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Summary

The work of this thesis is concerned with investigating and improving regularized least 

squares (RLS) inversion methods (see §1.9), with particular regard to the application of 

these techniques to the inverse problems that arise in helioseismology. Many different 

aspects of RLS methods will be addressed, including

• the development of an improved and generalized algorithm for discretizing the inverse 

problem, tha t is, reducing the continuous (integral) problem to a discrete (matrix) 

problem suitable for numerical solution (see chapter 2),

• the assessment of the quality of the recovered solution, particularly as far as the 

resolution achieved is concerned (chapter 4),

• the investigation of the opportunities for optimizing the method of solution, by 

finding an algorithm for choosing the regularizing parameter in an optimal way 

(chapter 3).

Throughout this thesis the problem of recovering the solar internal rotation from helio- 

seismic data will be used to exemplify the ideas and techniques considered.

Chapter 1 of this thesis reviews the basic principles and characteristics of inverse prob­

lems, and describes the ideas underlying the most commonly used methods for obtaining 

solutions of inverse problems. In particular, the various manifestations of RLS methods 

used to date will be described, as a prelude to chapter 2, where they will be unified 

into a single RLS procedure. The form of the inverse problems in helioseismology is also 

described.

Chapter 2 motivates and expounds a general algorithm for performing RLS inversions, 

which unifies the RLS methods that existed previously and are reviewed in §1.9. The 

reasons for developing such an algorithm are presented in detail in §2.1, but the important 

point is that being able to ‘access’ any RLS method from within a single inversion algorithm



has considerable advantages, both as far as the simplicity of using the procedure to perform 

inversions is concerned, and for comparing the effectiveness of different discretizations. 

The generality of the discretization procedure makes the introduction of constraints on 

the recovered solution desirable, and requires the development of a much more robust 

numerical method for calculating the solution of the resulting matrix problem. These 

issues are dealt with in sections 2.3 and 2.4, respectively.

Chapter 3 looks at optimal methods for choosing the smoothing parameter in RLS 

inversions. It is well known that one of the vital aspects of solving ill-posed problems 

is choosing some acceptable trade-off between the effects of the random data errors on 

the solution and the bias introduced by ‘smoothing’ the recovered solution to reduce the 

effect of these errors. RLS inversion methods contain a free parameter, the smoothing 

parameter (A), for controlling exactly this trade-off. When A is small there is very little 

smoothing of the solution, so bias is not a problem, but the instability of the problem will 

give rise to huge errors in the value of the solution at any point, which is unacceptable. 

When A is very large, on the other hand, the effect is to make smoothing the dominant 

effect on the solution. The effect of data errors on the solution is eliminated, but the 

smoothing gives rise to a huge bias which renders the solution meaningless. Somewhere 

between these two extremes there must lie a compromise value of A that reduces the effect 

of the errors to an acceptable level while keeping the bias resulting from smoothing as 

small as possible. There are a number of ways to make this compromise, and chapter 3 

examines the advantages of two automatic methods for choosing the smoothing parameter. 

Automatic here means that they use the data for the problem to select the smoothing 

parameter, rather than making some selection at the outset without regard to the data.

Another vital part of inverse theory is the quantification of ‘resolution’. This essentially 

corresponds to determining the length of the solution that must be averaged over to reduce 

the effects of data errors to an acceptable level, as discussed above. There are two sides to 

this. Firstly, there is the best resolution that could be obtained in any inversion, and this 

can be assessed without regard to the details of particular inversion procedures. Secondly, 

there is the resolution that actually has been achieved in a particular inversion, and these 

need not necessarily be the same at all. Chapter 4 involves an examination of the extent 

to which features in the solution (the rotation rate, say), such as steps or delta-functions, 

can be distinguished and quantified for different noise levels. This provides information



about the best possible resolution obtainable in any inversion, but it also has physical 

significance when considering the solar rotation inversion. For example, the structure 

of, and, in particular, the radial gradient in, the rotation profile near the base of the 

solar convection zone is important in dynamo theory. The ability to differentiate between 

different steps in the rotation rate (that is, if a step is parametrized by its position in 

radius r(step) and its ‘height’, h(step), the ability to resolve different values of r(step) and 

h{step)) would provide information about the nature of the solar dynamo. Knowing the 

resolution of the data tells us how much we can constrain any dynamo theory. Chapter 4 

also presents other ‘inversion’ dependent methods for determining the resolution achieved 

in a particular RLS inversion, one of which (correlation length -  see §4.2.5) seems to have 

been largely overlooked before.

Chapter 5 presents the results of applying some of the techniques considered in this 

thesis to real data. In particular, the results of inversions using the algorithm of chapter 2 

with different discretizations are given to indicate the generality of the discretization pro­

cedure. Finally, the splitting data of Libbrecht (1989) is inverted to obtain the angular 

velocity throughout the solar interior.

Chapter 6 discusses possible improvements and extensions to the work and ideas con­

tained in this thesis.
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Chapter 1

Inverse Problem Review

1.1 Introduction

The discovery in 1962 of an oscillatory component of the solar surface velocity field 

(Leighton et al. 1962) and its subsequent identification as the surface manifestation of 

global, non-radial, acoustic eigenmodes of oscillation (Ulrich 1970; Leibacher and Stein 

1971) constituted a significant advance in the study of the solar internal structure, and, 

consequently, in the study of stellar structure in general. This is because the frequencies of 

the observed eigenmodes contain a great deal of information about conditions in the solar 

interior, and so can be used to infer the pressure and density, for example, throughout 

the sun. The exercise of making such inferences is a typical example of a type of problem 

common in astronomy, known as an inverse problem (see Craig and Brown 1986).

It will be useful throughout this chapter to have concrete examples of the various 

types of inverse problem to illuminate certain points. The following section provides these 

examples, and uses the presentation to introduce the most important features of general 

inverse problems. Section 1.3 discusses the significance of the term ‘inverse problem’, 

and section 1.4 describes the difficulties associated with the practical solution of inverse 

problems, and how these difficulties may be alleviated. After that, it is demonstrated heur- 

istically in §1.5 how the inverse problems of helioseismology arise, how the oscillation mode 

frequencies contain information about the solar structure, and a simple demonstration of 

how this information can be extracted from the mode frequencies is given. Some aspects 

of the problem of obtaining a numerical solution are then considered, before sections 1.8 

and 1.9 present the commonly used techniques for solving linear inverse problems, as a 

precursor to chapter 2, where an algorithm unifying several of these methods is formulated.

1



CHAPTER 1. INVERSE PROBLEM RE VIEW 2

1.2 Examples of Inverse Problems

The three inverse problems described below illustrate the three forms that commonly 

occur in astronomical (and other) problems. Which form applies to a particular situation 

depends on whether the data or the unknowns are discrete, or are functions of a continuous 

variable. The three cases also provide an illustration of the method for solving inverse 

problems of type I or II: reduce type I problems to type II by d iscre tiz in g  the problem 

in the ‘data space’, reduce type II problems to type III by discretizing in the ‘solution 

space’, then solve the type III problems by matrix methods. This is described in more 

detail in §1.9. Note that all three problems are linear  inverse problems (the data depend 

linearly on the unknowns). This makes it easier to see the principles involved.

C ase I. Integral T ransform s -  Im age Processing (T heory):  Images play an im­

portant role in many areas of science and technology, and particularly in astronomy. The 

process of forming an image typically involves using lenses or mirrors to collect and focus 

the light coming from an object onto a flat (usually square or rectangular) detector, which 

records the amount of light arriving at any point within it. The goal of the focussing is 

to ensure that light emitted from a single point on the object arrives at a single point on 

the detector (the image is sharply focussed), and that the positional relationship between 

parts of the object and their corresponding points on the detector is preserved (the images 

are not distorted). The goal of the detector is to record every photon striking it per­

fectly. Here the detector will be assumed to be perfect and continuous, in the sense that 

it can respond to arbitrarily fine detail in the image falling on it. (Cases II and III show 

the treatment of the problem in practical situations, where fhe detector is composed of 

finite-sized p ixe ls .) If such a perfect imaging system could be created, the amount of light 

recorded striking any point in the detector (the brightness at that point) would truly in­

dicate the amount of light leaving the corresponding point on the object, and so any detail 

in the structure of the object would be recorded perfectly -  measuring the image would 

be as good as measuring the light from the object directly. However, there are physical 

reasons why such a perfect imaging system cannot exist (diffraction -  see case II), and 

lenses and mirrors are never perfect, so some of the light from a particular part of the 

object will not fall on the ‘correct’ part of the detector (the image may be out of focus, 

or light may be scattered away from its direct path by the material in the lenses or by
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air along the ray-path of the light). This means that a point-like object (such as a star), 

whose light should fall on a single point, will actually illuminate a larger area (perhaps 

all) of the detector. If the imaging system is good, the light should mostly end up very 

close to the correct point, giving only slight blur, but the worse the focussing or scattered 

light is, the more the light will hit parts of the detector away from the correct point, and 

the more blurred the image will become. The well known problem with the Hubble Space 

Telescope (HST), was due to an incorrectly shaped mirror which resulted in the images 

being blurred.

The distortions introduced by an imperfect imaging system can be completely de­

scribed by considering their effect on the light from point sources. Assume that the 

detector is rectangular of size a  cm X b cm. An image is characterized by the brightness, 

B ( x ,y ), at aJl points (x ,y )  of the detector. Imagine that a point source is being imaged, 

and tha t if the focussing were perfect all light would arrive at the point (xo>2/o)> so that 

the image would be Bo(x, y) = B*6(x — xq , y — yo), where B * is the intrinsic brightness of 

the point source and 6(x,y) is the two-dimensional dirac delta-function. (It is convenient 

to identify the point (£ 0 , 2/0 ) on  the de tec tor  with the corresponding point on the object, 

so a reference to ‘light emitted from (z0,2/o)’ really means ‘light emitted from the point on 

the object corresponding to the point (ar0? Vo) on the detector’. This will simphfy some of 

the explanations below.) The imperfections of the real imaging system will result in light 

falling on parts of the detector near (£0? 2/o)> giving a blurred image instead of a single 

point -  the point of light has been spread out,over the detector. The resulting brightness, 

B(X0ty0)(x ,y),  at all points of the detector, gives rise to a function K(Xo>yo)(x, y), defined 

by K(Xom)(x -  xq, 2/ -  2/o) = B(X0iy0)(x,y)/B*,  called, naturally enough, the p o in t spread  

fu n c t io n , or PSF. The PSF says exactly how the light from a unit source at (x o ,y o ) is 

spread out over the detector. Figure 1.1 shows typical PSFs for two different amounts 

of blur. Note that the wider PSF has a much lower peak value, reflecting the fact that 

light is simply redistributed by the blurring (the ‘volume’ under the PSF is always unity). 

Figure 1.1 illustrates very nicely the effect of the corrector that was used to reduce the 

HST’s blur. The wider PSF corresponds to the HST without the corrector (quite blurred 

images and a very much reduced maximum brightness), and the narrow PSF indicates the 

image quality that is now achieved. The effect of this decrease in the blur is a dramatic 

improvement in the performance of the telescope.
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(a) (b)

F ig u r e  1.1: T w o (gau ssian ) point spread functions o f different w id ths show ing how light from  
a point source is spread out in an ou t-of-focus im age. T he horizontal axes are detector co­
ord inates, (x , y ), and the vertical axis d isp lays the brightness, scaled so th a t the perfect im age  
would be a spike o f  u n it brightness. Im age (a) has high blur, whereas im age (b) has m uch lower 
blur, and the im age is qu ite  sharp.

In general, the PSF depends on (xo,yo), the position of the ‘perfect’ point image, 

i.e. the distortion of the image varies across the detector. However, it is often adequate 

to assume th a t the distortion is constant across the image. This assumption will be made 

here for simplicity, and the subscript (xo,yo)  on the PSF will be dropped. The PSF is 

often approximated by a two-dimensional gaussian, which has the nice property of falling 

away smoothly to zero from its peak value. The width of the gaussian is related to the 

amount of blur in the image. Note th a t the blurring need not be isotropic (corresponding 

to a rotationally symmetric PSF), although it often is.

Since a real (extended) object is made up of ‘lots of points’ the final distorted image 

will consist of the distorted images of all the single points in the object added together, 

giving B{x , y )  = ffdetector B ( x o , y c ) { x , y ) d x 0 d y 0 ,  or, using the definition of the PSF and 

calling the intrinsic brightness of the ‘point of light’ at (xo,yo) B+(xq, </o),

B ( x , y ) =  J J  K ( x  -  x 0, y  -  yo)Bm(x0iyo)dx0dyo. (1.1)
d e te c to r

The function B ( x , y )  gives the brightness of the blurred, imperfect image at the position 

( x , y )  on the detector, whereas B*(x , y)  is the brightness the sharply focussed, perfect 

image would have at (x , y) .  Obviously, only B ( x , y ) can be measured, but what we really 

want to know is the ‘tru e ’ image, H*(x, y), since this is effectively equivalent to the object.
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Is it possible to get B* from B ? The answer to this question depends on the nature of the 

PSF, but, in theory, it may be possible, depending on the form of the PSF. In practice it 

can be very difficult, for the reasons described in §1.4. The process of finding B * given B  

(i.e. solving (1.1) for B*(x, y )) is a well known inverse problem. It is the principal problem 

studied in image processing, the goal of which is to extract as much information as possible 

from a given image. In a perfect world (the situation considered here), the blurred image 

contains exactly the same information as the perfect image, except that instead of being 

given in terms o f ‘points of light’ it is made up of blurred patches of light. It is possible to 

envisage taking each blurred patch (which will be ‘PSF-shaped’), gathering all the light 

it contains together, and placing it at the correct point (the centre of the PSF). This is, 

in essence, what solving (1.1) involves, although the mathematical formalism often clouds 

the simplicity of the principle. Images from the (uncorrected) Hubble Space Telescope 

provide a nice example of image processing, because although the mirror’s curvature was 

hopelessly wrong, it was hopelessly wrong to a very high degree of accuracy, so it was 

possible to predict where the misdirected light would end up, which meant that the PSF 

could be calculated theoretically.

The idea of information (light, in this case) being distorted, spread around and gen­

erally ‘sent to the wrong place’ is central to the concept of inverse problems. In general, 

it is not a trivial m atter to understand and visualize this distortion, but images provide a 

simple paradigm. The fact that the distorted image is the sum of infinitely many ‘blurred 

points’ allows the errant light to be rounded .up and put back where it should have been 

in the first place. In image processing problems it is easy to understand and develop a 

mental picture of this process. This is not so easy in helioseismology, where the kernel 

functions do not have the simple form of those in fig. 1.1, although see §1.5.2.

Equation (1.1) is an example of a (2-D) integral transform, where one function (here, 

B*(xq, yo)) is mapped to another (B (x ,y ))  by an integral operator. In fact, (1.1) is a 

convolution (cf. Craig and Brown 1986, equation (2.7)). If the distortion had been allowed 

to vary across the image a more general type of integral transform would have arisen, and 

the point spread function would be K (x , y, xo, yo) = K(x0,y0)(x ~ xo> V ~ Vo)- A great many 

inverse problems have these forms, and such problems provide examples of most of the 

difficulties generally associated with the solution of inverse problems, such as instability 

to perturbations in the observed quantities (again, see §1.4, and Craig and Brown 1986).
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This thesis deals almost exclusively with methods for solving one-dimensional inverse 

problems (that is, problems where the solution function depends only on one variable, 

unlike in (1.1), where B*(xo,yo) depends on two -  xq and yo). Equation (1.1) is therefore 

not a very convenient example to use. It is quite easy, though, to imagine a 1-D problem 

analogous to (1.1). If the detector is now assumed to be a straight line instead of a 

rectangle, and the focussing system and object are similarly idealized, then exactly the 

same principles apply as before, but now equation (1.1) is

B(x) = J  K (x  -  xo)B*(x0)dx0. ( 1 .2 )

As this thesis concentrates on 1-D inverse problems, this idealized image processing prob­

lem will be used as an example of inverse problems involving an integral transform.

Case II. Functional C onstra in ts  -  Im age Processing (R ealistic  A pproach)  and  

H elioseism ology: In the problems that occur in the ‘real world’ (that is, involving

real data, taken with real instruments) there can only ever be a finite amount of data 

available, not least because just to store an infinite amount of information would require 

an infinite amount of ‘disc space’, which is obviously unobtainable. Even actually acquiring 

an infinite amount of data (recording, using, then discarding data as it comes in, without 

storing it all for later use) is impossible, though, because it would require an infinite rate 

of data transfer to acquire an infinite amount of data in a finite time. This means that 

equations like those presented in case I do not apply literally to real problems. (But 

they are very useful for considering the mathematical idealizations of real problems. Such 

idealizations avoid many of the trivial complications involved in formulating and solving 

problems in realistic situations, such as the specific details of the observing instrument 

with its inevitable biases and other idiosyncrasies, and therefore allow the fundamental 

principles involved to be seen more clearly.) For example, the image processing inverse 

problem described in case I requires an infinite amount of data (the values of B ( x , y ) for 

all points (x , y ) of the detector). Detectors capable of making such measurements do not 

exist. Generally, detectors consist of a (square or rectangular) array of finite-sized pixels -  

a measurement then consists of finding and recording the total amount of light falling 

on each pixel. Figure 1.2 shows the images of a point source for different amounts of 

instrumental blur (different PSF widths) taken with such a detector. If we assume that 

the pixels are indexed by the pair of integers ( i , j )  for 1 < i < nx and 1 < j  < ny (nx
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and ny are the numbers of pixels in each row and column, respectively, of pixels in the 

detector), then the data actually acquired by this detector is

{Bij = J J  B(x, y)dxdy; 1 < i < nx , 1 < j  < ny}.
pixel (i,j)

Equation (1.1) then becomes

Bt J = J J  K  ij(xo,yo)B*(x0,yo)dx0dyo, for all i , j ,  (1.3)
detector

where the point spread function has become a collection of nx X ny functions 

Kij(x0,yo) = J J  K ( x - x 0, y -  y0)dxdy,
pixel (i,j)

which determine the proportion of the light emanating from the point of light at (xo, yo) 

tha t arrives at pixel The functions K{j are known as kernel functions. In actual

fact, the form of the image processing problem given in (1.3) is not the form that is usually 

used in practice. That form is described in case III.

Note that the full (2-D) form of the helioseismic rotation problem (see Ritzwoller and 

Lavely 1991) is of exactly the same form as (1.3). In this case, however, the data for the 

problem (the splitting between the frequencies of modes with different azimuthal order, m, 

but the same radial order, n, and spherical harmonic degree, /) are intrinsically discrete: 

the solar eigenmodes are ‘countable’ things, so there is no continuous generalization of the 

helioseismic problem. The theoretical formulation of this helioseismic forward problem 

automatically has discrete data.

Equation (1.3) comprises a collection of linear functionals of the true image, B+. For 

realistic data sets there will only be a finite number of data values (number of pixels in the 

detector), but the true solution is a function of continuous variables, and so has an infinite 

number of degrees of freedom. Common sense suggests, therefore, that ‘solving’ (1.3) is 

impossible. This is correct, but is not the end of the matter. Essentially, the problem 

is (infinitely) underdetermined, so a unique solution does not exist. It is reasonable to 

hope, though, that this lack of uniqueness, being entirely the result of the finite resolution 

in the observed image (finite pixel-size), is reflected only in an inability to determine 

the corresponding small-scale features of the true image. In other words, information 

about the features in the true image that are larger than the pixel-size is contained in
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(a) (b)

(c )

F ig u r e  1 .2 : T he effect o f using a detector consisting  o f (64 x  64, in th is case) fin ite-sized  p ixels  
to  observe the im ages show n in figure 1.1 is illustrated . Im ages (a) and (b ) correspond to  those in 
figure 1.1. T h e im ages are effectively ‘b in n ed ’ by the detector, the height o f  the block corresponding  
to  any bin g ives the am ount o f  light arriving at th at bin. T h e 6 4 2 num bers corresponding to  the  
brightness at each pixel is the on ly  inform ation  ob ta in ab le by th is detector. Im age (c) show s the  
(h yp o th etica l) perfectly  focussed im age o f the point source taken w ith  th is detector. N ote  th a t all 
th a t can be said  is th at all the light falls on a single p ixel, but it is not p ossib le to  see the im age  
as a true ‘p o in t’.
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the observed image, and it is possible to choose one of the infinity of possible solutions as 

‘the solution’, safe in the knowledge that the large scale features in this solution do indeed 

reflect properties of the true image. Any short-scale components of the true solution that 

cannot be contained in the image might as well be assumed to be zero (as good a value as 

any) as they are completely undetermined. This enables the (distorted) information about 

the true image that is contained in the data to be extracted -  the nearest it is possible to 

get to ‘solving’ (1.3). These considerations apply to the helioseismic problem too, but it is 

more difficult to see whether it is really the case that only information about small scale 

features is missing from the data. In general, this will not be the case, but the nature 

of the observations usually allows this to be assumed. The veracity of this assumption 

in general is examined in Backus and Gilbert (1968), and in §1.4. The important point 

to note is that the finite number of ‘pieces of information’ in the data inevitably imposes 

a limit on the extent to which small features in the true image can be seen: a limited 

reso lu tio n  is unavoidable. For the solar rotation problem this means that, for example, 

it may not be possible to recover the details of the solar rotation profile near the base of 

the convection zone (a region of particular significance as far as solar dynamo theory and 

theories of the solar cycle are concerned) to sufficient accuracy with present data, but it 

may be possible with the data to be obtained by the GONG project (Harvey e t al. 1993), 

which will measure more mode frequencies (and will measure them more accurately).

Again, the two-dimensional form of the inverse problem (1.3) renders it unsuitable to 

be used as an example of the type of problems to be studied in this thesis. It is a very 

simple m atter, though, to apply the same reasoning to the 1-D problem (1.2) (nx pixels, 

each of which is a short segment of the original one-dimensional detector). The result is

B{ = I K i(x o )B * (x o )d x o , for all i. (1.4)
Jdetector

C ase I I I .  M a tr ix - typ e  Inverse  Problems  -  Im age Processing (Practice):  The

discussions of image processing problems presented in cases I and II dealt mainly with the 

nature of the detector. In realistic situations it is essential to consider the details of the 

focussing system. For example, even a focussing system constructed with perfect precision 

has an absolute limit placed on its resolution (i.e. a lower limit on the width of the PSF) 

because the finite size of the lens or mirror results in d iffra c tio n  of the incoming light, 

which means that light from a single point on the object can never arrive at a single point
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on the detector. This is a fundamental physical constraint: the only way to reduce the 

effect of diffraction is to make the focussing system larger (bigger lenses and mirrors).

At this point it is necessary to introduce the concept of data errors or noise. These are 

random errors on any item of data, about which nothing is known except their probability 

distribution (and sometimes not even that). Clearly, any real measurement or observation 

must involve such errors, not least because nothing can be measured with infinite precision. 

Note that these errors are of a completely different nature from the distortions introduced 

by, say, poor focussing in the image processing problem. The description of focussing is 

entirely deterministic and, given an object, calculable, whereas noise is always stochastic 

and will be different for two different images of the same object. Errors play an absolutely 

vital role in the solution of inverse problems. Section 1.4 describes their importance in 

more detail, but here it is enough to make a few general remarks. It turns out tha t often 

the solutions of inverse problems vary very sharply as the data changes, so that small data 

errors can give rise to very large errors in the solution. It is usually the case that these 

errors are manifested as large variations in the solution over very short length scales (so 

that, in image processing problems, nearby parts of the solution image, £?*, will have very 

different brightnesses, due to these errors), and that the errors tend to average to zero 

over longer scales (providing the true image varies more slowly than the error component, 

taking local averages of the noisy solution over lengths rather longer than the length scale 

of the noise variations, should give a good estimate of the true solution). Of course, such an 

averaging process inevitably decreases the resolution achieved: features in the true solution 

whose typical scale of variation is less than the averaging length will tend to average to 

zero, so that such small scale features will not appear in the solution. (Alternatively, any 

sharp features in the image will be smeared out by the averaging process over a length 

equal to the resolving length.) The larger the errors are, the longer the averaging length 

must be to ensure that the errors average to a sufficiently small value (the errors from 

more points must be averaged to reduce the resulting error average to a small enough 

value). The practical implementation of this averaging process takes several forms, but 

the result is that variations of the true image over length scales shorter than some limit set 

by the errors cannot be resolved. This is a very important point. For problems of the form 

given by equations (1.1) or (1.2) it is often the case that there is no limit on resolution 

imposed by the width of the PSF for perfect, error-free data: the solution is (in principle,



CHAPTER 1. INVERSE PROBLEM REVIEW 11

at least) unique and exact. It is the data errors that reduce the resolution achievable, 

because their stochastic nature removes the possibility of making absolute statements 

about the solution. Instead, all such statements must be qualified by phrases such as ‘to 

such-and-such a level of statistical significance’. But the ability to resolve features with 

a characteristic length, L , say, means being able to say ‘the observed variations of the 

solution over lengths L are significant at the 95% level’ (or whatever significance level is 

appropriate). For L less than some value (the resolution length) it is no longer possible 

to  make such statements to the required level of significance because even after averaging 

the solution over regions of size L the averaged errors are still large enough to dominate 

the variation of the solution. It should be noted that the width of the PSF, while not 

imposing a resolution limit in itself, does very much determine the extent to which any 

level of noise limits the obtainable resolution: a wide PSF gives poorer resolution than a 

narrow PSF for the same level of data noise.

The image processing problem described in cases I and II has been shown to have a 

finite-sized PSF, even with a perfect focussing (because of diffraction). It is also inevitable 

that there are data errors (that is, errors on the value of ‘brightness’ recorded at any pixel). 

This is because of the quantum nature of light. The individual photons in the incoming 

light have random arrival times, and the brightness at any pixel merely reflects the likely 

number of photons arriving per unit time. The actual number of photons arriving may 

vary randomly about this likely value, giving an error in the measurement of the brightness 

of that pixel. In the helioseismological problem there are errors in the data (measured 

mode frequencies) which are, in part, due to similar statistical considerations. The random 

excitation of any acoustic mode by turbulent convection gives rise to a power spectrum (of 

the variation of mode amplitude with time) which also has a stochastic nature. Measuring 

the mode frequency corresponds to finding the position of the peak in this power spectrum 

(Anderson et al. 1990), so this measurement will obviously be affected by the stochastic 

nature of the power spectrum.

The combination of a finite-sized PSF and data errors results, inevitably, in a lim­

ited resolution in the image processing problem: there will be a length scale below which 

variations in the true image cannot be resolved. There is one advantage to this, though, 

because the inevitable occurence of limited resolution means that it is not necessary to a t­

tempt to recover arbitrarily small features in the image. Provided the pixels in the detector



CHAPTER 1. INVERSE PROBLEM RE VIEW 12

are smaller than the limiting resolution determined by the noise level, it is reasonable to 

adopt the attitude that some average value of the solution over each pixel is adequate to 

represent the available information about the true solution. In practice this means that 

instead of solving the integral equation (1.1), or the collection of functionals (1.3), the as­

sumption is made that the true solution is constant over each pixel (or, at least, that the 

‘recoverable’ part of the solution is effectively constant over each pixel), and that finding 

the value of the brightness, at every pixel amounts to solving the problem. (This 

approach is known as piecewise constant discretization (PCD), and is described in more 

detail in section 1.9). Applying this to (1.3) gives

EE / /  Kij{x o, yo)dx0dy0 B*ki
k~l i - i  ypixel ( k ,i) J

This method of solution will be adequate as long as the pixels are smaller than the limiting 

resolution. Note that (1.5) is a linear, homogeneous, algebraic relationship between the 

data and the unknown brightnesses of the true image -  a matrix equation. W ith a simple 

relabelling of the pixels by a single index, ( i , j )  —> p and (&,/) —► q, (1.5) has the form

Bp = HpqB+q (1.6)

where Hpq = Jjfpjxei (k,i) ^ i j ( x0i yo)dxodyo. The importance of this form of the image 

processing problem is that the well studied methods of linear algebra can be applied 

to (1.6), enabling the solution to be calculated numerically with considerable efficiency.

During the presentation of cases I, II and III most vital aspects of inverse problems 

were introduced. In case I the idea of information being distorted and redistributed was 

described, in case II the inevitability of finite data sets and the effect of this on the 

solution of inverse problems were considered, and in case III the very im portant and 

delicate subject of data errors was broached. However, the presentation above did not 

deal with the difficulties involved in solving these problems in practical situations. This 

will be discussed in subsequent sections, but first let us contemplate the significance and 

relevance of the word ‘inverse’ in the term ‘inverse problems’.
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1.3 W hy Inverse?

The principal characteristic of inverse problems is that the ‘known’ (observed or experi­

mentally determined) quantities (which are often of secondary interest) are related to the 

unknown quantities (of primary importance) in a non-trivial way, in the following sense:

The relationship between two sets of quantities (observables and unknowns, 

in this case) will be deemed non-trivial if the value of any observable depends 

on the values of all (many, more than one) of the unknowns (and vice-versa), so 

that the process of calculating the solution of the inverse problem (finding the 

unknowns) is rather more subtle than solving an equation of the form y = f ( x ) 

for the single variable x (or even a series of such problems). In other words, 

the equations relating the observables and the unknowns are coupled.

While hardly mathematically precise, this definition is adequate for the presentation here. 

It is essentially this coupling that ultimately gives rise to the well known difficulties with 

solving inverse problems, such as non-uniqueness of solution, instability to small perturb­

ations in the observed quantities, etc., which are discussed in §1.4 and in Craig and Brown 

(1986), §4.3.

The preceding ‘definition’ of an inverse problem is philosophical rather than funda­

mental. In a sense, solving the equation y = f ( x )  for a given y and a known function /  is 

a very simple type of ‘inverse’ problem, but it is known that such a problem is not subject 

to the difficulties associated with problems involving several coupled equations in several 

variables. (Consider the solution of a square matrix equation y  = Ax, which is obviously 

x  =  A-1y. The matrix A may be singular, so that its inverse does not exist, but this will 

not be obvious from looking at the elements of A, whereas the analogous problem in the 

one-dimensional case -  A = 0 -  is easy to diagnose, and would never occur in a realistic 

problem, anyway.) It is largely for this reason that it is excluded. The designation ‘inverse’ 

arises from a view of the world in which certain quantities are manifestly amenable to ob­

servation and measurement, while others are obscured from view, either by virtue of their 

physical location (such as the interior of the sun), or their intrinsic non-measurability (the 

spectrum of particle energies in a hot fusion plasma cannot be measured directly because 

any measuring probe would be vaporized by the extreme temperature). This division is 

clearly not absolute, but depends on circumstances and the nature of the problem at hand.



CHAPTER 1. INVERSE PROBLEM REVIEW 14

For example, a surgeon may consider the organs of the body to be observables in a way 

that the operator of a CAT scanner would not. Nevertheless, in many situations this divi­

sion is quite natural. This is particularly true in astronomy, where the only observables are 

quantities obtainable from observation of the electro-magnetic radiation emitted by objects 

(and usually with no spatial resolution, so only the integrated light from the object can be 

measured). Division of the world into ‘observables’ and ‘non-observables’ is not the whole 

story, though, for if the unobservable properties of the universe were unrelated to observ­

able properties they could never be calculated. So, the formulation of an inverse problem 

requires that science provides a theoretical (mathematical) relationship between some set 

of observables and another set of non-observables. Without such a relationship it would 

obviously be impossible to learn anything at all about the unobservable quantities. Let us 

present this relationship symbolically as follows. Denote the set of observable quantities 

for a particular problem by y ,  and the set of non-observables by x .  In general, y  and x  

are symbols that stand for a number of ‘pieces of information’. In the event that both the 

observables and the number of unknowns are finite, we could write: y  = {y,-; i =  1 , . . . ,  m )  

and x  = {x j ; j  = 1 , . . . ,  n} for some positive integers m and n. However, there is nothing 

to prevent the observables or the unknowns (or both) from being the values of functions 

of a continuous (real) variable so that there is an infinite number of pieces of information. 

Then it would make sense to label each piece of information with that continuous variable, 

y(s), say, for some real number 5 , so that y  = {2/(5); u < s < u} for example, for some real 

numbers u and v. As an illustration of this, wjien the unknowns in an inverse problem are 

the pressure and density stratifications, p(r) and p(r), in the solar structure problem, or 

the rotation rate as a function of depth, 0 (r) , in the rotation problem, they correspond to 

an infinite number of unknowns (the value of p(r), say, for any value of radius, r, through 

the sun is a single unknown). Note that functions of a continuous variable may be thought 

of as ‘vectors’ in an infinite-dimensional vector space, so that the continuous variable case 

is notionally equivalent to the ‘discrete’ case (yt-, Xj etc.), with m o r n  infinite. It should 

be borne in mind that, although the observables ultimately correspond to the data for the 

problem (and in practical situations there can only be a finite number of pieces of data), 

the symbol y  may represent an infinite number of pieces of information: the designation 

‘observables’ indicates, in this philosophical context, that they are potentially observable, 

not that they have actually been observed. The relationship between y  and x  may be
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written (with sufficient generality) symbolically as

G (y) = F(x), (1.7)

where G and F  represent some known functions of the observables and non-observables, 

respectively. Here the term ‘function’ is used in its broader mathematical sense: G  and 

F  are mappings from whatever (vector or function) spaces contain the observables and 

unknowns, respectively, to some other vector or function space. Equation (1.7) is intended 

to symbolize quite generally any mathematical relationship derived from a mathematical 

model of a physical process. Its apparent simplicity therefore disguises its content. The ex­

tent to which (1.7) can represent a general theoretical relationship will now be exemplified, 

and the discussion should clarify the meaning of (1.7).

Again, G (y) or F (x) may themselves stand for vectors or functions of a continuous 

variable, independently of the meaning of y  or x, the only restriction being that the 

equality in (1.7) forces G (y) and F (x) to have the sam e  number of degrees of freedom, so 

that (1.7) is a system of equations. The relevance of this description to inverse problems 

will be explained below, but, in the meantime, it may be helpful to clarify the meaning of

(1.7) by considering some specific examples :

1. Suppose y  and x are vectors, of lengths m  and n, respectively (m data values and 

n unknown parameters to find). Then there are two classes of problem :

(a) G (y), and therefore F(x), is a vector, of length p , say. Then (1.7) becomes, in 

terms of vector components,

Gi(y) = Fi(x), for i = l , . . . , p .  (1.8)

If G and F  are both linear functions, then (1.7) may be written using matrix 

notation, as G y = F x , where now G and F  are p X m  and p X n matrices, 

respectively. The component form of this equation is obvious. Putting p =  m

and G =  Jm, the identity matrix in m  dimensions, this is clearly of the same

form as equation (1.6) in case III of §1.2, which is a matrix-type inverse problem,

(y = Fx).

(b) G (y) is, for any given y , a function of a real variable, t, which may vary over 

some range, a < t  < 6, say. The realization of (1.7) in this case is then

G(y;<) = F (x ;t) , for a < t < b. (1-9)
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This time, assuming linearity gives gT(t)y = f T(t)x,  where, for any t, g (t) and 

f(Z) are vectors of length m  and n, and T denotes ‘transpose’, so that gT(t)y 

is the usual scalar product of g and y.

2. Now, if we suppose that y  is as before, but x  is now a function, x(s ), of a real 

variable s, with u < s < v, and for simplicity only consider the case where F is a 

linear function of x, then

(a) with G (y) ap-vector, (1.7) becomes, using component notation for G,

Gi(y) = f  f i(s)x(s)ds , for * = 1, . .  .,p . (1-10)
J U

This has exactly the same form as (1.4) in case II of §1.2. Note, too, that, if 

u =  0, v = R q , p = m  and G  is the identity function (so G (y) = y)-, (1.10) is 

exactly the generic form of the rotation and (linearized) structure problems in 

helioseismology, equation (1.32).

(b) if G (y) is a function of t (again a real variable), with a < t < 6, then (1.7) is

G( y ; t ) = f  f(t; s)x(s)ds, for a < t < b. (1-H)
J u

This is the general form of a type of linear integral equation known as a Fredholm 

equation (see Craig and Brown 1986, §2.1), and has the same form as (1.2) in 

case I of §1.2.

From these four cases it is easy to see the form (1.7) will take in other cases, for 

example when both G (y) and F(x) are functions of a real variable. A simple guide 

to the interpretation of (1.7) is that when x represents the values of a function of 

a continuous variable, s, F involves an integral over s (and an equivalent statement 

can be made for y  and G).

Having exemplified the mathematical content of the symbolic equation (1.7) it is now pos­

sible to get to the essential point of all these shenanigans. Whether the problem described 

by (1.7) (namely to find x  given the values of the observables y  and the relationship (1.7)) 

is an inverse problem is determined entirely by the form of the function F: solving (1.7) is 

an inverse problem if, and only if, F is a non-trivial function of the non-observable x  (by 

non-trivial it is meant that the system of equations is coupled, in the sense described in
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the definition on page 13). The function G is unimportant in this context. However, G is 

important for maintaining the symmetry and generality of (1.7). After all, the fact that 

the division of the world into observables and unobservables is not intrinsic would make it 

very surprising if it turned out that they were always related by a formula like y = F (x). 

There are many real problems where the theoretical relationship between the observables, 

y , and the unknowns, x, has the (linear) form x = Gy. For example, the expansion of the 

observed velocity field on the surface of the sun in terms of spherical harmonics is achieved 

essentially by ‘multiplying’ the observed velocity image by the spherical harmonic trans­

form matrix: the unobservable spherical harmonic coefficients are then given by a formula 

like x  =  Gy.

Given, then, that the form of the function G  is largely irrelevant for the classification of 

a problem as an inverse problem, we might as well ignore it. Better still, we can pretend 

that the data for the problem is G (y), which is as good as using y  since it is easily 

calculable from measurements of the observables. The data G (y) can now be represented, 

for simplicity, by the symbol g, and so the problems we are interested in take the form

S = F(x). (1.12)

It is now in order to make further simplifying assumptions about the form and meaning 

of equation (1.12). Although many real problems (for example the structure problem 

in helioseismology) are actually non-linear inverse problems (i.e. the function F, which 

relates the unknowns to the data, is a non-linear function of those unknowns), many 

formalisms for solving such problems resort to linearizing F  about some known solution 

(Backus and Gilbert 1967), solving a linear inverse problem for the difference between this 

solution and the true one, and then linearizing the inverse problem again about the new 

solution, repeating this iterative procedure to convergence. It is, therefore, vital to have 

reliable techniques for solving linear inverse problems before any attem pt can be made 

to tackle non-linear problems. Since this thesis will deal exclusively with methods for 

solving linear inverse problems, it is reasonable at this point to specialize to this case, and 

assume, in (1.12), that F  is a linear function of the unknowns, and, furthermore, that it 

is homogeneous, so that there is no constant term (any such term could be absorbed by a 

redefinition of g). The result of this will be that F  becomes a linear operator on the space 

containing the unknowns. The various different manifestations of the relationship between 

the data and the unknowns that are contained within the general expression (1.12), are
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then:

• When the data are a function of a continuous variable, s, so g = g(s), (1.12) becomes 

a Fredholm equation, (1.11), if the unknowns are also the values of a function of 

a continuous variable, whereas if x  represents only a finite number of degrees of 

freedom (it is a vector, in other words), then (1.12) essentially corresponds to the 

expansion of the data function in terms of some set of functions (the Xj being the 

coefficients in the expansion). A good example of this is the interpolation of functions 

by polynomials. Finding the coefficients of the interpolating polynomial (the Xj)  is a 

problem known to have all the instabilities characteristic of inverse problems (see §3.5 

and §2.8 of Press et al 1992, Numerical Recipes, which will be referred to hereafter 

just as Numerical Recipes). In real experimental or observational situations an 

infinite amount of information is never available, and in helioseismology in particular, 

we always have only a finite number of measured data values (mode frequencies 

or frequency splittings). The situation where g is a function will, therefore, be 

considered no further here. (Although see case I of §1.2. The solution of such 

problems proceeds by reduction to problems with a finite number of degrees of 

freedom by discretization -  see §1.9 and §2.2.3.)

• The case of greatest importance and interest in most astronomical inverse prob­

lems occurs when some number (m, say) of data values have been measured, so 

g represents an m-vector. Then, if there is a finite number, n say, of unknowns, 

(1.12) becomes a matrix equation (non-square, n ^  m, in general). If the unknowns 

are objects with continuous degrees of freedom, (1.12) has the form (1.10), which is 

the generic form of the inverse problems of helioseismology.

It has been amply demonstrated in this section how the apparently innocuous equation

(1.7) can be used to represent problems in experimental or observational science, and how 

the inverse problems common in astronomy correspond exactly to cases where the function 

F  (of the unknowns) is non-trivial. It was then shown how, after assuming (largely for 

pragmatic reasons) that F  is a linear function, all the important types of linear inverse 

problem exemplified in §1.2 can be derived from (1.7). This presentation highlights the 

importance of distinguishing between observable and non-observable quantities, and of the 

theoretical relationship between them.
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1.4 Ill-posed Problems

In presenting the examples of inverse problems in cases I to III of §1.2 the concepts of 

non-uniqueness and instability to data perturbations in the solution of such problems were 

encountered. Any problem possessing either or both of these characteristics is referred to as 

an ill-posed problem. Such features are anathema to good ‘traditional’ scientific problems, 

in which a solution is expected to exist, and is also expected to be affected only slightly by 

data errors (for otherwise, surely, the solution obtained from such erroneous data must be 

completely inaccurate). Indeed, it is tempting to think that such problems just cannot be 

solved, and that any attem pt to do so must prove futile. The fact that this is not true can 

be gleaned from the wealth of literature devoted to this very topic (Craig and Brown 1986, 

and references therein). The trick is to recognize that the non-uniqueness and instability 

usually involve ‘small-scale’ features in the solution (for example, in the image processing 

problems described in §1.2 the lack of uniqueness manifests itself as an inability to recover 

features in the image on very small scales -  a lack of resolution). The goal then becomes 

not the recovery of ‘the solution’, but the extraction of as much of the information in the 

data about larger scale variations in the solution as possible. Implicit in this is the idea of 

smoothing or averaging, and methods of solution using this idea will be reviewed in §1.8 

and §1.9. In this section the aim is merely to discuss the mathematical reasons for, and 

ramifications of, this ill-posedness.

The work in this thesis concentrates on linear inverse problems, in which changes in 

the solution are related linearly to changes in the data. For the preceding statement to 

have any meaning both the solution and the data must lie in linear (i.e. vector) spaces. 

The effects of ill-posedness to be described here apply equally to non-linear problems, 

where the data and solution may lie in more complicated spaces, but it is more difficult 

to grasp the meaning of ill-posedness. For convenience, call the vector space containing 

the solution <S, and that containing the data V.  Imagine that norms have been defined 

on both S  and X>, so that we have some measure of the ‘size’ of any vector in these two 

spaces (see Craig and Brown 1986, §5.3.2, or Parlett 1980, §1.6, for a description of norms 

on vector spaces). Naturally, the norms on S  and V  will be denoted by ||.||$ and ||.||z>, 

respectively. The most important property of norms as far as we are concerned here is 

that they give a definition of ‘size’ for the vectors in a vector space, so that concepts such 

as error magnification can be considered. It will be useful in what follows, though, to state
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the defining properties of norms on vector spaces:

A norm ||.|| on a vector space V is any function (functional, if you like) 

from V to IR (the space of real numbers) satisfying the following three proper­

ties

1. ||x|| > 0, and ||x|| = 0 if and only if x  =  0

2. ||a:x|| = |a | ||x|| for any real number a

3. ||x +  y || <  ||x || +  ||y ||

for any vectors x  and y  in the space V.

Now, imagine any non-zero vector x  in S  (so that ||x ||s  > 0 by property 1 above). The 

forward problem (1.12) maps x to a vector g(x) =  F(x)  in V.  It is the relationship between 

||g(x)||x> and ||x ||s  that is crucial in understanding the significance of ill-posedness. First, 

consider the situation where there exist non-zero vectors x  in S  for which ||g(x)||z> = 0 

(i.e. g(x) =  0). Assume that we have obtained by experiment or observation some set of 

data gobs? and have found a solution to (1.12) for this data, i.e. we have found some xo 

satisfying

gobs = ^ (x 0).

Now consider the vector xo +  x in the solution space <S, where x  is a non-zero vector in S  

such that ||g(x)||i> =  0. Then the linearity of the problem tells us that

F (x 0 + x) = F(xo)  +  F{x) = gobs +  0 = gQbs,

so that xo +  x  is also a solution of (1.12), and Xo + x ^  xo: the solution is non-unique. In 

linear problems this non-uniqueness occurs precisely when the mapping F  from S  to V  is 

such that some non-zero vectors in <5 are mapped to the zero vector in V.

Non-uniqueness is, in a sense, the limiting case of instability to perturbations in the 

data. With non-uniqueness, no change in the data can permit large changes in the solution, 

whereas instability occurs when very small changes in the data give rise to large changes

in the solution. It may seem from this discussion that instability occurs when ||g||x> is

very small (||g||-z> <C IMIs), but this is not strictly the case. For example, when the data 

space is the same as the solution space, and the mapping F  is given by

F (x) =  ex, for all x  in S , (1-13)
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where £ is some very small number, there is no instability to data errors. To see this 

consider a data vector gobs, and any perturbation Jg  such that

II^sIIp _  c ~  i /i
l lg o b s l lp  (  ' }

If xo is again the ‘correct solution’, and Sx  is the error in the solution satisfying the 

perturbed data, so that

gobs + <*g = F (x 0 +  Jx ) = F (x 0) + F ( S x ),

then it is easy to see that Sg = F(Sx)  = eSx,  (using (1.13)), or

Sx = %
£

which is, apparently, a massive error amplification (£ is very small). However, the relative 

error is given by

ll^ l ls  II^s IIp  kl II^s IIp  c ^ .
||xo|U kl l|gobs||z> IlgoUlk

from (1.14) and using property 2 of norms. So the relative errors are no bigger for the

solution than for the data. There is effectively no error magnification.

It turns out, in fact, that what gives rise to instability is the occurrence of differential

magnification by F  of vectors in the solution space. Consider a general mapping F , and

define two important quantities (both positive, by property 1 of norms)

Amin = nun (1-15)x#o I ||x||5 J

Amax = max |  |  (1.16)x*0 ( ||x ||5 J

and, similarly, let the unit vectors in the solution space at which these extrema are obtained 

be denoted by Xmjn and xmax (the linearity of the problem and property 2 of norms 

ensure that it is always adequate to consider unit vectors in the solution space). Most

mappings, F , used in physical situations are bounded, in the sense that Amax < oo. Here we

will also assume, since we are considering instability, that Amin > 0, so that non-uniqueness 

does not occur. Consider any (non-zero) solution vector x, with corresponding data g, and 

assume that the data errors, are again small, satisfying (1.14). Then (1.15) and (1.16)
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From these two equations it is easy to derive the following limit on the relative error in 

the solution resulting from the (generally unknown) data errors

||^X||«S ^  ^max _  ^max  ̂ ^

| |X ||<S ^ m in  ||g ||z >  <^min

For Amin ~  6 and Amax ^  1 this gives

J ! M k > i  
M s  ’

in other words, a relative error of over 100%, when 6 could have been 0.01, say, corres­

ponding to data errors of only 1%: a huge error magnification. And don’t be fooled by the 

fact that the error is only bounded above in (1.17) into thinking that these bounds would 

never be attained. If by chance the ‘true’ solution was xmax and the data errors happened 

to correspond to a vector in the solution space parallel to X m in , then the relative error in 

the solution would be exactly equal to the upper bound given in (1.17).

It is clear from the above discussion that the inverse problem (1.12) will be unstable 

to errors in the data whenever the quantity

CF = ' ^  (1.18)
^min

is large (^  10, say). Cf  is called the condition number of the operator F  (another way of 

saying that the solution of (1.12) is unstable to perturbations in the data is to say that F  

is ill-conditioned), and is a useful measure of the instability of the problem. Note that 

if the problem does not have a unique solution, then Amin = 0, and C f  is infinite -  very 

ill-conditioned indeed.

1.5 The Inverse Problems of Helioseismology

This thesis deals with methods for optimizing the solution of inverse problems in general, 

but with particular emphasis on those that appear in helioseismology. In this section, the 

physics of the solar oscillations is briefly recapitulated, and the way in which the oscillation 

frequencies (which constitute the data for the helioseismological inverse problems) are 

affected by the internal structure of the sun (this is the forward problem) is explained. 

Solving an inverse problem amounts to extracting the information about the unknown 

quantities from the data. A simple example showing how it is possible to recover this 

information (without recourse to detailed numerical techniques) is given. This should 

motivate the presentation of the numerical methods of solution in sections 1.8 and 1.9.
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1.5 .1  T h e  Solar O scilla tion s

The observed solar oscillations, whose restoring force is predominantly due to pressure 

gradients, hence the designation p modes, are trapped in a resonant cavity or ‘trapping’ 

region, whose upper boundary is near the top of the convection zone (just below the 

surface of the sun). The position of the lower boundary of this trapping zone depends on 

the mode under consideration, but, for most of the modes observed is somewhere within 

the solar convection zone. This means that most acoustic waves propagate within the 

convection zone, being ‘reflected’ at the boundaries of the trapping region. The concept of 

a trapping zone comes from asymptotic analysis (see Unno et al. 1979 §15, Gough 1986, 

Gough 1984), where oscillations with wavelengths much shorter than the characteristic 

length-scale of variation in the solar structure are treated locally as plane parallel sound 

waves propagating in a homogeneous medium. As the wave moves between regions with 

different fluid properties (density, pressure etc.) its wavelength and amplitude change to 

conserve energy flux and so on. (This is the WKB approximation. It is quantitatively 

valid only for eigenmodes with large spherical harmonic degree, /, or large radial order, n, 

i.e. short horizontal or vertical wavelength, respectively.) The waves are then described 

by their (curved) ray-paths through the star, which are determined by changes in sound 

speed, just as light is refracted by changes in the refractive index of the medium through 

which it is passing. Figure 1.3 shows just such ray-paths for two different modes. A ray 

travelling down through the convection zone at some angle to the vertical (so tha t it is not 

a radial mode) will be refracted further away from the vertical by the increase in sound 

speed with depth until it is travelling horizontally. It will then be refracted upwards until 

it reaches the surface where it is reflected by the sharp change in density near the top of 

the convection zone. The point of reflection marks the top of the resonant cavity, and the 

radius at which the ray becomes horizontal defines its lower boundary. The rays can never 

escape from this region: they are trapped. Although this analysis is only approximate, it 

is very useful for describing and classifying the solar eigenmodes, because the inaccuracies 

involved are really quite small for the vast majority of modes. Nevertheless, it is important 

to realize that the use of terms such as ‘trapping region’, ‘reflection’, ‘refraction’, etc. is 

somewhat figurative. The full solutions of the oscillation equations have properties that 

closely reflect aspects of the ray-path analysis, but the intrinsically global nature of the full 

problem renders the two approaches quite distinct. In what follows the global treatment
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Figure 1.3: A schematic diagram of the ray-path of two different sound waves travelling through 
the sun. The outer circle represents the surface of the sun, and the view is a cross-section. The 
dotted circles marked by rt indicate the lower turning points of the modes, which are reflected 
down from the surface and then refracted back up.

will be employed as far as possible, but the local description will be used frequently to 

clarify ideas.

The trapping zone for a given eigenmode of oscillation is the region of the solar interior 

where it is propagating (that is, where its wave-function oscillates in radius, so that upward 

and downward propagating waves interfere to produce a standing wave-pattern). Outside 

this region the waves no longer propagate, and the wave-function decays exponentially and 

monotonically with distance from the cavity boundary (the mode is said to be evanescent). 

