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So out of the ground the LORD God 
formed [...] every bird of the air, and 
brought them to the m an to see w hat 
he would call them; and whatever the 
man called every living creature, that 
was its name.

(Genesis, 2:19)
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Abstract

This dissertation introduces a new measure of basic-level 

performance (Strategy Length & Internal Practicability, SLIP). SLIP 

implements two computational constraints on the organisation of 

categories in a taxonomy: the m inim um  num ber of feature tests

required to place the input in a category (strategy length) and the ease 

with which these tests are performed (internal practicability). The 

predictive power of SLIP is compared with that of four other basic-level 

measures: context model (Medin & Schaffer, 1978; modified by Estes, 

1994), category feature-possession (Jones, 1983), category utility (Corter 

& Gluck, 1992), and compression measure (Pothos & Chater, 1998a), 

drawing data from the empirical work of Rosch et al. (1976), M urphy 

and Smith (1982), Mervis and Crisafi (1982), Hoffmann and Ziessler 

(1983), Corter, Gluck and Bower (1988), M urphy (1991), Lassaline (1990), 

Tanaka and Taylor (1991), and Johnson and Mervis (1997). N ine  

experiments further test the validity of the computational constraints 

of SLIP using computer-synthesised 3-D artificial objects, artificial 

scenes, and letter strings. The first five experiments examine the two 

constraints of SLIP in verification. Experiment 1 isolates the effect of 

strategy length on basic-levelness, and Experiments 2a and 2b that of 

internal practicability. Experiment 3 examines the interactions between 

the two factors. Experiment 4 tests, whether, as predicted by SLIP, there 

is a linear relationship between strategy length and response times. 

The last four experiments study the two computational constraints in  

naming. Experiment 5a isolates the effect of strategy length, and 

Experiment 5b that of internal practicability. Experiment 6 exam ines 

the time-course of the effect of strategy length. Finally, Experiment 7
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looks at the effect of robustness (i.e., the idea an approxim ate 

categorisation is better than none) on the order of feature tests in length  

2 strategies.
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Preamble

The 20-question game

Most of you have played the 20-question game. A m inim um  of 

two players is required. A category name which applies to the real 

world is chosen by one of the players (we will call him the answerer).  

The other players (we will designate them as the guessers from now  

on) try to discover the selected name after having asked as few yes/no  

questions as possible. The answerer must answer truthfully to these 

questions. Any type of binary query is allowed in 20-questions. Thus, 

guessers could inquire whether the chosen word begins with a letter 

prior to "n" in the Latin alphabet, whether it has more than two 

vowels, whether it sounds like the mating call of a moose, and so on. 

The usual tactic, however, consists in asking relational questions, i.e. 

questions that reveal certain relations between the target category and 

another category, rather than orthographic, phonetic, or phonologic 

questions. There are four possible relations between two categories: 

independence (e.g., natural is independent of man-made), synonym y 

(e.g., physician is a synonym of medical doctor), partial overlap (e.g., 

blond partially overlaps woman), and inclusion (e.g., m am m al is 

included in animal). By extension, there are four broad kinds of binary- 

relational questions that can be asked.

In the 20-question game, the preferred type of relational question 

is inclusion, starting with highly general categories and going on to 

more particular ones (Bendig, 1953). This type of relation betw een 

categories is also called an IS-A relation (Collins & Quillian, 1969). For 

example, the answerer could pick the name "Moby Dick", and the 

guessers could find it after the following dialogue: "Is it an anim al?",

1 2



"Yes."; "Is it a mam m al?", "Yes."; "Is it a feline?", "No."; [...]; "Is it a 

cetacean?", "Yes."; "Is it a whale?", "Yes."; [...]; "Is it a white whale?", 

"Yes."; "Is it Moby Dick?", "Yes. It is Moby Dick.". The fact that it is 

possible at all to use inclusions implies that at some cognitive level 

categories possess a tree organisation. Given the adaptability of 

hum ans, it is not too surprising that categories are organised this way, 

and that people use this property when playing the 20-question game: 

it is the fastest known search algorithm (e.g., Dewdney, 1989). In the 

best of worlds, it would enable someone to complete the game in  

log2(NUMBER_OF_CATEGORIES) questions.

Category feature-structure vs. category tree

Most category trees implemented by computer scientists are 

arbitrary insofar as they tell us nothing about the feature structures of 

their categories. From an optimal-search-algorithm standpoint, for 

example, it does not matter in which one of the three possible complete 

trees the four categories A, B, C, and D are inserted (i.e., {[(A) (B)] [(C) 

(D)]], {[(A) (C)] [(B) (D)]}, or {[(A) (D)] [(B) (C)]}). In hum ans, how ever, 

category trees are not arbitrary; they are also powerful feature inference 

machines: every category inherits the properties or attributes of related 

more general categories. For example, Moby Dick lives in the water 

like all other whales and breathes air just like any other mammal. W e 

will say that hum ans organise their categories in feature-structures 

(category structures, hierarchies, and taxonomies). Category feature- 

structures are special category trees.

Are all the categories or nodes in hum ans' category feature- 

structures equal? More specifically, is there a level of organisation in  

this hierarchy which is psychologically superior? We will now briefly 

review the evidence that one level has a special psychological status.

1 3



Basic-level phenomenology, short version

In Rosch, Mervis, Gray, Johnson and Boyes-Braem's (1976, 

Experiment 7), participants were taught the name of 18 objects at three 

levels of categorisation-the subordinate (e.g., Levis, Macintosh),  basic 

(e.g., pants, apple) and superordinate (e.g., clothes, fruit).  These objects 

belonged to one of six possible non-biological taxonomies: musical

instruments ,  fruit ,  tools, clothing, vehicles,  and f u rn i tu r e . In a 

verification task, subjects were shown a category name followed by a 

stimulus picture, and had to determine whether they m atched. 

Categories at the basic-level were fastest to verify, and categories at the 

subordinate level slowest (see also Hoffmann & Ziessler, 1983; 

Jolicoeur, Gluck & Kosslyn, 1984; Murphy, 1991; M urphy & Sm ith, 

1982; Murphy & Brownell, 1985; Tanaka & Taylor, 1991).

The basic level is superior in many other respects: (1) objects are 

named quicker at this level than at any other level of abstraction 

(Hoffmann & Ziessler, 1983; Jolicoeur, Gluck & Kosslyn, 1984; 

Murphy, 1991; Murphy & Smith, 1982; M urphy & Brownell, 1985; 

Rosch et al., 1976; Tanaka & Taylor, 1991); (2) objects are designated 

preferentially with their basic-level names (Berlin, 1992; Brown, 1958; 

Rosch et al., 1976; Tanaka & Taylor, 1991; W isniewski & M urphy, 

1989); (3) many more features-especially shapes-are listed at the basic 

level rather than the superordinate level, with only a slight increase at 

the subordinate level (Rosch et al., 1976; Tversky and Hem enway, 

1984); (4) throughout development, basic level names are learned 

before those of other categorisation levels (Anglin, 1977; Brown, 1958; 

Rosch et al., 1976; Horton & Markman, 1980; Markman, 1989; 

M arkman and Hutchinson, 1984; Mervis and Crisafi, 1982); and (5) 

basic names tend to be shorter (Brown, 1956; Rosch et al., 1976). 

Convergence of these performance measures is crucial to establish a
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preferred categorisation level, even though verification speed is the 

most commonly used.

There is considerable evidence that a basic-level superiority 

holds across cultures for living kinds (for extensive reviews see Berlin, 

1992, and Malt, 1995). Basic-level phenomenology also seems to hold  

across domains (for a review see M urphy & Lassaline, 1997), such as 

com puter programs (Adelson, 1983), events (Morris & M urphy, 1990; 

Rifkin, 1985; Rosch, 1978), personality types (Cantor & Mischel, 1979), 

sign language (Newport and Bellugi, 1978), environm ental scenes 

(Tversky & Hemenway, 1983), clinical diagnosis (Cantor, Sm ith, 

French, and Mezzich, 1980), and emotions (Shaver, Schwarz, Kirson, 

and O'Connor, 1987).

The aim of this dissertation

To summarise, people organise their categories in special 

category trees called category feature-structures. The different levels of 

these are not created equal. Many indexes of performance are 

maximised at the so-called basic-level. The main goal of this 

dissertation is to explain why this is so.

Basic terminology

It is worth pointing out at this point that the usage of "basic 

level" is ambiguous in the literature. It can refer to the middle-level of 

a three-level hierarchy (with the level above called "superordinate" 

and the one bellow "subordinate"-e.g., Markman, 1989), to an index of 

performance (the fastest level, or the one most often used to nam e 

things, and so forth-e.g., Corter and Gluck, 1992; Anderson, 1990, 1991), 

or to both the level of categorisation and the index of performance (e.g., 

Rosch et al., 1976; Mervis & Crisafi, 1982). This ambiguity is beautifully 

illustrated in Tanaka and Taylor's (1991) "basic to subordinate shift"
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which is nonsense unless one changes the meaning of "basic" from  

"index of performance" to "middle level of categorisation" in mid-air. 

Henceforth, the basic-levelness of a category will denote a m easure of 

performance. W henever possible, we will refer to the levels of 

abstraction as the subordinate, basic, and superordinate. Otherwise, we 

will use a set of unambiguous level descriptors-e.g., low, m iddle, and 

high. The subordinate-basic-superordinate trio has the advantage of 

having a phase known to most psychologists. A lthough m ost 

experiments have probed these three embedded categorisation levels, 

people can use many more levels in their interactions with objects. 

Berlioz, for instance, was a famous French composer, an artist, a 

human, a mammal, a living organism, a bunch of atoms, and so forth. 

Sometimes we will use the more general level descriptors: H (highest 

level), H - 1 (second highest), H - 2 (third highest), etc.

1 6



Chapter 1. General introduction: basic-level
phenomenology, long version

In this chapter we shall discuss the basic-level phenom enology 

in more detail. The work of Eleonor Rosch and colleagues has been so 

influential that it provides us with a "natural breaking point", a basic 

event in the basic-level literature: we will first discuss the research 

conducted by Rosch et a l/s  predecessors, then about their ow n 

contribution, and finally about the work of their successors.

We m ust point out that we understand the expression "basic- 

level literature" in a most inclusive way that is, all articles that 

examined levels of generality and have suggested that one of these is 

special in some respect. The name of this special level of categorisation 

varies throughout time and area of study; it is sometimes called level  

of usual utili ty (Brown, 1958), entry level (Biederman, 1987), entry  

-point (Jolicoeur, Gluck and Kosslyn, 1984), basic level (Rosch et al., 1976; 

and most of the psychological literature), folk generic level  (Berlin, 

1972, 1992; as well as most of the anthropological literature), genus  

level (Anderson, 1989, 1990), BOL (from Rosch's "Basic Object Level"; 

Posey, 1979), B0 (Taylor, 1990), and so on.

1.1 Before Rosch and colleagues

1.1.1 Brown's level of usual utility

In his article How shall a thing be called?, Brown (1958) asked us 

to consider a parent teaching a child the names of things in the world 

in his native language. The usual strategy consists of pointing at 

something and saying "this is an X". This is an ostensive def in i t ion  

(see?). Ostensive definitions are inherently ambiguous. Consider
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Brown's dime example. A dime could be named a "dime", but also 

"money", a "metal object", a "thing", and moving to subordinates, it 

could be designated as a "1952 dime", or as a "particular 1952 dim e". 

(Note that Brown is concerned only with the vertical am biguity-an 

ambiguity associated with level of generality-in naming things, but a 

horizontal ambiguity-an ambiguity associated with synonym s-also 

exists. For example, "dime" is synonymous with "10 cents".) How is a 

parent to select a name among all these possibilities? They could just 

select one randomly, and this would be the end of the story. This is no t 

however what they do. Brown appeals to our intuition (like linguists 

often do) to convince us that a dime may be named "money" or 

"dime", but probably not "metal object", "thing", "1952 dime", and so 

on. He then goes on to make a more general claim: "Listening to

many adults name things for many children, I find that their choices 

are quite uniform and that I can anticipate them from my ow n 

inclinations." (Brown, 1958, p. 14). Why is it that adults consistently 

choose names at a certain level of categorisation? His answer: adults 

have a notion of the language appropriate for use with children. "It 

seems likely that things are first named so as to categorise them  in a 

maximally useful way." (Brown, 1958, p. 20). Brown calls the level of 

categorisation at which these uniform choices occur the level of usual  

utili ty .

Brown's (1958) contribution is more theoretical than empirical. 

We will come back to this in Chapter 3. However, Brown is the first to 

have emphasised this empirical reality that not all levels of generality 

are equal. He also anticipated im portant research trends in the basic- 

level literature: He proposed that the level of usual utility could be 

revealed by several indexes of performance. Brown m entions Zipf's 

(1935) seminal work which showed that word length is negatively
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correlated with word frequency which is correlated with usual utility. 

For example, the monosyllable "dog" has much higher frequency 

according to the Thorndike-Lorge list than do the polysyllables "boxer", 

"quadruped", and "animate being". Brown also suggested that children 

first learn names at the level of usual utility. This is founded on the 

fact that the child's concrete vocabulary comprises more words at the 

level of usual utility than at any other level of generality. For Brown, 

this follows from the parents' tendency to use usual utility names in  

designating things to their children. This was studied by 

developmental psychologists much later (e.g., M arkman & H orton, 

1980). Brown's utility principle was formulated with great care to 

include possible individual differences. The names used by parents to 

designate things to their children are the most useful to categorise 

them for non-linguistic purposes in their experience. For a 

num ism atist (a coin collector), for example, a priceless 1910 dime is 

more a "priceless 1910 dime" than simply "money" or a "dime". For 

the kids from a particular neighbourhood a dog might be "Prince", but 

it is a "dog" for the rest of the world. Brown also ventured that maybe 

the level of usual utility of the parents differs from that of the children 

(c.f., the Mervis child's basic level). This led to some research in  

anthropology (e.g., Berlin, 1992; Berlin, Breedlove & Raven, 1973; 

Boster, 1980; Coley, Medin & Atran, 1997; Dougherty, 1978) as well as 

psychology (e.g., Rosch et al., 1976; Tanaka and Taylor, 1992; Johnson 

and Mervis, 1997).

1.1.2 Cognitive anthropology and the folk-generic level

Cognitive anthropologists are interested in how we segment the 

world into categories. They study the extent to which these categories 

are given by the input, that is, by the environm ent, and the extent to
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which they are created through constructive cognitive processes. They 

look at classification across cultures in a range of domains such as 

plants and animals (ethnobiology), colour, kinship, textiles, and 

household objects such as pots and bowls. Of these, the ethnobiological 

studies have the most commonalties with psychology; furtherm ore, 

they have been the most rigourous in their approach (Malt, 1995). W e 

will thus focus on this ethnobiological literature here.

We will examine three intertwined research themes: (1) folk and 

scientific taxonomies comparisons, (2) evidence for a preferred level of 

categorisation, and (3) evidence for a universal preferred level of 

categorisation (i.e., which holds across all cultures). The third theme is 

especially interesting because it goes beyond what standard cognitive 

psychology has to offer. Themes (1) and (2) are prerequisites for (3). If 

there is a universal preferred level of generality, then taxonomies m ust 

be commensurable to a certain extent. At the very least, they m ust 

share this special level. This is what (1) establishes. We will spend 

some time on this because it fleshes out the methods used by cognitive 

anthropologists to address questions more relevant to us. And if there 

is a universally preferred level, then there m ust be a preferred level 

within each folk taxonomy. This is the question tackled in (2).

Many researchers have shown that folk and scientific 

ethnobiological classifications overlap greatly. (They have no t 

compared two folk taxonom ies-an endeavour which would tap in to  

their goal more directly-because of the quantity of work this w ould 

involve; the scientific ethnobiological taxonomies are readily available 

(Malt, 1995).)

The scientific classification break-down for an African elephant, 

for example, is Animalia  (animal) at the kingdom  level, Chordata at 

the p h y lu m  level, Vertebrata (vertebrate) at the sub-phylum  level,
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Mammalia  (mammal) at the class level, Proboscidea at the order level, 

Elephantidae (elephant) at the fam ily  level, Laxodonta Africana  

(African elephant) at the genus level, and Laxodonta Africana Vulgaris  

at the species level (e.g., Perrott, 1971).

Berlin (1972, 1992; see also Berlin, Breedlove & Raven, 1973) has 

examined folk classification systems in the most thorough fashion: He 

studied plant classification in the Tzeltal Maya of southern Mexico and 

the Aguaruna Jivaro of north central Peru, two traditional cultures. 

Psychologists know of this work especially for its description of folk 

classifications as taxonomies with a preferred level of generality-the 

folk generic leveF-(see Rosch et al., 1976). However, another 

im portant contribution of Berlin's research is the comparison of folk 

and scientific taxonomies. For his analysis of the correspondence of the 

Tzeltal folk categories to the scientific categories, Berlin (1972; Berlin et 

al., 1973) concentrated on the so-called folk-generic categories. These 

correspond to the most specific categories labelled by single words and 

to the most common and salient categories (see Berlin, 1992). Latter 

Rosch et al. (1976) will argue that folk-generic and basic categories are 

roughly the same. Berlin discovered 61% one-to-one correspondence 

between the Tzeltal folk generic botanical categories and scientific 

botanical species. This is a rather large percentage of overlap.

Bulmer (1970) found a comparable level of overlap in the 

Kalam's of New Guinea taxonomy of vertebrate animals. Instead of 

using folk-generic categories like Berlin, he used terminal  categories

Although Berlin's (1972) "folk generic level" became the standard expression to 

designate this special level of categorisation in cognitive anthropology, it is worth  

mentioning that Conklin (1954) had already used the expression "basic name" re la tive  

to plant taxonomies to express the same idea.
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that is, the most specific categories known to a culture. Note that 

sometimes these are at the folk-generic level, and sometimes they are 

more specific. The Kalam terminal categories overlap with 60% of the 

scientific zoological species.

H unn (1977) studied the agreement between Tzeltal animal folk 

categories and scientific animal categories at all levels of categorisation 

(i.e., species, genus, family ,  etc.). His measure of the degree of 

dissimilarity between a folk and a scientific category is perhaps best 

explained by an example. Suppose that a folk category includes all the 

specimens of the "Rodentia" scientific category and only those. The 

dissimilarity measure between the folk and the scientific category 

would be zero. But if this folk category also included moles  and shrews  

that is, members of the scientific order of "Insectivora", then one level 

would have to be climbed in the scientific taxonomy before all the folk 

category would be comprised in a scientific one; here the dissim ilarity 

between the folk and the scientific category would be one (Malt, 1995). 

H unn found 79% of zero dissimilarity for birds categories, and 78% for 

mammals. Most of the non-zero dissimilarities were low. H u n n  

concluded that the overlap between folk and scientific categories is 

im portant.

A few studies suggest that utility plays a role in the way cultures 

classify their environm ent. Diamond (1966) remarked that even  

though Fore had very specific categories for birds, they classified all 

butterflies in one category. Bird categories have a utility for the Fore 

because these categories help the Fore hunt the birds that they like; 

butterfly categories have little interest. Bulmer (1970) observed that the 

Kalam of New Guinea tend to group biological species together w hen  

they are of no use to them. A recent study conducted by Medin, Lynch, 

Coley and Atran (1997) examined the effects of goals and interests on
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classification and reasoning processes. They showed that classifications 

made by landscape workers were largely influenced by u tilitarian  

factors. For example, landscapers' groupings of trees were frequently 

based on properties such as landscape utility, aesthetic value, size, and 

weediness.

To summarise, people from different cultures organise their 

environm ent in taxonomies, and these folk taxonomies overlap w ith  

scientific taxonomies, although incompletely. There is some evidence 

that utility might play a role in how complete or incomplete these folk 

taxonomies are. The next question that cognitive anthropologists 

addressed will ring a bell: are all these levels equivalent, or,

alternatively, is one special in some respect?

The evidence for a special level of categorisation in  

ethnobiological studies comes from a num ber of independent studies 

of different cultures. The structure of the names of categories from  

different levels of categorisation is one type of evidence: Both folk

generic categories, such as "oak" and "redbud", and the next h igher 

level categories, such as "tree" and "herb", are reliably nam ed w ith  

primary lexemes.  Folk-generic categories are the most specific 

categories designated by primary lexemes. Usually primary lexemes are 

single words (e.g., "maple", "bass"), but they can also be com pound 

nouns (e.g., "poison oak" or "baby breath"), if they do not contain the 

name of an immediate superordinate category (e.g., poison oak is no t 

included in neither the poison, nor the oak category) and contrast w ith  

categories that are primary lexemes (e.g., tulip tree contrasts w ith  

primary lexeme categories such as oak and maple, and therefore is a 

primary lexeme). Lower-level category names are almost always 

composed of two words: the name of a superordinate category,

preceded by a modifier (e.g., "pine warbler"). Moreover, the categories
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they contrast with comprise the same superordinate category name in  

their compound name (e.g., "palm warbler" contrasts with "Canada 

warbler") (see Malt, 1995).

H unn's analysis of the degree of correspondence between folk 

and scientific taxonomies gives additional support to the claim that the 

folk-generic level is superior to the others (see our earlier discussion of 

H unn's research). Ninety-one percent of the Tzeltal animal folk 

generic categories have levels of dissimilarity of zero or one, whereas 

85% of their subordinate categories and 51% of their superordinate 

categories have the same levels of dissimilarity.

Another evidence is that folk-generic categories outnum ber all 

the other kinds of categories. This happens because only 20% of the 

folk generic categories are subdivided (Berlin, 1992). This is in itself 

evidence for the salience of those categories. Investigators have also 

reported that generic names are those most easily and com m only 

elicited from informants (Berlin et al., 1973; Taylor, 1990) although 

these findings are not as robust. In other words, the most typical 

answer to the question "what is this?" is a folk generic name. Finally, 

there is some data that suggest that children learn folk-generic nam es 

first. Stross (1973) asked 25 Tzeltal children (4 to 13 years old) to nam e 

209 different plants. Children most often produced the folk-generic 

names.

To summarise, there is ample evidence from ethnobiology that 

the folk-generic level of abstraction has a special psychological status. Is 

this preference universal? In other words, does it hold across all 

cultures?

The folk-generic level found in most anthropological studies 

corresponds roughly to the scientific generic level (which, in m ost 

cases, is coextensive with single species since frequently only one
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species of a genus is present in a given local environm ent; Berlin, 

1992).

However, there is also evidence that the folk-generic level m ay 

vary to a certain extent as a function of the individual's expertise about 

the domain. Boster (1980) discovered that the members of the 

Aguaruna community responsible for cultivating manioc refered to 

manioc plants by sub-folk-generic terms, whereas other members of the 

community used the folk-generic label. Berlin (1992) further noted that 

Aguarana women fail to differentiate among members of som e 

scientific genera of forest birds which the men, who spend more tim e 

in the forest, do name distinctively. Similarly, Dougherty (1978) 

remarked that urban American children, in contrast to the Tzeltal 

children studied by Stross, appear to learn supra-generic distinctions 

among plants first and may never learn more than about a dozen folk 

generic distinctions. This is consistent with Rosch et al.'s (1976) finding 

that for biological categories such as trees, their college student subjects 

seemed to have a basic-level above the folk generic level (the basic- 

level usually corresponds to the family level in scientific taxonomies) 

reported by Berlin et al. (1973). Remember that these ind iv idual 

differences were already suggested by Brown (1958).

More recently, Coley, Medin and Atran (1997) examined the 

relationship between privileged levels in folk biological taxonom ies 

and inductive inference. They predicted that the principles that lead to 

basic-level phenom enon (e.g., high within-category similarity relative 

to between-category similarity-see 1.3.1 Tests of the di fferentiation  

model)  would lead to inductive privilege. Differences in the location 

of the folk-generic level across cultures should thus be reflected in  

differences in which level appeared privileged for induction. For Itzaj 

Maya adults, results were as predicted by anthropological accounts of
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folkbiological taxonomy: Inferences to scientific-generic (i.e., the folk- 

generic level) categories were consistently stronger than ones to m ore 

general categories. However, for Americans college students, results 

showed that the the preferred level for naming, etc. was the family 

level (i.e., the Rosch's basic level), whereas the privileged level for 

induction was the scientific generic level.

1.2 Rosch and colleagues' basic-level

In a series of papers, Rosch and her colleagues introduced the 

basic-level problema to cognitive psychology: Rosch, Mervis, Gray,

Johnson, and Boyes-Braem's (1976) paper is the single most influential 

article published on the basic-level and its ram ificatons2. Although the 

Rosch and Mervis (1975) paper is better known for the family 

resemblance idea it is the first published article to use the expression 

"basic-level". Rosch (1977 and 1978) as well as Mervis and Rosch (1981) 

are review articles, and do not add much to Rosch et a l/s  (1976) 

contribution.

2 Just to give you an idea: Rosch et al. (1976) was cited 965 times since its publication  

(BIDS Citation Index). Compare this citation count with those of a few classics: 

Miller's (1956) magical number paper is cited to date on 1489 occasions, Shepard and 

Metzler's (1971) mental rotation paper, on 713 occasions, Medin and Schaffer's (1978) 

context model article, on 579 occasions, and Tversky's (1978) contrast model paper, on 981 

occasions (BIDS Citation Index). And with those of early influential b asic-level 

articles: Brown (1958) is cited on 99 occasions, Murphy and Smith (1982), on 85

occasions, Horton and Markman (1980), on 57 occasions, Jolicoeur, Gluck and Kosslyn 

(1984), on 118 occasions, Mervis and Crisafi (1982), on 101 occasions, and Tversky and 

Hemenway (1984), on 192 occasions (BIDS Citation Index). This is evidence that Rosch 

et al. (1976) constitutes a basic event in the short basic-level literature history.
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Theoretically, Rosch et al. (1976) proposed a utility model of 

basic-levelness (cue validity) and a similarity-based one (differentiation  

model), and by the same token created the two attractors around w hich 

most other basic-level models would be organised (see Chapter 3). 

Empirically, they showed that of three levels (subordinate, basic, and 

super ordinate), the basic was psychologically superior in many respects. 

We will describe Rosch et al/s experiments in detail because they set 

the agenda for all future research.

Rosch et al. were very much influenced by Berlin's (1972; Berlin 

et al., 1973) early work. In fact, Experiments 1 to 4 are aimed at 

correcting three shortcomings of the ethnobiological studies: (1) they 

refers only to biological classes, (2) the claims for natural groupings are 

generally supported by few correlated attributes (this has been corrected 

in Berlin's latter work), and (3) the location of natural groupings at a 

particular level of abstraction is defined by linguistic-taxonomic, rather 

than psychological criteria.

In Experiment 1, Rosch et al. systematically studied the co­

occurrence of attributes in the most common taxonomies of m an-m ade 

and biological objects in our culture. They used 90 object nam es 

belonging to three levels of categorisation in nine taxonomies. The 

names were chosen so that they would be representative of categories 

in W estern culture. These nine taxonomies were used in all of Rosch 

et al. experiments. They can be seen in detail in Table 1.

Table 1: Taxonomies used by Rosch et al.. Adapted from Rosch et al. 
(1976, Table 1).
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Nonbiological taxonomies
Superordinate Basic Subordinate 1 Subordinate 2

Musical instrument
Guitar Folk guitar Classical guitar
Piano Grand piano Upright piano
Drum Kettle drum Bass drum

Fruit
Apple Delicious apple Mackintosh apple
Peach Freestone peach Cling peach
Grapes Concord grapes Green seedless 

grapes

Tool
Hammer Ball-peen hammer Claw hammer

Saw Back hand saw Cross-cutting hand 
saw

Screwdriver P h illip s Regular screwdriver

Clothing
Pants Levis Double knit pants
Socks Knee socks Ankle socks
Shirt Dress shirt Knit shirt

Furniture
Table Kitchen table Dining room table
Lamp Floor lamp Desk lamp
Chair Kitchen chair Living room chair

Vehicule
Car Sports car Four door sedan car
Bus City bus Cross country bus

Truck Pick up truck Tractor-trailer truck
Biological taxonomies

Superordinate Basic Subordinate 1 Subordinate 2

Tree
Maple Silver maple Sugar maple
Birch River birch White birch
Oak White oak Red oak

Fish
Bass Sea bass Striped bass
Trout Rainbow trout Steelhead trout

Salmon Blue back salmon Chinook salmon

Bird
Cardinal Easter cardinal Grey tailed cardinal

Eagle Bald eagle Golden eagle
Sparrow Song sparrow Field sparrow

Two hundred students listed attributes for each of the categories. 

For example, a participant could have listed the three features roots, 

Canadian emblem, and leaves for the category of "sugar maple". Only 

the attributes that were listed at least six times were included in the 

analysis. For nonbiological categories, they found that people tended to 

list many more features at the basic-level than at the superordinate- 

level, with only a slight increase at the subordinate-level. This pattern  

of results was shifted up one level for the nonbiological taxonomies. In  

other words, the biological superordinates and basics showed the sam e
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proprieties as the nonbiological basics and subordinates, respectively3. 

(This experiment is further discussed in Chapter 4.)

In Experiment 2, Rosch et al. studied the similarities between the 

motor programs associated with the use of these objects for the three 

levels of abstraction. They asked participants to describe their 

interactions with the category objects at different levels of 

categorisation. For instance, a participant could play music w i th  

musical ins truments ,  but hold a guitar on her lap, pinch its strings w i th  

one hand, modulate the strings length with the other, and so on.  

Nonbiological superordinate categories have few, if any, m otor 

m ovem ents that can be made to the category as a whole and few 

movem ents in common. Nonbiological basic-level categories receive 

descriptions of many specific m ovements made to all members of the 

category and many of these m ovements are described by a sufficient 

num ber of different participants to form a picture of m ovem en t 

sequences made in common to all members of the basic class of objects. 

Subordinate nonbiological categories did not differ significantly from  

the basic ones either in the specificity of the descriptions or in the 

num ber of common movements made in interacting with the object.

3 Rosch et al. (1976) chose their categories armed with the early lessons of cognitive 

anthropology. Sparrow, trout, and oak are folk-generic categories (or, in Table 1, basic 

categories) and should therefore be preferred to their respective superordinates bird, 

fish, and tree. Rosch et al. found the opposite pattern of preferences. Dougherty (1978) 

observed the same phenomenon in urban American children. This suggests that the folk  

generic level is not universal. In any case, cognitive psychology has forgotten the  

biological nomenclature illustrated in Table 1. Now bird, fish, and tree are basic 

categories, and sparrow, trout, and oak some of their respective subordinates.
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Again, the characteristics of the nonbiological taxonomies in  

Table 1 were shifted down one level relative to the biological ones. 

From Experiment 3 on, Rosch et al. shifted their original biological 

taxonomy (see Table 1) so that the categorisation level exhibiting the 

best performance coincided with the level called "basic". Bird, fish, and 

tree thus became basic categories; and sparrow, trout, and oak some of 

their respective subordinates. This is the biological basic-level we 

know and love.

It seems plausible prima facie that a high degree of similarity for 

motor programs in Experiment 2 results from things sharing m any 

parts and these parts being organised in similar ways. In other words, 

things might be handled the same way because they "look" the same. 

This is also suggested by the shared features of Experiment 1: an

im portant proportion of these shared features are shapes. In 

Experiments 3 and 4, Rosch e al. examined this hypothesis. In 

Experiment 3, the ratio of overlap to nonoverlap between the ou tline  

of sets of objects (normalised for size and orientation) was com puted. 

Particular care was taken to select objects w ithout bias; they were 

randomly selected from a large database. The superordinate categories 

were: clothing, vehicle,  animals,  and fu rn i tu re ; there were four basic 

categories per superordinate category and four subordinate categories 

per basic category. A large and consistent increase in similarity of the 

overall look of objects was obtained for basic level over superordinate 

categories. A significant but significantly smaller increase was observed 

from basic to subordinate.

In Experiment 4, averages of the shape of objects were com puted 

for categories at all levels of abstraction. These are Platonic prototypes 

so to speak. This procedure might appear less arbitrary if you consider 

that for Rosch the basic-level is to levels of categorisation what a
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prototype is to its contrasting categories (see also Halverston, 1992, on  

Palaeolithic art). Averages of superordinate objects could not be 

identified as such any better than at chance level; basic-level objects 

were the most inclusive categories at which averaged objects were 

readily identifiable.

Experiments 5 and 6 used the nonbiological objects from  

Experiments 1 and 2. The former two experiments were designed to 

assess the nature of representations at different categorisation levels. In 

Experiment 5, the name of an object was given at one of the three 

levels of categorisation to subjects as a cue before they were shown that 

object for 200 ms either on the right hand side of a screen or on the left 

hand side (a mask was presented on the other side). The experiment is 

based on the premise that if the representation is shape-based and 

isomorphic to the object, then cueing with its name will help its 

detection. Superordinate names did not help; and basic names helped 

just as much as subordinate ones (this has now been replicated by a 

num ber of researchers; e.g., Biederman, 1990). In Experiment 6, the 

same procedure was used with a same-different task. Under physical 

identity, only the basic-level and subordinate names prim ed the speed 

at which the subject could say that it was the same. W hich suggests, 

again, that an isomorphic representation could be activated by subjects 

in these cases.

Rosch et al. conducted the first verification experiment at 

different levels of abstraction. The rational was the following: maybe 

some of the basic-level advantages come from objects being first 

apprehended at this level (cf. prototypical categories are verified faster 

than the others; Rosch and Mervis, 1975). If this is true, people should  

be able to verify membership at the basic level more rapidly than at any 

other level. This has become the standard procedure to assess the
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performance at various categorisation levels. In Experiment 7, they 

used the objects and taxonomies from Experiments 5 and 6. A nam e 

was first presented to participants, which was followed by the picture of 

an object. The participants had to say whether or not the two m atched 

as quickly as possible. The verification RTs for correct positive item s 

were fastest at the basic level and slowest at the subordinate. (This 

experiment is further discussed in Chapter 4; the average verification 

times are reported in Table 6a.)

If objects are first apprehended at the basic-level by parents, 

maybe they are first learned at that level by children. This had already 

been suggested by Brown (1956) and by Stross (1973). In Experiment 8, 

triads of objects were shown to 3-yr-olds, 4-yr-olds, kindergarteners, first 

graders, third graders, and fifth graders. Their task was to pick out the 

odd object. In half the triads, a pair of objects matched at the 

superordinate level (e.g., Mackintosh apple, Freestone peach, and claw 

h a m m e r ): in the other half a pair matched at the basic level (e.g, 

Mackintosh apple, Delicious apple, and claw h a m m e r ). Note that no  

subordinate triads were used. This was decided because children do no t 

know many subordinate categories. At all ages, the children picked ou t 

the odd element in the basic-level triads. For the superordinate triads, 

3 yr-olds succeeded at 55% and 4 yr-olds at 96%.

Rosch et a l/s  Experiment 9 was similar to their Experiment 8 but 

it used a different sorting task. A set of pictures were freely grouped 

into categories. If they were not taxonomic, the experimenter asked 

whether a different grouping was possible, and if so which one. The 

results are similar to those of Experiment 8. All children could sort 

objects at the basic level; only third graders and above could do so for 

the superordinate level.
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Experiment 11 examined a well-documented case history: the

protocol for spontaneous speech of infant Sarah (Brown, 1974). Basic- 

level names were by far the most frequently present. This suggests 

again that basic-level names are the first ones acquired by children.

