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Abstract

Abstract

Glucocorticoids are important hormones in the regulation of carbohydrate, lipid and 

protein metabolism, and cardiovascular and central nervous function. The result of the 

syndrome of glucocorticoid excess is hyperglycaemia, insulin resistance, 

hyperlipidaemia, central obesity, hypertension, and the accelerated development of 

atheroma. In rare genetic conditions resulting in glucocorticoid resistance, excess 

ACTH drive to the adrenal results in excess mineralocorticoid and androgen production 

and increased cardiovascular morbidity. Recently, an RFLP of the glucocorticoid 

receptor situated within the promoter or intronic non-coding parts of the gene was 

found in excess in patients with obesity, insulin resistance, hypertension and 

hyperlipidaemia. It remains unknown however, whether these findings are due to 

altered glucocorticoid secretion, altered peripheral glucocorticoid sensitivity, or to 

linkage disequilibrium with a nearby gene.

The purpose of this project was to examine glucocorticoid receptor gene structure and 

receptor function in a large cohort of normal subjects with carefully characterised 

cardiovascular and metabolic variables to assess any association between 

glucocorticoid receptor function and cardiovascular and metabolic risk factors.

The glucocorticoid receptor gene was screened for common polymorphisms in a panel 

of 80 normal subjects by the techniques of PCR-SSCP with subsequent sequencing of 

amplicons suspected of containing mutations. This strategy revealed a complex 

mutation with 15 nucleotide substitutions in exon 5 in 4 subjects. The mutation resulted 

in a threonine to alanine substitution in the coded protein.

Receptor binding assays were conducted on 2 large cohorts of subjects from the 

Scottish Twin Study and the Midspan Study. Both studies demonstrated a previously
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Abstract

unreported seasonal component to glucocorticoid binding with lower Kd for 

dexamethasone binding in summer months than winter. These studies were extended to 

serial observations of receptor binding in 9 normal male subjects that confirmed the 

same seasonal effect on receptor Kd. Furthermore, there was a significant interaction 

with daylight and environmental temperature in all populations. Further in vitro work 

showed co-incubation of lymphocytes with physiological levels of melatonin resulted 

in a higher Kd value for dexamethasone binding, which would be consistent with the 

climatic observations noted.

We conclude that the glucocorticoid receptor gene carries very few mutations in normal 

subjects, and the effect of an uncommon mutation in exon 5 will require further work to 

assess its contribution to cardiovascular risk. Glucocorticoid receptor binding is, 

however, modulated by melatonin presumably through the effect of daylight and this 

observation may have implications for the wide range of physiological processes 

controlled by this endocrine system.
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1 Introduction

Chapter 1 

Introduction

1.1 Steroids

Steroids are derivatives of cholesterol with a tetracyclic structure (Petrow 1999) 

composed of 3 conjoined 6 membered rings and a single 5 membered ring, (Figure 1.1). 

Present in all higher vertebrates as hormones and structural components, steroids have 

profound effects on cellular division and differentiation, organogenesis, morphogenesis, 

mineral homeostasis and fuel metabolism.

Figure 1.1 The Steroid Nucleus

14 15

18

191L

2

3

The basic steroid nucleus is 
formed from 3 cyclohexane 
rings joined in the trans 
conformation, a single 
cyclopentane ring and 2 
methyl groups in the p 
conformation. The carbon 
numbering convention is 
shown.
A variable side chain is 
attached to C17. Modifications 
at positions carbons 3, 11, 17 
and 18 impart differing 
biological activities.

Steroids exert these effects by interacting with receptors. Although a few rapid steroid 

effects are due to activation of extracellular receptors (Wehling 1997), the vast majority 

of steroid actions are mediated by intracellular receptors (Beato 1989, Evans 1988, 

Fuller 1991). These hormone sensitive transcription factors either greatly increase or
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1 Introduction

decrease the rate of gene transcription of key intracellular proteins. These target proteins 

are often rate limiting enzymes or ion channels and altered translation results in changed 

cell behaviour.

Steroids are traditionally classified into 3 groups: glucocorticoids, mineralocorticoids 

and sex steroids. Glucocorticoids, together with mineralocorticoids, are synthesised in 

the adrenal cortex and these two groups of hormones are together known as 

corticosteroids. This thesis is concerned with the glucocorticoid receptor; the structure 

and function of the gene encoding this protein, the function of the protein in vitro, and 

the effect these may have on physiological function in populations of normal human 

subjects.

Glucocorticoids

In man the principal glucocorticoid is cortisol while in rodents it is corticosterone 

(Figure 1.2). Synthetic glucocorticoids include dexamethasone, triamcinolone and 

beclomethasone. No selective glucocorticoid antagonist exists: RU486 is a synthetic 

compound with glucocorticoid and progesterone antagonistic effects.

Figure 1.2 Glucocorticoids
Cortisol is the main glucocorticoid in man, while corticosterone is the main 
glucocorticoid in rodents. Corticosterone lacks the p hydroxyl group at carbon 
17.

OH OH

HO HO

O
Cortisol Corticosterone
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Glucocorticoids have important effects on the regulation of carbohydrate metabolism 

and also the metabolism of lipid and protein. In addition to these metabolic effects, 

glucocorticoids have significant roles in the regulation of blood pressure, the ontogeny 

and response of the immune system, and have an alerting effect on the central nervous 

system. The main focus of this thesis is on the glucocorticoid receptor and the actions of 

glucocorticoids will be considered in greater detail in section 1.5.

Mineralocorticoids

The principal mineralocorticoid is aldosterone (Figure 1.3). This exists both as the

Figure 1.3 Aldosterone
Aldosterone, the main mineralocorticoid steroid, exists in the aldehyde and 
hemiacetal forms shown here.

OHOH

HO

O
HemiacetalAldehyde

aldehyde form and the hemiacetal form, which are in free equilibrium. The principal 

synthetic mineralocorticoid is fludrocortisone. Spironolactone is a synthetic 

mineralocrticoid antagonist.

Mineralocorticoids principally affect sodium and potassium flux in the distal convoluted 

tubules and collecting tubules of the kidney, but also increase sodium resorption in the
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1 Introduction

epithelia of sweat glands and colon. At these sites sodium permeability is controlled by 

an amiloride-sensitive ion channel, the epithelial sodium channel -  type 1 (ENaC-1). 

Aldosterone, through activation of the mineralocorticoid receptor, increases expression 

of this channel and enhances sodium resorption. The epithelial sodium channel is a 

heterotetramer composed of two a  subunits (the limiting component of channel 

formation), one (3 subunit and a y subunit (Canessa et al 1994). Aldosterone appears to 

exert its main effect on sodium channel formation in the kidney by increasing the rate of 

a  and P subunit expression (May et al 1997). Additional induction of the basolateral 

sodium-potassium ATPase by aldosterone further increase sodium reabsorption (O’Neill 

1990).

In vitro glucocorticoids bind to and activate mineralocorticoid receptors (Arriza et al 

1987). In vivo, however, the enzyme 11-P hydroxysteroid dehydrogenase type 2 

metabolises cortisol to cortisone that is unable to bind to the mineralocorticoid or 

glucocorticoid receptor, thus protecting the kidney from the large quantities of 

glucocorticoids reaching it (Edwards et al 1988). Further discussion of the isoforms of 

11-p hydroxysteroid dehydrogenase is addressed in section 1.4.

Additional target sites for mineralocorticoid action include the brain and heart. In the 

hippocampus, which has high levels of mineralocorticoid receptor, and in 

periventricular grey matter mineralocorticoids are thought to control sympathetic 

outflow and thus blood pressure regulation. Elegant experiments show intraventricular 

injection of aldosterone to the brain increases blood pressure, while pre-administration 

of spironolactone (a mineralocorticoid antagonist) prevents the rise in blood pressure 

(Gomez-Sanchez et al 1992).
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Prolonged exposure to elevated aldosterone, as occurs in Conn’s syndrome or in cardiac 

failure appears to increase cardiac fibrosis and dysrhythmogenesis (Brilla et al 1992). 

The importance of these findings have recently been underscored by prospective studies 

showing beneficial effects of spironolactone in chronic cardiac failure (Weber 1999).

Sex Steroids

Sex steroids include androgens, progestogens and oestrogens. The most potent sex 

steroids are synthesised in the gonads, the placenta and within peripheral tissues (e.g. by 

conversion of androstenedione to oestrone by aromatase in adipose tissue, Bulun et al 

1999). The adrenal also synthesises sex steroids although these possess lower potency. 

The biosynthetic pathway of sex steroids is shown in figure 1.4. The main actions of sex 

steroids are on the reproductive tract, muscle and adipose tissue deposition and on hair 

growth.
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Figure 1.4 Sex Steroid Synthesis

Cholesterol

|  see
Pregnenolone ^  ► 17-Hydroxypregnenolone 5M_^.Dehydroepiandrosterone < ^ >  Androstenediol

I
Progesterone ±L ► 17-Hydroxyprogesterone Androstenedione ^ ______ t l __^  Testosterone

V

lenolone— — —► 1 /-riyaroxypregnenoione _  ^.uenyaroepianarosierone ^  /\narosnI1 I1 I1 1II n u . , , 4 -------------- — ~  a  — i — -^enedione ^ ^  Test os

1 * ... 1
Oestrone ^ ^  Oestradiol

The pathways for sex steroid synthesis are shown above.
The enzymes at each step are shown as letters:
SCC Cholesterol Side Chain Cleaveage Enzyme
I 3p-Hydroxy steroid Dehydrogenase
II 17a-Hydroxylase *
III 17-20 Lyase*
IV 17 p-Hydroxysteroid Dehydrogenases
V Aromatase
* A single protein is probably responsible for both these enzymatic actions - see 1.3.2.3
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Androgens

The main androgen in men is testosterone produced in the testes, with smaller amounts 

of dehydroepiandrosterone and androstenedione produced in the adrenal, figure 1.5.

Figure 1.5 Androgens
The structure of testosterone and the the weaker androgens dehydroepiandrosterone and 
androstenedione are shown.

OH

HO
Testosterone Dehydroepiandrosterone Androstenedione

Androgens increase terminal hair growth and sebum secretion, cause deepening of the 

voice, muscle hypertrophy and maintain libido. In the male, the principal androgen, 

testosterone, is produced in the Leydig cells of the testis. During embryogenesis 

testosterone produced from the fetal testis causes development of structures derived 

from the W olffian duct including the epididymis, vas deferens, seminal vesicles and 

prostate. At puberty testosterone is necessary for penile enlargement and sperm 

production thereafter. In the female, the adrenal androgens dehydroepiandrosterone, and 

androstenedione along with small amounts of testosterone from the ovary are produced 

and may maintain libido.

Androgens bind to a specific receptor to modify gene transcription (Hiipakka 1998). 

The androgen receptor is homologous to the glucocorticoid receptor and other members 

of the nuclear receptor family but the ligand binding domain is specific for androgens
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and the DNA-binding domain recognises a specific androgen response element. Tissue- 

specific metabolism of androgens occurs in many androgen responsive tissues by the 

enzyme 5a-reductase that metabolises testosterone to the more potent androgen 5a- 

dihydrotestosterone. In bone, testosterone is metabolised to oestradiol by the enzyme 

aromatase where it activates the oestrogen receptor.

Oestrogens

Oestrogens are the main female sex hormones and are responsible for the secondary 

sexual development of the breast, vagina and vulva and contribute to pubic hair growth. 

The main oestrogens produced in the ovary in the female are oestradiol and oestrone 

(figure 1.6 ). Less potent oestrogens are produced in the adrenals and in adipose tissue 

by aromatisation of androstenedione in both sexes.

Figure 1.6 Oestrogens
The principal oestrogens, oestradiol and oestrone, are shown below.

OH

HO HO
OestroneOestradiol

Like the other steroid hormones, oestrogens bind to a specific oestrogen receptor to 

modify gene transcription. The original receptor was cloned from human ovary (Green 

et al 1986) and is expressed at high levels in endometrium, ovary, breast and testis. 

Recently a new oestrogen receptor isoform was identified (Kuiper et al 1996) which
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was designated the P-form (ER-p), the original receptor being designated ER-a. This p 

receptor is strongly expressed in prostate, blood vessels and bone where it may mediate 

the effects of oestrogens (either secreted from the ovary or aromatised from testosterone 

within the target tissue).

Progestogens

These hormones are named for their requirement in the maintenance of normal 

pregnancy. The only important progestogen in the human and most rodent species is 

progesterone (figure 1.7), although in the rabbit the main progestogen is 20a- 

hydroxyprogesterone.

Figure 1.7 Progesterone

Progesterone

Progesterone is a normal precursor for all other steroid hormones, but is produced in 

large quantities, particularly in the ovary in the luteal phase, where it acts as a hormone 

in its own right. In the luteal phase of the menstrual cycle, progesterone causes 

differentiation of the epithelia of the uterus and increased tortuosity of the uterine 

arteries. During pregnancy, progesterone produced from the placenta maintains a viable 

pregnancy.
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Progesterone acts through a specific progesterone receptor (Misrahi et al 1987) to 

modify gene transcription like its other steroid counterparts.

Thus, the sex steroids include a diverse group of steroids with broadly similar 

mechanisms of action to glucocorticoids, but with different actions determined by 

different receptors, target tissues and target genes. The remainder of the thesis will 

concentrate on the function of glucocorticoids and the glucocorticoid receptor and its 

possible role in disease.

1.2 The adrenal gland

The adrenal glands lie on the upper pole of each kidney. Each gland measures 

approximately 5cm by 2.5cm by 2.5cm and weighs 4g. The right gland is pyramidal in 

shape and the left is crescentic.

Each gland is divided into an outer cortex derived from the urogenital mesoderm that 

produces corticosteroids and an inner medulla composed of chromaffin tissue (named 

because of its ability to stain with chromic acid salts, Kohn 1902) derived from 

neuroendoderm that produces catecholamines.

1.2.1 Ontogeny

The adrenal cortex arises from coelomic mesoderm while the medulla arises from 

neuroectoderm. Adrenal cortical development has been described as occurring in 5 

stages (Sucheston & Cannon 1968): condensation, proliferation, differentiation, decline 

of fetal layer, and development of adult zonation. At around 25 days gestation the 

coelomic epithelium between the gastric mesentery and mesonephros begins to develop 

cuboidal/columnar cells that divide rapidly and condense to form the adrenal 

primordium (figure 1 .8 ).

35



1 Introduction

Figure 1.8 The Adrenal Primordium
The adrenal primordium develops from a condensation of coelomic 
epithelium between the aorta and the mesonephros. The diagram is of 
a 4 week old human fetus (modified from Neville and O’Hare)

Wolffian

Aorta

Mesonephros

Anterior

Adrenal Primordium

Urogenital Ridge Adrenal Groove Posterior

These cells will later form all layers of the adult adrenal cortex. At 30 days gestation 

cells from the mesonephros migrate towards the primitive adrenal gland. Most of these 

cells surround the gland forming a loose mesenchymal capsule while others infiltrate the 

adrenal parenchyme to form a supporting stromal framework. Between 35 and 45 days 

gestation preganglionic sympathetic nerve tracts and primitive postganglionic 

sympathetic cells migrate towards the rudimentary adrenal entering the parenchyme of 

the gland which now surrounds them. These cells will later form the catecholamine 

synthesising adrenal medulla.

Over the next 4 weeks the cells of the fetal adrenal rapidly proliferate mainly through 

mitosis of the outer cortical zone. By eight weeks the cells have differentiated into two 

layers which are clearly visible: the outer definitive cortex and the inner fetal cortex.
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During the second trimester the adrenal glands grow rapidly, keeping pace with the 

increase in fetal body weight. This is largely through expansion of the inner fetal layer 

of the cortex and at this time the adrenal weighs 4g/kg body weight -  35 times the ratio 

in the adult (figure 1.9).

Figure 1.9 Adrenal Growth Rate
The absolute total adrenal weight is shown in solid 
circles and the relative adrenal weight by total body 
mass, shown in open circles (modified from Mesiano 
and Jaffe 1997)
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Much of the rapid growth occurring in the adrenal at this stage appears to be driven by 

ACTH-induced insulin-like growth factor II (IGF-II) or basic fibroblast growth factor 

(bFGF) production within the gland (Mesiano & Jaffe 1997).

During the third trimester adrenal growth continues but at a slower rate; by this stage 

the adrenal glands weigh 2.5g/kg. Despite this, the fetal adrenal total weight at term of 

8 g is equal to that of the adult. Following birth the fetal adrenal cortex rapidly involutes 

leaving a compact medulla surrounded by a thin layer of adult cortex. Combined adrenal
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weight is now only around 2g and this will only gradually increase to the adult weight 

of 8g over the next 20 years.

1.2.2 Adult Adrenal Histology

The adrenal cortex is composed of three concentric layers of steroidogenic tissue: the 

outer zona glomerulosa, the zona fasciculata and an inner zona reticularis (figure 1.10). 

Normally the outer zona glomerulosa, which forms an incomplete layer in the human.

Figure 1.10 Zones of the Adrenal Cortex

Capsule
Zona Glomerulosa 

Zona Fasciculata

Zona Reticularis

Medulla

contributes around 5% of the cortical mass, while the fasciculata and reticularis 

contribute 70% and 25% respectively.

The steroidogenic cells of the adrenal contain conspicuous clear vacuolated cytoplasm 

that would contain cholesterol droplets in life as the substrate for steroid synthesis.
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Mitochondria contain many of the steroidogenic enzymes and provide the energy for 

many of the oxidation steps, and they too make an important contribution to the 

structure of steroidogenic cells. The relative number and size of lipid vesicles and 

mitochondria varies considerably between the zones and allows a rudimentary 

distinction to be made on light microscopy, and also allows cells to be separated by 

physical techniques such as density gradient centrifugation.

Zona Glomerulosa

The cells of this zone lie in the outer layer of adrenal cortex and synthesise and secrete 

aldosterone (figure 1.11). They posses a prominent nucleus surrounded by relatively 

little cytoplasm that contains small numbers of lipid droplets. On electron microscopy 

there are numerous mitochondria, which are characteristically elongated with tubular 

cristae, a prominent Golgi apparatus and normal amounts of smooth endoplasmic 

reticulum. The cell membranes often posses microvilli which form complex 

interdigitations with neighbouring cells. The cells of this layer form small clusters 

(glomus -  Latin, ball) surrounded by a fine capillary network which compose the 

incomplete layer of the zona glomerulosa.
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Figure 1.11 The Zona Glomerulosa
In this section of a rat adrenal the zona 
glomerulosa is stained brown with 
antibodies to aldosterone synthase and 
forms a continuous layer in the outer 
adrenal cortex, (kindly provided by Dr S 
M MacKenzie -  see chapter 2.11)

Zona Fasciculata

The zona fasciculata is responsible for the synthesis of cortisol, the principal 

glucocorticoid in man. It is composed of stacks of steroidogenic cells (fascis -  Latin, 

bundle), separated by endothelial-lined sinusoids (figure 1.12). These transport cortisol 

to the medulla where it plays an important role in inducing and maintaining the enzymes 

necessary for catecholamine synthesis and in the development of the adrenal medulla 

(Schmid et al 1995). On gross appearance the zona fasciculata has a buttery yellow 

appearance due to large amounts of lipid and cytochrome. The cells of this zone are
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large with a prominent cell membrane and cytoplasm, and contain a small dense 

nucleus. Progressing from the outer zona fasciculata to the inner layer, cells contain 

increasing numbers of lipid-containing vacuoles and spheroid mitochondria with an 

increasingly lamellar arrangement of cristae.

Figure 1.12 The Zona Fasciculata
The zona fasciculata in this section of 
rat adrenal is stained brown with an 
antibody against 11 p-hydroxylase. The 
zone occupies most of the adrenal 
cortex, (kindly provided by Dr S M 
MacKenzie -  see chapter 2.11)

Zona Reticularis

The inner one-quarter of the adult human adrenal cortex is composed of the zona 

reticularis. The zone is formed by interconnected limbs of cells separated by coarse 

sinusoids, thus forming a net-like structure (rete -  Latin, net). The cells of this zone are 

small and compact with few lipid vesicles, accumulated lipofuscin pigment and
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abundant mitochondria. The function of the zona reticularis in humans remains 

controversial, but it appears to the major source of the adrenal androgens 

dehydroepiandrosterone (DHEA) and DHEA sulphate.

/. 2.3 Adrenal Blood Supply

The adrenal is highly vascular. Much of the blood supply is used to provide the oxygen 

required to maintain the mitochondrial electrochemical gradients that are necessary for 

steroidogenesis.

The adrenal cortex and medulla share a common blood supply. Branches of the phrenic 

artery, aorta and renal arteries form the superior, middle and inferior adrenal arteries 

respectively (figure 1.13). After penetrating the adrenal capsule, the arteries divide into

Figure 1.13 The Adrenal Blood Supply
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a plexus of smaller arterioles supplying blood to the sinusoids of the adrenal cortex. 

These endothelial-lined spaces carry blood and locally generated corticosteroids to the 

adrenal medulla. Here the plexus of venules unite and leave the inferomedial surface of 

the adrenal as a single vein draining into the inferior vena cava on the right, and the 

renal vein on the left (figure 1.13).

1,2.4 Adrenal Nerve Supply

Preganglionic cholinergic sympathetic fibres from the splanchnic nerve are carried 

along the penetrating arteries and supply the adrenal medulla. Here the neurones 

stimulate the medullary tissue to release catecholamines from storage granules. 

Although some evidence suggests sympathetic neural input to the cortex is required for 

full steroidogenic and proliferative capacity (Bomstein & Chrousos 1999) the principal 

regulatory signals for steroid synthesis are humoral.

1.3 Control of Steroid Synthesis

Mineralocorticoid synthesis in the zona glomerulosa and glucocorticoid synthesis in the 

zona fasciculata are controlled separately. The regulation of adrenal androgen 

production is less clearly understood and will not be discussed further.

Mineralocorticoid synthesis is stimulated by increases in extracellular K+ and 

angiotensin II concentrations. Although stimulated acutely by adrenocorticotrophic 

hormone (ACTH), cells of the zona glomerulosa rapidly lose responsiveness on 

prolonged stimulation. In contrast, glucocorticoid synthesis is exquisitely sensitive to 

ACTH levels.

1.3.1 ACTH

ACTH stimulates corticosteroid synthesis by a cyclic adenosine monophophate (cAMP) 

dependent mechanism. The hormone binds to the cell-surface receptor of the adrenal
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cell and activates the Gs protein and adenylyl cyclase thus increasing cAMP generation. 

Activation of protein kinase A initiates a cascade of steps that stimulate cyclic AMP 

response elements (CREs) resulting in increased expression of StAR protein (Kallen et 

al 1998). This protein increases cholesterol transport to the inner mitochondrial 

membrane where cholesterol side-chain enzyme begins the process of steroidogenesis. 

Additional CREs in the promoters of the steroidogenic enzymes stimulate enzyme 

expression, further increasing steroidogenic capacity of the adrenal. Prolonged 

stimulation of cAMP by ACTH results in more mitochondria per cell, increased cell 

size, hypertrophy of the adrenal, and increased steroid-producing capacity. On further 

prolonged stimulation, ACTH eventually increases the level of active protein 

phosphates that signal the cell to divide resulting in hyperplasia of the adrenal cortex. 

This trophic property of ACTH gives rise to its name of adrenocortico/rop/z/c hormone.

1.3.1.1 Regulation of ACTH secretion

ACTH is synthesised in the anterior pituitary. In response to CRH production from the 

hypothalamus, the pituitary produces pro-opiomelanocortin (POMC), a glycosylated 

peptide of 241 amino acids. This subsequently undergoes significant post-translational 

modification with glycosylation, proteolysis, phosphorylation, N-terminal acetylation and 

C-terminal amidation. In the anterior pituitary the peptide is cleaved by specific 

peptidases into ACTH (39 amino acids), N-terminal glycopeptide and P-lipotropin figure 

1.14).
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Figure 1.14 Pro-opiomelanocortin and ACTH
Pro-opiomelanocortin is synthesised in the anterior pituitary as a peptide o f 241 amino acids. Post- 
translational modification adds carbohydrate groups (shown as CHO in the diagram). Subsequent 
cleavage releases ACTH and a number o f additional peptides (signal peptide, N-terminal 
glycopeptide and (3-lipotropin). (3-lipotropin is subsequently slowly cleaved to (3-endorphin and y- 
lipotropin. Several of these peptides, including ACTH, contain a melanocyte stimulating hormone 
motif, shown in brown.

■  Signal Peptide m N-Terminal Glycopeptid
■  MSH-like Sequences
□  ACTH
0  y-LT j ij_l t
□  p-Endorphin /  p L l

r ~ ~ ~ — r -

Abbreviations: ACTH - adrenocorticotrophic hormone 
MSH - melanocyte stimulating hormone 
(3-LT - (3-Lipotropin 
y-LT - y-Lipotropin

ACTH is released into the inferior petrosal sinus and reaches the systemic circulation. In 

the adrenal it binds to a specific cell-surface receptor and stimulates adenylyl cyclase 

initiating the chain of events described above that increases cortisol production. The first 

18 amino acids of ACTH contain the sequence required for ACTH-receptor activation. 

The peptide also contains a tetrapeptide sequence (His-Phe-Arg-Trp) contained in 

melanocyte stimulating hormones and this sequence is repeated within POMC itself 3 

times. This sequence imparts melanocyte stimulating activity to ACTH which binds to 

the MSH-2 receptor, a closely related receptor to the ACTH receptor (Mountjoy et al 

1992). The melanocyte stimulating hormones a - (3- and y- MSH are not thought to 

circulate in the normal adult, being present only in humans in the fetus and from secretion
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from neoplastic tissue.

N-terminal glycopeptide contains the sequence of y-melanocyte stimulating hormone (y- 

MSH) and may act synergistically with ACTH to stimulate cortisol production by 

stimulating cholesterol ester hydrolase.

