
Coherent production of neutral pions on 12C and Ca

PhD thesis

Lotte S. Fog*

Nuclear Physics Group 

Department of Physics and Astronomy 

University of Glasgow 

©  Lotte S. Fog 2001

November 22, 2001

* Email: lottef@physics.gla.ac.uk

mailto:lottef@physics.gla.ac.uk


ProQuest Number: 13818889

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818889

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



GLASGOW 1 
UNIVERSrTY 
LIBRARY: ,

m ou 
co<P4 \



A bstract

Neutral pion photo-production is a useful tool to investigate several aspects of nu­

clear physics. Information can be extracted on the matter distribution, the pion- 

nucleus interaction and the medium modifications of the pion production process. In 

the present experiment, neutral pions were produced on 12C and 40Ca at the tagged 

photon facility at MAMI. The pion decay photons were detected using the detector 

array TAPS, a highly segmented detector array built to detect light mesons.

The differential and integrated cross sections for coherent photo-production of 

neutral pions from 12C and 40Ca were measured in the incident photon energy 

range 135-380 MeV. The diffract ion-like pattern of the differential cross section was 

demonstrated. Comparisons with the plane and distorted wave impulse approxi­

mation models show the importance of including a description of the final state 

interactions in the theoretical models but suggest that the magnitude of the pion- 

nucleus interaction is underestimated in the DWIA model. Comparisons with the 

recent delta resonance energy model suggest that modifications of the process due 

to changes to the properties of the A in the nuclear medium were present but that 

modifications are needed to the parameterisation of the A properties used in the 

DREN model.
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1 Introduction

Photo-production of neutral pions is a useful tool for studying several aspects of nu­

clear physics. Information can be obtained on the matter distribution of the nucleus, on 

the medium modifications of the pion production process inside the nucleus and on the 

interactions between the pion and the nucleus (the final state interactions).

Investigating the reaction where the nucleus is left in its ground state after the interac­

tion (the coherent reaction) is particularly interesting as the production amplitudes from 

all the nucleons add coherently and the theoretical description simplifies. The information 

on the nuclear m atter distribution complements the already existing data from electron 

scattering [1]: whereas the electron interacts mostly with the protons in the nucleus and 

information about the charge distribution can be extracted from electron scattering exper­

iments, the pion photo-production process occurs on all the nucleons, allowing information 

on the m atter distribution to be extracted from neutral pion production experiments.

Several theoretical descriptions of the neutral pion photo-production process exist in 

the literature. The plane wave impulse approximation (PWIA) describes the reaction 

neglecting the medium modifications of the production process, multiple interactions in­

side the nucleus and the final state interactions, treating the production process on the 

nucleus simply as the sum of the production amplitudes on the individual nucleons. It 

assumes that the wavefunction of the pion is a plane wave. More sophisticated treatments 

exist in the distorted wave impulse approximation (DWIA) [2], where the final state in­

teractions are described phenomenologically, and the A-hole model [3], which attem pts 

to describe the medium modifications. A more recent model, the delta resonance energy 

model (DREN) [2], includes descriptions of the medium modifications, multiple interac­

tions and the final state interactions. Data from the present experiment are compared 

with theoretical predictions from the plane and distorted wave impulse approximations 

and from the delta resonance energy model.

Relatively few attem pts have been made to measure the coherent neutral pion produc­

tion cross section. This is because the required high duty factor source of monochromatic 

or tagged photons and the pion detector array needed to perform comprehensive exper­
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iments are both large scale technical developments. Both these areas have seen major 

developments over the past ten years. Several high-duty factor electron accelerators at 

energies in the range 100 MeV-10 GeV are now in operation around the world and several 

of these have been equipped to produce tagged photon beams with good energy resolution.

Since neutral pions must be observed via their decay photons, the technical problem is 

that of assembling a sufficiently large array of individual photon detectors with sufficiently 

good energy and position resolution so the pion decay photons can be observed with high 

efficiency and the pion momentum can be reconstructed from the photon momenta. It 

is only in the last few years that highly segmented arrays of scintillators suitable for this 

purpose have become available.

The first measurements of the neutral pion production reaction were made by Schrack 

et al. [4] in 1962. These measurements used the photon beam from a 170 MeV electron 

synchrotron and no attem pt was made to determine the energy of the photons. The total 

pion production yield due to all photon energies above the pion production threshold was 

measured. The photon detectors used plastic scintillators to observe the electron-positron 

pairs produced in thin lead converters. This gave no information on the pion energy 

and the angular resolution was approximately 20° FWHM. Nevertheless, Schrack et al. 

observed clear signs of the diffraction structure in the neutral pion angular distributions 

using targets of Cu, Cd and Pb.

Limited data on neutral pion production on 4He in the A resonance region was ob­

tained by detecting the a  particle by Lefrangois et al. [5]. The incident photon energy 

dependence of the neutral pion production cross section for pion lab angles below 10° was 

measured by Bellinghausen et. al. [6] [7] and Belousov et. al. [8].

A series of measurements of the integrated 7r°-production cross section in the threshold 

region was carried out in the 1980’s by Argan et al. [9], Glavanakov et al. [10], Mazzucato 

et al. [11] and Jammes et al. [12]. Because the non-coherent cross section is expected to 

be small in the threshold region, these measurements could be carried out with relatively 

simple detectors which did not determine the energy of the pion. Typically, lead-glass 

Cherenkov detectors positioned closely around the target detected the pion decay photons

13



in coincidence. Measurements were made on several light nuclei (the heaviest target 

nucleus was 40 Ca) and the results confirmed the importance of the pion-nucleus interaction 

as the measurements were typically 20 % larger than the values predicted from the PWIA.

In the measurement by Jammes et al. [12], the integrated cross section was measured 

for incident photon energies up to 170 MeV. However, as no attem pt was made to sep­

arate the coherent and non-coherent cross sections, the contribution of the non-coherent 

processes to the cross section for incident photon energies above about 160 MeV meant 

that the results for higher incident photon energies were of limited use.

At higher incident photon energies, a separation of coherent and non-coherent events 

in the experimental data is essential to obtain results which can be compared with theo­

retical predictions. 4He has no excited nuclear states. Measurements of 7r° production on 

helium were carried out by Tieger et al. [13], using untagged bremstrahlung, and Bellini 

et al. [14], relying on a pion detector with poor energy resolution. The results from these 

measurements are in agreement with more recent results by Rambo et al. [15] using the 

tagged photon beam at Mainz and the TAPS (Two Arm Photon Spectrometer) photon 

detector array.

TAPS, a highly segmented array of BaF2 elements, is the best ir° detector available 

in Europe at the present time. The measurements on helium were made in the incident 

photon energy range 200-400 MeV and for all pion lab angles, and the results were used to 

fix the parameterisation of the A-nucleus interaction used in the DREN model [2]. Because 

4He is an atypical nuclear system, this parameterisation may require modification if the 

model is used to account for results on other nuclei.

For A > 4 nuclei, relatively few measurements of differential cross sections of neutral 

pion production have been carried out. Arends et. al. [16] measured differential cross 

sections on 12C using a 500 MeV synchrotron, but did not attem pt to separate coherent 

and non-coherent events.

Differential cross sections for 12C and 40Ca for incident photon energies of 158-168 

MeV and integrated cross sections for 12 C for incident photon energies from threshold 

to 168 MeV, were measured by Koch et al. [17] [18] using lead-glass detectors. The
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energy resolution of the lead-glass detectors was relatively poor and separation between 

coherent and non-coherent events could not be achieved by selecting the energy difference 

between the incident photon and the pion. This separation was attempted by selecting 

events according to the opening angle of the two pion decay photons. While this method 

allowed the coherent cross section to be estimated, it implied a reduction in the number of 

detected events by approximately a factor of 10, introducing significant statistical errors 

in the cross section.

Schmitz [19] measured the integrated cross sections for 12C, using BaF2 and Nal 

detectors to detect the two pion decay photons. However, whereas the energy resolution 

obtained in this experiment was significantly better than the resolution in the experiment 

of Koch et al., allowing for a separation of coherent and non-coherent events, data was 

obtained for only one value of the pion lab angle, 9n = (60 ±  10)°.

More recently, TAPS, a detector array consisting of many individual BaF2 elements, 

has become available. The first data on n° photo-production on 12C and 40Ca using TAPS 

was obtained by Krusche [20]. Differential cross sections were measured, using 320 TAPS 

elements, for the energy range 200-390 MeV but no measurements were made close to 

threshold.

The present data, also obtained using TAPS, represents the first complete measure­

ment of differential and integrated cross sections for 12C and 40Ca in the incident photon 

energy range 135 - 380 MeV. For the present experiment, TAPS consisted of 526 BaF2 

elements, covering a wider angular range than that obtained in [20]. As was the case 

in [20], separation of coherent and non-coherent events was attempted by a comparison 

between the incident photon energy and the total pion energy.
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2 Theory

This chapter provides a very general introduction to pions and a brief description of some 

of the models used to describe pion production.interaction must be introduced into the 

calculation.

2.1 Pions

The pion was proposed by Yukawa [21] in 1935. It was then known that the photon was 

the exchange particle of the electro-magnetic force, and Yukawa described a particle which 

would be the exchange particle of the strong nuclear force in a similar way. Just as virtual 

photons are exchanged between charged particles interacting electro-magnetically, virtual 

pions would be exchanged between nucleons interacting via the strong nuclear force.

One difference is that the electro-magnetic force has infinite range, whereas the strong 

nuclear force was known to have a range of a few fermi. Hence, where the photon is 

massless, the pion would have finite mass. Using the relationships:

h =  5 E 6 t , ( 1)

he «  200M eV /c2 (2)

and

6E = m x c2 (3)

where h is Planck’s constant divided by 27t, SE  the energy exchanged in time 5t, m x the 

mass of the exchanged particle and c the speed of light, an estimate of the maximum 

distance 5x the exchanged particle can travel in time 6t is:

_ _ h c h  200M eV  ...
Sx = C St = C —  =  --------- 2 ~ -------------- 2“/ \E  m x cl m x cl

If the distance traveled by the exchanged particle is 1 fm, its mass is approximately

200 MeV/c2.
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Yukawa named this particle the meson (’meso’ means middle in Greek, as its mass is 

between that of leptons and baryons).

There are several kinds of meson (tt, p, lj, . . .  ). The pi meson, or pion, is the lightest 

meson and is the main exchange particle between neighbouring nucleons. The heavier 

mesons are involved in the exchange of the strong nuclear force at shorter range.

There are three kinds of pion (tt~, 7r° and 7r+) with charges -e, 0 and e, where e is the 

charge of the electron. The lifetime of the 7r° is 8.4-10~17 s and its main decay channel 

(branching ratio 98.798 %) is to two photons.

2.2 Neutral pion production on a nucleon

The main Feynman diagrams contributing to coherent neutral pion photo-production on 

a nucleon are shown in fig. 1.

Figure 1: The main Feynman diagrams contributing to neutral pion production on a 

nucleon.

It can be shown that the neutral pion production amplitudes due to the processes 

shown in diagrams 1 and 4 in fig. 1 almost cancel [22]. The mass of the A is 1232 MeV,

4 5 CO

about 300 MeV greater than that of the proton and the neutron. As the pion is emitted 

before the photon is absorbed in the process shown in diagram 5, requiring the A particle

17



to be more than 400 MeV off its mass shell, the contribution due to this process is very 

small. As the mass of the u  (782 MeV) is much greater than the energy available in the 

present experiment, the contribution to the production process due to diagram 3 is also 

very small.

The production process is therefore dominated by the process shown in diagram 2 at 

all incident photon energies except very close to the 7r° production threshold. As the spin 

of the A is | ,  the pion must have an orbital angular momentum of lh  in the process shown 

in diagram 2. Close to threshold, there is not enough available energy for the pion to have 

an orbital angular momentum, hence the contribution due to diagram 2 vanishes [22] and 

the cross section is determined by the other processes shown in fig. 1.

A recently developed model describing the pion production on a nucleon, the unitary 

isobar model (UIM) [2], describes the 7r° production process including both the diagrams 

shown in fig. 2 and processes involving higher resonances (N* etc). The models described 

in sections 2.4 - 2.6 use the UIM to describe the neutral pion production process.

2.3 Neutral pion production on a nucleus

The production amplitudes on the individual nucleons must be combined to obtain the 

production amplitude on the nucleus. When the initial and final states of the nucleus are 

identical, the production amplitude on the nucleus can be written as a coherent sum of 

the production amplitudes on the nucleons - this reaction is therefore called the coherent 

reaction. However, there is a phase difference due to the different positions of the nucleons 

inside the nucleus. The production amplitude on the nucleus is proportional to the square 

of the nuclear m atter form factor, F, in the same way as the electron scattering amplitude 

on a nucleus is proportional to the square of the electric form factor. The form factors 

used in the theoretical models compared with the present result are shown as a function of 

the momentum transfer from the photon to the nucleus, q, in fig. 2. They are based on the 

assumption that the m atter distribution has the same shape as the charge distribution.

18
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Figure 2: The m atter form factors used in the theoretical calculations [23] used in this 

work.
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2.4 The plane wave impulse approximation

The plane wave impulse approximation (PWIA) is a very simple approximation used to 

describe neutral pion production. In the PWIA it is assumed that the incident photon 

only interacts with one nucleon and that there is no interaction between the pion and the 

nucleus so that the wavefunction of the pion can be described as a plane wave.

The coherent cross section obtained using the PWIA is:

= e; ,o  M

where E7 is the incident photon energy, 6* is the pion polar angle in the photon- 

nucleus centre-of-mass frame, s the square of the total energy of the photon-nucleon pair,

the nucleon mass, A the atomic mass number, F the nuclear m atter form factor, q 

the momentum transfer from the photon to the nucleus, E* the photon energy and 0** 

the pion angle in the photon-nucleon centre-of-mass frame and the elementary cross 

section.

For spin-zero nuclei, the initial and final state of the nucleus is 0+, hence spin-flip pro­

cesses can not contribute. Only spin-independent processes contribute and the elementary 

cross section ŝjb. can be written as:

<?;*) = T  | M E*t c )  |* sin^ e;-) (6)

where k’ and k are the momenta of the pion and the photon in the pion-nucleon centre- 

of-mass system and f2 is the Chew-Goldberger-Low-Nambu (CGLN) amplitude (see [2] 

for details).

The PWIA describes all the basic characteristics of the cross section: its magnitude 

is proportional to the square of the number of nucleons, and the shape of the differential 

cross section is described by the square of the form factor and modulated by the sin2(0**) 

term. These features have been shown to have some validity in existing data [20].

The PWIA does not include a description of the interaction between the pion and 

the nucleus as the pion travels away from the nucleus (the final state interaction, or FSI).
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The PWIA is therefore not expected to give a detailed description of the reaction, as the 

pion interacts strongly with the nucleus.

2.5 T he d is to rted  wave im pulse approx im ation

The DWIA (Distorted Wave Impulse Approximation) includes a description of the FSI. 

Fig. 3 shows the (7r—p) cross section. Although the process discussed in the present work 

involves a 7 r °  and not a 7 r ~ ,  qualitatively the strength of the interaction between the pion 

and the nucleons is expected to be similar to that shown in fig. 3. For pion energies up to 

about 50 MeV, or incident photon energies up to about 180 MeV, the interaction between 

the pion and the nucleus is not very strong and can be accounted for by treating it as a 

mean field in which the motion of the pion can be calculated. For pion energies above 

about 50 MeV, however, the interaction is too strong for this approximation to be valid 

and the A which is created in the interaction must be introduced into the calculation.
100

C/5
a;
c

E
c
o
u
CD(/)
</)
COO
b

3000 100 200
Pion Energy (MeV)

Figure 3: Theoretical prediction for the 7T~p cross section. Fig. from [24]

Older calculations [25] parameterised the pion-nucleus interaction using an optical 

potential and then solved the Klein-Gordon equation in position coordinate space to 

obtain the distorted wavefunction of the pion. More recent calculations [26] [27] are 

carried out in momentum space. This has two advantages: the Fermi motion of the
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nucleons inside the nucleus can be taken into account and the distortion of the pion 

wavefunction can be related directly to the pion-nucleus interaction.

The cross section from the DWIA is greater than that from the PWIA just above 

threshold but then decreases at higher incident photon energy due to absorption of the 

pion. The maxima and minima are shifted towards smaller pion lab angles. Because the 

pion-nucleus potential is attractive, the pion momentum is larger just after the pion has 

been produced than after it has left the nucleus. It is the value of the momentum transfer 

at the interaction point which is relevant when evaluating the nuclear m atter form factor. 

Since the momentum transfer increases with pion lab angle, a particular value of the form 

factor is reached at a smaller pion angle when the effect of the attractive pion-nucleus 

interaction is included in the description of the process (see fig. 2).

2.6 The delta resonance energy model

In the DWIA, it is assumed that the pion is produced on one nucleon and that the effect 

of the other nucleons can be described as a mean field in which the pion production takes 

place.

The properties of the A particle which takes part in the production process are as­

sumed to be the same as those of a free A particle. However, the A particle interacts 

strongly with the other nucleons inside the nucleus. In the A-hole model [28], modifica­

tions of the properties of the A particle have been taken into account using a complex 

potential to parameterise the interaction of the A-hole (the A and the missing nucleon) 

with the nucleus. The A-hole model has been used with some success to treat pion and 

photon induced nuclear reactions at A excitation energies. The A-hole model predicts 

that the peak of the cross section for pion photo-production will be shifted down from 

the A-peak and that the peak cross section will be reduced compared with the DWIA 

calculation.

A recent model, the delta resonance energy (DREN) model, takes final state interac­

tions, multiple interactions inside the nucleus and A medium modifications into account. 

A description of the processes where the A decays to a nucleon and a pion inside the nu­
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cleus, and the pion then produces another delta on a nucleon, and so on, is included. This 

reaction is shown in fig. 4. The interaction between the A and the nucleus is described as 

in ref. [28] using a complex A self-energy which modifies the effective mass of the A. A 

single parameterisation of the A self-energy is assumed to be suitable for calculations on 

all nuclei. The parameters used to calculate the results from the DREN theory presented 

in this work were obtained by fitting data on the 4He(7 ,7r°) reaction.