This means that the amplitude of the oscillation will be largest in the trapping region, 

falling away rapidly in the evanescent zone. It seems quite reasonable to assume that the 

properties of any eigenmode (in particular, its frequency) are most sensitive to the solar 

structure in regions where its amplitude is large, and this is indeed the case. To see this
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more clearly, consider the global description of an eigenmode, which is summarized briefly 

here, and is described in detail in Unno et al. (1979). The solar oscillations are nothing 

more than small deviations in the hydrodynamical and thermodynamical properties of the 

solar material away from some stable equilibrium value (given by the equilibrium solar 

model). A fundamental (and perfectly reasonable) assumption made in helioseismology 

is that, to an adequate level of accuracy, the properties and dynamical behaviour of the 

solar material are well described by the equations of fluid dynamics, supplemented by 

equations describing the flow of radiation, the gravitational field and so on. This means 

that both the equilibrium state of the sun and any deviations from this state are determ­

ined by solving these equations. Solving the equations pertaining to the solar material in 

their most general form is outstandingly difficult, but in helioseismology there are obvious 

approximations that can be made which greatly simplify things. For example-the solar 

equilibrium state is very nearly spherically symmetric and time-independent (although 

see Unno et al. 1979, §12, for a discussion of the treatment of convection), so the fluid 

equations to describe this are much simplified. Similarly, the fact that the observed solar 

oscillations have a very small amplitude allows all terms in the fluid equations that are not 

linear in the oscillating quantities to be dropped, leaving a set of linear equations, which 

are much easier to handle than the general non-linear case. The oscillation equations obey 

a superposition principle, i.e. they have the property that any solution (any solar oscilla­

tion) may be expanded as a linear combination of simple solutions (the eigenfunctions of 

the oscillation equations -  the solar eigenmodes) whose development in time is harmonic 

(i.e. sinusoidal) with a specific frequency for each eigenmode (which is its eigenfrequency -  

this is the frequency that is measured in helioseismic observations), and, furthermore, each 

eigenmode evolves independently of the others (thanks to the linearity of the problem) and 

so it is possible to study the properties and behaviour of the eigenmodes separately. The 

eigenmodes and their corresponding eigenfrequencies contain all the information necessary 

to describe any solution of the oscillation equations.

It may be helpful to consider some of the basic properties of the eigensolutions of the 

oscillation equations. Any eigenmode of the sun involves small periodic perturbations 

in the fluid properties throughout the sun. For example, perturbations in the density 

are p'(r,6,4>,t) = p(r, 0, </>,t) — po(r) (po(0 is the density of the spherically symmet­

ric, time-independent, unperturbed equilibrium state at radius r), whereas the (vector)
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change in the position of a fluid element (relative to its position in the equilibrium state) 

could be written £(r,9,<f),t) =  £r (r, 9, <f>, t)r + & (r, 9, </>, t)0  + f^(r, 0, 4>, t)<j>. Obviously, 

the fluid equations relate these quantities, and others such as the pressure and gravita­

tional perturbations. The eigenfunctions are very special and simple oscillations because 

their dependence on time and on the spherical co-ordinates 9 and 4> is simple, and the 

perturbed quantities are related by ordinary differential equations, by virtue of the fact 

that the linearized oscillations are separable. Just as the time independence of the equi­

librium model allows eigenfunctions with a harmonic (e~l(JJnlmt, or sin ojnimt, where u>nim 

is the eigenfrequency of the (n ,/ ,m ) mode) time dependence to be chosen, the spherical 

symmetry of the equilibrium state permits eigenfunctions to be chosen whose dependence 

on the ‘horizontal’ co-ordinates, 9 and 0 is a spherical harmonic, Yim(9, <f>) <x Pim(9)etm^, 

(Phn{9) is an associated legendre function -  again see Unno et al. 1979). The result is 

that the eigenfunctions for the perturbations in a scalar quantity, say density, have the 

form

p 'v tJ r ,  9, t )  =  Pn,m (r )Y lm(S, ( 1.19)

(where, with an obvious abuse of notation, the same symbol is used for the complete 

perturbation and for the radial dependence). The eigenfunction for a vector quantity 

(the displacement of fluid elements, for example) is given in (1.20), and relies on the 

use of vector spherical harmonics to describe the horizontal variation, but this is not 

im portant here. Clearly, therefore, choosing the horizontal dependence of the modes 

(i.e. choosing I and m) leaves the radial dependence and the eigenfrequency, u>n/m, to 

be calculated. The equations that do this form, along with the appropriate boundary 

conditions, a boundary value problem (Unno et al. 1979). It is characteristic of such 

problems that they contain a free parameter (in this case, the oscillation frequency) such 

that a solution of the equations can only be found for certain values of this parameter. 

These values are the eigenvalues (eigenfrequencies), and, typically, there is an infinite 

spectrum of them, labelled by integers, n. So, solar eigenmodes are found by choosing the 

integers / and m (determining the horizontal variation) and using the system of equations 

that determine the radial behaviour of the eigenmodes with these values of and I and m  to 

find eigenfrequencies and their corresponding eigenfunctions (labelling each with a different 

value of n).

It is clear from this that the horizontal variation of the eigenmodes, and the form of
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their time dependence contain no information about the solar equilibrium state (except 

that it is spherically symmetric and time independent). The radial variation of the solar 

internal structure only enters the boundary value problem to determine eigenfrequencies 

and the radial dependence of the eigenfunctions: this is the interesting part of the prob­

lem. Changing the solar structure changes the coefficients in the differential equations 

that determine the radial eigenfunctions and therefore changes the eigenfunctions and 

eigenvalues (oscillation frequencies). This is how, from a mathematical point of view, 

the dependence of the solar oscillation frequencies on the equilibrium solar model arises. 

Unno et al  (1979) present a derivation of the forward problems of helioseismology, for the 

solar structure, magnetic field and rotation problems, (see particularly §18 of Unno et al  

1979, and also Ritzwoller and Lavely 1991). This provides, for a given solar equilibrium 

model, a mathematical representation of the (quantitative) dependence of the oscillation 

frequencies on the stratification, angular velocity of rotation and magnetic field strength, 

respectively, throughout the solar interior. In other words, given a particular rotation pro­

file, for example, the forward problem gives a simple procedure for calculating the change 

in the oscillation frequency of any solar eigenmode in response to this profile. (The inverse 

problem, of course, consists of attempting to find the rotation profile given the observed 

mode frequencies.)

To recap, linearization of the equations of fluid dynamics about a spherically symmetric 

and time independent equilibrium state (i.e. the solar model under consideration, which is 

assumed to be in hydrostatic equilibrium) results in a set of (obviously linear) homogeneous 

differential equations for the quantities that characterize the small disturbance from static 

equilibrium in which the coefficients depend only on radius, r. This means that the time 

and horizontal (9 and <f>) dependence of the solution can be separated out: solutions of the 

equations which have the form Q(r , 9, <̂>, t) = Q(r)H(9 , 4>)T(t) can be found. The linearity 

of the problem then ensures that a general linear combination of such disturbances will 

also be a solution of the equations, so that each component will evolve independently of the 

others, and it is only necessary to consider the components separately. (Mathematically, 

the equation is said to be separable, and the collection of all such separable solutions forms 

a complete set so that any solution may be expanded in terms of them.)
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1 .5 .2  In vertin g  H e lio se ism ic  D a ta  by E ye

The trapping zone for a given eigenmode is the region where its energy density is largest, 

and is, therefore, the region of the sun to which the frequency of the mode is most sensitive. 

To be more specific, when solving the equations for the linear, nonradial, adiabatic eigen­

modes of oscillation of some given (spherically symmetric) solar model (see Unno et al. 

1979, chapter III) the displacement eigenfunctions f r (r) and £/i(r ) appear (these quantities 

are proportional to the radial and horizontal distances, respectively, between the position 

of the fluid element at radius r in the original, unperturbed state and its position in the 

oscillatory flow). The actual displacement of the fluid element at (r, 0,0 ) at time t is given 

in terms of £r ( 0  and £h(r ) by

= (frn iM , M ^ )  e-'*-* (1.20) •

where I denotes the degree of the mode, m  the azimuthal order, n the radial order, an\ the 

angular frequency of the mode and Y/m(0, <f>) is the spherical harmonic which describes the 

horizontal (i.e. nonradial) structure of the oscillation. Clearly the velocity of the oscillation 

is proportional to <7n/£n/- Thus the kinetic energy density of the oscillation is large where

K m(r) = ^Po{r)a2nl\\Znl\\2 (1.21)

is large (po(r) is the density of the solar model at radius r).

It is known from the local treatment of the oscillation equations (using the WKB 

approximation, see Unno et al. 1979, pp.89 -  this approximation is quantitatively valid 

only for modes with large n or /, but, qualitatively, its conclusions apply generally) that 

any eigenmode has a trapping region, where its amplitude is oscillatory (as a function 

of r) and is, on average, much larger than elsewhere. Outside the trapping region are 

evanescent zones where the amplitude decays exponentially and monotonically. Thus any 

mode has large energy density at points in the trapping zone where the amplitude is 

large (antinodes) and small energy density in evanescent regions and near nodes in the 

trapping zone. The structure of the solar model, and, in particular, for p modes, the sound 

speed profile, determines the trapping region, and, consequently, the eigenfrequency of the 

oscillation mode, and the position of the nodes within the trapping region. It turns out, 

as might be expected, that the sensitivity of the eigenfrequency ani of any mode to (small) 

perturbations in the solar structure is roughly proportional to the energy density. That
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is, at a point where the oscillation is ‘stronger’, a small, very localized perturbation in 

the solar structure will give a larger perturbation in the eigenfrequency than the same 

perturbation at a point where the oscillation is ‘weaker’ (evanescent zone or near a node). 

As the position of the lower edge of the trapping zone and the positions of the nodes vary 

from mode to mode (and vary in quite a regular way), the measurement of many oscillation 

frequencies and their deviation from the theoretically calculated eigenfrequencies of some 

known (and, hopefully, reasonably accurate) solar model would permit aspects of the solar 

structure as a function of depth to be inferred. To make this clearer consider a perturbation 

of the solar structure in a very narrow region (that is, a perturbation in the solar structure 

that is essentially localized in radius) compared to the typical wavelengths of eigenmodes 

under consideration, so we can express it as a delta function

Q(r) = Qo(r) +  Q'r0 ( r )  = Qo(r) +  q(r0) 6(r -  r0) (1.22)

where Q is the perturbed quantity, Q0 is its original value, and Q'ro(r) = q(ro)6(r—ro) is the 

perturbation, which is situated at ro and has ‘size’ <7 (7*0 ). Assume ro is somewhere in the 

convection zone. If the response of the eigenfrequency of the mode (n, /, m)  is proportional 

to K nim(t*) =  the kinetic energy density, then the eigenfrequency perturbation, 6ani, will 

be proportional to

q(ro) Kni(ro) ~  po{r0) ||£nKro)ll2 (1-23)

Now, arrange the modes in order so that going from one mode to the next the position 

of the lower boundary of the trapping zone moves further out, and label them by i, with 

i =  1 ,2 ,. . .  (so that as i increases, so does rt(i) the radius of the lower boundary of the 

trapping zone -  cf. figure 1.3). Analysing the observed frequency perturbations Sa(i) it 

will be found that as i increases from 1, 6a(i) oscillates, because for these modes rt(i) is 

small (r*(i) < T-o, since we assumed ro is somewhere in the convection zone and we have 

modes whose trapping zone includes the whole convection zone: remember, the upper 

boundary of the trapping zone is the top of the convection zone for all modes) and so 

the displacement eigenfunction is oscillatory in the region of ro for these modes. Thus 

for some modes ro will be near the position of a node, and 8a{i) «  0, while for others 

the perturbation will be at an antinode and 8a{%) will be large. For some z'o we will have 

rt(i) ~  ro, and at this z’o a change will occur in the variation of bo with i. It will no longer 

be oscillatory, but will decay monotonically with i. This is because as i increases above
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io the modes become evanescent at ro, so the perturbation is small. Furthermore, as i 

increases r*(z) increases, so ro is further into the evanescent region, and so K{i)  and hence 

8a(i) get smaller. This means that we can, from the frequency perturbations 8a, infer the 

position of the perturbation Q'tq . The expression for the frequency perturbation in terms 

of ||£(?"o)||2 for any modes allow q(ro) to be found, therefore determining the perturbation 

exactly.

The inverse problem we are considering is linear, so if we assume that the perturbation 

now consists of two delta functions at different positions the procedure just applied to 

locate the single delta-function would show the same kind of oscillatory behaviour, except 

that now there ought to be some kind of ‘beating’ phenomena, where the two perturbations 

sometimes add ‘coherently’ (for modes where both delta-functions nearly coincide with 

antinodes), while for others only one delta-function, or perhaps neither of them, will be 

near an antinode, and so the perturbation will not be so great. As the kernels are positive 

definite this beating phenomenon would be most easily visualized for two perturbations 

with opposite signs (so that a kind of constructive and destructive interference could 

occur). Nevertheless, arrangement of the kernels in order of increasing rt ought to reveal 

a point (an rt(i)) where the beating phenomenon ends (when the innermost perturbation 

occurs near r f(i)) and the variation of the perturbation with i looks as it did in the single 

delta-function case. This indicates the location of the innermost perturbation. The i for 

which the other delta-function is near the lower turning point, rt(i), should be visible as 

before. So, it is, in principle, possible to locate two delta-function perturbations in the 

solar structure.

Analogously, we could, by virtue of the linearity of the problem, extend this argument 

to three, four or more delta-function perturbations. It is clear, though, that it would very 

soon become practically impossible to visually interpret the oscillation data in the manner 

described above to locate the positions of the perturbations. However, the effect of each 

delta-function on the eigenfrequencies would be the same, and it simply requires detailed 

numerical calculation to locate them. Since we could write an arbitrary perturbation as a 

‘sum’ of 6-function perturbations

f R0Q (r) =  / q(r0) 8(r -  r0) dr (I-24)
Jo

it is reasonably clear that accurate measurement of the frequency perturbations ought to 

permit the determination of the general perturbation Q'{r) by some method which is, in
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principle at least, equivalent to that given above. A moment’s thought shows that this is 

an example of an inverse problem, due to the highly non-trivial relationship between the 

observables and the unknowns.

In the following section solving the inverse problems of helioseismology will be discussed 

from a more realistic viewpoint.

1 .5 .3  T h e  Inverse P ro b lem s o f  H e lio se ism o lo g y

By performing spherical harmonic and Fourier transforms on series of ‘velocity images’ of 

the sun, diagnostic diagrams (Unno et al. 1979) displaying oscillatory power as function 

of horizontal wavelength (or /, the degree of the spherical harmonic) and frequency can be 

plotted. These show that the power is concentrated along ridges each of which corresponds 

to modes with the same value of radial order, n. As the sophistication of observations has 

increased (cf. Libbrecht et al. 1990) the measurement of the frequencies of modes with 

many different values of n, I and m  (m  is the azimuthal order of the mode, in a truly spher­

ically symmetric sun the frequencies of modes with different m, for the same (n,/) would 

be the same, i.e. the modes would be degenerate) with an accuracy sufficient to permit 

aspects of the solar structure to be inferred has become possible. This has been attem p­

ted for rotation (Duvall Jr. et al. 1984; Korzennik et al. 1988; Christensen-Dalsgaard and 

Schou 1988; Dziembowski et al. 1989; Brown et al. 1989; Thompson 1990; Goode et al. 

1991; Schou et al. 1992), for the sound speed (Gough and Kosovichev 1988; Dziembow­

ski et al. 1990; Vorontsov and Shibahashi 1991), and some attem pts have been made 

to infer the depth of the solar convection zone (Christensen-Dalsgaard et al. 1991) and 

the helium fraction in the solar convection zone as part of the structure problem (Voront­

sov et al. 1991; Kosovichev et al. 1992), as well as to use the recovered sound-speed profile 

to constrain solar neutrino flux predictions (Dziembowski et al. 1990).

All of these problems are specific examples of inverse problems. They are characterized 

by the fact that the quantity to be found (sound speed, rotation curve etc.) is related 

to the observable quantities in a non-trivial way, typically involving some kind of integral 

transform or functional. The solar structure problem is non-linear, in the sense that the 

oscillation frequencies are related to the sound speed by a non-linear functional: 

fR o
<t*j = /  K ni(r\c2) dr, for / = 0 ,1 , . . . ,  and n =  0, ± 1 , . . .  (1.25)

Jo
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where K ni is a non-linear function of c2 that depends on the mode (n, /) under consid­

eration. The non-linearity here derives from the fact that the perturbation depends on 

the eigenfunction of the mode, and the eigenfunction depends on the structure, and so, 

to calculate the perturbation, 6ani, in the oscillation frequencies we must know the solar 

structure, which is the object of the exercise.

The solution of (1.25) is rather difficult and requires an iterative approach (Backus 

and Gilbert 1967, 1968, 1970). Make some (informed) guess to the real solar structure 

(calculate a solar model), evaluate the eigenfunctions and eigenfrequencies of the model 

(see Unno et al. 1979). These quantities can then be used in the variational principle 

which the eigenmodes of a spherical star are known to satisfy (Unno et al. 1979, §13.2; 

Gough 1985, §6; Dziembowski et al. 1990). This gives an expression for the difference 

in frequency between the model and the real sun in terms of the deviation of the sound ' 

speed (squared) between the model and the sun that is linear in the deviation, i.e. a linear 

functional for each mode. This procedure amounts to linearizing (1.25) to give

/•ft© q k  i
= j  <5c2 dr, for / = 0 ,1 , . . . ,  and n = 0, ± 1 , . . .  (1.26)

Make the definition
i ( , dKnl 
*",(r) =

The kni(r) are called the kernels of the linear integral equations (1.26). Solution of (1.26)

(by one of the methods described in (1.8) or (1.9), below) gives a new solar model (new

sound speed profile c2 +  £c2) which can then be used to calculate new kernels k $  and new
2(2)frequency differences San) ' and thus a new linear inverse problem. It is to be hoped that 

the initial guess to the solar structure will be sufficiently accurate to assure convergence 

to the correct solution. Thus, the solar structure problem is a non-linear problem which 

must be solved by some iterative procedure in which each step is a linear inverse problem 

(Backus and Gilbert 1967,1968,1970). In many ways this method is like Newton-Raphson 

iteration. There are many potential difficulties here, not least of which is the practical 

problem of calculating the composition of the new model (Gough 1985).

The other, very important inverse problem presented by helioseismology is the solar ro­

tation problem. Inferring the solar internal angular velocity from frequency splitting data 

(the differences between the frequencies of modes with different m  in the same (n, /) mul- 

tiplet) is in many ways much simpler than the structure problem. This is basically because
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the effect of slow rotation (i.e. slow enough to be treated in perturbation theory -  see 

Unno et al. 1979, §18 -  as is the case for the sun) on the basic structure of the model 

(due to centrifugal force and the reduction in effective gravity, etc.) is of second order in 

the angular velocity, whereas the splittings of the frequencies within a multiplet depend 

linearly on the angular velocity. Thus the rotation curve can be found without needing 

to consider the perturbation of the original model (at least not at the present level of 

observational accuracy).

Ritzwoller and Lavely (1991) show that the full, two-dimensional solar rotation problem 

can, with judicious choices of basis functions in terms of which to expand the rotational 

velocity field and the variation of the eigenfrequencies of the modes in each multiplet 

(that is, with the same I and n), be reduced to an independent (and, in principle, infinite) 

sequence of 1-D inversions. Ritzwoller and Lavely expand, the velocity field in terms of 

vector spherical harmonics as folows:

v rot(r , 0) = -  w {2s+1]( r ) d Y 2°+- '9 <fr, ( 1 .27 )
s= 0

where the w ^  (note that only with odd values of the index occur in the expan­

sion (1-27)) are the functions to be determined in the inversion, Yso are zonal spherical
A

harmonics (m = 0, and so they have no azimuthal dependence), and <f> is the unit vector 

in the azimuthal direction, as usual. The eigenfrequencies, u;n/m, of the modes in each 

multiplet are expanded in terms of the Clebsch-Gordon coefficients, /3Jj (see Ritzwoller 

and Lavely 1991 and references therein), to give
Tlmax

Wnlm = VnlO +  ^  ^nlPjli (1.28)
3=1

where the bJnl are the new splitting coefficients, and nmax is some upper limit to the number 

of coefficients to be used in the expansion for the frequencies which is determined by the 

quality of the data. For the data available presently, nmax = 6, but this will increase as 

more accurate data becomes available, from the GONG project (Harvey et al. 1993), for 

example. It is these coefficients, rather than the frequencies themselves, that are used 

as the data for the inversions to find the velocity field components ( 5  =  1 ,3 ,5 ,.. .) . 

Using these expansions the 2-D rotation problem reduces to the sequence of 1-D inverse 

problems

qfs* =  f  k\s\ r ) w ( s\ r ) d r ,  for s =  1 ,3 ,5 ,..  . ,n TOOX, and i = l , . . . , m ,  (1.29)
Jo

r



CHAPTER 1. INVERSE PROBLEM REVIEW 34

where, for convenience, the two integers n and I labelling the modes have been replaced
(s)by a single label, i. The data ' for these inverse problems are related to the splitting 

coefficients h?nl as in equation (56) of Ritzwoller and Lavely (1991). The k\s  ̂ in (1.29) 

are the rotational kernels, which depend on the displacement eigenfunctions and £hni 

(i nl) in the following way

+ L 2(hh ~ \ 2 £ r n l + l)f*nl) (1.30)

where the ‘normalizing’ constant J  is
r/?0

j  = I  0 {trI, +  L 2( hl , )  Por2 dr. (1.31)

The expressions for the rotational kernels k\8̂  is also given in Ritzwoller and Lavely (1991).

Compare the equations in (1.29) with equation (1.32), below. It is clear, then, that 

to have any success at all in our attempts to infer aspects of the solar structure from 

oscillation data we must have an accurate, efficient and reliable method for solving linear 

integral equations of the form

rR o
9i = I k i { r ) f ( r )d r  for i = l , . . . , m ,  (1.32)

Jo

where m  is the number of modes in the data set, fc,(r) is the kernel corresponding to the 

zth mode and f ( r )  is the quantity we wish to recover. It is interesting to note that while 

it is formally rather easy to solve (1.32) (approximately), it is in practice very difficult to 

solve accurately and efficiently. Clearly, there is no hope of obtaining an analytic solution 

to the set of m integral equations (1.32), so some numerical method must be found. This 

means that questions of truncation error, rounding error and stability of the numerical 

method must be addressed.

In practice the data {gi\ i = 1 , . . . ,  m} is contaminated with a not inconsiderable level 

of noise (data errors). It is well known that any straightforward (straightbackward?) 

inversion of (1.32) is very unstable to small perturbations in the data. That is, a ‘small’ 

error in the data can, and usually does, result in a large error in the recovered solution 

(see §1.4 and Craig and Brown 1986, §1.3). This is intrinsic to the problem, and is not 

the result of any numerical inaccuracies. This has two implications:

• It is essential to introduce some method of stabilizing the inversion of (1.32). In all 

the commonly used techniques this is achieved by regularization (Craig and Brown 

1986, §6.2). This is described in more detail below.
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• Once the inversion has been stabilized the presence of a small amount of truncation 

error (or discretization error, as it will be referred to below) is acceptable, since its 

presence will only affect the solution by a similarly small amount. The presence of 

errors in the data means that the solution is already in error. Providing the discretiz­

ation errors are much smaller than the data errors they are acceptable. Henceforth it 

will be assumed that any sensible approximator to (1.32) will be sufficiently accurate 

that discretization errors are unimportant.

The numerical methods for solving (1.32) that are commonly encountered (see Gough 

1985) fall into two basic categories: optimal averaging methods, which are useful because 

they are designed to provide more information about the solution than just its values 

(information such as resolution and error magnification -  see below), and regularized least 

squares methods, which are very simple to use, and very flexible (in the sense that it 

is possible to tailor them to the requirements of particular problems -  see the discussion 

in §2 .1 ), but lack some of the finesse (and complication) of the optimal averaging methods. 

These two methods will be described shortly, but first it is in order to consider the meaning 

of the term ‘a solution’ for problems of the form (1.32), like the solar rotation or the 

(linearized) structure problems. Once that is done, the requirements a successful inversion 

algorithm should satisfy will be discussed, before the various inversion procedures are 

reviewed.

1.6 W hat is a solution?

Although the terms ‘solution’ and ‘true solution’ are easily understood intuitively, it will 

be useful later to be a little pedantic here and to state explicitly their significance. This 

significance depends partly on the situation under consideration, so the meanings of ‘solu­

tion’ and ‘true solution’ are discussed from three different viewpoints.

1 ) P hysically : The inverse problems of helioseismology attem pt to use the observed

properties (frequencies, splittings etc.) of solar oscillations to infer the value of quantities 

characterizing elements of the solar fluid (such as velocity, sound speed or magnetic field 

strength) throughout the volume of the sun. The ‘true solution’ would then be the actual 

value of the quantity under consideration, call it / ,  at each point within the sun: in 

spherical polar co-ordinates, the ‘true solution’ is a function assigning a value f{r,0,(f)) to
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each point (r, #,</>). A solution to the inverse problem for /  should mimic the properties 

of the true solution, and so elucidation of the nature of the true solution in any inversion 

will motivate the choice of allowable solutions.

The inverse problems dealt with in this thesis are 1-D inversions in which the quantity 

of interest is dependent on only one independent variable, i.e. /  = / ( r ) ,  whereas, in reality, 

the presence of a solar convection zone and latitudinal variations in the solar angular 

velocity mean that /  depends on r, 9, <j> and t. However, it is sufficient for the specification 

of the structure and rotation to consider averages of /  over time and azimuth. In other 

words, although a direct measurement of /  at any point would yield a value that depends 

on r, 0, (f> and t (in the convection zone, at least), the average structure, to which the 

oscillation frequencies are sensitive, is axially symmetric: /  = f (r ,0) .  In fact, most of the 

quantities specifying the solar structure (e.g. sound speed) have a spherically symmetric 

distribution to a very good approximation. In these cases the true solution is a function 

of radius, r, alone.

For quantities, such as angular velocity, that are strongly latitudinally dependent the 

reduction to 1-D inversions can be achieved by expanding the latitudinal variation in terms 

of a set of orthogonal basis functions, for each radius value (Ritzwoller and Lavely 1991). 

This reduces the 2-D inversion for f ( r , 9 ) to an (in principle) infinite sequence of 1-D 

inversions of the type dealt with in this thesis, one for each component of the latitudinal 

expansion.

It now only remains to discuss the continuity of the ‘true solutions’. Certainly any 

quantity f ( r ) is defined for every value of r. In fact, it is reasonable to assume that the 

quantities are actually continuous functions of radius, based on the following argument. 

Consider sound speed (or temperature) and angular velocity. If there were a discontinuity 

in either of these quantities heat or momentum transport (respectively) would immediately 

remove the infinite gradient in these quantities: clearly, viscosity prevents infinite velocity 

gradients, and similar considerations (concerning the conductivity) apply to sound speed 

(which is very closely related to temperature). Having said this, the actual gradients may 

be very large (for example, the angular velocity is believed to vary sharply across the base 

of the convection zone), so large, in fact, that they may be well approximated, in practice, 

by discontinuities. The gradient will, though, be limited by the physical considerations 

mentioned. This will be discussed below.
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2) M ath em atica lly : In order to place the solution of (1.32) on a firm theoretical footing 

and to be as mathematically rigorous as possible it is necessary to specify the set of objects 

(functions) that will be allowed as solutions. This set must be large enough to include any 

conceivable ‘true solution’, as described above.

The nature of the problem as a set of integrals involving f ( r ) suggests that the broadest 

possible class of solution functions is L 2(0, R q) -  the set of all (Lebesgue) square-integrable 

functions (Weir 1973). In fact, this set is larger than necessary for practical purposes, but 

it is useful to have L2 in mind when greater specificity is not required. No use will be made, 

in this thesis, of any properties of L 2 other than integrability and linearity (Z 2 (0, R q) is 

a vector space). The fact that the true solution is continuous means that we could use a 

space of all continuous functions on [0 ,E@], but, as the practical solution of (1.32) often 

employs approximation by functions with discontinuities (PCD -  see §1.9), continuity will 

only be assumed when necessary to clarify an argument.

In general, no specific reference will be made to the space of functions to be allowed as 

solutions of (1.32); it is the purpose of this section to show that such a space does exist for 

any practical application, and, where definiteness is required, it may be assumed to be L 2 

(in the absence of more information). The only property of the function space of solutions 

that will be used here is that of linearity. As the problem is linear it makes admirable 

sense to adopt such an assumption. (This is not practically necessary, and, in fact, it may 

not always be desirable -  see the discussion of this point in §2.2.3.)

Finally, it is helpful to comment on the nature of the kernel functions. Again, these 

must certainly be in T 2 (0 , i 2 ®), and often they will be continuous (in heliosesimology, the 

kernel functions are closely related to the solutions of the differential equations describing 

the oscillations, and so must be differentiable). For the practical solution of (1.32) it 

is useful to assume that kernels and solution lie in the same space (this is essential if 

spectral expansion is to have any validity as a method of solution, for example, because it 

is assumed that the kernel functions can be used to span the solution space), and, where 

necessary, this assumption will be implicitly adopted.

3) P rac tica lly : Having an intuitive grasp of the physical nature of the true solution

of (1.32) and a knowledge of the space of objects that are acceptable as solutions is not 

quite enough to complete the mental picture of the meaning of ‘a solution’ to (1.32). ‘A
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solution’ will be a function and the true solution will be continuous (although it may be 

approximated by a function with discontinuities), but it does not describe the quantities 

that result from the actual practical solution of (1.32). Solving (1.32) must be done 

numerically (the kernels are only known numerically, as they are related to the numerical 

solutions of the differential equations describing the oscillations, and anyway, the problem 

just could not be solved analytically, even if the kernels were analytic), and so the resulting 

solution must be characterized by a finite number of values, which may be the values of /  

at a finite set of points in the range 0  to R q , or the values of coefficients of the expansion 

of f ( r ) in terms of some basis of analytic functions. Which of these two approaches is 

adopted is largely a m atter of personal choice. Attempting to recover the values of /  at 

several points in [0, R q ]  allows complete freedom to specify these values independently, but 

gives no information about points inbetween. Moreover, the assumption of continuity (or 

slow variation/smoothness) allows the values of f ( r ) at intermediate points to be inferred 

by simple interpolation: If /  is recovered at sufficiently many points, plotting those points 

on a graph gives an adequate meaningful representation of the solution in most cases.

If the solution is expanded in terms of analytic basis functions, then the solution is 

essentially given at every point once the coefficients in the expansion are known. (This 

ignores the fact that exact calculation of the value of the basis functions at any point may 

not be trivial, and may be an infinite process: it is assumed that it is a simple m atter 

to obtain the values of the basis functions to sufficient accuracy). However, knowledge of 

only a finite number of coefficients results in the values of the solution at different points 

being dependent. Note that to provide a graphical representation of the solution, it is, in 

general, necessary to select a number of values of r and plot the value of the solution at 

these points, filling the gaps by interpolating by eye.

Thus, there is little difference in the final analysis between the actual solution obtained 

via the two approaches: both essentially result in a picture (graph) of the solution which 

includes information about a finite number of points. The choice is between finding the 

solution only at several points without explicit approximation and then introducing ap­

proximation at intermediate points, or explicitly approximating the solution at the outset 

and obtaining the approximate value of the solution everywhere.

In concluding this section, it should be noted that the physical nature of the ‘true 

solution’ as essentially continuous means that members of the function space o f‘acceptable’
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solutions which contain discontinuities or unphysically sharp variation should be prevented 

from appearing as the recovered solution of (1.32). In practice, this often means penalizing 

against sharp variation in some way, i.e. deliberately biasing the solution in favour of 

functions that have the property of ‘smoothness’ in some sense. Some methods of solution 

(the PCD method, for example, see §1.9) introduce solution functions with discontinuities, 

but such solutions can be thought of, when necessary, as convenient approximations to 

physical solutions that are continuous and smooth.

1.7 W hat do we require from a method of solution?

Obviously, the basic accuracy and stability of inversion algorithms is important. In certain 

circumstances it may be the case that the information required from an inversion is so 

important that no effort is too great, that no expense should be spared in the recovery 

of the most accurate solution possible. For example, at the moment the data is not 

quite sufficient to make definite statements about the structure of the solar core, which 

might solve the solar neutrino problem. The more information about the solar core that 

can be extracted the better. However, helioseismological inversions are computationally 

expensive, so it certainly pays to try to reduce the computational burden as far as possible. 

Obviously, a faster inversion scheme will be ‘better’ than a slower one, all other things being 

equal. In general, of course, a compromise must be made between speed and accuracy. 

This thesis addresses problems of accuracy, with little regard for the amount of computing 

involved. (Once methods for optimizing the inversion have been found, attem pts can be 

made to speed them up.) Having said this, where speed and ease of computation may easily 

be increased this is done. (For example, a major part of all inversion algorithms presented 

here is the inversion of symmetric positive semi-definite matrices of the form A  +  XB 

for many different values of the parameter A. A method for performing this calculation 

efficiently, the Fix-Heiberger algorithm, is given in §2.4.)

Another, very important, aspect of any numerical inversion scheme is the amount of 

storage required for its operation. The smaller the memory requirements of the algorithm, 

the more computer systems are likely to be able to run it, that is, the more people will have 

access to the algorithm. It is clearly undesirable to have an algorithm which can be used 

only by a very limited group of researchers. Although questions of storage space are given 

little consideration here, it should be noted that the program used to perform the inversions
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in this thesis was written with storage in mind, although the storage requirements are still 

not small.

It goes without saying that simplicity is an advantage in any algorithm. Again, sim­

plicity is related to accessibility, but there are other factors. For example, complicated 

algorithm are difficult to program, and they tend often to be rather highly strung. Robust­

ness is a valuable asset in any numerical procedure, and simplicity can be an advantage 

in this regard.

Finally, any inversion produces information other than the actual solution, such as 

errors, correlations and bias levels. This information is often very im portant, or even 

essential, and a procedure that provides more information will be better than one that 

produces less. The relative value of extra information is somewhat subjective, but there 

are some things that are, without question, very important. Any solution tha t does not 

come with error bars, for example, is practically useless (the solution could be wildly 

inaccurate due to data errors or bias).

1.8 Optimal Linear Averaging (OLA)

Optimal averaging was invented by Backus and Gilbert (1967, 1968, 1970) for solving 

geophysical inverse problems. It was improved and extended by Pijpers and Thompson 

(1992), who introduced the term ‘optimal linear averaging’, emphasizing that the averages 

concerned are linear averages of the solution (c/. equation (1.35)). It exploits the linearity 

of the problem (intrinsic or deriving from the linearization about some specific model) 

to search for and locate linear combinations of the kernels which are strongly localized 

near some chosen point ro (i.e. some combination K To(t) = Ya Li a i(ro)^i(r ) that is large 

near ro and small elsewhere). The same linear combination of the data gives the average 

of /  weighted by ^ r 0 (r), which is obviously going to be dominated by the contribution 

from f ( r )  for r «  r0, i.e. f ( r Q) = Ya Li ®i(r0)gi / ( r o )  provided K ro is sufficiently 

well localized about tq. The idea, then, is to find, for any ‘target’ point ro, the set of 

constants a i( r0) such that K ro(r) =  Y ^ i  a i(ro)ki(r) is most strongly peaked about ro- 

For a description of how to stabilize this inversion against the effects of data errors see 

Backus and Gilbert (1968), or Gough (1985).

This method has considerable appeal for many problems, and is very useful for de­

termining limits on the resolution obtainable with a particular data set, and the extent to
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which errors corrupt the solution. It does, though, suffer from the drawback that it can be 

computationally quite expensive (requiring the inversion of an m  x m  matrix, in contrast 

to the n X n matrix inversion (n < m , and often n <C m)  required by the regularized 

least squares methods to be discussed, and in some of its manifestations (although not 

the SOLA method, Pijpers and Thompson 1992, which was introduced precisely to avoid 

this problem) it requires the inversion of such a matrix for each point, ro, at which the 

solution is to be estimated.

In this section the fundamental principles of the optimal averaging method are de­

scribed in a general way. The optimal averaging method (OLA) attem pts to produce 

estimates of / ( r o )  at a finite number of points with 0 <  ro <  R q . It must do this us­

ing only knowledge of the measured data (including the general properties of the error 

distribution) and the kernel functions (and the basic properties of the true solution de­

scribed in §1.6). Each kernel function determines, through equation (1.32), the amount 

that the value of f  at any point, r, contributes to the corresponding data value: the ith 

data point <7, is a linear combination (integral, weighted by the kernel k{(r)) of the values 

of /  at every r. Solution by OLA amounts to an attem pt to separate out (i.e. resolve) 

the value of /  at ro from the values at other r. Such a feat, should it be achieved, would 

be equivalent to finding a linear combination of the values of /  at all r with weighting 

function £(r — ro), i.e.

f ( ro) = /  6(r -  r0) f( r )dr .  (1.33)
Jo

So, we seek a particular linear combination of the values of /  and the only information we 

have about /  is a collection of other linear combinations. This suggests that we use the 

combinations we have to form another combination that at least resembles (1.33), that is, 

form the linear combination

JIL rRQ rRo rRQ
Y l a i(ro) I k i ( r ) f ( r )d r =  j  K ( r 0;r ) f( r )  dr «  J  6(r -  r0) f( r )  dr (1-34)
i=l 0 0 0

where K ( r 0;r ) = a i{ro)ki(r) is the new weighting function which is supposed to

resemble a ^-function as closely as possible. Define

/ ( r 0) = [  K{r0;r ) f( r )dr .  (1.35)
Jo

Then (1.34) and (1.33) together give
771

/ ( r 0) =  ^ 2  ai'(r° ) 9i ~  t1*36)
Z = 1
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for error free data. Errors introduce additional considerations which are dealt with in 

Backus and Gilbert (1970), and in Gough (1985).

Note the different viewpoint from many expositions of OLA methods. Whereas K(ro; r) 

is often introduced ab initio, here it is the result of the attem pt (1.34) to form a linear 

combination of known quantities giving a ^-function-weighted average of / ( r ) .  The ul­

timate goal remains the same, though: constants oti,i = 1  , . . . , m  must be found that 

give an averaging kernel K ( tq; r) resembling a ^-function as closely as possible. The main 

properties of the ^-function (which result in the equality (1.33)) are 

rR ©
/  6 ( r - r 0)dr = 1 ( 1-37 )

Jo
rb
I 6(r — ro)dr = 0 for any interval [a, 6 ] not containing ro . (1.38)

J  a

Ideally, therefore, the A'(ro; r) we seek is the one satisfying

r R ©
/  K[a.(ro)',r]dr =  1 (1.39)

Jo

j  iif[a(r0); r] dr = 0, (1*40)
J  a

where K[oc(r0); r] is simply used as an alternative notation for K{r0\ r)).

Since K(c t ; r) =  ct{ki(r) is a linear combination of a finite number (m) of functions 

(the kernels) that are bounded on [0, A®] it can never perfectly recreate a ^-function. So 

conditions (1.39) and (1.40) need modification. (1.39) must be maintained since it ensures 

that K  is not identically zero, or, equivalently, it ensures that a  ^  0 (which is clearly 

a necessary condition), and provides a normalization guaranteeing that / ( r o )  —> f ( r 0) 

(for noise-free data) as K ( a ' r ) becomes more sharply peaked about ro- Condition (1.40) 

therefore needs to be relaxed: K ( a ; r) must be allowed to be non-zero for r ^  ro (which 

would allow the existence of intervals [a, 6 ] not containing ro for which (1.40) does not 

hold). (1.40) must be replaced by some less rigid constraint which will ensure that K ( ol; r) 

bears the closest possible resemblance to S(r — ro). W hat should this condition be?

The fact that (1.40), and hence the approximate equality in (1.34) cannot be made to 

hold exactly is equivalent to the statement that resolution is finite: the value of /  at ro 

cannot be resolved from the values at other r. This clearly follows from (1.40), since if 

there is an interval [a, 6 ], not containing r0, for which / a6  K (r 0; r) dr ^  0 , then /(ro ) will be 

sensitive to values of /  for a < r < b (i.e. r /  ro). This means that choosing a constraint 

to replace (1.40) amounts to deciding which points in [0, R q] /(ro ) should be allowed to be
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sensitive to. Certainly it would be desirable for K(ro; r ) to be large for r =  ro and small 

elsewhere. At this point the presumed continuity of the true solution, discussed in §1.6, 

becomes important. Continuity means that for r close to ro f ( r )  must be close to /(ro ), so 

that if only a small region around ro contributes to /(ro ), then /(ro ) ought to be very close 

to /(ro ). This suggests introducing a constraint that penalizes against averaging kernels 

which are large away from ro- This constraint, combined with (1.39), forces K(ro; r) to be 

large near r0. To be more specific: a good averaging kernel, K { tq\ r), is one which is large 

near ro and small elsewhere, i.e. which is sharply peaked about ro- (This approach leads 

naturally to the MOLA method, outlined in Gough 1985, and in Pijpers and Thompson 

1992.) The constraint we require is one which maximizes some measure of ‘peakedness’. 

One way to enforce peakyness is to use a functional

JM (a;r0) d= f  [K[a(r0);r]}2 (r -  r0)2 dr (1.41)
Jo

which is the original form of the criterion for choosing peaky averaging kernels (Backus 

and Gilbert 1967; Gough 1985). Despite its simplicity and intellectual appeal, the defini­

tion (1.41) is rather unfortunate, because its practical implementation requires the inver­

sion of a large (m X m ) matrix for every point, ro, at which the solution is to be recovered. 

Pijpers and Thompson (1992) proposed a modification to this method, which alleviates 

this difficulty by using an alternative definition of peakyness. This will now be considered.

Another way to see that the constraint we require involves peakedness is to consider one 

formal definition of the 6 -function. A 6 -function is (the limit of) any sequence <fo,0 2 ? • • • 

of functions satisfying (1.39) and limn_oo <j>n(r) = 0 for r ^  0, so (1.40) follows in the limit 

(see Lighthill 1958). K(ro;r)  can never be a 6 -function, but if close approximation to a 

6 -function is required, then searching for an averaging kernel close to a function far along 

some sequence defining a 6 -function would be appropriate. As an example, consider the 

sequence

M r) = - I L e - s¥ -  (1.42)
V27T

of gaussians. The larger n the better the approximation to a 6 -function. Finding a K(ro; r) 

which approximates <j>n(r — ro) for some large n would result in a good averaging kernel. 

The larger n the better the kernel. Note that, for large n, the ‘peakedness’ of (f>n(r — ro) 

about ro increases with n. This is true of any such sequence. So, again, we are lead to 

a measure of peakedness. This time, though, the obvious functional to choose is (Pijpers
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and Thompson 1992)

def o
Js(ot',r0) = / {A '[a(r0 );r] -  <£T(r0)} dr, (1-43)

Jo

where <̂T(ro) is some target function sharply peaked around ro (for example, </>T(ro) could 

be some member of the sequence (1.42) with large n ). Obviously, the effect of (1.43) 

is to force the averaging kernel to be as much like the target function as possible. The 

parameter r  that has been introduced here is intended to control the width of the target 

function, and thus control the peakyness of the averaging kernels found. As mentioned 

above, the biggest advantage of this modification of the original optimal averaging pro­

cedure is that it removes the need to invert a large matrix for every recovery point, ro, 

requiring such an inversion to be performed only once.

Optimal averaging will not be considered further here (but see §2.4, v/here a method 

for diagonalizing symmetric matrices like those occurring in OLA inversions is presented).

1.9 Regularized Least Squares (RLS)

Given that it is not possible to find an analytic solution to equation (1.32), it behoves 

us to look for a numerical procedure for obtaining an approximate solution. The OLA 

techniques reviewed in the previous section are examples of one such procedure, here we 

will consider a different approach. The OLA methods approach the solution of (1.32) in a 

more physical, practical way. There is an alternative formalism which treats the inversion 

more as a mathematical problem. The basis of all the RLS methods for solving (1.32) to 

be described in this section is the observation that the integral in (1.32) effects a mapping 

from the infinite-dimensional vector space of possible solution functions to the finite­

dimensional space of data vectors: (1.32) is therefore a kind of infinite-dimensional matrix 

equation. Finite-dimensional matrix equations are ideally suited to numerical solution on 

computers, infinite-dimensional matrix equations are not. However the power of the many 

numerical techniques for dealing with matrices and other aspects of linear algebra suggests 

that developing a method of solution that makes use of them could be very advantageous. 

How can (1.32) be reduced to a simple matrix problem? Clearly, some approximation 

is needed. This approximation of (1.32) by a (finite-dimensional) matrix equation will 

be called discretization, as it reduces the continuously infinite degrees of freedom in the 

solution function to a finite number of degrees of freedom in a solution vector.
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First, notice that since there is only a finite number (m)  of data points available we 

can never recover all the degrees of freedom in the solution. There must be some finite­

dimensional subspace of the solution space about which the data contain information, 

and an infinite-dimensional subspace which can never be fixed by the data. We might 

as well concentrate on the subspace that we can learn about. In other words, ignore the 

unknowable subspace and assume that what we are looking for lies wholly within the 

knowable space, so that the effective solution space is finite-dimensional and (1.32) really 

reduces to a matrix equation (once some basis for the solution space has been selected). 

This is the basis of the spectral expansion method, described below.

Second, in section 1.9.5, below, it will be explained how the data errors generally 

affect the recovered solution of inverse problems such as (1.32) by introducing very large, 

spurious, short-wavelength oscillations. This is a reflection of the fact that components 

in the solution that vary over very short scales are often mapped to very small values in 

the data space (this is essentially a statement of the Riemann-Lebesgue lemma, see Craig 

and Brown 1986), and, as a result, their contribution to the data is often swamped by the 

data errors. These components of the solution therefore become effectively unknowable. 

Just as before, we might as well concentrate on the part of the solution space that does 

not contain functions with such rapid variations. There are two alternative approaches 

to this. Piecewise-constant discretization deals with the short length-scale features by 

explicitly assuming that the solution is constant over finite intervals (bins) -  it operates in 

‘real’ space -  whereas the function expansion methods remove short-wavelength features 

by assuming that there is some lower limit to the characteristic length-scale of features 

that can be recovered, and this is reflected in the method of solution by ignoring any basis 

function in the solution space with wavelength shorter than this -  the function expansion 

methods work essentially in ‘Fourier’ space.

The different ways of making the necessary approximation to (1.32) in common use can 

be divided into four sub categories, each relying on one of the principles outlined above. 

These will be described in the following section. Once that is done, §1.9.5 will describe 

how to solve the resulting matrix equation using regularization. Section 1.9.6 then briefly 

reviews methods for setting the level of regularization to be applied in any particular 

problem.
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1 .9 .1  S p ectra l exp an sion  (SE )

This method is reviewed in Gough (1985). It is based on the observation that any com­

ponent fj_(r) of f ( r ) that is orthogonal to all of the kernels fcz(r),  in the sense that 

Jo*0 k{(r)f±(r)dr = 0 for i = 1, . .  . ,m,  is (obviously) not determined by the data. Thus, 

the only part of / ( r )  that can be determined from the data is the function f\\(r), no 

component of which is orthogonal to all the kernel functions. The solution space is an 

infinite-dimensional function space, which contains the kernel functions. (It is invariably 

mathematically convenient to assume that the kernel functions lie in the solution space, 

and in practice the fact that (1.32) involves the integral of a product of two functions 

immediately forces us to make the assumption that the solution space is £ 2 (0 , R q ) -  the 

space of square-integrable functions on the interval (0, R q )  -  which is the weakest assump­

tion that makes reasonable mathematical sense. L 2(0, R q )  certainly contains any suitably 

continuous kernel functions. In helioseismology the kernels are always sufficiently well 

behaved to lie in X2 (0,f?®).) As a result, the kernels span a subspace of the full solution 

space. The kernels are linearly independent (otherwise the data would not be independent) 

so the kernels are a basis of this subspace. Any solution function can be broken down into 

a component, f\\(r), lying wholly within this subspace (parallel to it, in other words), and 

a component, f±(r) ,  which is orthogonal to it, and therefore orthogonal to all the kernel 

functions. The component that lies within the subspace must be expandable in terms of

the basis of kernel functions. The ‘knowable’ component of the solution can therefore be

expanded in terms of the kernels ky

m
= (L44)

j=i

where the f j  are the components in the expansion in terms of the kj. Then (1.32) becomes

m [ rRo 1
9' =  X j |  J0 H r)kj ( r )dr j  f h

or, defining kernel matrix,

Hij = /  ki(r)kj(r)dr,  (1.-45)
Jo

and introducing vector notation for the components in the expansion of /y and for the 

data values,

g =  H f  (1.46)
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with H  a (symmetric) m  x m  matrix.

Solution of this matrix equation for f  then allows /y to be found easily from (1.44). 

We may as well assume that /y is / ,  i.e. assume /± (r)  =  0 since we cannot determine /j_ 

(zero is as good a value as any).

Equation (1.46) shows that spectral expansion fits very comfortably into the RLS 

formalism described below. The problem of regularizing the spectral expansion method 

does not seem to have been solved satisfactorily (see Gough 1985), but chapter 2 of this 

thesis sheds some light on this issue.

The difficulty with this method is the need to invert an m  x m  matrix (often m ^  103), 

which can be very computationally expensive..

1 .9 .2  O rth ogon a l fu n ctio n  exp an sion  (O F E )

The space of solution functions, which, as was stated above, can be taken to be the Hil­

bert space L 2(0 ,R q) (see Weir 1973), has many possible orthogonal bases, for example, 

the Fourier basis consisting of sine and cosine functions. The full (infinite) basis contains 

functions with short-wavelength components that could never be determined in an inver­

sion. The principle underlying this method therefore involves essentially choosing some 

shortest-wavelength and assuming that all components of the solution function belonging 

to basis functions with wavelengths shorter than this are zero.

So, the solution /  is expanded in terms of some finite set of orthogonal functions such 

as sines or cosines. In general, let us choose a set of n functions <f>j(r), for j  =  1 ,.. . ,n  

(obviously n < m, since we can determine at most m  independent parameters) and write

= « (L47) 
j=i

where the f j  are the free parameters to be determined. Then (1.32) becomes

g = H i,  (1.48)

where the definition
r R q

Hij = /  ki(r)<f>j(r)dr (1-49)
Jo

of the kernel matrix has been used. Note the obvious similarity between (1.47) and (1.44), 

and (1.48) and (1.46). In practice the differences are that the (f)j are orthogonal, whereas 

the k{ are not, and n < m  usually, so that for orthogonal function expansion an nxn  matrix,
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rather than an m x m  matrix must be inverted. 100 usually gives a sufficiently accurate 

approximation in the cases considered here. With m  ~  103, as it typically was for the 

inversion performed here, this is a very considerable improvement (the speed of matrix

inversion or eigenanalysis goes as N 3).

1 .9 .3  N o n -o rth o g o n a l fu n ctio n  exp a n sio n  (N O F E )

This is very similar to OFE, except that the basis functions, are not required to be 

orthogonal (although they must be linearly independent, of course). Equations (1.47) 

to (1.48) hold as before, and the kernel matrix is again given by H{j = J ^ 0 ki(r)<f>j(r)dr. 

Typically, the basis functions would be the polynomials <f>j(r) — r 7-1. In general, the 

discretized problem is very ill-conditioned, and this method is usually only used to perform 

low-order parametric fitting to the solution. It is possible to use it with regularization, 

but there are few real advantages to this. It is included here only for completeness.

1 .9 .4  P iecew ise  con sta n t d iscre tiza tio n  (P C D )

The trick in this case is to choose some number n  {< m) of d iscre tiza tio n  p o in ts , Xj ,  for

j  =  0 ,..  . ,n  such that 0 =  Xo < X \  <  . . .  <  X n =  1 are chosen. On each sub-interval

(Jft_i,X j] we assume that f ( r )  is approximately constant, f ( r )  «  f j ,  thus immediately 

preventing small scale variations over this region. We may express this mathematically as

/(*■) = E / j 5 j ( r ) ,  (1.50)
3 = 1

where

Hence

S  (r) = I   ̂ ^  X j - i  < r < X j ,
3 \  0 otherwise.

g = H i,  (1.51)

where the kernel matrix is
f R q  yAj

Hij =  /  ki(r)Sj(r)dr  =  /  ki(r)dr. (1.52)
JO J X j - i

Again we usually have n < m, so that the inversion of an n X n matrix is all tha t is required 

for solution, which is much easier than for spectral expansion.

