

At the highest dose examined (lOmg/kg) CNS 1261 administration produced alterations 

in glucose use that could be readily visualised on autoradiograms (Figure 11). Moderate 

decreases in glucose utilisation (approximately 30%) were observed in layer IV of the 

frontal, sensory-motor and auditory cortices and in the inferior colliculus (Figure 12). 

Distinct, significant elevations in glucose use were observed in a number of structures 

within the limbic system (Figure 13), namely, the entorhinal cortex (caudal), 

hippocampus molecular layer, dentate gyrus, anteroventral thalamus, mamillary body, 

posterior cingulate cortex, retrosplenial cortex and also within the fornix. There were no 

significant alterations in glucose use in the other four regions of white matter examined. 

The magnitude of these changes was generally in the region of 80%. however, extremely 

large magnitude changes were observed within the entorhinal cortex and mamillary body, 

where glucose use was increased by 238% and 125% respectively.
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VEHICLE CNS 1261

PC C

FIGURE 11 : Changes in glucose utilisation following administration of CNS 1261

Representative [14C]2-deoxyglucose autoradiograms of coronal rat brain sections at the 
level o f the anteroventral thalamic nucleus (upper), hippocampus molecular layer (middle) 
and inferior colliculus (lower). Administration of CNS 1261 (lOmg/kg) produced marked 
increases in glucose use in a number o f regions of the limbic system, including the 
anteroventral thalamus (AV), hippocampus molecular layer (Mol), dentate gyrus (DG), 
posterior cingulate cortex (PCC) and entorhinal cortex (Ent). Profound reductions in 
glucose use were observed within the inferior colliculus
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FIGURE 12 : Effect of CNS 1261 on glucose use in the entorhinal cortex and inferior 
colliculus.

Local cerebral glucose utilisation in the entorhinal cortex (caudal) and the inferior 
colliculus following intravenous administration of CNS 1261. Data are expressed as 
mean ± S.E.M (n= 6-8). Significant elevations in glucose utilisation were observed in 
the entorhinal cortex (caudal) following administration of CNS 1261. CNS 1261 
administration markedly reduced glucose utilisation in the inferior colliculus 
**p< 0.01 ANOVA followed by Student's t-test with appropriate Bonferroni correction.
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FIGURE 13: Effect of CNS 1261 on limbic structures

Glucose utilisation in selected structures within the limbic system following 
administration of CNS 1261. Data are expressed as mean ± S.E.M (n=6-8). CNS 1261 
produced dose-dependent elevations in glucose utilisation in the mamillary body, 
retrospenial cortex and hippocampus molecular layer (posterior).
Note the similarity of the effects induced by administration of CNS 1261 in these three 
regions. In each region the greatest increase in glucose utilisation compared to control 
values was observed at 3mg/kg



The degree of responsiveness of each of the 36 regions to CNS 1261 was assessed by 

application of an arithmetic function which encompasses the entire dose-response data 

available for each region. A rank ordering of these regional responses was obtained from 

the function /.

/ =  L(xc - xji)2

xc is the mean of loge (glucose use) for control group members, xji is the mean of loge 

(glucose use) for the ith dose of the treatment group in question, T either CNS 1261 (1, 

3 and lOmg/kg) or MK801 (0.05, 0.5 and 5mg/kg).

Calculated/values for regional responsiveness to CNS 1261 treatment were compared to 

corresponding values for MK801 (Kurumaji et aU 1989) and are shown in Tables 5-7.

/  values were classified into groups where regions with /  > 0.8 were described as 

"extremely sensitive’. These regions generally displayed greater than 55% reductions or 

increases in glucose use after administration of the highest dose.

Regions with 0.5 < / <  0.8 were described as "sensitive". Regions described as 

"moderately sensitive" generally displayed 30-50% increases or decreases in glucose use 

and 0.3 < / <  0.5. "Minially sensitive" regions displayed /values < 0.3, within this 

group the magnitude of change in glucose use was less than 30%.

Examination of the frequency hierarchies showed that regions which were particularly 

sensitive to CNS 1261 (Table 8) such as the entorhinal cortex (caudal), hippocampus 

molecular layer, dentate gyrus and fornix, were also in general, sensitive to MK801 

(Table 9). Those areas least affected by CNS 1261 were also least affected by MK801, 

including most cortical areas and regions of white matter.
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Examination of frequency distribution profiles o f /  values for CNS 1261 and MK801 

(Figure 14) show that both compounds were broadly similar, displaying a wide range of 

/values and a skewed distribution, with the majority of regions being minimally sensitive 

i f  < 0.3). Differences in glucose use responses to the two agents occurred in a small 

number of regions, a greater number of regions displayed extreme sensitivity (f> 0.8) to 

CNS 1261 in contrast to MK801, such as the anteroventral thalamus, mamillary body 

and the inferior colliculus.

Correlation analysis of/values (Figure 15) showed that a significant relationship exists 

between the alterations in glucose use produced by CNS 1261 administration and those 

produced by MK801 (correlation coefficient, r = 0.87). The entorhinal cortex (rostral) 

was much less sensitive to CNS 1261 than to MK801.

These results confirm that the overall pharmacological effects of CNS 1261 were 

extremely similar to the overall effects of MK801
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FIGURE 14

(a)

30 I CNS 1261

OXJ<D
t - i

u-<O
u.<UX>a
3c
>>oG<D3cro, 1-1

0.4 0.8 1.2 1.6 3.63.6 
f  value

(b)

30 n
MK801

i 1--------1------- 1--------1-----
0.4 0.8 1.2 1.6 2.0

/  value

Frequency distribution profiles of f values for (a) CNS 1261 and (b) 
MK801

/function  values represent the sensitivity of individual regions to drug treatment 
following administration of CNS 1261 and MK801. /values for both compounds were 
broadly similar with a wide range of/values and a skewed distribution.



r = 0.87
p< 0.001

oo
CJ

0.0 0.5 1.0 1.5 2.0
MK801

FIGURE 15 : Correlation analysis o f/va lues for glucose use after MK801 and 
CNS 1261 treatment

Each data point represents the /value  generated from analysis of the entire dose-response 

curve of a single structure in response to MK801 and CNS 1261.
Overall correlation coefficient, r, for all regions investigated was 0.87, indicating a high 

degree of association between regional effects of MK801 and CNS 1216. The entorhinal 

cortex (caudal) was much less sensitive CNS 1261 than to MK801



3 .3  Uptake and retention of [125I]MK801 and [125I]CNS 1261 in

normal rat brain

The uptake and retention of [125I]CNS 1261 was examined under conditions of normal 

NMDA receptor activation and was compared to that of [125I]MK801 under identical 

conditions.

3 .3 .1  General observations

Physiological variables were measured prior to, and 15 after administration of 

[125ijm K801 or [125I]CNS 1261 and are presented in Table 10. Administration of 

[125I]MK801 or [125I]CNS 1261 had no effect on any of the variables examined. There 

were no significant differences in any of the parameters between the two groups at any 

time point.

3 .3 . 2  In  vivo uptake and retention of [125I]CNS 1261

The in vivo uptake and retention of [125I]CNS 1261 was examined in 36 anatomically 

discrete regions at multiple time points in halothane anaesthetised rats. [125I]CNS 1261 

was administered and the animals sacrificed 5, 30, 60 and 120 minutes thereafter. The 

uptake of each tracer in individual regions of interest was expressed as a ratio relative to 

uptake within the cerebellar hemisphere (a within animal measure of non-specific 

binding), Tables 11-13.

[125I]CNS 1261 uptake 5 minutes after intravenous injection was greatest within areas of 

high cerebral blood flow such as the anterior thalamic nucleus and the majority of cortical 

areas examined. Intermediate levels of uptake were observed within the thalamus and 

lowest levels of uptake in the hippocampus and hypothalamus. [125I]CNS 1261 uptake 

was also low in all areas of white matter examined (Figure 16, see also Figures 20-21).
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TABLE 11
Comparison of [125I]MK801 and [125I]CNS 1261 uptake

30 minutes post-administration

STRUCTURE [125I]MK801 [125I]CNS 1261

anterior cingulate cortex 1.24 ±0.15 1.90 ±0.16
genu 0.88 ± 0.02 0.73 ± 0.03
caudate nucleus 1.13 ±0.05 1.30 ±0.02
sensory-motor cortex
layers I-III 1.12 ±0.06 1.28 ±0.01
rv 1.16 ±0.06 1.30 ±0.03
V-Vl 1.18 ±0.10 1.32 ±0.04
corpus callosum 0.90 + 0.02 0.80 ± 0.02
anterior thalamus 1.29 ±0.13 1.62 ±0.12
hippocampus CA1 1.38 ±0.16 1.17 ±0.01
hippocampus CA3 1.42 ±0.11 1.19 ±0.01
lateral habenular nucleus 1.01 ± 0.07 1.18 ±0.05
mediodorsal thalamus 1.40 ± 0.22 1.55 ±0.16
ventrolateral thalamus 1.32 ± 0.09 1.30 ±0.02
internal capsule 0.91 ± 0.04 0.70 ± 0.03
parietal cortex
layers I-m 1.16 ±0.09 1.32 ±0.04
IV 1.19 ±0.10 1.35 ±0.01
V-VI 1.20 ±0.10 1.32 ± 0.05
hypothalamus 1.00 ±0.10 1.04 ±0.01
posterior cingulate cortex 1.14 ±0.16 1.53 ± 0.06
hippocampus molecular layer 1.45 ± 0.22 1.48 ± 0.07
dentate gyrus 1.39 ±0.15 1.39 ± 0.03
auditory cortex
i-m 1.20 ± 0.08 1.54 ±0.09
IV 1.21 ±0.08 1.53 ± 0.07
V-VI 1.21 ±0.14 1.48 ± 0.03
substantia nigra pars compacta 1.00 ± 0.07 1.13 ±0.10
substantia nigra pars reticulata 0.97 ± 0.05 1.11 ±0.12
medial geniculate body 1.23 ± 0.09 1.39 ± 0.08
visual cortex
layers I-m 1.27 ± 0.09 1.55 ± 0.05
IV 1.24 ± 0.06 1.49 ± 0.02
V-VI 1.23 ± 0.02 1.50 ± 0.01
entorhinal cortex 1.16 ±0.13 1.54 ±0.13
inferior colliculus 1.04 ± 0.06 1.16 ±0.04
pons 0.98 ± 0.01 1.30 ± 0.05
cerebellar hemisphere 1.00 ± 0.00 1.00 ± 0.00
cerebellar white matter 0.84 ± 0.05 0.68 ± 0.03
superior olivary nucleus 0.93 ± 0.03 1.14 ±0.05

Uptake of [125I]MK801 or [125I]CNS 1261 in individual regions of interest were 
expressed as a ratio relative to uptake within the cerebellum. Roman numerals (I-VI) 
indicate the cortical layer examined. Data are presented as mean ± S.E.M., n = 2.
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T A B L E  12
Comparison of [125I]MK801 and [125l]CNS 1261 uptake

60 minutes post-administration

STRUCTURE [125I]MK801 [125I]CNS 1261

anterior cingulate cortex 1.34 ±0.08 1.77 ±0.18
genu 1.16 ±0.03 1.00 ±0.03*
caudate nucleus 1.11 ±0.05 1.27 ±0.02*
sensory-motor cortex 
layers I-III 1.14 ±0.08 1.41 ± 0.04*
IV 1.18 ±0.07 1.59 ±0.11*
V-VI 1.20 ± 0.08 1.52 ±0.11
corpus callosum 1.23 ± 0.07 1.18 ±0.06
anterior thalamus 1.52 ± 0.09 1.62 ±0.10
hippocampus CA1 1.87 ±0.11 1.85 ±0.09
hippocampus CA3 1.91 ±0.11 1.84 ±0.11
lateral habenular nucleus 1.04 ± 0.03 1.21 ±0.03*
mediodorsal thalamus 1.51 ± 0.03 1.54 ± 0.09
ventrolateral thalamus 1.46 ± 0.04 1.48 ± 0.08
internal capsule 1.04 ± 0.04 1.01 ± 0.05
parietal cortex
layers I-m 1.21 ± 0.05 1.48 ± 0.06*
IV 1.23 ± 0.03 ' 1.54 ±0.10*
V-VI 1.30 ± 0.03 1.53 ±0.08*
hypothalamus 0.99 ± 0.01 1.09 ± 0.03*
posterior cingulate cortex 1.31 ±0.04 1.45 ±0.15
hippocampus molecular layer 2.03 ±0.15 2.09 ±0.13
dentate gyrus 1.85 ± 0.07 1.88 ±0.12
auditory cortex 
layers I-m 1.25 ± 0.05 1.60 ± 0.09*
IV 1.28 ± 0.06 1.62 ±0.12
V-VI 1.40 ± 0.05 1.62 ± 0.09
substantia nigra pars compacta 1.09 ± 0.06 1.13 ±0.07
substantia nigra pars reticulata 1.05 ± 0.05 1.05 ± 0.05
medial geniculate body 1.35 ± 0.05 1.39 ± 0.06
visual cortex 
layers I-m 1.33 ± 0.06 1.74 ±0.10*
IV 1.31 ±0.04 1.70 ±0.04*
V-VI 1.32 ± 0.07 1.75 ± 0.04*
entorhinal cortex 1.21 ±0.13 1.85 ±0.11*
inferior colliculus 1.02 ± 0.05 1.13 ±0.03
pons 1.10 ±0.03 1.22 ±0.09
cerebellar hemisphere 1.00 ± 0.00 1.00 ± 0.00
cerebellar white matter 0.96 ± 0.05 1.15 ±0.03*
superior olivary nucleus 1.03 ± 0.06 1.22 ± 0.03

Uptake of [125I]MK801 or [125I]CNS 1261 in individual regions of interest were 
expressed as a ratio relative to uptake within the cerebellum. Roman numerals (I-VI) 
indicate the cortical layer examined. Data are presented as mean ± S.E.M, n=3. 
*p<0.05, unpaired t-test.
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TABLE 13
Comparison of [125I]MK801 and [125I]CNS 1261 uptake

120 minutes post-administration

STRUCTURE [125I]MK801 [125I]CNS 1261

anterior cingulate cortex 1.32 ±0.10 1.69 ±0.10*
genu 1.01 ± 0.07 1.42 ±0.16
caudate nucleus 1.16 ±0.08 1.38 ±0.05
sensory-motor cortex
layers I-III 1.20 ±0.11 1.40 ± 0.05
IV 1.22 ±0.10 1.39 ±0.07
V-VI 1.22 ±0.10 1.51 ±0.09
corpus callosum 1.07 ± 0.07 1.47 ± 0.08*
anterior thalamus 1.35 ±0.12 1.58 ±0.04
hippocampus CA1 1.71 ±0.10 2.44 ±0.21*
hippocampus CA3 1.63 ±0.10 2.43 ±0.19*
lateral habenular nucleus 1.18+0.07 1.20 ± 0.03
mediodorsal thalamus 1.44 ± 0.09 1.61 ± 0.09
ventrolateral thalamus 1.36 ±0.12 1.56 ± 0.09
internal capsule 1.07 ± 0.07 1.11 ±0.04
parietal cortex
layers I-m 1.32 ±0.07 1.55 ± 0.08
IV 1.32 ± 0.07 1.49 ± 0.05
V-VI 1.29 ± 0.07 1.68 ±0.10*
hypothalamus 0.98 ± 0.07 1.05 ± 0.04
posterior cingulate cortex 1.25 ±0.11 1.51 ±0.06
hippocampus molecular layer 1.72 ±0.15 2.91 ± 0.22*
dentate gyrus 1.57 ± 0.12 2.50 ±0.15*
auditory cortex
layers I-III 1.31 ±0.11 1.63 ± 0.06*
rv 1.30 ±0.10 1.64 ± 0.05*
V-VI 1.36 ±0.11 1.77 ± 0.05*
substantia nigra pars compacta 1.05 ± 0.09 1.24 ± 0.04
substantia nigra pars reticulata 1.08 ± 0.07 1.17 ±0.05
medial geniculate 1.29 ± 0.07 1.49 ± 0.05
visual cortex
layers I-m 1.33 ±0.14 1.73 ± 0.09
IV 1.32 + 0.13 1.64 ±0.09
V-VI 1.31 ±0.12 1.67 ± 0.04*
entorhinal cortex 1.24 ±0.14 1.91 ±0.11*
inferior colliculus 1.13 ± 0.09 1.08 ±0.01
pons 1.08 ±0.10 1.31 ±0.06
cerebellar hemisphere 1.00 ± 0.00 1.00 ±0.00
cerebellar white matter 0.95 ± 0.03 1.25 ±0.14
superior olivary nucleus 1.04 ± 0.05 1.19 ±0.07

Uptake of [125I]MK801 or [125I]CNS 1261 in individual regions of interest were 
expressed as a ratio relative to uptake within the cerebellum. Roman numerals (I-VI) 
indicate the cortical layer examined. Data are presented as mean ± S.E.M, n=3. *p<0.05, 
unpaired t-test.
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[ 125I]MK801 [ 125I]CNS 1261

MB

FIGURE 16 : Comparison of [125I]MK801 and [I25I]CNS 1261 uptake at 5 minutes 

Representative autoradiograms illustrate [125I]MK801 (left) and [125I]CNS 1261
(right) uptake 5 minutes after administration at the level of the caudate nucleus 
(upper), dorsal hippocampus (middle) and hippocampus molecular layer (lower). For 
both tracers, uptake was greatest in areas known to have high levels o f blood flow

125such as cortical areas and within the mamillary body. Note that [ I]CNS 1261
125images possess a greater degree of clarity relative to [ I]MK801 images. (IV :

cortical layer IV, CA1 : hippocampus CA1, L : lateral habenula, MB : mamillary 
body).



Thirty minutes after administration, [125I]CNS 1261 uptake was greatest within the 

anterior cingulate cortex (90% greater than that observed within the cerebellum). High 

levies of [125I]CNS 1261 uptake were observed within the auditory and visual cortices 

where levels were approximately 50% above cerebellar values (Figure 17). Little 

variation in [125I]CNS 1261 uptake could be observed between cortical layers. Lowest 

levels of [125I]CNS 1261 uptake were observed within white matter areas. Uptake 

within genu, corpus callosum and internal capsule was generally 30% lower than that 

witihin the cerebellar hemisphere.

At times beyond 30 minutes, the highest levels of uptake of [125I]CNS 1261 were 

observed within the hippocampus (notably CA1 and the molecular layer), with 

intermediate levels in the cortex and caudate nucleus and lowest levels in the 

hypothalamus and cerebellum (reflecting the known distribution of NMDA receptors). 