N
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N

N

N

N

N

N

Figure 4: A schematic diagram of the interaction modelled in the DREN model. Diagram 

from [19]

Theoretical predictions for the differential cross section for 40Ca for E7 =  200 MeV 

and for E7 =  350 MeV are shown in figures 6 and 7. At E7 =  200 MeV, the magnitude 

of the differential cross section predicted by the DREN is about 25 % smaller than that 

predicted by the PWIA and the DWIA models, indicating that the combined effect of 

medium modifications and allowing for multiple interactions is quite significant.

At E7 =  350 MeV, the differential cross sections predicted by the three models are 

very different. The positions of the minima and maxima are very similar in the DWIA 

and the DREN model, but rather different in the PWIA. The positions of the minima 

and maxima are determined by the final state interactions, which are incorporated in the 

DWIA and the DREN model but neglected in the PWIA. The magnitude of the differential

23



cross section predicted by the three models are all rather different. This is because the 

magnitudes are determined by both the final state interactions and the modification of 

the pion production process inside the nucleus by the nuclear medium, and so is described 

differently by all 3 models.
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150 175 200 225 250 275 300 325 350 375
E, (MeV)

Figure 5: Theoretical calculations of a for 10Ca. Red-PWIA; green-DWIA; blue-DREN, 

all from [23]
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Figure 6 : Theoretical calculations of ^  for 40Ca for E7 =  200 MeV. red-PWIA; green- 

DWIA; blue-DREN , all from [23]
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Figure 7: Theoretical calculations of ^  40Ca for E7 =  350 MeV. red-PWIA; green-DWIA; 

blue-DREN, all from [23]
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3 T h e  e x p e r im e n t

The experimental set-up used to measure the (7 , 7r°)-reaction on nuclei is shown in fig. 8 .

p\V TAPS

Nal

photon 
1 beam

s h ie ld in g  w a ll  V\*

dumped ___
electron beam

radiator

incident
electron beam

Figure 8 : Experimental set-up

The Mainz Microtron (MAMI) provided an electron beam. Using the photon tagger, 

the electrons were made to produce photons of known energy, which were incident on the 

target, where some of them produced neutral pious.

The pion decayed most often to two photons, and in some of the events, the nucleus 

was left in an excited state, emitting a nuclear decay photon as it returned to its ground 

state. Some of the the pion decay photons were detected by the detector array (TAPS),
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positioned around the target in the horizontal plane. Two Nal detectors, one above and 

one below the target, were used for detection of nuclear decay photons.

3.1 M AM I

The Mainz Microtron B (MAMI B) [29] is an electron accelerator consisting of an electron 

injector and three Race Track Microtrons (RTM’s) (see fig. 9 and table 1). The electrons 

are led from an injector into each of the RTM’s in turn. The RTM’s are recirculating 

accelerators. The electron beam is led repeatedly in trajectories of increasing radius 

through accelerating cavities.

The electron energy obtained from RTM 3 can be varied in steps of 15 ±  0.5 MeV. 

The duty factor is 100 % and the maximum current is 100 //A.

Table 1: MAMI data

A cce le ra to r M ax im um  e lec tro n  energy

(MeV)

Electron injector 3.5

RTM 1 14.35

RTM 2 179.7

RTM 3 855.0
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Figure 9: MAMI lay-out
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3.2 The photon tagger

There are no easily available sources of monochromatic photons with energies above about 

10 MeV. To provide a source of photons of known energy, the photon tagging method 

[30] [31] was used.

The electron beam was incident on a thin nickel radiator. The electrons were scattered 

in the electric field of the nickel atoms and emitted bremsstrahlung photons which were 

then collimated to provide a photon beam.

The residual electrons were deviated by the field of a magnetic spectrometer. This 

was designed so that electrons of a particular energy pass through the same point in the 

‘focal plane’ of the field where they were detected by an assembly of 353 scintillators. The 

position of the struck detector along the focal plane determined the electron energy. The 

scintillators partially overlap each other such that any electron incident on the focal plane 

will pass through at least 2 scintillators. A coincidence between neighbouring channels 

is demanded in the read-out. Pulses from each tagger channel are fed to a scaler and a 

TDC which is started by the experimental trigger (see section 3.6).

By demanding a time coincidence between the products of a reaction induced by a 

tagged photon and the corresponding electron, the photon energy E1 can be calculated 

from:

E7 = Ee -  E :  (7)

where Ee and Eg are the electron energies before and after the emission of the photon.

The energy of the electron beam used for the present experiment was 405 MeV, 

providing tagged photons with an energy ranging from 135 to 380 MeV. The intrinsic 

tagger electron energy resolution is about 100 keV. The tagged photon energy resolution 

is determined by the width of the electron detector but is approximately 1 MeV for an 

electron beam energy of 405 MeV.
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3.3 The targets

natC and nafCa were used as targets. Natural C and Ca were used as they contain a high 

proportion of 12C and 40Ca (98.90 and 96.94 % [32]). The lengths of the targets are 

about of a radiation length. This is a compromise between having high enough density 

of nuc~^ns to provide enough pion yield, and a low enough density that the pion decay 

photons do not have too high a probability of pair production and other atomic processes 

in the target (see section 4.7).

Information about the targets is summarised in table 2. The target used in the 

experiment was placed in an evacuated beam pipe made of 5 mm thick clear plastic. This 

ensured that the Ca target did not absorb a significant amount of water and reduced the 

probability of the pion decay photons interacting with the air molecules. The target used 

in the experiment was placed in the geometrical centre of TAPS with an accuracy of 2 

mm.

Table 2: Target data 

T a rg e t T hickness Surface d en s ity  B eam  tim e

(mm) (g/cm2) (hrs)

12c 25.00 ±  0.01 4.257 34

40Ca 50.00 ±  0.01 1.551 136
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3.4 TAPS

The initially-named Two Arm Photon Spectrometer, now Traveling Around Photon Spec­

trometer, TAPS, was built by a European collaboration to detect light neutral mesons 

(7T° and 77) via their main decay mode into two photons (98.8 % for 7r°’s and 38.8 % for 

n ’s).

TAPS at present consists of 512 individual BaF2 detector elements. The hexagonal 

elements are 25.0 cm long ( 1 2  radiation lengths X0) and have an inscribed circle radius 

of 59 mm. [33] (see fig. 10). The elements are wrapped in PTFE and aluminium foil to 

reflect the light internally in each element. Some information about BaF2 is summarised 

in table 3. BaF2 has a reasonably good energy resolution and a very good time resolution. 

The scintillation light has a slow and a fast component which allows pulse shape analysis 

(see section 4.3.1).

Table 3: BaF2 data. E7  is in GeV.

wavelengths (fast component) 195,210 nm

wavelength (slow component) 320 nm

fractional resolution of photon energy E7  (FWHM) 0.59% E" 0,5  

time resolution (FWHM) 0.85 ns

Each element is fitted with a charged particle veto (CPV) detector which can help to 

identify charged particles (see fig. 10). The CPV detectors are made from 5 mm thick 

NE1 0 2 A and are read out separately from the TAPS elements.

For the experiment, the elements were used in a set-up of 6  8 -by- 8  blocks labeled A-F 

and a 138-element rectangular block (the forward wall, FW) (see figures 11, 12 and 13). 

The set-up is summarised in table 4, where r is the distance from the geometric centre of 

the front face of each detector assembly to the centre of the target and 6 the angle from 

the beam direction. All the detector assemblies were positioned in the horizontal plane.
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Table 4: TAPS set-up details

block A B C FW D E

r (cm) 55.5 55.2 55.6 68.8 55.6 55.1

0(°) 152.4 103.0 54.0 0.0 -54.1 -103.8

250 225

B a F ,

5  r a m  

N E 1 Q 2 A

Figure 10: A TAPS element
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Figure 11: A TAPS block: frontal view (schematic)

Figure 12: The forward wall: frontal view (schematic)
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Figure 13: TAPS set-up: seen from above (schematic)
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3.5 The N al detectors

Two Nal detectors (one of the make Bicron, one Harshaw) were used for detecting nuclear 

decay photons from the targets. Each Nal detector contained a Nal crystal in an Alu­

minium casing. The energy deposited in each detector was read out with 7 photo-tubes.

Table 5: Nal data

B icron H arshaw

Model 9.37414/73 5-2117

Length (cm) 23.81 25.40

Diameter (cm) 24.76 25.5

Distance from beam (cm) 11.50 11.50

Solid angle (steradians) 1.94 2.07

Dynamic Range (MeV) 0-23.2 0-23.5

The Nal detectors were positioned above and below the target, as close to the target 

as possible without interfering with the line of sight from the target to the outer edges of 

TAPS.

3.6 D etector read-out

The pulses from each TAPS element were passed through a splitter to a leading edge 

discriminator (LED), a constant fraction discriminator (CFD) and to two charge to digital 

converters (QDC’s), one with a short (50 ns) and one with a long (2 fis) gate. The LED’s 

were used to trigger the read-out and had a threshold of 10 MeV; the CFD’s were used to 

get accurate timing information when the elements had been triggered and the had low 

thresholds, usually about 0.5-1.0 MeV. The RDV modules provided the logic gates. 

Three inputs were allowed to trigger the read-out for the data-taking runs:

1) The presence of two LED signals from separate TAPS blocks was taken as indicating 

a 7r° event in TAPS (the FW was treated as one block). Since the maximum photon energy
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was 380 MeV, the minimum opening angle between the two pion decay photons was «  

42°. Only very few pions resulted in both their decay photons hitting the same block.

2) A single LED signal. This was done for diagnostic purposes and this trigger was

scaled down by a factor of 100.

3) A pulser to provide a continuous monitor of the QDC pedestal.

A simplified diagram of the readout is shown in fig. 14.

read-out
trigger

read-out
data

CFD QDCRDV

TDC

BaF2

LED

LED

split

VETO delay

trigger

delay

pulser

m ult= 2

m u l t= l

Figure 14: TAPS read-out
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3.7 Execution of the experim ent

Several different combinations of the electron beam current and of the TAPS trigger set-up 

were used in the experiment.

To acquire data on neutral pion production, the beam current was about 30 nA and 

the trigger was the standard TAPS trigger (see section 3.6). The data runs, that is the 

runs where data on neutral pion production was collected, were carried out in two periods 

of 10 days with 14 days between the two periods.

Before and after each data run, cosmic calibration runs were carried out (see section 

4.2.1). In these runs, there was no beam and the TAPS elements were made to trigger on 

cosmic muons passing through them.

During the data runs, tagging efficiency runs were carried out. In the tagging efficiency 

runs, the beam was used with a very small current (about 0.07 pA) and lead glass detector 

positioned in the beam to detect photons. TAPS was not used in the tagging efficiency 

runs. The fraction of tagging electrons which produced bremsstrahlung photons which 

passed through the collimator, the tagging efficiency etagg, was determined by eq. 8:

j y d e t

Ctagg  j y p r o d

For each tagger channel, N det is the number of events in the lead glass detector 

coincident with that tagger channel (i.e. in the prompt peak of the tagger TDC spectrum) 

and N%rod is the number of residual electrons in that channel recorded in the tagger scalers. 

ttagg was typically about 30 %. Tagging efficiency runs were carried out at different 

times to monitor the changes in tagging efficiency during the data runs. The tagging 

efficiency runs were analysed and 18 tagging efficiency calibration files were produced 

each containing values for the tagging efficiency for each tagger channel.
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4 D ata analysis

4.1 Steps of the analysis

This section outlines the steps in the analysis.

The energy deposited in the detectors was read out by QDC’s (charge to digital 

converters). The output of the QDC’s is in channels. A translation from QDC channel 

number to energy - an energy calibration - was needed. The energy signals from the TAPS 

elements were integrated in the QDC using both a narrow and a wide (50 ns and 2 /xs) 

logic signal as gate. The energies deposited in these two time intervals - the wide and 

the narrow gate energy - required separate energy calibrations. Energy calibrations were 

also carried out for the two Nal detectors using radioactive sources. Systematic changes 

in the energy calibration during the data runs were investigated.

The time signals from the TAPS elements and the tagger were read out by TDC’s 

(time to digital converters). The TDC’s also output channel numbers. The TDC outputs 

from the tagger were aligned and time calibrations - translations from TDC channel 

number to time - were produced for the TAPS elements.

Once the energy calibration had been carried out, the photons could be separated 

from heavier particles like mesons and baryons by comparing the wide and narrow gate 

energy signals - by pulse shape analysis (PSA). To exclude heavier particles, PSA cuts 

were determined for every TAPS element. The outputs from the veto detectors were also 

examined. Selection criteria for which TAPS elements could constitute part of a cluster 

were developed.

The photon cluster energy was reconstructed, and several different ways of recon­

structing the position of the cluster were investigated. A systematic error also arose from 

the position reconstruction: a correction for this was applied.

The so-called missing energy of the pion was reconstructed. The use of the veto 

detectors was reconsidered. Cuts in timing and reconstructed pion mass were applied 

in the data to select pions and fits were made to the missing energy distributions to 

determine the coherent part of the cross section.
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The maximum likelihood method, a method which uses all the information available 

to obtain the most likely values of the pion energy and momentum, was applied to the 

data and the results were investigated. The efficiency with which TAPS detected pions 

was calculated using GEANT 3.21 simulations.

Finally, the cross sections and their associated errors were evaluated and the data 

from the Nal detectors were investigated.

4.2 Calibration of the detectors

4.2.1 Energy calibrations

Energy calibrations can be carried out in various ways: using radioactive sources, firing the 

tagged photon beam straight into the elements, or detecting cosmic radiation. Available 

radioactive sources provide photons with energies up to about 10 MeV, considerably below 

the region of interest. The set-up of the TAPS blocks made it difficult to move them into 

the photon beam. The initial energy calibrations were therefore carried out using cosmic 

rays.

Muons, secondary reaction products from cosmic rays, are generated in the upper 

atmosphere from cosmic rays. A typical TAPS muon energy deposition spectrum is shown 

in fig. 15. Muons were detected in calibration runs before and after each data run by 

triggering the data acquisition on a single hit in any TAPS element with a minimum 

energy of 10 MeV. The energy deposited by the muons has a Landau distribution with a 

well-defined peak.

The channel numbers of the pedestal (the channel number corresponding to zero 

energy deposition) and the peak channel, known in MeV [34], allowed a calibration to 

be produced for each TAPS element. A pedestal pulser, which triggered read-out of all 

elements when no energy was deposited, was used during the data runs. The pedestal 

pulser triggered pedestal (PPP) was, however, slightly greater than the pedestal observed 

when data was obtained using the main pion trigger (the ‘true’ pedestal), possibly due 

to an increase in the channel number when all QDC’s were gated at the same time. This 

discrepancy occurred more frequently in elements using the first two input channels of
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Figure 15: A TAPS cosmic muon energy deposition spectrum. The peak is fitted with a 

Gaussian distribution on a linear background. The pedestal is the sharp peak seen at the 

left hand side of the spectrum.

the 8 channel QDC. The discrepancy was constant throughout the run.

The pedestals were determined by eye. The cosmic peak position was determined by 

fitting a Gaussian peak on a linear background (see fig. 15).

Although energy calibrations using cosmic muons have been commonly used with 

TAPS for a number of years, the photon energy equivalent to the peak position of the 

muon energy deposition spectrum is not well known [34] [35] [36]. The calibration using 

the cosmic muons effectively aligned the relative QDC gains of the elements but did not 

produce the correct absolute energy calibration for the TAPS elements. To obtain the 

absolute calibration, 38 MeV was used as the energy of the peak position in the energy 

deposition spectrum of cosmic muons. The mass of the 7r° was reconstructed using the 

measured cluster energies and the photon lab opening angle ip (see section 4.5.1). The 

cluster energies (see section 4.4.1) were multiplied by a factor of 1.05 to shift the peak of
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the reconstructed pion mass distribution to the tabulated value.

4.2.2 Changes in the energy calibration during the data runs

The P P P ’s were used to monitor changes in the pedestals during the data runs. The 

pedestals were found to drift over a period of several days by up to 10 channels and to 

jump suddenly, typically by 10 channels, during data runs.

The gain of the elements also varied. This was most prominent in the elements in the 

FW - in all the elements in blocks A-F the gain changes were random and less than 3 

percent. The elements in the FW close to the beam line showed the greatest gain changes: 

the gains of those immediately next to the beam pipe decreased by about 10 percent 

during a data run. This change was probably due to the high (about 80000 Hz, ten times 

higher than a typical element in blocks A-F) count rate in those FW elements. Those 

elements whose gains decreased considerably in the first data-taking run had regained 

the gain values from the start of the first run quite accurately at the start of the second 

data-taking run. They then underwent a similar change in gain in the second data-taking 

period.

The pedestal values could be observed throughout the data-taking runs, but the gain 

values could only be determined from the cosmic runs before and after each data-taking 

run. 4 energy calibration files were produced for each data run - some pedestal values 

changed for each new calibration file. The initial and final gain values were used for the 

first and last calibration files and an average of the initial and final gain values were used 

for the two calibration files in the middle of each data run.

4.2.3 Time alignment

Values of the TDC gain, a translation from TDC channel number to ns, had been produced 

by previous work on the TAPS set-up [37].

Time alignments were carried out for both the tagger and for the TAPS elements.

For the tagger time alignment, data from the tagging efficiency run, where the photon 

beam was fired into a large Pb-glass detector at a very low intensity (approximately 0.07
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pA), was used (see section 3.7). The time differences between the pulses in each tagging 

spectrometer channel (tagger channel) and the Pb-glass detector were used to align the 

tagger TDC spectra.

For the TAPS elements, the time difference between the time signals from each indi­

vidual element and the OR signal from all the tagger channels was used to align the TDC 

spectra.

During the data runs, the peaks in the time spectra for both the tagger and TAPS 

showed both gradual changes and sudden jumps of up to several ns. Three time calibration 

files were made for the tagger, and 12 for TAPS, to describe these changes as accurately 

as possible [38].

Particles with finite mass move slower than photons. When the PSA had been carried 

out and could be used to exclude mesons and baryons, the time alignment for TAPS was 

repeated to get more accurate alignment values for the photons. The corrections needed 

in this second time alignment were typically less than 1 percent of the alignment value.