P-Lipotropin contains weak lipolytic activity in man, the significance of which remains 

uncertain. It is formed from 91 amino acids from the C-terminus of POMC and through a 

further proteolytic step is slowly cleaved to y-lipotropin and p-endorphin. The former 

peptide contains the sequence of P-MSH, although this product is not produced as a free 

peptide in man. p-Endorphin has potent analgesic activity.

ACTH secretion is under central control at several levels, shown in figure 1.15. The

Figure 1.15 Glucocorticoid Feedback on the Hippocampal- 
Hypothalamo-Pituitary-Adrenal Axis

ACTH

Glucocorticoids produced from 
Hippocampus a(jrenai cortex stimulateHippocampus

Hypothalamus These fibres project to the

hippocampal serotonergic fibres 
(5-HT).

hypothalamus to inhibit 
corticotropin-releasing
hormone (CRH). This results in 

Pituitary reduced ACTH and CortisolPituitary
secretion.

Adrenal

►C<Jtisol

Additional levels of negative 
feedback occur at the
hypothalamus wherewhere

Adrenal glucocorticoid inhibit CRH
secretion, and at the anterior 
pituitary to inhibit ACTH 
secretion.
Modifiedfrom Panarelli,M. et al 1998
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major mechanism is through secretion of corticotropin-releasing hormone (CRH) from 

the hypothalamus (Rivier et al 1986). This peptide hormone of 41 amino acids is secreted 

in a circadian rhythm with highest levels around 4 am and lowest levels at 10 pm, and in 

response to psychological and physical stress. CRH is carried along the portal circulation 

between the hypothalamus and pituitary, and stimulates POMC transcription and ACTH 

secretion through a cAMP-Protein Kinase A dependent mechanism. Arginine 

Vasopressin (AVP) secreted from the hypothalamus and reaching the pituitary increases 

ACTH secretion synergistically with CRH acting through the generation of inositol 

/raphosphate (IP3).

Control of hypothalamic CRH secretion appears to be under the control of several brain 

areas including neurones in the brainstem, paraventricular nuclei and telencephalon. An 

important controlling pathway appears to be through fibres arising in the hippocampus; a 

brain structure involved emotion and mood. Serotoninergic fibres inhibit the 

hypothalamic secretion of CRH, while sparser y-aminobutyric acid (GABA) containing 

fibres stimulate CRH secretion. The hippocampus contains glucocorticoid receptors that 

stimulate firing of the serotoninergic fibres and further reduce CRH and ultimately 

ACTH secretion (Mulatero et al 1997).

Another signal controlling ACTH release is arginine vasopressin (AVP) released from the 

paraventricular nuclei. Although a weak stimulus for ACTH release itself, it acts 

synergistically with CRH to evoke ACTH synthesis and secretion.

The hippocampus appears to be “programmed” by glucocorticoid exposure in late fetal 

and early postnatal development. Thus the hippocampus postnatally is extremely plastic 

undergoing neuronal apoptosis and regeneration (McEwen 1999). The rich glucocorticoid 

receptor levels in this region of brain increase the rate of apoptosis as glucocorticoid

47



1 Introduction

levels rise. Thus, postnatal glucocorticoid exposure provides a mechanism of reducing the 

sensitivity of the hippocampus to glucocorticoids, and increases the level of stimulation 

to the hypothalamus increasing CRH production. This feeds into the pituitary to increase 

ACTH production and adrenal glucocorticoid production. The overall effect is to raise the 

point where negative-feedback occurs in the hypothalamo-pituitary-adrenal axis. 

Glucocorticoids reduce ACTH secretion by a direct action on the pituitary. At least 2 

glucocorticoid response elements exist in the upstream 700 base pairs of the POMC 

promoter and glucocorticoid binding to these elements appears to disrupt binding sites for 

unidentified binding factors normally driving basal and CRH-responsive transcription 

(Charron et al 1986).

In summary, the control of glucocorticoid secretion is integrated at a number of levels in 

the central nervous system and under predominant negative feedback by adrenal 

glucocorticoid production.

1.3.2 Steroid Synthesis -  The Steroidogenic Pathway

Several steps are involved in the synthesis of steroids from the initial cleavage of the 

side-chain from cholesterol to the progressive oxidation to active steroid hormones and 

these are outlined in figure 1.16.
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Figure 1.16 The Steroidogenic Pathway
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1.3.2.1 Cholesterol Transport

The initial step in steroid biosynthesis is the transport of cholesterol substrate from the 

storage vacuoles in the cytosol to the inner membrane of the mitochondrion where the 

steroidogenic enzymes reside. Recently, the 30kDa phosphoprotein responsible for 

controlling this transport in adrenal, ovary and testis, but not placenta, has been 

identified: the Steroidogenic Acute Regulatory protein, or StAR protein (Clark et al 

1994). Expression of this protein rapidly follows stimulation of the adrenal cortex 

resulting in the flux of cholesterol from the outer mitochondrial membrane to the 

cholesterol-poor inner membrane. The molecular mechanism of the ability of StAR 

protein to mediate this flux remains to be elucidated.

The promoter of the StAR protein contains 2 steroidogenic factor-1 (SF-1) binding sites 

and a half oestrogen response element (Sugawara et al 1996). The proximal SF-1 

binding site is responsible for the induction of StAR expression following cAMP 

stimulation (e.g. by ACTH), while the distal SF-1 binding site is necessary for 

constitutive expression of the factor, but is required for maximal stimulated expression 

by cAMP.

In the zona glomerulosa K+ or angiotensin II stimulate steroidogenesis through

9-1-stimulation of IP3 and Ca release. The induction of StAR protein appears to be under 

the control of calcium via calmodulin kinase II activation as neither diacyl glycerol nor 

protein kinase C increase aldosterone production (Cherradi et al 1998).

1.3.2.2 Side-Chain Cleavage Enzyme

The generation of steroids involves several oxidative modifications of cholesterol (fig 

1.16). Once cholesterol arrives in the inner mitochondrial membrane, the membrane-
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bound side-chain cleavage enzyme removes the aliphatic chain with cleavage of the C2 0- 

C22 bond. This is achieved by two hydroxylation reactions at C2 2a and C20R with a 

subsequent lyase step to complete bond cleavage. As a result C20 is oxidised to a ketone 

generating pregnenolone. The cholesterol side-chain cleavage enzyme is composed of 

three components: the catalytic protein P450scc, adrenodoxin and adrenodoxin 

reductase. During the reaction NADPH adds an electron to adrenodoxin and this is used 

to break the 0 = 0  bond of molecular oxygen which is required to oxidise the substrate 

and break the cholesterol side chain.

The promoter of P450scc contains a binding site for SF-1, responsible for basal 

expression, and a CRE which provides a mechanism for induction of expression in 

response to ACTH induced cAMP generation.

1.3.2.317a-Hydroxylase, Lyase

This enzyme is found in the endoplasmic reticulum of the zona fasciculata and zona 

reticularis, but is absent in the zona glomerulosa. In these zones pregnenolone and 

progesterone are hydroxylated to yield precursors for cortisol and androgen synthesis. 

The enzyme has additional lyase activity, cleaving the Ci7a-C2o bond, in the synthesis of 

androgens (Buczko et al 1995). The lyase activity appears to require additional 

cytochrome b5 (Lee-Robichaud et al 1995) for full activity. Expression of this enzyme, 

as all the steroidogenic enzymes described below, is increased in response to ACTH.

1.3.2.4 3/3-Hydroxysteroid Dehydrogenase-5enet 4ene Isomerase 

This enzyme is situated in the endoplasmic reticulum of the adrenal cortex. In contrast 

to most steroidogenic enzymes, it does not contain a cytochrome P450 moeity. It 

catalyses the formation of the keto-group on carbon 3, and the shift in the double bond
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of cholesterol between carbons 5 and 6  (called the A5) to A4 (between carbons 4 and 5). 

Both the 3-keto A4-ene groups are characteristic of corticosteroids, and the enzyme is 

expressed in both the zonae glomerulosa and fasciculata.

1.3.2.5 21/3-Hydroxylase

This enzyme is situated in the smooth endoplasmic reticulum of the adrenal cortex and 

catalyses the 21 p-hydroxylation of progesterone or 17a-hydroxyprogesterone. The gene 

for the enzyme is situated on chromosome 6 q, within the HLA complex of genes (New 

et al 1986) and explains the close linkage of HLA haplotype with congenital adrenal 

hyperplasia in kindreds with 2 1 -hydroxylase deficiency.

1.3.2.6 11/3-Hydroxylase

This enzyme is responsible for the generation of cortisol from deoxycortisol and is 

therefore characteristic of the zona fasciculata where the protein is located within the 

mitochondrion. Substrate which has been 17a-hydroxylated and 2ip-hydroxylated 

within the smooth endoplasmic reticulum travels once again to the inner membrane of 

the mitochondrion where it undergoes 1 1  p-hydroxylation.

1.3.2.7 Aldosterone Synthase

This enzyme is located within the mitochondria of the zona glomerulosa and is 

responsible for the two oxidation steps of 11 P-hydroxylation and 18-oxidation. The 

biochemical nature of the intermediate steps in the conversion of deoxycorticosterone to 

aldosterone remain uncertain, as is the physico-chemical regulation of the late stages of 

adrenal steroidogenesis, but these considerations are outwith the scope of this thesis.
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1.4 Glucocorticoid Access - the role of 11/3 Hydroxysteroid Dehydrogenase 

For glucocorticoids to act on target tissues, the steroids must be able to reach their 

receptor in an active form. The enzyme l ip  hydroxysteroid dehydrogenase (llp-HSD) 

is a major factor controlling this activity.

Two forms of this enzyme are now known to exist, Type I (Tannin et al 1991) and Type 

2 (Brown et al 1993). The type 1 enzyme is expressed in most glucocorticoid sensitive 

tissues, is NADP(H)-dependent, and predominantly converts inactive cortisone to active 

cortisol (Moore et al 1993). The enzyme is widely expressed, particularly in the liver, 

adipose tissue and particular regions of the brain (Ricketts et al 1998, Seckl 1997). In 

the liver, 11 p-HSD 1 increases intracellular glucocorticoid concentrations and increases 

the expression of the rate limiting enzyme in the gluconeogenic pathway; phosphoenol 

pyruvate carboxykinase (Jamieson et al 1999). Knockout mice lacking this enzyme are 

resistant to the hyperglycaemic response to stress or obesity suggesting obesity may 

result in hyperglycaemia by increasing glucocorticoid production or increasing the 

activity of 11 p-HSD type 1 (Kotelevtsev et al 1997).

In the brain 11 p-HSD type 1 is expressed particularly in cerebellar granule and Purkinje 

cells, hippocampal pyramidal and granule cells, hypothalamic cells including the 

paraventricular nuclei, and in all anterior pituitary cells (Seckl 1997). In the 

hippocampus, hypothalamus and anterior pituitary the enzyme would be expected to 

increase the negative feedback has on ACTH secretion, thus amplifying the sensitivity 

of the system (Kotelevtsev et al 1997).
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The type 2 enzyme is predominantly expressed in kidney, placenta and colon 

(Whorwood et al 1995), has a high affinity for cortisol (inactivating it to cortisone) and 

is NAD dependent. Thus, the type 1 enzyme tends to regenerate active cortisol, while 

the type 2  enzyme in contrast inactivates cortisol.

The rare syndrome of apparent mineralocorticoid excess (SAME) was originally 

described in 1985 (Edwards et al 1985) and has since been found to be due to deficiency 

of the type 2 enzyme in the distal nephron (Milford et al 1995, Stewart et al 1988). In 

the distal tubule of the kidney, the mineralocorticoid receptor modulates sodium and 

potassium balance by directing the expression of subunits of the amiloride-sensitive 

sodium channel (Canessa et al 1994). In the absence of 11 p-hydroxysteroid 

dehydrogenase type 2  to inactivate cortisol to cortisone the mineralocorticoid receptor, 

which binds cortisol and aldosterone with equal affinity, becomes activated 

inappropriately and this causes sodium retention, potassium loss and hypertension. 

Thus, the role of 11 p-hydroxysteroid dehydrogenase type 2 is normally to protect the 

distal tubule from cortisol and maintain its sensitivity to aldosterone.

In evolutionary terms, the type 2 enzyme may be a relatively novel development. In 

teleost fish, which produce no aldosterone or other mineralocorticoids, cortisol regulates 

both mineral balance and fuel metabolism (Ducouret et al 1995) and these fish express 

no 1 1  p-hydroxysteroid dehydrogenase.

In the placenta, 11-p hydroxysteroid dehydrogenase type 2 metabolises maternal 

cortisol to cortisone (Benediktsson et al 1995), thus protecting the fetus from exogenous 

cortisol. Evidence from animal studies in which l ip  hydroxysteroid dehydrogenase 

type 2 is inhibited (Lindsay et al 1996) or by-passed by administration of exogenous
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dexamethasone (Nyirenda et al 1998), which is not metabolised by the enzyme, suggest 

glucocorticoids have a potent effect in reducing the size of the fetus at birth. 

Furthermore, both these studies showed that in adult life, rats exposed to elevated levels 

of glucocorticoid in utero went on to develop higher fasting glucose levels in adult life. 

In the human, intrauterine growth retardation has been found in association with 

reduced placental 11 p-HSD activity (Shams et al 1998) suggesting the enzyme may 

play an important role in determining fetal growth.

These abnormalities have been given clinical import by a series of studies from Barker. 

The original observation of an epidemiological cohort showed that subjects with low 

birth weight were more likely to develop coronary heart disease (Barker et al 1989) and 

a number of cardiovascular risk factors including type 2 diabetes (Hales et al 1991), 

hypertension and hyperlipidaemia (Barker et al 1993) in adult life. Furthermore, the 

effect has been found in a number of studies in different countries (Leon et al 1998, 

Rich-Edwards et al 1976) suggesting it may be an important contributory cause of 

cardiovascular disease.

Taken together, the observations that in utero exposure to excess glucocorticoid results 

in low birth weight in animal models and humans and impaired glucose tolerance in 

adult life in animal models are similar to the observations of adult outcome in low birth 

weight babies. This suggests that excess glucocorticoid exposure in fetal life (through 

increased fetal production, increased receptor sensitivity or reduced placental 11 p-HSD 

type 2 activity) is a plausible mechanism to explain the above epidemiological 

observations.
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1.5 The Mechanism of Action of Glucocorticoids

Glucocorticoids, in common with other steroid hormones, act through a nuclear receptor 

that becomes activated on binding ligand, forming a DNA binding form which binds to 

specific recognition sequences in the genome and through interaction with the 

transcription apparatus, results in the selective induction or repression of protein 

synthesis.

1.5.1 The Glucocorticoid Receptor

The glucocorticoid receptor is expressed in most human tissues, in varying 

concentrations, and has widespread and profound effects on the function of almost all 

cell types. It plays a role in development: animals lacking the gene have defective lung 

development and absent adrenal medullae (Schmid et al 1995). It is a member of the 

superfamily of nuclear receptors that includes receptors for steroids, thyroid hormone, 

retinoids, vitamin D and a number of other “orphan” receptors for which no ligand has 

yet been identified. The glucocorticoid receptor has close structural and functional 

homology with other members of the family (Evans 1988).

In the absence of ligand, the glucocorticoid receptor exists in a complex with heat shock 

proteins, HSPs (Pratt 1993) in the cytosol. This is in contrast to most other nuclear 

receptors including the oestrogen, androgen and thyroid hormone receptors which are 

predominantly nuclear. Following ligand binding, the glucocorticoid receptor 

translocates to the nucleus binding to specific sequences, glucocorticoid response 

elements (GREs), in the promoter of glucocorticoid-regulated genes. Interaction of the 

receptor-DNA complex with transcription factors and other accessory proteins results in 

increased or suppressed gene expression.
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The glucocorticoid receptor is expressed as 2 forms with distinct activities. The a-form 

of the receptor (Hollenberg et al 1985) is the most extensively studied with ligand- 

binding and transactivation activities: further discussion here focuses on this form of the 

receptor. The p-form of the receptor differs only in the C-terminus, where the last 50 

amino acids of the a-form are replaced by 15 amino acids unique to the p-form by a 

differential splicing event (Hollenberg et al 1985, Encio et al 1991). Detailed knowledge 

of the factors controlling this differential splicing, and the physiological role of the p- 

receptor remain unclear and this is discussed in a separate section below.

The 94kDa protein of the glucocorticoid receptor is modular in structure with several 

distinct domains with different functions (Giguere et al 1986). The N-terminus region 

contains a major transactivation domain, the central portion of the receptor contains the 

DNA-binding domain and dimerisation domains, and the C-terminus contains the ligand 

binding domain. Each module is functionally independent, so that molecular 

transplantation of the DNA-binding domain of the glucocorticoid receptor into the 

oestrogen receptor imparts oestrogen-sensitivity to the regulation of glucocorticoid 

responsive genes (Green & Chambon 1987). The function of each domain to the 

glucocorticoid receptor is discussed in greater detail below.

1.5.1.1 Heat Shock Protein Binding

In vitro, the native glucocorticoid receptor protein is unable to bind ligand, and only 

acquires a high-affinity ligand binding site following binding to a heterocomplex of heat 

shock proteins (Bresnick et al 1989). Heat shock proteins (HSPs) are an abundant group 

of proteins that are well conserved throughout evolution and are expressed in increased
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amounts following heat and chemical stress. An important function of HSPs is 

enzymatically to re-fold partially denatured proteins into functional conformations. 

Binding of the native glucocorticoid receptor to the heat shock protein heterocomplex 

(also called a foldosome) imparts ligand binding activity, silences transcription activity 

and obscures the dimerisation domain of the receptor. The foldosome is composed of 

several protein components (figure 1.17). The principal component is hsp90. This is an 

oblong protein that forms a homodimer by antiparallel binding around a domain near 

the C terminus (Minami et al 1994). This protein has several binding domains including 

an ATP-binding site, and binding domains for steroid receptors, hsp70, p60, and p23 

(reviewed in Toft 1998, Pratt & Dittmar 1998). These binding sites bind hsp70 and p60 

(also called Hop; hsp organising protein) to the hsp90 homodimer. An additional heat 

shock protein, hsp40, binds to hsp70 and Hop to form the foldosome. This then binds 

the native form of the glucocorticoid receptor converting it to a form with a high affinity 

ligand binding site. For this structure to be stable, another protein cofactor, p23, is 

required that binds close to the ATP binding site of hsp90. The mature foldosome- 

glucocorticoid receptor complex releases hsp40 and Hop. Release of Hop exposes a 

shared binding site for a group of proteins including the immunophilins FKBP51 

(FK506 binding protein of 51kDa -  FK506 was an experimental immunosuppressant 

subsequently marketed as tacrolimus), FKBP52, CyP-40 (Cyclophilin of 40kDa -  this is 

the target for the immunosuppressant cyclosporin) and a serine/threonine protein 

phosphatase known as PP5. On each foldosome, one of these proteins now binds to the 

Hop binding site, thus forming a heterogeneous population of foldosome-glucocorticoid 

receptor complexes. The function of the immunophilin/PP5 subunit is unknown, but it 

has been suggested this determines intracellular localisation (Czar et al 1995). Under
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physiological conditions, the receptor constantly binds to and dissociates from the

Figure 1.17 Formation of the M ature Glucocorticoid Receptor-Foldosome 
Complex
The foldosome complex is formed from hsp90, p60/Hop, hsp70 and hsp40.
This binds the native glucocorticoid receptor in an ATP/Mg2+ and K+ dependent 
manner to generate a steroid binding receptor.
The complex is stabilised by p23.
P60/Hop is released and replaced by an immunophilin (IMM).
Hsp70 may be present in the final complex and is denoted by dashed lines. 
Modified from Toft 1998

Unfolded

hsp70Folded

Foldosome

p23 \hsp70

Final he terocom p /ex

p23 \hsp70.

foldosome complex as shown in figure 1.17.

1.4.1.2 Ligand Binding Domain

The endogenous ligand for the glucocorticoid receptor in man is cortisol. Although the 

detailed crystal structure of the ligand binding domain for this receptor has not yet been 

resolved, the structures of the retinoic acid-RAR and the apo-RXR receptor have 

(Bourget et al 1995 and Renaud et al 1995). By comparison with the primary structure 

of other nuclear receptors, a putative and highly conserved general structure of the
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ligand binding domain has been proposed which applies to the glucocorticoid receptor 

(Wurtz et al 1996). The proposed structure hypothesises that following ligand binding 

the receptor undergoes major conformational rearrangement. This results in a 

hydrophobic pocket folding around the ligand, an alpha helix (H I2 in the retinoic acid 

receptor) flipping back to seal the mouth of the pocket thus trapping ligand like a 

mousetrap: simultaneously this exposes a partial (3-sheet and a  helix which is proposed 

to hide the hsp binding domains, while exposing the dimerisation domain and a 

transactivation surface The conformational change in the retinoic acid receptor is 

illustrated in figure 1.18

This would explain the dramatic change in the behaviour of the receptor following 

ligand binding with abolition of hsp-binding activity, and the acquisition of dimerisation 

activity and transactivation activity. The oestrogen receptor has a similar general 

structure and proposed mechanism: partial activation of the conformational change, but 

without proper closure of HI 2 over the ligand binding pore underlies the activity of the

Figure 1.18 The Unliganded and Liganded Retinoic Acid Receptor
On the left the unliganded RXRoc receptor is shown with helix 12 shown in 
an extended a-helical conformation
On the right, the related RARy receptor liganded with all-trans retinoic acid 
is shown. Helix 12 has translocated across the mouth of the ligand binding 
domain The receptor is now in more tightly packed conformation, with 
lower thermal energy, shown in darker blue.

Ligand binding site

H12

Ligand binding site
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receptor modulator, raloxifene (Brzozowski et al 1997). It remains unclear whether the 

DNA-binding domain becomes exposed during this rearrangement, or whether 

detachment from the hsp complex and subsequent translocation to the nucleus is 

sufficient to allow DNA binding.

1.5.1.3 Glucocorticoid Receptor DNA Binding Domain

The glucocorticoid receptor DNA-binding domain has been extensively studied and 

provides a useful model of the DNA-binding domains of other nuclear receptors. 

Despite 500 million years of evolutionary divergence (Laudet et al 1992), the domain is 

extremely well conserved across species and receptor types and the DNA sequence 

encoding the domain has been used as a probe to find the large number of as yet ligand- 

less “orphan” receptors.

The DNA-binding domain of the receptor must recognise the specific sequence of the 

GRE (5’-GGTACANNNTGTTCT) and form a tight bond to DNA. The domain is 

composed of approximately 90 amino acids in the central portion of the receptor 

protein. As a purified peptide fragment, the domain folds correctly in solution, binds 

DNA and increases transcription (Schena & Yamamoto 1988). This has allowed the 

detailed crystal structure of the ligand-binding-domain-DNA interaction to be defined 

(Luisi et al 1991) while efforts at the more difficult process of crystallising the intact 

receptor-DNA complex continue.
^  I

Correct folding of the DNA-binding domain requires Zn ions as a co-factor, and early 

studies demonstrated these were bound in a 2 ions: 1 protein stoichiometry (Freedman et 

al 1988). Each Zn2+ ion is co-ordinated tetrahedrically by 4 cysteine residues forming 

the zinc-fingers that hold protein in a more rigid conformation and allow more stable 

interaction with DNA and neighbouring proteins. Each zinc-finger of the domain has a
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different function (Umesono et al 1989). The proximal module, or P-box forms contacts 

with the phosphate backbone of DNA and specific contacts with the bases of the 

glucocorticoid response elements and confers the specificity for the GRE sequence. The 

distal, D-box, is self-complementary and forms contacts with amino acids in the same 

domain of an adjacent DNA-binding domain. The correct positioning of the D-box 

relative to the P-box is required for dimerisation to occur and this is aided by the 2 

helices packing together around a hydrophobic core formed between the 2 boxes by 

adjacent phenylalanine residues (Phe4 6 3 , Phe4 64). This is further aided by a short region 

of peptide between the boxes which preferentially forms a short a-helix when the 

recognition helix binds to DNA. It remains uncertain whether the binding of an 

activated monomer receptor to DNA then induces the allosteric homodimerisation with 

another activated receptor, or whether this complex forms in the cytosol and is 

subsequently transported to the nucleus.

The zinc-fingers of the receptor are crucial features and are highly conserved among 

nuclear receptors. Although initially described in other transcription factors such as the 

transcription factor TFIIA of RNA polymerase II (Miller et al 1985) zinc-fingers are 

generally co-ordinated by 2 histidine and 2 cysteine residues; in contrast 4 cysteine 

fingers are characteristic of the nuclear receptors. The P-box has an S stereochemical 

configuration as the protein wraps around the ion, while the D-box has an R 

configuration. Although the 2 modules are likely to have arisen initially as an intragene 

duplication event, the fact that the protein wraps around each ion in a different direction 

suggests that as increasing mutations in amino acids close to one or both of the metal 

binding sites accumulated the stereochemical preference of one site decreased or 

became ambivalent. Subsequent mutations in this module then imposed the opposite
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stereochemical configuration, and since all nuclear receptors retain this conserved 

structure, the event is likely to have occurred before the ancestral protein diverged. This 

sudden change in the structure of a protein which has fundamental developmental and 

homeostatic consequences is an example of what has been called a “punctuated 

structural jump” and is thought to be an important factor in defining the erratic rate at 

which the evolution of species develops: a sudden novel transcription factor allows 

rapid changes in the way gene expression is directed without requiring large changes in 

the encoding genome (Luisi et al 1991).