60 minutes after injection [125I]CNS 1261 uptake within hippocampal areas and within 

the entorhinal cortex was 80-100% greater than that within the cerebellum. Uptake in 

cortical areas was 50-70% above cerebellar values (Figure 18).

The relative uptake of [125I]CNS 1261 within hippocampal areas continued to increase 

between 60 and 120 minutes. [125I]CNS 1261 uptake within CA1, CA3, molecular layer 

and dentate gyrus was 150-200% greater than that observed within the cerebellum, 

intermediate levels, 50-70% above that in the cerebellum were observed within anterior 

cingulate cortex, thalamus, and auditory, parietal and visual cortices. [125I]CNS 1261 

uptake was greatest within the deepest layers (V-VI) of the cortex. Lowest levels of 

uptake were present in areas of white matter, hypothalamus and pons (Figure 19).
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[ I]MK801

FIGURE 18: Comparison o f [125I]MK801 and [125I]CNS 1261 uptake at 60 
minutes

Representative autoradiograms illustrate [125I]MK801 (left) and [125I]CNS 1261 
(right) uptake 60 minutes after administration at the level of the caudate nucleus 
(upper), dorsal hippocampus (middle) and hippocampus molecular layer (lower). 
Greatest levels of uptake for both tracers were observed within cortical areas and

125 • nhippocampal structures. Note that [ I]CNS 1261 uptake is lower than that of 
[ IJMK801 in white matter areas. (CC : corpus callosum, CA1 : hippocampus 
CA1, Mol : molecular layer).
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FIGURE 17 : Comparison o f [l22I]MK801 and [l23I]CNS 1261 uptake at 30 minutes

Representative autoradiograms illustrate [l2:,I]MK801 (left) and [l25I]CNS 1261 
(right) uptake 30 minutes after administration at the level o f the caudate nucleus 
(upper), dorsal hippocampus (middle) and hippocampus molecular layer (lower). 
Greatest levels of uptake for both tracers were observed within cortical areas and

125 r*hippocampal structures. Note that [ I]CNS 1261 uptake is lower than that of 
['~5I]MK801 in white matter areas. (CC : corpus callosum, CA1 : hippocampus 
CA1, Mol : molecular layer).
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FIGURE 19 : Comparison o f [l25I]MK801 and [ l25I]CNS 1261 uptake at 120 
minutes

Representative autoradiograms illustrate [125I]MK801 (left) and [125I]CNS 1261 
(right) uptake 120 minutes after administration at the level o f the caudate nucleus 
(upper), dorsal hippocampus (middle) and hippocampus molecular layer (lower). For 
both tracers uptake was greatest within hippocampal structures with lower levels 
observed within the hypothalamus (CA1 : hippocampus CA1, Mol, molecular layer, 
Hypo : hypothalamus).



3 .3 . 3  C om parison of [125I]CNS 1261 uptake with [125I]M K 801

[125i]MK801 uptake and retention was examined in contem poraneous experiments and 

compared to that of [125I]CNS 1261 at each time point (Figures 16-19)

Despite general similarities in the pattern of uptake of both tracers at 5 minutes, the 

appearance of the images differed markedly. The resolution of [125I]MK801 images 

was poor and the overall appearance was similar to images produced with the blood flow 

tracer " mTc-HMPAO (Gartshore, 1996). In comparison, [125I]CNS 1261 images 

possessed a greater degree of clarity with cortical layer IV clearly visible on 

autoradiograms (Figure 20) . Increased [125I]CNS 1261 uptake was observed in the 

supraoptic and paraventricular hypothalamic nuclei. These regions were not evident in 

[125i]MK801 autoradiograms at 5 minutes (Figure 21).

At 30 minutes, [125I]MK801 uptake was greatest within hippocampal structures 

(approximately 40% greater than cerebellar levels) with intermediate levels in cortical 

areas (20% above cerebellum).

The relative uptake of [125I]CNS 1261 at this time point was generally 20% higher than 

that of [125I]MK801 within the caudate nucleus and cortical areas and approximately 40% 

greater within the entorhinal cortex and the pons. Relative [125I]CNS 1261 uptake was 

not markedly different from that of [125I]MK801 in any of the other regions examined at 

this time point

Sixty minutes after administration of the tracers, the overall pattern of [125I]CNS 1261 

uptake was similar to that of [125I]MK801 however, the relative uptake of [125I]CNS 

1261 was greater than that of [125I]MK801 in 14 of the 36 regions examined. [125I]CNS 

1261 uptake was significantly greater in the caudate nucleus, sensory-motor, parietal, 

auditory, visual and entorhinal cortices compared to [125I]MK801. Within the 

hippocampus (a region with high levels of NMDA receptors) tracer uptake relative to the 

cerebellum was similar for both ligands 60 minutes after injection.



[125I]MK801
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FIGURE 20 : [125I]CNS 1261 uptake is increased in cortical layer IV 5 minutes 
after administration

Representative autoradiograms of [125I]MK801 (upper) and [125I]CNS 1261 (lower) 
uptake in the sensory-motor cortex 5 minutes after intravenous administration. 
[125I]CNS 1261 uptake was increased within cortical layer IV, while [125I]MK801 
uptake was homogeneous throughout the cortex.
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FIGURE 21 : [125I]CNS 1261 uptake is increased within the paraventricular 
hypothalamic nucleus

Representative autoradiograms from the level of the globus pallidus comparing 
[125I]MK801 (upper) and [123I]CNS 1261 (lower) uptake in the normal brain 5 
minutes after administration. High levels o f both tracers are observed within the

125cerebral cortex and anteroventral thalamus. Only [ I]CNS 1261 uptake is increased 
within the paraventricular hypothalamic nucleus. Note the greater degree of clarity

125within the [ I]CNS 1261 autoradiogram. (AV : anteroventral thalamus, GP : 
globus pallidus, PVN : paraventricular hypothalamic nucleus).
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120 minutes after intravenous injection uptake of [ 12^I]CNS 1261 was significantly 

greater than that of [125I]MK801 in 12 of the 36 regions examined (anterior cingulate 

cortex, corpus callosum, hippocampus CA1 and CA3, superior layers of the parietal 

cortex, hippocampus molecular layer, dentate gyrus, auditory cortex, deep layers of the 

visual cortex and entorhinal cortex). The relative levels of [ 125I]CNS 1261 were 40-70% 

greater than that of [125I]MK801 in the majority of cortical areas examined (parietal, 

auditory, visual and entorhinal) and 40% greater than that of [125I]MK801 in most white 

matter areas (Figure 22). A degree of laminar heterogeneity in the radioisotope 

concentrations in the cerebral cortex was observed with [125I]CNS 1261, deep layers had 

higher isotope levels that superficial layers. Isotope levels were homogeneous within the 

cerebral cortex of [125I]MK801 autoradiograms. The most striking observation was that 

the relative uptake of [125I]CNS 1261 in hippocampal structures was approximately twice 

that of [125I]MK801, (140% and 70% greater than cerebellar binding respectively) 

(Figure 23).

Under conditions of normal activation at the premium time point established for imaging 

[125i]MK801 uptake (120 minutes), the relative uptake of [125I]CNS 1261 was thus 

found to be superior to that of [125I]MK801 in areas with a high density of NMD A 

recptors and hence a high level of NMD A receptor activation.
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FIGURE 22: Uptake and retention of [125I]CNS 1261 and [125I]MK801 in white matter

The uptake and retention of [125I]CNS 1261 and [125I]MK801(relative to the cerebellum) 
was examined at different time points in normal brain. Uptake over the first 60 min. was 
similar for both ligands. At 120 min. relative levels of [125I]CNS 1261 were 
approximately 40% above that of [125I]MK801. Data are mean ± S.E.M. (n = 2-4). 
*p<0.05, significantly different from [125I]MK801 (unpaired t-test).
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FIGURE 23 : Uptake and retention of [125I]CNS 1261 and [125I]MK801 in 
hippocampus

The uptake and retention of [125I]CNS 1261 and [125I]MK801 (relative to the cerebellum) 
was examined at different time points in normal brain. Uptake over the first 60 min. was 
similar for both ligands. At 120 min. relative levels of [125I]CNS 1261 were 
approximately twice that of [125I]MK801. Data are mean ± S.E.M. (n = 2-4). *p<0.05, 
significantly different from [125I]MK801 (unpaired t-test).



3 .4  Relative lipophilicity of [125I]CNS 1261 and [125I]MK801

3 .4 .1  Lipophilicity of CNS 1261

The calculated LogD value for CNS 1261 at physiological pH is shown in Table 14. The 

logD values for structurally related (CNS 1102) and unrelated (MK801 and iodo- 

MK801) non-competitive NMD A receptor antagonists are shown for comparison. CNS 

1261 has a higher LogD value and hence is more lipophilic than CNS 1102. CNS 1261 

is more lipophilic than the structurally unrelated compound MK801, but has a lower 

LogD value and is therefore less lipophilic than iodo-MK801.

3 .4 .2  Partition coefficient of [*25I]CNS 1261 and [125I]MK801 in rat 

brain

Brain/aqueous partiton ratios were calculated for [125I]CNS 1261 and [125I]MK801 in rat 

brain and are presented in Table 15. The brain/aqueous partition ratios for [3H]MK801 

are shown for comparison.

The brain/aqueous partition ratios for [125I]CNS 1261 and [125I]MK801 show a higher 

accumulation in brain tissue relative to aqueous solution. The partition ratio for 

[3H]MK801 was markedly lower than [125I]MK801 in rat brain sections.

The brain/aqueous partition ratio for [125I]CNS 1261 in rat brain was approximately 40% 

lower than that of [125I]MK801,20.6 ± 13 g/ml compared to 35.5 ± 4.6 g/mL

3 . 4 .3  Partition coefficient of [*25I]CNS 1261 and [125I]MK801 in 

human brain

The brain/aqueous partition ratio of [125I]CNS 1261 was also 40% lower than that of 

[125I]MK801 (14.8 ± 0.8 g/ml relative to 25.5 ± 1.5 g/ml) in human grey matter 

(Table 15). The partition coefficient may be indicative of the degree of non-specific 

binding.
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TABLE 14

LogD values for CNS 1261 and other non-competitive NMDA antagonists

Compound Structure LogD 7.4

CNS 1261
CQ„.

2.19

MK801 1.80

CNS 1102 y MeHNCcr 1.72

I-MK801 c M C l ,
Me 1

3.30

LogD7 4  values, the partition coefficient between organic solvent (octanol) and aqueous 
buffer (15mM HEPES buffer / 0.135M NaCl) at physiological pH, are shown for CNS 
1261, the related compound CNS 1102, MK801 and iodo-MK801.
Note that while CNS 1261 is more lipophilic than MK801 and CNS 1102, it is less 
lipophilic than iodo-MK801. Data supplied by Cambridge NeuroScience Inc.
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TABLE 15

Brain/ aqueous partiton ratios in rat and human brain

BRAIN/AQUEOUS RATIO (g/ml)

LIGAND Rat Human (grey)

[125i]CNS 1261 20.6 ± 1.3 14.8 ± 0.8

[125I]MK801 35.5 ± 4.6 25.5 ± 1.5

pH]MK801 4.5 ± 0.3 9.7 ± 0.4

Brain/aqueous partition ratios for [125I]CNS 1261, [125I]MK8Q1 and [3HJMK801 were 
calculated from the non-specific binding component of in vitro binding experiments. 
Ratios were calculated from the amount of non-specifically bound radioligand (dpm/g) 
and the amount of free radioligand present in the solution applied to the section (dpm/ml). 
Data are presented as mean ± S.E.M., n=6.
Note that [125I]CNS 1261 has a lower brain/aqueous partition ratio than [125I[MK801 in 
both rat and human sections.
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3 .5 Metabolism of [125I]CNS 1261 in the rat

3 .5 .1  Stability of [125I]CNS 1261 in vitro

Prior to investigation of the metabolism of [125I]CNS 1261 in vivo, the stability of the 

compound under routine storage conditions was examined by determination of the amount of 

deiodination which occurred. [125I]CNS 1261 was reconstituted in a 0.7% physiological 

saline solution identical to that used for intravenous injection of the tracer in vivo. The 

reconstituted tracer solution was stored at 4°C for approximately 4 weeks. High performance 

liquid chromatography (hplc) analysis of samples from the solution showed that little de

iodination of [125I]CNS 1261 occured under the storage conditions described moreover, no 

significant deiodination of [125I]CNS 1261 was observed following incubation of the 

aqueous solution in rat plasma at 37°C for 2 hours.

The amount of authentic tracer and degradation products present in [125I]CNS 1261 injectate 

solutions from actual in vivo experiments was also examined (Table 16) and compared to that 

from experiments using [125]MK801.

[125I]CNS 1261 injectate solutions, reconstituted up to 6 hours prior to hplc analysis (and 

stored at room temperature), were found to contain aproximately 90% authentic tracer. 

[125i]MK801 injectate solutions did not contain a significantly different amount of authentic 

material

3 . 5 .2  Metabolism of [125I]CNS 1261 in the rat

Representative hplc traces from plasma samples taken at 5,15,60 and 120 minutes following 

intravenous administration of [125I]CNS 1261 are shown in Figure 24. The traces show the 

presence of two species in the plasma samples. The first species eluted with a retention time 

of 2.9 min and corresponds to iodide, the second species had a retention time of 7.6 min and 

was identified as authentic [125I]CNS 1261.
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TABLE 16
Species present in isotope solutions 6 hours after reconstitution

SPECIES [125l]CNS 1261 [125l]MK801

authentic tracer 91.2 ± 5.9 95.7 ±2.18
iodide 8.8 ± 5.9 4.3 ±2.18
other - 2.0 ± 0.0

Data are presented as mean ± S.E.M. (n = 3). Injectate solutions were reconstituted 
approximately 6 hours prior to hplc analysis. The amount of authentic material present in the 
injectate solutions was not different for the two tracers. The identity of the third species, 
present in only one of the [125I]MK801 animals was not determined.
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FIGURE 24 : Metabolism of [125I]CNS 1261 in the rat

Representative hplc traces fromplasma samples taken at 5, 15, 60 and 120 
minutes after administration of the tracer show the presence of 2 species which 
were identified as free iodide and authentic CNS 1261. The amount of 
[125IJCNS 1261 decreased rapidly over time while the amount of free iodide 
increased.



These traces show that the amount of authentic tracer decreased and the amount of free iodide 

increased with time.

[125I]CNS 1261A was metabolised extremely rapidly, such that only 15% authentic material 

remained in the plasma at 5 minutes and no authentic [125I]CNS 1261 could be detected in 

the plasma at 60 or 120 minutes (Figure 25).

Hplc analysis of all species present within the brain homogenate at 120 minutes confirmed 

that almost all the radioactivity within the brain could be attributed to authentic [125I]CNS 

1261 (95.4 ± 2.3% ). In some instances, a small fast moving peak (4.6 ± 2.3% ) could also 

be identified in brain extracts from animals killed at 120 minutes.

3 .5 .3  Metabolism of [125I]MK801 in the rat

Plasma samples were also taken from a second group of animals at 5, 15, 60 and 120 min 

following intravenous injection of [125I]MK801. Hplc traces are shown in Figure 26. The 

majority of traces showed the presence of only two species, with retention times of 2.9 min. 

and 8.3 min. which were identified as iodide and authentic [125I]MK801 respectively. The 

amount of authentic [125I]MK801 was found to decrease and the amount of iodide to increase 

with time. In a single animal, the amount of a third (unidentified) species was also found to 

increase with time. This retention time of this species was approxiamtely 4.5 minutes. 

[125i]MK801 was metabolised slowly, with approximately 55% authentic tracer present in 

the plasma at 5 minutes and approximately 20% [125I]MK801 could be detected at 120 

minutes (Figure 27). Hplc analysis of all species present within the brain homogenate at 120 

minutes confirmed that almost all (95%) of the radioactivity within the brain could be 

attributed to authentic [125I]MK801.

95



100

[1251] CNS 1261 

iodide

*->aao

o -1
0 20 40 60 80 100 120

Time (min.)

FIGURE 25 : Timecourse of [125I]CNS 1261 metabolism in rat plasma.

Data represents levels of authentic [125I]CNS 1261 and iodide detected by hplc analysis of rat 
plasma samples at different time points following intravenous injection of [125I]CNS 1261. 
Data are expressed as means ± S.E.M., n=3.
Note the rapid clearance of authentic [125I]CNS 1261 from the plasma within the first 5 
minutes after injection.
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FIGURE 26 : Metabolism of [125I]MK801 in the rat

Representative hplc traces from plasma samples taken at 5, 15, 60 and 120 
minutes after administration of the tracer show the presence o f 2 species which 
were identified as free iodide and authentic MK801. The amount of 
[125I]MK801 decreased over the experiemntal period while the amount of free 
iodide increased
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FIGURE 27 : Timecourse of [125I]MK801 metabolism in rat plasma.

Data represents levels of authentic [125I]MK801, iodide and metabolites detected by hplc 
analysis of rat plasma samples at different time points following intravenous injection of 
[125I]MK80L Data are expressed as means ± S.EM., n=3.



Too few data points were available to calculate accurate plasma half-lives of the two tracers. 

However, log transforms of the plasma clearance curves (Figure 28) show that in the first 60 

minutes after injection, both [125I]CNS 1261 and [125I]MK801 clearance can be described 

by bioexponential kinetics. Log transforms of the plasma clearance curves also show that 

[12^I]CNS 1261 is metabolised much more rapidly than [125I]MK801. The rapid 

metabolism of [125I]CNS 1261 suggests that compared to [125I]MK801, this tracer will 

reach steady-state concentrations within the brain more quickly and non-specifically bound 

ligand will be washed out down its concentration gradient at a faster rate. These properties 

may improve the quality of images and decrease imaging time. [125I]CNS 1261 is thus 

metabolised in such a way as to confer significant advantages over [125I]MK801 as an in 

vivo imaging agent.
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FIGURE 28 : Comparison of plasma clearance of [125I]CNS 1261 and [125I]MK801

Data are expressed as mean ± S.E.M. (n=2-3). Log transforms of the plasma clearance of 
[125I]CNS 1261 and [125I]MK801 show both tracers display biexponential kinetics over the 
first 60 minutes following injection.



3 .6  Effect of pharmacological doses of MK801 on the uptake and 

retention of [125I]CNS 1261 in the normal rat brain

The effect of 2 doses of cold MK801 (0.4mg/kg + 6|ig/kg/min. and 1.2mg/kg + 

16|ig/kg/min) were examined on the uptake and retention of [125I]CNS 1261 in the 

normal rat brain.

