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Summary

Aromatic amino acids are synthesised via the shikimate pathway. AROM is 

a pentafunctional enzyme which catalyses the five central steps of the shikimate 

pathway and is found in fungi and yeast. This tlhesis describes the purification and 

characterisation of AROM from overexpressing strains of Saccharomyces cerevisiae 

and Aspergillus nidulans.

S. cerevisiae AROM was purified 30>-fold with a 10% yield from a yeast 

overexpression strain which exploited the ubiquiitin-fusion system of yeast. The 

purified protein was found to possess all five enzyme activities in a similar ratio to that 

observed in crude extract and had a subunit molecular weight of 175kDa. The main 

5. cerevisiae protein was shown to have severall minor, lower molecular weight 

contaminants following SDS PAGE and three off these were found to cross-react with 

anti-AROM antibodies raised against Neurospom crassa AROM. The peak AROM 

fraction eluted from gel filtration chromatography was found to be composed of two 

proteins which were separable by native PAGE and both of which were shown to have 

shikimate DH activity. The poor recovery and multiple protein bands suggested that 

during the AROM preparation limited proteolysiis was occuring despite a number of 

anti-proteinase measures. No means of eliminating limited proteolysis during 

S. cerevisiae AROM isolation were found and piurification studies were carried out on 

the AROM of A. nidulans in the hope that proteolysis might not be as problematic in 

this species.

A rapid procedure for the purificationi of A. nidulans AROM from the 

overexpresion strain A. nidulans 1314 has been developed which results in 13-fold 

purification and a 9% yield. The subunit molecular weight was estimated at 175kDa 

and the native molecular weight suggests that the protein is a dimer. The N-terminal 

DHQ synthase activity in the AROM protein wa:s found to be severly deficient in both 

crude extract and the purified protein from A. nidulans 1314. This was independently 

attributed to the introduction of a missense mutaition in this region of the polypeptide.

x iv



A preliminary limited proteolysis study was carried out on AROM purified 

from A. nidulans 1314 which suggested that the proteolysis pattern is complicated and 

which show that the DHQase and shikimate DH enzyme activities are least susceptible 

to limited proteolysis.

xv
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Chapter 1 Introduction

1.1 The shikimate pathway

1.1.1 General introduction

In plants, fungi, protozoa and bacteria, chorismate is the common 

metabolic precursor for the aromatic amino acids, phenylalanine, tryptophan and

tyrosine, as well as for other important metabolites such as vitamin E and K, folic
/

acid, ubiquinone, plastiquinone and enterochelin. Chorismate is the product of a 

seven step pathway known as the shikimate pathway (Haslam, 1974; Weiss & 

Edwards, 1980; Bentley, 1990; Haslam, 1993) (Figure 1.1). The oxidation of glucose 

via the glycolytic and pentose phosphate pathways yields phosphoenolpyruvate and 

erythrose 4-phosphate respectively which are the starting metabolites of the shikimate 

pathway.

Other organisms are unable to synthesise chorismate and rely on their 

dietary intake to provide aromatic amino acids and vitamins. Therefore, this pathway 

is a target for herbicides and antimicrobial agents since inhibition of enzymes in this 

pathway does not affect mammals (Coggins, 1986a). The commercially important 

herbicide glyphosate has been shown to act by inhibiting the sixth enzyme in the 

shikimate pathway, EPSP synthase (Steinrucken et a l., 1980; Boocock & Coggins, 

1983). Recently there has also been interest in the shikimate pathway as a target for 

antimicrobials against the pathogenic fungus Pneumocystis carinii. This fungus is 

responsible for a pneuomonia known to be the main cause of death in AIDS patients 

in Europe and the USA (Banerji et a l., 1993), and which also affects malnourished 

children (Pixley etal., 1991).

In this thesis I have used abbreviations for some of the shikimate pathway 

enzymes: DAHP synthase, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase; 

DHQ synthase, 3-dehydroquinate synthase; DHQase, 3-dehydroquinase; shikimate 

DH, shikimate dehydrogenase; EPSP synthase, 5-enolpyruvyl-shikimate 3-phosphate 

synthase. Shikimate kinase is written in its full form.

1
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1.1.2 Organisation of the shikimate pathway enzymes

Although chorismate is synthesised by the same, seven enzyme reactions 

in all organisms capable of making chorismate, the organisation of the enzymes 

involved varies between species (Figure 1.2). In Eschericia coli the seven enzymes of 

the shikimate pathway are all monofunctional enzymes (Berlyn & Giles, 1969) with 

genes scattered throughout the genome (Pittard & Wallace, 1966). In higher plants 

the enzymes DHQase and shikimate DH, which carry out two consecutive reactions in 

the pathway, are carried on a bifunctional polypeptide while the other five enzymes of 

the pathway are monofunctional (Polley, 1978; Koshiba, 1979; Mousdale etal.,

1987). In the fungi Neurospora crassa (Lumsden & Coggins, 1977, 1978; Gaertner 

& Cole, 1977) and Aspergillus nidulans (Ahmed & Giles, 1969; Charles etal., 1986), 

the yeast Saccharomyces cerevisiae (Duncan etal., 1988), and in Euglena gracilis 

(Patel & Giles, 1979) the enzymes for the five central steps of the shikimate pathway 

(steps 2-6, Figure 1.1) are contained on a pentafunctional polypeptide known as 

AROM. In this thesis I have used the accepted term 'AROM' to refer to the protein, 

where in the past arom has been used to define the N. crassa and 

S. cerevisiae proteins. The genes encoding S. cerevisiae and A. nidulans AROM are 

called AROl and aromA respectiviely. The entire coding sequences of the AROM 

genes have been cloned and sequenced from S. cerevisiae (Larimer e ta l., 1983; 

Duncan e ta l., 1987), A. nidulans (Kinghorn & Hawkins, 1982; Charles eta l., 1985; 

Charles etal., 1986), and recently from P. carinii (Banereji etal., 1993). A 

comparison of the sequences with those of the individual E. coli monofunctional 

enzymes (Duncan et al., 1984a, 1986; Millar etal., 1986; Millar & Coggins, 1986; 

Anton & Coggins, 1988) show regions within the AROM polypeptide corresponding 

to the monofunctional enzymes (Duncan et al., 1987; Hawkins, 1987; Banerji et al., 

1993). In the case of the S. cerevisiae gene the identity with the individual E. coli 

enzyme amino acid sequences varies between 21% and 38% (Duncan et al., 1987). 

The regions of homology are illustrated in the schematic representation shown in

3
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Figure 1.2. The deduced enzyme order along the polypeptide is the same for both 

A. nidulans and S. cerevisiae AROM, and agrees with the order deduced for N. crassa 

AROM from genetic and biochemical studies (Giles, 1978). The enzyme order along 

the polypeptide is not, however, the same as the reaction order. It has been proposed 

that the gene encoding AROM has evolved by fusion of ancestral monofunctional 

enzyme genes, such as those found in E. coli (Giles, 1978; Charles eta l., 1986; 

Duncan eta l., 1987; Hawkins, 1987).

The differences in the arrangement of the shikimate pathway enzymes 

raise questions about the evolution of AROM and the bifunctional plant DHQase- 

shikimate DH enzymes. In relation to the AROM protein there are many questions to 

be answered as part of a larger research programme, such as:

1. What is the advantage, if any, of the fused arrangement of AROM over 

monofunctional E. co/Mike enzymes?

2. Are the individual AROM enzymes able to fold to form functional protein 

when they are expressed independently and do they possess the same 

kinetic properties?

3. Is the order of the domains important?

Both S. cerevisiae and A. nidulans have well established genetic systems 

making them suitable for investigating AROM. This introduction will discuss each of 

the individual enzyme reactions catalysed by AROM, metabolic control of the 

pathway and its relationship with the quinate utilisation pathway found in some fungi. 

A brief account of multifunctional proteins is followed by a detailed description of the 

genetic, biochemical and molecular studies which have already been carried out on 

the AROM protein and the arom gene. Finally the aims of this project are described.

1.2 The individual enzvme reactions of AROM

1.2.1 DHQ svnthase

DHQ synthase catalyses the second reaction of the shikimate pathway

(Figure 1.1) which is the conversion of 3-deoxy-D-arabino-heptulosonic acid 7-

5



phosphate (DAHP) to 3-dehydroquinate (DHQ). DHQ is the first cyclic intermediate 

in the pathway and was identified by Weiss et al.(1953) in E. coli. The reaction was 

first demonstrated by Srinivasan etal. (1963) and both NAD+ and a divalent metal 

cation are essential for DHQ synthase activity (Saijo & Kosuge, 1978; Yamamoto, 

1980; Hasan & Nester, 1978; Lambert e ta l, 1985)

The monofunctional enzymes of E. coli (Frost etal., 1984; Millar & 

Coggins, 1986) and Pisum sativum (Pompliano etal., 1989) have been purified to 

homogeneity. In Bacillus subtilis the DHQ synthase is associated with chorismate 

synthase and flavin reductase in a multienzyme complex (Hasan & Nester, 1978).

The DHQ synthase activity of the pentafunctional AROM of N. crassa was shown to 

be Zn^+ dependent (Lambert etal., 1985).

1.2.2 DHOase

DHQase catalyses the conversion of 3-dehydroquinic acid to 3- 

dehydroshikimic acid (DHS) (step 3, Figure 1.1). The reaction is involved in two 

separate metabolic pathways: biosynthesis in the shikimate pathway, and catabolism 

in the quinate pathway. The quinate pathway is discussed in Section 1.4 and is found 

in some fungi. There are two classes of DHQase distinguished on the basis of their 

physical and catalytic properties (Kleanthous etal., 1992). Type I DHQases' are heat 

labile and the enzymic reaction proceeds through the formation of a Schiff base with 

the substrate, DHQ (Walsh, 1979; Butler et al., 1974). Type II DHQases are heat 

stable and do not act through a Schiff base mechanism (Kleanthous et al., 1992). The 

type II enzymes form large aggregates from the monomeric subunits while the type I 

enzymes are dimers (Kleanthous etal., 1992). The type I and type II DHQases are 

thought to have evolved independently.

The type I DHQases examined to date are exclusively involved in the 

biosynthetic shikimate pathway. They have been purified and characterised from 

E. coli (Chaudhuri etal., 1986) and the N. crassa AROM protein, and the Schiff base 

intermediate of the reaction has been shown to be formed at a conserved lysine
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residue (Lumsden & Coggins, 1977; Smith & Coggins, 1983; Lambert etal., 1985; 

Chaudhuri eta l, 1991). Other type I enzymes studied from S. cerevisiae (Duncan et 

al., 1987) and A. nidulans (Charles etal., 1985; Hawkins etal., 1993a) as part of 

AROM, and from Salmonella typhi (Servos etal., 1991) have similar characteristics 

to the E. coli and N. crassa enzymes. They are heat labile and all contain the 

conserved active site lysine residue thought to be involved in Schiff base formation 

(Chaudhuri etal., 1991). The bifunctional DHQase-shikimate DH of Pisum sativum 

has also been shown to be a type I DHQase (Deka etal, 1994).

Type II DHQases which are quinate inducible and involved in quinate 

catabolism (see 1.4) have been isolated from A. nidulans (Hawkins etal., 1982a; Da 

Silva et al., 1986) and N. crassa (Hawkins eta l., 1982b). Type II enzymes have also 

been isolated from Streptomyces coelicolor (White etal., 1990) and Mycobacterium 

tuberculosis (Garbe eta l., 1991) which are involved in the shikimate pathway. More 

recently, a dual function, quinate inducible type II DHQase has been identified from 

Amycolatropsis methanolica, which is involved in both the catabolism of quinate and 

the biosynthesis of aromatic amino acids (Euverink etal., 1992).

The reactions catalysed by type I and type II DHQases have been shown 

not only to be mechanistically distinct but also to have different stereochemistries 

(Harris etal., 1993). The type I E. coli DHQase has been shown to catalyse a syn 

elimination, while the type II DHQase from A. nidulans catalyses an anti reaction.

1.2.3 Shikimate DH

Shikimate DH catalyses the fourth step of the shikimate pathway (Figure

1.1) which is the reduction of 3-dehydroquinic acid to shikimic acid utilising hydride 

transfer from NADPH (Yaniv & Gilvarg, 1955; Dansette & Azerad, 1974).

Monofunctional shikimate DH has been purified and characterised from 

E. coli (Chaudhuri & Coggins, 1985) and the shikimate DH of N. crassa AROM has 

also been characterised (Lambert etal., 1985; Coggins et al., 1987a). As mentioned
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in Section 1.1.2 the shikimate DH activity in a variety of plants is part of a 

bifunctional polypeptide (see Mousdale & Coggins, 1992 for a recent review).

1.2.4 Shikimate kinase

Shikimate kinase catalyses the fifth step in the shikimate pathway (Figure

1.1) which is the phosphorylation of shikimate to shikimate 3-phosphate with ATP as 

co-substrate (Weiss & Mingioli, 1956).

E. coli and Salmonella typhimurium possess two shikimate kinase 

isozymes (Berlyn & Giles, 1969; Ely & Pittard, 1979): type I and type II. Sequence 

studies have shown the shikimate kinase II in E. coli K12 (Millar etal., 1986; 

DeFeyter & Pittard, 1986) to have 34% homology with shikimate kinase type I in 

E. coli (L0bner-Olesen & Marinus, 1992). The shikimate kinases of AROM from 

A. nidulans (Charles etal., 1986), S. cerevisiae (Duncan eta l., 1987) and P. carinii 

(Banerji eta l., 1993) and the shikimate kinase from tomato (Schmid etal., 1992) 

show homology with the bacterial enzymes, and all shikimate kinases known contain 

an ATP binding region homologous with some other kinases and ATP-requiring 

enzymes (Walker et al., 1982).

1.2.5 EPSP synthase

EPSP synthase (5-enolpyruvyl-shikimate 3-phosphate synthase) catalyses 

the transfer of phosphoenolpyruvate to shikimate 3-phosphate to give 5-enolpyruvyl- 

shikimate 3-phosphate (EPSP) and inorganic phosphate (Levin & Sprinson, 1964) 

(Step 6 in Figure 1.1).

EPSP synthase has been studied more exhaustively than any other activity 

in the pathway because it is the major target for inhibition by the broad spectrum 

herbicide, glyphosate (Steinrucken & Amrhein, 1980; Boocock & Coggins, 1983). It 

has been shown for the EPSP synthase component of N. crassa AROM that the 

inhibition of EPSP synthase by glyphosate is competitive with PEP (Boocock & 

Coggins, 1983). EPSP synthase from E. coli has been crystallised by the Monasanto
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group and the backbone structure determined at 3-A resolution (Stallings et al., 1991). 

Glyphosate tolerance is also of great commercial interest and cell cultures of a 

number of plant species, selected for herbicide tolerance, have been shown to have an 

accompanying increase in EPSP synthase levels (Nazfiger et al., 1984; Smart etal., 

1985; Steinrucken etal., 1986; Dyer etal., 1988).

EPSP synthase from E. coli has been purified, sequenced and 

overexpressed (Lewendon & Coggins, 1983; Duncan e ta l., 1984a; 1984b) and is a 

monomer. It has also been purified from a range of bacteria and plants, including 

K. pneumoniae (Steinrucken & Amrhein, 1984) and pea seedlings (Mousdale & 

Coggins, 1984). Sequence data have been obtained for EPSP synthase from 

Bordetellapertussis (Maskell etal., 1988), petunia and tomato (Gasser etal., 1988), 

pea (Granger, 1989), Arabidopsis thaliana (Klee etal., 1987), tobacco (Wang etal.,

1991), and as part of AROM in S. cerevisiae (Duncan eta l., 1987) and A. nidulans 

(Charles etal., 1986). There is considerable homology between the plant, fungal and 

bacterial sequences.

1.3 Metabolic control of the shikimate pathway

There is control of the flux of metabolites through the shikimate pathway 

by feedback inhibition at the first step in the pathway. Both E. coli (Doy & Brown, 

1965) and N. crassa (Hoffmann et al., 1972) have three DAHP synthase enzymes, 

each one regulated by one of the three aromatic amino acids. S. cerevisiae has only 

two DAHP synthase isozymes - one inhibited by tyrosine, and the other by 

phenylalanine (Teshiba e ta l., 1986; Paravicini etal., 1988; Paravicini etal., 1989; 

Kunzler etal., 1992).

The ARO l gene encoding AROM in S. cerevisiae has been shown to have 

the 5' flanking sequence which places amino acid biosynthetic enzymes under the 

general amino acid control system found in yeast (Duncan etal., 1988). The general 

control system regulates the levels of many different amino acid biosynthetic 

pathways at the transcription level and the starvation of one amino acid involved in
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general control leads to the derepression of all the enzymes involved in the response 

(Jones & Fink, 1982; Fink, 1986; Braus, 1991). The level of derepression is not the 

same for all the enzymes. The GCN4 gene product is a trans-acting regulatory factor 

which binds to the 5' flanking region of regulated genes under conditions of amino 

acid starvation. Duncan etal. (1988) showed that the levels of AROM transcription 

increased on derepression, and the DHQase and shikimate DH specific activities 

increased 2-3-fold. Interestingly, the P. carinii arom locus has a putative GCN4 

binding site which may place it under general amino acid control (Banerji et a l.,

1993).

1.4 The quinate utilisation pathway

The metabolite quinate makes up between 2% and 10% of the dry weight 

of the leaves of higher plants (Bentley, 1990) and is, therefore, a good energy source 

for many soil microorganisms which catabolise it via the quinate pathway (Giles et 

a l,  1985).

The quinate pathway is illustrated in Figure 1.3 and is described here 

because it shares two intermediates with the shikimate pathway: dehydroquinate and 

dehydroshikimate. Dehydroshikimate is converted to protocatechuate by 

dehydroshikimate dehydrase. Species such as the fungi A. nidulans and N. crassa 

which grow as saprophytes on decaying plant material, have been shown to have two 

DHQase enzymes as described already in Section 1.2.2: one involved in the quinate 

utilisation pathway and the other in the shikimate pathway. The type II DHQase is 

involved in the catalysis of dehydroquinate to dehydroshikimate in the quinate 

pathway and is encoded by theqa-2 gene in N. crassa (Vapnek et al., 1977; Giles et 

al., 1985) and by the Q U TE  gene in A. nidulans (Hawkins etal., 1985; Da Silva et 

al., 1986). The same reaction is catalysed via a different mechanism (see 1.1.2) by 

the DHQase region of AROM in A. nidulans and N. crassa during biosynthesis of 

chorismate through the shikimate pathway (Lumsden & Coggins, 1977; Charles etal., 

1985). It has been suggested that the intermediates common to both pathways are
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segregated once the catabolic pathway has been induced, by means of channelling of 

the intermediates of aromatic amino acid biosynthesis by the AROM protein (Giles, 

1978). It has been proposed that this has been the evolutionary selection pressure for 

the formation of a multifunctional AROM protein. Substrate channelling in N. crassa 

AROM was reported by Welch & Gaertner (1975), however, their AROM preparation 

was deficient in both DHQ synthase and EPSP synthase activity, and there is no direct 

evidence for channelling from measurements of the steady state levels of the 

intermediates from an intact AROM preparation (Coggins & Boocock, 1986). It has 

been shown that the pathway intermedates, DHQ and DHS, are able to leak from theA
AROM protein and can be used by both pathways (Lamb etal., 1991), although 

Lamb etal. {1991) have suggested that AROM might have a low level channelling 

function under conditions of nutrient limitation.

The enzymes of the quinate pathway are quinate-inducible and subject to 

carbon catabolite repression (Giles etal., 1985; Hawkins etal., 1993d). The genes 

are part of a tightly-linked cluster of seven genes in the case of N. crassa (Giles eta l., 

1985) and eight genes in the case of A. nidulans (Hawkins etal., 1993d), which 

comprise the quinic acid utilisation gene cluster in these species (Giles et al., 1985; 

Grant et al., 1988). Two of the genes in each system encode repressor and activator 

proteins which control transcription of the quinate cluster genes. It has been shown 

that the repressor protein of both organisms are homologous with the three most C- 

terminal domains of the AROM polypeptide (Anton eta l.,\9 S l\  Hawkins etal.,

1992). More recently, the activator protein of both species has been shown to be 

homologous with the two most N-terminal domains of the AROM polypeptide 

(Hawkins etal., 1993c).which raise interesting questions about their evolution.

1.5 Multifunctional proteins

Multifunctional proteins are defined as those proteins which have more 

than one distinct biochemical function on a single polypeptide (Kirschner & 

Bisswanger, 1976). They are found in both prokaryotes and eukaryotes, and are

12



particularly prevalent in amino acid biosynthetic pathways. Multifunctional enzymes 

often catalyse consecutive reactions in a biosynthetic pathway although this is not 

universal, and multifunctional enzymes occuring in one species may be present as 

monofunctional enzymes in another species.

It is now recognised that proteins are constructed from structural domains 

which fuse to make more complex structures (Doolittle, 1989; Coggins, 1991). A 

domain is defined as a spatially separate, compact, globular structure made up from a 

continuous stretch of polypeptide which is stable as an independent entity (Rossmann 

& Argos, 1981), and domains of a protein are readily identified by x-ray 

crystallography. Kirschner & Bisswanger (1976) proposed a model which suggests 

that the individual functions of a multifunctional protein are located in discrete 

domains within the polypeptide chain. This is known as the mosaic model and it is 

now generally thought that multifunctional proteins evolved from ancestral 

monofunctional enzymes by gene fusion. This model is supported by much of the 

protein sequence data for multifunctional proteins which are often found to be 

composed of regions which are homologous to monofunctional proteins which carry 

out the same reaction in another species. Proteolysis studies on multifunctional 

proteins also show that functions of the multifunctional polypeptide can be assigned 

to discrete regions of the polypeptide. An account of the use of these techniques in 

studying a multifunctional protein is provided in Sections 1.5 and 1.6 which describe 

the work carried out on the AROM multifunctional protein.

The best studied multifunctional proteins are tryptophan synthase, fatty 

acid synthase and the CAD multifunctional protein. The bifunctional tryptophan 

synthase of N. crassa and S. cerevisiae has been compared to the individual 

monofunctional polypeptides of E. coli and Salmonella typhimurium which form a 

multienzyme complex (Burns & Yanofsky, 1989; Zalkin & Yanofsky, 1982). The 

three-dimensional structure of the tryptophan synthase multienzyme complex of

S. typhimurium has been solved by x-ray crystallography and shows a tunnel which is 

thought to allow diffusion of indole, the product of one subunit, to the active site of
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the other subunit for which indole is the substrate (Hyde et al., 1988). In the case of 

tryptophan synthase the order of gene fusion of the two monofunctional genes 

encoding polypeptides such as those found in E. c o li, has been shown to be important 

in constructing a bifunctional polypeptide from the E. coli monofunctional enzyme 

coding sequences (Bums etal., 1990).

The multifunctional mammalian fatty acid synthase is also thought to have 

arisen by gene fusion (Hardie & McCarthy, 1986; Amy et al., 1992) although the 

sequence homology of the multifunctional proteins with monofunctional counterparts 

is limited to areas around substrate binding sites (Schweizer etal., 1989). The CAD 

multifunctional protein in animals catalyses the first three steps in pyrimidine 

biosynthesis (reviewed by Davidson et al., 1993) All three of these well-studied 

multifunctional proteins represent examples where fusion of monofimctional 

components is thought to have led to formation of the multifunctional protein.

The reason for the formation of multifunctional proteins is the focus of 

much speculation. The main proposals are catalytic facilitation, substrate 

channelling, co-ordinate regulation of enzyme activity, coordinate expression, and 

protection of unstable intermediates. There is often no obvious reason why the 

multifunctional protein has arisen. In the case of the AROM protein a low level 

channeling of pathway intermediates has been suggested by Lamb etal. {1991) in 

A. nidulans in conditions of nutritional stress (see 1.4). Duncan et al. (1988) have 

suggested that the ability to express the individual AROM enzyme activities 

stoichiometrically avoids the problems of co-ordinating the expression of individual 

proteins. This idea is supported in the case of the S. cerevisiae AROM which has 

been shown to be under transcriptional control of the general control system found in 

yeast which responds to amino acid starvation (see 1.3).

The next section describes the initial work carried out on the the 

multifunctional AROM protein.
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L6 Early studies on the AROM multifunctional enzvme

1.6.1 Genetic studies of the arom locus

Mutants requiring all three aromatic amino acids for growth, termed arom, 

were first isolated from N. crassa by Gross and Fein (1960). In Neurospora 

complementation experiments are carried out in hybrid heterokaryons which express 

two different mutations. The arom mutants were placed in groups according to their 

ability to complement one another in this trans configuration. Less detailed studies 

were also made of arom mutants of the fission yeast, Schizosaccharomyces pombe 

(Strauss, 1979) and Aspergillus nidulans (Roberts, 1969) which suggested similar 

complementation patterns.

The N. crassa mutants fell into five distinct complementation groups 

which were shown to map very close together in five non-overlapping regions on 

linkage group II (Giles etal., 1967). Mutations in each complementation group were 

found to be associated with the loss of one enzyme activity of the five central steps of 

the shikimate pathway, and this region was named the 'arom cluster' (Gross & Feinn, 

1960; Giles etal., 1967). Detailed complementation studies in N. crassa revealed two 

categories of mutants in the 'arom cluster'. The first category consists of mutants in 

which a single enzyme activity is lost, and the second category contains pleiotropic 

mutants where two or more activities are lost (Gross & Feinn, 1960; Giles et 

al., 1967). The five activities were shown to co-sediment in sucrose density gradients 

(Giles eta l., 1967).

The single activity mutants generally have normal wild-type activity levels 

of the other four enzymes (Giles eta l, 1967; Rines e ta l., 1969). These single enzyme 

mutations map to distinct non-overlapping subregions of the 'arom cluster' in fine 

structure studies. They also have the normal wild-type native molecular weight, 

estimated to be 200-230kDa by sucrose density gradient centrifugation studies (Giles 

eta l., 1967; Rines etal.., 1969; Case eta l., 1971). This suggests that a mutation in a 

single subregion does not affect the overall quaternary stucture of the protein. The 

mutations were interpreted as missense mutations resulting from a single amino acid
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substitution (Rines et al., 1969; Strauss, 1979) which can lead to incorrect 

polypeptide folding in the region of the mutation (Crick & Orgel, 1964). There is 

little evidence that the mutants of one enzyme activity affects the activity of a 

separate AROM enzyme. Therefore, the missense mutations in the 'arom cluster' 

provided good evidence that the cluster encodes five functionally independent 

enzymes. At the time of the study these data were interpreted as evidence that the 

'arom cluster' is composed of five genes which produce five polypeptides forming a 

multienzyme aggregate, since all the activities have the same sedimentation 

coefficient on sucrose density centrifugation (Giles etal., 1967).

The second class of 'arom cluster' mutants are polarity mutants which lack 

two or more activities. This indicates that the arom 'cluster' is transcribed as a single 

mRNA and this was thought to be subsequently translated as five separate 

polypeptides which form the AROM 'aggregate' (Giles etal., 1967; Burgoyne etal., 

1967).

The complementation map allowed regions of the arom 'cluster' to be 

assigned to individual AROM enzyme activities and the genetic map is summarised 

in Figure 1.4.. The mRNA 5' to 3' transcription order is: DHQ synthase - EPSP 

synthase - shikimate kinase - DHQase - shikimate DH (Rines et al., 1969).

One group of pleiotropic mutants, class E, are unable to complement with 

any other arom mutants and lack all five enzyme activities. The mutation is located 

at the 5'-DHQ synthase subregion of the arom 'cluster'. Some mutants of this class 

have been shown to be nonsense mutants (Case etal., 1968) which result in the 

production of truncated protein. The phenotype is suppressed in N. crassa strains 

believed to carry a nonsense suppressor tRNA gene and AROM of wild-type 

molecular weight with all five enzyme activities results (Case etal., 1968). 

Th^remaining polar mutations have phenotypes which can also be interpreted as due 

to premature polypeptide termination (Case & Giles, 1971).
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Complementation ^p. jrom-2 arom -4 arom-5 arom-9 arom-1

E n / v m c  a c t i v i t i e s  l o s t DHQ synthase EPSP shikimate DHQase
svnthase kinase
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DH

M ISSENSE
MUTATIONS
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complementaion

none EPSP
synthase

DHQ synthase 
+

EPSP synthase

DHQ synthase, wild
EPSP synthase type

+
shikimate kinase

Complementation gp. E F D A+C

Figure 1.4 Genetic map of the arom  gene of N. crassa

The genetic map is based on the data of Giles et al. (1967); Rines et al., 1969; Case & 

Giles, 1971).
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1.6.2 Purification of N. crassa AROM protein

Early AROM protein preparations from N. crassa suggested that the 

protein is able to dissociate into a number of low molecular weight species (Burgoyne 

eta l., 1969; Gaertner, 1972; Jacobson etal., 1972) which were thought to be 

'subunits' of an AROM multienzyme complex. Low molecular weight subunits were 

later shown to result from proteolysis of a single AROM polypeptide by endogenous 

N. crassa proteinases and it was suggested that AROM is, in fact, a pentafunctional 

polypeptide (Gaertner & Cole, 1976; Lumsden & Coggins, 1977; Giles, 1978; 

Boocock, 1983). Lumsden & Coggins (1977) used an antiproteinase strategy and 

purified AROM of 165kDa when analysed by SDS PAGE. Centrifugation on 

glycerol density gradients showed that native AROM had a molecular weight of 

270kDa suggesting that it was a dimer (Lumsden & Coggins, 1977). This was 

confirmed by crosslinking studies with dimethyl suberimidate (Lumsden & Coggins, 

1977). Peptide mapping showed that the two 'subunits' were chemically very similar 

(Lumsden & Coggins, 1978). Thisconsistent with the genetic studies which also 

suggested that AROM is a dimer (Case & Giles, 1971).

It was not until each of the individual AROM enzyme activities was 

followed throughout the purification that it was realised that the purified preparations 

were severely deficient in EPSP synthase and DHQ synthase activities (Boocock, 

1983). The purification procedure was modified to prevent the loss of zinc ions from 

the DHQ synthase domain which was found to be a metallo-enzyme, and to prevent 

the oxidation of the EPSP synthase domain. In the resulting AROM preparation the 

individual AROM activities co-purified in constant activity ratio (Lambert eta l.,

1985; Coggins et al., 1987a). The genetic data were re-evaluated with the knowledge 

that AROM is a pentafunctional polypeptide in order to provide information about the 

structure of the protein.

18



1.7 S tructure of the AROM protein

1.7.1 Genetic data

The studies of AROM mutants in N. crassa provide some information 

about the structure of the AROM protein. Interallelic complementation is considered 

to involve the interaction in a multimer of two differentially defective polypeptides 

with the restoration of enzyme activity (Crick & Orgel, 1964). Within the AROM 

enzymes, interallelic complemetation is only observed between missense mutants of 

the N-terminal subregion encoding DHQ synthase, and between missense mutants of 

the C-terminal shikimate DH subregion (Giles et a l., 1967; Rines etal., 1969; Case et 

al., 1969; Case & Giles, 1971). Interallelic complementation occurs in a small subset 

of these mutants and the shikimate DH domain has been implicated in dimer 

formation by such studies (Case & Giles, 1971). There is no evidence for contacts 

between any of the other AROM subregions from interallelic complementation 

studies.

A detailed analysis of the AROM pleiotropic mutants of N. crassa by Case 

& Giles (1971) showed that several mutants have a smaller native molecular weight 

than the wild-type enzyme as determined by sucrose density gradient centrifugation. 

The mutants have not been characterised as nonsense mutations but are probably best 

interpreted as premature termination mutants (Case & Giles, 1971). These partial 

enzyme aggregates are able to complement DHQ synthase activity, while the EPSP 

synthase and shikimate kinase activities can be assayed in extracts. Therefore, EPSP 

synthase and shikimate kinase subregions of the AROM polypeptide can fold as part 

of the N-terminus to produce functional enzymes, albeit at a reduced level, without 

the C-terminal DHQase and shikimate DH regions. The reason why DHQ synthase 

can only be detected by complementation and cannot be detected in assays, suggests 

that the picture is more complicated. The molecular weight data suggests the proteins 

are monomers since they are approximately one quarter of the intact AROM 

molecular weight. As with the missense mutants, this is consistent with the model of 

AROM where the shikimate DH region is required for dimerisation. The lack of
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DHQ synthase activity in assays would suggest in such a model, that interaction 

between the homologous DHQ synthase regions of the polypeptide are required for 

enzyme activity.

The genetic studies of AROM have provided a wealth of information on 

the arom gene and the AROM protein, which complements the biochemical studies 

which are described in the remainder of this Section.

1.7.2 Biochemical evidence for the mosaic model of AROM

The mosaic model of a multifunctional protein proposes that each of the 

functions of the protein are located on discrete regions of the polypeptide. This 

section describes the biochemical evidence for such a model of AROM. Biochemical 

studies on AROM purified from N. crassa suggest that each of the five enzyme active 

sites act independently of one another. The evidence is described below for each 

AROM activity in turn:-

DHO svnthase: The zinc-dependent DHQ synthase activity can be inactivated with 

the chelating agent EDTA in the absence of substrate (DAHP) without affecting the 

other four activities (Lambert etal., 1985).

DHQase: The type I DHQase of AROM works through an imine intermediate which 

is formed between the amino group of a lysine at the enzyme active site and the keto 

group of the substrate, DHQ (Butler et al., 1974). DHQase is specifically inactivated 

with sodium borohydride in the presence of DHQ by reducing the Schiff base formed 

between the active site lysine and DHQ thus trapping the substrate (Smith & Coggins, 

1983; Coggins & Boocock, 1986; Chaudhuri et al., 1986). Under these conditions the 

other four AROM enzymes are active.