Particular amino acids have been shown to be essential in forming the specificity of the 

DNA interaction of the P-box. Results from initial work with site-directed mutagenesis, 

and later confirmed by X-ray crystallography, have shown 3 amino acids, Lys4 6 i, Val462  

and Arg466 form direct interactions with the bases of the GRE and are thus responsible 

for sequence recognition (Luisi et al 1991). Crucial in this recognition process is Val462  

that interacts with thymine at a position unique to the GRE. The other bases are 

common to most hormone response elements including the oestrogen-responsive 

element and substitution of valine by alanine at this position results in a DNA-binding 

domain which does not discriminate between the response elements of either hormone 

(Aloy et al 1992). These base-recognition residues are highly conserved with mutations 

resulting in major defects of hormone action. Additional amino acids interact with the 

charged phosphate backbone through electrostatic forces or hydrogen bonds. These 

interactions help anchor the recognition helix in the major groove of the GRE and assist 

in the deformation of DNA widening the major groove by opening up the distance 

between the parallel phosphate backbones, thus helping to expose the bases to 

inspection by the specific recognition residues. Non-conservative substitution of these
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amino acids results in loss of DNA binding and loss of hormone-sensitive transcription 

in vitro.

1.5.1.4 Protein Phosphorylation

A major mechanism of post-translational modulation of transcription factors is 

phosphorylation and the glucocorticoid receptor, in common with all other steroid 

receptors, is capable of being phosphorylated at several sites. The receptor contains 1 

threonine and 7 serine residues that have been shown to become phosphorylated 

(Bodwell et al 1991). The mature receptor is phosphorylated on several serine residues 

and becomes hyperphosphorylated in response to agonist binding, but not to antagonist 

binding, suggesting an important functional role (Orti et al 1989). This process appears 

to occur cyclically with unphosphorylated or modestly phosphorylated receptors 

becoming more phosphorylated on binding ligand and dissociating from the Hsp 

complex. On translocation to the nucleus, the receptor binds DNA and may be 

dephosphorylated before returning to the cytosol again (Orti et al 1992).

The role of phosphorylation in glucocorticoid receptor function remains unclear at 

present. Manipulation of the phosphorylation state of the receptor by using phosphatase 

inhibitors (DeFranco et al 1991) has no effect on transactivation activity, although this 

represents an unphysiological modification. Directed mutagenesis of several potential 

phosphorylation sites (Webster et al 1997) also does not alter its ability as a 

transcription factor or its affinity for ligand or for the GRE. However, some evidence 

suggests that phosphorylation reduces the ability of the receptor to bind to single GREs 

or partially degenerate GREs and this may explain that phosphorylation reduces the 

receptors ability to downregulate its own gene product (Webster et al 1997).
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1.5.2 Glucocorticoid Receptor Exonic Structure

The glucocorticoid receptor gene was originally cloned in 1985 (Hollenberg et al 1985) 

and has since been intensively studied as a prototype steroid receptor. It is encoded by a 

gene on chromosome 5q31 in the human (Theriault et al 1989). It contains a leading 

promoter, the complete structure of which remains to be determined, 10 exons and 9 

intervening introns (Encio et al 1991) as shown in fig 1.19.

Figure 1.19 Structure of the Glucocorticoid Receptor Gene
The structure of the glucocorticoid receptor (GR) gene is shown with a leading promoter 
sequence followed by the untranslated exonl.
Two receptor isoforms originate from the gene by alternative splicing. Exons 2-8 are 
common to both, whereas the 9th exons are specific for each isoform, a  or p.
The major transactivation domain is encoded by exon 2.
Exons 3 and 4 each encode one of the two zinc fingers.
Exon 5 encodes the nuclear translocation signal sequences, a minor transactivation 
domain, T2 , and the beginning of the ligand binding domain.
The remainder of the ligand binding domain is encoded by exons 6-9a.
The protein domains are shown in the legend below.
(Modified from Karl,M. et al 1993)
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Exon 1 of the glucocorticoid receptor gene is untranslated and is thought to contain 

tissue specific enhancer sequences. Messenger RNA for the glucocorticoid receptor 

shows different 5’ sequences suggesting different transcription start sites. In mice, there 

is evidence for tissue-specific transcription start sites of the GR gene with one promoter 

activated only in T-lymphocytes (Strahle et al 1992). This may reflect the complement 

of transcription factors, or the structure of chromatin within tissues. Exon 2 encodes 395 

amino acids of the N-terminus of the receptor protein. Exons 3 and 4 separately encode 

each of the 2 zinc fingers of the receptor protein and are separated by a short 400 base- 

pair intron suggesting they originated by an intragene duplication event. Exon 5 

contains residues involved in transactivation and nuclear localisation of the receptor. 

Exons 6-8 encode a common region in both the a  and p isoforms of the receptor with 

the C-terminus of the a  receptor coded by exon 9a. The p form of the receptor is 

formed from alternative splicing of exon 9p (Karl et al 1993) but does not bind ligand, 

and its function remains controversial.

1.5.3 Glucocorticoid Receptor Promoter

The promoter of the glucocorticoid receptor gene is extremely GC rich. Despite the 

technical problems GC-rich promoters pose for sequencing, clones containing up to 3 Kb 

of the 5’ untranslated region of the receptor gene have been characterised (Zong et al 

1990). In contrast to the oestrogen and retinoic acid receptors the promoter contains no 

TATA or CAAT boxes but contains 18 GC boxes (5’-GGGCGG-3’). These are 

arranged in a complex configuration of 2 pairs of tandem repeats, 1 set of overlapping 

sites and 8 sites in the reverse orientation. These motifs are the binding site for the Spl 

transcription factor, a factor involved in the basal transcription of housekeeping genes in
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many tissues, although other less well characterised transcription factors are also able to 

bind to these motifs. No consensus GRE sequences are found in the promoter; although 

2 half-sites are found at nucleotides -2526 and -2838 these are widely separated and are 

not associated with degenerate GRE sequences close by and are therefore unlikely to be 

functional. However, 2 negative GREs similar to the sequences found in the POMC 

promoter are found at nucleotides -1786 and in the antisense orientation at -1482. 

These may mediate negative transcriptional control on the gene, but remain to be 

characterised.

Deletion studies designed to clarify potential regulatory sites within the glucocorticoid 

receptor gene promoter have shown that some, but not all, of the GC boxes are required 

for full expression (Nobukuni et al 1995). Using a construct containing 10 GC boxes, it 

was shown that deletion of the 5’ part of the promoter containing 8 of these motifs made 

no detectable impact on glucocorticoid transcription. Deletion of the 9th motif, 

however, produced a dramatic fall in promoter activity. This may either reflect the 

inherent redundancy of multiple GC boxes or may indicate that additional (and as yet 

uncharacterised) sequences in this segment of the promoter have a vital role in 

activating the basal transcription machinery.

One consequence of the multiple GC boxes in the promoter is the potential for several 

different sites for transcription initiation demonstrated by RNAase protection assay 

(Zong et al 1990). Furthermore, several tissue specific start-sites are found; initiation of 

transcription at -61 bp is specific for T lymphocytes in the mouse (Strahle et al 1992). 

This suggests the promoter carries tissue-specificity either due to it containing sites for 

tissue-specific transcription factors or due to tissue-specific concealment of general 

binding factors by DNA methylation or altered chromatin structure.
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In addition to the numerous Spl binding sites the promoter contains putative consensus 

binding sites for a wide range of transcription factors (Nobukuni et al 1995). These 

include an oestrogen response element (ERE), an activator-protein-1 (AP-1 - the 

heterodimer of cJun-cFos) binding site, 2 activator-protein-2 (AP-2) binding sites, 2 

NF-1 binding sites and one cAMP response element (CRE). Using Dnase I footprinting 

analysis and gel mobility shift assays to define physiologically relevant sequences, 1 1  

footprints were found in a truncated promoter (-700/+38bp). Although only 7 of these 

were explored in detail, 6  were found to contain Spl binding sites and to bind the factor. 

Three of the footprints also bound unidentified proteins, but one, footprint 7, contained 

2 AP-2 binding sites that bound active AP-2 as demonstrated by shift and supershift 

analysis. Furthermore, the degree of promoter activity conferred by the AP-2 binding 

site was found to show tissue-specificity with relatively higher activity in HeLa cell 

lines (a cell with high endogenous expression of AP-2) than in fibroblast, kidney or 

liver cell lines.

1.5.4 The (3 Isoform of the Glucocorticoid Receptor

The glucocorticoid receptor gene encodes 2 distinct proteins, the a  and p isoforms of 

the glucocorticoid receptor, by alternative splicing (Hollenberg et al 1985). The most 

intensively studied form is the a  form that binds ligand and regulates gene expression 

and is described in detail above. The p form of the receptor remains poorly understood.

It is unable to bind glucocorticoid ligand (Hollenberg et al 1985) and appears to be 

transcriptionally silent. It is widely expressed in brain, hypothalamus, pituitary, thymus, 

bone marrow, spleen, liver, kidney, lung, fat and muscle, but was not clearly identified 

in leukocytes (Bamberger et al 1995). At an ultrastructural level, the protein is found in
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the nucleus of cells independently of glucocorticoid treatment (Oakley et al 1997) and 

binds to GREs.

In transient transfection studies, the p isoform of the receptor has been shown to inhibit 

glucocorticoid-mediated transcription by the a  form (Bamberger et al 1995) although 

the mechanism remains unclear but may involve the formation of non-transactivating 

a/p  heterodimers or competition for a glucocorticoid receptor coactivator.

1.5.5 Transcriptional Control of Glucocorticoid-Responsive Genes 

In eukaryotes, all genes are transcribed by RNA polymerase II (Conaway et al 1993) 

and this is the ultimate target for glucocorticoid-modulation of gene transcription. In a 

TATA-box (5’-TATAA-3’) containing promoter, activation of RNA polymerase II 

(RNApol) begins by the assembly of a pre-initiation complex composed of RNApol and 

a number of accessory factors. These are named TFII A to H (the TF stands for 

transcription factor and the II denotes it is associated with RNA polymerase II). The 

first factor to bind to the promoter is the TATA-box binding transcription factor TFIID. 

This complex is stabilised by the binding of TFIIA to TFIID and this complex is 

recognised and bound to by TFIIB (Maldonado et al 1990). The DAB-TATA complex 

is critical for the binding of RNApol that binds via a TFIIF factor to the DAB-TATA 

complex. The complex DAB-RNApol-F is now recognised by TFIIE and TFIIH (Flores 

et al 1992) and these factors bind to form a mature complex that, in the presence of 

ribonucleoside triphosphates, directs low level RNA synthesis (Goodrich et al 1994).

As all genes are transcribed by the RNA polymerase II complex, any effect of the 

glucocorticoid receptor (and indeed all other transcription factors) on gene transcription 

will be mediated by modulation of the activity of this complex.
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The most obvious mechanism would be direct interaction with the polymerase itself or 

any of the TFII factors to increase or decrease complex assembly. Work on purified in 

vitro systems show that the glucocorticoid receptor interacts with TFIID through its Ti 

transactivation domain (Ford et al 1997) and similar interactions have been found for 

the oestrogen receptor with TFIID (Sadovsky et al 1995). Direct interactions between 

TFIIB and the oestrogen receptor have been demonstrated (Ing et al 1992), but as yet no 

other TFII factors have been shown to interact directly with the glucocorticoid receptor. 

Another mechanism would be indirect interaction between the glucocorticoid receptor 

and the transcription machinery through a bridging protein. Evidence that this might be 

an important mechanism initially came from transcriptional interference (or 

“squelching”) studies (Meyer et al 1989). In these experiments a system that expresses a 

gene in response to one transcription factor is inhibited when another transcription 

factor is over expressed and is thought to occur through competition between the two 

transcription factors for a shared bridging protein. Thus the oestrogen receptor interferes 

with glucocorticoid receptor signalling, and conversely the glucocorticoid receptor 

interferes with oestrogen receptor signalling (Meyer et al 1989). Similar interactions 

have since been found between most members of the steroid receptor family.

Direct evidence for the existence of these bridging proteins, or coactivators, has come 

initially from yeast studies, where candidate proteins can be produced and purified in 

large scales, with later cloning of homologous genes in mammals. Using this approach, 

a coactivator of the glucocorticoid receptor has been identified (Hong et al 1996). This 

protein, known as GRIP1 (glucocorticoid receptor interacting protein 1) binds to the 

glucocorticoid receptor through its 1 2  domain, and also interacts with all other steroid
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receptors and the RAR and RXR retinoic acid receptors, the thyroid hormone receptor 

and vitamin D receptor. Several other coactivators, including SRC-1 (steroid receptor 

coactivator), TIF1 (thyroid receptor interacting factor) and RIP 140 (receptor interacting 

protein 140kDa), have since been identified. What remains to be worked out is whether 

these coactivators bind to the basal transcription apparatus, and how they increase 

transcription.

Another potential mechanism to modulate transcription is to control how easily the 

promoter can be read by the transcription apparatus. Normally, DNA exists in a 

complex coiled-coiled-coiled double helix structure supported by histones and 

accessory proteins and known collectively as chromatin. This higher structure hides the 

promoter from solution making it inaccessible to RNA polymerase and any transcription 

factors. Recently, enzymes able to open or close this chromatin structure have been 

identified. Histone acetyl transferase (Grunstein 1997) acetylates basic lysine residues 

on the histone protein causing it to unwind from DNA and releasing the sequence 

partially into solution. The corollary enzyme is histone deacetylase (Wolffe 1997) that 

allows histones to re-wrap DNA into compact coils. Two related proteins, CBP (cyclic 

AMP response element binding protein binding protein) and p300 have been shown to 

stimulate histone acetylation activity. These proteins are stimulated by a number of 

signal pathways. One of these is AP-1 (activator protein 1) a heterodimer of c-jun and c- 

fos transcription factors, controls expression of the inflammatory mediator collagenase 

I; another is N F -kB (nuclear factor kB ) that controls cytokine expression. The 

glucocorticoid receptor antagonises the effects of AP-1 and N F -kB possibly by
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stimulating histone deacetylase activity (Barnes 1998), although this remains 

controversial.

Finally, modulation of transcription could be achieved by the glucocorticoid receptor 

interacting with any other transcription factor either increasing or decreasing its effect 

on the RNA polymerase complex. Such direct interactions have been found between 

AP-1 and the glucocorticoid receptor (Yang Yen et al 1990) where the glucocorticoid 

receptor binds the c-jun subunit of AP-1 in the cytosol preventing it from binding to 

DNA and increasing transcription. A similar protein-protein interaction has been found 

between the glucocorticoid receptor and NF-kB (Ray et al 1994) reducing induction of 

cytokines. An additional anti-inflammatory mechanism whereby the glucocorticoid 

receptor inhibits NF-kB has recently been proposed. In lymphoid cell lines activation of 

the glucocorticoid receptor induces a protein known as I-kB that diffuses to the cytosol, 

binds to NF-kB and forms a transcriptionally silent complex (Auphan et al 1995). The 

importance of these direct protein-protein interactions in glucocorticoid signalling has 

recently been underscored by the description of a knock-in mouse with a defect in the D 

zinc finger preventing cooperative dimerisation to GREs (Reichardt et al 1998). 

Although unable to bind to classical GRE motifs in promoters, these mice are 

morphologically and physiologically normal although unable to induce gluconeogenic 

enzymes in response to hypoglycaemia or stress. This suggests that protein-protein 

interactions with other transcription factors, without the need for DNA binding, may be 

the major mechanism of glucocorticoid signalling in vivo.

Thus the glucocorticoid receptor may signal to the transcription apparatus through 

several mechanisms including direct interaction with the basal transcription machinery,
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interaction through coactivators, interaction with chromatin structure or by protein- 

protein interaction with other transcription factors.

1.6 Polymorphisms of the Glucocorticoid Receptor Gene

The original description of familial glucocorticoid resistance (Vingerhoeds et al 1976) 

described a syndrome with elevated ACTH, mineralocorticoids, androgens and cortisol 

with no stigmata of cortisol excess, but with hypertension, and in female subjects, 

hirsutism and infertility. The pathophysiology of the condition is believed to result from 

global resistance to glucocorticoids (Chrousos et al 1993). In the hippocampus, 

hypothalamus and pituitary, reduced glucocorticoid sensitivity will increase ACTH 

secretion from the pituitary. This stimulates the adrenals to synthesise increased 

concentrations of cortisol, but also deoxycorticosterone, corticosterone and the adrenal 

androgens DHEA and androstenedione. The elevated concentrations of 

deoxycorticosterone and corticosterone saturate 11-p hydroxysteroid dehydrogenase 

type 2 in the nephron causing sodium retention and hypertension. The adrenal 

androgens produce hirsutism in women, and by inhibiting gonadotrophin releasing 

hormone and luteinising hormone, disrupt the normal cycling of gonadotrophins and 

result in infertility.

Subsequently a defect in the ligand binding domain of the glucocorticoid receptor gene 

was demonstrated in one kindred (Hurley et al 1991). This aspartate to valine 

substitution at codon 641 (abbreviated as Asp6 4 iVal and due to a T to A substitution at 

nucleotide 2054 of the cDNA, abbreviated as T2 0 5 4 A ) resulted in reduced affinity for 

glucocorticoid binding and greatly reduced transactivation of a glucocorticoid 

responsive reporter construct in transfection experiments.
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Several further glucocorticoid receptor mutations have since been described with 

varying molecular and pathological phenotypes. Karl described a A 1220G (Asn3 6 3Ser) 

mutation downstream of the transactivation 1 (ti) domain in the cDNA of the receptor 

gene (Karl et al 1993). Transfection experiments showed this cDNA produced a 

functional receptor. Subsequent analysis of the genomic receptor gene, however, 

showed a 4 base pair deletion at the splice site between exon 6 and the following intron 

that resulted in the A to G substitution in the cDNA, and in a rapidly degraded transcript 

with no expressed receptor protein. Malchoff described a G2317A (V afelle) mutation in 

the ligand binding domain that resulted in reduced affinity for ligand binding (Malchoff 

et al 1990). Karl has also described a TigosA (IlessgAsn) mutation (Karl et al 1996). This 

produces a receptor with absent ligand binding and transactivation activity that also 

reduced the ability of the wild-type receptor to transactivate a glucocorticoid responsive 

reporter construct in transfection experiments. In addition to glucocorticoid resistance, 

the propositus with this mutation subsequently developed Cushing’s disease possibly 

due to prolonged ACTH stimulation of the pituitary.

A further polymorphism, a restriction fragment length polymorphism (RFLP), 

associated with the glucocorticoid receptor gene has been described (Weaver et al 

1992). On digestion of genomic DNA with the restriction enzyme Bel I, southern 

blotting detects 2 alleles of 2.3 and 4.5 kilobases, with relative frequencies of 0.45 and 

0.55, when probed with the OB7 incomplete cDNA of the glucocorticoid receptor 

(described by Hollenberg et al 1985). The position of the polymorphism remains 

unknown, but given the size of the fragments and the lack of polymorphic RFLPs for 

Bel I in the cDNA of the gene, it is likely to lie within intronic or promoter sequence.
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Several studies have shown an association between this Bel I RFLP and obesity, 

hyperinsulinaemia and hypertension. In a study of obese women, subjects homozygous 

for the larger fragment (AA) had significantly higher fasting and glucose-clamped 

insulin concentrations (Weaver et al 1992). In a separate study, subjects homozygous 

for the larger allele (AA) were more likely to have familial higher blood pressure than 

the mean (Watt et al 1992), although this difference was not statistically significant. In a 

further study, AA homozygotes had greater sensitivity to vasoconstriction to budesonide 

applied topically to skin (Panarelli et al 1998). Of note was the observation in this study 

that urinary corticosteroid metabolites did not differ between groups of contrasting Bel I 

genotypes. In contrast to generalised glucocorticoid resistance, therefore, where 

increased ACTH drive to the adrenal increases the synthesis of a number of 

corticosteroids, those subjects with increased skin sensitivity did not have reduced rates 

of corticosteroid production suggesting that any difference in glucocorticoid sensitivity 

may be restricted to particular tissue types. What remains to be determined is firstly, 

whether the Bel I RFLP alters the number of glucocorticoid receptors in tissues, and 

secondly whether any change is tissue specific.

1.7 Glucocorticoid Excess

When circulating glucocorticoid levels are elevated, the lipid-soluble hormone has free 

access to all tissues. This increases glucocorticoid receptor activation, alters the balance 

of gene transcription and has profound effects on every tissue and physiological system. 

The symptoms and signs resulting from this are collectively known as Cushing’s 

syndrome.
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The features of Cushing’s syndrome are listed below in table 1.1 and include effects on 

carbohydrate, lipid and protein metabolism, disturbed immune function and altered 

neurochemical function.

Table 1.1 Symptoms and Signs of Cortisol Excess

Symptoms % Prevalence
Weight gain 91
Menstrual irregularity 84
Hirsutism 81
Psychiatric 62
Backache 43
Muscle weakness 29
Fractures 19
Loss o f scalp hair 13

Signs
Obesity 97

Truncal 46
Generalised 55

Plethora 94
Moonface 88
Hypertension 74
Bruising 62
Striae 56
Muscle weakness 56
Ankle oedema 50
Pigmentation 4

Other findings
Hypertension 74
Diabetes 50

Overt 13
Glucose intolerance 37

Osteoporosis 50
Renal calculi 15

from Ross and Linch 1982

Carbohydrate metabolism

Cortisol excess decreases carbohydrate tolerance and often results in the development of 

diabetes. The main mechanisms underlying this are increased hepatic glucose 

production and reduced peripheral tissue utilisation.

In isolated hepatocytes, intact animals and in man, glucocorticoids increase the activity 

of most of the key enzymes of gluconeogenesis with the greatest effects on the rate-

76



1 Introduction

limiting enzyme phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6 - 

phosphatase. Most of these effects appear to be due to the increased transcription of 

mRNA for the respective enzymes due to a glucocorticoid-dependent mechanism. The 

promoter of PEPCK has an extraordinarily complex enhancer 5’ sequence with regions 

responsive to the dietary, metabolic and hormonal state of the animal (Hanson et al 

1997). In particular, it contains sequences that reduce transcription in response to 

carbohydrate feeding, hypoxia and insulin, while distinct sequences enhance 

transcription in response to glucagon, through a cAMP-dependent process, 

glucocorticoids and thyroid hormone. The glucocorticoid-responsive unit (GRU) of the 

promoter does not contain classical consensus GRE sequences. Instead, activated 

glucocorticoid receptors bind to 2  relatively weak binding sites in the promoter and 

through interaction with a number of additional proteins including accessory factors 1 

and 2 (AF1 and AF2) stimulate transcription. Many of these additional proteins appear 

to be tissue-specific transcription factors and transcription is under the control of these 

proteins rather than the glucocorticoid receptor acting alone, thus in adipose tissue 

where PEPCK is involved in glyceroneogenesis for the re-esterification of free-fatty 

acids to triglycerides, glucocorticoids inhibit PEPCK transcription.

A final effect glucococorticoids exert on the PEPCK gene is in imprinting. Elevated 

fetal glucocorticoid levels have been shown, in rats, permanently to increase the 

expression of PEPCK in liver, thus programming the liver to increase gluconeogenesis 

in the adult (Nyirenda et al 1998). The mechanism underlying this effect remains 

unknown but may involve changes in the methylation state of the 5’ region of the gene 

and altered chromatin condensation, both of which are noted to vary in circumstances 

affecting gene transcription. Thus, subtle patterns of condensation/decondensation may
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permanently alter the sequences capable of interacting with transcription factors and 

through changes in the methylation state pass this effect to all cells derived from the 

same lineage in the adult.

In conjunction with increased hepatic glucose production, peripheral insulin sensitivity 

is reduced particularly in skeletal muscle and adipose tissue. Insulin receptors in most 

tissues appear to be normal in number and their affinity for insulin, but a post-receptor 

binding defect results in reduced efficiency of receptor-effect coupling. This is due 

mainly to reduced translocation of the glucose transporter, GLUT4, from cytosol to cell 

membrane (Weinstein et al 1998) through a poorly understood glucocorticoid- 

dependent process. The net result is reduced glucose uptake in response to insulin with a 

compensatory increase in circulating glucose and insulin secretion.

Lipid Metabolism

Much of the weight gain in glucocorticoid excess is due to deposition of adipose tissue. 

This is often in a characteristic distribution around the face (“moon-face”), over the 

nape of the neck (“buffalo hump”), intra-abdominally and in less clinically evident sites 

such as the epidural space, mediastinum, and retro-orbital space. This is due to 

increased fat deposition and increased cellularity of adipose tissue.

Glucocorticoid excess increases lipoprotein lipase activity in adipose tissue (Ottosson et 

al 1994), increasing the uptake of lipid from LDL, and inhibits hormone-sensitive lipase 

(Samra et al 1998) thus reducing the release of free fatty acids. Together these effects 

promote net fat accumulation in adipose tissue. Both of these effects are thought to be 

due to altered expression of the respective genes by a glucocorticoid receptor-dependent 

mechanism. Increased cellularity of adipose tissue is also found and this further 

increases the capacity of adipose tissue to accumulate lipid. This effect is partly due to
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glucocorticoid induction of the PPARy2 (peroxisome proliferator activated receptor). 

This receptor, the endogenous ligand for which has recently been found to be a novel 

prostaglandin -  prostaglandin J, is an adipose-specific gene product that induces the 

differentiation of pre-adipocytes to mature adipocytes (Vidal-Puig et al 1997).

Of special note is the differential effect glucocorticoids have on various adipose depots. 

Compared to subcutaneous adipose tissue, the visceral depot is increased more and this 

may be due to the combination of increased glucocorticoid receptor number, increased 

11 pHSD type 1 activity (Bujalska et al 1997), increased PPARy2 receptor and increased 

local insulin concentrations. This effect of glucocorticoids on visceral fat accumulation 

is important and has been shown repeatedly to be a potent risk factor for cardiovascular 

disease, endothelial dysfunction, hypertension, dyslipidaemia, atheroma and diabetes 

(Carey 1998).

Hepatic triglyceride, cholesterol and lipoprotein production is increased in 

glucocorticoid excess and this results in increased circulating levels of VLDL, LDL and 

HDL particles (Brindley et al 1995). When hepatic capacity to produce apo-lipoproteins 

is exceeded, lipid accumulates within the cell to produce fatty liver disease. 

Furthermore, glucocorticoids reduce cholesterol clearance in the liver increasing 

circulating levels further.