It is clear from equations (1.46), (1.48) and (1.51) that all of the discretizations de­

scribed here are basically different realizations of some more general method. This idea is 

considered in more detail in chapter 2.
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1 .9 .5  R egu lar iza tion

All of the methods for discretizing (1.32) result in a matrix equation relating the data 

vector, g ,  to the solution vector, f ,  the significance of which for the approximate solution 

function, f ( r ) ,  is determined by the expansion of f ( r )  in terms of the basis functions of 

the discretization (c/. equations (1.44), (1.47), and (1.44)). The goal now, then, is to find 

the vector f  that satisfies the matrix equation

g = H i  (1.53)

for a given g ,  where the kernel matrix, H , is m  X n.

It is in order to make a few obvious comments about the existence and uniqueness of 

solutions to (1.53). We always assume that n < m, because there is no point attempting to 

fix more parameters than there are data points available. Recalling the discussion in §1.4, 

introduce norms on the vector spaces containing f  and g ,  and define Amin and Amax as in 

that section. H , f  and g  are just collections of numbers, so Amax is finite. If Amin = 0 then 

there exist non-zero solution vectors that are mapped to the zero vector by H : the kernel 

matrix does not have full rank (n). If Amm > 0 the kernel matrix does have full rank. The 

rank of H  is important because it determines the uniqueness (or lack of it) of the solution 

to (1.53). As stated in §1.4, the solution will be unique if and only if > 0. For perfect 

(error-free) data, there always exists an exact solution to (1.53) (by an exact solution is 

meant a solution that satisfies the data exactly, even if the data is erroneous). In general, 

this solution will not be unique, as explained above. When the data is contaminated 

with errors (1.53) will, in general, have no solution. This is because the ‘correct’ data is 

constrained to lie within the subspace of the space of data vectors that can be reached by 

vectors H i,  for f  in the solution space. It is well known that the image of the solution 

vector space under the linear mapping represented by H  (that is, the set of data vectors 

that can be written as g  =  i f f  for some f  in the solution space) has dimension at most 

equal to the dimension of the solution space n (<  m). In fact, the dimension of this image 

space is exactly the rank of the matrix H  (see Blyth and Robertson 1986), which is at 

most n. This means that if n < m  or H  has rank less than n the image of the solution 

space will not be the whole of the data space. The ‘correct’ data is constrained to lie 

within the image space, of course, but the contribution of the errors to the data can lie 

anywhere within the data space (they are not constrained by the relationship (1.53)), so
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the observed data can (and usually will) lie outside the image space. This means that, in 

general, for erroneous data g there will be no f such that g = Hi:  an exact solution does 

not exist.

Given, though, that we know the non-existence of a solution is due entirely to errors 

in the data, it makes sense to allow solutions that do not exactly fit that data. The errors 

on the data will usually be small (otherwise obtaining a solution would be essentially 

pointless), so it makes sense to seek the vector f that gets closest to fitting that data 

exactly (although see §1.9.6 below), and defining this to be the solution. To do this 

requires some measure of nearness on the space of data vectors, but we have already 

assumed that some norm exists on this space, so define that solution of (1.53) to be the f  

that minimizes

x2(f) = ||g -  Hf\\l. (1.54)

When an exact solution exists the minimum of x 2 will be zero (recall property 1 of norms 

on page 20). Unfortunately, there are many different norms that can be defined on a vector 

space, and each will give rise to a different solution in (1.54). Is there one choice that is 

better than the others? In general, there is, but the particular choice depends upon the 

statistical properties of the data errors. The errors on helioseismic data for the rotation 

and structure problems are gaussian errors. That is, the error on the ith  data point has a 

normal distribution with mean zero and some variance of. It is well known tha t for such 

errors the norm to use is the usual sum of squares norm (or euclidean norm, or 2-norm),

771

Iigii2 = gTg = (L55)
t = i

because for gaussian errors minimizing x2 in (1*54) with this norm results in a maximum 

likelihood estimate of the solution (see Numerical Recipes, §15.1, and Anderson et al. 

1990). With this norm, the method of solution is known as the method of least squares

(for obvious reasons), and the solution obtained is called the least squares estimate of the

true solution. When the errors are not gaussian other norms may give rise to  maximum 

likelihood estimates of the solution, and therefore be more appropriate, but this will not 

concern us here.

There is one slight technicality that must still be dealt with. When the data  errors are 

not uniform from data point to data point (that is, when the variances, of, of the errors 

on different data points are different) the norm in (1.55) does not, strictly speaking, give



CHAPTER 1. INVERSE PROBLEM REVIEW 51

rise to a maximum likelihood estimate. The norm must instead be replaced by

llg| |2 =  E ( f - )  (1-56)
;= i XCTt/

(see Numerical Recipes, §15.1). With this norm, x 2 in (1-54) becomes the standard ‘chi- 

square’, hence the notation. Henceforth it will be implicitly assumed that the norm under 

consideration is the weighted euclidean norm (1.56).

The reformulation of (1.53) as the minimization of x 2 in (1-54) ensures that a solution 

can be found, but it does nothing to alleviate the problem of ill-posedness. Observe that f  

appears in x 2 °nly in the term if f .  This means that if non-uniqueness occurs (Amin = 0? 

and H  not of full rank) adding any vector mapped to zero by i f  to a solution obtained 

by minimizing x 2 will not change the value of x 2, and so will be an equally valid solution. 

Similarly, if Amin > 0 but very small, the problem will be unstable. The easiest way to see 

this is to define vectors Xmin and xmax ‘corresponding to ’ Amin and Amax> just as in §1.4, 

and to imagine that the true solution is xmax and the errors on the data correspond to a 

solution error proportional to Xmin (certainly, for any solution vector there is an associated 

data vector, so this is not an unreasonable assumption). Then exactly the same argument 

as that used in §1.4 shows that when Amin is very small the data errors can be magnified 

enormously: the problem is still ill-posed.

It turns out in practice, and can be shown with the help of the Riemann-Lebesgue 

lemma (Craig and Brown 1986, §4.2) that, under fairly general circumstances, components 

of the solution function in (1.32) that oscillate rapidly correspond to very small data values, 

so that even if these components are quite large they may actually make a contribution to 

the data that is smaller than that made by the errors, and it may therefore be impossible 

to determine the contribution made by such components to the solution. Equation (1.53) 

approximates (1;32) and tends to show similar difficulties. If the space of solution functions 

obtained from the solution vector via the expansions (1.44), (1.47), or (1.50), contains 

functions that oscillate rapidly, then the kernel matrix H  will have a small value of Amin? 

with Xmin being the solution vector corresponding to one of these oscillatory components. 

(If a solution function f ( r )  = f j <f>j ( r )i with ll^lls = 1 f°r simplicity, is mapped to a data 

vector g with ||g|| =  £ very small, then, of course, Amin < £■> so that H  is ill-conditioned, 

and any component of the solution vector proportional to Xmin will be very difficult to 

determine from erroneous data.) In practice, the result of minimizing (1.56) to obtain a
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solution to (1.32) when H  is ill-conditioned will be to introduce large, spurious variations 

in the solution: a quite small component in the data errors that is proportional to H x mjn 

will give rise to a very large xmin component in the solution vector, and therefore a very 

large oscillatory component in the solution function.

The way around this problem is to recognize that, since these components cannot be 

determined we might as well pretend they are zero, and look for solutions that do not 

have such components. For the solution function this means looking for solution functions 

that are not highly oscillatory or rapidly varying. Functions that do not vary rapidly 

can be described as being ‘smooth’, so what we require is some way to give a preference 

to smooth functions. This way of thinking about removing the instability of (1.32) is 

studied in more detail in chapter 2. Here we will concentrate on the discretized form of 

the problem, (1.53).

Assume that some (positive) functional, $ (f) , of the solution vectors has been chosen 

that assigns a low value to those solution vectors that correspond to smooth solution 

functions, and a large value to those solution functions that are ‘rough’. Then, looking 

for the minimum over all solution vectors of

X2(f) +  A$(f) (1.57)

(where A is a free parameter, called the smoothing parameter, which controls the extent 

to which the solution is forced to be smooth, as opposed to fitting the data as well as 

possible) will clearly tend to pick out smooth solutions in preference to rough ones, for a 

given fit to the data. It is well known that, if $ (f)  is reasonable and A is set to a reasonable 

value (see the following section), the solution obtained from the minimization of (1.57) is 

stable, and can be quite accurate (Craig and Brown 1986, §6.2). The functional $ (f)  is 

called a smoothing or regularizing functional,, and the use of (1.57) to obtain the solution 

to (1.32) is known as regularization.

It only remains to say what is meant by a ‘reasonable’ $ (f). The goal of $ (f)  is to 

penalize against solution vectors corresponding to non-smooth solution functions. One 

choice for $ (f)  just says look for solution for which the solution vector is small (if f  is 

small, f{ r )  will also be small -  since they are linearly related -  and a function that has 

small values everywhere cannot have large amplitude variations). This approach is com­

monly used with all of the discretization methods outlined above. It is called zeroth order 

smoothing (because it seeks to minimize the ‘zeroth’ derivative of the solution function -
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this will be clearer in a moment). Another way to think of choosing $ (f)  begins with 

the observation that if a function has large and rapid variations, so do its derivatives, in 

general. Looking for solution functions with small derivatives is therefore a way to impose 

smoothness. For the spectral expansion and function expansion discretizations it is quite 

difficult to see how to relate a constraint on the derivative of the solution function to a 

constraint on the solution vector (although see chapter 2, where this problem is considered 

in some depth), and for this reason this type of smoothing is not generally used with these 

discretizations. However, in PCD the values of the solution vector are exactly the values 

of the solution function on the corresponding discretization bins. This makes it possible 

to use some kind of difference scheme to define approximate derivatives in terms of the 

solution vector. Without going into too much detail (because there’s plenty of that in 

chapter 2) a derivative of order p, say, can be defined by the operation of some difference 

matrix A^p) on the solution vector, so that A(p)f somehow represents the pth derivative 

of f  (the exact form of the matrix A(p) is not needed here, but note that A^0) = I).  

Putting

$(f) = HAWff = fr ( iW T4 w )  f  (1.58)

results in a smoothing functional that gives preference to solutions with small pth derivat-
d ef T

ive, just as we required. The matrix C (p) =  A(p) A(p) is called the pth. order smoothing 

matrix, and notice that for p = 0, = I ,  the identity matrix. If we assume, just for

simplicity, that the errors are uniform, <rt- = <r, for all i , the functional in (1.57) becomes

i ( g  -  Ht)T(g -  Hf) + AfrC<”>f
G

(it is a simple matter to renormalize the data and the kernels to reduce the problem with 

non-uniform errors to the same form), which is clearly quadratic in the solution vector. 

At a minimum of this functional the derivative of the functional with respect to any 

component of f  must be zero. Taking the derivatives of the above functional with respect 

to all components of f  and setting the results to zero results in the following expression

{Ht H  + AC(p))f  =  H t  g ,

which can be solved to obtain an explicit expression for f  by inverting the symmetric 

matrix on the left hand side, to get

f  =  (H t H  +  A C ^ ) ~ xH t z . (1.59)
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There are other ways to define regularizing functionals to be used in (1.57), such as 

m a x im u m  en tro p y  (Narayan and Nityananda 1986), or those described in Titterington 

(1985), but these will not be studied in any detail in this thesis.

Finally, what effect does the introduction of the smoothing functional have on the 

solution of (1.32)? The short answer is that it dramatically reduces the effect of the data 

errors on the values of the solution function, but at the expense of introducing bias into the 

problem. The effect of the data errors is reduced because the large errors in the solution 

function resulting from the large oscillatory components that the data errors inevitably 

introduce are suppressed by the introduction of a preference for smooth solution: the 

problem has been stab ilized  by the introduction of 4>(f). The recovered solution will vary 

quite slowly as the data is varied.

The cause of the bias is obvious. The true solution will not be perfectly smooth (flat), 

so among all the possible solutions that have the same x 2 value the smoothing functional 

will tend to give a preference for those that are smoother than the true solution: for most 

possible values of the errors the recovered solution will be smoother than the true solution. 

The expected value of the solution over all possible realizations of the errors will then tend 

to be smoother than the true solution. This mismatch between the true solution and the 

expected value of the recovered solution is statistical bias.

In relation to this bias it is worth remarking on the close connection between discretiz­

ation and regularization. In the absence of any more specific information the true solution 

to (1.32) may lie anyw here  in the infinite-dimensional space of possible solution functions 

(which we will take to be £ 2(0,.Rq), for the sake of argument). Discretization singles out 

a finite-dimensional subspace of the full solution space and demands that the recovered 

solution absolutely m u s t  lie within that discretization subspace, although it could lie any­

where within it. Regularization introduces a bias that drives the recovered solution to 

lie in a corner of the discretization space which is forever smooth, although if the data 

really demands it the recovered solution might be allowed to be rather non-smooth. It can 

be seen from this that discretization is, in a sense, a limiting, and intransigent, form of 

regularization. Consider the PCD discretization space, V , which is defined to be the set 

of functions that can be written in the form (1.50), where the Sj ( r ) are as given in §1.9.4, 

and is therefore n -dimensional. Define a functional 4>c[/], a ctin g  on  the fu l l  so lu tio n  space ,
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as follows:

$ c[/] =  (  0 #  /  lies in P
c I c otherwise

where c is a (large) positive constant. Using this functional in (1.57) will obviously give 

a very strong preference for solution functions that lie in the discretization space, V. 

Letting c tend to infinity will obviously force the recovered solution to lie within V , and 

so the effect of the regularizing functional 4>c[/] is, for very large c, just the same as 

discretization.

1 .9 .6  C h o o sin g  th e  S m o o th in g  P ara m eter

Having introduced the smoothing functional 4>(f) in the preceding section, in order to 

stabilize the solution of (1.53), it is necessary to give some guidance in the m atter of 

setting the level of regularization to be imposed. The smoothing parameter can be varied 

between zero and infinity to give solutions with different degrees of smoothness and dif­

ferent qualities of fit to the data. It is easy to see qualitatively that when A is very small 

the smoothing functional is largely irrelevant and the solution obtained will be the old, 

unstable unregularized solution, whereas when A is very large the value of $ (f)  will dom­

inate the functional in (1.57), and so the minimization will seek to find a smooth solution 

regardless of the fit to the data. Neither of these situations is desirable, and somewhere

inbetween these extremes there ought to lie a value of A that effects a suitable trade-off

between the need to fit the data and the desire for a smooth solution. In this section 

several methods for choosing the value of A that gives the best trade-off will be reviewed.

It is possible to adopt the attitude that, provided the effects of the smoothing applied 

are known and completely quantified, any value of the smoothing parameter can be chosen: 

if only very gross features in the solution are required, then the solution can be heavily 

over-smoothed, providing it is made clear that this is the case, and that the absence of 

small scale features in the recovered solution does not mean that they are absent in the 

true solution, whatever that may be. In chapter 4 various ways of quantifying the effects 

of regularization on the recovered solutions to (1.32) are studied, and these can be used to 

permit informed judgements about the appropriate choice of a smoothing parameter, and 

the effect of that choice on the solution. This approach to choosing A is similar in spirit 

to the more practical and physical philosophy underlying the optimal averaging methods 

reviewed in §1.8, and is invariably used with these methods to set the regularization
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levels. However, the more mathematical spirit of the RLS inversion methods lends itself 

to a more mathematical and abstract approach. Throughout this section the discretized 

problem (1.53), and the regularized formulation (1.57) will be the principle objects of 

study, although many of the conclusions drawn can also be applied to the continuous 

problem (1.32).

Imagine that a solution, f \, to (1.53) has been obtained from the minimization of (1.57) 

(with some appropriate smoothing functional), and that the variance, <r*, of the errors, e,-, 

on each data point, gi, is known. It is hoped, of course, that f \ is a good approximation 

to the true solution, fo (so that g = HIq +  e), for which the following obviously holds:

<“ »>i=l '  G i '  *•=!

(where the last step is an obvious result of the statistical properties of the data errors). 

Since we are looking for f \ «  fo we expect (1.60) to hold with f \ in place of fo when f\ 

is a good solution, i.e. when we have chosen a good value for A. In short, we expect a 

good estimate of the solution to leave residuals g — H I\  that look, statistically, like the 

expected data errors. Thus, we could choose A to be the solution of

X2(fA) = m. (1.61)

This method was suggested by Phillips (1962), but it has been shown to give a rather 

poor choice for A, one that results in considerable oversmoothing (A too large), as was 

pointed out by Turchin et al. (1971). The reasons for this are fairly easy to see. For 

any value of A the estimated solution will try to some extent to fit the data. When A is 

very small it will fit the data as well as it can, and when A is larger it will not fit the 

data  so well. This means, in particular, that different realizations of the data errors will 

give rise to different solutions, each ‘following’ the data errors to some extent. In other 

words, for finite A the recovered solution will tend to fit the data errors: the recovered 

solution will lie away from the true solution fo in the direction that it is pulled by the 

particular realization of the data errors. If we imagine that we know the value of A that 

makes the recovered solution closest to the true solution, then the fact that this solution 

fits the data errors means that we expect the residuals to be slightly smaller than they 

would be otherwise. When A is very small (zero) the solution will try to get as close to the 

data as possible. This means that all of the n parameters in the solution vector will be
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used up in fitting the data errors, leaving only m -  n degrees of freedom in the residuals. 

Essentially this is saying that a component of the error vector lies in the image space of 

the solution space under the mapping represented by H , and the recovered solution fits 

this part perfectly, which leaves only the component orthogonal to the image space left in 

the residuals. This component will obviously have a smaller norm than the whole error 

vector. In fact, since n of the degrees of freedom in the errors are swallowed up by the 

solution,we expect the residuals to satisfy

X2(fA) = m — n

for A very small. If we assume that some quadratic smoothing functional, such as the 

pth order smoothing functionals in (1.58), has been chosen to regularize the problem, this 

argument can be extended to non-zero A, to show that, in general, we expect the residuals 

to satisfy

x2(f\) =  m -  Tr r } . (1.62)

Tr {A} denotes the trace of the matrix A (i.e. the sum of its diagonal elements). Compare 

the matrix appearing in the trace above with the right hand side of (1.59). The quantity

T ( \ ) d= T T { l m - H ( H TH + \ C W ) - l H T} (1.63)

appearing above is called the equivalent degrees of freedom for error (see Wahba 1983 and

Hall and Titterington 1987).

The preceding argument suggests that seeking the A that satisfies (1.62) ought to give

a considerable improvement over the Phillips method in (1.61), and this is indeed the case.

This method for choosing A is known as the EDF method, for obvious reasons.

There is one further technique for choosing the smoothing parameter in RLS inversions,

which has many advantages over EDF, not least of which is the fact that it does not require

an estimate of the data errors (recall that the x 2 functional in (1.62) contains the values

of the data error variances). The idea is to use the solution obtained from part of the

data set to predict the remaining data values. Comparison of the actual values with the

predicted values for different A provides a method for choosing the smoothing parameter. 
(k)In more detail, let ' be the solution obtained from all the data except the fcth data point 

(so that the fcth row of the kernel matrix is also deleted), for any A. Use this to make a 

prediction, g ^  of the value of the kth. data point. Repeat this for k = 1 , . . . ,  m  and form
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the quantity
m

G(X) = ^ 2 (9 k - 9 \ k))2- (1.64)
A:=l

Then choose the smoothing parameter simply by finding the value of A that minimizes G. 

This is very simple in principle, but actually performing m  separate inversions for each 

value of A used in the minimization of G would be horrendously time-consuming. It is 

fortunate, then, that a minor modification of the expression for G (a modification that 

can be justified for reasons other than computational efficiency) results in a function that 

is much easier to calculate for any value of A. The details of this derivation are given in 

Golub et al (1979). The result is a function

G C V W  =  (1-65)

where T(A) is given in equation (1.63), and R (A) is the ‘residual sum of squares’ function

£(A) = | |g - t f f A ||2. (1.66)

Essentially, R (A) is the x 2 functional without the dependence on the data error variances. 

If the relative sizes of the error variances are known then these should be used in i2(A), 

thus making it identical (up to a constant, at least) with x 2- Using the expression (1.59)

for the solution with pth order smoothing, (1.66) may be written

•B(-M = lls -  H {H t H + A C ^ ) -1#  r g||2

or

R (A) = || [lm -  H (H t H + AC to ) - l H T] g ||2 . (1.67)

Compare the matrix occurring on the right hand side of this equation with that appearing 

in the definition (1.63) of T(A).

In section 2.4 the importance of being able to calculate G CV{A) and the functions 

needed for choosing the smoothing parameter by the EDF method quickly is stressed, 

and appendix A presents expressions for these quantities that make their evaluation very 

rapid.

This concludes the review of inverse methods and their occurrence in helioseismology.



Chapter 2

An Algorithm for Solving Linear 
Inverse Problems

2.1 Introduction

In this chapter, a complete algorithm for solving linear inverse problems like those occur­

ring in helioseismology is presented. This algorithm unifies the various regularized least 

squares (RLS) methods described in §1.9, and generalizes them, at the same time includ­

ing other methods such as m a x im u m  en tropy  (see Narayan and Nityananda 1986, and 

references therein). It takes the ideas upon which the function expansion and piecewise 

constant discretization methods are based and combines them, providing greater freedom 

for discretizing th e  integral constraints occurring in equation (2.5), and, equally import­

antly, enabling smoothing to be applied consistently when different discretizations are 

used. The resulting algorithm permits discretizations which have some of the character­

istics of piecewise constant discretization (PCD), described in §1.9, in that they consist 

of a set of discretization bins, but which also have a set of basis functions in terms of 

which the solution is expanded, just like the function expansion methods also reviewed 

in the previous chapter. The discretization is fixed by first specifying a set of d isc re tiz ­

a tio n  p o in ts , 0 =  Xq < X \  < . . .  < X n  = R q  (for some N ), and then choosing, for each 

d isc re tiza tio n  b in , (X ;_ i,X t] = {r;X ;_i < r  < X{} (the reason for the use of intervals 

open at the left end and closed at the right is given in §2.2 -  it is essentially a useful 

convention), a set of nt- basis fu n c tio n s , <f>\(r),. .  .,<f>% (r) .  Obviously, PCD is obtained 

by choosing some set of discretization points and requiring that for every bin, n,- =  1 

and (f>\(r) = 1 for X {-i < r < X{. Orthogonal function expansion using a cosine series 

(for example) is obtained by fixing N  = 1, so that Xq =  0, and X \  = R q , and then

59
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putting 4>)(r) = cos[(j -  l)7rr/E@]. This will become clearer in §2.2, but it is useful for 

the subsequent discussion in this section to have these definitions.

Several ideas motivate the derivation of this algorithm. Perhaps the simplest is the ob­

servation that, while it is common practice to discretize the the integral constraints (1.32) 

and then to regularize the solution of the resulting matrix equation (1.46), (1.48), or (1.51), 

(often in a rather ad hoc manner), it is more natural and satisfying to regularize the integ­

ral problem itself, using a regularizing functional (assigning a measure of smoothness to 

every function in the space of possible solutions) and then to discretize both the integral 

constraints and the regularizing functional according to the same discretization scheme. 

This would mean that the solution obtained with any discretization method would (for a 

given smoothing functional) be the approximate solution of the same (functional) equa­

tion. The results should, therefore, be largely independent of the discretization method 

chosen (although see §1.9.5), depending only on the smoothing functional chosen. This 

is important because it is always vital to know the effect of regularization on the fea­

tures in the recovered solution, and to be able to compare recoveries made using different 

discretizations. When the effects of regularization depend explicitly on the choice of dis­

cretization (by virtue of the ad hoc choice of smoothing constraint in the regularization of 

the discretized problem) this is very difficult and requires detailed investigation in general.

Furthermore, the four different RLS methods in §1.9 derive from very different philo­

sophies. As a result, each has its advantages and disadvantages, both from a purely 

mathematical or technical point of view, and with regard to the peculiarities of individual 

problems (for example, some methods may be more suited to bringing out the physically 

significant features in the solar rotation profile than others -  this is an idea that will be 

considered in more detail later). On the technical side, the different approaches to the 

problem give rise to numerical procedures which, while they all result in minimizing a 

function of a finite number of variables (which represent the solution) involving the data 

and some smoothing constraint, are actually quite distinct. Oddly enough, this distinction 

is brought out most clearly by emphasizing that piecewise constant discretization can be 

thought of as a particular kind of orthogonal function expansion (OFE), described in §1.9 -  

the basis functions for the expansion are just the set of ‘top-hat’ functions that take the 

value one on a bin, and zero on the other bins:

, , . f  1 if r lies in the j th  discretization bin 
^ (r) =  \ 0  otherwise,
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for j  = 1 , . . n. As no two of these functions are non-zero in the same region they are 

obviously orthogonal. The possible solutions are then

f ( r ) =  ^ C 2-1)
i = i

for any (real) values of the parameters f j  (c/. (1.44), (1.47), and (1.50)). The discretization 

of the kernels proceeds, just as for OFE, by evaluating, for each kernel and each basis 

function, the quantity

Hij d= f  ki(r)<f>j(r) dr (2.2)
Jo

(c/. equations (1.45), (1.49), and (1.52)). There is no problem with this. The difficulty 

comes when regularization is applied to the discretized problems g = H i  (equations (1.46), 

(1.48), and (1.51)). It is very common to use a form of regularization that requires one 

of the derivatives (the pth derivative, say) of the estimated solution to be small (again, 

see §1.9). This is known as pth order smoothing. If the basis functions used in the 

discretization are suitably differentiable, then the calculation of the required derivative 

of the estimated solution ought to be a simple m atter (and is obtained by differentiating 

each of the basis functions appearing in (2.1) individually). However, the basis functions 

in PCD are not even continuous, let alone differentiable, and the estimated solution will 

be similarly discontinuous (at each discretization point). It is, then, not possible to apply 

the naive definition of differentiation in pth order smoothing with PCD. But, in fact, it is 

precisely with PCD that derivative smoothing is most commonly used (other discretization 

methods, such as OFE and spectral expansion, tend to use zeroth order smoothing -  where 

the values of the function itself are encouraged to be small -  because this is usually easier 

to implement in those cases). The resolution to this apparent conundrum is quite simple. 

PCD uses the parameters f j ,  which are the (constant) values that the solution takes on 

each bin, in a finite difference scheme. Typically, it is assumed that f j  is the value of 

some underlying function at the mid-point of the j th  bin. The derivatives are then given, 

effectively, by operating on these parameters with some pth order difference matrix, B ^ :

i \ f) = s f f i .

f j P̂ is then the estimate of the pth derivative of the estimated solution at the mid-point 

of the j th bin. This is a totally different approach -  one which is actually very simple and 

very useful in many circumstances -  and it is not easy to see a way to think of the two
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derivatives as different aspects of some underlying procedure. But it is possible to create 

a discretization algorithm that takes advantage of both ‘definitions’ of differentiation, 

and, as a result, allows PCD and function expansion methods to be derived as special 

cases of this general procedure. This is the essence of the work in §2.2. The benefits of 

such an algorithm are really twofold. Firstly, the ability to employ such a wide variety 

of different discretizations from the same algorithm, and with the same regularization 

functional, permits easy comparison of their relative merits and demerits for particular 

problems. Clearly, when the discretizations are implemented with separate algorithms, 

and particularly when the regularization applied is not directly comparable because its 

meaning for the final solution depends on the form of the discretization chosen, it is 

very difficult to say whether the perceived advantages of some discretization are really 

due to that discretization, or whether they are a result of different regularizations or, 

perhaps, indifferent implementations of the other methods. Secondly, having a single 

algorithm requiring a well-defined and consistent set of parameters to be specified by 

the user potentially makes a much wider spectrum of inversion methods available to the 

non-expert inverter.

Having considered the more technical aspects of the different discretization methods, 

it is now appropriate to consider the relevance of the specific details of particular prob­

lems to the choice of discretization method. It has already been stated that one of the 

advantages of the algorithm presented in this chapter is that, with the regularization being 

applied first and the discretization occurring later, the quality of the inversion ought to 

be largely independent of the discretization used (provided, of course, that the discretiz­

ation is adequate to recover the information that is actually contained in the data). This 

means that, from a purely mathematical point of view, as far as the effect of data errors 

on the recovered solution function is concerned, the choice of discretization is not vital. 

However, real inversions are usually performed to obtain information about some object or 

physical process. Each such object or process will have its own characteristics, and there 

will be some features of the recovered solution that are perhaps more important than 

others from a physical point of view. To understand this, it is perhaps easiest to consider 

a purely hypothetical, although not at all implausible, example from helioseismology. In 

the solar rotation problem (see §1.5.3) the variation of the solar internal angular velocity 

with radius and latitude within the sun is found from the frequency differences between
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certain oscillation modes of the sun. The accepted reason for this variation in the rota­

tion rate is that the turbulent convective motions within the solar convection zone carry 

angular momentum with them, and therefore succeed in redistributing the solar angular 

momentum in latitude and radius (see Durney 1991, and references therein). Without 

this transport process, viscous dissipation ought to have made the internal angular velo­

city almost uniform, which is not what is observed, even at the surface, where the surface 

latitudinal differential rotation indicates an equatorward transport of angular momentum. 

The importance of convection in this process suggests that there should be significant 

features in the rotation profile near the boundaries of the convection zone. In fact, the 

upper boundary of the convection zone essentially coincides with the surface of the sun, 

and so only the lower boundary is relevant here. Such features are indeed observed (as the 

inversion in chapter 5 show), but the width of this region is very narrow and is right on 

the limit of resolution of the data available at present. Now, for simplicity, concentrate on 

the variation of the rotation rate with depth, ignoring the latitudinal variation, so that the 

inverse problem is one dimensional and the solution function, / ( r ) ,  is just the equatorial 

value of the angular velocity at radius r within the sun. Imagine that some theory of 

turbulent convection (possibly along the lines of that described in Durney, 1991) predicts 

that the variation of the equatorial rotation rate with depth near the lower boundary of 

the convection zone can be modelled in some fairly simple way, perhaps being described 

by an expression involving a few free parameters. Then, discretizations that can quite 

accurately reproduce the expected forms the rotation rate may take are likely to give a 

better recovery than those which cannot. In particular, with an appropriate discretization 

it may be possible to obtain estimates of the important parameters in the model for the 

rotation profile, and thus to learn more about convection itself. Even if the model is not 

actually very good, it is likely that the features it predicts will broadly reflect reality, and 

so using a discretization that is more ‘tuned’ to the model ought still to be useful. In 

general, the specific physical details of individual problems should influence the selection 

of the discretization. Having an algorithm that provides a much greater breadth of choice 

of discretization would make such a ‘tuning’ of the inversion method much simpler. While 

this is not, in itself, a final clinching proof of the validity and usefulness of the algorithm 

presented in this chapter, it does suggest that the development of the algorithm may be 

worth pursuing.
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A further aspect of the procedure that is worth considering is related to the discussion 

in the previous paragraph regarding the physical relevance of recovered solutions. It 

will be seen as the exposition of the algorithm unfolds in the following section that the 

combination of the ideas behind PCD and OFE permits the choice of discretizations that 

can be thought of as consisting of several different discretization schemes (PCD, OFE or 

polynomial expansion) in different regions ‘glued together’. That is, in one region of the 

solar interior, the solution for the solar rotation rate could be discretized according to a 

PCD scheme, say, whereas in the rest of the interior it could be expanded in terms of sines 

and cosines or some other orthogonal functions, or perhaps in terms of polynomials. There 

are two reasons why this is potentially helpful. Firstly, the solar interior is quite a big place, 

and there are a number of different physical processes that are important for determining 

conditions there. These processes effect different parts of the sun to different extents. 

For example, deep within the sun the important processes are the nuclear generation of 

energy, and the radiative transport of this energy out towards the surface, whereas in 

the outer third of the solar interior turbulent convection dominates the heat transport 

and determines the properties of these layers (see Kippenhahn and Weigert 1990, and 

Christensen-Dalsgaard 1992). These are very different phenomena, and it is more than 

reasonable to assume that they affect the solar rotation rate in very different ways. By the 

arguments of the preceding paragraph, then, we might expect that the best recovery of 

the solution would be given by using very different discretizations in the radiative interior 

and the convective envelope. Secondly, and in helioseismology this is potentially a very 

important point, the observed solar oscillation modes are much more sensitive to features 

in the solar rotation rate (and the sound speed) near the surface than near the centre of 

the sun. This gives rise to what might be termed an ‘information gradient’ throughout 

the solar interior, with plenty of information about conditions in the convective envelope 

being contained in the oscillation data, but very little information about the deep interior. 

There is no point in attempting to recover the solar rotation rate at hundreds of points 

within the radiative interior, because the information (resolution, if you like) is just not 

contained in the data currently available. If the inversion to find the rotation profile in the 

inner half of the solar interior could, in some sense, be completely separated from the rest 

of the inversion, and performed independently, it might be deemed appropriate to perform 

only a very simple low order polynomial fit to the rotation rate, perhaps recovering as few
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as three polynomial coefficients, without using regularization, which introduces bias into 

the determination of the polynomial coefficients (but see the discussion in §1.9.5, where the 

relationship between discretization and explicit regularization is considered). The idea is 

that when the data is very poor, as it often is in astronomical problems, it is impossible to 

make reliable, absolute inferences from the data without additional knowledge. It is often 

possible, though, to rule out some models of the process under consideration, or to obtain 

crude estimates of important parameters in those models, by best-fitting the models to the 

real data. Of course, this goes completely against the spirit of inverse theory, where the 

goal is to make model independent statements about reality, but in some circumstances it 

may be the best that can be hoped for. It may happen, too, that only knowledge of very 

simple aspects of the solution (such as its first few moments) is necessary to provide useful 

bounds on some related physical phenomenon. In the solar case, it would be interesting 

to see whether the available data can be used to give some indication of the rate at which 

the angular velocity increases towards the centre of the sun (if, indeed, this is the case), 

or even whether the rate at which the angular velocity increases is itself changing (such 

knowledge would provide information about the likely rotation rate in the core, which is 

related to the perihelion shift of mercury, and the associated tests of general relativity -  

see Moffat (1983), Campbell et al. (1983). These would correspond to the first and second 

moments of the solution -  the linear and quadratic coefficients in a polynomial expansion. 

Such a limited solution might not be very satisfactory, but it might also be the best that 

can be achieved. Of course, in the outer regions of the sun, where the information content 

of the data is high, we would still like to perform a full inversion (with PCD or whatever). 

The algorithm presented in this chapter makes such a hybrid inversion possible. To effect 

such a solution, though, requires the specification of a regularizing functional that does 

not impose any restriction on the solution function in the region near the centre of the sun 

where polynomial fitting is to be applied. This is the only point at which consideration of 

the discretization to be used might come before, and influence, the choice of regularization: 

to perform the low order polynomial fit successfully without bias it is essential to avoid 

applying regularization to that region. This is a minor point, but worth noting.

There is one final reason for believing that the algorithm presented in this chapter may 

be worthwhile. Much of this thesis deals with ways to optimize the procedure for obtaining 

the solution of helioseismic (or any other) inverse problems. Chapter 3, for example, looks
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at optimal choices of smoothing parameter (see also §1.9.6), and is is possible to envisage 

explicitly performing an optimization over some of the possible discretizations that could 

be used in the solution of (2.5) (Barrett 1994), in order to determine the best option for 

any inversion. In order to examine the optimization of the solutions of inverse problems 

like (2.5) it is necessary to say exactly what the degrees of freedom for optimizing the 

inversion algorithm are. Any inversion procedure contains parameters (mefa-parameters, 

if you like) which, while often thought of as fixed for the purposes of performing the 

inversion, may be varied to give inversions with different resolution and bias. For example, 

in PCD the discretization points are chosen first and the inversion is then performed, but 

different discretization points will give rise to solutions of different quality. Similarly, the 

optimal averaging methods reviewed in §1.8 rely on having some definition of ‘peakyness’ 

(c/. the functionals (1.41) and (1.43)), and different definitions will again give inversions 

with different properties. Optimization of the inversion then means finding the ‘best’ set of 

values of these meta-parameters. That is, the optimization begins with the specification of 

what is meant by a ‘good’ inversion method, and this is then turned into a function of the 

meta-parameters such that good methods (presumably, those with the best resolution or 

error-magnification) are assigned small values, while bad methods are given large values. 

This function is then minimized over the set of meta-parameters to find the best inversion 

method. It ought to be clear from this that it is only really possible to create such 

a function for inversion schemes that can be parametrized continuously by some set of 

quantities (such as the discretization points in PCD), and therefore that the different 

RLS methods reviewed in §1.9 cannot all be included in the optimization (there is no 

parametrization that gives PCD for some parameters and OFE for others). However, he 

algorithm presented in this chapter contains all of the RLS methods described in §1.9 as 

special cases, and could, in principle at least, be used as a basis for performing such an 

optimization over the set of possible discretization schemes, for example. The point is 

really that having all the RLS methods accessible from within a single inversion algorithm 

allows their effectiveness to be compared directly. A similar argument could be made 

with regard to the general form of the optimal averaging algorithm presented in §1.8, but 

this will not be considered here because this thesis will deal almost exclusively with RLS 

methods.

In the following section, the algorithm for reducing the archetypal helioseismology
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inverse problem, (2.5), to a form easily soluble numerically is motivated and expounded. 

At the end of §2.2 the felicity of quadratic smoothing constraints is pointed out, the general 

form of the pth order smoothing matrix is derived, and the solution to the minimization of 

the resulting regularized, discretized functional is found. The rest of this chapter then deals 

primarily with aspects of the numerical calculation of this quadratic regularized solution. 

The generality of this approach encourages the development of a procedure for constraining 

the solution found, either by fixing its value or the value of its derivatives at specific 

points, or, more particularly, by imposing continuity constraints across the boundaries 

between neighbouring discretization bins. Section 2.3 describes such a procedure, with 

particular regard to its implementation with quadratic regularization. Two alternative 

forms for the solution are given and their relative merits are discussed. In §2.4 the need 

for a very fast and very robust method for computing the matrix inverse (H TH  +  AC)-1 

(occurring in the solution, (2.82), to the quadratic regularized problem) is emphasized, 

and an algorithm capable of achieving this -  the Fix-Heiberger algorithm -  is described. 

Finally, §2.5 summarizes the important results in this chapter.

2.2 The Unified Algorithm

In order that the explanation of this algorithm be as complete as possible, it is advantage­

ous to begin with the standard form (2.5) for linear inverse problems like those occurring 

in helioseismology and work from there. The difference between this procedure and the 

description of the RLS methods given in §1.9 is that, whereas there discretization was the 

first step, here discretization is deferred for as long as possible, and the problem is formu­

lated in terms of the solution functions. It is only once the problem has been appropriately 

reformulated, and then regularized, that it is discretized in order to effect numerical solu­

tion. The method is applied to quadratic regularization, and the calculation of the solution 

is then discussed. The algorithm is broken down into five parts corresponding to these 

steps: reformulation, regularization, discretization, specialization to quadratic RLS, and 

solution. Some of the points made and ideas used in this section are closely related to 

aspects of the RLS methods of §1.9, but the slant here is rather different.
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2 .2 .1  R eform u la tion

As was discussed in the previous chapter, the inverse problems common in helioseismology 

involve solving a set of equations of the form

gi = fCi[f] = j  ki (x) f (x)dx,  for *‘ = l , . . . , m .  (2.3)

where m  is the number of data points, and /  dx may represent an integral over the volume 

of the sun (e.g. / 027r f j  f ^ Q r2 sin 6 drdddcj)) or just an integral over the radius of the sun 

C/if® dr)- fact? as Ritzwoller and Lavely (1991) show, the full solar rotation problem 

(which is the problem that will be dealt with principally with in this thesis) can be

broken down into a sequence of 1-D inversions (involving integrals over radius) for different

components of the variation of the rotation profile with latitude. In this chapter, therefore, 

only the 1-D case will be addressed directly, but the method can be generalized easily. 

Note that, in this case, the functional /C,- becomes

£ * [/]=  /  ° ki (r) f (r)dr,  (2.4)
Jo

which will be taken as the standard form for /C, in what follows. Throughout this chapter 

this (standard) square bracket notation for functionals (functions of functions) will be used. 

It is worth reiterating (see §1.6) that the functional IC{ can be defined on the whole of the 

function space L2(0, R q ) of (Lebesgue) square-integrable functions (see chapter 5, and in 

particular §7.4, of the book by Weir, 1973). As a result, it is natural to adopt L 2(0, R q ) 

as the space of possible solution functions. This choice is far from vital (although it would 

be difficult to think of a larger space to use that still allows /C, to be defined on all its 

members -  the requirement of integrability of the product ki (r) f (r)  inhibits this), and 

subspaces of L 2(0, R q ) (such as the space of continuous functions) could be used, and will 

in many cases be more appropriate. In fact, as the discussion following (2.11) shows, it will 

be convenient later to choose the space of solutions to be such a subspace of L2(0, R q ). All 

these spaces contain far more freedom than can ever be constrained by the data, and so 

this is really not at all restrictive. The solution space is set out explicitly so that it is clear 

what kind of objects the functionals occurring in this section act on -  the mathematical 

niceties involved in rigorously defining such functionals will not be considered, because this 

algorithm is designed for practical implementation, where strict mathematical precision is 

of secondary importance to convenience and pragmatism.
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With the generic form (2.4) for the set of functionals JC{, the system of equations (2.3) 

obviously becomes

p R q

9i = Ki[f] = /  ki (r) f (r)  dr, for i = 1 , . . . ,  m. (2.5)
Jo

Strictly speaking, (2.5) is not a completely honest expression of the problem, because in 

real situations the data will be contaminated by errors, so that the data acquired from 

observations will actually be given by

r R q

9i = Ki[f\-\-€i=  /  ki (r) f (r)  dr +  for * = 1 , . . . ,  to. (2.6)
Jo

where et- is the error on the zth data point (which will be assumed to be gaussian here, 

because this is the situation that usually arises in helioseismology). Of course, the actual

values of the e; are completely unknown, so that we are forced to pretend that the problem

we have to solve is (2.5).

There is no possibility of solving (2.5) analytically (see §1.9), so it is useful to seek 

to put (2.5) in a form amenable to numerical solution. Numerical methods for solving 

systems of equations fall, roughly speaking, into two categories. There are the direct 

methods, which effect solution via a well defined procedure that takes the ‘knowns’ (data) 

and operates on them in a specific way to give the unknowns (the solution). Then there 

are the iterative methods that begin, invariably, with some guess to the solution and 

repeatedly correct and improve it, eventually converging to the solution. A truly direct 

method for solving (2.5) does not seem to exist, so we will seek to take advantage of 

the second approach, and to recast the problem in a form that enables to solution to be 

obtained by an iterative method: a minimization procedure, in fact. It will transpire, 

though, that in many important cases (when quadratic regularization is being used) the 

minimization has an analytic solution (that is, an expression, (2.82), can be derived in 

which the solution is given as an explicit function of the data), and it is only necessary to 

evaluate this solution for the given data -  a direct method has resulted.

For the moment, the presence of errors on the data will be overlooked, and a formu­

lation of the problem equivalent to (2.5) will be sought, in which it is assumed tha t the 

desired solution is one that reproduces the data precisely (that is, a function, / ,  such 

that IC{[f] = gi for all i).

Equation (2.5) is not a particularly convenient formulation of the problem from the 

point of view of developing an iterative procedure. Iterative methods are generally based
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on some criterion for distinguishing between good solutions and bad ones, or, equivalently, 

for determining which of the possible corrections that could be made at each iteration are 

actually improvements on the previous solution. Obviously, ‘good’ solutions are charac­

terized by the fact that they provide a good fit to the actual data: by giving rise to values 

of ICi[f] that are very close to the actual data, g{. The better the solution is, the nearer 

Ki[f] will be to gi. W hat we need, then, is some measure of ‘distance’ in the space IRm 

of possible data vectors g = (<7i, • • •, <7m)- A very simple definition of nearness for the 

vector space IRm uses the usual euclidean norm, which is the sum of the squares of the 

components of a vector (see equation (5.17) of Craig and Brown 1986). It turns out that 

this is actually the best definition of nearness to use when the data errors are gaussian, 

because the minimizer of the sum of the squared differences between the data, <7,-, and 

the ‘predicted’ data, is a maximum likelihood estimate of the solution (see §15.1 of

Numerical Recipes, and §1.9.5). There is one slight subtlety here, though. When the data 

errors are not uniform (that is, when the error variances on different data points are dif­

ferent) the maximum likelihood estimator is not given by the naive sum of squares, but by 

a weighted sum of squares, in which each term is weighted by (the reciprocal of) the error 

variance on that data point (note the a,• denominator in equation (2.7) below). Intuitively, 

it is easy to see why this weighted norm must be better. If the variance of the errors on a 

particular data point, g^, is'very small, this means that we know its value very accurately, 

so for a solution /  to be acceptable it must have a value of ICk[f] correspondingly close 

to gk- In contrast, if the variance of the errors on some other data point, gi, is large we 

won’t mind so much if the solution function does not give such a good fit to gi. In other 

words, the relevant measure of distance between K,i[f] and for any i, is not the absolute 

distance but the distance relative to the expected size of the errors on that data point. 

(All this assumes that the errors on each of the data points are uncorrelated. If this is 

not the case then the appropriate definition of the x2-functional involves the covariance 

matrix of the errors. Here it will always be assumed that the errors are independent.)

With this new definition of distance on the space of possible data vectors, we can 

replace the problem of ‘solving’ (2.5) by that of minimizing the single functional

m  ( - >
1 = 1

over the space of allowable solutions, L 2{0, R q ). Here <7 ; is an estimate of the standard
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deviation of the errors on <7;. If no such estimate is available it is common practice to 

assume that the errors are uniform (i.e. <tx- = <r, for some d and all i ) and then remove the 

common factor from (2.7). When necessary, d can be given some judiciously chosen value. 

The validity of replacing (2.5) by (2.7) was discussed in §1.9.5 with regard to the discretized 

problems considered there, but the points made are equally valid in the continuous case. 

The 1/m  factor is included for convenience: essentially, it ensures that the value of x 2  

does not increase as the number of data points used increases (i.e. it makes x 2 largely 

independent of m).

Clearly, the only requirement for x 2[f] 1° t>e defined is that /Cx[/j is defined. The 

discussion following equation (2.4) is therefore equally applicable to x 2> and we can still 

take the solution space to be (some subspace of) L 2(Q,Rq).

2 .2 .2  R eg u la r iza tio n

The discussion in §1.9.5 described the intrinsic ill-posedness (instability to data errors 

and lack of uniqueness in the solution) common to problems like (2.5). The original 

form of the inverse problem, (2.5), and its reformulation as the minimization of (2.7), are 

completely equivalent, in the sense that any solution of one will also be a solution of the 

other. As a result, solutions derived by minimizing (2.7) share all of the instability and 

non-uniqueness inherent in (2.5). The inevitable presence of instability and data errors in 

helioseismic inversions invalidates the minimization of (2.7) as a method for solving (2.5).

It was not necessary to consider the problem of non-uniqueness in §1.9 because the 

solution of the matrix problem that resulted from discretization was essentially unique -  

the discretization was used to impose uniqueness. Here, non-uniqueness occurs, but it is 

an easy problem to remove. Any two exact solutions of (2.5) are equivalent, and neither 

will be more valid as far as the available data is concerned. We might as well just pick 

one of the possible solutions, according to some prescription. (2.5) has been reformulated 

as a minimization problem, so the easiest way to implement this selection procedure is 

to look for the solution that satisfies the data and has the least ‘somethingness’. That 

is, introduce some definition, $ [/], of somethingness for every function, / ,  in the space of 

possible solutions (an easy one to choose is largeness: $ [/] =  /o?0 [/( t * } ] 2  dr, for example), 

such that solutions indistinguishable in terms of their x 2-values will have different values 

of $ . Then, minimizing $  subject to the constraint x 2[/] =  0 (so that the data is satisfied)
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will select the desired solution, and thus remove the non-uniqueness. Mathematically, 

this can be achieved using the method of lagrange multipliers: find the minimum of the 

functional

f r l f ]  + r x 2lf] (2.8)

over all /  and real numbers r  (obviously, r  is the lagrange multiplier).

The introduction of $  and T r removes the non-uniqueness in the solution of (2.5), but 

has little effect on the instability of the problem: the solution obtained by minimizing T r 

will still be highly sensitive to small changes in the data. (Recall that non-uniqueness can 

be thought of as the limiting case of instability. When the solution is unstable to perturba­

tions in that data, this means that very different solution functions will give rise to almost 

identical data in (2.5). Non-uniqueness occurs when different solution functions give rise 

to exactly identical data. Implicit in the formulation (2.8) are the constraints gi =  /Ct [ / ] ,  

so that T r is minimized over the solutions that exactly satisfy the data. This says noth­

ing about the relationship between solutions with slightly different data, and, in general, 

these solutions will be very different.) Formulating the problem as the minimization of T r 

in (2 .8 ) is an excellent move, though, and with minor modification can stabilize the inverse 

problem, as well as removing non-uniqueness. Moreover, attempting to alleviate the in­

stability using a functional like T r will suggest a general form for the functional $ , which, 

at the moment, is largely arbitrary.

The first point to recognize is that the inevitable presence of instability and (un­

known) data errors (the €j- in equation (2 .6 )) makes it unnecessary (and undesirable) to 

find a function /  satisfying (2.5) exactly, as this is almost guaranteed to produce a solu­

tion radically different from the real solution. In other words, it is inadvisable to enforce 

the constraint x 2[f] = 0 in (2 .8 ). Ideally, we would like instead to find the ‘true’ solu­

tion, / ,  which, by definition, satisfies gi — JCi[f] = e; for each i , and which therefore also 

satisfies x 2[f] = m (j^ ) ~  1? since the e* have gaussian probability distributions

with mean zero and variance of  (assuming that the <t; are good estimates of the noise 

levels). If we are not imposing the strict condition x 2[f] = there is no need to find the 

value of r  as part of the minimization procedure (i.e. there is no need to apply the con­

dition — 0). Instead, we can treat r  as fixed, as far as the minimization is concerned 

(so that it becomes a kind of hyperparameter). A solution, / T, can then be found for any 

fixed r  by minimizing T t over the space of solution functions. As the parameter r  has
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dropped out of the minimization process it is possible remove a factor r  from T r and so 

to rewrite (2 .8 ) in the convenient and more familiar form

nf] = x V ]  +  A *[/l (2.9)

(c/. equation (1.57)), where A = 1 / r  is the smoothing parameter, which is varied to adjust 

the extent to which the solution is forced to have a small $-value, rather than fitting the 

data accurately (see §1.9). Correspondingly, the solutions to the minimization of 7Z for 

each value of A will now be called f \ .

It is easy to see from (2.9) the effect that changing A will have on f \ .  For A very 

small, the dominant term in 7Z will be x2[/]> the new functional $  is irrelevant, and 

minimization will search for / ’s that make x2[/] as small as possible -  the solution f \  will, 

for small A, satisfy x 2 [ / a ]  = 0, and so it will also satisfy (2.5). Such a solution is obviously 

undesirable, because it was to avoid exactly this unstable solution that $  was introduced. 

Note, though, that for small but non-zero A minimization will still be slightly affected 

by $ , so the solution will attem pt to find the /  with x2[/] = 0  that minimizes $ [/], 

resulting in a unique solution as before. For very large A, on the other hand, only the 

value of $ [/] is important, the data become irrelevant, and f \  is just the solution with 

the smallest $ , regardless of its appropriateness for fitting the data. Again, this solution 

will be unacceptable. Somewhere between these two extremes lie values of A that give 

acceptable solutions, f \ , and the choice of an appropriate value of A is a vital part of the 

inversion procedure (see chapter 3 and §1.9.6).

For reasonable choices of $ , and of the smooothing parameter A, the solution (that is, 

the minimizer) of (2.9) will be unique and will vary quite slowly as the data is perturbed: 

the introduction of $  has stabilized (2.7). Of course, the-introduction of the function $  

has also introduced a preference for certain solutions over other possible solutions, and it 

is highly unlikely that the most desirable solution according to $  (which is selected by the 

inverter with little or no consideration of the data) will correspond precisely with the true 

solution to the problem. $  will therefore tend to pull the solution to the problem away 

from the true solution towards the (almost arbitrary) preferred solution: bias has been 

introduced into the problem. This is the price to be paid for removing the instability of 

the problem to errors (see §1.9.5 and the second paragraph of Golub et al. 1979).