Shikimate D H : Sodium borohydride, inactivates shikimate DH in the presence of 

formaldehyde (Smith, 1980). The lysine-specific reagent, methylacetimidate also 

inactivates shikimate DH (Coggins & Boocock, 1986). Shikimate protects shikimate 

DH against inactivation by both reagents (Coggins & Boocock, 1986; Coggins etal., 

1987). The DHQase of AROM can be specifically inactivated with sodium
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borohydride in the presence of DHQ, and the intact shikimate DH can then be 

inactivated by methylacetimidate. The other enzymes are unaffected by this 

treatment.

Shikimate kinase: Limited proteolysis of AROM with trypsin or subtilisin 

specifically inactivates the shikimate kinase activity leaving the other four activities 

unaffected (Coggins etal., 1985; Coggins & Boocock, 1986). This is described more 

fully in Section 1.6.

EPSP svnthase: Limited proteolysis of AROM with trypsin and chymotrypsin 

simultaneously, produces a fragment with only EPSP synthase activity which can be 

isolated chromatographically (Coggins etal., 1985; Coggins & Boocock, 1986). This 

is described more fully in the next section (1.6.3).

These results indicate that each AROM enzyme has distinct active sites 

and supports the mosaic model of AROM in which the five enzymes form five 

autonomous structural domains each of which has one of the component enzyme 

activities. This also supports the genetic data.

1.7.3 Limited proteolysis studies on N. crassa AROM

Limited proteolysis of native protein is used as a tool to provide 

conformational information. It has been particularly useful in studies of 

multifunctional proteins, which often consist of tight globular domains separated by 

'linker' polypeptide, and provides evidence for a mosaic structure. The globular 

domains are less accessible to proteinases than the inter domain regions which may 

lack secondary structure. Therefore, limited proteolysis provided an excellent 

technique for conformational studies on AROM (Price & Johnson, 1989).

Smith & Coggins (1983) isolated an active AROM fragment after limited 

proteolysis with trypsin or subtilisin. Analysis by SDS PAGE showed that the 

AROM was proteolysed to two stable fragments of 1 lOkDa and 68kDa with the loss 

of shikimate kinase activity. Analysis by native PAGE showed that the proteolysed 

AROM is identical to the intact protein which suggests that the proteolysed AROM is
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held together, at least in part, by the same kind of non-covalent interactions 

responsible for the quaternary structure. Smith & Coggins (1983) showed that the 

DHQase active site is located on the 68kDa fragment by labelling the DHQase active 

site with tritiated sodium borohydride in the presence of substrate, DHQ. This traps 

the substrate and the active site of DHQase was specifically labelled. After 

denaturation with 8M urea, the 68kDa fragment was able to renature and showed 

shikimate DH activity in an activity stain. This indicates that DHQase and shikimate 

DH active sites are able to function without the other AROM activities and 

furthermore the information for refolding to produce functional shikimate DH is 

within the proteolytic fragment.

Prolonged proteolysis with trypsin and chymotrypsin simultaneously 

(Boocock, 1983; Coggins e ta l ., 1985; Coggins & Boocock, 1986) resulted in the loss 

of DHQ synthase activity. Native AROM of '530kDa' (this was thought to be 

erroneously high due to the shape of the protein) was no longer observed on gel 

filtration HPLC and species of 200kDa and 130kDa were present. The 200kDa and 

130kDa species were shown to be 74kDa and 63kDa polypeptides, respectively, when 

they were analysed by SDS PAGE suggesting that both species are dimers under 

native conditions. The 63kDa fragment was found to be derived from the 68kDa 

fragment and was shown to have both DHQase and shikimate DH activity. The 

74kDa fragment was derived from the 1 lOkDa initial fragment and was separated 

from the other fragment by chromatography on DEAE cellulose and 

phosphocellulose. The EPSP synthase activity was shown to be associated with the 

200kDa species. The DHQ synthase activity was assumed to be located on the 

1 lOkDa fragment and was lost when this was proteolysed further to 74kDa. The 

proteolysis of AROM is summarised in Figure 1.5.

The proteolysis studies of native AROM suggest that the DHQase and 

shikimate DH regions can function without the other activities, at least as part of a 

bifunctional polypeptide such as those seen in plant species (Polley, 1978; Koshiba, 

1979; Mousdale etal., 1987)). The EPSP synthase region can also function
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In t a c t  A R O M

'nicked' AROM

165kDa

530kDa

Itrypsin/chymotrypsin

E2

UOkDa 68k Da

530kDa

/ \
Active fragments

E5 E2 E3

74k Da 63k Da

small peptides
130kDa 200kDa

Figure 1.5 Summary of limited proteolysis studies on N. crassa AROM

The individual AROM enzyme domains have been abbreviated to their reaction order 
in the shikimate pathway: DHQ synthase, E l; DHQase, E2; shikimate DH, E3; 
shikimate kinase, E4; EPSP synthase, E5. The molecular weights directly under each 
protein are the subunit molecular weights estimated by SDS PAGE. The molecular 
weights indicated surrounding the entire protein, or fragments, show the native 

molecular weights determined under non-denaturing conditions by gel filtration 

HPLC. The diagram is taken from Boocock, 1983.
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independently and this suggests that the EPSP synthase and DHQase-shikimate DH 

regions of AROM are compact globular structures which are not easily 

proteolysed. This agrees with the model suggesting that each AROM activity is 

spatially and functionally independent of the others. The evidence that the DHQase- 

shikimate DH fragment is a dimer supports the genetic evidence that shikimate DH 

allows dimerisation (Giles etal., 1967; Rines eta l., 1969; Case etal., 1969). It also 

provides evidence that the shikimate DH of one polypeptide is in contact with 

shikimate DH of the other polypeptide rather than DHQ synthase (see Figure 1.5).

The dimeric association of the EPSP synthase subregion is rather more difficult to 

explain because the data on pleiotropic mutants which have the entire N-terminus (A 

and C mutants - see Figure 1.4 and Section 1.7.1) including DHQ synthase, EPSP 

synthase and shikimate kinase, is suggestive of a monomeric structure (Case & Giles, 

1971). The reason for this discrepancy in the data has not been established.

1.7.4 Sequence alignment of AROM from A. nidulans and S. cerevisiae with the

equivalent E. coli monofunctional enzvmes

The genes encoding the entire AROM polypeptide have been sequenced 

from A. nidulans (Kinghorn& Hawkins, 1982; Charles etal., 1986), S. cerevisiae 

(Larimer etal., 1983; Duncan eta l., 1987) and P. carinii (Banerji eta l. 1993). As 

described in Section 1.2, a comparison of the S. cerevisiae and A. nidulans sequences 

with those of the individual E. coli monofunctional enzymes (Duncan etal., 1984a; 

1986; Millar e ta l., 1986; Millar & Coggins, 1986; Anton & Coggins, 1988) show 

functional regions, or domains, within the polypeptide corresponding to the 

monofunctional enzymes (Duncan et al. 1987; Hawkins, 1987). There were also 

regions with no homology with the E. coli enzymes which were located at two of the 

expected domain boundaries (Duncan etal., 1987; Coggins eta l., 1987b; van den 

Hombergh et al. 1991) These interdomain, or linker regions are thought to be 

essential for the structural integrity of multifunctional proteins This data supports the 

model of AROM as a mosaic with semi-autonomous functional domains.
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1.7.5 AROM domain expression studies

The hypothesis that the arom gene evolved by linking of ancestral E. coli 

type genes suggests as one possibility that there is an evolutionary advantage to the 

formation of this pentafunctional protein. The expression of fragments of the AROM 

protein will allow comparison with the intact polypeptide and perhaps provide an 

indication of why the protein is arranged pentafunctionally.

Fragments of theS. cerevisiae AROM protein have been shown to 

complement E. coli auxotrophic mutants of all the AROM activities (K. Duncan & 

R.M. Edwards, unpublished data) with the exception of shikimate kinase which has 

not been studied by complementation because there are two shikimate kinase 

isozymes in E. coli (Ely & Pittard, 1979). No DHQ synthase activity was found in 

E. coli constructs containing this domain. In S. cerevisiae where the entire AROM 

protein was successfully overexpressed using a ubiquitin fusion vector (see 3.4.1), 

attempts to express the DHQase and the DHQ synthase regions using the same system 

were unsuccessful.

In A. nidulans the domain expression studies have progressed further, 

although most of this work was carried out after starting the project described in this 

thesis. The domain expression studies are described below.

1. DHQase domain: An 80kDa fragment of AROM expressed in E. coli was found to 

have DHQase activity and extended into the shikimate DH domain (Charles etal., 

1985). The DHQase domain was later expressed in E. coli producing protein with 

activity levels 8-fold higher than in A. nidulans. More recently the DHQase domain 

has been overexpressed in E.coli as a glutathione S-transferase fusion protein which 

has been purified and shown to be a type I DHQase since it is inhibited by sodium 

borohydride in the presence of DHQ (Hawkins e ta l., 1993a).

2. DHQase-shikimate DH: A DHQase-shikimate DH bifunctional domain in

A. nidulans overexpressed both activities 50-fold over wild-type A. nidulans, but the 

same construct failed to be overproduced in E. coli (Moore & Hawkins, 1993).

3. DHQ svnthase: A monofunctional DHQ synthase domain has been expressed in
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E. coli (van den Hombergh etal., 1992) and subsequently purified to homogeneity. 

This domain is currently undergoing kinetic characterisation (J. Moore, personal 

communication).

4. DHQ svnthase-EPSP synthase: A bifunctional DHQ synthase-EPSP synthase has 

been overexpressed to about 10% of the total cell protein in E. coli.

5. EPSP svnthase: EPSP synthase has so far not been successfully expressed in

E. coli without DHQ synthase as part of the same polypeptide. EPSP synthase has 

been expressed as a bifunctional polypeptide in E. coli with a defective DHQ 

synthase with a point mutation at residue 144 (see Section 4.6.8), which was able to 

complement an aro A '  mutant (lacks EPSP synthase activity). Expressing both active 

DHQ synthase and EPSP synthase independently in the same cell does not 

complement aro A ~ mutants, so EPSP synthase requires to be in the cis conformation 

with DHQ synthase and is not active when expressed in trans conformation. A 

glutathione S-transferase fusion protein expressed in E. coli produces a highly 

overexpressed protein which fails to complement an aro A~ mutant. Switching of the 

domains, to form a reversed-order bifunctional EPSP synthase-DHQ synthase, 

followed by expression in E. coli and was found to relieve aro A '  auxotrophy, but not 

aro B~ auxotrophy (DHQ synthase mutation).

6. Shikimate DH: Shikimate DH has never complemented aro E~ (lacking shikimate 

DH activity) mutants in E. coli even as part of the entire AROM protein (Hawkins & 

Smith, 1991; Moore & Hawkins, 1993). It now appears that there is a strong 

likelihood that there is a 39 nucleotide intron near the 3' end of the shikimate DH 

domain coding sequence, which was previously thought to be a A insertion when 

compared to the S. cerevisiae gene sequence. This might explain why the protein is 

inactive in E. coli but not A. nidulans since E. coli are unable to process the intron.

These studies have not looked at the shikimate kinase activity primarily 

because there is no complementation system available in E. coli ,as mentioned above. 

Therefore, the work has concentrated on the other domains. The study suggests that 

the mosaic model is somewhat oversimplified since the expression data indicate that
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the domains which make up AROM do not act completely independently of one 

another.

From the expression studies, Hawkins has suggested a structure for 

AROM in which the AROM protein is in two halves: one half contains the N-terminal 

DHQ synthase and EPSP synthase activities, and the other has shikimate kinase, 

DHQase and shikimate DH activities. These two subregions can function 

independently, in this model, with each subregion stabilising the enzymes within that 

region and maximising individual enzyme activities (Hawkins & Smith, 1991; 

Hawkins e ta l ., 1993).

1.8 Aims of the project

The AROM protein has been shown to be a pentafunctional protein 

composed of five E. coli-like monofunctional domains catalysing five consecutive 

steps of the shikimate pathway. It is thought to have arisen by the fusion of ancestral 

monofunctional enzymes and domain expression studies are currently being used to 

investigate the structure of the pentafunctional protein and its component enzymes 

(see 1.7.4 and 1.7.5). In parallel with this study, to provide a comparison with those 

domains which have been expressed individually or fused with other domains, a 

detailed kinetic and biophysical analyses must be made of intact AROM protein. At 

the start of this project the only AROM protein which had been purified to 

homogeneity and characterised kinetically was N. crassa AROM. However, the arom 

gene has not been sequenced from this species. The gene encoding the AROM 

protein in S. cerevisiae was sequenced in our laboratory and this species was, 

therefore, used for domain expression studies. In order to compare the expressed 

domains with intact protein, it was essential to purify and characterise S. cerevisiae 

AROM. The original objective of this work was to purify and characterise

S. cerevisiae AROM, and any independently expressed AROM domains, in order to 

assess any differences between the two which might provide an insight into the 

multifunctional arrangement of AROM. As it became clear that the problems
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involved in the purification of AROM from S. cerevisiae would not be easily solved, 

and the domain expression studies were progressing in A. nidulans, it was decided 

that purification and characterisation of AROM from A. nidulans should be the new 

objective of the project.
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Chapter 2 Materials and Methods

2.1 Materials

2.1.1 Chemicals and biochemicals

Triton X-100, formaldehyde, N,N,N',N'-tetramethylethylene diamine 

(TEMED), Tricine, PNftSF, benzamidine, pepstatin A, leupeptin hemisulphate salt, 

nitroblue tetrazolium, chloronapthol, phenanzine methosulphate, Tween 20, shikimic 

acid and Coomassie Brilliant Blue G-250 were obtained from Sigma Chemical Co., 

Poole.

Bacto Yeast Extract, Bacto-Peptone, Bacto-Agar and Bacto Yeast Nitrogen 

Base without amino acids, were obtained from Difco, Detroit, USA.

Ammonium persulphate, enzyme grade ammonium sulphate (specially 

low in heavy metals), disodium hydrogen orthophosphate, sodium dihydrogen 

orthophoshate, ammonia, 8-mercaptoethanol and pH buffer tablets (pH4.0, pH7.0 and 

pH9.2) were obtained from BDH Chemicals, Poole, UK.

Tris, dithiothreitol, ATP, NAD+ NADP+, NADPH and 

phosphoenolpyruvate were obtained from Boehringer Mannheim, Lewes, UK.

Glutaric dialdehyde was obtained from Aldrich Chemical Co. Ltd., 

Gillingham, UK.

Silver nitrate was purchased from Johnson Mattey, Materials Technology 

UK, Royston, UK.

Glycine, acrylamide, NN' Methylenebisacrylamide, sodium chloride, D- 

glucose, diamino ethanetetra-acetic acid disodium salt, sodium hydroxide, sodium 

lauryl sulfate, di-potassium hydrogen orthophoshate, potassium di-hydrogen
p

orthophoshate, hydrochloric acid, glacial acetic acid, hydrogen peroxide and 

orthoplisfioric acid were obtained from Fisons, Loughborough, UK.

Sodium dihydrogen orthophoshate dihydrate was obtained from
A

Formachem Ltd, Strathaven, UK.
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The GOD-Perid glucose test kit was from Boehringer Mannheim GmbH 

Diagnostica, and kindly gifted by Dr. I. Hamilton.

Ammonium dehydroquinate was prepared following the procedure of 

Grewe and Haendler (1966). 3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) 

was isolated from an aro B" strain of E. coli (AB2847A) and prepared following the 

procedure of Lambert et al., (1985). Both were gifts of Professor J.R. Coggins.

All other chemicals were of analytical reagent grade.

2.1.2 Enzymes and proteins

Dehydroquinase was purified from an overproducing E. coli strain 

(AB2848 pKD201) by Mr. J.Greene as described by Chaudhuri et al.(1987). AROM 

was purified by Dr H. Powell from N. crassa by the method described by Coggins et 

al (1987a).

Shikimate DH was purified from the E. coli overproducing strain 

AB2834/pIA321 as described by Anton & Coggins (1988).

Pyruvate kinase/lactate dehydrogenase in the form of a crystalline 

suspension and bovine serum albumin were obtained from Sigma Chemical Co., 

Poole, UK.

TPCK treated bovine trypsin, TLCK treated bovine a-chymotrypsin, 

Subtilisin Carlsberg Type III from Bacillus subtilis, and Thermolysin Type X from 

Bacillus thermoproteolyticus were supplied by Sigma Chemical Co. Proteinase K 

from Tritirachium album was supplied by Boehringer Mannheim GmbH, Germany. 

Lima bean proteinase inhibitor was the gift of Dr. M. Boocock

An SDS high molecular weight marker kit (MW-SDS-200) for protein 

molecular weight determination following SDS PAGE, contained the standards: 

rabbit muscle myosin, 205kDa; E. coli 6-galactosidase, 116kDa; rabbit muscle 

phosphorylase b, 97.4kDa; bovine serum albumin, 66kDa; egg albumin, 45kDa; 

carbonic anhydrase from bovine erythrocytes, 29kDa. The kit was obtained from 

Sigma Chemical Co., Poole, UK
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A high molecular weight standard kit for native molecular weight 

determination of protein by gel filtration chromatography, was obtained from 

Pharmacia, Milton Keynes, UK. The kit contained the protein standards: rabbit 

muscle aldolase, 158kDa; bovine liver catalase, 232kDa; horse spleen ferritin, 

440kDa; bovine thyroid thyroglobulin, 669kDa.

HRP donkey anti-rabbit IgG and normal donkey serum were obtained 

from the Scottish Antibody Production Unit, Carluke, UK.

Polyclonal anti-AROM antibodies were raised in rabbit against the 

N. crassa protein and were prepared by Dr. I. Hamilton.

2.1.3 Chromatography media

Hydroxyapatite was Bio-Gel HTP from BioRad Laboratories Ltd., 

Watford, UK. Pre-swollen DE52 was supplied by Whatman Biochemicals, 

Maidstone, UK. Q-Sepharose FF, CM-Sepharose FF, S200 and G-25 superfine gel 

filtration media were obtained from Pharmacia, Milton Keynes, UK. Cibacron Blue 

F-3GA on Sepharose 4B was gifted by ICI. Mimetic Yellow 1 A6XL was from 

Affinity Chromatography Ltd., Isle of Man, UK.

2.1.4 Pre-packed media

The PIKSI Mimetic dye screening kit was obtained from Affinity 

Chromatography Ltd., Isle of Man, UK. Pre-packed Mono Q, Superose 6 and 

Superose 12 columns were obtained from Pharmacia, Milton Keynes, UK, and were 

utilised on a Pharmacia FPLC system.

2.1.5 Pre-cast polyacrylamide gels

Polyacrylamide PhastGels, buffer strips and PhastGel Blue R Coomassie 

dye tablets were purchased from Pharmacia, Milton Keynes, UK, and were used for 

electrophoresis, and developed on the Pharmacia PhastSystem.
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2.1.6 Blotting membranes

Cellulose nitrate was obtained from Schleicher & Schuell, Dassel, 

Germany. Polyvinylidene difluoride (PVDF) membrane (Problott) was obtained from 

Applied Biosystems, Warrington, UK.

2.1.7 Miscellaneous materials

Cell scrapers used for A. nidulans spore collection were from Corstar, 

Cambridge, USA. Sterile plates were from Sterilin, Stone, UK. Sterile universal 

containers were supplied by Greiner Labortechnik,

2.1.8 Plasmids. S. cerevisiae and A. nidulans strains

Plasmid Yep42a-Gsaa was the kind gift of Dr. Tauseef Butt (Smith Kline 

& French, Pennsylvania). S. cerevisiae strains ABYS106 and BJ1991 were gifted by 

Dr. M. Stark, Dundee University, UK. A. nidulans strains 1314 and R153 were the 

gift of Dr. A. Hawkins, Newcastle University, UK. The S. cerevisiae and A. nidulans 

strains used during this study are shown in Table 2.1.

2.2 General methods

2.2.1 pH measurement

pH measurements were made with a Coming pH meter 220 calibrated at 

room temperature.

2.2.2 Conductivity measurement

Conductivity was measured at 4°C with a Radiometer Model CDM2e 

conductivity meter.

2.2.3 Protein determination

Protein was estimated by the method of Bradford (1976), with bovine 

serum albumin as standard.
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2.2.4 Phosphate buffer

1M solutions of both disodium hydrogen orthophosphate and sodium 

dihydrogen orthophosphate were made up. These were mixed until the pH required 

was reached, resulting in a 1M phosphate buffer.

2.2.5 Dialysis membranes

Dialysis membranes were boiled for 15 min at 100°C, in 

1 litre of solution containing 2g sodium hydrogen carbonate and 1.2g EDTA. The 

dialysis tubing was rinsed with distilled water and stored in 25% (v/v) ethanol at 4°C.

2.3 Regeneration of dve chomatographv media

2.3.1 Regeneration of Cibacron blue F-3GA on Sepharose 4B

The regeneration of Cibacron blue dye matrix following chromatography 

to remove bound proteins, was carried out using the following regime:

1. 5 column volumes of 50mM-Tris/HCl pH7.5 containing 50mM-EDTA 

and 6M-guanidinium hydrochloride.

2. 20 column volumes of 1.9M-KC1 in lOOmM-Tris/HCl pH7.5, containing 

5mM-EDTA.

3. 30 column volumes of 30mM-KCl in 50mM-Tris/HCl pH7.5, containing

0.1 % (w/v) sodium azide for storage.

2.3.2 Regeneration of Mimetic dyes

The regeneration of mimetic dyes following chromatography, to remove 

protein is described below:

1. 2 column volumes of lM-NaOH.

2. 10 column volumes of 25:75 (v/v) of ethanol:0.1M-NaCl as preservative.
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2.4 Polyacrylamide gel electrophoresis (PAGE)

2.4.1 SDS PAGE

Protein electrophoresis in polyacrylamide gels, in the presence of 0.1% 

SDS was carried out by the method of Laemmli (1970), with a 3% stacking gel and a 

10% or 7% running gel. The ratio of acrylamiderbis-acrylamide ratio was 30 : 0.8 in 

all experiments and polymerisation was induced with 0.05% (w/v) ammonium 

persulphate and 0.07% (v/v) TEMED. SDS PAGE on Phastgels was carried out 

according to the manufacturers instructions using SDS buffer strips.

Protein samples were boiled for 3 min in SDS PAGE sample buffer 

providing a final concentration of 0.05% (v/v) 8-mercaptoethanol and 0.01% SDS.

2.4.2 SDS PAGE for subsequent protein renaturation

The protocol for protein renaturation following SDS PAGE requires 

several adaptations to the general method of SDS PAGE and has been described by 

Anton (1985). The polyacrylamide gel contained ImM EDTA and was aged 

overnight prior to use. Protein samples were boiled in SDS PAGE sample buffer 

containing 1% (w/v) SDS and 2% (v/v) 8 -mercaptoethanol, for exactly 2 min The 

running buffer contained O.lmM-EDTA and 0.01% (v/v) 8 -mercaptoethanol.

2.4.3 Native PAGE

Non-denaturing PAGE on 5% tube gels was carried out by the method of 

Davis (1964) at 4°C. Samples were incubated with l-50mM DTT on ice for 1 h prior 

to loading and the gel was electrophoresed for 30 min prior to loading the sample.

Native PAGE on Phastgels was carried out in the same manner, with a 4- 

15% gradient slab gel using native buffer strips.

Following electrophoresis the gel was stained for protein with Coomassie 

Brilliant Blue G-250 (2.5.1) or silver stain (2.5.2), or for shikimate dehydrogenase 

activity using the nitroblue tetrazolium dye-linked method (2 .6 ).
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2.5 Protein stains

2.5.1 Coomassie stain

Proteins on polyacrylamide gels were stained with 0.1% (w/v) Coomassie 

Brilliant Blue G-250 in 50% (v/v) methanol and 10% (v/v) glacial acetic acid, for 2 h. 

The gel was destained with 10% (v/v) methanol and 10% (v/v) acetic acid for protein 

visualisation.

2.5.2 Silver stain

Protein visualisation by the silver stain technique was adapted from the 

method of Wray e ta l.(1981) and is described below.

1. The polyacrylamide gel was fixed overnight in 50% (v/v) methanol.

2. 21ml of 0.36%(w/v) sodium hydroxide was mixed with 1.4ml of 

ammonium hydroxide.

3. Silver stain was freshly prepared by adding 4ml of a 20% (w/v) silver 

nitrate solution, dropwise, to the sodium hydroxide/ammonium hydroxide 

solution (2). This was diluted to 100ml to give a final concentration of

0 .8% (w/v) silver nitrate.

4. The gel was soaked for 15 min in freshly prepared silver stain

5. The gel was washed for 1 h in distilled water.

6 . Developer (prepared freshly immediately prior to use) consisted of 120pl 

of 1M citric acid and 250jxl of 38% (v/v) formaldehyde, made up to 500ml 

with distilled water. The gel was soaked in developer and the reaction was 

stopped with several washes in distilled water after the protein bands had 

developed.

7. The gel was stored in 10% (v/v) acetic acid, 45% (v/v) methanol to 

prevent further development of the stain.

Protein on Pharmacia Phastgels were stained with Coomassie Brilliant Blue or 

silver stain according to the manufacturers instruction manual.
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2.6 Shikimate DH activity stain

2.6.1 Renaturation of protein after SDS PAGE

SDS PAGE for the subsequent renaturation of protein is described in

Section 2.4.2. The gel was renatured according to the method of Anton (1985):

1. The gel was soaked at room temperature over a 7-12 h period in 3 x 330ml 

of 50mM-sodium phosphate buffer pH7.0, containing ImM-DTT, O.lmM- 

EDTA and 0.1% (v/v) Triton X-100.

2. The gel was incubated for a further 12 h with 3 x 330ml of 50mM-sodium 

phospate buffer pH7.0, containing ImM-DTT and O.lmM-EDTA (without 

Triton X-100).

3. The gel was soaked 2 x 250ml of lOOmM Tris/HCl pH8.8 to remove DTT.

4. The gel was then stained for shikimate DH activity.

2.6.2 Shikimate DH activity stain

The shikimate DH activity of protein following SDS PAGE (2.4.2 ) and 

native PAGE (2.4.3) was visualised by the triazolium dye-linked method, adapted by 

Lumsden and Coggins (1977).

Native gels were washed in lOOmM-Tris/HCl pH8.8 (100ml) for at least 

1 h. prior to staining to remove DTT. Protein was renatured after SDS PAGE as 

described above in Section 2.6.1.

The gel was soaked in 250mM-Tris/HCl pH8.8 containing 0.5mM- 

NADP+, 0.5mM-shikimic acid, 0.5mg/ml nitroblue tetrazolium and 5|ig/ml 

phenanzine methosulphate (20ml total volume). This was incubated in the dark until 

black bands corresponding to shikimate DH activity developed. The reaction was 

stopped with several washes in distilled water.
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2,7 Immunoblot

2.7.1 Electroblotting

The protein on polyacrylamide gels was electrophoretically transferred to 

nitrocellulose using a Bio-Rad Trans-blot cell by the method of Towbin eta l (1979).

Blot transfer buffer: 42.8g glycine

9.1g Tris

0.8g SDS

600ml methanol, made up to 3 litres with 

distilled water.

The blotting sandwich was assembled in the following order from the 

anode, ensuring that no bubbles were present:- sponge : filter paper : nitrocellulose : 

membrane : g e l : filter paper : sponge. The blotting sandwich was placed in the 

blotting apparatus in blot transfer buffer with the nitrocellulose membrane closest to 

the anode. Protein from the gel was transferred at 70 volts for 4 h onto nitrocellulose 

in this manner.

2.7.2 Immuno-stain

The cross-reaction of AROM with polyclonal antibodies raised against 

N. crassa AROM was carried out by the method of Batteiger e ta l . (1982) and is 

described below:

1. Following electroblotting of protein from the gel unoccupied binding sites 

on the nitrocellulose were blocked overnight by incubation with 0.5% 

(v/v) Tween 20 in Blot Incubation Buffer (BIB) made up of 0.24% (w/v) 

Tris with 0.88% (w/v) sodium chloride pH7.2.

2. The blot was incubated for 90 min while shaking in BIB with 0.5% (v/v) 

Tween containing 5% (v/v) normal donkey serum and 1% (v/v) anti- 

AROM.
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3. The blot was washed for 4 x12  min with BIB containing 0.5% (v/v) 

Tween, then transferred to BIB without Tween for a 12 min wash.

4. The blot was incubated in BIB containing 5% (v/v) normal donkey sera 

and 0.2% (v/v) donkey anti-rabbit peroxidase conjugate for 90 min.

5. It was then washed for 5 x 12 min with BIB.

6 . The horse raddish peroxidase was detected by immersing the blot in 50ml

of lOmM-Tris/HCl pH7.5, containing 30mg of chloronapthol in 10ml 

methanol, and 150pl of 4% (v/v) hydrogen peroxide. The reaction was 

stopped by flushing the blot with distilled water.

2.7.3 Amido black protein stain

Protein was stained directly on nitrocellulose membranes with 0.1% (w/v) 

amido black in 5% (v/v) acetic acid for 1 min. It was destained for protein 

visualisation with 45% (v/v) methanol and 5% (v/v) acetic acid.

2.8 Electroblotting of protein onto PVDF membrane after SDS PAGE for

N-terminal sequence determination

2.8.1 Electrophoresis conditions

All the solutions used in this procedure were made with de-ionised, 

Millipore filtered water.

SDS PAGE was carried out by the method of Laemmli (1970) as 

described in Section (2.4.1) using a Biorad mini-gel system. The gel was aged at 

room temperature overnight and electrophoresis proceeded as described below:

1. Protein samples were mixed with SDS PAGE sample buffer and boiled for

2 min.

2. Glutathione was added to the upper tank running buffer to a final

concentration of 50jiM, and the gel was pre-electrophoresed for 60 min to

remove any free radicals from the gel which might damage the protein.
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3. The pre-run electrophoresis buffer was decanted and the reservoirs were 

filled with fresh buffer. 0.1 mM final concentration of sodium 

thioglycollate (free radical scavenger) was added to the upper reservoir 

buffer.

4. The protein sample was loaded and the electrophoresis was carried out as 

normal.

2.8.2 Electroblotting

All the solutions used in this procedure were made with de-ionised, 

Millipore filtered water. The electroblotting buffer was lOmM-CAPS (3- 

[cyclohexylamino]-l-propanesulfonic acid) in 10% methanol, titrated to pH 11.0 with 

2M-NaOH.

The PVDF membrane was cut to the size of the gel and soaked in 100% 

methanol for a few minutes, rinsed with 50% methanol, then transferred to 

electroblotting buffer. The gel was soaked in electroblotting buffer for 5 min to 

reduce theTris and glycine content of the gel.

The electroblotting was otherwise carried out as described in Section 2.7.1 

at 250V, at room temperature, for 3 h 20 min.

The PVDF membrane was washed with de-ionised water prior to staining. 

The gel was stained with Coomassie Brilliant Blue G-250 (2.5.1) in order to estimate 

the protein transferred onto the membrane.

2.8.3 Amido black stain for protein visualisation prior to N-terminal 

sequence analysis

All the solutions used in this procedure were made with de-ionised, 

Millipore filtered water.

The PVDF membrane was stained with 0.1% (w/v) amido black, 1% (v/v) 

acetic acid and 40% (v/v) methanol. The amido black was dissolved in methanol for 

60 min. Acetic acid was added and the solution was made up to volume with water.
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After stirring for 60 min the solution was filtered and ready for use. The procedure 

for staining the PVDF membrane for protein visualisation is described below:

1. The washed PVDF membrane was saturated in 100% methanol for a few 

seconds.

2. It was then stained for 1 min with amido black stain.

3 The PVDF membrane was destained with several changes of de-ionised

water.

4. It was hung to dry.and stored in a sealed container.

The PVDF membrane was sent for N-terminal sequence determination at 

the Aberdeen Amino Acid Sequencing Facility. The protein bands were cut from the 

PVDF membrane and analysed on a Pulsed-liquid sequencer.

2.9 Enzvme assays

2.9.1 General method

Enzyme assays were monitored at 25°C with either a Gilford/Unicam 

model 2600 or a Philips PU 8720 UV/VIS spectrophotometer. All the enzyme assays 

were carried out according to the method of Coggins et al (1987a). Enzyme rates 

were calculated subtracting any blank rate in the absence of substrate.

2.9.2 DHO synthase assay

DHQ synthase was assayed in the forward direction through coupling with 

dehydroquinase to produce 3-dehydroshikimate. The enzyme was assayed 

continuously in lOOmM-potassium phosphate buffer pH7.0, 40|iM-NAD+, 200jlM- 

DAHP, lOOpM-zinc sulphate and 0.6 U E. coli dehydroquinase. The formation of 3- 

dehydroshikimate was measured as an increase in absorbance at 234nm [E234nm=l-2 

x lO^M^cm-1].
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2.9.3 DHOase assay

DHQase was assayed directly by following the formation of 3- 

dehydroshikimate. The activity was assayed continuously in lOOmM-potassium 

phosphate buffer pH7.0, with 100jiM-3-dehydroquinate and the increase in 

absorbance at 234nm was monitored [E234nm=l-2 x K ^M ^cm -1].

2.9.4 Shikimate DH assay

Shikimate DH was assayed in the reverse direction at high pH measuring 

the formation of NADPH. The assay was carried out in lOOmM-sodium 

carbonate/bicarbonate pH 10.6 with 2mM-NADP+ and 4mM-shikimic acid. The 

enzyme was assayed as an increase in absorbance at 340nm [E34onm=

6.3 x lCPMScm'1].

2.9.5 Shikimate kinase assay

Shikimate kinase was assayed in the forward direction by coupling the 

production of ADP to pyruvate kinase and lactate dehydrogenase and following the 

resulting decrease of NADH. The enzyme was assayed in 50mM-triethanolamine 

pH7.0 containing 500mM-KCl, 25mM-MgCl2, 200fi.M-NADH, lmM- 

phosphoenolpyruvate, 2.5mM-ATP, ImM-shikimic acid, with 3.5U of pyruvate 

kinase and 5U of lactate dehydrogenase. The enzyme activity was monitored by 

following the decrease in absorbance at 340nm [E34onm=6.22 x lO^M^cm"1].