In muscle, glucocorticoids promote lipolysis and the liberation of free fatty acids, 

possibly through their effect to reduce glucose disposal in this tissue, and probably also 

due to a permissive effect on catecholamine and glucagon action. The overall effect is 

an increase in free fatty acid and ketone body availability, which is processed in the 

liver to lipoproteins and to fuel gluconeogenesis.
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Protein Metabolism

In peripheral tissues glucocorticoids produce net protein catabolism due to reduced 

protein formation in adipose tissue, skin, lymphoid tissue and bone and increased 

proteolysis particularly in muscle, adipose tissue, and lymphoid tissues with free amino 

acids becoming metabolised to glucose by gluconeogenesis in the liver (Umpleby et al

1996). In muscle the main effect of glucocorticoids appears to be increased protein 

breakdown (Simmons et al 1984). An additional effect of glucocorticoids is on the 

growth hormone axis with reduced sensitivity of the pituitary to GHRH resulting in 

lower growth hormone levels and reduced protein synthesis (Dieguez et al 1996).

In liver, overall protein synthesis is increased by glucocorticoids and much of this effect 

is due to induction of the enzymes required for gluconeogenesis and lipoprotein 

formation.

Immune Function

Glucocorticoids produce profound immunosuppression and increase the risk of systemic 

infection. This effect extends to all the principal cells of the immune system including B 

lymphocytes resulting in reduced antibody production, T lymphocytes, natural killer 

cells, monocytes, and eosinophils. Numerous defects in immune modulation have been 

observed in glucocorticoid excess and it seems likely that to differing degrees and in 

different circumstances, all make contributions. Glucocorticoids are able to induce 

expression of an anti-inflammatory glycoprotein, lipocortin-1 (Flower et al 1994), 

which inhibits the enzyme phospholipase A2, responsible for the generation of 

prostaglandin and leukotriene mediators. Glucocorticoids have numerous effects on 

cytokine production including suppressed synthesis of interleukin 1 and 2 , interferon y
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and tumour necrosis factor a  (Paliogianni et al 1993). This leads to reduced 

responsiveness to infection and a blunted inflammatory response by B lymphocytes, and 

T helper and T suppresser lymphocytes. In addition, the production of cytotoxic 

substances including perforin and granzyme A are reduced in natural killer cells (Zhou 

et al 1997). A general effect of glucocorticoids is increased apoptosis in lymphocytes 

and monocytes by poorly understood mechanisms which are, at least in part, due to 

increased sensitivity to the p53-dependent apoptosis pathway (Owens et al 1991). In 

contrast, neutrophils have greatly decreased rates of apoptosis in glucocorticoid excess 

(Cox 1995) and this appears to be the main mechanism underlying the polymorph 

leukocytosis seen in Cushing’s syndrome, and exogenous glucocorticoid treatment. 

Leukocyte movement to different tissue compartments is altered by glucocorticoid 

treatment. Increased glucocorticoid concentrations cause lymphocytes, monocytes and 

eosinophils to redistribute to bone marrow, spleen, lymph nodes and thoracic duct 

causing a relative circulating depletion of these cells. In contrast, neutrophils rise in 

response to glucocorticoid excess due to increased production and release from bone 

marrow and reduced cell destruction by apoptosis. In addition, through inhibitory 

effects on chemoattractant factors, the numbers of cells recruited to sites of tissue 

damage, inflammation or infection is greatly reduced by glucocorticoids.

Neurochemical Function

Psychiatric illness is commonly found in chronic glucocorticoid excess. The commonest 

illness is depression in around 65% of patients, although euphoria, psychosis and panic 

disorder are also common findings. Numerous neurochemical disturbances have been 

described in the brains of subjects suffering from hypercortisolism, the commonest
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including increased catecholaminergic activity in the locus caeruleous, and reduced 5- 

hydroxytryptamine (5-HT) activity in the hippocampus.

The main effects of glucocorticoids appear to be mediated through the 

mineralocorticoid receptor in the hippocampus, reducing production of 5-HT and 

reducing expression of 5 -H T ia  (Joels et al 1991) and 5-HT2C receptors (Holmes et al

1997). The overall reduction in 5-HT activity may be the cause of many of the 

psychiatric symptoms of glucocorticoid excess. Reduced 5 -H T ia  receptor levels have 

been found to be associated with depression and an important effect of antidepressants 

is to restore levels of these receptors towards normal.

As discussed earlier, these 5-HT pathways also have important roles in the regulation of 

glucocorticoid production by controlling CRH and ACTH release.

Skeletal System

Glucocorticoids have complex actions on bone that lead to net loss of calcified tissue. 

The principal mechanisms include reduced intestinal calcium absorption, increased 

renal calcium excretion, consequent secondary hyperparathyroidism and activation of 

osteoclast activity (Ziegler et al 1998). Glucocorticoids produce relative 

hypogonadotrophic hypogonadism by inhibiting gonadotrophin releasing hormone 

thereby reducing osteoblast production of bone matrix (Reid 1997). Together, these 

effects produce accelerated bone loss especially in postmenopausal women and older 

men (Mitchell et al 1990), and greater acute loss of bone is found at the hip than in the 

spine when measured by dual energy X-ray absorption scanning (Saag et al 1998). 

Haemodynamic Function

The majority of patients with glucocorticoid excess have clinically evident 

hypertension. Glucocorticoids alter cardiac output, circulating volume and peripheral
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resistance and could alter blood pressure through any single mechanism, or 

combinations of these (Whitworth et al 1997).

Cardiac output is increased by glucocorticoids (Mantero et al 1992), although the 

mechanism is poorly understood. Part of the effect may be due to increased cardiac 

contractile protein synthesis with an accompanying increase in stroke volume (Clark et 

al 1986).

Circulating volume increases due to renal sodium retention. This effect is not due to 

mineralocorticoid activation as renin is rarely suppressed. Furthermore, spironolactone 

does not reduce blood pressure although the glucocorticoid/progesterone antagonist 

mifepristone (RU486), does (Mantero et al 1992). As a caveat, however, it is important 

to acknowledge that although short term administration of cortisol increases renal 

sodium retention, the effects of chronic cortisol excess may be quite different. Studies in 

subjects with Cushing’s syndrome (and by definition chronic cortisol excess) had 

normal total body sodium and normal renin-angiotensin systems (Ritchie et al 1990). 

Vascular tone is increased in glucocorticoid excess and the reactivity to a number of 

vasoconstrictors is enhanced including angiotensin II and noradrenaline (Whitworth et 

al 1986). Systemic vascular resistance is increased, and may contribute to hypertension. 

Thus, although many mechanisms contribute to glucocorticoid-induced hypertension the 

relative importance of each remains incompletely resolved.

1.8 Cardiovascular Disease

Cardiovascular disease remains the greatest source of morbidity and mortality in the 

developed world accounting for 30-50% of all deaths (Murray et al 1997). The epidemic 

of myocardial ischaemia, infarction and stroke (both ischaemic and haemorrhagic) is 

estimated to cost around $90 billion per year in the United States alone (Peyser 1997).
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As the world becomes more urbanised, cardiovascular disease becomes more common. 

Countries with no significant incidence of cardiovascular disease in the past 30 years 

now contribute more to the global cardiovascular burden than all developed countries 

(Pearson et al 1996). Even as the incidence of stroke, and to a lesser extent myocardial 

infarction, declines in the West, cardiovascular disease is set to become one of the main 

health issues world-wide in the next millennium.

The main focus of this thesis is the glucocorticoid receptor and its possible role in 

determining cardiovascular disease. To consider how glucocorticoids may contribute to 

cardiovascular disease it is necessary to discuss briefly the development of 

cardiovascular disease and the mechanisms thought to control these processes.

1.8.1 Pathogenesis

The principal cause of cardiovascular disease is atherosclerosis (Ross 1993). In this 

condition an atheromatous plaque occludes, partially or wholly, an artery resulting in 

tissue ischaemia or infarction. Although uncomplicated atheroma may occlude the 

arterial lumen, more commonly the complications of haemorrhage into the soft core of 

the plaque or thrombosis formation on the ulcerated surface of a plaque are responsible 

for disease.
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1.8.2 Atheroma

1.8.2.1 Structure o f  a Normal Artery

Large and medium-sized arteries are composed of several discernible layers; the intima, 

media and adventitia (figure 1.20).

Figure 1.20 Section of Descending Aorta 

Intima
The thin layer of endothelial cells is seen in blue, 
overlying the relatively acellular internal elastic lamina. 
Normally no smooth muscle cells are present.

Media
The media in this large vessel contains large amounts of 
matrix and smooth muscle cells

Adventitia
The looser connective tissue of the adventitia surrounds 
the media, and is separated from it by the external elastic 
lamina

The intima is composed of endothelial cells joined by tight junctions and overlying an 

internal elastic lamina. The endothelial layer imposes a physical barrier controlling the 

passage of macromolecules and cells between the lumen and vessel wall. In addition 

endothelial cells secrete vasoactive substances which promote vascular dilatation 

(principally nitric oxide, NO, and prostacyclin, PGL) or constriction (mainly 

endothelin-1), cytokines and adhesion molecules to direct the passage of immune cells, 

and regulators of the thrombotic pathway (heparin, prostacyclin).

The normal media contains only vascular smooth muscle cells and a matrix of collagen, 

elastic fibres and glycosaminoglycans. Elastin fibres are arranged to form layers of 

fenestrated elastic lamina and are more abundant in the capacitance vessels such as the
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thoracic aorta. Smooth muscle cells are arranged circularly to the vessel lumen and 

become more common in the abdominal aorta and medium sized arteries. In health 

vascular smooth muscle cells display a predominantly contractile phenotype responding 

to a wide range of vasodilators and vasoconstrictors. Very low rates of secretory activity 

maintain the normal tissue matrix composition.

At the outer limit of the media is the external elastic lamina that separates the media 

from the outer adventitia. This layer is composed of connective tissue rich in collagen 

fibrils that impart high tensile strength to the vessel wall preventing rupture. Contained 

within the adventitia is a plexus of vessels, the vasa vasorum, which provide the blood 

supply to the adventitia and the media.

1.8.2.2 Development o f  Atheroma

Atheroma is a process of accumulation of lipid, cells and fibrous tissue within the 

intima and media of medium and large arteries. Long thought to be a relatively inert 

lipid mush (Greek root axriepe describes soft porridge) it is now clear atheroma is a 

highly organised and dynamic disease process. Progression from normal arterial wall 

through the earliest lesion of the fatty streak to mature atheromatous plaque is the result 

of co-ordinated communication between a number of cell types by a variety of 

mediators (Figure 1.21).
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Figure 1.21 Atheromatous 
Plaque Development
Stages in the development of an 
atheromatous plaque are shown 
beginning with a normal artery
(1). Endothelial damage results in 
an adherent surface to which 
monocytes adhere and insinuate
(2). With increasing damage 
more cells are recruited and 
imbibe lipid to form a fatty streak
(3). Proliferation and lipid uptake 
by vascular smooth muscle cells 
follows (4). Complex 
inflammatory signals are 
exchanged between cells within 
the plaque to maintain, increase 
or reduce the size of the plaque 
(5).
It is believed that most of the 
changes in atheroma 
development are reversible and 
may be constantly in a state of 
flux, illustrated by the double­
headed arrows from each stage to 
the next.
(Modified from Ross 1993)
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1.8.2.3 The Fatty Streak

The earliest lesion of atheroma is the fatty streak (Faggiotto et al 1984). Commonly 

found in normal subjects from the second decade onwards these are fatty deposits in the 

intima of medium and large arteries (Stary 1989). Histologically these lesions are 

composed of lipid-laden macrophages, known as foam-cells, and T lymphocytes.

Early studies in the animal model of the cholesterol-fed rabbit showed patches of 

endothelium with adherent leukocytes forming before, and at the same sites, as fatty 

streaks (Walker et al 1986). The function of the endothelium appeared to be altered 

resulting in the development of fatty streak, and ultimately atheroma.

A number of injuries are able to increase cell adhesion to endothelium including the 

mechanical stress of hypertension, toxins from tobacco smoke, elevated homocysteine 

concentrations and a number of viral and immunological insults. Recently, however, the 

central role of oxidised low density lipoprotein (oxLDL) in endothelial injury and 

atherogenesis has become apparent (Yl*»-Herttuala 1999). LDL becoming oxidised in. 

the circulation, or as it passes through the endothelial cell by NO, induces the 

endothelial cell to express adhesion molecules such as vascular cellular adhesion 

molecule-1 (VCAM-1). A number of mediators are responsible for this response 

including lipid peroxides, lysophophatidylcholine, tumour necrosis factor a  (TNFa), 

and interleukin-1 (IL-1). Adhesion molecules act as recognition sites and anchors for 

circulating monocytes and T lymphocytes. These attach themselves to the endothelial 

surface and develop surface projections, insinuating them between the endothelial cell 

junctions allowing the leukocytes to pass into the intima. Here monocytes change their 

phenotype to macrophages and through a scavenger receptor and a recently cloned 

oxLDL receptor (Sawamura et al 1997) expressed in endothelial and vascular smooth
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muscle cells, begin to endocytose oxLDL. As the macrophages accumulate oxLDL the 

cytosol becomes stuffed with lipid droplets producing the highly refractile foam cells 

seen on light microscopy. Initially macrophages are able to export this accumulated 

lipid by packaging it with apoE lipoprotein forming high density lipoprotein (HDL) 

which then enters the circulation for peripheral metabolism.

The activated macrophages in the fatty streak secrete cytokines and growth factors that 

promote plaque enlargement (Ross 1993). Monocyte chemoattractant protein-1 (MCP- 

1), and granulocyte/monocyte-colony stimulating factor (GM-CSF) promote further cell 

recruitment to the lesion and maintain cell growth (preventing apoptosis and the 

discharge of lipid into the intercellular matrix) respectively. The generation of further 

oxLDL and the elaboration of factors such as platelet derived growth factor (PDGF), 

vascular endothelial growth factor (VEGF), TNFa and IL-1 promote further endothelial 

dysfunction. This results not only in prolonged adhesion molecule expression but also 

reduced vasodilator generation (principally NO and PGI2). Meanwhile secretion of 

factors such as PDGF, basic-fibroblast growth factor (bFGF) promote the proliferation 

of vascular smooth muscle cells and encourage them to develop a secretory phenotype 

and to move into the subintima. The overall effect is the accumulation of further 

macrophages, T lymphocytes and vascular smooth muscle cells in the lesion and the 

fatty streak grows into the intermediate lesion.

1.8.2.4 Intermediate Lesion

The accumulation of further foam-cells and T-lymphocytes expands the lipid-rich 

component of the lesion. As cells accumulate some undergo apoptosis discharging their 

contents into the extracellular matrix (Libby et al 1996). The stimulus for this is unclear 

but may in part be due to the hostile and ischaemic environment of the core lesion to
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extremely metabolically active cells. Alternatively, the accumulation of oxLDL and 

prolonged stimulation by growth factors and other inflammatory mediators may push 

the cell cycle into apoptosis. In either event the increased amounts of free oxLDL in the 

lesion encourage further expansion of the lesion and increased vascular smooth muscle 

cell proliferation with the elaboration of fibrous tissue around the lipid core and 

especially at the subintimal cap. As the process advances the lesion develops into the 

mature plaque. Alternatively, the expanding lipid pool increases the physical instability 

of the lesion encouraging the development of a complicated plaque by rupture.

It is important to recognise at this point that apoptosis of the cellular components of the 

lesion may lead to partial plaque regression if the net export of lipid from the lesion 

exceeds import. Enhanced NO generation may induce apoptosis and lipid export (Wang 

et al 1999) leading to plaque regression. The source of NO in the active plaque is likely 

to come from 2 sources; the constitutive endothelial NO synthase (eNOS) and the 

induced NO synthase (iNOS) enzymes of endothelium. The latter enzyme is widely 

expressed in endothelium and vascular smooth muscle cells in response to inflammation 

and produces large amounts of NO over several hours to days. Although its role in 

vascular physiology remains undefined, this may be the major source of NO in an 

inflamed plaque. Of note, the expression of iNOS is selectively inhibited by 

glucocorticoids (Radomski et al 1990).

1.8.2.5 The Mature Plaque

This lesion is composed of a molten lipid core with interspersed surviving foam-cells 

and T-lymphocytes. Surrounding the lesion is a capsule of secretory vascular smooth 

muscle cells that produce a fibrous matrix. In the subintima this layer is thickened to 

form a cap (Stary 1989). The effect of this capsule is thought to stabilise and strengthen
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the plaque. As the plaque continues to grow it may narrow the vascular lumen 

eventually producing a haemodynamically significant stenosis or occlusion. These 

lesions produce ischaemia or infarction of the dependent tissue, typically myocardium, 

brain or limbs, resulting in angina, myocardial infarction, stroke, intermittent 

claudication or peripheral gangrene. However, complications of the stable mature 

plaque are now thought to be the main cause of these diseases.

1.8.2.6 Complicated Plaque 

Vascular Spasm

Frequently the endothelial layer overlying the fibrous plaque becomes denuded. This 

may be caused by the repeated inflammatory and proliferative stimuli to endothelial 

cells which eventually results in cell senescence or cell apoptosis. As the protective 

endothelial barrier is lost NO and PGI2 secretion are reduced and the vessel is subject to 

the unopposed vasoconstrictor influences of the sympathetic innervation, circulating 

adrenaline, and angiotensin II. This may produce vascular spasm around the plaque 

resulting in repeated episodes of tissue ischaemia precipitated particularly on stress. 

Thrombosis

As the cap is damaged the anticoagulant effects of endothelium are lost and platelets 

adhere to the exposed collagen and matrix of the fibrous cap activating the coagulation 

cascade and resulting in thrombus formation (Arroyo et al 1999). This thrombus may 

produce tissue ischaemia which resolves as the thrombus lyses, result in embolisation to 

the dependent tissue or go on to produce an occlusive thrombus with tissue infarction. 

Ulceration

If the protective fibrous cap is breached blood enters the soft core of the lesion 

producing sudden vascular occlusion by lesion expansion or vascular dissection (Arroyo
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et al 1999). Several enzymes secreted by the macrophage may weaken the cap including 

collagenases, elastase, stromolysin and gelatinases (Mach 1997). The mechanical stress 

of increased blood pressure may then be sufficient to rupture the weakened fibrous cap. 

Calcification of the plaque, particularly as lipid soaps, increases the rigidity of the core 

and raises the intra-lesional stress generated by blood pressure thus making calcified 

lesion more prone to rupture (Fitzpatrick 1994).

1.8.3 Aetiology

An understanding of the mechanisms through which established risk factors for 

cardiovascular disease operate includes several important effects on atheroma formation 

and complication (Lowe et al 1996).

Age

As atheroma is a gradually progressive condition, increased age results in an increased 

number and severity of atheromatous lesions.

Sex

Premenopausal women have a greatly reduced incidence of cardiovascular disease 

compared either with postmenopausal women or men of the same age. A large 

component of this protective effect is thought to be due to oestrogen. Oestrogen 

increases NO generation in the endothelium (Chen et al 1999) and reduces the LDL 

cholesterol fraction (O’Brien et al 1997), and both may contribute to cardiovascular 

protection.

Family History

The influence of family history on an individual’s subsequent risk of developing 

cardiovascular disease is strong. Familial effects include shared environment, including 

intra-uterine growth rate, diet, infectious agents and pollutants, and shared genes.
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Disentangling these influences may be difficult. Nonetheless, there is good evidence for 

shared risk in parental-offspring (Colditz et al 1991, Watt et al 1992) and twin studies 

(Marenberg et al 1994). In twins the concordance for premature coronary artery disease, 

after controlling for conventional risk factors, was increased 8 fold for monozygotic 

twins and 4 fold for dizygotic twins. This suggests there is an important genetic 

component to cardiovascular risk.

Dyslipidaemia

In primary hypercholesterolaemia an autosomal dominant defect of the LDL receptor 

gene results in inactive LDL receptor expression on endothelial cells (Goldstein & 

Brown 1989). As a result of reduced LDL active uptake, LDL accumulates in the 

circulation to greatly increased levels and reaches the intima through gaps in the 

endothelial intercellular junctions. As a result of subsequent LDL oxidation, these 

subjects have a greatly increased risk of developing cardiovascular disease often in their 

fourth decade, and in homozygotes in their teens.

More commonly subjects with cardiovascular disease are found to have a mixed 

dyslipidaemia with moderately elevated LDL and reduced HDL. This profile is thought 

to increase the likelihood of developing atheroma by increasing the substrate for oxLDL 

production and, through reduced levels of HDL, reducing the pathway for oxLDL 

clearance from the developing plaque. Recent studies confirm the likely importance of 

elevated LDL cholesterol in atherogenesis with reductions in cardiovascular endpoints 

in established (Pederson 1994) and asymptomatic (Shepherd et al 1995) disease.

Smoking

Smoking remains the greatest avoidable risk factor in developing cardiovascular 

disease. Despite its importance, the mechanism of vascular damage by tobacco smoke
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remains unknown (McGill 1988). A number of tobacco-smoke components have been 

shown to induce endothelial dysfunction and damage including carbon monoxide, 

nicotine and poly cyclic hydrocarbons. A significant factor appears to be increased 

fibrinogen and thrombus formation in smokers. This may increase the rate of 

complicated plaque formation.

Hypertension

Prolonged elevation of blood pressure increases the shear stress across the endothelium 

and increases turbulence at arterial junctions, favoured sites of atheroma formation 

(Kolpakov et al 1996). The effect of this is endothelial dysfunction with adhesion 

molecule expression and reduced NO and PGI2 production (Traub & Berk 1998). 

Diabetes

Both type I and type II diabetes produces metabolic defects that result in increased 

glucose and lipid in the circulation (Haffner 1998). Prolonged elevation of glucose may 

result in glycosylation of proteins in the endothelium and vessel wall and reduced NO 

generation and increased connective tissue generation in the media (Hogan et al 1992). 

Elevated LDL concentrations increase the substrate for the formation of ox LDL and 

reduced HDL concentrations reduce the ability of macrophages to export lipid from 

plaque to peripheral sites for disposal.

Other effects of diabetes include a poorly understood effect on immune cell function 

that results in mild immunosuppression. This effect is widespread with impairment of 

function in neutrophils, lymphocytes and macrophages, probably through altered 

production of cytokines (Pickup & Crook 1998). In an established plaque this may 

increase the rate of macrophage apoptosis and progression of early fatty streaks to 

mature atheroma.
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Insulin itself has been implicated as a risk factor for atheroma (Stout 1990). In type 2 

diabetes where circulating insulin levels are high to compensate for peripheral tissue 

resistance, insulin may exert growth factor like effects on the cells of the vessel wall or 

plaque to increase the rate of lesion expansion.

Insulin resistance may reflect a primary alteration in insulin-mediated glucose uptake 

with a compensatory rise in insulin secretion. This may be a primary abnormality in 

cardiovascular disease with high correlation between insulin resistance and 

hypertension, dyslipidaemia (especially elevated LDL, elevated VLDL and low HDL) 

and obesity. This association of metabolic derangements is known as Reaven’s 

syndrome (Reaven 1988).

Hyperhomocyst(e)inaemia

The rare condition of homozygous homocysteinamia carries a greatly increased risk of 

premature atherosclerosis and venous thrombosis. This appears to be due to increased 

auto-oxidisation of homocysteine generating oxygen radicals. These radicals then react 

to produce lipid peroxides, vascular matrix damage and smooth muscle proliferation 

increasing atheroma production while endothelial damage presents a prothrombotic 

surface to the circulation. Recently attention has focused on the effect of modest 

elevations in homocysteine or homocystine on the development of cardiovascular 

disease (Malinow 1990). Furthermore, relative deficiencies in folic acid and to a lesser 

degree vitamin B6 and vitamin B12 (which are required as cofactors for the 

homocysteine degradation) are commonly found and may thereby contribute to 

cardiovascular disease (Hankey & Eikelboom 1999).

1.8.4 The Influence of Glucocorticoids on Cardiovascular Disease
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Glucocorticoid excess greatly increases cardiovascular risk and the mortality from 

cardiovascular disease. In subjects with untreated Cushing’s syndrome the mortality 

from cardiovascular causes approached 50% at 5 years (Plotz et al 1952).

A number of risk factors for cardiovascular disease have been derived from 

epidemiological studies (Anderson et al 1990) and are thought to have mechanistic 

importance in the development of these diseases. The protean effects of glucocorticoids 

on physiological and metabolic processes tend to produce a phenotype with many of the 

established risk factors that resembles Reaven’s syndrome, and would be expected to 

increase the susceptibility to cardiovascular disease. Additional effects of 

glucocorticoids on non-standard risk factors, such as reduced nitric oxide generation, 

immunosuppression, central obesity, and depression may further aggravate a poor 

cardiovascular risk profile.

The purpose of this thesis is to examine whether the wide variation in circulating 

glucocorticoid concentrations and in glucocorticoid receptor levels contribute to 

cardiovascular risk in the population.
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Chapter 2

Materials and Methods

2.1 Materials

All reagents used were of the highest available quality. Reagents were obtained from the 

suppliers detailed below.

2.1.1 Basic Chemical Reagents

Absolute ethanol (molecular biology grade) was obtained from University of Glasgow 

Chemistry store.

Boric acid (molecular biology grade) and digitonin were obtained from ICN 

Pharmaceuticals Ltd., Cedarwood, Chineham Business Park, Crockford Lane, 

Basingstoke, RG24 8WD.

Adenosine triphosphate sodium salt, dexamethasone, dimethylsulphoxide (tissue culture 

grade), forskolin, glycerol, melatonin, mineral oil, 13-cis retinoic acid, all trans retinoic 

acid, retinol, trans p carotene, 3,5,3’ tri-iodo-L-thyronine, reverse tri-iodothyronine 

(3,3’,5’ tri-iodo-L-thyronine), Sigmacote ™ (a siliconising solution), sodium chloride 

(molecular biology grade), TEMED (N,N,N’,N’ tetramethyl-ethylenediamine), TRIS- 

hydrochloride (/ra(hydroxymethyl) aminomethane hydrochloride), Triton X-100 ™, 

and Urea were purchased from Sigma-Aldrich Chemical Company Ltd., Fancy Road, 

Poole, Dorset, BH12 40H.