Next Rosch et al. asked whether the cause of this learning age 

effect was the parents giving objects basic names in free naming. You 

probably recognised Brown's (1958) hypothesis. This was hinted at in  

the verification experiment. Experiment 10 tested the free nam ing  

preference hypothesis more directly. All the objects in Experiment 1 

were used. Adults overwhelmingly named the objects at the basic 

level. Remember that this is supported by informal observations m ade 

by cognitive anthropologists as well as by Brown's (1958) linguistic 

intuitions.

Rosch et al. also tested whether these findings generalise to o ther 

languages. They reasoned that if a language has a poorer vocabulary 

than say English, its basic-level names will be the least affected. 

Experiment 12 is an informal consideration of American sign language. 

For nonbiological things, more basic-level names have consistent signs 

or sign combinations than names at any other level of categorisation.

One more issue discussed in Rosch et al. became an im portan t 

research trend in the basic-level literature: the effect of expertise on  

basic-levelness. To most people the basic category "airplane" is basic. 

However, for one participant of Experiment 1, an airplane m echanic, 

the superior categories were at the subordinate-level of abstraction (e.g., 

"Boeing 747", "Concorde"). Along the same line, you will rem em ber 

that Rosch et al. (1976) found that for biological categories such as trees, 

their college student subjects seemed to have a basic level above the 

folk generic level reported by Berlin (1972, 1992; Berlin et al., 1973) w ith  

aborigines (i.e., at the family level rather than at the genus level). They
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argued that this was due to a lack of expertise triggered by a lack of 

usefulness. This is quite reminiscent of Brown's numismatist example.

1.3 After Rosch and colleagues

The empirical research to date on the basic-level has been 

completely shaped by the work of Rosch and colleagues. We have 

divided the more recent basic-level literature into five themes that you 

will immediately recognise: (1) tests of Rosch's differentiation m odel 

(cf. Rosch et al., 1976, Experiments 1 and 7), (2) attempts to generalise 

the basic-level phenomenology to other domains (cf. Rosch et al., 1976, 

Experiment 12), (3) assessments of the importance of shapes as a basic- 

levelness determ inant (cf. Rosch et al., 1976, Experiments 3 and 4), (4) 

studies of the effect of expertise on basic-levelness (cf., Rosch et al.'s, 

1976, general discussion), and (5) evaluations of the hypothesis that 

basic-level names are the first learned by children (cf., Rosch et al., 1976, 

Experiments 8, 9, and 11; Brown, 1956; Stross, 1973).

1.3.1 Tests of the differentiation model

Rosch et al. (1976) proposed a m odel-category 

differentiation- th a t somehow optimises distinctiveness  (i.e., "[...] have  

the least attributes shared with members of other [contrasting] 

categories.", Rosch et al., 1976, p. 435) and informativeness  (i.e., "[...] 

have the most attributes common to members of the category [...]", 

Rosch et al., 1976, p. 435). Just how distinctiveness and inform ativeness 

are integrated is unclear (see Chapter 3 for a more detailed discussion). 

However, most experim enters-including Rosch et a l.-have  

understood the differentiation model as the sum of the within-category 

similarity and the between-contrasting-category dissimilarity (cf. 

Tversky's, 1978, special contrast model). Rosch et al. showed that basic

3 4



categories are indeed more differentiated in this restricted sense of the 

term than natural taxonomies.

M urphy and Smith (1982) were the first to test this special 

differentiation model using artificial objects (see Figure 8 for sam ple 

objects). Their experiments were aimed at dissociating Rosch et al.'s 

differentiating account from three alternative explanations: basic-level 

categories are superior because (1) they are first learned, (2) of the 

frequency of the category, or its name, or both, and (3) the conjoint 

frequency between a category, or its name, and an object (remember: 

this is one of Brown's, 1956, suggestions). As measures of 

informativeness and distinctiveness, they used, respectively, the 

num ber of uniquely defining construction features  that were shared 

within category and between contrasting categories. To illustrate, 

consider their Experiment 1 taxonomy shown at the bottom of Figure 1 

(see Chapter 2). Underneath the category names (e.g., "hob", "bot", and 

"com"), we give in an abstract form all the uniquely defining 

construction features. For example, a hob can be identified by feature a, 

a bot by any one of features c, d, or e, and a com by feature o. The 

informativeness of the hob category is 1 (it has a single within-category 

feature shared by all its members), and its distinctiveness is 1 (it has a 

single between-contrasting-category feature shared by all its members). 

The differentiation of hob is thus 2 (an informativeness of 1 + a 

distinctiveness of 1). Similarly, we find that the bot and com categories 

have informativeness (as well as distinctiveness) scores of 3 and 1, 

respectively. The differentitiation of bot is thus 6, and that of com, 2. 

Therefore, differentiation is maximised for the bot category, and is 

equally low for the hob and com categories. Generalising to 

categorisation levels: the middle-level is more differentiated than the 

high- and low- levels which are equally differentiated. In a series of
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three experiments they showed that basic-levelness varied w ith  

differentiation, not with the other factors (see Chapter 4 for m ore 

details).

The most systematic tests of the differentiation model were 

carried out by Murphy (1991a). To minimise confounds and m axim ise 

control, he used artificial taxonomies (see Figures 8 and 15 for sam ple 

objects). In a series of five experiments, he showed that basic-levelness 

was function of differentiation (see Chapter 4 for more details).

Experiments with artificial taxonomies are suggestive but still 

leave us with doubts as to whether their results can be generalised to 

much richer natural taxonomies (e.g., Tversky and Hemenway, 1991). 

We mentioned already that Rosch et al. demonstrated that basic 

categories were the most differentiated in natural taxonomies. This has 

been replicated over and over again (e.g., Mervis and Crisafi, 1982; 

Tversky and Hemenway, 1984; Tanaka & Taylor, 1991; Johnson and 

Mervis, 1997). The trouble with natural taxonomies is control. How 

can one show that differentiation and basic-levelness vary together, 

that they do not just co-occur by accident, in natural taxonomies? Two 

tactics have been used: Brown (1956), Berlin (1992), and Rosch et al. 

(1976) suggested that experts have more differentiated subordinates. 

Palmer, Jones, Hennesy, Unze and Pick (1989) demonstrated it 

experimentally with musicians and nonm usicians using a m usical 

instrum ent taxonomy. Then Tanaka and Taylor (1991)-using dog and 

bird experts-showed that basic-levelness does co-vary w ith  

differentiation. We will soon devote a whole section on expertise and 

basic-levelness. For now we will leave it as it is.

Two groups of researchers arrived at another tactic 

independently (Jolicoeur, Gluck and Kosslyn, 1984; M urphy and 

Brownell, 1985): Subordinate categories are by definition very
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informative but they lack distinctiveness, and this is the basis of the 

basic-level advantage. However, there are some subordinates that are 

very distinctive, namely atypical subordinates (Rosch and M ervis, 

1975). For example, penguins are "birds", but they are very distinct 

from other birds; electric knives are "knives" but distinct from other 

knives. So basic-atypical subordinate categories-as M urphy and 

Brownell named them -should behave more like basic-level categories 

than subordinate categories. This is exactly what they found. Note that 

this also refutes other accounts: atypical terms are typically longer,

learned later, and less frequently used.

M arkman and Wisniewski (1997) pointed out that the notion of 

differentiation (i.e., high within-category similarity and low betw een 

category similarity) does not acknowledge that a pair of categories can 

be dissimilar either (a) because it has few commonalt ies  (e.g., no  

common dimension) or (b) because it has many alignable differences  

(e.g., many different values on the same dimensions). A car is 

dissimilar to a motorcycle because it has four wheels instead of two; 

this is an example of an alignable difference. A car is also dissimilar to 

a motorcycle because it has a jack. This is an example of lack of 

commonalty. M arkman and Wisniewski showed that na tu ra l 

superordinate categories are dissimilar because of few com m onalties, 

and that natural basic categories are dissimilar because they have m any 

alignable differences. Alignable differences have a num ber of 

advantages over nonalignable ones: they are more focal in sim ilarity 

comparisons (Markman and Gentner, 1996); they are more likely to be 

used in other cognitive processes involving comparisons such as 

decision making (Markman and Medin, 1995), conceptual com bination 

(Wisniewski, 1996; Wisniewski and Markman, 1993), and concept 

formation (Wisniewski and Markman, 1996). It seems appropriate that
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the level of categorisation that has an advantage in a variety of 

cognitive tasks is marked by the presence of differences that are also 

privileged in a variety of tasks.

1.3.2 Other domains with a basic-level

If the basic-level phenomenology is a norm al consequence of 

categorisation in taxonomies, then it m ust be found everyw here 

taxonomic categorisation occurs. In fact, the basic-level 

phenomenology seems to hold across a variety of domains (for a 

review see Murphy & Lassaline, 1997), such as (1) American sign 

language (Newport and Bellugi, 1978), (2) environm ental scenes 

(Tversky & Hemenway, 1983), (3) events (Morris & Murphy, 1990; 

Rifkin, 1985; Rosch, 1978), (4) personality types (Cantor & Mischel, 

1979), (5) clinical diagnosis (Cantor, Smith, French, and Mezzich, 1980), 

(6) emotions (Shaver, Schwarz, Kirson, and O'Connor, 1987), and (8) 

computer programs (Adelson, 1983). It is difficult to avoid a dull 

enum eration here.

(1) Remember that Rosch et al. (1976) found that, in A m erican 

Sign Language (ASL), more basic-level names have more consistent 

signs or sign combinations than names at any other level of 

categorisation. Newport and Bellugi (1978) further explored the basic- 

level and ASL question. They learned that basic names are usually 

depicted by primary ASL signs (e.g., chair) whereas the superordinate 

terms are represented by a series of prototypical basic terms included in  

it ( e . g furniture  = chair-table-lamp, etc.) and the subordinate names are 

either made of (a) compound signs composed of regular basic ASL signs 

(e.g., kitchen chair = cook-chair), (b) compound signs composed of 

regular basic signs in conjunction with size-and-shape standard 

specifiers (e.g., park bench = chair-"oblong"), or (c) conjuncts of regular
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basic signs and mimetic non-standard depiction of the shape of objects 

(e.g., hacksaw = saw-"hacksaw-shaped"). The special character of the 

basic-level terms is shown both by the fact that they are represented by 

primary terms and by the fact that they are often the components of 

superordinate and subordinate terms.

(2) Tversky and Hemenway (1983) examined whether or no t 

environm ental scenes possess anything like a basic-level. Scenes are 

processed differently than objects. For example, a city scene can be 

recognised as such before any of its individual components (e.g., Schyns 

and Oliva, 1994; Oliva and Schyns, 1997). Tversky and Hem enway 

used "indoor" and "outdoor" as their superordinate categories. They 

then selected the four more frequently named scenes in these two 

superordinate categories to create their basic-level categories: "hom e", 

"restaurant", "store", "school", "mountain", "park", "beach" and "city". 

Their subordinate categories were two subsets for each basic category. 

The increase in listed attributes, actions, and parts was greater from  

superordinate to basic (e.g., "indoor" to "school") than from basic to 

subordinate (e.g., "school" to "elementary school").

(3) Rifkin (1985) investigated Rosch's (1978) idea that even t 

taxonomies also have a basic-level. He asked a group participants to 

produce what they thought were "basic events" (e.g., m eal, 

entertainm ent, sports, crime), then he asked another group of 

participants to produce superordinates (i.e., "This is a type of what?") 

and subordinates (i.e., "W hat are examples of this activity?"). A th ird  

group of participants were asked to list attributes for all these categories. 

Rifkin found that the increase of listed attributes augm ented 

significantly more from the superordinate to basic than from basic to 

subordinate, and that few attributes were listed at the superordinate.
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Morris and Murphy (1990) replicated this with several basic-level 

correlates, including verification latencies and frequency of use in free 

naming. They found that verifications were fastest and that people 

preferred to name event at the basic level.

An effort by Landau (1996) to study event taxonomies in a m ore 

natural setting deserves mention. He studied a large corpus of 

cinematic shots from the movies of Alfred Hitchcock, and found that 

most of them were basic events.

(4) Cantor and Mischel (1979) searched for a basic-level in  

personality taxonomies. They asked participants to list attributes for 

hierarchically organised categories such as "emotionally unstable 

person", "committed person", and "cultured person" at their highest 

level of abstraction; "criminal m adm an", "religious devotee", and 

"patron of arts" at their intermediate level; and "strangler", "Buddhist 

monk", and "supporter of community orchestra" at their lowest level 

of abstraction. More attributes were listed at the middle-level than at 

the two others.

(5) Cantor, Smith, French and Mezzich (1980) studied the same 

question with categories used in diagnostic manuals at that time. They 

asked experienced clinicians to list features for categories at different 

levels of abstraction (e.g., "functional psychosis", "schizophrenia", and 

"paranoid schizophrenia"). The basic-level signature was discovered: 

more attributes were listed at the middle-level than at the two others.

(6) Shaver, Schwarz, Kirson and O'Connor (1987) showed that 

emotions are hierarchically organised and that they have a preferred 

level of abstraction. Their participants sorted 135 emotion terms. A 

hierarchical cluster analysis was conducted on the data from the 

sorting. The emotions clustered into a three-level hierarchy: They 

were two clusters, "positive" and "negative" emotions, at the m ost
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general level; there were five groups, which they interpreted as "love", 

"joy", "anger", "sadness", and "fear", at the intermediate level; and 

there were 25 clusters (e.g., "cheerfulness", "contentm ent", and "pride" 

were subdivisions of "joy"), at the most specific level. The 

intermediate-level emotion categories corresponds roughly to w hat 

people say when asked to name emotions (plus "hate", perhaps); to 

emotions children learn to name first; and, finally, to emotions that 

theorists have classified as primary.

(7) Finally, Adelson (1985) examined computer program m ing 

concepts hoping to find evidence for a basic level. Expert program m ers 

were asked to enumerate the attributes of names of concepts at a 

general level (e.g., "algorithm", "data structure"), at an in term ediate 

level (e.g., "sort", "tree"), and at a specific level (e.g., "insert", "binary"). 

The increase from most general to intermediate was larger than from  

intermediate to specific, and few attributes were listed at the m ost 

general level. Participants also chose the intermediate categories m ore 

often in a partitioning task.

1.3.3 Importance of shapes for basic-levelness

Remember that Rosch et al.'s (1976, Experiment 3) found a large 

and reliable increase in similarity of the overall look of objects from  

basic to superordinate categories, and a significant-but significantly 

sm aller-increase from basic to subordinate. Furthermore, Rosch et al. 

(1976, Experiment 4) found that averages of basic-level objects are the 

most inclusive categories at which average objects are readily 

identifiable4. These findings suggest that shape plays an im portant role 

at the basic-level.

4 Halverson (1992) argued that Upper-Palaeolithic drawings are just such basic-level 

averages (e.g., bison or horse). Interestingly, the drawings from this period h a v e
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Shapes are composed of parts in a certain configuration. For 

example, a prototypical house is a wedge on top of a cube. W hat is 

more determ inant for basic-levelness? Tversky and Hemenway (1984) 

found a sharp increase of listed part features-not spatial relationships 

between them -from  the superordinate to the basic level (e.g., hand le  

and blade for "knife"; peel and pulp for "banana"), but little rise from  

the basic to the subordinate level for a broad range of natural categories 

including both objects and living things.

Additional evidence comes from a study by Klatzky and 

Lederman (1995) on identifying objects from haptic glances that is, only 

touching the object for a short duration. This procedure gives 

participants access only to local parts (and texture) information. At 200 

ms exposure time, basic naming accuracy was above chance, and 

providing the superordinate name did not increase the accuracy 

significantly.

It seems that parts-not their spatial configuration-are the critical 

determinant of the correlation between shape and basic-levelness. Is it 

possible to restrict the range even more?

McMullen and Jolicoeur (1992) suggested that the basic-level 

categories are defined by geons and that subordinate categories require 

additional shape processing such as determ ining the spatial 

relationship between geons. These include parts such as cube, sphere,  

cylinder, and so on. Biederman (1987) showed that geons are invarian t 

through most views and most orientations. If McMullen and Jolicoeur 

are correct, basic-level categorisation should be mostly orientation and

canonical views (Palmer, Rosch & Chase, 1981), they are "abbreviated" (missing feet, 

missing head, etc.), of variable sizes, and, typically, only made of shapes (neither 

colour, nor texture is represented).
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size invariant, like geon recognition. However, subordinate-level 

categorisation should be orientation dependant (e.g., ON THE RIGHT 

OF could become ON THE LEFT OF), but size invariant.

Hamm and McMullen (1998) tested the orientation predictions. 

They asked participants to name as quickly as they could rotated objects 

(between 0° and 120°) at the superordinate (e.g., animal), basic (e.g., 

dog), and subordinate (e.g., collie) levels. As predicted, they found a 

large effect of rotation on subordinate naming, but little on basic and 

superordinate naming.

The size predictions were examined by Archambault, Gosselin 

and Schyns (in press). They used eight animal species, such as "dog", 

"cow", and "frog", each divided in two subordinate categories, such as 

"Doberman dog", "German shepherd dog", "Holstein cow", "Friesian 

cow", "leopard frog", and "rhino frog". The exemplars were presented 

at six different sizes between .38 and 12 deg. Participants were 

submitted to one of two tasks: In the discrimination task, participants 

were shown two animal exemplars simultaneously, and then were 

asked either the subordinate question "Was it the same animal?", or 

the basic one "Was it the same animal category?". In the categorisation 

task, participants were presented one animal exemplar and then asked 

either a subordinate question such as "Was it a Holstein cow?" or a 

basic question such as "Was it a cow?". For both tasks accuracy was size 

invariant at the basic but not at the subordinate level. This goes against 

McMullen and Jolicoeur's (1992) predictions.

In a series of five experiments, Murphy (1991a; see also 1991b) 

tested whether the relationship between geon and basic-levelness is 

necessary (i.e., the degree to which a taxonomy does not have parts 

collected at one level, it will not display basic-level phenomena) or 

sufficient (i.e., the degree to which a taxonomy has parts collected at
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one level, it will tend to display basic-level phenomena). He found 

that parts are neither necessary, nor sufficient. His experiments are 

described in greater detail in Chapter 4.

Corter, Gluck and Bower (1988) also refuted M urphy's necessary 

clause. They used artificial disease categories defined in terms of verbal  

or conceptual features rather than perceptual ones. The artificial 

diseases were characterised by symptoms such as swollen, discoloured,  

bleeding, or sore gums; puffy,  sunken, red, or burning eyes; and blotchy 

or scaly rash. The middle level categories were verified faster (or, if you 

prefer: they had greater basic-levelness) than the two others w hich 

were verified equally as fast. With hindsight we could say that 

M urphy's necessary condition has been refuted a num ber of times by 

basic-level experiments in domains w ithout shapes (Adelson, 1985; 

Cantor and Mischel, 1979; Cantor, Smith, French and Mezzich, 1980; 

Morris and Murphy, 1990; Rifkin, 1985; Shaver, Schwarz, Kirson and 

O'Connor, 1987; see section 1.3.2 Other domains with a basic-level).

To summarise, the correlation observed between basic-levelness 

and geons seems to be accidental, and therefore could reveal m ore 

about the structure of the world than about cognition.

1.3.4 Expertise and basic-levelness

Brown's (1956) principle of utility made it possible for different 

people to have different "levels of usual utility". Remember his coin 

collector example: To this connoisseur a priceless 1910 dime is a

"priceless 1910 dime"; to most of us, it is a "dime" or "little money". In 

the cognitive anthropological literature, the effect of expertise on basic- 

levelness is also mentioned: Boster (1980) found that m anioc

cultivators among Aguaruna tend to refer to manioc plants by specific 

rather than generic names, whereas other members of the com m unity
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used the generic label as expected; Berlin (1992) noted that A guaruna 

women, who spend less time in the forest than men, may fail to 

differentiate among members of some scientific genera of forest birds 

which men do name distinctively; and Dougherty (1978) observed that 

urban American children, in contrast to the Tzeltal children studied by 

Stross, appear to learn supra-generic distinctions among plants first and 

may never learn more than about a dozen folk generic distinctions. 

Finally, you will remember Rosch et al. (1976) found that for biological 

categories, such as birds, their college student subjects seemed to have a 

basic level above the folk generic level reported by Berlin et al. (1973). 

Rosch et al. proposed that expertise increases differentiation (or the 

number of unique listed features) of subordinate categories.

Palmer, Jones, Hennesy, Unze and Pick (1989) tested this 

hypothesis. They asked musicians and nonm usicians to list features 

for categories, such as "string" and "woodwind", at the m usical 

instrum ent families level, and for categories, such as "clarinets" and 

"violin", at the individual instrum ent level. They found an 

orthogonal pattern of responses: for musicians, categories were m ore 

differentiated at the level of individual instrum ents than at the 

musical instrum ent families level; and vice-versa for the 

nonm usicians.

Tanaka and Taylor (1991) conducted a more elaborate study 

involving dog and bird experts. These people performed three 

categorisation tasks involving exemplars from both the expert dom ain  

and the less familiar (novice) domain. The tasks were modelled after 

those of Rosch et al. (1976) and involved attribute listing, free nam ing, 

and category verification. In the feature-listing task, participants were 

asked to list attributes of superordinate-, basic-, and subordinate-level 

categories. Participants listed almost as many features for the
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subordinate-level categories within the dom ain of expertise (e.g., 

"robin" for the bird experts; "collie" for the dog experts) as they did for 

the basic-level categories (e.g., "bird" for the bird experts; "dog" for the 

dog experts). Outside their area of expertise they behaved like Rosch et 

a l/s  (1976) subjects: the increase in the number of attributes was greater 

from superordinate to basic than from basic to subordinate. Bird 

experts were more likely to name pictures of birds with subordinate- 

level names than with basic names, whereas dog experts did not show  

any preference for either basic or subordinate-level names for pictures 

of dogs. For object within the domain of expertise, subordinate-level 

verifications were as fast as basic-level ones, and faster than  

superordinate-level ones. In other words, they found an overall 

increase in the accessibility of the subordinate level. However, the basic 

level retained its privileged status. (This experiment is fu rther 

described in Chapter 4.)

Johnson and Mervis (1997) undertook the most ambitious of all 

research projects on the effect of expertise on basic-levelness. They 

conducted six experiments that extended Tanaka and Taylor's work in  

several ways: They used more degrees of expertise: advanced birdsong 

experts, intermediate songbird experts, tropical freshwater fish experts, 

and novices both in songbirds and tropical freshwater fishes. They 

studied four levels of generality that they called the superordinate, the 

basic, the subordinate, and the sub-subordinate. Finally, they employed 

many more basic-levelness measures: attribute generation, object 

naming, silhouette identification, silhouette discrim ination, 

verification task, and an auditory priming task. Together, these 

experiments support the so-called constrained basic-level malleability  

view. "According to the constrained basic-level malleability view, the 

level that functions as the original universal basic level is determ ined
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through [fixed] perceptual structure. However, more specific sub-basic 

levels may also come to function as basic as result of in tracultural 

variations in knowledge or intercultural variations in dom ain  

salience." (Johnson and Mervis, 1997, p. 249) (These experiments are 

described in detail in Chapter 4.)

All the expertise experiments reviewed so far lack control: Are 

all their expert participants experts to the same extent? Do they use the 

same strategies? It is impossible to say. A promising solution is the 

controlled creation of experts. Gauthier and Tarr (1997) have 

demonstrated that this is a possibility by having people become experts 

of "Greeble" categories (i.e., categories containing complex artificial 

creature-like objects). This inspired two basic-level experiments.

Lin, Murphy and Shoben (1997, Experiment 3) asked participants 

to perform a knowledge assessment task for half the subordinate-level 

categories (e.g., sedan, collie, coffee table, and jeans) of a taxonom y 

composed of vehicle, animal, furniture, and clothing at the 

superordinate level, and of car, truck, dog, bird, table, chair, pants, and 

shirt at the subordinate level. As a result these participant became 

"new experts" of half the subordinate-level categories. In a verification 

task, a significant change in the advantage of the basic over the 

subordinate level was observed between "unexposed" (122 ms) and 

"exposed" (33 ms) items.

Archambault, O'Donnell and Schyns (1999) investigated the 

hypothesis that expertise could influence the basic percept of an 

identical distal object. In Experiment 2, subjects learned to categorise 

four objects (two mugs and two computers) at the specific level and 26 

objects at the general level (13 mugs and 13 computers). W hen objects 

were learned at the general level, a sentence printed at the bottom of 

each picture would either say "This is a mug" or "This is a com puter,"
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depending on its category. W hen objects were learned at the specific 

level, the sentence would individuate each object-e.g. "This is Mary's 

mug" or "This is Peter's computer," depending again on the category. 

Participants thus became experts of half the mugs and com puters. 

These mugs and computers were inserted in a complex natural office 

scene. To tap into the visual encoding of objects (or percept), the 

authors used a change detection task (see Simons & Levin, 1997). In a 

trial, two office photographs were sequentially presented. Between the 

two frames, a mug could change (be replaced by a different mug) or 

disappear, a computer could change or disappear, or other office objects 

could disappear. The subjects task was to identify the difference 

between the two photographs. The frame sequence was repeated u n til 

subjects could identify the change correctly. The num ber of repetitions 

was used as a basic-levelness measure. Results indicated that physically 

identical changes were better perceived when subjects knew the objects 

at the specific level than when they knew them at the general level: 

subjects perceived a specific-level object change faster than a general 

object change.

1.3.5 The developmental literature

Brown (1958) proposed that children first learn "usual utility 

level" names because parents have a tendency to first use these nam es 

when asked "what is this thing?". Rosch et al. (1976) gave experim ental 

support to this hypothesis. To summarise their findings: On the one 

hand, they demonstrated in a num ber of ways that basic-level nam es 

are first accessed by parents. On the other hand, they showed that 3 yr- 

olds are much more accurate at sorting objects at the basic- than at the 

superordinate-level. Moreover, they analysed the spontaneous speech 

of infant Sarah (Brown, 1974) and found that she acquired basic-level
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terms before superordinate names which in turn were learned before 

subordinate ones (Rosch et al., 1976).

There is an a priori reason to believe that Rosch et al's and

Brown's explanation for the linguistic development of children is no t

the whole story. There is compelling empirical evidence that parents 

do in fact use basic names for things more often than any other kind 

(e.g., Rosch et al., 1976; Jolicoeur, Gluck & Kosslyn, 1984; Tversky & 

Hemenway, 1984; M urphy & Brownell, 1985; Tanaka & Taylor, 1991; 

Jonhson & Mervis, 1997). Let us assume that this is the case for the 

sake of argument. There is, however, a catch: how are children to

match these basic names with their corresponding concepts (read: a

category w ithout a public tag or, alternatively, meaning in the

extensional sense)? Children face the inverse problem parents face 

(remember our discussion of Brown's problem): among all the

concepts that apply to a situation, how do they know which one to 

associate with the name uttered by their parents? This is known as 

Quine's "gavagai" problem in philosophy of m ind5.

Quine (1960) asks us to imagine that a linguist visits an 

unknown country and attempts to learn the native language. A rabbit 

passes by and a native of the country says "gavagai", pointing his index 

finger toward the little furry animal. How is the linguist to figure ou t

5 Hofstadter and the Fluid Analogies Research Group (1995) studied several such 

underconstrained situations. The "do-this" toy-problem is perhaps the most telling. 

Suppose that someone touches his nose with his index finger and asks you to do the  

same. What are you going to do? Are you going to touch your nose w ith your index 

finger? Or touch your nose with his index finger? Or touch his nose w ith your index 

finger? Or touch is nose with your nose? Or wiggle your index finger? And so on. Most 

people choose the first possibility listed above. Why is that so?
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what "gavagai" means? It could refer to "white", "furry", "m ed ium ­

sized", "animal", "passing by", "this individual rabbit at the particular 

moment", and so on. The linguist has to formulate a hypothesis about 

the meaning, and that hypothesis requires testing. To test for the 

potential meaning of "gavagai", the linguist will point to certain things 

and ask whether it is a "gavagai". If the native denies that the thing is a 

"gavagai" then the hypothesis is rejected. This method can never 

settle on a single meaning because there will always be an infin ite 

number of other hypotheses that are also consistent with the data.

To sum up: Learning a category consists in making the

appropriate connection between a name and a concept. We assum ed 

that parents designate things to their children with basic names. Thus 

if children are to learn new categories at all they m ust have a bias for 

basic-level concepts (Markman & Horton, 1980; Markman, 1987, 1989). 

Of course, this does not solve Quine's "gavagai" problem entirely. In 

the rabbit example, it does not explain why the linguist w ould 

understand "gavagai" as an equivalent to the English "rabbit" rather 

than say "finger". But this basic-level bias solves the vertical 

component of Quine's problem.

M arkman and Horton (1980) were the first to reveal this bias 

empirically. They assessed the ease with which children can learn basic 

and superordinate artificial animal categories, independently of 

parents' production biases. Their artificial animals were real anim als 

with novel features. For example, a basic category was composed of 

salamanders with added wings, feet, and "fourchu" tail. Som e 

distracting features were also added: texture, locations of the wings and  

feet. And a superordinate category was composed of animals w ith  

horns  and a feather tail. The overall shape and some added features 

(e.g., texture, num ber of feet, etc.) were distracters here. They taught
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children either by showing them exemplars or by verbally describing 

the relevant features. Basic-level categories were easier to learn for pre­

schoolers, kindergarteners, and first graders. Giving them verbal 

descriptions helped only for superordinate sets. And the pre-schoolers 

did not benefit from the verbal descriptions.

Mervis and Crisafi (1982) replicated M arkman and Horton (1980) 

with a different basic-level measure and a different artificial taxonom y 

(see the middle taxonomy of Figure 7 and the sample objects of Figure 9 

in Chapter 4). They used an odd task similar to the one devised by 

Rosch et al. (1976). They showed three sets of triads: subordinate, basic, 

and superordinate triads. All participants were equally good for the 

basic-level triads. For superordinate triads, the 5-6-yr-olds were just as 

good as 4-yr-olds and better than 2-3-yr-olds; and, for subordinate 

triads, the 5-6-yr-olds were better than the 4-yr-olds who were just as 

good as the 2-3-yr-olds. (This experiment is further described in  

Chapter 4.)

W hat the "gavagai" problem demonstrates w ithout a doubt is 

that learning the correspondence between a name and a concept is 

underconstrained. So additional (and contingent) constraints m ust be 

used by children (see Marr, 1982, for similar situations in vision). If 

parents have a production bias for basic-level names, children m ust 

somehow constrain their comprehension towards basic-level concepts. 

However, there is some evidence that parents use a different language 

when talking to children (e.g., Brown, 1956; Callanan, Repp, McCarthey 

and Latze, 1994; M arkman and Hutchinson, 1984; Mervis, 1987; 

Mervis and Mervis, 1982). Maybe children need a different kind of 

constraint to understand their parents. This is precisely w hat 

Markman and Hutchinson (1984) investigated. They used Rosch et al/s 

odd task that is, out of triads objects they had to select they odd ones.
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Here is a sample triad from their experiment: police car (standard

object), sports car (taxonomic choice), and policeman (thematic choice). 

For example, children had to respond to a puppet which said either 

"See this 'sud'? Find another." (new word condition) or just asked "See 

this. Find another." (no word condition). Eighty-three percent of 

children as young as 2 to 3-yr-old chose the basic-level option over the 

thematic one in the new word condition. In the no word condition, 

both options were chosen equally often (see also Michnick, Golinkoff, 

Shuff-Bailey, Olguin and Ruan, 1995; but see Callanan, Repp, 

McCarthey and Latze, 1994). This corroborates the basic-level 

comprehension bias hypothesis.

Where does this bias come from? Little works has been done on  

this question. One possibility is that the only concepts children can 

learn are basic-level ones, but some experiments rule this out. It seems 

that three- to 4-month-old infants can form categorical representations 

of basic- and superordinate-level for natural kinds and for artefacts 

(Eimas and Quinn, 1994; Behl-Chadha, 1996). This was found using a 

familiarisation-categorisation paradigm. In the learning phase, two 

stimuli from the same category are presented at the same time (e.g., two 

exemplars of the "cat" or the "chair" basic-level category; or two 

exemplars of the "mammal" or the "furniture" superordinate 

category). In the testing phase, two new stim uli-a new exemplar from  

the familiarised category (e.g., a new cat, chair, mammal, or fu rn iture) 

and a distracter (e.g., a horse, bed, bird, or car)-are presented and staring 

preferences are recorded. If infants prefer staring at the distracter this is 

taken as an indication that a category was extracted during the learning 

phase. The premiss being that infants prefer novelty (e.g., Karmiloff- 

Smith, 1995). We will propose an explanation for the origin of the 

basic-level comprehension bias in Chapter 6.
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Chapter 2. Strategy length & internal practicability6

In this chapter, we will introduce SLIP (Strategy Length & 

Internal Practicability). We will begin with the presentation of its two 

computational factors. We will then give an informal account of the 

model before formalising it. Following this we will adapt SLIP to 

disjunctions, to naming, and-to a lesser extent-to the other basic­

levelness correlates. Finally, we will discuss where SLIP fits into the 

diagnostic recognition framework.

2.1 Two principles of organisation of information in 
hierarchies

Consider the top taxonomy in Figure 1 (adapted from H offm ann 

& Ziessler, 1983, Hierarchy I). Each letter represents a feature. 

Underneath the category names, we give the abstract optimal strategies 

fed to SLIP. We will come back to this shortly. At the bottom of the 

taxonomy, the abstract feature constitution of all exemplars is given. 

Participants accessed the high- and mid- levels categories equally fast, 

and were slower for low-level categories.

The input can be classified as a ril if it possesses feature a. A  

categorisation strategy is thus Strat(X, ril) = [{"does X possess a?"}]. 

Going down the hierarchy, a strategy for classifying the input as kas 

would be Strat(X, kas) = [{"does X possess c?"}]. Note that this and the 

former strategy are equally long, because the feature they test (a vs. c) is 

unique to the category (ril vs. kas). In contrast, a strategy of length 2 is 

needed to classify the input in a low-level category. The input is a l u n

6 This chapter elaborates on Gosselin and Schyns (1997,1998b, 1999) as well as Gosselin, 

Archambault and Schyns (in press).
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whenever one of these two strategies succeeds: Strat(X, lun) = [{"does X 

possess a?"} & {"does X possess g?"}] or, alternatively, Strat(X, Zwn) = 

[{"does X possess c?) & {"does X possess g?"}]. These strategies are of 

length 2 because the feature g  is present in the two low-level categories 

lun  and n u b 7. One further feature test (on a or c) is necessary to 

determine the category membership of the object. Overlap between 

features is common in object taxonomies (think, e.g., of the num ber of 

objects having the same colour , or having wheels,  or having legs and 

so forth). The length of a categorisation strategy measures the overlap 

between the features defining a target category and its contrast 

categories. At this stage, it is worth pointing out that all published 

verification studies-except Hoffmann and Ziessler's (1983, Hierarchy 

I)-have so far neglected the length of categorisation strategies. Because 

features do overlap across many real world categories, we will here 

acknowledge this fact and make strategy length the first com putational 

determinant of SLIP.