2.9.6 EPSP svnthase assay

EPSP synthase was assayed in the reverse direction by using pyruvate 

kinase and lactate dehydrogenase to measure the phosphoenolpyruvate produced. 

The enzyme was assayed in lOOmM-potassium phosphate buffer pH7.0, containing 

2 .5mM-MgCl2, 100pM-NADH, 2.5mM-ADP+, 50}iM-EPSP, with 3.5U of pyruvate
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kinase and 5U of lactate dehydrogenase. The assay was measured as the decrease in 

absorbance at 340nm as NADH is oxidised [E34onm=6.22 x 103M - 1cm-1].

2.10 Limited proteolysis of native protein

2.10.1 Proteinase stock solutions

The proteinase stock solutions used in the limited proteolysis study 

(Section 4.7) are described below and were taken from Flannery etal. (1989):

Proteinase Stock solution

Trypsin 1 mg/ml in ImM-HCl with 20mM-CaCl2,

stored at -20°C.

Chymotrypsin 1 mg/ml in ImM-HCl, stored at -20°C.

Subtilisin lOmg/ml in distilled water.

Thermolysin lOmg/ml in 20mM-CaCl2, stored at

-20 °C.

Proteinase K lOmg/ml in 50mM-Tris/HCl pH8.0, with

lmM-CaCl2, stored at 4°C.

2.10.2 Conditions for proteolysis of native AROM

AROM was digested at a concentration of 200|lg/ml, with proteinase at 

25°C. Protein was removed during the digestion and the appropriate proteinase 

inhibitor was added to stop the proteolysis. This mixture was stored on ice while 

enzyme assays were conducted. The protein was denatured by boiling in SDS PAGE 

sample buffer and subsequently analysed by SDS PAGE. The buffers used for each 

individual digestion experiment are described in Section 4.7.

Specific requirements for the activation of individual proteinases, as well 

as the proteinase inhibitors used, are described below:
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Trypsin:

Chymotrypsin:

Subtilisin:

Thermolysin: 

Proteinase K:

Inhibited with a 3-fold molar excess of lima bean proteinase 

inhibitor.

Inhibited with a 3-fold molar excess of lima bean proteinase 

inhibitor.

Stock was diluted 10-fold in 2mM-Ca2+ to activate the proteinase. 

Inhibited with 1.15mM-PMSF.

Inhibited with 5mM-EDTA.

Stock was diluted 10-fold with digestion buffer containing lmM- 

CaCl2, to activate the proteinase.

2.11 Growth of S. cerevisiae

2.11.1 Minimal medium (GYNB)

The recipe for yeast minimal growth medium is described below, and the 

medium was sterilised by autoclaving at 5psi:

2% glucose

0.65% yeast nitrogen base (YNB)

2.11.2 Rich medium (YEPD)

The recipe for rich yeast growth medium is described below, and was 

sterilised by autoclaving at 5psi:

1% Bacto-yeast extract 

2% Bacto-peptone 

2% glucose

(2% Bacto-agar for plates)
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2.11.3 SCGluc-trp plates

SCGluc-trp is a selective medium which was used to ensure the retention 

of plasmid Yep52g:AR01 in S. cerevisiae strain BJ1991. (The plasmid contains 

TRP1). The protocol for making the medium is described below:

Supplements A

10ml of 1.2mg/ml adenine sulphate 

5ml of 2.4mg/ml L-histidine HC1 

5ml of 2.4mg/ml L-methionine 

5ml of 3.6mg/ml L-leucine 

5ml of 3.6mg/ml L-lysine-HCl 

10ml of 6mg/ml L-glutamic acid 

5ml of 45mg/ml L-serine

Supplements B

15ml of 4mg/ml L-asparagine

Agar:

Broth:

5ml of 2.4mg/ml uracil 

5ml of 2.4mg/ml L-arginine-HCl 

20ml of 0.9mg/ml L-tyrosine 

5ml of 3.6mg/ml L-isoleucine 

10ml of 3mg/ml L-phenylalanine 

5ml of 18mg/ml L-valine

5ml of 24mg/ml L-threonine

300ml of a 4% suspension of Oxoid No. 1 agar in water. 

60ml of lOx Yeast nitrogen base (filter sterile)

60ml 20% glucose (autoclaved)

65ml distilled H 2O

15ml total volume Supplements A

The pH was adjusted to 6.4.

The agar and broth solutions were autoclaved for 20 min, and when they had 

cooled somewhat supplements B were added. The broth and agar solutions were 

mixed and plates were poured in a laminar flow hood.
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2.11.4 Yeast preservation mixture

The yeast preservation mixture described below was used for the long 

term storage of S. cerevisiae:

2X medium 6.3g K 2HPO4

1.8g KH2PO4 

0.45g trisodium citrate 

0.09g M gS04.7H20  

0.9g ammonium sulphate 

200ml glycerol

This was made up to 500ml with distilled water and autoclaved. One 

volume of preservation mixture was added to an S. cerevisiae overnight culture in 

YEPD, and mixed. This was frozen with dry ice/ethanol, and stored at -80°C.

2.11.5 Growth conditions for S. cerevisiae

An 150ml overnight culture was innoculated from a single colony and 

grown with vigorous aeration on an orbital shaker at 30°C. This was used to 

inpoculate 3 litres of medium in a 10 litre flask which was stirred vigorously and 

pumped with a forced draught of air at 30°C. The absorbance at 600nm was 

monitored and a growth curve constructed. Cells were harvested by centrifugation at 

4, 500g at 4°C, washed with chilled distilled water, then re-pelleted by centrifugation. 

Harvested cells were stored frozen at -20°C or -80°C.

2.11.6 Growth conditions for S. cerevisiae BJ1991 containing the plasmid 

Yep52g:ARQl for the overproduction of AROM

S. cerevisiae BJ1991 transformed with Yep52g:AR01 were grown on rich 

medium (YEPD) to A600=1.0 at 30°C. AROM induction was achieved by the 

addition of CUSO4 to a final concentration of 20|iM, and the cells were cultured for a 

further 3 h before harvesting.
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2,12 Growth of A. nidulans

2.12.1 Aspergillus minimal medium (AMM)

The recipe for Aspergillus minimal medium is described below:

This was made up to 1 litre after adjusting the pH to pH6.5 with sodium 

hydroxide. It was autoclaved at 15psi.

2.12.2 Medium for the growth of Aspergillus nidulans R153 and 1314

The recipe for the minimal growth medium used for the growth of 

A. nidulans R153 and 1314 is described below:

Trace element solution:

5mg (NH4)6Mo7O24.10H2O 

The trace element solution was made up to 100ml with water and adjusted to 

pH2 to dissolve the salts. It was then filter sterilised.

6g sodium nitrate 

0.52g KC1 

1.52g KH2P 0 4

lOOmg FeS 04.7H20  

880mg Z nS 04.7H20  

40mg C uS04.5H20  

15mg M nS04. 4H20  

lOmg NaB4O 7.10H 2O

Pyridoxine: A 50mg/ml stock solution was autoclaved.

M gS04: Filter sterilised 25% (w/v) stock solution.

Quinate A 20% (w/v) stock solution was adjusted to pH6.5 with sodium 

hydroxide and autoclaved at 15psi.
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Medium: 400ml of AMM with 8ml of 20% (w/v) glucose (filter sterile),

0.8ml 25% (w/v) MgS0 4 , 0.4ml pyridoxine stock solution and 

0.4ml of trace element solution.

For agar plates 6g of agar was added to 400ml of AMM and autoclaved. 8ml 

of 20% (w/v) glucose, 0.8ml 25% (w/v) MgSC>4, 0.4ml pyridoxine stock solution and 

0.4ml of trace element solution were added to partially cooled medium.

2.12.3 Spore Growth

The Tween-saline solution was used to liberate A. nidulans spores from 

the mycelia.

Tween-saline: 0.8% (w/v) NaCl

0.025% (v/v) Tween 20 

This was autoclaved at 15psi.

A loop of Tween-saline solution was used to collect spores from a single 

plate colony of A. nidulans. The spores were streaked on plates of minimal medium 

with the appropriate supplements (2.12.2) and grown inverted at 37°C.

For the large scale production, spores from a single colony were collected 

on a loop of Tween-saline and transferred to an Eppendorf tube containing the same 

solution. The spores were pelleted using a microfuge and excess liquid was removed. 

The remaining spore suspension was spread evenly over an agar plate using a glass 

spreader. This was incubated upside down at 37°C for 3-4 days. The yield was 

approximately 3x l08 spores/plate

2.12.4 Harvesting spores

Tween-saline solution was added to the top of the agar plate covered in 

mycelia and the spores were loosened using a sterile cell scraper (normally used for 

animal cell culture). The spore suspension was collected in a sterile universal
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container and centrifuged at 3,000 rpm on a Beckman model TJ-6 in order to 

concentrate the spores. The top layer of Tween-saline solution was replaced with 

lOmM-potassium phosphate buffer pH7.2. This process was repeated several times to 

replace all the Tween-saline solution with phosphate buffer. The spore solution is 

stable for 1 month at 4°C.

2.12.5 Estimation of spore numbers

The relationship between the number of spores and the absorbance at 

500nm is linear, and the spore concentration was estimated knowing that A500 = 0.4 

is equal to 3 x 106 spores/ml.

2.12.6 Growth conditions for A. nidulans 1314: Method 1

The method of growth for AROM induction in A. nidulans 1314 was also 

used for the growth of R153 (since it was only grown for comparative analysis).

Aspergillus minimal medium supplemented with 0.4% (w/v) glucose,

0.05% (w/v) MgS0 4 , 0.1% (v/v) trace element solution and 0.05% (w/v) pyridoxine, 

was innoculated 1 x 106 spores/ml This was grown with vigorous aeration at 37°C for 

17 h. Mycelia were harvested by filtration through muslin, washed with room 

temperature distilled water then transferred to minimal medium with 0 .1% (w/v) 

quinate, 0.2% (v/v) glycerol, 0.1% (v/v) trace element solution, 0.05% (w/v) MgSC>4 

and 0.05% (w/v) pyridoxine for a further 5 h growth at 37 °C with aeration. Mycelia 

were harvested by filtration and washed with distilled water.

Small scale production was carried out in 2 litre baffled flasks on an 

orbital shaker, each with 500ml of medium. Harvested mycelia were stored at -80°C.

Large scale production of mycelia were carried out in 10 litre flasks, each 

with 2 litres of medium, stirred vigorously and pumped with a forced draught of air. 

Harvested mycelia were lyophilised then t>oken into a fine powder in a Waring 

blender and stored at -80°C.
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2.12.7 Growth conditions for A. nidulans : Method 2

The above method of growth was used for AROM induction in A. nidulans 

strain 1314.

The second method of A. nidulans growth was adopted later in the study 

and involved the construction of a growth curve on medium supplemented with 

glucose:

Construction of an A. nidulans growth curve

Mycelia growth in minimal medium with glucose was monitored by 

following the depletion of glucose. The glucose concentration was determined by the 

GOD-Perid method in which the oxidation of glucose by glucose oxidase is used to 

elicit a measureable colour change. 200pi samples of appropriate dilution were added 

to 5ml of GOD-Perid solution, shaken, and incubated at room temperature in the dark 

for 25 min. A blank was prepared using 200|il of distilled water, and a standard with 

glucose solution of known concentration was similarly incubated with GOD-Perid 

solution. The absorbance was measured at 610nm and the glucose concentration 

calculated according to the following equation:

Asample x 0.505 x N (mM), where N is the dilution

^standard factor

In this way growth curves for Aspergillus were constructed.

Growth conditions

Minimal medium with 0.4% (w/v) glucose, 0.1% (v/v) trace element 

solution, 0.05% (w/v) MgSC>4 and 0.05% (w/v) pyridoxine was innoculated with 

1 x 106 spores/ml. Mycelia were grown in 2 litre baffled flasks on an orbital shaker 

with 200ml of media per flask. Growth was monitored by the measurement of 

glucose concentration in the media by the GOD-Perid method described above. Log
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phase cells were harvested by filtering through muslin, washed with distilled water 

and transferred to minimal medium with 0.2% (w/v) quinate, 0.2% glycerol, 0.1% 

(v/v) trace element solution, 0.05% (w/v) MgS0 4  and 0.05% (w/v) pyridoxine, for a 

further 7 h growth. Mycelia were harvested by filtration and washed with distilled 

water, then lyophilised until dry. The cells were broken into a fine powder in a 

Waring blender and stored at -80°C.

2.12.8 Long term storage of Aspergillus nidulans

A. nidulans strains were stored on silica for long term storage, as described

below:

1. Sterile glass universal containers were half-filled with silica gel granules. 

These were heated in an oven overnight at 180°C with tinfoil covers.

They were allowed to cool and covered with lids that had been autoclaved.

2. Reconstituted non-fat dried milk (Marvel) was autoclaved.

3. 1ml of milk was added to an agar slope of A. nidulans, and vortexed to 

create a spore suspension.

4. 0.5ml of the spore suspension was added to the universal container with 

the silica gel, pipetting it evenly over the silica granules. This was left on 

ice for 10 min to dissipate the heat from the reaction.

5. The A. nidulans viability was tested after 5-7 days storage at room 

temperature. The universal containers were taped up in an air tight 

container with humidity indicating silica gel and stored at 4°C.
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Chapter 3 Purification of AROM from Saccharomyces cerevisiae

3.1 Introduction

3.1.1 Aims

The original objective of the project was to purify and characterise AROM

from S. cerevisiae. This was intended to complement the concurrent work of Dr. L. 

Graham in our laboratory who was studying AROM domain expression in E. coli and

S. cerevisiae (see 1.7.5). This would allow a comparative study to be made between 

functional fragments of AROM and the intact protein.

The chapter describes the steps developed for the purification of AROM 

from S. cerevisiae and the anti-proteinase strategies adopted as it became apparent 

that endogenous proteinases were a major problem. During the development of the 

purification scheme, L. Graham successfully overexpressed AROM in S. cerevisiae 

using a ubiquitin fusion vector, and the purification and characterisation of AROM 

from this strain is described in Section 3.5.

3.1.2 General strategy for the purification of AROM from S. cerevisiae

Proteolysis was a very serious problem in the purification of AROM from

N. crassa and it was some time before a protocol was developed which resulted in the 

purification of intact AROM (see 1.6.2). Proteolysis is also known to be a serious 

problem in protein purification from S. cerevisiae and has led to many proteolytic 

artefacts, such as 'isoenzymes', being isolated and reported (Pringle, 1975).

Therefore, right from the start of AROM purification from S. cerevisiae the proteinase 

inhibitors EDTA, benzamidine, PMSF and leupeptin were included in the buffers 

wherever possible.

The intact AROM purified by Boocock (1983) from N. crassa was found 

to lose DHQ synthase and EPSP synthase activity. The purification scheme was 

modified, to optimise the co-purification of all five AROM activities, when it was 

discovered that DHQ synthase is a metallo-enzyme (Lambert etal., 1985). The EPSP
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synthase activity was also found to be very sensitive to oxidation (Boocock, 1983; 

Coggins et al., 1987a). The buffers used in the purification were supplemented with 

zinc for the DHQ synthase activity and 8-mercaptoethanol was regularly added for the 

EPSP synthase activity. Using this approach the five AROM enzymes co-purified 

with a constant activity ratio. At this preliminary stage in the development of an 

AROM purification scheme for S. cerevisiae the buffers were supplemented with 

DTT to act as a reducing agent but not zinc because the initial emphasis was on the 

purification of unproteolysed AROM. It was hoped that a purification protocol would 

be developed producing intact AROM which could later be optimised for each of the 

individual AROM activities. Hence, only one AROM activity was followed during 

the purification.

The activity ratio of a multifunctional protein can be used to compare the 

individual component activities of the protein. It can give an indication of the 

integrity of a protein by comparing the activity ratio in crude extract with that of a 

purified sample, such as has been done for N. crassa AROM. As mentioned above 

for N. crassa AROM, all five AROM activities co-purified with a constant activity 

ratio (Boocock, 1983; Lambert etal., 1985; Coggins eta l., 1987a). However, things 

are not always as straightforward. In some cases the activity ratio might alter during 

the purification of a protein because of the loss of an inhibitor of one of the activities. 

Thus, one must be careful not to read too much into activity ratio values. The 

DHQase activity of N. crassa AROM was found to be the most stable AROM activity 

and was given the arbitrary value of 100 (Boocock, 1983; Lambert e ta l., 1985; 

Boocock etal., 1987a). Therefore, in keeping with this precedent, the S. cerevisiae 

AROM activities were also standardised against the DHQase activity. In Chapter 4, 

the activity ratio of A. nidulans AROM has been normalised against both the 

shikimate DH and shikimate kinase activities (see 4.2.4 and 4.6.5).
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3.2 Exploratory steps for the purification of AROM from S. cerevisiae

3.2.1 Introduction

The AROM gene, A R O l, was originally cloned from the haploid, wild- 

type S. cerevisae strain S228C by Larimer etal. (1983). It was subsequently 

sequenced by Duncan et a l.(1987), and the subunit molecular weight of the protein 

was estimated to be 175kDa. This clone was used by L. Graham for AROM domain 

expression studies. Therefore, the initial attempts to purify naturally expressed 

AROM were from strain S288C. This section describes the purification steps 

developed and the anti-proteinase strategies adopted.

3.2.2 Preliminary purification of AROM from S. cerevisiae S288C

During the purification of AROM from S. cerevisiae, the DHQase activity 

was monitored for several reasons. It is easy to assay and, at least in the case of 

N. crassa AROM, it is the most stable activity (Boocock, 1983). Yeast do not have a 

quinate utilisation pathway (Berlyn & Giles, 1972) such as that found in fungi (Rines 

etal., 1969; Hawkins etal. ,1982a; Hawkins et al., 1982b) and therefore do not 

possess a catabolic DHQase activity which might complicate the assay. Later in this 

Section (see 3.2.8 and 3.3.3) I switched to assaying the shikimate DH activity for the 

routine monitoring of AROM during protein purification. Shikimate DH is also 

easily assayed and has the advantage over DHQase in S. cerevisiae that the assay is 

more sensitive due to a higher specific activity (see 3.3.2).

The proteinase inhibitor leupeptin is extremely expensive and, although 

this is not ideal, it was only used in the initial stages of purification and when the 

protein was in a concentrated state. It was not included in dialysis buffers.

All steps were carried out at 4°C unless otherwise stated. Protein samples 

were taken during the purification and stored at -20°C for protein determination and 

analysis by SDS PAGE. The buffers used in the purification are described in Figure 

3.1.
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Buffer A lOOmM-Tris/HCl pH7.5, containing 0.4mM-DTT, 5mM- 

EDTA, 1.2mM-PMSF, 2mM-benzamidine and 10|lM- 

leupeptin.

Buffer B

Buffer C

Figure 3.1

50mM-Tris/HCl pH7.5, containing 0.4mM-DTT, 5mM- 

EDTA and 2mM-benzamidine.

20mM-potassium phosphate buffer pH6.5, containing 

0.4mM-DTT, 5mM-EDTA, 2mM-benzamidine and 

l|lM-pepstatin A.

Buffers used in the purification of AROM from S. cerevisiae
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3.2.3 Cell Growth

S. cerevisiae S288C was grown according to the method described in 

Section 2.11.6, on minimal medium (GYNB) at 30°C until the A6oo reached 10. 

Harvested cells were stored at -20°C.

3.2.4 Extraction

Cells were suspended in 3 volumes of buffer A, and broken by 3 passages 

through a French pressure cell (6550kPa). The cell debris was removed by 

centrifugation at 100, OOOg for 2 h.

3.2.5 Ammonium sulphate fractionation

The initial ammonium sulphate cut was 0-30% saturation. AROM was 

found to precipitate in the 30-50% saturation range. Pelleted protein was resuspended 

in buffer B containing lOpM-leupeptin and 1.2mM-PMSF and dialysed overnight into 

buffer B containing 1.2mM-PMSF. The ammonium sul-phate fractionation yield 

varied between 56% and 81% in three separate experiments with between 2- and 12- 

fold purification. As much as 65% of this activity was lost during dialysis.

Figure 3.2 shows the ammonium sulphate fractionation of AROM from

S. cerevisiae S288C analysed by SDS PAGE and stained with silver for protein 

visualisation. The gel shows the protein present in each of the ammonium sulphate 

fractions. There are no high molecular weight proteins in the sample lanes and no

protein of the expected subunit molecular weight of AROM (175kDa). The gel also

required an apparently massive protein loading for protein visualisation. Clearly 

extensive proteolysis has occurred since no high molecular weight species remain in 

the samples. Some of the proteolysis may have occurred during the preparation of 

protein samples for SDS PAGE. It is known that some proteinases are activated in 

SDS, and a gradual increase in heat as the protein samples are boiled in SDS PAGE 

sample buffer facilitates rapid protein degradation. This phenomenon produces
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Figure 3.2 SDS PAGE analysis of ammonium sulphate fractionation of
AROM from S.cerevisiae S288C

Protein samples were taken containing during ammonium sulphate fractionation of 
AROM from S. cerevisiae S288C and stored at -20°C. The protein concentration was 

determined by the method of Bradford (1976). Protein samples were analysed by SDS 
PAGE on a 7% gel and stained by silver for protein visualisation.

M molecular weight markers: 205kDa, 116kDa,
97.4kDa, 66kDa and 45kDa.

Lane 1. clarified extract, 26pg protein.
Lane 2. 0-30% saturation (NH4)2S0 4  supernatant, 28(ig

protein.
Lane 3. 0-30% saturation (NH4)2S0 4  pellet, 24|ig

protein.
Lane 4. 30-50% saturation (NH4)2S0 4  supernatant,

47p.g protein.
Lane 5. 30-50% saturation (NH4)2804  pellet, 50pg

protein.
•V >"So7.

Lane 6 . dialysedAsaturation (NH 4)2804  pellet,
73pg protein.
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proteolytic artefacts with S. cerevisiae proteins and results in a similar gel to that 

observed in Figure 3.2 (Pringle, 1976; North, 1989). So, protein samples taken 

during the purification of AROM were mixed immediately with SDS PAGE sample 

buffer and plunged into a boiling water bath for 5 min. This should immediately 

inactivate the proteinases and prevent proteolytic artefacts being produced during the 

denaturation process. The boiled protein samples were stored at -80°C along with 

separate samples taken for protein determinations.

3.2.6 Chromatography of AROM on mono O

A mono Q FPLC anion exchange chromatography column (HR5/5 or

10/10) was equilibrated at room temperature in buffer B. The buffer did not contain

PMSF because it has a short half-life at room temperature. There was also the worry 

that it would precipitate in the buffer during the chromatography and block the 

column. AROM was loaded at lml/min and the protein concentration in the eluent 

was allowed to fall to zero. AROM was eluted with a continuous linear gradient of 0- 

350mM-NaCl in buffer B (Figure 3.3). AROM eluted between 185mM and 215mM- 

NaCl in buffer B with the peak fraction eluting at 200mM-NaCl in buffer B. The 

yield for this step ranged, in four separate experiments, between 51% and 68% with a 

6- to 18-fold purification. AROM was dialysed into buffer B containing 1.2mM- 

PMSF, however, as much as 66% of the activity was lost on dialysis.

3.2.7 Superose gel filtration chromatography of AROM

A Superose 6 FPLC gel filtration column was equilibrated in buffer B at 

room temperature. AROM was loaded at 0.3rnl/min and 0.9ml fractions were 

collected. No DHQase activity was detected in the column eluent. Purified 

N. crassa AROM was applied to both Superose 6 and Superose 12 FPLC 

chromatography columns under identical conditions, however, no DHQase 

activity was detected in the eluent. In later attempts, S. cerevisiae AROM again 

failed to elute from Superose gel filtration columns. Superose gel filtration was
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Figure 3.3 Chromatography of A R O M  on mono Q

A mono Q (HR5/5) FPLC anion exchange column was equilibrated in buffer B, at 

room temperature. Filtered sample was loaded, then washed with buffer B at lml/min 

until the A28O had fallen to zero. AROM was eluted with a continuous linear gradient 
of 0-350mM-NaCl in buffer B and 0.5ml fractions were collected. The remaining 
protein was eluted with a steeper continuous linear gradient of 350mM-lM-NaCl in 
buffer B.

The protein concentration was monitored continuously at 280nm during the 
chromatography and the DFlQase activity of the individual fractions was assayed. The 

figure also shows the salt gradient.
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therefore abandoned as a purification step for S. cerevisiae AROM. It was later 

discovered that other groups within the department routinely added 200mM-KCl to 

their buffers to prevent protein binding to the column. A . nidulans AROM was 

successfully eluted from Superose gel filtration media when 200mM-KCl was added 

to the buffer (see 4.3.8 and 4.6.2).

3.2.8 Chromatography of AROM on Cibacron Blue F-3GA coupled to

Sepharose 4B

The dye binding column, Blue Dextran Sepharose was used as the final 

step in the purification of AROM from N. crassa and the resulting AROM 

preparation was purified 680-fold compared to the starting material (Boocock, 1983). 

The Blue Dextran Sepharose used for the purification of N. crassa AROM was 

Cibacron Blue F-3GA coupled to Sepharose 4B by the method of Ryan & Vestling 

(1974). It was thought likely that S. cerevisiae AROM would also be successfully 

purified on this dye column. For the purification of S. cerevisiae AROM Cibacron 

Blue F-3GA coupled directly to Sepharose 4B (without Dextran)was used.

The AROM pool from mono Q anion exchange chromatography was 

dialysed into 30mM-KCl in buffer B containing 1.2mM-PMSF and ljiM-pepstatin A. 

The pepstatin A was added in later purification schemes as a proteinase inhibitor and 

is described in Section 3.3.1. The Cibacron Blue F-3GA column was equilibrated 

with 30mM-KCl in buffer B containing 1.2mM-PMSF and lp.M-pepstatin A and 

AROM was loaded at 5ml/h. Figure 3.4 shows the elution profile for AROM. The 

column was washed with a salt step of 0.5M-KC1 in buffer B containing 1.2mM- 

PMSF and lpM-pepstatin A. There was no further protein elution with 1.0M-KC1 in 

buffer B. AROM started to elute from the column with a salt step of 1.5M-KC1 in 

buffer B containg 1.2mM-PMSF and lpM-pepstatin A and the remaining AROM was 

desorbed with 2.0M-KC1 in buffer B. The protein concentration of the pooled protein 

was too low to be determined. The AROM eluting from the blue dye column when 

wild-type S. cerevisiae was used for the purification, was only visualised after SDS
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Figure 3.4 Chrom atography of AROM  on Cibacron Blue F-3GA

A 2ml column of Cibacron Blue F-3GA on Sepharose 4B, in a 2ml disposable 

syringe, was equilibrated with 30mM-KCl in buffer B containing 1.2mM-PMSF and 

lpM-pepstatin A. Sample was loaded at 5ml/h and washed with equilibration buffer 

until the A28O had dropped to zero. The column was washed with 0.5M-KC1 in buffer 

B containing 1.2mM-PMSF and lpM-pepstatin A until the A 28O had fallen. It was 

then washed with 1.0M-KC1 in buffer B containing 1.2mM-PMSF and lpM-pepstatin 

A but no further protein was eluted. AROM was eluted with 1.5M-KCI in buffer B 

containing 1.2mM-PMSF and lpM-pepstatin A. 0.6ml fractions were collected and 

the protein concentration was measured at 280nm. The shikimate DH activity of 

individual fractions was assayed.
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PAGE when the protein was lyophilised to concentrate it. A typical AROM 

preparation after chromatography on Cibacron Blue analysed by SDS PAGE is shown 

later in Figure 3.6. The AROM yield in this case was 60% and analysis of the elution 

profile shows that it had been purified significantly. On dialysis 70% of the shikimate 

DH activity was lost and only 6% of the protein eluted from the column was 

recovered after vacuum dialysis to concentrate the protein. The massive activity loss 

on dialysis did not necessarily result from proteolysis but may have been due to the 

very dilute protein 'sticking' to the dialysis tubing. This can be a severe problem 

when dealing with such small quantities of protein. It can be overcome by coating the 

dialysis tubing, and other vessels that the protein is in contact with, in BSA.

However, this contaminates the protein and must be removed later if pure protein is 

required.

The DHQase activity could not always be detected on elution from the 

Blue dye column because of the low levels of AROM remaining at this stage in the 

purification. The shikimate DH activity of S. cerevisiae AROM has a higher specific 

activity than DHQase (see 3.3.2) and can be detected at very low levels when the 

DHQase activity cannot. Therefore, the shikimate DH rather than DHQase activity 

was monitored during subsequent AROM purifications.

3.3 Anti-proteinase strategies adopted for the purification of AROM from

S. cerevisiae

3.3.1 General measures

The massive activity losses, thought to be due to endogenous proteinases, 

which occured during the purification of AROM from S. cerevisiae, made progress 

very slow. Several general measures were introduced in an attempt to reduce the 

effects of proteinases in the extracts and also to reduce the proteinase levels 

themselves.
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The proteinase inhibitor pepstatin A inhibits some aspartic proteinases 

such as the vacuolar proteinase yscA of S. cerevisiae. The inhibitor was added to all 

the buffers used in the purification, at a concentration of lfiM.

Breaking yeast cells with a French pressure cell was found to be very time 

consuming and it was difficult to maintain a low temperature in the pressure cell. The 

extraction was made faster by reducing the volume of extraction buffer to one volume 

rather than three volumes. The extract was also centrifuged for 1 h rather than 2 h to 

remove cell debris to reduce the processing time of the crude extract. As I have 

already described in Section 3.2.5, protein samples were taken during AROM 

purification for SDS PAGE analysis, and boiled immediately in SDS PAGE sample 

buffer. This ensured that the^proteinase inhibitors in the sample were still active in 

the samples dkxrwc, proVe w\ ,

Attempts were made to minimise the levels of proteinase production in 

S. cerevisiae by several means. The levels of proteinase production in S. cerevisiae 

are lower in cells grown on rich medium rather than minimal medium (Pringle, 1975; 

Jones, 1991). Also, with the exception of carboxypeptidase yscY, the levels of 

vacuolar proteinases increase as the cells reach the stationary phase of growth (Jones, 

1991). Section 3.3.2 examines the levels of AROM production in S. cerevisiae grown 

on minimal and rich media. A growth curve was constructed and cells in the log 

phase of growth were harvested in order to reduce proteinase levels. The purification 

of AROM from an S. cerevisiae strain which lacks four vacuolar proteinases is 

described in Section 3.3.3. Section 3.3.4 describes the use of a 'negative' anion 

exchange chromatography column which it was hoped might remove some 

proteinases. This later strategy had proved useful during the purification of AROM 

from A. crassa (Lumsden & Coggins, 1977).
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3.3.2 Comparison of AROM activity levels in S. cerevisiae S288C grown on

rich and minimal medium

The levels of AROM production were examined at different stages of 

growth on both minimal and rich (YEPD) medium.

Figure 3.5(a) shows that the optical density of stationary phase 

S. cerevisiae grown in rich medium is more than double that of cells grown in 

minimal medium. At point (1) on the growth curve, after 8.5 h growth, the optical 

density of the cells grown on the rich medium was 3.6-fold higher than those grown 

on minimal medium. Therefore the yield of S. cerevisiae is, as expected, is greater 

when the cells are grown on rich medium. The figure also shows that the cells 

previously grown on minimal medium to an A 500 of 10 had already reached the 

stationary phase of growth. Figure 3.5(b) shows the shikimate DH and DHQase 

activity levels of AROM from S. cerevisiae S288C during both the log phase and the 

stationary phase of growth on both rich and minimal medium. The figure shows that 

the shikimate DH activity is much higher than the DHQase activity. This is very 

different from the levels found in N. crassa and A. nidulans AROM which show a 

DHQase:shikimate DH activity ratio of 100:266 in the former (Boocock, 1983) and 

100:117 in the latter (Table 4.4). The activity ratio in crude extract in this experiment 

varies between 100:560 to 100:2200. The variability is probably due to error because 

of the very low activity levels in crude extract. It is quite clear, however, that the 

shikimate DH activity is substantially higher compared to DHQase than in N. crassa 

and A. nidulans. This is discussed further in Chapter 5.

Figure 3.5(b) also shows that the specific activities of the 

AROM enzymes from S. cerevisiae S288C grown on minimal medium, to the mid­

log phase of growth, are higher than those from cells harvested at the stationary phase 

of growth and those from cells grown on rich medium. For cells grown on minimal 

medium the shikimate DH activity decreases 4-fold between the log phase of growth 

and approaching stationary phase. For cells grown on rich medium, the shikimate DH 

activity apparently increases in the stationary phase of growth compared to the log
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Figure 3.5 Comparison of the AROM activity levels in 5. cerevisiae
S288C grown on minimal and rich medium

(a) 'Growth curve1

Overnight cultures of S. cerevisiae S288C were used to innoculate one flask 
containing minimal medium and another containing rich (YEPD) medium (see 2.11.1 

and 2.11.2). The yeast were grown dk 30°C with vigorous stirring and pumped air.
The absorbance at 600nm was measured at regular intervals during the growth and the 

figure shows the A6oo plotted on a logarithmic scale versus the time after 
innoculation. 50ml aliquots were taken at intervals during the growth and centrifuged 
at 35,000g for 10 min at 4°C, washed with distilled water and re-pelleted. The cells 

were stored at -20°C. The points during the growth of yeast where these samples were 
taken are numbered and are shown on Figure (a).

(b) 'DHQase and shikimate DH activity levels'

Yeast samples were taken during the exponential phase of growth described in part 
(a) above (labelled 1 in Figure (a)) and on entering the stationary phase of growth 
(labelled 2 and 3 in Figure (a)). The cells were resuspended in a total volume of 1.5ml 
of buffer A and broken by 3 passages through a mini French pressure cell (6550kPa). 
The extracts were centrifuged for 30 min at 4°C using a microfuge, and the 
supernatants were assayed for both DHQase and shikimate DH activity. The protein 
concentration was determined by the method of Bradford (1976).