4.3 Identification of photons

4.3.1 Pulse shape analysis

Since the relative strength of the long decay time component in BaF2 is greater compared 

with the short for particles with a higher rate of energy loss, pulse shape analysis could 

be carried out. When plotting the wide versus the narrow gate energy, each event can be 

described by polar coordinates (see fig. 16):

, / E n a r r o w  \  / r.\a  =  atany— - ) (9)
^ w i d e

T ~  \J (Enarrow)2 +  (Ewide)2 (10)

The wide and narrow gate energies were calibrated such that the photons and electrons

had a  «  45°. Heavier particles have smaller values of a. This difference can be used to

separate light and heavy particles in some events.
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slow component

Figure 16: Pulse Shape Analysis: the narrow versus the wide energy

In fig. 17, the photons form a ridge at a  =  45°, protons appear in banana shapes at 

lower a. Charged pions also appear in banana shapes, in between the photon ridge and 

the proton banana. The (a,r) plot was sliced into 12 bins in r and projected onto the 

<a-axis (see fig. 18). Each projection was fitted with a Gaussian around the photon peak 

at a = 45°. From these fits, a cut could be applied for each element to cut off heavier 

particles (see fig. 18). The cut was defined to be a distance of 3 sigma below the peak 

value, where sigma is the width of the fitted Gaussian. Events which appeared on the left 

hand of the cut were discarded.

The photon ridge was found to bend towards low a  at low r values, probably because 

the pedestals of the narrow gate spectra were overestimated, and towards either lower or 

higher a at high r values, depending on whether the narrow or wide gate signal saturated 

at the lower channel number.

PSA analysis was used only for particles with energies between 10 and 150 MeV to 

avoid the regions where the photon ridge might bend. Outside this region, no PSA was
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carried out as the separation could not be done reliably and events were not discarded. 

The cut is shown by the white dashed line in fig. 17. Of the particles with energies between 

10 and 150 MeV, particles which appeared on the right hand side of the white line were 

selected as photons, particles on the left hand side were discarded.
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A ngle  (oc)

Figure 17: PSA radius versus PSA angle for one TAPS element. Photons, pious and 

protons can be identified for intermediate energies. Protons can only be identified and 

discarded in the analysis for the energy 10 - 150 MeV as the photon ridge can bend outside 

these energy boundaries.
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Figure 18: PSA (a,r) plot, sliced in 12 bins of r and projected onto the a axis. Plots 

are in bins of increasing r. The r bins range from 0-10 MeV in the top left hand plot to 

237.5-380 MeV in the bottom right. For low values of r, particles cannot be identified: for 

intermediate values of r, particles can be separated into (photons and electrons), (pions) 

and (protons). For high values of r, the separation between photons and electrons, and 

heavier particles is possible for some TAPS elements (like the one shown) but not all. The 

vertical lines under each spectrum mark the fitted peak position and the 3-sigma cut-off.
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4.3.2 The CPV detectors I

Each TAPS element was fitted with a charged particle veto (CPV, see section 3.4) detector 

mounted on its front face to help identify charged particles.

The CPV detectors were only read out by a pattern unit, hence no information about 

the energy deposition distribution was available. The threshold for the CPV detector 

should be set at the same energy for all the CPV detectors to ensure a constant efficiency 

for identifying charged particles for all the CPV detectors. This was attempted using 

radioactive sources.

Spectra showing the CPV pattern for the 12C data are shown in figures 19 and 20. 

The CPV detectors were numbered from 1 to 522, with numbers 1-64 mounted on block 

A, 65-128 on block B, and similarly for blocks C-F. CPV detectors numbered 385-522 

were mounted on the FW. The shape of the spectrum shows the highest number of counts 

in the CPV’s mounted on the FW and on blocks C and D, as the distribution of the 

charged particles is greater for smaller pion lab angles. The CPV detectors were labeled 

in horizontal rows of 8 such that the rows consisted of detectors no. 1-8, 9-16 and so on. 

The systematic variation in the number of counts every 8 detectors in a block is due to 

one end of the row being at a more forward angle than the other end of the row. The rows 

at the top and bottom of each block are further away form the target than the rows close 

to the centre of the block. The CPV detectors further from the target cover a smaller 

solid angle than those close to it and have a smaller number of counts. The numbering 

system for the CPV detectors in the FW is not straightforward but generally the CPV 

detectors with a high number of counts are those in the centre of the FW.

Some CPV detectors did not output any signals. These were exclusively mounted 

on the TAPS detectors in the edges of detector assemblies. Some CPV detectors had 

very high count rates, due to faulty electronic modules and cabling. These were also all 

on TAPS elements in edges of detector assemblies. The remaining CPV detectors show 

a variation in count rates of a factor of 2. This is due to the difficulty in setting the 

thresholds correctly without access to the pulse height distribution.
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Figure 19: CPV pattern for 12C data for blocks A-F
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Figure 20: CPV pattern for 12C data for the FW
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4.3.3 Selection of clusters

When an electro-magnetic shower forms in TAPS, it often propagates through several 

elements, a so-called cluster, consisting of a central element (that with the greatest energy 

deposition), and neighbours (the remaining cluster members). All elements in the same 

cluster had to be physically next to at least one other cluster member.

In the analysis, an accepted cluster was required to have a minimum energy (15 MeV). 

The central element had to have a minimum of 10 MeV and the neighbours had to have a 

minimum of 1 MeV deposited energy each. The thresholds for the cluster and the central 

element were set so as to not discard pion decay photons while discarding low energy 

photons produced in the target by other processes, e.g. pair production in the target. 

The neighbouring element threshold was set low so as to determine the cluster energy as 

accurately as possible.

Elements at the edge of a TAPS block (edge elements) were not used as central 

elements in clusters, only as neighbours. This was done to improve the energy resolution 

as a significant part of the shower spreads to neighbouring elements in most events and 

so would not be detected if the neighbouring elements were missing. 44 % of the elements 

were edge elements. Excluding events where one of the central elements was an edge 

element led to a reduced number of events but a significantly improved energy and position 

resolution.

50



4.4 Cluster properties

4.4.1 M ethods of cluster position reconstruction

The entry position (x,y) of a particle on the surface of a TAPS block can be reconstructed 

from the energy depositions in the central and the neighbouring elements, x and y are the 

horizontal and vertical distances of the entry point from the centre of the TAPS block. A 

good reconstruction method obtains the correct mean position when averaged over many 

events, with a small rms error in the distribution of reconstructed positions.

A range of position reconstruction methods were investigated for both simulated and 

real data. In previous analyses, two different methods of photon entry position recon­

struction have been used: they relied on linear and logarithmic weighting of the energies 

(the “lin” and “log” methods) in each element [39] [35]. The reconstructed y position of 

the photon yjec is expressed as a weighted sum of the y positions of the elements yi (with 

similar expressions for x 7ec):

2/7ec =  ^weighti y{

where the weights were

Eiweightun
to ta l

Eiweighti0g =  m ax(0, log—------ b W ) (13)
E to ta l

where the summation takes place over all the elements i in the cluster, Ej is the 

energy deposited in element i and Etotai is the total energy deposited in the cluster. The 

TAPS cluster energy was calculated by adding the energy depositions in all the TAPS 

elements which were members of the cluster. W is a constant which essentially decides 

the minimum energy deposit used in the reconstruction: it has usually been set so that 

the threshold used in the calculation matched the detector hardware threshold.

New methods of position reconstruction were investigated. The energy depositions 

were weighted with a power function (the ‘power’ method):
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weightp o w e r
E - )  <14>to ta l  '

where values from P=0.1 to P =0.9 were used. Values of P less than 1.0 were used to 

give elements with small energy depositions relatively large weights compared with the 

lin method. This is also a characteristic of the log method.

Another method ignores the greatest energy deposition and uses only the ring of 6 

elements around the one with the greatest energy deposition (the “frac6” method) (see 

fig. 21):

Fi =

Fo =

F* =

( E q +  E j  -f E 2 )  — ( E q -f E ±  +  E q ) 

E 2  +  E q +  £4 T E q +  E q +  E j

( E j  +  E 2  +  E q ) — ( E 4  +  E q +  E q ) 

E2 +  E q +  E\  +  E q E q +  E j

(E2 +  E q +  E i)  — ( E q +  E q +  E7) 
E2 +  E q +  E4 +  E q +  E q +  E j

(15)

(16)

(17)

V r e c j r a c f i  ~  C2/l (^2 +  0.5(F\ +  F3)) +  2/i (18)

where y\ is the y position of the central element, cy\ is a constant and the factor of

0.5 comes from projecting the unit vectors along the non-vertical axes of symmetry onto

the vertical (y) direction.

Figure 21: Numbering used in the frac6 and fracl8 position reconstruction methods
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Using more detailed information the two rings around the detector element can be 

used (the “frac!8” method) (see fig. 21) using fractions like:

b ot tom

b ottom
(19)

where

Etop — E-j +  E2 +  £ 3  4- E 1S +  £ 1 9  +  E% +  Eg +  £ 1 0 (20)

and

E b o t t o m  —  E 4 +  £ 5  +  E q  +  E \2 +  £ 1 3  +  £ l 4  +  £ l 5  +  £ l 6 - (21)

All of the reconstruction methods give an estimate of the (x,y) coordinates of the

from the reconstructed position (xrec,yrec). The corrected position coordinates can be 

obtained through:

where I is the distance from the target to the centre of the front face of the TAPS 

block and the expression for ycorr is similar.

The methods of position reconstruction were tested on simulated data, obtained using 

GEANT 3.21 [40]. In a series of simulations, mono-energetic photons of various discrete 

energies were incident on the surface of a TAPS element [38]. For the simulated data, 

the simulated and the reconstructed positions were compared for different methods.

centre of the electro-magnetic shower which occurs at a distance d from the front face of 

the TAPS block, d increases with photon energy according to [36]:

12.7 M eV

For photons which do not hit the surface of a TAPS block at normal incidence, a cor­

rection must be made to obtain the incidence position at the face of the block (xcorr,ycorr)

corr
d

) (23)
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The distribution of reconstructed positions for different methods for 100 MeV pho­

tons incident normally at the centre of element D54 is shown in fig. 22. The average 

reconstructed position for various entry points for simulated data is shown in fig. 23. The 

lin method and the log methods with small values of W tend to pull the reconstructed 

entry point of photons which entered the element away from the centre and the edge, 

towards the centre, while the photons which entered at the centre and at the edge had 

their positions reconstructed correctly on average. This is because the element with the 

greatest energy deposition gets a very large weight compared with the elements with less 

deposited energy. The power methods at high P give results similar to those from the 

linear method.

The fractional methods and the power methods at low P, averaged over many events, 

tend to reconstruct the true position on average, but with a large uncertainty. Photons 

entering close to, but not at, the centre get their reconstructed position pulled closer to 

the centre, whereas photons entering close to, but not at, the edge get their reconstructed 

positions pulled towards the edge. In the fracl8 method, the reconstructed position is 

pulled further towards the edge of the elements, and the uncertainty is greater than the 

uncertainty in the frac6 method.
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Figure 22: Distribution of reconstructed positions in element D54. The edges of the TAPS 

element are at 58 and 65 cm.
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Figure 23: Average reconstructed position versus simulated entry position, using simu­

lated data. The element centre is at 455 mm and the vertical edge at 485 mm.
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The next investigations were done using real data, with the full range of incident 

photon energies (135-380 MeV), taken with a 12C target. The reconstructed pion mass 

distributions were compared (see fig. 24) for the different position reconstruction methods.

The power, linear and fracl8 methods produced a considerably worse pion recon­

structed mass resolution than the log methods and so they were discarded. Of the re­

maining log methods, the log \V=3.5 method provided a slightly better pion reconstructed 

mass resolution than the other log methods when using the methods of position recon­

struction in the usual way.

Figure 24: Reconstructed pion mass distribution for experimental data on 12C. The frac 

method is fracG.
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Two alternatives were tried for the log methods: firstly the position was reconstructed 

using only the central element and its 6 neighbours, secondly the reconstructed position 

was forced onto the edge of a circle centred at the centre of the central element and whose 

radius was the average element radius (see fig. 25). This was attempted because small 

energy depositions in elements not neighbouring the central element can be given relatively 

large weights using the log method, pulling the reconstructed position significantly away 

from the central element.

Shifting the position inside the central detector slightly worsens the reconstructed 

mass resolution, indicating that the electro-magnetic shower can be such that the element 

with the greatest energy deposition is not always the one whose surface was struck by 

the photon.. This probably mostly happens for photons incident at oblique angles to the 

element surface. Using only 7 elements instead of 19 improves the resolution, particularly 

when the position is shifted inside the central detector. Thus, elements not neighbouring 

the central one pull the reconstructed position too far from its real position, as small 

energy deposits are given relatively large weights with the log method.

Comparing the methods with these alternative ways of using them, the log (W=5.0) 

method, using only 7 elements and not shifting the reconstructed position inside the 

central detector, provided the best reconstructed mass resolution. This method was used 

in the analysis.
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Figure 25: Reconstructed pion mass distribution for different ways of using the log W=3.5 

position reconstruction method
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Figure 26: Reconstructed pion mass distributions using log methods with W =  3.5 and 

5.0, using 7 or all elements for the position reconstruction, not shifting the reconstructed 

position. Of all the methods investigated, the log W=5.0,7 elements method provided the 

best resolution.
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4.4.2 Correction to the position reconstruction

The peak position in the distribution of reconstructed pion masses m rnec was found to 

vary systematically with the relative position of the cluster inside a TAPS block used 

to reconstruct it [38]. This indicates that reconstructed angles of the photons were 

increasingly in error as the photon was incident on elements closer to the edge of a TAPS 

block. This error is probably related to the non-normal incidence of the photons away 

from the centre of the TAPS block. In the absence of a detailed explanation of this effect, 

empirical corrections were applied to the reconstructed positions using equations 24 - 27:

£ c o r r , b l o c k s A - F    q  g ^ b l o c k s A —F  (24)

corr,  blocks A —F    rv r\. b lo c k s  A —F  ( O ^
U rec  ~  U >yi/r e c  \ 1 0 )

x™r-FW =  0.95x™  (26)

y co rr,F W  =  l m y F W  ( 2 7 )

where xrec and yrec are measured using the axes shown in fig. 27. The correction was 

different for TAPS blocks A-F and the FW due to their different geometries. No correction 

was found to be necessary for the y coordinate in the FW. This correction reduced the 

variation of m rnec for clusters in a block significantly (see ref. [38] for further details).
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Figure 27: A TAPS block (schematic) with the coordinate system used to correct the 

reconstructed cluster position
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4.5 Selection of pions

4.5.1 Pion kinematics and missing energy

The pion mass was reconstructed from eq. 49 (see appendix Bl):

m rnec =  ^ 2 E i E 2(1 -  cosip) (28)

where m rnec is in units of MeV, Ei and E 2 are the measured energies of the pion decay 

photons and 'ip their opening angle in the lab. The pion total energy was calculated 

using the ‘X’-formula (eq. 29) (see appendix B2):

2 _  2ml
" (1 — X 2)(l — costp) [ ’

where is the well known mass of the pion and

E\ — E2 , x

This way of calculating E n is only weakly dependent on X when the two photons have 

similar energies and X is small. This is beneficial as the photon energy resolution has 

traditionally been quite poor compared with the angular resolution in experimental data.

The missing energy for the coherent neutral pion production process is defined in 

eq. 31:

Emiss ~  +  Erecoii E^ (^f)

where E recou is the kinetic energy of the recoiling nucleus, obtained through energy 

and momentum conservation in the coherent reaction, and E 1 the energy of the incident 

photon.

A typical E miSS spectrum is shown in fig. 28. The peak at 0 MeV is due mainly to 

coherent events, the events in the tail mainly to non-coherent.
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Figure 28: Emiss distribution for the 12C data for all photon energies and all pion angles.
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4.5.2 The C P V  detectors II

Charged particles were produced in the experiment mostly by pair production by photons, 

both from pion decay and from the beam. The pair production could take place in the 

target, the beam pipe and in the TAPS elements, where one or more products of the pair 

production could be directed toward the front of the TAPS element while the main part 

of the shower propagated toward the back.

In events where the CPV detector firing was due to pair production in a TAPS element 

which is part of a pion decay photon cluster, it was not desirable to discard the event. 

Only events where the CPV on a TAPS element which was not part of a pion decay photon 

cluster fired should be disarded. At least two clusters had to be present to start the trigger 

(see section 3.6). Combining a cluster created by a charged particle propagating through 

the CPV detector with a cluster made by a pion decay photon, or two clusters from the 

electron-positron pair, would most probably reconstruct a pion mass very different from 

the tabulated value. A spectrum of the reconstructed mass excluding clusters when the 

CPV on a central detector fired clearly reduces the bump at about 25 MeV but does 

not greatly reduce the peak counts and such events would be removed by the pion mass 

selection (see section 4.5.3). Any benefit from excluding charged particle events would 

be greatest at backward pion angles where the ratio of coherent to non-coherent events is 

smaller.

The missing energy distribution for 40Ca for 6n > 40° is shown in fig. 29. The data 

contributing to fig. 29 has had all the cuts used in the analysis except the CPV cut applied 

to it. There is a small reduction in the number of events when clusters are discarded if 

the CPV on their central detector fired, but the fractional reduction is very similar in 

and outside the peak region. The CPV cut is clearly not helpful in removing background. 

For 12C, the reduction in the missing energy spectrum at backward angles when using the 

CPV information was similar.

Using the CPV detectors did, therefore, not improve the energy resolution. Also, when 

discarding clusters where the CPV detector on the central detector fired, the number of 

detected pions was slightly reduced. Furthermore, the efficiencies of the CPV detectors
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were not well known and varied considerably, 

in tie analysis.

The CPV detectors were therefore not used
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Figure 29: Pion missing energy distribution for l0Ca, discarding a cluster if the central 

detector does not pass the PSA (black) and the PSA combined with CPV (red) criteria, 

respectively. The reduction in counts between the two spectra is similar in the peak of 

coherent events and the background of non-coherent events to the left hand side of the 

peak.
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4.5.3 Selection of pions

The reconstructed pion mass obtained when using all pairs of photons whose clusters met 

the cluster conditions (see section 4.3.3), is shown in fig. 30 for 12C and fig. 31 for 40Ca. 