7In the figures, we use a shorthand notation: [{"does X possess a?"}] = a; [{"does X 

possess c l" , "does X possess d l" , "does X possess el"}] = cde; [{"does X possess c?} & 

{"does X possess gl"}] = c&g; and [{"does X possess al) or {"does X possess bl"}] = a\b .
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Adapted from Hoffmann & Ziessler, 1982, Hierarchy I

mip

kas jad gam

bur
b&j

fuk tuz 
a&h a&i

lun
a&g

zut nub 
a&j b&g

duw pux 
b&h fr&i

acgk
acgl

adjk begk 
adjl begl

behk bfik 
behl bfil

achk acik 
achl acil

Adapted from Murphy & Smith, 1982, Experiment 1

hob som

bot
cde

rel
fgh

nop
Imn

pim

mul facvad larcom warnzim

acdeow
acdeox

acdepw afghqw 
acdeox afghqx

afghrw bijksw 
afghrx bijksx

bijktw blmnuw 
bijktx blmnux

blmnvw
blmnvx

Figure 1. The top taxonomy is that of Hoffmann & Ziessler (1983, 
Hierarchy I), and the bottom taxonomy is that of M urphy & Sm ith  
(1982, Experiment 1). U nderneath the category names, we provide the 
optimal strategies fed to SLIP. The feature constitution of all exemplars 
is given underneath each taxonomy.

The bottom taxonomy of Figure 1 (adapted from M urphy & 

Smith, 1982, Experiment 1) illustrates the second determ inant of SLIP. 

Participants were faster at the middle-level, and slower at the higher- 

level. First note that features do not overlap between the categories
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and so strategies at all levels have the same length of 1. How ever, 

categories at the middle level all have many different features, each 

one of which is sufficient to access the category. To determine that the 

input is a bot, one can apply any one of the following feature tests: 

"does X possess c?", "does X possess d?", or "does X possess e?”. For the 

purpose of categorisation, these tests on different features are 

redundant, and taken together, they form the exhaustive set of 

redundant feature tests to access the category. Feature redundancy is 

known to be an important component of speed of access to the levels of 

a taxonomy (e.g., Rosch et al., 1976; M urphy & Smith, 1982). It is the 

second computational determ inant of SLIP. So, in the bottom  

taxonomy of Figure 1, a length 1 strategy to place an object in bot is 

Strat(X, bot) = [{"does X possess c?”, "does X possess d?", "does X possess

e?"}\.

2.2 SLIP: an intuitive account

We will now develop SLIP (Strategy Length & Internal 

Practicability). It is an ideal categoriser insofar as it applies optim al 

feature testing strategies to determine the category m em bership of 

objects. We will explain what we mean exactly by "optimal" in the next 

section. A strategy comprises sets of features and SLIP tests their 

presence, one set at a time, in a specific order. Because features in a set 

are redundant, only one of them needs to be successfully tested to test 

the entire set. We assume that response time is a linear function of the 

total number of features tested when SLIP executes a strategy. W ith the 

varying strategy lengths of the top taxonomy of Figure 1, SLIP predicts 

faster verification speeds for the high- and mid- levels categories (both 

have length 1 strategies) than for low-level categories (which have 

strategies of length 2).
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So far the model outlined never slips from an ideal feature 

testing strategy. However we wish to implement the idea that h u m a n  

categorisers approximate ideal strategies. To this end, we will assum e 

that the processes of SLIP are noisy and sometimes slip off the ideal 

track to test random object features.

In general, slippage will increase the num ber of feature tests and 

the time taken to reach a category decision. However, slippage to a 

diagnostic feature is more likely for categories with many redundan t 

features than for those with fewer features. Redundant features m ake 

categories more resistant to noise. In the bottom taxonomy of Figure 1, 

SLIP predicts a faster access to the more redundant middle level, even  

though the strategies have all an identical length of 1.

In summary, SLIP predicts that an object should be categorised 

faster in category X than in category Y  (1) if the length of the optim al 

strategy that identifies the object as X is smaller than the length of the 

optimal strategy that identifies the same object as Y  and (2) if the 

optimal strategy associated with category X comprises more redundan t 

attributes than that of category Y.

2.3 SLIP: a formal model

We will make the simplifying assum ption that SLIP always uses 

the strategy leading to a category decision in the shortest possible time. 

No doubt, this will turn out to be an oversimplification. For example, 

if an optimal strategy is very complicated, a sim pler-but less 

efficient-strategy might be preferred.

A strategy succeeds whenever all of its sets of redundan t 

attributes have been verified in order (e.g., Pashler, 1998; Treisman & 

Gelade, 1980; Wolfe, 1999; W oodman & Luck, 1999). A set of
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redundant attributes is successfully tested whenever one attribute8 of 

the set is successfully tested. The probability of the success for the set of 

redundant attributes ; is y/j. Leaving aside the computation of ijf} for

the moment, we can cast the testing of a basic unit of a strategy (one set 

of redundant attributes) as a Bernouilli trial. A  geometric density  

function specifies the probability that the set j  has succeeded after 

exactly t attempts:

( l-VtT'Wi- a )

( l -  is the probability that se t;  has not been successfully tested in

the t -  1 first attempts, multiplied by y/jf the probability that it succeeds

on the fth attempt. When strategies comprise only one set of

redundant attributes (length 1 strategies), Equation 1 fully describes the 

behaviour of SLIP. When y/j is large, (l -  y/j) is small, and thus the

probability of completing this length 1 strategy decreases rapidly with t. 

It follows that a length 1 strategy is completed quickly on average.

i\fj implements internal practicability. It corresponds to the

probability that one test in a set of redundant attributes succeeds at tim e 

t. A num ber of factors probably contribute to internal practicability. 

We have already mentioned redundancy or the cardinality of the set of 

redundant values. Saliency (e.g., Garner, 1978, 1983; Rensink, O'Regan 

& Clark, 1997) and expertise (e.g., Archambault and Schyns, 1999; 

Biederman & Schiffrar, 1987; Christensen, Murry, Holland, Reynolds, 

Landay & Moore, 1981; Goldstone, 1994; Norman, Brooks, Coblentz & 

Babcock, 1992; Quinn, Palmer & Slater, 1999) are other likely 

contributors. Here we will only consider redundancy and spatial

8 In our view, there is no fundamental difference between feature and dimension. The 

latter is an ordered set of the former, and both express the idea that objects vary on N  

attributes. We w ill here use attribute, feature, and dimension interchangeably.
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configuration (as a secondary attribute). Greater redundancy makes the 

verification of a set of redundant attributes easier, and a greater num ber 

of spatial configurations makes it tougher.

We know that configurations of features are im portant for 

recognition (e.g., Garner, 1974; Schyns & Rodet, 1997) and SLIP is 

sensitive to them. SLIP assumes that a configuration provides the 

context for the identification of single attributes. Suppose three 

primary redundant attributes a, b, and c arranged in this order to form a 

secondary attribute, the configuration abc. Suppose further that this 

configuration is one of 6 possible combinations of 3 attributes presented 

in an experiment. Cj is the probability that the categoriser identifies a

configuration of redundant attributes (it is 1 over the num ber of 

possible configurations of redundant attributes; 1/6  in the example).

When SLIP verifies the presence of an attribute, its processes can 

randomly slip with a fixed probability S. Two independent events can 

lead to a successful test: (1) SLIP guesses the right configuration j  and 

tests an attribute of set /. This happens with a probability of Cy(l-S). (2)

SLIP guesses the right configuration and slips, by chance alone, on an 

attribute of the tested set j. The probability of this event is CjSRj, w here 

Rj is the number of redundant attributes divided by the total num ber of 

attributes in the input object (the index of redundancy). Thus y/j, the

probability of successfully testing one set j  of redundant attributes, is 

Cj(l-S+SRj). Note that this constant Cj implies that a SLIP observer has

no memory whatsoever of the checked configurations. There is som e 

empirical evidence for this in humans. Horowitz and Wolfe (1998) 

asked people to search for a letter "T" among "L" distractors. In som e 

trials, the letters were jumbled during the search, making it impossible 

for participants to keep track of their progress. This made no difference 

in the efficiency of the search.
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So far, we have described SLIP for strategies composed of only 

one set j  of redundant features (length 1 strategies). In this case, the 

speed of access to a category varies with only the redundancy of its 

attributes. We now turn to the modeling of SLIP for the general case of 

length n strategies. This requires the im plem entation of strategy 

length. The probability that a length n strategy is completed after t trials 

in a particular configuration of successes and misses is

P )
; '= i

where is a function of the tested set j  that counts the num ber of 

failed attempts to verify this set after t trials (it will be further specified 

below). When n = 1, Equation 2 reduces to Equation 1. When n > 1, the 

solution is more involving. We know that the last set of an ordered 

strategy is always verified at time t. This implies that the previous sets 

have been verified sequentially in the t-1 preceding steps. There are 

different patterns of successes and misses of verifications of sets of 

attributes. For example, with n = 3, if set 3 is verified at time t, set 2 

might have been verified at t-1 (or t-2, or t-3, or t-4, and so on), and set 1 

anywhere between time 1 and t-2 (or t-3, or t-4, or f-5, and so on). For 

any ordered collection of sets of attributes in a strategy, given that the 

last set n succeeds at time t, the num ber of possible combinations of 

successes of verification of n-1 set in t- 1 discrete steps is

A =
n — 1 (r-« )!(« -l)!

W ith the combinatorics of successful tests of m ultiple sets of 

attributes, the probability that a length n strategy is completed after t 

trials becomes

w = x n ( i “ ^ r > ; /  (3)
i= l ;=1

where a>v specifies the num ber of failed verifications of the j  th set of 

category attributes for the i th configuration of successes and misses.
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The m ultinom ial expansion (a, +a2+...+an)t " implements cov: it 

expands into X different terms, and the sum of the n exponents of each 

term is equal to t - n. Thus, the zth exponent of the j  th term of the 

ordered expansion provides the num ber of failed verifications of the 

/th set of redundant attributes for the ;th  configuration of successes and 

misses. For example, with a strategy of length n = 3 verified in t = 5 

discrete steps, we obtain the m ultinom e [a]+a2+a3)2 which expands

into the following X = 6 terms: a®a2 a3 + a1°a21a3l + a^a2 a3 + a ' a 2 a3 

+ a^a2 a3 + a^a^a®.

Random numbers variate for this general case can be obtained by 

adding the n appropriate geometric random  num ber variate 

G -:\ | / .;y = 1 , . . . ,« ,  the geometric random  numbers being computed from

unit rectangular random number variate R by the relationship

G :\|/~log(R)/log(l-\j/).

2.3.1 Summary

So far, we have identified two computational constraints on the 

organisation of information in a taxonomy of categories: the overlap of 

features between categories and the redundancy of features w ith in  

categories. These two constraints determine different feature testing 

strategies to access different categorisations of the input. In general, 

greater feature overlap augments the length of a strategy, and higher 

feature redundancy augments its accessibility. SLIP implements the 

two constraints to predict the average num ber of feature tests required 

to resolve one categorisation strategy. Figure 2 schematises the 

functioning of SLIP.
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Respond 
. yes j

Yes

No

Is j > n?

No
Yes

Is setj 
verified?

Try to perform a 
test on set j

Noise

Read set j 
of the appropriate 

strategy

Figure 2. SLIP box diagram for positive verification items. The 
variables n and j  are, respectively, the length of the considered strategy 
and a pointer to a set of redundant attributes.

Equation 1 implements the redundancy of features with the probability 

that one set of redundant features is successfully tested in t discrete 

tests. Equation 3 generalises Equation 1 introducing the idea that the n 

sets of attributes in a length n strategy have been successfully tested 

after t attempts.

2.3.2 The Pascal density function

Equation 3 is rather cumbersome. Fortunately, when all yq 

within a category are equal (which is the case for all taxonom ies 

reported in this dissertation), it reduces to

p(d=Mi-vr"v".(4)
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a Pascal density function. Figure 3 shows four particular Pascal density 

functions. The central limit theorem  implies that the limit of the 

Pascal density function as n approaches infinity is a Gaussian.

0 .2 '

71 = 3 
\|/= .2\j/= .2

trial trial

0.35"

S? °-3" 
%  ° - 2 5 "  

1  0 .2 -  

8 0.15”

0.7f 
^  0 .6 "  

1  0.5 ■ 
a 0 .4 -  
I  0.3" 
£ 0 .2 "  

0 . 1"

71 = 3 
il/ = .7

0.05"

trialtrial

Figure 3. Instances of Pascal density functions.

The Pascal density function has a num ber of w ell-know n 

characteristics. Of particular interest to us here: Its mean is equal to 

7i/\j/ and its variance to n(l-\j/)/\j/2; the gamma density function 

provides us with a continuous approximation of the Pascal density 

function:
\|/T "V nt'

r(»)
where r(/i) is the gamma function, a continuous function that 

approximates (ti — 1)!, n >0 is the so-called shape parameter, and 0<\}/<l 

is the scale parameter (e.g., Johnson and Kotz, 1969; Hastings and 

Peacock, 1975).
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LaBerge (1962) used the negative binomial  density function-a  

close parent of the Pascal density function-to model reaction times (for 

an excellent review see Luce, 1986). The negative binomial function 

gives the probability that n hits will have been encountered after x 

misses, hence x = t - n.

Throughout this dissertation, we will use the mean of the 

appropriate Pascal density function as a global measure of basic­

levelness.

To illustrate, we will now apply this restricted version of SLIP to 

the taxonomies in Figure 1. Remember that in the top taxonom y 

strategy length varies and internal practicability is constant whereas the 

opposite applies to the bottom taxonomy. In SLIP terms, y/j w iU

constant in the top taxonomy, but vary in the bottom taxonomy, 

whereas n (the length of a strategy) will vary in the top taxonomy and 

be constant in the bottom taxonomy.

In the top taxonomy, the index of redundancy R (remember: it is 

the num ber of redundant attributes divided by the total num ber of 

attributes in the input object) is equal to .25 (i.e., 1 /  4 = .25), and the 

probability that the categoriser has properly identified a configuration, 

C, is 1 (i.e., 1 / 1  = 1). With the default value of S = .5, all y/j are equal 

to .63 (i.e., Cj(l-S+SRj) = l*(l-.5+.5*.25) = .63).

Thus, for the top taxonomy of Figure 1, SLIP predicts a m ean  

num ber of feature tests of 1.6 (i.e., n/\\f = 1/.63 = 1.6) for the high- and 

mid-level categories, and 3.2 tests (i.e., n/\\f = 2 /  .63 = 3.2) for the low- 

level categories. To compute the basic-levelness of a level of generality, 

we average the mean basic-levelness of all its categories. In this case, 

the high- and middle levels have a basic-levelness of 1.6 tests, and are 

accessed faster (with fewer feature tests) than the low-level one that has 

a basic-levelness of 3.2 feature tests.
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Let us now consider the bottom taxonomy of Figure 1. For the 

high- and middle- levels, R = .17 (i.e., 1 /  6 = .17), C = 1 (i.e., 1 / 1  = 1); 

with S = .5, vfj is .58 (i.e., Cj(l-S+SRj) = l*(l-.5+.5*.17) = .58). For the 

middle-level, R = .5 (i.e., 3 /6  = .5), C = 1 (i.e., 1 / 1  = 1), and y/j is .75 

(i.e., Cj(l-S+SRj) = l*(l-.5+.5*.5) = .75). Using the Pascal density 

function for each category and averaging within level of categorisation, 

we obtain a SLIP prediction of faster access to the middle level (SLIP = 

1.33-i.e., n/\\f = 1 /  .75 = 1.33), and slower access to the top and bottom  

levels (SLIP = 1.71-i.e., n/\\f = 1 /  .58 = 1.71).

2.3.3 Disjunctions

So far, we have assumed that a conjunction of several attributes 

defines the categories of a taxonomy. "If we rely on intuitions (our 

own and those published by semanticists) and restrict ourselves to 

concepts about naturally occurring objects (flora and fauna), [...] we can 

think of no obvious disjunctive concepts." (Smith & Medin, 1981, p. 28) 

Even though we basically share this view, some artefact concepts are 

nevertheless obviously disjunctive. For example, a strike in baseball is 

either a called, or a swinging strike (Bruner, Goodnow, and A ustin , 

1956). Besides, several basic-level experiments have exam ined 

disjunctive categories.

SLIP can be modified to handle disjunctive categories. Consider, 

for example, the optimal strategy to access the high-level ril category in  

Hoffmann and Ziessler's (1983, Hierarchy II) taxonomy (see the top 

taxonomy of Figure 14 in Chapter 4): Strat(X, ril) = [{"does X possess 

c?"}] or [{"does X possess /?}]. The average num ber of feature tests 

required to determine that X belongs to the disjunctive ril is com puted 

as follows: We start with the average num ber of attempts to com plete 

the first strategy term (i.e., [{"does X possess c?"}]), weighted by the
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probability that it applies to the object. We then compute the average 

num ber of attempts to determine that the first strategy term does no t 

apply and that the second one does apply; this figure is weighted by the 

probability that this situation will occur. This procedure is repeated 

until all the terms of the disjunction have been evaluated. The sum  of 

all these quantities is the average num ber of feature tests needed to 

determine that X belongs to ril.

The first term strategy of the conjunction defining ril is 

completed after an average of 1.6 tests (i.e., V|/ = 5 /8 ) and applies w ith a 

probability of .5. On average, 3.05 attempts are required to find out that 

the first term does not apply (we explain how to compute this in the 

following section), and an additional 1.6 tests to complete the second 

term of the disjunction-which applies with a .5 probability. Sum m ing  

the tests across the two terms of the disjunction is .5 * 1.6 + .5 * (3.05 + 

1.6) = 3.13 tests.

2.3.3.1 N egative verification item s9

In a verification experiment, category name and object can either 

match (positive items) or mismatch (negative items). To respond to 

negative items, three qualitatively different m ethods can be used 

within SLIP: (1) a feature-counting method whereby object X is not a 

member of category Y if the features of X are exhausted and it has n o t 

yet been classified as a Y, (2) a contrast method whereby object X is not a 

member of category Y if it has already been classified as a mem ber of a 

contrast category Z, and (3) a Fisherian probabilistic representation. W e 

only describe the third method here.

If a classifier has failed to complete a verification of category Y 

after t attempts (t > strategy length of Y), either the item is negative, or

9 This section expands on Gosselin and Schyns (1998b).
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the classifier has so far slipped on irrelevant attributes. In SLIP, we can 

compute the likelihood of the latter because we know the density 

function of the num ber of trials necessary to complete the strategy. 

Based on this distribution, a classifier could conclude that an  item is 

false after t_stop trials, where t_stop is the num ber of trials beyond 

which the probability that the item is true is smaller than an acceptable 

level of error a . This is the logic of Fisherian statistical testing. W e 

used a=.05 in all the simulations of this dissertation.

For length 1 strategies, t_stop is log(a)/log(l-\|/) (Gosselin and 

Schyns, 1998b). This is the inverse geometric survival fu n c t io n  of 

probability a . For example, before concluding that an object is no t a ril 

(or, alternatively, that the ril strategy does not apply) in H offm ann & 

Ziessler (1983, Hierarchy II, see top taxonomy of Figure 14), t_stop = 3.05 

attempts are required, using the above estimate of \|/ and the default a  

= .05 (i.e., log(.05) /  log(l-.63) = 3.05).

For strategies of length n, the item can be discovered to be 

negative after 1, 2, 3, ..., or n - 1 successful set of redundant attribute 

tests. Thus the average num ber of attempts needed to conclude that a 

length n strategy does not apply (and hence that the item is negative) is 

a pondered sum of n terms. The first term  is the average num ber of 

attempts required to conclude that the first set of redundant attributes 

does not apply (i.e., log(a)/log(l -  \|/)) pondered by the probability that 

this situation will occur (this depends on the design of the experim ent). 

The second term is the sum of the average num ber of attem pts 

required to check the first set of redundant attributes (i.e., i/\|/) (In 

theory, one should modify the mean computation so that it includes 

points up to t_stop, not up to infinity. If a  is small, however, it m akes 

very little difference. We will not modify it here.) and the  m ean  

num ber of attempts needed to decide that the second one does n o t
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apply (i.e., log(a)/log(l- vj/)), weighted by the probability that this 

situation will happen. And so on until the nth  term. The general 

formula is thus

f  J * - 1 , iog(q)
“ t V log(l-\|/)J' 

where Px is the probability that the realisation that the item is negative

happens after x - 1 successful tests of redundant attributes.

Figure 4 shows the SLIP complete box diagram for verification 

items, positive and negative items combined. It is essentially the same 

as that for positive verification items (see Figure 2) except for the m ore 

elaborate attribute-checking loop and the addition of a disjunctive-term  

loop.
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No No
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k yes J
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Try to perform a 
test on set jĵ
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Respond 
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Figure 4. SLIP full-blown box diagram for verification items. The 
variables nk,jk, m, t, and t_stop correspond, respectively, to the length 
of the kth  disjunctive term strategy, to a pointer to a set of redundant 
strategies of the A:th disjunctive term strategy, to the num ber of 
disjunctive terms in the considered strategy, to a pointer to the num ber 
of attempts at testing the ;th  set of redundant attributes of the k t h  
disjunctive term, and to the num ber of attempts at testing it before the 
probability that the item is positive reaches an acceptable level of error.

2.3.4 Naming

Although SLIP is primarily designed to model (positive) 

verification tasks-the most widely used in basic-level experim ents-it is 

quite straighhtforward to extend it to predicting naming perform ance. 

When asked "what is this thing?", SLIP can apply most of its strategies 

in parallel, and output the name associated with the first completed 

strategy. W ithin each strategy, SLIP follows the order of sets of 

redundant features, but it performs its feature tests at random  (i.e., S = 

1). The rational for the latter is that there is no a priori reason why any 

particular attribute value tests should be performed. Again, this is an 

oversimplification. Consider, for example, the following situation: 

someone is asked to name an object from the top taxonomy of Figure 1 

at the high-level. Two attributes values are diagnostic (i.e., a and b), 

and so this person would be better off testing for these rather than for 

all attribute values indiscriminately.

The functioning of SLIP for a naming task is sum m arised in the 

box diagram of Figure 5. Note that the model for verification (see 

Figure 2) and naming are very similar.
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Respond

Yes

No

No

Yes

Is any set j 
. verified?

Perform a 
random 

feature test

Read sets jj, j2»— 
of the appropriate 

strategies

Figure 5. Box diagram of SLIP for naming. Variable j x is a pointer to a 
set of redundant attribute of strategy X, and nx the length of this 
strategy.

The main difference is the value of one parameter: S, the probability of 

slipping to a random feature (in the box diagram of Figure 5 this led to 

the removal of the noise box). When this probability increases, the 

num ber of feature tests required to complete a strategy increases 

proportionally (because more tests are made on irrelevant features). 

Thus, SLIP predicts the same qualitative order of speed of access in  

naming and verification, but it also predicts that the nam ing of an 

object will on average take longer than its verification (Rosch et al., 

1976).

We will illustrate this with the two taxonomies in Figure 1. 

Remember that in the top taxonomy strategy length varies and in ternal 

practicability is constant whereas the opposite applies to the bottom

7 1



taxonomy. In SLIP terms, yr} will be constant in the top taxonomy, but 

vary in the bottom  taxonomy, whereas n (the length of a strategy) will 

vary in the top taxonomy and will be constant in the bottom taxonomy.

In the top taxonomy, the index of redundancy R  is equal to .25 

(i.e., 1 /  4 = .25), and the probability that the categoriser has properly 

identified a configuration, C, is 1 (i.e., 1 / 1  = 1). W ith the S nam ing 

value of 1, all ip. are .25 (i.e., Cj(l-S+SRj) = 1*(1-1+1*.25) = .25). SLIP

predicts a mean num ber of feature tests of 4 (i.e., «/\|/ = 1/.25 = 4) for the 

top and mid levels categories, and 8 tests (i.e., n/\\f = 2 /  .25 = 8) for the 

bottom level categories (compare Hoffmann & Ziessler's data for the 

top taxonomy of Figure 1 in naming: high = -750 ms, middle = -1250 

ms, and low = -3000 ms; and in verification: high = -500 ms, middle = 

-500 ms, and low = -700 ms).

Let us now consider the bottom taxonomy of Figure 1. For the 

high- and m iddle- levels, R = .17 (i.e., 1 /  6 = .17), C = 1 (i.e., 1 / 1  = 1); 

with S = 1, y/j is .17 (i.e., Cj(l-S+SRj) = 1*(1-1+1*.17) = .17). For the 

middle-level, R = .5 (i.e., 3 /6  = .5), C = 1 (i.e., 1 / 1  = 1), and yfj is .5 (i.e., 

Cj(l-S+SRj) = 1*(1-1+1*.5) = .5). We thus obtain a SLIP prediction of 

faster access to the middle level (SLIP = 2-i.e., n/\\f = 1 /  .5 = 2), and 

slower access to the top and bottom levels (SLIP = 6-i.e., n/\\f = 1 /  .17 = 

6).

SLIP can also predict the probability that a particular name will be 

used in a nam ing task. This is also a common m easure of basic- 

levelness. For the sake of simplicity, suppose that we are only 

processing length 1 strategies for a particular naming task. Let X be the 

completion of the target set of redundant features; N, the com pletion 

of one set of redundant features relevant for the considered nam ing 

task; and T, the completion of any set of redundant features. 

Probability theory gives us the following relationship: P(X | T) = P(X | S)
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* P(S | T). We are interested in finding P(X | S) that is, the probability 

that the target set of redundant features has been completed given that 

one set of redundant features relevant for the naming task has been 

completed. P(X|T), the probability that the target set of redundan t 

features has been completed given that one has been completed in the 

total set of redundant features, is equal to P(X nT)/P(T ) = P(X) = y/x . 

Similarly, P(S | T) = P(S); all the sets of redundant features being 

independent, P(S) = ^  y/;, where i spans all the strategies that apply.
i

Therefore10,

¥ x  (5)
I > , ‘

The num erator is an inverted completion average, and the 

denom inator is the sum of all of them. Hence the faster a strategy is 

completed in denomination, the more frequently it will be used. For 

the bottom taxonomy of Figure 1, for example, SLIP predicts 

probabilities of use of .6 for mid-level names (i.e., .5 /  (.17 + .17 + .5) = 

.6), and .2 for high- and low- level names (i.e., .17 /  (.17 + .17 + .5) = .2).

For a set of strategies of various lengths, the calculation is m ore 

arduous because of what happens over nmax (i.e., the length of the 

longest strategy considered) geometric variates have to be considered 

for all strategies. By "geometric variate", we mean a series of attribute 

tests that lead to the completion of a set of redundant attributes. For 

instance, in the top taxonomy of Figure 1, each object has three nam es, 

and nmax is equal to 2. The length 2 strategy (i.e., the low-level strategy) 

has won the race against the other two strategies when it has won both  

geometric variates. Both have a probability of .33 (i.e., .25 /  (.25 + .25 +

10 Ties between competing strategies complicate the picture a little bit. If n is large, 

however, Equation 5 is a good approximation.
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.25) = .33), and thus their combined probability is .33 * .33 = .11. A ny 

length 1 strategy (i.e., the high- and the mid- level strategies) has w on 

the race when it either won against the other two strategies on the first 

geometric variate, or on the second. For example, the probability that 

the high-level strategy wins on the first variate (i.e., .25 /  (.25 + .25 + .25) 

= .33) plus the probability that none of the two length 1 strategies w ins 

on the first variate but that the high-level strategy wins on the second 

(i.e., [.25 /  (.25 + .25 + .25)] * [.25 /  (.25 + .25 + .25)] = .11) is equal to .44.

2.4 Generalisation to other correlates of basic-levelness11

We designed SLIP to model category verification, and we have 

extended its reach to naming. However, we pointed out earlier that a 

critical aspect of basic-levelness is that it optimises a number  of indexes 

of performance (see Preamble and Chapter 1). It is im portant to show  

that SLIP is not limited to model category verification and naming.

You will remember that the basic-level is superior in many o ther 

respects: more features-especially shapes-are listed at the basic level 

than at the superordinate level, with only a slight increase at the 

subordinate level (Rosch et al., 1976; Tversky & Hemenway, 1984); and 

throughout development, basic level names are learned before those of 

other categorisation levels (Brown, 1958; Rosch et al., 1976; Horton & 

Markman, 1980; Markman, 1989; Markman and Hutchinson, 1984; 

Mervis and Crisafi, 1982). Furthermore, basic-levelness seems quite 

universal across domains (e.g., M urphy & Lassaline, 1997) as well as 

cultures (e.g., Berlin, 1992; Malt, 1995).

We will differentiate two types of basic-levelness correlates: the 

ones that we believe are connected to SLIP's inputs (i.e., strategy length  

or internal practicability), and the ones that we think are related to its

11 This section expands on Gosselin and Schyns (1999).
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outputs (i.e., verification or naming latencies). We have to stress that 

this section is highly speculative.

2.4.1 Input correlates: proliferation of features, expertise
effect, atypical subordinates, and cultural universality

Another correlate of the basic-levelness is that people tend to list 

m any more features (especially shape) at this level than at others 

(Rosch et al., 1976; Tversky and Hemenway, 1984). Remember that 

most features of one basic-level category do not overlap w ith those of 

contrasting categories (e.g., Tversky & Hemenway, 1984, Tanaka & 

Taylor, 1991). Following the principles of SLIP, the addition of such 

diagnostic features in a category increases its internal practicability, and 

its basic-levelness. SLIP therefore predicts a proliferation of listed 

features at the basic level. The fact that these features are mostly shape 

rather than colour and texture could reflect the organisation of our 

perceived world.

A similar reasoning applies to the discovery of Tanaka and 

Taylor (1991), and Johnson and Mervis (1997) that expertise induces 

faster verification times (and number of listed features) for subordinate 

categories. It also applies to the observation of Jolicoeur, Gluck and 

Kosslyn (1984) and M urphy & Brownell (1985) that atypical 

subordinates (e.g., penguins,  electric knifes) behave more like basic 

level categories than other subordinate categories (e.g., robin, Swiss  

knife). M urphy & Brownell (1985) have shown that these atypical 

subordinates are more informative (i.e., they have more listed features) 

and distinctive (i.e., they share fewer of these listed features w ith  

contrasting categories) than other subordinates. In other words, 

atypical subordinate categories have more internal practicability (are 

more redundant) than other subordinate categories. In sum, the
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computational principles of SLIP can account for the most im portan t 

correlates of basic-levelness: faster verification, naming, and num ber 

of listed features.

Cognitive anthropologists have shown that folk taxonom ies 

across cultures have roughly the same preferred level of abstraction. 

Given that the hum an experience is quite hom ogenous th roughou t 

cultures (we all breath air, eat, sleep, and procreate)-and thus so is the 

input to hum ans' SLIP m odules-, we would expect the preferred level 

of categorisation to be roughly culturally universal.

2.4.2 Output correlates: learning rate and domain universality

Turning to development, it has been suggested that children

have a comprehension  bias (innate or learned) for the basic-level. 

Because adults show the bias in production, this would enable children 

and adults to resolve the level of categorisation ambiguity and 

understand each other (Markman & Horton, 1980; Markman, 1989). 

We have argued here that the production bias for basic names in adults 

arises from the organisation of their taxonomic knowledge and the 

resulting strategies that access the categories. The developm ental 

literature is unclear about the origin of the bias for children to 

comprehend at the basic level. SLIP suggests that infants acquire 

concept taxonomies (e.g. Eimas & Quinn, 1994), and access them  

following the general principles of SLIP. Adults would produce basic 

names because they are first accessed in their "mental race", and 

children would connect these names w ith basic concepts because the 

latter are also accessed first in their "mental race". This does not im ply 

that the taxonomic organisations of adults and children are identical,
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only that the same categories are first accessed. In other words, adults 

and children can differ markedly in the num ber of categories and levels 

of categorisation they have in memory, but still access the same basic 

level categories.

Note that this applies to all taxonomies, including taxonomies in  

domains as varied as computer languages, emotions, events, and so on. 

Hence the domain universality of basic-levelness.

2.5 A special diagnostic recognition model12

It is worth remembering that people who categorise a visual inpu t 

seek to obtain a close match between a category representation and a 

representation of the object in the input. This match between m em ory 

and input information is what we call a task for the observer. Generally 

speaking tasks are not rigid. Instead, different categorisations of an 

identical object tend to change the information requirements of the task 

at hand. For example, to assign a visual event to the Porsche, collie, 

sparrow, Mary, or New York category comparatively more specific 

information may be necessary than when categorising the event as a car, 

dog, bird, human face or city. Task constraints have traditionally been 

the main focus of categorisation research, but they are an irreducible 

factor of any recognition task, and the first factor of the diagnostic 

recognition framework outlined here (Schyns, 1998; see also Hill, 

Schyns & Akamatsu, 1997; Schyns & Oliva, 1999). Recognition is 

successful resolution of task constraints on a given input.

12 This section has been further developed in Gosselin, Archambault and Schyns (in 

press).
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The second factor of diagnostic recognition is the a priori structure 

of perceptual information available to construct hierarchically organised 

categories. We group objects into perceptual categories because they 

"look alike"-i.e., they share cues such as a similar silhouette or global 

shape, distinctive sets of parts similarly organised (e.g., nose, m o u t h ,  

eyes, ears, hair and their relationships), typical surface properties (e.g., 

sm ooth  vs. discont inuous, symmetric  vs. asymmetric,  and textural, 

colour and il lumination cues), or biological motion. Generally 

speaking, not all image cues are equally available; there are perceptual 

lim itations to their extraction from the image. The structure and 

perceptual availability of object information has traditionally concerned 

perceptually-oriented object recognition researchers. How ever, 

perceptual cues are an irreducible factor of any object categorisation, and 

the second factor of diagnostic recognition.

In the diagnostic recognition framework the two factors ju st 

discussed interact: W hen the information required to assign an object 

to a category matches with input information, a subset of object cues 

become particularly useful (i.e., diagnostic) for the task at hand. 

Diagnosticity is the first component of recognition perform ance. 

However, perceptual limitations on the extraction of diagnostic cues 

should also affect performance. Thus, diagnostic recognition fram es 

explanations of performance as interactions between cue diagnosticity 

and cue availability. It is our view that the nature and the im plications 

of these interactions have been largely neglected both in object 

recognition and in object categorisation research.

SLIP incorporates these two critical aspects of diagnostic 

recognition: task constraints and inform ation availability. Task

constraints correspond here to the different strategies associated w ith a 

vertical organisation of categories-i.e., the idea that different
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categorisation strategies can be applied to the same object. This enables 

us to examine whether the two determ inants of SLIP (i.e., strategy 

length and internal practicability) determine the speed of access to the 

different levels of a taxonomy. We will provide several examples of 

this in Chapters 4 and 5. Furthermore, SLIP has two perceptual 

constraints: First, the features prescribed in a categorisation strategy are 

the only ones sampled in the input. This implies that changing the 

features of a strategy (e.g., via the acquisition of conceptual expertise) 

could, to some extent, control the features that are (or are not) seen in a 

given object. Archambault, O'Donnell and Schyns (1999) gave support 

for this: they showed that two groups of people with different strategies 

applied to the same object were relatively blind to changes that fell 

outside the feature tests prescribed by their strategies. Second, SLIP 

postulates that feature sets in a strategy are tested serially, in a specific 

order. Some of the implications of this last perceptual constraint will 

be explored in Experiment 7 (see Chapter 5).
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Chapter 3. Other m odels of basic-levelness13

In this chapter we will review all formal models of basic- 

levelness before turning to a detailed comparison of their perform ance 

with that of SLIP. All of these formal models originate from two 

fundam ental ideas: utility and similarity. The former led to the

suggestion that the basic level is the most useful level of abstraction in  

a taxonomy. This was first exploited by Brown (1956) with his level o f  

usual util ity and by Rosch (Rosch & Mervis, 1975; Rosch et al., 1976; 

Rosch, 1978). Models that embrace utility are Rosch et a l/s  (1976) cue  

validity, Jones's (1983) category feature-possession , Corter and Gluck's 

(1992) category utility, Fisher's (1986) COBWEB, Anderson's (1990) 

rational analysis, Pothos and Chater's (1998a) compression. The second 

class of models assumes that the basic level maximises a m easure of 

exemplar similarity at this level of abstraction. These are Rosch's (1976) 

differentiation model, Tversky's (1977) contrast model, and Medin and 

Schaffer's (1978; modified by Estes, 1994) context model.