The figure shows the shikimate DH and DHQase activity levels in extracts from 
S. cerevisiae S288C grown on minimal and rich medium.
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phase, although the effect is not as pronounced, and the DHQase apparently decreased 

although the DHQase activity was difficult to detect in crude extracts.

The AROl gene encoding AROM in S. cerevisiae has been shown to be 

under the general amino acid control system found in yeast (Duncan etal., 1988).

The general control system is described in Section 1.3. Duncan etal. (1988) showed 

that the levels of AROM transcription increased on derepression, and the DHQase 

and shikimate DH specific activities increased 2 to 3-fold. There is a mistake in the 

printed DHQase specific activities reported by Duncan eta l., (1988) which are 1000- 

fold too high.

The rich medium used for S. cerevisiae growth contains peptone and 

amino acids and these repress the levels of transcription of the enzymes under general 

control. Hence, the levels of AROM production in cells grown on rich medium are 

lower than the levels in cells grown on minimal medium during the logarithmic phase 

of growth. The levels of AROM production, from the specific AROM activities, had 

fallen by the time the cells grown on minimal medium were approaching the 

stationary phase of growth. The shikimate DH and DHQase specific activities fell 

3.9-fold and 2.8-fold respectively between the logarithmic phase of growth on 

minimal medium and the stationary phase. The apparent difference between the two 

activities is probably due to the low DHQase activities in the crude extracts.

Although the levels of AROM production are lower in cells grown on rich 

growth medium, the cell yield is higher than on minimal medium. For the rest of this 

study S. cerevisae was grown on rich growth medium to the mid-log phase of growth 

to minimise proteinase levels in the cells.

The purification of AROM from S. cerevisiae S288C grown in this new 

way made no noticeable difference to the stability of AROM during the purification. 

The new growth regime was kept but it was clear that other anti-proteinase strategies 

had to be adopted in order purify AROM from S. cerevisiae. One approach was to 

purify AROM from a strain of S. cerevisiae which lacks several vacuolar proteinases.

68



3.3.3 Purification of AROM from S. cerevisiae strain ABYS106 lacking several 

vacuolar proteinases

S. cerevisiae strain ABYS106 was the gift of Dr. M. Stark (University of 

Dundee) and lacks four vacuolar proteinases: proteinase yscA, proteinase yscB, 

carboxypeptidase yscY and carboxypeptidase yscS. A growth curve was constructed 

with cells grown on rich medium and after large scale growth, ABYS106 cells were 

harvested at the mid-log phase. The cells were stored at -20°C. No pepstatin A was 

used at this stage in the development of the purification scheme.

19.6g wet weight of cells were broken and AROM was purified by 

ammonium sulphate fractionation, M ono Q anion exchange chromatography and 

Cibacron blue chromatography as described in Sections 3.2.4, 3.2.5, 3.2.6 and 3.2.8 

respectively. Only a tiny amount of AROM eluted from the Blue dye column and this 

was lyophilised for visualisation by silver staining of a gel after SDS PAGE

The DHQase activity apparently increased to 133% of the starting activity 

on ammonium sulphate fractionation. The reason for this is unclear, although it is 

possible that an inhibitor of the DHQase activity had been removed during the 

fractionation. There was a large activity loss when the ammonium sulphate 

precipitated protein was dialysed and only 39% of the starting activity remained.

This was reduced to 6% of the starting activity after chromatography on M ono Q. No 

DHQase activity was found in fractions eluted from the Cibacron Blue dye column, 

but two fractions which were eluted with 1.5M-KC1 in buffer B were found to have 

shikimate DH activity. This is consistent with the observation, discussed above, that 

the shikimate DH specific activity is much higher in S. cerevisiae than the DHQase 

specific activity. The specific activity (shikimate DH) of the protein apparently fell 

during the purification.

The analysis of the AROM fractions from M ono Q anion exchange 

chromatography and Cibacron Blue chromatography by SDS PAGE is shown in 

Figure 3.6. The major high molecular weight protein observed on the gel in the 

Cibacron Blue fractions runs in the correct position for AROM (175kDa). The gel
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Figure 3.6 SDS PAGE analysis of AROM purified from
S. cerevisiae ABYS106

Samples of protein were taken during the purification of AROM from S. cerevisiae 
ABYS106 and boiled immediately in SDS PAGE sample buffer, then stored at -80°C. 
Protein from the Cibacron Blue dye column was very dilute and was lyophilised to 
concentrate the protein. There was only sufficient lyophilised protein to analyse by 
SDS PAGE and not enough for a protein determination. The protein concentration in 

the mono Q eluent fractions were estimated from the trace of A28O which was 
measured continuously during chromatography on mono Q. Re-boiled samples were 
analysed by SDS PAGE on a 7.5% Phastgel and the protein was visualised by the 
silver stain method.

Lane 1. 
Lane 2. 
Lane 3. 
Lane 4. 
Lane 5.

M Molecular weight markers: 205kDa, 116kDa, 
97.4kDa, 66kDa and 45kDa, 0.3pg protein, 

mono Q side fraction, 0.3jng protein, 
mono Q pool, 0.2pg protein.
Cibacron Blue fraction.
Cibacron Blue fraction.
N. crassa AROM, 0.03ug protein.
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apparently shows that AROM has been greatly purified by Cibacron Blue 

chromatography. There are several lower molecular weight proteins also present, the 

most prominent at 105kDa and 63kDa.

Using the proteinase deficient strain did not lead to a better recovery of 

AROM activity. The massive DHQase activity losses were similar to those observed 

when AROM was purified from the wild-type strain S288C. It is possible that some 

other proteinases present in S. cerevisiae have been overproduced to compensate for 

the loss of the four vacuolar proteinases. Many of the S. cerevisae proteinases were 

not discovered until proteinase deficient strains were isolated (Suarez Rendueles & 

Wolf, 1988). Since there was no apparent improvement in AROM stability during the 

purification from the proteinase deficient strain further studies were resumed on the 

wild-type strain, S288C.

3.3.4 'Negative1 anion exchange chromatography of S. cerevisiae AROM on

DE52

L Chromatography of AROM on DE52

The major breakthrough in the purification of intact AROM from 

A. crassa was the use of 'negative' chromatography on DE52: AROM does not bind 

to the column while four endogenous proteinases do bind (Lumsden & Coggins, 

1977). It seemed possible that such a chromatography step might also remove 

S. cerevisiae proteinases from the extract. Because all other methods had failed to 

alleviate the proteinase problem the approach was tried with S. cerevisiae.

The conditions for binding of S. cerevisiae AROM to DE52 anion 

exchange medium were determined. A clarified S. cerevisiae S288C cell extract was 

applied to a DE52 anion exchange column equilibrated in buffer B containing 

1.2mM-PMSF and l|LiM-pepstatin A. AROM was eluted with a continuous linear 

gradient of 0-300mM-KCl in buffer B containing 1.2mM-PMSF and ljiM-pepstatin 

A. The elution profile is shown in Figure 3.7. AROM eluted between 55mM and 

120mM-KCl with the peak fraction at 65mM-KCl in buffer B. For 'negative'
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Figure 3.7 Chromatography of AROM on DE52

S. cerevisiae S288C was extracted into 2 volumes of buffer A containing lpM- 
pepstatin A by 3 passages through a French pressure cell (6550kPa) and centrifuged 
at 100,000g for 60 min. The supernatant was loaded onto a 10ml DE52 anion 
exchange column (22mm diameter) which had been equilibrated in buffer B 
containing 1.2mM-PMSF and l{iM-pepstatin A at 4°C. The column was run at 
lml/min and 1.5ml fractions were collected. The column was washed in buffer B 
containing 1.2mM-PMSF and ljiM-pepstatin A until the A 28O had fallen. AROM 
was eluted with a continuous linear gradient of 0-300mM-KCl in buffer B containing 
1.2mM-PMSF and lpM-pepstatin A and the individual fractions were assayed for 

shikimate DH activity. The protein concentration was measured at 280nm and the 
conductivity of fractions was also monitored.
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chromatography of AROM on DE52, 75mM-KCl in buffer B was selected. Some 

AROM binds to the column under these conditions, however, in this preliminary 

experiment it was decided to sacrifice yield in the hope of achieving stability.

2. AROM purification, from S. cerevisiae S288C. incorporating negative

anion exchange chromatography on DE52

66g of S. cerevisiae S288C (which had been grown on rich medium to 

mid-log phase) were suspended in 1 volume of buffer A containing ljiiM-pepstatin A. 

Cells were broken by 3 passages through a French pressure cell (6550kPa) and the 

broken cells were centrifuged at 100,000g for 2 h.

A 200ml (7.5cm diameter) DE52 anion exchange column was equilibrated 

with 75mM-KCl in buffer B containing 1 jaM-pepstatin A. The column was flushed 

with one column volume of 75mM-KCl in buffer B containing lpJM-pepstatin A and 

fresh PMSF immediately prior to loading the sample. The conductivity of the 

clarified yeast extract was adjusted to that of 75mM-KCl in buffer B, which had been 

used to equilibrate the DE52 column, by the addition of 3M-KC1. The extract was 

then loaded onto the column and 14ml fractions were collected. Fractions containing 

shikimate DH activity were pooled.

The AROM pool was precipitated by treatment with 30-50% saturation 

ammonium sulphate. Dialysed AROM was further purified by chromatography on 

mono Q as described in Section 3.2.6.

There was a 64% recovery from the 'negative' column with 1.3-fold 

purification. The yield had fallen to 33% after ammonium sulphate fractionation with 

a 2.6-fold purification. After chromatography on mono Q the yield was 12% with a 

9.6-fold purification which was further reduced to 7% after dialysis. The protein 

eluted from Cibacron Blue was too dilute for the protein concentration to be 

determined and the yield was reduced to 5%.

AROM was loaded onto Cibacron Blue as described in Section 3.2.8. A 

salt wash of 1.0M-KC1 in buffer B containing ljaM-pepstatin A and 1.2mM-PMSF
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was used without a wash of 0.5M-KC1 in buffer B. AROM eluted from the column 

even although it had remained bound in a previous experiment at this salt 

concentration (see 3.2.8). The salt concentration was increased to 2M-KCI in buffer 

B to remove the remaining AROM, resulting in 81% recovery from this column. The 

Cibacron Blue chromatography was later discarded from the purification scheme of 

AROM because of irreproducible results in several experiments (see 3.5.1). Such 

irreproducible results were also observed in the purification of AROM from 

A. nidulans 1314 (see 4.3.6).

The 'negative' chromatography on DE52 did not appear to improve the 

stability of AROM in the preparation and the massive activity losses were probably 

due to the combination of the delay caused by the extra step early in the purification, 

and to the large activity loss on the 'negative' column itself which greatly reduced the 

amount of AROM for the subsequent purification steps. The 'negative' 

chromatography was abandoned as an anti-proteinase measure.

3.3.5 Summary

The purification of AROM from wild-type S.cerevisiaae was severely 

hampered by great activity losses at every stage in the purification. The initial 

activity losses, at least, are thought to be due to endogenous S. cerevisiae proteinases. 

Later in the purification, when the protein concentrations were extremely low, the 

activity losses may also be accounted for by adsorption of the protein to dialysis 

tubing and any vessels which the protein was in contact with. Several measures were 

taken to try and reduce the proteinase effects and these are summarised below:-

1. Use of proteinase inhibitors: EDTA, PMSF,benzamidine, leupeptin and 

pepstatin A.

2. S. cerevisiae cells used in the purification of AROM were grown to the 

■ mid-log phase of growth on rich medium to minimise proteinase levels.

3. Use of S. cerevisiae ABYS106, which lacks several vacuolar 

proteinases, for the purification of AROM.
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4. Use of a 'negative' chromatography step in an attempt to remove

proteinases from crude extract.

Application of the first two measures slightly improved the recovery of 

AROM activity during the purification from wild-type S. cerevisiae cells. The last 

two measures did not improve recovery and the problem of activity loss was clearly 

not solved by these anti-proteinase strategies.

By this time Dr L. Graham in our group had developed a ubiquitin fusion 

vector capable of overexpressing AROM in S. cerevisiae. The next section describes 

the purification of AROM from this overproducing strain.

3.4 Overexpression of S. cerevisiae AROM

3.4.1 S.cerevisiae AROM overproducer strain

The overexpression of yeast AROM as a ubiquitin fusion protein is 

described in Graham etal. (1993). The plasmid Yep52g:AR01 expresses ubiquitin 

fused to the amino-terminus of AROM. An endogenous yeast proteinase cleaves the 

ubiquitin rapidly from such fusion proteinsm vivo to yield active protein in its native 

form except when proline is the first residue of the guest protein (Bachmair etal., 

1986; Butt et al., 1988; Sabin etal., 1989). The fusion protein is placed under the 

control of the CUP1 promoter which is the copper-inducible promoter of yeast 

metallothionein (Butt etal., 1988). This allows the controlled expression of the 

fusion protein when copper is added to the yeast growth medium. The 

overexpression of several proteins which are not native to yeast has been shown to 

have been enhanced by expression as a ubiquitin fusion protein in S. cerevisiae (Ecker 

e ta l., 1989). The plasmid containing a copper inducible fusion protein was the kind 

gift of Dr. Tauseef Butt (Smith Kline and French, Pennsylvania).

The expression vector Yep52g:AR01 was transformed into

5. cerevisiae strain BJ1991 which lacks proteinase yscB and has reduced levels of 

proteinase yscA, carboxypeptidase yscY and aminopeptidase yscl. Although the use
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of S. cerevisiae ABYS106, which lacks several vacuolar proteinases, had failed to 

improve the purification of AROM (see above) it was decided that this new low 

proteinase strain was worth investigating.

The AROM produced as a result of the cleavage of ubiquitin differs from 

wild-type AROM in that it contains an amino-terminal methionine which is normally 

removed co-translationally from yeast proteins that have valine as their second residue 

(Tsunasawa et a l ., 1985; Huang et al., 1987). AROM expressed as a ubiquitin fusion 

protein would be expected to retain methionine at the amino-terminus.

3.4.2 Level of AROM overexpression in S. cerevisiae BJ1991

transformed with Yep52g:ARQl

In order to determine the level of AROM overexpression in S. cerevisiae 

BJ1991 transformed with Yep52g:AR01 growth curves were constructed for strain 

BJ1991 with and without the expression vector. This allowed determination of when 

copper should be added to the growth medium for the 3 h induction of AROM. It was 

important to ensure that harvested cells would still be in the logarithmic phase of 

growth. These experiments led to AROM transcription being induced with lOOjiM 

copper sulphate, when the A600 reached between 1 and 2. The cells were grown for a 

further 3 h prior to harvesting.

Table 3.1 shows the specific activities for each of the five individual 

AROM activities in strain BJ1991, with and without, the expression vector. It also 

shows the level of overexpression achieved in the overexpression strain for each 

individual activity. The level of AROM overexpression ranges from 12-fold for the 

DHQ synthase activity to 78-fold for EPSP synthase. The variable levels of 

overexpression observed between each of the activities are probably attributable to the 

low levels of activity in the untransformed strain, and the high background rates 

observed. The most reliable indicators of the level of overexpression are the DHQase 

and shikimate DH activities which show 27- and 30-fold overexpression respectively. 

Dr Graham obtained comparable overexpression values of 22-fold and 34-fold for
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Table 3.1 Comparison of AROM activities in S. cerevisiae BJ1991
with and without plasmid Yep52g:AR01

S. cerevisiae BJ1991, and BJ1991 transformed with Yep52g:AR01 were grown at 
30°C in YEPD growth medium on an orbital shaker and grown to A6oo=1.4. CUSO4 

was added to each flask to a final concentration of lOOpM, and the cells were grown 
for a further 3 h. Cells were harvested at 4°C by centrifugation, washed with cold 
distilled water, and repelleted. The S. cerevisiae were stored at -80°C.

cells
A

0.5g of BJ1991, with and without Yep52g:AR01, were resuspended in lOOmM- 
Tris/HCl pH7.5, containing 5mM-EDTA, 1.2mM-PMSF, 2mM-benzamidine, 10pM- 
leupeptin, lpM-pepstatin A and 1.4mM-8-mercaptoethanol. An equal volume of 
glass beads was added, and cells were broken by vortexing for 3 x 30 s. Each extract 
was clarified by a 15 min spin in a cold room microfuge. Extracts were assayed in 
quadruplicate for each of the five individual AROM activities as described in Section 
2.9 (zinc sulphate was added to the DHQ synthase assay buffer to a final 
concentration of lOOpM). The protein concentrations were determined by the method 
of Bradford (1976).

The table shows the five AROM activities for S. cerevisiae BJ1991 with and without 
the plasmid Yep52g:AR01 and the activity ratio for each standardised against the 
DHQase activity. The table also shows the level of AROM overexpression in strain 
B J1991 with the plasmid, compared to the strain without.
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BJ1991 BJ1991 with 
Yep52g:ARO!

over-
expression

(fold)

specific
activity
CU/me)

DHQase=100 specific
activity
(U/mg)

DHQase=100

DHQ
synthase*

0.00365 120 0.0437 53 12

DHQase* 0.00303 100 0.0819 100 27

shikimate
DHr

0.0275 907 0.812 1860 30

shikimate
kinase*

nd nd 0.0956 117 nd

EPSP
synthaser

0.00097 32 0.0761 93 78

nd = not determinable 
* assayed in the forward direction 
rassayed in the reverse direction
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DHQ synthase and DHQase respectively, with a final concentration of copper 

sulphate of 20|iM for AROM induction (Graham etcil., 1993). Over a period of time, 

results suggested that the concentration of copper ions in our distilled water was often 

sufficient for substantial (and in some cases, full) induction of the metallothionein 

promoter. The induction of AROM was, therefore, subsequently achieved by the 

addition of copper sulphate to a final added concentration of 20pM.

Table 3.1 also shows the activity ratios for both strains standardised 

against the DHQase activity. The activity ratio varies between the transformed, and 

untransformed yeast, and this is probably due to the inaccuracy in measuring wild- 

type activity levels already mentioned in this section. It is also possible that in the 

case of DHQ synthase, the lower activity in the overexpression strain might be due to 

the additional methionine at the amino-terminus of AROM not found in wild-type 

AROM (see 3.4.1). This might affect the DHQ synthase domain in such a way as to 

reduce its specific activity.

Dr. Graham observed a siimilar increase in DHQ synthase and DHQase 

activities when AROM was expressed as a fusion protein with ubiquitin, in a manner

such that ubiquitin is not readily cleaived from AROM. This shows that a construct 

which has ubiquitin fused to the N-terminus does not have a major effect on the 

AROM activity (Graham etal., 1993b- Dr Graham showed that AROM expressed 

from vector Yep52g:AR01 was slightly smaller than AROM produced from the 

vector in which ubiquitin is not readiily cleaved when analysed by SDS PAGE. This 

provided evidence for ubiquitin cleav/age.

3.5 Purification of AROM firom BJ1991 transformed with

Yep52g:ARQl

3.5.1 Introduction

A scheme was developed for the purification of AROM from the 

overexpression strain BJ1991 contaiming Yep52g:AR01. Q-Sepharose was used 

rather than mono Q, in order to scale up the preparation. Since the AROM activity
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was degrading rapidly despite all the measures previously introduced (see 3.3.5), it 

was decided to explore the use of other chromatographic steps which might alleviate 

the problem. Hydroxyapatite chromatography proved a useful purification step and 

appeared to stabilise AROM. Gel filtration on Sephacryl S-200 was introduced 

following hydroxyapatite chromatography and Cibacron Blue chromatography (3.3.4) 

was removed from the purification scheme because it gave variable results. Although 

it was a good purification step the yields were often low due to AROM .leacVvr^ from 

the column during the washes, and variability in the salt concentration at which 

AROM eluted. The development of the new purification scheme meant that the 

Cibacron Blue column became redundant.

3.5.2 Protocol for the purification of AROM from S. cerevisiae BJ1991 

transformed with Yep52g:ARQl

All steps were carried out at 4°C. The purification was followed by 

assaying the shikimate DH activity throughout the purification. Samples were taken 

during the purification for protein determination and stored at -80°C. Protein samples 

for analysis by SDS PAGE were boiled immediately in SDS PAGE sample buffer, 

then stored at -80°C.

Cell growth

S. cerevisiae B J1991 transformed with Yep52g:AR01 was grown on 

YEPD medium and AROM expression was induced for 3 h with 20|iM-copper 

sulphate, as described in 2.11.6. Washed cells were stored at -80°C.

Step 1 Extraction

52.3g wet weight of cells were resuspended in 1 volume of buffer A 

containing ljiM-pepstatin A, and broken by 3 passages through a French pressure cell 

(6550kPa). The cell debris was removed by centrifugation at 100,000g for 1 h.
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Step 2 Am m onium  sulphate fractionation

The initial ammonium sulphate cut was 0-30% saturation. AROM was 

precipitated with 30-50% saturation. Pelleted protein was resuspended into buffer B 

containing lOpM-leupeptin, lpM-pepstatin A and 1.2mM-PMSF. The protein was 

dialysed into 50mM-NaCl in buffer B containing l|iM-pepstatin A and 1.2mM- 

PMSF.

Step 3 O-Sepharose

The dialysed AROM sample was loaded onto a Q-Sepharose anion 

exchange column equilibrated in 50mM-NaCl in buffer B containing ljiM-pepstatin 

A. Figure 3.8 shows the elution of AROM with a continuous linear gradient of 50- 

500mM-NaCl in buffer B containing ljLiM-pepstatin A. AROM eluted in a double 

peak with the major peak eluting in lOOmM-NaCl and the minor peak at 150mM- 

NaCl in buffer B. Due to the massive activity losses observed in the purification of

S. cerevisiae AROM in the past it was decided to maximise the AROM yield, at this 

stage, and AROM was pooled across both peaks (fractions 42-47). The pooled 

AROM sample was dialysed into buffer C containing 1.2mM-PMSF.

Step 4 Hydroxyapatite chromatography

The dialysed AROM preparation was loaded onto an hydroxyapatite 

column equilibrated in buffer C. AROM was eluted with a continuous linear gradient 

of 20-500mM-potassium phosphate buffer pH6.5, containing 0.4mM-DTT, 5mM- 

EDTA, 2mM-benzamidine and ljiM-pepstatin A. The elution profile (Figure 3.9) 

shows a double AROM activity peak. The major and minor activity peaks eluted in 

150mM- and 230mM-potassium phosphate buffer pH6.5, respectively. During the 

protein loading and subsequent column wash, no protein eluted in four column 

volumes and the gradient was started. However, several fractions at the end of the 

wash, immediately prior to starting the gradient, were found to contain protein. This 

protein probably bound to the column with a low affinity and took some time to elute
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Figure 3.8 Chromatography of AROM on Q-Sepharose

A 50ml column of Q-Sepharose (22mm diameter) was equilibrated with 50mM-NaCl 
in buffer B containing ljiM-pepstatin A. AROM sample was loaded at 5ml/min and 
the column washed with equilibration buffer until the A 280 had fallen below 0.1. 
AROM was eluted with a continuous linear gradient of 50-500mM-NaCl in buffer B 
containing lpM-pepstatin A. 14ml fractions were collected and the shikimate DH 

activity of the individual fractions was assayed. The protein concentration was 
measured at 280nm and the conductivity was also monitored.
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Figure 3.9 Chromatography of AROM on hydroxyapatite

A 24ml column of hydroxyapatite (22mm diameter) was equilibrated with buffer C. 
The AROM sample was eluted with a 250ml gradient of 20mM (buffer C)-500mM- 
potassium phosphate buffer pH6.5. Fractions were collected of 4.8ml and the 
shikimate DH activity of individual fractions was assayed. The protein concentration 
was measured at 280nm.
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from the column during the wash period, so it would most likely have eluted from the 

column as soon as the salt gradient was started.

Protein from the AROM peaks was analysed by SDS PAGE and the 

fractions across the major peak were pooled and dialysed into lOOmM-Tris/HCl 

pH7.5, containing 0.4mM-DTT and 5mM-EDTA. The reason for the double peak is 

unclear, and the AROM appears the same after SDS PAGE except for the 

contaminants present (data not shown). It is possible that the minor peak represents 

the chromosomally encoded AROM which differs from the overexpressed AROM 

since it no longer has an amino-terminal methionine residue (see 3.4.1).

PMSF was not included in this purification step because it is extremely 

insoluble in these buffering conditions and blocks the column and tubing.

Step 5 Sephacrvl S-200 chromatography

The dialysed AROM preparation was concentrated using an Amicon 

centriprep 30 and loaded onto a Sephacryl S-200 gel filtration column equilibrated in 

lOOmM-Tris/HCl pH7.5, containing 0.4mM-DTT, 5mM-EDTA and 2mM- 

benzamidine. The elution profile (Figure 3.10(a)) shows a double peak of AROM 

activity. The individual fractions were analysed by SDS PAGE (Figure 3.10(b)) on 

which the protein was overloaded to allow visualisation of the minor polypeptides 

also present in the preparation. The peak fraction shows minor contaminants with 

molecular weights of 150kDa, 125kDa, 1 lOkDa, 69kDa and 52kDa. As the elution of 

AROM proceeded across the peaks there is an increase in 103kDa and 74kDa species. 

The reason for the double peak is unclear as both fractions contain high molecular 

weight species. The double AROM peak eluted over the same volume range as Blue 

Dextran on the same column showing it eluted in the void volume. The more detailed 

analysis of the individual AROM fractions eluted from Sephacryl S-200 

chromatography are described in Sections 3.5.4 - 3.5.7.
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Figure 3.10 Chromatography of AROM on Sephacryl S-200

(a) ’chromatography'

A 500ml column of Sephacryl S-200 (3cm diameter) was equilibrated in lOOmM- 
Tris/HCl pH7.5, containing 0.4mM-DTT, 5mM-EDTA and 2mM-benzamidine. 

AROM sample was loaded and the column was run at 6ml/h. 9.3ml fractions were 

collected and the individual fractions were assayed for shikimate DH activity. The 
protein concentration was measured at 280nm.

Fractions eluted during the chromatography of S. cerevisiae AROM on Sephacryl S- 
200 were boiled with SDS PAGE sample buffer and subjected to SDS PAGE on a 7% 
gel. Protein was stained with Coomassie Brilliant Blue G-250. The protein 
concentrations were determined by the method of Bradford (1976).

(b) 'gel'

M. molecular weight markers: 205kDa, 116kDa, 
97.4kDa, 66kDa and 45kDa.

N.
28.
29.
30.
31.
32. 

33

N. crassa AROM, 2|ig protein. 
S-200 fraction 28, 5jig protein. 
S-200 fraction 29, 14)ig protein, 
S-200 fraction 30, 13pg protein, 
S-200 fraction 31,7 jig protein. 
S-200 fraction 32, 6jig protein. 
S-200 fraction 33, 7|ig protein.
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Step 6 Storage

Each of the individual AROM fractions eluted from Sephacryl S-200 

chromatography were dialysed into 50% (v/v) glycerol in buffer B containing lOpM- 

leupeptin, 1 fiM-pepstatin A, 1.2mM-PMSF and 40|LtM-zinc sulphate. These fractions 

were stored at -20°C.

3.5.3 Analysis of the purification of AROM from S. cerevisiae BJ1991

transformed with Yep52g:AR01

The purification of AROM from S. cerevisiae BJ1991 transformed with 

Yep52g:AR01 is summarised in Table 3.2. In order to evaluate the purification 

scheme the table shows the purified AROM resulting from a pool of the major peak 

eluted from Sephacryl S-200 chromatography (fractions 28-31). AROM was purified 

30-fold with a 10% yield using this purification scheme. The same Sephacryl S-200 

pool (fraction 28-31) was also analysed by SDS PAGE, along with samples taken 

throughout the purification (Figure 3.11). The subunit molecular weight of the 

protein is estimated as 175kDa by SDS PAGE and the protein was found to co- 

migrate with N. crassa AROM. The polypeptide molecular weight of N. crassa 

AROM has previously been estimated as 165kDa (Lumsden & Coggins, 1977; 

Coggins & Boocock, 1986; Coggins et a l., 1987a). However, it is now believed from 

recent SDS PAGE results that N. crassa AROM is a 175kDa species. There are 

several minor species also present in the purified preparation which have been 

described already (see 3.5.2). The most prominent low molecular weight species are 

74kDa and 69kDa. Both the purification table and the gel show that Q-Sepharose 

proved a good purification step for AROM. However, there was a massive activity 

loss on dialysis of the Q-Sepharose pool. Analysis of the Q-Sepharose pool, before 

and after dialysis, by SDS PAGE (lanes 3 and 4 respectively, of Figure 3.11) did not 

reveal any apparent degradation products and the reason for the loss of activity during 

dialysis is not known.
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Step Volume
(ml)

Total
protein

(mg)

Shikimate DH 
Specific Total 
activity activity 
(U/mg) (U)

Purifi­
cation
(fold)

Yield
(%)

crude extract 72 3500 1.2 4162 1 100

30-50% (NH4)2S 0 4 
precipitate

54 1650 2.1 3420 1.7 82.2

Q-Sepharose 83 120 23.2 2870 19.5 66.8

Dialysed
Q-Sepharose

91 108 4.3 467 3.6 11.2

Hydroxyapatite 43 35 23.4 813* 19.7 19.5

Sephacryl S-200 37 11.6 35.9 416 30.2 10.0

*the increase in activity may be due to the removal of an inhibitor by the 
hydroxyapatite step, or may result from the refolding of reversibly denatured AROM.

Table 3.2 Scheme for the purification of AROM from S. cerevisiae
BJ1991 transformed with Yep52g:AR01

The purification of AROM from the S. cerevisiae overexpression strain was followed 
by assaying for shikimate DH activity. Samples were assayed immediately for 
enzyme activity and stored at -80°C prior to protein determination. Protein 
concentrations were determined by the method of Bradford (1976).



Figure 3.11 SDS PAGE analysis of the purification of AROM
from S. cerevisiae BJ1991 transformed with 

Yep52g:AR01

Samples were taken at each stage of the purification of AROM from S. cerevisiae 
BJ1991 transformed with Yep52g:AR01. The samples were boiled immediately in 

SDS PAGE sample buffer and stored at -80°C. The protein samples were subjected 
to SDS PAGE on a 10% gel. Protein was stained with Coomassie Brilliant Blue G- 

250 and protein concentrations were determined by the method of Bradford (1976).

M molecular weight markers: 205kDa, 116kDa,
97.4kDa, 66kDa, 45kDa and 29kDa.

Lane 1. clarified extract, 30pg protein.
Lane 2. dialysed 30-50% (NH4)2S0 4  pellet, 30|ig

protein.
Lane 3. Q-Sepharose pool, lOpg protein.

Lane 4. dialysed Q-Sepharose pool, lOfig protein.
Lane 5. dialysed hydroxyapatite pool, 5 fig protein.
Lane 6. Sephacryl S-200 pool, 5|ig protein.
Lane 7. N. crassa AROM, 2)LLg protein.
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Chromatography on hydroxyapatite also proved to be a good purification 

step, and was the only chromatographic step in any S. cerevisiae AROM purification 

scheme in which the AROM activity was stabilised. Following chromatography on 

hydroxyapatite the AROM preparation remained stable. AROM was later purified 

with hydroxyapatite as the first step in the purification scheme, in an attempt to 

stabilise the protein as early as possible in the purification, however, this failed to 

stabilise the AROM activity. When cells are broken open, at least in the case of 

proteinase yscA, ysc B, and carboxypeptidase yscY, the proteinases are known to 

complex with endogenous proteinase inhibitors (Jones, 1991). During protein 

purification the proteinase inhibitors may become dissociated and the proteinases 

activated (Jones, 1991; Pringle, 1975). It seems likely that during the purification of 

AROM on Q-Sepharose^ proteinases dissociate from their inhibitors giving rise to 

active proteinases. During the subsequent dialysis AROM is proteolysed. The 

proteinases are probably separated from AROM during chromatography on 

hydroxyapatite. This would explain why bringing the hydroxyapatite step forward in 

the purification scheme failed to remove the proteolytic activity affecting AROM.

One way to cut down the massive activity losses would be to reduce the dialysis time 

following Q-Sepharose chromatography. The large pool volume makes it difficult to 

desalt the protein quickly, although the volume could be reduced by concentrating the 

sample and then desalting it on an FPLC desalting column. Leupeptin was added to 

the Q-Sepharose pool but it was not used during chromatography. It is possible that 

the addition of leupeptin to the buffers used during Q-Sepharose chromatography and 

to the dialysis buffer may help to prevent proteolysis at this stage in the purification. 

Another possible solution to the problem is to try hydrophobic interaction 

chromatography, immediately following Q-Sepharose chromatography as a means of 

stabilising the AROM activity since this would not require the removal of salt from 

the AROM sample.

There was an apparent rise in shikimate DH activity resulting from 

chromatography on hydroxyapatite. This phenomenon has also been observed for the
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shikimate DH activity of A. nidulans AROM (Section 4.2.6). A possible explanation 

is that an inhibitor of the shikimate DH activity has been removed during 

chromatography on hydroxyapatite. Another explanation is that this C-terminal 

region of AROM is reversibly denatured during the early purification steps and has 

renatured during hydroxyapatite chromatography.

Chromatography on Sephacryl S-200 removed several low molecular 

weight contaminants from the AROM preparation and was, therefore, a useful step in 

the purification of AROM.

To allow a more thorough evaluation of the purification of S. cerevisiae 

AROM, each of the individual AROM activities would ideally be assayed throughout 

the purification. This is very time consuming and in a preparation where the activity 

is rapidly lost (such as this one) it is only feasible to follow a single activity in order 

to minimise the purification time.