3 .6 .1  General Observations

In these investigations [125I]CNS 1261 was administered 30 minutes after initiation of 

the MK801 infusion and animals were killed 120 minutes thereafter. Physiological and 

respiratory variables were recorded prior to (t =0) and 60 minutes after the start of the 

infusion (Table 17). Administration of a bolus dose and infusion of MK801 (0.4mg/kg 

+ 6}ig/kg/min. or 1.2mg/kg + 16|ig/kg/min.) induced an immediate, transient 

hypotension. Mean arterial blood pressure remained approximately 20mmHg lower than 

pre-infusion levels for the remainder of the experiment. Administration of MK801 had 

no effect on any of the parameters examined.

3.6.2. Authenticity of MK801

The batch of MK801 used in these experiments was subjected to nuclear magnetic 

resonance spectroscopy (NMRS) to determine the authenticity of the compound. NMRS 

data obtained for the batch of MK801 used (Figure 29) was compared to NMRS data for 

MK801 within the literature and confirmed that the compound analysed had an identical 

structure to MK801.
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TABLE 17
Physiological variables before and 60 minutes after 

initiation of MK801 infusion

MK801 Infusion
Physiological Sample time 0.4mg/kg + 1.2mg/kg +
variables (min) 6}ig/kg/min. 16|ig/kg/min.
PaC02 (mmHg) 0 40.5 ± 1.2 43.5 ± 3.7

60 39.3 ±3.1 40.5 ± 1.5
Arterial pH 0 7.44 ± 0.01 7.33 ± 0.05

60 7.41 ± 0.01 7.41 ± 0.01
Pa02 (mmHg) 0 154.3 ± 26.5 188.7 ± 13.1

60 158.3 ±18.1 192.5 ± 14.4
MABP (mmHg) 0 97 ± 7 85 ±5

60 79 ± 1 70 ± 5
temperature (°C) 0 37.2 ± 0.20 37.0 ± 0.03

60 37.0 ± 0.20 36.9 ± 0.22

Samples were taken immediately prior to (t=0) injection of MK801 bolus dose and 60 
minutes after initiation of infusion (t=60). [125I]CNS 1261 was administered 30 min. 
after the start of the infusion and animals were killed 120 minutes later. Administration 
of MK801 caused a sustained decrease in MABP at both doses examined. 
Administration of MK801 did not affect any of the other parameters examined (One-way 
ANOVA). Data are presented as mean ± S.E.M (n=3-4).
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FIGURE 29 : NMRS trace from a sample of MK801 used in displacement studies

Nuclear magnetic resonance spectrosopy was used to examine the the batch of MK801 
used in displacement experiments. The trace was interpreted by A. Tebbutt and 
compared to MK80I NMRS traces from the literature. It was confirmed that the 
compound analysed was authentic MK801.



*TW

rmv

z i «3h

P
P

M



3 .6 .3  Uptake and retention of [125I]CNS 1261

The general pattern of uptake in all autoradiograms reflected NMDA receptor distribution 

with high levels observed within hippocampal structures and low levels in the 

hypothalamus and cerebellum (Figure 30). [125I]CNS 1261 uptake in each region of 

interest was expressed relative to the amount of [125I]CNS 1261 bound within the 

cerebellum (Table 18).

In both groups of animals receiving MK801, isotope levels within hippocampal regions 

were the highest of all structures examined (approximately 150-200% above that 

observed in the cerebellum). Uptake in cortical regions and hypothalamus were 60 and 

20% greater than cerebellar levels respectively.

The region of interest/cerebellar ratios of MK801 treated animals were compared to the 

corresponding ratios from previous experiments examining [125I]CNS 1261 uptake at 

120 minutes (see section 3.3.2). There was no significant difference in total [125I]CNS 

1261 binding between the control group and both groups treated with MK801 in any of 

the regions examined (Figure 31, see also Table 18).
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FIGURE 30 : Effect of MK801 on [12^I]CNS 1261 uptake in normal rat brain

Representative autoradiograms of [125I]CNS 1261 uptake in normal rat brain at the level 
of the dorsal hippocampus and cerebellum. Administration of pharmacologically active 
doses of MK801 (0.4 ± 6|ig/ml/min. or 1.2 ± 16|ig/ml/min.) had no effect of [125I]CNS 
1261 uptake within any refgion examined. Autoradiograms were compared to images 
obtained in a previous experiment investigating [125I]CNS 1261 uptake in the normal 
brain at 120 minutes.
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TABLE 18
Effect of MK801 on [125I]CNS 1261 uptake

[125r]CNS 1261 MK 801
STRUCTURE uptake (120 min.) 0.4mg/kg + 1.2mg/kg +

6|ig/kg/min 16}ig/kg/min
anterior cingulate cortex 1.69 ±0.10 1.79 ±0.11 1.63 ±"o. 13
genu 1.42 ±0.16 1.44 ±0.06 1.44 ±0.08
caudate nucleus 1.38 ±0.05 1.30 ±0.05 1.36 ±0.04
sensory-motor cortex
layers I- II 1.40 ± 0.05 1.29 ±0.08 1.42 ± 0.07
rv 1.39 ± 0.07 1.48 ±0.09 1.52 ± 0.05
V-VI 1.51 ±0.09 1.45 ±0.07 1.54 ±0.08
corpus callosum 1.47 ± 0.08 1.43 ± 0.05 L51 ±0.08
anterior thalamus 1.58 ± 0.04 1.68 ±0.10 1.56 ± 0.06
hippocampus CA1 2.44 ±0.21 2.58 ± 0.05 2.45 ±0.14
hippocampus CA3 2.43 ±0.19 2.64 ±0.13 2.58 ±0.15
lateral habenular nucleus 1.20 ± 0.03 1.24 ± 0.02 1.26 ±0.10
mediodorsal thalamus 1.61 ± 0.09 1.64 ± 0.07 1.68 ± 0.06
ventrolateral thalamus 1.56 ± 0.09 1.44 ± 0.04 1.49 ±0.10
internal capsule 1.11 ±0.04 1.23 ± 0.02 1.28 ± 0.07
parietal Cortex
layers I-IH 1.55 ± 0.08 1.52 ± 0.04 1.48 ±0.11
rv 1.49 ± 0.05 1.60 ± 0.04 1.63 ± 0.09
V-VI 1.68 ±0.10 1.59 ± 0.04 1.66 ±0.11
hypothalamus 1.05 ± 0.04 1.22 ± 0.01 1.27 ± 0.06
posterior cingulate cortex 1.51 ±0.06 1.49 ± 0.02 1.52 ± 0.07
hippocampus molecular layer 2.91 ± 0.22 2.94 ±0.10 2.89 ± 0.90
dentate gyrus 2.50 ±0.15 2.64 ± 0.08 2.58 ±0.15
auditory cortex
layers I-IH 1.63 ± 0.06 1.60 ± 0.02 1.65 ±0.14
IV 1.64 ± 0.05 1.63 ± 0.07 1.67 ± 0.09
V-VI 1.77 ± 0.05 1.79 ±0.08 1.82 ±0.11
substantia nigra pars compacta 1.24 ± 0.04 1.24 ± 0.00 1.30 ± 0.05
substantia nigra pars reticulata 1.17 ±0.05 1.16 ±0.00 1.22 ± 0.05
medial geniculate body .1.49 ± 0.05 1.47 ± 0.05 1.54 ± 0.09
visual cortex
layers I-IH 1.73 ± 0.09 1.81 ±0.04 1.81 ±0.11
IV 1.64 ± 0.09 1.78 ± 0.07 1.70 ±0.12
V-VI 1.67 ± 0.04 1.77 ± 0.08 1.76 ±0.12
entorhinal cortex 1.91 ±0.11 1.81 ±0.06 1.81 ±0.12
inferior colliculus 1.08 ± 0.01 1.14 ±0.01 1.20 ± 0.04
pons 1.31 ±0.06 1.38 ± 0.01 1.34 ± 0.07
cerebellar hemisphere 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
cerebellar white matter 1.25 ±0.14 1.43 ± 0.04 1.33 ± 0.08
superior olivary nucleus 1.19 ±0.07 1.24 ± 0.07 1.17 ±0.05
[125I]CNS 1261 uptake following treatment with MK801 (0.4mg/kg + 6ug/kg/min or 
1.2mg/kg + 16ftg/kg/min) were compared to [125I]CNS 1261 uptake at 120 min. in a 
previous study (see section 3.3.2) using ANOVA . No significant differences in uptake 
were observed following treatment with MK801 at any of the doses examined.
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FIGURE 31 : MK801 does not displace [125I]CNS 1261 binding in normal brain.

At the doses examined, MK801 had no effect on the level of [125I]CNS 1261 binding in 

regions with high (hippocampus), intermediate (caudate nucleus) or low (hypothalamus) 
NMD A receptor density when compared to [125I]CNS 1261 uptake at 120 minutes from 
a previous experiment (ANOVA). Data are presented as mean ± S.E.M.(n=3-4).



3 .7  [125]MK801 and [125I]CNS 1261 uptake following changes in

arterial CO2 tension

This study consists of an intial short study to investigate the effect of changing arterial 

CO2 tension (hypocapnia and hypercapnia) on [125I]MK801 uptake in the rat. This is 

followed by a more extensive investigation of the effect of hypercapnia only on 

[125I]CNS 1261 uptake in the rat brain

3.7 .1  [125I]MK801 - general observations

Physiological variables were recorded before and 15 minutes after changes in CO2 

tension and are shown in Table 19. Prior to any manipulations (t = 0), physiological 

variables were deemed to be within normal limits and there were no significant 

differences between the three experimental groups.

Manipulation of respiratory status produced distinct changes in paCC>2, and consequently 

pH within the treatment groups. Hyperventilation produced a significant decrease in 

paCC>2 to approximately 22mmHg. The arterial pH of these hypocapnic animals was 

elevated from control values (pH 7.4) to pH 7.6. Increasing the concentration of CO2 in 

inspired air to 20% increased paCC>2 to approximately 180mmHg. The arterial pH of 

these hypercapnic animals was decreased from pH 7.4 to pH 6.9. No differences were 

observed in any of the other parameters.

3 .7 .2  Analysis of [125I]MK801 autoradiograms

Before quantitative analysis, [125I]MK801 uptake in normocapnic animals was observed 

to be greatest within hippocampal structures (CA1, CA3). [125I]MK801 uptake was 

similar within the caudate nucleus, thalamus and cortical regions and no lamination could 

be detected within the cortex. Levels of [125I]MK801 uptake within the hypothalamus 

and cerebellum were decreased compared to cortical regions (Figure 32).
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TABLE 19

Physiological variables following changes in arterial CO2 tension

sample NORMOCAPNIA HYPOCAPNIA HYPERCAPNIA
time (min.) (n = 8) (n = 6) n = 4

PaCC>2 (mmHg) 0 39 ± 1 41 ± 2 38 ±1
15 43 ±1 22 ± 1 * 184 ±5  *

Arterial pH 0 7.44 ± 0.07 7.41 ± 0.01 7.44 ± 0.01
15 7.42 ± 0.01 7.61 ± 0.02 * 6.94 ±0.01 *

paC>2 (mmHg) 0 167 ±11 145 ± 9 165 ± 8
15 178 ±10 196 ± 10 182 ±10

MABP (mmHg) 0 85 ± 4 87 ± 3 90 ± 5
15 86 ± 2 83 ± 1 88 ±3

temperature (°C) 0 37.1 ±0.1 37.0 ±0.1 37.0 ± 0.3
15 37.0 ±0.1 37.1 ±0.1 36.9 ± 0.1

glucose (mM) - 10.4 ±0.6 9.9 ±0.4 9.8 ±0.3
weight (g) - 388 ±11 398 ± 15 359 ±14
n - 8 6 4

Changes in CO2 tension were induced 15 before tracer administration and maintained for 
the duration of the experiment The data represents physiological variables measured 
before manipulations in CO2 tension (t=0) and immediately prior to administration of 
[125i]MK801 (t=15). * p< 0.05 for significant difference between treated and control 
animals (ANOVA, followed by Student's t-test).
Data are presented as mean ± S.E.M.
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FIGURE 32 : Effect of hypercapnic acidosis on [125I]MK801 uptake 

Representative autoradiograms from the level of the dorsal hippocampus (upper) and
125cerebellum(lower) showing [ IJMK801 uptake in normocapnic and hypercapnic

125animals. In normocapnic (control) animals highest levels of [ I]MK801 were

observed within the dorsal hippocampus (CA1) . Hypercapnia had a tendency to 

reduce [125I]MK801 uptake within the hippocampus. (CA1 : hippocampus CA1).



The overall pattern of [125I]MK801 uptake in autoradiograms from hypocapnic animals did 

not differ markedly from those of normocapnic animals. Autoradiograms from hypercapnic 

animals had a more homogeneous appearance with [125I]MK801 uptake within the 

hippocampal formation only slightly above that within the cortex (Figure 32). Consistent 

with the other experimental groups, [125I]MK801 uptake within the hypothalamus and 

cerebellum was decreased relative to cortical regions.

The uptake of [125I]MK801 in 9 individual regions of interest was expressed as a ratio 

relative to [125I]MK801 uptake within the cerebellum. [125I]MK801 uptake ratios for 

normocapnic, hypocapnic and hypercapnic animals are shown in Table 20.

Quantitative analysis of autoradiograms from normocapnic animals confirmed that 

[125ijm K801 uptake was relatively homogeneous in the majority of regions examined, 

approximately 10-20% greater than that observed within the cerebellum. [125I]MK801 

uptake within CA1 and CA3 of the hippocampus was slightly elevated and was 

approximately 30% above that observed within the cerebellum. [125I]MK801 uptake 

within the hypothalamus was comparable to that within the cerebellum (Figure 32).

No significant differences in [125I]MK801 uptake were observed between the hypocapnic 

group and control (normocapnic) animals in any of the regions examined.

Induction of hypercapnia (paC02 = 180mmhg, pH 6.9) was also found to have no

significant effects on [125I]MK801 uptake in any of the regions examined (Figure 33). 

There was a tendency however, for hypercapnic acidosis to reduce [125I]MK801 uptake 

within the hippocampus (CA1, CA3), anterior cingulate cortex and sensory-motor cortex.

A Kolmorgorov-Smimov test (SigmaStat) performed on this data showed the values for 

[125I]MK801 uptake in CA1 were not normally distributed. Since the outlying values were 

within 2 standard deviations of the mean and could not be excluded, all data was 

reanalysed using a Kruskal-Wallis test (SigmaStat). No statistical differences existed 

between the mean values of the treatment groups in any of the structures examined. These 

results support the original statistical analysis and suggest that [125I]MK801 is an 

unsuitable agent to image potential changes in NMDA receptor activation in the normal rat 

brain.
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TABLE 20

[125i]MK801 uptake following changes in arterial CO2 uptake

STRUCTURE NORMOCAPNIA HYPOCAPNIA HYPERCAPNIA
pH 7.4 pH 7.6 pH 6.9

Anterior cingulate cortex 1.12 ±0.02 1.13 ±0.02 1.07 ± 0.01

Sensory-motor cortex 1.11 ±0.02 1.08 ± 0.02 1.03 ± 0.01

Caudate nucleus 1.08 ± 0.02 1.06 ± 0.02 1.06 ± 0.01

Hippocampus CA1 1.28 ± 0.05 1.35 ± 0.04 1.15 ±0.03

Hippocampus CA3 1.22 ± 0.04 1.28 ± 0.03 1.15 ± 0.01

Hypothalamus 1.01 ± 0.02 1.01 ± 0.02 1.00 ± 0.03

Posterior cingulate cortex 1.10 ±0.03 1.10 ±0.04 1.09 ± 0.03

Thalamus 1.13 ±0.03 1.19 ±0.04 1.12 ±0.03

Cerebellum 1 1 1

Uptake in individual regions of interest was expressed as a ratio relative to uptake within 
the cerebellar hemisphere. In all groups uptake was greatest in hippocampus CA1 and 
CA3. No significant differences in uptake were observed between hypo-or hypercapnic 
groups and control animals (ANOVA followed by Student's t-test with Bonferroni 
correction). Data are presented as mean ± SEM.
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FIGURE 33 : The effect of hypercapnic acidosis on [125I]MK801 uptake

Data is redrawn from Table 20 and represent levels of [125I]MK801 uptake in 8 regions 
of interest. Highest levels of uptake in the normocapnic group were observed within the 
hippocampus (CA1 and CA3) and lowest levels were observed within the hypothalamus. 
[125I]MK801 uptake was relatively homogeneous in the other regions examined. 
Hypercapnia had a tendency to reduce [125I]MK801 uptake within the hippocampus, 
anterior cingulate cortex and sensory-motor cortex. Data are mean ± S.E.M., n=4-8.

(CA1, CA3 =dorsal hippocampus, Th = thalamus, Acc = anterior cingulate cortex, Smc 
= sensory-motor cortex, Pcc = posterior cingulate cortex, Cn = caudate nucleus, Hyp = 
hypothalamus).



3.7.3 [125I]CNS 1261 - general observations

Physiological variables were recorded before and 15 minutes after changes in arterial CO2 

tension and are shown in Table 21. Prior to any manipulations (t = 0), physiological 

variables were deemed to be within normal limits and there were no significant 

differences between the three experimental groups.

Manipulation of respiratory status produced distinct changes in paC02, and consequently 

pH within the hypercapnic treatment group. Increasing the concentration of CO2 in 

inspired air to 20% increased paCC>2 to approximately 170mmHg. The arterial pH of 

these hypercapnic animals was decreased from pH 7.4 to pH 6.9 The mean arterial 

blood pressure of hypercapnic animals was also significantly increased compared to 

control animals.

3 . 7 .4  Analysis of [125I]CNS 1261 autoradiograms

Before quantiative analysis, the highest levels of [125I]CNS 1261 uptake were observed 

within the hippocampus (CA1, CA3, molecular layer) in all autoradiograms (Figure 34). 

The uptake of [125I]CNS 1261 in 36 individual regions of interest was expressed as a 

ratio relative to [125I]CNS 1261 uptake within the cerebellum. [125I]CNS 1261 uptake 

ratios for normocapnic and hypercapnic animals are shown in Table 22.

Quantitative analysis of autoradiograms from normocapnic animals showed that 

[125i]CNS 1261 uptake was relatively heterogeneous in the majority of regions 

examined. [125I]CNS 1261 uptake was 60-90% above cerebellar values in cortical areas 

with the highest levels of uptake within deep layers (V-VI). Highest levels of [125I]CNS 

1261 uptake were observed within hippocampal regions (CA1, CA3 and molecular layer) 

where uptake was 2-300% greater than that observed within the cerebellum. Low levels 

of uptake were observed in cerebellar white matter and superior olives where uptake was 

approximately 30% greater than that observed within the cerebellum.
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TABLE 21
Physiological variables following changes in arterial CO2 tension

sample time 
(min.)