2.1.2 Radiochemicals

'X'J *39[y P] deoxyadenosine 5’ triphosphate, [a P] deoxycytosine 5’ triphosphate and 

[1,2,4,6,7 H] Dexamethasone were purchased from Nycomed Amersham pic.,

9  c
Amersham Place, Little Chalfont, HP7 9NA. [a S] deoxyadenosine 5’ thiophosphate
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was purchased from New England Nuclear Life Science Products, PO Box 60, 

Houndslow, TW5 9RT.

Ecoscint ™ scintillation fluid was purchased from University of Glasgow Chemistry 

stores.

2.1.3 Molecular Biology Reagents and Equipment

Acrylamide, N,N’ methylene 6/s-acrylamide and a Prep-a-Gene kit ™ (for DNA 

purification) were purchased from Bio-Rad Laboratories Ltd., Bio-Rad House, 

Maylands Avenue, Hemel Hempstead, Hertfordshire, HP2 7TD.

IOxTBE buffer and (|)X174 DNA/Hae III Digest molecular marker were purchased from 

Roche Diagnostics Ltd., Bell Lane, Lewes, East Sussex, BN7 1LG.

Antibody to the glucocorticoid receptor was purchased from Cambridge Bioscience, 24- 

25 Signet Court, Newmarket Road, Cambridge, CB5 8LA.

Oligonucleotide primers for PCR and sequencing were obtained from Cruachem, Todd 

Campus, West of Scotland Science Park, Acre Road, Glasgow, G20 OUA.

Agarose was purchased from Life Technologies Ltd., 3 Fountain Drive, Inchinnan 

Business Park, Paisley, PA4 9RF.

Restriction enzymes (Bell, BamHI, EcoRI, FokI, Haelll, Nlalll, PstI, Sau3AI, ScrFI, 

and Styl) and T4 polynucleotide kinase were purchased from New England Biolabs 

(UK) Ltd., 73 Knowl Piece, Wilbury Way, Hitchin, Hertfordshire, SG4 OTY.

A cycle-sequencing kit and sequencing reagents for use in an ABI 373 automated 

sequencer were purchased from Perkin Elmer Applied Biosystems, 7 Kingsland Grange, 

Woolston, Warrington, Cheshire, WA1 7SR.

(|)X174 DNA, pGEM-T Easy Vector kit, and Taq were purchased from Promega Ltd., 

Delta House, Chilworth Research Centre, Southampton, SO 16 7NS.
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Ammonium persulphate, ethidium bromide and formamide were purchased from 

Sigma-Aldrich Chemical Company Ltd.

Taqgene precision plus was purchased from Stratagene Europe, Gebouw California, 

Hogehilweg 15, 1101 CB Amsterdam Zuidoost, The Netherlands.

2.1.4 Photographic Reagents

Autoradiographic cassettes and autoradiographic film was purchased from Nycomed 

Amersham pic. Polaroid film was purchased from Sigma-Aldrich Chemical Company 

Ltd.

2.1.5 Cell Culture Reagents

RPMI 1640 cell culture medium, Dulbecco’s phosphate buffered saline tablets and 

lymphocyte separation medium were purchased from ICN Pharmaceuticals Ltd.

GF-C (glass fibre) filter paper was purchased from Whatman International, Whatman 

House, St. Leonards Road, 20/20 Maidstone, Kent, ME16 OLS.

2.2 Blood Sampling

Blood samples were obtained with the Vacutainer system of needles and evacuated 

bottles supplied by Becton Dickinson, Between Towns Road, Cowley, Oxford, 0X4 

3LY. Samples were taken into lithium-heparinised bottles unless otherwise stated and 

processed immediately. For the biochemical measurements made in the epidemiological 

studies, electrolytes and glucose were processed on an Olympus 5200 analyser, and 

lipid determinations were done on a Beckman CX4 analyser.

2.3 Equipment

The following items of equipment were used.

Several micropipettes spanning 0.5-1 OOOpl, polypropylene 96-well cell culture plates, 

disposable sterile graduated 50ml tubes, 15ml sterile graduated polystyrene tubes and
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plastic Pasteur pipettes were purchased from Alpha Laboratories, 40 Pamham Drive, 

Eastleigh, Hants, SO50 4NU.

A (3-particle shielded box and p-particle barriers were purchased from Phillip Harris, E6 

North Caldeen Road, Calder Street, Coatbridge, Lanarkshire, ML5 4EF.

Radioactivity was measured using a Packard Tri-Carb 2100TR liquid scintillation 

analyser, in scintillation counting vials, both from Packard Bioscience Ltd., Brooke 

House, 14 Station Road, Pangboume, Berkshire, RG8 7AN.

A Sequegen sequencing cell, 97 well comb, and power packs were purchased from Bio- 

Rad Laboratories, Ltd.

An Ultraviolet Stratalinker 1800 was obtained from Stratagene Europe.

A 316nm ultraviolet transilluminator was obtained from Ultra-Violet Products Ltd., 

Unit 1, Nuffield Road, Trinity Hall Farm Estate, Cambridge, CB4 1TG.

A 96-well PCR machine, 96-well PCR plates and lids, and a hybridisation oven were 

obtained from Techne, Duxford, Cambridge, CB2 4PZ.

A Denley Wellwarm cell incubator and a Titertek A1 cell harvester were obtained from 

ICN Pharmaceuticals Ltd.

Centrifugation and incubation temperatures were checked with a digital thermometer 

purchased from Whatman International.

2.4 General Methods

2.4.1 Glassware

All glassware used was rinsed in tap water, then soaked in decon 75 (Decon 

Laboratories, Conway Street, Hove, Sussex, BN3 3LY) overnight. After rinsing in tap 

water and then distilled water, glassware was then dried in an oven at 60°C for 4 hours.
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2.4.2 Micropipetting

Volumes of fluid were transferred using Alpha pipettes (Alpha Laboratories). These 

were recalibrated by weighing standard volumes of distilled water and adjusting the set- 

point of the pipette piston every month. Pipetting errors were never greater than 3% 

standard error of the mean.

2.4.3 pH  Measurement

Measurements of pH were made using a Denver Instrument digital pH meter (Phillip 

Harris). This meter was regularly calibrated using standard solutions of pH 4.0, 7.0 and 

9.0.

2.4.4 Centrifugation

Small samples were centrifuged up to forces of lOOg using a Microcentaur benchtop 

centrifuge (MSE Ltd., United Kingdom).

Larger samples were centrifuged at forces of up to 1500g using a Damon/IEC division 

DPR-6000 centrifuge purchased from International Equipment Company, Bedfordshire, 

United Kingdom.

Ultracentrifugation of plasmid preparations was performed in a Beckman Ti70.1 

centrifuge and rotor.

2.5 Cell Culture Methods

2.5.1 Lymphocyte Extraction from Whole Blood

Lymphocytes were separated from whole blood using a ficoll/hypaque density gradient 

(Boyum 1968). Whole blood was taken into a lithium-heparinised vacutainer bottle and 

immediately transported for processing. Normally, 25ml of whole blood was taken and 

diluted to 50ml with 25ml of Dulbecco’s phosphate buffered saline in a 50ml sterile 

polypropylene tube. This diluted blood was then divided into 3 equal aliquots and
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layered over a ficoll/hypaque gradient (lymphocyte separation medium, ICN, UK) in 3 

sterile universal containers (Alpha, UK) each containing 10ml of lymphocyte separation 

medium. These were centrifuged at 400g for 40 minutes at 25°C with the centrifuge 

brake switched off to reduce turbulence. The buffy-coat from each tube was carefully 

aspirated and combined in a fresh 50ml sterile polypropylene tube and the volume made 

up to 50ml with Dulbecco’s PBS. This tube was centrifuged at 400g for 20 minutes at 

25°C to wash cells of any remaining plasma, and reduce contaminating platelet debris. 

After centrifugation, the supernatant was carefully poured off and the remaining cell 

pellet re-suspended in 15ml of Dulbecco’s phosphate buffered saline in a sterile 

graduated 15ml polystyrene tube. After a further centrifugation step at 400g for 10 

minutes at 25°C the supernatant was carefully discarded and the washed cell pellet re­

suspended in a total volume of 2ml of RPMI 1640 cell culture medium.

The cell concentration of this suspension was measured using a Sysmex NA 8000 

haematology counter and adjusted to 10 million cells/ml with RPMI 1640 cell culture 

medium. An aliquot of this mixture was rechecked by counting in the same 

haematology counter and the number of cells/ml obtained used in subsequent binding 

calculations.

2.5.2 Preparation of Receptor Binding Plates

Receptor binding incubations were performed in 96 well flat-bottomed polystyrene 

plates. These were prepared in batches in advance with varying concentrations of 

dexamethasone in each well.

Stock dexamethasone was prepared by dissolving dexamethasone in 

dimethylsulphoxide to a concentration of 1.6384 mmol/1. This standard was further 

diluted 100 fold in RPMI 1640 to produce a concentration of 16.384 pmol/l. An aliquot
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of this solution was diluted 2 fold in RPMI 1640 to 8.192 pmol/1 and subsequent serial 

dilutions to a concentration of 1 nmol/1 achieved. To each well 50 pi of various 

concentrations of dexamethasone was added as shown in table 2.1. Well 1 contained 

RPMI 1640 medium alone (i.e. without any added dexamethasone). It should be noted 

that the highest concentration of dimethylsulphoxide was 1% vol/vol.

Table 2.1 Dexamethasone Concentrations (in nmol/1) in Receptor Binding 

Incubation Plates

Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 Well 7 Well 8 Well 9 Well 10 Well 11 Well 12

0 1 2 4 8 16 32 64 128 256 4096 16384

The concentrations of dexamethasone in each well are shown above in nmol/1. Well 1 

contained cell culture medium alone with no added dexamethasone, providing 

conditions for maximal radiolabel binding. Wells 2-10 contained increasing 

concentrations of competing dexamethasone and wells 11 and 12 concentrations of 

dexamethasone sufficient to block radiolabel binding to receptor, thus providing a 

measure of non-specific binding.

2.5.3 Preparation o f  Radiolabelled Dexamethasone

[1,2,4,6,7 H] Dexamethasone obtained from Amersham International, UK, was used as 

the radiolabel for glucocorticoid receptor binding assays. Stock radiolabel was used 

without further purification steps as advised by the supplied datasheet. A 1:1000 

dilution of radiolabel in RPMI 1640 cell culture medium was used with measurements 

of activity of the solution counted on a Packard Scintillation Counter and the final
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concentration of the solution adjusted by adding appropriate volumes of RPMI 1640 

medium to achieve a final concentration of 8nmol/l [1,2,4,6,7 H] Dexamethasone.

2.5.4 Glucocorticoid Receptor Binding Assay

Glucocorticoid receptor binding was measured using a whole cell homologous 

displacement assay using dexamethasone as the displacement ligand, and [1,2,4,6,7 H] 

dexamethasone as the radiolabel. Lymphocytes prepared from whole blood and adjusted 

to 10 million cells per ml (see 2.5.1) were used to assay whole cell receptor binding 

activity. To suspensions containing fresh lymphocytes, half the volume again was added 

of freshly prepared radiolabel solution. The suspension was carefully mixed and 150pl 

of the cell/label mixture added to each well of a 96 well plate. Assays were performed 

in quadruplicate for each subject. In the final incubation plate each well contained 1 

million lymphocytes, 2nmol/l [1,2,4,6,7 H] dexamethasone and the concentration of 

dexamethasone in each well was reduced to one quarter, as shown in table 2.2.

Table 2.2 Concentrations of Dexamethasone (in nmol/1) in Receptor Binding 

Incubations

Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 Well 7 Well 8 Well 9 Well 10 Well 11 Well 12

0 0.25 0.5 1 2 4 8 16 32 64 1024 4096

After diluting cells and adding radiolabel, the final concentrations of dexamethasone are 

shown in nmol/1 above.

Each 96 well plate containing lymphocytes for incubation was sealed with a water tight 

plastic film to prevent evaporation. Cells were incubated for 20 hours at 25°C in a
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thermostatically controlled cell incubator, and were gently agitated to maintain the cells 

in suspension.

At the end of the incubation period, cells from each well were harvested onto GF-C 

glass fibre filter paper using a ICN Model A1 cell harvester. This model has a 12 well 

manifold which allows a row of 12 wells to be harvested simultaneously and reduces the 

time taken to harvest an entire plate. At the end of each harvesting run a blank row of 

wells was harvested onto GF-C paper and 1 disc was added to each of 8 scintillation 

vials. To 4 of these vials 50pl of radiolabel solution was added. Thus the final 8 vials 

provided a measure of tritium contamination, and a measure of radiolabel activity to 

ensure consistency between harvesting batches. Each disc containing the harvested 

cells, or blanks, was placed in a scintillation vial containing 200pl of 1% Triton X-100 

and gently agitated for 1 hour to ensure all cells were solubilised. Each vial then had 3 

ml of Ecoscint scintillation fluid added and was left for a further 3 hours to allow the 

glass fibre discs to become saturated with scintillation fluid and become transparent. 

Finally, scintillation vials were counted on a Packard scintillation counter for tritium at 

66% efficiency for 5 minutes each.

2.5.5 Analysis of Glucocorticoid Receptor Binding Curves

For each binding assay tritium activity was measured 4 times at each concentration of 

dexamethasone. The mean of these was taken and a graph of tritium activity for each 

concentration of dexamethasone obtained as shown in figure 2.1.
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Figure 2.1 Glucocorticoid Receptor Binding Curv e
A sample binding curve is shown below with experimental 
data shown in blue and a non-linearly fitted binding curve 
shown in pink. Errors are standard error of the mean.
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Binding curves were fitted using a non-linear regression algorithm written in a  

Microsoft Excel spreadsheet (for details of the mathematics see Appendix 2). Using this 

application, Kd and the number of binding sites per cell were obtained for each binding 

experiment.

2.6 DNA Extraction from Whole Blood

Genomic DNA was extracted from whole blood by a variation of the method described 

by Sambrook (Sam'brook et al 1989). In the first step red blood cells are lysed while 

fresh white blood cells, or frozen white cell nuclei, are left intact. Ten millilitres of 

either fresh or frozen and thawed whole blood collected in potassium EDTA was added 

to 40 ml of cell lysis buffer (see Appendix 1) on ice. After ten minutes, the tubes were
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centrifuged at 2000 g for 10 minutes at 4°C. The supernatant containing cytoplasmic 

debris and haemoglobin was disposed of into 1% sodium hypochlorite solution, and the 

pellet containing intact nuclei re-suspended in 3 ml of nuclear lysis buffer (see 

Appendix 1), 200pl 10% SDS and lOOpl proteinase K (lOmg/ml) and incubated at 37°C 

for 16-20 hours. Following incubation, 1ml of 6 mol/1 sodium chloride was added and 

gently mixed by inversion to precipitate cellular proteins leaving genomic DNA in 

solution. Five ml of phenol/chloroform (see Appendix 1) was added and the tubes 

centrifuged at 2000 g for 20 minutes at 4°C. The upper aqueous phase of the supernatant 

containing DNA was transferred to a fresh universal container and 2 volumes of 

absolute ethanol added. DNA then formed a white thread-like precipitate and was 

spooled out of solution using a sterile glass rod, washed in 70% ethanol and dried in air. 

The dried DNA was finally dissolved in either lOOpil of sterile distilled water, or lOOpl 

of TE buffer (see Appendix 1). DNA solutions were then stored at either 4°C or frozen 

at -20°C.

2.7  Polymerase Chain Reaction

The polymerase chain reaction (PCR) is a well described method for specifically 

amplifying target DNA sequences from complex templates (Saiki et al 1988). For each 

specific target sequence optimisation of the polymerase chain reaction was required to 

achieve optimal product specificity and yield. A general PCR master-mix was usually a 

useful starting point and is detailed in table 2.3.
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Table 2.3 Reaction Mix for Polymerase Reaction

Reagent Concentration
Magnesium Chloride 1.5 mmol/1
Taq Buffer 1 X

dATP 50 pmol/1
dCTP 50 pmol/1
dGTP 50 pmol/1
dTTP 50 pmol/1
Sense Primer 10 nmol/1 -  1 pmol/1
Anti-sense Primer 10 nmol/1 -  1 pmol/1
Taq 1 U
DNA 1 pi
Distilled Water To make final volume to 25 pi
Mineral Oil 50 pi

Generally, the PCR solution (i.e. without added DNA) was prepared freshly in a batch. 

DNA was then aliquoted into the tubes, or plates used for PCR and aliquots of the PCR 

master-mix added to each before finally adding a layer of mineral oil to prevent 

evaporation.

PCR was generally performed using an initial step of 94°C for 5 minutes to ensure 

denaturation of genomic DNA. Thirty cycles of annealing (this temperature was specific 

for each primer pair and was optimised empirically) for 30 seconds followed by 

extension at 72°C for 30 seconds and denaturation at 94°C for 30 seconds, and a final 

step at 72°C for 5 minutes to ensure all products were fully extended. All PCR products 

were either freshly analysed on agarose gel electrophoresis, or stored at 4°C until 

analysis.

2.8 Single Strand Conformational Polymorphism (SSCP) Analysis

Single strand conformational polymorphism analysis (Orita et al 1989, Grompe 1993 for

review) was performed using either end-labelled primers, or incorporation-labelled

amplicons.
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2.8.1 End-labelling

Sense and anti-sense primers for the region of interest were end-labelled at the 5’ 

position using T4 nucleotide kinase (an enzyme that catalyses the transfer of the y- 

phosphate from ATP to the 5’ terminus of polynucleotides or mononucleotides) and 

[y P]-dATP. The composition of the reaction mixture is shown in table 2.4.

Table 2.4 End Labelling Primers

Reagent Concentration
Primer 50 pmol/1
[y32P]-dATP Specific Activity 1.85 MBq
T4 Polynucleotide Kinase 5 U
TRIS-HC1 70 mmol/1, pH 7.6.
Magnesium chloride 10 mmol/1
Dithiothreitol 5 mmol/1
Distilled water added to final volume 50 pi

The 50 pi mixture was carefully mixed and incubated at 37°C for 1 hour and finally 

denatured at 94°C for 5 minutes to inactivate the enzyme. PCR was performed on the 

region of interest using genomic DNA using conditions previously optimised. Each 

PCR reaction contained 1 pi of the labelled sense and antisense primers, i.e. contained 1 

pmol/1 of each primer.

2.8.2 Incorporation Labelling

As an alternative to end-labelling of primers, PCR amplicons were labelled by 

incorporation using [a32P]-dCTP. Each PCR reaction was prepared as described in 

section 2.7 above, with the addition of 1 pi of [a32P]-dCTP per 50 PCR reactions 

(specific activity 30.7TBq/mmol) and a compensatory reduction in the volume of 

distilled water added by 1 pi. The increase in total concentration of dCTP was less than 

0.001% and was not corrected for by altering the volume of dCTP added. This provided
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more radioactive amplicons with clearer bands on autoradiography and an overall 

simplification of method.

2.8.3 Polyacrylamide Gel Preparation

A 6%, 29:1 acrylamide: N,N’ methylene fo's-acrylamide gel (Sanger et al 1977a), with 

or without 5% glycerol, was prepared by mixing the reagents in the order listed in table 

2.5.

Table 2.5 Polyacrylamide Gel Mix

Reagent Volume added Final Concentration
30% 29:1 30ml 6%
Acrylamide:Bisacrylamide
(Glycerol 7.5ml) 5% if added
TBE Buffer x 5 (see Appendix 1) 7.5ml 0.5%
Distilled Water 105ml(l 12.5ml if no

0.5 M EDTA
glycerol added) 
0.3ml

Temed 150pl
25% Ammonium Persulphate 150pl
Total 150ml

Sequecell ™ sequencing plates were prepared by siliconising one plate with Sigmacote 

™, and cleaning and drying the other with absolute ethanol. The sequencing cell was 

then assembled and the gel solution injected through the injection port. After allowing 

to set for 1 hour, the cell was loaded into the buffer system and pre-run at 30 watts for 1 

hour to ensure buffer equilibration throughout the gel. Finally, a 97 well comb was 

inserted into the gel.

2.8.4 Sample Preparation and Loading

For each PCR reaction, 5 pi was added to 10 pi formamide/dye (see Appendix 1) in a 

fresh PCR tube or well and denatured at 94°C for 5 minutes to allow the stable
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formation of single stranded labelled DNA. Samples were then immediately placed on 

ice and loaded onto the gel.

2.8.5 Electrophoresis Conditions

To increase the sensitivity of the method, each sample was run at 4 conditions: 25°C 

with and without glycerol, and 4°C with and without glycerol. Generally, running the 

gel at 25°C with 5% glycerol produced the greatest resolution: no further 

polymorphisms were detected in gels run at other conditions. Gels were run at a 

constant temperature at 30 watts normally for 4 hours at 25°C, or 60 watts for 3 hours at 

4°C.

2.8.6 A utoradiography

Following electrophoresis, the sequencing cell was dismantled and the gel blotted onto 

Whatman 3M filter paper, covered in cling-film and dried at 65°C in a vacuum oven for 

1 hour. The dried gel was then placed directly against autoradiographic film for 12-48 

hours in a light-tight autoradiographic cartridge. Autoradiographs were developed using 

a Kodak X-Omat automated film developer.

2.9 DNA Sequencing

2.9.1 Manual Sequencing

Manual sequencing of DNA was performed using a modification of the 2’,3’- 

dideoxynucleoside-5’-triphosphate (dideoxy-, dd-) termination chemistry originally 

described by Sanger (Sanger et al 1977b). This original sequencing method works best 

with single stranded DNA template that requires time-consuming preparation by 

subcloning into single stranded bacteriophages such as M l3. To overcome this, a cycle- 

sequencing kit (supplied by Perkin Elmer, Buckinghamshire, United Kingdom) was

• *39used. Briefly, this technique uses one primer end labelled with [y P]-dATP to elongate
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double stranded template using a recombinant Taq polymerase. In the presence of one 

of each of the dideoxy-terminators (ddATP, ddCTP, ddGTP, ddTTP), four identical 

reactions are prepared each terminating at positions corresponding to the respective 

nucleotide (A,C,G,T). After resolution of the products from each reaction (“sequencing 

ladders”) on a polyacrylamide gel, and autoradiography as described above, the 

sequence as a whole can be deduced. As a final refinement, we used 7-deaza-dGTP in 

place of dGTP in each of the sequencing reactions -  this has the advantage of producing 

product with more uniform resolution on polyacrylamide electrophoresis, preventing the 

artefact called “G-compressions” seen when dGTP is used as the elongation nucleotide.

2.9.2 Automated Sequencing

Manual sequencing as described has several disadvantages: the use of radioactivity, 

limited reading frames (around 300 nucleotides on a normal gel), time consuming 

preparation, and limited numbers of sequences per gel (each sequence requires 4 lanes). 

To overcome these disadvantages, an automated sequencing protocol was adopted. This 

involved the same dideoxy-termination chemistry and cycle sequencing method as 

described above, but in place of a radiolabelled primer, labelling is achieved by 

attaching fluorescent probes to each of the dideoxy-nucleosides. Thus as each 

elongating chain incorporates a dideoxy-nucleoside that terminates further extension, it 

is also labelled with a fluorescent tag. If each of the dideoxy-nucleosides are tagged 

with fluorochromes with different spectra of fluorescence, the sequence ladder can be 

read by scanning the colour of the each band with a laser and photodetector as it elutes 

from the bottom of a polyacrylamide gel. This is the basis of the ABI 373 automated 

DNA sequencer which uses the dyes 6-FAM, HEX, NED and ROX as fluorochromes. 

This method has the advantages that no radioactivity is involved, greater numbers of 

nucleotides can be read in a single run (up to 600 bases), a complete sequence can be
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prepared in a single reaction, and since each sequence occupies only a single lane, more 

sequences can be run on a single gel.

2.10 Statistical Analyses

Unless otherwise stated, comparisons between paired datasets were performed by 

Student’s 2 tailed t test. Associations between 2 variables were tested by linear 

regression, and between several continuous variables with multiple regression. All 

analyses were performed using the Minitab computer program (Mintab Inc, USA).

2.11 Immunohistochemistry

Sections of rat adrenal stained for aldosterone synthase or 11 p-hydroxylase were kindly 

provided by Dr S.M.MacKenzie and performed as detailed in MacKenzie et al 2000. 

Briefly, primary antibodies were raised against hydrophilic peptides corresponding to 

epitopes in aldosterone synthase or 11 P-hydroxylase with minimal homology. For 

aldosterone synthase the peptide was MAPKVRQNARGSLTMDVQQ representing 

residues 175-190 and for 11 P-hydroxylase the peptide was KNVYRELAEGRQQS 

corresponding to residues 272-285. Each antibody was of the IgGi class and was 

monoclonal having been generated by cell fusion with an SP-2 myeloma cell line. 

Primary antibody-antigen complexes were detected by using a secondary antibody 

coupled to horseradish peroxidase and developed with 3,3’-diaminobenzidine 

tetrachloride producing a brown colour. Slides were then counterstained with 

haematoxylin.
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Chapter 3

Development of Glucocorticoid Receptor Binding Assay

3.1 Introduction

The glucocorticoid receptor is a ubiquitous nuclear receptor that behaves as a hormone 

sensitive transcription factor. It is present in all nucleated white blood cells with highest 

concentrations in lymphocytes where it is believed to play important roles in 

modulating immune function and controlling the balance between T suppressor and T 

helper activity, and in reducing antibody production from B cells.

Previous glucocorticoid receptor binding assays have used lymphocytes freshly 

prepared from whole blood as a convenient tissue for study. What is unknown, 

however, is whether receptors in this tissue are regulated similarly to receptors in other 

key tissues such as liver, adrenal, hippocampus, hypothalamus and pituitary.