3.5.4 Native PAGE analysis of AROM purified from S. cerevisiae BJ1991

transformed with Yep52g:AR01

The major and minor peak Sephacryl S-200 fractions collected during the 

purification of AROM from S. cerevisiae BJ1991 transformed with Yep52g:AR01 

(3.5.2) were analysed by native PAGE on a 4-15% gradient Phastgel. The major peak 

(fraction 29) and the minor peak (fraction 32) were run alongside N. crassa 

AROM and the samples were loaded in duplicate. Half the gel was stained for 

protein with Coomassie Brilliant Blue, while the other half was stained for shikimate 

DH activity (Figure 3.12). The N. crassa AROM preparation shows a low mobility 

protein species (lane 1), and many other high mobility polypeptides are 

shown to have shikimate DH activity (Lane 6). This suggests that the N. crassa 

AROM preparation, which had been stored in 50% (v/v) glycerol at -20°C and which 

was over a year old, had suffered from degradation. Analysis of the major 

S. cerevisiae AROM peak fraction eluted from Sephacryl S-200 chromatography 

showed a double protein band under native conditions with a less prominent higher
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Figure 3.12 Analysis of S. cerevisiae AROM by native PAGE

Individual Sephacryl S-200 fractions were collected during the purification of AROM 
from S. cerevisiae BJ1991 transformed with Yep52g:AR01, and dialysed into buffer 

B containing lOjiM-leupeptin, lpM-pepstatin A, 1.2mM-PMSF, 40|iM-zinc sulphate 
and 50% (v/v) glycerol, and stored at -20°C. Samples were loaded in duplicate onto a
4-15% gradient Phastgel and subjected to native PAGE. Following electrophoresis, 
half of the gel was stained for protein with Coomassie Brilliant Blue and the other 
half was stained for shikimate DH activity (see 2.6). Protein concentrations were 
determined by the method of Bradford (1976).

Protein stain Lane 1. N. crassa AROM, 0.27jig protein.
Lane 2. Sephacryl S-200 fraction 32, 1.9jug protein.
Lane 3. Sephacryl S-200 fraction 2 9 ,4.7|U.g protein.

Shikimate DH 
activity stain

Lane 4. Sephacryl S-200 fraction 29, 4.7pg protein.
Lane 5. Sephacryl S-200 fraction 32, 1.9pg protein.
Lane 6. N. crassa AROM, 0.27|Lig protein.
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mobility species also present (Lane 3). After staining for shikimate DH activity the 

two low mobility species can be seen to have shikimate DH activity and the lowest 

mobility protein appears to have the highest specific activity according to stain 

intensity. This high activity, low mobility protein migrates at a similar position to the 

intact A. crassa AROM suggesting that is intact yeast AROM. It is possible that the 

higher mobility species with shikimate DH activity are proteolysed AROM which 

retain shikimate DH activity under native conditions (i.e. 'nicked' AROM protein). It 

is very likely that 'nicked' AROM would occur as a complex under non-denaturing 

conditions; this complex would 'fall apart' when denatured. This explanation would 

account for some of the low molecular weight species observed when the AROM 

sample is analysed by SDS PAGE (Figure 3.10b). 'Nicked' species have been 

observed in the case of A. crassa AROM (Gaertner & Cole, 1977; Smith & Coggins, 

1983; Coggins et a l., 1985). It is also possible that the two species could represent 

ubiquitinated and de-ubiquitinated protein. However, this is unlikely because these 

species would be resolved on SDS PAGE and there is only one 175kDa species on the 

SDS PAGE gel (Figure 3.10b).

The second peak of S. cerevisiae AROM eluted from Sephacryl S-200 in a 

larger elution volume (fraction 32; see 3.5.2). It also shows the double shikimate DH 

activity band found in the major AROM peak (Lane 5). The protein stained sample 

shows many high mobility species, which do not have shikimate DH activity (Lane 

5), suggesting that this protein is degraded more than the major AROM peak fraction 

or contains several contaminants. Chromatography of these AROM samples on gel 

filtration media with a large enough pore size for good separation in the AROM 

molecular weight range would allow resolution of the different AROM species 

present. However, the results might not be straightforward to interpret because both 

A. crassa and A. nidulans AROM elute with higher apparent molecular weights than 

expected. A. crassa AROM has an anomalously high molecular weight of 530kDa in 

at least some HPLC gel filtration experiments (Coggins etal., 1985; Coggins &
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Boocock, 1986). AROM purified from A. nidulans 1314 eluted from an FPLC gel 

filtration column with an apparent native molecular weight of 410kDa (Section 4.6.6).

These experiments indicate that the purified AROM is proteolytically 

damaged. If the AROM protein is 'nicked', forming several lower molecular weight 

species during SDS PAGE, any polypeptides which contain the shikimate DH domain 

might renature following SDS PAGE as has been shown for N. crassa AROM 

(Coggins etal., 1985).The renaturation experiment is described in the next section.

3.5.5 Renaturation of shikimate DH activity following SDS PAGE of AROM

purified from S. cerevisiae BJ1991 transformed with Yep52g:ARQl 

AROM collected during the purification described in Section 3.5.2 was 

subjected to SDS PAGE in duplicate. The protein was renatured and half of the gel 

was stained for protein while the other half was stained for shikimate DH activity. 

Figure 3.13 shows that the high molecular weight species at 175kDa is capable of 

renaturing to form active shikimate DH and is AROM. The relative activity stain 

intensities indicate that, as with AROM purified from A. nidulans 1314 (data not 

shown), the S. cerevisiae AROM is not able to renature to form active shikimate DH 

as well as the N. crassa AROM. Figure 3.13 also shows that none of the lower 

molecular weight species present in the S. cerevisiae AROM preparation are able to 

renature to form active shikimate DH. There are several possible reasons for this. 

Possibilities, are that none of the lower molecular weight species contain the 

shikimate DH region of AROM, polypeptides containing the shikimate DH region are 

not able to renature, or that none of the lower molecular weight species are 

proteolysed AROM fragments.

Another way in which it is possible to show that polypeptides are 

proteolytic fragments of a protein is to show that they cross-react with antibodies 

raised against the intact protein and this is described in the next section.
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Figure 3.13 Renaturation of shikimate DH activity of S. cerevisiae
AROM following SDS PAGE

AROM from S. cerevisiae BJ1991 transformed with Yep52g:AR01, eluted during 
Sephacryl S-200 chromatography was subjected to SDS PAGE on a 7.5% Phastgel. 

Half of the gel was stained for protein with Coomassie Brilliant Blue, and the other 
half was renatured and stained for shikimate DH activity, as described in Section 2.6. 

The protein concentrations were determined bu the method of Bradford (1976)

Shikimate DH 
activity stain

Lane 1. N. crassa AROM, 0.27|Hg protein.
Lane 2. Sephacryl S-200 fraction 29, 5.8|Lig protein.
Lane 3. Sephacryl S-200 fraction 30, 5.4jig protein.

Protein stain Lane 4. Sephacryl S-200 fraction 30, 5.4|ig protein.
Lane 5. Sephacryl S-200 fraction 29, 5.8p,g protein.
Lane 6. Molecular weight markers: 205kDa, 116kDa,

97.4kDa, 66kDa and 45kDa.
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3.5.6 Immunoblot of AROM purified from S. cerevisiae BJ1991 transformed

with Yep52g:ARQl with anti-AROM antibodies 

AROM collected during the purification described in Section 3.5.2 was 

immunoblotted with polyclonal antibodies raised against N. crassa AROM in rabbit. 

The major (fraction 29) and minor (fraction 32) peak AROM fractions eluted from 

Sephacryl S-200 gel filtration chromatography (Figure 3.10) and the hydroxyapatite 

pool (Figure 3.9), were loaded onto the gel in duplicate alongside N. crassa AROM.

The immunoblot (Figure 3.14) shows that at least some of the antibodies 

cross-react with S. cerevisiae AROM as has been shown previously by Likidlilid 

(1989). They also cross-react with three low molecular weight polypeptides in the 

AROM samples of molecular weights 1 lOkDa, 103kDa and 69kDa. The 1 lOkDa and 

69kDa species were also observed when the Sephacryl S-200 fractions were analysed 

by SDS PAGE (Figure 3.10b). The banding pattern is possibly the result of 

proteolysis and is also seen in the hydroxyapatite pool suggesting proteolysed 

material was present at this stage in the purification.

3.5.7 Individual enzvme activities of AROM purified from 

S. cerevisiae BJ1991 transformed with Yep52g:ARQl 

AROM fractions eluted from Sephacryl S-200 chromatography during the 

purification described in Section 3.5.2 were stored in 50% (v/v) glycerol at -20°C. 

The 3 month old samples were assayed for each of the five individual AROM 

activities (Table 3.3). Part (a) shows the specific activities for each fraction. The 

specific activity is highest in the peak fraction (29) and a general deterioration is seen 

across the peak for all the activities. The decrease in specific activity of all the 

fractions compared to the peak fraction is similar for each of the five individual 

enzymes. The final AROM fraction (33) shows a 17-fold decrease in specific activity 

for each activity except for shikimate kinase which fell 30-fold.

A comparison of the shikimate DH specific activities with those in freshly 

purified material prior to dialysis into storage buffer, show that the three month old
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Figure 3.14 Immunoblot of AROM from S. cerevisiae with anti-
AROM antibodies.

Samples taken during the purification of AROM from S. cerevisiae BJ1991 

transformed with Yep52g:AR01were subjected to SDS PAGE on a 7% gel. Protein 
was electroblotted onto nitrocellulose and lanes 1-4 were stained with amido black for 
protein visualisation. Lanes 5-8 were probed with an antiserum raised against 

N. crassa AROM in rabbit. Bound antibodies were visualised using HRP-anti-rabbit 
conjugate. The colour was developed with chloronapthol and hydrogen peroxide as 
described in Section 2.7. The protein concentration was determined by the method of 

Bradford (1976).

Protein stain Lane 1. N. crassa AROM, 2.5)Lig protein.
Lane 2. Sephacryl S-200 fraction 32, 22|ig protein.
Lane 3. Sephacryl S-200 fraction 2 9 ,44jig protein.

Lane 4. hydroxyapatite pool, 30p,g protein.

Immunoblot Lane 5. N. crassa AROM, 0.25pg protein.
Lane 6. Sephacryl S-200 fraction 32, 22jig protein.
Lane 7. Sephacryl S-200 fraction 2 9 ,44pg protein.
Lane 8. hydroxyapatite pool, 30pg protein.

97



00

co

1 0

oo
CM



Table 3.3 Individual AROM activities of purified S. cerevisiae AROM
fractions eluted from Sephacryl S-200 chromatography

(a)'Specific activities'

AROM purified from S. cerevisiae BJ1991 transformed with Yep52g:AR01 was 
eluted from Sephacryl S-200 chromatography (Figure 3.10). The specific activities 
for each of the individual AROM enzymes was assayed in quadruplicate, as described 

in Section 2.9. The DHQ synthase, DHQase and shikimate kinase activities were 
assayed in the forward direction. The DHQ synthase assay buffer was supplemented 
with lOOjlM zinc sulphate. Shikimate DH and EPSP synthase activities were assayed 
in the reverse direction. The protein concentrations were determined by the method 

of Bradford (1976)

(b) 'Activity ratios'

The activity ratio for each of the individual AROM fractions eluted from Sephacryl 

S-200 chromatography shown in part (a) above, were standardised against the 

DHQase activity for each sample. The DHQase activity was given the arbitrary value 

of 100.
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(a) 'Specific activities'

Specific activity (U/mg) 

Fraction num ber

28 29 30 31 32 33

DHQ synthase' 1.6 1.94 1.38 0.869 0.497 0.112

DHQase' 1.3 3.19 2.55 1.62 0.565 0.187

shikimate D H r 16 52.8 39.4 19.2 8.75 1.77

shikimate kinase' 3.46 5.64 4.05 2.10 1.74 0.422

EPSP synthaser 3.30 5.54 3.01 2.85 1.3 0.338

(b) 'Activity ratios'

Activity ratio (DHQase=100)

Fraction num ber

crude

extract*

28 29 30 31 32 33

DHQ synthase' 53 123 61 54 54 62 60

DHQase' 100 100 100 100 100 100 100

shikimate D H r 1860 1230 1655 1549 1188 1087 946

shikimate kinase' 117 266 177 159 130 216 226

EPSP synthaser 93 254 174 118 146 162 181

'assayed in the forward direction 

'assayed in the reverse direction 

values taken from Table 3.1.
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preparation has retained between 22% and 183% of its original value. Fractions 28 

and 29 have 72% and 76% of their original activity, respectively, showing some 

activity loss on storage. In the case of fractions 30 and 31 the shikimate DH activity 

has risen on storage to 183% of its original value in the former, and 122% for the 

latter. It is possible that the C-terminal shikimate DH region of AROM was 

reversibly denatured and has renatured as discussed in Section 3.5.3, during storage. 

Fractions 32 and 33 have fallen to 22% and 32% of their original values respectively 

showing that the shikimate DH activity of the minor AROM peak eluted on Sephacryl

S-200 chromatography is less stable. However, these results do not tell us if this 

activity loss is selective for the shikimate DH activity alone , or whether it is a more 

general degradation of the whole protein.

The activity ratio for each of the fractions has been normalised against the 

DHQase activity and is shown alongside the activity ratio for AROM in crude extract 

(Table 3.3b). The activity ratios for the fractions are similar to one another and to the 

activity ratio in crude extract which is also shown. One might have expected to have 

seen a fall in the DHQ synthase activity since the buffers used in the purification were 

not supplemented with zinc. In the case of the purification of AROM from N. crassa 

it was not until the buffers were supplemented with zinc that AROM was isolated 

with full DHQ synthase activity (Lambert e ta l ., 1985; Coggins e ta l ., 1987). The 

DHQ synthase activity is still rather low compared to the activity found in crude 

extract of untransformed S. cerevisiae and a possible reason for this has been 

discussed in Section 3.4.2. The only Sephacryl S-200 fraction with an obviously 

different activity ratio is fraction 28 which is the AROM first eluted from the column. 

The activity ratio shows a higher DHQ synthase, shikimate kinase and EPSP synthase 

activities than the other fractions. The shikimate DH activity appears to have dropped 

in all the fractions and this may be due to proteolytic trimming of this carboxy- 

terminal domain by an exopeptidase which is not detectable by SDS PAGE. There 

was an apparent increase in shikimate DH activity during the purification (Table 3.2) 

so the decrease in shikimate DH activity may be an underestimate. The shikimate
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kinase and EPSP synthase activities appear to be slightly higher than those found in 

crude extract but it is possible that inhibitors of these activities have been removed 

during purification. The assays are also more accurate in purified protein due to the 

removal of background rates which interfere with the assay. Another possible reason 

for the increase in activity ratio of these enzymes is that the DHQase activity has been 

selectively inactivated, thus resulting in an apparent increase in other activities. The 

EPSP synthase activity of N. crassa AROM was found to be sensitive to oxidation 

(Boocock, 1983) but there was no apparent activity loss in this AROM preparation 

from S. cerevisiae.

Therefore, the activity ratio of the purified AROM is very similar to the 

activity ratio in crude extract and the activity is stable in 50% (v/v) glycerol at -20°C 

over this time period.

3.5.8 Summary

AROM has been purified from the overexpression strain S. cerevisiae 

BJ1991 transformed with Yep52g:AR01. The protein has been purified 30-fold with 

a 10% yield (Table 3.2). It runs as a 175kDa polypeptide on SDS PAGE with several 

lower molecular weight species also present (Figure 3.11). Two protein species were 

observed following native PAGE both of which had shikimate DH activity (Figure 

3.12), although only the major AROM polypeptide was able to recover shikimate DH 

activity following SDS PAGE (Figure 3.13). Three of the low molecular weight 

polypeptides in the preparation were shown to immunoblot with anti-AROM 

antibodies raised against N. crassa AROM (Figure 3.14). The second AROM peak 

which eluted from Sephacryl S-200 chromatography during the purification of AROM 

(see Figure 3.10) is thought to contain less intact protein, and the shikimate DH 

activity was lost more readily on storage at -20°C. This suggests that there was still a 

low level of proteinase present in the preparation. The purified protein was found to 

have all five AROM activities with an activity ratio similar to that observed in crude 

extract, suggesting that the enzyme activities have co-purified (Table 3.3).
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Attempts to reduce proteolysis of AROM during the purification by 

changing the column order were unsuccessful (3.5.3) and the only time that AROM 

activity was stabilised in any S. cerevisiae AROM preparation, was when it was 

purified according to the protocol described in Section 3.5.2. This AROM 

preparation could have been examined in more detail and the nature of the multiple 

species in the preparation studied more closely. The two species shown to have 

shikimate DH activity following native PAGE (Figure 3.12) should be separable by 

gel filtration or ion exchange chromatography. The purification could also be carried 

out more rapidly to avoid a long dialysis following Q-Sepharose chromatography. 

This should reduce the massive activity losses seen at this stage in the purification 

(see Table 3.2). The nature of the double activity peaks seen during chromatography 

of AROM on Q-Sepharose (Figure 3.8) and hydroxyapatite (Figure 3.9) could also be 

investigated. However, the general conclusion from this work is that even the 

purification of overproduced AROM from S. cerevisiae is very difficult. The material 

obtained was almost certainly partially proteolysed and detailed characterisation was 

not considered worthwhile.

3.6 Discussion

This chapter describes the steps investigated for the purification of AROM 

from S. cerevisiae. The problems encountered with rapid proteolysis of AROM in 

yeast extracts due to the presence of endogenous proteinases throughout the 

purification are discussed. Measures introduced in an attempt to minimise the effects 

of proteolysis are also described, however, it was not until AROM was purified by 

hydroxyapatite chromatography following chromatography on Q-Sepharose, that 

stabilised protein was produced. AROM was purified from S. cerevisiae BJ1991 

transformed with Yep52g:AR01 which overexpresses AROM as aubiquitin fusion 

protein.

The DHQ synthase domain has been implicated at the dimer interface in 

interallelic complementation studies of N. crassa AROM (see 1.7.1). If S. cerevisiae
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AROM proves to be a dimer like the N. crassa and A. nidulans proteins it would be 

interesting to see if a ubiquitin-AROM fusion protein with an altered ubiquitin 

sequence that is not cleaved, is able to dimerise since it is attached to the DHQ 

synthase region of AROM.

AROM purified from the S. cerevisiae overexpression strain was thought 

to be proteolysed during the purification summarised in Table 3.2, despite the 

introduction of several anti-proteinase measures. The very nature of AROM as a 

large protein makes it susceptible to proteolysis. The purified AROM could be 

characterised further, as mentioned in Section 3.5.8 and the nature of the multiple 

active species identified. However, the objective of this project was to purify intact 

AROM in order that it might be characterised for comparison with individually 

expressed AROM domains. Therefore, time was spent trying to solve the proteolysis 

problem and purifying intact AROM. All other purification attempts led to AROM 

preparations which rapidly lost activity. It was felt that the problems of proteolysis of 

AROM purified from S. cerevisiae BJ1991 transformed with Yep52g:AR01 

described in this chapter were not easily solved. S. cerevisiae AROM domain 

expression studies were also unsuccessful (Graham et al., 1993). However, the 

domain expression studies on A. nidulans AROM in the laboratory of Dr. A. Hawkins 

were progressing well, and J. Moore in his group had overexpressed AROM in 

A. nidulans. Due to the time constraints of the project, it was decided to purify 

AROM from A. nidulans in the hope that the proteolytic problems in that species were 

less severe.
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Chapter 4 Purification and characterisation of AROM from 

Aspergillus nidulans strain 1314

4.1 Introduction

4.1.1 Background

Because of the problems encountered with the purification of AROM from 

S. cerevisiae described in Chapter 3 and the finite time available for this project, it 

was decided to purify AROM from Aspergillus nidulans. This work was carried out 

in collaboration Dr. Alastair Hawkins, University of Newcastle upon Tyne.

The aromA gene of A. nidulans has been extensively studied by Hawkins' 

group: the gene has been cloned and sequenced ( Charles et a l ., 1985; Charles et a l , 

1986), and overexpressed in A. nidulans (Lamb etal., 1991; Moore et al., 1992). The 

expression of domains of the Aspergillus AROM has been more successful than the 

expression of the yeast protein (see 1.7.5). Fragments of the A. nidulans AROM 

protein have been expressed both in E. coli (Hawkins & Smith, 1991; van den 

Hombergh et a l.., 1992; Moore & Hawkins, 1993) and in A. nidulans (Moore & 

Hawkins, 1993). The AROM protein had previously only been partially purified by 

ammonium sulphate fractionation from A. nidulans (Ahmed & Giles, 1969).

This chapter describes the exploratory purification steps leading to the 

development of a rapid purification of AROM from the A. nidulans overexpression 

strain 1314. AROM purified by this procedure was characterised and a preliminary 

proteolysis study of the native protein was undertaken.

4.1.2 A. nidulans AROM overproducer strain 1314

E. coli was an unsuccessful host for the expression of full length 

A. nidulans AROM (Hawkins & Smith, 1991) as it had been for S. cerevisiae AROM 

(L. Graham, unpublished results). The Aspergillus protein has been constitutively 

overexpressed in A. nidulans resulting in a 12-fold increase in enzyme activity (Lamb 

etal., 1991). Inducible overexpression was achieved with plasmid pNUFC2 (Lamb et
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al., 1991) using the promoter of the quinate-inducible qutE (catabolic DHQase) gene 

(see Section 1.4). One aromA' mutant strain transformed with this plasmid has a 12- 

fold increase over wild-type in enzyme activity after induction by quinate. The level 

of AROM production was later greatly improved by transforming the A. nidulans 

aromA~qutB~ double mutant with pNUFC2 (Moore et a l., 1992). This mutant host is 

unable to catabolise quinate (the inducer) since it lacks quinate dehydrogenase 

activity although there is evidence that shikimate DH of AROM is able to carry out 

the reaction (van den Hombergh e ta l., 1992) - see Section 4.5.3. This transformant 

strain is called 1314 and was found to have an 120-fold increase in enzyme activity 

over an A. nidulans strain with wild-type levels of AROM. Moore reported that this 

175kDa protein made up approximately 6% of the soluble protein in cell extracts.

A. nidulans strain 1314 was used as the source of material for the 

purification of the AROM protein in this study.

4.2 AROM overexpression in A. nidulans 1314 relative to AROM wild-

tvpe strain R153

4.2.1 Background

The extent of AROM overproduction in A. nidulans 1314 was determined

by comparison with strain R153 which has wild-type levels of AROM. This strain 

was used because it is the strain that AROM was originally cloned from

(Charles etal., 1986). Each strain was grown under identical conditions and then 

induced with quinate. Extracts of each strain were assayed for the five individual 

AROM activities and analysed by SDS PAGE. Moore etal. (1992) had previously 

measured DHQase and shikimate DH levels in each strain but had not examined the 

other activities.

4.2.2 A. nidulans growth conditions for AROM induction

A. nidulans conidia were produced, and the mycelia grown at 37°C for
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17 h as described in Section 2.12.6. The mycelia were induced on minimal medium 

with 0.1% (w/v) quinate and 0.2% (v/v) glycerol for 5 h at 37°C. Strain 1314 is 

unable to grow on quinate as sole carbon source because it lacks quinate 

dehydrogenase activity. Therefore, quinate is present to induce AROM production. 

Glycerol is used as the carbon source because it does not show pronounced catabolite 

repression of the quinate utilisation gene cluster (Lamb etal., 1991; Moore eta l.,

1992) and will therefore not repress the aromA gene under the control of the qutE 

promoter.

4.2.3 DHQ synthase activity of A. nidulans 1314

No DHQ synthase activity was detected in extracts of A. nidulans 1314. 

This was rather alarming. The chromosomal copy of the aromA gene in this strain is 

unable to complement any missing AROM activity in heterokaryons (Roberts et al., 

1969; J. Moore, personal communication). Therefore, the ability of strain 1314 to 

grow without aromatic amino acid supplements suggested that it has at least a low 

level of DHQ synthase activity. Ahmed & Giles (1969) found that, in ammonium 

sulphate fractions of A. nidulans (Yale Culture Collection no. A l), the activity of 

DHQ synthase was only 2-5% of the shikimate DH activity. The assays were carried 

out under similar conditions to those used in this study except the higher temperature 

of 37°C was used. Their samples were lacking in proteinase inhibitors and the 

reported DHQ synthase activity was very low compared to values for the closely 

related N. crassa AROM (Boocock, 1983; Lambert etal., 1985) and S. cerevisiae 

AROM shown in Table 3.1. At this stage it was thought that the lack of DHQ 

synthase might be due to the assay conditions.

The DHQ synthase of N. crassa AROM is Zn2+-dependent (Lambert et 

al., 1985) while Ahmed & Giles (1969) included Co2+ in the assay buffer. The DHQ 

synthase activity in crude extracts was measured in assay cocktail supplemented with 

particular divalent metal cations- Co2+, Mn2+, Ni2+, Ca2+, Cu2+ and Mg2+, in case
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the A. nidulans enzyme had a different metal preference from the enzyme in other 

species. No activity was detected using this method.

On increasing the DAHP concentration of the standard assay 

supplemented with Zn2+ some DHQ synthase activity was finally observed. By 

extrapolation of the double reciprocal plot obtained with increasing DAHP, a value 

f°r V max was determined. This gave an activity for DHQ synthase of 0.00244 U/mg 

compared to 0.453 U/mg for shikimate DH, an activity ratio of 0.54:100.

It was still unclear why the DHQ synthase activity was so low but several 

explanations seemed possible. Firstly, crude extracts might contain some inhibitory 

substance: if so the activity should be easier to assay in material that was at least 

partially purified. Secondly, the DHQ synthase activity might be readily proteolysed 

in extracts with accompanying loss of activity. A third possibility was that during the 

construction of the overproducing strain there might have been some accidental 

change to the coding sequence in the DHQ synthase domain which adversely affected 

activity.

4.2.4 AROM activity levels in A. nidulans 1314 and R153

The individual AROM activities in Aspergillus extracts are shown in 

Table 4.1 except for DHQ synthase (see Section 4.2.3). The level of AROM 

overexpression in strain 1314 has been determined for each activity by comparison 

with strain R153 which has wild-type levels of AROM and was grown under identical 

conditions. All four activities are being overexpressed at high level. However, the 

variation in the level of overexpression (from 65 to 194-fold) requires comment.

The shikimate kinase and EPSP synthase activities were difficult to 

determine accurately in crude extracts of the wild-type strain due to a high 

background rate of NADH oxidation. This may explain the higher values for 

overexpression observed for these activities. The DHQase levels in the table were 

due to both the biosynthetic type I activity (bDHQase) associated with AROM and 

the catabolic type II activity (cDHQase) due to the catabolic enzyme (see below).
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R153 
wild-tvpe AROM

1314
overproducer

over
expression

(fold)
U/mg shikimate

DH=100
U/mg shikimate

DH=100
shikimate

kinase=l(X)

DHQasei: 0.0064 nd 0.42 1 1 1 76 nd

shikimate

DH

0.0034 100 0.38 100 69 110

shikimate

kinase

0.0036 104 0.55 146 100 152

EPSP

synthase

0.0021 60 0.40 107 73 194

*DHQase includes both biosynthetic and catabolic DHQase activity (see text, Section 

4.3.3)

nd, not determinable

Table 4.1 Comparison of AROM activities in A. nidulans R153
and 1314 crude extracts

A. nidulans was grown according to method 1 described in Section 2.12.6.

Cells were broken with a pestle and mortar in liquid nitrogen and extracted into 15 

volumes of extraction buffer and shaken gently on ice for 1 h. The extraction buffer 

was 100-mM-Tris/HCl pH7.2, containing 1.4mM-6-mercaptoethanol, 5-mM-EDTA, 

2mM-benzamidine, 1,2-mM-PMSF and lpM-pepstatin A. The extracts were spun for 

30 min using a cold room microfuge then assayed for each of the individual AROM 

activities. The protein concentration of each extract was determined by the method of 

Bradford (1976). Enzyme activities were assayed in quadruplicate.

The table shows specific activities for each extract alongside the activity ratio 

normalised against the shikimate DH activity which was given the arbitrary value of 

100. The same has also been done for each activity normalised against the shikimate 

kinase activity. The DHQase activity includes both the biosynthetic and catabolic 

DHQase activities. The extreme right-hand column shows the extent of 

overexpression for the activities in A. nidulans 1314 compared to R153 which has 

wild-type levels of AROM.
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The most reliable measurement of the level of overexpression between the wild-type 

R153 and 1314 is therefore obtained by comparing the shikimate DH activity which 

shows 110-fold overexpression. The overexpression of AROM was previously 

measured by Moore etal. (1992) who compared the shikimate DH and bDHQase 

activities of strain 1314 to wild-type strain R153 grown under non-inducing 

conditions. The specific enzyme activities are not directly comparable to my own 

because the assays were carried out at a different temperature.

In A. nidulans, unlike in yeast, a complication arises from the presence in 

crude extracts of both the biosynthetic (AROM) DHQase (bDHQase) and the 

inducible catabolic DHQase (cDHQase): see Sections 1.2.2 and 1.4. A rough 

estimate can be made of the contributions of these two activities to the total DHQase 

activity by exploiting the heat lability of the bDHQase and the heat stability (10 min 

at 70°C) of the cDHQase. Therefore, bDHQase = total DHQase - heat stable 

DHQase. This would have allowed the bDHQase and cDHQase components of the 

extract to be measured. It does not however, provide accurate specific activities due 

to the presence of heat-labile inhibitors of the cDHQase, which cause the cDHQase 

activity to rise by approximately 20% after the heat step (A. Hawkins, personal 

communication). In bDHQase assays the cDHQase activity is only partially seen for 

two reasons. The first is that cDHQase is inhibited by the potassium phosphate buffer 

(lOOmM) used for the bDHQase assay: the Kj for phosphate is lOmM (R. Deka,

1993). The second is that the cDHQase has a much higher K m for the substrate DHQ 

than bDHQase. In the absence of inhibitors the cDHQase of A. nidulans has a Km for 

DHQ of 150|iM (Kleanthous eta l., 1992) compared to the bDHQase of N. crassa 

AROM which has a Km of 5|iM (Coggins & Boocock, 1986). Therefore cDHQase is 

routinely assayed with a ten fold higher DHQ concentration than bDHQase. In strain 

R153, which has wild-type AROM, cDHQase constitutes as much as 80% of the total 

DHQase when it is induced by quinate. In the AROM overexpression strain 1314 the 

cDHQase is approximately 8% of the total DHQase in assays after induction by
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quinate (J. Moore, personal communication). Therefore, the presence of cDHQase 

does not lead to large errors in estimating the level of AROM in strain 1314.

Table 4.1 shows the activity ratios standardised against shikimate DH for 

both strains. This allows a comparison between strains R153 and 1314. The activity 

ratio is also shown for strain 1314 standardised against shikimate kinase although not 

for strain R153 since shikimate kinase is difficult to determine accurately in crude 

extract. The reason for listing the activity ratio for strain 1314 standardised against 

shikimate kinase is that the shikimate DH activity can increase during AROM 

purification (see 4.3.4 and 4.3.9). The shikimate kinase activity appears to be fairly 

stable and does not have the complications associated with the presence of two forms 

of DHQase. Therefore, shikimate kinase has been used to standardise the AROM 

activities to allow comparison with the AROM activities in purified protein ( see

4.6.5).

4.2.5 SDS PAGE analysis of A. nidulans 1314 and R153

Extracts of A. nidulans R153 and 1314 were analysed by SDS PAGE. 

Figure 4.1 shows a 175kDa protein from strain 1314 which is not visible in extract of 

strain R153 that has wild-type AROM. The overexpressed protein has the expected 

subunit molecular weight of AROM, in agreement with Moore etal. (1992). An 

estimation of band intensity by laser densitometry suggested that the AROM protein 

comprises 6% of the total soluble protein in the overproducing strain, the same value 

estimated by Moore e ta l.(1992).

4.2.6 AROM stability in crude extract of strain 1314

An extract of the overproducing strain 1314 containing proteinase 

inhibitors was assayed for the individual AROM activities immediately after 

extraction, and 48 h later after incubation at 4°C. The specific activity after the 

period of incubation is shown as a percentage of the original activity in Figure 4.2.
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Figure 4.1 SDS PAGE analysis of AROM production in A. nidulans
R153 and 1314

Mycelia were grown according to method 1 described in Section 2.12.6.

Cells were broken with a pestle a mortar in liquid nitrogen, extracted into 15 volumes 
of extraction buffer and shaken gently on ice for 1 h. The extraction buffer was 
lOOmM-Tris/HCl pH7.2, containing 1.4-mM-6-mercaptoethanol, 5mM-EDTA, 2mM- 
benzamidine, 1.2mM-PMSF and ljiM-pepstatin A. Extract was spun for 30 min with 
a cold room microfuge.

The photograph shows R153 and 1314 clarified supernatants separated on a 7.5% 
Phastgel and stained for protein with Coomassie Brilliant Blue G-250 (2.5.1). 3.6pg 
of protein was loaded on each of the central lanes and 2pg of molecular weight 
markers were run on the outer tracks.
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Figure 4.2 Stability of AROM from A. nidulans 1314 in crude
extracts

Mycelia were grown according to method 1 described in Section 2.12.6.

Cells were broken with a mortar and pestle in liquid nitrogen, extracted into 15 
volumes of extraction buffer and shaken gently on ice for 1 h. The extraction buffer 

was lOOmM-Tris/HCl, pH7.2, 1.4mM-l3-mercaptoethanol, 5mM-EDTA, 2mM- 
benzamidine, 1.2mM-PMSF and l|nM-pepstatin A. Extract was spun for 30 min in a 
cold room microfuge.

Extracts were assayed for all the AROM activities with the exception of DHQ 
synthase. Assays were performed at 25°C as described in Section 2.9. The extract was 
stored for 48 h at 4°C then reassayed.