NORMOCAPNIA HYPERCAPNIA

PaCC>2 (mmHg) 0 42 ± 3 40 ± 1
15 41 ± 2 166 ± 10**

Arterial pH 0 7.42 ± 0.01 7.44 ± 0.02
15 7.40 ± 0.01 6.93 ±0.01**

pa02 (mmHg) 0 161 ±17 198 ± 10
15 173 ±33. 208 ± 3

MABP (mmHg) 0 86 ± 3 80 ± 3
15 80 ± 2 101 ±2**

temperature (°C) 0 36.7 ± 0.32 37.1 ± 0.09
15 36.8 ± 0.57 37.2 ±0.19

weight (g) - 334 ±30 330 ±25
n - 3 3

Changes in CO2  tension were induced 15 minutes before tracer administration and 
maintained for the duration of the experiment. The data represents physiological 
variables measured before manipulations in CO2  tension (t=0) and immediately prior to 
administration of [125I]CNS 1261 (t=15). **p< 0.01 for significant difference between 
hypercapnic and normocapnic animals (Student's unpaired t-test). Data are presented as 
mean ± S.E.M.
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TABLE 22
[125I]CNS 1261 uptake following changes in arterial CCb tension

STRUCTURE

anterior cingulate cortex 
genu
sensory motor cortex
layer I-HI
layer IV
layers V-VI
caudate nucleus
corpus callosum
anterior thalamus
hippocampus CA1
hippocampus CA3
lateral habenular nucleus
mediodorsal thalamus
ventrolateral thalamus
internal capsule
parietal cortex
layers I-EU
layer IV
layer V-VI
hypothalamus
posterior cingulate cortex
hippocampus molecular layer
dentate gyrus
auditory cortex
layers I-IH
layer IV
layer V-VI
substantia nigra pars compacta
substantia nigra pars reticulata
medial geniculate body
visual cortex
layers I-IH
layer IV
layers V-VI
entorhinal cortex
inferior colliculus
pons
cerebellar cortex 
cerebellar white matter 
superior olives

Normocapnia Hypercapnia
pH 7.4 pH 6.9

2.01 ±0.21 1.09 ±0.13*
1.75 ±0.28 1.65 ±0.15

1.64 ±0.13 1.09 ±0.07**
1.73 ±0.15 1.00 ±0.04**
1.86 ±0.18 1.16 ±0.04**
1.66 ±0.13 1.39 ±0.20
1.82 ± 0.06 1.92 ±0.31
2.03 ± 0.24 1.74 ± 0.25
3.19 ±0.19 2.22 ± 0.33
3.42 ± 0.23 2.12 ±0.26**
1.40 ± 0.05 1.51 ±0.30
1.89 ± 0.20 1.33 ±0.03*
1.51 ±0.14 1.30 ± 0.05
1.77 ± 0.30 1.45 ±0.19

1.70 ±0.14 1.09 ± 0.07**
1.66 ± 0.08 1.15 ±0.08**
1.91 ±0.19 1.40 ± 0,08
1.33 ±0.14 1.02 ± 0.05
1.52 ±0.21 1.31 ±0.16
4.13 ±0.36 2.50 ± 0.35*
3.85 ± 0.25 2.31 ±0.24*

1.84 ±0.16 1.18 ±0.04**
1.93 ±0.14 1.28 ± 0.08**
2.39 ±0.18 1.59 ± 0.20*
1.27 ± 0.25 1.30 ±0.10
1.13 ±0.25 1.32 ± 0.05
1.50 ± 0.35 1.56 ± 0.25

1.73 ± 0.20 1.30 ±0.21
1.80 ±0.12 1.42 ± 0.23
2.00 ± 0.19 1.46 ±0.19
2.31 ±0.10 1.51 ±0.28
1.00 ± 0.20 1.21 ±0.11
1.42 ± 0.29 1.44 ± 0.08
1.00 ± 0.00 1.00 ± 0.00
1.28 ± 0.26 1.25 ± 0.25
1.22 ±0.21 1.19 ±0.01

Uptake of [125I]CNS 1261 in individual regions of interest were expressed as a ratio 
relative to uptake within the cerebellum. Roman numerals (I-VI) indicate the cortical 
layer examined. [125I]CNS 1261 uptake was greatest in the hippocampus in both 
groups. Data are presented as mean ± S.E.M., n = 3. *p<0.05. **p<0.01 (Students 
unpaired t-test).
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Induction of hypercapnia had a tendency to reduce [125I]CNS 1261 uptake in all of the 

regions examined. Hypercapnia had a marked effect in 13 of the 36 regions examined, 

significantly reducing [125I]CNS 1261 uptake in anterior cingulate cortex, sensory motor 

cortex (layers 1-VI), hippocampus CA3, mediodorsal thalamus, parietal cortex (layers I- 

IV), hippocampus molecular layer, dentate gyrus and auditory cortex (layers I-VI). 

Following hypercapnia the highest levels of uptake were still observed within 

hippocampal regions, despite [125I]CNS 1261 uptake being reduced by over 100%. This

I reduction in [125I]CNS 1261 uptake within the hippocampus is clearly visible in the
I

autoradiographic images (Figure 34). Reductions in [125I]CNS 1261 uptake of 50-80%

| were observed in cortical regions. Reductions in [125I]CNS 1261 uptake in regions with
i
| a lower density of NMD A receptors were of a smaller magnitude, typically <30% and
i

! were not significant.

| Relative [125I]CNS 1261 uptake in the same 8 regions examined in section 3.7.2 were

| redrawn from Table 22 and are shown in Figure 35.

| These results suggest that [125I]CNS 1261 can image the heterogeneity in NMDA

receptor activation within the normal brain and, is a suitable agent to image reductions in
!
I NMDA receptor activation induced by hypercapnic acidosis.

I

i
Ii
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FIGURE 34 : Effect of hypercapnic acidosis on [125I]CNS 1261 uptake

Autoradiograms from individual experiments of [125I]CNS 1261 uptake at the level of the 
dorsal hippocampus. [125I]CNS 1261 uptake in normocapnic animals (upper) was 
compared to that in hypercpnic animals (lower). Hypercapnic acidosis decreased the 
amount of [125I]CNS 1261 uptake within CA1 and CA3 regions of the hippocampus in 
all animals.
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FIGURE 35 : Effect of hypercapnic acidosis on [125I]CNS 1261 uptake

Data is redrawn from Table 22 and represent levels of [125I]CNS 1261 uptake in 8 
regions of interest Highest levels of uptake in the normocapnic group were observed 
within the hippocampus (CA1 and CAS) and lowest levels were observed within the 
hypothalamus. Hypercapnia significantly reduced [125I]CNS 1261 uptake within the 
hippocampus CA3, thalamus, anterior cingulate cortex and sensory-motor cortex.
** p < 0.01, * p < 0.05 (Student's unpaired t-test). Data are mean ± S.E.M., n=4-8

(CA1, CA3 =dorsal hippocampus, Th = mediodorsal thalamus, Acc = anterior cingulate 
cortex, Smc = sensory-motor cortex (IV), Pcc = posterior cingulate cortex, Cn = caudate 
nucleus, Hyp = hypothalamus).



3.8. [125I]CNS 1261 uptake following intracortical injection of NMDA 

or CSF

3.8.1. Verification of dose

Initial investigations examined the effect of injecting NMDA (9 fimoles) in a volume of 

l|il. The practical aspects of injecting such a small volume of fluid and the inability to 

locate the position of the injection site on autoradiograms prompted a change to the 

experimental protocol. The injection volume was increased to 3|il, thus increasing the 

amount of NMDA injected to 27|imoles.

The ability of this dose of NMDA to induce receptor activation was verified by [14C]2- 

deoxyglucose autoradiography. [14C]2-deoxy glucose (50p.Ci) was administered 15 

minutes after intrastriatal injection of NMDA. Brains were removed and processed for 

autoradiography 45 minutes after injection of tracer.

Following NMDA injection, increases in glucose utilisation were observed in all layers 

of the sensory motor cortex (Table 23). The general pattern of uptake at the site of 

NMDA injection showed a pale core region where glucose utilisation was reduced by 

50% relative to the corresponding area of the contralateral cortex, surrounded by a rim 

of increased glucose utilisation (Figure 36). Glucose utilisation in this rim was 

approximately 2.5 times greater than in corresponding region of the contralateral 

hemisphere.

3.8.2. General Observations

In these investigations, [125I]CNS 1261 was administered 15 minutes after intrastriatal 

injection of NMDA (or CSF) and the animals sacrificed at 5min., 60min.and 120min. 

thereafter. Physiological and respiratory variables were recorded prior to injection of 

NMDA or CSF (t=0 min.) and before intravenous administration of [125I]CNS 1261 

(t=15 min.) and are shown in Table 24.
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TABLE 23

Changes in glucose utilisation following intracortical injection of NMDA

Glucose Use (jimoles/lOOg/min.
Animal 1 Animal 2

STRUCTURE ipsi contra ipsi contra
anterior cingulate cortex 82 82 74 75
genu
sensory motor cortex

33 31 33 30

layers I-DI 113 73 69 59
layer IV 92 62 73 63
layers V-VI 43 51 127 60
caudate nucleus 86 95 83 86
corpus callosum 32 35 43 38
anterior thalamus 84 86 52 48
hippocampus CA1 41 41 34 42
hippocampus CA3 77 82 64 79
lateral habenular nucleus 82 82 83 76
mediodorsal thalamus 53 56 48 43
ventrolateral thalamus 53 61 58 50
internal capsule 
parietal cortex

23 24 20 16

layers I-HI 83 78 47 47
layer IV 63 64 44 45
layers V-VI 64 64 48 46
hypothalamus 41 42 42 47
posterior cingulate cortex 88 86 67 70
hippocampus molecular layer 45 50 55 51
dentate gyrus 
auditory cortex

97 100 95 85

layers I-IH 76 98 65 63
layer IV 80 87 52 58
layers V-VI 66 81 54 59
substantia nigra pars compacta 77 81 88 88
substantia nigra pars reticulata 72 68 46 45
medial geniculate body 
visual cortex

50 52 38 42

layers I-DI 62 73 51 56
layer IV 67 80 48 52
layers V-VI - 58 62 47 47
entorhinal cortex 58 61 51 45
inferior colliculus 62 59 56 53
pons 37 38 45 41
cerebellar hemisphere 35 38 44 36
cerebellar white matter 23 21 24 22
superior olivary nucleus 44 49 53 50

Glucose utilisation was measured by [14C]2-deoxyglucose autoradiography following 
injection of NMDA into the ipsilateral sensory-motor cortex. Data are individual 
values of glucose use within the ipsilateral and contralateral hemispheres of the 2 
experimental animals investigated. Roman numerals indicate the cortical layer 
examined.
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FIGURE 36 : Glucose use within the parietal cortex is increased following injection 
of NMDA

Representative autoraiogram illustrating glucose use afer unilateral injection of 
NMDA into the parietal cortex (left hemisphere) at the level of the injection site. 
Increased glucose use is evident in the zone of tissue bordering the injection site 
(arrowheads). Glucose use in this border zone was 250% above that in 
corresponding regions of the contralateral hemisphere.



Injection of NMDA or CSF into the sensory-motor cortex had no effect on any of the 

parameters examined. The physiological variables of animals receiving an intracortical 

injection of NMDA were not different from animals receiving an injection of vehicle at 

any of the time points examined. No differences in physiological variables were 

observed within the experimental groups.

3.8.3. Histology

Additional brain sections from these animals were stained with haematoxylin and eosin 

(H & E). While fresh frozen brain sections do not preserve cell morphology as well 

as tissue fixed with formaldehyde, these sections gave an indication of the changes 

caused by intracortical injection of NMDA and CSF and confirmed the presence of an 

injection site. In all sections, an area of pallor was evident following staining which 

corresponded in shape and size to the pale zone surrounding the injection site on 

autoradiographic films (Figures 37-39). At all time points a boundary could be 

delineated between the area of pallor and surrounding histologically normal tissue 

however this was more defined following injection of NMDA (Figure 40).

At all time points examined, the area of pallor was larger following NMDA injection. 

In addition to the loss of stain within this area, neuronal cells had a shrunken 

appearance. At later time points there was evidence of shrunken neurons outwith the 

area of pallor. In all cases cells within the contralateral hemisphere were histologically 

normal (Figures 41-43).

3.8.4. Uptake and retention of [125I]CNS 1261

The in vivo uptake and retention of [125I]CNS 1261 was examined in 38 anatomically 

discrete regions 5,60 and 120 minutes after intracortical injection of NMDA or CSF. 

[125I]CNS 1261 uptake in individual regions of interest was expressed as a ratio 

relative to uptake within the cerebellar hemisphere. Ratios of [125I]CNS 1261 uptake 

relative to cerebellar levels are shown in appendix 2.



CSF injection NM D A injection

FIGURE 37 : Effect of NMDA (or CSF) injection on [125I]CNS 1261 uptake 5 min. 
after administation

125Representative autoradiograms (upper) showing [ IJCNS 1261 uptake 5 min. after 
intracortical injection o f CSF (left) or NMDA (right). Corresponding haematoxylin 
and eosin (H&E) stained sections (lower) show that the size and shape of the area of 
pallor in these sections is similar to that observed in autoradiograms. The site of the

125injection is marked with an arrow. Note the decrease in [ IJCNS 1261 uptake within 
the insular cortex in both autoradiograms (arrowhead).



CSF injection NM DA injection

FIGURE 38 : Effect of NMDA (or CSF) injection on [12:>I]CNS 1261 uptake 60 min. 
after administation

125 nRepresentative autoradiograms (upper) showing [ IJCNS 1261 uptake 60 min. after 
intracortical injection of CSF (left) or NMDA (right). Corresponding haematoxylin 
and eosin (H&E) stained sections (lower) show that the size and shape of the area of 
pallor in these sections is similar to that observed in autoradiograms. Note the rim of 
increased [123I]CNS 1261 uptake surrounding the area of pallor in both 
autoradiograms (arrows).



CSF injection NM DA injection

FIGURE 39 : Effect ofNM DA (or CSF) injection on [123I]CNS 1261 uptake 120 min. after 
administation

125Representative autoradiograms (upper) showing [ IJCNS 1261 uptake 120 min. after 
intracortical injection of CSF (left) or NMDA (right). Corresponding haematoxylin and eosin 
(H&E) stained sections (lower) show that the size and shape of the area of pallor in these

125sections is similar to that observed in autoradiograms. Note the rim of increased [ IJCNS 
1261 uptake surrounding the area of pallor in following NMDA injection (arrows).
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FIGURE 40 : Comparison of the boundary between the area of pallor and histologically 
normal tissue at 120 minutes

High power (x 50) photomicrographs taken from the boundary zone between the area of 
pallor and histologically normal tissue 120 minutes after intracortical injection of NMDA 
(upper) or CSF (lower) into the ipsilateral cortex. Note that the boundary was more 
defined following NMDA injection.
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FIGURE 41 : High power photomicrographs from the ipsilateral and contralateral cortex 
5 minutes after injection of NMDA or CSF

High power photomocrographs (x 50) were taken from the area of pallor (ipsilateral 
cortex) and from the corresponding area of the contralateral hemisphere 5 minutes after 
intracortical injection of NMDA (upper) or CSF (lower). Note the loss of staining within 
the ipsilateral cortex (left).
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FIGURE 42 : High power photomicrographs from the ipsilateral and contralateral cortex 
60 minutes after injection of NMDA or CSF

High power photomocrographs (x 50) were taken from the area of pallor (ipsilateral 
cortex) and from the corresponding area of the contralateral hemisphere 60 minutes after 
intracortical injection of NMDA (upper) or CSF (lower). Note the loss of staining within 
the ipsilateral cortex (left).



FIGURE 43 : High power photomicrographs from the ipsilateral and contralateral cortex 
120 minutes after injection of NMDA or CSF

High power photomocrographs (x 50) were taken from the area of pallor (ipsilateral 
cortex) and from the corresponding area of the contralateral hemisphere 120 minutes after 
intracortical injection of NMDA (upper) or CSF (lower). Note the loss of staining within 
the ipsilateral cortex (left).



Five minutes after intravenous injection the distribution of [^IJC N S 1261 in the 

contralateral hemisphere was highest within areas known to have high blood flow, 

such as the anterior thalamus and cortical areas (layers V-VI > layer IV > layers I-M, 

Figure 37). High levels of uptake were also observed within the supraoptic and 

paraventricular hypothalamic nuclei and mamillary body. Intermediate levels of uptake 

were observed in thalamus and lowest levels of uptake in the hippocampus and 

hypothalamus.

Intracortical injection of NMDA or CSF produced distinct alterations in [125I]CNS 

1261 uptake within the ipsilateral hemisphere. Intracortical injection of both NMDA 

and CSF produced a general decrease in [125I]CNS 1261 uptake in the anterior 

cingulate, sensory motor, parietal, auditory, posterior cingulate, visual and entorhinal 

cortices. A reduction on [125I]CNS 1261 uptake was also observed within the insular 

cortex (Figure 37). In addition, intracortical injection of NMDA produced an intensely 

'white zone' on the autoradiograms which was localised around the injection site. 

This 'white zone' extended through all the cortical layers and for approximately 

400|im on either side of the injection site. This 'white zone' was bounded by a 

narrow margin of increased [125I]CNS 1261 uptake.

Intracortical injection of CSF produced a smaller and less intense 'white zone' at the 

injection site. A narrow boundary of increased uptake was less evident in these 

animals.

Sixty minutes after intravenous injection the highest levels of [125I]CNS 1261 uptake 

were observed within the hippocampus (80% above that within the cerebellum). 

Injection of NMDA or CSF produced alterations in [125I]CNS 1261 uptake within the 

ipsilateral cortex. NMDA injection produced a lesion with a pale core area surrounded 

by a narrow border of increased uptake, the size and extent of the lesion is detailed in 

Figure 44.
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FIGURE 44 : Size and extent of lesions 60 minutes after injection of NMDA or CSF

The size of the lesions on individual [125IJCNS 1261 autoradiograms 60 minutes after 
intracortical injection of NMDA (upper) and CSF (lower) were measured by area 
analysis and plotted against stereotaxic level. NMDA injection produced larger more 
extensive lesions than CSF injections.



At its maximum the pale core area measured between 2-6 mm2 and extended 

approximately 6mm. [125I]CNS 1261 uptake within the pale core area was 

approximately 50% lower than in the corresponding area of cortex on the contralateral 

hemisphere. [125I]CNS 1261 uptake within the border zone was 40% above that in 

the darkest area of the contralateral hemisphere.