The events contributing to these spectra will be called the potential pions. The FWHM 

of the reconstructed mass spectrum is 14.2 MeV for 12C and 13.9 MeV for 40Ca.

To select pions from the potential pions, cuts were made on several quantities (see 

table 6): the reconstructed mass, mrec, the time difference between the two photons 

detected in TAPS, T77, and the time difference between the tagging electron and the 

TAPS trigger, T t t .

A significant number of potential pions had reconstructed masses quite far from the 

tabulated mass of the 7r° (134.98 MeV). There are several reasons for this. The finite 

resolution of TAPS smeared out the distribution of reconstructed masses, widening the 

peak at 135 MeV. A part of the electro-magnetic shower could escape TAPS, leading to a 

decrease in the detected energy and too small a reconstructed mass - this led to a slower 

fall-off on the low mass side of the peak. Finally, pair production in the target resulted 

in a photon cluster containing only a part of the photon’s energy and gave rise to the 

bump at about 25 MeV [41]. This bump is more prominent in the 40Ca data as the larger 

electric field in the atom gives rise to more pair production.

Table 6: Some of the cuts applied to select pions

Spectrum where cuts to select pions were applied Selected region

Reconstructed mass (120 : 150) MeV

Time between two pion decay photons (-1.8 : 1.8) ns

Time between tagging electron and the TAPS trigger (-2 : 3) ns

Potential pions whose mass was outside the region 120-150 MeV were discarded. As 

can be seen in figures 30 and 31, this cut discards a greater fraction of the events on the low
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Figure 30: Reconstructed pion mass for 12C. The vertical black lines show where the cut 

was made.

reconstructed mass side of the peak than on the high. The discarded events do, however, 

have significantly too low a reconstructed mass, due to leakage of the electro-magnetic 

shower out of TAPS, and discarding them improved the overall energy resolution of the 

remaining potential pions.

Potential pions where T77 was outside the interval (-1.80,1.80) ns were discarded (see 

fig. 32). Due to the good time resolution of TAPS after the pulse shape analysis (see 

section 4.3.1), this distribution was sharp and only about 0.1 % of the potential pions 

were discarded with this cut.

The spectrum of time difference between the tagger and the TAPS trigger, shown 

in fig. 33, has a coincidence peak near zero time on a flat background due to random 

coincidences. To select the prompt coincidences, potential pions where T tt  w&s outside 

the region (-2.0,3.0) ns were discarded (see fig. 33). The distribution of Ttt is slightly 

asymmetric, probably due to the time signals from TAPS and the tagger drifting during
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Figure 31: Reconstructed pion mass for ,0Ca. The vertical black lines show where the cut 

was made.

the data run, moving the Ttt spectrum away from zero. The region (-2.0,3.0) ns does, 

however, contain a significant background of events due to random coincidences between 

TAPS and the tagger. To subtract this background, regions were selected on both sides 

of the peak containing only random background events (see fig. 33). In the analysis used 

for the present experiment, these events contributed to the cross section with a weight 

of — |  as the width of the chosen background region was 6 times the width of the peak 

region.
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Figure 32: Time difference between the two pion decay photons for 12C. The black lines 

show where the cut was made.
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Figure 33: Time difference between the tagging electron and TAPS trigger. The blue 

area contains potential pions selected by the cut, the red area potential pions selected for 

random background subtraction.
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4.5 .4  Selection of coherent events

Several different processes contribute to neutral pion photo-production. Examples of these 

are: coherent processes, where the nucleus is left in its ground state; nuclear excited state 

processes, where the nucleus is left in an excited state after the pion production; quasi-free 

processes, where a proton or neutron is knocked out of the nucleus and a neutral pion is 

produced; and double pion production.

Missing energy resolution for C -1 2  data

10

><D2n)
EO)
' »  5

0
°120 160 200 240  280  320  360

Incident photon energy (MeV)

Figure 34: Missing energy resolution a obtained using 12C data and averaged over all pion 

angles. Statistical errors are shown.

To obtain the coherent yield, the non-coherent yield must be eliminated from the total. 

The extra energy required for the processes mentioned above compared with coherent 

production are shown in table 7. The elimination of some of the non-coherent processes 

could be carried out by selecting events whose missing energy was close to zero. This 

was only possible when the extra energy required for the process was significantly greater 

than the energy resolution of TAPS (see fig. 34).

For most incident photon energies, the energy resolution was not good enough to 

eliminate the nuclear excited state events with low nuclear excitation energies. Quasi- 

free events could be eliminated for low incident photon energies. Double pion production 

events could be eliminated at all incident photon energies.
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Table 7: Some of the non-coherent processes contributing to 7r°-production. The extra 

energy required compared with the coherent reaction is shown. There are many more 

nuclear excitation states than those listed for both nuclei - only the lowest few are listed.

Process Extra energy required (MeV)

12C 40 Ca

Nuclear excitation 4.4, 15.0, . . .  3,7, 4.5,...

Proton knock-out 16.0 12.5

Neutron knock-out 18.7 9.9

2 7r° production 134.98 134.98

The yield of the non-coherent processes varies slowly with 6n [42] [43], whereas the 

coherent pion production yield is known (see section 2.3 - 2.5) to decrease with 0V by a 

large factor. At large 9n, the ratio of non-coherent to coherent events becomes large and 

the coherent peak becomes harder to distinguish.

Missing energy spectra for 12 C for various incident photon energies and pion lab angles 

are shown in figures 35 - 38.

At incident photon energies close to the pion production threshold, the energy resolu­

tion was very good (see fig. 35). Non-coherent processes did not contribute significantly: 

at threshold there is not enough energy for them to occur, and the yield of these processes 

increases slowly with increasing incident photon energy while the coherent yield initially 

increases more rapidly [43]. At incident photon energies around 200 MeV, non-coherent 

processes contribute significantly to the yield - there is a ‘tail’ on the left hand side of the 

coherent missing energy peak (see fig. 36). As the yield of the coherent process decreases 

with pion lab angle, the non-coherent processes constitute a greater fraction of the total 

yield. The apparent peak position has shifted from 2 MeV in fig. 36 to -8 MeV in fig. 38. 

The variation of apparent missing energy peak position as a function of pion lab angle is
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shown in fig 39. For small pion lab angles, the apparent peak position is close to some 

value of missing energy, E*. It starts to shift significantly away from E* at a particular pion 

lab angle, 0*, which generally decreases for increasing incident photon energies. Whereas 

the reconstructed pion decay photon energies and angles are known to contain systematic 

errors, these are not great enough to explain the variation in the apparent missing energy 

peak position.

The values of 6* were found to coincide roughly with the theoretically predicted values 

of the angle where the magnitude of the coherent yield becomes significantly reduced com­

pared with the maximum cross section values in the angular distribution. The variation 

in apparent peak position can be explained as a combination of a variation in the peak 

position of the coherent yield due to systematic errors in the reconstructed pion energy 

and angle, and a variation in the relative contributions from the different processes con­

tributing to the missing energy distribution. When the yield from the coherent process 

decreases, the yield from the nuclear excited states and the quasi-free processes can be­

come important in the total yield. The apparent position of the peak in the missing energy 

distribution then becomes the average peak position of the combination of distributions 

due to the different processes.

The shape of the coherent part of the missing energy distribution also varied signifi­

cantly with the incident photon energy and the pion angle. At low E J s, the shape was 

well fitted with a single Gaussian function (see fig. 35). At Ey around 200 MeV, the 

shape of the missing energy distribution was not described well by a Gaussian function 

(see fig. 36). This is probably due to the apparent peak position of the missing energy 

distribution moving significantly over the energy range contributing to the data: the 

distribution in fig. 36 is probably the sum of many Gaussian distributions, each with a 

slightly different peak position. Distributions with this shape could be fitted with two 

Gaussian functions and a Fermi function used to represent the fall-off of the distribution 

from the quasi-free processes below the its average threshold Eav.

The function used to fit the data was:
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Figure 35: Missing energy spectrum for 12C for 30< 9n < 35° and 150 < E1 < 155 MeV, 

fitted with method 1. The data is shown in black and the fitted single Gaussian function 

in red.

F = - T - ex p (~ ( x T -C- ) +  -A-exp(~(V T )2) +\/2 it (7i clo \ \/2tt a2 2&2 1 +  exp(2A x
(32)

where A\ and A2 are the areas, o\ and a2 the widths and xc the common centre of 

the Gaussian functions, A q  the height of the Fermi function, x the missing energy, Eav 

the average energy required for the quasi-free process and

-  = (33) 
The width of the Fermi function is obtained from the Gaussian widths, weighted
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Figure 36: Missing energy spectrum for 12C for 30 < 9n < 35° and 220 < E1 < 240 MeV, 

fitted with method 2. The data is shown in black, the fitted double Gaussian function in 

red and the fitted Fermi function in green.

with the Gaussian areas such that the greatest Gaussian determined most of the width 

of the Fermi function to ensure that the resolutions of the distributions describing the 

coherent and quasi-free processes were consistent. The slight asymmetry of the measured 

missing energy spectrum in the peak region in fig. 35 suggests that the incoherent process 

is making a significant contribution. However, without any knowledge of which nuclear 

states are populated it was not possible to include the shape of the nuclear excitation 

pion production distribution in the fit. When this contribution became large, a different 

fitting procedure, method 3, was used.

Three fit methods were used to fit the missing energy distributions. All the fits were
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Figure 37: Missing energy spectrum for l2C for 50 < (9̂  < 55° and 190 < E1 < 200 MeV, 

fitted with method 3. The data is shown in black and the fitted single Gaussian function 

in red.

carried out using the graphics tool Minuit [44].

• Method 1: A Gaussian plus a Fermi function were fitted, allowing the fit to deter­

mine the height, width and position of the Gaussian function and the height of the 

Fermi function. This method was used where the shape of the peak was described 

well by a single Gaussian function and where the apparent peak position was close 

to E* (see fig 35). The fit function used is described in eq. 32 with A2 =  0.

• Method 2: Two Gaussian plus a Fermi function were fitted. The two Gaussian 

functions were centred in the same place. The fit determined the heights, widths 

and position of the Gaussian functions and the height of the Fermi function. This
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Figure 38: Missing energy spectrum for 12C for 90 < 9n < 95° and 320 < E1 < 340 MeV, 

using method 3. The data is shown in black and the fitted single Gaussian function in 

red.

method was used where the shape of the peak was described well by two Gaussian 

functions and where the apparent peak position had not shifted significantly away 

from E* (see hg 36). The fit function used is described in eq. 32.

• Method 3: The upper half of a single Gaussian was fitted. The centre position of 

the Gaussian was fixed at El, the fit selected the height and width of the Gaussian. 

This method was used where the apparent peak position had shifted significantly 

away from E*. (see fig 37 and fig 38). The fit function used is described in eq. 32 

with A2 = 0, Aq = 0 and xc =  El.

In methods 1 and 2, the distance between the centre of the Gaussian function and the
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Figure 39: Apparent peak position of the missing energy distribution for 12C

centre of the fall-off of the Fermi function was determined by the average extra energy 

required for the quasi-free process. This was done to make the fall-off of the Fermi function 

describe the fall-off of the quasi-free production distribution in the coherent peak region.

E* varied with incident photon energy by up to 5 MeV. This is probably due to the 

systematic errors in the reconstructed energy and angle of the pion. The regions where 

the different fit methods were used are shown in table 8. The fit regions, and the regions 

where the different methods were used, are not identical for 12C and 10Ca. The coherent 

differential cross section decreases faster with pion lab angle for 40Ca than for 12C, hence 

the coherent yield could be determined at greater pion lab angles for 12C than for 40Ca. 

The first nuclear excited state occurs at a lower nuclear excitation energy in 40Ca than in 

12C. Because the contributions from the nuclear excited states are closer to the coherent 

peak for 10Ca, and because the coherent cross section decreases faster with pion angle for 

40Ca, the apparent peak position started to move away from 9* at slightly lower incident 

photon energies for l0Ca than 12C, and thus method 3 was used at slightly lower incident 

photon energies for l0Ca than for 12C.
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Table 8 : Fit methods used to fit EmjSS distributions

E-y range 

(M eV ) 

135-140  

140-145 

145-150  

150-155 

155-160  

160-170

170-180

180-190

190-200

200-220

220-240

240-260

260-280

280-300

300-320

320-340

340-360

360-380

12C
range 

(°)
5-155 

0-165  

0-170  

0-175  

0-165  

0-165

0-5

5-70

70-115

115-160

0-5

5-70

70-95

95-165

0-10

10-65

65-85

85-170

0-40

40-65

65-160

5-50

50-175

5-20

20-150

5-20

20-145

0-160

0-145

0-140

0-140

0-155

40 Ca

9n ran g e  

(°)
0-140  

0-160  

0-155  

0-120  

0-115 

0-15 

15-60  

60-85  

85-165  

0-5  

5-25 

25-80  

80-160  

0-5  

5-60 

60-165

0-10  

10-55 

55-125

0-20  

20-25  

25-135  

0-10  

10-25  

25-150  

0-15  

15-30 

30-130  

0-5 

5-10  

10-15 

15-130  

0-115  

0-110  

0-100  

0-80  

0-70

fit m e th o d

1
1
1
1
1
1

1
2

1
3

1
2

1
3

1
2

1
3

1
2

3

1
3

1
3

1
3

3

3

3

3

3

fit m e th o d

1
1
1
1
1
1
2

1
3

1
2

1
3

1
2

3

1
2

3

1
2
3

1
2
3

1
2

3

3

1
2
3

3

3

3

3

3
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4.6 The maximum likelihood m ethod

Data analysis often involves calculating unknown quantities and their associated uncer­

tainties from several equations containing measured quantities with their associated un­

certainties. If the number of equations determining the unknowns equals the number of 

unknowns, the equations can simply be solved to yield the unknowns. If the number of 

equations is greater than the number of unknowns, a fit minimising the uncertainty in 

the unknown quantities, a maximum likelihood method, can be used to determine the 

unknowns.

In 7r0-production, the two pion decay photons 7 ! and 7 2  are detected. The pion energy 

and momentum P.K are determined by the pion decay photon energies (Ei and E2 ) 

and momenta (p and p2) by conservation of energy and momentum:

=  E\ +  E 2 (34)

Pjl =  Pi +  P2 (35)

Traditionally, the pion energy has been determined using the ‘X’-formula (see section

4.5.1). However, this does not make use of all the information available.

The pion momentum and energy are related by:

E l  = m l  + P i  (36)

where c =  1 and mT is the pion mass. The maximum likelihood method (MLM) [45] 

assumes that the momenta and polar angles associated with 7 1  and 7 2 ; Pi, P2 , #i, 92, </>i 

and (f)2 , have Gaussian distributions about their true values, P ! ,P 2, @1 , @2 , ^ 1  and 3>2-

The probability Q of a set of residuals Sp. =  (5pi, S9i, 5<f>i): where

Spi =  P | - pj , and 59i and dfa are defined similarly, is

- In Q  <xF = 2 j { - 2~  +  - j — +  - 5 -  } (37)
i  u  p i  u  a t  u  a t
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where aPi and aai are the errors in the momentum and angle. Using equations 34 

and 35, P* and En are calculated. F is then minimised under the constraint obtained 

directly from eq. 36:

Cl = m l)  = Pip2(l -  cosip) -  ^ m l  = 0 (38)

To carry out the minimisation, the constraint is expressed in terms of the measured 

quantities by expanding eq. 38 and keeping only the first-order terms:

Using the Lagrange multiplier technique, eq. 39 can be solved subject to the con­

straint (eq. 38) to determine corrections (Spt, 80{ and 5(j)i) to the measured parameters. 

For details, see [45].

The MLM can be used iteratively; when the measured values (pj, 0i and have been 

corrected once, they can be used as input into the MLM and more accurate values for the 

corrections can be obtained.

The MLM is illustrated in fig. 40.

The reconstructed pion mass distribution obtained using the X formula and the MLM 

are shown in fig. 41. The width of the distribution using the X formula simply expresses 

the errors in the measured photon energies and angles. The mass distribution obtained 

with the MLM is very narrow as the MLM works by forcing the reconstructed mass 

towards the pion mass.

Missing energy distributions obtained using both the X formula and the MLM are 

shown in fig. 42. The MLM obtains a slightly different peak channel from the X formula, 

but as the pion decay photon energies used to calculate EmiSS have been shifted phe- 

nomenologically (see section 4.5.1) this does not recommend one method over the other. 

The energy resolution obtained using the two methods is similar for low incident photon 

energies: at incident photon energies above about 155 MeV the MLM produces a poorer 

resolution than the X formula, at energies above about 250 MeV, the resolution from the 

MLM is slightly better than that from the X formula.

(39)
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Figure 40: Flow diagram of the Maximum Likelihood Method

The MLM assumes that each of the measured variables (photon energy and angles 

and the incident photon energy) has a Gaussian distribution about its true value. As is 

indicated by the systematic changes in the peak position of the missing energy (see section

4.5.1), probably both the reconstructed photon energy and angles contain systematic 

errors. The MLM can therefore not be expected to work as intended. It was not used in 

the analysis.
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Figure 41: Reconstructed pion mass from the X formula and the MLM with 1 and 2 

iterations shown on a logarithmic scale.
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Figure 42: Reconstructed pion missing energy using the X formula and the MLM for 

various incident photon energy bins. The horizontal axes of the spectra are in units of 

MeV, the vertical axes in units of counts. These spectra were produced using a subset of 

the l2C data.
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4.7 TAPS detection efficiency

Due to the geometry of TAPS (See fig. 13) the efficiency with which TAPS detected 

pions varied strongly with both pion energy and angle. As TAPS only covered a limited 

solid angle, a significant fraction of the pion decay photons were not incident on any 

part of TAPS. The opening angle distribution of the two pion decay photons is strongly 

correlated with the pion energy (see eq. 29). The pion decay photons were detected 

in separate TAPS blocks (see section 3.6); either neighbouring TAPS blocks, or blocks 

separated by one or two other blocks. Pions whose decay photons had an opening angle for 

which TAPS provided little solid angle, were unlikely to be detected. Pions whose decay 

photon opening angle matched the angle between TAPS blocks had a higher likelihood of 

being detected.