The graph shows the activities after 2 days as a percentage of the activity on initial 
extraction.
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The graph shows an apparent rise in the shikimate DH activity. This 

phenomenon was observed in subsequent purification steps (see 4.3.4 and 4.3.9) and 

has also been seen in the purification of S. cerevisiae AROM (Table 3.2) and 

occassionally in the purification of E. coli shikimate DH in this laboratory (S. 

Chackrewarthy, personal communication). The reason for this is unclear, although it 

is conceivable that not all the protein is properly folded and that only some of it has 

reached an active conformation, bearing in mind that shikimate DH is at the carboxy- 

terminus of the polypeptide. Another possibility is that a labile inhibitor of shikimate 

DH is lost during incubation.

EPSP synthase activity was found to be the most vulnerable, falling to 

66% of its original value. Boocock (1983) found that EPSP synthase was sensitive to 

an endogenous proteinase in N. crassa and the activity occasionally vanished during 

purification. This activity loss was associated with the appearance of a peptide of 

125kDa on SDS PAGE, thought to be derived from the 165kDa intact protein. EPSP 

synthase of N. crassa AROM is also sensitive to oxidation and it is thought to have an 

active site thiol group (Boocock, 1983). Padgette et a l.(1988) have identified a 

cysteine residue which is sensitive to cysteine-directed reagents in the EPSP synthase 

of E. coli. It is not essential for the enzyme activity and modification is thought to 

cause inactivation through steric hindrance. For this reason DTT is used in buffers 

throughout EPSP synthase purifications.

The DHQase activity fell to 87% of its original value after 48 h. This 

value includes both the catabolic and biosynthetic enzyme activities. The cDHQase 

constitutes approximately 8% of the total activity under these assay conditions in 

crude extract (J. Moore, personal communication). Since the cDHQase activity is 

generally more stable than the bDHQase it seems likely that most of the activity loss 

is bDHQase activity.

Clearly not all AROM activities are equally stable in crude extracts of 

A. nidulans, despite the presence of various proteinase inhibitors. The susceptibility 

of N. crassa AROM to proteolysis has been well documented (Gaertner & Cole,
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1976; Gaertner & Cole, 1977; Lumsden & Coggins, 1977; Coggins & Boocock,

1986). Similarly early attempts to purify the cDHQase of A. nidulans (Hawkins et 

al., 1982; Da Silva et a l.,1986) showed that proteolysis could be an obstacle in at least 

some cases. The N. crassa cDHQase was also found to be sensitive to proteolysis 

during purification (Hawkins etal., 1982b). This emphasised the need to adopt a 

purification strategy which might stabilise AROM.

4.3 Preliminary purification

4.3.1 Strategy

A. nidulans and N. crassa both belong to the Euascomycetes sub-class of 

Ascomycetes. This led me to believe that the chromatographic steps used 

successfully to purify AROM from N. crassa might also prove useful for A. nidulans 

AROM. In particular, the initial 'negative' step of anion exchange chromatography 

was adopted since, for N. crassa, this had proved effective in removing the most 

troublesome proteinases (Lumsden & Coggins, 1977). Thus the purification strategy 

was developed from the starting point of the latest generation of the N. crassa AROM 

purification procedure (Coggins et al., 1987a).

As with the yeast AROM preparations, it was advantageous to include 

proteinase inhibitors in the buffers used to prepare crude extracts and for the early 

chromatographic steps. The zinc requirement of DHQ synthase precludes the 

addition of EDTA to the buffers. These contradictory requirements were balanced: 

EDTA was used in the buffers only in the early stages of the purification, and zinc 

was added to the chromatography buffers with the exception of the Cibacron Blue 

step since its capacity for AROM is reduced in the presence of zinc (Boocock, 1983). 

In this way I hoped that the resulting AROM purification would result in intact 

protein which would have DHQ synthase activity.

The following section describes the exploratory phase of AROM 

purification from A. nidulans 1314. It describes the steps which would be retained in

114



the final purification protocol, and others which were abandoned. Each, is described  

more fully in the individual sub-sections.

During the preliminary purification DHQase activity was monitored for 

two reasons. Firstly, it is easily assayed, and secondly, it is one of two activities 

which may be susceptible to degradation (4.3.5). After the rapid loss of shikimate 

DH and DHQase activity observed during S. cerevisiae AROM preparations it was 

felt important to monitor any similar losses in the case of the Aspergillus protein. The 

observation that shikimate DH activity increased after extraction (4.3.5) might have 

confused the issue if only this easily assayed activity had been followed in the first 

experiments. In later experiments only shikimate DH activity was monitored. This 

was a compromise - it saved time on assays and allowed the purification to be carried 

out more rapidly. It also avoided complications due to varying levels of cDHQase.

All the yields and purification factors given for the stages of the 

preliminary purification are in comparison with the values for the previous step. 

Samples were taken at each stage in the purification and stored at -80°C for later 

protein determination. Protein samples were also taken at each stage which were 

boiled immediately in SDS PAGE sample buffer and stored at -80°C for analysis by 

PAGE.

All the steps were carried out at 4°C unless otherwise stated. The buffers 

used throughout are described in Table 4.2.

4.3.2 Extraction

Powdered mycelia grown by method 1 described in Section 2.12.6, were 

suspended in 15 volumes of buffer A and stirred gently for 60 min. This extract was 

centrifuged at 35,000g for 30 min and the resulting supernatant filtered through two 

layers of muslin. Analysis of clarified supernatant by SDS PAGE is included in 

Figure 4.7.
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Buffer A:

Buffer B:

Buffer C:

Buffer D:

Buffer E:

Buffer F:

Table 4.2

lOOmM-Tris/HCl pH7.5, 0.4mM-DTT, 5mM-EDTA, 

2mM-benzamidine, 1.2mM-PMSF, ljiM-pepstatin A 

and 10}lM-leupeptin.

50mM-Tris/HCl pH7.5, 2mM-benzamidine, 1.2mM- 

PMSF and lpM-pepstatin.

20mM-Tris/HCl pH7.5, 2mM-benzamidine, 1.2mM- 

PMSF and l|iM-pepstatin A.

lOmM-potassium phosphate buffer pH6.5, 0.4mM- 

DTT, 20pM-zinc acetate, 2mM-benzamidine and 

lpM-pepstatin A.

200mM-KCl in 50mM-Tris/HCl pH7.5, 0.4mM-DTT, 

20|lM-zinc acetate, 2mM-benzamidine and l|iiM- 

pepstatin A.

50mM-sodium phosphate buffer pH7.5, 0.4mM-DTT, 
5mM-EDTA, 2mM-benzamidine and lpM-pepstatin 
A.

Buffers used in the purification of AROM from 

A. nidulans 1314
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4.3 .3  'Negative' anion exchange chromatography

In the purification of AROM from N. crassa, anion exchange 

chromatography on DE52 was performed 'negatively', so that AROM did not adsorb 

to the column while four endogenous proteinases were bound ( Lumsden & Coggins, 

1977).

The conditions for the elution of A. nidulans AROM from DE52 were 

determined on a small scale extract. A clarified A. nidulans 1314 extract in buffer A 

was loaded onto a DE52 column equilibrated with buffer B containing 0.4mM-DTT 

and eluted with a continuous linear gradient of 0-370mM-KCl in buffer B containing 

0.4mM-DTT. The elution profile in Figure 4.3 shows that the DHQase activity starts 

to elute from the column immediately the gradient is started. The DHQase activity 

appeared to elute over several peaks rather than the two expected from AROM and 

the cDHQase. Later chromatography on Q-Sepharose anion exchange failed to 

resolve these peaks (see Figure 4.4), and mono Q anion exchange resolved the 

activity into a double peak (data not shown). The reason for this multiple activity 

peak is not clear. The cDHQase is known to elute from DE52 in potassium phosphate 

buffer pH7.2, during a 0-350mMKCl gradient (Hawkins etal, 1982). Here, one of 

the minor peaks is likely to be cDHQase since it is the minor activity. The major 

peak is most likely to be AROM because it has the greatest DHQase activity.

From this elution profile the conditions for 'negative' chromatography used 

in the purification of AROM were selected as lOOmM-KCl in buffer B. The 

conductivity of clarified Aspergillus extracts was subsequently adjusted with 3M-KC1 

to that of the DE52 equilibration buffer. The yield on three separate extracts, where 

the shikimate DH activity was monitored, varied between 70% and 75% with between 

1.9- and 2.3-fold purification.

4.3.4 Ammonium sulphate fractionation

Following the 'negative' chromatography step described in Section 4.3.3 

the eluate was subjected to salt fractionation. The initial ammonium sulphate cut was
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Figure 4.3 Chromatography of AROM on DE52

A 30ml DE52 column of 22mm diameter was equilibrated with buffer B containing 
1.4mM-B-mercaptoethanol. Clarified extract of A. nidulans 1314 in Buffer A was 
applied to the column at lml/min, and washed with 5 column volumes of extraction 
buffer. The column was developed with a 300ml continuous linear gradient of 0- 
370mM-KCl in buffer B containing 1.4mM-6-mercaptoethanol, run at lml/min. 
5.4ml fractions were collected and assayed for DHQase activity. The protein 
concentration was measured as the absorbance at 280nm.
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0-30% saturation. Ammonium sulphate was added to the resulting supernatant to 

609c saturation and much of the AROM was found in the precipitate. The pellet was 

resuspended in buffer B containing 0.4mM-DTT and lOpM-leupeptin. AROM 

fractionated in this manner was analysed by SDS PAGE (Figure 4.7, lane 4).

The ammonium sulphate cut was later tightened, and AROM shikimate 

DH activity was found to precipitate in the 30-50% saturation range. This gave yields 

of between 77% and 120% with between 1.4- and 3.2-fold purification on three 

separate experments. The increase in shikimate DH activity has been discussed in 

Section 4.2.6.

4.3.5 Chromatography of AROM on O-Sepharose

After negative DE52 chromatography and ammonium sulphate 

fractionation, the AROM preparation was dialysed into buffer C containing 0.4mM- 

DTT and 20pM-zinc acetate. This material was loaded onto a Q-Sepharose anion 

exchange column equilibrated in buffer C containing 0.4mM-DTT and 20pM-zinc 

acetate. The loading buffer was 20mM rather than the 50mM used for 

chromatography on DE52 (see 4.3.3) to allow tighter binding of AROM to the 

medium. AROM was eluted with a 0-420mM-NaCl gradient in buffer C containing 

0.4mM-DTT and 20|iM-zinc acetate as shown in Figure 4.4. AROM elutes in a 

single peak and the cDHQase, if it is still present, is apparently not separated from 

AROM under these conditions. The peak fractions were pooled and dialysed into 

buffer B. The degree of purification could probably be improved slightly by using a 

shallower gradient. The pool from this step was not all used immediately. It was 

found to lose 30% of its DHQase activity per day which is probably due to proteolysis 

and the absence of EDTA in the buffer possibly accentuated the problem. The 

instability coupled with the poor purification factor from this step, led me to believe 

that a powerful step was required early on, which would hopefully stabilise the 

AROM activity.
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Figure 4.4 Chromatography of AROM on Q-Sepharose

A 50ml column of 22mm diameter was equilibrated in buffer C containing 0.4mM- 
DTT and 20pM-zinc acetate. AROM was applied to the column and washed with 
equilibration buffer until the absorbance at 280nm had dropped below 0.1. The 
column was developed at 5ml/min with a 500ml continuous linear gradient of 0- 

420mM-NaCl in buffer C containing 0.4mM-DTT and 20jxM-zinc acetate. The 
DHQase activity was monitored and the protein concentration measured as the 
absorbance at 280nm. 14ml fractions were collected.
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Blue Dextran Sepharose was a useful step in the purification of N. crassa 

AROM, producing highly purified AROM (680-fold purification) with reliably large 

yields of 50% (Smith & Coggins, 1983; Boocock, 1983). Therefore, chromatography 

on Cibacron Blue was thought likely to be a useful step in the purification of

A. nidulans AROM.

4.3.6 Chromatography of AROM on Cibacron Blue F-3GA

A pool of AROM from the Q-Sepharose chromatography step (Section

4.3.5) was dialysed into buffer C containing 1.4mM-J3-mercaptoethanol, and loaded 

onto a Cibacron Blue F-3GA column equilibrated in buffer C containing 6- 

mercaptoethanol. Figure 4.5 shows AROM eluting after a 0.5M-KC1 step with a 

smaller amount eluting after a second step of 1.5M-KC1. 40% and 12% yields were 

achieved for the medium and high salt washes respectively, with 5-fold purification 

over the major activity peak. The material from the major peak (0.5M-KC1) was 

analysed by SDS PAGE (see Figure 4.7, lane 6). Many of the contaminants have 

been lost. The protein eluted with 1.5M-KC1 also showed a major band of 175 kDa, 

corresponding to AROM, on SDS PAGE (data not shown).

In a preliminary experiment, the Aspergillus AROM remained adsorbed to 

Cibacron Blue in 0.5M-KC1, and was only eluted by 1.5M-KC1. This variability in 

AROM elution was reminiscent of the attempts to use this chromatography procedure 

for S. cerevisiae AROM purification, which also gave variable results (see 3.5.1). 

However, given the potentially useful 5-fold purification factor from the Cibacron 

Blue step, it was thought worthwhile to see whether another dye column might give 

more reproducible results. This approach will be returned to in Section 4.3.9.

4.3.7 Chromatography of AROM on CM-Sepharose FF

Following Q-Sepharose chromatography, part of the pooled fractions was 

dialysed into buffer D and loaded onto a CM-Sepharose Fast Flow (FF) cation 

exchange column equilibrated in buffer D. The AROM bound to the matrix was
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Figure 4.5 Chromatography of AROM on Cibacron blue F-3GA

A 2ml plastic syringe packed with 2ml of Cibacron blue F-3GA on Sepharose 4B was 
equilibrated in buffer C containing 1.4mM-B-mercaptoethanoI. AROM from Q- 
Sepharose chromatography was loaded at lOml/h and the column was then washed 
with loading buffer until the absorbance at 280nm had fallen to 0.5 (data not shown). 

The column was washed with a salt step of 0.5M-KC1 in buffer C containing 1.4mM- 

B-mercaptoethanol until the A28O dropped below 0.1. The remaining AROM was 
eluted with a second salt step of 1.5M-KC1 in buffer C containing 1.4mM-8- 
mercaptoethanol and 20pM-zinc acetate. The DHQase activity was monitored and 
the protein concentration meaasured as the absorbance at 280nm. 4ml fractions were 

collected.
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eluted with a continuous linear gradient of 10-400mM-potassium phosphate buffer 

pH6.5. There was no PMSF added to the buffer because it precipitates in this buffer, 

clogging the matrix and the tubing.

elution profile shown in Figure 4.6(a) displays a double DHQase activity peak with a 

shoulder prior to the second, major activity peak. The peak fraction eluted in 

lOOmM-potassium phosphate buffer pH6.5. Samples of fractions collected over these 

peaks were analysed by 7% SDS PAGE (Figure 4.6(b)): this indicates as before that 

AROM elutes with the second peak and is the major protein present. The first peak 

(fractions 47 and 48) is possibly cDHQase which runs at the dye-front on 7% SDS 

PAGE because the quantity of AROM is comparatively low in these fractions. The 

peak AROM fraction (54) separated on 10% SDS PAGE is shown in Figure 4.7 (lane 

8) and appears considerably different to the same sample separated on 7% SDS 

PAGE shown in Figure 4.6 (b). AROM is not such a prominent band in Figure 4.7, 

however the samples were exactly the same and the reason for the discrepancy is not 

known.

substantial loss of AROM activity under these conditions. Although AROM was 

stable during dialysis into buffer D at pH6.5, the Donnan effect may result in a lower 

pH in the cation exchange matrix during chromatography. It is possible that AROM 

precipitated in the column at this lower pH if it is at, or near the proteins isoelectric 

point. Alternatively, the enzyme may have denatured. Interestingly, on overnight 

storage in the elution buffer the activity of the fractions over the peak increased 

between 21 % and 61 % without dialysis, suggesting that the protein had renatured or 

redissolved in the buffer.

On the basis of these results CM-Sepharose does not provide a useful step 

for AROM purification.

Some activity did not bind to the column under these conditions. Also, the
A

The recovery of activity over the gradient was only 20% indicating
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Figure 4.6 Chromatography of AROM on CM-Sepharose FF

(a) ’Profile’

A 22mm diameter column containing 20ml bed volume of CM-Sepharose FF was 
equilibrated in buffer D. Protein was loaded at 2ml/min. and the column washed 
washed with buffer D until the absorbance at 280nm had fallen below 0.05. The 
column was developed with a 200ml continuous linear gradient of 10mM-400mM- 
potassium phosphate buffer pH6.5, containing 0.4mM-DTT, 5mM-EDTA, 2mM- 

benzamidine, and ljiM-pepstatin A. 4.4ml fractions were collected and assayed for 
DHQase activity. The protein concentration was monitored as the absorbance at

Peak fractions were individually desalted and fresh PMSF was added immediately 
prior to boiling in SDS PAGE sample buffer. The proteins were separated on a 1% 
SDS-Phastgel which was then stained for protein with Coomassie Brilliant Blue G-

280nm.

(b) ’Gel

250.

Lane 47. 
Lane 48. 
Lane 50. 
Lane 53. 
Lane 54. 
Lane 55. 
M.

fraction 47, 0.3pg protein 
fraction 48, 0.5jig protein 
fraction 50, 0.3jig protein 
fraction 53, 0.5pg protein 
fraction 54, 0.7pg protein 
fraction 55, 0.8)ig protein
Molecular weight markers from top to bottom: 
205kDa, 116kDa, 97.4kDa, 66kDa and 45kDa, 

0.5|ig protein
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Figure 4.7 SDS PAGE of samples from exploratory steps for the
purification of A. nidulans AROM

Samples were taken from each step and boiled immediately in SDS PAGE sample 

buffer and stored at -80°C. Samples were reboiled prior to loading on the 

polyacrylamide gel. Protein concentrations were determined by the method of 
Bradford (1976). Samples were subjected to SDS PAGE on a 10% gel which was 
then stained for protein with Coomassie Brilliant Blue.

Lanes 1 and 9. N. crassa AROM, 2jig total protein
Lane 2. cleared extract, 40jig total protein
Lane 3. negative anion-exchange pool, 40jig protein
Lane 4. dialysed 30-60% ammonium sulphate pellet,

20|ig protein
Lane 5. dialysed Q-Sepharose pool, 20|ig protein

Lane 6. desalted peak fraction (54) of Cibacron Blue
6|ig protein

Lane 7. Superose 12 peak fraction, 4pg protein
Lane 8. CM-Sepharose peak fraction, 25|ig protein
M  Molecular weight markers from top to

bottom: 205kDa, 116kDa, 97.4kDa, 66kD, 
45kDa and 29kDa, lOjig total protein.
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4.3.8 Chromatography of AROM on Superose 12

AROM purified by Cibacron Blue chromatography was concentrated 

using an Amicon Centricon 30 microconcentrator. It was then run at room 

temperature on an FPLC Superose 12 gel filtration column equilibrated in buffer E. 

The column was run at 0.5ml/min and AROM eluted as expected in the void volume. 

Analysis of the peak fraction by SDS PAGE (Figure 4.7, lane 7) indicated that 

Superose gel filtration was a useful purification step for AROM since many of the 

lower molecular weight proteins were removed. The cDHQase should have been 

separated from AROM by Superose 12 gel filtration chromatography and it is not 

observed on SDS PAGE (data not shown).

This exploratory purification is summarised in diagram A of Figure 4.9.

4.3.9 Chromatography of AROM on the 'PIKSI' Mimetic dye test kit

The promising AROM purification achieved on a Cibacron Blue column 

(Section 4.3.6) led me to test AROM binding to other dyes. The binding of AROM to 

Cibacron Blue may be attributable to the multiple nucleotide binding sites on the 

protein: the NAD+ site of the DHQ synthase domain, the NADPH site of the 

shikimate DH domain, and the ATP binding site of the shikimate kinase domain. It 

seemed likely that AROM would bind to other similar dyes.

The 'PIKSI' test kit from Affinity Chromatography Ltd. contains ten 

different Mimetic ligands (Red-2 and -3, Orange-1,-2 and -3, Yellow-1 and -2, Green- 

1 and Blue-1 and -2) coupled through a spacer arm to 6% cross-linked agarose 

(A6XL). These adsorbents have the advantage of surviving harsh regeneration 

treatments (l-2M-NaOH) and can therefore be used repeatedly to fractionate fairly 

crude protein extracts. The adsorbents are in the form of 1ml columns (in a screening 

kit) which are run under gravity.

Initial binding studies were performed in 25mM-sodium phosphate buffer 

pH6.0, however, AROM lost 30% of its shikimate DH activity during dialysis,
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possibly due to precipitation or denaturation as discussed in Section 4.3.7. AROM 

was able to bind most of the dye ligand adsorbents at higher pH.

From these initial studies, five of the Mimetic dyes were selected on the 

basis of AROM purity of the eluent on analysis by SDS PAGE (data not shown). The 

dyes selected for further trials were - Mimetic Red-2 and -3, Orange-1, and Yellow-1 

and -2. AROM purified by negative DE52 chromatography and ammonium sulphate 

fractionation (30-50% saturation) was dialysed into buffer F. Aliquots of this AROM 

preparation were loaded onto each of the five columns, which were then washed with 

0.5M-KC1 in buffer F followed by a 1.5M-KC1 step. The results are shown in Figure 

4.8. The elution pattern is roughly similar in each case and the eluates look alike by 

SDS PAGE (data not shown). Specific activities could not be measured in every 

eluate because the protein concentration was too low in some. Under these conditions 

Mimetic Yellow-1 appears better than the other dyes at separating AROM from most 

of the other proteins originally present. The AROM eluted in the 0.5M-KC1 wash 

from Mimetic Yellow-1 showed a 7-fold purification of specific activity. This 

estimate is not accurate because the shikimate DH yield was between 116% and 

142% on the Mimetic ligands. This increase in shikimate DH activity has been 

discussed prevoiusly in Section 4.2.6.

The proteinase inhibitor, PMSF, is very insoluble in sodium phosphate 

buffer and the buffer requires filtration prior to use to remove solid PMSF. The 

chromatography was repeated in 25mM-Tris/HCl pH7.5, in which PMSF is more 

soluble, however, analysis of the eluate on SDS PAGE suggested that the purification 

factor was greatly reduced using this buffer. An alternative might have been HEPES 

buffer, however, I proceeded using sodium phosphate buffer.

Mimetic Yellow-1 chromatography provides a quick and effective 

purification step. It was hoped that its use early in the protocol would stabilise 

AROM.

This exploratory purification is summarised in diagram B of Figure 4.9.
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Figure 4.8 AROM binding to Mimetic dye columns

5g dry weight of A. nidulans 1314 was extracted in buffer A. This was stirred for 60 
min then centrifuged at 35, OOOg for 60 min. Supernatant was run through a 'negative' 
DE52 column and a 30-50% saturation ammonium sulphate cut was then taken. The 
resuspended precipitate was dialysed overnight into buffer F containing 1.2mM- 

PMSF

The 1ml Mimetic dye columns in the PIKSI kit were equilibrated in 10ml of buffer F. 
The AROM preparation was centrifuged at 35,OOOg for 20 min to remove precipitated 
protein. 14mg of protein (15 U of shikimate DH activity) was loaded onto each 
column in a volume of 0.8ml. Each column was washed with 4ml of loading buffer, 
and the eluate monitored for both shikimate DH activity and for protein concentration 
by measuring the absorbance at 280nm. Each column was washed with a 4ml step of 
0.5M-KC1 in buffer F, then 4ml of 1.0M-KC1 in buffer F. Eluate was pooled from 
each salt step and assayed for shikimate DH activity and the protein concentration 
was monitored as the absorbance at 280nm.

The figure shows both shikimate DH and protein elution from the Mimetic dye 
columns Red-2 and -3, Yellow-1 and -2, and Orange-1. The A 280 shown is the 
absorbance at 280nm for 1ml multiplied by the volume, which is 4ml, to give an 

estimate of the total protein.
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Figure 4.9 Summary of the exploratory steps used in the purification 

of AROM from A. nidulans 1314
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4.3.10 Summary

Figure 4.9 summarises the steps tried in developing the protocol for the 

purification of AROM from A. nidulans 1314. Part A is described in Sections 4.3.2 to 

4.3.8, while route B outlines Section 4.3.9.

The purification steps in route B form the basis of the preparative 

purification finally used (see Section 4.6).

4.4 Evaluation of the preliminary purification of AROM  from A. nidulans

1314.

4.4.1 Individual enzvme activities of AROM partially purified from A.nidulans

1314

AROM which had been purified from, A. nidulans 1314 by route A l (see 

Figure 4.9) was assayed for the five individual AROM activities. The AROM lacked 

DHQ synthase and EPSP synthase activities which are the activities associated with 

the two N-terminal domains of AROM. It had been hoped that the DHQ synthase, 

which was at very low levels in crude extract (see 4.2.3), might be easier to assay in 

purified preparations of AROM in which the buffers used for the preparation had 

been supplemented with zinc. At this stage, it was believed that the absence of the 

DHQ synthase and EPSP synthase activities might be due to proteolysis of AROM 

during purification or the loss of zinc from the N-terminal DHQ synthase domain.

The EPSP synthase activity of N. crassa AROM is very sensitive to both proteolysis 

during purification and oxidation as mentioned in Section 4.2.6. The use of DTT in 

buffers should have prevented inactivation caused by oxidation.

The activity ratio of the three remaining AROM activities was 

standardised against the shikimate kinase activity. The ratio of DHQase:shikimate 

DH:shikimate kinase was 78:164:100 compared to 76:69:100 in crude extract (Table 

4.1). Although this preparation retains three of the AROM activities, both the DHQ 

synthase and EPSP synthase activities have been lost in the purification of AROM by 

route A 1.
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4.4.2 Immunoblot of AROM from A. nidulans 1314 with anti-AROM raised

against N. crassa AROM

A pool of AROM purified by mimetic dye chromatography, during the 

binding studies described in Section 4.3.9, was further purified by Superose 12 

chromatography (route B in Figure 4.9). Following separation by SDS PAGE protein 

was immunoblotted with polyclonal antibodies raised against N . crassa AROM 

(Figure 4.10).

The immunoblot shows that at least some of the antibodies cross-react 

with A. nidulans AROM. They also cross-react with several low molecular weight 

polypeptides in the AROM sample. In particular, species of 130kDa, 115kDa, 88kDa, 

59kDa and 40kDa cross-react quite strongly.

The banding pattern is probably the result of proteolysis of AROM as has 

been seen in the yeast AROM preparation (Sections 3.5.3 and 3.5.4). These 

fragments are likely to occur as complexes which resemble native AROM under non- 

denaturing conditions but which 'fall apart' when denatured.

The cross-reactivity of low molecular weight species in the AROM 

preparation with anti-AROM antibodies suggests that the AROM has been cleaved by 

endogenous proteinases despite the use of proteinase inhibitors. Procedures to 

minimise endogenous proteinases in A. nidulans are described in the next section

4.5 Optimisation of the growth conditions for A. nidulans 1314

4.5.1 Outline of the stages adopted to minimise endogenous proteinase

production in A. nidulans 1314

Evidence for proteolysis of A. nidulans AROM comes both from enzyme 

activity losses and immunoblotting studies. This led me to change the method of 

mycelial growth in an attempt to minimise endogenous proteinase production.

The final method of mycelial growth is described fully in Section 2.12.7 

(Method 2). The reasons for the changes made to the growth conditions are outlined 

below:
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Figure 4.10 Immunoblot of AROM from A. nidulans 1314 with
anti-AROM antibodies

AROM purified from A. nidulans 1314 by route B (Figure 4.9) was subjected to 10% 
SDS PAGE. Protein was electroblotted onto nitrocellulose and lanes 3-5 were stained 
for protein with amido black. Lanes 1 and 2 were probed with an antiserum raised 

against N . crassa AROM in rabbit. Bound antibodies were visualised using HRP- 
anti-rabbit conjugate. The colour was developed with chloronapthol and hydrogen 
peroxide as described in Section 2.7.2. The protein concentration was determined by 

the method of Bradford.

Immunoblot Lane 1. A. nidulans AROM, 14pg protein
Lane 2. N. crassa AROM, 0.4)Lig protein

Protein stain Lane 3. molecular weight markers, lOflg protein
Lane 4. A. nidulans AROM, lOjig protein
Lane 5. N. crassa AROM, 2pg protein
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1. The native environment for A. nidulans is a woodland environment and the fungus 

lives off rotting plant matter (Hawkins et al., 1982(b)). The former mycelial growth 

temperature of 37°C was considered to be rather high , therefore, the growth 

temperature was changed to 30°C.

2. It was a concern that the large 10 litre flasks used for Aspergillus growth did not 

allow adequate aeration even with air forced onto the medium as it was stirred 

vigouously. Mycelia were subsequently grown in 2 litre baffled flasks on an orbital 

shaker.

3. Proteinase production is known to be maximal in N. crassa (Yu etal., 1973) and in 

yeast (Pringle, 1975) when cells reach the stationary phase of growth. Therefore, 

growth on the pre-induction medium was monitored and the mycelia were harvested 

for transfer to inducing medium while still in the log phase of growth. This is 

explained more fully in Section 4.5.2.

4. The induction of AROM was followed during mycelial growth on quinate and is 

described in Section 4.5.3. Mycelia were subsequently harvested when the cells were 

in the log phase of growth as determined by an increasing AROM production on 

quinate.

4.5.2 Construction of a growth curve for A. nidulans grown on glucose

The medium used for the initial bulk mycelial growth, prior to AROM 

induction, contains glucose. The growth rate of mycelia can be followed indirectly by 

monitoring the fall of glucose concentration.

The samples of medium taken during growth were centrifuged to pellet the 

mycelia. The glucose concentration of the supernatant was determined using the 

GOD-Perid method (see Section 2.12.7). In this way the depletion of glucose was 

monitored and mycelia were transferred to the inducing media while the rate of

135



glucose consumption was still growing logarithmically. It was hoped that this would 

avoid the possibility of a high level of proteinases seen when the cells of other fungi 

enter stationary phase. Obviously the change in carbon source, from glucose to 

glycerol may affect the range of the proteins produced by the cell, and it will possibly 

target those involved in glucose metabolism for degradation. However, such 

proteolysis of proteins will hopefully be directed at a specific subset of the cellular 

proteins rather than resembling a more general breakdown of proteins in stationary 

phase cells.

4.5.3 Measurement of AROM levels in A. nidulans 1314 during induction on

quinate

The effect of reducing the growth temperature from 37°C to 30°C on the 

rate of AROM induction on quinate was investigated. Although quinate DH is absent 

from strain 1314, there is some evidence that the quinate used to induce AROM 

production is catabolised by the shikimate DH activity of the overexpressed AROM 

protein (Moore etal., 1992). The rate of quinate catabolism presumably increases 

with the degree of overexpression of AROM. Van den Hombergh et al. (1992) have 

shown that A. nidulans quinate DH can complement an E. coli mutant strain lacking 

shikimate DH. Shikimate DH of AROM and quinate DH of A. nidulans show 

extensive homology at the protein sequence level (Hawkins et a l ., 1988). The quinate 

concentration of the inducing medium was doubled from 0.1 % to 0.2% (w/v) and the 

AROM induction was monitored.

A. nidulans 1314 was grown on minimal medium with 0.4% glucose at 

30°C and the glucose concentration was monitored. At this stage, and at hourly 

intervals during induction on quinate, Aspergillus samples were collected and extracts 

made. These were assayed for shikimate DH activity and analysed by SDS PAGE. 

Figure 4.11 (a) shows a steady increase in shikimate DH specific activity over the 

induction period. After six hours the specific activity had reached that seen 

previously when the mycelia were induced for five hours at 37°C (Table 4.1). These
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Figure 4.11 Increase in AROM production in A. nidulans 1314
during induction on quinate.

A. nidulans 1314 was grown on AMM supplemented with 0.4% glucose at 30°C on 
an orbital shaker. Glucose utilisation was monitored by the GOD-Perid method (see 

Section 2.12.7). Log phase cells were filtered through muslin, washed with distilled 
water and transferred to fresh minimal medium containing 0.2% (w/v) quinate and 
0.2% (v/v) glycerol. 20ml samples were taken immediately prior to induction, and at 
regular intervals during induction on quinate. These samples were filtered under 
vacuum and the mycelia were stored at -80°C.

Mycelia were broken with a pestle and mortar in liquid nitrogen and extracted into 

buffer A. Extract was shaken gently at 4°C for 60 min then centrifuged for 15 min 
using a microfuge to remove cell debris. Protein concentration was determined by the 
method of Bradford (1976).

(a) ’Activity levels'

Supernatant from the crude extract samples were assayed in duplicate for shikimate 
DH activity. The graph shows an increase in the shikimate DH specific activity with 
induction on quinate.

(b) ’Gel’

The figure shows the induction of AROM in A. nidulans 1314 in which the protein in 
cleared supernatant has been separated by SDS PAGE in a 10% gel. 30pg of protein 
was loaded in each lane. The gel was stained with Coomassie Brilliant Blue G-250. 

Lanes 1 to 8 are pre-induction, and after 2h, 3h, 4h, 5h, 6h, 7h and 8h induction on 
quinate respectively. Lane M, molecular weight markers from the top: 205kDa,
116kDa, 97.4kDa, 66kDa, 45kDa and 29kDa. Markers were loaded at lOjig of 

protein per lane.
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(a) 'Activity levels'
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data suggest that quinate is not limiting up to 8 hours growth. Analysis of the 

samples, taken during growth, by SDS PAGE is shown in part (b) of Figure 4.11.

This shows AROM levels increasing over the first seven hours with an apparent 

decrease at eight hours although the shikimate DH activity was still increasing. A 

possible explanation for this is that the AROM is becoming proteolytically 'nicked' 

while still retaining activity. The gel besides showing increasing levels of AROM up 

to 7 hours also shows an increase in the level of several other polypeptides during the 

induction period: most noticeable is a 38/39kDa doublet.