The introduction of the stabilizing functional $  has, so far, overlooked one important 

point. Permitting solutions with x2[/] 7  ̂ 0 is necessary, but is, in itself, insufficient to



CHAPTER 2. THE INVERSION ALGORITHM 74

ensure that the solution obtained by minimizing (2.9) is even remotely adequate. For the 

procedure described here to be effective it is necessary to be more specific about the form 

and content of $ . As we only have knowledge of the distribution of the errors, e;, and 

not their actual values, we are looking for solutions that have x 2[f] ~  1- The problem 

is that for some inappropriate choices of the (as yet, largely arbitrary) functional $  the 

solution obtained from (2.9) could have x 2  ~  1> but be the same as an exact solution 

to (2.5) belonging to data gi +  et- =  K,{[f] + 2 e,-, whereas what is required is a solution 

for data gi — e; =  /C,[/] ( /  being the true solution). In other words, if $  is not chosen 

carefully we could end up finding solutions that correspond to data with twice as much 

noise, instead of no noise at all. There is no way to distinguish between these possibilities 

purely on the basis of the available data. What is needed is a way to distinguish between 

solutions that, in some sense come from ‘error-free’ data, and solutions that come from 

very ‘noisy’ data. This can then be used be to construct a functional $  that assigns 

large values to the noisy solutions and small values to the error-free solutions, so that the 

minimization of (2.9) results in a strong preference for the error-free solutions.

Experience, and the discussion in §1.9, shows that the solutions we would like to see 

emerging at the end of the inversion procedure are characterized by being ‘smooth’, i.e. not 

varying very quickly. We can either look at this as an assumption about the nature of 

physical processes in the real world (we do not expect the real solar rotatation rate to vary 

in a very rapid or highly oscillatory manner), or we can think of it as an acknowledgement 

of the fact that limited resolution means that the most that can be achieved is to recover 

a solution that represents local averages (c/. Backus-Gilbert optimal averages, §1.8) of 

the real solution, and is consequently a smoothed version of the real solution. This latter 

explanation is perhaps more appealing. It says that giving a preference to smooth solutions 

just means demanding that the value of the recovered solution at any point is an average 

of the values of the true solution at nearby points, which means that the values of the 

recovered solution at nearby points are not independent. As a result, the infinite degrees 

of freedom in the solution function are no longer all independent -  the solution function 

actually only contains the finite number of ‘pieces’ of information represented by the data.

There is one further alternative way to look at $ , which is closely related to the ideas 

motivating the introduction of regularization in §1.9. The errors (the €i) and the ‘true’ 

data (the gi — et ) have very different statistical properties. It could be expected from
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this that the solutions that would be obtained if the data were actually just the €{ or 

just the gi — €{ also have very different statistical properties, so it should be possible 

to introduce some kind of filter that will filter out those solution functions that appear, 

from their statistical properties to contain a large component ‘corresponding to ’ data 

errors, just as was done in §1.9 for the discretized (matrix) problems. For various reasons 

(see §1.9) the data errors give highly oscillatory solutions, in general (that is, solutions 

containing large contributions from components with short wavelength oscillations). We 

would therefore like to avoid such rough, oscillatory solutions, which means that the filter 

we seek must permit ‘low-frequency’ (long-wavelength) information to pass through with 

little distortion, but must strongly damp out high-frequency components. Again the result 

is a preference for smooth solutions.

How do we characterize smooth solutions in a quantitative, mathematical way? Well, 

smooth solutions vary slowly, so, over a small region (from r to r +  6r, say) / ( r )  hardly 

differs from f ( r  +  6r) at all: the first derivative of /  must be small (this corresponds to 

first order smoothing, see (2 .1 0 ) below). Of course, if the solution varies slowly its value at 

any point will never be very different from its average value, / ,  and so we expect f ( r )  — f  

to be small (for /  = 0  this corresponds exactly to zeroth order smoothing in (2 .1 0 ), but 

the principle applies for any / ) .  There also exist functions which, while not varying much 

about their mean value and always having a small gradient, contain ‘kinks’ (places at which 

the gradient changes rapidly or discontinuously) giving rise to large or infinite values of 

the second derivative. Such functions would not really be considered to be smooth, and 

so looking for solutions with small second derivative everywhere is another way to impose 

smoothness (obviously, this corresponds to second order smoothing in (2.10)). This idea 

can, of course, be extended to arbitrary derivatives, and can be generalized by allowing 

combinations of these forms of regularization, and a host of other possibilities.

There are other approaches, such as maximum entropy, which looks more at the data 

errors than specifically at the solution. Although we know the expected typical values of 

the errors, and thus that we expect x 2  — 1 ? we do not know what their actual values are 

at all. There are any number of combinations of data errors that would give x 2  =  1, but 

we would be very surprised to find that all the errors have exactly the same value, for 

example, (we would generally expect some positive errors and some negative errors, and 

some spread in their magnitudes), just as we would be surprised to find that all the atoms
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moving randomly in an ideal gas contained in a box were all in one corner of the box. 

This is where the concept of entropy comes in. This will not be discussed in any greater 

detail here as this thesis will not deal with maximum entropy regularization, but see the 

review by Narayan and Nityananda (1986).

There are many ways of using these ideas as the basis for a definition of the functional $  

in (2.9). To see how to use them to synthesize a general regularizing functional that 

includes all reasonable possibilities it will be helpful to look at the forms of regularization 

used with the discretized problems in §1.9, and to see how these can be extended to apply 

to the whole space of solution functions. In those methods discretization was performed 

first, and a smoothing constraint, $ ( f ) ,  was then defined on the set of solution vectors. 

The definition of an appropriate smoothing functional on the whole space of solution 

functions begins by noting the (often implicit) relationship, / ( f ) ,  between solution vectors 

and their corresponding solution functions (cf. equation (2.1), which gives this relationship 

for PCD). The regularizing functional is then found by extending the functional

$ [ / ( f ) ]  =  $ ( f ) ,  for every f

to the space of solution functions in some way. For example, maximum entropy regulariza­

tion is often used with PCD, so the relationship between the solution function and solution 

vector is given in (2.1). The maximum entropy regularizing function, in its simplest form, 

is (see Narayan and Nityananda 1986)

$ M E ( f )  = 5 2 / i ln  ( 7 ^ —) » w h e r e  fmax = max {/,}.
\JmaxJ  !< * < »

Actually, since the formalism here is based on minimization rather than maximization, 

this is the negative of the usual entropy function. (Recall that use of maximum entropy is 

restricted to problems where the solution is known a priori to be positive. The logarithm 

is then well defined, the normalization factor in the logarithm assures that the log is 

negative, and so the functional is negative definite.) The most natural way to extend this 

to functions is to use

$m e[/] = /  /W in  dr, with f max =  max { /(r)} .
J0  \ J m a x J  0<r< R ©

On the other hand, if pth order smoothing is the regularization to be used

$ „ ( f )  =
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where is the pth order smoothing matrix (see §1.9). This smoothing in the discretized 

problem is intended to mimic the effect of constraining the pth derivative of the solution 

function, so it is obvious that the required smoothing functional is

^ = C { j ^ ) dr - (2-io)

It is often the case that regularization of an inverse problem is performed using just 

one of the basic forms of smoothing just mentioned. However, this is not the most gen­

eral case, and many other possible ‘definitions’ of smoothness could be found that might 

have advantages in particular problems. For example, weighting the smoothing constraint 

across the range of the inversion (0 to R q , in this case) to force greater smoothness in 

some regions than in others might often be a good idea (see chapter 4), as might using 

combinations of the basic methods (a mixture of zeroth order and first order smoothing, 

say). Such constraints can easily be defined for the discretized solutions in §1.9, and the 

above examples indicate the features typical of many forms of regularization, so we can use 

them as a basis for translating any such (discrete) smoothing constraint in to a regulariz­

ing functional $ . To permit maximum freedom in the choice of regularization constraint 

a general form for the functional should be found that includes all reasonable possibilities. 

Probably the most general functional that is likely to be useful in practical situations can 

be written

m  = C  p(r)dr ' (2-n )

where p ( r ) is just a (non-negative) weighting factor included for later convenience, and p  

is a suitably well-behaved (analytic, say) function of /  and its first p  derivatives, (p must 

also be bounded below to ensure that the smoothing functional does not effectively give 

‘infinite preference’ to some solution (which would guarantee that minimization of the 

functional 7Z in (2.9) always gave that solution irrespective of that data). It is often 

convenient to shift the function by adding a constant, so that this lower bound is zero, 

but we do not always do this. Henceforth, the general regularizing fu n c t io n a l  (2.11) will  

be the on ly  fo r m s  o f  regularization that will be considered.  The functional (2.11) includes 

all the well known regularizations such as maximum entropy and quadratic smoothing 

constraints, and many more besides, so it is unlikely to be necessary to consider more 

general forms of regularization.

There is one important point concerning the definition (2.11) that should be mentioned.
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The general regularizing functional given in (2.11) contains a dependence on the derivatives 

of the solution function. This means that the functional cannot formally be defined on 

the whole of the space L2(0, R q ), which contains functions with all sorts of discontinuities 

and singularities. When any such function is operated on by $ , the derivatives would not 

be defined. Putting this less formally, the derivatives would give rise to infinities, which 

would, ultimately, make $ [/] infinite. In a certain sense this is alright, because we can 

think of these functions as much ‘rougher’ than functions that can  be differentiated p times, 

so assigning them infinite roughness is fairly natural. Nevertheless, from a mathematical 

point of view, the fact that $  is not defined on the whole of the space £ 2(0, R q ) is a problem 

that requires further consideration. We will not worry too much about the formal aspects 

of this problem, but will instead adopt a pragmatic approach.

There is a simple, ‘common-sense’ resolution to this difficulty. In the analytic, non­

discretized formulation it is easily avoided, because the finite resolution in the data in­

variably prevents discontinuities in the real solution from being resolved, so that the 

estimated solution can be assumed to be as smooth (i.e. as differentiable) as necessary for 

the acceptable definition of the regularizing functional (see the discussion in §1.6), without 

obstructing a satisfactory fit to the data. Mathematically, the solution can be chosen to 

lie in the subspace Cp(0, R q ) of L2(0, R q ) comprising the p-times continuously differen­

tiable functions on [0,72®]. In fact, we could go further than this and assume that the 

estimated solution lies in the space 0^(0, R q ) of analy tic  functions -  which is contained in 

Cp( 0 , R q ) for every p  -  because Cu ( 0 , R q ) is dense  in L 2( 0 , R q ). See §7.5 of Weir (1973) 

for definitions and explanations of these terms. This means that any function in L 2(0, R q ) 

can be approximated arbitrarily closely by some analytic function -  certainly within the 

limits imposed by the finite resolution and data errors. Choosing the solution space to 

be Cp(0, R q ), say, will ensure that the functional $ ,  and hence 7Z, is defined on the whole of 

this solution space, and the formal difficulty disappears. In discretizing the functional (see 

the next step in the algorithm), a finite-dimensional subset of the (infinite-dimensional) 

solution space is chosen (according to some prescription), and the minimization of (2.9) 

is performed over this subset. Thus, the estimated solutions obtained after discretization 

will also be in Cp(0,.R®), and so will be p-times continuously differentiable. This is one 

solution to the problem of interpreting and solving (2.11) and (2.9).
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However, this interpretation would rule out many very simple and commonly used dis­

cretizations such as PCD, in which the estimates of the solution are discontinuous at each 

discretization point (see §1.9 or the beginning of the introduction to this chapter). Despite 

the fact that the recovered solution can be assumed to be arbitrarily differentiable, and 

even that the true solution will, in real situations, be smooth (the real solar rotation curve 

may contain some apparently sharp features, but these will not really be infinitely sharp -  

see §1.6), it is often convenient to introduce discretizations containing discontinuous or 

non-smooth basis functions, because of the simplicity of their implementations (and PCD 

is a prime example of this). This does not appear to be possible when the solution space 

is taken to be Cp( 0 , R q ). This practical inconvenience will be addressed in the next part 

of the algorithm.

The question now is: how can the functional (2.11) be used in practice to find a 

meaningful solution to (2.5)?

2 .2 .3  D iscre t iza t io n

The space of allowable solutions, whether it be L 2(0, R q ) or any of the spaces Cp(0, R q ) 

or C“ ( 0 , R q ), is an infinite-dimensional vector space. This means that the specification of 

a general f ( r )  requires an infinite number of parameters (the coefficients in the expansion 

with respect to some basis of the solution space): there are an infinite number of degrees 

of freedom in the problem. Clearly, no numerical method for minimizing 7Z can cope with 

this and some approximation must be found. W hat is needed is an approximation to (2.9) 

that contains only a finite number of degrees of freedom and results in a minimization over 

these degrees of freedom (the numerical solution of optimization problems being rather 

well understood). We want to choose some subset, «S, of the full solution space that can be 

parametrized continuously by (say) n real free parameters, / i , .. . , / n, so that any values 

of these parameters correspond to some solution function in S.  It is convenient to write 

these components in vector notation as f ,  so that f  is in IRn. From this parametrization 

the discretization space, <S, can be defined as the set of all functions / ( f )  such that f  is 

in IRn:

£ = ' { / (  f ) ; f e I R n}.

Using this in (2.9) we can write, with a slight abuse of notation,

K ( f )  =  f t [ / ( f ) ]  (2.12)
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(with similar definitions of x2(f) an(l $(*))• Solving (2.9) then amounts to finding the 

parameter values, f, that minimize 7Z and using them to reconstruct the solution func­

tion /(f). The process of defining the finite-dimensional function space, S , and deriving 

explicit expressions for x2(f) an(l $(f) in terms of the solution vector /(f) is called dis­

cretization.

The fact that only m  pieces of information (data) are available means that at most m  

degrees of freedom in the solution can be determined, and the presence of data noise 

effectively reduces the number of pieces of information available still further. (This fact, 

combined with the infinite-dimensionality of the solution space, is the reason for the lack 

of uniqueness in, and hence ill-posedness of, this inverse problem.) This means that 

restricting the solution to lie in a finite-dimensional subset of the full solution space is 

simply a natural way to reflect the limited information content of the data, and is not 

just a crass approximation -  provided the subset chosen is ‘reasonable’ and allows the 

information that is contained in the data to be extracted.

It is now time to be more particular about the types of discretization that are to be 

considered here, since it is really the specification of the acceptable forms of discretization 

tha t lies at the heart of this algorithm. Many factors will influence the choice of discretiz­

ation space, <S, including formal mathematical considerations, the need for computational 

efficiency and the possible physical significance of the recovered solutions (see the intro­

duction to this chapter). Some S  will clearly be more appropriate for use in the practical 

solution of (2.5) than others, and ultimately, of course, the goal is to find the discretiza­

tion space that is best suited to any particular problem. As yet, very little restriction has 

been placed on the discretization space. In general, S  need not be a vector subspace of the 

solution space, and the relationship, /(f), between solution functions and solution vectors, 

can be a largely arbitrary non-linear function of the parameters / i , .. . , / n. However, an 

argument will now be presented to show that the best discretization space to choose in 

general will be a linear subspace of the solution space (so that f is linear in the paramet­

ers / i , . .  - , / n ) ,  obtained via the discretization procedure shortly to be defined. It will be 

helpful for the discussion that follows to observe that a linear subspace of the full solution 

space is also a vector space, and therefore has a basis of functions {<£i(r),.. . ,<£n(r)}, so



CHAPTER 2. THE INVERSION ALGORITHM 81

that any function in the discretization space can be written

f ( f ' ,r)  = J 2 f j <i>j {r ) (2.13)
3=1

(c/. equation (2.1)).

To perform the minimization of 7Z it is necessary to be able to evaluate 1Z(f) for any 

value of f, which means evaluating x2(f) an(l $(f)- The simpler these calculations are, and 

the faster they can be performed numerically, the easier and quicker finding the solution 

will be. Restricting the discretization subset S  to be a linear subspace of the solution 

vector space will almost always have significant advantages in this respect. The important 

parts of the calculations of X2(f) and $ (f)  are the evaluations of the integrals appearing 

in these functionals (see equations (2.7) and (2.11)), and, usually, employing a linear dis­

cretization subspace avoids the need to explicitly evaluate the integrals numerically for 

each f. It should be fairly clear from the fact that discretizing x2 is essentially equivalent 

to discretizing the linear functionals /C; (see the definition (2.7) of x2) that a linear dis­

cretization scheme will make the calculation of x2(f) veiT simple (see the equations (2.30), 

(2.26), and (2.27), below). It is less obvious, though, that linear discretization schemes 

will very often be preferable for the discretization of the regularizing functional $ . To see 

tha t this is indeed the case, consider an example in which the function occurring in the 

definition (2.11) of $ [/] is a sixth order polynomial in / ,

<p = <p(f;r) = J 2 a s ( r ) f s -
5 = 0

Expanding /  in terms of the n basis functions <f)j (equation (2.13)), and using this in (2.11), 

results in an expression for $ [/] which is a sixth order multinomial in the components f j  

(that is, for each f j ,  $ [/] is a sixth order polynomial in f j ),  in which the multinomial 

coefficients are integrals of products of up to six of the basis functions ( f ) j . For instance, 

the coefficient of the term in f j x . . .  f j s is (proportional to)

r R q

/  <Xs(r)4>jx ...<t>jsp(r)dr.
Jo

These integrals need only to be evaluated (analytically or numerically) once for all of the 

terms in the multinomial expression for $ [/], and the computation of $(f) for any f will 

reduce to the evaluation of a multinomial with fixed (pre-calculated) coefficients. This will 

obviously be much faster than having to perform all the integrations numerically for each
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solution vector, f .  Obviously, there will be some regularizing functionals (when <£>(/; r ) 

involves logarithms of / ,  for example) where the general expression for 3>(f) cannot be 

written so that the f j  only appear outside the integrals, thus requiring the integrals to be 

evaluated for each f  even with a linear discretization space. There will also be functionals 

for which analytic expressions for the integrals involved can be obtained even with some 

non-linear discretizations. Usually, though, using a linear discretization space will result 

in an increase in the speed with which $ ( f )  can be calculated.

Increasing the speed with which the solution of the inverse problem can be calculated 

numerically is important, but there are certain (commonly used and simple) forms of reg­

ularization for which the advantages of using a linear discretization space are even more 

significant. For these smoothing constraints the minimization can be performed ‘analytic­

ally’, giving an explicit expression for the solution in terms of the data and the smoothing 

constraint (cf. equation (2.82)). Solution of the inverse problem (2.5) then proceeds by 

direct calculation, and there is no need to invoke the arcane rituals of numerical optimiza­

tion, Apart from the increase in speed that results from this, there are the advantages that 

solution is guaranteed (a solution will be found, whereas general optimization procedures 

can fail to converge to an acceptable solution when the initial guess to the solution that 

such methods usually require is poor), and that this solution is unique (i.e. the solution of 

the numerical minimization procedure under consideration is unique -  this is a completely 

separate issue from uniqueness or non-uniqueness in the underlying inverse problem (2.5)), 

in contrast to the situation that prevails when general optimization is used and the func­

tion TZ(f) has multiple minima. Not only this, but the availability of an explicit expression 

for the solution in terms of the data allows the details of the solution, such as its physical 

relevance and the efficiency of the method to obtain it, to be studied in much greater 

detail, without recourse to large numerical simulations.

These magical regularizing functionals are characterized by the property that they 

depend quadratically on the solution function: the function (p in (2.11) is a quadratic 

polynomial in /  or its derivatives (the pth order smoothing functional in (2.10) is the prime 

example of this). They are therefore called quadratic regularizing functionals, and it has 

already been mentioned in the introduction to this chapter that they will be the principle 

object of study here and throughout the rest of this thesis. Mathematically it is easy 

to see why quadratic regularization is so efficacious. The x 2 functional, being essentially
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the square of the linear functionals /C; in (2.5), depends quadratically on the solution 

function, / .  When the regularizing functional, 4>, in (2.9) is quadratic, the functional 7Z 

will also be quadratic. Minimization of this functional will then give rise to a solution in 

which the data and the solution are linearly related -  finding the minimum of 7Z amounts 

to taking the (variational) derivative of 7Z with respect to /  and setting the result to zero, 

which (since 71 is quadratic in / )  will result in a functional in which /  occurs only linearly. 

Linearity is such a pleasing property, and can give rise to such huge simplifications, that 

it would be advantageous to look for discretizations that preserve this linearity, so that 

the n solution parameters are also linearly related to the (m) data values. A linear 

relationship between the finite number of data points and the finite number of solution 

parameters is, inevitably, a matrix equation, and computers are ideally suited to solving 

these. The obvious, if not the only reasonable, way to satisfy the requirement of linearity 

is to restrict S  to be some finite-dimensional linear subspace of the solution space.

Having decided that linear discretization is the way to go, it is necessary to consider 

which linear subspaces of the infinite-dimensional solution space should be used. Discretiz­

ing the functional 7Z can be broken down into two parts: discretizing x 2 and discretizing 4>. 

Inspection of the definition of x 2 in (2-7) shows that discretizing this functional amounts 

precisely to discretizing the linear functionals JC{. With linear discretization this is almost 

trivial. Using (2.13) and the linearity of K,i gives

n n fRq
• £»•[/] =  fj£il<f>j] = T , f i  /  fctM 0 j(r )  dr. (2.14)

;=1 Jo

It is usual then to define the kernel matrix just as in equation (2.2) (cf. equations (1.45), 

(1.49) and (1.52) of §1.9, and equation (2.27) below), so that (2.5) reduces to the simple 

matrix equation g =  HI.  /C, is defined on the whole of X2(0,72®), so any set of basis 

functions in 7/2(0,7?®) could be used in the discretization of x 2.

However, the discussion following the definition of the general regularizing functional 

in (2.11) showed that, as a result of the appearance of derivatives of the solution function 

in (2.11), $  is only formally defined on the subspace Cp(0,R@) of X2(0,72®) containing 

the p-times continuously differentiable functions on [0,72®]. Strictly speaking, then, the 

discretization space, <S, should be a subspace of this space, so that all the functions in S  are 

also p-times continuously differentiable. But this rules out the use of PCD as a discretiza­

tion, for example, because there the solution functions are almost all discontinuous at each
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discretization point (see the introduction to this chapter). Many perfectly acceptable, and 

quite appealing, discretizations will, therefore, be incompatible with the use of the regu­

larizing functional (2.11), unless some appropriate alternative definition of the ‘derivative’ 

of discontinuous functions, such as occur in PCD, is given. The solution to this problem 

for PCD was quite simple: define a notion of differentiation based on finite differences 

(see §2.1). With the usual definition of differentiation, we now have two viable definitions 

of ‘the derivative’ of functions, and the goal is to find a way to make use of both of them 

to create an algorithm for which PCD, OFE, spectral expansion, polynomial expansion 

and maximum entropy are merely special cases. Using finite differences is perhaps less 

satisfying from a formal point of view, but it is practically much more powerful, having 

the considerable advantage that it permits much more general forms of discretization.

The functional 4> in (2.11) cannot be defined on functions that are not sufficiently 

differentiable, so we need to find a new functional which will constrain the solution function 

in the RLS minimization of (2.9) in a similar manner to (2.11), but which can be defined 

on discontinuous or non-differentiable functions, just as difference formulae are used in pth. 

order smoothing to approximate derivatives when PCD is the chosen discretization. The 

idea here is to think of the operator ^  appearing in (2.11), not strictly as a real derivative, 

but as some more general operator whose effect is like differentiation, but which is defined 

on a much wider class of functions than the true derivative operator. Pre-empting the 

definition (2.43), introduce some linear operator, V , and replace every occurrence of ^  

in (2.11) with it, so that the regularizing functional becomes
r R q

$ [ / ] =  /  < p ( f , V f , " - , V Pf',r)p{r)dr.  (2.15)
Jo

V  must satisfy certain, fairly obvious, requirements:

• it must be ‘like’ differentiation, so that the definition (2.15) is almost equivalent 

to (2.11),

• it must be more general than ^r, that is, it must operate on a larger class of functions, 

including those used in discretizations such as PCD (otherwise there’s not much point 

introducing it),

• it is essential that the numerical calculation of V q f  is feasible for any functions, / ,  

that lie in the chosen discretization space (the discretizations that will be considered 

‘acceptable’ will be outlined shortly).
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We could think of V  as a true generalization of the derivative operator to some (as yet 

unspecified) larger function space. Strictly, the definition of V  should then be accompan­

ied by a specification of the space of functions on which it operates. When V  is defined for 

functions in particular discretization spaces below this question will be partly answered, 

but rather than giving a mathematically complete definition, the following intuitive ap­

proach is adequate here: V f  is defined for a function, / ,  if an ‘acceptable’ discretization 

(i.e. of the form described below) can be found such that /  is contained in the corres­

ponding discretization space.

Alternatively, and preferably, V  can be thought of just as an approximation to the real 

derivative operator. That is, we still consider the real solutions to lie in Cp(0, R q ), but now 

the discretization space, <S, is not restricted to be a subspace of this solution space, and so 

can contain non-smooth functions. View a discontinuous or non-differentiable function, / ,  

in <S, as a numerically convenient way of approximating a function, /  that is in Cp(0, R q ). 

The operator V  then operates on /  to give a similarly convenient approximation to the 

derivatives of f . That is,

dqf
f{r)  «  f ( r )  and V q f \ r - ^ (q < V)•

The same argument (lack of resolution etc.) that said we can take the solutions to be 

arbitrarily differentiable can now be used in reverse to say that, since /  and /  are indis- 

tinguishable in terms of their validity as solutions of (2.5), there is no need to look for 

a function in Cp(0, R q ) at all. The required solution might as well be a function /  lying 

in S.

Although the discretization spaces, <S, will be rather more general than just subspaces 

of Cp(0,f2®), there will be some restrictions on them. They will have to be subspaces 

of £ 2(0, R q ) (in order for the discretization of x 2 still to be valid), but this is hardly a 

restriction at all: it is certainly not a practical consideration. The limitation on the possible 

discretization spaces comes largely from the extent of the validity of the definition of the 

operator V.  It should be obvious from previous comments that the definition of this new 

operator involves the use of finite differences, as well as the usual derivative operator -  

the precise details will not be given here, because they will be studied fully very shortly, 

and because they are not vital to the understanding of (2.15). This combination of two 

‘derivatives’ leads naturally to the definition of the useful discretization spaces to be given,
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and it is only with such spaces that the operator V  can be defined. If other reasonable 

definitions of differentiation were available, these could be included in the definition of V  

to give an algorithm with even greater generality, allowing other discretization spaces to 

be used, but the two derivatives we have seem to be quite general enough. In the practical 

implementation of this algorithm the only functions, / ,  for which $ [/] ever needs to be 

evaluated lie in the finite-dimensional discretization space. Thus, once it has been shown 

how to calculate V f , and then $[/] for /  in this discretization space, there is nothing to 

hinder the successful application of this procedure.

Whatever interpretation of the operator V  is adopted, the most important point is 

that V f  | reflects the rate at which /  varies in the vicinity of ro: when V f \  is large we 

expect the value of f ( r )  for r slightly less than ro to be very different from its value for r 

slightly greater than ro. This is very similar to the meaning of 4-  for /  in Cp(0,R®),
ro

except that 4-  is a purely local statement about the variation of /  in an infinitesimal
r  r 0

region about ro- As a result of this, (2.15) symbolizes a constraint on the solution func­

tion /  whose effect on the estimated solution, /  (obtained from the minimization of (2.9)), 

is basically what would be expected if /  were in Cp(0, R q )  and the real derivative operator 

could be used. That is, if,when used in (2.9), $  in (2.11) constrains the qth. derivative (for 

example) of a function in Cp(0, R q )  to be small at some point, then (2.15) would also tend 

to encourage the value of V q f  to be small at the same point.

The time has come to describe the details of the generalized discretization proced­

ure. Henceforth, only linear discretizations will be considered. The preceding discussion 

has tended to give the impression that discretization is achieved by first choosing some 

subspace, S , and then finding a basis for S  in terms of which the solution functions can 

be expanded, as in (2.13). In fact, in practice what happens is that some set of (lin­

early independent) basis functions, {<£i,. . . ,  (f>n}, is selected, and the discretization space 

is defined to be the vector space spanned by these functions, tha t is, the space containing 

all functions that can be obtained from (2.13) for f  in IRn. The natural bases to choose 

are those which consist of very simple functions such as sines, cosines, exponentials, ‘top 

h a t’ functions, etc., or have a particular relevance to the problem at hand (such as the 

set of kernel functions). The various RLS inversion methods described in §1.9 each take 

advantage of one particular type of basis: orthogonal function expansion uses some set
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of orthogonal functions (such as sines and cosines) defined over all of [0,i2@], PCD uses 

a set of top hat functions, whereas spectral expansion takes the kernel functions as the 

basis for S.  The discretization to be described here unites these apparently distinct RLS 

procedures and generalizes them, resulting in a single algorithm that can implement any 

of the commonly used RLS inversion methods simply by (roughly speaking) specifying the 

particular basis functions for that method.

The easiest way to begin is with the definition of the acceptable discretizations. It 

will then be possible to examine how to define the concept of differentiation (i.e. the 

operator V  in (2.15)) for all the functions in the discretization space corresponding to any 

such discretization. In the presentation of the procedure there will be one or two irritating 

technical diversions (such as the need to introduce half-open intervals in (2.17)), which 

are necessary for completeness and clarity, but which rather distract from the main line of 

the presentation. Such points should not be allowed to cloud the understanding of other 

more important aspects of the procedure.

The preceding discussion referred to the fact that this algorithm unifies the PCD and 

function expansion methods by using a form of discretization that combines the principal 

features of these methods: namely, the set of discretization points used in PCD, and the 

set of basis function that the function expansion methods rely on. The first step in the 

definition of such a discretization schemfe is, therefore, the selection of a set of discretization 

points,

0 = X q < X i  < .... < Xj\f =  -R®, (2.16)

spanning the range of the inversion. This set of points naturally partitions the interval 

from zero to R & into a set of N  disjoint intervals or bins . A vital part of this algorithm 

is the definition of a set of basis functions on each such interval, and for this definition to 

be unambiguous and to have some formal validity it is necessary to specify the interval on 

which the function is defined. There are many possible choices of intervals based on the 

points X{ that partition the interval from 0 to R®, and as these intervals will be referred 

to  many times in what follows it will be advantageous to be quite specific about their 

definition:
def

Ii =  ( X i - U Xi] = {x; Xi-x  < x <  X i }, for i =  1 , . . . ,  N.  (2.17)

The chosen intervals /, are open at the left end and closed at the right end (see Burkill 

1962, p .13, for definitions of the terms open and closed) for two reasons. Firstly, the Ii
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must partition the range of the inversion (that is, they must cover all the points from 0 

to Rq  and they must not overlap) so neighbouring bins /;_ i and /, cannot both contain 

the discretization point X{. This obviously does not determine which ends of the interval 

should be open or closed, but it is convenient to choose intervals open at the left end 

for the following reason. N o n e  of the solar oscillation modes are sensitive to the solar 

structure at the very centre of the sun (at r = 0 the kernels, k{, are all zero). It is possible, 

then, to ignore the point r =  0 in the inversion so that the range of the inversion is the 

(half-open) interval (0,.R®]. It is obvious that the easiest way to partition this interval is 

with intervals that are also open at the left end. This is purely a m atter of convention 

and in other problems other choices may be more natural.

In any event, given such a set of partitioning intervals, based on the discretization 

points in (2.16) it is possible to choose a set of functions on each bin in terms of which 

the approximate solution can be expanded. So, for each interval, Ii, introduce some set of 

(n;) linearly independent functions (such as sines, cosines, polynomials, etc.):

<t>) for j  = (2.18)

so that if r is in Ii (i.e. if X ,_i < r < Xi),  then is defined for j  = 1 ,.. . ,rct-. Later, 

the definition of the new ‘derivative’ operator, V,  will rely on the ability to differentiate 

(in the usual sense) each of the functions </>*• as many times as required by the regularizing 

functional 4> (p times, in other words -  see (2.11)) within its corresponding discretization 

bin Ii. This should not be a problem because the 0* will usually be simple analytic func­

tions (sines, cosines,...), which can obviously be differentiated arbitrarily many times, but 

even when the (f)1- are not such simple functions -  such as in spectral expansion (see §1.9) 

where they are the (numerically calculated) kernel functions -  we will assume that the 

required derivatives are suitably well-behaved, and that adequate estimates of them can 

be obtained. (If there is some reason to allow functions that are discontinuous or non- 

differentiable in some bin then just add another discretization point there.) In future, then, 

it will always be assumed that the </>*• can be differentiated as many times as necessary 

w ith in  the discretization bin on which they are defined.

Of course, the reason for introducing these functions is to use them in an expansion 

like (2.13) to give the set of possible solution functions (the space <S). It is clear, therefore, 

that (since we are dealing exclusively with linear discretizations) the value of any solution
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function is given, for r in by the expansion

f ( r ) = J 2  f j  for X i~i < r  ^  X i- (2-19)
j =i

The f j  are just numbers: they are the free parameters in the solution. The total number 

of free parameters in the solution (which is, of course, the dimension of the discretization 

space S)  is
N

n d= ^ 2 r i i .  (2.20)
t = l

Note that the differentiability of the basis functions <f>j in the bin on which they are defined 

ensures that the solution functions are similarly differentiable within each bin (although 

not, of course, at the end-points of the bins).

There are another couple of minor points that need consideration here. Firstly, for 

simplicity it would be distinctly advantageous to have an expression for the solution func­

tion that was valid everywhere, rather than having a separate expression, (2.19), for each 

bin. At the moment this is not strictly possible because the <f>j are only defined on a 

single bin. It is a very simple m atter, though, to extend the definition of these functions 

to the whole of (0,^®] by simply assigning them the value zero outside the interval on 

which they were initially defined. We then arrive at the desired expression for the solution 

functions in terms of the free parameters:
N  ni

f ( r )  = E  E  4 0 < »■ < -B®- (2-21)
1 = 1 j=1

Secondly, it would also be useful for notational convenience, and for consistency with the 

earlier discussions, to write the free parameters as the components of a vector, f  (which, 

by virtue of (2.20), must be n-dimensional), so that we can refer to the solution function 

corresponding to a set of parameters as / ( f )  or as / ( f ; r ) .  The / j  are labelled by two 

integers, so it is not obvious how they should be ordered as the components of f . Actually, 

any permutation of the parameters / j  will do, but it will be essential in what follows to 

have a specific definition of f. The simplest and most obvious choice will be made here: 

namely that the parameters f j  for the first bin will be taken first, then for the second 

bin, and so on. This sets up a correspondence between the components of f  and the free 

parameters as follows:
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It will often be convenient to use this correspondence to refer to both the free parameters 

and the basis functions 4>) by a single integer, fi and </>/, not least because use of this 

convention allows equation (2.21) to be written in the equivalent, and simpler, form
n

/ ( f ;  r ) = J 2 f l ^ ( r )’ for 0 < r < R @, (2.23)
i=i

which exactly matches the form of equations (2.13) and (2.1), for example. It is possible 

to give the explicit relationship between the pair ( i , j )  and the single integer /, but this 

will not be needed, although the fact that such a relationship exists will sometimes be 

used to write

I = and i = i(l), j  = j(l).  (2.24)

The definitions (2.22), (2.23) and (2.24), while necessary, amount to little more than 

book-keeping -  they are not the most important parts of the discretization procedure.

The discretization is defined, then, by specifying the discretization points, (2.16), and 

the set of basis functions, (2.18), on each bin, and then using (2.21), or, equivalently, (2.23), 

to obtain all the functions in the n-dimensional discretization space, S  (see (2.20)). Having 

outlined the acceptable discretizations it is necessary to describe and define the procedure 

for actually evaluating the functional 1Z in (2.9) for any function in the space <S, which, in 

turn, requires the discretization of both of the functionals x 2 and appearing in 7Z.

It is a simple m atter to present an expression for x 2 in terms of the solution vector f . 

Discretizing x 2 just means discretizing the linear functionals /Ct- (as can be seen from an 

inspection of (2.7)), and the derivation of the X t(f) proceeds basically as in the examples 

given earlier (cf. equations (2.2) and (2.14) and the associated discussions). In fact, us­

ing (2.23) to expand /  in (2.14) gives the answer we want. However, this expression does 

not make explicit use of the properties of the discretizations to be considered here, so we 

revert to the expansion (2.21). The basis functions, </>*•, are each non-zero only on their 

corresponding interval Ik, so the functionals /C; can be written

N  nk Xk

= E Y . f i  W r ^ d r .  (2.25)
k = l 3=1

The kernels are known, as are the </>*•, so the integrals on the right hand side of (2.25) 

can easily be calculated. The advantage of this expression for /Ct(f) is that the interval
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where each basis function is non-zero is made explicit, so the integrals can be evaluated 

as written. Normally at this stage, the kernel matrix would be defined to be the matrix 

whose elements are the integrals in (2.25). Here, though, we modify this step slightly for 

notational convenience. The appearance of a double sum requires some interpretation. 

The relationship (2.24) between the integers pairs (k , j ) and the single integer / can be 

used to reduce the double sum to a single sum:

= °  ki(r ) M r ) dr (2-26)
/ = i  J x k ( i ) - i

(which is actually identical to the sum appearing in (2.14) except for the limits of integ­

ration -  the fact that the </>*• are non-zero only on Ik ensures that both expressions give 

the same value). Rather than defining the elements of the kernel matrix, Hu, just to be 

the integrals appearing in this expression, it will simplify notation if the denominators <7,- 

in the definition of x 2 are also included in the kernel matrix. We therefore make two 

definitions. First, we define the elments of the kernel matrix to be

’**(/)

which, when used in (2.26), obviously reduces the /C,/<7,- term in x 2 1°

K i{  f )

def 1 /■**(*)
Hu = — ki(r)(j>i(r)dr, (2.27)

JXk(l)-1

= £ # . ; / / •  (2.28) 
a '  ( = i

Then, in keeping with (2.27), redefine the data vector by including the factors in that 

as well, so that

g  = ( £ , £ , . . . , ! * ) .  (2-29)\< 7 l <72 <7m /

The point of these definitions is to allow vector notation to be used in the expression 

for x 2, reducing x 2(f) f° the concise form

X2(f) =  l | g - ^ f | | 2 (2.30)

(the norm ||.||2 here is the usual euclidean sum of squares). The dependence of x 2 on the 

standard deviations, <7t-, of the data errors has been completely absorbed into the ‘new’ 

data vector g and kernel matrix H.  This simplifies the notation considerably. In future 

these definitions will be implicitly adopted, so that when g, occurs in an expression this 

will really mean gifoi.
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fir)

0 r

Figure 2.1: A schematic illustration of the type of solution functions occurring with the discret­
izations allowed in the algorithm presented here. The discretization has only three bins (N — 3). 
Filled circles indicate points which actually are part of the graph, and open circles points which 
are not (this allows the value of the function at discretization points to be seen more clearly).

For any given f, all the quantities appearing in equation (2.30) are known (the data -  

and the error variances -  in g are assumed to have been measured, and the kernel matrix 

has been calculated from the kernel functions using the discretization chosen), so evaluat­

ing x 2(f) reduces to a simple arithmetic calculation. This now leaves only the problem of 

evaluating the regularizing functional $  for any solution vector f .

To guide the derivation of the expression for $(f)  it is helpful to think more deeply 

about the form of the functions in the discretization space, <S, and to say what these 

functions look like. From an inspection of (2.21), and with the knowledge that the basis 

functions are non-zero only on a single bin, it is easy to see that the values of any solution 

function in <S on two different bins are completely independent and each can be varied 

without changing the other. Figure 2.1 shows a typical solution function, based on a dis­

cretization using three bins. Note, in particular, that the value of /  at any discretization 

point, Xi  (which is given by the position of the filled circle at that X{ in fig. 2.1), is 

unconnected to the value of f ( r )  for any r > X{ -  the solution function is (in general) 

discontinuous at each X{. Note, too, that there is, of course, no relationship between the
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gradients -  or the derivatives of any order -  of the solution on either side of a discretiza­

tion point. The general form for $ [/] given in (2.11) involves derivatives of the solution 

function, but, since the discretization spaces will contain functions that have discontinu­

ities at every discretization point, X{, the usual definition of differentiation will not work 

in general, and cannot be used in the evaluation of $(f)  without modification. It has 

already been said that the resolution to this problem is to steal the ideas used in PCD 

to calculate the derivatives of discontinuous functions. Those ideas by themselves are not 

enough, though, because it is possible to choose discretizations with just one bin, for ex­

ample (when N  = 1 the discretization would correspond to one of the function expansion 

methods reviewed in §1.9), in which the required derivative is just the usual derivative. 

We therefore need some formalism for combining these two forms of differentiation into a 

single procedure. Such a formalism essentially amounts to a definition of the operator V  

in (2.15).

Whatever alternative definition of V  is finally chosen, there are three properties that 

we would definitely like it to have:

• It must operate on any function that, like the function in fig. 2.1, can be obtained 

from some acceptable discretization, to give a sensible measure of the rate of change 

of that function.

• It should be recursive.  That is, it should be possible (in principle, at least) to  apply 

the derivative operator V  to a solution function any number of times, to obtain 

derivatives, V f , V 2f  = V ( V f ) , . . . ,  of any order.

• As already mentioned, we seek a definition of V  that uses both real differentiation 

and finite differences.

The first two points, taken together, force us to look for an operator V  that sends solution 

functions to new functions that are like solution functions in that they are piecewise 

continuous and can have jump discontinuities at each discretization point. To see how 

to satisfy the third point, observe that it is possible to decompose any such function, / ,  

into a continuous part, c(r), and a ‘step-function’ part, s(r) (that is, a piecewise constant 

function just like the solutions functions used in PCD), in the following manner.
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1. Define the jump in the function /  at the discretization point X{ to be

Ji = lim f ( r )  -  f (X i ) ,  for i =  1 , . . N  -  1 (2.31)
r—*Xi +

(the limit in this expression arises from our convention about half-open discretization 

intervals -  the notation lim means ‘r tends to X, from above’, so that the limit
r ^ X i  +

is taken for values of r greater than X{ and therefore lying in the (z+ l)th  bin, /;+ i). 

Augment (2.31) with the convenient definition Jo = lim f ( r) .
r —► 0 +

2. Define the X-dimensional vector s = ($ i,. . . ,  sjv) to be

i—1
S{ = ^ 2  Jji for * = 1 , ,  N.  (2.32)

j = o

This gives Si = Jo = /(0 ), and makes S{ the cumulative jump in the function / .

3. Define the step function s(r) to be the piecewise-const ant function that has the 

constant value 5,- throughout the ith bin, i.e.

,s(r) = Si for X i - i  < r < Xi ,  and for each i. (2.33)

Note that s has exactly the same jumps as / :  lim s(r) — s(X{) =  st-+i — Si = Ji ,
r— +

using (2.32).

4. Define the function c(r) simply by

c(r) = / ( r )  -  s(r) for 0 < r < R@. (2.34)

It should be quite clear from the fact that /  and s have the same discontinuities that c

is continuous everywhere, but here’s the proof anyway: Certainly, c is continuous 

throughout each discretization bin, since /  and s are. At the discretization point A,- 

we have

t
Urn c(r) = lim f{r)  -  si+1 = J{ + f { X {) -  h

r-*Xi+ r-*Xi+  r - '
j= 0

3=0

= <Xi),

using, at various points, (2.33), (2.31), (2.32), and (2.34).
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(a) (b)

Figure 2.2: An example of the decomposition of a solution function into a continuous part and a 
step-function part, (a) shows the continuous function obtained from the solution in fig. 2.1 when 
the step function in (b) (which is constructed from the jumps in the solution function -  see the 
text) is subtracted from it. In other words, adding (a) and (b) together will give the function in 
fig. 2.1. Filled and open circles have the same meaning as in fig. 2.1.

5. Obviously, equation (2.34) gives

f { r )  =  c(r) + s(r), (2.35)

where c is continuous everywhere and s  is a step function with jumps at each dis­

cretization point, as required.

Figure 2.2 shows just such a decomposition for the solution function in fig. 2.1. There 

are a few points worth noting about the function c. Firstly, since s(0) = si =  /(0 ) , c(0) is 

always zero. Secondly, a nice way to visualize the construction of c from /  is to think of 

sliding the part of /  in the first bin down (or up) until it has the value zero at r =  0, 

then moving the part of /  in the second bin up or down until it joins up with the solution 

on the first bin (so that the open and filled circles at Xi  in figure 2.1(a) lie on top of 

one another), and then repeating this for every discretization bin. Finally, c is suitably 

differentiable (in the usual sense) w ith in  each bin, because both /  and s  are.

There is one very important aspect of the decomposition (2.35) that will be required 

for the definition of the operator V: it is unique. This should be fairly clear from the 

‘graphical’ construction of c just described, but to be certain, consider two decompositions 

/ ( r )  = c i(r) +  s i ( r )  and f ( r )  =  c2{r)  +  s 2(r ) .  Then c i(r) -  c2(r )  = S i ( r )  -  s 2(r ) ,  

which means that s i  — s 2 must be a continuous function (because c\ — c2 is). Obviously,

0
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si — S2  is a step function, so it is constant except for simple jumps. Continuity ensures 

that si — S2  has no simple jumps, and so must be constant: s i(r)  — ^(r*) = C  everywhere. 

ci(0) = 0 and C2(0) = 0, so ci(0) — C2(0) = C  = 0. Thus, s i(r)  =  S2(r) and ci(r) = C2 (r) 

everywhere, i.e. ci =  C2  and sj = s2-

The decomposition (2.35) is just what we need to be able to define an extended de­

rivative operator. The continuity of c, along with its assured differentiability within each 

bin, means that it is possible (with some care at the discretization points) to take the 

derivative of c in the usual way, whereas experience with the difference methods used in 

PCD to calculate ‘derivatives’ of step functions means that we can also ‘differentiate’ s. 

We can then define the derivative of /  to be just the sum of these two derivatives.

A little more precisely, we define an operator D acting on continuous and piecewise- 

differentiable functions like c that is just the left-hand derivative with respect to r. In 

other words

(2.M)

This use of the left-hand derivative is necessary, given the convention about intervals closed 

at the right end, to allow the derivative to be properly defined at the discretization points. 

The definition (2.36) ensures that the value of Dc at X{ is ‘attached to ’ the values of Dc 

on the ith bin. As a result, the new function Dc is, like / ,  piecewise-continuous with 

only simple jumps at the discretization points, which means that the operator V  that will 

finally be defined in (2.43) can also be applied to Dc. This is the basis of the recursive 

definition of higher derivatives.

There are many ways to use finite difference schemes to define an operator ID that 

acts on step functions like s  to give some measure of the rate of change of s. Here we will 

think of the values, st-, that the step function takes as sampled values of some underlying 

smooth function whose derivatives we wish to approximate. The difference scheme will 

then be used to operate on the s, to give a set of numbers s[ (representing the derivatives 

of the underlying function at the sampled points), which will be used to constuct another 

step function, s7(r), just as we did in (2.33). To do this it is necessary to specify the 

values of r at which the samples were notionally taken. Of course, these points -  denote 

them by r; for i =  1 , . . . ,  N  -  should lie within their corresponding bins, Jt , but apart 

from that they can be chosen freely. Usually the mid-points of the bins will be chosen 

by default, but other choices might sometimes be better, especially when a wide bin, /,-,
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abuts a narrow bin, say, for then the estimated values of the derivative may be more 

appropriate when r t- is chosen to lie rather nearer to X,- (and hence to 7\+i) than if it 

were at the centre of its bin. In the implementation of this algorithm that was used for 

the inversions performed in this thesis a middle course was steered between these two 

extremes. A single parameter a , lying between 0 and 1, was introduced such tha t a = 0
def

gives n  = X;_ 1 , a = 1 gives r; =  X;, and, in general, r; =  X t_i +  a(X ; — X ,_ i), for 

every bin. In particular, a = |  puts the r,- at the mid-points, ^(Xi_i + X;), of their bins. 

Henceforth, assume that some choice of the r t- has been made (mid-points, say).

Having fixed the sample points, r;, the difference scheme still has to be chosen. The 

choice is between forward, backward, or centred differences, which in terms of the S{ and 

the r{ are given by

= Si+i' - Si_
T i + l  ~ T i

Sj  ~  Sj - 1 

r,- -  r t_i (2.38)

= I---- —r— {(»*.■- r , - _ i ) ~ ^ — 7  + (r,-+i - r i ) j — (2.39)
^ + 1  ~ ri-i  I n+ i -  n  r,- -  7*t_i J

(for i = 1 , . . . ,  iV), respectively. Strictly speaking, these definitions should include separate

definitions of the s[ at one or both of the end-points, i = 1 and i = N ,  where the above

definitions do not apply (because does not exist in (2.37), for example). There are

many options here too, but we will skate over this issue, because it is not really pivotal.

The important point is that whatever difference scheme is chosen, the relationship

between the step function values, Si, and the values of its derivative, $'•, are related by a

matrix equation:
N

s'i = A ijSj, for i = 1 , . . . ,  N.  (2.40)
3= 1

As an example of this, consider forward differences, (2.37). For this scheme the difference 

matrix, A, is given by

( - l / ( r i+i -  r,-) for j  = i 
Aij = < l / ( r i+i -  rt) for j  = i + 1 

I 0 otherwise

(This definition is not valid for the last row, Ajvj, of A, for the reasons alluded to above.

For this row we must make some alternative definition, such as setting Awj = A at- i j ,

which amounts to using backward differences to define the derivative, s'N , at the last point.)

Similar definitions can obviously be made for the other difference schemes.



CHAPTER 2. THE INVERSION ALGORITHM 98

Another point to note is that in all of the difference schemes (2.37), (2.38) and (2.39) 

the S{ only enter in the form of differences between neighbouring values, st+i — s;, (as we 

would expect from an operation intended to mimic differentiation, where only the change 

in value between nearby points is important, not the absolute values at those points). The 

definition (2.32) tells us that s*-+i — S{ = J t , which means that the difference formulae can 

be simplified if they are written in terms of the Ji rather than the Si. This results in the 

alternative difference formula

N - 1

s'i = QijJj, for * = 1 , . . iv, (2.41)
j=i

which will also be used below. An inspection of (2.37) shows that the difference matrix, 0 , 

for forward differences is

e .j  = , 1 A - =  ( ioTJ  =  i
(ri+i ~ ri) 10 otherwise

Whichever formula for calculating the s\ is chosen, the final step in defining the oper­

ation of ID on s is to use (2.33) to obtain

def
D s = s '(r) = s'i for X i - i  < r < Xi,  and for each i. (2.42)

This is, of course, another step function, a fact that is important in the repeated application 

of V  to obtain higher derivatives.

Having obtained the definition of the effect of D on continuous, piecewise-differentiable 

functions, c, in (2.36), and of ID on step functions, 5, in (2.42) (via (2.40) or (2.41)), it is 

possible to define the operation of V  on any function /  of the type considered here using 

the decomposition (2.35) to give

D / d=  .Dc + lDs, (2.43)

the consistency of which is guaranteed by the uniqueness (see page 95) of the decomposi­

tion (2.35) of /  into c and s. Note that D , ID, and therefore V  are linear operators.

The discussion of the new derivative operator V  so far has been relevant to any 

piecewise-continuous function with jumps only at discretization points (and which is dif­

ferentiable everywhere within each bin /,■ -  so that ID can be used). W hat we are most 

interested in, though, are functions in the chosen discretization space, <S. In particular,

we want to know how to express the derivative V f  of a function in S  in terms of the
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free parameters, f, in the solution, so that the functional $ [/] in (2.11) can be rewritten 

explicitly as a function of these parameters.

Given some function, / ( r ) ,  in *S, and thus expandable in terms of the basis func­

tions, (f>lj , as in (2.21), finding the expression for the function Dc is easy. Within each of 

the N  bins, c is just given by / ( r )  — s;, and it has already been stated that /  can be 

differentiated in the usual sense within each bin (because the basis functions themselves 

can be), so

° C\r  =

-  V r M
■‘V - ’ dr
3=1

for X i - i  < r < X{. (2.44)

In other words, c is just given by the usual derivative of the expansion (2.21) on each bin. 