In contrast, CSF injection produced much smaller, more localised lesions (Figure 44). 

Extremely small (<1 mm2) lesions were measured in two animals and a slightly larger 

lesion (2mm2) in the third animal investigated. A rim of increased [125I]CNS 1261 

uptake was observed around the largest lesion (20% above contralateral hemisphere), 

however this was less evident than in NMDA-induced lesions.

120 minutes after intravenous injection, [125I]CNS 1261 uptake was similar to that 

described in previous experiments at 60 minutes and reflected the classical pattern of 

NMDA receptor distribution, with highest levels within the hippocampus, intermediate 

levels in the thalamus and lowest levels within the hypothalamus and cerebellum. Both 

NMDA and CSF injection produced alterations in [l25I]CNS 1261 within the 

ipsilateral cortex. NMDA injection produced a large lesion, the size and extent of 

which is shown in Figure 45. The lesion could be characterised as an extensive area 

of pallor (40% lower than contralateral levels) extending from the cortical surface to 

immediately above the corpus callosum. At its maximum, the area of pallor measured 

between 4-8 mm2 and extended approximately 6mm from the injection site. A narrow 

margin of increased [125I]CNS 1261 uptake was observed surrounding this paler core 

area. [12^I]CNS 1261 uptake in this area was approximately 70% higher than in 

corresponding areas of the contralateral hemisphere. CSF injection produced a 

smaller, much more circumscribed lesion than NMDA injection (Figure 45). This 

lesion could still be described as an areal of pallor (< lmm2) bounded by a rim of 

increased uptake (20% above contralateral values), however this was less evident than 

in NMDA-induced lesions.
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FIGURE 45 : Size and extent of lesions 120 minutes after injection of NMDA or CSF

The size of the lesions on individual [125I]CNS 1261 autoradiograms 120 minutes 
after intracortical injection of NMDA (upper) and CSF (lower) were measured by area 
analysis and plotted against stereotaxic level. NMDA injection produced larger more 
extensive lesions than CSF injections.



In a single animal, [125I]CNS 1261 uptake at 120 minutes after intracortical injection 

of CSF did not reflect the pattern described in previous experiments with the same 

procedure (Figure 46). Notes taken during this experiment state that some damage 

was caused to pial vessels during removal of the bone. Sub cortical blood was evident 

when the brain was cut and processed for autoradiography indicating inadvertant 

rupture of a blood vessel during injection. H & E staining showed an area of pallor 

extending beyond the subcortical white matter into the caudate nucleus. Disruption of 

white matter was evident within this area (Figure 46). This animal was excluded from 

the CSF injection group due to these observations. Examination of this autoradiogram 

showed fairly homogeneous low levels of [12̂ I]CNS 1261 uptake throughout the 

brain. However, areas of increased [125I]CNS 1261 uptake (approximately 3 times 

greater than in corresponding contralateral areas) exist within the ipsilateral cortex and 

within the caudate nucleus.
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FIGURE 46 : [i23I]CNS 1261 uptake is increased in areas of damage

The upper figure shows a representative autoradiogram from an experiment with 
abnormal [125I]CNS 1261 uptake following CSF injection. [12dI]CNS 1261 was 
increased at the injection site and in subcortical region within the ipsilateral 
hemisphere (arrows). High power photomicrographs (lower) show that there is 
damage within the subcortical white matter of the ipsilateral cortex (left) . 
Contralateral subcortical white matter is shown on the right for comparison.



CHAPTER IV 

DISCUSSION



4.1 CNS 1261 acts as a non-competitive NMDA receptor antagonist

Potential candidates for use as in vivo imaging agents must satisfy a number of criteria 

in vitro. Ligand binding must be pharmacologically selective, and of high affinity for 

the receptor target of interest.

Initial in vitro binding experiments showed that CNS 1261, an analogue of Cerestat 

(Aptiganel, CNS 1102) inhibited [3H]MK801 binding to rat brain membranes with Kj =

25nM in Tris buffer. Wong et al (1988) reported that MK801 displaced [3H]MK801 

binding to rat brain homogenates with Kj = 3nM, with similar results for the inhibition

of [3H]TCP binding. CNS 1261 is therefore approximately 10 times less potent than 

MK801 in inhibiting [3H]MK801 binding. The association affinity constant (Kj) of

CNS 1261 is comparable with the reported values for inhibition of [3H]MK801 binding 

by known non-competitive NMDA receptor antagonists TCP and PCP (14nM and 

42nM respectively). The dissociative anaesthetic ketamine inhibits [3H]MK801 binding 

with Kj = lpM (Wong et al, 1988).

Results of the commercial screen show that at the doses examined, CNS 1261 caused a 

99% inhibition of [3H]MK801 binding. CNS 1261 showed little affinity for other 

subtypes of glutamate receptor, inhibiting [3H]AMPA binding by only 3%. CNS 1261 

also did not display affinity at the transmitter recognition site or the glycine site of the 

NMDA receptor complex.

Non-competitive antagonists can generally be classified into groups which exhibit more 

or less selectivity between MK801 and a  opioid sites (Wong et al, 1988). Modification 

of the structure of DTG (N, N'-di-o-tolylguanidine), a known selective a  receptor ligand, 

led to the synthesis of novel diarylguanidines which exhibit high selectivity for the 

NMDA receptor ion channel site and weak or negligible for a receptors. Compounds 

having ortho or meta substituents on the phenyl rings, such as CNS 1102 (N-(l- 

naphthyl)-Af-(3-ethylphenyl)-N-methylguanidine), show greater affinity for the NMDA 

receptor ion channel site (Reddy et al, 1994). CNS 1261, a structural analogue of CNS 

1102, displays a clear selectivity for the NMDA receptor ion channel site and does not
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display activity in the opiate receptor binding assay (5% inhibition of pH]naloxone 

binding).

It was of interest that CNS 1261 was found to inhibit [3H]prazosin binding to the a l  

adrenoceptor by 33%. While 'activity' in a given assay was described as > 50% 

inhibition, this effect may be an indication of potential sympathomimetic effects of this 

compound.

Observations from in vitro binding experiments suggest that CNS 1261 displays both 

high affinity and selectivity for the MK801 binding site within the NMDA receptor 

channel.

The [14C]2-deoxyglucose autoradiographic technique allows an anatomically 

comprehensive assessment of function-related alterations in cerebral glucose use in vivo. 

The functional activity of any brain region is intrinsically linked with the energy 

consumption within that region. Local alterations in glucose use have been used to 

demonstrate the involvement of discrete brain areas during various physiological and 

pharmacological interventions. The systemic administration of NMDA channel blocking 

agents such as MK801 result in overt behavioural responses and marked alterations in 

glucose use within the central nervous system which can be distinguished from those 

produced by competitive NMDA antagonist (Kurumaji et al, 1989, Shaikey et al, 1994). 

CNS 1261 administration produced behavioural effects at all doses examined (1, 3, 

lOmg/kg) consisting of stereotypical side-to-side and cyclical head movements, sedation 

and a reduced response to external stimuli These overt behavioural changes were similar 

to those described by others following administration of MK801 (Kurumaji et al, 1989, 

McCulloch and Iversen, 1990).

Administration of CNS 1261 (3mg/kg and lOmg/kg) to conscious animals produced a 

dose-dependent moderate hypertension (e.g. 20-40 mmHg increase in mean arterial 

pressure compared to pre-injection levels). A modest increase in PaCC>2 was also 

observed following administration of CNS 1261 (lOmg/kg). Studies investigating the 

effect of MK801 on glucose use reported comparable effects on cardiovascular and
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respiratory parameters. Administration of competitive NMDA antagonists, such as CPP 

did not significantly alter arterial pressure (Kurumaji et al, 1989, Nehls et al, 1990., 

Sharkey et al, 1994). In ligand binding studies, CNS 1261 does not interact with 

dopamine, serotonin, muscarinic, GABA or benzodiazepine binding sites, however 

sympathomimetic effects are implied from its moderate activity at the a - 1 adrenoceptor. 

The increase in mean arterial pressure after administration is consistent with such an 

effect. Baroreceptor reflexes activated by a rise in arterial pressure cause a reflex 

bradycardia and inhibition of respiration which may account for the observed increase in 

CO2 tension following administration of the highest dose of CNS 1261 

CNS 1261 administration (l-10mg/kg) resulted in statistically significant increases in 

glucose use within the hippocampus molecular layer, dentate gyrus, limbic system 

(posterior cingulate cortex, caudal entorhinal cortex mamillary body, anteroventral 

thalamus), retrosplenial cortex and the myelinated fiber tracts of the fornix. Glucose use 

within the neocortex and inferior colliculus was particularly sensitive to CNS 1261 

administration. The overall pattern of alterations in glucose use produced by 

administration of CNS 1261 was extremely similar to that described for MK801 

(Kurumaji et al, 1989, Nehls et al, 1990, for review see McCulloch and Iversen, 1991, 

Kurumaji et al, 1993). The regional changes in glucose utilisation following 

administration of CNS 1261 do not correlate simply with the NMDA receptor density 

(Jarvis et al, 1987, Wong et al, 1988). While glucose use was increased in areas such as 

the hippocampal molecular layer which possesses a high number of NMDA receptors, no 

changes in glucose use were observed within the CA1 region of the hippocampus which 

has one of the highest densities of NMDA receptors in the central nervous system 

The magnitude of elevations in glucose use within limbic structures was generally in the 

region of 80%, however exceptionally large increases in glucose use (100-200%) were 

observed within entorhinal cortex (caudal) and within the mamillary body.

The dentate gyrus and hippocampus receive a major glutamatergic innervation from the 

entorhinal cortex via the perforant pathway (White et al, 1977). The activation and 

hypermetabolism observed in some limbic structures following administration of CNS
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1261 is consistent with an increased firing in the perforant pathway in response to 

receptor blockade within the hippocampal formation. Agents producing a use-dependent, 

non-competitive blockade of the NMDA receptor increase firing in the perforant pathway, 

leading to a progressive intensification of the blockade and corresponding increase in 

glucose use not only within the hippocampus and entorhinal cortex, but throughout the 

entire Papez circuit (entorhinal cortex -> hippocampus -> mamillary body -> anterior 

thalamus -> cingulate cortex -> entorhinal cortex). Lesions of the entorhinal complex 

remove the ability of MK801 to increase glucose use in the hippocampus molecular layer 

and dentate gyrus (Kurumaji and McCulloch, 1990)

The use of the/ranking function provides a means of incorporating all the information 

available from the dose-response relationships for each agent in each of the 36 regions 

investigated and provides a valuable approach for comparing and contrasting the 

anatomical patterns of glucose use alterations evoked by CNS 1261 and MK801 

treatment The utility of the/ranking function has previously been illustrated by its 

ability to separate the functional effects of the benzodiazepine diazepam, from those of the 

GABA agonists muscimol and THDP (Kelly et al, 1986). Despite the broad similarities in 

regional responsiveness to CNS 1261 and MK801, differences in/values were observed 

in a small number of regions indicating subtle differences in sensitivity in the effects of 

the two agents on glucose use in certain central nervous system regions. In the present 

study glucose use in the majority of regions examined was generally equipotent The 

entorhinal cortex (caudal) was the most responsive region to both agents, how ever/ 

values for CNS 1261 and MK801 were 3.45 and 1.85 respectively. In the same way, 

glucose use in the anteroventral thalamus, mamillary body, inferior colliculus and fornix 

was more sensitive to CNS 1261 than MK801. In contrast, the entorhinal cortex (rostral) 

was much less sensitive to CNS 1261 than to MK801 i f - 0.024 and 0.79 respectively). 

The clustering of /  function data for both agents into a well accepted functional system 

suggests that the similarity of effects of the 2 agents are not random numerical artefacts. 

The precise mechanism underlying the subtle functional heterogeneity of the 2 agents is 

unknown. It is suggested that this does not reflect an action on other receptor
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populations since both agents display high affinity and specificity for the NMDA channel 

binding site. The heterogeneity may imply preferential actions of the compounds on 

different subtypes of NMDA receptor in certain brain regions (Nakanishi, 1992).

The overall pharmacological effects of CNS 1261 on radioligand binding in vitro and on 

glucose use in vivo are consistent with the action of a non-competitive NMDA receptor 

antagonist. This is further confirmed by the action of CNS 1261 on electrically-induced 

cortical spreading depression (CSD) in vivo.

CSD is a transient suppression of electrical activity with associated membrane 

depolarisation which propagates across the cortex at a rate of 2-5mm/min. This 

phenomenon has been associated with the pathology of a number of neurological 

conditions, including stroke, epilepsy, and migraine with aura (McLachlan and Girvan, 

1994). While the driving force for CSD propagation is high extracellular K+ (>10- 

12nM), a transient, localised release of glutamate and Ca2+ influx through the NMDA 

receptor are also essential (Nellgard and Wieloch, 1992, Obrenovitch, 1995). CSD is 

consistently observed in regions adjacent to the ischaemic core produced by middle 

cerebral artery occlusion, and has been implicated as a factor which ultimately determines 

infarct size (Nedergaard and Hansen, 1995). This short study was carried out at Pfizer 

Central Research, Sandwich. While this study was not central to ligand development, it 

provided a further insight into CNS 1261 pharmacology in vivo (protocol detailed in 

Appendix 1). CNS 1261 (lmg/kg) completely abolished initiation and propagation of 

CSD in all animals studies. Inhibition of responses occurred 14 ± 1 (n = 4) min. post

injection. Blockade of responses remained evident 90 minutes post-administration.

4 .2  [125I]CNS 1261 uptake in the normal ra t brain

[125i]MK801 has been employed to map the distribution of activated NMDA receptor 

complexes throughout the central nervous system (McCulloch et al, 1992, Wallace et al, 

1992). The principle underlying this technique is that ligands acting at the NMDA 

receptor ion channel bind in a use-dependent manner, i.e. MK801 (and Iodo-MK801)
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preferentially gain access to the binding site within the channel when the receptor has 

been activated (Huettner and Bean, 1988, MacDonald and Nowak, 1990). MK801 and 

Iodo-MK801 are highly lipophilic molecules and readily cross the blood-brain barrier. 

Therefore, following intravenous injection of tracer levels of [125I]MK801, the 

subsequent autoradiographic detection and measurement of [125I] in discrete brain 

regions allows quantitative mapping of [125I]MK801 binding. Within the normal brain, it 

is suggested that the level of NMDA receptor activation reflects the distribution of 

receptors such that uptake of radiolabelled tracers directed towards the NMDA ion- 

channel binding site is greatest in areas with a large population of receptors 

(hippocampus), lower in areas of intermediate density (cortex and thalamus) and least in 

areas with a paucity of receptors (hypothalamus and cerebellum, Monaghan and Cotman 

1985).

In the present thesis a modification of the [125I]MK801 in vivo binding technique 

described by McCulloch et al (1992) was used to investigate the in vivo uptake and 

retention of [125I]CNS 1261, to elucidate whether this novel tracer can be used to map 

the distribution and hence the activation of the NMDA receptor-channel complex in the 

normal brain.

In order to take into account the degree of non-specific binding of tracers within the 

brain, densitometric measures of isotope levels in forebrain structures were compared 

with cerebellar isotope levels. It was suggested that tracer uptake within the cerebellum 

serves as a measure of non-specific binding due to the paucity of NMDA receptors in this 

region (McCulloch et al, 1992).

Quantitative autoradiographic studies using [3H]MK801 describe a 5 fold greater receptor 

density within the CA1 region of the hippocampus than in the cerebellum (150 fmol/mg 

compared to 30 fmol/mg respectively, Bowery et alt 1988). This is supported by 

observations from studies using [3H]TCP where receptor densities were 2-6 fold greater 

in CA1 than in the cerebellum (Sircar and Zukin, 1985, Hosford et aU 1990). In addition 

to these findings radioligand binding studies have demonstrated differences in the affinity
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of ligands for NMDA receptors throughout the rat brain. The affinity of [3H]TCP was 

10 times higher for NMDA receptors within the cortex and hippocampus compared to the 

medulla oblongata and cerebellum, implying non-competitive NMDA receptor antagonists 

bind preferentially to sites within the forebrain (Vignon et al, 1986). Studies by Sakurai 

(1991) confirmed these observations however the differences in affinity were of a small 

magnitude (< 1 log unit). Other radioligand binding studies showed that cerebellar 

receptors were not labelled by low concentrations of [3H]MK801 (Bowery et al, 1988). 

Studies by Nakanishi (1992) showed that the heterogeneity can be attributed to 

differential expression of subunits, the cerebellum expresses NR2C subunits which have 

been shown to possess a lower affinity for antagonists. Therefore, due to both the lower 

density of NMDA receptors and the observed lower affinity of non-competitive 

antagonists in this region, the cerebellum appears to be an appropriate measure of non

specific binding.

The initial uptake of lipophilic molecules that enter the central nervous system with no 

diffusion restriction should be dominated by their rate of delivery to the tissue (Rapoport 

et aU 1976). Five minutes after administration, both [125I]CNS 1261 and [125I]MK801 

uptake was observed to be highest in areas known to have high blood flow, such as the 

anterior cingulate cortex and lateral habenulae (Table 25). Low levels of tracer were 

observed in areas with low blood flow. Despite similarities in the overall pattern of 

distribution of the two tracers, the appearance of the autoradiograms were markedly 

different
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TABLE 25
Tracer uptake appears to reflect cerebral blood flow (CBF) 5 minutes after administration

STRUCTURE CBF
(ml/lOOg/min.)

[l25l]MK801
OiCi/g)

[125I]CNS 1261 
(|xCi/g)

Lateral habenular nucleus 146 152 62
Anterior cingulate cortex 119 120 61

Hippocampus 109 76 33

Corpus callosum 36 52 22

The absolute amount of [125I]MK801 or [125I]CNS 1261 uptake (|iCi/g) within selected 
structures 5 minutes after administration was compared to cerebral blood flow values for 
these regions. Cerebral blood flow values (ml/lOOg/min.) were taken from a previous 
study carried out by Gotoh et al, 1990. It can be seen that the highest levels of tracer 
were observed within areas with high CBF values. Low levels of tracer were observed 
within white matter areas such as the corpus callosum which has correspondingly lower 
CBF values.
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[125i]MK801 uptake was diffuse and was reminiscent of autoradiograms produced by 

the blood flow tracer [99mTc]HMPAO (Gartshore, 1996).