In developing this assay I started with a modified version of a previously reported 

receptor binding assay using fresh lymphocytes (Schlechte et al 1982). Progressive 

alterations were made to the assay, verifying that it performed at least as well at each 

stage, to optimise the method for high throughput in the study of large populations. The 

final assay method, after refinement, is detailed in 2.5.

3.2 Initial Assay

3.2.1 Venepuncture

Sixty millilitres of blood was taken into a sterile plastic container to which sodium 

citrate to a final concentration of 10 mmol/1 was added as anticoagulant. The blood was 

centrifuged at 800g at 20°C for 10 minutes and the plasma layer discarded.
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3.2.2 Cell Preparation

The buffy coat overlying the erythrocyte pellet was transferred to a fresh tube and 

diluted 1:2 with sterile phosphate buffered saline (PBS). This was carefully mixed and 

layered over lymphocyte separation medium. After centrifugation at 400g at 20°C for 

40 minutes, the buffy coat was transferred to a fresh tube and diluted 1:2 with sterile 

PBS. This was centrifuged at 400g at 20°C for 10 minutes to remove platelet debris and 

the supernatant discarded. The cell pellet containing lymphocytes and monocytes was 

re-suspended in 10 ml PBS and centrifuged at 200g at 20°C for 10 minutes. The 

supernatant was again discarded and the cell pellet was re-suspended in 10 ml PBS and 

centrifuged at lOOg at 20°C for 10 minutes. This final step was repeated and the 

supernatant discarded and the cell pellet left undisturbed.

Meanwhile fresh cell culture medium was prepared in a sterile laminar flow hood using 

RPMI 1640 medium (without glutamine and without bicarbonate, Flow Laboratories) to 

which was added 100 IU/ml penicillin, 100 pg streptomycin, 2 pmol/1 L-glutamine and 

10mmol/l sodium bicarbonate. Finally, freshly thawed fetal calf serum was heat 

inactivated at 56°C for 2 hours and added to the cell culture medium to a final 

concentration of 10%.

The cell pellet was then re-suspended in 1 ml of the freshly prepared cell culture 

medium and a 10 pi aliquot taken for cell counting. This was done by diluting the cells 

1:20 in a dye solution containing 1% acetic acid and 0.01% crystal violet. Cell 

concentrations were assessed by counting the number of cells seen within the 4 large 

outer squares of a standard haemocytometer (a total volume of 0.4 pi) and multiplying
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by 50,000 to give the number of cells per millilitre in the initial solution. From this, the 

total number of cells yielded was given by:

Number of cells yielded=number of cells per ml x 0.990.

3.2.3 Incubation

Cells were incubated with a constant concentration of [ H l,2,4]-labelled 

dexamethasone and varying concentrations of unlabelled dexamethasone.

Labelled dexamethasone was prepared by drying down 100 pi of stock dexamethasone 

(supplied as a solution in ethanol) under a nitrogen stream. This was reconstituted in 5 

mis of RPMI 1640 medium and adjusted to 300,000 counts per minute per ml. 

Concentrations of unlabelled dexamethasone were prepared in the following 

concentrations (in nmol/1): 20,000, 2,500, 156, 78, 39, 19, 9.6, 4.8, 2.4, 1.2, 0.6 and 

finally RPMI 1640 medium was used as 0 nmol/1 dexamethasone.

To each well of a 96-well plate 50 pi of labelled dexamethasone (resulting in a final 

concentration of approximately 2 nmol/1 in each well) and 100 pi of the cell suspension 

(containing approximately 3x106 cells) was added. To each row, decreasing 

concentrations of unlabelled dexamethasone was added in 50 pi aliquots.

The plate was then incubated at 24°C for 3 hours, and terminated by aspirating the cell 

suspensions onto glass fibre (grade GF/C, Whatman) using a wash solution of ice cold 

PBS containing 0.1% polyethylenimine, using a cell harvester.

Finally the cells adherent to the glass fibre discs were lysed in 1% Triton X 100 and

-y
counted using a scintillation counter calibrated for [ H] p-particles.
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3.3 Optimisation of the Receptor Binding Assay

Several problems with the existing assay made it unsuitable for direct application to 

large populations. The volume of blood was excessive when additional samples were 

required as part of the epidemiological studies. Furthermore, the centrifugation steps 

were time consuming and labour intensive, the preparation of cell culture medium was 

time consuming and prone to inter-assay variation, the incubation times and 

temperatures were unoptimised and it was unknown whether the binding had reached 

equilibrium at harvesting. Finally, the number of detected scintillations was only two 

orders of magnitude greater than background and was therefore prone to significant 

counting error.

For these reasons, each step of the binding assay was investigated for simplifications or 

refinements to increase overall efficiency and reliability.

3.3.1 Venepuncture 

Blood Volume

Blood taken from six individuals was prepared and mononuclear cells incubated at a 

cell density of 1 and 3 million cells per well. No difference for Kd or sites per cell was 

found between incubation conditions (2-tailed paired T-test, p=0.96, p=0.99 

respectively) as shown in figures 3.1 and 3.2. This allowed the volume of blood taken 

to be reduced from 60 to 30 mis in subsequent assays.
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Figure 3.1 Kd assayed with 1 million or 3 million cells per incubation
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Figure 3.2 Sites per cell assayed with 1 million or 3 million cells per incubation
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Anticoagulant

To allow blood to be taken directly into commercially available sterile bottles 

(vacutainer ™, Beckton Dickson, UK), the anticoagulant was changed from sodium 

citrate to lithium heparin. No difference was found in Kd or sites per cell between 

samples prepared with either anticoagulant (2 tailed T-test, p=0.33, p=0.51 

respectively), figures 3.3 and 3.4.

Figure 3.3 Kd from cells prepared from blood with sodium citrate or lithium 

heparin
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Figure 3.4 Sites per cell from cells prepared from blood with sodium citrate or 

lithium heparin
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3.3.2 Cell Preparation 

Cell Isolation

The steps outlined in the original assay involved several centrifugation steps that were 

time consuming and resulted in a significant loss of mononuclear cells. An attempt was 

made to reduce the number of centrifugation steps required while maintaining overall 

cell yield and purity.

In place of using the centrifuged cell pellet from 60 mis of whole blood as the source of 

white cells, 30 mis of blood was diluted 1:1 with sterile PBS and layered directly over a 

ficoll/hypaque gradient and centrifuged at 400g for 40 minutes at 20°C. The buffy coat 

was transferred to a fresh tube washed by centrifugation steps as described in the 

original assay. The final cell pellet was suspended in a volume of 2 mis of RPMI 1640 

cell culture medium without additives.
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This greatly improved the speed of cell separation and increased the yield by 

approximately 30%. It was important, however to ensure that the cells contained no 

significant cortisol as this would reduce the assayed Kd for dexamethasone binding. 

Cells were therefore prepared from 3 subjects before and 30 minutes after intravenous 

administration of 250 pg of the ACTH analogue, Synacthen. The cell pellets from the 

final centrifugation step were snap frozen in liquid nitrogen for later assay for cortisol. 

This showed no detectable cortisol in any of the cell pellets with a threshold for 

detection of 2 nmol/1 as shown in table 3.1.

Table 3.1 Cortisol Concentrations in Cell Preparations

Subject Basal/Post Synacthen Plasma Cortisol (nmol/1) Cell Cortisol (nmol/1)

1 Basal 4 6 9 .2 < 2

Post-synacthen 6 0 7 .2 < 2

2 Basal 193 .2 < 2

Post-synacthen 6 6 2 .4 < 2

3 Basal 2 0 7 <2

Post-synacthen 6 3 4 .8 <2

Trypan blue exclusion was used to ensure the cells were viable at the end of the 

centrifugation steps. Using 0.1% Trypan blue and microscopy of a haemocytometer 

cell-film, >98% of cells showed Trypan blue exclusion. Pre-treatment of cells with 

0.1% Digitonin was used to provide a positive control and confirmed this abolished 

Trypan blue exclusion in 100% of cells.
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Direct microscopy of a Geimsa-stained cell film showed >95% of the film was 

composed of mononuclear cells with a smaller number of neutrophils and platelet 

clumps. To ensure the cell population was relatively homogeneous flow cytometry was 

performed using as labels phycoerythrin conjugated anti-CD 14 (directed against the 

lipopolysaccharide receptor expressed mainly on monocytes and macrophages) and 

fluorescein-isothiocyanate (FITC) conjugated anti-CD45 (directed against the protein 

tyrosine phosphatase expressed mainly by lymphocytes and also by monocytes). This 

allowed the relative numbers of lymphocytes and monocytes to be determined as shown 

in figure 3.5.
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Figure 3.5 Flow Cytometry Analysis of Cell Preparation

Phycoerythrin conjugated anti CD14 is shown in the FL3 channel in red, and FITC 

conjugated anti-CD45 is shown in the FL1 channel in green. The majority of cells are 

CD 14-, CD45+ suggesting they are lymphocytes.

Using this method, cells were prepared from 4 subjects on different days and showed 

>85% of cells stained with either PE-anti-CD14 or FITC-anti-CD45 suggesting they 

were monocytes or lymphocytes. The proportion of (CD14-ve and 

CD45+ve):(CD14+ve or CD45+ve) was between 0.92 and 0.96 suggesting at least 92% 

were lymphocytes.
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Culture Medium Preparation

As described in the initial protocol, preparation of culture medium normally took 

around 1 hour. Furthermore, it was likely there would be significant variation in the 

composition of the medium between assays due to variation in batches of fetal calf 

serum, in particular this contains corticosterone which varies between batches and may 

interfere with dexamethasone binding. Since the lymphocytes did not require to divide, 

and since incubations were short I reasoned that growth factors and antibiotics may not 

be necessary.

Using RPMI 1640 medium untreated, and with all the described additives I conducted 5 

receptor binding assays in parallel. There was no visible sign of infection (acidification 

of medium or turbidity) and cells remained in excess of 95% viable at up to 36 hours. 

There was no significant difference in measured Kd or sites per cell (p=0.26 and p=0.52 

respectively, 2 tailed T-test), as shown in figures 3.6 and 3.7
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Figure 3.6 Effect of Cell Culture Medium on Kd

Receptor binding assays were performed in parallel with unmodified RPMI 1640 

medium “RPMI” or with RPMI 1640 medium supplemented with 100 IU/ml penicillin, 

100 pg streptomycin, 2 pmol/1 L-glutamine, 10mmol/l sodium bicarbonate and 10% 

heat inactivated fetal calf serum “RPMI + additives”.
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Figure 3.7 Effect of Cell Culture Medium on Receptor Sites per Cell

Sites per Cell by Culture M edium

7000 n

6000 - „ ___
Q———----- ----- ° o Subject 1

5000 - □ Subject 2
4000 - a Subject 3

3000 - ---------------------*
x Subject 4

2000 - ------------ -------- 0
x Subject 5

1000  -

RPMI RPMI +
Additives

Cell Counting

Counting the cell concentration was done manually as described above and diluted to 10 

million cells per ml. As the final cell concentration per incubation was crucial to 

determining the number of sites per cell, an aliquot of the final cell suspension was 

taken for counting in an automated haemocytology counter (Sysmex NE 8000) and 

calculations made on the basis of these results. The cell distribution curves obtained 

from this apparatus confirmed the flow cytometry results that an average of 90% of the 

cells were lymphocytes.

3.3.3 Incubation Conditions

Incubation conditions are the most likely to alter receptor binding characteristics and it 

was important, therefore, to ensure they were well controlled and validated. Vital 

components of the incubation are to find the optimal temperature for binding, to ensure
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the binding has reached equilibrium and in a homologous displacement assay to ensure 

that the range of concentrations of competing ligand span the Kd with the logarithmic 

median close to the expected Kd.

Incubation Time

unknown whether binding equilibrium had been reached. Incubations of cells at a 

concentration of 1 million per well with 2  nmol/1  of radiolabelled dexamethasone and 

no competing dexamethasone were performed and terminated by harvesting at a number 

of time points. Using the CurveExpert curve fitting program, the time course at 20°C 

fitted with an exponential curve of form y=52.2*(1.92-e'° 15*hours) as shown in figure 3.8. 

Figure 3.8 Time-course of Dexamethasone Binding

No significant difference in binding was found between 18 hours and 24 hours, or 36 

hours or 48 hours.

Receptor binding assays were initially terminated at 3 hours, although it remained
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Incubation Temperature

The glucocorticoid receptor is known to be sensitive to temperature with reduced 

binding at higher temperatures. To explore the optimal temperature for assaying 

receptor binding, time course experiments were performed from 3 subjects at 4 different 

temperatures. Binding was adjusted to 100% of the maximum achieved at 20°C. There 

was little difference in binding at times before 3 hours but thereafter there was an 

increasing disparity with maximal binding occurring at 25°C. At 18 and at 24 hours 

there was a significant difference in binding between 25°C and all other temperatures as 

shown in figure 3.9. The most important finding in this series of experiments is that 

equilibrium is reached by 18 hours and remains stable for up to 40 hours.

Figure 3.9 Effect of Temperature on Receptor Binding

From this series of experiments it was decided to use 25°C as the standard incubation 
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Radioligand Concentrations

The radioligand used in the initial assay was [ H 1,2,4]-labelled dexamethasone. This 

tended to produce high non-specific binding and scintillation data only 1 order of 

magnitude higher than background and was therefore prone to counting error. To avoid 

increasing the concentration of radioligand and non-specific binding further I used an 

alternative label, [ H l,2,4,6,7]-labelled dexamethasone, with double the specific 

activity, but also with higher chemical purity (as discussed with Amersham). This was 

used at a concentration adjusted to 2  nmol/1  which was within 1 order of magnitude of 

the expected Kd (2-16 nmol/1) and produced scintillation data with 2 orders of 

magnitude between maximum binding and background.

To minimise pipetting error, batches of radioligand were prepared weekly, stored at 4°C 

and diluted in 2  volumes of cell suspension before aliquoting into the incubation wells 

of a 96-well plate.

Competing Dexamethasone Concentrations

The concentrations of unlabelled competing dexamethasone were modified for 

simplicity to final incubation concentrations of 0, 0.5, 1, 2, 4, 8 , 16, 32, 64, 128, 1024, 

4096 nmol/1. These concentrations ensured 4 concentrations spanned the expected Kd 

and that the highest concentrations (which would determine non-specific binding 

estimation) were in 500-2000 fold excess of radioligand.

Cell Harvesting

As the number of receptor sites per cell were determined from the cell count prior to 

incubation, it was essential to ensure the number of cells remaining viable at the end of 

incubation were similar. Cells were prepared as described above and diluted with either
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RPMI medium alone or with dexamethasone to a final concentration of 4.96 pmol/1 (the 

highest concentration in the receptor binding assay). At the end of a 24 hour incubation 

at 25°C the cells suspension was agitated and transferred to a fresh tube for counting on 

a Sysmex NE 8000 haematology counter, and for staining with Trypan blue to assess 

viability. Cell counts were extremely reliable with a coefficient of variation of <1%. 

Furthermore, cell viability assessed by Trypan blue exclusion was in excess of 96%.

To ensure there was no significant cell adhesion to the bases of the wells, normal 

incubations were performed (without radiolabel), cells harvested and the 96-well plates 

allowed to air dry. Each well than had 20pl of Giemsa stain added and any traces of 

adherent cells counted under a microscope. All wells were clear with no evidence of cell 

residue.

Summary

In summary the assay was simplified at each step to improve throughput and to attempt 

to improve reliability. The modifications described reduced cell preparation time from 

an average of approximately 3 hours to under 2 hours with improved cell yields.

3.4 Assay Reliability 

Intra-assay Variation

Blood was taken from 1 individual with sufficient volumes to prepare cells for 8  

receptor binding assays in parallel. From these, the intra-assay coefficient of variation 

for Kd and sites per cell was calculated as standard deviation/mean* 100%.

Using the original assay, the coefficients of variation were 15% for Kd and 18% for 

sites per cell (table 3.2). With the refinements made to the assay described above these 

were reduced to 10% and 11% respectively. This reflects greater precision in the refined
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assay. However, as a standard preparation of live cells was not available, no conclusions 

on the accuracy of either assay method can be drawn.

Table 3.2 Intra-assay Coefficient of Variation for Kd and Sites per Cell

Original Assay Refined Assay

Kd Sites per cell Kd Sites per cell

Mean 6.56 1988 8.46 1191

Standard Deviation 1.01 361 0.83 136

Coefficient o f Variation 15.3% 18.1% 9.8% 11.4%

Inter-assay Variation

Receptor binding assays were performed on 4 consecutive days for 1 subject. 

Performing these assays using the original and refined protocols provided estimates of 

the coefficient of variation for Kd and for sites per cell (table 3.3).

Both the original and refined assays showed greatly increased variation compared to 

intra-assay variation, and as will be discussed in the following chapters, this may have 

been a combination of assay error and environmental variation. However, the absolute 

differences in Kd and in sites per cell between the original and refined assays may 

reflect that these were performed in different months under different climatic conditions 

as will be discussed in section 6 .6 .

Table 3.3 Inter-assay Variation in Kd and Sites per Cell

Original Assay Refined Assay

Kd Sites per cell Kd Sites per cell

Mean 14.1 3747 10.0 10412

Standard Deviation 3.13 584 2.07 1164

Coefficient o f Variation 22.2% 15.6% 20.7% 11.1%
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5.5 Summary

Modification of an established whole-cell receptor binding assay produced a simpler 

and more precise method suitable for use in larger population-based studies. In terms of 

the percentage coefficient of variation, this was reduced in both intra-assay and inter­

assay versions of the new assay compared with the original assay reflecting greater 

precision.
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Chapter 4 

Glucocorticoid Receptor Binding in Twin Pairs

4.1 Introduction

As discussed in the sections 1.7 and 1.8.4 several lines of evidence suggest that 

glucocorticoids increase cardiovascular risk. This may be mediated by increased 

circulating levels of glucocorticoids, relative differences in access to various tissues by 

altering local metabolism, or to relative differences in glucocorticoid receptor binding 

characteristics between tissues.

Previous studies have demonstrated that a restriction fragment length polymorphism of 

the glucocorticoid receptor gene, which probably maps to the promoter or proximal 

intron of the gene, is associated with increased blood pressure and insulin resistance 

(Watt et al 1992, Weaver et al 1992). However, there are very few data on the 

relationship between glucocorticoid receptor binding characteristics and traditional 

cardiovascular risk factors. Furthermore, apart from the rare syndromes of 

glucocorticoid resistance due to mutation in the receptor gene and the polymorphism 

described above, there are no studies that have assessed the importance of genetic and 

environmental factors in determining glucocorticoid receptor binding characteristics. 

Accordingly, the studies in this chapter were established to examine these factors. 

Specifically, analysis of concordance rates for glucocorticoid receptor binding 

characteristics in monozygotic and dizygotic twins would provide a measure of the 

genetic component of this variable, while the relationship between binding and 

cardiovascular risk factors could also be performed.
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4.2 Effect of Age and Sex on Glucocorticoid Receptor Binding

4.2.1 Description of Cohort

A total of 150 twin pairs were recruited from west central Scotland for the Scottish 

Twin Study. (Inglis et al 1999; cohort recruited by L.Swan). Of these, 104 pairs had 

complete data collection and were therefore suitable for analysis in the study 

represented here. No selection was made on self-reported identity or non-identity and 

the cohort was therefore expected to represent both monozygotic and dizygotic twins. 

Subjects were, however, excluded if they had taken glucocorticoid medication within 

the previous year, if they were taking anti-hypertensive medication or if they were 

diabetic.

Microsatellite analysis was performed on each twin pair at 6  informative loci to 

establish zygosity (kindly performed by G.C. Inglis). Those twin pairs of different sex, 

or whose microsatellite analysis was discordant were excluded from further rounds of 

microsatellite analysis and were categorised as dizygotic. The distribution of zygosity 

and sex is shown for each individual in table 4.1.

Table 4.1 Sex and Twin Distribution of Subjects

Individuals in each twin-pair Monozygotic Dizygotic Total

Female 84 72 156

Male 24 28 52

Total 108 1 0 0 208
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No differences were found in sex distribution between monozygotic and dizygotic 

twins, or in twin type between males and females.

The age distribution for male and female subjects is shown in table 4.2.

Table 4.2 Age and Sex Distribution of Subjects

Age Minimum Mean Standard Deviation Maximum

Female 29 52.2 11.4 79

Male 29 52.4 14.6 80

No significant differences were found in the age distributions for males and females.

4.2.2 Measurements

Blood samples were taken for glucocorticoid receptor binding assay, plasma steroid 

measurement both before and 30 minutes after 250pg of synacthen injected 

intravenously, urea and electrolytes, liver function tests, calcium, albumin, phosphate, 

fasting glucose, fasting cholesterol, fasting triglycerides, and full blood count. 

Additional measurements were made on 24-hour collections of urine for urinary steroid 

metabolites, and dual X-ray absorption densitometry performed at femoral neck, and 

spine. A complete list of investigations is detailed in Appendix 3.

4.2.3 Glucocorticoid Receptor Binding Characteristics

Glucocorticoid receptor binding assays were performed as described in the chapter 2. 

The distribution of the binding characteristics is shown in table 4.3.
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Table 4.3 Glucocorticoid Receptor Binding Characteristics for Whole Cohort

Median Interquartile Range

Kd 7.3 3.8

Sites per cell 7022 4668

4.2.4 Sex Differences 

Interaction with Kd

In order to examine the effect of sex on Kd, a 2-tailed non-paired homoscedastic t-test 

was performed. This showed a significant sex difference between men and women 

(T=2.09, p=0.039) with men having a lower Kd than women for dexamethasone 

binding (7.24 ± 2.42 versus 8.11 ± 3.09, mean ± standard deviation) and illustrated in 

figure 4.1.
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Figure 4.1 Sex Difference in Glucocorticoid Receptor Kd

Kd is shown in nmol/1 Dexamethasone. Error bars show standard error of the mean.
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A biologically plausible mechanism to explain an influence of sex on Kd would be the 

effect of oestrogens and/or progestogens. If this were so, one would predict a difference 

between men and premenopausal women, but not between men and postmenopausal 

women. A summary of the subject characteristics by menopausal status is shown in 

table 4.4
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Table 4.4 Age and Receptor Binding Characteristics by Sex and Menopausal 

Status

Number Age Kd Sites perCell

Mean StdD ev Mean StdD ev Mean StdD ev

Pre-menopausal 9 62 43.39 8.7 8.647 3.214 7979 3908

Post-menopausal 9 94 58.064 9.168 7.760 2.962 6904 3715

All d 52 52.38 14.62 7.242 2.422 7495 3177

No significant differences were found in age between men and premenopausal women 

or men and postmenopausal women, but a significant difference in age between pre- 

and postmenopausal women was shown (T=-11.74, 3p<0.001). Comparison of pre­

menopausal women with men, using a 2 -tailed t-test, revealed a significant difference 

in Kd with men again having a lower Kd than pre-menopausal women for 

dexamethasone binding (T=2.66, 3p=0.027, 7.24 ± 2.42 versus 8.65 ± 3.21, mean ± 

standard deviation, figure 4.2). There were no differences for Kd between pre­

menopausal women and post-menopausal women, or between post-menopausal women 

and men. The possible confounding effect of age is addressed in the following section.
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Figure 4.2 Difference in Glucocorticoid Receptor Kd by Sex Hormonal Status

A significant difference between men and premenopausal women only, is shown. No 

other significant differences between groups were found.

Kd

nJC.•*->
0)
ECO
X
0>o

■o
Premenopausal Postmenopausal 

Hormonal Status

All Men

Interaction with sites per cell

The number of receptor sites per cell was compared between all men and all women, 

and between men and pre- or post-menopausal women. No significant differences were 

found.

4.2.5 Age Differences 

Interaction with Kd

To examine whether Kd altered with age linear regression was performed. This showed 

no significant interaction with r=0.1 and p=0.157.

However, as an interaction between sex and Kd was found, changes with age could 

occur independently for each sex that would be masked when both sexes were 

examined together. When linear regression was performed for Kd with age for females
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or males separately, no association was found (females r=0.11, p=0.166:males r=0.07, 

p=0.626, figure 4.3). Further subgroup analysis by menopausal status also failed to 

show any significant interaction with age.

Figure 4.3 Receptor Kd by Age for Each Sex
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Interaction with sites per cell

No association between age and sites/cell were found with r=0.09, p=0.167 for all 

subjects together, and r=0.13, p=0.113 for females, and r=0 , p=0.917 for males.

4.2.6 Discussion

Kd showed an interaction with sex that was strongest between all men and 

premenopausal women suggesting oestrogen and progesterone either individually or 

together reduced affinity for glucocorticoid binding to the glucocorticoid receptor. The 

most likely explanation for this observation would be progestogen competing with 

glucocorticoid for binding at the receptor. Previous in vitro studies have shown that 

progesterone is able to interact with the glucocorticoid receptor at physiological 

concentrations (Sugino et al 1997) and that it reduces the affinity of the receptor for 

glucocorticoid, possibly by an allosteric mechanism (Svec et al 1980). No evidence 

exists for a similar effect of oestrogens on the receptor.
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No effect on the number of receptor sites per cell was found suggesting sex steroids are 

not an important regulator of glucocorticoid receptor expression.

No effect of age on glucocorticoid receptor binding characteristics was found either 

when the cohort was analysed as a whole, or separately by sex.

4.3 Concordance

As receptor binding data were collected from twins on the same day under the same 

conditions, a measure of the inherited component of receptor binding can be assessed 

by comparing monozygotic twins with dizygotic twins. The square of the difference of 

Kd or sites per cell within each twin pair was taken and comparison between the two 

types of twins was done with a 2 -tailed unpaired t-test.

4.3.1 Heritability of Receptor Binding Characteristics 

Concordance for Kd

No difference was found between monozygotic and dizygotic twins for Kd (T=1.08, 

p=0.28) and illustrated in figure 4.4. This remained true when the sexes were analysed 

separately to allow for a sex-interaction (female T=1.00, p=0.32, male T=-0.05, 

p=0.96).
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Figure 4.4 Concordance for Kd

Concordance for Kd by Zygosity of Twin Pair

1 6  T  

14 ..