From these results I subsequently induced AROM synthesis for seven 

hours on quinate to maximise production of AROM and minimise proteinase 

production.

4.5.4 Summary

The revised protocol for mycelial growth is described in Section 2.12.7 

(method 2). Briefly, it uses growth at 30°C with maximal aeration. Mycelia are 

transferred to inducing medium while they are still in the log phase of growth, and 

induced on quinate for seven hours prior to harvesting.

4.6 Preparative scale AROM purification from  A. nidulans 1314

4.6.1 Introduction

The preparative method for the purification of AROM from A. nidulans 

1314 is decribed in this section. It uses the successful purification steps developed in 

Section 4.3. The aim of the initial purification was to get intact protein. Optimisation 

of the conditions for particular activities would come later with refinement of the 

protocol. Proteinase inhibitors were used extensively, including EDTA. The time 

required for the entire purification was minimised by the use of desalting FPLC 

instead of dialysis prior to loading onto the Mimetic Yellow-1 dye column. The anti­

proteinase effect of the negative anion exchange chromatography was questionable, 

but the column was retained in case it did reduce proteolysis.
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Shikimate DH activity was monitored throughout the procedure.

4.6.2 Protocol for the purification of AROM from A. nidulans 1314

Unless otherwise stated, all steps were carried out at 4°C. Samples were 

taken at each stage of the purification and stored at -80°C for later estimation of the 

protein content by the method of Bradford (1976). Samples for analysis by SDS 

PAGE were boiled immediately in SDS PAGE sample buffer and stored at -80°C.

Stepl Extraction

6.09g dry weight of A. nidulans 1314, grown by method 2, Section 2.12.7, 

was suspended in 15 volumes of buffer A and stirred on ice for 60 min. The cell 

debris was removed by centrifugation at 35,OOOg for 60 min, and the cleared 

supernatant was filtered through two layers of muslin.

Step 2 'Negative' chromatography

The conductivity of the supernatant was adjusted with 3M-KC1 until it was 

identical to the conductivity of 0 .1M-KC1 in buffer B containing 5mM-EDTA. An 

80ml (22mm diameter) DE52 column equilibrated with 0.1M-KC1 in buffer B with 

5mM-EDTA was flushed with one column volume of the buffer containing fresh 

PMSF immediately prior to loading the crude extract. The extract was run on the 

DE52 column, which was then washed with equilibration buffer at 60ml/h. Fractions 

containing shikimate DH activity were pooled.

Step 3 Ammonium sulphate fractionation

The 'negative' chromatography pool was fractionated with ammonium 

sulphate. A 30-50% saturation ammonium sulphate cut contained the AROM. The 

precipitate was resuspended in buffer A with freshly added proteinase inhibitors.
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Step 4  Desalting

The resuspended ammonium sulphate precipitate was desalted at room 

temperature on an FPLC G-25 superfine gel Filtration column (HR 16/10). The 

column was run at 4ml/min in buffer F with 4ml of the AROM preparation per run. 

Fractions containing shikimate DH activity were pooled, and fresh PMSF and 

leupeptin were added.

Step 5 Chromatography on Mimetic Yellow-1

A 24ml Mimetic Yellow-1 dye column (22mm diameter) was equilibrated

in buffer F. PMSF was added to buffer F, then the solution was filtered to remove 

any precipitated PMSF. The column was immediately flushed with one column 

volume of this buffer. Desalted AROM was filtered to remove precipitated PMSF (to 

avoid the column and tubing becoming clogged). The AROM preparation was loaded 

at 60ml/h and washed with four column volumes of buffer F. AROM was eluted 

overnight with a salt step of 0.5M-KCI in buffer F containing PMSF (filtered). The 

elution profile is shown in Figure 4.12. 1.0M-KC1 in buffer F failed to elute any more 

AROM.

Peak fractions 36, 37 and 38 were pooled and dialysed into buffer B 

containing 5mM-EDTA.

Step 6 Superose 6 gel filtration chromatography

The dialysed AROM preparation was concentrated using an Amicon

centriprep 30 and loaded onto an FPLC Superose 6 gel filtration column (HR 10/30) 

in 3 separate runs. The elution profile (Figure 4.13) shows a single AROM peak. 

Protein from the peak fractions from the three runs were analysed by SDS PAGE and 

the AROM containing fractions with fewest contaminants were pooled.
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Figure 4.12 Chromatography of AROM on Mimetic Yellow-1
A6XL

A 24ml column (22mm diameter) of Mimetic Yellow-1 was equilibrated in buffer F. 
Filtered sample was loaded at 60ml/h. The column was washed with 4 column 
volumes of loading buffer until the absorbance at 280nm had dropped below 0.2. 
AROM was eluted with 0.5M KC1 in buffer F. Fractions of 4.5ml were collected 
during loading and the wash, and 4.0ml fractions during the salt wash. Fractions were 
assayed for shikimate dehydrogenase activity and the protein concentration monitored 
at 280nm.
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Figure 4.13 Chromatography of AROM on a Superose 6 gel filtration
column

A Superose 6 (HR 10/30) FPLC column was equilibrated at room temperature in 
buffer E and subsequently run at 0.25ml/min. The AROM preparation was 

concentrated using an Amicon centriprep 30, and three separate 200|il aliquots were 

loaded and run. The A 280 was continuously monitored and the shikimate DH activity 
was assayed in the individual 0.5ml fractions collected.

The profile shows one column run. AROM eluted in a single peak, and the fractions 
were pooled on the basis of the appearance of the protein analysed by SDS PAGE 

(data not shown).
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Step 7 Storage

The AROM pooled from Superose 6 chromatography was dialysed into 

50% (v/v) glycerol in 50mM-Tris/HCl pH7.5 containing 0.4mM-DTT, 20pM-zinc 

acetate, 2mM-benzamidine, 1.2mM-PMSF, l|iM-pepstatin A and 10|LiM-leupeptin. 

Some was stored at -20°C, and the remainder at -80°C.

4.6.3 Analysis of the preparative purification of AROM from A. nidulans 1314

The purification of AROM from A. nidulans 1314 is summarised in Table 

4.3. AROM was purified 13-fold with 9% yield. The subunit molecular weight was 

estimated to be 175kDa by SDS PAGE (Figure 4.14), the size predicted from the 

sequence. It is likely that the actual yield is slightly lower due to the activation of 

shikimate DH activity during the preparation shown in Table 4.3. The purified 

AROM has a specific shikimate DH activity of 4.1U/mg. At a higher protein loading 

minor contaminating polypeptides of 130kDa and 120kDa can be seen when the 

protein is analysed by SDS PAGE (Figure 4.14). Although not seen in the 

photograph there are several other trace contaminants ranging from 45kDa to 130kDa.

The cDHQase has been removed from the AROM preparation by Mimetic 

Yellow chromatography as determined by SDS PAGE which shows no protein 

running at the dye front (Figure 4.14). The possible reason for the increase in 

shikimate DH activity after negative chromatography on DE52, ammonium sulphate 

fractionation and very slightly after dialysis following chromatography on Mimetic 

Yellow-1 has been discussed in Section 4.2.6. The latter activity increase may result 

from the loss of an inhibitor of shikimate DH during dialysis.

The protein concentration of the clarified extract loaded onto the DE52 

column was rather high and in future the dry A. nidulans should be suspended in 20 

rather than 15 volumes of buffer A. In this case the step did result in an apparent 2- 

fold purification of AROM. Table 4.3 also shows that the recovery of AROM from 

the Mimetic Yellow-1 dye column was rather low. Only 26% of the activity loaded 

onto the column eluted with the 0.5M-KC1 salt step. The large drop in yield (Table
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Shikimate DH

Step Volume
(ml)

Total
protein

(mg)

Specific
activity
(U/mg)

Total
activity

(U)

Purification
(fold)

Yield
(%)

crude extract 85 1088 0.32 348 1 100

'Negative' DE52 
anion exchange

84 514 0.694 357 2.17 103

30-50% (NH4)2S 0 4 
pellet

19.5 273 1.57 429 4.91 123

FPLC Fast desalting 
column

24 185 2.23 413 6.97 119

Mimetic Yellow-1 12 23.6 4.57 108 14.3 31

Dialysed Mimetic 
Yellow-1

14 22.0 5.07 111 15.8 32

Centriprep
concentrated

0.7 68 19.5

Superose 6 7.5 47 13.5

Superose 6 dialysed 5.3 7.31 4.14 30 12.9 8.6

Table 4.3 Purification scheme for AROM from A. nidulans 1314

The purification of AROM from A. nidulans 1314 was followed by assaying for 
shikimate DH activity. Samples were assayed immediately for enzyme activity and 
stored at -80°C prior to protein determination. Protein concentrations were 
determined by the method of Bradford (1976). The reason for yields shown as greater 

than 100% is discussed in Section 4.6.3.
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Figure 4.14 SDS PAGE of preparative scale AROM purification
from A. nidulans 1314

Samples were taken at each stage of the purification of AROM from A. nidulans 1314 
and boiled immediately with SDS PAGE sample buffer, then stored at -80°C. The 
samples were reboiled prior to separation on 10% SDS PAGE. The gel was stained 
with Coomassie Brilliant Blue G-250.

Lane 1. cleared extract, 30pg protein

Lane 2. negative DE52 anion exchange pool, 30|ig protein

Lane 3. desalted 30-50% (NH4)2S0 4  pellet, 20|ig protein

Lane 4. dialysed mimetic yellow dye pool, 2pg protein

Lane 5. dialysed Superose 6 pool, 2p.g protein

Lane 6. dialysed Superose 6 pool, 5|Lig protein

M. Molecular weight markers from top to bottom: 205kDa, 

116kDa, 97.4kDa, 66kDa, 45kDa and 29kDa
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4.3) was partly due to AROM ' leaching ' off during the loading and subsequent 

washing (32% of the AROM was lost in this way). No further AROM could be 

eluted with 1.0M-KC1. The difference in binding of AROM to the Mimetic Yellow-1 

here, and that in the 'PIKSI' dye test kit (Section 4.3.9) is most likely due to the batch 

variation of the dyes. The variation in protein binding from batch to batch of dyes 

used as affinity ligands in chromatography is notorious. The other 42 % of AROM 

not recovered might be irreversibly 'stuck' on the column.

Nearly 40% of the AROM was lost on concentrating the protein with an 

Amicon centriprep 30 prior to gel filtration chromatography on Superose 6 (Table

4.3). The loss is probably due to AROM 'sticking' to the membrane of the centriprep 

concentrator. In future concentrating the protein shoud be avoided if possible. 

Indeed, the apparent reduced purification of AROM after chromatography on 

Superose 6 (Table 4.3) and the failure to remove any contaminants as analysed by 

SDS PAGE (Figure 4.14), suggest that this step in the purification protocol might be 

omitted for future AROM purification.

In summary, AROM has been purified from A. nidulans 1314. On very 

heavy protein loading, several lower molecular weight polypeptides are observed by 

SDS PAGE. These might be due to proteolytically damaged AROM which co- 

purifies with the native protein. To test this hypothesis the AROM preparation was 

analysed by non-denaturing PAGE.

4.6.4 Analysis of AROM purified from A. nidulans 1314 by native PAGE

The AROM purified according to Table 4.3 was analysed by native PAGE on 

a 4-15% gradient gel (Figure 4.15). One major protein band was observed after 

staining with Coomassie Brilliant Blue G-250. There are also several other protein 

bands of lower mobility. Staining for shikimate DH activity showed every protein 

band had shikimate DH activity. (No staining was seen in the absence of the specific 

substrate, shikimate). The protein bands get closer together towards the top of the 

separating gel, and this 'laddering' effect can be explained by oxidative cross-linking
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Figure 4.15 Analysis of AROM purified from A. nidulans 1314
by native PAGE

AROM purified from the overexpression strain of A. nidulans was incubated with 
50mM-DTT at 4°C for 1 h prior to mixing with native running buffer. Samples 
containing 0.2jug and 0.5pg were electrophoresed in triplicate on a 4-15% gradient 
PhastGel using the native buffering system. The gel was sliced into 3 identical 

sections and one section was stained for protein with Coomassie Brilliant Blue G-250. 
The remaining sections were stained for shikimate DH activity using the nitroblue 
tetrazolium dye-linked method in the presence or absence of the substrate, shikimate 

(see Section 2.6.2).

Lane 1. 0.2jig AROM } Stained for protein with
Lane 2. 0.5|ig AROM } Coomassie Blue

Lane 3. 0.2pg AROM } Stained for shikimate DH activity
Lane 4. 0.5jig AROM } in the absence of shikimate

Lane 5. 0.2jig AROM } Stained for shikimate DH activity
Lane 6. 0.5pg AROM } in the presence of shikimate
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of AROM, despite pre-incubation of the samples with a high concentration of DTT 

prior to loading the gel. No such multimerisation was observed on gel filtration 

chromatography (Figure 4.4 and Section 4.6.6).

On examination of the native gel (Figure 4.15) no other bands that might 

account for the contaminants seen on SDS PAGE can be seen with Coomassie stain. 

This might be because they are hidden by the other AROM protein bands, because 

insufficient protein was present to see these minor contaminants, or because they do 

in fact arise on SDS PAGE from 'nicked' AROM that is not separated from intact 

AROM under native conditions.

4.6.5 Individual enzvme activities of AROM purified from A. nidulans 1314

The five individual AROM activities of AROM purified from A. nidulans 

1314 were assayed on a ten day old preparation which had been kept at -20°C in 

storage buffer (see 4.6.2). The specific activities, and activity ratios standardised 

against shikimate kinase, are shown in Table 4.4. The specific shikimate DH activity 

had not decreased since the AROM was purified (see Table 4.3). Comparisons made 

with the activity ratio in crude extract were with mycelia grown under different 

conditions although there is no reason to suppose that the activity ratio is any 

different for the individual enzymes.

Most notable in this AROM preparation is the low DHQ synthase activity 

assayed in 2mM-DAHP. As a precaution against DHQ synthase activity loss zinc 

was added to the buffers until the gel filtration step. Also the purification was carried 

out as quickly as possible. The activity ratio is similar to that observed in crude 

extract (Section 4.2.3). An explanation for the low DHQ synthase activity of AROM 

from A. nidulans 1314 was discovered later and this is discussed in Section 4.6.8.

The EPSP synthase activity shown in Table 4.4 is more encouraging since 

this activity was completely extinct in AROM purified by route A1 of the preliminary 

purification (Section 4.4.1). In the material from the large-scale purification the 

EPSP synthase activity is a little lower than the activity ratio observed in crude
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AROM activity Specific activity (U/mg) Activity ratio 
shikimate kinase=100

DHQ synthase*" 0.071 1.1

DHQasef 4.1 63

Shikimate DHr 4.8 72

Shikimate kinasef 6.6 100

EPSP synthase1- 3.5 54

fassayed in the forward direction 
•assayed in the reverse direction

Table 4.4 Individual enzyme activities of AROM purified from
A. nidulans 1314

Ten day old AROM was diluted 10-fold in 50mM-Tris/HCl pH7.5 containing 
1.4mM-6-mercaptoethanol and 2mM-benzamidine. Each enzyme was assayed in 
quadruplicate and the mean value for each is shown. The protein concentration was 
determined by the method of Bradford (1976). DHQ synthase activity was assayed 
by coupling DHQ release to the DHQase reaction (see 2.9.2) with 2mM-DAHP and 
lOOpM-zinc sulphate in the assay buffer.
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extract of 100:75 for shikimate kinase :EPSP synthase (Table 4.1). Therefore some 

EPSP synthase activity has almost certainly been lost during purification.

The activity ratio of DHQase is 17% less than the value in crude extract. 

At least some of this is presumably due to the loss of cDHQase which was in the 

crude extract but not in the purified AROM. The shikimate DH activity ratio is 

approximately the same as in crude extract. I expected this to increase because the 

total shikimate DH activity increased at several stages during the purification (see 

Table 4.3).

The above analysis assumes that the shikimate kinase activity is stable 

throughout purification which may not be the case. There are no increases in the 

other AROM activities compared to shikimate kinase, so there is no evidence that 

shikimate kinase is unstable during purification. Ideally the specific activity at each 

stage of the purification should be assayed for each enzyme. However, this would be 

very time consuming and would slow the purification down considerably unless done 

with assistance. Also it did not seem sensible to follow all five activities throughout 

the purification until the problem of the very low DHQ synthase activity had been 

resolved.

4.6.6 Determination of the native molecular weight of AROM purified from

A. nidulans 1314

N. crassa AROM is known to be a dimer of identical pentafunctional 

polypeptides, each estimated by SDS PAGE to be 165kDa (Lumsden & Coggins, 

1977). The native molecular weight was estimated to be 270kDa on glycerol density 

centrifugation (Lumsden & Coggins, 1977). It shows an anomalously high molecular 

weight of 530kDa in at least some HPLC gel filtration experiments (Coggins etal., 

1985; Coggins and Boocock, 1986). The native molecular weight of A. nidulans 

AROM was determined by Ahmed and Giles (1969) to be 217kDa on sucrose density 

gradient centrifugation which is rather low for a dimer of two identical subunits of 

175kDa.
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Figure 4.16 shows the estimation of the native molecular weight of 

AROM purified from A. nidulans 1314 by gel filtration chromatography. From the 

plot, the native molecular weight is 410kDa. This suggests AROM is a dimer. The 

fact that it runs as a slightly larger protein on gel filtration chromatography than the 

350kDa predicted for the dimer from the nucleotide sequence of the gene suggests 

that the protein is asymmetric.

4.6.7 Attempted N-terminal sequencing of the AROM polypeptide

DHQ synthase is located at the N-terminus of AROM. It was therefore of 

interest to see if the AROM purified from A. nidulans 1314, which was seriously 

defective in DHQ synthase, would show a mutation or truncation on sequencing the 

N-terminus which might explain the low activity.

200pmol of AROM purified from A. nidulans 1314 was separated by SDS 

PAGE and subsequently electroblotted onto Problott membrane for 3.5 h by the 

method described in Section 2.8. The protein on Problott was stained with Amido 

Black. An 80% transfer of AROM was estimated. The band of protein was cut out 

and analysed on a Pulsed-liquid sequencer at the Aberdeen University Amino Acid 

Sequencing Facility.

The data obtained from the N-terminal sequencing showed 4.6pmol of 

threonine in the first cycle and 2.64pmol of proline in the second round. The values 

are much lower than expected for the amount of protein present and the trace had a 

high background of peaks which made the determination of any further sequence 

impossible. There is a threonine-proline in the A. nidulans AROM sequence at 

residues 52 and 53. It seems likely that the major protein present is chemically 

blocked at the N-terminus, possibly by formylation or acetylation. The trace from 

sequencing is most likely to be from a contaminating protein - perhaps a truncated 

form of the AROM polypeptide. Thus no information was gained on the DHQ 

synthase domain of AROM from N-terminal sequencing.
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Figure 4.16 Determination of the native molecular weight of AROM
purified from A. nidulans overexpresser determined from 
calibrated gel filtration chromatography.

Superose 6 HR 10/30 FPLC gel filtration column was equilibrated with buffer E. The 
column was calibrated with high molecular weight standards from the Pharmacia gel 
filtration calibration kit for proteins:-

Standard_______ Source_________ Native molecular weight

aldolase rabbit muscle 158kDa
catalase bovine liver 232kDa
ferritin horse spleen 440kDa
thyroglobulin bovine thyroid 669kDa

A mixture of the standards containing 40pg aldolase, lOOjig catalase, lOjLlg ferritin 
and lOOpg thyroglobulin were separated at O.lml/min and full scale deflection of 0.1 

monitoring at A 280 and the elution volumes measured. 20pg of AROM purified from 
A. nidulans 1314 was mixed with aldolase and thyroglobulin and separated on 
Superose 6 chromatography and the elution volumes measured.

The plot shows the native molecular weight of the standard proteins on a logarithmic 
scale versus the elution volume for the protein. From the measured elution volume of 
AROM, the native molecular weight was estimated as 410kDa from the calibration 
curve.
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The large number of ‘background' peaks observed in the sequencer is 

similar to the picture observed more usually after 30 cycles of the Edman degradation 

when the polypeptide start to 'fall apart' under the intermittently acid conditions. It is 

conceivable that this AROM is hypersensitive to the acid conditions, and quickly 

'falls apart' on sequencing.

4.6.8 The DHQ synthase activity of AROM from A. nidulans 1314

The DHQ synthase deficiency of AROM from A. nidulans 1314, both in 

crude extract (see 4.2.3) and in a purified form (see 4.6.5), gave cause for concern. It 

seemed possible that this activity had somehow been lost by proteolytic or other 

damage. Since this domain is N-terminal, one could envisage proteolytic 

inactiv-ation which would be undetectable by SDS PAGE. While this work on 

AROM was proceeding, the DHQ synthase domain of AROM was expressed in 

E. coli by van den Hombergh in Hawkins' group (van den Hombergh et a l ., 1992). 

This DHQ synthase domain is able to complement an aro B~ mutant (lacking DHQ 

synthase) E. coli strain . The domain was expressed at high level, comprising 30% of 

the total cell protein. J. Moore from Hawkins' group tested this stable domain for 

DHQ synthase activity in our laboratory and found it to be highly active (J. Moore, 

1993).

An attempt by Moore to express a bifunctional DHQ synthase-EPSP 

synthase domain in E. coli resulted in the complementation of aro A ~ mutants (which 

lack EPSP synthase) but not aro B~ mutants. The first 730 nucleotides of this DHQ 

synthase were replaced with the first 730 nucleotides of the DHQ synthase domain 

which had been successfully used by van den Hombergh to complement an aro B~ 

mutant. The resulting DHQ synthase was capable of complementing aro B~ mutants 

(J. Moore, 1993). This suggested that the two supposedly identical DHQ synthase 

regions are actually different, with one able to produce active protein, and the other 

not. Subsequent sequencing of the 730 nucleotides at the N-terminus of the 'faulty' 

DHQ synthase showed that a missense mutation is present which has altered residue

156



143 from alanine to proline (Moore & Hawkins, 1993). It transpired that this 

mutation had been accidentally introduced in an oligonucleotide which had been used 

to remove a restriction site at nucleotide 428 when plasmid pNUFC2 was constructed 

(Lamb etal., 1991; Moore et al., 1992). (A description of the mutation by Moore & 

Hawkins(1993) has an error in the text and states that the mutation is at residue 144, 

rather than 143). All the AROM constructs derived from pNUFC2 contain the 

missense mutation including that used to make the A. nidulans strain 1314 studied 

here.

In constructing plasmid pNUFC2, the second residue from the N-terminus 

of AROM was changed from serine to alanine in order to introduce a restriction site. 

The DHQ synthase domain expressed as a functional protein in E. coli by van den 

Hombergh e ta l. (1992) also has this missense mutation. Therefore, this second 

mutation is not responsible for the inactivation of DHQ synthase and the activity loss 

can be attributed to the missense mutation at residue 143.

Plasmid pNUFC2, which contains the entire AROM gene, including the 

'faulty' DHQ synthase, is unable to complement aro B ' mutants of E. coli which lack 

DHQ synthase activity (J. Moore, personal communication). The chromosomal copy 

of AROM in A. nidu-lans 1314 is derived from the aromA~ mutant strain 1103 which 

is unable to complement any AROM activity (Roberts, 1969; J. Moore, personal 

communication) and is likely to have a chain termination mutation in the DHQ 

synthase region of the gene. This raises the question of how the low level of DHQ 

synthase actually observed in A. nidulans 1314 (see 4.2.3 and Table 4.4) has arisen, 

since neither the original chromosomal nor the integrated plasmid borne copies of 

AROM DHQ synthase have the ability to grow on medium without amino acid 

supplements. There are three possible explanations;-

(1) Gene conversion: plasmids are unstable in A. nidulans and integrate 

into the chromosomal DNA. There are approximately twelve copies of pNUFC2 

containing the AROM coding region in strain 1314 (J. Moore, personal 

communication). If a single integrated copy undergoes gene conversion with the
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'correct' sequence at residue 143 of the original chromosomal DHQ synthase, then one 

copy of AROM might be expressed in A. nidulans 1314.

(2) Recombination: It is possible that a recombination event may have 

occurred between the chromosomal DNA and a copy of integrated pNUFC2, resulting 

in a single copy of AROM which has the wild-type sequence. The recombination 

could also have occured during the integration of the plasmid into the chromosomal 

AROM coding region.

(3) Interallelic complementation: the third possibility is that interallelic 

complementation occurs. In this scenario the mutation on one polypeptide is able to 

complement the mutation on the other polypeptide resulting in active protein. This is 

dependent on both polypeptides being in contact with one another in the region of the 

mutations (Crick & Orgel, 1964). Interallelic complementation has been observed for 

DHQ synthase of N. crassa AROM, both in vitro and in vivo. Several arom-2 (DHQ 

synthase deficient) N. crassa strains were able to complement one another in hybrid 

heterokaryons (Giles eta l., 1967). Complementation was also seen in vitro when 

partially purified AROM from two complementary arom-2 strains were incubated 

together under alkaline conditions. Substantial DHQ synthase activity was 

reconstituted (Case et al., 1969). This provided evidence that AROM is a dimer 

which is thought to interact at the dimer interface through DHQ synthase-DHQ 

synthase and shikimate DH-shikimate DH contacts (Case eta l., 1969).

In the first two cases the low level of DHQ synthase activity compared to 

the other four AROM enzymes can be explained by only one of the AROM copies 

reverting to wild-type (and being driven by the wild-type promoter) since the wild- 

type enzyme levels are about 100-fold less than strain 1314 (see Table 4.1). In the 

case of interallelic complementation no more than the wild-type levels can be 

expected because interallelic complementation requires both mutant polypeptides to 

interact.

The predic-ted protein sequences for AROM from S.cerevisiae (Duncan et 

al., 1987) and A. nidulans (Charles etal., 1986; Hawkins, 1987) have been aligned
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with the protein sequence deduced from the E. coli aro B gene which encodes DHQ 

synthase (Duncan et al., 1987). The alignment suggests that the DHQ synthase 

domains may form two subdomains separated by a linker region of variable length: 27 

amino acids in the S. cerevisiae sequence and 13 amino acids in A. nidulans (Figure 

4.17). Within each subdomain are highly conserved regions. The N-terminal 

subdomain has the conserved nucleotide binding motif Gly-X-Gly-X-X-Gly within a 

BaB nucleotide binding fold (Duncan et a l., 1987; Hawkins, 1987). In both 

A. nidulans and S. cerevisiae the motif sequence is Gly-Gly-Gly-Val-Ile-Gly starting 

at residue 113 in the A. nidulans sequence. Therefore, this region of DHQ synthase is 

thought to bind the catalytic NAD+. The mutation at residue 143 from alanine to 

proline is in a very highly conserved region immediately adjacent to the putative 

nucleotide binding site. Proline residues lack an NH-group and this frequently 

disrupts the secondary structure of proteins (Milner-White etal., 1992). In this case 

the alanine to proline mutation may disrupt a crucial structural feature near the 

nucleotide binding domain. This could explain the absence of DHQ synthase activity.

A. nidulans 1314, therefore, contains several copies of the AROM gene 

with a mutation which may disrupt the NAD+ binding site of DHQ synthase and 

render the enzyme inactive. The low level of DHQ synthase activity observed in 

strain 1314 can be explained by genetic recombination, gene conversion or interallelic 

complementation.

4.6.9 Summary

A rapid procedure has been developed for purifying AROM from 

A. nidulans 1314. The purified AROM is a dimer and has only a low level of DHQ 

synthase activity. The polypeptide population is thought to be mixed, with the 

majority of the protein completely lacking DHQ synthase activity because of a 

missense mutation at residue 143. The other AROM activities of the purified protein 

have similar activity ratios to those found in crude extract (Tables 4.1. and 4.4).
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Figure 4.17 Amino acid identity between the E. coli DHQ synthase and
the DHQ synthase regions of A. nidulans and S. cerevisiae 
AROM, showing the location of the missense mutation in 
AROM from A. nidulans 1314

The figure shows the location of the missense mutation found in AROM from 
A. nidulans 1314. The mutation at residue 143 has a proline residue (P) rather than 
alanine (A) and is in bold type face. The nucleotide binding motif is also bold. The 
A. nidulans sequence has been numbered.
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At the time that AROM was purified from A. nidulans 1314, it was not 

known that the deficiency of DHQ synthase activity was caused by a mutation. 

Therefore, I did not proceed with kinetic studies of the protein because it still 

remained unclear whether the activity had somehow been lost, possibly by 

proteolysis. If this is the case, kinetic data can be misleading. Now that the cause of 

inactivity is clear, kinetic studies of AROM from A. nidulans 1314 would provide 

interesting data. This is discussed in Section 4.8.

The AROM purified from A. nidulans 1314 was used in the limited 

proteolysis study described in the next section (4.7) since the mutation does not 

appear to have a major effect on the other AROM activities. The protein is also 

dimeric suggesting that the quaternary structure is not greatly affected.

4.7 Limited proteolysis studies of native AROM from A. nidulans 1314

4.7.1 Introduction

Limited proteolysis of native proteins can provide information about the 

domain structure. The method has proved particularly useful in studies of 

multifunctional proteins which are arranged as compact, globular domains separated 

by interdomain 'linker' regions which are more vulnerable to proteinases. Cleavage of 

interdomain sequences may produce separate domains of the protein with intact 

activity.

Two functional dimeric polypeptides were isolated from N. crassa AROM 

by proteolysis (Smith & Coggins, 1983; Coggins etal., 1985; Coggins & Boocock, 

1986). The first had a polypeptide fragment of molecular weight of 74kDa 

determined by SDS PAGE and its native form showed EPSP synthase activity. The 

other polypeptide fragment had a molecular weight of 63kDa, as determined by SDS 

PAGE and it was also isolated in a dimeric form which had both DHQase and 

shikimate DH activity. This study of N. crassa AROM has been described more fully 

in Section 1.7.3. The work showed that the isolated polypeptides are functionally 

independent of the other AROM enzymes. The isolated 63kDa polypeptide (with
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shikimate DH and DHQase activity) was able to renature to produce active shikimate 

DH. This shows that the information for correct protein folding of shikimate DH is 

carried on the 63kDa polypeptide. The data support other biochemical and genetic 

evidence which suggest a 'mosaic model' for AROM. These studies were carried out 

prior to sequencing of the gene coding AROM and alignment of the deduced amino 

acid sequence with the sequences of the individual E. coli enzymes (see 1.7.4 and 

Figure 1.2).

Now that the A. nidulans arom A  gene has been sequenced, a proteolysis 

study will provide a much better picture of AROM because the exact positions of 

proteolytic cleavage can be determined by sequencing of the N-termini of the 

polypeptide fragments produced. One of the long term aims of the project is to 

compare intact AROM with domains expressed independently (see 1.7.5 and 1.8). 

Attempts in this laboratory to express stable, functional domains of S. cerevisiae 

AROM in E. coli and in S. cerevisiae were unsuccessful (Graham et a l ., in press; L.D. 

Graham, personal communication). Hawkins and Smith (1991) examined whether 

expression of A. nidulans AROM domains could complement aro~ mutant E. coli 

strains which lack the individual shikimate pathway enzymes. For complementation 

to occur, only a minute quantity of protein need be expressed and the domains 

produced in the study were not stable (J. Moore, 1993). The study was carried out 

before the group had the facilities to use the polymerase chain reaction and they relied 

on restriction sites to clone the domains. This meant that the domains did not always 

begin and end in the correct places, and some constructs resulted in C-terminal 

extensions of non-AROM sequence due to read-through into the plasmid (Moore & 

Hawkins, 1993). These extensions could target the protein produced for proteolysis 

within the cell. Similarly, domains which are short of the entire domain sequence, 

may not fold into a compact globular structure and may again be unstable. This 

would explain why complementation occurs but no protein is observed.

The polypeptide domain boundaries were identified by sequence 

alignment with the individual monofunctional E. coli enzymes. The polymerase
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chain reaction has allowed precise translational initiation and termination at a variety 

of possible domain boundary sites to see which produce stable protein. An example 

where this strategy was adopted is the study by van den Hombergh etal. (1991) in 

Hawkins' laboratory. He made two constructs encoding DHQ synthase with an 

identical N-terminus but with different C-termini (residues 393-434). Both plasmids 

were able to complement aro B" E. coli mutants (lacking DHQ synthase) but only the 

strain containing the DHQ synthase terminating at residue 393 showed an inducible 

production of a stable 43kDa protein. In the same study the presumptive position of 

the C-terminus of the DHQ synthase domain was located more precisely by 

producing several constructs with different C-termini. The specific activity of 

DHQase in transformed strains varied 20-fold. Constructs with both shorter and 

longer polypeptides resulted in a lower specific activity in crude extracts.

Clearly, then, the position of the domain boundaries is very important in 

domain expression studies. At the time of this study of A. nidulans AROM only the 

DHQ synthase and DHQase domains had been successfully expressed (Kinghorn & 

Hawkins, 1982; van den Hombergh etal., 1991). Therefore, the proteolysis study of 

AROM from A. nidulans 1314 - to be described here - was undertaken to produce 

stable, active domains. As already described, the interdomain linkers are generally 

most accessible to proteinases so any stable domains remaining may, once defined, 

provide a good starting point for domain expression studies. The N-terminus of the 

proteolysed fragment can be sequenced to this end. Obviously though, the same 

fragment will not neccessarily produce functional, stable protein in expression studies 

because it may be unable to fold into the correct conformation independently.

This section describes the preliminary proteolysis study that I made of 

AROM isolated from A. nidulans 1314.

4.7.2 Predicted domain sizes for A. nidulans AROM

The domain sizes of AROM from A. nidulans have been predicted both 

from the sequence alignment of A. nidulans and S. cerevisiae AROM with the
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individual E. coli enzymes (Charles etal., 1986; Duncan etal., 1987; Hawkins, 1987), 

and from domain expression studies (van den Hombergh et a/., 1991). There are 

believed to be interdomain linker polypeptides between DHQ synthase and EPSP 

synthase, and between EPSP synthase and shikimate kinase (Duncan et al., 1987). 