Of course, we can make use of the relabelling (2.24) to get

for i < r < Xi,  (2.45)E f i t/=L<_i+1

where the notation
i

L i  =  ^ 2 n k,  for i =  0, . .  .,1V (2.46)
k=1

has been used, so that the summation limits in (2.44) can be expressed in the new labelling.

Obtaining an expression for D s  in terms of the / j  is a little more difficult. The 

jumps, can easily be obtained from (2.31):
t t i+ l  ni

■/.= E  / f ’ lim (2.47)
3 = 1 3 = 1

In this context the notation ( j f A X i - 1 ) =  lim <f>)(r) will be introduced. Within the /,•
J r->Xi^ i  +

the <f>j are often functions like sines, cosines, polynomials, etc., which can be evaluated 

for any values of their argument and are continuous, so this notation is quite handy

(if <pj =  sin a i j r ,  for example, then 0* (X t_ i) =  sin a i j X i - 1 ). With the goal of writing (2.47)

as a matrix equation, use the relabelling (2.24) and this new notation in (2.47) to obtain

J<= E  M l ( X i ) -  E  f i M X i ) -  (2-48)
l=Li+ l  I—Li—i + l

With the benefit of (2.48) an N  X n matrix, 4/, can be defined by

C -<h(Xi)  if L, _ 1 +  1 < I < Li
= < MXi)  if U + 1 < 1 < i i+ i  (2-49)

I 0 otherwise
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which obviously allows (2.48) to be rewritten as the matrix equation

n

Ji = J 2 ^ u f i  for * = 1 , . . . ,A .  (2.50)
/=i

Using the formula (2.41) and writing the J, and the sj in vector notation for conciseness, 

gives the desired expression for the $'•:

s' =  0 J  = 0 M . (2.51)

Application of (2.42) then converts this vector to the required function of r.

From these results we can use (2.43) to say tha t the value of the function V f  at a 

point r lying in bin /,• is given by

® /l r =  E  + E ( 0 * k / i -  (2-52)
/=L,_1+1 0,7 r 1=1

It still remains to determine how to use this definition of V  to obtain higher derivat­

ives V pf .  The fact that both Dc  and IDs in (2.43) are piecewise-continuous functions with 

jumps only at the discretization points means, obviously, that V f  is also such a function. 

It can then be decomposed, just as /  was in (2.35), into a continuous function c\ and a 

step function Si. The definition (2.43) can then be used to calculate V ( V f )  =  V 2f . This,

too, will be a piecewise-continuous function with jumps only at the discretization points,

so this procedure can be repeated to obtain, recursively, derivatives of any order. In the 

practical implementation of this algorithm it is easier to keep the step functions resulting 

from previous decompositions separate, and apply the operator V  only to the functions Dc 

derived at each stage, with the knowledge that the uniqueness of the decomposition (2.35) 

and the linearity of D  make the two approaches identical. In the repeated application of 

the formalism for calculating V qf  the same objects, c, s, etc., will crop up at each 

step, so to distinguish them subscripts or superscripts will be used. An inductive argument 

will be used to prove the expression (2.63) for V q f , but first the second derivative will be 

calculated explicitly, so that (2.63) does not come as a complete surprise.

Starting with /  in <S, use (2.35) to write /  =  Co +  So just as before (renaming the Ji 

and in (2.48) and (2.49) J f  and -  so that (2.51) becomes s'o = 0 J °  =  0 1$rOf, for 

example), and use the definitions of the operators D , ID and V  to obtain V f  = Dco + JDso 

as in (2.43). D cq and Dso are given in terms of the free parameters by (2.45) and (2.51), 

respectively. As was stated above, D cq is piecewise continuous, with simple jumps at
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the X{, so the (full) derivative operator V  can be used on it. Now decompose Dcq according 

to (2.35) into D cq = c \  4-si (ci is continuous and sx is a step function as usual). Obviously, 

this gives V f  = c\ +  ( s x + S q ) ,  where s x + is a step function. From (2.45) it is easy to 

see that the jumps, / / ,  in D cq (from which sx is constructed via (2.32) and (2.33)) are 

given by r . -
d<j>iLi+1

j } =  E  f i
l = L i +1 dr

Li

-  E  7 T
X i  l = L i - ! + l  d r Xi

(2.53)

using (2.48) (recall the paragraph following (2.47) where the hat notation, % was defined). 

This can be reduced to matrix form (2.50), i.e. J 1 =  $ 1f, with the definition

=

_ d<t>i 
dr

d<t>l
dr

Xi

Xi
(2.54)

0 otherwise

Applying the definition of V  in (2.43) to V f  =  cx 4- (sx + Sq) gives

V 2f  = Dc\ 4-10(3! 4- 5q)

The first term is easy to evaluate (recall that D is basically just the usual derivative 

operator except at discretization points where care must be taken to ensure that the 

left-hand derivative is taken -  see (2.36)):

Li
fC i |r = E  fl &4>i

dr2
for 1  < r < X{.

l = L i - i+ l

To derive the expression for D (si 4- «o) first note that the linearity of ID allows this to be 

written IDsi 4-Dsq. ID operates on step functions through the application of the difference 

matrix A on the N  values taken by the step function (equation (2.40)) to give the N  values 

taken by its derivative. So

s"0 = As'o = A 0 J°  = A 0 $ ° f ,

and IDsq can be obtained from this by using (2.42). The alternative form (2.41) for 

the operation of the difference matrix was not appropriate for use on Sq, because it as­

sumes that we know the jumps in the step function, rather than its actual values, and 

the expression, (2.51), we have for Sq only gives the values. However, the new step func­

tion s i, obtained from decomposing D c q , is defined using the jumps J 1 =  1®rlf  (see (2.53)
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and (2.54)), so the second difference formula can be used (and is actually simpler). This 

gives

s 'j = © j1 = © ^ f .

Putting these results together we get

V 2}\ =  B c1|r +  K ( r )  +  ^ '( r ) ]=  £ ,  f i ^ p r
I—Li—i +1

+ © ^ f  +  A 0 $ ° f (2.55)

(for X { - 1  < r < X{, and for i = 1 ,.. . , N) .  Comparing this with equation (2.52) for V f ,  

a pattern can be seen to be emerging. The operator V  could be applied again to V 2 f  

in (2.55), and the pattern would be obvious, but the following inductive argument will be 

more than sufficient.

The set of equations

V ° f  

V V  

V 2f

= f

D cq  +  ID^o =  D cq + S q

Dc\ +  ID(si +  s 'q) =  Dc\ +  (sj +  5q)

V ”f  =  ncp.x  +  ^ 4 - (2.56)
9=1

illustrate the sequence of derivatives (on each line the decomposition (2.35) has been used 

to write Dcq- \  = cq +  sq, so that the definition (2.43) of V  is to be applied). A glance at 

equations (2.23), (2.45) and (2.55) indicates that the general expression for Dcq- \  is

Li
Dcq- i | r =  E  f ‘

l=Li—i+l

dq4>i
drq

for Xi < r < X i - 1 , (2.57)

and, as can be seen from the fact that this is defined on each bin, this is piecewise- 

continuous function. This can easily be proved inductively. Obviously, it holds for q = 1 

by virtue of (2.45). If (2.57) holds for some q, then piecewise-continuity allows (2.35) 

to be used to define a step function, ^ ( r ) ,  from the jumps, J j ,  in Dcq- \ ,  through the 

procedure outlined in equations (2.31), (2.32) and (2.33) (with /  replaced by Dcq- 1 ). In 

fact, applying (2.31) to the expansion (2.57) (which holds by assumption) gives
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(i.e. J 9 = ^ 9f, in vector notation) where

_ &&drQ
dHl 
dr9

X t

Xi

if jL/i—i “I- 1 ^  ^  L{

if L{ +  1 < / < i/t+i (2.59)

0 otherwise

(c/. equations (2.49) and (2.54)). This expression for ^  will be useful later in the evaluation 

of the step functions occurring in V p f .  The value, sj, of sq(r) for r in the zth bin is given 

from (2.32). A continuous function cq(r) can then be introduced, according to (2.34), such 

that cq(r) =  Dcq- i \ r — s'- for r in the zth bin. The defintion (2.36) of the operator D then 

says that, on the zth bin, Dcq is given by

Li
D c , =  Y

d dq(f>i
dr drq

Li
- t j  i =  E  f ‘

dq+1<f>i
dr * ,  ̂ drq+1l=Li-i+lI—Li—i+l

(taking care at the end-points of the bins as usual) which satisfies (2.57) and thus proves 

the hypothesis.

It only remains now to consider the step function part of V pf .  The proof of (2.57) 

constructed the step function sg(r), which can be used to show that (2.56) is indeed true. 

(It is true for p = 1 by (2.43) and (2.42). If it holds for some p , then Dcp_\ = cp + sp gives

Vr+1f  = v U  + sp + Y  4 - J  = ^ p  +  ®  f *P + E  4 - J  = ^  +  1 ! *(?+!)-,-
\  9= 1  /  \  9= 1  /  9 = 1

which is (2.56) again). Furthermore, from the proof of (2.57) we have an expression, (2.58), 

for the jumps in Dcq_ 1 , from which sq is constructed. We also know that these jumps 

alone are sufficient to allow the derivative of sq to be calculated from (2.41):

N - 1

«',(r) =  s f  = Y  for J f i , i  < r < X ,
j=1

(2.60)

(using (2.58)). For the repeated derivatives of the sq the form (2.41) for the derivative 

is no longer available, because only the values on each bin of the step functions to be 

differentiated are known, not their jumps. The alternative expression (2.40) must therefore 

be used, so that

4 - , M  = V ? ) (’_1)(r ) =  (A ,' ls ' " , ')i = (A’- W - ' f ) ;  for <  r  < X.-.

Introducing the notation

B ( p ) =  ^  A 9-10 t f p-9 
9 = 1

(2.61)
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(so that B(p) is an N  X n matrix) obviously then allows (2.56) to be written

n

T>vS\r =  Dcv. ! Ir +  £  4 P)/i for x ,_ , < r < X (.
1 = 1

At last, making use of (2.57) for Dcv- \  gives the expression we need for V pf :

U &Hi J , )
1 = 1

W f l =  E  f I - & T  +  E JSi l / l ,  for X{- i  < r < X{, (2.62)

or, alternatively, using the relabelling (2.24) to rewrite this in terms of the / j ,  which makes 

it easier to see the significance of the discretization bins:

P ’ / l r =  E / :. 3 dr^
3 =1

+  for X i . i  < r < X i .  (2.63)

Calculating the generalized difference matrix B ^  requires knowledge only of the matrices 

0  and A (which can be determined entirely from the discretization points in (2.16)), and 

of the values of the basis functions and their derivatives at the end-points of each bin. 

Evaluation of the Dcp- \  part of V p f  needs only the values of the pth derivatives of the 

basis functions within each bin (see (2.57)). In the implementation of this algorithm it is 

a simple m atter to provide numerical routines to supply these quantities as required. This 

will be considered in more detail in §2.2.4.

Making use of the final expression, (2.63), for V qf  in terms of the free parameters / j ,  

as well as equation (2.19), in the general regularizing functional (2.15) gives $ (f)  as an 

explicit function of the /j :

N  * X i  ( J O .  . . 3 .  . dp(f>)
* ( f ) = z r  E m ? ) £ f i  drP

i = l  J X i - 1 \j= l 3=1

+ ; r p(r) dr, (2.64)

where the integral has already been broken up into integrals over the individual discretiza­

tion bins, allowing equation (2.19) to be used to give the value of f ( r ), and equation (2.61) 

to be used for the value of the step function part, (2?(p)f)t-, of the derivatives on each bin. 

This is the clearest expression for 4>(f), but in some circumstances (see the following

section, §2.2.4, for example) it may be better to write /  and its derivatives using the
Li

alternative expression (2.62), so that both summations occurring in (2.64) become ^  :
Lt—i +1

= I  + ( 5 (p)f) i ; r ]  p(r)dr.  (2.65)
i = 1 J X i - i  \ L._1+1 L . _  i + i  a  r  J
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The following section will make use of this expression to derive a more explicit form 

for the smoothing constraint with a particular, and very important, type of regularization: 

quadratic regularization.

2 .2 .4  S p e c ia liz a tio n  to  q u a d ra t ic  R L S

Quadratic regularizing constraints are those functionals (2.11) in which the function p  is 

just a quadratic polynomial in /  and its derivatives. In the general case there will be cross- 

terms of the form but these will not be evaluated here because we will concentrate

on the most common form of quadratic RLS, simple pth-order smoothing (2.10), and also 

because once the derivation of the expression for 4>(f) with pth-order smoothing has been 

given it will be obvious how to generalize this to any quadratic smoothing constraint.

As the equation (2.10) shows, for pth-order smoothing the function <p in (2.11) is given 

by ip = • Replacing the occurrence of derivatives in this ip with the operator V

gives ip =  (Z>p/ ) 2, making the regularizing functional

rRq
$<”> [ /]= /  (P”/I ,)V M * . (2.66)

JO

The positive weighting function has been retained here (in contrast to (2.10)) because it 

will be used in later chapters to allow the amount of smoothing applied to vary between 

different parts of the solution. Using the expression (2.65) (with <p =  (Jfp)  ) to evaluate 

this functional for /  in the discretization space results in ■

N 'Xi
* « (f) =  W  ‘

t=1 JXi-* Li —1+1

p(r)dr.  (2.67)

The goal in this section is to reduce 4>(p)(f) to the simple form (2.74), in which a double 

sum over the n components of f  is implied. To this end, it is a good idea to attem pt to 

rewrite the restricted sum over I in (2.67) as a sum over all /, and it is a good idea to 

do this now before things become unbearably messy. The trick is to recognize that the 

definition (2.46) and the relabelling (2.24) give

E =iXi(D (.2-68)
L i —i  +1  /=1

( 6 i ti(i) is the kronecker delta. Its indices are the free index i and the ‘dummy’ index *(/) 

obtained from (2.24). Consequently, zero unless 11S the label of a basis function
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defined on the zth bin, i.e. with L i - 1 +1 < I < Li.) Note, too, that ( B ^ f ) i  = Yl?=i fi- 

So, equation (2.67) becomes

N rXi I n
» w w  = e / t E / ii=lJXi-i [l+l

A . .
m (0  ̂ p + p(r) dr, (2.69)

the integrand of which can be expanded to give four terms so that (2.69) becomes

d ^ i
* w (f) = t t h f i i k i v A m j * '  ^

1=1 *,/=! I J X i - l
d r p

p(r) dr

+ ( * £ ’«*<*> ^  I  Pi?) dr + Bj? 6 „ (l) £  ^  [  p(r) *  J  (2.70)

+ « >  J"' * )

drP 

d r y

Now interchange the order of the sums over z and over & and /, observe in the first term 

that the sum over i can be evaluated explicitly, giving Y!,iLi ^i,i(k)^i,i(l) =  anc^

define three new matrices as follows:

<*&> = v , , o / ; ,w 

p ,I? = K m C
J  X i - 1

x Kk) dp(f)]t
drP

dP<f>i
r drP

p ( r ) dr

x > dP<f>i
drP

Xi

p (r )  dr

c 4 i ’ =  P(r)dr .
t=l J X i ~l

(2.71)

(2.72)

(2.73)

Obviously, Co^  and C s ^  are n x n matrices, whereas p(p) is N  x n (the same size 

as B(p) -  see equation (2.61)). Together, these definitions allow (2.70) to be reduced to 

the much simpler form

Col? + E  ( s . W  + + C si?1$ « ( f )  = • £  fkf,
k,l=1 1 = 1

or, in vector notation, even more concisely

$(p)(f) = fTCto)f (2.74)

(T denotes matrix transpose) where the pth-order smoothing matrix C ^  can be broken 

down into

C (p) = C0(p) +  ( B ^ TP {p) +  p W TB W )  +  Cs ip). (2.75)

Co^p\  B^p\  p W  and C s ^  are defined in equations (2.71), (2.61), (2.72) and (2.73), 

respectively.
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The important point in all this is that, although the process of deriving the preceding 

expressions has been messy and awkward, the calculations that must be performed to ef­

fect the numerical implementation of this algorithm are actually quite simple. First, note 

that the kronecker deltas appearing in equations (2.71) and (2.72) for C o ^  and p(p) just 

mean ‘only evaluate this quantity for basis functions in the same bin (for C o ^ )  or in the 

zth bin (for P ^ ) ,  all other matrix elements are zero’. This considerably reduces the num­

ber of quantities that must be evaluated. Note also, that it is only necessary to provide a 

subroutine returning the values of each of the basis functions </>*• and their derivatives at 

the boundaries of their discretization bin X{- \  and X{, for use in the procedure to calculate 

the matrix B^p\  and to provide subroutines to return the values of the integrals occurring, 

in equations (2.71), (2.72) and (2.73). For the most common discretization procedures this 

is a lot easier than it sounds, particularly when the weighting function is taken to be a 

constant on each bin ( ,  on the zth bin, say), for then Jx-_j p(r)dr = pi(X{ — X{-i )  

in (2.73), the integrals in (2.72) are just the integrals of the pth derivatives of the basis 

functions, which means they are the difference between the (p — l) th  derivatives evaluated 

at the ends of each bin (so the routine used to return derivatives in the calculation of 

can be used here too), and the integral in (2.71) is just the ‘inner product’ of two func­

tions, which means that when those functions are orthogonal (as often occurs in practical 

situations) this integral is zero. When zeroth order smoothing is being employed (p =  0), 

there are no derivatives, and the elements of Co are just the inner products of the basis 

functions, which will be zero unlesss k = I for any orthogonal basis (such as a Fourier 

series, legendre polynomials, etc.). When the basis functions are sines and cosines, these 

integrals are zero unless k = I even for their derivatives (because the derivatives of sines 

and cosines are cosines and sines with the same argument). In other words, for the com­

monly used discretizations the integrals that must be evaluated in the calculation of the 

smoothing matrix are often very simple and analytically defined, so that the subroutines 

required can be written with some generality. This is probably the most important as­

pect of this algorithm: it is possible to create subroutines to evaluate the integrals and 

derivatives required by this algorithm in a general way, so that the user need only spe­

cify the discretization points (2.16) and the type of discretization to be used on each bin 

(e.g. polynomial expansion, orthogonal function expansion using cosines, orthogonal func­

tion expansion using legendre polynomials, piecewise-const ant approximation etc.) and
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the numerical routines will do the rest.

To make the creation of such general subroutines possible it is helpful to think of a 

‘generic’ discretization bin with a coordinate y going between zero and one, to write any 

set of basis functions in terms of this new coordinate, and to perform the evaluations 

of the derivatives and integrals in this new coordinate system. Suppose, for example, 

that some set of basis functions Pi, f a , . . .  is to be included in the implementation of this 

algorithm. Any such set of functions has a natural range of definition. The natural range 

to use for polynomial expansion (basis functions 1, y, t/2, . . . ) is (0,1]. If the basis comprises 

orthogonal functions these will only be orthogonal over a specific interval (for a sine and 

cosine expansion the interval must contain exactly a whole number of half-wavelengths, 

for example). If necessary, rescale the coordinate in the definition of these functions so 

that this interval is (0,1], and write subroutines that return the values of:

dqPk1.
dyq y 

to calculate

for any k and q, and for any y in [0,1]. Actually, it is only strictly necessary

dqpk
dyq

for y = 0,1, but it is often useful to obtain the values of the

for any y.
y

derivatives of the solution at any point which means calculating

■ ■ I

dyq

y dq (3 k
dyq

dy' for any q and k and any y in [0,1]. Again, it is only strictly necessary

dq~1(3kdq~xP kto evaluate this for y =  1. Note that for q > 1 this integral is ———
dyq- , dyq~x

which can be obtained from the subroutine in 1., so that all that is needed here is t
ry dq3k f y

evaluation of /  ——  dy' for q — 0, i.e. /  pk{y') d y Indeed, for y =  1, which i
Jo dyq yi Jo

all that is really required, evaluation of this integral ought to be very simple in most

is

cases. 

t f 1 dq (3k dqfii
Jo

, , dy for any q, k and I. In certain cases (such as when the (3k are sines
dyq dyq

and cosines in a Fourier series) these integrals will only be non-zero for k = /, but 

this will not be true in general.

All of these quantities can be calculated with a knowledge only of the pk\ they are com­

pletely independent of any discretization. It will now be shown how these quantities arise 

in the discretization procedure, and that they are all that is required for the general 

application of any such set of basis functions (3k to the RLS inversion of (2.5).

Whenever the basis functions (3k are used in a discretization, the bin on which they
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are defined will not be (0,1], but will instead be /*■ = (X j_i,X ;] for some i. The simple 

linear coordinate transformation

1 X
y(r) = mr + c, with m = — ------— - and c = -  — — ^ — - (2.76)

1) — A t'_i )

can be used to define the basis functions on the zth bin to be

<f>)(r) = Pj[y(r)] for X,-_i < r < X{, and for j  -  1 , . . . ,  n{. (2.77)

From the coordinate transformation (2.76) it is easy to see that which

can be used repeatedly to give
dq ndq ,
d ^  = m w -  (2-78)

Also, Jx jlj dr = fo %dy  = ^  fo dy. These two results can be used in the evaluation of

the three quantities needed in the calculation of the smoothing matrix:

d ^
drP

f x ' M  dT = d y = m , - > r ^ \  dy
J X i - i  drP r m  Jo dyP y Jo dyP \y

f Xi £ & . £ & . dT = I f 1 dy = t x dy .
J X i - i  drP drP m  Jo dyP dyP s  Jo dyP dyP  y

Quite clearly, these calculations only require knowledge of the discretization points (so

tha t m  can be calculated from (2.76)) and the subroutines referred to above for calculating

derivatives and integrals of the generic basis functions (Ik- This means that once the three 

subroutines have been written for each set of basis functions (polynomial expansion, sines, 

cosines, legendre polynomials, etc.) to be used in the implementation of the algorithm, 

the basis functions can be used on any bin without difficulty, and without the need to write 

code specifically for that discretization.

Jt turns out that in the discretization of the kernel functions in (2.25) it is advantageous 

to  supplement the three subroutines described above with another to return the value of 

repeated integrals of the basis functions

i  r  r y  r y q  p y 2

iqk(y) ^  /  /  • • • /  Pk(y i )dy i . . . d yq. (2.79)
Jo Jo Jo

The kernel functions in helioseismology are generally found by solving the differential 

equations of oscillation numerically, which procedure typically results in finding the values 

of the kernel functions at a grid of points Cl? C2 9  • * • throughout the model sun. The kernels

m p
dP(Jj\
dyP l„

1 f 1 r, '/  m p ■
m . lo

1
f 1 m 2p

m  „to

•' dP/3<
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are then defined at intervening points by interpolation. Splines (Cox 1975) of some kind 

are the best bet -  either piecewise-linear or cubic splines -  which means that between 

any two grid-points the kernel is approximated by some polynomial, of degree i/, say (for 

linear interpolation v = 1, for cubic spline interpolation v — 3): k{(r) «  r*

for £7_i < r < (7. When the basis functions <f>\are just related to the (3k as in (2.77), 

the integrals appearing in the discretization of the /C; in (2.25) then just break up into a 

sequence of integrals between adjacent grid-points of (sums of) moments of the (3k:

rKPk[y(r)\dr = ^  f  Pk(y)dy
k = o J ^ ~  i k = o 171

= E “ «7 )^ + r  /  yK0k{y)dy,
«=o m  J y-i- 1

where the inverse of the transformation in (2.76) has been used to write r as a (linear) 

function, r = (y—c)/m,  of y and the integral variable has been changed to y in the first step, 

(y — c)* has then been expanded, and the terms collected up (giving new coefficients a K 

in the expansion). Integrating this by parts repeatedly, it is easy to see that each such 

term will become a sum of terms containing X^(y7) — I^(y7_i) for different q. It may 

seem that providing a subroutine to evaluate the T\  for any set of functions (3k involves 

considerable work, and in some cases it will, but often (such as when the (3k are simple 

analytic functions such as powers of y or sines and cosines) an explicit analytic expression 

for the integrals can be derived.

The procedure just described enables any of the matrices and other quantities needed 

for performing the inversion of (2.5) using this algorithm to be calculated. In particular, 

the preceding discussion shows exactly how to calculate the smoothing matrix in (2.75) and 

the associated equations (2.61), (2.71), (2.72) and (2.73), and the kernel matrix in (2.25). 

It can be seen from equation (2.82) for the explicit form of the solution with quadratic 

regularization that these two matrices are all that is needed to calculate the solution, apart 

from the data vector, g, given in (2.29).

It is still necessary, though, to give the final discretized form of the functional 7Z 

tha t must be minimized to find the solution when quadratic regularization is used. The 

expression (2.74) for the discretized regularizing functional corresponding to pth-order 

smoothing can be combined with equation (2.30) for the discretized \ 2 functional to give 

the discretized form of the functional 1Z (equation (2.9)) with pth-order smoothing, which
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will be denoted by 7Z ^ :

77(p)(f) = ||g -  f | |2 +  AfTC ^ f  (2.80)

(remember the definitions (2.27) and (2.29)).

The final step in the procedure will take (2.80) and use it to derive an explicit expres­

sion (2.82) for the solution vector f  in terms of the data g (and the kernel matrix and 

smoothing matrix).

2 .2 .5  S o lu tio n

For general (non-quadratic) regularizing functionals, the minimization of 77(f) will usually 

require the use of general optimization algorithms (see Numerical Recipes, chapter 10). 

Here, though, we concentrate on the minimization of 77(f) when quadratic RLS is being 

used.

The first step in the (well-known and standard) derivation of the explicit solution to 

the minimization of 77(p) in (2.80) over all possible solution vectors, f, is to expand 7 

and collect terms of the same order in f  together, to give

77(p)(f) = g2 + i T(H TH  +  AC<p))f -  2gTH i  (2.81)

(where g2 =  ||g ||2 = gTg). Obviously, at a minimum of 7Z ^  the derivatives of 7Z ^  with 

respect to the components of f  must be zero, so (2.81) gives, in component notation,

= 2 Y l ( H T H  +  AC<p)),tA  -  2(H T e ) i  = 0 for / =  1 , . . . ,  n, 
9 f ‘ te l

which immediately gives the desired solution:

i  =  ( H T H +  \ C ^ ) - ' H t z . (2.82)

In this last step it has been assumed that the matrix H T H  +  AC'P* is non-singular, but 

this is reasonable since it was to ensure this that regularization was introduced in the

first place (although see §2.4). The zero eigenvalues of H TH  +  AC(p) are a reflection of

the non-uniqueness in the original problem (2.5), because any two solutions differing only 

by a component that is an eigenvector of H TH  +  AC(p) belonging to a zero eigenvalue 

will give rise to the same data. Moreover, very small eigenvalues of H TH  +  AC(p) (which 

would make this matrix ill-conditioned) would correspond to instability for much the same
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reason. If the regularization was at all successful both of these problems should have been 

removed, so H TH  +  A s h o u l d  be well-conditioned for inversion.

This concludes the explanation of the inversion algorithm that will be used in numerical 

calculations throughout the rest of this thesis. The remaining sections of this chapter 

concentrate primarily on important details of the practical implementation of quadratic 

RLS.

2.3 Applying constraints to the solution

It is often useful in solving inverse problems such as (2.5) to apply constraints to the 

solution (Jeffrey and Rosner 1988). In helioseismology the most obvious example of this is 

constraining the surface rotation rate inferred from splitting data to match the observed 

values. Such constraints can be enforced in any method to solve such inverse problems, 

but implementing the constraints when using RLS methods is particularly simple. Here 

we adopt the formalism of the previous section, where the solution was expanded in terms 

of a (finite) set of basis functions, to examine the effect on the recovered solution of 

such constraints. It should be noted, though, that the ideas and procedures presented can 

be applied to all the RLS methods for solving (2.5), not just to the algorithm described 

in this chapter.

Constraints (such as the surface constraint on the solar rotation rate) that fix the value 

of the solution, / ( r ) ,  or more generally, f^p\ r )  (for p > 0), at some point r = (  have the 

form

. , drP
3= i

= c (2.83)

for £ in (X t_i,X j]. Since the are, for a given £, just numbers, (2.83) is just 

a linear relationship involving the free parameters in the inversion (the components of 

the solution, / ,  in the basis {<£*•} of S ). With the algorithm described in this chapter 

applying constraints takes on even greater significance. Apart from fixing the solution 

and its derivatives at some point, it may be desirable to require continuity in the solution 

or its derivatives across the boundary between two discretization bins (i.e. continuity 

at a discretization point, X,). This is because, although the smoothing restricts jumps 

in the solution across discretization points to some extent (through the B term in 

the expression (2.63) for the derivative of the solution function, / ,  in terms of the free
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parameters, f), the contribution to the derivative from jumps at discretization points is 

weighted so that a jump contributes an amount to the derivative which decreases as the 

width of the neighbouring bins increases. So, for large bins the jumps at the ends of 

the bins may not be very well controlled by the smooothing and can be quite large (see 

fig. 5.3, for example, where the jumps in the solution for discretization method 3 are very 

noticeable). Often this will be acceptable, but in cases where the solution is known to 

be continuous, for example, such large jumps must be avoided. Obviously, enforcing such 

continuity constraints gives rise to a condition of the form

/<»>(*;) =  lim / (p>(r)r-*Xi +

(where the limit arises from the usual conventions about half-open intervals, described in 

the discussion following equation (2.17)), which may easily be written

Tli

£ /. 3 drp
3=1

‘•'+1 dp<f>i+1i+l
. drpXi j=l

= 0. (2.84)
Xi

This is again a linear relationship between the free parameters in the inversion. In general, 

all such constraints may be written

it aif{=
i=i

If several (z/, say) such constraints are being enforced, then we can write

i t ^ f i  = f t r\  for r =  l , . . . , i / ,  (2.85)
i=i

or,

A f  = b (2.86)

( r )in matrix notation, with A a i / x n  matrix and b a z/-vector. Obviously, A ri =  a\ ’ and

br =  /JM.

Mathematically, each (independent) constraint removes a degree of freedom from the 

solution function, and so all the constraints together force the solution to lie in some 

proper affine subspace of the original discretization space, S.  It is necessary, though, to 

discuss the practical implementation of the constraints. How is this system of constraints

used in combination with the data and smoothing constraint contained in the discretized

functional H (f)  in (2.80), which previously was to be minimized over all of the parameters
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in f? In what follows the regularization will generally be assumed to be quadratic, but not 

necessarily pth-order smoothing (2.10). The superscript on will therefore be dropped.

It is perfectly possible to introduce the restrictions imposed by (2.85) into the func­

tional 7Z using lagrange multipliers, /ir , in the minimization over the //, and to derive an 

analytic expression for the solution vector in the usual way from this new functional. That 

is, we replace 7£(f) by

TC(f) +  X > , . ( c < ( , )r f - / 3 w )
r=l

and take derivatives of this functional with respect to the // for / =  l , . . . , ra .  With 

some effort the resulting formulae can be written in such a way that they give an explicit 

expression for the f  that minimizes this functional.

However, it is much simpler (and equivalent) to consider (2.86) right at the outset, 

and to effectively change basis in the discretization subspace, <S, to a new basis in which 

the constraints become
fj = Pi'for i = 1, . .  .,£> 
fl is unconstrained otherwise.

Here v is the number of independent constraints, which ought to be the same as the actual

number of constraints, v (there is no point applying the same constraint twice), but if v is

large constraints may be effectively linearly dependent (to the level of accuracy that can

be achieved numerically), so it can happen that v < v .

This change of basis is purely a mathematical procedure and does not require a consid­

eration of the basis functions <f>j. It is achieved by performing singular value decomposition, 

or SVD (see Numerical Recipes, §2.6), on the matrix A. Note that v must be less than n, 

the dimension of the space S  and hence the length of the vector f , otherwise the solution is 

completely determined by the constraints and the data become irrelevant. In any sensible 

case v < n (usually, v <C n), and in what follows we will assume that this holds. Usually, 

too, v — v , but we will not insist on this here. Using SVD it is possible to write

A  =  PD Q t  (2.87)

where P  is a v x v orthogonal matrix, Q is an n x n orthogonal matrix and D is a v x n 

matrix which is ‘diagonal’ in the sense that Dij = 0 if i ^  j .  The elements d{ = Da for 

i = 1, . .  .,i/} are the singular values of A, and the number of non-zero singular values is 

the rank of A, which equals the number of linearly independent constraints, v. So d{ /  0
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for i = 1 , . . . ,  P < n and d{ = 0 for i > P. Then

A i  = PD Q TI  = b,

so, using the orthonormailty of P ,

D(QTI) = P Th  d= b.

Defining f  = QTi  then gives

D f  = b.

Since Dij ^  0 if and only if i =  j  and i < P, write D as a block matrix (D i| 0), where D\ 

is v x P, and partition f  correspondingly as

- •  (2-88)V f 2  ) }n  -  v

Then

D t  = (Dx\ 0) = D ifi =  b. (2.89)

This is almost the desired result. The only subtlety arises from the fact that v = P was

not insisted upon. If v =  P then D\  is P X P, diagonal and of full rank, so

fr = D i ' b ,  i.e. f u  =  j b i ,  for i = 1 , . . . ,  P, (2.90)

which fixes fi exactly, and leaves ? 2  (the remaining elements of f) completely free.

When P < v the matrix which is u x P and only has non-zero elements on the 

diagonal, must have zeros in the last u — P rows. It can therefore be written

\  0 ) } v - v

where D\  is P X P (square), diagonal and of full rank. Then, writing

\  b 2 ) } v  -  v

in equation 2.89, gives

It follows from this that the constraints are only consistent if b 2 = 0 (in numerical calcu­

lation it is adequate for the elements of b 2 to be no larger than round-off error might cause
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them to be). If the constraints are consistent (as they should be in practical situations), 

then

fi = D ^ b u  i-e- h i  = j - h i ,  for i = 1, — , (2.91)

so equations very similar to (2.90) hold, and again the first v components of f  are fixed 

by the constraints.

So far the use of SVD has provided a new basis in terms of which the first P components 

of f  are fixed, while the remaining n — P components are left free to be determined by

the data (and the smoothing constraint). Application of this to the practical solution

of the regularized matrix problem will now be described, the essential point being that 

minimization is performed only over that subspace of S  that has fi =  in the

new basis. Throughout the succeeding discussion it will be tacitly assumed that (2.90) 

or (2.91) holds, so that fi is fixed by the constraints. In effect, fi will be used as a 

shorthand for D ^ l hi.

Since the matrix Q in (2.87) is n x n and orthonormal it is trivially invertible. It is 

therefore possible to use the definition f  = QTI  to write

= (2.92)

Using this in the discretized functional 7Z defined in equation (2.80), with the knowledge 

that only the* last n — P components of f  ( ? 2  in other words) are free, allows 7£(f) to be 

rewritten as a functional, 7£, of the new free parameters in I2'

n ( i2) =f 7 (̂Qf) =  7̂ Q (2.93)

This new functional is quadratic in f 2  for quadratic smoothing constraints (which is the 

case we are principally interested in here) and so can be differentiated with respect to 

the h i  to give an analytic expression for f2  in terms of the data, kernel matrix and 

smoothing matrix, just as described in §2.2.5 for the solution without constraints.

The first stage in the derivation of the constrained solution to the minimization of 7Z 

is, therefore, to derive the functional ^(f^). This derivation is actually quite simple, 

but the need to use block matrices corresponding to the division of f  into fixed and free 

components can give it a rather intimidating appearance. It is helpful first to expand 

the expression (2.80) and collect terms of the same order in f  together, just as was done
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in (2.81), and then to use the relation f  = Q i  to get

%(f) = n(Qf )  = g2 -  2gTHQf  + f TQT(HTH + XC)Qf. (2.94)

It is natural now to make the definitions

H  = HQ and C = QTCQ (2.95)

so that Qt ( B t H  +  AC)Q =  H H  -f AC. This amounts to nothing more than expressing 

the linear mapping represented by H  and the bilinear form represented by C  in terms of a 

new basis (for the solution space) in which the basis vectors are the right singular vectors 

of the constraint matrix, A, in (2.86) (i.e. they are the columns of the matrix Q ). The 

next step is to partition H  and C in a way that corresponds to the partitioning of f  into 

fixed and free components (fi and f2, respectively). That is

H  = (H i \H2) and C = Cl c 3
, c l Cl .

(2.96)

(where the tildes have been omitted from the submatrices for ease of notation). Here, H\ 

is m  x P, H 2 is m  x n — />, C\ is v x u, C2 is n — v x n — i> and C3 is i> x n — P. This 

ensures that the products of the submatrices that occur in H i  and I T{HTH  +  \ C ) i  are 

compatible. In fact, it is easily seen that

'  fi '

and that

H i  = ( ^ | ^ 2)

H H =

= JTifi +  JTafa,

H i  Hi H i  Hi  '

H i  Hi H i  Hi ,

(2.97)

(2.98)

is partitioned into submatrices exactly corresponding to the partitioning of C. This means 

that i T(H TH + XC)i  can be expressed in block-matrix form as

H i  H2 +  A C3
H J  Hi  +  A CiHi  ̂  + A Cl

which, on expansion, results in the following expression in terms of the vectors fi and f2 

f l a i l  Hi + AC’i)fi +  2 f l ( H l H i  + XC3%  + f I  ( H i  Hi  +  AC2)f2. (2.99)

Using this and (2.97) in equation (2.94) and again collecting terms of the same order in 

f2 gives the sought for definition of 7£(f2):

K(f2) = f l (HiHi  + AC2)?2 -  2[gTff2 -  f l (HiHi  + AC'3)]f2

+ g2 -  2St H A  + f l  (HiHi  + XCi)fi. (2.100)
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(Note that the second line of this equation contains only terms that are independent of 

?2 , and so do not affect the result of the minimization over I2.)

Taking the derivative of 7Z with respect to the components of ? 2  and setting the result 

to zero in the usual way (see §2.2.5) gives

( H f H 2 + XC2%  =  H i g -  ( H i H r  +  AC j % .  (2.101)

Although solving (2.101) to obtain the expression for the solution that appears in (2.102) 

below seems the inevitable next step, there is another approach which may have advantages 

in some circumstances. In examining these alternatives it is neccessary to consider some 

of the practical aspects of obtaining such solutions by numerical procedures.

There is some freedom in the choice of the analytic expression for the solution of (2.101). 

It is possible to follow the simplest route, which is identical to the derivation of the solution 

without constraints given in §2.2.5: calculate the inverse of the matrix H%H 2 +  AC2  and 

define the solution by

f2 = ( H i H t  + ACjJ-MffJg -  ( H i H t  + AC'Jjf,]. (2.102)

(Equation (2.102) determines I2 and the constraints fix fi, so f  is known. The desired 

solution then follows from f  =  Qi.)  This has the drawback, though, that the matrix 

( H j H 2 +  AC2 ) - 1  depends on the matrix Q in (2.87) -  through the definitions (2.95) -  and 

hence on the set of constraints being used. Whenever new constraints on the solution are 

applied, a complete recomputation of the matrix inverse will be required, which entails 

considerable computational expense. If only one set of constraints is to be applied then 

this would be the method of choice, but if several sets of constraints (including, perhaps, 

no constraints at all) are to be considered, it would be more satisfactory to find an expres­

sion for the solution for which changing the constraints involves a smaller computational 

burden. It is possible to derive such an expression, but its implementation for a single set 

of constraints introduces greater complexity and some cost in terms of efficiency. Which 

form is appropriate for any inversion depends on the individual circumstances, and in 

particular on the number of independent constraints, />, and the number of different sets 

of constraints being applied.

Derivation of the second expression for the solution begins with the simple observation
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that (2.101) is actually a consequence of the equation

(2-103)
H jH y  + XCx H { H 2 + \ C 3 '
t f 2r # 1 + A C |’ H f H 2 + \ C 2 , }  \  Hi  g

where I?, g + v is some (as yet unknown) v-vector: it turns out to be convenient later to 

include the g term at this stage. In fact, expansion of (2.103) gives

(H? Hi + ACi)fi +  ( H f  Hi  +  AC3)f2 = H ?  g + v, (2.104)

(ff2Tt f 1 +  A Cj)f1 +  (ff2T,ff2 +  AC2)f2 = # 2r g. (2.105)

The second of these equations is easily seen to be equivalent to (2.101). There is still 

equation (2.104) to consider, though. Obviously, since fi is fixed by the constraints and ? 2  

is determined by (2.105) the left hand side of (2.104) is given. We therefore regard (2.104)

as a definition of v. How does this help? Well, the left hand side of (2.103) is just

(H TH  +  AC)f, so the solution is

f  = (H TH  +  AC)"1 (2.106)

The advantage of this is that, since H TH  + AC is just QT(H TH  +  AC)Q (by virtue of the 

definitions (2.95)) and Q is an orthonormal matrix (containing the right singular vectors 

of the constraint matrix A), the inverse matrix can be written

(.H t H  +  AC)"1 = QT(H TH  +  AC)-1Q. (2.107)

The matrix inverse on the right hand side of (2.107) is the inverse that must be calculated

to solve the unconstrained problem: it is entirely independent of the constraints. This 

means that, once (H TH  +  AC)-1 has been found, the calculation of (H TH  +  AC)-1 for 

any set of constraints is achieved by multiplying (H TH  +  AC)-1 by the matrix Q for 

those constraints. In fact, it is not actually necessary in practice to perform this matrix 

multiplication. The quantity that we really want to find is f  = Qi.  Using this and (2.107) 

in equation (2.106) gives

f  = (H t H + AC)-1.ffTg + (Ht H + AC)-1*? ( - M  . (2.108)

(The definition of H  in (2.95) tells us that Q H T = QQTH T = H T, since Q is orthonormal.) 

The first term on the right hand side of (2.108) is just the solution to the problem without
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constraints. The other term is therefore a ‘correction’ which ensures that the constraints 

are obeyed.

While the preceding discussion appears to provide a very satisfactory solution to the 

problem, the calculation of the vector v  has not been addressed. This is the main drawback 

in the practical implementation of this procedure. The fact that v is a P-vector indicates 

that it is the constraints imposed on the solution determine v, so it is easiest to derive 

the expression for v  in the basis in which the solution vector is split into fixed and free 

components, fi and ?2 , respectively. Ultimately, we should expect to obtain an expression 

relating v to the //-vector fi (which has itself been fixed by the constraints -  see (2.90) 

and (2.91)).

It is necessary at this point to partition the matrix Q into (Q 1 IQ2 ), corresponding to 

the partitioning of f  (this amounts to dividing the right singular vectors of the constraint 

matrix -  which form the columns of Q -  into those whose contribution to the solution is 

fixed by the constraints, and those which span the ‘free’ part of the solution space). The 

advantage of introducing this partition is that, since f  =  QTi  implies

fl = Q ? f ,  (2.109)

it is possible to use definition the expression for f  given in (2.108) to obtain the desired 

relationship between v and fi. In fact, observing that the last term in (2.108) is actually 

( H TH  +  AC)-1Q iv , we get from(2.l08) and (2.109)

fi =  Q f ( H TH  +  A C ) - ' H Tg +  Q l ( H TH +  X C ^ Q i v .  (2.110)

The matrix Q j ( H  H +  XC)~1Qi appearing on the right hand side of (2.110) is a i> x

square, symmetric positive definite matrix. It can be inverted to give

V = +  AC)-1Q i]-1 [fi -  Q l { H TH  +  AC)-1 f f r g]. (2.111)

It may be possible that, for a given set of constraints, there is a way to reduce the matrix

Q i ( H TH  +  AC)-1Qi to a form that can be easily inverted for many different values of A. 

For example, by using the decomposition (H TH  +  AC)-1 =  P~TM ~ 1( \ ) P ~ 1 described 

in §2.4 we may be able to derive a formula something like

[Q\(H t H + A C T ' Q i ] - 1 =  QTm - ' W Q



CHAPTER 2. THE INVERSION ALGORITHM 121

where Q is independent of A, and M  is diagonal (or at least trivially invertible). This would 

make the evaluation of v , and subsequently the solution, for different A, very fast. If this 

were the case, then the second method for calculating the constrained solution would be 

preferable in almost all cases (only when a single large set of constraints is to be applied 

would the advantages of inverting the smaller matrix H% H2+XC2 be significant). However, 

at the moment the need to explicitly evaluate and then invert Q j ( H TH  + AC)-1Qi makes 

this method unappealing if a large number of constraints are being used (the time taken 

for the calculation of the inverse scales roughly as i>3). In any event, once (2.111) has been 

used to evaluate v , the result can be used in (2.108) to obtain the solution vector f.

To conclude this section it may be helpful to summarize the results obtained. Solving 

the problem of minimizing the discretized functional 1Z(f) in (2.80) subject to the set of 

constraints (2.85) or (2.86) proceeds by changing to the basis for the solution space in 

which the constraint matrix becomes diagonal (so that the transformed solution vector 

breaks up into the fixed and free parts fi and f^), and then using the simplification gained 

to derive the functional 7l(?2 ), given in (2.100). The solution can be written in either of 

two forms. The simplest expression

f2 =  ( H j H 2 + A c y - ' l ^ g  -  ( H j H t + AC[)f,l (2.102)

has the advantages that it is easy to understand and that H% H 2 -f AC2  is a n  — v x n  — u 

matrix, so calculating its inverse will (for a single set of constraints) be faster than the 

inversion of H TH  + AC (which is n X n ) required by the second method. The need to 

completely recalculate (H J H 2 + AC2 ) - 1  for each new set of constraints penalizes against 

the use of this form of the solution when several sets of constraints are to  be used. It 

should be borne in mind that when, as is often the case, the smoothing matrix, C, is 

diagonal, the change of basis effected by the matrix Q will generally result in a matrix 

C  = Qt CQ that is full. This will make the calculation of ( H j H 2 +  AC2 ) - 1  slower and 

more prone to round-off error, because the first stage in the calculation of ( i f j i ^  +  ̂ C^)-1 

is the diagonalization of C2 (see §2.4).

The second form of the solution is obtained from,

f = ( H TH + XC)-1[HTg + Q1v] (2.108')

(where (2.108) has been simplified slightly by using the partitioning of Q into (Q 1 IQ2 ) in
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the second term and factoring out (H TH  + AC) 1), with v given by

v = [Qf(HTH  +  AC')-1Q i]-1[f1 -  Q l ( H TH  +  AC)~l H Tz]. (2.111)

(Remember that fi has been fixed by the constraints in (2.90) or (2.91)). This form is 

more complicated, and requires inversion of the (constraint and smoothing parameter de­

pendent) v x i> matrix Q j ( H TH + \ C ) ~ l Q\ for each value of the smoothing parameter, A. 

For a relatively large number of constraints, />, the time taken to perform this calculation 

would be prohibitive (see the discussion in §2.4 about the need to perform the calcula­

tions for many different values of A when automatic methods for choosing the smoothing 

parameter are being used). However, the effect of changing the set of constraints applied 

enters only in the determination of v  (through the submatrix Q\ in (2.111)), which only 

requires the inversion of a v X u matrix.

Broadly speaking, then, the first method is preferable when v is large and there is only 

one set of constraints to be used, whereas the second is better when there are several sets 

of constraints to be applied, especially when the number of constraints in each set is small.

2.4 Fix-Heiberger Reduction of H T H  +  AC

An absolutely essential part of any method for solving linear inverse problems of the 

type discussed in this thesis (including the optimal averaging methods) is the numerical 

calculation of the inverses of matrices of the form A +  A£ ,  where A  and B  are symmetric, 

positive semi-definite matrices, and A is a parameter which can be varied to change the 

level of regularization applied to the solution (see, for example, equations (2.82), (2.102) 

and (2.108'), and §1.8). If it was just a case of choosing a single value of A for any 

problem and finding the solution for that value alone it would be a simple m atter to 

calculate the inverse: add AB  to A  and calculate the inverse of this by the numerical 

method of your choice. However, this is a very time consuming process for matrices of 

the size commonly occurring in helioseismology ( n x n  matrices, where n can be anywhere 

from around a hundred to several thousand), and would take just too long if it were 

necessary to determine the solution for several different values of A, as is the case when 

automatic methods for choosing the smoothing parameter (see §1.9.6) are to be used. For 

example, with the GCV and EDF methods discussed in §1.9.6 and studied in chapter 3 it 

is necessary to calculate (H TH  +  AC)-1 for many values of A, because choosing the value
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of the smoothing parameter involves minimizing a function of A involving (H TH  -f AC)-1 

(for GCV) or finding the root of a similar function (for EDF), and this typically requires 

several tens of function evaluations for different values of A. For this to be achieved in a 

reasonable time it is really essential to find a method that makes the calculation of the 

matrix inverse in these function evaluations almost trivial. Of course, it is not possible 

to find an algorithm for inverting (H TH  + AC)-1 that is actually faster overall than the 

standard methods for a single value of A; the goal is to perform, in some sense, as much of 

the computation of the inverse as possible in a A-independent way, leaving a very simple 

calculation (perhaps equivalent to a matrix-vector multiplication, or even a scalar product) 

to be performed for each value of A to complete the inversion. The bulk of the work is then 

done just once, and the simplicity of the remaining calculation, even though it must be 

performed repetitively for different A, means that choosing the smoothing parameter is a 

fast and relatively painless exercise. In fact, it is possible to reduce the computation of the 

GCV and EDF functions to something approaching the speed of a scalar product, which 

is very fast compared to the speed of explicit inversion. As this chapter deals with RLS 

methods, where the matrix (H TH  -f AC)-1 frequently appears, the following discussion 

will describe the reduction of this matrix, but the formalism can be applied to any pair of 

positive semi-definite matrices.

Experience shows that the way to proceed must be to use a sequence of transformations 

of H TH  +  AC  (changes of basis, in linear algebra terminology) that eventually reduce it 

to a form that can be inverted with very little effort. The symmetry of H TH  +  AC 

strongly suggests that the transformations we should seek are congruence transformations, 

which preserve symmetry, rather than similarity transformations, which destroy it. (A 

congruence transformation of some symmetric matrix A  is performed by finding some non­

singular square matrix, Q say, and evaluating A  1lf QTAQ.  In fact, it is more convenient 

for what follows to write this as A = P A P T, where P = Q~r .) Furthermore, the simplest 

matrices to have to invert are diagonal matrices, because their inverses are just given 

by taking the reciprocals of all the diagonal elements, and matrix multiplication with 

them reduces to a simple row-by-row (or column-by-column) rescaling, which is much 

quicker than multiplying two full matrices. Our mission, then, is to find a sequence of 

A-independent congruence transformations of H TH  -f AC that reduce it to a diagonal 

matrix (which will depend on A). Anyone familiar with linear algebra will recognize this
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as the simultaneous diagonalization of two quadratic forms , a process that involves finding 

a basis for the vector space on which the symmetric matrices act (the solution space, <S, 

in this case) in which both matrices H TH  and C  are diagonal.

In cases where the smoothing matrix, C, is non-singular, the procedure for diagon- 

alizing H TH  +  AC is well known (Christensen-Dalsgaard et al. 1993). First, find the 

‘square root’ of C, which is any square matrix P1 (non-singular, because C  is) such that 

C  = P\P\ • P\ is not unique, and there are two alternative methods for finding an ap­

propriate matrix. Cholesky decomposition (See Numerical Recipes, §2.9) determines a P1 

that is a lower triangular matrix. Alternatively, we can diagonalize C, that is, find its 

eigenvalues and orthonormal eigenvectors (which exist by virtue of the symmetry of C). It 

is well known that we can then create an orthonormal matrix, 17, whose columns are the 

eigenvectors of C, and a diagonal matrix D , whose ith  diagonal element is the eigenvalue 

corresponding to the eigenvector stored in the ith  column of U, such that

C = UDUt  = (UD1/2)(UD1/2)t . (2.112)

(As D is a diagonal matrix, D 1/ 2 just denotes the diagonal matrix whose diagonal elements

are the square roots of the diagonal elements of D. This, of course, gives D l l2D l l 2 = D 

in (2.112).) The diagonal elements of D, being the eigenvalues of the real, symmetric 

positive- definite matrix C  (C being non-singular) are real and strictly positive, so D 1/2 

exists, and is non-singular. The last equality in (2.112) shows that it is natural to make 

the definition P1 = UD1/2. Having calculated some acceptable P1? the next step is to 

factor out P1 from H TH  + AC as follows. As P1 is invertible, we can use the trivial and 

obvious identity H TH  =  P1(P1-1P-r lfP 1- 'r )Pjr to get

H TH  +  AC = Pl {Pf;1H THPf;T +  A I ) P f .  (2.113)

Finally, the symmetric matrix P1-1PrTP P 1_ r  can be diagonalized just as C was, to give 

P1-1 P TP P 1_T = V A V T, where V  is orthonormal and A is diagonal. Then

H t H  +  AC = PXF (A  +  A I ) V TP?.  (2.114)

The matrix PXV  is non-singular and independent of A, so the desired transformation has

been achieved, and if we define P  = (P\V)~T we eventually arrive at

(H t H  +  AC)-1 = P(A  + A /)"1P t . (2.115)
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If we chose Pl = U D 1!2 then, by virtue of the orthonormality of U and V, P  = P ^ TV  = 

(UD~l / 2) V , which is obviously very easy to evaluate. Note, too, that it is precisely the 

matrix P ^ T = UD~1!2 that appears in (2.113), so it is only this matrix that needs to be 

computed and stored in the calculation of (H TH  + AC)-1 .