Simulations were carried out by Sanderson [38] using the software GEANT 3.21 [40], 

using a Monte Carlo random number generator to simulate pions of discrete energy and lab 

angle. The pions were generated inside the target. The photon interactions in the target, 

the beam pipe, the CPV detectors and the TAPS elements were simulated. Resultant 

particles were tracked until their energy was less than 1 MeV. The effect of light collection 

in the TAPS elements was included. The simulated data were analysed using the same 

analysis with the same cuts as were applied to the experimental data, and the detection 

efficiency was determined for the discrete values of pion energy and angle. The variation 

in detection efficiency with pion energy and angle for 12C is shown in figures 44 and 45. 1 0 5 

pions were simulated for each combination of pion energy and angle. The statistical error 

in the detection efficiency was about 3 %. Simulating a greater number of pions for each 

combination of pion energy and angle would have decreased this error. As the contribution 

to the error in the cross section due to the uncertainty in the detection efficiency was 

comparable to the contribution from the estimate of the number of coherent events, and 

as the simulations took a significant amount of time to generate, simulations of a greater 

number of pions were not carried out. Information about the timing of the TAPS signals 

was not provided by the GEANT simulation. The efficiency obtained therefore did not 

allow for the reduction produced by the cuts applied to the time spectra, and corrections
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were made to the simulated detection efficiency to compensate for this (see section 4.8).

The shape of the distribution of reconstructed pion mass from the simulation and the 

data agreed well (see fig. 43) and the estimated difference in the reduction in the coherent 

peak when the cut 011 the reconstructed mass was applied was less than 1 % [46].

x 10

1400

„ b c ^
0  20 120 140

Invariant Mass

Figure 43: Reconstructed pion mass - simulation compared with data for 12C. Black line 

- experimental data; red line - simulated data.
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Figure 44: TAPS detection efficiency as a function of pion lab angle for various pion 

energies.
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Figure 45: TAPS detection efficiency as a function of the incident photon energy for 

various pion angles.



4.8 Cross sections

The differential cross section for a particular range of photon energies and pion angles 

was initially calculated as shown in eq. 40:

  Njr (40)
dVt etagg P N t S N t C ^  ^77

where

~*^dn'd̂  *s uncorrected cross section. The corrections are described below.

N* is the number of neutral pions detected in TAPS (see section 4.5.3) in that E7 , 6n 

range

ttagg is the tagging efficiency (see section 3.7) for that E7.

p is the target density, measured in nuclei/cm2.

is the number of tagger scaler counts, i.e. the number of tagging electrons from 

a particular tagger channel.

NTc  is the number of tagger channels corresponding to the incident photon energy 

region

Q is the solid angle of the angular bin in steradians.

T7 7  is the branching ratio of the decay (7r° —> 7 7 ) :  98.89%.

Several corrections were applied to each value of the cross section:

dcr(E7 , 9n) ^  d<ju(E'7 , 6^) 1 , »
da ~  da eTAPS 77 TT Emi“

where

is the corrected cross section.

^t a p s  is the TAPS detection efficiency (see section 3.7).

F7 7  is a factor correcting for events due to neutral pions having been removed with 

the cut on the time difference between the two pion decay photons. This was calculated 

by fitting a Gaussian function to the spectrum of the pion decay photon time difference 

and estimating the fraction lost in the cut.
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Ftt  is a factor correcting for events due to neutral pions having been removed with 

the cut on the time difference between the tagger signal and the TAPS trigger. This was 

estimated in a similar way to F77.

F Emiss is a factor correcting for events due to neutral pions having been cut away with 

the cut on the missing energy (see section 4.5.4).

The integrated cross section was obtained by integrating the differential cross section:

<7 = I  ^ ( £ 7, 9,) dn ~  2 tt £  ̂ ( E 7, 6n) sine (42)

4.9 Errors in the cross sections

The statistical error depends mostly on the number of counts in the coherent peak region, 

but there is also a contribution due to the non-coherent background. It is therefore large 

when the coherent cross section is small and the non-coherent contribution is relatively 

large - for large pion lab angles. The statistical error in the area of the coherent part of 

the missing energy distribution was obtained from the fitting routine. As the detection 

efficiency was determined by a Monte Carlo procedure (see section 4.7), it also contained 

a statistical error estimated to be 3 % for all combinations of pion energy and lab angle. 

The contributions to the error in the cross section from the fitting and the detection 

efficiency simulation were combined in quadrature to produce the statistical errors shown 

in the cross section plots and tables.

A systematic error also arose from the fitting of the missing energy distribution. An 

estimate of the fractional variation in the area of the fitted Gaussian functions for small 

variations in the fit parameters is shown in table 9. For distributions where the missing 

energy peak was well defined by a single Gaussian function and the background was small 

(see fig. 35), the systematic error was small.

For distributions where the peak was well defined but the background significant (see 

fig. 36), the systematic error was still quite small. The accuracy of the fit relies on the 

background being fitted well with the Fermi function - that is that the nuclear excited
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states production process does not contribute significantly and that the Fermi function 

describes the fall-off of the quasi-free distribution well - and on knowing the peak position 

of the missing energy distribution for the coherent events. Where the apparent peak 

position of the missing energy distribution has not shifted significantly away from E*, the 

nuclear excited states were not thought to contribute significantly. The distribution of 

the quasi-free processes was known to have its peak so far below the peak of the coherent 

distribution that only the fall-off needed to be fitted.

For the distributions where the apparent peak position has moved significantly away 

from E* (see figures 37 and 38), the fit relied on the assumption made about the coherent 

peak position. Particularly for the distributions where the fitted coherent peak constitutes 

a small fraction of the total yield, the area of the fitted coherent peak is strongly dependent 

on the selected coherent peak position.

The estimated systematic error in the cross sections is 0.1 - 1.5 % in the pion angle 

and energy region where the first maximum occurs in the differential cross section, as the 

missing energy distributions are well described by Gaussian fits. In the region of the first 

minimum of the differential cross sections, and for pion angles greater than that where the 

first minimum occurs, the systematic error is considerably larger, typically 20-40 %, as the 

non-coherent events make a considerable contribution to the missing energy distribution 

and as the peak position of the coherent missing energy distribution is not well defined.

The error in the tagging efficiency was about 0.7%. The error in the target thickness 

was 0 .0 2 %. As the contribution from these errors to the error in the cross section was 

negligible compared with the contributions from the TAPS detection efficiency and the 

missing energy fits, they were not included in the calculation of the error in the cross 

section.
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Table 9: Estimate of the systematical error in the fit to the missing energy distribution 

for selected incident photon energies and angles. The numbering of the fit methods is as 

explained in section 4.5.4

E7 0n Method

(MeV) (°)

145-150 10-15

45-50 

90-95 

135-140 

200-220 10-15

45-50 

90-95 

135-140 

340-360 10-15

45-50 

90-95

for fit Estimated systematic error

(%)
2.6

0.5

1.2

1.2

0.05

0.1

38.0

23.9 

6.4 

9.3

29.9

used

1

1

1

1

1

2

3

3

3

3

3
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4.10 D ata from the N al detectors
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Figure 46: Bicron Nal time spectrum for 12C for a subset of the data

The time spectrum from the Bicron Nal from the 12C data is shown in fig. 46. A peak 

containing events coincident with the TAPS trigger is clearly visible.

The energy spectrum from the Bicron Nal from the 12C data is shown in fig. 47. The 

pedestal is not shown. This spectrum contains events which had a coincident time signal 

in the TDC belonging to the Bicron Nal, which had an associated missing pion energy in 

the region (-40,20) MeV and which were coincident with the tagger time signal.

The spectrum contains considerable background, but a peak, due to the nuclear ex­

cited state at 4.4 MeV, is visible. Nuclear decay photons from the nuclear excited state 

at 15.0 MeV were not seen in the Nal detectors. The energy spectrum from the Harshaw 

Nal was similar.
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Figure 47: Bieron Nal energy spectrum for 12C. The events selected have a prompt time 

signal in the Nal TDC, an associated pion missing energy in the region (-40,20) MeV and 

are in prompt coincidence with the tagger time signal.

The detection efficiency of the Nal detectors for 4.5 MeV photons emitted isotropically 

from the target was estimated from GEANT simulations carried out by Sanderson [40] [46] 

to be 3 %.

The angular distribution of the 4.4 MeV nuclear decay photon produced via neutral 

pion production from 12C has been calculated by [42]. According to this calculation, the 

distribution has a minimum at 01 = 90°, where #7 is the lab angle between the pion and 

the nuclear decay photon - the differential cross section at 01 =  90° is approximately a 

factor of 2 less than at 07 =  30°. As TAPS was positioned in the horizontal plane, it 

detected mostly neutral pions emitted in the horizontal plane. Hence, the distribution of
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Figure 48: Bicron Nal energy spectrum for 40Ca selecting events which had a coincident 

time signal in the TDC belonging to that Nal, which had an associated missing pion 

energy in the region (-40,20) MeV and which were coincident with the tagger time signal.

the nuclear decay photons which could be detected in coincidence with the pions detected 

in TAPS had a minimum in the direction perpendicular to horizontal, i.e. where the Nal 

detectors were positioned. An upper limit on the neutral pion production cross section 

due to the 4.4 MeV nuclear excited state can be obtained by multiplying the cross section 

obtained by selecting the 4.4 MeV unclear decay photons detected in the Nal detectors 

by a factor of 2.

The Bicron spectrum for 40Ca is shown in fig 48. There are no convincing peaks at 

3.7 and 4.5 MeV which might indicate populations of the low lying states in 40Ca. At 

higher energies, there are several states which would not be resolved in the Nal, but the
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lack of strength in fig. 48 suggests a very small population of the excited states of higher 

energy.
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5 Results and discussion

Figures 49 - 70 show the measured cross sections for coherent 7r° production from 12C 

and 4 0 Ca. The error bars shown are statistical. The data are compared with results from 

Koch et al. [17] [18] and Schmitz [19], with preliminary results from Krusche [20] and with 

theoretical model predictions using the PWIA, DWIA and DREN (see sections 2.3-2.5).

The theoretical model predictions were made for single values of incident photon 

energy E7, with E7 in 10 MeV steps between the values of 140 and 380 MeV. These 

predictions were averaged to correspond to the E7  bins used in the data, for all E7  bins 

except E7  =  135-140 MeV. No theoretical calculations were available in the region 135 < 

E7  < 140 MeV so the data from this E7  bin are compared with the theoretical predictions 

for 140 MeV.

5.1 40Ca

The differential and integrated cross sections for 40Ca show the expected characteristics. 

The integrated cross section increases with E7  from zero at the neutral pion production 

threshold to a maximum value at about E7  =  225 MeV, somewhat below the A resonance, 

and then decreases with increasing E7.

The differential cross sections have a diffraction-like shape with one or several maxima 

separated by minima. The magnitudes of the maxima decrease with increasing pion 

lab angle. The pion lab angles at which the maxima and minima occur decrease with 

increasing incident photon energy. A first minimum and second maximum appears for 

E7  > 160 MeV. An indication of a second minimum and a third maximum appears for 

E7 > 280 MeV.

The 40Ca data are compared with experimental data from [18], preliminary experi­

mental data from [20] and with theoretical model predictions from [23].
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5.1.1 Com parison w ith  other experim ental data

Figures 54 - 56 show the differential cross sections from preliminary data from [20] com­

pared with the present result for E7  =  200 MeV (a weighted average of the results for 190 

< E7 < 200 and 200 < E7  < 220 MeV was used to obtain this distribution), 280 < E7  < 

300 MeV and 340 < E7  < 360 MeV and with theoretical predictions from [23].

The peak positions in the two data sets agree reasonably well, but the magnitude of 

the present peak cross section is greater than that from [20] at E7  =  200 MeV, similar at 

E7  =  290 MeV and smaller at E7  =  350 MeV.

This discrepancy could be partly due to systematic variations in the separation be­

tween coherent and non-coherent events (see section 4.5.4), particularly at larger pion 

angles, but in the present data these errors are too small to completely explain the differ­

ence between the two data sets. The discrepancy could also be partly due to errors in the 

TAPS detection efficiency. The detection efficiency was obtained from simulations using 

discrete values of pion energy and angle (see section 4.7). For the higher pion energies, 

the non-uniform distribution of the detectors with pion lab angle results in a predicted 

detection efficiency which varies between 2  and 1 0  % as a function of pion lab angle (see 

fig. 44). These variations are probably larger for the set-up in [2 0 ] as only 5 TAPS blocks 

were available to cover the whole angular range, whereas 6  blocks and the FW (equivalent 

to 8  TAPS blocks in total) were used in the present experiment. The discrepancy between 

the two data sets in the region of the first maximum would imply errors of 20-30 % in the 

simulated detection efficiency, but although the present simulation has been investigated 

in some detail [38], no such systematic errors have been found and the discrepancy is not 

understood.

At backward pion lab angles beyond the first minimum, there are also significant 

discrepancies between the two sets of experimental results. The statistical accuracy and 

the pion energy resolution is slightly better in the present work, and whereas differential 

cross sections were obtained down to about 1 0  fib in the results from [2 0 ], the present 

work obtained values down to about 1 fib. The differential cross sections from the present 

result are generally smaller than those from [20] at backward pion lab angles. The over-
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all shape of the differential cross sections from the present work also agrees better than 

those from [20] with the theoretical predictions. These remarks suggest that significant 

non-coherent yield is included in the results from [2 0 ].

In fig. 57, the differential cross section is shown for the present results for 160 < 

E7  < 170 MeV and from [18] for E7  =  164 MeV. The two cross sections are in reasonable 

agreement. At low values of Qn, the data from [18] disagrees with the present result. The 

differential cross section from [18] does not vanish as 0V approaches 0 °, where the sin(0 7r) 

dependence (see eq. 6 ) should force the value of the cross section to zero. The errors 

are greater in the results from [18] than in the present result. This is probably because 

the data was obtained using a Pb-glass detector which had quite poor energy resolution 

compared with BaF2, making it more difficult to select coherent events. This selection 

could only be done by making a cut on the opening angle between the pion decay photons 

and this resulted in a low detection efficiency for the pions.

The two experimental data sets agree quite well in the region of the first maximum 

and first minimum. Both experimental data sets show a second maximum but it is better 

defined in the present result.

Fig. 59 shows the integrated cross section in the E7  region 135-170 MeV from the 

present data compared with results on the coherent and the total (nuclear excited nuclear 

state plus coherent production) cross section [18] for 158-168 MeV. The present results 

reasonably well with the coherent cross sections, suggesting that the separation between 

coherent and non-coherent events in the present data was reasonably successful.

5.1.2 Comparison with theoretical models

Figures 49 - 53 and 58 show the differential and integrated cross sections fo r40 Ca compared 

with the three theoretical models.

The PWIA clearly does not provide a good description of the results. The integrated 

cross section from the PWIA differs from the experimental data by about 25% close to the 

pion production threshold, and the difference increases in the A region around 300 MeV. 

The positions of the minima in the differential cross section (see tables 10-12) appear at
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systematically lower angles in the PWIA than in the experimental data.

The importance of including the final state interactions (FSI) in the description of the 

pion production process is obvious as the DWIA gives a much better description of the 

experimental data than the PWIA. As well as increasing the predicted cross section in 

the threshold region, the DWIA treatment introduces a strong imaginary potential in the 

A region which describes absorption of the pion in the nucleus and brings the predicted 

cross section closer to the experimental results. It also shifts the angles where the minima 

occur in the differential cross sections closer to those in the experimental data. Although 

the agreement with the experimental results is improved in the DWIA model, there are 

still discrepancies between the DWIA predictions and the experimental data and these 

may indicate that the strength of the FSI in the model is incorrect for some incident 

photon energies.

The position of the first maximum (see table 10) is significantly lower than that pre­

dicted by the DWIA close to the 7r°-production threshold, but this discrepancy decreases 

with E7. For 160 < E7  < 170 MeV, the lowest incident photon energies where the first 

minimum appears in the data, the minimum position in the data and the DWIA agree 

quite well. For 180 < E7 < 190 MeV, there is a discrepancy in the minimum positions 

from the present data and the DWIA of about 15°. This discrepancy then decreases with 

increasing E7 and for 320 < E7 < 340 MeV, the position of the first minimum from the 

present result and from the DWIA agree quite well. If these discrepancies are a direct 

indication that the distortion used in the distorted wave impulse approximation is incor­

rect, it would perhaps be expected that the discrepancies would be greatest where the 

difference between the plane and distorted wave models is greatest. However, this may 

not be the case as the pion-nucleus interaction has real and imaginary parts whose effects 

on some features of the angular distribution can cancel and as the parameter describing 

the distortion may not be greatest where the effect of the interactions is largest.

The same applies to the discrepancy in the position of the second maximum (see table 

11) between the present data and the DWIA which follows the same trend. It is negligible 

for the lowest values of E7  where the second maximum appears (160 < E7  < 170 MeV) ,
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then increases with E7, is greatest for 180 < E7  < 190 MeV and then decreases with E7. 

It is negligibile for E7 > 320. The position of the third maximum is harder to identify 

accurately, but the the data suggest (see tables 12 -14) that discrepancies between the 

present data and the DWIA exist.

The largest of the discrepancies occur in the magnitudes of the second and third 

maxima between the present results and the DWIA and the DREN and these do occur 

in the region where the predictions are very sensitive to the distortion.

In the lowest E7  region where a second maximum appears in the present data (160 < 

E7  < 170 MeV) (see tables 10-12), the magnitude of the second maximum in the DWIA 

is a factor of 5 lower than the present data. This discrepancy decreases with increasing 

E7, and at the highest values of E7  available in the data (360 < E7  < 380 MeV), the data 

and the models agree quite well. The discrepancy in the magnitude of the third maximum 

between the present result and the DWIA shows the same trend: it is greatest where the 

third maximum first appears in the data (240 < E7  < 260 MeV) and then decreases with 

increasing E7. The discrepancies do suggest that the strength of the final state interaction 

used in the DWIA needs some modification at some energies. A systematic investigation 

of the sensitivity of the theoretical predictions to the strength of the final state interaction 

would be informative.