Secondary structure predictions for the S. cerevisiae AROM linker polypeptides 

suggest that the linkers may be devoid of secondary structure. The DHQ synthase 

and EPSP synthase domains may have ‘internal’ linker polypeptides dividing each 

domain into subdomains (Duncan et al., 1987; Coggins etal., 1987b). A domain 

expression study has suggested that there is no interdomain linker between DHQase 

and shikimate DH (van den Hombergh et al, 1991). There is also no obvious linker 

between the shikimate kinase and DHQase domains (Coggins et al., 1987b; Duncan 

etal., 1987).

Figure 4.18 shows the predicted molecular weights of the functional 

domains of A. nidulans AROM. In the preliminary study that follows, I looked at the 

loss of individual AROM enzyme activities during proteolysis and examined the 

polypeptides that resulted. The shikimate DH activity was renatured after SDS 

PAGE, to identify polypeptides with this functional domain of AROM.

4.7.3 Preliminary proteolysis of native AROM from A. nidulans 1314

In the first instance, I used trypsin, chymotrypsin and subtilisin for 

proteolysis since they had been used to isolate active domains of N. crassa AROM 

(Smith & Coggins, 1983; Coggins et al., 1985; Coggins & Boocock, 1986). 

Thermolysin and proteinase K were also used. Initially the same conditions as 

Boocock (1983) were employed with digestion in potassium phosphate buffer pH7.0. 

The precipitate formed between potassium ions and SDS (in the SDS PAGE sample 

buffer) was problematic and so Tris/HCl pH7.0 was used instead: the results are 

described in this section. However, Tris/HCl is not the most suitable choice of pH7.0 

buffer as it has a low buffering capacity. Also, the phosphate buffer might have had a 

stabilising effect on the conformation of AROM. For these reasons the proteolysis
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was subsequently repeated in sodium phosphate buffer pH7.0 and the fragmentation 

pattern observed by SDS PAGE was examined. Several polypeptides produced with 

each proteinase were common to each buffering system and it is believed that any 

differences were merely due to termination of proteolysis at different stages in the 

cleavage resulting in some different transient polypeptides.

Because of the very low DHQ synthase activity of this AROM preparation 

(see above) DHQ synthase was not assayed in the proteolysis study. For each 

proteolysis, native AROM was incubated with proteinase at 25°C and samples were 

removed at the stated time intervals. A specific proteinase inhibitor was added to the 

sample and the mixture stored on ice while enzyme assays were carried out. The 

protein remaining after assays was boiled in SDS PAGE sample buffer and analysed 

by SDS PAGE. The control samples - AROM alone and proteinase alone - were 

incubated for the time of the longest digestion and proteinase inhibitor was 

subsequntly added. The AROM control was assayed for the individual AROM 

activities and these values were taken as 100% activity. The enzyme activities of 

proteolysed AROM are shown as a percentage of this value. The proteolysis results 

are later discussed in the light of the experiment which examined shikimate DH 

renaturation after proteolysis.

h. Digestion of native AROM with trypsin

AROM was incubated with TPCK-treated trypsin in a 2:1 ratio. The 

digestion was terminated by the addition of a 3-fold mass excess of lima bean 

proteinase inhibitor. Figure 4.19 shows the individual AROM activities over 60 min 

digestion. After 5 min DHQase and shikimate DH remain fully active and only fall to 

80% and 58% respectively of their original values after 60 min. EPSP synthase 

activity is most sensitive to proteolysis and is completely lost after 60 min digestion.

The proteolysed AROM fragments were separated by SDS PAGE (Figure 

4.21) and show a complex cleavage pattern over the incubation period. After 60 min 

the major digestion species is a stable 41kDa polypeptide; There is also a minor
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Figure 4.19 Loss of AROM activities during digestion with trypsin

AROM purified from A. nidulans 1314 was incubated at 200pg/ml with 100|ig/ml 
TPCK-treated trypsin in 50mM-Tris/HCl pH7.0, containing 1.4mM-6- 
mercaptoethanol at 25 °C. Digestion was terminated after 5 and 20 min by the 
addition of 300pg/ml lima bean proteinase inhibitor and the samples stored on ice. A 
60 min time point is also shown from a separate, identical experiment. Enzyme 
assays were carried out in duplicate.

The graph follows the loss of individual AROM activities with time during 
proteolysis with trypsin. The enzyme activities are given as a percentage of the zero 

time point which was taken as the activity found in an AROM sample incubated for 
60 min at 25°C, and subsequently treated with lima bean proteinase inhibitor.
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70kDa polypeptide. Both these species were observed when the proteolysis was 

carried out in sodium phosphate buffer. From Figure 4.18 the DHQase-shikimate DH 

bifunctional polypeptide has an estimated molecular weight of 63kDa. It is therefore 

possible that the 70kDa polypeptide has both these activities. The 40kDa polypeptide 

might contain the DHQase region of AROM or the shikimate DH region or be a 

mixture of both since both these activities survive to a significant degree over the 

time course of the digestion.

2. Digestion of native AROM with chvrnotrvpsin

AROM was incubated with TLCK-treated chymotrysin in a ratio of 5:1. 

Figure 4.20 shows that all four enzyme activities are lost after 60 min digestion and 

no polypeptide fragments can be seen by SDS PAGE (Figure 4.21). Transient 

polypeptides of 82kDa, 60kDa, 48kDa and 38kDa are produced within 5 min 

digestion and at this stage 60% of the DHQase and shikimate DH activities remain. 

The 60kDa polypeptide is possibly a bifunctional DHQase-shikimate DH fragment, 

and the 82kDa polypeptide is the correct size for a trifunctional shikimate kinase- 

DHQase-shikimate DH frament. Both polypeptides are, however, degraded quite 

quickly and only a little of the 60kDa polypeptide remains after 20 min digestion. 

There are apparently no stable proteolytic fragments produced by digestion with 

chymotrypsin.

3. Digestion of native AROM with subtilisin

AROM was digested with Subtilisin Carlsberg in a 20:1 ratio. After 60 

min incubation none of the enzyme activities remain and no fragments of AROM can 

be seen by SDS PAGE (Figure 4.22). Both shikimate kinase and EPSP synthase 

activities are lost very quickly. After 5 min digestion the DHQase and shikimate DH 

activities have fallen to 65% of their original values and several polypeptides are seen 

on SDS PAGE (72kDa, 59kDa, 52kDa, 51kDa and 33kDa). The major species 

appear as a 52kDa and51kDa doublet although this is too small to carry both the
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Figure 4.20 Loss of AROM activities during digestion with
chymotrypsin

AROM purified from A. nidulans 1314 was incubated at a concentration of 200|ig/ml 

with 40|Hg/ml of TLCK-treated chymotrypsin in 50mM-Tris/HCl pH7.0, containing 

1.4mM-B-mercaptoethanol at 25°C. Digestion was terminated at 5 and 20 min. by the 

addition of 12()pg/ml lima bean protease inhibitor. The 60 min digestion data were 

obtained from a separate, identical experiment. The enzyme assays were carried out 

in duplicate.

The graph shows the loss of individual AROM activities with chymotrypsin 

digestion under native conditions. Activities are shown as a percentage of the zero 

time point. The zero time sample was taken as the activity of an AROM sample 

incubated for 60min at 25°C without proteinase, and subsequently treated with lima 

bean protease inhibitor.
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Figure 4.21 Analysis by SDS PAGE of native AROM proteolysed by
trypsin and chymotrypsin

AROM purified from A. nidulans 1314 was incubated at 200[ig/ml under native 
conditions with 100|ig/ml TPCK-treated trypsin or 40|iig/ml TLCK-treated 

chymotrypsin in 50mM-Tris/HCl pH7.0, containing 1.4mM-6-mercaptoethanol. 

Proteolysis was terminated after 5 and 20 min with the addition of a 3-fold excess of 
lima bean proteinase inhibitor. In separate individual experiments AROM was 
digested in an identical manner for 60 min with each proteinase. Samples were boiled 
for 5 min in SDS PAGE sample buffer and analysed by SDS-PAGE on a 10% gel.
The gel was silver stained for protein (see 2.5.2).

M molecular weight markers: 205kDa, 116kDa,

97.4kDa, 66kDa, 45kDa, 29kDa, 3pg total 
protein.

Lane 1. 4.6|ig AROM.
Lane 2. 4.6pg AROM incubated for 60 min, with

subsequent addition of lima bean proteinase 
inhibitor.

Lanes 3 4.6pg AROM incubated for 5 min with trypsin.

Lane 4. 4.6pg AROM incubated for 20 min with trypsin.
Lane 5. 4.6|ig AROM incubated for 60 min.with trypsin.
Lane 6. 2.3|ig trypsin incubated for 60 min, with

subsequent addition of lima bean proteinase 
inhibitor.

Lane 7. 4.6pg AROM incubated for 5 min with
chymotrypsin.

Lane 8. 4.6fig AROM incubated for 20 min with

chymotrypsin.
Lane 9. 4.6|ig AROM incubated for 60 min with

chymotrypsin.
Lane 10. 0.9|ig Chymotrypsin incubated for 60 min, with

subsequent addition of lima bean proteinase 
inhibitor.
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Figure 4.22 Digestion of native AROM with subtilisin

AROM purified from A. nidulans 1314 was incubated at 200p,g/ml with 10p.g/ml 
subtilisin Carlsberg at 25°C in 50mM-Tris/HCl pH7.0, containing 1.4mM-B- 
mercaptoethanol. Digestion was stopped at 5 and 60 min with the addition of 
1.15mM-PMSF and Samples were stored on ice.

(a) ‘Individual enzyme activities’

Enzyme assays were carried out in duplicate. The graph shows the loss of individual 
AROM activities with subtilisin proteolysis under native conditions. Activities are 
shown as a percentage of the zero time sample. The zero time point was taken as the 
activity in an AROM sample incubated at 25 °C for 60 min without proteinase, and 
subsequently treated with PMSF.

After completion of the individual enzyme assays described above (a), the protein 
was boiled for 5 min in SDS PAGE sample buffer and analysed by SDS PAGE on a 
10% gel. The gel was silver stained for protein visualisation (see 2.5.2).

(b) ‘Gel’

M molecular weight markers: 205kDa, 116kDa, 
97.4kDa, 66kDa, 45kDa and 29kDa.
6jig AROM incubated 60 min, with subsequent 
addition of PMSF.

6jig AROM incubated 5 min with subtilisin. 
6p.g AROM incubated 60 min with subtilisin. 
0.3p.g subtilisin incubated 60 min, with 
subsequent addition of PMSF.

Lane 1.

Lane 2. 
Lane 3. 
Lane 4.
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shikimate DH and DHQase activities observed. The 33kDa polypeptide is 

conceivably the shikimate DH domain and such a fragment of 30kDa was observed 

after digestion of N. crassa AROM with a chymotrysin/trypsin mixture (Boocock, 

1983). All of the polypeptides observed after 5 min digestion with subtilisin are 

rapidly digested.

4. Digestion of AROM with thermolvsin

AROM was digested with thermolysin in a 5:1 ratio. Figure 4.23 shows 

that after 60 min of digestion there are two stable proteolysis products - a major 

53kDa polypeptide and a minor polypeptide of 60kDa. At this stage all the DHQase 

activity remains and over 40% of the shikimate DH is active. The 60kDa polpeptide 

is possibly a DHQase-shikimate DH bifunctional fragment which has been slightly 

trimmed but is still active.

5. Digestion of native AROM with proteinase K

AROM was digested with proteinase K in a 5:1 ratio and the proteolytic 

fragments produced after 5 and 60 min were analysed by SDS PAGE (Figure 4.24). 

The protein was completely digested after 60 min but after 5 min several polypeptides 

were observed of 70kDa, 64kDa, 59kDa, 51.5kDa and 33.5kDa.. A 70kDa 

polypeptide was also seen with trypsin digestion and fragments of similar molecular 

weights to the other polypeptides were also observed with other proteinases. No 

enzyme activity studies were carried out after AROM digestion with proteinase K.

6. Shikimate DH activity of proteolysed AROM renatured after SDS PAGE

The digestion studies described above showed several fragments resulting

from AROM proteolysis which might have shikimate DH activity. In an attempt to 

identify fragments with this activity, AROM was proteolysed with each of the 

proteinases: trypsin, chymotrypsin, subtilisin, thermolysin and proteinase K; the 

digested protein was separated by SDS PAGE and the gel renatured by the method
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Figure 4.23 Digestion of native AROM with thermolysin

AROM purified from A. nidulans 1314 was incubated at 200|Ug/ml with 40pg/ml 

thermolysin in 50mM-Tris/HCl pH7.5, containing 1.4mM-8-mercaptoethanol at 
25°C. Digestion was terminated after 5, 20 and 60 min with the addition of 5mM- 
EDTA and samples were stored on ice.

(a) ‘Individual enzyme activities’

Enzyme assays were carried out in duplicate. The graph shows the loss of individual 

AROM activities with thermolysin digestion under native conditions. The zero time 
point was taken as the activity in an AROM sample incubated at 25 °C for 60 min 
with the subsequent addition of EDTA. Activities are shown as a percentage of the 
zero time point.

After completion of the individual assays the proteolysed protein was boiled for 5 min 
in SDS PAGE sample buffer. Individual samples were analysed by SDS PAGE on a 
10% gel using a Bio-Rad mini-gel apparatus. The gel was silver stained for protein 
visualisation (see 2.5.2).

(b) ‘Gel’

M

Lane 1.

Lane 3.

Lane 2.

Lane 4.

Lane 5.

molecular weight markers: 205kDa, 116kDa, 
97.4kDa, 66kDa, 45kDa and 29kDa, lpg 
protein.
1.2|ig AROM incubated 60 min, with 
subsequent addition of EDTA.
1.2pg AROM incubated for 5 min with 
thermolysin.
1.2pg AROM incubated for 20 min with 
thermolysin.
1.2pg AROM incubated for 60 min with 

thermolysin.
0.24pg thermolysin incubated for 60 min with 

subsequent addition of EDTA.
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Figure 4.24 Digestion of native AROM with proteinase K

AROM purified from A. nidulans 1314 was incubated at a concentration of 200pg/ml 
with 40fig/ml proteinase K in 50mM-Tris/HCl pH7.5, containing 1.4mM-6- 

mercaptoethanol at 25 °C. Digestion was terminated after 5 and 60 min with the 
addition of 1.15mM-PMSF. The protein was boiled immediately in SDS PAGE 
sample buffer and analysed by SDS PAGE on a 10% gel. Protein was stained with 
Coomassie Brilliant Blue G-250.

Lane 5.

Lane 4.

Lane 1. 
Lane 2.

Lane 3.

M molecular weight markers: 205kDa, 116kDa, 
97.4kDa, 66kDa, 45kDa and 29kDa.
6(ig AROM.
6|ig AROM incubated at 25°C for 60 min with 
the subsequent addition of PMSF.
6pg AROM incubated for 5 min with 

proteinase K.
6jig AROM incubated for 60 min with 

proteinase K.
1.2pg proteinase K incubated for 60 min with 
the subsequent addition of PMSF.
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described in Section 2.6.1. The gel was then stained for shikimate DH activity (see 

2 .6 .2 ).

Intact AROM used as a control was able to renature and form active 

shikimate DH (Figure 4.25). The technique was used to identify the shikimate DH 

active site of N. crassa AROM following proteolysis (Coggins e ta l., 1985; Coggins 

& Boocock, 1986). It relies on the proteolytic fragment being able to renature 

independently. In an earlier experiment where intact AROM from N. crassa and 

A. nidulans were renatured after SDS PAGE on the same gel, the N. crassa AROM 

was able to recover more shikimate DH activity determined by the stain intensity 

(data not shown). This is similar to the findings in Section 3.5.5, where S. cerevisiae 

AROM is not as active after renaturation as N. crassa AROM, as shown by a 

shikimate DH activity stain.

Figure 4.25 shows the shikimate DH activity of fragments separated by 

SDS PAGE then renatured. The gel has a very dark background which is usually 

only seen when DTT is present in the gel. The DTT was washed out of this gel and 

has never caused a problem before. Despite this problem, shikimate DH activity is 

seen to be associated with intact AROM (lane 8) and shows as a dark band. Several 

other polypeptides with shikimate DH activity can also be seen in the gel. In lane 3 

after digestion with proteinase K, both intact AROM and an 80kDa species have 

shikimate DH activity. This AROM has not digested as far as it did in the previous 

experiment with proteinase K (Figure 4.24) where no 80kDa polypeptide was 

observed. This indicates that the digestion of AROM is less complete in this 

renaturation experiment; the 80kDa polypeptide is presum-ably an unstable 

intermediate which is rapidly further proteolysed. It is possible that this 80kDa 

fragment is the C-terminal shikimate kinase-DHQase-shikimate DH trifunctional 

polypeptide.

Two polypeptides of lower activity were also observed after 5min 

digestion with chymotrypsin (lane 6) of 1 lOkDa and 82kDa. The 1 lOkDa 

polypeptide was not seen with the earlier chymotrypsin digestion (Figure 4.21) again
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Figure 4.25 Renaturation of shikimate DH activity following
limited proteolysis of AROM from A. nidulans 1314

AROM purified from A. nidulans 1314 was proteolysed seperately with trypsin, 
subtilisin, proteinase K, thermolysin and thermolysin in the ratio of 
AROM:proteinase, and for the incubation time at 25°C described for each below. 
Digestion was terminated with the addition of an inhibitor specific to each proteinase, 

and samples were subsequently boiled for 2 min in SDS PAGE sample buffer. Each 

proteolysed AROM sample was separated by SDS PAGE on a 10% gel and two lanes 
with only intact AROM and molecular weight markers were stained for protein with 
Coomassie Brilliant Blue G-250. The remainder of the gel was renatured with Triton 
X-100, as described in Section 2.6.1, and stained for shikimate DH activity.
Note: The activity bands appear as black bands against the dark background. Light 

bands are protein bands.

Coomassie stain:
M molecular weight markers: 205kDa, 116kDa,

97.4kDa, 66kDa, 45kDa and 29kDa.
Lane 1. 3pg AROM incubated for 60 min.

Shikimate DH activity stain:
Lane 2. 3fig AROM incubated for 5 min with subtilisin

in the ratio 20:1.
Lane 3. 3jig AROM incubated for 5 min with proteinase

K in the ratio 5:1.
Lane 4. 3jig AROM incubated for 60 min with

thermolysin in the ratio 5:1.
Lane 5. 3pg AROM incubated for 5 min with subtilisin

in the ratio 20:1.
Lane 6. 3|ig AROM incubated for 5 min with

chymotrypsin in the ratio 5:1.
Lane 7. 3|ig AROM incubated for 60 min with trypsin in

the ratio 2:1.
Lane 8. 3jig AROM incubated for 60 min, with the

subsequent addition of PMSF.
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indicating that the proteolysis is less complete in the renaturation experiment. The 

1 lOkDa polypeptide was observed in another digestion study with chymotrypsin (data 

not shown) and is an unstable proteolysis product. It is possibly due to the cleavage 

of AROM within the EPSP synthase domain. The 82 kDa polypeptide with shikimate 

DH activity was also seen in the chymotrypsin digestion shown in Figure 4.21 after 

5 min digestion and like the active proteinase K fragment it is likely to represent a 

shikimate kinase-DHQase-shikimate DH trifunctional polypeptide from its size. 

However, it is only a minor component of the proteolysis products (Figure 4.20) and 

is rapidly degraded.

None of the stable fragments produced by digestion of AROM with 

thermolysin or trypsin, or with subtilisin showed any recoverable shikimate DH 

activity.

4.7.4 Summary

The preliminary proteolysis study of AROM from A. nidulans 1314 

suggests that AROM is initially cleaved in many positions on the protein producing a 

complex fragmentation pattern. As digestion continues stable fragments are formed 

only with trypsin and thermolysin digestion (Figure 4.21 and 4.23). The data shows 

that for the proteinases tested the EPSP synthase activity of AROM is most sensitive 

to proteolysis and is lost very quickly (Figures 4.19, 4.20,4.22 and 4.23).

In the case of N. crassa AROM, shikimate kinase was the activity found to 

be most sensitive to proteolysis with trypsin, subtilisin and chymotrypsin (Coggins & 

Smith, 1983; Coggins et a l., 1985; Coggins & Boocock, 1986). However EPSP 

synthase of N. crassa AROM was specifically proteolysed by an endogenous 

proteinase contaminant in some preparations. The data shown in this section 

confirms my own observation that of the four activities measured EPSP synthase of 

AROM is the activity most sensitive to inactivation in crude extracts (Figure 4.2). It 

is possible that EPSP synthase in this AROM preparation from A. nidulans 1314 is 

particularly sensitive to proteolysis because of the missense mutation in the adjacent
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DHQ synthase domain (see 4.6.8). It will be interesting to see whether the proteolysis 

pattern is the same with wild-type A. nidulans AROM.

During proteolysis with trypsin, chymotrypsin and subtilisin equal 

DHQase and shikimate DH activities, expressed as a percentage of the level in intact 

AROM, are seen after 5 min digestion (Figures 4.19, 4.20 and 4.22). This suggests 

that AROM may be proteolysed to produce a bifunctional polypeptide which may 

have some of the shikimate kinase domain. There are four possible reasons why the 

polypeptides remaining after digestion fail to renature to produce active shikimate 

DH. The first is that they may not actually have the shikimate DH domain at all. The 

second is that the fragments are unable to refold although the ability of some 

polypeptides to renature makes this unlikely. Another possibility is that the 

proteolysed AROM is 'nicked' within the shikimate DH domain and retains activity 

under native conditions. However, when this proteolysed AROM is denatured for 

SDS PAGE the nicked protein 'falls apart'. The fourth possibility, which cannot be 

discounted is that AROM is further proteolysed when the protein is boiled in SDS 

PAGE sample buffer. The data are consistent with the hypothesis that the DHQase 

and shikimate DH regions of AROM form a compact globular structure. Evidence 

for this hypothesis also comes from the proteolysis study of N. crassa AROM in 

which a stable DHQase-shikimate DH bifunctional polypeptide was isolated (Smith 

& Coggins, 1983; Coggins etal., 1985; Coggins & Boocock, 1986). Van den 

Hombergh et al. (1991) have provided evidence that there is no linker polypeptide 

between DHQase and shikimate DH in A. nidulans AROM. Interestingly in plants 

DHQase and shikimate DH are found to be produced as a bifunctional polypeptide 

(Polley, 1978; Koshiba, 1979; Mousdale et al., 1987).

The proteolysis study was not carried further due to the time constraints of 

this project. It should be possible to identify the DHQase active site of proteolysed 

AROM by labelling it with tritiated sodium borohydride in the same manner as Smith 

& Coggins (1983) identified the N. crassa AROM DHQase active site (see 1.7.3).
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The unstable 80kDa polypeptide produced by digestion with proteinase K 

and the 82kDa polypeptide produced by digestion with chymotrypsin probably 

represent the trifunctional shikimate kinase-DHQase-shikimate DH C-terminus of 

AROM. N-Terminal sequence analysis would allow the identification of the domain 

boundary although the fragments are not ideal because they have only transient 

stability and are readily digested further. It may be possible to isolate the more stable 

AROM fragments chromatographically as was done for those from N. crassa AROM 

by Boocock (Coggins etal., 1985; Coggins & Boocock, 1986) but it is possible that 

the mutation in the DHQ synthase domain of the AROM used in this study 

contributes to the instability of the protein fragments produced. Therefore, it would 

be more interesting to examine the proteolysis pattern produced by wild-type 

A. nidulans AROM before attempting the isolation and characterisation of fragments.

4.8 Discussion

This chapter has described the development of a rapid procedure for the 

purification of AROM from the A. nidulans overexpression strain 1314. The purified 

protein has been shown to have only a low level of DHQ synthase activity and it has 

emerged that the plasmid-borne copies of the AROM gene present in strain 1314 

contain a missense mutation in the region encoding the DHQ synthase domain 

(Moore & Hawkins, 1993). The mutation does not appear to have a significant effect 

on the other four AROM activities (4.6.5) or on the dimerisation of AROM (see 

4.6.6) even although the DHQ synthase domain has been implicated in contributing to 

the dimer interface by interallelic complentation studies of N. crassa AROM (see 

1.7.1).

The protocol for the purification of AROM from A. nidulans 1314 

described in this study may also prove useful in the purification of wild-type 

overexpressed AROM. However, it is possible that wild-type AROM may have a 

different elution profile on the Mimetic Yellow dye column because the mutant 

AROM inadvertantly used in this study has a mutation that may disrupt the nucleotide
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binding site of DHQ synthase (see 4.6.7). The nucleotide binding site may well be 

important for dye binding and this may alter the elution pattern.

The purification of wild-type AROM from A. nidulans will allow a 

comparative study to be made with the missense mutant protein purified in this study. 

Such a comparative study would indicate whether the DHQ synthase activity has 

affected any of the other four AROM activities. Also, limited proteolysis studies of 

wild-type AROM may reveal differences in the domain packing of AROM which 

result from the mutation.

Since the work described here was completed, the domain expression 

studies of A. nidulans AROM by Hawkins' group have been very successful but it is 

obviously a high priority to purify and characterise wild-type AROM so that the 

integrity of the AROM 'fragments' can be established. Moore & Hawkins (1993) 

have expressed a stable DHQ synthase -EPSP synthase AROM fragment in E. coli 

and a DHQase-shikimate DH protein in A. nidulans. The same DHQase-shikimate 

DH sequence fails to complement the aroE~ mutation in E. coli (see 1.7.5), and the 

failure of the shikimate DH region of AROM to complement aroE~ mutants had 

previously been shown by Hawkins & Smith (1991). It is now thought that there is a 

thirty-nine nucleotide intron in the shikimate DH sequence. Since E. coli cannot 

excise the intron, it might explain the failure of this A. nidulans shikimate DH 

sequence to complement E coli mutants.

In conclusion, it remains a priority to purify and characterise wild-type 

AROM from A. nidulans and the purification scheme described in this study for the 

missense mutant of AROM is likely to form the basis of that purification.
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Chapter 5 General discussion and future prospects

The aim of the work presented in this thesis was to purify and characterise 

intact AROM so that the characteristics, for example kinetic properties, of genetically 

expressed domains of the protein might be compared with those of the native protein. 

The original species of choice was S. cerevisicie and AROM was purified from an 

overexpressing strain. However, the purified material was partially proteolytically 

degraded and no means of totally avoiding proteolysis was found. Thus the usefulness 

of the S. cerevisiae AROM preparation for an extensive kinetic analysis was limited 

since proteolytically altered proteins might well have different kinetic characteristics 

from the intact protein.

A rapid purification scheme was then developed for the isolation of AROM 

from the A. nidulcins overexpressing strain 1314. The AROM enzyme was found to be 

defective in DHQ synthase activity/du^me accidental introduction of a missense 

mutation in the N-terminal domain of the polypeptide. It is expected that the 

purification scheme developed will provide the basis for the purification of intact 

AROM from A. nidulcins and this has been discussed in Section 4.8.

Table 5.1 compares the activity ratio of AROM purified from the 

S. cerevisiae and A. nidulcins overexpressing strains, as described in this thesis, with 

the activity ratio of purified N. crassa AROM. One obviously has to be careful not to 

read too much into these activity ratios because of the mutation in the DHQ synthase 

domain of the A. nidulans protein, and the partial proteolysis of the S. cerevisiae 

preparation (described above). The data shows that the activity ratios of AROM from 

all three species is broadly similar except for the lack of DHQ synthase activity in the 

mutated A. nidulans protein and for very high shikimate DH activity of the S. cerevisiae 

protein. The shikimate DH activity in the two fungal species, which are more closely 

related in evolutionary terms, is essentially similar. The high shikimate DH activity in 

S. cerevisiae is not thought to be an artefact since the activity is also high in crude 

extracts of both wild-type S. cerevisiae and the overexpressing strain (see Table 3.1).
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Activity ratio (DHQase=100)
. . . . . ____. .... . . . . . . . . . .  .......................  .. ....

N. crassa AROM S. cerevisiae 

Y e p 5 2 g :A R O ! 

A ROM

AROM

.....................

DHQ synthase' 98 67 2

DHQase' 100 100 100

shikimate DHr 266 1472 117

shikimate kinase' 94 176 161

EPSP synthaser 69 170 85

'assayed in the forward direction 

rassayed in the reverse direction

Table  5.1 Activity ratio  of AROM  purified  from  several species

The activity ratio of AROM purifed from S.cerevisiae BJ1991 transformed with 

Yep52g:AR01 was taken as the activity ratio of the AROM eluted in the major AROM 

peak from Sephacryl S-200 chromatography (fractions 28-31) described in Section 

3.5.2. The activity ratio for AROM purified from A. nidulans 1314 is taken from the 

values in Table 4.4 and the N. crassa AROM values are taken from Boocock (1983). 

The activity ratios were calculated by normalisation against the DHQase activity which 

was given the arbitrary value of 100.
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It will be of interest to see whether the DHQ synthase activity of the A. nidulans AROM 

is similar to that found in N. crassa when intact, fully active AROM protein is 

eventually obtained from A. nidulans.

The purification of AROM from S. cerevisiae and A. nidulans highlights the 

problems which are still encountered with proteolysis during protein purification. This 

is despite the use of proteinase inhibitors and of strains of yeast which are deficient in 

several proteinases. The yeast system has become the focus for studies of eukaryotic 

protein degradation and a better understanding of this process might provide valuable 

information in preventing unwanted proteolysis during protein purification.

On the basis of a complementation study of fragments of the A. nidulans 

AROM gene in E. coli, Hawkins & Smith (1991) have proposed a model for the 

AROM protein in which the protein is separated into two functional units. In this 

model the N-terminal DHQ synthase and EPSP synthase domains make up one unit, 

and shikimate kinase, DHQase and shikimate DH domains the other. In this model is 

also suggested that the N-terminal DHQ synthase domain is in contact with the C- 

terminal shikimate DH domain. However, at the moment the genetic evidence from the 

N. crassa system, based on interallelic complementation, suggests that the C-terminal 

shikimate DH domains of the AROM polypeptide are closely associated with each other 

in the homodimer. Similar data suggest that the N-terminal DHQ synthase domains are 

also in contact ie. the polypeptides are arranged in a head to head arrangement in the 

AROM dimer (see 1.7.1). This was supported by the limited proteolysis study made 

by Boocock on purified N. crassa AROM (see 1.7.3 and Figure 1.5). The limited 

proteolysis study made of AROM purified from A. nidulans 1314 described in this 

Thesis concurs with a model in which the DHQase and shikimate DH of AROM form a 

compact globular domain (see 4.7.4). It might be possible to extend the proteolysis 

study on intact A. nidulans AROM to determine the domain interactions at the dimer 

interface.

Sequence homology has been observed between proteins involved in the 

shikimate pathway and the quinate pathway in fungi. The quinate dehydrogenase of the
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quinate pathway is homologous to the prokaryotic shikimate DH enzymes and the 

shikimate DH regions of the fungal AROM enzymes (Hawkins et al., 1988). The 

activator protein of the quinate pathway has recently been reported to be homologous to 

the two N-terminal domains of AROM and includes a zinc binding motif allowing 

DNA binding (Hawkins et al., 1993c). Also, the repressor protein of the quinate 

pathway had previously been shown to be homologous to the three C-terminal domains 

of AROM (Anton et al., 1987; Hawkins et al., 1992). This suggests the use of 

conserved functional modules in proteins of the shikimate and quinate pathways. A 

long term aim of work on the AROM protein is to determine the three dimensional 

structures of the proteins involved and to investigate these proposed structural 

similarities. To that end large quantities of the AROM protein must be purified.

Hawkins has proposed that the regulatory proteins involved in activating 

and repressing transcription of the quinate pathway have evolved by duplication and 

cleavage of the AROM gene into two distinct halves - one becoming the repressor 

protein and the other the activator protein (Hawkins et al., 1993c; Hawkins et al., 

1993d). The repressor protein removes the effects of the activator protein and is 

thought to act by binding the activator protein. Hawkins has suggested that the 

homology of the repressor protein to the C-terminal half of the AROM protein (with 

homology to shikimate kinase, DHQase and shikimate DH) allows the repressor to bind 

the quinate pathway metabolites quinate, dehyroquinate and dehydroshikimate and 

enables regulation of the quinate pathway at the transcriptional level in this way 

(Hawkins et al., 1993c; Hawkins et al., 1993d). He has also suggested that the 

interaction of the repressor with the activator is similar to the non-covalent interactions 

found in the AROM protein between the homologous monomers which form the 

dimeric structure. Again, determination of the quaternary structure of the AROM 

protein will show these interactions. It is a long term aim of the project that AROM and 

the monofunctional prokaryotic enzymes of the shikimate and quinate pathways are 

crystallised and the three dimensional structures solved. This may confirm the 

recruitment of a small number of motifs to the quinate and shikimate pathways. It
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might also allow the nature of the interactions between the activator and repressor 

protein of the quinate pathway to be established.

Hawkins research group has recently been very successful at expressing 

AROM domains and are now at the stage that the expressed fragments of the AROM 

protein are being characterised in more detail. In a recent publication the DHQase 

domain of A. nidulans AROM has been characterised and the kinetics have been 

compared to those of purified AROM from N. crassa (Hawkins et al., 1993a). This 

has obviously got to be done with a degree of caution and it highlights the importance 

of the purification and characterisation of AROM from A. nidulans. It will also be of 

interest to compare the expressed A. nidulans AROM domains with those produced by 

limited proteolysis of the intact protein.

The procedure described in this Thesis for the purification of the A. nidulans 

AROM protein lacking DHQ synthase activity will almost certainly allow the 

purification and characterisation of intact AROM from A. nidulans. This will enable a 

detailed comparison to be made between AROM and independently expressed domains 

and provide an insight into the multifunctional character of the protein.
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