The only requirement for the algorithm just described to work is that one of the 

matrices H TH  or C be positive definite. (There is no reason, in principle, why we could 

not have performed the reduction with the roles of H TH  and C interchanged, first diag- 

onalizing H TH . In practice, however H TH  is generally highly singular, so there is little 

reason to consider this.) In many situations the smoothing matrix is non-singular and 

well-conditioned for inversion, and the reduction given is perfectly adequate. Unfortu­

nately, in general both H TH  and C are singular matrices, and the algorithm will fail. 

This will be the case, for example, when pth derivative (pth order) smoothing is used, for 

p > 1. Then the smoothing matrix should have p zero eigenvalues, because there ought 

to be p independent vectors that can be added to the solution vector, f  (see §2.2) without 

changing the value of the smoothing functional f TC f (these correspond to the polynomials 

l ,ar , .. . , £ p-1 which are annihilated by the pth derivative operator). When both matrices 

are singular, therefore, another approach is needed. Three possible solutions to this prob­

lem will now be presented, each of which has its merits, but the last is without doubt the 

most robust and effective.

I. The simplest way to remedy the singularity of C  is to cheat. The eigenvalues, 

{ d i , . . . , d n}, of C  are positive or zero (C is positive semi-definite). The eigenvalues 

of C + a / ,  for any a  are then all > a. Choosing some positive a  large enough to en­

sure that C  +  a l  is non-singular and well-conditioned (i.e. choosing a  much larger than 

the typical numerical error on any eigenvalues computed), but small enough to leave the 

original smoothing matrix dominating the smoothing will allow the reduction for non­

singular smoothing matrices to be used on the amended matrix H TH  +  A(C +  otl), while 

affecting the results of the inversion (hopefully) only slightly. This trick is often useful for 

checking implementations of the next two methods to be described, to see whether they 

really deal with the singular eigenvalues of C  correctly (results should be very similar, 

differing only through the effect of the small contribution from a / ,  which will tend to
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make the entries in the solution vector, f, slightly smaller -  the new effective smooth­

ing constraint in the discretized problem is f T(C +  a I ) i  = i TC i  -f o ||f ||2, "which is the 

old smoothing functional plus a term that penalizes against solution vectors with larger 

norms). However, such underhand techniques go completely against the philosophy of 

this chapter, where the algorithm described in §2.2 was devised largely to ensure that the 

effects of regularization are controllable, predictable and independent of the discretization. 

The small effect of a l  will have a predictable effect on the solution vector (tending to make 

its components slightly smaller), but the translation of this effect to the solution function 

via (2.21) (or, equivalently, (2.23)) will be harder to understand, and will depend on the 

discretization (through the <f)%- in (2.21), which vary with the discretization chosen).

II . Once it has been recognized that the smoothing matrix is singular, and that method I 

is unsatisfactory, it is natural to look for a method that, like I, modifies C in such a way 

as to remove the zero eigenvalues, but improves upon I by using a modification that does 

not change the matrix H TH  +  AC overall: in other words, if you add the matrix a A  to C  

to make it non-singular, you must subtract AaA from H TH . It is convenient for several 

reasons to retain the (redundant) factor a: discussing the choice of an appropriate value 

for a  will be deferred for the moment. The matrix A  must be chosen judiciously, for it 

is absolutely essential, when diagonalizing H TH  +  AC, to use transformations that are 

independent of A (otherwise the transformations must be performed separately for each A, 

losing all of the benefits in terms of efficiency of performing the transformations in the 

first place). To see where an unfortunate choice for A  would spoil the procedure given 

above for diagonalizing H TH  +  AC when C is non-singular, repeat that procedure on the 

pair of matrices H TH — aXA  and C = C + aA.  The first step, writing C = P\Pi  and 

removing the Px factors, proceeds just as before, but now equation (2.113) reads

(.H TH -  a \ A )  +  AC = Px[ p - \ H TH -  aXA )P ^T +  AI]P?.

Before, we continued by diagonalizing Pj-1 (H TH —aXA)P^T , but now this matrix depends 

on A, and, in general, the orthonormal matrix, V  that diagonalizes it will too. However, 

if it is possible to find a form for A that allows the occurrence of A to be taken out as 

a common factor to all elements of the matrix, then V  will again be independent of the 

smoothing parameter and we can proceed basically as before. It ought to be obvious that
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putting A = H TH  achieves the desired result, giving

P ^ ( H t H -  aXA)P~T = (1 -  aX)P~1H TH P - T = (1 -  otX)V A V T 

(using the diagonalization of Pj-1 H t H P ^ t  performed before). Completing the procedure
rp

and as before defining P = P1 V  gives the solution

(H t H  +  AC)-1 = P[{1 -  aX)A  +  XI}-1 P T , (2.115')

which differs from (2.115) only in the appearance of the (1 —aA) factor. The result is again 

an expression for (H t H  +  AC)-1 in which it is only necessary to invert a diagonal matrix. 

There are a couple of important points that have been skated over, though. Firstly, it is 

not obvious that the amended matrix C = C  +  a H TH will be non-singular. In fact, C 

will be non-singular for all a  > 0 if and only if H TH  -f AC  is invertible for any A > 0 

(this result follows from the positive semi-definiteness of H TH  and C ). So if H TH  +  AC 

is invertible, this method can be used to invert it. Even if H TH  +  AC is singular it will be 

possible to ‘invert’ it using singular value decomposition (see Numerical Recipes, §2.6), and 

this is addressed in method III. Secondly, what is the best value of a  to use? It is difficult 

to give hard and fast rules about this, but the aim is to find a value that makes C as well- 

conditioned as possible. This means that we must ensure that the smallest eigenvalue of 

C = C + a H TH  is considerably larger than the maximum round-off error in the calculation 

of the eigenvalues. Actually, the range of a  that will be satisfactory is generally very wide, 

and a little experimenting should allow a suitable value to be found.

III. Fix-H eiberger R eduction. Method II is often sufficient for diagonalizing the 

matrices that occur in the RLS inversion of (2.5). However, it does have (at least) two 

serious shortcomings. These problems will be discussed and exemplified, to indicate the 

need for an algorithm that can diagonalize and ‘invert’ H TH  +  AC even when it is sin­

gular (or nearly singular). Following this discussion, the Fix-Heiberger algorithm will be 

explained.

As was mentioned above, if H TH  +  AC is singular, then there will be no value of a  

for which the matrix C = C + a H TH  in method II is non-singular. Method II will not 

work for such cases. This is a serious obstacle to the effective implementation of the 

the algorithm presented in §2.2, because some commonly used discretizations can give 

rise to H TH  +  AC matrices that are singular. For example, if the solution function is
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expanded as a polynomial on some discretization bin, with the basis functions </>*• on that 

bin taken to be the polynomials l , y ,  (remember that, from (2.76) and (2.77),

y is the ‘standard’ coordinate on the discretization bin), then the smoothing matrix will 

contain a block whose properties resemble those of Vandermonde matrices (see Numerical 

Recipes, §2.8). Vandermonde matrices are notoriously ill-conditioned, and the smoothing 

matrix will tend to share this poor conditioning. When such a discretization was used 

with zeroth order smoothing in the inversions studied in chapter 5, it was found that 

the smoothing matrix (which ought to be non-singular for zeroth order smoothing) had a 

spectrum of eigenvalues which were roughly equally spaced in logarithm, and soon dipped 

into the region where they were zero to within the accuracy of the eigenvalue routine. This 

very poor conditioning means that there can be many components of the solution that 

are not constrained at all by the regularization, and this will often include components 

that are also in the null space of H TH  (i.e. eigenvectors corresponding to zero eigenvalues 

of H TH): the null spaces of H TH  and C  overlap. H TH  -f AC will then be singular and 

method II will fail. While this seems reasonable (we do not expect to be able to invert 

singular matrices), it is often possible to gain useful information in such cases by finding a 

pseudo-inverse of the matrix. If the formalism of §2.2 is to be applied successfully, then, 

we need to find a method for solving the inverse problem that can cope with such cases. 

Truncated SVD is such a method, and the reduction of H TH  +  AC given below allows 

truncated SVD to be used very easily.

To understand what is meant by truncated SVD, consider a singular, symmetric, n x n  

matrix, M , which can be diagonalized as usual to get M  =  UDUT , with U orthonormal 

and D diagonal. The diagonal elements, {di , .. . ,d n}, of D are the eigenvalues of M , of 

which some are zero, because M  is singular. Normally, if M  were non-singular, its inverse 

would be given by

A T 1 = UD~l UT

where Z>_1 is the diagonal matrix whose diagonal elements are just the reciprocals of the 

corresponding elements of D. This is not possible for M  because some of those elements 

are zero. In numerical calculation there will be a number of eigenvalues tha t, while not 

actually zero, are small enough to be effectively zero to the level of accuracy obtained. 

Some of these may correspond to ‘true’ zero eigenvalues, whereas others may just be 

indistinguishable from zero due to round-off. For example, with pth order smoothing
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for p ^  4 the smoothing matrix tends to have more than p very small eigenvalues, only p 

of which can correspond to true zero eigenvalues. In fact, there may be eigenvalues which, 

although they are clearly not zero, are sufficiently small to make the matrix very ill- 

conditioned (see §1.4). To use the inverse matrix in the solution to an inverse problem 

would then be very difficult and give rise to unstable inversions. It is advisable, therefore, 

to treat these eigenvalues as though they were zero, and accord them the same respect 

(not to say trepidation) that would be given to truly zero eigenvalues. An im portant part 

of the following method is the specification of a criterion for determining when eigenvalues 

are too small for comfort and should be treated as zero eigenvalues. For the moment we 

will just assume that some e has been chosen such that eigenvalues are effectively zero 

if they are smaller than e. This e can be as large as is deemed necessary to ameliorate 

the adverse effects of the small eigenvalues that give rise to ill-conditioning. Returning 

to the matrix M , and its eigenvalues {d i , .. . , dn}, assume that the eigenvalues have been 

arranged in descending order. M  is singular, so certainly some (the last s , say) of its 

eigenvalues will be less than e. Set these eigenvalues to zero, if they are not already zero: 

that is, truncate the eigenvalue spectrum at e. Surely this has made things worse: we now 

have more zero eigenvalues. Well, the outstanding deviousness to come turns this apparent 

disaster into a positive boon. Define the pseudo-inverse of D to be the diagonal matrix D 

whose diagonal elements are 1/di, l / f i^, . . . ,  l / d n_s, 0 , . . . ,  0. In other words, instead of 

taking the reciprocal of the zero eigenvalues (giving infinity, and the corresponding bad 

behaviour) we replace this infinity with zero, thus removing all the problems in one fell 

swoop. Of course, the pseudo-inverse of M  is then defined to be

M  = UDUt .

This is then perfectly well defined and (providing £ has been chosen properly) can be used 

to give stable and meaningful solutions to matrix problems of the form M x =  y , which 

is essentially why we want to use it. Note that M  is not a true inverse because both M  

and M  are singular, so M M  cannot be the identity (which is not singular).

The second flaw in method II is more technical in nature. Those familiar with linear 

algebra and matrix methods will recognize the very close relationship between the diag- 

onalization of H TH  +  AC and solving the generalized symmetric eigenvalue problem (see 

Parlett 1980, chapter 15 for a clear description of this topic) for the pair ( H TH,  C), which
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means finding the set of eigenvalues p  that satisfy

det(H TH - p C )  = 0 (2.116)

and their corresponding eigenvectors. Here we will concentrate on the eigenvalues, because 

that is where most of the problems lie. (When C = / ,  (2.116) reduces to  the standard 

eigenvalue problem.) Such problems are known to be quite difficult to solve numerically, 

and can provide some rather unpleasant surprises. For example, the pair (actually, the 

usual term is pencil) (H TH , C ) can, in general, have infinite eigenvalues, eigenvalues that 

are simply undetermined (in the way that 0/0 is meaningless), and if we relaxed the 

constraint of positive semi-definiteness we could even find complex eigenvalues. Here, 

though, the last difficulty will not apply. When both H TH  and C are strictly positive 

definite and well-conditioned, these problems do not occur. The explicit reduction of 

H TH  -f- AC  given earlier in this section for non-singular H TH  and C  reduces (2.116) to

det(A — p i )  = 0

(using (2.114) and the fact that PXV  is non-singular, so det(P jF ) ^  0). Obviously the 

eigenvalues of H TH  +  AC  must be just the diagonal elements of A. When both matrices 

are well-conditioned there is no problem with this and the eigenvalues and eigenvectors 

are well determined. Unfortunately, it is precisely when H TH  and C  are singular or 

ill-conditioned that we want to study this problem.

When C  is singular, infinite eigenvalues can arise, but if H TH  and C  have null spaces 

that overlap (so that H TH  +  AC is singular) undetermined eigenvalues occur. In numerical 

work, as usual, these statements are blurred by the effects of round-off error. For example, 

if H TH  and C  nearly share a null eigenvector, H TH  +  AC will be almost singular. It 

will then have an eigenvalue which, while not actually undetermined, is highly sensitive to 

perturbations in the matrices or errors in the calculations performed to find the eigenvalues 

(round-off errors). Such awkward eigenvalues are called ill-disposed, and their presence 

can, if they are not properly treated, affect the accuracy with which the other eigenvalues 

can be found.

The explicit reduction of H TH  and C to diagonal form (either directly or using
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method II) cannot cope with ill-disposed eigenvalues, and this can have important con­

sequences. To exemplify this, consider minimizing GCV to choose the smoothing para­

meter (see §1.9.6). As was discussed at the beginning of this section, the goal of simul­

taneously diagonalizing H TH  and C  is to leave a very simple and fast diagonal matrix 

inversion to speed up the calculation of (H TH  + AC)-1 , which occurs (twice) in the GCV 

function. The diagonal matrix (found from the explicit reduction given, assuming H TH  

and C are non-singular) that must be inverted is A +  A/, where A is contains the general­

ized eigenvalues, {<$i,. . . ,  £n}, of the pencil (H TH , C). If one of these eigenvalues (6n , say) 

is ill-disposed it can have quite a large negative value purely as a result of the numerical 

error in the calculation (and despite the fact that H TH  +  AC is positive semi-definite). 

Quite large here means much larger than the typical effects of round-off error on finding 

the eigenvalues of a single symmetric matrix (which may be around, say, 100 times the 

machine precision), and certainly large enough to take |£n| into the range of values of A 

that might be searched to find the minimum of GCV (the search region will generally 

exclude very small A because of the effect of numerical error on the smallest eigenvalues). 

To quote a number from personal experience, it can happen that 6n «  —10-9 when the 

largest error that might have been expected was around 10-14. The effect of this negative 

eigenvalue on the minimization of the GCV function is catastrophic. Evaluating GCV 

for A «  |<5n| will involve inverting A +  A/, which is now virtually singular. The calculation 

will be highly unreliable and will tend to return anomalous values. Experience shows that 

the graph of the GCV function can acquire a downward-pointing spike around A = |£n|. 

This spike will be a minimum of GCV, and usually it will be the minimum. The value of 

the smoothing parameter chosen by GCV will then be |£n|, when in fact the best value 

is likely to be that corresponding to the position of another true minimum at larger A. 

The ill-disposed eigenvalue has resulted in a very poor choice of smoothing parameter, 

one which drastically undersmooths. The same behaviour can afflict the EDF method for 

choosing the smoothing parameter.

This chapter presents an algorithm that allows quite general discretizations of the 

integrals occurring in the inverse problems of helioseismology. Another part of the work 

in this thesis deals with automatic methods for setting the regularization levels used in 

RLS inversions (chapter 3). The ethos behind both of these ideas is to make the process 

of inversion as ‘hands-off’ as possible. It is recognized, of course, that inverse problems
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of the type dealt with in this thesis are so widespread, so varied and so difficult that 

some intervention is almost invariably necessary in any serious inversion. However, by 

creating greater scope for using a wider range of discretizations (for example) from within 

a single algorithm, the need to tinker with various different methods, and the extent of 

that tinkering, should be reduced. Apart from the obvious benefit of making inverse 

methods more available to, and usable by, non-experts, perhaps the biggest advantage 

of such automation is that it increases the ease with which different inversion methods 

can be compared for their effectiveness. If two different inversion methods run using the 

same algorithm produce results of markedly different quality, this must certainly be a 

reflection of their relative merits for the problem at hand, rather than, perhaps, because 

the implementation of one of those methods was somewhat indifferent.

The use of automatic methods for choosing the smoothing parameter demands that 

we have a procedure for simultaneously diagonalizing two symmetric matrices. To fully 

achieve the kind of freedom to choose different discretizations that is made possible by the 

algorithm presented in §2.2 requires a numerical method for performing the diagonalization 

that is very robust and can deal with the matrices resulting from the whole range of 

discretizations. From the preceding discussion it should be clear, therefore, that there 

is a need to find a procedure that can recognize and effectively treat any infinite or ill- 

disposed eigenvalues that appear during the course of the diagonalization, and can allow 

SVD to be used in cases where H TH  +  AC is singular or ill-conditioned. The formalism 

for diagonalizing H TH  + AC when C is non-singular, combined with method II when C  is 

singular just cannot do this. Fortunately, the Fix-Heiberger algorithm (Fix and Heiberger 

1972, Parlett 1980, §15.5) was designed for just those circumstances. It works precisely 

because it finds and isolates any infinite or ill-disposed eigenvalues at the earliest possible 

stage. These are then treated with the contempt they deserve, being set to zero when 

necessary to remove the effects they may have on the computation of the other eigenvalues.

The Fix-Heiberger reduction is just an extension of the formalism given earlier in this 

section to perform diagonalization when C  is non-singular, but the way the ill-disposed 

eigenvalues are isolated introduces block matrices (again). In the most general case, the 

final reduced matrix contains five rows and columns of blocks, but iri most situations this 

will not be required, and much of the algorithm can be omitted. For example, if C is well- 

conditioned most of the procedure is omitted, the algorithm becomes exactly equivalent
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to the standard method for C  non-singular, and no block matrices are needed. As before, 

the reduction is achieved by a sequence of A-independent congruence transformations, but 

now six, P j , . . . ,  P6, are required in general. The end result is a relationship

H t H + XC = [P1 . . .  Pe]M(\)[PZ . . . P f ] ,

where M  is not, in the most general case, diagonal, but is equally trivially invertible, and 

contains only a very small number of non-zero off-diagonal elements (and they are all 1), 

so that multiplying with M -1 is no slower than for a diagonal matrix.

Broadly, the plan of attack is to diagonalize submatrices that lie on the diagonal, and 

to find congruence transformations to remove off-diagonal blocks, where this is possible. 

There are three procedures that are central to the algorithm. The first is diagonalization 

of matrices and submatrices (and in one case the use of SVD to ‘diagonalize’ a non­

square submatrix). This is achieved as usual by finding eigenvalues (singular values) and 

vectors. The next is the truncation of the eigenvalue spectrum according to some rule for 

determining when eigenvalues (or singular values) are small enough to cause problems in 

the reduction. This requires some such rule (an appropriate value of e, in the notation used 

during the explanation of SVD given earlier) to be specified in each case. Finally, once the 

truncated spectrum of eigenvalues has been computed, it is necessary to find an invertible 

matrix related to the diagonal matrix of eigenvalues (which will in general be singular, of 

course) that can be used in a congruence transformation (that is, takes on a similar role 

to D 1/ 2 in the old diagonalization procedure for non-singular C -  see equations (2.112) 

and (2.113)). As the very first step in the Fix-Heiberger algorithm involves all three of 

these procedures, more detailed discussion of them will be made there, where it will be 

easier to see their significance. *

Finally, then, here is the Fix-Heiberger algorithm for simultaneously diagonalizing 

(well, almost) the two real, symmetric, n X n matrices H TH  and C :

S T E P  1) Diagonalize the smoothing matrix C, just as before, to obtain C  =  UDUT, 

with U orthonormal and D the diagonal matrix of eigenvalues of C, which we assume 

(as we will at every stage of the algorithm) are arranged into descending order -  this is 

important for determining the block structure of the matrices that occur. We now need 

to examine the eigenvalues to check for any trouble-makers. That is, we need to decide 

which eigenvalues to accept, and which eigenvalues to treat as though they were zero.
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The criterion to do this must certainly exclude any eigenvalues that are small enough 

to be indistinguishable from round-off, but it should not reject too many of the larger 

eigenvalues, as this will result in significant truncation error in the diagonalization. In 

fact, ignoring small but non-zero eigenvalues is what makes this algorithm reliable, and 

Fix and Heiberger (1972) discuss the errors caused by neglecting these small eigenvalues. 

This is such an important part of the algorithm that it will pay to be consistent in our 

determination of when an eigenvalue is negligible. As the errors on the eigenvalues of 

a matrix are relative to the size of the elements of the matrix, the criterion should not 

be absolute, but rather, should depend on the norms of the matrices involved (see Craig 

and Brown 1986, §5.3.2, or Parlett 1980, §1.6). Now that we have the eigenvalues of C  

the easiest matrix norm to work with is the spectral norm which just equals the largest 

eigenvalue of the matrix. A sensible criterion for rejecting an eigenvalue di of C  is: Given 

some (small) number e, neglect the eigenvalue if

\di \<e\\C\\ = ed1. (2.117)

(Remember, d\ is the largest eigenvalue of C .) There is no ‘correct’ value of e -  it just must 

be not too large and not too small. Experimentation should suggest an appropriate value. 

Parlett recommends trying the two values £ = -^/(machine precision) and £ = n x (machine 

precision), and comparing the results (Parlett 1980, §15.5). Henceforth it will be assumed 

tha t some such £ has been set, and the criterion (2.117) will be used to determine zero 

eigenvalues.

Using (2.117) we can say that the first ri diagonal elements of D are non-zero, and 

can treat the remaining n — r\ entries as zero. (So that r\ is the effective rank of C .) 

The goal of this step in the reduction is to use a congruence transformation to reduce the 

smoothing matrix to the identity, as was achieved in the old diagonalization procedure. In 

the general case, C will be singular and so cannot be congruent to I  (because congruence 

transfomations preserve the rank of matrices) and we must find another tranformation 

tha t simplifies C  as much as possible. The simplest matrix that has the same rank as C  is 

the diagonal matrix with r\ l ’s along the diagonal and zeros everywhere else. In general, C 

will not have full rank (i.e. ri < n), which means that it is not possible to use D 1/ 2 in 

a congruence transformation, so we must find an alternative. We will need to perform 

similar tricks later, so we will introduce some notation now. Define D to be the diagonal
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matrix obtained from D by replacing all the zero eigenvalues by 1, so that

D = d ia g { d i,... ,d r i , (2.118)

and define the matrix I ri to be

I ri =  diag{ 01̂ I 0 }. (2.119)

7*1 l ’s 71 — 7*1 0’S

Then D is non-singular, and it is quite obvious that we can write D = D ll 2ITlD l l 2, so 

that C = (UDl / 2)Iri{UDl l 2)T. It is clear now that we should make the definition

P 1 = UD1/2. (2.120)

H TH  +  AC can now be written

H t H  + A C = P1(A + A Jri )P?,  (2.121)

where we have already defined A  =  b ~ l !2UTH TH U D ~1!2, so that A is another symmet­

ric matrix. This completes step 1, except to note for later reference (when it comes to 

inverting H TH  +  AC) that P f T = U D ~ ^ 2.

If 7*1 =  7i, so that C  is well-conditioned, then the next four steps do not apply, and 

step 6 completes the diagonalization as usual (only the second diagonal block, A +  XI,  

in equation (2.135) actually appears in this case, and the final transformation matrix is 

similarly abbreviated).

ST E P  2) First, note that I ri can be written as a 2 X 2 block matrix, with the upper 

left block being the identity matrix, and the other blocks being zero. Partitioning A in a 

corresponding manner, it is easy to see that

A + A Iri = Ai -f XI

. A l

Now diagonalize the n — r \ X n  — r\ matrix A2 , to get A2  =  V E V T, with V  orthonormal 

and E  diagonal. Applying the condition (2.117) to A 2  (instead of C) we can say that the 

first 7*2 diagonal elements of E  are non-zero, and define E  and I r2 just as was done for D. 

Then A2 = (VE ^ 2)IT2( V E ^ 2)T, so if we define the second transformation matrix by

\}riPo =
0

0 V E 1/2
(2 .122)
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it is a simple matter to check that

A  -I- XIri = P2
A\  + XI A3 '

% I t2
PT r 2  » (2.123)

where A3 = A3V E  1/ 2. P2 T can be found from ( V E 1̂ 2) T = V E  1/ 2.

S T E P  3) In order to extend the partitioning of I r2 into block matrices (IT2 is partitioned 

in a similar way to ITl in step 1, cf. equation (2.119)), split the submatrix A3 into (P 1 IP2 ), 

where B\  is ri x r 2  and B 2 is r\ x n — (7*1 +  ̂ ) .  We then arrive at

A\  +  XI A 3

Ir2

A i  +  A I B 1 b 2 \ h i
= B J I 0 }r2

B? 0 0 J }n -  (r 1 +  r2)

Defining the third transformation matrix to be

( I
0

V 0

Bi

0
0

}ri
}r2 (2.124)

I  ) } n  -  (ri +  r2)

will facilitate the zeroing of the B\  submatrices. The result of this transformation is then

(2.125)
A\  -|- XI a 3 '

A l Ir2

j (Ai-PjPH + AJ 0 p2 \
P3 0 I 0

I  B l 0 0 /

It can be verified that P3 1 has exactly the same block structure as P3, the only difference
r p

being that the P i block is replaced with —P i. P3 can easily be found from this.

If, in step 2, the matrix A 2 had full rank (so that r2 = 77— 7*1) the third row and column 

of blocks will be absent, and steps 4 and 5 will be unnecessary. In that case, go straight 

from here to step 6, remembering that that last two rows and columns of the matrices 

there do not appear.

S T E P  4) Now try to simplify the (non-square) B 2 submatrices. It is (it seems) im­

possible to zero these blocks with A-independent congruence transformations. The next 

best thing is to reduce them to the simplest form possible, which is the matrix I  given in 

equation (2.128). This is more than adequate for our purposes. The trick here is to use 

SVD to write B 2 as

B 2 = X W Y t , (2.126)
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where X  is an ri x r\ orthonormal matrix, Y  is an n — (t-i+t^) X n — (7 !+ ^ )  orthonormal 

matrix and W  is a non-square matrix (having the same shape as B 2) which is zero off the 

‘diagonal’ and contains the singular values, w\ , . . . ,  u;n_(ri+r2), of B 2 along the diagonal. 

Any reasonable smoothing matrix will only have a relatively few zero eigenvalues, meaning 

that we definitely expect n — r\ to be less than r\. This assures that n -  (7*1 +  r 2 )  <  7*1, 

and hence that B 2 has n — ( 7*1 + 7-2 ) singular values. W  is not square, but the fact that it 

has more rows than columns, and that it is diagonal (i.e. only elements Wa are non-zero) 

allows it to be written
^  / j M } " - ( n  +  r2)

V 0 )}r \  -  [n -  ( n  + r2)\

Here, W\  is a square matrix with n —(7*1 + 7*2 ) rows whose diagonal elements are the singular 

values of B 2. We can now apply (2.117) to W\  to determine the singular values that are 

effectively zero, and again we can define a new diagonal matrix W\  differing from W\  only 

in that the zero singular values are replaced with 1. Let the number of non-zero singular 

values, which is the rank of the matrix i?2 , be 7*3 . Then W\  =  diag{u;i,. . . ,  wr3, 1 , . . . ,  1}, 

and we can introduce the matrix I r3 having the same dimensions as W\  and containing 

l ’s in the first 7 * 3 places along the diagonal, and zeros everywhere else. It is obvious 

that W\ = I r3W\.  Note that we do not exactly follow the procedure outlined in step 1 

(where we wrote D =  D 1̂ 2ITlD 1̂ 2). This is because W  is a non-square off-diagonal 

block, so the need to preserve symmetry does not arise. To make use of this expression 

for W\  it is helpful to define a new block-matrix I  having exactly the same dimensions 

and partitioning as W  in (2.127) but with I r3 in the top block. That is,

i = \ o j '  (2‘128)

Using (2.126), (2.127) and the preceding definitions it is a simple m atter to verify that

= X Y T = XiW1YT.

Given that it has already been stated that we are attempting to reduce B 2 to / ,  a moment’s 

thought shows that the required transformation matrix is

f X  0 0 ^
P4 = 0 / 0 , (2.129)

 ̂ 0 I 0 I Y W i  J
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which results in the following transformation

V

(A ! -  B1B^)  +  XI 0 B2 \ (  A + X I 0 i
0 I 0 = Pa 0 1 0

B l 0 0 ) I  i T 0 0
4 •> (2.130)

where the definition A = X T(A\ — B 1B i ) X  has been used.

Again it is helpful later to notice that the expression for P4-T follows easily once it is 

observed that (Y W X) - T = Y W f 1 and X ~ T = X .

S T E P  5) The result of the reduction in step 4 is a block matrix containing only /  in its 

last row and column. I  is itself a block matrix, and it will be advantageous to extend the 

partitioning if I  to the entire matrix. In fact, the submatrix ITz appearing in the definition 

of I  in (2.128) is also a block matrix, containing the single non-zero block I  (the r$ X r$ 

identity matrix) in the upper left corner. Adjoining the last row of zero blocks in I rz to 

the last row of zero blocks in the definition (2.128) gives the following block structure to I:

0 \}r3I  =
0 0 /} r i  -  7*3

(This is the general case. If the matrix B 2 in step 4 has full rank, then 7*3 = n — (7*1 + 7*2), 

and the last column of I  is absent.) Extending this partitioning to the whole of the matrix 

requires the division of the submatrix A in a corresponding manner. It should be obvious 

from the following tableau how this partitioning is done.

V

(  A i + X I As 0 I
0 ) }r3

A +  XI 0 l \ A l A2  +  XI 0 0 0 }t*i -  7*3
0 I 0 — 0 0 I 0 0 }r2

p 0 0 1 I 0 0 0 0 }r3
\  0 0 0 0 0 ) }n — R

(2.131)

In (2.131) the shorthand R  = 7*1 -f 7* 2 +  7 - 3  has been used in declaring the size of the last 

row (and column) of blocks. Quite obviously, the presence of the last row and column of 

zero blocks makes the matrix singular, in general. There are n — R  rows of zeros, so the 

rank of the matrix (which must also be the rank of H TH + AC, since they are related by 

a sequence of rank-preserving congruence transformations) can be at most R. In fact, the 

rank of H TH  +  AC will turn out to be exactly R  =  7 * 1 + 7 * 2 + 7 -3 . When R  < n, H TH  +  AC 

will not be invertible in the usual sense. However, the earlier discussion suggests that
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SVD will give a useful inverse. The discussion following step 6 considers the inversion 

of H TH  +  AC.

Having arrived at the final partitioning of the matrix, we want to try to remove off- 

diagonal blocks. Defining

P k =

I 0 0 0 0 ^
0 I 0 ATs 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I )

(2.132)

can be seen to remove the As blocks, resulting in the matrix in (2.131) being given by

(  Ai  + \ i 0 0 I
0 ^

(  A + x i 0 i \ 0 A 2 T XI 0 0 0

0 1 0 = p 5 0 0 I 0 0

I  i T 0 0 j 1 0 0 0 0

\  0 0 0 0 0

(2.133)

To derive an expression for P$T , observe that P5-1 has precisely the same block struc­

ture as P5, but with A J  replaced by —A^.  The form of P $ T follows immediately from 

this.

S T E P  6) The only thing left to do now is to diagonalize any remaining blocks on the 

diagonal (Ai  and A 2, in other words). As usual, find the eigenvectors and eigenvalues 

of A\  and A 2 and write them as

A\  = L F L t  and A 2 = Q A Q T,

where L and Q are orthonormal (of different sizes) and F  and A are diagonal matrices of 

eigenvalues. Then, defining the final transformation matrix by

Pa =

( L 0 0 0
0 )

0 Q 0 0 0
0 0 I 0 0
0 0 0 L 0

I 0 0 0 0 1 )

(2.134)
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results in the final form for the reduced H TH  +  AC  matrix. It is convenient typographically 

to introduce the notation

M(A) d=

\

F  + XI 0 0 I
0 ^

0 A + XI 0 0 0
0 0 I 0 0
I 0 0 0 0
0 0 0 0 0 /

(2.135)

for the reduced form of H TH  +  AC. Application of the transformation matrix P6 to the 

block matrix on the right hand side of (2.133) then gives

\

A\  +  XI 0 0 I
0 ^

0 A-2 ■+■ XI 0 0 0
0 0 I 0 0
I 0 0 0 0
0 0 0 0 0 /

= P6M ( \ ) P l (2.136)

Note that there is no need to apply the criterion (2.117) to the eigenvalues of A\  and A2, 

because they are not used in the congruence transformation (so there is no need to define 

matrices F  or A as there was when diagonalizing C in step 1), and because the eigenvalues 

always appear with the regularization parameter, so that there should never be a problem 

with having to take the reciprocal of a zero eigenvalue.

P6 is a block diagonal matrix whose diagonal blocks are all orthonormal matrices. This
 f~n

means that P6 is itself orthonormal, and so P6 = P6.

That completes the description of the Fix-Heiberger algorithm. The separate steps in 

the algorithm, when combined, give the following expression for H TH  -f AC:

H t H + AC = [P1P2P3P4P5P6] M ( \ )  [P1P2P3P4P5P6]r . (2.137)

The combination of the six congruence transformations in equation (2.137) has succeeded 

in reducing H TH  +  AC to a form, M(A), which is almost diagonal. The only off-diagonal 

blocks are two r3 x  7*3 identity matrices, and, as will be shown below, these do not in any 

way prevent the fast and efficient inversion and use of the transformed matrix in the GCV 

and EDF function evaluations (see also appendix A).

It may be helpful to review the way in which some of the steps of the algorithm are 

omitted depending on the values of r i ,  r2 and r3.
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1. If ri = n only steps 1 and 6 are required, and in step 6 the matrix to be trans­

formed has only one block, which corresponds to A.2 -  all the other blocks do not 

appear. Similarly, only the diagonal block containing Q appears in the transform­

ation matrix P6. The procedure is then exactly the same as the old method for 

diagonalizing H TH  +  AC  when C  is non-singular, and the transformed matrix is 

just given byM (A) = A + XI.

2. If ri +  7*2 = n the final matrix is only a 2 x 2 block matrix. Steps 4 and 5 are omitted 

and the final transformed matrix is

A +  AJ 0
0 I

The transformation matrix P3 does not have the final row and column appearing 

in (2.125) in this case.

3. If R = r i + r2 +  C3  =  n, then all the steps in the reduction are required, but the 

final matrix, M ( A), does not contain the last row and column of zero blocks. The 

transformation matrices in steps 5 and 6 are similarly abbreviated.

To conclude this section, it is necessary to examine inverting H TH  +  AC once the 

congruences of the Fix-Heiberger reduction have been implemented, since it was the cal­

culation of this inverse that was the prime motivation for introducing the algorithm. 

Inverting (2.137) directly results in

(H t H  +  A C)-1 =  P M ~ 1(X)Pt , (2.138)

where we have set

P = [P1P2P3P4PsP6]-T = P r T P2 TP ^ T P ; TP r TP e T - (2.139)

The inverse transposes of the congruence matrices were calculated in each step of the 

Fix-Heiberger algorithm, so the inverse transpose of P  is known. As we only require the 

inverse of H TH  +  AC, introducing P  makes the notation much simpler. It is necessary 

to find the inverse of the block matrix M(A) appearing in (2.138) and defined in (2.135). 

To begin with, consider the case R  = n, so that H TH  +  AC is non-singular, and the last

row and column of zeros in the matrix on the right hand side of (2.138) do not arise.
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Essentially, the final transformed matrix is block diagonal with the three blocks A + XI, I  

and
(  F  +  XI I  \  ,HrVJ ’ (2-140)

except that the last matrix has been split into quarters and put in the first and last 

rows/columns. The inverse of a block-diagonal matrix is well known to be a similar matrix 

whose diagonal blocks are just the inverses of their corresponding blocks. The resulting 

matrix, then, has the blocks A + XI  and I  on the diagonal, and these can be inverted 

separately, because there are no off-diagonal blocks appearing in the same row or column.

This leaves the first and fourth rows and columns to be dealt with. It is easy to verify by

direct calculation that the inverse of the matrix in (2.140) is just

(  0
~{F + XI)

Using these results allows M  (A) to be written

M  (X) =

0 0 0
>

0 (A + XI ) - 1 0 0
0 0 I 0
I 0 0 —(F + XI)

(2.141)

(Remember that R  = n has been assumed, so a row and a column have been lost.)

W hat happens in the most general case when R < n, so that H TH  +  XC is singular? 

Imagine that the zero block in the lower right corner of M(X)  in (2.135) is instead some 

diagonal matrix T  = d iag{/i,. . . ,  so that M( A) becomes

F  + XI 0 0 I
0 ^

0 A + XI 0 0 0
0 0 I 0 0
I 0 0 0 0
0 0 0 0 T  )\

This is effectively a block-diagonal matrix comprising the large matrix (containing the 

first four rows and columns of blocks in M(A)) whose inverse was given in (2.141) and the 

corner block T. The inverse of this modified M(A) is found by inverting these two blocks 

separately. We know the inverse of the first block (it is given in (2.141)), but what is the 

inverse of T? T hat’s easy. T  is diagonal, so its inverse is trivial to calculate using SVD. 

T -1 is the diagonal matrix containing 1/U in the ith place along the diagonal if t{ ^  0,



CHAPTER 2. THE INVERSION ALGORITHM 143

and 0 there if t{ = 0. But the zero matrix that really appears in the corner of M(A) is 

a diagonal matrix with all its diagonal entries zero. Its inverse is then also a diagonal 

matrix with all its diagonal elements zero. In other words, when using SVD, the inverse 

of the zero matrix is itself. This solves the problem, and we have, in general

M ~ \ X )  =

0 0 0 I 0 ^
0 (A + XI ) - 1 0 0 0
0 0 I 0 0
I 0 0 - { f a  x i ) 0
0 0 0 0 0 )

(2.142)

Effectively what this means is that the Fix-Heiberger reduction has isolated the zero 

eigenvalues of H TH  +  AC  and placed them in the lower right corner of M(A) out of the 

way.

Using this expression for M -1(A) in (2.138) gives the final answer we require:

(H 1H  +  AC)"1 =  P

0 0 0 I 0 ^
0 (A + XI ) - 1 0 0 0
0 0 I 0 0
I 0 0 - ( F  + XI) 0
0 0 0 0 0 j

(2.143)

It is in order to ask what the significance of a solution obtained through SVD is. In 

fact, use of SVD amounts to little more than another regularization. SVD does not allow 

vectors in the null space of H TH  to contribute to the solution. To see this recall that, 

from (2.82), the solution vector is given by

f  = (H 1 H  +  AC) i f  g.

So whatever the vector H Tg actually is, any components belonging to the null space 

of H t H  +  AC are multiplied by the zeros in the SVD inverse of H TH  +  AC and so 

contribute nothing to the solution. But any vector in the null space of H TH  +  AC  must 

also be in the null space of H TH.  (The argument goes like this: Suppose v is a unit vector 

in the null space of H TH  +  AC. Then

(.H TH  +  AC)v = 0 =* wTH THw +  AvTC v = 0. ’

But H TH  and C are positive semi-definite and A > 0, so we must have v TH TH v  =  0

and v TCv = 0 separately, which means that v  must be in the null spaces of both H TH
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and C .) Now consider components of the (unknown) true solution, fo, that belong to the 

null space of H TH . The solution and the data are related by

g = tffo

(plus errors, but we won’t worry about those here). Any component, v , of the true solution 

lying in the null space of H TH  must be mapped to zero by the kernel matrix H  (otherwise, 

| | t f v ||2 =  v TH TH v  ^  0). In other words, these components will contribute nothing to 

the data vector g. This means that information about components of the true solution 

lying in the null space of H TH  is not contained in the data, so setting them to zero in the 

recovered solution is a natural way to reflect this lack of information. This is why SVD 

works so well for solving linear problems of the type considered here.

2.5 Summary

In this chapter a quite detailed and general formalism for solving linear inverse problems of 

the type (2.5) has been put forward. The heart of this procedure is the algorithm outlined 

in §2.2, for regularizing and discretizing the continuous inverse problem (2.5). The idea 

of using a regularizing functional on the function space of solutions was introduced. Only 

once this was done was a reduction of the number of degrees of freedom in the solution 

performed by discretizing the regularized problem. The advantage of this approach is that 

the regularization applied ought to be largely independent of the form of discretization 

chosen, something that was not always the case in previous implementations of RLS tech­

niques. The major part of the algorithm, though, is the discretization itself, §2.2.3. This 

unifies and generalizes the four types of RLS method commonly used (see §1.9), taking 

the ideas underlying piecewise-const ant discretization and function-expansion methods 

and combining them to provide even greater freedom for choosing a discretization suited 

to the problem at hand. Although the discretizations can be used with any form of regu­

larization constraint, a large part of the discussion in §2.2 dealt with quadratic smoothing 

constraints and general pth order (pth derivative) smoothing. A quite general formalism 

for calculating the smoothing matrix in such cases was given in §2.2.4.

The greater freedom for discretization, and the possible existence of large jumps in the 

solution at the boundaries between discretization bins (when two neighbouring bins are 

large, derivative smoothing constraints may not actually constrain the jump in the solution
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across their boundary very much), suggest that some procedure for imposing constraints 

on the solution is desirable. In §2.3 just such a procedure was derived. The idea was 

to change basis in the vector space containing possible solutions so that the constraints 

completely fix the contribution to the solution from some of the new basis vectors (the 

components contained in the vector fi, using the notation of §2.3, are fixed), and leave 

the other components (f^) completely free. The expression for the analytic solution in 

the presence of these constraints was then derived using the knowledge that only the 

components in can be varied in the minimization of the regularized functional 1Z(f) 

(equation (2.80)). Two alternative forms for the solution were given, each with its own 

advantages and disadvantages. The pros and cons of each were discussed, to provide some 

indication of the circumstances in which the use of one in preference to the other would 

be advisable.

As was described in §2.4, the use of automatic methods for choosing the smoothing 

parameter in quadratic RLS inversions forces us to find a way to compute (H TH  +  AC)-1 

very quickly. The solution to this problem is to diagonalize H TH  +  AC. Standard meth­

ods for performing this diagonalization when C  is non-singular or when C is singular 

but H TH  +  AC  is well-conditioned for inversion were shown to be unsuitable for use with 

the algorithm presented in §2.2, because the wide range of discretizations that can be used 

creates the possibility that the smoothing matrix will be non-singular and H TH  +  AC will 

be ill-conditioned. The Fix-Heiberger algorithm, which was designed for solving just such 

problems, was then described in some detail, and an expression for (H TH  +  AC)-1 in terms 

of the final reduced matrix was given (in equation (2.143)). The Fix-Heiberger algorithm 

has not been used in helioseismology inversions before, but its increased robustness make 

it very appealing for the solution of discretized RLS problems with the procedure given 

in §2.2.



Chapter 3

Choosing the Smoothing 
Parameter

3.1 Introduction

Helioseismology relies on the existence of efficient techniques for inferring aspects of the 

solar structure from (often large quantities of) data derived from observations of solar 

oscillations. Typically, the data are the measured frequencies of individual modes or 

frequency splittings between modes, and the quantities recovered will be, in the former 

case, the run of sound speed throughout the sun, perhaps along with information about the 

composition of the solar material (Dziembowski et al. 1990), and in the latter, components 

of the sun’s internal angular velocity as a function of depth (see Ritzwoller and Lavely 

1991). In general, the relationship between the data, = 1,. ..,p } , where p is the 

number of mode frequencies or splittings contained in the data set, and the quantity of 

interest, / ( r ) ,  where r is the distance from the centre of the sun, is of the form

rRo
gi = /  ki(r)f(r)dr.  (3.1)

( Jo

Here fc,(r) are the kernel functions which essentially decide how much the value of /  near 

r contributes to the value of the ith. data point. To fix ideas, consider the solar rotation 

problem. If we assume that the internal angular velocity, fi, of the sun is a function only 

of radius, fl =  fi(r), then the frequency splitting caused by this rotation for any mode 

(ra, /, m)  is (see Unno et al  1979)

772, f-R©
Vnlm -  J'n/o = ~~J JQ K nl(r)Sl(r)p(r)r2dr, (3.2)

with

K«l(r) = ( rh  -  [1 -  1(1 +  l ) ] ^ ,  -  2 6 „ ,a „ „  (3.3)

146
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and
pRq

J =  [Zr2n l+ l{ l+ l)Zhn l]pr2dr-
J O

(p(r) is the density of the solar material at radius r.)

In these equations and £hnl are? respectively, the radial and horizontal components 

of the displacement eigenfunction of the mode with degree / and radial order n. As usual, 

m  is the azimuthal order of the mode. With a simple relabelling of the modes so that 

each (n, /, m) is assigned a value of i the connection between (3.2) and (3.1) is obvious.

Note that in the case of inversions to find the solar sound speed, a linear relation of the 

form (3.1) is derived by a linearization of the true equations about some given theoretical 

solar model (see Gough 1985). The result of the inversion of real solar oscillation data 

provides corrections to the solar model, which must then be recomputed and the procedure 

iterated until the corrections become sufficiently small.

It is clear that, in both of these cases, an efficient procedure for inverting systems of 

equations of the form (3.1) (that is, for finding f ( r )  given {fift}) is required. There are 

basically two methods commonly used for this. The first is known as optimal averaging 

and is described in Gough (1985). It consists of taking linear combinations of the kernel 

functions in an attem pt to produce an averaging kernel which is sharply peaked about 

some point and has a small value away from this point. The linear combination that 

satisfies this gives a weighted average of the solution which is localized around the region 

where the kernel is large (i.e. only the value of f ( r )  in the region where the kernel is large 

contributes significantly to the average). This average thus gives an estimate of the value 

of /  in the region where the optimal averaging kernel is large. The other is based on the 

method of least squares and consists of approximating the solution / ( r )  (which, being a 

function of a continuous variable, has infinitely many degrees of freedom) by a function 

tha t lies in a finite dimensional, linear function space with a basis =  1 ,...,<?}

where q is the dimension of this approximation space, and then finding the particular 

function in the approximation space that gives <7ts which are as near as possible, in a 

least squares sense, to the observed data. This procedure amounts to approximating the 

integral in (3.1) by a sum, and the function f ( r )  by a p-dimensional vector f,  giving, as 

an approximation to (3.1)

g = # f ,



CHAPTER 3. CHOOSING THE SMOOTHING PARAMETER 148

where H  is a p x q matrix given by

i-Rq
Hij = / k{(r )4>j(r )dr

Jo

and the approximation to the solution is

K r ) = ' 5 2 f j M r)-
j=i

(This defines the vector f  with components f j .)

In the following we always use piecewise-constant discretization (PCD) -  also known 

as product integration -  where each <f>j is given by

\  0, otherwise.

Then H  is given by
3RG)

Hij =  ki(r)dr, (3.4)

and the solution function is defined in terms of the solution vector (the f j )  by

f ( r ) = f j  for U -  < r < j R q / q-

It is well known (see Craig and Brown 1986) that, in general, inversion procedures 

are unstable in the sense that the solution is very sensitive to perturbations in the data, 

giving rise to solutions which oscillate wildly and are clearly incorrect. These large, high 

spatial frequency components of the recovered solution are largely a consequence of the 

Riemann-Lebesgue lemma (Craig and Brown 1986, §4.2), which says that, with certain 

mild constraints on the kernel functions, as the spatial frequency, fc, of the component 

sin kx  of the true solution increases the amount that that component contributes to gi, 

for any i , tends to zero, which means that solutions that differ only by high frequency 

components will be mapped by (3.1) to points in ‘data-space’ that are very close together. 

This problem is ameliorated by the technique of regularization (see Craig and Brown 1986), 

which introduces into the minimization over the approximation space an f  dependent 

term 4>(f) which penalizes against any solution that has large high frequency components,

i.e. against solutions that are not smooth in some sense. If this smoothing constraint is 

chosen to be of the form

* (f)  =  f TCf ,  (3.5)
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(T denotes matrix transpose), for some symmetric positive semi-definite q x q matrix C, 

then the quantity that must be minimized to find the estimate f of f is

7e(f) = ||g -fff||J  + AfrCf, (3.6)

(||.||p is the Euclidean norm in p-dimensions), and the solution is given by

f(A) =  ( H t H  + \ C ) - l H Tz ,  (3.7)

where A > 0 is the regularization or smoothing parameter. The larger the value of A, the 

more the smoothing constraint contributes to (3.6) and the smoother the solution must

be to minimize (3.6). The choice of smoothing constraint (3.6) is known as quadratic

regularization.

Sometimes it is appropriate to choose C =  I ,  the identity matrix, which means that the 

smoothing constraint forces the solution vector to have a small norm. For PCD the norm 

of the vector f  is simply proportional to the norm of the approximate solution function, 

that is

||f||J = i TI i  oc j f  f ( r f d r .

So, for zeroth order smoothing (C = / ) ,  the norm of the approximate solution is forced to 

be small.

Often, a better choice for C is C =  X TX , where X  is the ‘first derivative m atrix’ 

(which, since f provides information about the values of f ( r )  in a series of narrow bins, 

is just the matrix that maps f to the finite difference approximation to the derivative 

of f (r )) .  This forces the gradient of the approximate solution to be small, in the sense 

tha t ( f j  — f j - 1 ) is small. This can easily be generalized to higher derivatives. In general, 

n th  order smoothing forces the nth derivative of the approximate solution to be small.

For any given C , the solution (3.7) can be calculated for any A. The calculation of f  is 

greatly facilitated by the use of a theorem of linear algebra which says that there exists a 

basis offfi* in which H TH  and C  are simultaneously diagonalized. It is therefore possible 

to write

f  =  AD~1(X)ATH Tg, (3.8)

where A is a q X q, invertible, A-independent matrix, and D (A) is a diagonal matrix in 

which each diagonal element may be written Djj(X) = aj +  Aj3j for some aj  and (3j. Once 

this decomposition has been found the calculation of f(A) for many different values of A
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becomes computationally very easy. All we have to do now is decide which value of A 

gives the best recovery. It will be the purpose of this chapter to address the question of 

choosing the smoothing parameter, A, in any regularized least squares solution of linear 

inverse problems of the form (3.1) in an optimal way.

The next section discusses the effects of regularization on the estimated solution and 

uses these considerations to motivate criteria for the assessment of the efficiency of any 

method for choosing A. Section 3.3 presents three alternative ways of choosing A and briefly 

discusses their derivation. Section 3.4 describes the procedure used here to examine the 

efficiency of these methods, while §3.5 presents the results of this analysis, including an 

inversion of real data. Section 3.6 discusses the conclusions that can be drawn from these 

results.