In contrast a greater degree of resolution was observed in [125I]CNS 1261 

autoradiograms and increased uptake was observed in layer IV of the cerebral cortex 

and within the supraoptic and paraventricular hypothalamic nuclei. The increased 

uptake within these regions may be attributed to the high capillary density of these 

regions. The distribution of capillaries within the brain is heterogeneous (Zeman and 

Innes, 1963). The heterogeneity is structurally organised and correlates with the number 

of synapses within the region, the total length of the vessels in a unit volume of tissue is 

much greater in grey matter than in white matter. Capillary density also differs greatly 

within grey matter regions, with sensory and correlation centres more richly vascular 

than motor regions. Brain areas that possess a high density of capillaries also have high 

basal levels of glucose use and blood flow (Edvinsson et al, 1993). The paraventricular 

and supraoptic hypothalamic nuclei are the most richly vascular grey areas observed in 

the whole brain with approximately 2000mm of capillaries in 1mm3 of tissue. Within 

the cerebral cortex different laminae also differ in their vascularity, parietal cortex layer 

I possesses approximately 900mm of capillaries in 1mm3 of tissue while layer IV has 

1300mm.

It appears therefore that the high levels of [125I]CNS 1261 uptake within layer IV and 

within the hypothalamic nuclei can be accounted for by the large capillary surface area 

and hence the high cerebral blood flow of these regions. This relationship appears to 

extend to other brain areas with lower blood flow. Lower levels of [125I]CNS 1261 

uptake were observed within the cerebellum (800mm) and the ventromedial 

hypothalamus (500mm).

The precise reason underlying the observation that [125I]MK801 uptake is not increased 

within layer IV of the cerebral cortex or the hypothalamic nuclei at early time points is 

unknown. However, it is suggested that even at very early time points the high 

lipophilicity of [125I]MK801 causes this tracer to be distributed in a manner not solely 

dependent on blood flow.
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At times beyond 30 minutes, the overall pattern of uptake of both [125I]CNS 1261 and 

[125f]MK801 appeared to reflected the known distribution of NMDA receptors (Bowery 

et al, 1988) with highest levels within the hippocampus and low levels in the 

hypothalamus and cerebellum. Closer inspection of the autoradiograms showed that 

NMDA receptor density did not determine tracer uptake in all regions examined. Isotope 

concentrations within the cerebral cortex 120 minutes after [125I]MK801 administration 

were homogeneous, and did not reflect NMDA receptor density. In contrast 120 minutes 

after [125I]CNS 1261 administration isotope levels did show some heterogeneity but this 

also did not reflect NMDA receptor density. [125I]CNS 1261 uptake was increased 

within the deep layers of the cortex relative to the superficial layers and, it is well 

established that the greatest concentration of NMDA receptors is within the outer layers of 

the neocortex (Bowery et al, 1988, Maragos et al, 1988). Wallace et al (1992) also 

showed that the density of NMDA receptors in vitro did not determine the uptake of 

[3H]MK801 in vivo . These observations suggest that factors other than receptor density 

(lipophilicity) determine local isotope uptake under conditions of basal NMDA receptor 

activation.

At 120 minutes the relative uptake of [125I]CNS 1261 within hippocampal regions (CA1, 

CA3, molecular layer) was approximately twice as great as that of [125I]MK801. It was 

proposed that a greater relative uptake of [125I]CNS 1261 within the hippocampus 

(hippocampus/cerebellar ratio) could result from a faster washout of [125I]CNS 1261 

from the cerebellum compared to [12̂ I]MK801 rather than an increased uptake in the 

hippocampus. Therefore, the normalisation procedure was examined to determine if the 

increase in relative uptake could be attributed to differences in the rate of washout of the 

tracers from the cerebellum. The absolute amount of radioactivity (fiCi/g) within a region 

of high, intermediate and low NMDA receptor density (hippocampus CA1, mediodorsal 

thalamus and hypothalamus respectively) was plotted against time over the last 60 

minutes of the experiment for both [125I]MK801 and [125I]CNS 1261 along with the 

cerebellum (Figure 47).
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FIGURE 47 : Washout rates of [125I]MK801 and [125I]CNS 1261 from regions of 
interest

Over the final 60 minutes of the experimental period, [125I]MK801 washed out of 
regions with high, intermediate and low NMDA receptor densities at the same rate. In 
contrast there was some degree of retention of [125I]CNS 1261 within the hippocampus 
CA1. Data are mean ± S.E.M.



For [125I]MK801 the washout slope was the same for all regions examined. The 

washout rate was not affected by the NMDA receptor density. [125I]MK801 was shown 

to wash out of the hippocampus at the same rate as from the cerebellum, therefore the 

relative uptake of [125I]MK801 within the CA1 region changed little over the terminal 60 

minutes of the experiment. This graph also shows that normalisation to the 

hypothalamus, another region with a paucity of NMDA receptor, would have given the 

same relative uptake values

Figure 47 shows that there is virtually no washout of [12̂ I]CNS 1261 from CA1 region 

over this time therefore the ratio of uptake in the CA1 region relative to the cerebellum 

increased over the same time period. In contrast, the rate of [125I]CNS 1261 washout 

from other regions was approximately the same as that from the cerebellum. In this case, 

normalisation to the hypothalamus would also have given the same relative values of 

tracer uptake. Comparison of the tracer washout rates from the cerebellum over the 

remaining 60 minutes of the experimental period indicates that [125I]MK801 washes out 

at a similar rate than [125I]CNS 1261. It can be concluded therefore that the increased 

relative uptake of [l^JCNS 1261 within the hippocampus 120 min after administration is 

not due to a faster washout of this tracer from the cerebellum compared to [125I]MK801, 

but to retention of the tracer in regions with a high density of NMDA receptors.

4.3 [125I]CNS 1261 produces superior images to [125I]MK801 in the

normal brain

Comparison of the uptake of [125I]MK801 and [125I]CNS 1261 in the normal brain at 

120 minutes, showed that under identical experimental conditions the relative uptake of 

[125I]CNS 1261 within hippocampal regions was greater than that of [125I]MK801. A 

number of factors contribute to the amount of tracer within a brain region at a give time 

including cerebral blood flow, the concentration of tracer within the plasma and the 

lipophilicity of the tracer. It has been suggested that the most critical physical property 

for a high affinity radiotracer is lipophilicity (Audus et al, 1992) since hydrophilic ligands
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do not cross the blood-brain-barrier and very lipophilic compounds display excessive 

non-receptor binding.

The blood-brain-barrier consists of a phospholipid bilayer which confers selective 

permeability to nonionised species. The solubility of unionised species can be measured 

conveniently as the octanol/water partition coefficient. LogD7.4 (octanol/buffer) values 

for CNS 1261 and IodoMK801 were 2.19 and 3.30 respectively, showing that while 

both compounds are extremely lipophilic, CNS 1261 is substantially less so than 

MK801. The presence and position of an iodine moiety in these structures appears to 

underlie this lipophilicity since the LogD values of the 'precursor' compounds, CNS 

1102 and MK801, are similar (1.72 and 1.8 respectively).

The membrane permeability of a compound is also proportional to a partition parameter 

which represents the ability of the compound to partition between a lipid phase and 

aqueous solution (von Geldern et al, 1996). The 'brain/aqueous partition ratio* is 

generally considered to be a measure of lipophilicity (Rapoport, 1976) and represents the 

tendency of a compound to distribute into the brain (lipid) rather than the aqueous phase 

(plasma) and may be calculated from the non-specific binding of radioiodinated ligands to 

rat and human brain sections in vitro. The brain/aqueous partition ratios for both 

[125I]CNS 1261 and [125I]MK801 were high (15-35g/ml) confirming that these tracers 

are extremely lipophilic. In both rat and human brain sections, the brain/aqueous 

partition ratios for [12^I]CNS 1261 were 40% lower than those obtained for 

[125I]MK801, implying [125I]CNS 1261 may display a lower non-specific binding 

component in vivo.

Highly lipophilic compounds can bind tightly to serum proteins such that the free fraction 

of compound available to cross the blood-brain-barrier is reduced. It was of interest 

therefore to determine the extent of [125I]MK801 and [125I]CNS 1261 binding to protein 

in rat and human plasma. Results showed that both tracers were approximately 95% 

protein bound.

An essential property for a candidate SPECT ligand is that metabolism produces no 

lipophilic breakdown products. The low levels of activity found in rat plasma samples
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after administration of a radiolabelled tracer were detected using an hplc flow monitor 

which markedly increase radio hplc detection sensitivity. Several methods of plasma 

sample preparation were investigated for use in this system. The preferred method was 

the precipitation of plasma proteins with an aqueous miscible organic solvent followed by 

centrifugation to leave a clear supernatant. The supernatant was then directly applied to 

the hplc column. This method has the advantage of allowing the direct measurement of 

both aqueous and organic soluble radiolabelled species in the sample. Using this method 

a measurement of the authenticity of the tracer within the brain at a given time point was 

also obtained. This method has been previously applied to small groups of rats to study 

[125I]QNB, and to study [123I]BZM metabolism in plasma in man. Hplc analysis of 

plasma samples was carried out by J. Owens at The West of Scotland Radionuclide 

Dispensary.

From the results of the hplc plasma analysis it appears that both tracers undergo 

deiodination on first pass metabolism. Two species were identified within the plasma of 

rats receiving [125I]CNS 1251, authentic CNS 1261 and free iodine. A small amount of 

a third species, along with authentic MK801 and free iodide, was identified within the 

plasma of animals receiving [125I]MK801. The identity of this species is unknown, but 

it may be a non-lipophilic metabolite of [125I]MK801 since this species was not present 

within the brain. [125I]CNS 1261 is metabolised much more rapidly than [125I]MK801 

and it is suggested that this rapid metabolism following administration of a bolus dose 

may confer advantages over a tracer with a slower metabolism.

4 .3 .1  Kinetic modelling

A 3 compartment model (Figure 48) was used to examine the hypothetical brain 

concentrations arising from tracers with an input function like .that of [125I]CNS 1261 

where the tracer is rapidly cleared from the plasma (Figure 25). This was compared to 

hypothetical brain concentrations obtained following administration of a tracer with a 

slower input function like [125I]MK801 (Figure 27).
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A number of the specifications of this model require discussion. The model is set up to 

reflect the situation where a tracer compound moves from the plasma into a second 

compartment within the brain which describes free and non-specifically bound tracer.

K1 on

K2

Free and NS 
(brain)

Plasma Specific
(brain)

A third compartment describes tracer bound specifically to receptors within the brain. The 

factors influencing the movement of tracer between these three compartments are 

described below.

1. The amount of tracer delivered to the brain is described by an input constant K1 which 

is determined by the plasma concentration of tracer, the free fraction within the plasma, 

cerebral blood flow, and the extraction fraction.

• Plasma concentration is described by a graph of percentage of authentic tracer within 

the plasma against time (see Figures 25 and 27).

• The free fraction was set at 0.03, a value obtained from the literature for iomazenil.

• Cerebral blood flow (ml/g/min.) was variable and values of 0.2, 0.4 and 

0.8ml/g/min. were used to represent tracer uptake into white matter and grey matter 

with low and high flow respectively.

• The extraction fraction is dependent on the capillary surface area S, the capillary 

permeability P and perfusion (flow) F. The dependence on blood flow reflects the 

fact that at higher flows, the tracer spends less time within the capillary. The 

extraction fraction itself may vary as blood vessels dilate and constrict

2. The elimination rate constant K2 describes the amount of tracer flowing out of the 

brain into the plasma. K2 can be expressed as Kl/(V2*fl) where K1 is the association 

rate constant, V2 is the volume of distribution of the free and non-specifically bound
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compartment and f 1 is the free fraction of tracer within the blood. K2 is dependent on the 

concentration of tracer within the brain, the partition coefficient of the tracer, the 

extraction fraction and cerebral blood flow.

The partition parameter or X represents the lipophilicity of the tracer and was set at 20 for 

[125I]CNS 1261 and 35 for [125I]MK801 (see Table 15), this also represents the volume 

of distribution of the tracer.

3. Unbound ligand reversibly binds to receptors at a rate dependent on the concentration 

of the 2 reactants. The rate constant for this reaction is known as the association constant 

kon- kon was set at a value of 0.07. Bmax equals the concentration of receptors available 

for binding. For tracer doses this is equal to the receptor density (unless investigating 

receptor blockade by an administered drug). Bmax was set at 10 to represent an area with 

a high number of receptors.

4. The rate of dissociation of the tracer from the receptor is determined by the 

dissociation rate constant koff and the concentration of tracer within the specifically bound 

compartment, koff was set at 0.1.

Hypothetical brain concentrations arising from the two types of input function are shown 

in figure 49. The total brain concentrations of tracers with a rapid plasma clearance like 

[125I]CNS 1261 reach steady-state more rapidly than tracers which are metabolised more 

slowly like [125I]MK801. Non-specifically bound tracer is also observed to wash out 

down its concentration gradient at a faster rate.

Comparison of the actual washout rates of total [125I]MK801 and [125I]CNS 1261 

uptake from the cerebellum, an area which represents non-specific binding, confirms the 

latter observation (Figure 50). It is proposed that the lower lipophilicity and rapid 

metabolism, leading to faster washout of non-specifically bound tracer may underlie the 

ability of [125I]CNS 1261 to produce superior images to [125I]MK801.
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FIGURE 49 : Hypothetical brain uptake following administration of a tracer with 
rapid or slow plasma clearance

A three compartment model was used to model the hypothetical uptake and retention of 
a tracer with a rapid plasma clearance (like [125I]CNS 1261) and one with a slow 
plasma clearance (like [125I]MK801). Total brain uptake is shown in the upper 
figures and non-specific uptake in the lower figures. Hypothetical brain uptake and 
retention for the tracer with rapid clearance was modelled using the plasma input curve 
of [125I]CNS 1261 and a lambda value of 20. Slow clearance was modelled using 
the [125I]MK801 plasma input curve and a lambda value of 35. Numbered lines 1,2 
and 3 represent uptake and retention at cerebral blood flow values of 20, 40 and 
80ml/100g/min respectively. All other factors influencing uptake and retention of 
tracers were the same for both tracers.

According to this model, tracers with rapid plasma metabolism reach steady state 
concentrations within the brain more rapidly and, non-specifically bound tracer 
washes out down its concentration gradient faster that tracers with slower metabolism.
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FIGURE 50 : Actual rates of tracer washout from the cerebellum

The actual rate of [125I]MK801 washout from the rat cerebellum was compared to that of 
[125I]CNS 1261. The less lipophilic tracer [125I]CNS 1261 was shown to wash out of 
the cerebellum at a faster rate than [125I]MK801. The cerebellum has a low density of 
NMDA receptors and serves as a within animal measure of non-specific binding.



4 .4  Displacement of [125I]CNS 1261 from normal rat brain

It has been established that 120 minutes post administration, [125I]CNS 1261 uptake 

generally reflects the classical pattern of NMDA receptor distribution. It was postulated 

that a reduction in [125I]CNS 1261 uptake by administration of unlabelled MK801 would 

confirm that enhanced uptake in areas of high receptor density such as the hippocampus, 

represents increased binding of this tracer to the NMDA receptor ion channel.

A preliminary experiment was performed to examine the effect of coinjection of MK801 

(0.5mg/kg) and [125I]CNS 1261 (200|iCi). It was apparent from the partition coefficients 

of the two compounds that [125I]CNS 1261 would gain access to the brain more rapidly 

than cold MK801 (partition coefficients 25 and 4 respectively), however it was proposed 

that since the dose of MK801 administered was some 5000 times in excess of the tracer 

dose and the affinity for the NMDA receptor was approximately 12 times greater than that 

of [125I]CNS 1261 that some displacement would occur.

[125I]CNS 1261 uptake following coinjection of MK801 was comparable to the images 

obtained 120 minutes post-administration of [125I]CNS 1261. Concomitant 

administration of cold MK801 did not cause displacement of [125I]CNS 1261, indeed 

[125I]CNS 1261 binding was greater in 34 of the 37 regions examined in the MK801 

treated film. In hippocampus CA1, CA3 and molecular layer, [125I]CNS 1261 binding 

was approximately 20% greater in MK801 treated animals, however further experiments 

were not carried out to substantiate this data. It is suggested that [125I]CNS 1261 binding 

could be increased due to masking of a non-specific binding site by MK801, thus 

increasing the amount of tracer available for specific binding, but it is most likely due to 

the effect of MK801 on cerebral blood flow. Gibson et al (1992) reported that 

coinjection of unlabelled MK801 (4mg/kg) produced an increase in [125I]MK801 uptake. 

MK801 has been shown to increase cerebral blood flow by as much as 2-fold (Nehls et 

al, 1990).

The receptor binding kinetics of [125I]CNS 1261 may have an impact on the ease with 

which it can be displaced by MK801. It has been reported that lower affinity NMDA

131



antagonists such as memantine exhibit faster rates of block and unblock than compounds 

such as MK801 (Rogawski, 1993) and hence reach steady state more rapidly. While 

CNS 1261 displays nanomolar affinity for the NMDA receptor channel, it has a 10 fold 

lower affmity than MK801 and it is possible that as a result, the on/off rate at the receptor 

may be faster for CNS 1261. It was postulated that blockade of [125I]CNS 1261 binding 

may therefore be easier to demonstrate than displacement

Modification of the initial protocol resulted in the administration of MK801 as a bolus 

dose followed by an infusion (0.4 + 6|ig/ml/min or 1.2 + 16|ig/mL/min). 

Administration of MK801 produced an immediate hypotension (20mmHg decrease 

relative to preinjection values) that persisted throughout the experimental period. This 

was consistent with the observations of Kurumaji and McCulloch (1989) that 

administration of MK801 to halo thane anaesthetised rats effected a decrease in mean 

arterial blood pressure.

The doses of MK801 were chosen to produce steady state plasma and brain 

concentrations of MK801 prior to administration of [125I]CNS 1261 (30 min. after 

initiation of the infusion) and throughout the experimental period. A study by Willis et al 

(1991) using the same dosing regimen showed that initial peak levels of MK801 (in 

plasma and CSF) following the bolus dose reached equilibrium within 10 minutes. The 

lowest dose chosen gives a mean plasma concentration of 113.2ng/ml which has been 

shown to produce a significant reduction in the volume of ischaemic brain damage (Gill et 

aU 1991).

There was no significant difference in the levels of [125I]CNS 1261 uptake between the 

control group and both groups treated with MK801 in any of the region examined.

The results presented above show that we have been unable to demonstrate displacement 

or blockade of [125I]CNS 1261 binding in normal non-pathologic tissue by 

pharmacologically active doses of MK801. Since the batch of MK801 used in these 

studies was subjected to nuclear magnetic resonance spectroscopy and confirmed to be 

authentic, this lack of blockade may be due in part to differences in lipophilicity and/or 

kinetics of the two compounds. A second proposal is that under conditions where the

132



basal level of NMDA receptor activation is low, [^IJC N S 1261 may not a sensitive 

enough tracer to image the putative changes in NMDA receptor activation caused by 

MK801. This suggestion is supported by the observation that a reduction in 

[125i]MK801 uptake in normal brain was not observed 1 hour after coadministration of 

MK801. However, a 40% blockade of [125I]MK801 uptake in was observed 4 hours 

after coinjection, a sufficient time to permit washout of non-specifically bound ligand 

(Gibson et al, 1992).