For each model, we will discuss whether or not it can predict the 

standard basic-level phenomenon, i.e. a preference for an interm ediate 

level of abstraction. A successful example suffices to prove that a 

model possesses this potential; to show the contrary, a formal proof is 

required. The models that do not fulfil this requirem ent will not be 

included in our numerical simulations later on. To illustrate the 

functioning of the successful models, we will provide detailed 

numerical simulations of M urphy and Smith's (1982, Experiment 1) 

and Hoffmann and Ziessler's (1983, Hierarchy I) category structures (see 

Figure 1).

13 This chapter expands on Gosselin and Schyns (1997, 1999).
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We will m ention two more explanations of basic-level 

performance: M urphy and Smith's (1982) preparation model  w hich 

emerged neither from the utility, nor from the similarity tradition. It is 

not a fully worked-out model, but it is the only explicit attem pt-before 

SLIP-to formalise participants' behaviour in verification tasks. Finally, 

we will review the most influential part-based accounts.

3.1 Utility and category cue validity

Brown (1956) suggested that "... things are first named so as to 

categorise them in a maximally useful way." (p. 20) For example, a 

dime is a "dime", instead of "metal object" because, for most purposes, 

this is what is relevant about the object. Rosch et al.'s (1976) cue  

validity builds on this idea. The cue validity of category cj corresponds 

to the sum of the conditional probabilities that an object belongs to cj 

given that it possesses each one of n features. Formally,

Cue validity can be framed as a measure of category utility because the 

more informative a cue is, the higher its cue validity is, and the m ore 

useful it is. M urphy (1982) proved that the cue validity of a m ore 

general category (e.g. white whale)  is necessarily greater or equal to the 

cue validity of a more specific category (e.g. Moby Dick). Hence, cue 

validity cannot predict a superiority for an intermediate categorisation 

level, a minimal requirement of models of basic-levelness.

3.1.1 Category feature-possession

Jones (1983) proposed that the basic level maximises the average

category feature-possession, another measure of usefulness. Like cue

validity, it starts from the probability that an object belongs to category 

ci given that it possesses feature f j,  P {c \ f^ .  However, it also considers

n
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the probability that the object possesses feature f j  given that it belongs 

to category cj, Together, the conjunction of these two

probabilistic events, Kt],=  is called the collocation of

category c{ and feature fj. Collocations are computed for all categories

and features, and the largest collocations of each feature are extracted, 

Ki} = m a x ^ , , K2j,..., Kmj). For each category, the num ber of largest

feature collocations are counted. This num ber weighted by a num ber 

between 0 and 1 (following Jones, 1983, we set this weight to 1) is the 

feature possession of a category. It reflects the num ber of strong bi­

directional links between a category and its features, or their m u tua l 

predictability. The category feature-possession of a level of 

categorisation is the average of the category feature-possession of its 

categories.

Consider the taxonomies of Figure 1. First, we m ust com pute 

P(ci\fj)'s and P(fj\ci)'s for i j  e { f j 2, For example, in the top

taxonomy, P(a\ril) and P(ril\a) are equal to 1; and, in the bottom  

taxonomy, P(d \ hob) is equal to .5 and P(hob | d) to 1. Second, we 

calculate all the collocations. In the top taxonomy, the collocation of 

category ril and feature a is P(a | ril)P(ril | a), that is 1 (see Table 2 for all 

collocations of category feature-structures of the top taxonomy in  

Figure 1); and the collocation of category hob and feature d is 

P(d | hob)P(hob \ d), or .5 (see Table 3 for all collocations of category 

structure of the bottom taxonomy in Figure 1).

Table 2: Collocations for the numerical sim ulation of the category
feature-possession (Jones, 1983) with the top taxonomy in Figure 1 
(Hoffmann & Ziessler, 1983, Hierarchy I).
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Feature
a b c d e f h i 7 k /

ril 1 0 .5 .5 0 0 .125 .125 .125 .125 .25 .25 3
mip 0 1 0 0 .5 .5 .125 .125 .125 .125 .25 .25 3
kas .5 0 1 0 0 0 .25 .25 0 0 .125 .125 1
jad .5 0 0 1 0 0 .25 .25 0 0 .125 .125 1

gam 0 .5 0 0 1 0 0 0 .25 .25 .125 .125 1
sa f 0 .5 0 0 0 1 0 0 .25 .25 .125 .125 1
lun .2.5 0 .5 0 0 0 .5 0 0 0 .063 .063 1
fuk .25 0 .5 0 0 0 0 - 0 0 .063 .063 1
tuz .25 0 0 .5 0 0 0 0 5 0 .063 .063 1
zut .25 0 0 .5 0 0 0 0 0 .5 .063 .063 1
nub 0 .25 0 0 .5 0 .5 0 0 0 .063 .063 1
duiv 0 .25 0 0 .5 0 0 .5 0 0 .063 .063 1
p u x 0 .25 0 0 0 .5 0 0 .5 0 .063 .063 1
bur 0 .25 0 0 0 .5 0 0 0 .5 .063 .063 1

Table 3: Collocations for the numerical simulation of the category
feature-possession (Jones, 1983) with the bottom taxonomy in Figure 1 
(Murphy & Smith, 1982, Experiment 1).

Feature
a b cde fxh ijk linn 0 p q r s t u V IV X

hob 1 0 •5(*3) •5(*3) 0 0 .2
5

.2
5

.2
5

.2
5

0 0 0 0 3

SO 111 0 1 0 0 •5(*3) •5(*3) 0 0 0 0 .2
5

.25 .2
5

.2
5

.25 .25 3

bot .5 0 1(*3) 0 0 0 .5 .5 0 0 0 0 0 0 .125 .125 3
rel .5 0 0 1(*3) 0 0 0 0 .5 .5 0 0 0 0 .125 .125 3

pint 0 .5 0 0 1(*3) 0 0 0 0 0 .5 .5 0 0 .125 .125 3
nop 0 .5 0 0 0 1(*3) 0 0 0 0 0 0 .5 .5 .125 .125 3
co m .25 0 •5(*3) 0 0 0 1 0 0 0 0 0 0 0 .063 .063 1
v a d .25 0 •5(*3) 0 0 0 0 1 0 0 0 0 0 0 .063 .063 1
la r .25 0 0 •5(*3) 0 0 0 0 1 0 0 0 0 0 .063 .063 1

z i m .25 0 0 •5(*3) 0 0 0 0 0 1 0 0 0 0 .063 .063 1
zoa in 0 .25 0 0 0 0 0 0 0 1 0 0 0 .063 .063 1
tis 0 .25 0 0 0 0 0 0 0 0 1 0 0 .063 .063 1

mul 0 .25 0 0 0 •5(*3) 0 0 0 0 0 0 1 0 .063 .063 1
fac 0 .25 0 0 0 •5(*3) 0 0 0 0 0 0 0 1 .063 .063 1

Third, we locate the largest collocation for every feature in the 

columns of Tables 2 and 3 (see the shaded figures of Tables 2 and 3). For 

example, the largest collocation for feature a in Table 2 is equal to 1 and 

the largest one for feature d  in Table 3 is also equal to 1. Fourth, a count 

of the number of shaded figures provides the category feature- 

possession measures (see the rightmost column of Tables 2 and 3). 

Both the ril and the h o b  feature-possession scores are 3. Finally, these 

category feature-possessions are averaged within level of categorisation. 

For the top taxonomy of Figure 1, feature-possession predicts that
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reaction times should be fastest at the high level of categorisation 

(high-level feature-possession = 3), and that they should be equally 

slow at the middle- and low- levels (middle- and low- levels feature- 

possession = 1). And for the bottom category taxonomy of Figure 1, 

feature-possession predicts that reaction times (RT) should be fastest at 

the middle- and high- levels of categorisation (high- and mid- level 

feature-possession = 3), and that they should be slowest at the low-level 

(low-level feature-possession = 1). Feature-possession accounts for the 

observed mid-level preference in M urphy & Smith (1982, Experim ent 

1).

W hen category organisations are entirely composed of n o n ­

overlapping features and no nondiagnostic features are present, the 

category feature-possession measure is equal to the num ber of added 

features for this category (we will see that, in this case, SLIP's 

predictions are proportional). Proof: collocation is equal to 1-the

m aximum-for such categories and feature pairs; otherwise it is sm aller 

than 1 (either the feature is added above the category and P(ct| / ; ) is

smaller than 1, or the feature is added below the category and P (/; |q.) is

smaller than 1). Each feature is added at one category (by definition of

the considered hierarchies). Thus each feature will be associated w ith

one and only one collocation of 1. It follows that, here, category

feature-possession is equal to the num ber of unique features added to

this category. The num ber of unique added features is a m easure of

redundancy. For non diagnostic features (the ones w ith equal

probability of occurring in all low-level categories), the highest level 

always wins. This is simply because P (q |/; ) (which is equal to P(c()

here) is always maximum at the highest level and because P (/; |c.) is

constant for non diagnostic features. It is more difficult to grasp w hat 

happens when strategy length varies. Judging by our above sim ula tion
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of Hoffmann and Ziessler (1983, Hierarchy I) as well as by the other 

simulations w ith varying strategy length presented in this dissertation 

(see Chapter 5), category feature-possession seems to be biased for high- 

level categories.

3.1.2 Corter and Gluck's category utility measure

Corter and Gluck's (1992) category utility is grounded on strong

logical principles. For the authors, a useful category is more capable of 

predicting the features of its members. Starting from p (/Jc t), the

probability of feature f j  given category cf, the probability of guessing 

correctly this feature is P(/7|q )2. If the category is useful, the inform ed

feature guess should be better than a guess made without knowledge of 

the category. If p (/; ) is the probability of such a raw feature guess, the

probability of being correct is P(/; )2.

The category utility of cf for feature f j  is P(c|.)^P(i/J|c|.) _ R(/; ) ]/

the subtraction between the informed and the raw feature guesses, 

given P(cj), the probability that the object belongs to cj. Sum m ed

across all features of the input, category utility becomes

Equation 6 computes the basic-levelness of category c/. The basic- 

levelness of a level of abstraction is the average basic-levelness of its 

categories.

Let us illustrate this with the taxonomies from Figure 1. W e 

start with the com putation of all P(c)'s, P(/*)'s, and P(/Jc)'s. In both

taxonomies in Figure 1, the P(c)'s are equal to .5, .25, and .125, 

respectively, for the higher, middle, and lower levels of categorisation. 

In the top taxonomy in Figure 1, the P(fk)'s are equal to .5 for and

I, and to .25 for the other features. For the bottom taxonomy of Figure 

1, the P(fk)'s are equal to .5, .25, and .125, respectively, for features a and
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b, c to n, and o to x. Here are a few P(fk\c)'s samples: P(a\ril) is 1,

P(b\ril) is 0, and P(g\ril) is .25; and P(a\hob) is 1, P(b\hob) is 0, and 

P(d | hob) is .5. Next, we subtract the squares of the P(fk\c) from the 

squares of the P(fk)'s. For instance, [P(g \ ril)2-P(g)2] is equal to 0, and 

[P(d | hob)2-P(d)2] to .188 (Table 4 summarises all these differences for 

the high-level category ril, the middle-level category kas, and the low- 

level category lun  from the top taxonomy of Figure 1; and Table 5 

summarises them for the high-level category hob, the m iddle-level 

category bot, and the low-level category com from the bottom  

taxonomy of Figure 1).

Table 4: Key computations for the numerical sim ulation of the
category utility measure (Corter & Gluck, 1992) with the top taxonom y 
of Figure 1 (Hoffmann & Ziessler, 1983, Hierarchy I).

Feature i
a b c D e f s h i i k I 1

ril .75 -.25 .188 .188 -.063 -.063 0 0 0 0 0 0 .75
kas .75 -.25 .938 -.063 -.063 -.063 .188 .188 -.063 -.063 0 0 1.5
lun .75 -.25 .938 -.063 -.063 -.063 .938 -.063 -.063 -.063 0 o 1 2

Table 5: Key computations for the numerical sim ulation of the
category utility measure (Corter & Gluck, 1992) with the bottom  
taxonomy of Figure 1 (Murphy & Smith, 1982, Experiment 1).

Feature
a b cde fg h ijk Imn 0 V <7 r s t u V w X

hob .75
.25

.188 .188 -.063 -.063 .047 .047 .047 .047 -.016 -.016 -.016 -.016 0 0 1.37
4

bot .75
.25

.938 -.063 -.063 -.063 .234 .234 -.016 -.016 -.016 -.016 -.016 -.016 0 0 3.11
9

com .75
.25

.938 -.063 -.063 -.063 .984 -.016 -.016 -.016 -.016 -.016 -.016 -.016 0 0 3.61
9

Then, we sum all the differences w ithin categories (i.e., the rows

in Tables 4 and 5). The totals appear in the rightmost column of Tables

4 and 5. Fourth, we obtain the category utility scores by weighting each

sum by the appropriate P{c). For the top taxonomy of Figure 1, the ril

category utility is 0.375 (.5 * .75), that of kas, 0.375 (.25 * 1.5), and that of
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lun,  0.25 (.125 * 2). For the bottom taxonomy of Figure 1, the hob  

category utility is 0.687 (1.374 * .5), that of bot is 0.780 (3.119 * .25), and 

that of som  is 0.452 (3.619 *.125). Finally, the average of all category 

utilities is computed within a level of abstraction. For the top 

taxonomy of Figure 1, the high- and mid- levels category utility is 0.375, 

and the low-level category utility is 0.25. This is exactly w hat 

Hoffmann and Ziessler (1983, Hierarchy I) observed. For the bottom  

taxonomy of Figure 1, the middle-level utility is the greatest which is 

0.780, followed by the high-level utility which is 0.687, and trailed by 

the low-level utility which is 0.452. M urphy and Smith (1982, 

Experiment 1) observed a slightly different pattern of response times: 

the high-level categories RTs trailed the pack and the low-level 

categories were verified the second fastest. Nevertheless, this last 

example demonstrates that the utility of a level of abstraction can be 

maximum at an intermediate level of categorisation.

Category utility also has a bias for higher levels of categorisation. 

The following equation

P(c) ip(m2-ip(fkyi2
* = i  * = i

was obtained by distributing the summation of Equation 6 over the two
m 2

terms of the subtraction. ^  P(/y.) is a constant and the two rem aining
y=i

variable terms are biased for higher levels. The probability P(ct ) that an 

object belongs to category cf decreases exponentially with increasing 

levels of category specificity, quickly reducing utility at each level (e.g. 

in the top taxonomy of Figure 1, starting from the top level, utility is
m 2

halved at each level down the hierarchy). At the same time,
; '= i

usually increases almost linearly with increasing specificity, and can 

only compensate the exponential reduction of P(ct) w ith an
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exponential addition of redundant features at lower levels. Hence the 

bias of category utility for the higher levels of a taxonomy.

The addition of features at any level of the hierarchy increases 

utility, but as just discussed, exponential additions at lower levels are 

necessary to compensate for the exponential decrease in the likelihood 

of these categories. When the added features are unique to the category 

their number is proportional to redundancy, and thus category utility is 

sensitive to redundancy. However, when added features overlap 

between categories category utility and SLIP tend to diverge in their 

predictions.

Fisher's (1987, 1988) COBWEB is an incremental clustering 

algorithm. Clustering consists in placing items into contrasting 

categories based on some entirely unsupervised rules; it is thus 

different from other categorisation tasks in which feedback inform s 

people on whether or not an object belongs to a category. COBWEB's 

clustering criteria is Corter and Gluck's (1992) category utility. When an 

object is encountered, COBWEB places it either into an already existing 

category, or into a new singleton category. To be exact, COBWEB 

considers all possible categorisations for this object, including the one 

putting it in a new singleton category; for each categorisation, 

COBWEB computes the average category utility:

the num ber of categories in the partition. The categorisation w ith the

3.1.2.1 Fisher's COBWEB

k  L ‘ J  ' J

where

n
/

probability of attribute i possessing value j  in

category k, P[f^) is the base rate of attribute i possessing value j, and n is
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greatest average category utility score is the selected one. Fisher 

proposed that COBWEB partitions objects into their basic categories.

COBWEB's clustering criteria is Corter and Gluck's (1992) 

category utility summed across categories and divided by the num ber of 

categories, and it thus predicts more or less the same thing.

3.1.3 Rational analysis

Anderson (1990, 1991) has devised an iterative algorithm of 

categorisation. It inputs the dimensional descriptions of objects one at 

a time, and outputs the "optimal" probability that a new object w ill 

display a certain value on a dimension given a set of dim ensional 

values for that object. For example, it could inform an animal w hether 

or not a novel object has a positive value on the "dangerous" 

dimension. As a by-product, this algorithm partitions objects in to  

"horizontal" categories (i.e., this partitioning does not possess a 

"vertical" or hierarchical dimension). Anderson proposed that the 

most robust partitioning occurs at the abstraction level with highest 

basic-levelness. The algorithm is optimal inasmuch as it realises a 

version of Rosch's (1978) cognitive economy principle which states that 

"what one wishes to gain from one's categories is a great deal of 

information about the environm ent while conserving finite resources 

as much as possible" (p. 28). We will not explain its derivation because 

it is quite complicated. The interested reader is referred to A nderson 

(1990,1991).

We will follow Anderson's 1991 form ulation of his iterative 

categorisation algorithm with the exception of Equation 7 taken from  

his 1990 book.

The first object is categorised into a new singleton category. T hen 

every time a new object is encountered a three-step process is repeated:
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(a) given a partitioning for the first m objects, calculate for each category 

k the probability P(k\F) that m +lst object comes from category k (this 

includes the existing categories and a new category) given that the 

object has features F; (b) create a partitioning of the m +1 objects w ith  

the m +lth  object assigned to the category with maximum probability; 

and (c) to predict value j  on an unobserved dimension i for the n+1st 

object with observed features F, calculate

k

where P{k\F) is the probability that the n+1st object comes from  

category k; and Pi(j\k) the probability of displaying value j  o n  

dim ension i.

Only steps (a) and (b) concern us; we are solely interested in the

partitioning of objects. Therefore, we only need to compute P(k\F)s, In

Bayesian analysis, F(A:|F) is a posterior probability that the object

belongs to k given that it has features F. It can be expressed as follows,
P W F ) .  P(k)P(F\k)

k

where the sum m ation in the denom inator is over all categories k

currently in the partitioning, including the potential new one.

Anderson derived the prior probability, P(k), by m aking the

assumption that there is a fixed coupling probability (c) that two objects

come from the same category, and that this probability is independent

of the number of objets categorised so far:
cn.p(k)=

(1 - c )  + cn'

where nk is the number of objects assigned to category k so far; and n is 

the total num ber of objects seen so far. P(0), the probability that the 

object comes from a entirely new category, is

m = •(1 -  c) + cn
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The coupling probability is crucial for the finding of the basic level. 

With large c, only one category will be created. As it gets smaller and 

smaller, more and more categories will be created. A nderson 

proposes-in a very ad hoc fashion-that, at c -  .3, only the groupings 

associated with the greatest basic-levelness emerge.

To derive the conditional probability or likelihood term, P(F\k), 

Anderson made the additional assumption that objects' dimensions are 

independent: pm=mm,
i

where the values j  on dimensions i constitute the feature set F; and 

where Pi(j\k) is the probability that an object from category k displays 

value j  on dimension i. Pi(j\k) is given by

where nk is the num ber of objects in category k that have a value on  

dimension i; Cj is the num ber of objects in category k with the same

value as the object to be classified; and m is the num ber of dim ensions 

to be classified (Anderson, 1989).

Anderson has modelled M urphy and Smith's (1982, Experiment 

1) category structure, with Corter and Gluck's coding (see Figure 17 in  

Chapter 4), but added another dim ension-a label dim ension-per level 

of abstraction. For c > .96, all items are put in one category; for .8 > c > 

.95, only the high-level clustering emerges; for .4 > c > .8, the m odel 

fluctuates between the high- and middle- level clusterings; for .4 > c > 

.2, it extracted only the middle-level clustering; for .2 > c > .05, it 

usually grouped the items in the intermediate clusters, and som etim es 

in singleton categories; and, for c < .05, the rational algorithm only 

extracted singleton sets. Hoffmann and Ziessler's experim ents 

(including Hoffmann & Ziessler, 1983, Hierarchy I) were also 

successfully modelled.
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We will not include rational analysis in our num erical 

simulations because it is not a basic-levelness metric per se; in the best 

of worlds, it only identifies the level with highest basic-levelness.

3.1.4 MDL and compression14

M inim um  Description Length (MDL) is a m ethod that uses

partitioning of data to compress them (Chater & Pothos, 1999; Pothos &

Chater, 1998, 1999). The am ount of compression that a particular

partitioning achieves is the difference in bits between a raw and a

compressed description of the same data set. Different levels of a

taxonomy correspond to different partitionings of the same data set. In

Pothos and Chater (1998, 1999), the suggestion is made that the

maximal compression of the data set is accomplished at the basic-level.
r(r — 1)With r objects in a data set, there are s = —- possible pairwise

s(s — l)similarities between the objects. There are A = —- possible binary

relationships (inequalities) between the similarities. The 

representation of these inequalities requires A  bits of information (one 

bit per similarity relationship). A  bits of information describe the data 

set before partitioning. If D( bits of information describe one partition 

of the same set, then A  - D{, measures the compression efficiency of this 

partition. The basic level should maximise this difference if this level 

achieves the maximal compression. Compression is therefore a 

measure of the utility of the basic level.

14 Pothos and Chater (1999) present their model as a version of Rosch et a l/s  (1976) 

differentiation model (see 3.2 Similarity and the differentiation model), but we  

believe it bears more commonalties with the utility tradition than w ith the sim ilarity  

one.
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We now derive D ( , the encoding of a partitioning. The num ber 

of possible partitions of r items into n clusters, Part(r,n), is

t T '  (n-v)!v!

To encode this partitioning, we need log2[Part(r,n)] bits of

information. We then compute u, the combinatorics of all w ith in-

cluster similarities with all between-cluster similarities. The schem e

assumes that within-cluster pairwise similarities s(z, j) are all greater

than any between-cluster pairwise similarities, s(k, I). However, this

does not always hold and e counts the number of times the assum ption

is violated (e can vary between 0 and u and be encoded on a m axim um
u ̂of log2(w + l) bits). There are C“ = ------ :----  possible ways of selecting e

(u-e)le!

errors among the combinatorics of relationships u. A total of 

log2(« + l) + log2(C“) bits encode the errors.

Remember that A  bits specify all possible binary relationships 

between pairwise similarities, whereas u specifies those constrained by 

the clustering. A  - u counts the relationships left outside the 

clustering. A - u bits encode them.

The compression of information offered by one partitioning of 

the data is A - Dj, where D{ = log2[Part(r,n)\ + [log2(w + l) + log2(C“)] + 

(A - u.). Hence A  - D{ is equal to

u -  {log2[Part(r,n)\ + log2(u + 1) + log2(C“)}.

We will illustrate this with the taxonomies in Figure 1. First, the 

parameters u and e m ust be calculated ( r is simply the num ber of 

objects). Note that the category tree is the same in both cases: two high- 

level categories, each divided into two mid-level categories, each 

divided into two low-level categories, each containing two exemplars. 

It is the feature definitions of the categories of these category structures 

that differ; this will play a role in phase two of the computations, r =
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16 (2 exemplars * 8 low-level categories). How many binary inequalities 

are constrained by the assum ption that all w ithin cluster pairs of 

similarities are greater than all between cluster ones at the high-, 

middle- and low- levels of categorisation?

At the high-level, we have two clusters with eight objects each. 

We have a total of 56 within-cluster pairwise similarities (28 pairs per 

cluster * 2 clusters), and 64 between-cluster pairwise similarities (8 

objects in the first cluster * 8 objects in the second). Thus, we have u = 

3584 (56 within-cluster pairs * 64 between-cluster pairs). At the m iddle- 

level, we have four clusters each containing four objects. A total of 24 

within-cluster pairs (6 pairs per cluster * 4 clusters), and 96 between- 

cluster pairwise similarities (4 objects in a first cluster * 4 objects in a 

second cluster * 6 permutations). And u -  2304 (24 within-cluster pairs 

* 96 between-cluster pairs) for the middle-level clustering. At the low- 

level, we have eight clusters with two objects each. This implies 8 (1 

pair per cluster * 8 clusters) within-cluster pairs and 112 (2 items in a 

first cluster * 2 items in a second cluster * 28 perm utations) between- 

cluster pairwise similarities, for a grand total of u -  896 (8 w ith in- 

cluster pairs * 112 between-cluster pairs).

The tree branching cost term, \og2[Part(r,n)], is equal to about 15, 

27.36, and 31 bits, at the high-, middle-, and low- levels of abstraction, 

respectively. Second, this description must be corrected for

similarity errors. The taxonomies of Figure 1 m ust be treated separately 

from now on. How many of these constraints are false in the top and 

bottom taxonomies of Figures 1? Remember that Pothos and Chater 

(1998, 1999) assumed that one similarity can be either greater or sm aller 

than-but that it cannot be equal to-another. This is false of m any 

pairwise similarities here. For example, in the bottom taxonomy of 

Figure 1, the similarity (defined a la Tversky-see section 3.2.1 Contrast
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model)  between acdeox (small com) and afghrzv (large lar) is the sam e 

as that between the acdeox (small com) and the bijksx (small warn).  

Following Pothos (1999), we will only count Sw ithin > ^between as an 

error, but not Sw ith in  = ^between which will be treated as Sw ithin  < 

^between- Therefore not a single constraint derived from the 

categorisation-level partitionings in the bottom taxonomy of Figure 1 

description is incorrect. The worst high-level w ithin similarity is 

S(acdeox, afghrw) (share 1 feature, contrast on 5) is equal to all high- 

level between similarities; the worst middle-level w ithin sim ilarities 

share 4 features and differ on 2, e.g. S (acdeox, acdepzv), which is better 

than all m iddle-level between similarities; and the worst low-level 

similarity is S (acdeox, acdeow) (share 5 features, contrast on 1) is greater 

than all low-level between similarities. So compression is equal to 3569 

bits at high-level, 2273.64 bits at the mid-level, and 865 bits at the low- 

level. The m iddle level advantage for M urphy and Smith (1982, 

Experiment 1) is not predicted. However, Pothos and Chater (1998, 

1999) have modelled the same experiment with Corter and Gluck's 

coding, and predicted a middle level advantage (see section 4.5 A  

cautionary note about coding).

Given the top taxonomy of Figure 1, however, mistakes are 

made with the simple category tree description. Trouble arises at the 

high-level: The worst high-level w ithin pairwise similarity is, for

example, S(acgk, acil) (1 shared feature; 3 contrasting features), and the 

best high-level between similarity is S(acgk, begk) (2 shared features; 2 

contrasting features). No error is made at the mid- and low- levels. 

The worst mid-level within similarity is S(acgk, achl) (2 shared 

features; 2 contrast features) and the best mid-level between sim ilarity 

is S(acgk, adik) (2 shared features; 2 contrast features). And the worst 

low-level within similarity is S(acgk, acgl) (3 shared features; 1 contrast
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feature); this is just as good as the best low-level between similarity, 

S(acgk, achk). The information required to correct all the high-level 

pairwise similarity mistakes is 809.68 bits. The net compression indexes 

are thus 2759.32, 2276.64, and 865.00, respectively, at the high-, mid-, and 

low- levels of abstraction. This is not too far from the pattern of 

response times observed by Hoffmann and Ziessler (1983, Hierarchy I).

W hen there is little feature overlap, MDL is essentially 

dependent on u, the combinatorics of within and between category 

similarities (or the category tree structure-see Preamble). This 

combinatorics grows with level of generality and so compression is 

greater when fewer categories are considered, irrespective of how  

redundant the features are w ithin the categories. Compression thus 

has a bias for high levels of abstraction. Variations of strategy length 

create overlap between features and adds errors to the MDL description. 

However, these tend to be insufficient to counterbalance the bias for the 

higher levels.

3.2 Similarity and the differentiation model

So far, the models reviewed implemented the principle that the 

basic level is the most useful level of a taxonomy. Another principle 

for formal models is that of differentiation, or dissimilarity. As Rosch 

et al. (1976) put it, categories at the basic level "... have the m ost 

attributes common to members of the category and the least attributes 

shared with members of other [contrasting] categories." (p. 435) This is 

family resemblance applied vertically, or to embedded categories, rather 

than horizontally, or to contrasting categories (Rosch, 1978). The 

horizontal category with the greatest family resemblance index is called 

the prototype (Rosch and Mervis, 1975), and the vertical category w ith  

the greatest family resemblance index is called basic (Rosch et al., 1976).
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The first component of this family resemblance definition has been 

called the specificity (Murphy & Brownell, 1985), or the 

informativeness  (Murphy, 1991a) of a category, and the second 

component the distinctiveness of a category (Murphy & Brownell, 1985; 

Murphy, 1991a)15. However, category differentiation is not sufficiently 

specified to be refuted. For example, there is a polynomial on  

distinctiveness (or on informativeness) of degree n that fits perfectly an  

arbitrary RT pattern on n +1 levels of categorisation. A similar po in t 

was made by Medin (1983).

3.2.1 Contrast model

Tversky's (1977) contrast model  is a measure of sim ilarity 

between pairs of exemplars. It is a particular case of the match ing  

funct ion . The matching function states that the similarity between two 

exemplars is a function of the num ber of their shared and distinctive 

features. Formally the contrast model can be expressed as follow:

S(a,b) = 6/(A n f f ) -  o f  (A - B ) -  Rf ( B  -  A ), 

where a and b are two exemplars; S(a,b) is the similarity of a to b; A 

and B are the sets of features of objects a and b, respectively; and 0, 

a , and R are three constants between 0 and 1. Providing that 

f ( A - B ) * f ( B - A )  and that a  *R, the contrast model predicts 

asymmetrical similarities that is, S(a,b)^  S(b,a), as, for example, N orth  

Korea is more similar to Red China than Red China is to North Korea.

15 The two determinants of SLIP can loosely be mapped onto those of the differentiation  

model. Both strategy length and informativeness have a tendency to increase w ith  

specificity; both internal practicability and distinctiveness have a tendency to 

increase with generality. It can thus argued that SLIP is one instance of th e  

differentiation model (Schyns, 1998).
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The contrast model needs to be specified further if it is to be used 

at all for modelling. In the literature, applications of the contrast 

model are limited to the special case in which f ( X ) denotes the 

num ber of features in X  (Estes, 1994). We will call this the special 

contrast model.

Tversky applied this model to a num ber of problems am ong 

which was the determ ination of the basic-level of categorisation. The 

basic-levelness, or-as Tversky put it him self-the category resemblance, 

of category L is the mean of the similarities of all the pairs of distinct 

exemplars of L. Formally,
( '  J ,S ( a ,b )

|V ) '

A

with a and b distinct. /?(L) is the category resemblance of L , and n is 

the cardinality of L .

We run into a problem when the low-level is the identity-level 

that is, when low-level categories contain a single exemplar. To deal 

with this problem, a straightforward variation of Tversky's

m easure-the average of the similarities of all possible pairs, including

object X and itself-can be used. Formally,

n[n + 1)/2

However, this special contrast model cannot have a m id-level 

advantage. As we get away from the top level of abstraction, the

num erator increases (this is simply a feature of category

hierarchies-categories get more and more similar as they become m ore 

and more specific) and the denominator decreases. Thus the m ost 

specific level of categorisation will always have the largest category 

resemblance score.
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3.2.2 Context model

Estes (1994) has transformed Medin and Schaffer's (1978) 

influential context exemplar model of categorisation (see Nosofsky, 

1986 and Lamberts, 1994, for developments) into a measure of basic­

levelness. In this model, a multiplicative rule computes the sim ilarity 

S(a,b) between any two exemplars of a category. A match between the 

corresponding attributes of two objects is assigned value 1, and a 

mismatch is assigned a D, a dissimilarity parameter ( a D varies between 

0 and 1, corresponding to the saliency, or attentional weight of the 

considered attribute). To compute the similarity of any two exemplars, 

the local similarities of their component attributes are m ultiplied w ith  

one another.

A ratio provides an index of basic-levelness of an exemplar: The 

num erator sums the within-category similarity of one exemplar w ith  

all other exemplars of this target category-including itself. The 

denom inator sums similarities extending the comparisons to the 

exemplars comprised in the related higher level category. The index of 

basic-levelness of a category is the average of such ratios, across all 

exemplars of the category. The basic-levelness of a level of 

categorisation is the average basic-levelness of all its categories.

We will illustrate this with the taxonomies from Figure 1. The 

bottom taxonomy is defined by a total of six dimensions. The m easure 

of similarity between any pair of exemplars (i.e., S(a,b)) is thus a six- 

factor multiplication. Exemplars acdeow and acdeox, for instance, share 

values on five dimensions: a, c, d, e, and o; and they differ on a single 

dim ension's value (w vs. x). Following Estes (1994), we will use a 

single mismatch parameter: a .  So, the six-factor m ultiplication 

defining the similarity between acdeow and acdeox is: 1 * 1 *  1 * 1 * 1 *  

a  -  a .  Similarly, we obtain S(acdeow, acdeow) = 1, S(acdeow, acdeox) =
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S(acdeow, acdepw) = a ,  S(acdeow, acdepx) = a 2, S(acdeow, afghqw) = 

S(acdeow, afghrw) = a 4, S(acdeow, afghqx) = S(acdeow, afghrx) = 

S(acdeow, bijkw) = S(acdeow, bijktw) = S(acdeow, blmnuw) = S(acdeow,  

b lm n vw )  = a 5, S(acdeow, bijksx) = S(acdeow, bijktx) = S(acdeow,  

blmnux) -  S(acdeow, blmnvx) -  a 6.

Applying the same m ultiplicative rule to the top taxonomy of 

Figure 1 we get S(acgk, acgk) = 1, S(acgk, acgl) = S(acgk, achk) = a ,  

S(acgk, achl) = S(acgk, adik) = S(acgk, adjk) = S(acgk, begk) = a 2, S(acgk, 

adil) = S(acgk, adjl) = S(acgk, begl) = S(acgk, behk) = S(acgk, bfik) = 

S(acgk, bfjk) = a 3, and S(acgk, behl) = S(acgk, bfil) = S(acgk, bfjl) = a 4.

The next step consists in computing the sum of the sim ilarities 

of one exemplar of category X (any exemplar) to every other exem plar 

of this category. For high-, mid-, and low-level categories of the bottom  

taxonomy of Figure 1 these are l + 2a + a 2 + 2 a 4 + 2 a 5, l + 2a + a 2, and 

1 + a , respectively; and, for high-, mid-, and low-level categories of the 

top taxonomy of Figure 1 these are l + 2a + 3a2 + 2 a 3, l + 2a  + a 2, and 

1 + a , respectively.

Finally, these summed similarities are divided by the sum m ed 

similarities that extend the comparisons to the exemplars comprised in  

the related higher level category. For example: The probability that

exemplar acgk in the top taxonomy of Figure 1 will be categorised as a
.. . l + 2a + 3a2 + 2 a3 7 l + 2a + a 2 . 7n l  is ------------------=-------- =-------- 7 , as a kas, ----------------- =-------- 7 , and as a lun,

1 + 2a + 4a + 6a + 3a l + 2a + 3a2 + 2 a3
1 + a------------ r. If, for instance, a  =3  (this is the value used by Estes to

1 + 2a + a  y

m odel Corter, Gluck & Bower's, 1988, results), these probabilities 

become .896, .878, and .769, respectively. This is not too far from w hat 

Hoffmann and Ziessler (1983, Hierarchy I) observed.