12OS 7 3

9- *
P c  10
c  0>

°  £
£ 1
§•5
CO

Zygosity monozygotic dizygotic

Concordance for sites per cell

No differences were found for the number of receptor sites/cell (all twins T=0.79, 

p=0.43, female T=0.02, p=0.84, male T=0.97, p=0.35) as shown in figure 4.5.

Figure 4.5 Concordance for Sites per Cell
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4.3.2 Twin-Twin Associations

Comparing the concordance for Kd between monozygotic and dizygotic twins showed 

no significant evidence of a genetic component to either Kd or receptor sites per cell. If 

either of these binding characteristics were under environmental influence then twins 

from either monozygotic or dizygotic pairs would be expected to show similar values 

due to a shared environment.

Kd and sites per cell were analysed separately for monozygotic and dizygotic twin pairs 

plotting the value from one twin against the other twin: the choice of which twin was 

plotted on the jc or y  axis was random within each twin-pair.

Graphs for monozygotic and dizygotic twin-twin association are shown in figures 4.6, 

and twin-twin associations for sites per cell are shown in figure 4.7.

Figure 4.6 Twin-twin associations for Kd

Monzygotic twins are shown on the left and dizygotic twins on the right. R values for 

linear regression within each twin cohort are shown in each graph.
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Figure 4.7 Twin-twin associations for Sites per Cell
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Linear regression for each cohort of twins for Kd and for sites per cell was significant 

at the p<0.005 level.

4.3.3 Discussion

Comparing the concordance for Kd and sites per cell between monozygotic and 

dizygotic twins showed no evidence of increased concordance (as reduced variance) for 

monozygotic twins compared to dizygotic twins. This provides strong evidence that 

neither Kd nor sites per cell are under a significant genetic influence.

This would suggest that Kd and sites per cell may be under environmental control. To 

assess this, twin-twin associations were performed for each binding characteristic with 

the rationale that twins share environment from uterus through childhood and share 

many aspects of lifestyle into adulthood. This showed significant associations for Kd
'y

and sites per cell for monozygotic and dizygotic twins with R values for Kd between
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13% and 51% and for sites per cell between 18 % and 62%. That binding 

characteristics remain similar within a twin pair to adulthood in the absence of a genetic 

component is remarkable. Since twins would be expected to share most of the same 

environment in early life with lesser similarities in adulthood, this may suggest that 

early life programming of glucocorticoid sensitivity, as discussed in section 1.4, may be 

responsible for the effects seen. Alternatively, broader environmental influences such 

as water supply or climate which affect entire geographical regions, may exert an 

effect.

Finally, in view or the strong twin-twin associations found, subsequent analyses in this 

chapter are performed on a randomly chosen twin from each twin pair.

4.4 The Effect of Season

4.4.1 Interaction with Kd

As data was being collected it became clear that Kd appeared to vary predictably with 

time. When Kd was plotted against the date of sampling there appeared to be a 

sinusoidal pattern in Kd, figure 4.8.
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Figure 4.8 Variation of Kd with Time
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Furthermore, the pattern appeared to vary with season with highest Kd in winter and 

lowest in summer and the highest Kd peak coincided with the coldest local winter on 

record with environmental temperatures of -20°C. Using a commercial curve-fitting 

program (CurveExpert -  © Douglas Hyams, 911 Madden Bridge Road, Central, SC 

29630, USA) able to employ a number of mathematical models to fit a data set by non­

linear regression, a sinusoidal model fitted best (r=0.5, p<0.0001), Figure 4.9.
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Figure 4.9 Kd by Day of Sampling with Fitted Sinusoid

The dates of sampling were converted to days since 1st January 1995, and fitted by 

non-linear regression. This provided a fit with equation 

y=7.76+2.21 *cosine(0.021 *day-2.37).
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As a plausible seasonal effect could be mediated by climate, climatic data were 

collected from the local meteorological station (kindly supplied by the Meteorological 

Office). Linear regression for Kd with minimum environmental temperature, maximum 

environmental temperature and day length were all statistically significant as shown in 

table 4.5. Graphs of the linear regressions are shown in figures 4.10-4.12.
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Table 4.5 Interaction between Kd and Climate

Interaction with Kd P= r=

Minimum Temperature <0.0001 -0.33

Maximum Temperature <0.0001 -0.48

Day Light <0.0001 -0.33

Figure 4.10 Interaction of Kd with Minimum Temperature

Kd is in nmol/1 dexamethasone. Minimum environmental temperature on the day of 

blood sampling is in °C.
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Figure 4.11 Interaction of Kd with Maximum Temperature
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Figure 4.12 Interaction of Kd with Day Length
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Using multiple regression with minimum temperature, maximum temperature and day 

length as explanatory variables for Kd, the total explained variance was unchanged 

compared to the univariate analysis for maximum temperature alone (r2=0.229 

p<0.0001 versus r^O.229 p<0.0001).

4.4.2 Interaction with Sites per Cell

When the number of receptor sites per cell was plotted against time there was less 

obvious seasonal variation in sites/cell, figure 4.13.

Figure 4.13 Receptor Sites per Cell by Time
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When this data was modelled using the CurveExpert program there was no significant 

fit with a seasonal model, the best fit being provided by a simple linear model. 

Furthermore, on linear regression analysis with sites per cell as the response variable 

and minimum temperature, maximum temperature or day light as the predictor 

variables, there were no significant associations as shown in table 4.6.
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Table 4.6 Interaction between Sites per Cell and Climate

Interaction with Sites/cell P= r=

Minimum Temperature 0.96 0 . 0

Maximum Temperature 0.61 -0.04

Day Light 0.17 0.13

4.4.3 Discussion

Kd showed a striking seasonal pattern. Associations were found between Kd and 

minimum and maximum environmental temperature and for day length. The 

glucocorticoid receptor shows temperature sensitive binding characteristics with 

reduced affinity, but normal numbers of receptor sites, in hyperthermic subjects (Molijn 

et al 1995). This is in contrast to the effect found with season where higher affinity was 

found at higher environmental temperatures. We were careful to perform our binding 

assays at 25 °C for 20 hours in a thermostatically controlled environment to eliminate 

temperature-induced variation.

It seems unlikely, therefore, that environmental temperature directly affected receptor 

binding. A more plausible explanation would be that environmental temperature, and 

possibly day light, interacts in vivo with the glucocorticoid receptor by altering the 

production of an intermediate substance capable of modulating the receptor’s affinity. 

This could be a simple molecule or a complex protein assembly. An obvious analogy 

for the simple molecule model is the effect of 2,3-bisphosphoglyerate that binds 

allosterically to haemoglobin increasing its affinity for oxygen (Baldwin and Clothia 

1979). Any simple substance would have to be resistant to the repeated washing and
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long incubations of the binding assays; cortisol itself is not a candidate molecule as it 

was undetectable after cell preparation. Large molecule interactions could include any 

of the components of the heat shock protein assembly (Pratt 1993).

In contrast, sites per cell showed no clear seasonal component, although variation 

throughout the year was nonetheless evident.

4.5 Biological Associations with Glucocorticoid Receptor Binding Characteristics

From discussion in section 1.7 glucocorticoid excess has many effects on body 

composition and metabolism, particularly affecting body mass, cardiovascular risk, 

electrolyte handling and bone metabolism. The glucocorticoid receptor is key in 

regulating the hypothalamo-pituitary-adrenal axis and to assess whether variation of 

glucocorticoid receptor binding characteristics affected steroid synthesis or metabolism 

we collected detailed steroid metabolite data from each subject. Anthropometric, 

biochemical and bone densitometry data were collected to assess the physiological 

impact of glucocorticoid activity.

4.5.1 Interaction with Steroid Metabolites

To examine the interaction of glucocorticoid receptor binding with steroid synthesis 

and metabolism, plasma and urinary steroid concentrations were measured using 

radioimmunoassay and gas chromatography mass spectrometry respectively (as 

described in Inglis et al 1999. RIA was kindly performed by Prof R Fraser, and GCMS 

by Miss M Ingram). The principal variables measured were basal plasma cortisol and 

aldosterone, cortisol and aldosterone responses 30 minutes after intravenous injection 

of 250pg of synacthen, and the unstimulated urinary metabolites of cortisol,

152



4 Receptor Binding Characteristics in Twin Pairs

(tetrahydrocortisol [THF] and allo-tetrahydrocortisol [aTHF],) cortisone, 

(tetrahydrocortisone [THE]) and of aldosterone, (tetrahydroaldosterone [THaldo]). By 

taking the ratio of total cortisol metabolites (THF + aTHF) over total cortisone 

metabolites (THE), an index of overall 11 P-hydroxysteroid dehydrogenase activity was 

derived, subsequently referred to here as the THF-ratio.

Interaction with Kd

Receptor Kd showed no interaction with plasma cortisol, aldosterone, or with any of the 

urinary metabolites THF, aTHF, THE or THaldo, as summarised in table 4.7.
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Table 4.7 The Interaction of Kd with Corticosteroids and Metabolites

The p  and r values are shown for the interaction between Kd and the variables listed 

using linear regression. Where the distribution of a variable deviated significantly from 

a normal distribution, the variable was log transformed. All log transformed variables 

had normal distributions. Residuals after each regression were normal. Statistically 

significant interactions are highlighted in bold text. Caveat - p values for regression 

were not adjusted for multiple comparisons on the basis that these were exploratory 

calculations: significance therefore has to be treated with caution.

Interaction with Kd P= r=

Log basal cortisol 0 . 2 1 -0 . 1 2

Log basal aldosterone 0.76 -0.03

Log stimulated cortisol 0 . 1 1 -0.15

Log stimulated aldosterone 0.27 -0 . 1 1

Log THF 0 . 1 2 -0.15

Log aTHF 0.52 -0.06

Log THE 0.14 -0.45

Log THF-ratio 0.78 0.03

Log THaldo 0.17 0.16

Interaction with sites per cell

Receptor sites per cell showed no interaction with plasma cortisol or aldosterone. 

Interactions were found between sites per cell and the urinary metabolites THF-ratio
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and THaldo, but not with THF, aTHF or the THE. Results are summarised in table 4.8, 

with significant interactions shown in figures 4.12 and 4.13.

Table 4.8 Interaction of Sites per Cell with Corticosteroids and Metabolites

Interaction with sites per cell P= r=

Log basal cortisol 0 . 1 0 -0.07

Log basal aldosterone 0.95 0 . 0

Log stimulated cortisol 0 . 1 0 -0.16

Log stimulated aldosterone 0.37 0.08

Log THF 0.46 0.07

Log aTHF 0.82 0 . 0

Log THE 0 . 1 0 0.16

Log THF-ratio 0.01 -0.24

Log THaldo 0.03 0.25

Figure 4.14 Interaction of Sites per Cell with log THF-ratio

Sites per cell versus log THF-ratio

y = -3019.5x + 7180.3 
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Figure 4.15 Interaction of Sites per Cell with THaldo
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Discussion

No interaction between plasma cortisol or urinary cortisol metabolites and Kd or sites 

per cell was found suggesting the receptor assayed in leukocytes does not reflect central 

glucocorticoid receptor activity, and that physiological variation in cortisol synthesis 

does not affect leukocyte glucocorticoid receptor affinity.

The number of sites per cell did, however, show a negative correlation with the THF- 

ratio (an indirect measure of whole body 1 1  p-hydroxysteroid dehydrogenase activity) 

and a positive correlation with THaldosterone urinary excretion. The mechanism for 

these changes, in the absence of any detectable change in plasma levels, remain 

unclear. Furthermore, the association between the number of sites per cell and THaldo 

excretion appears to be artefactual and caused by a number of low THaldo values 

skewing the regression. However, inhibition of 11 p-hydroxysteroid dehydrogenase 

produces a rise in the THF-ratio and suppressed aldosterone production (Palermo et al
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1996). What remains unknown is whether the glucocorticoid receptor increases 11 p- 

hydroxysteroid dehydrogenase expression or activity.

4.5.2 Interaction with Anthropometric Data

Cortisol excess frequently produces a phenotype with increased central obesity with 

increased body mass index (BMI) and notably an increased waist:hip ratio (WHR) due 

to increased visceral fat deposition. In addition, cortisol exposure in utero has been 

proposed as a risk factor for intrauterine growth retardation and reduced birth weight. 

Data was therefore collected for height, weight, body mass index, waist hip ratio, and 

birth weight.

Interaction with Kd

No interaction was found between Kd and any of these variables. The results of linear 

regression are shown in table 4.9.

Table 4.9 Interaction of Kd with Anthropometric Measurements

Body mass index (BMI) was calculated as the weight in Kg divided by the square of the 

height in metres. Waist-hip ratio (WHR) was calculated as waist circumference divided 

by the hip circumference.

Interaction with Kd P= r=

Height 0.99 0 . 0

Weight 0.35 0.08

BMI 0.16 0.13

WHR 0.49 -0.07

Birth weight (by recall) 0.43 -0.08
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Interaction with sites per cell

The interaction between sites per cell and anthropometric data was tested by linear 

regression. No significant interaction was found for any variable. Results of the 

regressions are shown in table 4.10.

Table 4.10 Interaction of Sites per Cell with Anthropometric Measurements

Interaction with sites per cell P= r=

Height 0.55 -0.05

Weight 0.49 0.06

BMI 0 . 2 1 0 . 1 2

WHR 0.42 0.08

Birth weight (by recall) 0.78 -0.03

Discussion

None of the variables weight, BMI or WHR were found to interact with Kd or sites per 

cell. This suggests that changes in Kd do not reflect peripheral tissue sensitivity to 

glucocorticoids. Conversely, states of relative obesity do not alter Kd or receptor sites 

per cell, in contrast to the effect of obesity on cortisol where plasma concentrations 

remain little changed, and urinary excretion greatly increases (Andrew et al 1998).
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4.5.3 Interaction with Cardiovascular Risk Factors

The development of cardiovascular disease is associated with a number of risk factors 

that include hypertension, hyperglycaemia and dyslipidaemia. Cortisol excess is known 

to increase all these variables and may exert its adverse influence on cardiovascular 

disease through these mechanisms. To explore the interaction between altered 

glucocorticoid receptor signalling and a range of cardiovascular risk factors, blood 

pressure, fasting glucose and fasting lipids were collected from each subject.

Interaction with Kd

No significant interactions were found between Kd and the cardiovascular risk factors 

detailed above as shown in table 4.11.
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Table 4.11 Interaction of Kd with Cardiovascular Variables

Interaction with Kd P= r=

Lying Systolic Blood Pressure 0.75 0.03

Lying Diastolic Blood Pressure 0.16 0.13

Lying Pulse 0.32 0.09

Standing Systolic Blood Pressure 0.57 0.05

Standing Diastolic Blood Pressure 0.37 0.08

Standing Pulse 0.46 0.07

Fasting Glucose 0.69 0.03

Log Fasting Triglycerides 0.29 0 . 1 0

Log Fasting VLDL 0.24 0 . 1 2

Fasting Cholesterol 0.16 0.13

Log LDL 0.09 -0.17

HDL 0.13 -0.15

HDL:LDL ratio 0.91 0 . 0
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Interaction with sites per cell

No significant interactions were found between sites per cell and the cardiovascular risk 

factors detailed above as shown in table 4.12.

Table 4.12 The Interaction of Sites per Cell with Cardiovascular Variables

Interaction with sites per cell P= r=

Lying Systolic Blood Pressure 0.61 -0.04

Lying Diastolic Blood Pressure 0.79 -0.03

Lying Pulse 0.57 0.05

Standing Systolic Blood Pressure 0.97 0 . 0

Standing Diastolic Blood Pressure 0.81 0 . 0

Standing Pulse 0.51 0.06

Fasting Glucose 0.77 0.03

Log Fasting Triglycerides 0.26 0 . 1 0

Log Fasting VLDL 0.48 0.08

Fasting Cholesterol 0.31 -0.09

Log LDL 0 . 1 1 -0.16

HDL 0.45 -0.07

HDL:LDL ratio 0.91 0 . 0
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Discussion

No association was found between Kd or sites per cell and blood pressure, lipid 

subfractions or glucose. This suggests that variation in leukocyte Kd does not reflect 

glucocorticoid activity in the key tissues of vasculature, liver and pancreas.

Previous studies have demonstrated that, in the leukocyte glucocorticoid receptor 

binding assay using dexamethasone as the radiolabel, hypertensive subjects have a 

lower affinity than normotensives when cortisol is used as the competing ligand, but 

not when dexamethasone competes (Mulatero et al 1997). Since the assay used in the 

present study used dexamethasone as the labelled and competing ligand these results 

are consistent. A previous report showed a positive correlation between receptor Kd 

and plasma cholesterol (Panarelli et al 1998). I did not replicate this finding. Finally, a 

lack of association between Kd and fasting glucose is, perhaps, unsurprising as subjects 

known to be diabetic were excluded from study, and this study lacked power to detect 

an effect within the closely regulated physiological concentrations of glucose.

4.5.4 Interaction with Plasma Electrolytes

Glucocorticoids bind to mineralocorticoid receptors with similar affinity to 

glucocorticoid receptors in vitro. In vivo, the distal tubules and collecting ductules are 

protected from the mineralocorticoid effects of glucocorticoids by the enzyme lip~ 

hydroxysteroid dehydrogenase type 2. To examine the effects of glucocorticoids on 

renal electrolyte handling plasma electrolytes were collected.

Interaction with Kd

Linear regression showed a significant interaction between Kd and plasma sodium and 

creatinine as shown in table 4.13 and figure 4.16.
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Table 4.13 Interaction of Kd with plasma electrolytes

Interaction of Kd with: P= r=

Sodium 0.05 -0.18

Potassium 0.87 0 . 0

Chloride 0.73 0.03

Carbon Dioxide 0.25 -0 . 1 1

Urea 0.63 -0.04

Creatinine 0.24 -0 . 1 1

Figure 4.16 Interaction of Kd with Plasma Sodium

Sodium is shown in mmol/1.
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Interaction with sites per cell

No significant interaction between sites per cell and plasma electrolytes were found. 

Results of linear regression are shown in table 4.14.
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Table 4.14 Interaction of Sites per Cell with Plasma Electrolytes

Interaction of Sites/cell with: P= r=

Sodium 0.46 -0.07

Potassium 0 . 1 2 -0.15

Chloride 0.49 -0.06

Carbon Dioxide 0.67 0.04

Urea 0.70 -0.03

Creatinine 0 . 1 0 0.15

Discussion

Kd showed a small interaction with plasma sodium concentration where a lower Kd 

was associated with a higher plasma sodium. This was a small effect, one that may have 

been due to confounding by a few outliers at the upper range of sodium concentrations, 

and should be interpreted with caution in the context of multiple significance tests. 

With those reservations however, glucocorticoid deficiency results in a characteristic 

hyponatraemia that is mainly due to reduced free water clearance (De Leacy et al 

1991). If a higher Kd resulted in reduced glucocorticoid activity in the nephron, this 

may reduce free water clearance sufficiently to dilute the sodium concentration towards 

the lower end of the reference range. An alternative explanation that increased 

glucocorticoid activity in the nephron increases sodium reabsorption seems unlikely as 

glucocorticoid excess is not associated with increases in plasma sodium. The converse 

hypothesis that physiological changes in sodium concentration alter glucocorticoid 

receptor affinity does not apply in this system where the concentration of sodium in the 

incubation is strictly controlled.
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No interaction between sites per cell and electrolytes was found. This is in contrast to a 

previous positive correlation between the number of receptor sites and plasma sodium 

(Panarelli et al 1998).

4.5.5 Interaction with Bone Metabolism

Long term exposure to relatively modest glucocorticoid excess is known to reduce bone 

mineral density. Part of our hypothesis was that altered glucocorticoid metabolism over 

time may manifest itself as reduced bone mineral density which might accelerate the 

rate of bone loss with increasing age. Each twin therefore had dual-X ray absorption 

densitometry measurements made at hip and spine for comparison with Kd and sites per 

cell.

Interaction with Kd

No significant interaction was found between Kd and bone mineral density by linear 

regression as shown in table 4.15.

Table 4.15 Interaction of Kd with Bone Mineral Density

Bone mineral density is shown as the T value. Similar results were found for Z values.

Interaction with Kd P= r=

Femoral Neck T 0.52 0.06

Trochanter T 0.33 0.09

Intertrochanter T 0.45 0.07

Ward’s Area T 0.19 0 . 1 2

Femur T 0.45 0.07

L 1-4 T 0.35 0.09
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Interaction with sites per cell

Significant interactions between sites per cell and bone mineral density were found at 

the greater trochanter, intertrochanteric region and total femur as shown in table 4.16 

and figures 4.17-4.19.

Table 4.16 Interaction of Sites per Cell with Bone Mineral Density

Interaction of sites per cell with: P= r=

Femoral Neck T 0.23 0 . 0 1

Trochanter T 0.01 0.24

Intertrochanter T 0.02 0.22

Ward’s triangle T 0.14 0.14

Femur T 0.02 0.22

L 1-4 T 0 . 8 8 0 . 0
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Figure 4.17 Interaction of Sites per Cell with Trochanteric Bone Mineral Density
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Figure 4.18 Interaction of Sites per Cell with Intertrochanteric Bone Mineral 

Density
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Figure 4.19 Interaction of Sites per Cell with Total Femoral Bone Mineral Density
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Discussion

No association between glucocorticoid receptor Kd and bone mineralisation at femur or 

spine was found. However, strong associations were found between sites per cell and 

bone mineral density at the greater trochanter, intertrochanteric region and total femur. 

Previous studies have demonstrated pronounced bone mineral density loss caused by 

glucocorticoids that affects both spine and hip (Saag et al 1998). In this study we found 

a positive correlation between sites per cell and mineral density, a finding which would 

be contrary to the hypothesis that increased sensitivity to circulating glucocorticoids 

results in increased rates of bone loss. An alternative explanation, that both receptor 

number and mineral density are confounded by sex steroids is not borne out by 

subgroup analysis by sex or menopausal status.

4.6 Multivariate Analysis

A model was constructed to explain varitaion in receptor binding charactersistcs from 

the variables identified above. Using variables identified from the preceding univariate 

analyses that interacted with receptor binding characteristics, those variables with weak 

associations, those that may be confounded by outliers, and those for which no 

biological plausibility applied were excluded. This resulted in the exclusion of the 

interaction between sites and THaldo, Kd and sodium and sites and bone mineral 

density. A stepwise, forward selection approach was used to identify likely predictors 

from the pool of interacting univariate variables and these were then analysed using 

multiple regression. Where the introduction of a variable to the model failed to increase 

its predictive power significantly, the variable was rejected from the model.
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Interactions with Kd

From the pool of putative predictor variables identified above, maximum environmental 

temperature alone predicted the highest variance in Kd of 22.9%. Adding sex, 

minimum temperature or day light failed to increase the predictive power of the model. 

The equation for Kd is :

Kd = 10.7 - 0.239*Max Temp 

R2=22.9%

p<0 . 0 0 0 1

Interactions with sites per cell

Only Log THF-ratio showed a significant interaction for sites per cell, and the equation 

is given below.

Sites = 7180 - 3019*logio(THF-ratio)

R2=5.8%

p=0 . 0 1
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Chapter 5

Receptor Binding Characteristics in Normal Subjects

5.1 Introduction

In another cohort study, the Midspan study, the offspring of subjects characterised for 

cardiovascular risk factors in 1970 were recruited from west central Scotland. The 

original study, the Renffew-Paisley study (Hawthorne et al 1974), was established 

between 1972 and 1976 to examine prevalent cardiovascular risk factors and subsequent 

cardiovascular and respiratory morbidity and mortality. In 1994-1996 the offspring of 

these original subjects were contacted and studied as part of a second generation family 

study of cardiovascular risk (Hawthorne et al 1995). Part of this study included 

measurements of anthropomorphic data (including weight, height, and waist-hip ratio 

and birth weight) cardiovascular risk factors (blood pressure, pulse, fasting glucose, 

cholesterol, triglycerides, LDL cholesterol and HDL cholesterol) and steroid 

metabolites (plasma cortisol and aldosterone). Taking the opportunity to measure 

glucocorticoid receptor characteristics in this cohort allowed me to explore whether 

there was any relationship between glucocorticoid receptor binding characteristics and 

cardiovascular risk factors.

5.2 Description of Cohort

A total of 180 subjects (106 females and 74 male) were recruited for whom a complete 

data set was available. The age distribution is shown in table 5.1.
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Table 5.1 Age Distribution of Cohort

(Std Dev is standard deviation)

Number Minimum Mean Std Dev Maximum

Female 106 2 1 44.4 5.2 54

Male 74 32 43.4 5.7 54

There were no significant differences between the ages of the females and males when 

compared by a 2-tailed t-test (T=1.16, p=0.25).

5.3 Measurements

Each subject had height and weight measured and body mass index calculated. Blood 

was taken for glucocorticoid receptor binding assay, basal cortisol, fasting glucose, 

fasting insulin, fasting triglycerides and fasting cholesterol. A 75g load of glucose was 

then given and blood taken at 2  hours for glucose and insulin measurement.

5.4 Glucocorticoid Receptor Binding Characteristics

Glucocorticoid receptor binding assays were performed as described in chapter 2. The 

distribution of receptor binding characteristics is shown in table 5.2.

Table 5.2 Glucocorticoid Receptor Binding Characteristics

Minimum Mean Std Dev Maximum

Kd 0 . 6 8.4 3.3 16.8

Sites per cell 1932 7956 3276 10015
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5.5 Sex Differences 

Interaction with Kd

Evidence of a sex interaction with Kd was tested with a 2-sample 2-tailed t-test. This 

showed no significant interaction with sex (T=0.12, p=0.91). This is in contrast with the 

age effect in Kd in the twin study. However, the present study was composed of a 

different population with correspondingly lower mean ages and smaller ranges in ages. 