4 .5  Application of [125I]CNS 1261

The consensus view is that highly lipophilic agents like MK801 are unsuitable in vivo 

ligands in the normal central nervous system. Non-specific binding is high and 

displacement has not been reliably demonstrated. In the present thesis the data obtained 

in normal non-pathological tissue confirms this view. Despite the inability to demonstrate 

displacement of [125I]CNS 1261 from the normal brain, the lower lipophilicity, rapid 

plasma clearance and hence lower non-specific binding of this novel tracer confer 

significant advantages over [l25I[MK801, producing superior images under identical 

experimental conditions. [125I]CNS 1261 is therefore a more suitable candidate for in 

vivo imaging within the normal central nervous system.

The ability to image changes in NMDA receptor activation in vivo must be demonstrated 

for a tracer to be of any value in man. McCulloch demonstrated a marked elevation in 

levels of [125I]MK801 uptake in ischaemic areas (neocortex and striatum) following 

middle cerebral artery occlusion. These areas are generally accepted to be areas of 

excessive NMDA receptor activation.

There is accumulating evidence that external proton concentration is an important 

determinant of neuronal responses mediated by NMDA receptors. Acidosis is effective in 

reducing inward currents induced by NMDA in cultured neurons (Traynelis and Cull- 

Candy, 1990, Tang et al, 1990) and is protective against neuronal injury induced by

133



glutamate. Yoneda et al (1994) demonstrated a negative modulation by protons of 

[3H]MK801 binding to the NMDA receptor channel in rat brain synaptic membranes. 

This observation was supported by the observation that decreasing the pH of the 

environment of cultured forebrain neurons slowed the association and dissociation rates 

of [125I]MK801, by decreasing the amount of time that the channel spends in the open 

state (Rajdev and Reynolds, 1993). Varying the pH of the extracellular fluid therefore 

provides a mechanism of controlling the level of NMDA receptor activation without 

affecting agonist concentrations.

The brain extracellular fluid is not buffered against changes in arterial CO2 tension, 

therefore increasing the percentage of CO2 in inspired air was a convenient mechanism of 

producing hypercapnic acidosis in experimental animals. Changes in CO2 tension induce 

a decrease in arterial pH and a parallel decrease in extracellular fluid pH (Figure 51). 

Arterial pH therefore gives a reasonable indication of the pH of the extracellular fluid and 

intracerebral electrodes were not implemented in these investigations.

NMDA-induced currents were reduced by approximately 70% in cerebellar neurones 

when the bath pH was reduced to 6.8 (Traynelis and Cull-Candy. 1990). Increasing the 

CO2 in inspired air to 20% increased arterial pCC>2 to 180mmHg and decreased pH to 

6.9. It was proposed that this change in pH would be sufficient to decrease the acrivation 

of NMDA reeptors within the brain. In the same way, NMDA receptors are not fully 

activated at physiological pH therefore increasing the arterial pH to 7.6 should relieve the 

proton blockade and increase NMDA receptor activation.

In addition to the reported changes in arterial pC02 and pH, induction of hypercapnia 

caused an immediate transient hypotension followed by a recovery to levels slightly 

above pre-induction values.
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FIGURE 51 : Relationship between pCC>2 and pH in plasma and brain

Data redrawn from Siesjo (1972). Increasing CO2 tension through hypercapnic ventilation

induces a decrease in arterial pH and in the pH of the extracellular fluid (ECF) of the brain. 
For a given pCC>2 the pH within the ecf was slightly lower that that within the plasma



Cerebral blood flow has been shown to respond considerably to alterations in CO2 

tension, with an average increase of 4.9ml/100g/min. for every mmHg change in arterial 

pC02 (Hernandez et al, 1978).

[125I]MK801 uptake in hypercapnic animals was not different from that in normocapnic 

animals and it is thought that the increase in pH from 7.4 to 7.6 was not a strong enough 

stimulus to increase NMDA receptor activation. This is supported by the pH dependence 

of the NMDA current measured in hippocampal neuron following application of NMDA 

(Tang et al, 1990). The data was fitted to a sigmoidal curve with a pKa of 6.9. pH 7.4 

was near the upper plateau of the curve therefore, a change of 0.2 pH units produced little 

increase in NMDA activated current and hence NMDA receptor activation. There was 

no significant difference in the relative levels of [125I]MK801 within the dorsal 

hippocampus of normocapnic and hypercapnic animals despite the observed decrease in 

total [125I]MK801 uptake within this region on the autoradiograms of hypercapnic 

animals. The failure to obtain a significant decrease in [125I]MK801 uptake following 

hypercapnia may be attributed to the poor signal to noise ratio of this tracer due to high 

levels of non-specific binding in the cerebellum, [125I]MK801 uptake in the hippocampus 

was 30% above that in the cerebellum and 20% greater than cerebellar levels in other 

regions.

In contrast to the results obtained with [125I]MK801, an identical level of acidosis 

produced a sigificant decrease in the relative uptake of [125I]CNS 1261 in vivo compared 

to normocapnic values. Hypercapnic acidosis (pH 6.9) also reduced [125I]CNS 1261 

uptake in other areas with a fairly high density of NMDA receptors. [125I]CNS 1261 

uptake within the hippocampus was 2-300% above that observed within the cerebellum 

and 60-90% above cerebellar levels in the majority of other regions examined. It 

appears from these results that [125I]CNS 1261 is a better tracer to image the putative 

decrease in NMDA receptor activation induced by hypercapnic acidosis due to the higher 

relative uptake of this tracer in normocapnic animals.
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The utility of [125I]CNS 1261 in measuring changes in NMDA receptor activation was 

further examined by measuring [125I]CNS 1261 uptake at different time points after 

intracortical injection of NMDA. Injection of 0.009M NMDA into the nucleus basalis 

magnocellularis (NBM) produced significant alterations in glucose use in cortical regions 

innervated by the NBM efferents (Browne, 1993) and is therefore sufficient to cause 

increased neuronal activity. Injection of 0.009M NMDA into the parietal cortex produced 

a lesion with a core area of decreased glucose use surrounded by a zone of increased 

glucose utilisation. The increase in glucose use appears to map the diffusion front of the 

injection and it is suggested that the pale area within the boundary represents an area 

where receptors have recieved a lethal dose of NMDA and are no longer functional.

It has been described previously that the initial uptake of [125I]CNS 1261 reflects cerebral 

blood flow. Five minutes after injection of NMDA or CSF tracer uptake was decreased 

within the ipsilateral hemisphere, particularly in the insular cortex. Although the total 

volume injected was extremely small, it was injected into a medium with no capacity for 

expansion. It is possible that the increase pressure arising from the increase in volume 

partially occludes blood vessels thus hindering the delivery of tracer to the ipsilateral 

hemisphere. The decreased tracer uptake within the insular cortex is similar to that 

obtained in [14C]iodoantipyrine autoradiograms from models of subdural haematoma 

(Miller et al, 1990). The additional volume added within the rigid confines of the skull 

causes compression of the base of the ventral surface of the brain restricting tracer uptake. 

Injection of NMDA produces localised increases in cerebral blood flow which are 

reflected in the markedly increased uptake of [125]CNS 1261 surrounding the injection 

site.

At times beyond 5 minutes, NMDA injection results in a sizeable lesion which extends in 

anterior and posterior directions and is characterised by an area of pallor as shown by 

H&E. The histopathological features of the lesion included loss of staining and shrinkage 

of neurons. The lesion was similar to that described following glutamate perfusion 

(Fujisawa et al, 1993), in that a sharp boundary between the lesion and histologically 

normal tissue could be readily detected, however there was no evidence of triangulated
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neurons. In comparison, injection of CSF produced a much smaller, less well defined 

lesion.

120 minutes after injection of NMDA autoradiograms showed an area of decreased 

[125I]CNS 1261 uptake immediately adjacent to the injection site surrounded by a rim 

of increased uptake. [125I]CNS 1261 uptake in the contralateral hemisphere was similar 

to that observed in the normal brain at 120 minutes. CSF injections produced a smaller 

area of pallor on autoradiograms and the rim of increased [125I]CNS 1261 uptake was 

less evident. The pattern of tracer uptake is consistent with the hypothesis that 

receptors within the core area are no longer functional due to excitotoxic damage and, 

receptors within the boundary of the lesion are being activated by NMDA. It has been 

established that the association rate of ligand binding to the NMDA receptor is 

dependent on the activation state of the receptor (Rajdev and Reynolds, 1993). Kinetic 

modelling (see Figure 48) was used to investigate the impact of changes in association 

rate and hence in receptor activation on tracer uptake. The rate of association of 

[125I]CNS 1261 under conditions of normal receptor activation was set at 0.07, a value 

of 0.01 was used to represent the association rate within the core region where receptors 

were proposed to be relatively non-functional and, a value of 1 was used to represent the 

association rate within the boundary region where receptors are putatively abnormally 

activated. The hypothetical brain uptake obtained using the 3 compartment model 

confirms that very little washout of tracer occurs from 'activated' receptors over the 

course of the experimental period and at 120 min. tracer uptake in this area 

(representing the rim) is increased compared to areas of normal activation (Figure 52). 

In contrast, tracer uptake washes out of the 'core' area where receptors are closed much 

faster and low levels of uptake are present at the end of the experiment. The decreased 

binding of [125I]CNS 1261 within areas representing the core in this model indirectly 

demonstrates displacement of the tracer.
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FIGURE 52 : Effect of varying association rate on the hypothetical uptake and 
retention of a tracer with rapid plasma clearance

Kinetic modelling (see Figure 48) was used to investigate the impact of changes in 
association rate (kon) and hence receptor activation on tracer uptake. In this model the 
rate of association of a tracer ([125I]CNS 1261) under conditions of normal receptor 
activation, was set at an arbitrary value of 0.07. Therefore, a value of 0.01 was used 
to represent the association rate within a region where receptors were relatively non
functional ('blocked') and, a value of 1 was used to represent the association rate to 
activated receptors. The hypothetical brain uptake obtained using the 3 compartment 
model confirms that very little washout of tracer occurs from 'activated' receptors at 
the end of the experimental period (120 min.) and tracer uptake in this area is 
increased compared to areas of normal activation. In contrast, tracer uptake washes 
out of areas where receptors are closed much more quickly.
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[l25I]CNS 1261 uptake 60 minutes after injection of NMDA also showed an area of 

decreased tracer at the site of injection surrounded by an area of increased uptake. 

Imaging at an earlier time point did not demonstrate a larger area of elevated [125I]CNS 

1216 uptake within the rim on the autoradiograms. Post-mortem washing of sections 

from control experiments showed that [125I]CNS 1261 binding within the hipocampus 

was reduced by 50% at around 30 minutes therefore, 60 minutes appears to be too late a 

time point to capture any increase in binding that may have been present. Sixty minutes 

after injection of CSF, small lesions (1mm2) were observed in 2 animals while the third 

animal possessed a much larger lesion (2mm2). The mechanism underlying the 

development of this larger lesion is unknown since there was no evidence of blood in or 

around the injection site.

These results suggest that the increased [125I]CNS 1261 uptake within the boundary zone 

of the lesion reflects increased binding to NMDA receptors. This is supported by the 

difficulty in defining a zone of increased [125I]CNS 1261 uptake following CSF 

injection. The observation that areas of increased [125I]CNS 1261 uptake in subcortical 

areas corresponds to areas of damage in histological sections adds further weight to this 

hypothesis. Tissue damage causes glutamate release and subsequent NMDA receptor 

activation. [125I]CNS 1261 was also able to map the evolution of the lesion as the pale 

core region of decreased uptake increased in size between 60 and 120 minutes. This 

implies that areas of increased uptake within the boundary zone at 60 minutes eventually 

become incorporated into the core area observed at 120 min. as the NMDA diffuses away 

from the injection site over time. These observations reinforce the view that [125I]CNS 

1261 is mapping a dynamic process.

The use of [125I]CNS 1261 in man with SPECT imaging therefore provides a potential 

strategy for defining areas of NMDA receptor activation.
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4 .6  SPECT imaging in man with [123I]CNS 1261

The initial clinical assessment of [123I]CNS 1261 and its potential to provide SPECT 

images in vivo of NMDA receptor activation during cerebral ischaemia has been 

investigated. The study was approved by the Local Research Ethics Committee of the 

Institute of Neurological Sciences and by the Administration of Radioactive Substances 

Advisory Committee. Three patients were studied with clinical indications of possible 

ischaemia. Patient A presented with a large right frontal infarct and SPECT was carried 

out 24 hours after onset Patient B presented with a left middle cerebral artery infarct and 

SPECT was performed 6 hours after stroke onset. Patient C had evidence of multiple 

small infarcts and SPECT was carried out 18 hours after onset. Three normal 

volunteers (2 males and 1 female, 58-88 years) were recruited as control subjects. 

SPECT imaging was carried out on a Strichman SME 810 dedicated neuro-scanner. 

[123I]CNS 1261 (80-180MBq) was administered intravenously and images of the brain 

captured at regular time points post-injection. The patients lay unrestrained, except for a 

cushioned head support, during scanning. Multiple timed samples of venous blood were 

taken and the presence of authentic CNS 1261 and any metabolites determined by hplc. 

The objective of the imaging experiments was to investigate the kinetics of [123I]CNS 

1261 and not the regional distribution therefore, the scanning protocol involved 

acquisition of images from a single slice at the level of the occipital cortex at 25 

timepoints over 90 minutes (2 minutes per slice).

Images from a control subject show that at early time points after administration 

[123I]CNS 1261 uptake was greatest in areas with high cerebral blood flow, such as the 

cortex and cerebellum (Figure 53). At later time points high levels of uptake were present 

in the occipital cortex. There was no accumulation of [123I]CNS 1261 in white matter at 

40 minutes. The initial distribution of [12̂ I]MK801 in the brain also reflected cerebral 

blood flow with greatest radioactivity in the cerebellum and other cortical grey structures. 

However, there was a progressive loss of contrast between grey and white matter over 

the course of the experimental period and eventually no distinction could be made
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FIGURE 53 : [123I]CNS 1261 uptake and retention in a normal volunteer

Axial SPECT images show the distribution of radioactivity in the brain of a normal 
human control subject starting 2 minutes after the administration of [123I]CNS 1261 
with the final image in the series showing distribution 42 minutes after tracer injection. 
All images were captured at the level of the the occipital cortex. 'Hot' colours represent 
areas with high tracer uptake and 'cold' colours represent areas with low uptake. Early 
images show typical blood flow distribution with highest radioactivity observed within 
cortical areas. Late images show that the tracer does not accumulate in areas of white 
matter.
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between these tissues on the images. Quantitative data showed that radioactivity in grey 

matter decreased over the experimental period while radioactivity in white matter was 

minimally altered (Owens et al, 1997).

Plasma clearance of [123I]CNS 1261 was extremely rapid and was reminiscent of the 

situation in rat plasma (Figure 54). Brain clearance of the tracer was somewhat slower 

than expected from the plasma trace and indicates some form of trapping. This trapping 

has been attributed to plasma protein binding.

The in vivo uptake and retention of [125I]CNS 1261 following permanent proximal 

occlusion of the middle cerebral artery in the rat was similar to that previously 

described for [125I]MK801 (McCulloch et al, 1992). 120 minutes after injection, 

binding was significantly decreased in the dorsolateral caudate nucleus and insular 

cortex. Tracer uptake was markedly increased within the striatum, where uptake in the 

ipsilateral caudate nucleus was approximately 2-fold higher than that in the equivalent 

area of the contralateral hemisphere (Figure 55). These region are generally accepted to 

be areas of increased NMDA receptor activation.

Results of the clinical assessment of [123I]MK801 uptake in man showed relatively 

increased tracer retention at late time points (60-120 minutes) after tracer administration 

in cortical areas adjacent to the site of the haemorrhage in 2 of the 5 patients. This 

uptake was consistent with presence of activated NMDA receptors (Owens et al, 1997). 

While it may be possible to image NMDA receptor activation during an ischaemic 

episode in the living patient with [123I]MK801, the utility of this tracer is ultimately 

limited by its lipophilicity (and consequent high non-specific binding).

[123I]CNS 1261 SPECT images showed that 6 hours after onset of an ischaemic 

episode, the earliest time point examined in man, there was no evidence of increased 

uptake in peri-ischaemic areas where NMDA receptor activation is proposed to occur. 

The rate of washout in peri-ischaemic areas is similar to that observed in occipital 

cortex, an area removed from ischaemia (Figure 56). The overall uptake and washout in 

this patient did not look different from that in normal volunteers.
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FIGURE 55 : [12"I]CNS 1261 uptake is increased in ischaemic areas

125Illustrative autoradiogram of [ I]CNS 1261 uptake after permanent middle cerebral 
artery occlusion. The isotope was administered 15 minutes after occlusion and the 
animals sacrificed 120 minutes thereafter. The occluded hemisphere is on the left, 
areas of increased uptake are indicated by arrow.
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A number of factors may underlie the inability to observe increased [123I]CNS 1261 

retention in stroke patients. Both [125I]CNS 1261 and [125I]MK801 uptake was increased 

in ischaemic areas when administered 15 min. after middle cerebral artery occlusion in the 

rat. The uptake of [125I]MK801 was shown to diminish as the time from occlusion 

increased (McCulloch et al, 1992). In the most acute stroke patient recruited, [123I]CNS 

1261 was administered 6 hours after onset of the ischaemic ictus. Assuming that a similar 

situation of diminished uptake over time occurs in humans, six hours after onset may be 

too late to to capture NMDA receptor activation.

No increased tracer retention was observed in either of the stroke patients images at 18 or 

24 hours. Baron et al (1996) have produced clinical evidence of heterogeneity between 

stroke patients in that some lacked a peri-ischaemic area. It is possible that the patient 

imaged 6 hours after onset of stroke represents the group of patients with no penumbral 

zone of NMD A receptor activation. It must be noted that the timing of imaging in humans 

is extremely difficult. Within the brain of a stroke patient it is assumed that there are areas 

of normal grey matter, ischaemic grey and white matter. Images must be captured at a 

time when radioactivity in normal grey matter is low enough to see any superimposed 

increases or, tracer accumulation in white matter is not so high that the phenomenon is 

masked. The background level of radioactive uptake cannot be 'faded out' and each event 

captured by imaging is superimposed on this level. If background (non-specific) levels of 

radioactivity are high, significant events will not be observed.