And the probability that exemplar acdeow in the bottom  

taxonomy of Figure 1 will be categorised as hob is
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1 + 2a + a 2 + 2a4 + 2 a5 T , 1 + 2a + a 2 ,as bof, ------------ t-------------- -, and as com,
l + 2a + a 2 + 2 a 4 + 6a5 + 4 a 6' ' l + 2a  + a z + 2a4+ 2 a :
— —z-. With a  =.3, these probabilities are .993, .988, and .769, 
1 + 2a + a 2

respectively. Here, the model does not account for the observed 

middle-level preference. Estes showed, however, that it can account for 

the observed middle level preference in Corter, Gluck and Bower's 

taxonomy (1988; this taxonomy is isomorphic to Hoffmann & 

Ziessler's, 1983, Hierarchy II). The context model thus fulfils the basic 

requirement of possessing the capacity of predicting a m iddle-level 

preference.

The context model also has a bias for the higher-levels of a 

taxonomy. The measure is a ratio of two polynomials where the 

num erator differs from the denom inator by only one term. W ith  

increasing levels of abstraction in a taxonomy, the num erator increases 

and the ratio approaches 1. The bias for the high level can be overcom e 

by increasing the similarity between the target exemplars and those of 

lower level contrast categories.

3.3 Preparation model

M urphy and Smith (1982) proposed a different kind of model to 

explain basic-levelness that they called the preparation m o d e l . It is no t 

a fully articulated formal model of basic-levelness. W hat is interesting 

about it is that it breaks with the utility and the similarity traditions. 

Moreover it is an embryo of a response-time model of basic-levelness 

(not entirely unlike SLIP) with a signal detection flavour. The model is 

schematised in Figure 6.
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Figure 6. Box diagram of the preparation model. Adapted from  
M urphy & Smith (1982, Figure 4).

When the category is named, the participant gets ready for the 

forthcoming picture in two ways: (1) he activates a representation of 

the category; and (2) he sets a criteria on the num ber of matches and 

mismatches that will be needed to respond true and false, respectively. 

As soon as the picture appears, the perceiver starts to compare its 

features to those of the representation of the category, keeping track of 

matches and mismatches. W hen one of the pre-set criteria is reached, 

the participant responds either true, or false.

The superiority of the basic and subordinate categories over 

superordinate ones would result from people usually not having a 

single perceptual representation for a superordinate; two (or m ore) 

representations m ust thus be activated when the target category is a 

superordinate. The presence of these additional representations 

implies that additional matches will be needed on average. As a result 

RTs are lengthened compared to the case when the category is at a 

lower level, and a single perceptual representation is activated. This is 

in essence Jolicoeur, Gluck and Kosslyn's (1984) explanation. W e 

address this explanation in the next section.

102



The advantage of the basic over the subordinate categories w ould 

occur because participants set different true and false criteria for 

categories at the two levels. M urphy and Smith assume that the 

criteria is set so as to maximise discrimination between the target 

category and contrasting ones. For example, take the taxonom y 

represented in the bottom of Figure 1. If the category presented was rel 

criteria are set so as to maximise discrimination from hot, since that is 

the closest "false" contrasting category. Because subordinates overlap 

more with their contrast categories than do basics, the true threshold 

should be set higher for subordinates; the greater the criterion, the 

longer the feature-comparison process, and therefore the longer the RT.

3.4 Part-based accounts

A commonality of all the reviewed models so far is that they are 

determined by category feature-structures. Provided that this abstract 

structure is unchanged, the content of these attributes is of no  

importance: it can be shapes, colours, textures, shapes and colours, and 

so on. To conclude this section on models of basic-level perform ance, 

we will examine the influential content-based or, more specifically, 

part-based accounts (e.g., Jolicoeur, Gluck & Kosslyn, 1984; Biederm an,

1987).

We have already told part of the story (see section 1.3.3 

Importance of shapes for basci-levelness) but we believe it is w orth  

repeating here. You will remember that Rosch et al. (1976) found a 

large and reliable increase in similarity of the overall look of objects 

from basic level to superordinate categories, and a significant-but 

significantly smaller-increase from basic to subordinate. They also 

found that averages of basic-level objects (i.e., some sort of p rim itive  

average interpolation between standardised objects belonging to the
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same basic-level categories) were the most inclusive average objects 

that were readily identifiable (see also Rosch, 1978). This suggests that 

shape is an important factor of basic-levelness for natural categories.

One determ inant of shape is part structure. Tversky and 

Hemenway (1984) found-for a broad range of natural categories 

including both objects and organisms-a sharp increase of listed part- 

features from the superordinate to the basic level (e.g., handle  and 

blade for "knife"; peel and pulp  for "banana"), but little rise from the 

basic to the subordinate level. So it seems that parts-rather than their 

spatial relationships-are a crucial factor of basic-levelness.

In parallel to Tversky and Hemenway's research, Jolicoeur, 

Gluck, & Kosslyn (1984) took Rosch et al.'s (1976) claim one step further: 

not only are objects first recognised at their shape-based basic categories, 

on average, they are necessarily first recognised at their shape-based 

entry point  categories. Entry point categories are usually at the basic- 

level but not always; for example, Jolicoeur, Gluck and Kosslyn 

showed that this was not the case for atypical objects (e.g., a penguin is 

accessed at the subordinate category "penguin" rather than the basic 

category "bird"). To access categories above the entry point, such as 

Rosch's superordinates, a search in the semantic tree is necessary after 

the entry point identification (note: this is equivalent to saying that a 

superordinate category is defined by the disjunction of entry po in t 

categories), and to access categories below the entry point, such as 

Rosch's subordinates, additional perceptual information is required. 

Thus the entry point is the point of contact between perception and 

semantic memory.

Both Jolicoeur, Gluck and Kosslyn's (1984) theory and Tversky 

and Hemenway's (1984) empirical findings have been extremely 

influential among the object recognition community (e.g., Neisser,
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1987; Biederman, 1987; Biederman and Gerhardstein, 1993; Edelman, 

1998). But, perhaps, it is in Biederman's hands that is best known.

Biederman developed a theory of object recognition called 

recognition by components  (Biederman, 1987). This theory supposes 

that all objects can be decomposed into under 50 geometrical prim itives 

or geons (Biederman, 1998). Geons are defined by visual properties that 

are invariant through most views and most orientations such as 

parallel lines and surface intersections. They include shapes such as 

cube, sphere, cylinder, etc. Once an object has been decomposed in to  

geons, and once the structure of these geons (e.g., a typical house = a 

wedge ON TOP OF a cube) has been described, object identification 

ensues at the basic level. For Biederman, objects are first identified at 

the basic level and then they are identified at other levels. The 

superiority of basic and subordinate categories would come from the 

fact that no unique geon-structure representation exists for 

superordinate categories. The superiority of basic categories over 

subordinate categories results from the fact that the latter-but not the 

form er-"[...] have a high degree of overlap in their components and in  

the relations among these components [...]" (Biederman, 1987, p. 143), 

and it takes more time to distinguish them. In other words, objects are 

recognised more rapidly at the basic level than at the subordinate level 

because the geon-based basic level categories are more dissimilar  to one 

another than the geon-based subordinate level categories.

McMullen and Jolicoeur (1992) suggested that this "additional 

processing" required at the subordinate level could include 

determining spatial relations between geons. And that objects could be 

categorised at the basic level following only geon identification. This 

was latter corroborated by empirical findings (Hamm & M cM ullen, 

1998).
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To sum up: Biederman made two separate claims: (1) basic (or 

entry point) categories are necessary halts before accessing related 

higher or lower level categories, and (2) these basic categories are 

necessarily defined by parts. We believe that both are incorrect.

It has been shown several times that you can get a basic level 

effect in all kinds of taxonomies w ithout parts (Corter, Gluck & Bower,

1988). Furthermore, M urphy (1991a) has shown that in a taxonom y 

with parts, you can have a superiority effect at a level of abstraction n o t 

defined by parts (see 1.3.3 Importance of shape for basic-levelness).

As for Biederman's other claim, Thorpe, Fize, and Marlot (1996; 

see also Thorpe, Gegenfurtner, Fabre-Thorpe & Biilthoff, 1999), for 

example, have shown that people can decide whether new natu ra l 

scenes presented for a very short presentation time (28 ms) contains an 

animal or not (this is a superordinate categorisation). In fact, people do 

this very efficiently; they are 93% accurate. More im portantly for ou r 

argument, people could not identify the basic name of the animal in  

almost all cases. This demonstrates that basic-level identification is n o t 

necessary for superordinate recognition of natural objects. It does no t 

imply that the superordinate category animal has a greater basic- 

levelness than its basic subdivisions. For the superordinates the 

participants had only two known choices whereas for the basic-level 

categories their responses were unrestricted, and thus m uch m ore 

uncertain or difficult.

3.5 Summary

We will not compare the performance of all the review ed 

models in the following chapters. Instead we will concentrate on  

Jones's (1983) category feature-possession, Corter and Gluck's (1992)
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category utility, Pothos and Chater's (1998, 1999) compression m easure, 

and Medin and Schaffer's (1978; modified by Estes, 1994) context model.

We have left aside Rosch et al.'s (1976) cue validity and Tversky's 

(1977) contrast model because they cannot predict the classic advantage 

for an intermediate level. Fisher's (1986) COBWEB measure has been 

discarded because it is based on Corter and Gluck's category utility, and 

makes roughly the same predictions. We have also excluded 

Anderson's (1989, 1990) rational analysis model because it does no t 

provide a metric of basic-levelness. Finally, Murphy and Smith's (1982) 

preparation model as well as Biederman's (1987) recognition-by- 

component theory are too crude to allow comparisons with the other 

basic-level models.
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Chapter 4. Numerical simulations of published 
experiments16

In this chapter, we will compare the predictive performance of 

SLIP with those of Jones's (1983) category feature-possession, Corter and 

Gluck's (1992) category utility, Pothos and Chater's (1998) com pression 

measure and Medin and Schaffer's (1978) context model. The database 

comprises 21 (all, as far as we know) basic-level experiments. We will 

first present the experiments before turning to their sim ulations w ith  

the models. In the following sections, the experiments are organised 

according to the factor of SLIP they test-strategy length or in ternal 

practicability. For variations of internal practicability, we will exam ine 

the experiments that found faster access at an intermediate, low, and 

high level of categorisation. We will then describe the only two 

experiments that explicitly tested strategy length, the second 

computational factor of SLIP. Finally, we will examine taxonom ies 

with disjunctions of attributes, or mixtures of conjunctions and 

disjunctions.

4.1 Variations of internal practicability determines 
basic-levelness

4.1.1 Faster access at an intermediate level

One of the most influential experiments on the basic-level is that 

of M urphy and Smith (1982, Experiment 1). It is influential because 

most subsequent experiments on the basic level used the sam e 

procedure. Their participants were initially taught the artificial 

taxonomy represented at the top of Figure 7. (We have norm alised the

16 This chapter expands on Gosselin and Schyns (1997, 1999).
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notation of information in taxonomies, substituting letters of the 

alphabet for the actual features. This enables direct comparisons of the 

taxonomies; the mapping between the letters and what they signify is 

provided in the figures. Underneath the category names, we give the 

abstract optimal strategies fed to SLIP in the shorthand no tation  

described earlier. At the bottom of each taxonomy, the abstract feature 

constitution of all exemplars is given.)
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a =  pounder  
b = cutter 
c = hammer head 
d  = hammer shaft 
e -  hammer handle 
f  = brick head  
g =  brick shaft 
h =  brick handle 
I =  knife head  
j  =  knife shaft 
k = knife handle 
I = pizza cutler head 
m = pizza cutter shaft 
n =  pizza cutter handle
0 = wide hammer head
p  = narrow hammer head  
q =  one-part brick handle 
r = two-part brick handle 
s = straight knife edge
1 =  serrated knife edge
u = short pizza cutter shaft 
v = long pizza cutter shaft 
w -  large 
x  -  small

Adapted from Murphy & Smith, 1982, Experiment 1

hob som
b

vad la r

nop
Imn

tis mulwarn

acdeow

acdeox
acdepw afghqw  
acdeox afghqx

afghnv bijksw  
afghrx bijksx

b ijk tw  blmnuw  
b ijk tx  blmnux

blmnvw

blmnvx

a =  straight lines 
b -  curved lines 
c =  sharp corners 
d  -  smooth corners 
e = rectangular overall shape 
f  = internal vertical line 
g = internal losange 
h =  line texture 
i =  triangular overall shape 
j  -  internal oblique line 
k = internal cross 
I = shaded
m =  concave cell overall shape
n = elongated nucleus
o  = internal fa t floating body
p  = thin excroissance
q =  convex cell overall shape
r = Y-shaped nucleus
s = internal slim floa ting  body
t  - f a t  excroissance
u - b ' -  small configural changes
c ’-z ’ -  m inor variations

Adapted from Mervis & Crasifi, 1982

cd

qrstmnop

b ’y az

abc ’efghu abe jf’ghv a i i ’j ld w  a ijk l l ’x  cdmnoo’py cdm nopr’z a ’cdqrstu ’ cdqrstb ’x ’
abd ’efghu abefgg’hv a i j j ’k lw  a ijk lm ’x cdmnopp’y cdmnops’z a ’cdqrstv’ cd qrs tb 'y ’
abeefghu abefghh’v a ijk k ’lw  a ijk ln ’x  cdmnopq’y cdmnopt'z a ’cdqrstw ' cdqrs tb 'z ’

Adapted from Murphy, 1991, Experiment 4, Enhanced

Same as Murphy & Smilh
(1982, Experiment 1) plus:
c ”  = red
d "  -  dot texture
e "  = yellow
f  = circle texture
g ” = blue
h ”  = solid color
i ” = green

j "  -  stripe texture

bot
c d e c "d ”

som
b

rel
f g h e ' T ’

vad la r

nop

tis mulwarn
t

acdec” d ” ow afghe’ f 'q w  b ijk g ” h ” sw b lm n i” j ” uw
acdec’ ’d ” pw afghe” f ’rw  b ijk g ” h ” tw b lm n i” j ” vw

acdec” d ” ox a jghe”f ’qx b ijk g "h ” sx b lm n i” j ” ux
acdec” d "o x  afghe” f ’rx  b ijkg ” h ” tx b lm n i” j ” vx

Figure 7. Taxonomies for all experiments w ith varying redundancy 
that exhibited an advantage for an intermediate level of categorisation. 
From top to bottom: Murphy & Smith (1982, Experiment 1-see also 
Murphy, 1991, Experiment 4, Simple, for a replication); M urphy & 
Crasifi (1982); M urphy (1991, Experiment 4, Enhanced). U nderneath  
the category names, we provide the optimal strategies fed to SLIP. The

110



feature constitution of all exemplars is given underneath each 
taxonomy. An index for these abstract features is also provided.

M urphy and Smith used 16 artificial tools. Four of these artificial tools 

are shown in Figure 8. Their tools were either pounders,  or cutters 

(higher level); they had non-overlapping handles,  shafts, and heads  

(which defined the middle level); and they had one more n o n ­

overlapping feature such as narrow and wide heads (at the lower level). 

Each low-level category contained a large and a small  tool exem plar 

(size is thus a nondiagnostic dimension). In a later testing phase, 

participants were shown a category name followed by a stim ulus. 

Subjects' task was to verify as quickly as possible whether the name and 

stimulus matched.

Figure 8. Four artificial tools used by M urphy & Smith in their 
Experiment 1. Scanned from M urphy & Smith (1982, Figure 1).
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As illustrated in Figure 7, mid-level categories have the highest 

practicability. Table 6a shows that they were verified faster, and the 

high-level categories slowest. M urphy (1991a, Experiment 4, Simple) 

replicated these results.

In fact, the highest practicability of the middle level is also 

responsible for its faster access in Mervis and Crasifi (1982) and M urphy 

(1991a, Experiment 4, Enhanced).

Mervis and Crisafi (1982) used 24 abstract artificial objects sim ilar 

to the ones shown in Figure 9.

Figure 9. Eight sample objects used by Mervis & Crisafi. Scanned from  
Mervis & Crisafi (1982, Figure 1).

Each low-level category contained three highly similar exemplars. The 

superordinate categories were defined by a value on two redundan t 

dimensions: curvature (either straight or curved)  and angularity

(either sharp or smooth corners). The basic categories were defined by a 

set of redundant values on four dimensions: the overall shape

(triangle, square, fat cell, and slim cell) and three additional in ternal
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characteristics (e.g., line texture, black stripe, and diamond).  The 

subordinate categories were defined by one configural change  

dimension. This taxonomy is the middle one in Figure 7.

In Murphy (1991, Experiment 4, Enhanced), two dimensions (i.e., 

colour and texture: either red dots, yellow circles, green stripes, or blue 

solid colour) were added to the artificial tools of M urphy and Sm ith  

(1982, Experiment 1) at the middle level of categorisation. This category 

hierarchy is illustrated at the bottom of Figure 7.

Our numerical simulations also include natural taxonomies. 

We assumed that the features subjects listed reflected their 

representations (see Rosch & Mervis, 1975). In addition, following 

Tversky and Hemenway (1984) and Tanaka and Taylor (1991), we 

assumed that one feature was never listed for two contrasting 

categories (see 4.1.1.1 Rationale for using listed features to approxim ate 

the structure of natural objects). Five natural taxonomies had a greater 

redundancy at the intermediate level:

In Rosch et al. (1976), Experiment 7, subjects had to verify the 

name of 18 objects at three levels of categorisation. These objects 

belonged to six non-biological taxonomies: musical instruments ,  fru it ,  

tool, clothing, vehicle, and furni ture .  Three pictures per category 

structure were carefully selected. In a previous experim ent 

(Experiment 1), subjects had to list the attributes of these categories. 

The mean number of added features at the lowest-level was 1.85, at the 

mid-level was 5.55 , and at the highest level was 3.5 (these num bers 

arise from Rosch et al., 1976, Table 2, non-biological taxonomies, raw 

tallies; we rounded these averages to integers for the simulations).

Tanaka and Taylor's (1991) subjects were taught the names of 16 

natural animals at three levels of categorisation (e.g., animal, dog, 

Beagle). They were either bird experts (and dog novices), or dog experts
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(and bird novices). In Experiment 1, Tanaka and Taylor found that 

novices listed approximately 8, 12, and 7 new features for the higher, 

middle, and lower levels of categorisation, respectively (we have 

extracted these figures from Tanaka and Taylor, 1991, Figure 1, and then  

we have rounded them to the nearest integers). In Table 6a we give the 

mean verification RTs for bird and dog novices together.

Johnson and Mervis's (1997, Experiment 1, Songbirds condition) 

participants had to list the features of songbirds at four levels of 

abstraction (superordinate, basic, subordinate, and sub-subordinate). 

The participants were either novices, tropical freshwater fish experts, 

intermediate songbird experts, or advanced songbird experts (we have 

pooled the data obtained from the tropical freshwater experts w ith that 

obtained from the novices because no significant difference between 

the two groups was found). Their advanced songbird experts listed 1.75, 

5, 6.02, and 3.75 for the superordinate, basic, subordinate and sub­

subordinate levels, respectively. For the intermediate songbird experts, 

these numbers were 1, 4.87, 4.28, and 2.47, for the same levels. For the 

novices and the tropical freshwater fish experts, the num bers were 1.08, 

2.47, 0.23, and 0.02. (For the simulations, we have m ultiplied the 

average number of features by 100 to end up with a integer value w ith  

sufficiently fine discrimination.)

In all these experiments, feature redundancy was therefore the 

sole determ inant of basic-levelness. Table 6a reveals that basic- 

levelness was a direct function of the average num ber of redundan t 

attributes at each level.

Table 6: Observations as well as numerical predictions of feature- 
possession (Jones, 1983), category utility (Corter & Gluck, 1992), 
compression (Pothos & Chater, 1998a), context model (Medin & 
Schaffer, 1978; Estes, 1994), and SLIP for 21 published basic-level 
experiments. For each taxonomy, the greyshade indicates the order of
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predicted or of observed basic-levelness, with the lightest being the 
greatest.
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Table 6a: Variations of internal practicability determines basic-
levelness. Faster access at an intermediate level.

Source M odel
Level

H - 3 H -  2 H - l Highest (H)
Murphy & Smith, 

Exp. 1
O bservation 723 ms 678 ms 879 ms
P ossession 1 3 3

U tility 0.453 0.725 0.688
Compression 865 bits 2277 bits 3569 bits

Context .769 .988 .993
SLIP 1.667 attempts 1.25 attempts 1.667 attempts

Murphy, 
Exp. 4, 
Simple

Observation 862 ms 811 ms 980 ms
Possession 1 3 3

U tility 0.453 0.725 0.688
Compression 865 bits 2277 bits 3569 bits

Context .769 .988 .993
SLIP 1.667 attempts 1.25 attempts 1.667 attempts

M ervis & Crisafi, 
Exp. 1

Observation ' -  T ,r 1st 2nd
Possession 1 4 2

U tility 0.609 1.094 1.063
Compression 5992 bits 12916.59 18985.00

Context .769 .996 .999
SLIP 1.75 attempts 1.273 attempts 1.556 attempts

Murphy, 
Exp. 4, 

Enhanced

O bservation 1,132 ms 854 ms 955 ms
Possession 1 5 1

U tility 0.640 1.100 0.938
Compression 865 bits 2277 bits 3569 bits

Context .769 .999 1.000
SLIP 1.75 attempts 1.167 attempts 1.75 attempts

Rosch et al., 
Exp. 7

Observation 659 ms 535 ms 591 ms
Possession 2 6 4

U tility 1.030 1.701 1.874
Compression Obit 85 bits 185 bits

Context .917 1.000 1.000
SLIP 1.714 attempts 1.333 attempts 1.5 attempts

Tanaka & 
Taylor, 
Novice

Observation 777.5 ms 677.5 ms 745.5 ms

Possession 7 12 8
U tility 2.387 3.517 3.934

Compression 0 bit 85 bits 185 bits
Context 1.000 1.000 1.000

SLIP 1.588 attempts 1.385 attem pts 1.543 attempts
Johnson & 

M ervis, 
Songbird, 

Novice

Observation -21.00 ms -1950 ms -1600 ms -1900 ms

Possession 2 23 247 108
U tility 16.323 32.519 60.778 59.429

Compression 0 bit 865 bits 2277 bits 3569 bits
Context vDUu .572 .958 .978

SLIP 1.990 1.886 attempts 1.212 attempts 1.557 attempts
Johnson & 

M ervis, 
Songbird, 

Intermediate

Observation -1725 ms -1600 ms -1550 ms -1800 ms

Possession 247 428 487 ; 100
U tility 65.551 115.417 137.706 128.219

Compression 0 bit 865 bits 2277 bits 3569 bits
Context , . - : ........yDL .999 1.000 1.000

SLIP 1.673 1.493 attempts 1.443 attem pts 1.853 attempts
Johnson & 

M ervis, 
Songbird, 
Advanced

O bservation -1600 ms -1625 ms -1500 ms -1750 ms

Possession 375 602 500
U tility 86.434 149.056 165.302 1 (-.7.574

Compression 865 bits 2277 bits 3569 bits
Context .989 1.00 1.00 1.00

SLIP 1.630 1.466 attempts 1.535 attempts 1.808 attempts f
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4.1.1.1 Rationale for using listed features to approximate the 

structure of natural objects

W ith artificial objects, we can use the construction features to

build the category structures. What about natural objects? No one

knows the true construction features of natural objects. There is som e 

empirical evidence that the features listed by participants reflect quite 

well the construction features of objects. In his Experiment 1A, 

M urphy (1991a) asked some subjects to list features for the artificial 

objects used in Murphy, Experiment 3. He found a mean of 1 feature at 

the higher level of categorisation, a mean of 5.75 features added at the 

middle level of categorisation, and a mean of 0.87 features added at the 

lower level of categorisation (cf. the "true" num bers of added features

were 1, 3, and 1, at the higher, middle, and lower levels of

categorisation, respectively). Additional support is given by M ervis 

and Crisafi (1982, Experiment 2). Adults listed an average of 1.47 added 

features at the superordinate level, of 4.06 added features at the basic 

level, and of 0.82 added features at the subordinate level (cf. the "true" 

num ber of added features were, 2, 4, and 1, at the superordinate, basic, 

and subordinate levels of categorisation, respectively).

The good news is that Rosch et al. (1976), Tanaka and Taylor 

(1991), and Johnson and Mervis (1997) conducted verification as well as 

feature-listing experiments with natural objects; the bad news is that 

none of them reported these listed features, only the average num ber 

of added features per level of abstraction.

All is not lost: We know from Tversky and Hemenway (1984) as 

well as from Tanaka and Taylor (1991) that relatively few added 

features listed for any given category overlapped with those listed for 

contrasting categories (e.g., 2/25 in the fruit hierarchy of Tversky and 

Hemenway, 1984). "The relatively high percentage of non overlapping
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features indicated that subjects listed features with respect to som e 

implicit contrast set, which appeared to be objects that shared the same 

level of abstraction (Tversky and Hemenway, 1984)." (Tanaka and 

Taylor, 1991, p. 464). Here we will assume that none overlapped.

The only piece of information now missing that is needed to 

reconstruct the taxonomy is the distribution of features am ong 

categories of a given level of abstraction. We will assume here that it 

was a uniform distribution (i.e., the num ber of added non overlapping 

features was constant w ithin level of categorisation). This assum ption 

has very few consequences for the considered basic-levelness measures.

4.1.2 Faster access at the lo w er  le v e l

M urphy and Smith (1982, Experiment 3) used eight of the 

artificial tools from Experiment 1 (see Figure 8), and added eight new  

tools to produce a total of sixteen. Their artificial tools were either 

large, or small (higher level); they were either pounders, cutters, 

scrapers, or stirrers (middle level); and they had non-overlapping 

features handles,  shafts, and heads (lower level). Each low-level 

category contained two highly similar tools (e.g., serrated and straight­

edge knifes). Figure 10 illustrates the abstract organization of the 

features. It also shows that the lower-level categories were m ore 

practicable because they had more redundant attributes. Table 6b 

reveals that these categories were accessed faster than categories at the 

other levels.
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Adapted from Murphy & Smith, 1982, Experiment 3

Same as Murphy & Smith 
(1982, Experiment 1— see 
Figure 7) plus: 
y  = stirrer 
z = scrapper 
a  ’ = wedge head  
b ‘ = wedge shaft 
c ' = wedge handle 
d ’ = carrot head  
e ' = carrot shaft 
f  = carrot handle 
g ' = scoop head  
h ’ = scoop shaft 
/ ’ = scoop handle 
j '  = rfljfee /lead 

= rake shaft 
/ ’ = r a te  handle 
m ' - b "  = small variations

com

bijkwm  ’ 

bijkwn ’

vad  lar  
Imn a ’b ’c ’

zim  warn 
d ’e ’f  g ’h ’i ’

blmnwo ’ 

blmnwp ’

a ’b ’c ’w y q ’

a ’b ’c ’w y r ’
d ’e ’f w y s ’ 

d ’e ’f  w y t’

g ’h ’i ’x zu ’

g ’h ’i ’x z v ’
j ’k ’l ’xzw ’

j ’k ’l ’xzx’

acd ex y’ 

acdexz ’
a fgh xa”

afgh xb"

Figure 10. Taxonomy of M urphy & Smith (1982, Experiment 3), the 
only experiment with varying redundancy that exhibited an advantage 
at the lower level of categorization. Underneath the category nam es, 
we provide the optimal strategies fed to SLIP. At the bottom of the 
taxonomy, the abstract feature constitution of all exemplars is given. 
An index for these abstract features is provided left of the taxonomy. 
The feature constitution of all exemplar is giving underneath the 
taxonomy.

Tanaka and Taylor's (1992, Expert) is a variation on this them e: 

they used expertise to "add" redundant features at the lower level and 

thus speed up its access (remember section 1.3.1 Tests of the  

differentiation model). Their subjects listed approximately 8, 10, and 10 

new features for the superordinate, basic, and subordinate levels of 

categorisation, respectively (we have extracted these figures from  

Tanaka and Taylor, 1991, Figure 1, and then we have rounded them  

into integers). Compare this with 8, 12, and 7 for the superordinate, 

basic, and subordinate levels in their Novice condition (see previous 

section). They found that the basic and subordinate categories were 

equally fast and the superordinate categories the slowest (Table 6b gives 

the mean RTs of bird and dog experts).

Table 6b: Variations of internal practicability determines basic-
levelness. Faster access at the lower level.
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Level
Source M odel H - 2 H - 1 H ighest (H)

M urphy & 
S m ith , 
Exp. 3, 

Size

O bservation

Possession

574 ms 

3 1

666 ms

U ti l i ty 0.483 0.428 0.561
Compression 865 bits 2277 bits 3569 bits

Context .974 .984 .991
SLIP 1.25 attem pts 1.667 attem pts 1.667 attem pts

Tanaka & 
T aylor, 
Expert

O bservation 621.5 ms 623.0 ms

...........................
Possession 10 10

U ti l i ty 3.258 3 .8 7 0

Compression Obits 85 bits 185 bits
Context L 1.000 1.000 1.000

SLIP 1.474 attem pts 1.474 attem pts 1.556 attem pts

4.1.3 Faster access at the h igher  leve l

In his Experiment 5, Murphy used eight of Murphy and Sm ith 's 

16 artificial tools. He added a set of unique values on four d im ensions 

(colours, textures, edges, and size cues) to the high-level categorisations. 

Figure 11 shows that this level becomes more practicable and Table 6c 

reveals that it was indeed accessed faster. Note: low-level categories

contained only one item here.

Adapted from Murphy, 1991, Experiment 5

hob 
axi ’ 'j "k”

som
bwc’’d ”l ”

Sam e as M urphy & Sm ith
(1982, E xperim ent 1— see
Figure 7) plus:
c ”  = red
d "  =  d o t texture
i ” =  green
j ” -  stripe texture
k"  -  broken edges
I" =  continuous edges

bot
cde

nop
Imn

pirn

tis mulvad lar warncom zim

acdeoxi”j ”k ” afghqxi”j ”k ” bijkswc ”d ”l ” blmnuwc”d ”l”
blmnvwc”d ”l"afghrxi ”j ”k ” bijktwc"d”l ”acdepxi ”j ”k ”
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Figure 11. Taxonomy of Murphy (1991, Experiment 5), the only 
experiment with varying redundancy that exhibited an advantage at 
the higher level of categorization. Underneath the category names, we 
provide the optimal strategies fed to SLIP. At the bottom of the 
taxonomy, the abstract feature constitution of all exemplars is given. 
An index for these abstract features is provided left of the taxonomy. 
The feature constitution of all exemplar is giving underneath the 
taxonomy.

Table 6c: Variations of internal practicability determines basic-
levelness. Faster access at the higher level.

Level
Source M odel H - 2 H - 1 H ighest (H)

M urphy, 
Exp. 5

O bservation 1,072 ms 881 ms 854 ms
Possession 1 3 5

U til ity .7 0 3  ~ 1.281 1.688
Compression Obits 85 bits 185 bits

Context .76 9 .988 1 .0 0 0

SLIP 1.8 attem pts 1.5 attem pts 1.286 attem pts

4.2 V a r ia t io n s  o f  s tr a te g y  l e n g t h  d e t e r m in e s  b a s ic -  
l e v e l n e s s

In all the experiments reviewed so far, the length of 

categorisation strategies was constant-only one feature test was 

required in each case. Variations of strategy lengths were first tested in 

Hoffmann and Ziessler (1983, Hierarchy I). They used 16 artificial 

objects similar to "PacMan ghosts" (see Figure 12) organised in the top 

taxonomy of Figure 13. Strategy length was 1 at the high- and middle- 

levels, but 2 at the low-level. At the top level, the objects were defined 

by a shell (either curved  or rectangular), and at the middle level by an 

interior shape  (either square, triangle, star, or circle). To identify an 

object at the low categorisation level, however, the combination of a 

shell value and of a bottom edge value (broken vertical lines,  

triangular, rectangular, or circular saw teeth) is required. Two objects 

with different non diagnostic textures were members of each low-level

1 2 1



category. Participants accessed the high- and mid- level categories 

equally fast, and were slower for low-level categories (see Table 6d).

vww mu
Figure 12. Complete set of "PacMan ghosts" used by Hoffmann & 
Ziessler in their experiments, leaving aside the two nondiagnostic 
textures. Scanned from Hoffmann & Ziessler (1982, Figure 2).

a  =  rectangular shell 
b = curved  shell 
c = internal square  
d  = internal triangle  
e  = internal star  
/  =  internal circle
g = triangular saw  teeth bottom  edge  
h = broken vertical lines bottom  edge  
i = rectangular saw  teeth bottom  edge  
j  = circular saw  teeth bottom  edge  
k  =  shaded  
I =  line texture

Adapted from Hoffmann & Ziessler (1983, Hierarchy I)

ril
a

lun fu k  tu z zu t
a & g  a& h  a & i a & j

a cgk  achk ac ik  a d jk
a c g l ach l a c il a d jl

m ip
b

nub du w  pu x  bu r
b & g  b& h  b& i b & j

beg k  behk bfik  bfjk
b e g l beh l b fil bfjl
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Figure 13. Abstract taxonomies of all experiments with varying strategy 
length. At the top: Hoffmann & Ziessler (1983, Hierarchy I); at the 
bottom: Gosselin & Schyns (1998a). Underneath the category nam es, 
we provide the optimal strategies fed to SLIP. The feature constitution 
of all exemplars is given underneath each taxonomy. An index for 
these abstract features is also provided.

Table 6d: Variations of strategy length determines basic-levelness.

Level
Source Model H - 2 H  -1 H ighest (H)

Hoffm ann & 
Z iessler, 

Hier. I

O bservation -700 ms ~500 ms -500 ms

Possession 1 1 3
U til i ty 0.25 0.375 0.375

Compression 2277 bits 2759 bits
Context .878 .896

SLIP 1.6 attem pts 1.6 attem pts

4.3 D i s j u n c t io n s  a n d  m ix tu r e s

We do not believe that there are m any-if any at a ll-na tu ra l 

categories which have disjunctive strategies (see also Smith & M edin, 

1981). However, some artefact concepts are clearly disjunctive (e.g., a 

strike in baseball is either a called, or a swinging strike), and several 

basic-level experiments have examined disjunctive categories.

4.3.1 S im ple disjunctions

Figure 14 illustrates the Hierarchy II of Hoffmann and Ziessler 

(1983). They used the 16 objects from their Hierarchy I. At the m iddle 

level, the objects were defined by an interior shape; at the bottom level, 

by the conjunction of a bottom edge and an interior shape; and, at the 

top level, by the disjunction of two interior shapes.  Two exemplars 

varying on non diagnostic internal texture belonged to each low-level 

category. The results (see RT in Table 6e) revealed that m id-level
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categories were accessed fastest, with high- and low-level categories 

equally slow (see also Corter, Gluck & Bower, 1988, for a replication 

using categories of artificial diseases and conceptual features).
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Hoffmann & Ziessler (1983, Hierarchy II)

S am e as Hoffmann & Ziessler 
(1983, Hierarchy I— see Figure 13)

fu k  tuz 
c& h f& i

duw  pu x  
e& h d & i

acgk
a cg l

achk bfik 
ach l bfil

bfik begk  
bfil beg l

behk ac ik  
beh.1 a c il

a d jk
a d jl

?