The minima in the differential cross section in the data are not as deep as those 

predicted by the models. This could be due to yield from non-coherent processes ‘filling in’ 

the minima - the separation between coherent and non-coherent processes was difficult (see 

section 4.5.4) and the selection of the coherent cross section contained systematic errors, 

which could have included non-coherent yield in the estimate of the coherent cross section. 

However, it is not likely that this can explain the shape of the angular distributions in the 

region of the first maximum since it was possible to extract the coherent cross sections 

which were an order of magnitude smaller at more backward angles and calculations of 

the incoherent process suggest that it has a relatively smooth angular distribution. Also, 

the sharpness of the minima from the theoretical calculations varies with photon energy 

and pion angle.
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Although no nuclear de-excitation photons could be identified in the Nal energy spec­

tra, this does not imply that that the nuclear excitation pion production process was 

negligible (see section 5.1.3). It is not possible to determine reliably whether it is nuclear 

excitation yield or an effect of the final state interactions which causes the minima in the 

present data to be less deep than predicted by the DWIA and the DREN.

Although some adjustment of the pion-nucleus interaction would improve the agree­

ment between the DWIA predictions and the experimental result, more major modifica­

tions are needed in the A resonance region, where the cross section from the DWIA model 

significantly exceeds that from the present data.

As discussed in section 2.6, modifications of the A properties inside the nucleus and 

multiple interactions inside the nucleus should be taken into account to give a good 

description of the pion production process. This is done in the DREN, where the maximum 

of the integrated cross section is shifted from 300 MeV in the DWIA model to 225 MeV, in 

agreement with the present measurements, indicating that the A mass used in the’DREN 

is a good description of the modified A mass. The cross section is reduced in the DREN 

treatment compared with the DWIA. For E7  < 280 MeV, the data agrees better with 

the DWIA, for E7  > 280 MeV, with the DREN. Increasing the strength of the FSI would 

further reduce the cross section in both the DWIA and DREN, improving the agreement 

between the present result and the DWIA but worsening the agreement with the DREN 

for E7  < 340 MeV. This suggests that the parameterisation of the medium modifications 

and the multiple interactions used in the DREN also require modifications. This is not 

surprising since the parameterisation used in the DREN is based on data on neutral pion 

production on the 4He nucleus, whose density distribution is very different from that in 

heavier nuclei. The present data will allow this parameterisation to be improved.

5.1.3 The nuclear excitation process

The nuclear excited state pion photo-production process is expected to contribute to the 

total pion photo-production yield. However, as fig. 48 shows, no nuclear decay photons 

from any particular nuclear excited state could be identified in the Nal spectra.

102



No theoretical prediction of the nuclear excitation pion photo-production cross section 

for 40Ca has been found in the literature.

It is possible that the nuclear excitation 7r°-production process makes a small contri­

bution to the total 7r° production process for 40Ca. It is also possible that this contribution 

is non-negligible, but that the angular correlation of the nuclear decay photons with the 

pions detected in TAPS with the present set-up is such that few nuclear decay photons 

were emitted in the direction of the Nal detectors so that their signals could not be sepa­

rated from the background in the Nal energy deposition spectra. The detection of nuclear 

decay photons is discussed further in section 5.2.3.

Table 10: Positions of the first maximum and first minimum in the differential cross

section for 40Ca 
e 7

(MeV) (°) (°) (°)

1st max 

(°) (°) (°) (°)

1st min 

(°)
experiment PWIA DWIA DREN experiment PWIA DWIA DREN

135-140 59 ±  2 64 65 66 - - - -
140-145 47 ±  2 55 54 55 - - - -

145-150 46 ±  2 52 51 52 - - - -

150-155 43 ±  2 48 48 48 - - - -

155-160 42 ±  2 46 45 45 - - - -
160-170 35 ±  2 42 41 42 - - I l l I l l

170-180 34 ±  2 39 38 38 97 ±  2 110 99 99

180-190 32 ±  2 36 35 35 82 ±  2 97 90 90

190-200 30 ±  2 33 32 33 77 ±  2 88 82 82

200-220 27 ±  2 30 29 29 65 ±  2 78 73 73

220-240 22 ±  2 27 26 26 60 ±  2 68 63 63

240-260 20 ±  2 25 23 23 54 ±  2 61 55 55

260-280 19 ±  2 22 21 21 49 ±  2 56 49 50

280-300 17 ±  2 20 19 19 42 ±  2 51 45 46

300-320 15 ±  2 19 17 18 41 ±  2 47 41 42

320-340 15 ±  2 18 16 17 38 ±  2 44 38 39

340-360 15 ±  2 16 15 16 35 ±  2 41 36 37

360-380 15 ±  2 16 15 15 32 ±  2 40 35 35
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Table 11: Positions of second maximum and minimum in the differential cross section for

40 Ca
E-y

(MeV) (°) (°) (°)

2nd max 

(°) (°) (°) (°)

2nd n 

(°)
experiment PWIA DWIA DREN experiment PWIA DWIA DREI

135-140 - - - - - - - -

140-145 - - - - - - - -

145-150 - - - - - - - -
150-155 - - - - - - - -
155-160 - - - - - - - -

160-170 137 ±  2 - 137 137 - - - -

170-180 122 ±  2 133 128 129 - - - -

180-190 111 ±  2 123 117 118 - - - -

190-200 93 ±  2 114 106 106 - - - -

200-220 84 ±  2 101 93 94 - - 141 143

220-240 76 ±  2 89 81 81 - - 121 122

240-260 65 ±  2 79 71 72 - 133 103 104

260-280 60 ±  2 72 64 65 - 112 90 91

280-300 51 ±  2 65 58 59 83 ±  2 99 81 83

300-320 49 ±  2 60 52 54 77 ±  2 90 73 75

320-340 47 ±  2 56 48 50 - 82 69 70

340-360 45 ±  2 52 45 47 - 76 - 66

360-380 42 ±  2 50 44 45 - 73 - 63
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Table 12: Positions of the third maximum and minimum in the differential cross section

for 40Ca
3rd 3rdmin

(MeV) (°) (°) (°) (°) (°) (°) (°) (°)
experiment PWIA DWIA DREN experiment PWIA DWIA DREI

135-140 - - - - - - - -
140-145 - - - - - - - -
145-150 - - - - - - - -
150-155 - - - - - - - -

155-160 - - - - - - - -

160-170 - - - - - - - -

170-180 - - - - - - - -

180-190 - - - - - - - -

190-200 - - - - - - - -

200-220 - - 154 153 - - - -

220-240 - - 142 142 - - - -

240-260 - - 119 120 - - - -

260-280 - 128 105 106 - - 139 140

280-300 - 115 93 95 - - 121 123

300-320 - 104 81 84 - - 108 109

320-340 - 95 74 77 - - 102 102

340-360 - 88 - 72 - - - 96

360-380 - 85 - 70 - - - 90
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5.2 12C

The cross sections for 12C show the same general characteristics as for 4 0 Ca. As the 12C 

nucleus is smaller, the maxima and minima in the differential cross section occur at larger 

pion lab angles than for 4 0 Ca. The minima also appear less pronounced for 1 2C.

5.2.1 Comparison with other experimental data

Figures 65 - 67 show the differential cross sections for E7  =  200, 290 and 350 MeV from 

preliminary results from [20] compared with results from the present work for E7  =  200 

(obtained as described in section 5.1.1), 280 < E7  < 300 and 340 < E7  < 360 MeV. The 

comments made in section 5.1.1 on the comparison between the present results for 40Ca 

and the preliminary data from [20] are also relevant for the 12 C data.

In the region of the first maximum, the differential cross section from the present 

result is greater than that from [20] for E7  =  200 and 290 MeV and smaller for E7  =  

350 MeV. This could be partly due to the systematic variations from the separation of 

the coherent and non-coherent events, and partly due to the TAPS detection efficiency 

simulation (see section 5.1.1). At backward angles, the differential cross section from [20] is 

greater by a factor of up to 5. The positions of the minima agree well. As for 4 0 Ca, the full 

discrepancy between the data sets is too large to be explained by the systematic errors from 

the selection of the coherent events and statistical variations in the detection efficiency 

alone. Large systematic errors in the detection efficiency simulation could have caused 

the discrepancy, but though considerable work was done investigating the simulations [38] 

such errors were not found and the discrepancy remains not understood.

For 12C, a second comparison with other data can be made in the A resonance region 

using the results from [19]. In that experiment, the integrated cross section was obtained 

for Q-jf — (60 ±  1 0 )° as a function of incident photon energy using a detector based on a 

large Nal crystal and a small array of BaF2 crystals. Fig. 6 8  shows the differential cross 

section from the present result compared with data from [19]. The two sets of experimental 

data agree quite well. [19] obtained data for greater values of E7  than was possible in the 

present result. There is a significant difference between the energy dependence of the
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cross sections from the two measurements and the maximum of the cross section appears 

to be at a higher value of E7  for the data from [19] than for the present result. Again, this 

may indicate systematic errors in the detection efficiency simulations which were needed 

for the analysis of the experiment.

Fig. 70 shows the integrated cross section for 135 < E1 < 170 MeV from the present 

data, compared with data from Koch et al. [17]. The data from [17] were available only for 

that energy range, but for more discrete values of E 1 than the present data in that energy 

range. The present measurement agrees quite well with the result from [17] very close 

to threshold but is lower at higher incident photon energies. This discrepancy is greater 

than the statistical errors and could be due to more non-coherent events being included 

in the result from [17]. As the energy resolution obtained in this result was rather poor, 

non-coherent events were discarded by a cut on the pion decay photon opening angle. 

This method reduces the coherent cross section by a factor of about 10 but is not very 

accurate at discarding all non-coherent events.

The 12 C results were used to investigate the reliability of the random background 

subtraction in the tagger. To do this, the differential cross section for 7r° production for 

the 130 < E-f < 135 MeV region, just below the 7r° production threshold, was evaluated 

(see fig. 72). On average, this cross section should be zero, as the incident photon energy 

is below the 7r° production threshold, and the average differential cross section in this 

region is very small; about 0.01 fib. This yield is probably due to insufficient subtraction 

of background events in the distribution of time difference between the TAPS and the 

tagger (see fig. 33). The cross section below threshold is, however, negligible compared 

with other errors in the present result (less than T  0f the yield in the threshold region, 

and only about of the yield in the highest energy region). The cross sections for 135 

< E7  < 380 MeV have not been corrected for this.

5.2.2 Comparison with theoretical models

Figures 60 - 64 and 69 show the differential and integrated cross sections for 12C compared 

with the three theoretical models.
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The comments made for the 40Ca results generally apply to 12C as well. Although the 

effect of introducing the pion-nucleus interaction into the theoretical models is somewhat 

smaller for 12C than for 4 0Ca, as the 12C nucleus is smaller, the comparison with data 

clearly shows the importance of including a description of the final state interaction. The 

importance of including the A-nucleus interaction in the theoretical description is also 

clear as the DREN model gives a considerably better account of the 12C data than the 

DWIA model. The maximum in the integrated cross section appears at approximately 

250 MeV for 12C, compared with at 225 MeV for 4 0 Ca, suggesting that the modification 

of the A mass inside the 12C nucleus is about 25 MeV less than that needed to describe 

a A inside a 40Ca nucleus, probably due to the smaller number of nucleons in the 12C 

nucleus. The main discrepancies between the 12C results and the theoretical models are 

similar to those seen for the 40Ca results, i.e. the discrepancies in the positions of the 

minima and maxima of the differential cross sections and the energy dependence of the 

integrated cross section. These differences again suggest that further modification of the 

pion-nucleus interaction and of the A properties will be valuable in producing an improved 

description of the data for 12C and 40Ca obtained here and in the previous 4He results.

5.2.3 The nuclear excitation process

Fig. 71 shows an estimate of the nuclear excitation (4.4 MeV) pion production cross 

section, obtained by selecting events where a 4 - 5 MeV energy deposition was detected 

in one of the Nal detectors. The cross section is very small: even at small pion lab angles, 

where it is greatest, it is only approximately ^  of the coherent cross section at threshold 

and it is similar in magnitude to the sub-threshold cross section (see section 5.2.1) with 

so few counts that the information from the Nal detectors gives little more than an upper 

limit on the cross section to the 4.4 MeV excited state.

The differential cross section to an excited state is not expected to be as sharply 

peaked in pion lab angle as the coherent cross section. The angular distribution seen 

in fig. 71 for E7  < 200 MeV contains so few data points that the structure can not be 

determined reliably. The distribution for E7  > 200 MeV has structure, but it has a
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maximum at about Qn = 20°. This structure resembles the general shape of the coherent 

cross sections for 200 < E7  < 380 MeV. This is not understood.

In the cross section estimates in fig. 71 it was assumed that the nuclear decay photons 

were distributed isotropically. A calculation by Tryasuchev [43] suggests that the angular 

distribution of the 4.4 MeV nuclear decay photons has a minimum close to 07  =  90°, 

where 97 is the lab angle between the directions of the pion and the nuclear decay photon. 

The central angle of the Nal detectors is therefore at a minimum in the cross section, and 

a correction for this effect would increase the measured cross section. However, because 

the angular ranges covered by TAPS and the Nal are large this correction is not expected 

to be large.

It is possible that with further analysis of the present data, nuclear decay photons 

could be detected in TAPS and a better estimate of the nuclear excited state process at 

4.4 MeV could be obtained. This would, however, require a significant improvement in 

the energy calibration of TAPS and involve a substantial amount of further work.

The differential cross section due to the nuclear excitation process is not expected to 

be to be as sharply peaked as the coherent cross section. The resemblance of the spectrum 

in fig. 71 to the coherent cross section strongly suggests that the events included in fig. 71 

were part of the coherent yield.

This is not understood, and the results can be at best be used to indicate an upper 

limit on the non-coherent (4.4 MeV) process.
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Table 1

for 12C

: Positions of the first maximum and minimum in the differential cross section

E7 1st max 1st min

(MeV) (°) (°) (°) n n (°) (°) (°)
experiment PWIA DWIA DREN experiment PWIA DWIA DREN

135-140 71 ± 2 79 80 80 - - - -

140-145 71 ± 2 72 73 73 - - - -

145-150 65 ± 2 70 70 71 - - - -

150-155 60 ± 2 66 67 67 - - - -

155-160 58 ± 2 63 64 65 - - - -
160-170 57 ± 2 59 59 60 - - - -

170-180 53 ± 2 55 55 55 - - - -

180-190 49 ± 2 52 51 51 - - - -

190-200 47 ± 2 48 47 48 - - - -

200-220 39 ± 2 44 43 44 122 ±  2 - 129 129

220-240 37 ± 2 40 38 39 117 ±  2 129 109 109

240-260 33 ± 2 36 34 35 92 ±  2 109 94 95

260-280 34 ± 2 33 31 32 82 ±  2 97 83 84

280-300 32 ± 2 30 28 30 77 ±  2 87 76 77

300-320 29 ± 2 28 26 28 80 71 71

320-340 24 ± 2 26 24 26 - 74 - 67

340-360 19 ± 2 24 22 24 - 68 - 61

360-380 19 ± 2 23 22 23 . 66 . 58
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Table 14: Positions of the second maximum and minimum in the differential cross section 

for 12C
e 7

(MeV) (°) (°) (°)

2nd max 

(°) (°) (°) (°)

2nd min 

(°)
experiment PWIA DWIA DREN experiment PWIA DWIA DREN

135-140 - - - - - - - -
140-145 - - - - - - - -

145-150 - - - - - - - -

150-155 - - - - - - - -

155-160 - - - - - - - -

160-170 - - - - - - - -

170-180 - - - - - - - -

180-190 - - - - - - - -

190-200 - - - - - - - -

200-220 128 ±  2 146 146 - - - -

220-240 138 ±  2 144 135 135 - - - -

240-260 104 ±  2 131 117 118 - - - -

260-280 92 ±  2 119 102 104 - - - -

280-300 89 ±  2 107 91 94 - - 132 135

300-320 - 98 79 83 - - 111 116

320-340 - 91 - 76 - - 101 105

340-360 - 85 - 72 - - - 102

360-380 - 82 - 70 - - - -
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purple-data from [20]; red-PWIA; green-DWIA; blue-DREN. All theoretical results from

[23].
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Figure 68: Differential cross section for 12C at 6n=  60°. Black crosses-present experiment;

purple with black dots-data from [19] a t 6n =  60°; red-PWIA; green-DWIA;blue-DREN.

All theoretical results from [23].
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Figure 69: Integrated cross section for 12C. Black-present experiment; red-PWIA; green- 

DWIA; blue-DR.EN. All theoretical results from [23].
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Figure 70: Integrated cross section for 12C. Black-present experiment; purple-data

from [17]; red-PW IA; green-DWIA; blue-DWIA with delta self energy corrections. All

theoretical results from [23].
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Figure 71: An estimate of the upper limit to the differential cross section for non-coherent 

niuclear excitation 4.4 MeV events for 1 2C.
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Figure 72: The differential 7r° production cross section for 130 < E7  < 135 MeV for 12C.
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5.3 Conclusion

Differential and integrated cross sections for coherent photo-production of neutral pions 

have been obtained for 12C and 40Ca in the incident photon energy range 135 < E1 < 380 

MeV using the detector array TAPS. The present measurements cover a wider angular 

range and have smaller statistical errors than previous measurements. The present results 

are in reasonable over-all agreement with previous measurements, but there are discrep­

ancies which exceed the statistical and the known systematic errors. These discrepancies 

suggest that the systematic errors in the cross sections are not properly understood.

Comparisons with the DWIA and DREN models show the importance of including a 

description of the final state interaction and the medium modifications in the theoretical 

descriptions. Comparisons with the DWIA suggest that modifications are needed in the 

model to describe the final state interactions accurately. The present results indicate that 

the properties of a free A particle do not provide a good description of the A inside a 

nucleus. Comparisons with the recent DREN model indicate that the parameterisation 

of the A properties and the description of multiple interactions, obtained from results on 

7T° production on He, require some modification.