The initial results of the clinical evaluation of [123I]CNS 1261 are encouraging. [123I]CNS 

1261 shows no accumulation in white matter and and it is suggested that this tracer will be 

less limited by lipophilicity than [123I]MK801. Further acute stroke patients recruited to 

this study may confirm the existence of areas of increased NMDA receptor activation 

following cerebral ischaemia.
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A proposed future strategy to further evaluate [123I]CNS 1261 is to recruit patients with 

chronic epilepsy, into the study. It is assumed that the mechanism underlying epilepsy 

and ischaemia are related and glutamate release during seizures will increase NMDA 

receptor activation. In summary, the use of [12^I]CNS 1261 in man with SPECT 

remains a potential strategy for defining the location of areas of NMDA receptor 

activation in pathological conditions where glutamate concentrations are elevated.
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APPENDIX 1

1. Effect of CNS 1261 on cortical spreading depression

1.1 Surgical preparation of animals

Animals were anaesthetised with urethane (1500mg/kg i.p.) since halothane is known to 

inhibit CSD (Saito et al, 1995). A tracheotomy was performed and the animals connected 

to a small animal respirator (Ugo Basile, Linton Instruments) and ventilated with a 

mixture of 30% O2 and 70% N2O. The femoral vessels were exposed unilaterally by 

blunt dissection. Polyethylene catheters were inserted into the left femoral artery and vein 

and secured with silk thread. Animals were turned prone and the head fixed in a Kopf 

stereotaxic frame. A craniotomy (5x3mm) was drilled over the right parietal cortex and 

the bone and dura removed without damage to the underlying pial vessels. Two glass 

electrodes (tip diameter 10mm) were pulled from borosilicate glass capillaries (O.D. = 

0.86mm, I.D. = 1.5mm, Clark Electromedical Instruments). The electrodes were filled 

with saline and positioned 1.5-2mm apart and 1mm deep into the cortex using a 

micromanipulator. All electrode manipulations were performed under low power 

magnification in order to avoid trauma to large pial vessels. Ag/AgCl wires were inserted 

into the electrodes to measure DC potential, the rostral electrode measured initiation and 

the caudal electrode propagation of CSD. In several preparations a second larger burr 

hole was drilled in the ipsilateral hemisphere and a laser doppler flow probe positioned 

touching the intact dura. Two saline-filled cannulae containing Ag/AgCl wire were 

inserted under the skin and served as reference electrodes. The preparation was allowed 

to stabilise for 15 minutes before any further manipulation were performed.

1.2 Induction of cortical spreading depression

CSD was electrically evoked using a bipolar stimulating electrode placed at 90° to the 

rostral recording electrode. The stimulating electrode was positioned so that it touched, 

but did not visibly depress the cortical surface. Electrocortical stimulation consisted of a
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train of 5ms pulses at 40Hz for 2s at 10 minute intervals. The threshold for evoking 

CSD was determined by increasing the current gradually until a response was triggered. 

On determining the stimulation threshold (generally 0.1-0.2mA), the current was then 

increased by 10%. The cortex was stimulated 3 times in order to establish that responses 

were reproducible at both electrodes.

1.3 Drug treatment

CNS 1261 (1 mg/kg) was administered intravenously following confirmation of 

reproducible responses. Responses were recorded for a further 120 minutes after 

administration

1.4 Data processing

All signals, including blood pressure, heart rate and DC potential were recorded using a 

Gras Model 7 polygraph and processed by an in-house DART computer using the 

program RATCSD. The rate of CSD propagation was calculated from the latency of the 

DC shift at the rostral and caudal electrodes and the distance between them.
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APPENDIX 2

TABLE 1
[125I]CNS 1261 uptake 5 minutes after intracortical injection of CSF or NMDA

VEHICLE (CSF) NMDA (27jimoles)
STRUCTURE ipsilateral contralateral ipsilateral contralateral
anterior cingulate cortex 0.74 ± 0.08 1.37 ± 0.08 0.98 ± 0.06 1.23 ± 0.24
genu 0.23 ± 0.01 0.35 ± 0.02 0.40 ± 0.01 0.47 ± 0.07
sensory motor cortex
layers I-ELI 0.63 ± 0.08 1.33 ± 0.07 1.65 ±0.70 1.8610.10
layer IV 0.82 ± 0.07 1.51 ±0.08 2.00 ± 0.87 1.89 ± 0.08
layers V-VI 0.92 ± 0.02 1.30 ± 0.03 2.03 ± 0.75 1.70 ± 0.05
caudate nucleus 1.18 ±0.02 1.22 ± 0.01 1.42 ±0.11 1.5610.13
corpus callosum 0.25 ± 0.03 0.40 ± 0.01 0.49 ± 0.23 0.50 ± 0.06
anterior thalamus 1.62 ± 0.03 1.61 ±0.11 2.04 ±0.11 2.06 ± 0.14
hippocampus CA1 0.62 ± 0.01 0.64 ± 0.01 0.77 ± 0.00 0.81 ±0.05
hippocampus CA3 0.61 ± 0.00 0.71 ± 0.01 0.80 ± 0.01 0.84 ± 0.05
lateral habenular nucleus 1.77 ± 0.23 1.72 ±0.15 2.07 ± 0.15 2.08 ± 0.04
mediodorsal thalamus 0.93 ± 0.04 1.01 ± 0.02 1.13 ±0.13 1.20 ± 0.33
ventrolateral thalamus 1.07 ± 0.05 1.13 ±0.10 1.48 ±0.19 1.38 ± 0.25
internal capsule 0.34 ± 0.01 0.36 ± 0.00 0.46 ± 0.02 0.44 ± 0.01
parietal cortex
layers 1-El 0.61 ± 0.01 1.27 ±0.11 1.12 ±0.21 1.45 ± 0.47
layer IV 0.75 ± 0.02 1.43 ±0.13 1.26 ± 0.02 1.69 ± 0.28
layers V-VI 0.82 ± 0.04 1.23 ±0.10 1.30 ± 0.03 1.51 ± 0.26
hypothalamus 0.68 ± 0.09 0.66 ± 0.09 0.94 ±0.11 0.93 ± 0.01
posterior cingulate cortex 1.48 ±0.16 1.59 ± 0.21 1.58 ±0.11 1.65 ± 0.30
hippocampus molecular layer 0.80 ± 0.03 0.85 ±0.12 0.87 ±0.12 0.99 ± 0.23
dentate gyrus 0.88 ± 0.04 1.03 ± 0.06 1.01 ± 0.09 1.0310.14
auditory cortex
layers I-EI 0.95 ± 0.28 1.38 ±0.15 0.96 ± 0.13 1.53 10.12
layer IV 1.18 ± 0.44 1.53 ± 0.07 1.18 ±0.39 1.7610.13
layers V-VT 0.71 ± 0.01 1.22 ± 0.04 1.10 ±0.21 1.55 1 0.23
substantia nigra pars reticulata 1.01 ± 0.04 0.91 ±0.11 1.20 ± 0.00 1.23 1  0.10
substantia nigra pars compacta 0.79 ± 0.04 0.71 ± 0.03 1.05 ± 0.06 1.1310.15
medial geniculate body 1.18 ±0.03 1.26 ± 0.01 1.4210.13 1.4810.15
auditory cortex
layers I-EI 0.70 ± 0.10 1.30 ±0.10 0.91 ±0.02 1.27 1  0.01
layer IV 0.73 ± 0.10 1.55 ± 0.24 0.8910.14 1.45 1  0.04
layer V-VI 0.74 ± 0.09 1.22 + 0.05 0.8610.18 1.29 1  0.08
entorhinal cortex 0.96 ± 0.14 1.19 ±0.14 1.03 10.38 1.1510.14
inferior colliculus 1.50 ± 0.06 1.47 ± 0.03 1.44 10.22 1.42 1  0.02
pons 0.77 ± 0.05 0.76 ± 0.04 0.74 10.16 0.77 10.13
cerebellar cortex 1.00 ± 0.00 1.00 ± 0.00 1.00 10.00 1.00 1  0.00
cerebellar white matter 0.38 ± 0.01 0.37 ± 0.02 0.3910.13 0.3710.11
superior olive 1.72 ± 0.23 1.76 ± 0.02 1.541 0.22 1.56 10.05

Data are presented as mean ± n=2. [125I]CNS 1261 uptake was measured
following injection of NMDA or vehicle (CSF) into the ipsilateral sensory-motor 
cortex. Uptake of [125I]CNS 1261 in individual regions of interest was expressed as 
a ratio relative to uptake within the cerebellum. Roman numerals indicate the cortical 
layer examined.
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TABLE 2
[125I]CNS 1261 uptake 60 m inutes after intracortical injection of CSF or NMDA

VEHICLE (CSF) NMDA (27|imoles)
STRUCTURE ipsilateral contralateral ipsilateral contralateral
anterior cingulate cortex 1.46 ± 0.07 1.59 ±0.09 1.69 ±0.16 1.80 ±0,14
genu 0.94 ± 0.06 1.14 ±0.14 0.96 ± 0.09 1.04 ± 0.07
sensory motor cortex
layers I-EI 1.22 ± 0.08 1.30 ± 0.01 1.28 ±0.14 1.49 ± 0.07
layer IV 1.30 ± 0.05 1.37 ± 0.07 1.43 ±0.13 1.40 ± 0.05
layers V-VI 1.35 ± 0.04 1.39 ± 0.07 1.48 ± 0.09 1.45 ± 0.03
caudate nucleus 1.26 ± 0.05 1.25 ± 0.09 1.41 + 0.05 1.39 ± 0.04
corpus callosum 1.06 ± 0.05 1.11 +0.07 1.07 ± 0.04 1.04 ± 0.05
anterior thalamus 1.53 ± 0.09 1.48 ± 0.07 1.65 ± 0.09 1.75 ±0.18
hippocampus CA1 1.69 ± 0.08 1.71 ±0.18 1.80 ± 0.25 1.77 ± 0.25
hippocampus CA3 1.76 ±0.14 1.79 ± 0.20 1.88 ± 0.21 1.84 ± 0.27
lateral habenular nucleus 1.32 ±0.14 1.21 ±0.15 1.17± 0.10 1.15 ±0.05
mediodorsal thalamus 1.48 ± 0.06 1.47 ±0.13 1.62 ±0.10 1.63 ±0.14
ventrolateral thalamus 1.35 ±0.10 1.32 ± 0.07 1.43 ± 0.05 1.42 ± 0.05
internal capsule 1.04 ± 0.05 1.02 ± 0.05 0.92 ± 0.10 0.91 ± 0.08
parietal cortex
layers I-EI 1.32 ±0.11 1.44 ± 0.03 1.28 ± 0.08 1.36 ±0.10
layer IV 1.34 ±0.10 1.50 ±0.10 1.36 ± 0.02 1.47 ± 0.06
layers V-VI 1.40 ± 0.07 1.52 ± 0.06 1.46 ± 0.07 1.48 ± 0.06
hypothalamus 1.16 ±0.03 1.11 ±0.04 1.14 ±0.10 1.13 + 0.11
posterior cingulate cortex 1.48 ± 0.06 1.42 ±0.11 1.45 ±0.18 1.43 ± 0.20
hippocampus molecular layer 1.95 ±0.19 2.02 ± 0.36 1.97 ± 0.29 2.09 ± 0.38
dentate gyrus 1.93 ± 0.23 1.52 ± 0.02 2.09 ± 0.32 2.15 ± 0.40
auditory cortex
layers I-EI 1.43 ± 0.05 1.59 ±0.12 1.48 ± 0.03 1.53 ± 0.05
layer IV 1.44 ± 0.03 1.51 ±0.12 1.50 ± 0.08 1.53 ±0.11
layers V-VI 1.52 ± 0.04 1.57 ±0.10 1.59 ±0.13 1.57 ± 0.09
substantia nigra pars compacta 1.28 ± 0.07 1.23 ± 0.08 1.17 ±0.03 1.17 ± 0.07
substantia nigra pars reticulata 1.09 ± 0.04 1.06 ± 0.02 0.99 ± 0.08 1.08 ± 0.04
medial geniculate body 1.45 ± 0.08 1.38 ± 0.04 1.49 ± 0.09 1.50 ±0.17
visual cortex
layers I-EI 1.41 ±0.19 1.66 ±0.14 1.72 ±0.16 1.71 ±0.16
layer IV 1.57 ± 0.06 1.59 ± 0.14 1.68 ±0.16 1.60 ± 0.12
layers V-VI 1.58 ± 0.04 1.63 ±0.14 1.65 ±0.17 1.70 ±0.14
entorhinal cortex 1.94 ±0.18 1.90 ± 0.22 2.15 ±0.41 2.03 ± 0.33
inferior colliculus 1.22 ± 0.05 1.16 ±0.01 1.25 ± 0.06 1.24 ± 0.07
pons 1.25 ± 0.06 1.20 ± 0.02 1.32 ±0.12 1.32 ±0.17
cerebellar cortex 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
cerebellar white matter 0.88 ± 0.05 0.82 ± 0.05 0.86 ± 0.08 0.85 ± 0.08
superior olive 1.19 ±0.05 1.19 ±0.04 1.26 ±0.11 1.31 ±0.13

Data are presented as mean ± S.E.M., n=3-4. [l^IjCNS 1261 uptake was measured 
following injection of NMDA or vehicle (CSF) into the ipsilateral sensory-motor 
cortex. Uptake of [12̂ I]CNS 1261 in individual regions of interest was expressed as 
a ratio relative to uptake within the cerebellum. Roman numerals indicate the cortical 
layer examined.
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TABLE 3
[125I]CNS 1261 uptake 120 minutes after intracortical injection of CSF or NMDA

VEHICLE (CSF) NMDA (27|imoles)
contralateral ipsilateral contralateralSTRUCTURE ipsilateral

anterior cingulate cortex 1.87 ± 0.29
genu 1.34 ± 0.22
sensory motor cortex
layers I-HI 1.60 ±0.31
layer IV 1.68 ± 0.44
layers V-VI 1.68 ± 0.36
caudate nucleus 1.48 ± 0.28
corpus callosum 1.58 ± 0.25
anterior thalamus 1.61 ± 0.08
hippocampus CA1 2.38 ± 0.43
hippocampus CA3 2.42 ± 0.45
lateral habenular nucleus 1.24 ±0.17
mediodorsal thalamus 1.64 ± 0.30
ventrolateral thalamus 1.41 ± 0.26
internal capsule 1.21 ± 0.32
parietal cortex
layers I-EI 1.38 ±0.16
layer IV 1.41 ± 0.21
layers V-VI 1.58 ± 0.23
hypothalamus 1.08 ±0.16
posterior cingulate cortex 1.46 ±0.31
hippocampus molecular layer 2.50 ± 0.52
dentate gyrus 2.49 ± 0.45
auditory cortex
layers I-HI 1.65 ±0.13
layer IV 1.61 ±0.18
layers V-VI 1.69 ± 0.32
substantia nigra pars compacta 1.29 ± 0.21
substantia nigra pars reticulata 1.07 ± 0.03
medial geniculate body 1.42 ±0.17
visual cortex
layers I-EI 1.55 ± 0.07
layer IV 1.41 ± 0.07
layers V-VI 1.50 ±0.16
entorhinal cortex 1.85 ±0.13
inferior colliculus 1.01 ±0.07
pons 1.18 ±0.08
cerebellar cortex 1.00 ± 0.00
cerebellar white matter 0.97 ± 0.04
superior olive 1.23 ± 0.04

1.90 ± 0.27 1.67 ± 0.12 1.82 ± 0.13
1.50 ± 0.26 1.22 ± 0.06 1.29 ± 0.03

1.76 ± 0.43 1.16 ± 0.08 1.34 ± 0.07
1.63 ± 0.35 1.16 ± 0.11 1.30 + 0.09
1.64 ± 0.39 1.10 ± 0.09 1.44 ± 0.08
1.51 ± 0.28 1.33 ± 0.10 1.35 ± 0.07
1.54 ± 0.25 1.24 ± 0.06 1.26 ± 0.10
1.74 ± 0.12 1.47 ± 0.16 1.48 ± 0.10
2.38 ± 0.39 2.13 ± 0.22 2.20 ± 0.17
2.61 ± 0.48 2.23 ± 0.27 2.28 ± 0.14
1.23 ± 0.16 1.19 ± 0.11 1.17 ± 0.08
1.71 ± 0.33 1.58 ± 0.28 1.62 ± 0.12
1.44 ± 0.29 1.36 ± 0.19 1.37 ± 0.05
1.17 ± 0.31 1.05 ± 0.10 1.10 ± 0.08

1.44 ± 0.22 1.42 ± 0.19 1.58 ± 0.17
1.49 ± 0.29 1.48 ± 0.16 1.52 ± 0.13
1.58 ± 0.23 1.50 ± 0.16 1.52 ± 0.14
1.10 ± 0.18 1.10 ± 0.12 1.13 ± 0.12
1.45 ± 0.28 1.14 ± 0.18 1.13 ± 0.18
2.81 ± 0.58 2.40 ± 0.26 2.39 + 0.13
2.50 ± 0.45 2.20 ± 0.24 2.22 ± 0.06

1.65 ± 0.13 1.49 ± 0.09 1.50 ± 0.06
1.64 ± 0.33 1.50 ± 0.13 1.45 ± 0.09
1.75 ± 0.30 1.59 ± 0.11 1.55 ± 0.09
1.25 ± 0.25 1.08 ± 0.04 1.10 ± 0.02
1.14 ± 0.14 0.99 ± 0.03 1.02 ± 0.01
1.43 ± 0.20 1.42 ± 0.11 1.44 ± 0.11

1.58 ± 0.22 1.78 ± 0.07 1.85 ± 0.10
1.55 ± 0.37 1.69 ± 0.08 1.75 ± 0.11
1.56 ± 0.38 1.74 ± 0.09 1.82 ± 0.11
1.71 ± 0.23 1.84 ± 0.09 1.92 ± 0.03
1.01 ± 0.13 1.36 ± 0.14 1.38 ± 0.15
1.24 ± 0.15 1.47 ± 0.14 1.47 ± 0.15
1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
0.94 ± 0.08 0.97 ± 0.02 0.94 ± 0.05
1.22 ± 0.08 1.08 ± 0.01 1.14 ± 0.02

Data are presented as mean ± S.E.M., n=2-3. [125I]CNS 1261 uptake was measured 
following injection of NMDA or vehicle (CSF) into the ipsilateral sensoiy-motor 
cortex. Uptake of [125I]CNS 1261 in individual regions of interest was expressed as 
a ratio relative to uptake within the cerebellum. Roman numerals indicate the cortical 
layer examined.
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