Lassaline (1990, Experiment 3, ID)

a lb l c 3 d 4  a 2 b 4 c 2 d l
a lb 2 c 4 d l  a 2 b lc 3 d 2
a lb 3 c ld 2  a2b2c4d3

a 3 b 3 c ld 3  a4b2c4d2
a3 b 4 c2 d 4  a 4 b 3 c ld 3
a 3 b lc 3 d l  a 4 b4c2d4

?

Lassaline (1990, Experiment 3 ,4D)

A B
a l\a 2  a3 \a4

a.2 a3

a lb l c 3 d 4  a 2 b 4 c 2 d l
a lb 2 c 4 d l  a 2 b lc 3 d 2
a lb 3 c ld 2  a2b2c4d3

a 3 b 3 c ld 3  a4b2c4d2
a3 b 4 c2 d 4  a 4 b 3 c ld 3
a 3 b lc 3 d l  a 4 b4c2d4

a = blue 
b = yellow  
c  = red 
d  = green 
e = texture squares 
/ =  so lid  (texture squares) 
g = wavy lines edges 
h = texture lines 
i = wavy (texture lines) 
j  =  straight edges 
k  = texture stripes 
I = thick (texture stripes) 
m - n o  edge 
n  =  texture circles 
o = em pty (texture circles) 
p  =  jagged  edge 
q  =  large 
r  =  small 
s  =  broken edge 
t = continuous edge 
u =  vertical stripes 
v  =  horizontal stripes 
w  = large circles 
x  = sm all circles

Murphy (1991, Experiment 3)

som

tis  m ulvad  la r zim  warn

befgq
a efgr  ah ijs
befg r  bhijs

a h ijt
b h ijt

cklm u
dklm u

cklm v cn opw  
dklm v dn opw

cn opx
dn opx

Figure 14. Taxonomies of all experiments with simple disjunctions. 
From top to bottom: Hoffmann & Ziessler (1983, Hierarchy II);
Lassaline (1990, Experiment 3, ID); Lassaline (1990, Experiment 3, 4D); 
M urphy (1991, Experiment 3). U nderneath the category names, we
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provide the optimal strategies fed to SLIP. The feature constitution of 
all exemplar is giving underneath each taxonomy. When possible, an 
index for these abstract features is also provided.

Table 6e: Simple disjunctions.

Level
Source M odel H - 2 H -1  Highest (H)

Hoffm ann & 
Z iessler, 
H ier. II

O bservation -700 ms
.

-500 ms -7(0 ms

Possession 1 2
U ti l i ty 0.25 0.375

Compression 865 bits 2277 bits
Context .76 9 .960 .0 3

SLIP 3.2 attem pts 1.6 attem pts 3.127 cttempts
Corter, Gluck 

& Bower
O bservation 3,045

■ : j
2,567

= 1 1

Possession 1 2
U til ity 0.25 0.375

Compression Obits 85 bits 0 bits
Context .769 .960 .£53

SLIP 3 attem pts 1.5 attem pts 2.863 attempts
Lassaline, 

Exp. 3, 
1-Dim.

O bservation 1 st 2nd
Possession 1 3

U til ity .259 .157
Compression 119 bits 135 bits

Context .908 .873
SLIP 3.694 attem pts 1.818 atem pts

Lassaline, 
Exp. 3, 
4-Dim.

O bservation 2nd 1st
Possession 9.25 )

U t i l i t y .316 .018
Compression 527 bits 389 bits

Context .944 .9)0
SLIP 3.694 attem pts 1.818 atem pts

M urphy, 
Exp. 3

O bservation 776 ms 688 ms 779ms
Possession 3 2

U t i l i t y 0.719 0.563
Compression

Context
865 bits

*7{ Q * / O J
2277 bits 

.988
356c bits 

.919
SLIP 2 attem pts 1.333 attem pts [2.666 a.tempisj

Lassaline (1990; also reported in Lassaline, Wisniewski, & 

Medin, 1992) constructed a disjunctive, two-level taxonomy using 16 

artificial tools similar to those of Murphy and Smith (1982). Each one 

of the 16 objects was constructed by combining single values cn each of
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four dimensions: outer shape (corresponding to the head of M urphy & 

Smith's tools), texture of a middle rectangle (corresponding to the 

handle of M urphy & Smith's tools), the texture of a small rectangle o n 

the end of the object, and a shape at the end of each object. For each 

subject, Lassaline randomly assigned the values of these dim ensions to 

the letters of the two middle taxonomies of Figure 14. In two 

conditions (One-Dimension and Four-Dimension) of her Experiment 3, 

two-feature disjunctions defined the high level and a single feature 

defined each low-level category. In the One-Dimension condition, the 

features defining the low-level categories were extracted from a single 

dimension; in the Four-Dimension condition, the features defining 

the four low-level categories were extracted from four different 

dimensions (see Table 6e). A verification advantage was found at the 

low-level in the One Dimension condition, but, surprisingly, a 

verification advantage for the high-level was reported in the Four 

Dimensions condition (see Table 6e).

M urphy (1991) used 16 artificial "stamps" of various colours,  

textures, types of edge, and sizes (see Figure 15). His taxonomy was very 

similar to Murphy and Smith's (1982, Experiment 1).
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Figure 15. Sample artificial "stamps" M urphy used in his Experiment 
3. Scanned from Murphy (1991a, Figure 1) and then coloured.

The only difference between the two was that, as Figure 14 shows, 

disjunctions of features defined the higher level categories (i.e., nop = 

blue or yellow, som = red or green).  Table 6e reveals that middle level 

categories were the fastest with the other two being equally slow.

4.3.2 M ixtures o f d isju n ction s and conjunctions

In their Hierarchy III, Hoffmann and Ziessler arranged the 

objects of their Hierarchy I in yet another way. Conjunctions of a shell  

and a bottom edge defined the low-level categories; disjunctions of two 

two-feature conjunctions defined the mid-level; disjunctions of four 

two-feature conjunctions defined the high-level (see Figure 16). In this 

taxonomy, low-level categories were accessed faster than the m id-level, 

itself faster than the low-level (see RT estimations in Table 6f).
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Hoffmann & Ziessler (1983, Hierarchy III)

mip

(b & g)\(a& i)\(b & j)\(a & h )(a& g)\(b& i)\(a& j)\(b& h )

Same as Hoffmann & Ziessler 
(1983, Hierarchy I— see Figure 13)

gam
'a & i)

b u r
a & h

lun zut nub 
b& h b&g

duw pux 
a & i b & j

tuz

behk begk 

behl begl

acik bfik achk

achl
acgk

acgl

bfik adjk  

b fil ad jl

Lassaline (1990, Experiment 1)

c2\d2a l ib i

d O & (a l\c l)  c 0 & (b l\d l)  d0&(a2\c2) c0&(b2\d2)

a lb lc ld O

albOcldO
albOcOdO

aOblcldO

a lb lc O d l

aOblcOdO
aOblcOdl

albOcOdl

Lassaline (1990, Experiment 2)

[b l& ( a l \c O ) ] \ [ c l& (a l \b l) ]  [b2& (a2\c0)]\[c2& (a2 \b0)l

b l& (a l\c 0 ) c l& ( a l \b l )  b2&(a2\c0) c2&(a2\b0)

a2b lc2

a2b0c2
a0b0c2

a lb lc 2

a lb lc O
a2b lc0

a lb 2 c l a2b2cl 

a lb O c l a2b2c0 
aObOcl a lb2c0

Figure 16. Taxonomies of all experiments with mixtures of 
disjunctions and conjunctions. From top to bottom: Hoffmann & 
Ziessler (1983, Hierarchy III); Lassaline (1990, Experiment 1); Lassaline 
(1990, Experiment 2). U nderneath the category names, we provide the 
optimal strategies fed to SLIP. The feature constitution of all exem plar 
is giving underneath each taxonomy. When possible, an index for 
these abstract features is also provided.
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The taxonomy of Lassaline (1990, Experiment 1) is shown in  

Figure 16. Two-feature disjunctions defined categories at the high 

level, and a conjunction of a feature with a disjunction of features 

defined the low level. In these conditions, the higher level was 

accessed faster (see Table 6f). Figure 16 also illustrates the taxonomy of 

Lassaline's (1990) Experiment 2. A conjunction of a feature with a 

disjunction of features defined the low level. A disjunction of two 

such strategies defined the high-level. Low-level categories were faster 

to verify (see Table 6f).

Table 6f: Mixtures of disjunctions and conjunctions.

Level
Source M odel H - 2 H  - 1

Hoffm ann & 
Z iessler, 
Hier. Ill

O bservation -700 ms -1050 ms

Possession 3 0 3
U t i l i t y 0.25 0.125 0

Compression 865 bits 2 bits -22 bits
Context .974 .898

SLIP 3.2 attem pts 4.727 attem pts
Lassaline, 

Exp. 1
Observation 2nd 1 st

Possession 3
U t i l i t y .127 .238

Compression 1359 bits 1479 bits
Context .878 .924

SLIP 4.574 attem pts 3.225 attem pts
L assaline, 

Exp. 2
O bservation 1 st 2nd

Possession 2 2
U t i l i t y .209 .119

Compression 380 bits 106 bits
Context .870 .719

SLIP 3.909 attem pts 5.273 attem pts

4.4  C o m p a r iso n  o f  th e  m o d e ls  w it h  r e sp e c t  to  th e  

p u b l is h e d  e x p e r im e n ts

We have now reviewed the main experiments on the basic- 

level, emphasising which factor of SLIP varied in each one of them . 

We now apply the models reviewed earlier (including SLIP) to the task
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of predicting the pattern of time to access the categories. Before tu rn ing  

to the results of these simulations, it is im portant to specify the 

parameters we used for each of these models: In SLIP, parameters were 

set to S = .5 and to a  = .05. Having said this SLIP is rather insensitive to 

changes of S (as S increases, all the average num ber of attempts needed 

to complete a strategy increase proportionally) and a  only comes in to  

play with disjunctive strategies (a decrease in a  increases the time to 

complete disjunctions relative to conjunctions). Jones's category 

feature-possession comprises a single free parameter. Following Jones 

(1983), we set it to 1, but changing this parameter does not m uch affect 

category feature-possession. Medin and Schaffer's (1978) context m odel 

also has a single dissimilarity param eter which we set to .3, following 

Estes (1995).

Overall, SLIP predicted 74% of the experimental results, w inn ing  

the competition. Second best was Jones's category feature-possession 

with 63%, then came Corter and Gluck's category utility with 61%, 

Medin and Schaffer's (modified by Estes) context model with 45%, and 

Pothos and Chater's compression measure with 38% (see Table 7). 

Monte-Carlo simulations revealed that neither the com pression 

measure (p < .29, ns.), nor the context model (p < .06, ns.) perform  

significantly better than the chance model (i.e., the chance m odel 

randomly selects the ranks of the levels within each experiment); all 

the other basic-levelness measures significantly outperform  the chance 

model (i.e., in the worst case p < .001).

Table 7: Percentage of nom inal data from 21 published basic-level 
experiments explained by feature-possession (Jones, 1983), category 
utility (Corter & Gluck, 1992), compression (Pothos & Chater, 1998a), 
context model (Medin & Schaffer, 1978; Estes, 1994), and SLIP. The 
internal practicability, simple conjunction, and mean scores flanked by 
a star are significantly above chance levels (p < .02).
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Strategy
length

Internal
practicability

Sim ple
conjunction

Mixture Mean

Possession 33% 72% * 46% 57% 63% *
U tility 100% 49% * 69% * 100% 61% *

Compression 67% 28% 31% 100% 38%
Context 67% 36% 38% 100% 45%

SLIP 100% 74% * 54% 100% 74% *

It is instructive to examine the models specifically for their 

predictions with respect to variations of feature internal practicability, 

strategy length, simple conjunction, and mixture experiments. Table 7 

summarises the breakdown. For experiments involving only 

variations of redundancy, the predictions of each model m irror its 

overall scores. SLIP scores a 74%, followed by category feature- 

possession with 72%, then by category utility with 49%, then by context 

model with 36%, and trailed by compression with 28%. Monte Carlo 

simulations have shown that SLIP (p < .001), category feature- 

possession (p < .001), and category utility (p < .019) significantly 

outperform the chance model. For the only experiment invo lv ing  

variations of strategy length, SLIP and category utility both explain 

100% of the data, followed by compression and context model w ith  

67%, and by feature-possession with 33%. Due to the scarcity of data, n o 

Monte Carlo sim ulation was performed here. For the sim ple 

conjunction experiments, category utility is first with a score of 69%, 

then SLIP with 54%, feature-possession with 46%, context model w ith  

38%, and finally compression with 31% of data predicted. Monte Carlo 

simulations have shown that only category utility significantly 

outperforms the chance model (p < .011). For the mixture experim ents, 

all models explained 100% of the data except category feature- 

possession which explained 57%. Again, due to the scarcity of data, no  

Monte Carlo simulation was performed here.
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In sum, we have compared the predictions of SLIP w ith those of 

other models of speed of access to categories using data draw n from 21 

classic basic level experiments. It appears that SLIP did the best job w ith  

an overall prediction score of 74%.

4.4.1 Further predictions of SLIP

SLIP also makes new predictions which go beyond those possible 

in other models of basic-levelness. For example, it predicts positive 

linear relationships between strategy length and RTs and negative 

linear relationships between redundancy and RT. U nfortunately, 

Hoffmann & Ziessler (1983, Hierarchy I) used two different strategy 

lengths, and a line can always pass perfectly through two points. For 

redundancy, however, using all published three-plus-level taxonom ies, 

the mean correlation is r = -.851 (r varies between -1.000 and -.666; 3/11 

achieved significance at the p < .05 level). This is a high fit, considering 

the difficulty involved in evaluating the exact num ber of redundan t 

features subjects used (Schyns, Goldstone & Thibault, 1997).

4.5 A cautionary note about coding

Even though coding is critical for numerical sim ulations, it is 

hardly ever discussed. This short section is m eant as a coding "case 

study". We will compare Corter and Gluck's (1992) widely used coding 

of M urphy and Smith's (1982, Experiment 1) artificial tools with ou r 

own. This comparison will highlight two coding rules of thum b that 

we have used throughout this dissertation.

M urphy and Smith described their category structure as follows: 

"[I]f one considers hand tools to consist of a handle, a shaft and a head 

then each of the [four] basic tools were designed to be distinct from the 

others in each part [....] [We coded this as three obvious 

d im ensions-handle, shaft, and head-th a t can take four values each (or
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12 features).] To form the superordinates, the ham m er and the brick 

were grouped together to produce [...] pounders, while the knife and 

pizza cutter were grouped together to form [...] cutters. [We coded this 

as one dimension-h/pe of tool-with two values (or two features).] Each 

of the four basic tools was differentiated into two subordinates in the 

following ways: (1) the ham m er had a wide or narrow head; (2) the 

brick had a single or a two-part handle; (3) the pizza cutter had a long 

or a short shaft [...]; and (4) the knife's edge was serrated or straight. 

[This was coded as one dim ension -part modif ier- that can take eight 

values or, alternatively, as eight features.]" (p. 3). We should add that 

each subordinate category contained two artificial tools: a large one and 

a small one. Thus, we coded each of M urphy and Smith's artificial 

tools by a set of values on six dimensions (or by 24 binary features).

Corter and Gluck coded them by a vector of values on four 

dimensions: handle (single brick handle, two-part brick handle,

hammer handle, pizza cutter handle,  and knife handle), shaft (long 

pizza cutter, short pizza cutter, brick, ham m er ,  or knife shaft), head  

(wide ham m er ,  narrow ham m er ,  brick, pizza cutter, serrated kn i fe  

edge, or straight knife edge head), and size (large or small). This 

corresponds to 19 binary features.

Figure 17 illustrates the resulting taxonomies, and Table 8 shows 

that Corter and Gluck's coding makes the predictions of SLIP, the 

context model, and compression fit better the observations, but that it 

makes no difference for the other models.
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a = pounder
b = cutter
c -  hammer head
d  = hammer shaft
e = hammer handle
f  = brick head
g *  brick shaft
h = brick handle
i = knife head
j  = knife shaft
k = biife handle
I a  pizza cutter head
m = pizza cutter shaft
n = pizza cutter handle
o a  wide hammer head
p  = narrow hammer head
q = one-part brick handle
r = two-part brick harutle
s = straight knife edge com
t = serrated knife edge
u a  shon pizza cutter shaft 0
v a  long pizza cutter shaft 
w a  large acdeow
x  a  small acdeox

Our Coding of Murphy & Smith, 1982, Experiment 1 

hob

tis mulvad lar warn

blmnvw
blmnvx

acdepw afghqw 
acdepx afghqx

afghrw bijksw 
afghrx bijksx

bijktw blmnuw 
bijktx blmnux

d  = hammer shaft 
e -  hammer handle 
f  = brick head 
g = brick shaft 
j  = knife shaft 
k  = knife handle 
I = pizza cutter head 
n = pizza cutter handle 
o = wide hammer head 
p -  narrow hammer head 
q  = one-part brick handle 
r = two-pan brick handle 
s = straight knife edge 
t = serrated knife edge 
u = shon pizza cutter shaft 
v = long pizza cutter shaft 
w = large 
x = small

Corter & Gluck’s Coding of Murphy & Smith, 1982, Experiment 1

som
ijk\ln

vad lar zim warn 
r  s

tis mul

deow
deox

depw fgqw
depx fgqx

fg™
fg rx

jksw
jksx

bijktw Inuw 
bijktx Inux

Invw
Invx

Figure 17. Taxonomies resulting from Corter & Gluck's as well as our 
coding of M urphy & Smith's (1982, Experiment 1) artificial tools. 
Underneath the category names, we provide the optimal strategies fed 
to SLIP. The feature constitution of all exemplars is given underneath  
each taxonomy. When possible, an index for these abstract features is 
also provided.

Table 8: Numerical simulations for Corter and Gluck's and our coding 
of M urphy and Smith's (1982, Experiment 1) artificial tools.
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M odel Coding
Level

lower m iddle H ig h e r
O bservation 723 ms 678 ms

Possession Our 3 3
C orter & 
Gluck's

2 2

U t i l i t y Our 0.453 0.725 0.688
C orter & 
Gluck's

0.30 0.47 0.31

Compression Our [ 865 bits 2277 bits 3569 bits
C orter & 
Gluck's

865 bits 2277 bits 1437 bits

Context Our I .769 .988 .993
Corter & 
Gluck's

.769 .960 .926

SLIP Our 1.667 attem pts 1.25 attem pts 1.667 attem pts
Corter & 
Gluck's

1.6 attem pts

There are two differences between these codings: (1) we used

three basic part dimensions: head (e.g., hammer head), shaft, and

handle, as well as one subordinate part dimension: part mod i f ie r  (e.g., 

wide and narrow hammer heads), whereas Corter and Gluck 

integrated the modified parts in the head (e.g., wide h a m m e r  and 

narrow hammer heads), shaft, and handle  dimensions; and (2) we 

used a superordinate type of tool dimension, whereas Corter and Gluck 

did not.

Our first rule of thumb is:

Use the intended category feature-structure,  within reason.

It happens that we discussed points (1) and (2) with M urphy (1998), and 

he assured us that the intended coding was the one we use, not the one 

used by Corter and Gluck.

But is (1) reasonable? We believe that it is the only reasonable 

choice. Let us go back to the hammer example. For Corter and Gluck, 

narrow hammer head is just as dissimilar to wide hammer head as it is 

to say pizza cutter head. Even though hammers can have two h ea d s -a

136



narrow and a wide one-these hammer heads are much more similar to 

each other than they are to the brick, the pizza cutter, and the kn i fe  

heads. We acknowledge this by having a hammer head value in a 

head dimension as well as wide and narrow hammer head values in a 

part modifier dimension.

As for (2) (i.e., using a superordinate type of tool dim ension, 

unlike Corter and Gluck), it is less clear that it is the only reasonable 

choice. It could be argued-as we suspect Corter and Gluck as well as 

many others w ould-that cutter and pounder  are not values on a 

perceptual dimension but that the superordinate "pounder" and 

"cutter" categories can only be accessed through some kind of sem antic 

process after the recognition of the tools at the entry point of 

recognition, i.e. "ham m er", "knife", "brick", and "pizza cutter" (see 3.4 

Part-based accounts). After having recognised an object as a "ham m er" 

(on the basis of its value on the handle, shaft, or head dimension), for 

instance, one could come to the semantic  realisation that all ham m ers 

are pounders, and, hence, verify that the object is, in fact, a "pounder". 

This brings us to our second rule of thumb:

Assume that what is available to people is used by them. 

W ithout a doubt, M urphy and Smith's participants could have 

extracted a perceptual type of tool dimension to define "cutter" and 

"pounder". For example, thickness: pounders are thick and cutters are 

thin. Similarly Gibson (1986) has argued that affordances (what a thing 

affords another thing; here: what cutters and pounders afford hum an s 

is cutting and pounding)  are picked up directly in the world. We thus 

stick with (2).
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Chapter 5. Empirical tests of SLIP

The following sections further examine the empirical validity of 

the two constraints of SLIP. So far, experiments on the basic level have 

been mainly motivated by empirical considerations instead of a 

rigorous model. As pointed out earlier, strategy length has never been 

tested as such. In Hoffmann and Ziessler (1983, Hierarchy I), strategy 

length is confounded with level of abstraction: the most inclusive

level has the shortest strategy, and the least inclusive level has the 

longest strategy. A similar problem affects feature redundancy. Even 

though we showed earlier that many basic level experiments changed 

feature redundancy, no systematic study of this factor has been carried 

out. The-second-first-third-and-fourth model (i.e., a model that 

predicts that the highest level will have the second greatest basic­

levelness, the second highest, the greatest, the third highest, the th ird  

greatest, and the fourth highest, the fourth greatest) accounts for 53% of 

all published data (cf. 38% for compression). A Monte Carlo sim ulation  

revealed that this model outperforms the chance model (p < .008). This 

shows that the published data set is biased. This is particularly 

important in differentiating between the models' behaviour because, as 

we have mentioned earlier, most basic-levelness measures have a bias 

for higher levels of categorisation (see Chapter 4).

Another problem of the reviewed experiments concerns their 

stimuli. One must achieve balance between control and ecological 

validity (e.g., Hum phrey & Bruce, 1989; Bruce & Green, 1990). W e 

have seen examples of the worst of both worlds here: On the one hand, 

the basic-level experiments that used artificial objects had excellent 

control but very poor ecological validity (e.g., Hoffmann & Ziessler's,
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1982, PacMan ghosts; and M urphy's, 1991, stamps); on the other hand, 

the experiments that used natural objets had good ecological validity 

but very poor control (e.g., Rosch et al., 1976; Tanaka and Taylor, 1991).

The following experiments have been designed to overcom e 

these shortcomings. All of them excepting one used com puter- 

synthesised artificial 3D objects or artificial scenes to tightly control 

feature composition and preserve ecological validity. The first five 

experiments examine the two constraints of SLIP in verification. 

Experiment 1 isolates the effect of strategy length on basic-levelness, 

Experiments 2A and 2B test the effect of feature redundancy (or in ternal 

practicability), and Experiment 3 examines the interactions between the 

two factors. Experiment 4 examines more precisely the predictions of 

SLIP concerning strategy length. The last four experiments study the 

two computational constraints in naming. Experiment 5A isolates the 

effect of strategy length, and Experiment 5B that of in ternal 

practicability. Experiment 6 takes a look at the time course of length 1 

and 2 strategy completion. Finally, Experiment 7 examines the effect of 

robustness (i.e., the idea that an approximate categorisation is better 

than none) on the order of feature test in length 2 strategies.

5.1 Introduction to Experiments 1-417

The following four experiments were largely influenced by 

M urphy & Smith's (1982, Experiment 1). You will remember that their 

participants were initially taught the top artificial taxonomy of Figure 7. 

In a later testing phase, participants were shown a category nam e 

followed by an artificial tool similar to the ones in Figure 8. Subjects'

17 Experiments 1, 2A, and 3 w ill appear in Gosselin and Schyns (in press), and 

Experiment 4 has appeared in Gosselin and Schyns (1998a).
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task was to verify as quickly as possible whether the name and stim ulus 

matched.

5.2 Experiment 1

In SLIP, strategy length is the minimum num ber of required tests 

on features to access a category. Experiment 1 isolates this factor and 

examines how a variation of strategy length at different levels of a 

hierarchy influences their basic-levelness. As pointed out earlier, 

strategy length was shown to influence basic-levelness in H offm ann 

and Ziessler (1983, Hierarchy I). However, this experiment did no t 

dissociate strategy length from level of abstraction. That is, the highest 

level categories had the shortest strategy and the lowest level the 

longest. To overcome this problem, we designed an experiment w hich 

dissociates level of categorisation and speed of access. In the 

HIGH_FAST taxonomy, shorter strategies access the high-level 

categories faster. In LOW_FAST, the opposite applies: shorter

strategies access the low-level categories faster. In both conditions, the 

longer strategies arose from overlap between the attributes (geons, 

Biederman, 1987) of categories. SLIP predicts that shorter strategies are 

completed faster, irrespective of categorisation levels. That is, a faster 

access to the high-level of HIGH_FAST, and to the low-level of 

LOW_FAST.

5.2.1 Method

5.2.1.1 Participants

Twenty University of Glasgow students with normal or corrected 

to normal vision were paid to participate in the experiment.
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5.2.1.2 Stim uli

Stimuli were computer-synthesised chains of four geons sim ilar 

to those of Tarr, Bulthoff, Zabinski and Blaz (1997). We designed the 

stimuli with the Form Z three-dim ensional modelling software on a 

Macintosh computer. Five geons (i.e., Biederman's geometric elem ents) 

defined the categories of the HIGH_FAST taxonomy. One different 

geon defined each one of three high-level categories. Each one of six 

possible low-level categories was further specified by one of the two 

remaining geons. The top taxonomy of Figure 18 illustrates this.

Experiment 1, HIGH_FAST

a = wedge 
b = sphere

hob mulZimd = cube 
e = cylinder 
f  = macaroni 
g = fa t cube 
h = slim cylinder 
i = trumpet 
j  = magnet 
k = fa t cylinder 
I = slim cube 
m = hook 
n = pyramid

rel
a&d

com vad 
b&e c&d

pirn nop 
a&e b&d c&e

befg cdfg 
fgbe fgcd

aefg bdfg 
fgae fgbd

Experiment 1, LOW_FAST

hob
a&f

mul
b&f

zim
a&b

Same as Experiment I, 
HIGH-FAST

com vadrel pirn nop

afhg abig 
hgaf igab

abjg bfeg 
jgab egbf

afdg
dgaf

Figure 18. Taxonomies of Experiments 1, HIGH_FAST and 
LOW_FAST. Only strategy length was m anipulated here. U nderneath  
the category names, we provide the optimal strategies fed to SLIP. The 
feature constitution of all exemplars is given underneath each 
taxonomy. An index for these abstract features is also provided.

141



In this taxonomy, strategy length equals 1 for the higher-level 

categories. This means that only one feature needs to be tested to access 

categories at this level. Strategy length equals 2 at the lower-levels, 

because these categorisations require two feature tests18. The overlap of 

features across lower-level categories produced the longer conjunctive 

strategies.

To create the experimental stimuli, we substituted the letters in  

Figure 18 with their corresponding geometric elements. To these two 

geons, we added two supplementary geons that served as fillers. Fillers 

were identical across objects and so could not be used to distinguish 

them. We created two exemplars per low-level category by changing 

the location of the diagnostic geons in the chain (see Figure 19 for 

examples).

18 Note that participants could have used two-term disjunctions instead of two-term  

conjunctions for high-level categories in the bottom taxonomy of Figure 18. For exam ple, 

Strat'(X, hob) = d \h  is extensively equivalent to Strat(X, hob) = a&f. To avoid this, we 

instructed participants to use solely the learned strategies during the experiment.

142



Figure 19. Sample computer-synthesised objects used in Experiment 1, 
HIGH_FAST (one exemplar per low-level category).

Nine geons defined the LOW_FAST taxonomy. A unique 

combination of two geons (sampled from a set of three) defined each 

one of three top-level categories (see Figure 18, bottom taxonomy). 

High-level strategies had length 2 because a combination of two geons 

defined categories at this level. A unique diagnostic geon further 

specified the categories at the low level. However low-level categories 

had length 1 strategies because a single feature test on a diagnostic geon 

determined membership. Figure 8 shows the LOW_FAST taxonomy. 

We added one filler to generate six four-geon chains. From these, we 

created two exemplars per category (see Figure 18, bottom taxonomy).

5.2.12.1 A note on these two taxonomies

There is one important difference between the two taxonomies of

Figure 18: in the bottom one, the high- and low-level strategies are

independent (e.g., Strat(X, rel) = [{"does X possess d?"}] is independent

of Strat(X, hob) = [{"does X possess a?"} & {does X possess/?"}]) but in
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the top one they are not (e.g., Strat(X, rel) = [{"does X possess a?"}] is 

included in Strat(X, hob) = [{"does X possess a?"} & {does X possess 

d?"}]). It is impossible by the definition of a hierarchy for low-level 

strategies to be included in high-level ones. However, we can easily 

make high-level strategies independent of low-level ones (see Figure 

20). We chose not to here because we believe that overlap is a crucial 

property of real-world strategies. For example, to identify your blue 

Porsche 911 in a parking lot also comprising a blue Toyota Tercel and a 

lime Porsche 911, you m ust examine both the colour and the shape of 

the cars; whereas to identify any Porsche 911 in this same parking lot, 

only the shape of the cars has to be examined.

mulhob zim

com vad 
g&i e&f

rel
d&e

pirn nop 
g&h d&f h&i

Figure 20. An alternative to the Experiments 1, HIGH_FAST, 
taxonomy. Here the high- and low-level strategies are independent.

5.2.1.3 Procedure

The procedure closely followed that of M urphy and Smith (1982). 

In a learning phase, participants were evenly split between the learning 

of the HIGH_FAST and LOW_FAST taxonomies. We were no t 

interested in strategy learning; we were interested in how people use 

known strategies. We thus instructed participants to learn the nam es 

and the defining geon(s) of nine categories (see the specific names and 

corresponding geon combinations in Figure 18). Participants saw their
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taxonomy on a sheet of paper; this learning phase was not constrained 

in time.

We tested participants knowledge of the taxonomy by asking 

them to list the features associated with each category name. Criterion 

was reached when participants could list twice in a row, w ithout any 

mistake, the attributes defining each category. Corrective feedback was 

provided.

W hen subjects knew the taxonomy, a category verification task 

measured categorisation time at each level. The experiment was ran  

with the SuperLab software on a Macintosh PowerPC 7200. Each trial 

began with the presentation of a category name. Subjects pressed one 

keyboard key to see the list of all learned definitions on the screen (each 

definition corresponded to a set of geons per category). Participants had 

to identify the list corresponding to the previously shown category 

name. This ensured that subjects had accessed the category 

representations. SLIP is a theory about how strategies are matched to 

distal objects, not about strategy remembrance. After a 200 ms delay, an 

object appeared on the screen. Subjects had to decide as fast as they 

possibly could whether or not the named category and object m atched 

by pressing the "yes" or "no" computer keyboard keys. We recorded 

response latencies. Note that low-level categories are more num erous 

than high-level categories. We normalised the num ber of positive and 

negative trials with the constraint of equating the num ber of trials per 

level.

5.2.2 Results and discussion

We performed the analysis of RTs on the correct positive trials 

(error rate = 6.5%) that were within two standard deviations from the 

means (an additional 4.9% of the responses were discarded). Table 9
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reports the mean RTs at the low- and high-levels for the two 

taxonomies tested (see Observation in Table 9).

Table 9: Mean RTs and standard deviations (between brackets) for the 
positive trials of Experiment 1 as well as predictions for feature- 
possession (Jones, 1983), category utility (Corter & Gluck, 1992), 
compression (Pothos & Chater, 1998a), context model (Medin & 
Schaffer, 1978; Estes, 1994), and SLIP. For each taxonomy, the greyshade 
indicates the order of predicted or of observed basic-levelness, with the 
lightest being the greatest.

M odel
Level

Lowest H ig h es t
Exp. 1, 

HIGH_FAST
O bservation 1,256 ms [405] 896 ms [323]

Possession 2 3
U ti l i ty .195 .222

Compression

£>O

30 bits
Context .769 .625

SLIP 6.4 attem pts 3.2 attem pts
Exp. 1, 

LOW _FAST
O bservation 948 ms [258] 1,240 ms [305]

Possession 1 3
U ti l i ty .25 .333

Compression 0 bit 30 bits
Context .769 .783

SLIP 3.2 attem pts 6.4 attem pts

A two-way (GROUP x STRATEGY LENGTH) ANOVA of the RTs 

with repeated measures on one factor (STRATEGY LENGTH) revealed 

a main effect of STRATEGY LENGTH, F(1, 18) = 77.08, p < .0001, (m ean 

length 1 strategies = 922 ms verification time [standard deviation = 291 

ms]; mean length 2 strategies = 1248 ms verification time [standard 

deviation = 355 ms]), meaning that participants systematically verified 

length 1 strategies faster than length 2 strategies, irrespective of the 

considered level (low vs. high) (e.g., Keppel, 1991). All participants 

verified the categories associated with length 1 strategies faster. N either 

the interaction between GROUP and STRATEGY LENGTH, F(l, 18) = 

.84, ns, nor the main GROUP effect, F(l, 18) = .02, ns, were significant.
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The error rate was low overall and not correlated with RT (r = -.17, ns), 

ruling out a speed-accuracy trade-off.

Remember that SLIP predicts that length 1 strategies should be 

completed faster than length 2 strategies, irrespective of categorisation 

level (see SLIP in Table 9 for numerical predictions). The data reported 

here confirms that strategy length, rather than categorisation level, 

determines the basic-levelness of a category.

5.2.2.1 About generalisation

Experiments with complex computer-synthesised objects rather 

than, say, ASCII characters, often use a fixed set of objects (although see 

Cutzu & Edelman, 1998). In our case, this means that all participants 

learned the exact same strategies and that these strategies were applied 

to the exact same objects. Is our data nonetheless generalisable to other 

sets of features and objects?

To minimise any prima facie bias, we have selected 15 geons 

about equally distant on Biederman's four geon d im ensions19 (i.e., the 

mean num ber of different dimension values is 2.21 with a standard 

deviation of 0.39). These dimensions have been shown to be rather 

independent and equally salient in a large num ber of experiments (see 

Biederman, 1987, 1990; Biederman & Gerhardstein, 1993).

Moreover, Experiment 1, LOW_FAST has been replicated in  

Experiment 3, SL_DOWN, with a different set of geons; and 

Experiment 1, HIGH_FAST by part of Experiment 4 w ith objects

19 These four geon dimensions are: stra ight vs. curved axis; stra ight vs. curved cross- 

section; sides: parallel (constant cross-section), diverging, expanding, contracting (as a 

lemon or an American football), and converging and diverging  (as a bow-tie); ends (for 

non-parallel-sided geons): truncated (straight), pointed ('L' vertex at end), and convex 

rounded (Biederman, 1998).
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defined by colour, texture, and shape. This does suggests that our 

results are not stimuli-set effects.

5.3 Experiment 2A

Practicability refers to the ease with which features identify a 

category at any level of a taxonomy. A category has high practicability 

whenever many of its defining features are uniquely diagnostic of this 

category, and it has low practicability when a single feature defines the 

category. If this factor influences the basic-levelness of a category, then  

it should apply equally to all levels of a taxonomy.

In Experiment 2A, all strategies had length 1 but the high and 

low levels differed in practicability. In the HIGH_FAST condition, 

high-level strategies had greater practicability than low-level strategies. 