First, however, the question of the errors on the data must be considered. Throughout 

this chapter all errors are assumed to be normally distributed, with mean zero. In real 

problems the variance, of of the errors on the ith data point, gi, often varies with i. (In 

helioseismology the mode parameters are measured more accurately for some modes than 

for others.) Then minimizing (3.6) does not give the maximum likelihood estimate of f, 

which is actually given by the minimizer of

i  g ( « ^ * ) \

We now write <rt- =  <Jo£i, for some op, not necessarily 1, assuming for simplicity that as 

data improves the variances of the errors on the </,- will reduce proportionately, i.e. op will 

decrease, but the will not change. (3.9) can then be written

2

where

g'i =  f i  and H%] =  ^  (3.10)
Oi bi

(c/. equations (2.27) and (2.29), although note the different notation used in chapter 2). 

From now on we assume that the normalization (3.10) has been performed, using the 

known errors from some data set, and drop the tildes. Introducing regularization as 

before (3.6) is recovered if A is rescaled according to

A —> poQ A. (3-11)
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So, with the rescalings (3.10) and (3.11) the problem has data errors that are independent, 

identically distributed, gaussian errors with zero mean and variance ctq.

3.2 The Effect of Different Values of A on the Recovered 
Solution

Once the form of the smoothing matrix has been chosen, and a perusal of the data is 

often sufficient to guide this choice (for example, a large mean value of the data for a 

rotation inversion suggests, since the kernels are positive everywhere, that the solution 

has a large mean value, thus making zeroth order smoothing inappropriate), the value of 

the smoothing parameter must be chosen. There are a few comments worth making about 

the effect of different values of A on the recovered solution:

a) As A —> 0 the recovered solution tends towards the unstable unregularized solution.

b) As A —> oo the solution conforms more and more with the demands of the smoothing 

constraint, and the data eventually becomes irrelevant. Somewhere between these 

two extremes there must be a value of A that provides the best possible recovery of 

the solution. If we knew what the true solution of the inverse problem was it would 

be a relatively simple task to adjust A until the recovered solution matched the true 

solution as accurately as possible, a) and b) together are equivalent to the statement 

that choosing A amounts to finding a trade-off between the variance and bias of the 

estimator f .

c) In practical situations there is always a source of error, even when inverting ‘exact’ 

artificial data, since the numerical inversion procedure will suffer from truncation 

and rounding error. This means that in general we must have A > 0 to ensure a 

satisfactory solution.

d) Clearly, if the true solution f matches very poorly with the smoothing constraint 

(i.e. if fTCf is large) then a large value of the smoothing parameter is unlikely to 

give satisfactory results. Conversely, if fTCf = 0 then A —> oo will give an excellent 

(perfect) recovery. Thus the value of A is affected by the appropriateness of the 

smoothing constraint chosen.

It is clear, therefore, that the optimal value of the smoothing parameter, A o p r ,  given 

the smoothing matrix, C, depends on the true solution. Of course, in real situations the
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true solution is unknown, so methods must be found of estimating A o p t  from the data, 

without recourse to knowledge of the true solution. Once such methods have been found 

their efficiency and accuracy must be examined. As the data errors are statistical in nature 

the properties of any estimator of A o p t  can only be determined if some thought is given 

to the statistical properties of the noise. W hat properties would it be desirable for an 

estimator of X o p t  to have? Certainly the expectation value of A, the estimate of A o p t -, 

ought to be close to the mean value of X o p t ? and the variance of A should be similar to 

that of A o p t - This ensures that any estimate will at least lie in the correct range. There 

is one other property that the estimator should have for it to be completely successful, 

and that is a rather high correlation with A o p t - This would mean that when the noise 

realization led to a value of A o p t  that was unusually large or small the estimator would 

follow suit. If the variances of A o p t  and A are small this last requirement is less important, 

as the estimate ought always to be in the right range. Thus, the criteria for assessing the

estimators of A o p t  presented in the next section will be the means and variances of their

distributions, along with the correlation they show with the value of X o p t -

3.3 M ethods for Estimating A o p t

a) With the notation:

R(X) =  | |g - / r t | |2  (3.12)

T(X) = T i { l p - H ( H TH +  \ C ) ~ 1H t }  (3.13)

where Tr {A} denotes the trace of the matrix A, the first estimator is given by the solution 

of

ED F{  A) =  =  (3.14)

where b2 is an estimate is the variance of the errors on the data. The value of the trace 

is a quantity known as the equivalent degrees of freedom for error. It basically measures 

the degrees of freedom in the actual errors (p =  Tr {Ip}) minus the number of degrees of 

freedom taken up by the fact that the actual inversion ‘fits the noise’ to a certain degree, 

so that the residuals have less degrees of freedom. The amount of freedom ‘taken up’ by 

the solution is given by T t ^ H ( H t H  +  AC)~XH T^. This method will be referred to as 

EDF, and the resulting estimate as Ae d f -
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Note that, usually, the exact variance of the data errors is unknown and so it must be 

estimated in some way. The accuracy of the estimator a  then becomes a crucial question. 

As is discussed below, the estimator of X o p t  just given is extremely sensitive to a . This 

has important consequences which will be considered in section 3.5. For this method it is 

assumed that we know that a =  <j0 (but see §3.4), so that the dependence of A e d f  ou a  

is not being examined.

The earliest method for estimating A o p t  resulted from assuming that the residuals 

ought to be very close to the true errors for the optimal value of A and thus that they 

ought to be distributed as N ( 0 ,cr2Ip). The x 2 estimate of A o p t  is then given by the 

solution of

CHI(X)  =  ^ 2  _  ^  =  0. (3.15)

Unfortunately, as mentioned above, the residuals do not have the simple distribution just 

given, but have a reduced ‘effective variance’ owing to the fact that the data will tend to fit 

the true errors. The shape of the function EDF(X)  is such that its gradient is very small 

near the solution A e d f  (hence, an incorrect value for a 2 will give an estimate of A o p t  

which is far away from the correct value, which explains the sensitivity of EDF to the noise 

estimate), this means that using p instead of T(A) will cause a large shift in the value of 

the root of (3.15) relative to the root of (3.14). Also, EDF is generally increasing near its 

root, so that using p (> T(A) for all A) instead of T{A) gives AX2 >  A e d f  and leads to 

severe oversmoothing. Once the reason for this was realized (3.15) was replaced by (3.14), 

which is a much better estimator of X o p t -

Equation (3.14) can also be derived using bayesian maximum likelihood (see Fitzpatrick 

1991, and references therein) assuming that the solution f  is drawn from a normal distri­

bution with zero mean and covariance matrix r 2C with A = (It can easily be shown 

that quadratic regularization is exactly equivalent -  for fixed A -  to bayesian ML with the 

prior just given. Maximizing the likelihood of the observed data over A gives (3.14).)

b) The second method for choosing A is known as generalized cross validation and is 

derived in Golub et al. (1979). The derivation goes as follows: For each k = l , . . . , p  

remove gk from the data set and infer

fW(A) = ( tfW T #  (*) + a C)~l H ^ Tz {k\
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where H ^  is the same as H  but with the kth. row deleted. Then predict g ^  = H k j f f ^  

and minimize the total mean square error of prediction given by

GC’V'W  = ^ E ( m W - « ) 2 (3-16)
P k—1

over A. The theory behind GCV says that the minimizer of GCV(X)  should be a very 

good estimator of A o p t - In fact, as p  —>■ oo, A g c v  X o p t -

As Golub et al. (1979) show, (3.16) may be approximated by

G C V ( X ) = f ^ .  (3.17)

This form has certain advantages over (3.16) (Golub et al. 1979), not least the fact that 

it is much easier to work with, and will be used from now on.

Note that a knowledge of the variance of the data errors is not required for GCV to 

work. Moreover, the fact that EDF is very sensitive to the value of a 2 means that if a 

good estimate of A o p t  is available EDF may be used to provide an excellent estimate of 

the error variance. A g c v  is very well suited to this. Experience with fake data shows that 

this procedure gives a very good estimate of <jq. This point will not be addressed further 

here.

c) Ideally, the optimal value of A would be given by the minimizer of

TE0(X) = \\i(X)-fo\\r (3-18)

It would be nice to make the identification At e 0 — ^opt? but there is some subtlety here. 

Consider the solar rotation problem. The fact that the p modes sample the centre of the 

sun very poorly means that there is very little information contained in the data about 

the rotation of the sun in that region. This results in inversions which conform almost 

exactly to the smoothing constraint near the centre of the sun. For example, figure 3.3 

shows the solar equatorial angular velocity inferred from real data using first order (first 

derivative) smoothing. The recovered solution is actually flat for r  < 0.272®, with a value 

of about 493nHz. As A is varied the point at which the solution is forced to become flat 

changes slightly, but, more importantly, the constant value of the angular momentum near 

the centre also varies. This means that the variation of the solution near the centre of 

the sun contributes to TEq.  However, we know that this part of the solution is nonsense,
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and so including it in the definition of TEo is unhelpful, to say the least. In fact, using 

the definition (3.18) often gave rather poor inversion for this very reason. We therefore 

modify (3.18) to

TE(X) = ||f(A) -  fb||^u,, (3.19)

where the subscript w represents the fact that the norm is now weighted so that the 

contribution to T E  from the solution in the region 0 < r < 0.2Rq  is zero. This modified 

definition does give a very good value of A. Henceforth, the estimate At e  is implicitly 

identified with A o p t -

The TE method for choosing A is practically useless (because it requires knowledge 

of f, the true solution). However, the identification of A t e  with A o p t  permits the first 

two methods to be assessed by comparing their distributions and correlations with A t e - 

This is the subject of the next section.

3.4 Assessing the EDF and GCV methods

Using artificial data created by substituting a known function into (3.1) and kernel func­

tions calculated from a solar model (c/. equations (3.2) and (3.3)) the efficiency of EDF 

and GCV is examined. The procedure used for this testing was as follows:

1. Choose a function f ( r ) to use as the true solution. This must have sufficient structure 

to provide a reasonable test of the inversion algorithm (i.e. it should not fit too well 

with any smoothing constraint that may be applied. The solution chosen was given 

by

/ ( r )  = 450 + 50 e-3r/ flo +  30 cos +  20 cos + 10 cos (3.20)
R q R q R q

(in units of nHz). This particular form was chosen because it had a vague resemb­

lance to the inversion of the real data and had structure on quite small scales, 

providing a test of any inversion algorithm.

2. Take f ( r )  and, using a set of kernels, calculate the data corresponding to it. The 

kernels used here were the GONG kernels provided by Gough for use in the GONG 

‘Hound and Hare’ exercise (GONG Newsletter No. 9). The data set thus constructed 

consisted of 810 modes (i.e. p =  810). with 5 < / < 60 and was determined by the 

overlap between the Libbrecht data set and the set of GONG kernels. The noise
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levels (i.e. {<$;;* = 1 ,.. .,810}) used for the renormalizations (3.10) and (3.11) were 

determined from the Libbrecht data set by calculating the standard deviation of the 

errors on a\ +  a$ +  a5. (See Durney 1990 for a brief explanation of these coefficients. 

«i +  « 3  +  « 5  give the data appropriate to an equatorial inversion.)

3. The (unrenormalized) data was used to create 1000 noisy data sets with the errors 

on the ith data point taken from a gaussian distribution with mean zero and vari­

ance <jf = (<70£,-)2. The random number generator GASDEV, given in Numerical 

Recipes was used to generate the errors. Three values of do were used: 0.01, 0.1 

and 1, the assumption being that the data will improve with time and there will be 

a need to examine the performance of EDF and GCV for helioseismological inversion 

with much lower noise levels than is currently possible.

4. Each of the 1000 data sets (for each value of do), was inverted using regularized least 

squares with PCD and first order smoothing. The discretization was performed with 

150 bins of equal width (i.e. q = 150). This was chosen because it is quite simple to 

implement and because the true solution was clearly not compatible with zeroth order 

smoothing (having a mean value of about 460nHz, and a maximum deviation from 

this of around 50nHz). The three estimators X e d f > ^ g c v  and A t e  were calculated 

for each data using a grid search with 30 equal width bins in In A for A between the 

largest and smallest non-zero elements of the matrix D(0) (equation (3.8)). (The 

motivation for these limits is that smaller values must be unacceptable because of 

the data noise, and larger values would result in a solution in which the smoothing 

parameter dominated every spectral component of the solution, so that the bias level 

would be unacceptable.) The grid search looks for intervals which bracket a root 

or a minimum. The Numerical Recipes routines ZBRENT and BRENT were then 

used to perform rootfinding or minimization over the interval which bracketed the 

best solution. (Sometimes G C V(A) has multiple minima. The global minimum was 

chosen in this case.)

5. The resulting values of the three estimators were used to find the mean and variance 

of their distributions and the correlation coefficients between the first two estimators 

and the last.
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0 0  = 0.01 o0 = 0.1

0r-HII0b

Ae d f -3.928 -2.746 -0.651
A G C V -5.543 -3.589 -2.263
X T E -5.818 -4.012 -3.017

Table 3.1: Means of log10 A for the three estimators considered here, for each data noise level, er0.

Oo = 0.01 o0 = 0.1 o0 = 1.0
A E D F 0.268 0.706 0.904
x G C V 0.695 1.070 1.622
x T E 1.257 1.548 2.027

Table 3.2: Standard deviations of log10 A for the three estimators, for each data noise level.

6 . GCV and EDF were used in an inversion of the ai +  +  a5  splitting coefficients

from the Libbrecht (1989) data. The inversion procedure was as described above 

(with <Jo = 1.0).

The results are presented in §3.5.

3.5 Results

Table 3.1 and table 3.2 show the means and variances, respectively, of the distributions of 

the three estimators for each value of op. The results for TE and GCV may be taken at face 

value. There was a problem with EDF which makes the results for this method slightly less 

credible, and this was that EDF seemed to be so sensitive to the estimate of the data  error 

variance that the truncation error contributed sufficiently to the noise to make EDF( X)  

positive definite (i.e. the noise estimate, op, which was the actual variance if the errors 

added to the data, was too small -  see equation (3.14)), so no solution to (3.14) could 

be found. From past experience with the kernels and method used here the truncation 

error was determined to contribute an effective increase to the added error variance of 

approximately 7.2 X 10-7 . Adding this (tiny) correction to op ensured that EDF( X)  

usually had a solution, although the results suggest that the noise estimate is perhaps a 

little too large, because A e d f  is generally too large compared to A t e - In fact, part of the 

problem with EDF is that its calculation involves a subtraction of two quantities th a t, for A 

in quite a large range around Xe d f , are almost equal. Its calculation is therefore prone
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op = 0.01 CT0 = 0.1 (To = 1.0
A E D F 988 549 577
AG C V 693 769 761
A t e 945 966 955

Table 3.3: Number of times each method for choosing the smoothing parameter actually succeeded 
in returning a value (out of a thousand trials), for each data noise level.

op = 0*01

oIIb oII£

AE D F -0.696 x 10"2 -0.192 x 10_1 -0.607 x 10-1
A G C V -0.551 x IQ-1 -0.547 x lO'"1 -0.128

Table 3.4: Spearman’s correlation coefficient of the two estimators A e d f  and A g c v  with A t e  for 
the three different values of op.

to  cancellation error, which may be quite considerable owing to the number of floating 

point operations necessary to calculate R(X)  and T(A). For these reasons the EDF method 

was not always successful in providing an estimate of A o p t  (the success rate of EDF was 

99%, 55% and 58% for op = 0.01, 0.1 and 1.0, respectively -  see table 3.3), so the means 

and variances calculated for the EDF method use fewer points than for the GCV and 

TE methods. Note, though, that these methods, too, were fallible. Table 3.3 shows the 

number of successes in selecting the smoothing parameter with each of the methods (recall 

tha t there were 1000 trials). The TE method was 95% successful for every value of the 

data noise level (although the value returned was not always terribly impressive -  see 

below). The failures here are a result of a minimization procedure that is not quite robust 

enough to deal with some of the pathologies arising from numerical error, particularly 

in relation to the effect of bias on the solution nearer the centre of the sun. GCV was 

successful about 70% of the time for the smallest noise level (op =  0.01), but this rose to 

76% for higher noise levels. This improved performance of GCV with higher noise levels, 

in contrast to the deterioration of EDF, is a typical feature of these methods for choosing 

the smoothing parameter.

Figures 3.1, a) ,b) and c) show the distributions of log10 A for the three estimators 

for op = 0.1 plotted in terms of In A. (The distributions for other values of op look similar 

in shape, but with different means and variances.) All three estimators have the property 

tha t they occasionally return an anomalously small value of A. In practice, it is easy to
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LAMBOA

Figure 3.1: Histograms showing the distributions of the values of log10 A returned by the three 
methods for choosing the smoothing parameter, for the noise level Co = 0.1. Each box contains 
the same number of points, i.e. the boxes have equal areas, but variable widths, a) log10 ^e d f , 
b) log10 Agcv, and c) log10AT£-

see that such values are incorrect and discard them, using some other method to choose A, 

so they ought really to be counted as failures of the method. This would improve the 

means and variances in tables 3.1 and 3.2, at the expense of decreasing the success rates 

given in table 3.3. With EDF the anomalous values are quite likely to be due to the 

general sensitivity of the method, but with GCV experience suggests that the methods 

themselves are very reliable, and that the failures are due (in part, at least) to a weakness 

of the minimization algorithm. It is interesting that the TE method occasionally returns 

an unusually small value of A t e - Again, this seems to be related to problems with the 

robustness of the minimization routine. There are only a few cases of this, so it probably 

has little effect on the statistics given.

Figures 3.2, a) and b) show the (lack of) correlations between the natural logarithms
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LAMBDA TE LAMBDA TE

Figure 3.2: Scattergrams illustrating the poor correlations between the estimated values of log10 A 
obtained from EDF or GCV, and the value obtained from TE, for the noise level <7o = 0.1. a) 
shows the correlation between log10 A e d f  and log10 A t e , whereas b) shows the correlation between 
logic' A g c v  and log10 A t e

of A t e  an(l the other two estimators. These are clearly very poor. Table 3.4 shows the 

values of Spearman’s correlation coefficient (see Numerical Recipes, §14.6) for the two 

estimators with A t e  for each value of <7o. Pearson’s and Kendall’s coefficients (Numerical 

Recipes, §14.5 and §14.6) were also calculated, and they were, of course, similarly low.

Finally, figure 3.3 shows an inversion of the data of Libbrecht (1989), using the estimate 

of A returned by GCV. The EDF method also returned an estimate, but this was clearly 

rather too large and resulted in considerable oversmoothing. (In fact, A e d f  — 5.866, 

which compares to A g c v  = 1.310 x 10~2.)

3.6 Conclusions

The trends that are generally found in the efficiency of EDF and GCV are that EDF (when 

a good noise estimate is available) works reasonably well for low noise levels, while GCV 

gives rather superior results for higher noise levels. Moreover, the analysis presented here 

can be applied more generally and with greater detail to provide a more thorough assess­

ment of any method of choosing A, including the trade-off curve method. Also, if several 

good methods can be found, the possibility exists of finding some combination of them 

which improves on all of them individually (by maximizing their correlation with A o p t  

over all linear combinations of the estimators, for example).
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F ig u r e  3 .3 : A n inversion o f  the d ata  o f  Libbrecht (1989) for the equatorial value o f  the solar 
internal rotation  (i.e . an inversion o f d] +  0 3  +  0 5 ), using the e stim a te  o f  A returned by GCV: 
Ag c v  =  1-310 x 10- 2 . T he error-bars are 1 -cr pseudo-confidence intervals.

The results presented here show that it is possible to find methods which provide a 

good choice for the smoothing param eters in inversions. For, while the performance of 

EDF left a lot to be desired, GCV gave excellent results. To illustrate this more clearly, 

study figure 3.4, which shows inversions of the artificial da ta  corresponding to the solu­

tion (3.20) for a single noise realization (with noise variance <r0 — 0.1, to allow comparison 

with figure 3.1), and for several different values of the smoothing param eter, A. The true 

solution is also shown. The range of values of A chosen allows the significance of the 

differences between the distributions of the three estimators of the smoothing param eter 

shown in fig. 3.1 to be understood more clearly. As a guide to interpreting fig. 3.4, recall 

th a t the smoother solutions correspond to the larger values of A. The smallest A shown 

is A = 1 x 10~3, which corresponds to the smallest value of the smoothing param eter 

th a t would normally be returned by the estimators. It is clear tha t this value of A under- 

smooths somewhat (observe the small, rapid oscillations near r j R q «  0.9). This accords

7308016430
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Figure 3.4: Inversions of noisy data corresponding to the artificial solution (3.20) for a single 
noise realization (ctq = 0.1) with several choices of the smoothing parameter, A, as shown in the 
key. The smoother solutions in the figure correspond to larger values of A, of course.

with our expectations based on figure 3.1, since this value of A is smaller than the values 

generally returned by all the methods. The inversion with A = 1 X 10-2 is much less 

oscillatory, and follows the variations of the true solution fairly well (although there are 

some local differences due to the data errors). This is just about the closest of the four 

estimates of the solution plotted in figure 3.4, and, again, this reflects the information 

in figure 3.1, since A = 1 X 10"2 corresponds (approximately) to the peak of the distri­

bution of the optimal value of the smoothing parameter, A t e -  Most importantly for the 

work here, though, A = 1 x 10-2 corresponds to the peak of the A g c v  distribution in fig­

ure 3.1b), which means that the GCV method is likely, in general, to give good results. It 

is quite easy to see from fig. 3.4 that the smoothest solution, which corresponds to A =  1, 

oversmooths considerably everywhere, and is a less satisfactory solution than those for 

smaller values of A. Inspection of figure 3.1a) shows that this value of A is close to the
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peak of the distribution of A e d f , which indicates that, in general, the EDF method will 

(with the problem considered here, at least) tend to oversmooth and give results that are 

unsatisfactory.

The only flaw with GCV is that its correlation with A o p t  is poor, but the rather small 

variance of its distribution makes this criterion less important. The theory behind GCV 

says that it is asymptotically optimal (as p —»• oo), so that the only way to improve on GCV 

(without a perfect error estimate) would be to find an estimator which converges to A o p t  

faster than GCV. With the large data sets soon to be available via the GONG project 

it will be difficult to surpass GCV for the objective choosing of smoothing parameters in 

helioseismological inversions.



Chapter 4

Studying the Resolution of D ata

4.1 Introduction

In this chapter the meaning and importance of resolution in the solution of inverse prob­

lems are discussed, and methods for quantifying the resolution achieved in a particular 

inversion, and for quantifying the maximum resolution that could be achieved, for any 

given level of data errors, are presented.

The term resolution cannot be defined in an absolutely rigorous, quantitative way, but 

it is obvious from an intuitive point of view that the meaning of the term is essentially:

the extent to which the values of the solution to an inverse problem at two 

nearby points can be distinguished, and, more particularly, the distance two 

points must be apart before it is possible to make statements about significant 

differences in the values of the solution at those two points with any degree of 

confidence.

There are two senses in which gauging resolution is important. In a general sense, in 

the absence of any specific data and armed only with a knowledge of the form of the 

forward problem, and perhaps some thoughts on what data error levels are of relevance, it 

is possible, and often necessary, to make statements about the best resolution tha t could 

be achieved in an inversion, purely on the basis of the extent to which the kernel functions 

would act differently on two putative solution functions that differ only in small regions. 

Often, for example, it may be important to know the resolution that could be achieved 

with some given collection of solar oscillation modes and some particular data noise level 

before any data has been acquired, perhaps to enable the designers of an observing project 

to concentrate their energies on some set of modes in preference to any other. Or it may

164
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be desirable to determine whether some set of data actually has the power to accept or 

reject some model of, say, the solar rotation, before performing an inversion, the results 

of which may turn out to be inconclusive.

Aside from this, though, there is the question of determining the resolution that ac­

tually has been achieved in a particular inversion. For a specific inversion it is necessary 

to specify both the resolution achieved (which will, in general, be less than optimal) and 

the errors on the recovered solution values. Without such information the solution values 

are essentially meaningless, and they certainly cannot be interpreted and compared with 

other inversions.

There is no single, unequivocal definition of ‘resolution’, although there are accepted 

standards (such as the width of the averaging kernels in OLA inversions -  see §1.8 — 

although even this is not really absolute as it depends on the choice of ‘width’ functional 

used), by which any other definition will be judged. Several alternative approaches to 

assessing resolution in helioseismic inverse problems are presented in §4.2. These can be 

broken down loosely into two classes: those that are intimately connected with inversion 

procedures, can be used in those procedures to estimate the resolution attained, and those 

which are essentially independent of any such procedure and rely on studying the data that 

would be obtained if the true solution were one of some set of functions depending on a 

small number of parameters. The former type are very useful when performing inversions is 

also one of the goals, but they tend to be more complicated and computationally intensive. 

The latter group are very simple to use, but cannot give information about the resolution 

achieved in specific inversions.

One of the methods for assessing resolution described in §4.2 (and which lies in the 

class of inverse-procedure related methods) uses the correlation profile of the errors on 

the solution to determine the resolution length, in much the same way as the averaging 

kernels at any point can be used for the same purpose. Strangely, despite its simplicity, 

this method seems to have been largely overlooked in the past. It turns out to have some 

considerable advantages over the averaging kernel definition of resolution, most noticeably 

in terms of speed of calculation, although it is not entirely free from problems.

Having outlined the alternative definitions of resolution in §4.2, they will be used 

in §4.3 to examine the resolution that can be achieved with the splitting data of Libbrecht 

(1989), for the error levels provided with the splitting coefficients. Section 4.4 will then
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discuss the significance of these results for the resolution achievable in real inversions with 

this data, such as those in chapter 5.

4.2 Quantifying Resolution

Several alternative ways of measuring ‘resolution’ in helioseismic (or indeed any similar) 

inverse problems are briefly described and explained, as a prelude to §4.3 where they will 

be applied in a real helioseismic problem.

4 .2 .1  S in es and C osin es

One way to think of resolution is to consider the sharpness of features that could be 

distinguished in an inversion. It is clear that if the inversion can recover sharp features in 

a solution, then the resolution is good. But sharp features in a function correspond to the 

presence of large, short-wavelength components in the Fourier expansion of that function. 

As the inverse problem is linear, the Fourier components can be treated separately. A 

particular mode set, with some error levels assumed, can be seen to give rise to high 

resolution if, when the true solution is assumed to be a sine function with short wavelength, 

this solution can be recovered adequately in an inversion. W hat this means really is that 

the short-wavelength sine function does affect the data above the level of the data noise, 

for if it does then its presence can certainly be determined, and if it does not there is no 

way we could ever know it was there. The idea of short-wavelength sine functions being 

detectable is related to the Riemann-Lebesgue lemma (see Craig and Brown 1986, §4.2).

This method is ‘global’ in the sense that the information given necessarily relates to 

the whole range of the inversion, rather than just the region around individual points. 

Obviously, this is a result of the fact that the Fourier components are homogeneous across 

the range of the inversion, that is, each component is sort of the same everywhere. In 

problems where the resolution achieved is similarly uniform across the range of the inver­

sion this would not m atter, and Fourier components could be used to assess resolution. 

However, helioseismic inverse problems are certainly not in this category, for it is well 

known that the solar p-mode frequencies contain a great deal of information about the 

interior of the sun nearer the surface (and thus give excellent resolution there) and very 

little information about the solar core (meaning poor resolution there). Using Fourier 

components to gauge resolution is just not adequate for helioseismic inversions.



CHAPTER 4. STUDYING THE RESOLUTION OF DATA 167

It might be possible to rescue the situation by considering other bases that have some 

property of localization, such as wavelet bases (Numerical Recipes, §13.10), but this will 

not be pursued here.

4 .2 .2  D e lta -fu n c tio n s

Another way to produce a measure of resolution that is local, and therefore appropriate 

to helioseismic inverse problems is to come out of Fourier space altogether and look at 

localized features in ‘real’ space. The extent to which two nearby localized features can 

be distinguished obviously gives a measure of resolution. The simplest and most localized 

‘feature’ possible is a dirac delta-function, so here we consider the measure of resolution 

defined by comparing the data that would result from two different delta-function true 

solutions at nearby points.

First, it is obvious that the (error-free) data that would arise if the true solution was 

proportional to a delta-function at some point 7*0 , i.e. / ( r )  =  ao6(r — 7*0 ) , is

Obviously, if the data contains noise, this difference could only be detected errors if the 6gi

true solutions can only be detected at, say, the 2<r-level if, on average, the 6gi are at least 

twice as large as the ai, that is, if

By varying ao5 ro and ri to find the points where the limit in (4.3) is reached, the

Rq
(4.1)

Jo

The difference between this data set and that for a different delta-function solution f ( r ) = 

a i 6(r  — 7*1) at another point r i, is just

6g{ =  « iA :i(r i)  -  a 0ki(r0). (4.2)

are larger than the typical size of the errors. A little more precisely, if the errors on the 

ith. data point have standard deviation a the difference between the two delta-function

(4.3)

ability of the data set used to distinguish between different such solutions can be found. 

Since we are interested here primarily in resolution, which is the ability to distinguish 

features at different positions, the variation with ao and a i  will not be considered. We 

will, however, retain a 0  and a\  to allow renormalization of the data, which is necessary 

because, as the errors we are considering are absolute, choosing a very small amplitude for
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the delta-functions would mean that the bgi would be swamped by the noise wherever the 

delta-functions are. To overcome this problem, the normalizing constant a  is chosen so 

that the norm of the data vector, g2 = YaLi dh  at eac^ point is the same as the norm of 

the data vector for the 0 1  +  0 3  +  0 5  inversions of the Libbrecht (1989) data, G 2 = 9.93 X 106. 

At any point, r*0, then, ao is given by

m \  —1/2

J2ki(r o)2 )
t=i /

In §4.4, when this definition of resolution is tested on a real helioseismic problem, the 

preceding normalization will be assumed, and the criterion for accepting that a difference 

between the delta-functions is detectable will be that the difference between the two data 

sets is significant at the 2<7-level, i.e. that (4.3) holds.

4 .2 .3  S tep -fu n ctio n s

Precisely the same principles apply to the use of step functions (in this chapter, the term 

step-function will be taken to mean a piecewise-const ant function with a single jump, or 

step, in it) to study resolution as applied to delta-functions. The steps in step-functions 

are localized features, just like delta-functions, and so they can be used to probe the local 

resolution. Step-functions may in some ways be even more appealing than delta-functions 

for the study of resolution, because we often expect to see steps in the solutions of inverse 

problems, but a delta-function-like spike is much less realistic. In fact, the inversions 

for the equatorial rotation rate shown in chapter 5 show very strong evidence of a sharp 

feature at the base of the convection zone (t/ R q «  0.73). This feature is almost certainly 

much narrower than the resolution length at that point (dynamo theory suggests that the 

gradient there might be quite steep). So, using step-functions as a probe of resolution 

may well give better results, than delta-functions because a step-function bears a closer 

resemblance to the features we expect to find in real solutions of the inverse problem.

Step-functions are a little more complicated than delta functions, because they are 

parametrized with three parameters, the value of the step-function on either side of the 

step, and the position of the step. However, again we are interested primarily in resolution, 

so the parameter of most relevance is the position of the step. We fix the values of the 

function on either side of the step in the following way:

• as the data is rather insensitive to the value of the solution near the centre of the sun,

a0 = G
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fixing the value below the step to some constant value should not be too restrictive, 

or cause too many problems. For physical reasons, related to the possible existence of 

a very sharp feature in the solar equatorial rotation rate (suggested by the inversions 

of chapter 5), this value was taken to be 440 nHz, which is approximately the value 

of the solar rotation rate near the base of the convection zone. The reasons for this 

choice are explained below.

• just as with the delta-function method, it is necessary to fix the norm of the data 

to avoid having such small data values that the data itself is swamped by the noise, 

so that there is effectively zero reolution everywhere. This will fix the value of the 

step-function above the step.

The reason for ‘normalizing’ the step functions in this way is to ensure that when the 

step is at the base of the convection zone it looks as much like the solutions shown in 

chapter 5 as possible. That way the definition of resolution it provides near the base of 

the convection zone is more likely to have a direct physical relevence, both quantitatively 

and qualitatively.

It only remains to describe how the above normalization fixes the value of the step- 

function. If we denote a general step-function with step at ro, value a below ro, and value b 

above it, by 5 (a , 6, ro; r), the value of the ith  data point will be given by

[Re rro rRq
gi = I ki(r)S(a,b,ro;r)dr  =  a / fc,(r)dr +  6 / k{(r)dr  (4-4)

JO Jo Jr o

The norm (squared) of the data vector is then

9 2 = 7i&2 +  l2 ab +  73a2,

where

Demanding that g2 =  G2, the norm of the Libbrecht data vector, as in §4.2.2, leaves a 

quadratic equation for b (remembering that a is fixed by the constraint outlined above).
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This can easily be solved for b. In the event that there are two possible solutions, the 

positive solution should be taken, since that is more in accord with the observed solutions.

Having completely fixed the values of the step-function for any position of the step 

we can now say that two steps, S(ao,bo,ro;r) and <S'(ai,6i, ri; r), can be resolved if the 

differences, £</,-, between their respective data values again satisfy (4.3). The argument is 

exactly as before for the delta-functions. Again, finding, for any ro, the limiting values 

of ri for which (4.3) just holds defines the resolution lengths at ro-

4 .2 .4  A verag in g  K ern els

The use of averaging kernels in OLA methods (see §1.8) has long been an accepted way to 

define the resolution achieved in an inversion. Although it is most often used in OLA inver­

sions the concept of an averaging kernel applies equally well to RLS methods (Christensen- 

Dalsgaard et al. 1990). The RLS averaging kernels are derived as follows. We know from 

equation (1.59) and from §2.2.5 that the solution vector in an RLS inversion is given in 

terms of the data vector, kernel matrix and smoothing matrix by

f  = (H t H  +  A C)~l H Tz.  (4.5)

The discretization procedure told us that the solution function is related to this solution 

vector by an equation of the form (2.23), i.e.

f i r )  = S  f i M r ) = <£T(r )f » (4-6)
l=i

where vector notation has been introduced to simplify the equations here. Using (4.5) 

in (4.6) gives the solution function in terms of the data

f ( r )  = <t>T(r)(H TH + AC)-1 H Tg. (4.7)

We know exactly how the data are related to the solution (this is just the forward prob­

lem, (1.32)). Using this in(4.7) tells us that

/ ( r )  =  j  | <f>T(r)(H TH  +  AC)-1 H Tk(r ')}  f ( r ')  dr'

(where the kernels have also been written in vector notation). The factor in braces says 

exactly how the recovered solution depends on the true solution. It gives a weighted

average of the true solution at every point of the recovered solution. Hence, the quantity

K (r, r') d= <f>T(r)(H TH  +  AC)"1 J7r k (r ')  (4.8)
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is an RLS averaging kernel. Generally, like the OLA averaging kernels K (r ,r ')  has a 

peak at or near rf = r for any r, and the width of the peak determines the resolving 

length. There are many ways to define the width of the peak (full-width at half maximum, 

quartiles, etc.). In §4.3 the definition of width that was taken was a two-sided one. 

Essentially, the two points, r/ and r u, above and below the point of interest, r, at which the 

averaging kernel falls to half its value at r are used to define the lower and upper resolution 

lengths as // =  r  -  r*, and lu =  ru — r. This gives a better indication of the relationship 

between the recovered solution and the true solution. It should be noted, at this point, that 

the averaging kernels depend on the value of the smoothing parameter (c/. figure 4.1), so 

their width is not an absolute quantity. In order to define the resolution it is necessary first 

to choose the smoothing parameter. This is rather a circular argument, because it could 

be said that the choice of smoothing parameter should be determined by considering the 

stability and resolution of the inversion (the trade-off method), rather than the other way 

around. Here, though, the view is taken that assessing the resolution of real inversions is 

an important aspect of this work, so to use the value of the smoothing parameter chosen 

in an inversion is perfectly valid. This statement also applies to the correlation profile 

method to be described shortly. The averaging kernel and the correlation profile results 

in §4.3 were obtained in the inversion illustrated in figure 5.4(a) (discretization 1) using 

the value of A chosen by the GCV method in tha t inversion.

4 .2 .5  C orrela tion  L en gth

Although it rarely seems to have been given much attention, there is a great deal of 

information about the effect of smoothing and regularization on the independence of, and 

relationship between, the components of the solution vector in the covariance matrix of 

errors on the solution. This can easily be converted into information about correlations 

between the values of the errors in the solution function at different points, and thus used 

to draw conclusions about the effect of the smoothing on the solution function. The idea 

is tha t the errors at nearby points must be correlated by the smoothing constraint, or 

the solution would never be smooth. At points further apart there is no reason for the 

errors to be related to one another in general, so the errors at points further apart should 

normally be less well correlated. Picking one point, r , and plotting its correlation with the 

errors at other points, r ', a profile should be obtained that has a high value near r (highly
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correlated errors) and falls to smaller values for r' further away from r. Such a profile 

has many of the properties of an averaging kernel, and so the fact that its formulation is 

explicitly related to the extent to which the smoothing constraint forces the solution to be 

smooth suggests that it might make a good measure of resolving length. In this section the 

correlation profile, c(r, r') will be derived, and in §4.3 its similarities to the RLS averaging 

kernels will be described and investigated.

It is a simple m atter to show that the covariance matrix of errors on the solution 

vector, which is defined by

Ccov = E  { (f -  f  )(f -  f  f }  ,

(where a bar denotes the mean value, and IE denotes the expectation value, taken over 

realizations of the data errors) can be written in terms of the kernel and smoothing matrices 

as

Ccov =  ( HTB  +  XC)- l H TH( HTH +  XC)-1. (4.9)

Since the solution function is related to the solution vector as in (4.7) it is possible to use 

the covariance matrix to calculate the correlations between the errors on the solution at 

different points. We define the correlation profile to be

c (r,r ')  =f IE { ( /( r )  -  / ( r ) ) ( / ( r ')  -  / ( / ) ) }  . (4.10)

The mean, / ( r ) ,  of f ( r )  is easily seen from (4.6) to be given by

/ ( r )  -  <f>T{r)f,

so that c(r, r') can be written (after removing the basis functions of the discretization from 

the expectation value because they are obviously independent of the data errors)

c(r, r') = <f>T(r)W, { (f -  f ) ( f  -  f )T} <f>(rf) = 4>T(r)Ccov<Kr')- (4-11)

Observe that the expression for the covariance matrix (4.9) in terms of the kernel and 

smoothing matrices gives the expression (4.11) a very similar appearance to the RLS 

averaging kernel in (4.8). This is one more reason for expecting that the width of the 

correlation profile might provide a useful measure of resolution. In the work of §4.3 the 

width of the correlation profile was defined exactly as for the RLS averaging kernels (i.e. a 

two-sided definition was adopted).
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In §4.3 the correlation profile used was not exactly the profile derived above, but was 

instead the normalized profile c(r, r'), defined by

^ r’r  ̂ = Â'lTj\/c(r, r ) c ( r , r )

which has the pleasing properties of being symmetric in r and r ', and having the value 1 

when r ' =  r, as can easily be seen from the form of (4.12).

4.3 Results

Before comparing the measures of resolution obtained by the above methods, we should 

take time to compare the properties of the averaging kernels and the correlation profiles. 

Figure 4.1 shows the correlation profiles and the averaging kernel profiles for different 

values of the smoothing parameter, and for three points within the sun. It is clear that 

neither type of profile gives a very good measure of resolution for very small A. They both 

have narrow central peaks, but the sidelobes are rather large. This means that measuring 

the resolving width by finding the HWHM of the profile will give completely misleading 

results. For large A, too, the profiles do not provide any easy way to  measure resolution. 

They are much less erratic than for very small A, but they are not at all well localized 

about the relevant point. For A lying in the range relevant for inversions of real solar data 

the profiles are much better, and give a very clear and effective measure of resolution. 

Note the close similarity between the correponding profiles of each type. Although they 

do not follow each other exactly, they do have a very similar structure, both being large 

in modulus in the same regions. The correlation profiles in regions where the resolution 

is poor (near the centre of the sun) do not perform as well, because they tend to adopt 

a constant value close to one in such regions, which merely indicates that the smoothing 

constraint is doing all the work and tying the values of the solution together very rigidly.

Broadly speaking, the relationship between the correlation profiles and the averaging 

kernels is that, while the averaging kernels often give a cleaner profile, they are prone 

to exhibiting oscillations away from the central peak, whereas the correlation profiles are 

generally smoother and less prone to oscillation. This smoothness does mean, though, 

that they often give a measure of resolution that overestimates the region over which the 

solution is averaged relative to the averaging kernel estimate of the resolution.

Figure 4.1 is a clear demonstration of the potential relevance of the correlation profile
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method for measuring resolution in helioseismic, and other, inversions. Having validated 

this new measure of resolution, it is time to ask what the different ways of measuring 

resolution outlined in §4.2 have to say about the resolving power of the modes in the 

Libbrecht data set, and how do their measures of resolution compare with one another. 

Figure 4.2 plots the value of the resolution determined by the delta-function and step- 

function methods. The agreement between the different methods is so good that the 

curves lie almost on top of each other. This is perhaps hardly surprising, as the delta- 

function can be thought of as the derivative of a step-function, so these two types of 

solution function are very closely related. There are one or two points to notice about the 

curves in figure 4.2. Firstly, there is a definite break in the curve at around r / R Q =  0.73, 

indicating the position of the base of the convection zone. This shows very vividly the 

way in which even relatively small details in the solar structure can affect solar rotation 

inversions. Secondly, note that the curve begins to dip down for r/J2© < 0.6, despite the 

fact that the resolution is expected to get worse nearer the centre of the sun (the resolving 

length should increase). This is almost certainly a result of the normalizations of the 

delta-functions and step-functions, which will tend to give rise to unwanted effects nearer 

the solar centre where the kernels are small.

Figure 4.3 displays the values of the resolution determined from the correlation length 

and averaging kernel methods. The agreement between the curves is rather satisfying. The 

correlation profile method tends to give large values of the resolving length (particularly 

the left-side resolving length) near the centre of the sun, but apart from that curves match 

up very well. Figure 4.3 provides a further indication that correlation profiles can be used 

to estimate resolution in inversions.

W hat is less satisfying is the considerable mismatch between the correlation length and 

averaging kernel measures of resolution and the delta-function and step-function measures. 

There really is very little agreement either qualitatively or quantitatively between them. 

It is not clear why this is.

4.4 Conclusions

The correlation profile method has been shown to provide an adquate measure of resolu­

tion in inversions. Although it has some problems, its real advantage is that it is much 

faster and simpler to calculate than the averaging kernel width. This is partly because in
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RLS inversions there are more kernel functions than basis functions in the discretization 

(compare equations (4.11) and (4.8)).

The poor agreement between the measures of resolution obtained from the two different 

classes of technique for determining resolution (the inversion related methods and the 

parametric methods) is rather disheartening, and cannot be explained at the present time. 

In spite of this, it is still possible to make some statements about the resolution achievable 

through the solar interior (two statements, in fact, depending on the type of method 

used). For example, an important quantity to ascertain from a physical point of view is 

the resolving power of the data near the base of the convection zone. This is because the 

physics near the base of the solar convection zone is believed to play a role in many of 

the global phenomena observed on the sun, such as the solar cycle. It is therefore very 

interesting to know how much detail in the solar rotation velocity can be determined from 

any given data set. The delta-function and step-function measures say that features in the 

rotation profile as small as 0.0018r/R© can be resolved. This seems unreasonably small, 

especially given that the correlation length and averaging kernel methods both say that 

features smaller than about 0.04r/R© would not be seen in an inversion. The la tter figure 

must be taken as the more realistic assessment of the resolution achievable in inversions 

of the Libbrecht data.

We could, of course, extend this analysis to consider other data noise levels, larger 

mode sets, smaller mode sets, and so on. The combinations of possible configurations 

tha t could be studied is endless. In particular, the work of this chapter could be applied 

to data sets such as the GONG data set (Harvey et al. 1993) to consider the resolution 

obtainable with that data.
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Figure 4.1: Comparisons of the correlation profiles and the averaging kernels with three different 
values of the smoothing parameter, and for three different points within the sun. Each graph 
contains the correlation profiles and normalized averaging kernels for the points t/R q — 0.4, 0.6 
and 0.8. The averaging kernels are renormalized by their values at these points. The correlation 
profiles are the normalized version given in (4.12). Graph (a) is for A = 10-4 (much smaller 
than the value of the smoothing parameter used in the inversion in chapter 5). Graph (b) is 
for A = 7.5 x 10-2 (which is very close to the value of the smoothing parameter used in chapter 5). 
Graph (c) is for A = 102 (much larger than the value of the smoothing parameter used in chapter 5).
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Figure 4.2: The left and right resolving lengths obtained from the delta-function and step-function 
methods, as functions of the solar radius. Note that the curves are so similar that they can barely 
be distinuished.
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Figure 4.3: The left and right resolving lengths obtained from the correlation length and averaging 
kernel methods. The saw-tooth effect is merely due to the interplay between the 150 point uniform 
grid used in the discretization and the 120 points at which the profiles were calculated.



Chapter 5

Results and Conclusions

5.1 Introduction

In this chapter the methods described in earlier chapters are illustrated by applying them 

to real helioseismic data. The rotational splitting data obtained by Libbrecht (1989) in 

1986 is used throughout this chapter. In section 5.2 various inversions of the Libbrecht 

data are performed using the algorithm of chapter 2 , with different discretizations to 

demonstrate the flexibilty of the algorithm. The ‘equatorial’ inversion is used for this 

demonstration. An equatorial inversion is the inversion of the combination a\ +  0 3  +  0,5 of 

the old splitting coefficients (obtained by expanding the mode frequencies in a multiplet 

in terms of legendre polynomials -  cf. (1.28), where alternative, and more useful, splitting 

coefficients are obtained from an expansion in terms of Clebsch-Gordon coefficients). The 

inversion of these coefficients is called an equatorial inversion because it essentially makes 

use only of the frequencies of sectoral modes (inodes corresponding to spherical harmonics 

with m  =  ±Z), and these modes have a latitudinal dependence that makes them strongly 

concentrated near the equator of the sun, for all but the smallest / at least, which means 

tha t they are much more sensitive to the rotation rate near the equator than elsewhere. 

The equatorial inversion was chosen to illustrate the effectiveness of the algorithm of 

chapter 2  partly for simplicity, and partly because the form of the solution to this inverse 

problem is the one that is most familiar and well-known.

Section 5.3 presents inversions of the Libbrecht data for (quantities closely related to) 

the Ritzwoller and Lavely (1991) components w ^ \  w and (see §1.5.3), of the solar 

velocity field expanded in terms of vector spherical harmonics as in (1.27). The significance 

of these inversions for the solar internal rotation rate is discussed.

Finally, section 5.4 briefly summarizes the work in this thesis.

179
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5.2 Using the Inversion Algorithm

To demonstrate the use of the algorithm of chapter 2 several inversions of the same data ar^
l

performed using different discretizations. The data chosen are the combinations 0 1 + 0 3 + 0 5  

of the splitting coefficients in the data set of Libbrecht (1989). The details of these 

inversions will now be described.

5 .2 .1  T h e  D a ta , th e  E rrors and th e  K ern els

The Libbrecht data contains the a i , .. .,ae  splitting coefficients for 872 oscillation modes 

with 5 < / < 60, and 2 < n < 26 (see Libbrecht 1989 and Duvall Jr. et al. 1986 

for an explanation of the ot- coefficients). In the inversions presented in this chapter all 

these modes were used. The kernel functions for the inversion were calculated from a 

solar model using up-to-date physics kindly provided by J. Christensen-Dalsgaard. The 

numerical procedure for performing the calculation used a parallel shooting method to 

solve the boundary value problem that the equations of adiabatic oscillations form. The 

integrations were performed using simple fourth-order Runge-Kutta and the ‘matching 

point’ for the integrations was taken as the outer point in the model table, at which 

the outer boundary conditions were applied. See Unno et al. (1979), chapter III for a 

description of the physics, and §17 for a description of methods for solving the equations 

of oscillation, and see Numerical Recipes, chapter 17 for a description of the specific details 

of the numerical procedures referred to above. The code to  perform these calculations was 

based quite heavily on the formulation of the equations in chapter 17 of Unno et al. (1979). 

The parallel shooting method chosen was perhaps not the most accurate possible method 

(it might have been better to use the Henyey relaxation method described in chapter 17 

of Unno et al. 1979) but the accuracy is adequate for the purposes of this chapter. The 

kernels were calculated on the same grid as the model table, which contained 1281 points, 

with a high density of points near the solar surface.

The splitting coefficients are provided with error estimates, and these were used in the 

inversion to renormalize the kernel matrix and data vector according to (2.27) and (2.29), 

respectively. Of course, if the standard deviations of the errors on the coefficients a i, 0 3  

and < 1 5  for some mode are 0 1 , < 7 3  and <r5, then the standard deviation of the error on 

^ 1  +  a3 +  a5 for that mode is

\ A i + < 73 +  (75-
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W ith these renormalizations the errors on the (normalized) data, </,■, become uniform, with 

standard deviation 1.

5 .2 .2  D iscre tiza tio n

Three different discretizations are used to perform the inversion. Each had the same num­

ber of free parameters (150), to simplify the comparison of the results. The discretizations 

were:

1. Uniform PCD with 150 bins between r /R & = 5.905 x 10-2 and r/R@ =  1.0007. The 

lower limit was determined by the point below which all the kernels are effectively 

zero (<  10~35), and the upper point is the outer point in the model table from which 

the kernels were calculated.

2. Cosine expansion (an OFE method). A single discretization bin covered the whole 

range of the inversion, and the solution was assumed to be expanded in terms of the 

basis functions
‘( j  -  1 ) ttr '

fo r i  =  1, • • .,150. (5.1)
R q

This is effectively equivalent to a half-range Fourier expansion.

3. A hybrid method that involves using different forms of discretization in different 

regions. The range of the inversion was broken up into three separate regions: 

Xq =  5.905 x 10-2 to X \  =  0.6, 0.6 to X 2 = 0.8, and 0.8 to 1.0007. On the first 

region a low (third) order polynomial expansion of the solution was used. In other 

words, the solution was expanded in terms of the three basis functions

<£iM =  1, <f>\(r) =  ^  and <j>l(r) =  •

On the second region (which includes the base of the convection zone) a cosine 

expansion with 28 terms was used. This is essentially the same as in (5.1), except 

that the radius co-ordinate is transformed so that the Fourier expansion is over the 

interval from X \  to X 2. In the final region the solution was discretized by choosing 

118 non-uniformly spaced discretization points between X 2 and X 1 2 1  =  1.0007 and 

using PCD; that is, on each of the discretization bins / 3 , . . . , / i 2 i the solution is 

assumed to be a constant, and the basis function for the discretization on each bin 

is just (f>\(r) = 1. Within this last region the discretization points were chosen from
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the following considerations. The work of Barrett (1994) demonstrates that, in a 

certain sense, it is possible to make an optimal choice for the discretization points in 

an inversion with PCD (the condition for optimality was essentially that the error 

magnification in the unregularized inversion is minimized). It is also shown that, 

for the solar rotation problem, at least, the distribution of support points found 

matches very well with the distribution that would be obtained by demanding that 

the area under the sum of all the kernel funtions used in the inversion be divided into 

equal parts by the discretization points. This distribution of points was worked out 

assuming 150 bins. The support points in the last region were then chosen by using 

any of those points that lay between 0.8 and 1.0007. Note that the solution was not 

constrained to be continuous across the boundaries between the three discretization 

regions (i.e. at r/R@ =  0.6 and 0.8). That is, the formalism of §2.3 was not applied 

here.

5 .2 .3  R eg u la r iza tio n

To demonstrate the ease with which the recursive scheme for evaluating the smoothing 

matrix can calculate smoothing matrices of high order (in contrast to other inversion 

procedures where the smoothing matrices have to be put in ‘by hand’), and to illustrate 

the smoothing effect of higher orders of smoothing, the uniform PCD inversion is performed 

for first to sixth order smoothing. With all of these inversions the smoothing parameter 

was chosen using the GCV method. Zeroth order smoothing was not used because the 

solution to the inversion has a large positive mean value (much larger than the typical 

variation) so tha t zeroth order smoothing is inappropriate and ineffective.

The inversions with the three different discretizations were all performed using first 

order smoothing, for. simplicity. Again the smoothing parameter was chosen by GCV.