Results on heavier targets would provide a stronger check on both the final state 

interactions and on the A medium modifications in larger nuclei. Recent TAPS data on 

160  and 208Pb is currently being analysed [38] and will provide more information. The 

results on 208Pb will be particularly interesting as the 208Pb nucleus contains an extra 

shell of neutrons compared with protons and the distributions of protons and neutrons 

can be compared.

Difficulties encountered in separating the coherent and non-coherent cross sections at 

some pion energies and angles suggest that it would be desirable to carry out further cal­

ibrations of TAPS to understand properly the cluster energy and position reconstruction. 

If the systematic errors in the energy and position reconstruction could be eliminated, 

the separation of coherent and non-coherent events in neutral pion production could be 

carried out with a smaller error. Furthermore, the maximum likelihood method could 

then be used to improve both the pion energy and position resolution.
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The set-up of TAPS used in the present experiment resulted in large angular variations 

in pion detection efficiency. Small discrepancies between the present result and previous 

experimental results could be due to systematic errors in the detection efficiency simula­

tions. A set-up with smaller angular variation in detection efficiency would provide more 

reliable results. The crystal ball, an array of Nal elements assembled to provide almost 

complete angular coverage around the target, will be assembled in Mainz in the next 12 

months. This detector assembly would be well suited for pion production experiments as 

the angular variation of the detection efficiency would be considerably smaller than that 

of TAPS in the present set-up, and as the energy resolution of Nal is significantly better 

than that of BaF2 , making the separation between coherent and non-coherent events eas­

ier to achieve. The much improved angular coverage compared with TAPS in the present 

set-up would also allow for detection of nuclear decay photons over a greater angular 

range than was available in the present experiment.
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Table 15: 12C %

E7 (MeV)
Q

135-140 140-145 145-150 150-155 155-160 160-170
V IT 

(°) (/xb) (Mb) (Mb) (Mb) (Mb) (Mb)

0 - 5 0.20 ±  0.13 0.24 ±  0.06 0.25 ±  0.19 0.19 ±  0.17 0.80 ±  0.18

5 - 10 0.14 ±  0.05 0.09 ±  0.07 0.42 ±  0.19 0.39 ±  0.17 1.18 ±  0.26 2.21 ±  0.18

10 - 15 0.14 ±  0.17 0.19 ±  0.07 0.66 ±  0.14 1.11 ±  0.18 2.63 ±  0.28 4.21 ±  0.22

15 - 20 0.10 ±  0.07 0.47 ±  0.07 1.00 ±  0.14 2.73 ±  0.26 3.78 ±  0.28 7.18 ±  0.30

20 - 25 0.18 ±  0.08 0.50 ±  0.08 1.64 ±  0.05 3.24 ±  0.24 6.00 ±  0.34 10.16 ±  0.39

25 - 30 0.14 ±  0.06 0.87 ±  0.10 2.20 ±  0.18 4.38 ±  0.27 8.10 ±  0.37 13.75 ±  0.48

30 - 35 0.21 ±  0.06 1.12 ±  0.09 2.67 ±  0.19 6.31 ±  0.32 9.54 ±  0.40 16.51 ±  0.56

35 - 40 0.22 ±  0.05 1.35 ±  0.09 3.28 ±  0.18 7.14 ±  0.33 10.82 ±  0.45 19.01 ±  0.65

40 - 45 0.27 ±  0.05 1.70 ±  0.10 4.20 ±  0.22 8.43 ±  0.36 13.08 ±  0.52 20.76 ±  0.71

45 - 50 0.24 ±  0.05 1.71 ±  0.10 4.57 ±  0.22 8.62 ±  0.37 13.28 ±  0.53 22.56 ±  0.77

50 - 55 0.27 ±  0.05 2.00 ±  0.11 4.54 ±  0.22 9.39 ±  0.39 14.98 ±  0.60 23.65 ±  0.80

55 - 60 0.38 ±  0.06 2.00 ±  0.11 5.11 ±  0.24 10.14 ±  0.42 15.03 ±  0.59 23.60 ±  0.80

60 - 65 0.34 ±  0.05 1.98 ±  0.11 4.66 ±  0.22 9.46 ±  0.40 14.71 ±  0.60 22.46 ±  0.76

65 - 70 0.47 ±  0.07 2.20 ±  0.12 5.57 ±  0.25 9.15 ±  0.39 14.33 ±  0.60 20.55 ±  0.72

70 - 75 0.36 ±  0.06 2.03 ±  0.11 5.09 ±  0.24 8.89 ±  0.39 12.80 ±  0.58 20.76 ±  0.73

75 - 80 0.40 ±  0.06 2.10 ±  0.11 4.47 ±  0.23 8.62 ±  0.39 12.94 ±  0.57 19.13 ±  0.67

80 - 85 0.27 ±  0.06 2.13 ±  0.11 4.34 ±  0.22 7.82 ±  0.37 12.72 ±  0.59 16.10 ±  0.60

85 - 90 0.31 ±  0.05 1.91 ±  0.11 4.36 ±  0.21 7.01 ±  0.34 10.92 ±  0.54 14.22 ±  0.54

90 - 95 0.32 ±  0.06 1.93 ±  0.10 3.77 ±  0.20 6.13 ±  0.31 9.49 ±  0.50 11.66 ±  0.48

95 -100 0.25 ±  0.05 1.57 ±  0.09 3.53 ±  0.18 5.98 ±  0.30 8.15 ±  0.46 10.38 ±  0.44

100 -105 0.33 ±  0.06 1.50 ±  0.09 3.18 ±  0.16 4.96 ±  0.26 7.93 ±  0.40 9.49 ±  0.40

105 -110 0.21 ±  0.04 1.23 ±  0.08 2.58 ±  0.16 4.57 ±  0.26 6.41 ±  0.38 8.30 ±  0.37

110 -115 0.18 ±  0.05 1.20 ±  0.08 2.71 ±  0.17 3.55 ±  0.23 4.71 ±  0.29 5.89 ±  0.29

115 -120 0.18 ±  0.04 1.00 ±  0.07 2.30 ±  0.14 3.16 ±  0.21 4.12 ±  0.30 4.97 ±  0.27

120 -125 0.16 ±  0.03 0.79 ±  0.07 1.82 ±  0.13 2.94 ±  0.22 3.53 ±  0.25 4.63 ±  0.25

125 -130 0.14 ±  0.07 0.94 ±  0.07 1.50 ±  0.12 2.53 ±  0.20 3.06 ±  0.27 3.10 ±  0.19

130 -135 0.17 ±  0.08 0.62 ±  0.06 1.16 ±  0.13 2.01 ±  0.17 1.93 ±  0.19 2.66 ±  0.20

135 -140 0.11 ±  0.06 0.54 ±  0.06 1.10 ±  0.10 1.30 ±  0.14 1.48 ±  0.16 1.78 ±  0.16

140 -145 0.08 ±  0.05 0.41 ±  0.06 0.81 ±  0.08 1.16 ±  0.14 1.62 ±  0.18 1.49 ±  0.14

145 -150 0.05 ±  0.02 0.36 ±  0.05 0.56 ±  0.08 0.85 ±  0.11 0.69 ±  0.12 0.95 ±  0.15

150 -155 0.01 ±  0.01 0.27 ±  0.04 0.25 ±  0.05 0.53 ±  0.10 0.78 ±  0.13 0.69 ±  0.58

155 -160 

160 -165 

165 -170 

170 -175 

175 -180

0.21 ±  0.05 

0.13 ±  0.05

0.24 ±  0.06 

0.20 ±  0.05 

0.11 ±  0.07

0.50 ±  0.14 

0.25 ±  0.12 

0.11 ±  0.01 

0.15 ±  0.15

0.34 ±  0.17 

0.20 ±  0.31 

0.32 ±  0.48 

-0.01 ±  -0.02

0.48 ±  0.15
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E7 (MeV)
e*.

( ° )

0 - 5 

5 - 10 

10 - 15 

15 - 20 

20 - 25 

25 - 30 

30 - 35 

35 - 40 

40 - 45 

45 - 50 

50 - 55 

55 - 60 

60 - 65 

65 - 70 

70 - 75 

75 - 80 

80 - 85 

85 - 90 

90 - 95 

95 -100 

100 -105 

105 -110 

110 -115 

115 -120 

120 -125 

125 -130 

130 -135 

135 -140 

140 -145 

145 -150 

150 -155 

155 -160 

160 -165 

165 -170 

170 -175 

175 -180

Table 16: 12C %

170-180 180-190

( l i b ) (#ib)
1.14 ±  0.25 2.11 ±  0.30

3.25 ±  0.21 5.01 ±  0.32

7.38 ±  0.32 11.01 ±  0.83

12.58 ±  0.47 18.54 ±  0.69

18.20 ±  0.66 28.26 ±  0.96

23.38 ±  0.77 37.31 ±  1.23

29.11 ±  0.96 42.71 ±  1.41

31.96 ±  1.05 49.04 ±  1.57

35.10 ±  1.16 51.45 ±  1.65

36.86 ±  1.22 54.71 ±  1.75

36.63 ±  1.17 52.57 ±  1.68

38.53 ±  1.27 48.99 ±  1.57

37.29 ±  1.23 48.63 ±  1.56

34.25 ±  1.13 44.73 ±  1.43

28.93 ±  0.95 41.02 ±  1.31

25.60 ±  0.87 33.97 ±  1.12

21.82 ±  0.74 26.83 ±  0.91

18.78 ±  0.68 20.96 ±  0.73

16.32 ±  0.60 18.11 ±  0.67

13.82 ±  0.54 11.59 ±  0.53

10.29 ±  0.42 7.52 ±  0,40

8.47 ±  0.37 6.51 ±  0.36

7.20 ±  0.35 4.50 ±  0.30

4.14 ±  0.21 2.72 ±  0.24

3.17 ±  0.26 2.27 ±  0.21

2.49 ±  0.21 1.27 ±  0.15

1.53 ±  0.19 1.06 ±  0.15

1.38 ±  0.16 0.81 ±  0.13

0.78 ±  0.11 0.63 ±  0.11

0.37 ±  0.09 0.18 ±  0.11

0.20 ±  0.07 0.26 ±  0.10

0.17 ±  0.08 0.21 ±  0.08 

0.04 ±  0.09

190-200 200-220

(fi b) (fib)

1.88 ±  0.28

7.14 ±  0.49 12.23 ±  0.62

15.68 ±  1.08 32.28 ±  1.13

29.31 ±  1.49 61.24 ±  1.96

44.87 ±  1.62 85.27 ±  2.64

60.06 ±  2.16 104.06 ±  3.23

64.14 ±  2.12 119.20 ±  3.70

72.55 ±  2.39 124.00 ±  3.84

75.68 ±  2.42 116.16 ±  3.60

81.63 ±  2.61 108.00 ±  3.35

75.47 ±  2.41 98.70 ±  3.06

67.46 ±  2.09 89.79 ±  2.87

67.16 ±  2.15 77.83 ±  2.41

56.60 ±  3.11 59.14 ±  1.89

51.42 ±  1.65 53.30 ±  1.76

40.96 ±  1.31 43.95 ±  1.45

34.17 ±  1.13 32.60 ±  1.11

24.41 ±  0.83 21.51 ±  0.77

16.57 ±  0.65 14.90 ±  0.58

11.17 ±  0.48 9.51 ±  0.42

6.83 ±  0.33 7.10 ±  0.35

4.70 ±  0.27 5.02 ±  0.28

4.23 ±  0.29 4.39 ±  0.26

2.83 ±  0.20 3.71 ±  0.23

1.80 ±  0.17 3.59 ±  0.24

2.00 ±  0.23 3.64 ±  0.24

1.74 ±  0.18 3.00 ±  0.22

0.86 ±  0.10 2.31 ±  0.18

0.97 ±  0.11 1.99 ±  0.16

0.51 ±  0.08 1.70 ±  0.16

0.73 ±  0.15 1.33 ±  0.13

0.38 ±  0.07 0.65 ±  0.09

0.25 ±  0.07

220-240 240-260

( l i b ) (fib)

32.80 ±  1.34 52.41 ±  1.89

64.19 ±  2.12 91.04 ±  2.91

106.94 ±  3.32 139.85 ±  4.34

131.59 ±  4.08 170.12 ±  5.27

150.03 ±  4.50 175.95 ±  5.45

170.18 ±  5.11 183.42 ±  5.69

178.84 ±  5.37 198.30 ±  6.15

179.41 ±  5.56 195.95 ±  6.07

169.06 ±  5.24 160.51 ±  5.14

106.28 ±  3.51 91.24 ±  3.28

78.98 ±  2.69 49.96 ±  1.90

53.89 ±  1.89 40.07 ±  1.52

42.13 ±  1.47 24.36 ±  0.97

33.95 ±  1.22 13.86 ±  0.61

27.94 ±  1.03 8.21 ±  0.42

19.80 ±  0.79 5.86 ±  0.32

12.42 ±  0.56 6.21 ±  0.38

8.37 ±  0.44 6.12 ±  0.41

6.77 ±  0.39 5.83 ±  0.41

7.24 ±  0.42 4.62 ±  0.39

5.31 ±  0.37 3.12 ±  0.30

4.75 ±  0.35 3.96 ±  0.32

3.97 ±  0.50 4.06 ±  0.30

4.61 ±  0.31 2.74 ±  0.22

4.36 ±  0.28 2.56 ±  0.20

3.51 ±  0.25 1.38 ±  0.14

3.71 ±  0.32 0.81 ±  0.11

2.90 ±  0.26 0.63 ±  0.11

2.21 ±  0.22 0.89 ±  0.16

1.79 ±  0.20

0.98 ±  0.17

0.96 ±  0.13

0.49 ±  0.10

0.40 ±  0.10
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E7 (MeV)
e,
( ° )

0 - 5 

5 - 10 

10 - 15 

15 - 20 

20 - 25 

25 - 30 

30 - 35 

35 - 40 

40 - 45 

45 - 50 

50 - 55 

55 - 60 

60 - 65 

65 - 70 

70 - 75 

75 - 80 

80 - 85 

85 - 90 

90 - 95 

95 -100 

100 -105 

105 -110 

110 -115 

115 -120 

120 -125 

125 -130 

130 -135 

135 -140 

140 -145 

145 -150 

150 -155 

155 -160 

160 -165 

165 -170 

170 -175 

175 -180

Table 17: 12C

260-280 280-300 300-320

(nb) (/xb) (/xb)
21.85 ±  1.38 17.10 ±  1.15

59.12 ±  2.07 58.87 ±  2.18 55.50 ±  2.22

105.83 ±  3.39 106.02 ±  3.60 104.12 ±  3.64

164.14 ±  5.09 156.94 ±  5.02 152.44 ±  5.18

190.99 ±  5.92 178.34 ±  5.53 160.19 ±  5.29

207.23 ±  6.42 200.57 ±  6.22 169.50 ±  5.42

220.85 ±  6.85 208.42 ±  6.46 171.27 ±  5.48

214.98 ±  6.66 181.81 ±  5.82 133.10 ±  4.39

183.82 ±  5.70 142.49 ±  4.56 94.62 ±  3.22

137.66 ±  4.54 99.79 ±  3.39 63.88 ±  2.30

77.72 ±  2.80 56.53 ±  2.15 37.54 ±  1.50

40.41 ±  1.54 29.38 ±  1.18 22.63 ±  0.95

29.38 ±  1.20 18.64 ±  0.78 12.89 ±  0.58

16.04 ±  0.71 12.35 ±  0.57 8.60 ±  0.42

9.89 ±  0.49 8.17 ±  0.41 7.19 ±  0.35

6.19 ±  0.34 6.40 ±  0.33 6.75 ±  0.34

6.83 ±  0.37 6.98 ±  0.36 6.11 ±  0.32

7.33 ±  0.39 6.83 ±  0.36 5.43 ±  0.30

8.25 ±  0.44 6.58 ±  0.36 4.15 ±  0.27

6.25 ±  0.42 5.66 ±  0.36 3.20 ±  0.25

5.15 ±  0.38 3.73 ±  0.30 2.68 ±  0.23

4.50 ±  0.36 2.99 ±  0.27 2.04 ±  0.20

4.47 ±  0.31 3.01 ±  0.24 1.31 ±  0.14

2.77 ±  0.22 1.80 ±  0.17 1.10 ±  0.12

2.16 ±  0.19 1.04 ±  0.12 0.56 ±  0.08

1.25 ±  0.13 0.84 ±  0.11 0.36 ±  0.07

1.20 ±  0.13 0.76 ±  0.11 0.32 ±  0.06

0.79 ±  0.11 0.19 ±  0.06

0.84 ±  0.13 0.26 ±  0.07 

0.20 ±  0.07 

0.23 ±  0.08 

0.06 ±  0.04

d a
dQ

320-340 340-360 360-380

(/xb) (/xb) (/xb)

9.03 ±  0.82 4.99 ±  0.56 1.98 ±  0.18

45.85 ±  1.88 29.79 ±  1.37 21.91 ±  1.05

105.10 ±  4.20 84.22 ±  3.62 73.00 ±  3.21

144.23 ±  5.19 119.77 ±  4.67 118.10 ±  4.61

138.08 ±  4.83 112.39 ±  4.05 109.95 ±  4.07

129.74 ±  4.28 91.92 ±  3.13 83.33 ±  2.83

124.27 ±  4.10 79.32 ±  2.70 60.66 ±  2.00

94.38 ±  3.21 58.90 ±  2.18 48.43 ±  1.70

61.82 ±  2.16 39.41 ±  1.50 34.86 ±  1.25

39.00 ±  1.48 27.22 ±  1.12 23.84 ±  0.88

26.92 ±  1.08 20.57 ±  0.93 19.64 ±  0.75

18.24 ±  0.82 14.04 ±  0.67 13.31 ±  0.52

9.42 ±  0.46 7.02 ±  0.39 6.31 ±  0.26

7.23 ±  0.36 5.36 ±  0.30 4.21 ±  0.17

5.55 ±  0.29 3.62 ±  0.22 2.85 ±  0.12

4.38 ±  0.25 3.12 ±  0.20 2.12 ±  0.09

3.83 ±  0.23 1.67 ±  0.14 1.11 ±  0.05

3.18 ±  0.20 1.57 ±  0.14 1.08 ±  0.06

2.21 ±  0.18 1.34 ±  0.13 0.87 ±  0.06

2.02 ±  0.18 0.66 ±  0.10 0.80 ±  0.07

1.68 ±  0.18 1.11 ±  0.14 0.48 ±  0.04

1.18 ±  0.15 0.76 ±  0.12 0.16 ±  0.02

0.83 ±  0.11 0.11 ±  0.04 0.22 ±  0.03

0.61 ±  0.09 0.31 ±  0.06 0.10 ±  0.01

0.35 ±  0.06 

0.17 ±  0.05 

0.14 ±  0.04 

0.09 ±  0.04

0.18 ±  0.05 0.02 ±  0.00
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Table 18: 40Ca &