The opposite applied to the LOW_FAST condition, with low-level 

strategies having higher practicability. SLIP predicts that categories w ith  

higher practicability will be verified faster, irrespective of their level in  

the taxonomy.

5.3.1 Method

5.3.1.1 Participants

Twenty students from University of Glasgow with norm al or 

corrected vision were paid to participate in the experiment.

5.3.1.2 Stim uli

Stimuli were similar to those of Experiment 1: four-geon chains

synthesised with the Form Z three-dimensional modelling software on

a Macintosh computer. The HIGH_FAST condition used 10 diagnostic

geons. Three different geons defined each one of two high-level

categories; one different geon further defined each low-level category

(see Figure 21, top taxonomy). We generated two exemplars per
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category by changing the location (either rightmost or leftmost of the 

chain) of the three geons defining the high-level categories.

Experiment 2, HIGH_FAST

a = wedge
b = sphere
c = cone
d  = cube
e = cylinder
f  = macaroni
g = fa t cube
h = slim cylinder
i = trumpet
j  = magnet

relk = fa t cylinder
I = slim cube a
m = hook
n = pyramid adfg

dfga

dfg

pirn nop 
c b

cdfg beil 
dfgc eilb

com

Experiment 2, LOW_FAST

Same as Experiment 2, 
HIGH.FAST

rel
dfg

pun nop 
chm eil

com

adfg
dfga

achm beil 
chma eilb

bjkn
jknb

Figure 21. Taxonomies of Experiments 2, HIGH_FAST and 
LOW_FAST. Only internal practicability (redundancy) was 
m anipulated here. Underneath the category names, we provide the 
optimal strategies fed to SLIP. The feature constitution of all exemplars 
is given underneath each taxonomy. An index for these abstract 
features is also provided.

The LOW_FAST taxonomy comprised fourteen diagnostic 

geons. A single diagnostic geon defined each one of two high-level 

categories, and three different geons further defined each one of four
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low-level categories. As before, we created two category exemplars by 

changing the location (either far right or far left of the object) of the 

triplets defining the low-level categories. Practicability is greater for 

high-level categories in HIGH_FAST and for the low-level categories 

in LOW_FAST. These levels have more unique features associated 

w ith them.

5.3.1.3 Procedure

The procedure followed in all respects that of Experiment 1: 

Participants were randomly assigned to the HIGH_FAST and 

LOW_FAST conditions. They were taught their respective taxonom y 

before entering a verification task where wTe measured speed of access 

to the two levels of categorisation. The experiment was ran w ith the 

SuperLab software on a Macintosh PowerPC 7200. Each one of 280 trials 

consisted in the initial presentation of a category name followed by an 

object. Participants had to decide as fast as they possibly could w hether 

the two matched, and we recorded response latencies.

5.3.2 Results and discussion

We analysed only the correct positive trials RTs (error rate = 

5.4%) within two standard deviations from the means (an additional 

2.4% of the responses were discarded). Table 10 shows the mean RTs at 

the low and high-levels for HIGH_FAST and LOW_FAST.

A two-way (GROUP x PRACTICABILITY) ANOVA on the RTs 

with repeated measures on one factor (PRACTICABILITY) revealed a 

significant GROUP x PRACTICABILITY interaction, F(l, 18) = 5.53, p < 

.05, as well as two significant simple effects: GROUP(HIGH_FAST) by 

LEVEL, F(l, 18) = 61.50, p < .001 (only one subject responded faster for 

the high-level categories, p < .011-e.g., Siegel, 1956), and

GROUP(LOW_FAST) by LEVEL, F(l, 18) = 67.20, p < .001 (two subjects
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responded faster for the high-level categories, p < .055). The error rate 

was low overall and not correlated with RTs (r = .05, ns), ruling out a 

speed-accuracy trade-off explanation.

Table 10: Mean RTs and standard deviations (between brackets) for the 
positive trials of experiment 2 as well as predictions for feature- 
possession (Jones, 1983), category utility (Corter & Gluck, 1992), 
compression (Pothos & Chater, 1998a), context model (Medin & 
Schaffer, 1978; Estes, 1994), and SLIP. For each taxonomy, the greyshade 
indicates the order of predicted or of observed basic-levelness, with the 
lightest being the greatest.

M odel
Level

Lowest H ig h es t
Exp. 2, 

HIGH_FAST
O bservation 788 ms [2651 660 ms [284]

Possession 1 3
U ti l i ty .375 .500

Compression 0 bit 5 bits
Context .769 .988

SLIP 3.2 attem pts 2.286 attem pts
Exp. 2, 

LOW _FAST
O bservation 740 ms [227] 774 ms [292]

Possession 3 2
U til ity .624 .500

Compression 0 bit 5 bits
Context .974 .984

SLIP 2.286 attem pts 3.2 attem pts

In sum, SLIP predicted that strategies with greater practicability 

should yield faster categorisation decisions, irrespective of 

categorisation level (see SLIP in Table 10 for numerical predictions). 

The results of Experiment 2 confirmed the prediction.

5.4  E x p e r im e n t 2B

Experiment 2A suffers from the same generalisation lim itation 

as Experiment 1. Experiment 2B was designed to overcome this. It 

replicates Experiment 2A using randomly generated letter strings 

instead of 3D computer-synthesised objects. In other words, ecological 

validity is sacrificed for control. Just to refresh your memory: All
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strategies had length 1 but the high and low levels differed in  

practicability. In the HIGH_FAST condition, high-level strategies had  

greater practicability than low-level strategies; the opposite applied to 

the LOW_FAST condition, with low-level strategies having h igher 

practicability. SLIP predicts that categories with higher practicability 

will be verified faster, irrespective of their level in the taxonomy.

5.4.1 Method

5.4.1.1 Participants

Twenty four students from University of Glasgow with no rm al 

or corrected vision were paid to participate in the experiment.

5.4.1.2 Stim uli

Stimuli were 10-letter strings. The HIGH_FAST condition used 

10 diagnostic letters. A three-letter sub-string defined each one of two 

high-level categories; and a one-letter sub-string further defined each 

low-level category. This is illustrated in the top taxonomy of Figure 21 

(see 5.3 Experiment 2A). However, here "what you see is what you 

get": each letter represents itself or, at least, another letter. For each 

subject, the diagnostic letters were randomly selected. Each one of eight 

10-letter templates was created by putting this three-letter sub-string 

randomly at one of the eight possible positions inside the 10-letter 

string and then by putting the one-letter sub-string at any rem ain ing  

position except at the extremities (this ensured that the num ber of 

configurations was the same for three-letter and one-letter sub-strings). 

The other positions in the 10-letter strings were filled w ith  

nondiagnostic letters (there are 16 of those here) randomly selected. 

For example, kam nopqdfg and sxmdfgqayk are two possible rels- a n d  

hobs-in the top taxonomy of Figure 21.
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The LOW_FAST condition involved fourteen diagnostic letters. 

A one-letter sub-string defined each one of two high-level categories, 

and three-letter sub-strings further defined each one of four low-level 

categories (see bottom taxonomy of Figure 21). As in the HIGH_FAST 

condition, each exemplar was generated by placing a three-letter sub­

string randomly at one of the eight possible locations inside the 10- 

letter string and then by randomly putting an appropriate one-letter 

sub-string at any remaining position except at the endings. Random ly 

selected nondiagnostic letter fillers (there are 12 of those) occupied the 

10-letter string template's empty slots.

Practicability is greater for high-level categories in the 

HIGH_FAST condition and for the low-level categories in the 

LOW_FAST condition because more unique features are associated 

with the top- and bottom-level categories, respectively. SLIP predicts a 

faster verification performance for categories with higher practicability 

(high in HIGH_FAST and low in LOW_FAST) irrespective of the level 

of the taxonomy considered.

5.4.1.3 Procedure

This experiment was controlled by a Silicon Graphics Com puter 

running a home-made C program. The procedure followed that of 

Experiments 1 and 2A closely: Participants were random ly assigned to 

the HIGH_FAST and LOW_FAST conditions. They were taught their 

respective taxonomy before being measured on the categorisation 

speeds of its levels. Each one of 280 trials consisted of the in itial 

presentation of a category name followed by an 10-letter string. 

Participants had to decide as fast as they possibly could w hether the two 

matched and we recorded response latencies.
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5.4.2 R esults and d iscu ssion

We analysed only the correct positive trials RTs (error rate = 

8.5%) within two standard deviations from the means (an additional 

4.2% of the responses were discarded). Table 11 shows the mean RTs at 

the low and high-levels for the HIGH_FAST and for the LOW_FAST 

taxonomies.

Table 11: Mean RTs and standard deviations (between brackets) for the 
positive trials of Experiment 2B as well as predictions for feature- 
possession (Jones, 1983), category utility (Corter & Gluck, 1992), 
compression (Pothos & Chater, 1998a), context model (Medin & 
Schaffer, 1978; Estes, 1994), and SLIP. For each taxonomy, the greyshade 
indicates the order of Predicted or of observed basic-levelness, with the 
lightest being the greatest.

M odel
Level

Lowest H ig h est
Exp. 2, 

HIGH_FAST
O bservation 1113 ms [341] 1034 ms [324]

Possession 1 9
U t i l i ty .375 .500

Compression Obit 5 bits
Context .769 .988

SLIP 14.225 11.641
Exp. 2, 

LOW _FAST
O bservation 867 ms [144] 949 ms [164]

Possession 3 y

U til i ty .624 .500
Compression 0 bit 5 bits

Context .974 .984
SLIP 11.641 14.225

A two-way (GROUP x PRACTICABILITY) ANOVA on the RTs 

with repeated measures on one factor (PRACTICABILITY) revealed a 

main effect of practicability, F(l, 22) = 21.21, p < .001 (mean verification 

time = 950 ms for high practicability strategies [standard deviation = 234 

ms]; 1031 ms for low practicability strategies [standard deviation = 253 

ms]). Out of 24 participants, only 6 did not respond faster to the greater 

practicability categories; a sign test showed that this is significant, p < 

.0114. Neither the GROUP x PRACTICABILITY interaction, F(l, 22) =
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.01, ns, nor the main GROUP effect, F(l, 22) = 2.51, ns, was significant. 

The error rate was low overall and was positively correlated with RT (r 

= .53, p < .001), ruling out a speed-accuracy trade-off.

In sum, Experiment 2B replicated Experiment 2A. This lends 

further support to our conclusion that internal practicability (and no t 

accidental characteristics of a stimuli set) drives verification time.

5.5 Experiment 3

Experiments 1, 2A, and 2B revealed that the two determ inants of 

SLIP (strategy length and internal practicability) can independently  

determine the basic-levelness of any level of a taxonomy. Experiment 3 

explores how these two factors interact to determine perform ance. 

There are many possible interactions to investigate and we will no t 

investigate them all. Instead, we will examine three scenarios that 

change the fastest level by modifying either strategy length or in ternal 

practicability.

EQUAL will be our neutral scenario. Strategies at the high and 

low-levels have an equal length of 1 and the same constant 

practicability. SLIP predicts that categorisation speeds should be equal 

across levels. In the SL_DOWN scenario, we will produce faster 

categorisations at the lower level by augmenting the length of the 

strategies that access the high-level categories. This scenario uses 

Experiment 1, LOW_FAST, taxonomy with a different set of geons. In 

the IP_UP scenario, we will keep the difference of strategy length just 

discussed, but the high-level will now be fastest because the 

practicability of the low level will be decreased. In sum starting from  

an EQUAL access to two levels of a taxonomy, a change of strategy 

length in SL_DOWN produces faster categorisations at the low level. 

From this SL_DOWN taxonomy, a decrease in the in ternal
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practicability of the low level in IP_UP produces faster categorisation at 

the high level.

5.5.1 Method

5.5.1.1 Participants

Thirty students from University of Glasgow with norm al or 

corrected vision were paid to participate in the experiment.

5.5.1.2 Stim uli

Stimuli were similar to those of experiments 1 and 2A: geon 

chains designed with the Form Z 3D-object modelling software. N ine 

diagnostic geons entered the composition of categories in the EQUAL, 

SL_DOWN, and IP_UP conditions. In EQUAL, one geon defined each 

one of the nine categories of the taxonomy (see the top taxonomy of 

Figure 22).
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Experiment 3, EQUAL

a = wedge 
b = sphere 
c = cone 
d = cube 
e = cylinder 
f -  macaroni 
g = fat cube 
h = slim cylinder 
i = trumpet 
j = magnet 
k = fat cylinder 
I = slim cube 
m = hook 
n = pyramid

pim nop com vad 
i n

tis
j

fdklmb fdklme cdklma cdklmi gdklmn gdklmj

Experiment 3, SL_DOWN

zim
c&d

Same as Experiment 3, 
EQUAL

pim nop com vad 
i n

dfklmb dfklme cdklma cdklmi cfklmn cfklmj

Experiment 3, IP_UP

Same as Experiment 3, 
EQUAL

zim
C&d

rel pim nop com vad tis
b e a i n j

dfklmb dfklme cdklma cdklmi cfklmn cfklmj
dfklbm dfklem cdklam cdklim cfklnm cfkljm
dfkblm dfkelm cdkalm cdkilm cfknlm cfkjlm
dfbklm dfeklm cdaklm cdiklm cfnklm cfjklm
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Figure 22. Taxonomies of Experiment 3, EQUAL, SL_DOWN, and 
IP_UP (from top to bottom). Strategy length and internal practicability 
interacts here. Underneath the category names, we provide the 
optimal strategies fed to SLIP. The feature constitution of all exemplars 
is given underneath each taxonomy. An index for these abstract 
features is also provided.

To this defining geon, we added four fillers to form six six-geon chains 

(see Figure 23). We placed the geons defining the high-level categories 

at the far left of the chains, and those defining the low-level categories 

at the far right (see the top taxonomy of Figure 22).

Figure 23. Computer-synthesised objects used in Experiment 3, 
EQUAL.

In SL_DOWN, a unique combination of two geons defined each 

top-level category. The addition of one different geon further specified 

each lower-level category. We produced six six-geon chains by adding 

three fillers. We placed the geon pairs defining the high-level 

categories at the far left of the chains, and those defining the low-level 

categories at the far right (see the middle taxonomy of Figure 22). These 

chains also served to construct the exemplars of IP_UP. Here, we 

generated four exemplars per category by changing only the location in 

the chain of the single geon defining the low-level categories (one of
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the four rightmost positions in the six-geon chains-see the bottom  

taxonomy of Figure 22).

5.5.1.3 Procedure

The procedure was identical to that of Experiments 1 and 2A. 

Participants were randomly assigned to one of three conditions 

(EQUAL, SL_DOWN, and IP_UP). Following a learning of their 

taxonomy, participants performed 240 verification trials. The 

experiment was run with the SuperLab software on a M acintosh 

PowerPC 7200. Each trial consisted in the presentation of a category 

name followed by an object. Participants had to decide whether these 

matched and we measured response latencies.

5.5.2 R esu lts and d iscu ssion

We performed the analysis of RTs on the positive, correct trials 

(error rate = 2.3%) that were within two standard deviations from the 

means (4.6% of the trials were discarded). Table 12 shows the m ean  

RTs. A two-way (GROUP x LEVEL) ANOVA with repeated m easures 

on LEVEL revealed a significant interaction between GROUP and 

LEVEL, F(2, 27) = 11.85, p < .001, and two significant simple effects of 

GROUP(SL_DOWN) by LEVEL, F(l, 27) = 10.58, p < .003 (only one 

subject responded faster for the high-level categories, p < .011), 

GROUP(IP_UP) by LEVEL, F(l, 27) = 13.09, p < .001 (two subjects 

verified the low-level categories faster, p < .066). The last main effect is 

not significant: GROUP(EQUAL) by LEVEL, F(l, 27) = .04, ns. The error 

rate was low overall and was positively correlated with RT (r = .31, p < 

.05), ruling out a speed-accuracy trade-off.

SLIP predicted all the results observed in Experiment 3 (see SLIP 

in Table 12 for numerical predictions). Participants categorised equally 

fast at both levels in EQUAL. Increasing the strategy length of the
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higher level in SL_DOWN induced faster categorisations of the lower 

level. Note that Experiment 3, SL_DOWN, replicated Experiment 1, 

LOW_FAST, with a different set of geons. Diminishing practicability at 

the lower level in IP_UP then made the high level faster. The two 

computational factors of SLIP predicted speed of categorisation in these 

taxonomies.

Table 12: Mean RTs and standard deviations (between brackets) for the 
positive trials of Experiment 3 as well as predictions for feature- 
possession (Jones, 1983), category utility (Corter & Gluck, 1992), 
compression (Pothos & Chater, 1998a), context model (Medin & 
Schaffer, 1978; Estes, 1994), and SLIP. For each taxonomy, the greyshade 
indicates the order of predicted or of observed basic-levelness, with the 
lightest being the greatest.

Level
Model Lowest H ig h est

Exp. 3, O bservation 672 ms [212] 680 ms [225]
EQUAL Possession 1 5

U ti l ity .176 .260
Compression Obit 30 bits

Context .769 .783
SLIP 1.714 attem pts 1.714 attem pts

Exp. 3, O bservation 920 ms [295] 1,058 ms [374]
SL_D OW N Possession 1 5

U ti l i ty O C A .333
Compression Obit 30 bits

Context .769 .783
SLIP 1.714 attem pts 3.429 attem pts

Exp. 3, O bservation 928 ms [576] 775 ms [506]
IP_UP Possession 1 5

U ti l ity .250 .333
Compression Obit 30 bits

Context .769 .783
SLIP 6.857 attem pts 3.429 attem pts
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5.6 Experiment 420

You will remember that when internal practicability is constant 

SLIP reduces to a Pascal density function with a mean equal to strategy 

length divided by this constant internal practicability (see section 2.3.2 

The Pascal density fu n c t io n ). Put otherwise: SLIP predicts a positive 

linear relationship between strategy length and RTs. Unfortunately all 

basic-level experiments examining the effect of strategy length on basic­

levelness have used only two strategy length values (Hoffmann & 

Ziessler, 1983; our Experiment 1), and a line can always pass perfectly 

through two points. Experiment 4 was designed primarily to test this 

prediction. Participants learned the category structure of Figure 24. In 

this category hierarchy, membership to different levels requires 

optimal strategies of different lengths: length 1 for high-level

categories, length 2 for mid-level categories, and length 3 for low-level 

categories. Note also that the cardinality of the sets of redundant tests 

of these strategies is equal to 1 at all level. SLIP predicts that no m atter 

what type of feature (i.e., geon, colour, or texture) is used the diagnostic 

structure of the categories will determine the basic level.

Another goal of Experiment 4 was to replicate Experiment 1, 

HIGH_FAST, with a three-level taxonomy (rather than two) and 

objects varying on three dimensions (rather than objects composed of 

features).

5.6.1 Method

5.6.1.1 Participants

Thirty students from University of Glasgow with norm al or 

corrected vision were paid to participate in this experiment.

20 Experiment 4 was published in Gosselin and Schyns (1998a).
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5.6.1.2 Stim uli

Our eight stimuli (see Figure 25) filled the whole space defined 

by three binary dimensions: geon (G) (either cylinder or pyramid),

colour (C) (either red or green), and texture (T) (either smooth or 

rough). One binary dimension was added at every categorisation level 

of the category hierarchy of Figure 24. Objects were constructed w ith  

the Form Z three-dim ensional modelling software on a M acintosh 

computer.

Forty-eight items were constructed. An item consisted of the 

presentation of a category name followed by an object. They were 

generated with the constraints that their num ber across levels of 

categorisation had to be equal, and that their num ber across categories 

at a given level of categorisation had to be equal. Moreover, the 

num ber of positive items (i.e., items for which participants had to 

respond "yes") was equal to the num ber of negative items (i.e., item s 

for which participants had to respond "no") for any given category.

5.6.1.3 D esign

The addition of binary dimensions at levels of categorisation was 

counterbalanced across participants using a Latin square to ensure that 

each binary dimension was added to the higher, middle, and lower 

levels of categorisation equally often. Thus, our three experim ental 

conditions were: CTG, GCT, and TGC (the first, second, and third 

binary dimensions correspond to the higher, middle, and lower levels 

of categorisation, respectively).

5.6.1.4 Procedure

The procedure of this experiment followed closely that of 

M urphy (1991). The experiment was controlled by a Silicon Graphics 

computer running a home-made computer program  written in C.
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The experiment was divided into three phases: a learning phase, 

a test of learning phase, and a critical phase.

During the learning phase, participants had to learn the 

nonsense names of 14 categories, as well as their defining feature(s). 

For example, a participant from the CTG condition might have had to 

learn-am ong other things-that a "hob" was green, rough,  and 

cylindrical, that a "zim" was green and rough, and that a "tis" was 

green. The nonsense names were randomly assigned to categories for 

each participant.

Participants were given their categories' defining feature 

hierarchy on a sheet of paper (see Figure 24). (Most participants took 

about one hour to finish the learning phase.)

h o b so m

a  -  red  (o r  sm o o th  o r  co n e )  

b  =  g reen  (o r  rough  o r  p y ra m id )  

c  =  sm o o th  (o r  c o n e  o r  red)  

d  =  rough  (o r  p y r a m id  o r  g reen )  

e  = co n e  (o r  re d  o r  c o n e )  

f  = p y r a m id  (o r  green  o r  p y ra m id )

b o t
a & c

nm
a & d

ti s  m u l f a c
b & c & f  b & d & e  b & d & f

v a d  la r  
a & c & f  a & d & e

w arnc o m
a & c & e

z im
a & d & f  b & c & e

a c f  a d e a d f  b e e b e f  b d ea c e

Figure 24. Taxonomies of Experiment 4, CTG, TGC, and GCT. Only 
strategy length varies here. U nderneath the category names, we 
provide the optimal strategies fed to SLIP. The feature constitution of 
all exemplars is given underneath each taxonomy. An index for these 
abstract features is also provided.
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Figure 25. All computer-synthesised objects used in Experiment 4 w ith 
their three dimensions: C (colour), G (geon), and T (texture).

After participants reported having learned the categories, they 

were given a learning test. The experimenter asked them to give the 

defining features associated with every category name. The order in 

which the category names were given to every participant was 

randomly generated. Participants had to recall-w ithout a single 

m istake-all the defining features of all the categories twice in a row. 

Corrective feedback was given. (Most participants took about ten 

minutes to complete the test of learning phase.)

During the critical phase of the experiment, 48 items were 

presented 5 times to participants. The order of the 48 items were 

randomly generated within each block. An item began with the 

presentation of a category name. Participants had to recall the defining 

feature(s) of the associated category. As soon as they had rem em bered 

the appropriate defining feature(s), they pressed one of two response
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keys, and, 200 ms later, an object was presented to them. They had to 

decide-as fast as they could without making too m any 

m istakes-whether or not it was a member of the shown category by 

pressing on the "yes" key or the "no" key. Participants responded w ith 

their right and left indexes. Half of the participants pressed on the 

"yes" key with the left index. The time it took them to respond was 

recorded. No corrective feedback was provided. (Participants took 

approximately 25 minutes to complete the critical phase.)

5.6.2 R esults and d iscu ssion

We only analysed positive items (50% of the items) correctly 

answered (5.7% of the responses were discarded) and within two 

standard deviations of the mean (an additional 0.05% of the responses 

were rejected). The means of the remaining RTs are shown in Table 13 

by group and level of abtraction.

Table 13: Mean RTs and standard deviations (between brackets) for the 
positive trials of Experiment 4, CTG, GCT, and TGC. For each 
taxonomy, the greyshade indicates the order of predicted or of observed 
basic-levelness, with the lightest being the greatest.

Group Level
Lowest M iddle H ig h est

CTG 13% ms [421} 1169 ms [369] 861 ms [223]
GCT 1323 ms [526] 919 ms [262] 778 ms [242]
TGC 1034 ms [798] 948 ms [658] 818 ms [384]
Mean 1184 m s [582] j 1012 ms [430] 819 ms [283]

We performed a two-factor (GROUP x LEVEL) ANOVA with repeated

measurements on one factor (LEVEL): Neither the interaction between

GROUP and LEVEL, F(4, 54) = 0.89, ns ., nor the main effect GROUP, F(2,

27) = 1.07, ns., was significant. However, the main effect LEVEL was

significant, F(2, 54) = 12.93, p < .0001. A regression test (e.g., Hays, 1988)

on the main effect LEVEL revealed a significant linear component, r =
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.999, F( 1, 87) = 10.31, p < .01, and no significant curvilinear com ponent, 

F( 1, 87) = 0.02, ns.. As predicted by SLIP, irrespective of the type of 

information, there was a positive linear relationship between response 

latencies and strategy length (see Table 14 for numerical predictions). 

The error rate was low overall and was positively correlated with RT (r 

= .28, p < .001), ruling out a speed accuracy trade-off explanation.

Table 14: Mean RTs for the positive trials of Experiment 4, overall, as 
well as predictions for feature-possession (Jones, 1983), category utility 
(Corter & Gluck, 1992), compression (Pothos & Chater, 1998a), context 
model (Medin & Schaffer, 1978; Estes, 1994), and SLIP. For each 
taxonomy, the greyshade indicates the order of predicted or of observed 
basic-levelness, with the lightest being the greatest.

Level
Source M odel H - 2 H - 1 H ighest (H)
Exp. 4, 

O v e ra ll
O bservation 1,184 ms 1,012 ms 819 ms

Possession 1 1 3
Ut i l i t y 0.188 0.25 0.25

Compression 0 bits 73 bits 149 bits
Context .769 .769 .769

SLIP 4.5 attem pts 3 attem pts 1.5 attem pts

5.7 C o m p a r iso n  o f  m o d e ls  o f  b a s ic - le v e ln e s s  w it h  

r e sp e c t  to  E x p e r im e n ts  1 to  4

This completes the presentation of all the verification 

experiments of this dissertation. We will now compare the 

performance of the various basic-level models at predicting the results 

of these experiments.

SLIP predicts all the qualitative results of these experiments. 

Category feature-possession is second best with 63% of the data 

explained, followed by utility and compression with 58%, and trailed by 

the context model with 37% (see Table 15). Monte Carlo sim ulations 

showed that only SLIP significantly outperforms the chance model (p < 

.001).
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Table 15: Percentage of nom inal data from Experiments 1 to 4
explained by feature-possession (Jones, 1983), category utility (Corter & 
Gluck, 1992), compression (Pothos & Chater, 1998a), context m odel 
(Medin & Schaffer, 1978; Estes, 1994), and SLIP. Only the scores flanked 
by a star are significantly above chance level (p < .001).

Strategy
length

Internal
practicability

Mean

Possession 45% 88% 63%
Utility 36% 88% 58%

Compression 55% 63% 58%
Context 18% 63% 37%

SLIP 100% * 100% * 100% *

The decomposition of these global scores into strategy length and 

internal practicability scores is: For the conditions testing only strategy 

length (Experiment 1, HIGH_FAST and LOW_FAST, as well as 

Experiment 3, EQUAL and SL_DOWN, and Experiment 4, Overall), the 

compression measure predicts 55% of the data, category feature- 

possession, 45%, category utility, 36%, and the context model, 18%. 

Again Monte Carlo simulations revealed that only SLIP significantly 

outperforms the chance model (p < .001). This confirms the argum ent 

made earlier that all models have so far neglected strategy length as a 

specific factor of basic level performance. This is a serious problem  

because attributes do overlap between categories in the real-world, and 

so strategy length is an im portant factor of recognition outside the 

laboratory.

For the conditions testing only practicability (Experiment 2, 

HIGH_FAST and LOW.FAST, and Experiment 3, EQUAL and IP_UP), 

category feature-possession and category utility predicts 88% of the data, 

compression measure and context model, 63% (see Table 15). (Note 

that we have included Experiment 3, EQUAL, in the break down into 

strategy length and internal practicability; it is an extreme case of both.) 

Monte Carlo simulations demonstrated that SLIP, category feature-
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possession and category utility significantly outperform  the chance 

model (p < .001). This corroborates our earlier claim regarding category 

feature-possession and category utility taking the internal practicability 

into account.

5.8 Implications for part-based basic-level accounts

You will remember that in most recognition theories objects are 

first identified at the basic level from their parts and then they are 

identified at other levels (e.g., Biederman's, 1987, recognition-by- 

component theory; see Chapter 3). We will say here that these theories 

postulate a strong Hardwired Bias for parts. However, the observed 

correlation between proliferation of parts and basic-levelness (Tversky 

& Hemenway, 1984) could result from a Contingent Diagnosticity o f  

parts for the task. This is what most formal theories of basic-levelness 

predict, including SLIP.

M urphy (1991a, b) tested these two rival hypotheses w ith  

artificial category hierarchies. He found that basic-levelness was a 

function of the structure of information in these taxonomies rather 

than their content-corroborating Contingent Diagnosticity and 

falsifying Hardwired Bias. More specifically, M urphy tried to show that 

parts were neither necessary (parts are necessary if, when a taxonom y 

does not have parts collected at one level, it will not display basic-level 

phenomenon), nor sufficient  (parts are sufficient if, when a taxonom y 

has parts collected at one level, that level will tend to display basic-level 

phenomena) for basic-level performance. He has been criticised for 

having used unnatural objects (Tversky & Hemenway, 1991). Our 

Experiments I, 2A, 3, and 4 used realistic objects and also gave support 

to the Contingent Diagnosticity hypothesis. Experiments 1, 2A, and 3 

showed that parts were not sufficient: their taxonomies all had parts
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collected at all levels and these did not display equal basic-levelness 

(except for Experiment, 3, EQUAL). Experiment 4 showed that parts are 

not necessary: both in the TGC and the CTG taxonomies, levels defined 

by non-part information had the greatest basic-levelness.

5.9 Is basic-levelness really influenced by taxonomies?

An intriguing observation is that we could rewrite this 

dissertation disregarding completely the notion of taxonomy, only 

considering the computational factors of SLIP (this will, in fact, be 

exploited in Experiments 5A and 5B). Features can be redundan t 

within a category and overlapping between categories w ithout the need 

of a hierarchy to be explicitly represented in the memory of the 

categoriser. The categoriser would only need to explicitly represent its 

categories in memory, w ithout an explicit representation of the 

hierarchical dependencies. SLIP would make exactly the same 

predictions, whether or not hierarchical dependencies are explicitly 

represented. This is because the relationship between the 

computational principles of SLIP and taxonomic knowledge is 

asymmetrical: realistic taxonomies could hardly exist w ithout feature 

overlap and redundancy, whereas the principles of SLIP do not im ply 

an explicit representation of taxonomic knowledge. Does the taxonom y 

itself influence performance in real world categorisations? At this 

stage, we do not have the elements of an answer, but it is clear that this 

issue deserves further considerations. It is brought into sharp focus 

when principles of knowledge organisation that subsume hierarchies 

can explain data that are supposed to arise from a hierarchical 

organisation of knowledge.
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5.10 Introduction to Experiments 5A, 5B, and 6

So far we have shown that, in a verification tasks, strategy and 

internal practicability could-alone and together-determ ine basic- 

levelness. But we have stressed in the Preamble and Chapter 1 the 

importance of using m ultiple empirical basic-level indexes of 

performance; basic-levelness is a global measure of performance. The 

main objective of Experiment 5A, 5B, and 6 is to demonstrate that 

SLIP's predictive power extends beyond verification to naming. After 

verification, naming is the most commonly used index of perform ance. 

Experiment 5A and 5B isolates the effect of strategy length and in ternal 

practicability, respectively, whereas Experiment 6 examines the effect of 

strategy length on the time course of categorisation.

5.11 Experiment 5A

You will remember that strategy length is the minimum num ber 

of required tests on features to access a category. Experiment 5A was 

designed to isolates its effect in a two-alternative-forced-choice nam ing 

task. Unlike in Experiment 1, we did not use two two-level taxonom ies 

to dissociate level of abstraction and strategy length; instead we used 

the simplified category structure illustrated in Figure 26. It has n o  

taxonomic organisation: it is made of two partly overlapping categories 

with different strategy lengths. But as we have pointed out above (see 

section 5.9 Is basic-levelness really influenced by taxonomies?),  

taxonomies do not play any particular role in our SLIP fram ework. 

Only strategy length and internal practicability matter.

Very few basic-level experiments have studied nam ing  

performance with artificial taxonomies. The only exceptions are 

M urphy and Smith (1982) and Hoffmann and Ziessler (1982); both used 

naming speed as their basic-levelness measure. Nam ing speed is
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arguably very similar to verification time. A more natural nam ing  

basic-levelness measure is frequency of use (this is Brown's original 

proposal). Experiment 5A estimates both these nam ing indexes of 

performance, and SLIP predicts both of them (see section 5.11.1.4 

Predictions).

5.11.1 Method

5.11.1.1 Subjects

Ten paid University of Glasgow students with norm al or

corrected vision participated in this experiment.

5.11.1.2 Stim uli

Objects were designed with the Form Z three-dim ensional object 

modelling software on a Macintosh computer. We used a total of five 

four-geon sets. The JON  (or BOB) category was defined by the

conjunction of features c and d, and the BOB (or JON) category by the 

unique feature a. One filler was added to all geon sets (i.e., feature b). 

Another filler (i.e., e for half the UNMAM B.SLl and UNMAMB_SL2 

conditions, and /  for the remaining) was added to each UNAMB geon 

set. Furthermore, half the UNAMB_SL1 sets possessed feature c, and 

the other half feature d (see Figure 26). From each four-geon set, two

exemplars similar to those used in Experiments 1, 2A, and 3 (see

Figures 19 and 23) were extracted. It is im portant to realise that AMB 

objects satisfy both the JON and BOB definitions.
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abed
cdba

(AMB)

abce 
ceba 

;UNAMB_SLla)

abed 
edba 

(UNAMB_SLlb)

ebed 
cdbe

(UNAMB_SL2aX

ebed 
cdbe 

UNAMB_SL2b)

a  = w e d g e  

b  = s p h e r e  

c  = c o n e  

d  = c u b e  

e  = t r u m p e t

Figure 26. Only strategy length (SL) varies in Experiment 5A. In the 
dark boxes, underneath the category names, we provide the optim al 
strategies fed to SLIP. In the light boxes, we give the feature structures 
of the exemplars of the different experimental conditions 
(UNAMBiguous and AMBiguous). An index for these abstract features 
is also provided.

5.11.1.3 P rocedure

During a learning session, participants were shown the defining 

features of BOBs and of JON  s. Half the participants learned to associate 

the length 1 strategy with the name "BOB" and the length 2 strategy 

with "JON"; half learned the other associations. We verified that 

subjects had correctly learned the categories by asking them to give the 

defining features of JO N s and BOBs.

The experiment ran on a Macintosh 7500 PowerPC and used the 

SuperLab experiment software.

Participants were instructed that during the testing phase, they 

would sometimes be presented unambiguous JON  s (either
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UNAMB_SL2, or UNAMB_SL1) and BOBs (either UNAMB_SL1, or 

UNAMB_SL2) and sometimes ambiguous objects (AMB). For the 

unambiguous objects, their task was to name them as quickly as 

possible without making too many mistakes. For the critical 

ambiguous objects, their task was to give the first name that poped to 

their m ind (note that mistakes are impossible in this case). Subjects 

responded by pressing one of two keys on the computer.

Subjects were submitted to a total of 120 UNAMB items (each 

individual exemplar was presented 15 times), half of which were BOBs; 

they were also submitted to just as many AMB items. The w hole 

experiment lasted less than 30 minutes.

5.11.1.4 Predictions

In the last chapters we have given several examples of how to 

compute speed of access predictions in our framework (the only 

difference between verification and naming being the value of S; see 

section 2.3.4 Naming). All items confounded, SLIP predicts that length 

1 names should be associated with shorter response times than length 2 

strategies. Exact predictions are shown in Table 16.