5 .2 .4  R e su lts

Figure 5.1 shows the results of the inversions of the Libbrecht data using uniform PCD 

and six different order of smoothing. The errorbars and resolving lengths are not plotted 

because these would confuse the issue, and because they are essentially the same as for 

the inversion in figure 5.4(a). Figure 5.1 clearly illustrates two things. Firstly, nearer the 

surface of the sun, where the splitting data contain a lot of information about the solar 

rotation rate, the recovery is only affected slightly by the different smoothing constraints,
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Figure 5.1: Six inversions of the data of Libbrecht (1989) for the equatorial value of the solar 
internal rotation for six different orders of smoothing, p = 1,.. .,6. The smoothing parameters 
were chosen by the GCV method.

whereas nearer the centre of the sun where the information content of the data is much 

lower, the solution varies wildly with the different discretizations. This property is char­

acteristic of the effect of different smoothing constraints in any inversion. When the data 

is poor, or when some part of the solution is poorly constrained by the data, the solution 

tends to be very different when different smooothing constraints are used. This is because 

almost all of the ‘information’ in the solution in such regions comes from the smoothing 

constraint and how it ties the solution in that region to the solution elsewhere, and differ­

ent smoothing constraints will obviously do this in different ways. Figure 5.2 emphasizes 

this. It shows exactly the same solutions as figure 5.1, except that now the vertical range 

of the graph has not been restricted to highlight the solutions near the surface. Note the 

scale on the vertical axis. Providing it is clear that the solution in these regions is not 

well constrained by the data this is not really a problem; the values of the solution there 

have to be written off as essentially unknown. The important thing is that the solution in



CHAPTER 5. RESULTS AND CONCLUSIONS 184

4000 r -------------------1------------------------- 1------------------------- 1-------------------------- 1------------------------
~ ~------- 1st order smoothing -----

  2nd order smoothing -----
2000 - ............ ..........  3rd order smoothing ........-

.............................. ................ .............................  4th order smoothing -----
  ' .....* - - - smoothing ------——: ~ : : 7 r t |u ~ "

0 -..........................................-.v-'.......................................................................... -

-2000 -  

I /
S  -4000 - 
® / rt /
c  /
|  -6000 /  ‘(0 /*5 /oc

-8000 -
/

-10000 - /

/
-12000 - y

//
.• I  4000 t -------------------------------1---------------------------------------- 1-----------------------------------------1-----------------------------------------1-----------------------------------------

0.1 0.15 0.2 0.25 0.3
Radius (r/R)

Figure 5.2: As for figure 5.1, but with the horizontal sods contracted and the vertical axis expanded 
to show how the solution near the centre of the sun changes as the smoothing constraint is changed.

regions where the data is good is hardly affected by the smoothing constraint at all. This 

means that it is not necessary to agonize over the choice of smoothing constraint, or over 

the effects it may have had on the solution in those regions.

The second point to note is that the small variations in the solution between different 

smoothing constraints nearer the surface of the sun are also characteristic of the effects of 

general pth-order smoothing. The higher the order of smoothing, the more the solution 

tends to have its corners rounded off. The reasons for’ this are also obvious. Any sharp 

‘corner’ in the solution coresponds to a large change in the gradient, and therefore a 

discontinuity in the second derivative, and therefore an infinity in the third derivative, 

and so on. Each increase in the order of smoothing turns the singularity in to a worse 

singularity. Clearly, therefore, in order to satisfy a high order smoothing constraint the 

solution must have less sharp corners. Alternatively we could look at this as a result of 

higher orders of smoothing causing more points to be directly correlated with each other. 

The pth-order difference matrix will, in general, require knowledge of the value of the
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Figure 5.3: Inversions of the Libbrecht data using three different discretizations described in the 
text. The inversions were performed with first order smoothing and the smoothing parameters were 
chosen by the GCV method. Observe the sharp jumps in the solution with the third discretization 
method, which are due to the poor constraining of variation in the solution across the boundaries 
of large discretization bins (see the discussion at the top of page 113, and the text below -  recall 
that no continuity constraints are applied here). Note that the radius range has been shortened so 
that the region where the solution is poorest is not shown.

solution at p  points neighbouring any given point to define the derivative at tha t point, 

and so high order smoothing will tend to correlate points -that are further apart than low 

order smoothing, making the solution look smoother locally.

Figure 5.3 shows the results of the inversions with the three different discretizations 

and using first order smoothing. Again the errorbars and resolving lengths are not plotted 

for clarity. The solutions match up quite well, particularly for the uniform PCD and 

cosine expansion methods, 1 and 2. Again the mismatch is greater nearer the centre 

of the sun. The large jumps in the solution with the third method are due to the poor 

constraining of variation in the solution across the boundaries of large discretization bins by 

the finite-difference approximation to the derivative occurring in the first-order smoothing 

functional, as discussed on page 113. (No explicit constraints on the regularity of the
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solution were imposed in these cases, i.e. the formalism of §2.3 was not applied here.) It 

is difficult to say whether these jumps are a reflection of remaining instability in that part 

of the solution, or whether they really reflect behaviour that is normally smoothed over 

with other discretizations. The former may seem more likely, but look at the errorbars and 

resolution lengths in that region in fig. 5.4. The errorbars are rather small and the resolving 

lengths quite large, so that the solution is (over-)smoothed over quite a wide interval, and 

the (first order, i.e. first derivative) smoothing constraint must play a significant role in 

determining the form of the solution in that region: the smoothing must be trying very 

hard to reduce the gradient there. In spite of this, the solution still has a very steep 

gradient, which does rather suggest that there is more to the jumps than mere instability. 

Observe also, that the jump in the solution lies well outside the errorbars. Figure 5.4 

shows the three solutions separately with errorbars and resolution lengths plotted. The 

errorbar, e(r), on the solution at any point r  is defined to be the square root of the

‘variance’ of the errors on / ,  as in

e(r)2 =  IE{(/(r) -  / ( r ) ) 2} = <f>T(r)CcoV(f>(r)

where <f> represents the basis functions of the discretization written in vector notation -  

a notation that was introduced in §4.2.4 -  Ccov is the covariance matrix of errors on the 

solution vector, and everything has been normalized using the given data errors, so that 

the effective data errors have unit variance (otherwise, there would be a factor of a2 on 

the right hand side). (Compare this with the definition (4.11) of the unrenormalized 

correlation profile.) The resolution lengths were calculated using the correlation profile 

method of chapter 4. Note that with discretization 3 the value of solution on each of the 

three discretization regions is hardly correlated at all with the value on the other regions. 

The significance of these inversions, and of the other more complete inversions presented 

in §5.3, is discussed in §5.3.2.

From these results we can conclude that the algorithm of chapter 2 performs quite 

well and consistently with a wide range of different discretizations, and can be used with 

almost, any order of smoothing without difficulty. Note, too, that the success of the GCV

method for choosing the smoothing parameter is impressive. Not only did it always return

an acceptable value in these inversions, but the values it returned gave rise to very similar 

solutions, despite the vast difference in the discretizations and smoothing constraints with 

which it was dealing (although some of the differences between the various solutions could
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Figure 5.4: Solutions to inversions using the three different discretizations, plotted separately 
for clarity, with error bars and resolving lengths. The resolving lengths were determined from the 
correlation profile method of chapter 4. (a) discretization 1, (b) discretization 2, (c) discretization 3. 
Note the absence of a correlation between the values of the solution on the different solution regions 
for discretization 3.

perhaps be accounted for by slightly different levels of smoothing: it may be tha t the 

solutions could be made even more similar by slightly changing the values of the smoothing 

parameters used). These facts together make the algorithm of chapter 2, combined with 

automatic methods for choosing the smoothing parameter, very useful for solving linear 

inverse problems like those that arise in helioseismology.

5.3 Full Inversions of the Splitting data

In this section the rotational splitting data of Libbrecht (1989) is inverted to  obtain the 

solar angular velocity throughout the solar interior. The formalism of Ritzwoller and
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Lavely (1991) is used, so that three separate inversions are performed, one for each of the 

three components, and u /5), in the expansion (1.27) of the rotational velocity

field in terms of vector spherical harmonics. In fact, it turns out to be advantageous to 

invert for the closely related quantities

^  ™(t)M  ,■ i q *jy >[r) = ------------, i = 1,3,5.w''Hr) = --------------* = 1 ,3 ,5 . (5.2)
r

Since the rotational velocity, v, and the angular velocity, 12, at any point, (r, 0), are 

obviously related by

v(r, 0) =  1 2 (r, 0) r s in # ^ , (5 .3 )

equations (1.27) and (5.2) together show that inverting for the components allows an 

expression for the angular velocity to be found:

There are several advantages to this. Firstly, the sin 0 factors in the expressions for 

the given in equations (13), (14) and (15) of Ritzwoller and Lavely (1991) will

obviously cancel out in (5.4), making the latitudinal dependence of the angular velocity 

on the components slightly easier to interpret. Secondly, the rotational velocity goes to 

zero like r as r —> 0 (this is clear from the appearance of r in (5.3)), which would mean that 

the solutions for the would do the same. This would give them a significant variation, 

and hence a large gradient, across the whole range of the inversion, thus invalidating the 

use of first-order smoothing. Inverting for t h e w i l l  not suffer from these problems (see 

figures 5.5 and 5.6). Another advantage to inverting for the is tha t the kernels for the 

inversion lose a factor of - 1 / r ,  becoming *

(c/. equation (1.30), which gives the kernels for the inversions). This makes the kernel 

functions for the wM inversion the same as for the equatorial inversions of a\ +  a$ +  < 2 5  

considered in §5.2.1, thus allowing the set of kernel functions for that case to be used here 

also. Similarly, the removal of the —1 / r  factor eliminates the need for the kernels in the 

s =  3, 5 inversions to be obtained from the ‘old’ kernels used in the cos2  0 expansion (see 

equation (2) of Ritzwoller and Lavely 1991) of the angular velocity by multiplying by such 

a factor.
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With the new definitions (5.2) and (5.5), equation (1.29) becomes

qfs* = [  k\s\ r )  w ^ ( r )  dr, for s = 1 ,3 ,5 , . . . ,  nmax, and i =  1 , . . . ,  m, (5.6) 
Jo

(so that the data for each inversion is just the same as before, in (1.29)). Equation (5.6) 

expresses the relationship between the components, of the angular velocity and the 

Ritzwoller and Lavely splitting coefficients, and (5.5) gives the form of the kernels in the 

inversion for each component. It only remains to describe the relationship between the 

data q $  in the Ritzwoller and Lavely inversion (5.6) and the an/,- coefficients that Lib- 

brecht (1989) used to expand his splitting data. Ritzwoller and Lavely (1991) provide this 

relationship for s =1, 3 and 5 (equations (61) to  (63) of their paper). Using these expres­

sions for the data, and (5.5) for the kernels, the equations were performed using piecewise 

constant discretization with non-uniform discretization points. Again the support points 

were fixed by demanding that they divide the area under the sum of all the kernels used 

into equal pieces, except that extras points were added at small radii, because the nature 

of the solar p-mode kernels (very large near the surface of the sun and small near the 

centre) results in the discretization points clustering near the surface, leaving inadequate 

coverage nearer the centre. The region between r/i2® =  5.905 x 10-2 and r/R®  =  0.4663 

was filled with 20 evenly spaced discretization points, giving a total of 170 support points 

for the inversion. All the inversions were performed with the same discretization, partly 

because this makes interpretation and comparison of the results for the different compon­

ents much easier, but also because the difference in the kernels for the different inversions 

is quite small (as can be seen from (5.5), the kernels only differ by a term proportional 

to £hnh which is quite small for all but the lowest degree p modes), so the difference in the 

distribution of discretization points using the ‘equal area’ method (which is, anyway, only 

an approximate empirical relationship) is small. The distribution of points was calculated 

using the kernels for the inversion.

5 .3 .1  R e su lts

Figure 5.5 shows the solutions to the inversions for the components u i^ ^ r) , w<3)(r) 

and w(5\ r )  of the solar internal rotation, without the resolving lengths plotted, to see 

the variation in the recovered solution better. Figure 5.6 shows the solutions to the three 

inversions with the resolving lengths plotted. These were determined by using the cor­

relation profile method of chapter 4. As usual, in all of these inversions the smoothing
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Figure 5.5: Solutions to inversions for the three different components of the solar angular velocity 
field (D/2tt), plotted with error bars, but without the resolving lengths as this makes the detail in 
the recovered Solution easier to see. a) b) ti)(3)(r) and c) ty(5)(r).

parameter was chosen using the GCV method.

Finally, figure 5.7 shows the dependence of the solar internal angular velocity on radius 

at three different latitudes: 0 = x /2  (equatorial), 9 =  7r/4 (mid-latitude) and 0 = 0 (polar).' 

These are obtained from the recovered values of the u;^^(r) through equation (5.4), with 

the help of equations (13) to (15) of Ritzwoller and Lavely (1991).

5 .3 .2  C on clu sion s

All three of the inversions for the angular velocity components show structure that is 

above the noise. The inversion for u)(5)(r) is of rather poor quality, but this is not unex­

pected since the higher splitting coefficients are always noisier. The behaviour of w ^ r )  

and w(3\ r )  near the base of the convection zone is quite striking. Both show clear evidence
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Figure 5.6: Solutions to inversions for the three different components solar angular velocity field 
plotted with error bars and resolving lengths, the resolving lengths were determined from the 
correlation profile method of chapter 4. The panels are as in figure 5.5.

for a quite sharp step at the base of the convection zone. Unfortunately, as can be seen 

in figure 5.6, the resolution in both inversions is similar to the characterisic width of the 

step, so it may actually be that the step is rather sharper than it appears. The resolution 

in the data is not really adequate to make firmer statements than this. The large dip in 

the value of the component in the middle of the convection zone shows the effects

of convective redistribution of angular momentum (Durney 1991).

It is possible to compare the results of the inversions obtained here with earlier results 

such as those of Duvall Jr. et al. (1984), Dziembowski (1988), Korzennik et al. (1988), 

Christensen-Dalsgaard and Schou (1988), Dziembowski et al. (1989), Brown et al. (1989), 

Thompson (1990), Goode et al. (1991) and Schou et al. (1992). In general, the agreement
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Figure 5.7: Radial dependence of the solar internal angular velocity for three different latitudes: 
0 = 7t/2 (equatorial), 6 = 7r/4 (mid-latitude) and 0 = 0 (polar).

is good, but there are minor differences between the various inversions. The equatorial 

inversion of Duvall Jr. et al. (1984), using a different (and poorer) data set, reflects 

the main features of figures 5.3 and 5.4, as do the equatorial inversions of Dziembowski 

(1988), Dziembowski et al. (1989) and Goode et al. (1991) (figures la , 2a and 3a), namely, 

evidence for an increase in the rotation rate with depth just below the surface, of the sun, 

strong (if not conclusive) evidence for a dip in the rotation rate in the middle of the 

convection zone, a rather sharp decrease in the rotation rate with depth near the base of 

the convection zone (t/ R q «  0.73), and a subsequent increase moving down through the 

radiative interior. (The inversions in Goode et al. (1991) are more heavily smoothed than 

the inversions presented here, and some of the features are less easily seen -  the rise in 

rotation rate below the surface does not appear in their inversion, for example). Some of 

these characteristics are of questionable significance. There seems little doubt tha t there 

is a dip in the rotation rate in the convection zone, and there is certainly a sharp change at 

the base of the convection zone (as mentioned above, this change is probably considerably
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sharper than can be seen with the limited resolution in the Libbrecht data). However, the 

change in the rotation rate just below the surface of the sun is questionable, because it 

is difficult to produce well-localized averaging kernels in this region (Thompson 1990), so 

the recovered rotation rate is sensitive to the rotation at greater depth. The rise in the 

rotation rate moving in towards the core of the sun is more pronounced in the inversions 

shown in figures 5.3 and 5.4 than in the earlier works. This is, in large measure, due to the 

different levels of smoothing used. Dziembowski (1988), Dziembowski et al. (1989) and 

Goode et al. (1991) also invert the data of Libbrecht (1989), so any differences are certainly 

a result of different methods used, rather than differences in the data. The appearance 

of a pronounced rise in the solution despite the use of first-order smoothing suggests that 

the data requires it (although there is again the problem that the averaging kernels are 

not well localized at smaller radii, and so the recovered values of the rotation rate could 

be contaminated). However, the information about the rotation rate at great depth comes 

from low order modes, which are subject to systematic errors in the measurements of 

their frequencies and splittings, and so this rise may not reflect properties of the real sun. 

Nevertheless, the inversions in figures 5.3 and 5.4 show that, ignoring its significance for 

the real sun, the recovered rotation rate at small radii is larger than previously found.

In the work of Christensen-Dalsgaard and Schou (1988) (fig. 1), Brown et al. (1989) 

(fig. 13), Thompson (1990) (fig. 1) and Goode et al. (1991) (fig. 8), for example, the 

rotation rate is plotted as a function of radius for different latitudes, just as in figure 5.7. 

Again, there is broad agreement between thejse results with some differences. The dip in 

rotation fate in the middle of the convection zone is generally evident, as is a rise in the 

rotation rate moving in from the surface, and a change at the base of the convection zone. 

The different inversion techniques and levels of regularization can, in general, account for 

the differences between the inversions. It is interesting to note the drop in the rotation 

rates (especially the polar rate) at smaller radii, shown clearly by Christensen-Dalsgaard 

and Schou (1988) (who also invert the Libbrecht data). This conflicts with the other 

inversions, and is somewhat contentious owing to the difficulties of obtaining meaningful 

averaging kernels for the polar rotation rate (particularly at small radii).

Generally speaking, it is very difficult with the limited quality of the data presently 

available to use the improved techniques presented in this thesis to learn anything more 

about the sun than has already been discovered with other, more basic, techniques -  the
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resolution provided by the data is really insufficient to warrant the application of more 

complicated discretizations to pick out subtle features in the rotation profiles. However, 

when the data improves, as it will with the successful operation of the GONG network 

(Harvey et al. 1993), the wider choice of discretizations and smoothing constraints made 

possible by the algorithm of chapter 2 should permit more general discretizations (like 

the hybrid discretization illustrated in fig. 5.4c) to be used to recover more detail in the 

solution than is possible with simpler discretizations. Numerical trials using artificial 

data and noise levels appropriate to those expected for the GONG data could be used 

to investigate the effectiveness of the algorithm of chapter 2. The effectiveness of the 

new techniques will depend on the specific form of the real solution, but by testing the 

algorithm on solutions containing various different features and comparing the results with 

those from simpler inversion procedures the usefulness of the algorithm ought to be clearly 

indicated.

5.4 Summary and Conclusions

In this chapter the effectiveness of the methods and formalisms introduced, developed and 

studied in this thesis have been examined. The inversion algorithm of chapter 2, including 

the implementation of the Fix-Heiberger algorithm, has proved to be very robust and 

flexible. The GCV method for choosing the smoothing parameter, which was studied in 

chapter 3, along with the EDF method, has also shown itself to be a very reliable and 

effective way to set the regularization levels in RLS inversions. The correlation profile 

method for assessing the resolution achieved in inversions produces acceptable results, 

and is very much faster to calculate than the definition of resolution that results from 

measuring the width of the RLS averaging kernels. All these things together make the 

performing and interpreting of inversions in helioseismology and elsewhere simpler and 

more accessible to non-expert inverters. The generality of the inversion algorithm used 

here increases the degree of control that the inverter has over the inversion, by permitting 

more general discretizations and a greater choice of smoothing constraint (higher orders 

of smoothing).



Chapter 6

Future Work

6.1 Introduction

To conclude the work in this thesis, this chapter will suggest several ways to improve upon 

the ideas and techniques presented, and will outline other possible avenues of research. 

Sections 6.2 to 6.4 consider the work in chapters 2 to 4, and discuss improvements and 

extensions that could be made to the techniques described in those chapters. Section 6.5 

presents some other unresolved problems less directly related to the research contained in 

this thesis and makes some suggestions as to how they should be attacked.

6.2 Improving the Algorithm

The inversion algorithm expounded in chapter 2 is very flexible, and, with the implement­

ation of the Fix-Heiberger algorithm described there it is also robust and efficient. There 

is one commonly used discretization scheme that was not dealt with in chapter 2, though, 

and that is spline discretization. This is essentially a form of discretization in which the 

solution is expanded in terms of low order polynomials (cubic splines use cubic polyno­

mials, for example -  see Numerical Recipes, §3.3) on a number of small bins (rather like 

PCD, -  see §1.9.4). If this were all there was to it, this method would fit very naturally into 

the formalism of chapter 2. However, the important, indeed defining, property of splines 

is that they axe continuous, and have continuous derivatives of each order up to  one less 

than the degree of the spline (the degree of a spline is the degree of the polynomial used to 

expand the solution on each bin), so that cubic splines have continuous second derivatives 

and linear splines are merely continuous. It is possible to employ the methodology of §2.3, 

and impose continuity on the derivatives through external constraints, but this would be

195
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rather inefficient and unappealing. In fact, there is a way of thinking about splines that 

makes it slightly easier to see how to incorporate them into the algorithm of chapter 2. 

Cox (1975) describes an algorithm for evaluating and interpolating with splines. The basic 

idea of the formulation described is that the splines are defined not in terms of separate 

polynomials on each bin, but rather in terms of a collection, iVi(r), ^ ( r ) , . . . ,  of basis 

functions, called B-splines, defined over the whole range of interpolation: the spline used 

to represent the solution function is then just a linear combination of these basis functions:

j

which of course compares very well with the expansions of the solution function in terms 

of other basis functions given in §1.9. In this form interpolation with B-splines fits in 

perfectly with the formalism of chapter 2 if the whole range of interpolation is taken to 

be a single bin, rather than using the discretization points (knots is the technical term) 

on which the spline is defined.

However, the B-splines themselves have rather special properties that would render 

the naive implementation of spline interpolation with the algorithm of chapter 2 rather 

inefficient. Consider nth degree splines, say. The B-splines are defined essentially by 

demanding that:

• on each bin they are nth degree polynomials,

• they, and their first (n —l)s t derivatives are continuous across the boundaries of the 

bins (so that there are continuous everywhere, since they are n th  degree polynomials 

within the bins), and

• they are each non-zero only within n + 1 of the bins on which the spline is defined 

(although the bins on which different B-splines are non-zero overlap).

These conditions, along with specification of the knots, fix the B-spline basis (up to a 

constant). The last condition shows that the B-splines can be envisaged as a kind of 

discretization where the basis functions are not restricted to be non-zero within a single bin, 

but can be zero on several neighbouring bins. This way of thinking of spline discretization 

is not catered for by the algorithm of chapter 2. In a certain sense, spline discretization 

is intermediate between PCD, where the regions over which different basis functions are 

non-zero do not overlap, and the function expansion methods (see §1.9), where every
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basis function is non-zero on the same bin. The most important effect of the ‘partially 

overlapping’ basis functions is to complicate the calculation of the integrals and derivatives 

required in the definition of the smoothing matrix (see equations (2.71), (2.72) and (2.73)), 

but the calculation of the kernel matrix would also be affected.

It would certainly be useful and satisfying to extend the algorithm of chapter 2 to 

include spline discretization. This would make the resulting RLS inversion procedure 

almost completely general, and allow almost any kind of discretization to be used simply 

by setting the appropriate input parameters.

6.3 B etter Choices of A

The methods for choosing the smoothing parameter reviewed in §1.9.6 and examined in 

more detail in chapter 3 all rely basically on the chi-square measure of how well the re­

siduals fit the expected distribution (see Numerical Recipes, §14.3). This essentially only 

considers the overall size of the vector of residuals. There are other way to compare the dis­

tributions of two sets of random numbers that use more information about the individual 

values of those numbers. For example, the Kolmogorov-Smirnoff statistic (Numerical Re­

cipes, § 14.3) compares the cumulative distributions of the two sets of random numbers, 

and can therefore identify residuals that have some kind of pattern to them that is clearly 

at odds with the expected distribution. (The cumulative distribution of the residuals in an 

inversion is obtained by ranking them, to get < €2 < . . .  < em, and then notionally plot­

ting and joining the set of points ( —0 0 , 0), (cr,0), ( c i ,  1/m ), (€2, 1 /m ),.. .,(e,-,(i — 1 )/m ), 

(c,-,  i /m ) , . . . ,  ( 0 0 , 1) to get a kind of step function. Comparing this with the cumulative 

distribution of the expected gaussian errors is the basis of the Kolmogorov-Smirnoff test. 

See Numerical Recipes) To see more clearly how the Kolmogorov-Smirnoff test can some­

times improve upon the chi-square statistic, consider, for some value of the smoothing 

parameter, a set of residuals that are all the same size, e, say (assume, for the sake of 

argument that the variances of the data errors are uniform). Then the value of x 2 in the 

EDF method (equation (1.62)) will be me2/a 2. e could be such that (1.62) holds exactly, 

and so we would choose that value of the smoothing parameter in the inversion. However, 

we would certainly not say that the residuals in any way mimic gaussian errors, which was 

the principle on which the EDF method was based. The Kolmogorov-Smirnoff test would 

detect this difference between the two distributions immediately, because their cumulative
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distributions would be radically different. It should be pointed out, though, that there 

can be cases when the K-S test fails to distinguish between two distributions, although 

the chi-square statistic would easily separate them.

The K-S test is known to be robust and work well with quite small samples, and so if a 

method for choosing the smoothing parameter can be found that is based on the K-S test 

it should be very useful in many areas of inverse theory. One possible idea is simply to 

minimize the K-S statistic (Numerical Recipes, equation (14.3.5)) of the difference between 

the residuals and the expected gaussian distribution of data errors (just like the Phillips 

method, see equation (1.61), but with the K-S instead of the chi-square statistic) over A. 

There are two problems with this, though. First, experience shows that the function 

of A that is to be minimized is rather rough, and so numerical mimimization becomes 

something of a challenge. This roughness is largely a result of the definition of the K-S 

statistic as the maximum distance between the two distributions. It could perhaps be 

improved if a different statistic, such as the sum-squared distance was used. Secondly, 

such a method for choosing A would, like the Phillips method, suffer from the problem 

of the solution ‘fitting’ the data errors. This could perhaps be overcome with the use of 

the introduction of the equivalent degrees of freedom factor, just as with EDF, but this 

requires more detailed investigation.

To recap: there is much reason for expecting that alternative methods for choosing the 

smoothing parameter in RLS inversions can be found, based on criteria for determining 

when the residuals ‘look like’ the expected data errors other than chi-square, such as the 

Kolmogorov-Smirnoff test. Such methods may improve upon the methods examined in 

chapter 3.

6.4 More on Resolution

Determining the resolution achieved in the solution of an inverse problem is an absolutely 

vital part of the inversion procedure, and the work in chapter 4 of this thesis extends 

the range of options available for making this determination. There are several question 

relating to this work that warrant further investigation. The close relationship between the 

correlation profiles and the averaging kernels was clearly demonstrated in chapter 4, but 

the differences between the two defintions of resolution are significant and require further 

investigation. For example, the fact that the two profiles seem to be most similar when
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the smoothing parameter is nearly optimal (i.e. chosen by GCV -  see §1.9.6) is interesting. 

Is this merely a coincidence or is there an underlying reason? If there is a reason, could 

this perhaps be used as a way to make a good choice for the smoothing parameter?

It is well known that performing inversions requires a trade-off between error magnific­

ation in the solution and resolution (smoothing or bias). Is there some ‘conserved quantity’ 

that can be obtained from the error estimates and the resolving length at any point, which 

is (approximately, at least) independent of the value of the smoothing parameter, and could 

be used as an absolute measure of the amount of information in the data about the value 

of the solution at that particular point? For example, since the error, e(r), decreases as 

the smoothing parameter, A, increases, and the resolution length, l(r), increases with A, 

perhaps a quantity of the form e(r)/(r) is largely independent of A. If such a quantity 

could be found it would make interpretation of the results of inversions much easier.

6.5 Further Development

Up to the present time, apart from studying the solar internal rotation, helioseismologists 

have considered primarily the problem of determining the pressure and density stratifica­

tion throughout the solar interior -  the solar stucture problem. This requires knowledge 

only of the frequencies of the oscillation modes of the real sun, and only of the adiabatic 

oscillation frequencies of the solar model. At the moment, oscillation data is really inad­

equate for doing much more than this. However, in the not too distant future projects such 

as the GONG project (Harvey et al. 1993) will be producing excellent measurements, not 

only of mode frequencies, but also of amplitudes and damping rates. Obviously, the equa­

tions of adiabatic oscillation provide no information about these quantities, because the 

adiabatic condition ensures that the mode neither loses nor gains energy, and therefore has 

a constant amplitude (zero damping). This amplitude is arbitrary, amounting to nothing 

more than a normalization of the eigenfunction (because, again, no energy can be put into 

the mode to excite it to a particular amplitude). The power spectrum of the oscillation for 

a particular mode contains a great deal more information than just the mode frequency, 

and this information constrains more than just the sound speed profile or the pressure 

and density stratification. For example, the mode lifetime, which is reflected in the width 

of the (almost Lorentzian) peak in the power spectrum for any mode (see Anderson et al. 

1990), is determined by the transfer of energy from the oscillation to the background state
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(principally the exchange of heat by radiative transfer in the outer layers of the sun, which 

tends to damp the oscillations, but turbulent convection also has an effect). Calculation 

of the modes of non-adiabatic oscillation of a solar model automatically includes a model 

of this energy transfer (Unno et al. 1979, chapter IV), which results in the mode fre­

quency becoming a complex quantity. The imaginary part of the frequency is very closely 

related to the damping rate for the oscillations. This opens up the possibility of using 

this extra information to learn more about the solar structure, in particular, to constrain 

those quantities that are known to cause the damping. It is generally accepted tha t the 

uncertainties in the model are the result of our incomplete knowledge of the microphysical 

parameters that appear in the fluid equations (such as in the calculation of opacity and 

energy generation rates), and our inability to solve the full equations to a satisfactory level 

of accuracy due to their complex, non-linear nature: the presence of a turbulent convection 

zone in the outer layers of the solar interior is a source of considerable error, as the usual 

mixing-length approximation used to calculate the average stratification of the convection 

zone is based on little more than dimensional arguments, and this is inadequate given the 

present, and expected, level of accuracy obtained, or to be obtained, from helioseismic 

observations of the solar oscillations. Certainly, non-adiabatic effects are very much re­

lated to the presence and properties of the solar convection zone, and so the excitation 

and damping of the oscillation modes ought to contain information about this process. 

Also, the treatment of the radiative transfer of energy near the solar surface (where the 

diffusion approximation that is usually used -r see Unno et al. 1979, chapter IV -  breaks 

down) is not accurately modelled in solar structure calculations. Studying the damping 

of oscillation modes may help to reduce this inaccuracy.

It is now fairly well established (Goldreich and Kumar 1990; Osaki 1993) that the 

solar oscillations are stochastically excited by the turbulent convection, and are intrins­

ically damped. The amplitudes to which the modes are excited are determined by the 

interplay between the excitation and damping mechanisms. An analysis of the amplitudes 

of different oscillation modes would provide information on the rate at which energy is 

put into the oscillation by the turbulent convection, which would place useful constraints 

on the nature of the distribution of the convective velocities (at least in the region where 

the excitation occurs). This is an important and interesting problem, for the following 

reasons. Convection in astrophysical situations is very diffucult to model, is rather poorly
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understood, and is impossible to reproduce in the laboratory situation (Gough 1977), 

so any observational constraints could provide a stiff test of theories of convection. This 

would, in turn, assist research in stellar structure in general, as one of the major unknowns 

would have been reduced. Of course, ultimately, one of the main aims of helioseismology 

is to provide a realistic test of theories of stellar structure and evolution. Furthermore, 

convection is responsible for many of the observed properties of the sun: granulation, su­

pergranulation, differential rotation and meridional circulation (Durney 1991), the solar 

cycle, generation of the solar magnetic field, and so on. It would be difficult to claim that 

we had a good model of the sun (or any star with an outer convection zone) without mod­

elling the convection accurately. How could the observed mode lifetimes and amplitudes 

be utilized to constrain the convection (and heat transport in general) in the sun?

It is important to realize that, unlike in the case of adiabatic oscillations, the equations 

of non-adiabatic, non-radial oscillation axe not self-adjoint, and therefore do not give rise 

to a variational principle (Unno et al. 1979) -  it perhaps should be stated here that 

even the adiabatic oscillations satisfy a variational principle only for simplified boundary 

conditions. This means that some other method for determining the sensitivity of the 

mode frequencies (including the imaginary part corresponding to excitation and damping 

effects) must be found. The approach of Rosenwald and Rabaey (1991) seems potentially 

very useful here. Extending their application of the continuous orthonormalization and 

adjoint methods to the equations of non-adiabatic oscillation would immediately permit 

the sensitivities of the damping rates to any aspect of the solar structure to be calculated. 

This would permit measurements of the widths of the mode peaks in oscillation power 

spectra to be used in inversions.

Making use of the amplitude data would be a little more complicated. Although 

Goldreich and Kumar (1990) and others have modelled the stochastic excitation of p 

modes, their models have been rather too simple. The interaction between the convective 

velocities and the acoustic (and even gravity) modes must be examined and modelled as 

completely as possible. One possibility is to recognize that there are unstable linear eigen- 

modes of the sun that correspond exactly to the modes that grow when the convectively 

unstable sun is perturbed away from exact (unstable) hydrodynamic equilibrium: they 

are the ‘convective’ eigenmodes. In the real sun these modes have sufficient amplitude for 

the non-linear terms in the fluid equations to become im portant, and the result is that the
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modes interact to produce the turbulent convection that is observed. It has been shown 

(Narashima and Antia 1982) that the convective eigenmodes can be used to describe con­

vection (or, at least, to reproduce the mixing length model) providing that non-adiabatic 

(energy transfer) effects are taken into account in the calculation of the linear convective 

eigenmodes. This suggests that such an expansion of the convective flows in terms of con­

vective eigenmodes may be useful. If the velocity field (and the other fields) in the fluid 

equations is written in terms of this expansion, and the non-linear terms that couple the 

convective velocity to the acoustic modes are considered, it may be possible to calculate 

the interaction between the convection and the p modes. The strength of this interaction 

will depend on the specifics of the convective flow field and on the eigenfunction of the p 

mode in question: the larger the amplitudes of convective eigenmodes with eigenfunctions 

quite similar to the p mode considered, and the closer the timescales of the convective and 

acoustic modes, the more the p mode is likely to be excited. Measuring the amplitudes of 

many p modes therefore places a constraint on the convective flow field. Perhaps, as an 

aside, it could be noted that the work of Durney (1991) on the interaction of convection 

with rotation and meridional circulation is in a similar (though not identical) spirit to the 

work suggested here.

To summarize: it is suggested that it would be worthwhile extending the work in this 

thesis, and of other researchers, to the study of inverse problems in helioseismology that 

involve the non-abiabatic effects on the solar oscillations and structure, and, in particular, 

to the use of mode amplitudes and lifetimes tq place strong constraints on theories of solar 

(and general astrophysical) convection, and on descriptions of radiative transfer in the 

optically thin outer layers of the sun. The real solar p modes are certainly not completely 

described by the adiabatic approach, so it makes sense to attem pt to introduce these 

non-adiabatic effects.

There is another reason that non-adiabatic effects are potentially of some importance in 

helioseismic inverse problems. In the solar rotation problem the kernels for performing the 

inversion are calculated using oscillation displacement eigenfunctions (see §1.5.3) obtained 

from the solutions of the equations of adiabatic oscillation. The eigenmodes for non- 

adiabatic oscillations are slightly different from the adiabatic eigenmodes, particularly in 

regions (such as near the surface of the sun) where non-adiabatic effects are important.
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This means that the sensitivities of the splitting coefficients to the solar rotation will, 

in general, be different from the sensitivities that would be found if the non-adiabatic 

eigenmodes were used. Furthermore, the forward problem that describes the effect on the 

splittings of any given rotation profile relies on the existence of a variational principle 

relating perturbations in the solar structure to perturbations in the mode frequencies. 

For non-adiabatic oscillations there is no such variational principle. The question of how 

to improve the formulation of the inverse problem for solar rotation in the face of non- 

adiabatic effects then breaks down into two parts:

• Is it necessary to reformulate the problem to derive a completely new relationship 

between the solar rotation profile and the splitting frequencies, including all of the 

new physics required to account for the non-adiabatic effects, or is the old statement 

of the forward problem (c/. equations (3.2) and (3.3)) adequate if the adiabatic 

eigenfunctions originally used are replaced by their non-adiabatic counterparts?

• If it is not necessary to reformulate the problem completely, is it even necessary to 

use the non-adiabatic eigenfunctions to calculate the kernels, or are the adiabatic 

ones perfectly adequate?

These questions have not been answered, as yet, but they are questions that require in­

vestigation before the results of rotation inversions with very high-quality data can be 

completely trusted. Of course, with the data presently available there is little justific­

ation for making what are probably relatively minor improvements in the accuracy of 

the formulation of the problem, but with the vastly improved quality of the GONG data 

(Harvey et al. 1993) that will soon be available small corrections such as these may be 

significant, and are certainly worthy of study. It seems possible that the work of Rosen- 

wald and Rabaey (1991) may again be useful in the development of a reformulation of 

the problem, should this prove to be necessary, because their methods do not require the 

existence of a variational principle for the mode frequencies.

Some of the points just made with regard to  the effects of non-adiabaticity on the solar 

rotation problem can equally be applied to the effect of an inaccurate solar model on the 

calculation of the kernel functions in the rotation inversion. So far, no solar model has been 

found which is completely consistent with the available oscillation data. This again means 

that the eigenfunctions obtained from a solar model will differ from the eigenfunctions
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calculated using the ‘correct’ solar model, and so the kernel functions themselves will, in 

general, be different from the ‘correct’ kernel functions that would be obtained from a 

completely accurate solar model. It is necessary to investigate whether this difference is 

important for the determination of the solar internal rotation.



Appendix A

Calculating T ( A) and R ( A)

In section 2.4 an algorithm for diagonalizing the matrix H TH  +  AC that appears in the 

solution (2.82) to the RLS inversion of (2.5) was described. The algorithm is needed 

to speed up the function evaluations in the routines to choose the smoothing parameter 

using automatic methods such as GCV and EDF (see §1.9.6). Here we will look at the 

expressions for the trace and residual sum of squares functions, T(A) and R (A), that 

appear in the definitions (1.65) and (1.62) of those functions. Asymptotic expressions for

the values of these functions as A —► 0 and as A -+ oo will be derived, and will be used to

give the asymptotic values of the GCV and EDF functions. These values are often useful 

in the root-finding and minimization procedures to choose A.

To begin with, recall some of the definitions and results of §2.4: The matrix H TH  + AC 

is reduced by a sequence of (in general) six congruence transformations, P 1?. . . ,  P6, to

Ht H +  AC = [ P ^ P ^ P M  M (A) [P1P2P3Pi PsP6]T, (A .l)

where the reduced matrix, M(A) is given by

M ( A) =

V

F  + X I 0 0 I
0 )}r3

0 A +  XI 0 0 0 }ri -  r3
0 0 I 0 0 }r2
I 0 0 0 0 }r3
0 0 0 0 0 ) }n — R

(A.2)

The inverse of H TH  +  AC, calculated using singular value decomposition, is

(H t H  +  AC)"1 = P M " 1(A)Pr , 

where P  is the inverse transpose of the sequence of congruences,

p  = [p1p2p3p4p5p6]-t ,

205

(A.3)

(A.4)
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and M  X(A) is given by

0 0 0 I 0 ^
0 {A A X I)-1 0 0 0
0 0 I 0 0
I 0 0 - ( F  + XI) 0
0 0 0 0 0 J

A and F  are diagonal matrices, and the congruence matrices are defined in equations 

(2.120), (2.122), (2.124), (2.129), (2.132) and (2.134) of §2.4.

There is one result that we need before we can begin the derivation of the expressions 

for T(A) and R (A). It can easily be verified by direct calculation that

Ptr l I ri P f T = Iri for i = 2 , . . . ,  6, (A.5)

where I ri is defined in equation (2.119), and the inverses (actually the inverse transposes)

of the congruence matrices are given at the end of each step in the explanation of the

Fix-Heiberger reduction in §2.4.

A .l Evaluation of T(A)

Beginning with the definition (equation (1.63))

T(A) =  T r { /m -  H ( H t H  +  AC)_1JIT}

(where Im is the m x m  identity matrix -  m  being the number of data points being used in 

the inversion, and Tr{A} denotes the trace of the matrix A), we can make the following 

simplification (remembering that within a trace the matrices can be cyclically permuted 

without changing the value of the trace)

T (A) = m  -  T r{ (ffTS  +  AC ) - 'H t h \

=  m  -  Tr U h t H  +  AC)_1(.ffr .ff +  AC -  AC)}

=  m  -  Tr { ( B t H  +  AC ) ~ 1( H T H  +  AC)} +  ATr { ( H T H  +  AC)_1C }  (A.6)

Normally, the first trace in the last line of this equation would just be the trace of / n, 

the n x n identity matrix, which is, of course, n. However, the inverse appearing there 

is not necessarily the true inverse. If H TH  +  AC  is singular it will be the pseudo-inverse 

found using SVD. The value of this trace must therefore be examined more closely.
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Inverting the definition of P  in (A.4) to get [PxP2P3P4P5P6] = P ~T, allows (A .l) to 

be written

H T H + \C  = P~T M (\)P ~ l . (A.7)

Using this and (A.3) gives

(H TH + \ C ) ~ \ H t H + \C )  = P M - 1P TP - TM P ~ 1

= P M - 'M P '1. (A.8)

The discussion following equation (2.138) in §2.4 can be used to show that

M -1M  = I r 0
o 0 ,

(A.9)

(This can also be verified by direct calculation). I r  is the R  x R  identity matrix, with 

R  = 7*1 4- r 2  +  f 3  being the rank of H TH  +  AC  (see §2.4). It is clear then, from the obvious 

result Tr {P M -1M P -1 } =  Tr {M ~ 1M }  =  P , that (A.8) gives the result we want:

Tr { (H t H  + \ C ) - \ B t H  + AC)} =  R. (A.10)

Now only the Tr | ( f f TS  +  AC)-1C } term in the expression (A.6) for T (A) remains to  

be evaluated. Using (A.3) and permuting gives

Ti- { (H t H  + A C )_1c }  = Tr { M "1P r C P } . (A .ll)

As C — (UD 1/2) ! ^ ^ D l !2)T =  P j/r jP ^  (from equation (2.120) and the sentence preced­

ing it) it is possible to write

p tc p  = iplp2p3p4p5p6}-ip j n p?[plp2p3pipsp<ir T

= [P6- 1P5- 1P4- 1P3-1](P2- 1/ r iP2- T)[P3- TP4- TP5- 7’P6- T] (A.12)

Now we can use result (A.5) repeatedly for each of the matrices P2, . . . ,  P6, giving

P TC P  = Ir i . (A.13)

(A result which will also be used later, in the derivation of the expression for R (A)). 

Inserting this into (A .ll)  gives

Tt { (H t H  +  AC)_1C |  =  T r | i t f _1/ r i} . (A.14)

, -K J, __
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The evaluation of the matrix product M  1/ ri can be performed directly, and the result is

f 0
0

0 1 }rs

II

rH1

0 (A + X I)-1 0 }ri -  r3

1 ° 0 0 ) } n -  7*1

where the block structure has been simplified by, where possible, combining zero blocks 

that occur in the 5 x 5  block matrix. Quite clearly,

Tr { ( H t H +  A C T'C } = Tr {(A  +  A/)"1} = ^  (A.15)

The are, of course, the diagonal elements of A. In the light of (A.15) and the earlier 

result (A. 10), the expression (A.6) for T(A) becomes

T(A) =  m - R  +  rg 3 ^ - x . (A.16)

This is enough to calculate T(A) quickly in the GCV or EDF subroutines, but it is 

often useful to be able to obtain the asymptotic values of the GCV and EDF functions 

as A —► 0 and A —► oo. To derive these quantities it is necessary to consider values of the 

If is zero for some i, the tth  term in the sum in (A.16) will be A/A =  1, for all A. On the 

other hand, if ^  0 the ith term will not be constant, but will tend to zero as A —► 0. 

This is an important distinction if we want to know the asymptotic behaviour of T(A). 

The S{ have been calculated numerically, so they will suffer from the usual numerical 

errors. Si tha t should actually be zero will not be, thanks to these errors. We therefore 

need a criterion for determining whether the Si really axe zero. This criterion should be 

based only on the likely amount of error on the Si, rather than any of the concerns about 

ill-conditioning that affected the choice of the criterion (2.117): we are not concerned with 

ill-conditioning here. Let us assume that we have an expression for the likely round-off 

error in the tft . Then it is sensible to say that any Si that is smaller than this is really 

zero. Let p (<  r\ — rz) be the number of non-zero S?s according to this criterion, i.e. p is 

the rank of the matrix A 2 in step 6 of the Fix-Heiberger algorithm. Then (remembering 

tha t the diagonal elements of A have been put into decreasing order along the diagonal)
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and all the <5, in the second line are positive. The asymptotic expressions we are seeking 

can easily be derived from this:

As A —> 0

T (A) -► m -  R  + [(r*i -  r3) -  p] (A.18)

and as A —► oo

T(A) -*■ m  -  R  +  (t*! -  r3). (A.19)

A .2 Evaluation o f R(A)

The derivation of the expression for R (A) from the Fix-Heiberger reduction of H TH  -|- AC 

is a Uttle more involved than for T (A). The original defintion of R (A) given in (1.67) can 

be expanded to

R ( \)  = g2 - 2 g TH (H TH  + XC)~1H Tg

+ g  t H (H t H  +  A C )-xH t H (H t H  +  A C )"1#  T g .  (A.20)

Concentrate initially on the last term in (A.20). This can be written

g  t H (H t H  +  A C ) ~ \H t H  +  A C )(H t H  +  \C )~ l H Tg

-X g TH {H TH  +  AC)_1C ( ^ t ^  +  AC)"1^ .  (A.21)

Making use of equations (A.8) and (A.9) reduces (H TH  +  AC)-1( ^ r ^  +  AC) to

P I r 0
o o

>-i

giving (with the help of (A.3) again)

(H 1 H  +  A C ) -1^ 7 #  + A C )(H t H  +  AC)” 1 =  P I r 0
0 o

P ~l P M ~ l P T

= P M ~ XP T

= (H t H  +  AC)-1 . (A.22)

The second step in the preceding sequence can easily be verified directly.

The result (A. 13) can be used to show that

(H t H  +  \C )~ l C {H TH  +  AC)"1 = P M ~ l P t C P M ~ 1 P T

= P M - l IriM ~ 1P T (A.23)
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Using (A.22) and (A.23) together in (A.21) results in the following expression for the last 

term in the definition of R (A) (equation (A.20)):

g t H (H t H  +  AC)~l H T% -  \ g TH P M ~ 1I riM ~ 1P TH Tg.

Replacing the last term in (A.20) with this expression, collecting like terms together and 

using (A.3) to replace the occurrence of (H TH  +  AC)-1 leaves

R(X) = g2 -  gTH P M ~ 1P T H Tg -  AgTH P M -1IriM ~ 1P TH Tg. 

The obvious definition
tjT  t t Tw  =  P  H  g

simplifies the appearance of (A.24) considerably, giving

R (A) = g2 -  w t (M ~ 1 +  XM ~1i riM ~ 1)w.

(A.24)

(A.25)

(A.26)

The matrix M  1/ ri M  1 can be calculated straight from the definitions (2.142) and (2.119) 

of §2.4, once it is noted that in the 5 x 5  block matrix format

Ir,=

I 0 0 0 0 ^
0 I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 I

(A.27)

The result is
(  0

V o

0
(A +  XI) - 2

0

0

(A.28)

which leads to

V 0

0
(A +A /)-1 +  A(A+A/) - 2

0

0 0
- F

0

0

(A.29)

0

where, in the block containing — F, a —XI term in M  1 cancelled with the XI coming 

from the I  block in (A.28).
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Having derived the block matrix expression (A.29) for M ~ l +  AM-1 / r iM -1 it is ne­

cessary to partition the vector w  in an corresponding manner to effect the evaluation of 

w T(M ~ l +  XM ~1IriM ~ 1)w. The appropriate partitioning is

w =

(  Wi ^
w 2
W3
w 4

}r3
}ri -  r3 

}^2 
}f3

(A.30)

V w 5 /} n  -  R

(Compare this with the partitioning of M (A), which was initially introduced in (2.131).)

Using this in the previous expression for R{A) (equation (A.26)) and expanding the term

involving w  gives

R (A) =  g2 -  {w fw 4 +  w^[(A +  A /)-1 +  A(A-i- A/)_2]w2

+  w 3 w 3 +  w 4 w i  (A.31)

Collecting all the A-independent terms together with the definition

7  =  g2 -  [wI w3 +  2w 1 w4] +  wJ F w 4, (A.32)

and expanding the summation implicit in the terms containing A (remembering that A 

is a diagonal r\ — r3 x r\ — r3 matrix) results in

r i - r 3

(A.33)
S.. (* + A)2

Again, to derive asymptotic expressions for R (A) it is necessary to distinguish between 

zero and non-zero as was discussed in the paragraph preceding equation (A. 17). W ith p 

non-zero 6t-’s, equation (A.33) becomes

p A. 0 \  O rl _r3
(A.34)

£ ( *  + * ) 5 ” ^ + 1  

It is clear from the last term that if any of the components of w 2 corresponding to zero 

eigenvalues in A are non-zero, R (A) will diverge as A —► 0. It will now be shown that this 

cannot happen (in exact arithmetic, at least), and that if 6i =  0, then to2t- = 0.

First, note that, from the definition of M(A) in (A.2), and the 5 x 5  block form for I ri 

given in (A.27)

M(A) =  Af(0) + XITl,
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and so putting A = 0 in (A.7) shows that

H t H = P - TM (0)P _1,

which immediately gives

( H P f( H P )  =  M ( 0) (A.35)

Now, denote the m  x n matrix H P  (which also appears in the definition (A.25) of w) 

by 7i, and denote the ith  column of H  by h ^ ,  for i =  1 , . . . ,  ra, so that, for each i, is 

an m-vector, and

h ^  =  TLji, for i =  1 , . . . ,  n, and j  = 1 , . . . ,  m.

Then, using ||.|| to denote the usual euclidean vector norm (see equation (5.17) of Craig 

and Brown 1986),

m m
IlhWf = £ ( f c f  f  =  £  n J3H ]t =  ( H t H ) „  = Mj j (0), (A.36)

j=l j=1

where the last equality follows from equation (A.35). A quick inspection of (A.2 ) shows 

that if 7 * 3 +  1 < i < r i ,  then Mtt(0) = Aj_ r 3 i t _ r 3  =  6{-r3. For convenience, introduce the 

notation i for i — 7*3 . It was established in the paragraph preceding (A.17) that

> 0  for 1  < 1 < p 

Si — 0  for p +  1  < i < r i —

If Si =  0, then, by virtue of equation (A.36), | |h ^ ||  =  0. But it is a defining property 

of norms that ||h^^|| =  0  =  0, which in turn means that hfp = Hji =  0  for j  =

1 , . . . ,  m. (In other words, any column of H  corresponding to a zero eigenvalue <!>; will have 

all its elements zero.) From the definition (A.25) of w , the partitioning (A.30) and the 

definition of H,
771

w2i = Wi = Hjigj =  h ^ Tg, 
j=i

and it was established above that Si = 0 =  0. It is clear, therefore, tha t if 6\ = 0,

then u?2 i =  0: every term of the last summation in (A.34) is zero, and so tha t final 

summation disappears. This leaves the final form for R (A):

=  (A.37)
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From this it is a simple matter to obtain the asymptotic expressions for R (A):

As A —► 0

i - E p  (A-38)

and as A —► oo

R (A) 7 . (A.39)

To conclude this appendix the asymptotic expressions for the trace and residual sum 

of squares functions will be used to give the limiting values of the EDF and GCV functions 

using the definitions of these functions in equations (1.65) and (1.62) of §1.9.6.

As A —► 0

and

As A —► 0 0

and

_  y P _

e m > ) - m_R+^ _ s;3)_p]->* (A.40)

_  y P _

GCV(X) -  7 -------- ' „  1  s\ ----- (A.41)
{m  -  R  +  [(r*i -  r3) -  p ] } 2

(A.42)

G C V W ^ { m _ R +  ’{ r i _ r 3)]2. (A.43)
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