E7 (MeV)
n

135-140 140-145 145-150 150-155 155-160 160-170
“n

n (fib) (fib) (Mb) (fib) (fib) (Mb)

0 - 5 1.11 ±  0.59 2.26 ±  1.09 2.78 ±  1.47 5.47 ±  1.17

5 - 10 -0.09 ± -0.14 0.85 ±  0.53 2.40 ±  0.87 3.74 ±  0.83 9.01 ±  1.38 16.32 ±  1.16

10 - 15 0.08 ±  0.07 2.07 ±  0.99 4.34 ±  0.76 11.97 ±  1.39 18.24 ±  1.50 34.20 ±  1.61

15 - 20 0.30 ±  0.31 1.97 ±  0.86 7.60 ±  1.10 18.38 ±  1.36 30.22 ±  1.75 61.99 ±  2.36

20 - 25 0.87 ±  0.55 4.09 ±  1.31 11.49 ±  1.02 26.11 ± 1.67 41.98 ± 2.01 86.19 ± 3.10

25 - 30 1.14 ± 0.32 5.05 ± 1.46 15.18 ± 1.26 32.25 ± 1.64 55.16 ± 2.37 101.93 ± 3.57

30 - 35 0.83 ± 0.23 6.71 ± 1.75 19.69 ±  1.24 36.96 ±  1.70 60.83 ±  2.43 109.70 ±  3.62

35 - 40 1.10 ±  0.23 7.21 ±  1.82 21.25 ±  1.53 42.24 ± 1.86 70.56 ± 2.75 114.56 ± 3.90

40 - 45 1.59 ± 0.35 8.37 ± 2.05 22.37 ± 1.36 38.56 ± 1.70 65.67 ± 2.63 89.18 ± 3.12

45 - 50 1.55 ± 0.26 8.39 ± 1.93 23.80 ± 1.29 42.67 ± 1.83 62.85 ± 2.58 102.83 ± 3.70

50 - 55 2.11 ± 0.26 8.54 ±  1.89 21.94 ±  1.08 40.47 ±  1.74 62.47 ± 2.56 66.93 ± 2.61

55 - 60 1.22 ± 0.25 8.31 ± 1.89 20.58 ± 1.11 34.51 ± 1.55 58.50 ± 2.46 76.20 ± 3.12

60 - 65 1.87 ± 0.25 8.60 ± 1.94 19.33 ± 1.60 33.91 ± 1.53 45.41 ± 2.09 58.29 ± 2.22

65 - 70 2.11 ± 0.30 7.87 ± 1.79 18.67 ± 0.99 27.44 ±  1.37 33.41 ± 1.77 41.41 ± 1.78

70 - 75 1.62 ± 0.22 7.72 ± 1.79 15.81 ± 0.92 21.00 ± 1.20 28.69 ± 1.66 31.90 ± 1.47

75 - 80 1.65 ± 0.25 6.79 ± 1.64 13.58 ± 1.06 19.48 ± 1.19 22.67 ± 1.50 22.38 ± 1.16

80 - 85 1.42 ± 0.23 5.40 ± 1.40 11.29 ± 0.79 14.95 ± 1.05 18.11 ± 1.36 16.31 ± 1.03

85 - 90 1.34 ± 0.25 5.62 ± 1.43 8.31 ± 0.61 9.86 ± 0.86 9.65 ± 1.09 5.32 ± 0.79

90 - 95 1.26 ± 0.28 4.66 ±  1.22 6.00 ±  0.49 8.66 ± 0.78 8.08 ± 1.41 3.66 ± 0.76

95 -100 1.07 ± 0.22 3.52 ± 1.00 5.36 ± 0.53 5.60 ± 0.69 5.01 ± 1.10 2.31 ± 0.58

100 -105 0.91 ± 0.23 2.78 ± 0.82 4.32 ± 0.42 4.81 ± 0.68 4.12 ± 0.90 1.92 ±  0.55

105 -110 0.85 ± 0.22 2.47 ±  0.79 3.61 ± 0.43 3.45 ± 0.56 3.28 ± 2.24 1.28 ± 0.75

110 -115 0.54 ± 0.20 2.24 ± 0.74 2.00 ± 0.34 3.22 ± 0.67 1.69 ± 0.55 0.79 ± 0.78

115 -120 0.65 ± 0.17 1.71 ± 0.62 1.94 ± 0.38 2.77 ±  0.65 1.36 ±  0.57

120 -125 0.80 ± 0.37 1.30 ± 0.51 1.58 ± 0.32 1.38 ± 0.52

125 -130 0.31 ± 0.17 0.71 ± 0.37 0.95 ± 0.28 1.97 ±  0.52

130 -135 0.40 ± 0.16 0.63 ± 0.31 0.64 ± 0.63 2.50 ± 0.59

135 -140 0.33 ± 0.36 0.47 ± 0.32 2.17 ±  0.55

140 -145 0.58 ±  0.32 0.26 ± 0.77 2.54 ±  0.53

145 -150 0.43 ± 0.31 0.21 ± 0.26 2.11 ±  0.52

150 -155 0.37 ±  0.28 0.34 ± 0.26 0.84 ±  0.47

155 -160 0.15 ± 0.14 0.30 ± 0.54

160 -165 0.41 ± 0.61

165 -170 

170 -175 

175 -180
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Table 19: 40Ca £

E7 (MeV)
e*
( ° )

0 - 5 

5 - 10 

10 - 15 

15 - 20 

20 - 25 

25 - 30 

30 - 35 

35 - 40 

40 - 45 

45 - 50 

50 - 55 

55 - 60 

60 - 65 

65 - 70 

70 - 75 

75 - 80 

80 - 85 

85 - 90 

90 - 95 

95 -100 

100 -105 

105 -110 

110 -115 

115 -120 

120 -125 

125 -130 

130 -135 

135 -140 

140 -145 

145 -150 

150 -155 

155 -160 

160 -165 

165 -170 

170 -175 

175 -180

170-180 180-190 190-200

{fib) (fib) (fib)
12.60 ±  1.58 7.83 ±  1.39 14.02 ±  2.00

28.06 ±  1.71 50.30 ±  2.41 57.68 ±  3.00

61.51 ±  1.85 93.48 ±  3.46 138.71 ±  5.13

100.51 ±  3.52 151.85 ±  5.16 227.31 ±  7.73

128.65 ±  9.91 219.16 ±  7.01 317.50 ±  10.48

156.09 ±  4.99 255.15 ±  8.16 366.33 ±  13.19

163.83 ±  5.24 252.27 ±  8.07 341.19 ±  11.60

165.30 ±  5.29 244.13 ±  7.81 312.24 ±  10.30

159.77 ±  5.27 224.25 ±  7.40 257.16 ±  8.49

139.81 ±  4.61 188.63 ±  6.22 208.78 ±  6.89

113.01 ±  3.84 144.46 ±  4.91 143.09 ±  4.58

88.99 ±  3.11 100.36 ±  3.51 74.50 ±  3.20

70.86 ±  2.55 72.23 ±  2.96 47.58 ±  2.38

50.52 ±  1.97 52.62 ±  2.37 28.78 ±  1.70

33.62 ±  1.48 26.05 ±  1.49 15.86 ±  1.22

20.37 ±  1.10 14.77 ±  1.20 13.78 ±  1.17

12.60 ±  1.03 8.17 ±  0.83 15.26 ±  1.24

6.26 ±  0.82 9.08 ±  0.90 14.43 ±  1.13

5.08 ±  0.76 10.63 ±  0.97 20.37 ±  1.45

3.79 ±  0.68 11.21 ±  0.94 15.02 ±  1.19

5.27 ±  0.80 11.61 ±  1.03 13.06 ±  1.14

7.14 ±  0.86 14.07 ±  1.10 12.10 ±  1.09

8.78 ±  0.93 11.50 ±  1.02 13.80 ±  1.16

9.63 ±  0.92 13.25 ±  1.10 10.11 ±  1.01

10.08 ±  1.03 9.01 ±  0.89 8.39 ±  0.94

6.83 ±  0.73 7.23 ±  0.82 4.69 ±  0.74

7.59 ±  0.77 5.75 ±  0.73 3.47 ±  0.63

7.42 ±  0.96 5.25 ±  0.68 2.06 ±  0.62

4.47 ±  0.64 2.05 ±  0.44

3.11 ±  0.50 1.12 ±  0.33

1.95 ±  0.39 2.07 ±  0.41

1.05 ±  0.43 0.74 ±  0.25 

0.58 ±  0.28

200-220 220-240 240-260

(/xb) (/xb) (/xb)

26.33 ±  2.82 63.96 ±  8.06 112.97 ±  8.02

102.33 ±  5.32 260.68 ±  10.69 314.83 ±  11.33

257.42 ±  8.75 460.43 ±  27.63 537.47 ±  17.20

406.65 ±  12.61 601.91 ±  43.34 678.70 ±  23.75

505.23 ±  15.66 589.63 ±  65.45 667.08 ±  22.01

515.70 ±  15.99 504.26 ±  15.63 550.85 ±  19.83

474.08 ±  14.70 395.32 ±  12.26 380.82 ±  12.19

388.27 ±  12.04 285.85 ±  9.15 243.31 ±  8.03

264.92 ±  8.21 177.78 ±  6.22 125.31 ±  4.76

130.52 ±  4.57 81.68 ±  3.68 57.11 ±  2.97

71.76 ±  2.87 30.19 ±  2.20 29.74 ±  2.08

40.44 ±  1.86 12.51 ±  1.33 29.98 ±  2.25

18.29 ±  1.06 12.65 ±  1.21 38.38 ±  2.46

17.29 ±  1.09 18.17 ±  1.42 36.51 ±  2.19

19.18 ±  1.11 18.22 ±  1.26 27.34 ±  1.72

26.17 ±  1.41 19.93 ±  1.32 15.16 ±  1.15

29.55 ±  1.57 18.66 ±  1.31 12.10 ±  0.97

25.72 ±  1.36 13.40 ±  1.13 9.80 ±  0.98

23.66 ±  1.30 7.42 ±  0.88 5.15 ±  0.80

18.80 ±  1.13 2.96 ±  0.62 4.41 ±  0.90

15.46 ±  0.99 4.77 ±  0.69 6.18 ±  0.90

9.91 ±  0.83 3.41 ±  0.65 5.39 ±  1.01

6.02 ±  0.63 2.97 ±  0.97 4.12 ±  0.83

3.19 ±  0.46 1.83 ±  0.45 6.91 ±  0.84

2.10 ±  0.44 3.03 ±  0.55 3.28 ±  0.51

2.47 ±  0.41 2.75 ±  0.55 2.17 ±  0.43

2.60 ±  0.40 1.04 ±  0.50 

2.82 ±  0.59 

1.25 ±  0.40 

1.72 ±  0.42
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Table 20: 40Ca £

D7 (MeV)
a

260-280 280-300 300-320 320-340 340-360 360-380
”tt

(°) (Mb) (/xb) (lib) (lib) (H b) (/xb)

0 - 5 137.86 ±  9.51 127.65 ±  8.04 107.35 ±  6.76 66.45 ±  5.18 32.62 ±  3.59 12.46 ±  2.20

5 - 10 311.20 ±  11.51 355.76 ±  13.16 339.85 ±  13.25 278.10 ±  12.24 170.28 ±  8.00 126.82 ±  6.85

10 - 15 553.73 ±  19.93 546.52 ±  18.58 513.98 ±  18.50 486.88 ±  19.48 373.38 ±  15.68 318.57 ±  14.02

15 - 20 731.94 ±  23.42 622.80 ±  19.93 552.14 ±  19.32 476.35 ±  17.62 365.44 ±  14.98 313.95 ±  13.50

20 - 25 643.95 ±  19.96 491.07 ±  15.71 369.71 ±  12.20 269.11 ±  9.42 181.38 ±  7.07 146.70 ±  6.01

25 - 30 486.77 ±  15.09 347.93 ±  11.13 221.80 ±  7.32 121.20 ±  4.36 70.13 ±  2.81 50.43 ±  2.32

30 - 35 300.29 ±  9.61 191.41 ±  6.51 104.34 ±  3.76 56.22 ±  2.30 31.97 ±  1.47 25.58 ±  1.38

35 - 40 152.42 ±  5.33 78.18 ±  3.05 49.35 ±  2.12 34.84 ±  1.60 30.61 ±  1.56 34.87 ±  1.95

40 - 45 65.95 ±  2.90 38.85 ±  1.90 41.35 ±  1.98 44.07 ±  2.03 41.10 ±  2.06 38.52 ±  2.23

45 - 50 43.40 ±  2.30 58.03 ±  2.79 62.79 ±  2.83 52.33 ±  2.51 36.15 ±  2.17 31.70 ±  2.19

50 - 55 45.49 ±  2.64 63.04 ±  3.34 57.02 ±  2.91 44.42 ±  2.40 31.40 ±  1.92 24.73 ±  1.90

55 - 60 45.80 ±  2.93 44.50 ±  2.45 34.88 ±  2.16 21.96 ±  1.49 13.96 ±  1.21 14.35 ±  1.41

60 - 65 50.46 ±  2.83 30.34 ±  1.91 15.15 ±  1.17 8.98 ±  0.90 7.97 ±  0.83 5.82 ±  0.83

65 - 70 31.84 ±  1.91 14.96 ±  1.15 8.82 ±  0.82 7.01 ±  0.72 4.74 ±  0.57 3.95 ±  0.60

70 - 75 15.47 ±  1.19 6.39 ±  0.86 8.51 ±  0.79 5.38 ±  0.56 3.83 ±  0.48

75 - 80 7.05 ±  0.76 4.88 ±  0.65 4.88 ±  0.55 3.33 ±  0.43 1.94 ±  0.33

80 - 85 5.15 ±  0.61 3.84 ±  0.53 5.74 ±  0.61 3.28 ±  0.44

85 - 90 6.79 ±  0.77 8.16 ±  0.80 5.38 ±  0.59 2.11 ±  0.38

90 - 95 5.43 ±  0.73 6.42 ±  0.71 3.37 ±  0.46 1.03 ±  0.28

95 -100 5.65 ±  0.87 6.17 ±  0.78 2.35 ±  0.50 1.02 ±  0.28

100 -105 4.85 ±  0.81 2.43 ±  0.58 0.84 ±  0.34

105 -110 5.73 ±  0.84 2.22 ±  0.53 0.90 ±  0.36

110 -115 2.69 ±  0.54 1.11 ±  0.36

115 -120 

120 -125 

125 -130 

130 -135 

135 -140 

140 -145 

145 -150 

150 -155 

155 -160 

160 -165 

165 -170 

170 -175 

175 -180
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Table 21: Integrated cross sections for 12C and 40Ca

12C 40Ca

E-y <7 <7

(MeV) (/xb) (/xb)
135-140 3.83 ±0.13 15.89 ±0.56

140-145 15.21 ±0.22 48.69 ±3.09

145-150 41.68 ±0.44 128.13 ±1.95

150-155 60.53 ±0.72 167.27 ±2.49

155-160 112.67 ±1.07 297.09 ±3.66

160-170 146.31 ±1.25 364.57 ±3.96

170-180 212.75 ±1.76 531.94 ±5.45

180-190 315.20 ±2.29 813.03 ±6.93

190-200 358.66 ±3.34 797.35 ±8.47

200-220 483.18 ±3.96 925.79 ±9.32

220-240 575.67 ±4.82 876.02 ±17.37

240-260 526.47 ±4.92 898.98 ±9.95

260-280 522.86 ±4.98 791.14 ±8.62

280-300 446.44 ±4.31 625.98 ±6.90

300-320 338.52 ±3.47 481.16 ±5.76

320-340 264.27 ±2.71 380.45 ±4.92

340-360 179.16 ±2.04 258.41 ±3.97

360-380 165.54 ±1.78 226.11 ±3.65
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B Derivation of formulae

B .l  The reconstructed pion mass

The total pion energy can be written in terms of the pion mass and the absolute 

value of the pion momentum p^:

E* = (43)

The pion momentum is, by momentum conservation, equal to the sum of the momenta 

of the pion decay photons:

Vjl =  Pi +  P i (4 4 )

The absolute value of the pion momentum can be written as:

Ptt =  \Je \ +  E \ +  2  E\ E 2 cos'ip (45)

where the absolute values of the photon momenta, which are the same as the photon

energies, are Ei and E2 , and ip is the opening angle between the pion decay photons in 

the lab.

The pion energy is, by energy conservation:

En = Ei + E2 (46)

Combining equations 43, 45 and 46, m* can be expressed as:

m,i, =  JE *  -  p i (47)

=  yj(Ex +  E 2)2 -  ( E l  +  E% +  2 E l E 2 cosip) (48)

which can be rewritten as:

= yj2E\E2(l ~ cos'ip). m
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B.2 The X formula

Using equations 43 and 45, the pion energy can be expressed as:

3modelscomp200mev.epsEn = y m 2 +  E \  +  E \ +  2 E\ E<i cosip. 

Defining X as:

(50)

E\ — E 2

E\ +  -£72 »
the pion decay photon energies can be expressed in terms of X and E^:

(51)

Eh = y (1 + * )  

E2 = ^ ( 1 - ^ )

(52)

(53)

and substituting equations 52 and 53 into eq. 50, the X formula can be obtained:

E n —
2 ra2

(1 — X 2) ( l  — cos'ip)
(54)
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