SLIP also predicts that the names associated with length 1 

strategies will be used 75% of the time for the AMB objects. This 

expected percentage was derived by first computing the in ternal 

practicability of the sets of redundant features: y/ = .375 (i.e., Cj( 1-

S+SRj) = .5*(1-1+1*.75) = .375). Then by applying the scheme described 

in section 2.3.4 N a m in g : i.e., .375 /  [.375 + .375] + {.375 /  [.375 + 

.375]}*{.375 /  [.375 + .375]} = .75.

5.11.2 Results and discussion

Subjects chose the length 1 names 72.5% of the time in AMB 

items (see Table 16). The difference between the subjects' preference for
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length 1 and length 2 categories is significantly different from zero, Z = 

8.091, p < .001 (Hogg & Tanis, 1988). So it appears that length 1 nam es 

are chosen more often than length 2 ones in naming. Furtherm ore, 

the difference between this observed preference for length 1 strategies 

(i.e., 72.5%) and SLIP's prediction (i.e., 75%) is not significantly different 

from zero, Z = 0.632, ns. This supports SLIP's predictions concerning 

percentage of use.

The mean RTs for length 1 and length 2 names-AMB and 

UNAMB conditions confounded-are 814 ms and 1056 ms, respectively 

(see Table 16). The difference between these two mean latencies is 

significant, f(10) = 1.90, p < .029. In fact, nine subjects out of 10 

responded faster in SL1 than SL2 cases, p < .011. As predicted by SLIP, it 

thus takes less time to name a category associated with a length 1 

strategy than one associated with a length 2 strategy.

Table 16: Percentage of times the name associated with the sm allest 
strategy length was chosen in the ambiguous cases with standard 
deviations (between brackets) and speed of access of all correct cases 
confounded with standard deviations (between brackets) as well as 
predictions for feature-possession (Jones, 1983), category utility (Corter 
& Gluck, 1992), and SLIP. The greyshade indicates the order of 
predicted or of observed basic-levelness, with the lightest being the 
greatest.

M odel M easure Strategy Length
1 2

O bservation Preference 73% [32%] 27% [32%]
RT 814 ms [426] 1055 ms [550]

Possession Preference 2 3
RT idem Idem

U til i ty Preference .053 .717
RT Idem idem

Compression Preference 7 7

RT idem Idem
Context Preference 7 7

RT idem idem
SLIP Preference 75% 25%

RT 2.667 attem pts 5.333 attem pts
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In the UNAMB cases, subjects made significantly more errors for 

length 2 categories (26.6%) than for length 1 categories (2.8%), Z = 3.542, 

p < .00121. This is consistent with the results of Experiments 1 and 4 

that both revealed positive correlations between strategy length and 

errors.

The data reported here confirms again that strategy length 

determines the basic-levelness of a category.

5.12 Experiment 5B

You will remember that internal practicability, the second 

determinant of SLIP, refers to the ease with which feature sets identify a 

category. A category has high practicability whenever many of its 

defining features are uniquely diagnostic of this category. Experim ent 

5B was designed to isolate internal practicability in a two-alternative- 

forced-choice naming task. Instead of a full-blown taxonomy, we used 

two partly overlapping categories with different practicabilities (see 

Figure 27).

5.12.1 Method

5.12.1.1 Subjects

Ten paid University of Glasgow students w ith norm al or 

corrected vision participated in this experiment.

5.12.1.2 Stim uli

The objects were designed with the Form Z three-dim ensional 

object modelling software on a Macintosh computer. We used a total

21 The experiment-wise error level can be computed using the following formula: 

‘ - n o  -« ,.) ,  where i spans all individual error levels. Thus the overall error is equal 

to 1 - [(1 - .001) * (1 - .029) * (1 - .001) * (1 - .001)] = .042 in Experiment 5A.
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of three four-geon sets. The JON  (or BOB) category was defined by the 

redundant set of features b, c, and d, and the BOB (or /ON) category by 

feature a. One filler was added to the UNAMB sets (i.e., feature e). The 

UNAMB_IP1 exemplars possessed two more fillers (i.e., /  and g) (see 

Figure 27). Note that the AMB objects satisfy both the JO N  and BOB  

strategies. From these geon sets two examplars similar to those used in 

Experiments 1, 2A, 3, and 5A were extracted.

abed aefg
beda cfga

(AMB) (UNAMB_IP1)

ebed
bede a  =  vv edge

(U N A M B JP3) b  =  macaroni 
c  =  cube 
d  = fa t  cube 
e = cone  
f  =  hook  
g = slim  cylinder

Figure 27. Only internal practicability (IP) varies in Experiment 5B. In 
the dark boxes, underneath the category names, we provide the optim al 
strategies fed to SLIP. In the light boxes, we give the feature structures 
of the exemplars of the different experimental conditions 
(UNAMBiguous and AMBiguous). An index for these abstract features 
is also provided.

5.12.1.3 P rocedure

The procedure was identical to that of Experiment 5a. During a 

learning session, participants were shown the defining features of BOBs 

and of JON  s. This is illustrated in Figure 27. We made sure that the 

subjects knew the definitions.
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The experiment ran on a Macintosh 7500 PowerPC and used the 

SuperLab experiment software.

Participants were instructed that during the testing phase, they 

would sometimes be presented unambiguous JONs  (either 

UNAMB_IP3, or UNAMB_IP1) and BOBs (either U N A M B JPl, or 

UNAMB_IP3) as well as ambiguous objects (AMB). For the UN  AMB 

objects, they would have to name them as quickly as possible w ithou t 

making too many mistakes; for the critical AMB objects, they w ould 

have to give the first name that comes to their mind.

Subjects were presented 80 UNAMB object items (each 

individual exemplar was presented 20 times), half of which were BOBs; 

they were also submitted to just as many AMB items. The w hole 

experiment lasted less than 25 minutes.

5.12.1.4 Predictions

SLIP predicts that length 1 names should be associated w ith  

shorter response times than length 2 strategies all items confounded 

(see Figure 17 for exact predictions).

It also predicts that the names associated with high practicability 

will be used 75% of the time in the AMB items. To derive this 

percentage the categories' internal practicabilities have to be computed: 

the high practicability categories have a y/ = .375 (i.e., Cj(l-S+SRj) = 

.5*(1-1+1*.75) = .375) and the low practicability ones a y/ = .125 (i.e., Cj( 1- 

S+SRj) = .5*(1-1+1*.25) = .125). Then Equation 5 is applied (see 2.3.4

Naming), that is ^ -  = [.375 /  (.125 + .375)] = .75.
2 > ,

i

5.12.2 Results and discussion

For the AMB items, participants chose the most redundan t 

category 76.6% of the time (see Table 17). The difference between their
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preference for the most redundant and least redundant names is 

significantly different from zero, Z = 9.525, p < .001. Thus it seems that 

highly practicable names are used more often than less practicable ones 

in naming. The difference between this observed preference for highly 

practicable strategies (i.e., 76.6%) and SLIP's prediction (i.e., 75%) is no t 

significantly different from zero, Z = 0.330, ns.. This confirms SLIP's 

frequency of use prediction.

The mean RT for more practicable and less practicable nam es, 

AMB and UNAMB conditions confounded, are, respectively, 619 m s 

and 695 ms (see Table 17). The difference between these two m ean  

latencies goes in the expected direction but is not significant, £(10) = 1.44, 

ns.. This is probably due to a large variance in the denom ination data, 

and more subjects would probably reveal a significant difference. In 

fact, nine subjects out of 10 responded faster in IP3 cases than in the IP1 

cases, p < .011. Based on our sign test and the direction of the m eans' 

difference, we conclude with some confidence that it takes less time to 

name a category associated with high practicability than one associated 

with low practicability.
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Table 17: Percentages of times the name associated with the largest 
internal practicability was chosen in the ambiguous cases with standard 
deviations (between brackets) and speed of access of all correct cases 
confounded with standard deviations (between brackets) as well as 
predictions for feature-possession (Jones, 1983), category utility (Corter 
& Gluck, 1992), and SLIP. The greyshade indicates the order of 
predicted or of observed basic-levelness, with the lightest being the 
greatest.

Model Measure In ternal Practicability
3 1

O bservation Preference 77% [16 %] 23% [16 %]
RT 620 ms [285] 695 ms [302]

Possession Preference 4 4
RT idem Idem

U til ity Preference .703 .039
RT Idem idem

Compression Preference ? 7

RT idem Idem
Context Preference 7 7

RT idem idem
SLIP Preference 75% 25%

RT 2.667 attem pts 8 attem pts
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In the unambiguous cases, subjects made few errors (error for 

most redundant items was 2.75% and for least redundant items 1.51%). 

The difference between theses values is not significant, Z = 0.710, ns..

The data reported here confirms once more that in ternal 

practicability can determine the basic-levelness of a category.

5.13 Experiment 6

We have shown repeatedly now that strategy length determ ines 

basic-levelness. We have done so in verification tasks (Experiments 1, 

3, SL_DOWN, and 4) as well as in naming (Experiment 5A). H ow ever, 

all these experiments looked at final products of categorisation, i.e. 

category speed of access or frequency of use. SLIP authorises a m ore 

precise study of the time course of categorisation. Experiment 6 was 

designed to investigate this. We looked at what happens when the  

visual input is available for processing for various durations in a 

two/four-alternative-forced-choice naming task. A cue appearing 

before the scene to be named indicated which level of categorisation to 

use: when it was "low" participants had to choose between two nam es, 

when it was "high" they had to choose between four.

We constructed four stimuli by combining two different 

luminance patterns (that we call flat and hilly) w ith two different 

chromatic patterns (labelled grassy and sandy). Subjects learned to 

categorise these scenes in a two-level taxonomy (see Figure 28). At the 

general level, they learned to separate the four scenes into "flat" and 

"hilly", on the basis of luminance cues. At a specific level, they learned 

to categorise the stimuli as either "field" (the combination of f lat  and 

grassy), "desert" (flat and sandy), "m ountain" (hilly and grassy), or 

"dune" (hilly and sandy).
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high-level

field

low-level
&

pmb-

desert mounta in

Figure 28. The four scenes used in this experiment and the 
corresponding general ("flat" and "hilly") and specific-level category 
names ("field", "m ountain", "desert", and "dune") learned by all 
participants.

Suppose that the field picture is briefly presented on the screen, 

immediately followed by a mask. Subjects can make two types of 

responses at the general level: correctly respond "flat" (0 error, high)

and respond "hilly" rather than "flat" (1 error, high), implying a 

misperception of the luminance information (see top of Figure 29). At 

the specific-level participants can make three types of response: (1)

correctly respond "field" (0 error, low), respond "dune", implying a 

misperception of both the flat luminance and the green chromaticity of 

the field (2 errors, low), and (3) respond "m ountain" (or "desert"), 

implying a misperception of only the flat luminance (or the colour 

information) (1 error, low) (see bottom of Figure 29).

1 8  1



X
0 error, high 1 error, hiizh

*

x x
0  error, low I error, low  2 errors, low

Figure 29. An illustration of the analysis of categorisation responses 
when a field is required to be named either at the high or low-level of 
abstraction.

5.13.1 T im e-course pred iction s

SLIP makes explicit predictions concerning how often each type 

of these responses just reviewed should occur throughout time. For 

the general-level identifications there is a single way to make an error 

(1 error, high): no feature test has been successfully completed and the 

category has been guessed incorrectly. The probability of the latter is .5 

because there are two high-level categories; and the probability that no 

feature has not been completed is one minus the probability that it has. 

Now, the probability that one feature test has been successfully 

completed at attempt t or before is given by the cumulative form of
, i - n

Equation 4 (see Chapter 2), i.e. ^  A(l -  ys) y/n with n = 1. Let us call this
i=n

Cumulative distribution for Strategies of Length 1, csll (by extension:
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csl2, csl3, ..., and csln). It follows that the predicted distribution of 1 

error, high, is .5 * (1 - csll).

A no mistake verdict at the general-level (0 error, high) can 

result from two independent events: (1) the relevant feature test is 

completed and (2) the relevant feature test is not completed but a 

correct guess is made. The probability of (1) is given by csll as we have 

seen. As for the probability of (2), it is equal to that of 1 error, h igh 

because the probability of making a correct guess is the same as the 

probability of making a wrong guess. Thus, distribution of 0 error, 

high, is csll + .5 * (1 - csll) = 1.5 * csll + .5.

Let us now turn to low-level categorisation time course. Two 

errors, low, can only be due to having completed no relevant feature 

test and having guessed them all incorrectly. The probability of this last 

event is .25 because there are four low-level categories. And the 

distribution of no successful feature test for length 2 strategies is one 

minus the distribution of two completed feature tests m inus the 

distribution of one-but not two-completed feature test, i.e., [1 - csl2 - 

(csll - csl2)] = (1 - csll). So the distribution of 2 errors, low, is .25 * (1 - 

csll). There are two ways a 1 error, low, can occur: either no feature 

test is completed (1 - csll) and one dimension is correctly guessed (.5), or 

one feature test is completed but not two (csll - csl2) and the other 

feature is wrongly guessed (.5). Thus the distribution of 1 error, low, is 

given by .5 * (1 - csll) + .5 * (csll - csl2) = .5 * (1 - csl2). Finally, three 

routes can lead one to make a correct low-level categorisation: (1) one 

could have completed the two diagnostic feature tests (csll), (2) one 

could have completed one feature test, but not two, (csll - csll) and 

have guessed the other one correctly (.5), and (3) one could have 

completed no relevant feature test (1 - csll) and have guessed both 

features correctly (.25). So SLIP predicts the following distribution of 0
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error, low: csl2 + .5 * (csll - csl2) + .25 * (1 - csll) = .5 * csl2 + .25 * csll + 

.25.

5.13.2 Method

5.13.2.1 Participants

Twenty University of Glasgow students with normal or corrected 

vision were paid to participate in the experiment.

5.13.2.2 Stimuli

We synthesised four distinct 450 x 350 pixels (spanning 7 per 5.4 deg) 

stim uli-a field, a desert, a m ountain, and a dune-w ith  the Photoshop 

image processing software by combining two luminance patterns w ith  

two chromatic patterns. The luminance patterns were extracted from a 

field (called flat here) and a dune (hilly here) photographs from the 

Corel Draw Photo Database; they were normalised for size and ho rizon  

level. The chrominance patterns were composed of two coloured 

rectangles corresponding roughly to the ground and the sky. The sky 

was the same blue, and the ground either green (called grassy) or yellow 

(called sandy). To eliminate the sharp boundary edge between the two 

coloured rectangles, we low-passed the patterns. A mask was created by 

randomly assigning to each square of a 18 x 14 grid the content of the 

corresponding region of one of the four scenes (e.g., Breitmeyer, 1989).

5.13.2.3 Procedure

The experiment ran on a Macintosh Power PC 7200 using a 

home-made program written with the Psychophysics Toolbox for 

MatLab (Brainard & Pelli, 1998). The subjects learned the name of the 

four stimuli at the specific level of a taxonomy: "field," "m ountain ," 

"desert" and "dune"; and also learned to categorise the stimuli at a
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general taxonomic level into "flat" vs. "hilly," on the basis of 

luminance cues (see Figure 28).

A learning block was completed when participants had nam ed 

consecutively-and without m istake-all scenes at the high and at the 

low levels of categorisation (4 scenes x 2 levels of abstraction = 8 trials 

m inim um ). W ithin one learning block, trials followed each other in  

random  order. A trial began with the display of the word "high" or 

"low," instructing subjects of the level at which the subsequent scene 

had to be named. Subjects then pressed a key to display the scene to 

categorise (presented on the screen for 1 s) immediately followed by a 

450 ms mask. Subjects indicated their categorisation using one of six 

response keys (two for the general level, four for the specific level) 

before moving on to the next trial. Corrective feedback was provided.

When participants reached criterion (all subjects reached 

criterion after having been exposed to the minimum num ber of items), 

they were transferred to a testing phase including trials differing in two 

ways from those described above: First, presentation time varied being 

either 15, 30, 45, 60, or 75 ms. Half of the 600 test trials (4 scenes x 2 

levels x 5 presentation times x 15 repetitions presented in a random  

order) started with the "low" cue and the other half with the "high" 

cue. Second, no corrective feedback was given.

5.13.3 Results and discussion

Figure 30 shows the effect of presentation time on the average 

proportion of responses with standard deviations. At 15 ms exposure, 

performance is near chance. We bestfitted linearly the predictions 

derived from the section 5.13.1 Time-course predictions equations w ith  

S = 1 (see solid lines in Figure 30). Overall = .98. A chi-square 

goodness of fit test did not reveal any significant difference between the
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observed and predicted proportions {xlbs(24) = 7.02, ns.) (e.g., Hogg & 

Tanis, 1988).

1

0.8

0.2

0
10 20 30 40 50 60 70 80

Time (ms)

Figure 30. Average percentages of 0 error, and 1 error, high, and 0 error, 
1 error, and 2 errors, low, with standard deviations and SLIP bestfits 
(solid lines).

The other models of basic-levelness cannot make such tim e 

course predictions, at least in their current state. However they can 

predict whether or not the overall speed of access for high-level 

categories (i.e., average speed of access for 0 error, high) will be faster 

than that for the low-level categories (i.e., average speed of access for 0 

error, low). We do not have these speeds of access here, but it can be 

argued that they are inversely related to our average percentages of 0 

error, high and low: The faster the strategy associated with a category
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can be completed, the more often it will be completed in a masked 

situation. On average participants made no error 80% of the time for 

high-level categories and 59% for low-level ones. The difference 

between these averages is significantly different from zero, Z = 37.23, p 

< .001. Table 18 shows the predictions of the various models. (For 

SLIP's predictions, we averaged the points of the bestfitted curves.)

Table 18: Average percentage of correct responses in function of
strategy length as well as predictions by feature-possession (Jones, 1983), 
category utility (Corter & Gluck, 1992), compression (Pothos & Chater, 
1998a), context model (Medin & Schaffer, 1978; Estes, 1994), and SLIP.

Average 0 Error
M odel H ig h Low

Observation 80% 59%
Possession 1 3

U til ity .25 .25
Compression 1.678 3.192

Context .769 .769
SLIP 80% 55
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It is unclear what information exactly is masked in our 

experiment (see Breitmeyer, 1989). Is it the availability of all the visual 

information which is terminated by the appearance of the mask? Or is 

it only the low-level visual attributes which are affected, leaving the 

higher-level visual information relatively unaltered? It would be 

worth replicating this experiment with a categorisation under-pressure 

task (e.g., Lamberts, 1995; McElree, Dolan, and Jacoby, 1999). Here, 

participants learn to respond w ithin 200-300 ms of the onset of an 

auditory cue. Both the duration availability of visual input and that of 

processing is controlled. SLIP predicts the same pattern of errors.

5.14 Comparison of models of basic-levelness with 
respect to Experiments 5A, 5B, and 6

We have presented the three basic-level naming experiments of 

this dissertation which can be used to compare the performance of the 

various basic-level models. We will now proceed with this 

comparison.

SLIP predicts all the nominal data. Category utility follows w ith 

83% (i.e., 5 out of 6) of the data explained, then comes category feature- 

possession with 17% (i.e., 1 out of 6). The context model and the 

compression measure cannot make any prediction for Experiments 5A 

and 5B. In Experiment 6, they explain respectively, 50% (i.e., 1 out of 2) 

and 0% of the data. Due to the scarcity of data, no Monte Carlo 

sim ulation was performed here. This pretty much corroborates our 

previous assessments of the models: SLIP leads the pack, followed by 

the category feature-possession and category utility pair, and trailed by 

the context model and compression measure pair.

The inability of the context model and the compression m easure 

to model Experiments 5A and 5B illustrates a fundam ental difference
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between these two models and the others. The context model requires 

at least two embedded categories-a m inim um  taxonom y-to be applied. 

You will remember that the most inclusive serves as a "standard" for 

the other. And at least two such embedded categories are needed for a 

score comparison. Experiments 5A and 5B each used two partly 

overlapping categories which is insufficient. The com pression 

measure requires at least one partitioning of objects into two 

independent categories to be applied at all. We do not have this in  

Experiments 5A and 5B. And two such partitionings are needed for a 

minimum score comparison. In other words, these two models require 

taxonomies whereas the other models do not. We have discussed the 

implications of this in section 5.9 Is basic-levelness really influenced by 

taxonomies?.

5.15 Experiment 722

A perceptual prediction of SLIP is that strategies specify an order 

of feature testing (see Chapter 2, especially section 2.4 SLIP: a special 

diagnostic recognition model). If this order is respected, then the 

perceptual appearance of the stimulus could change. To illustrate, a rel 

in the top taxonomy of Figure 18 (see Experiment 1) is optimally  

represented either by Strat(X, rel) = [{wedge} & {cube}], or by StratfX, rel) 

= [{cube} & {wedge}]. These two strategies have equal speed of access, 

but the order in which the two features are tested differs. Why w ould 

one adopt the first or the second strategy? In the top taxonomy of 

Figure 18, one strategy (i.e., Strat(X, rel) = [{cube} & {wedge}]) is m ore 

robust in categorisation under time pressure. It is more robust because 

it is more likely to lead to a valid, if approximate, categorisation of the 

input. We know that the input is at least a hob if it has a cube.

22 Experiment 7 was submitted as Gosselin and Schyns (2000).
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Robustness is critical in everyday categorisation: unseen features can be 

inferred on the basis of a categorisation (e.g., Anderson, 1991; Rosch, 

1978). Experiment 7 was designed to investigate this. It stands alone 

among the other experiments presented in this dissertation.

We used the four stimuli synthesised for Experiment 6. A 

learning procedure was devised to induce a different, two-level 

taxonomic knowledge of these four stimuli in two subject groups 

(labelled LUMI and CHRO, see Figure 31). At the high level, LUMI 

subjects learned to separate the four scenes into "flat" and "hilly", on  

the basis of luminance cues, whereas CHRO subjects learned to separate 

the same scenes into "grassy" and "sandy" on the basis of chrom atic 

cues. At the low level, LUMI and CHRO subjects all learned to 

categorise the stimuli as either "field" (the combination of f lat  and 

grassy), "desert" (flat and sandy), "m ountain" (hilly and grassy) or 

"dune" (hilly and sandy). Note that the specific categorisations are 

strictly identical in the two groups. The conjunctive nature of the 

stimuli warrants that the input scene can only be recognised as, e.g. 

"field," when its f lat luminance and its grassy chrominance are 

perceived and integrated.
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luminance

chrominance

0 error 1 error, 1 error, 2 errors 
luminance chrominance

LUMI high-level

CHRO high-level

grassy sandy

Figure 31. At the top, are the four scenes used in this experiment and 
the corresponding specific-level category names learned by all 
participants ("field", "mountain", "desert", and "dune"), surrounded by 
the two general-level categorisations ("flat" and "hilly") LUMI subjects 
learned, and those ("grassy" and "sandy") CHRO subjects learned. At 
the bottom, is an illustration of the analysis of categorisation errors and 
their implications. When a field is presented, the four possible

191



categorisation responses have a different implication for the perception 
of luminance and chromatic information.

This property can be used to ascertain whether subjects are m ore 

sensitive to the dimension defining the high, than the low level of 

their taxonomy, and therefore perceive the scenes according to their 

organisation of knowledge. Suppose that the field picture is briefly 

presented on the screen, immediately followed by a mask. Subjects can 

make four types of errors at the specific level, depending on w hich 

information they misperceive: "dune" implies a misperception of both 

the flat luminance and the green chrominance of the field (henceforth, 

2 errors); "m ountain" implies a misperception of only the flat 

luminance (henceforth, 1 error, luminance), whereas "desert" implies a 

misperception of only the green chrominance (henceforth, 1 error, 

chrominance). (Unfortunately, in Experiment 6, we did not distinguish 

the two types of 1 error responses separately.)

We predicted that the organisation of luminance and chrom atic 

information in the LUMI and CHRO taxonomies would determ ine 

different perceptions of identical stimuli. That is, subjects placed in an 

identical condition of stimulation (e.g. seeing a field) and response 

(choosing between "field," "m ountain," "desert" or "dune") w ould 

produce opposite patterns of categorisation errors (i.e. respond m ore 

often "desert" than "m ountain" in LUMI, but "m ountain" than  

"desert" in CHRO), revealing a differential sensitivity to lum inance 

and chrominance in the groups (see Figure 31). (A similar analysis 

applies to all four stimuli of the experiment.)
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5.15.1 Method

5.15.1.1 Participants

Twenty-four University of Glasgow students with norm al or 

corrected vision were paid to participate in the experiment.

5.15.1.2 Stimuli

We used the quadruplet of artificial scenes of Experiment 6. That 

is, four 450 x 350 pixels (spanning 7 per 5.4 deg) stim uli-a field, a desert, 

a m ountain, and a dune-synthesized with the Photoshop image 

processing software by combining two luminance patterns w ith two 

chromatic patterns (see top half of Figure 31). Our mask was created by 

randomly assigning to each square of a 18 x 14 grid the content of the 

corresponding region of one of the four scenes.

5.15.1.3 Procedure

The procedure was quite similar to the one of Experiment 6. W e 

will nonetheless describe it and emphasize the major differences. The 

experiment ran on a Macintosh Power PC using a program w ritten  

with the Psychophysics Toolbox for MatLab. Two subject groups (called 

LUMI and CHRO) learned the names of the four stimuli at the specific 

level of a taxonomy: "field," "m ountain," "desert" and "dune." LUMI 

subjects also learned to categorise the stimuli at a general taxonom ic 

level into "flat" vs. "hilly," on the basis of luminance cues, whereas 

CHRO subjects learn to categorise the stimuli at a general level in to  

"grassy" vs. "sandy," using chromatic cues (see top half of Figure 31). 

(You will remember that Experiment 6 only had a LUMI subject group.)

A learning block was completed when participants had nam ed 

consecutively-and without m istake-all scenes at the high and at the 

low levels of categorisation (4 scenes * 2 level of abstraction = 8 trials
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m inim um ), with LUMI and CHRO differing only in their high level 

categorisations. W ithin one learning block, trials followed each o ther 

in random order. A trial began with the display of the word "high" or 

"low," instructing subjects of the level at which the subsequent scene 

had to be named. Subjects then pressed a key to display the scene 

which they had to categorise (presented on the screen for 1 s) 

immediately followed by a 450 ms mask. Subjects indicated their 

categorisation using one of six response-keys (two for the high level, 

four for the low level) before moving on to the next trial. Corrective 

feedback was provided.

W hen participants reached criterion (all subjects reached 

criterion after exposition to only four general- as well as four specific- 

levels trials, the m inim um  number), they were transferred to a testing 

phase including trials differing in three ways from those described 

above: First, in order to get the full spectrum of responses, presentation 

time varied, being either 15, 45, 75, 105, 135, 165, or 195 ms. Second, we 

only tested the low-level categorisations. That is, each one of the 700 

test trials (4 scenes x 7 presentation times x 25 repetitions presented in a 

random  order) started with the word "low" (Experiment 6 had "high" 

as well as "low" trials). This ensured that all participants were required 

to perform the exact same categorisations after the brief learning phase. 

Third, no corrective feedback was given.

5.15.2 Results and discussion

Figure 32 shows the evolution of 0 error, 1 error (luminance and 

chrominance, confounded), and 2 error responses for the two groups 

combined. At 15 ms exposure, performance is near chance; it quickly 

rises above chance for longer exposures. We bestfitted linearly the 

predictions derived from the section 5.13.1 Time-course predictions
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equations with S = 1 (see solid lines in Figure 32). Overall = .99. A 

chi-square goodness of fit test did not reveal any significant difference 

between the observed and expected proportions (xlbsi20) = 17.03, ns.). 

This replicates the low-level results of Experiment 6.

l
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0
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Figure 32. Average percent 0 error, 1 error (chromaticity and 
luminance errors confounded), and 2 errors, with standard deviations 
and SLIP bestfits (solid lines).

We predicted-on the basis of the robustness hypothesis-that 

subjects would produce opposite patterns of one-dim ension errors (i.e., 

respond more often "desert" than "m ountain" in LUMI, but 

"m ountain" than "desert" in CHRO), revealing a differential 

sensitivity to luminance and chrominance. This is exactly w hat we 

observed: On average, CHRO subjects made more 1 error responses on

195



luminance (58%) than on chrominance (42%), whereas LUMI subjects 

made more 1 error responses on chrominance (59%) than on  

luminance (41%). Significance tests on the difference score between 1 

error responses on luminance and chrominance were different from  

zero in both groups (CHRO: mean difference = 16%; standard deviation 

= 13%, Z = 4.423, p < .001; LUMI mean difference = 19%; standard 

deviation = 21%, Z = 5.848, p < .001).

It is well established that luminance and colour are two of the 

main dimensions of visual processing (e.g., Livingstone & Hubei, 1988). 

If different categorisation strategies applied to strictly identical scenes, 

in strictly identical conditions of response and stimulus presentation, 

can produce a different order of integration of luminance and 

chromatic cues, then this would constitute strong evidence that 

categorisation strategies can determine perception. In the early days of 

vision research it was commonly thought that knowledge about the 

external world influenced its perception (Bruner & Goodman, 1947; 

Helmholtz, 1856); nowadays discoveries in the study of h u m a n  

knowledge rarely inform vision research, with the two fields drifting 

apart (e.g., Gordon, 1997). Our results could thus have potentially far 

reaching implications.
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Chapter 6. General discussion

This dissertation presented SLIP, a measure of basic-level 

performance that implements two computational constraints on the 

organisation of information in taxonomies: strategy length, the

number of feature tests necessary to place the input in one category, and 

internal practicability, the ease with which these tests can be perform ed. 

We designed SLIP to model category verification. We extended its 

reach to naming, and we discussed how SLIP relates to the other basic- 

levelness correlates (i.e., more features are listed at the basic level than  

at the superordinate level, with only a slight increase at the subordinate 

level; throughout development, basic level names are learned before 

those of other categorisation levels; and basic-levelness seems quite 

universal across domains as well as cultures). We reviewed 21 

published experiments and examined how the two constraints varied 

in each one of them. We further examined strategy length and in ternal 

practicability in nine experiments. We used com puter-synthesised 

artificial 3D objects or artificial scenes to tightly control feature 

composition and preserve ecological validity. The first five 

experiments examined the two constraints of SLIP in verification. 

Experiment 1 isolated the effect of strategy length on basic-levelness, 

Experiments 2A and 2B tested the effect of internal practicability, and 

Experiment 3 examined the interactions between the two factors. 

Experiment 4 verified whether strategy length is linearly related to 

basic-levelness, as predicted by SLIP. The last four experiments studied 

the two computational constraints in naming. Experiment 5A isolated 

the effect of strategy length, and Experiment 5B that of in ternal 

practicability. Experiment 6 looked at the time course of length 1 and 2

197



strategy completion. Finally, Experiment 7 examined the effect of 

robustness (i.e., the idea that an approximate categorisation is better 

than none) on the order of feature test in length 2 strategies.

Throughout, we compared the performance of SLIP at predicting 

basic-level data and that of other models. The comparisons were m ade 

on individual taxonomies or on meaningful collections of them  that is, 

all the published taxonomies, the ones from our verification 

experiments, and the ones from our naming experiments. In the final 

section of this dissertation, we will proceed to an overall assessment of 

the reviewed basic-level models.

6.1 Overall assessment of the basic-level models

To our knowledge, we have examined all the formal models of 

basic-level performance. You will remember that these models are: 

Rosch et al.'s (1976) cue validity model, Tversky's (1977) contrast m odel, 

Jones's (1983) category feature-possession model, Corter and Gluck's 

(1992) category utility model, Fisher's (1986) COBWEB m odel, 

Anderson's (1989, 1990) rational analysis model, Medin and Schaffer's 

(1978; modified by Estes, 1994) context model, and Pothos and Chater's 

(1998, 1999) compression model (see Chapter 3).

We have rejected from further comparisons Rosch et al.'s (1976) 

cue validity model and Tversky's contrast model because they cannot 

predict the classic advantage for an intermediate level; Fisher's (1986) 

COBWEB measure because it is based on Corter and Gluck's category 

utility, and makes roughly the same predictions; and, finally, 

Anderson's (1989, 1990) rational analysis model because it does no t 

provide a metric of basic-levelness. Combining the 21 published 

experiments (see Table 7) with the 11 taxonomies from our 

Experiments 1 to 6 (see Tables 15 to 18), the performance of the four
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rem aining models (i.e., Jones's category feature possession, Corter & 

Gluck's category utility, Medin & Schaffer's context model, and Pothos 

& Chater's compression) at predicting basic-levelness is as follows: It 

appears that SLIP predicts 84% of the data, category utility, 63%, category 

feature-possession, 59%, compression, 57%, and context model, 41% 

(see Table 19 for a summary). Monte-Carlo sim ulations show that the 

context model (p < .31, ns.) does not perform significantly better than a 

chance model (i.e., a model that randomly selects the ranks of the 

levels w ithin each experiment); and that all the other basic-levelness 

measures significantly outperform the chance model (i.e., in the worst 

case p < .01).

Table 19: Percentage of nom inal data from 21 published basic-level 
experiments and of Experiments 1 to 6 explained by feature-possession 
(Jones, 1983), category utility (Corter & Gluck, 1992), com pression 
(Pothos & Chater, 1998a), context model (Medin & Schaffer, 1978; Estes, 
1994), and SLIP. The strategy length, internal practicability, sim ple 
conjunction, mixture, and mean scores flanked by a star are 
significantly above chance (p < .01).

Strategy
length

Internal
practicability

Sim ple
conjunction

Mixture Mean

Possession 32% 74% * 46% 57% 59% *
U tility 54% 61% * 69% * 100% 63% *

Compression 49% 58% * 31% 100% 57% *
Context 30% 36% 38% 100% 41%

SLIP 100% * 81% * 54% 100% 84% *

Once more, it is instructive to examine the models specifically 

for their predictions of variations of feature redundancy and strategy 

length. Table 19 summarises the breakdown (the percentages presented 

here for simple conjunction and mixture experiments are the same as 

those presented in Table 7 in Chapter 4). For all experiments invo lv ing  

only variations of internal practicability, SLIP scores 81%, followed by 

category utility with 74%, then by category feature-possession w ith 61%,
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then by the compression measure with 58%, and trailed by the context 

model with 36%. All these scores are significant (i.e., in the worst case 

p < .01) except that of the context model (p < .44, ns.). The strategy 

length results are more interesting: For all experiments invo lv ing

solely variations of strategy length, SLIP accounted for 100% of the data, 

category utility for 54%, compression for 49%, category feature- 

possession for 32%, and the context model for 30%. Of all these 

percentages, only SLIP's is significantly above chance {p < .001; for the 

next best model, p < .3, ns.). This confirms the argum ent made earlier 

that all models have so far neglected strategy length as a specific factor 

of basic level performance. This is a serious problem because attributes 

do overlap between categories in the real-world: what distinguishes

your cellular phone, your fountain pen, your computer, your house, 

and other everyday objects of yours from those of your neighbours is 

often a conjunction of features (e.g., colour and shape).

To the extent that any model of categorisation im plem ents 

computational constraints (even if these are not well specified), the 

conclusion is that those of SLIP are closest to those underlying the 

speed of access to the categories of a taxonomy. Therefore, if, for 

example, some animal categories are more equal than others (e.g., in  

verification tasks, "dog" is superior to "m am m al" as well as to 

"Doberman"), we would say that this is because these superior an im al 

categories have shorter strategies than the others, or strategies w ith  

greater internal practicability.
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