As an interaction with age within the female group was found in the twin study, a 

smaller range in age in the present study would be expected to conceal any interaction 

with age and sex.

Interaction with sites per cell

No interaction with sex was found for sites per cell (T=-0.44, p=0.66).

5.6 Age Differences 

Interaction with Kd

Using linear regression, no evidence of an interaction with was found (r=-0.08, p=0.16). 

There remained no interaction when females and males were analysed separately. 

Interaction with sites per cell

No interaction between sites per cell and age were found by linear regression for 

females and males together (r=-0.05, p=0.43) or separately (r=-0.06, p=0.67).

5.7 Interaction with Season 

Interaction with Kd

As in the twin study, a clear seasonal effect on Kd was found. When Kd was plotted 

with time the most descriptive model using the CurveExpert package was a sinusoidal 

relationship (pO.OOOl) as shown in figure 5.1.
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Figure 5.1 Kd with Time

(Kd is shown in nmol/1 dexamethasone).

The equation for the fitted sinusoid is 8.25+2.49*cosine(0.002*day-1.38) where the 

argument for cosine is in radians and the date is the number of days since the 1 st of 

January 1996.
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Interaction with sites per cell

Furthermore, the number of sites per cell showed variation with time and this showed a 

significant fit with a sinusoidal model (pO.OOOl) as shown in figure 5.2.
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Figure 5.2 Sites per Cell with Time

The equation of the fitted sinusoid is 7750+2480*cosine(0.019*date-0.85) where the 

argument for cosine is in radians and the date is the number of days since the 1 st of 

January 1996.
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Summary

Both Kd and sites per cell show a significant interaction with time which can be 

modelled by a sinusoid suggesting a seasonal interaction.

5.7.1 E ffect o f Climate 

Interaction with Kd

To examine the effect of climate on Kd, meteorological data were collected and 

evidence for an interaction tested by linear regression using minimum environmental 

temperature, maximum temperature or day length to explain Kd. All showed significant 

interactions as shown in table 5.3 and in figures 5.3, 5.4 and 5.5.
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Table 5.3 Interaction of Kd with Climate

Interaction of Kd with P= r=

Minimum temperature <0.0001 -0.25

Maximum temperature <0.0001 -0.35

Day length <0.0001 -0.45

Figure 5.3 Interaction between Kd and Minimum Temperature

Kd is in nmol/1 dexamethasone and minimum temperature is in °C.
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Figure 5.4 Interaction between Kd and Maximum Temperature
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Figure 5.5 Interaction between Kd and Day Length
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Interaction with sites per cell

Linear regression was performed to examine the relationship between climate and sites 

per cell. This showed significant interactions as shown in table 5.4 and in figures 5.6,

5.7 and 5.8.

Table 5.4 Interaction of Sites Per Cell with Climate

Interaction of sites per cell with P= r=

Minimum temperature 0.001 -0.25

Maximum temperature <0.0001 -0.41

Day length <0.0001 -0.45

Figure 5.6 Interaction of Sites Per Cell with Minimum Temperature
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Figure 5.7 Interaction of Sites Per Cell with Maximum Temperature
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Figure 5.8 Interaction of Sites Per Cell with Day Length
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Summary

Both Kd and sites per cell show significant association with minimum temperature, 

maximum temperature and day length.

5.8 Interaction with Cortisol

Basal cortisol was measured on an unstressed sample from each subject at 09:00 -  

09:30am. No interaction between basal plasma cortisol and either Kd or sites per cell 

was found as shown in table 5.5

Table 5.5 Interaction between Plasma Cortisol and Kd or Sites Per Cell

Interaction with Plasma Cortisol P= r=

Kd 0.37 0.07

Sites per cell 0.21 0.09

5.9 Interaction with Anthropometric Data 

Interaction with Kd

Subjects’ height and weight were measured and from this the body mass index (BMI) 

calculated. There were no significant interactions with Kd and any of these variables as 

shown in table 5.6.
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Table 5.6 Interaction between Kd and Anthropometric Measurements

Interaction with Kd P= r=

Height 0.53 0.0

Weight 0.51 0.0

BMI 0.37 0.07

WHR 0.20 -0.1

Birth weight 0.92 0.0

Interaction with sites per cell

No interactions between sites per cell and anthropometric measurements were found as 

shown in table 5.7.

Table 5.7 Interaction between Sites Per Cell and Anthropometric Measurements

Interaction with sites per cell P= r=

Height 0.37 -0.07

Weight 0.52 -0.02

BMI 0.31 -0.08

WHR 0.25 -0.09

Birth weight 0.76 0.0
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5.10 Interaction with Cardiovascular Risk Factors 

Interaction with Kd

A number of cardiovascular variables were measured on each subject including resting 

pulse, resting systolic blood pressure, resting diastolic blood pressure, fasting glucose, 

fasting insulin, fasting triglycerides, fasting cholesterol, and glucose and insulin 2 hours 

after a 75g glucose load. A significant interaction between Kd and log transformed 

fasting triglycerides was found, with the linear regression of the interaction shown in 

figure 5.9. The results of linear regression are shown in table 5.8. It should be noted that 

these were exploratory regressions and the p values are not adjusted for multiple tests. 

Values, therefore, need to be interpreted with caution.

Table 5.8 Interaction of Kd with Cardiovascular Variables

Interaction of Kd with P= r=

Resting pulse 0.89 0.0

Systolic blood pressure 0.86 0.0

Diastolic blood pressure 0.32 0.07

Fasting glucose 0.31 0.08

Log fasting insulin 0.47 0.05

Log Fasting triglycerides 0.05 -0.15

Fasting cholesterol 0.86 0.0

2 hour glucose 0.94 0.0

Log 2 hour insulin 0.77 0.03
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Figure 5.9 Interaction of Kd with log Triglycerides
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Interaction with sites per cell

No significant interaction was found between sites per cell and any of the 

cardiovascular variables listed above as shown in table 5.9.

Table 5.9 Interaction of Sites per Cell with Cardiovascular Variables

Interaction of sites per cell with P= r=

Resting pulse 0.32 0.08

Systolic blood pressure 0.98 0.0

Diastolic blood pressure 0.19 0.09

Fasting glucose 0.56 0.04

Log fasting insulin 0.87 0.0

Log Fasting triglycerides 0.09 -0.13

Fasting cholesterol 0.42 0.06

2 hour glucose 0.74 -0.03

Log 2 hour insulin 0.62 0.03
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5.11 Interaction with Electrolytes

Interaction with Kd

No significant interaction between Kd and either plasma sodium or potassium was 

found as shown in table 5.10.

Table 5.10 Interaction of Kd with Electrolytes

Interaction of Kd with P= r=

Sodium 0.07 0.14

Potassium 0.79 0.0

Interaction with Sites per cell

No significant interaction between Kd and either plasma sodium or potassium was 

found as shown in table 5.11.

Table 5.11 Interaction of Sites per Cell with Electrolytes

Interaction of Sites per cell with P= r=

Sodium 0.06 0.15

Potassium 0.94 0.0

5.12 Multivariate Analysis

Interactions with Kd

Using the variables found to have significant interaction with Kd on

regression (i.e. minimum temperature, maximum temperature, day length and log 

triglycerides) a multivariate analysis was performed. From this, day length and log 

triglycerides explained more of the variance (23.8%) in Kd than the other variables.
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Including plasma sodium, which had borderline significance, did not refine the 

predictive power of the model. The equation for Kd was:

Kd=14.1-10.9*day length -  2.68 logio (triglycerides)

For sites per cell, day length also explained more variance in sites per cell than the other 

climatic variables (21.3%). Adding maximum temperature, but not minimum 

temperature, to the model significantly improved the predictive value explaining 23.8% 

of variance in sites per cell. Adding plasma sodium to the model did not increase its 

predictive power. The multiple regression equation is:

Sites per cell=l3463-313 * day length-121 * maximum temperature 

5.13 Conclusions

5.13.1 Age and Sex

The cohort was well matched for age and sex with no significant difference for age 

between female and male subjects. No interaction between Kd or sites per cell and age 

or sex was found.

5.13.2 Season

Kd showed a significant interaction with climate in keeping with findings in the twin 

cohort. On univariate regression, minimum temperature, maximum temperature and day 

length all showed significant interactions, but day length alone provided the best model, 

in contrast to the twin study where maximum temperature was most predictive. It 

should, however, be noted that all the measured climatic variables are highly correlated 

with one another and correlation in statistical analysis does not imply a causal 

mechanism. The finding of a seasonal effect in both studies is, therefore, entirely 

consistent with the earlier finding in the twin study.
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For sites per cell all three climatic variables showed significant interaction individually, 

and when combined in multiple regression, day length remained the best explanatory 

variable with maximum temperature making a small, but significant, refinement to the 

model.

This is in contrast to the finding of no significant interaction between sites per cell and 

climate in the twin study. The Midspan study included a larger number of subjects that 

the Twin study (180 versus 104 subjects selected from each twin pair). This would be 

expected to increase the power of the study and may explain the apparent inconsistency 

between populations. A further confounding influence between the studies may be 

caused by the geographical situation of each population. In the Midspan study all 

subjects resided within the Renfrew or Paisley districts and climatic data were collected 

from the Glasgow airport meteorological station, a maximum distance of 11 kilometres 

from the subjects home. In contrast, subjects in the Twin study were recruited from the 

whole of Scotland and it was impossible to obtain accurate climatic data for the whole 

country. This discrepancy may explain part of the weaker or absent interactions seen 

between climate and receptor binding characteristics.

5.13.3 Steroid Metabolism

No interaction between Kd or sites per cell and plasma cortisol was found. It is plausible 

that the leukocyte receptor does not behave similarly to the receptor in the central 

nervous system, where glucocorticoid receptor activity is known to regulate cortisol 

secretion by the adrenal (Bomstein and Chrousos 1999). However, plasma cortisol has 

poor predictive power in assessing overall cortisol production. More powerful methods 

of measuring cortisol production include label dilution methods (Linder et al 1990) and 

24 hour urinary metabolite excretion measurement (Yap et al 1992). The former method
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uses radiolabelled or stable isotope labelled cortisol injected intravenously with the ratio 

of labelled to unlabelled (i.e. endogenous) cortisol measured at equilibrium giving an 

accurate measure of total circulating cortisol. The latter method measures steroid 

metabolites by their separation in a gas chromatography column and subsequent 

detection by mass and charge of molecular fragments in a mass spectrometer (gas 

chromatography mass spectrometry -  GCMS). However, more detailed assessment of 

the cortisol phenotype was not possible in this study.

5.13.4 Anthropometry

No interaction between Kd or sites per cell and height, weight, BMI, WHR or birth 

weight was found. This finding is consistent with the twin study and suggests either that 

glucocorticoid receptor activity in leukocytes does not reflect glucocorticoid sensitivity 

in key tissues such as adipose tissue, or that glucocorticoids are not important in 

mediating growth and obesity.

5.13.5 Cardiovascular Risk Factors

No interaction between Kd or sites per cell and pulse, blood pressure, glucose or insulin 

(either fasting or 2 hours after a 75g glucose load) or fasting cholesterol were found. A 

weak interaction between Kd and fasting triglycerides was found. The role of 

triglycerides in cardiovascular disease remains controversial, however (Gotto 1998, 

Sattar et al 1998) and its effect on cardiovascular risk is not likely to be substantial.

5.13.6 Electrolytes

No significant interaction between Kd or sites per cell and plasma sodium or potassium 

was found although previous studies have demonstrated an interaction between plasma 

sodium and the number of sites per cell (Panarelli et al 1998).
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Chapter 6

Effect of Season on Receptor Binding

6.1 Introduction

Assays of receptor binding characteristics in the large populations from the Twin study 

and the Fastcard study had both revealed a significant interaction between climatic 

variables and Kd, with variable effects on sites per cell. However, these were cross 

sectional studies and it is important to establish that the apparent seasonality is seen in 

individual subjects. In order to test the hypothesis that receptor binding characteristics 

varied within each individual in a seasonal pattern, subjects were recruited for serial 

receptor binding assays over 1 year. Nine healthy male subjects between 23 and 61 

years of age were recruited: female subjects being excluded to avoid the risk of inducing 

iron deficiency anaemia from the repeated venepuncture, and to avoid the possible 

confounding effect of sex found in the Twin study (but not the Fastcard study). Blood 

was collected between 09:00 and 09:30 hours every 3 weeks and receptor binding 

assays performed as described previously. Plasma was separated for measurement of 

cortisol and tri-iodothyronine assays to test the hypothesis that these hormones affect 

glucocorticoid receptor activity.

6.2 Statistics

The statistical analysis of serial data is complex as data points are not necessarily 

independent of one another and cannot simply be analysed by standard regression 

methods. A model was developed using the Stata statistical package that allowed single 

and multiple regression to be performed making allowances for repeated measures and 

giving accurate estimates for probability.
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6.3 Interaction with Season

Interaction with Kd

For each subject Kd varied with season in a similar manner to that observed in the Twin 

and Fastcard populations with high Kd in the winter months and low Kd in summer. 

The best fit using the Curve Expert program was for a sinusoidal curve (p<0.001, F- 

test), figure 6.1.

Figure 6.1 Seasonal Variation in Kd

Kd is shown in nmol/L dexamethasone. The sinusoidal fit has the equation 

8.24+2.57*cosine(0.02*(days since l/l/96)+0.336) where the argument for cosine is in 

radians.
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Univariate regression correcting for repeated measures was performed between Kd and 

the climatic variables minimum temperature, maximum temperature and day length. Ths 

showed significant interaction with Kd as shown in table 6.3 and in figures 6.2-6.4.
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Table 6.1 Interaction between Kd and Climate

Interaction between Kd and P r

Minimum temperature 0.02 -0.22

Maximum temperature 0.01 -0.27

Day Length 0.001 -0.48

Figure 6.2 Interaction of Kd with Minimum Temperature
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Figure 6.3 Interaction of Kd with Maximum Temperature
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Figure 6.4 Interaction of Kd with Day Length
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Interaction with sites per cell

Sites per cell also showed a significant seasonal variation, although this was less 

pronounced than for Kd. The best fit for this curve was also for a sinusoid (p<0.001, F- 

test), figure 6.5.

Figure 6.5 Sites per Cell with Time

The equation of the fitted sinusoid is 8561+2144*cosine(0.015*(days since 

1/1/1996)+0.199)
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Univariate regression with correction for repeated measures was performed using sites 

per cell as the response variable and minimum temperature, maximum temperature and 

day length as explanatory variables. This showed a small significant interaction between 

day length and sites per cell only as shown in table 6.2 and figure 6.6.

Table 6.2 Interaction between Sites Per Cell and Climate

Interaction between sites per cell and P r

Minimum temperature 0.11 -0.10

Maximum temperature 0.07 -0.15

Day Length 0.03 -0.20

Figure 6.6 Interaction between Sites per Cell and Day Length
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6.4 Interaction with Cortisol and Tri-iodothyronine 

Interaction with Kd

Linear regression with correction for repeated measures was used to analyse for any 

interaction between Kd and cortisol or tri-iodothyronine. No significant interaction was 

found as shown in table 6.5.

Table 6.3 Interaction between Kd and Cortisol or Tri-iodothyronine

Interaction between Kd and P r

Cortisol 0.65 0.0

T ri-iodothyronine 0.67 0.0

Interaction with Sites per cell

No interaction between sites per cell and either cortisol or tri-iodothyronine was found 

using linear regression corrected for repeated measures, and shown in table 6.6.

Table 6.4 Interaction between Sites per Cell and Cortisol or Tri-iodothyronine

Interaction between sites per cell and P r

Cortisol 0.13 -0.04

T ri-iodothyronine 0.94 0.0
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6.5 Summary

6.5.1 Season

In repeated observations of glucocorticoid receptor binding characteristics there was 

evidence of seasonal variation in Kd and sites per cell within individual subjects. For 

Kd, this showed an interaction with minimum temperature, maximum temperature and 

day length. Multiple regression using these candidate variables showed day length was 

the most predictive. For sites per cell, there was a small significant interaction with day 

length only.

These findings are consistent with the findings for Kd from the Twin and Fastcard 

studies. The seasonal interaction with sites per cell is consistent with the Fastcard study. 

All subjects studied lived within 20 kilometres of the meteorological station used to 

obtain the climate data and this may explain the greater strength of the association in the 

Fastcard study and weaker association in the Twin study.

6.5.2 Cortisol and Tri-iodothyronine

Neither Kd nor sites per cell showed any significant interaction with cortisol nor with 

tri-iodothyroinine suggesting neither hormone significantly regulates receptor binding 

characteristics.

6.6 Conclusions

In the twin study, there was no evidence for an inherited component to Kd or sites per 

cell suggesting the most important determinant of each would be environmental. Twin- 

twin associations were similar for both monozygotic and dizygotic twin pairs suggesting 

shared environment -  either as climate, or indeed from shared in utero experience, was 

an important determinant of receptor binding characteristics.
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Two large population based studies (the Twin and Fastcard studies) showed a 

significant effect of climate on glucocorticoid receptor Kd with an inconstant effect on 

sites per cell. These were cross-sectional studies and a prospective study with serial 

measurements of receptor binding characteristics was required to show the effect in 

physiological circumstances in individuals.

The finding of an effect of climate on leukocyte receptor binding is robust being 

resistant to several wash steps and long incubation times. This suggests climate alters a 

stable chemical signal within the cell, which may include small molecules such as 

lipophilic hormones or large molecular interactions such as protein expression. The 

present study suggested neither cortisol itself nor the active thyroid hormone, tri­

iodothyronine, were likely to be responsible for seasonal interaction with receptor Kd 

and further work was designed to address this in greater detail (discussed in chapter 7). 

The effect of season on the number of receptor sites was less consistent between studies, 

but where climatic data were local to the subject’s home there was an interaction 

between day length and sites per cell with smaller interactions with maximum 

environmental temperature. Furthermore, an interaction between the number of receptor 

sites per cell and bone mineral density at the hip suggested local glucocorticoid action 

may play a role in bone metabolism. A candidate mediator that varies with season (and 

particularly day length) with an effect on bone mineral density is 1,25 

dihydroxycholecalciferol and subsequent experiments were designed to study the effect 

of this hormone on binding (in chapter 7).

It is clear, however, that climate has an important effect on both the Kd and number of 

available receptor sites. Previous studies of glucocorticoid binding in leukocytes have 

not controlled for this effect and may be confounded by season. The net effect of a rise
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in Kd and a rise in sites per cell in winter is difficult to predict, however, particularly as 

the leukocyte receptor does not appear to reflect activity in the central nervous system 

or important metabolic tissues such as adipose tissue or the pancreas.
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Chapter 7

Candidate Modulators of Glucocorticoid Receptor Binding

7.1 Introduction

The preceding 3 chapters describe seasonal variation in glucocorticoid receptor binding 

principally affecting Kd and showing interaction with the climatic variables of 

maximum temperature, minimum temperature and day length. In hypothesising how 

these variables could affect glucocorticoid receptor binding the most likely mechanism 

would be one that either altered the structure of the receptor protein (affecting its ability 

to interact with ligand, heat shock proteins or its ability to translocate to nucleus) or that 

altered the accessory proteins in the receptor-heat shock complex. Since core body 

temperature, and therefore the temperature of lymphocytes, remains well controlled in 

most climatic circumstances any effect on receptor binding would be likely to be 

mediated by a chemical message.

Any chemical mediator would have to be intracellular or tightly adherant to the cell 

glycocalyx or membrane since washing cells thoroughly did not prevent its effects. 

Numerous lipid soluble hormones have been described to show seasonal variation and 

in the first series of experiments I performed glucocorticoid receptor binding assays in 

the presence and absence of each of these in physiological concentrations. Assays were 

performed at seasons when the endogenous concentration of the mediator or hormone 

would be expected to be at its lowest. Supplementing this concentration to high 

physiological levels might be expected to mimic the effects seen in different seasons.

7.2 Description o f  Candidate Mediators

In selecting candidate mediators I performed a literature search for all hormones known 

to shown seasonal or circannual variation. This identified cortisol (Wehr 1998, Maes et
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al 1997), tri-iodothyronine (Maes et al 1997), melatonin (Asplund et al 1998), insulin 

(Behall et al 1984), retinol (Besu et al 1994), all-trans retinoic acid, and 1,25 dihydroxy 

cholecalciferol (Harris et al 1998). In addition to satisfying the seasonal pattern of 

variation, all these mediators are highly lipophilic, or demonstrate a high capacity for 

membrane binding.

Melatonin activates a specific receptor and, through activation of a Gi protein, inhibits 

adenylyl cyclase and cAMP generation (Morgan et al 1994). In amphibia increased 

melatonin secretion is accompanied by reduced pro-opiomelanocortin production and 

reduced cortisol secretion. Although less studied in man, seasonal variation in melatonin 

secretion also offers a plausible mechanism for modulation of glucocorticoid receptor 

binding.

The remainder of the mediators identified all act principally through nuclear receptors 

that are related to the glucocorticoid receptor. These receptors could modify 

glucocorticoid receptor binding through altered gene transcription, competition with 

accessory proteins, such as heat shock proteins or coactivators, or by forming 

heterodimers with monomeric glucocorticoid receptor protein. It is plausible that these 

mediators could have an influence on glucocorticoid receptor binding.

7.3 Binding Assays

Paired glucocorticoid receptor binding assays were performed on cells taken from the 

same subject on the same day. For one assay, all incubations of cells were co-incubated 

with vehicle alone (0.1% dimethylsulphoxide). In an identical assay, all incubations 

were co-incubated with physiological concentrations of each mediator as shown in table 

7.1. Physiological concentrations of retinoids (Takeda et al 1994), 1,25

dihydoxycholecalciferol, trioiodthyronine, reverse tri-iodothyronine, insulin (Greenspan
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et al 1997) and melatonin (van Reeth et al 1994) were obtained from the relevant 

literature and converted to S.I. units, where appropriate.

Table 7.1 Concentrations of Mediators Used in Incubations

Low physiological and high physiological concentrations of hormones are shown as low 

normal and high normal, and are derived from the references above.

Substance Low

Normal

High

Normal

Incubation

Cone.

Reference

X\\-trans retinol 1.5 pmol/1 2.0 pmol/1 1.75 pmol/1 Takeda 1994

All-traits retinoic acid 3.1 nmol/1 11.4 nmol/1 7.2 nmol/1 Takeda 1994

1,25-dihydroxycholecalciferol 48 pmol/1 184 pmol/1 116 pmol/1 Greenspan et al 1997

Tri-iodothyronine (T3) 1.5 nmol/1 2.9 nmol/1 2.2 nmol/1 Greenspan et al 1997

Melatonin 44 pmol/1 474 pmol/1 400 pmol/1 van Reeth et al 1994

Insulin 34 pmol/1 1.84 nmol/1 1.5 nmol/1 Greenspan et al 1997

Forskolin - - 10 pmol/1

Retinoids were added to assays in the winter months, when the endogenous 

concentrations are at their lowest. Tri-iodothyronine, reverse T3, melatonin and insulin 

were added in summer months when concentrations are normally at their lowest. 

Forskolin was added in the winter months in an attempt to antagonise the inhibitory 

effects of melatonin (which is at its highest concentration in winter) has on adenylyl 

cyclase.

No detailed literature was found describing the metabolism of these mediators by 

leukocytes. The purpose of these experiments was to find whether any of these 

substances were capable of modifying glucocorticoid receptor binding and a positive 

result would be a supportive finding on its own merits. However the lack of any effect 

on receptor binding could not be taken as evidence of lack of effect.
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7.4 Effect o f Candidate Mediators

Receptor binding assays were performed as described above on at least 5 individuals 

each on separate days. The effect each mediator had on receptor Kd and the number of 

receptor sites per cell is shown in table 7.2.

Table 7.2 The Effect of Various Substances on Glucocorticoid Receptor Binding

The abbreviations used are: t-retinoic acid=all toms-retinoic acid, c-retinoic acid=13-m 

retinoic acid, 1,25 Vit D=l,25 dihydroxycholecalciferol, T3=tri-iodothyronine, 

rT3=3,3’,5’ tri-iodothyronine. Significance was tested using paired t-tests with p values 

corrected by the Bonferroni method: a level of 0.008 (i.e. a=0.05/6 tests) was 

considered significant.

Mean Kd 
Control

Mean Kd 
Treatment

P Mean Sites 
Control

Mean Sites 
Treatment

P

Retinol 11.5 12.4 0.430 8765 8878 0.882
/-Retinoic acid 9.8 10.3 0.428 10774 11490 0.783
1,25 Vit D 11.3 11.2 0.697 8059 8195 0.141
t 3 9.4 8.6 0.184 6394 6176 0.543
Melatonin 8.2 9.9 0.006 9690 11113 0.080
Insulin 9.1 8.4 0.445 10312 8279 0.187

Melatonin was found to raise Kd significantly, with no significant effect on the number 

of receptor sites per cell as shown in figure 7.1.
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Figure 7.1 Effect of Melatonin on Glucocorticoid Receptor Binding

Effect of Melatonin on Glucocorticoid R eceptor Kd
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To test whether the effect of melatonin was likely to be mediated by its effect on cAMP 

(Morgan et al 1994), a subsequent experiment using forskolin treatment was designed. 

This substance increases cAMP generation and would be expected to have opposite 

effects to metatonin that acts mainly by inhibiting cAMP generation. Forskolin lowered 

Kd significantly and caused a significant reduction in the number of receptor sites per 

cell as shown in table 7.3 and figure 7.2 and figure 7.3.

Table 7.3 The Effect of Forskolin on Glucocorticoid Receptor Binding

Significance was tested using a 2-tailed t-test with p at the 0.05 level considered

significant.

Mean Kd 
Control

Mean Kd 
Treatment

P Mean Sites 
Control

Mean Sites 
Treatment

P

Forskolin 8.2 6.3 0.03 9250 7116 0.02
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Figure 7.2 Effect of Forskolin on Glucocorticoid Receptor Kd
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Figure 7.3 Effect of Forskolin on Glucocorticoid Receptor Number
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7.5 Discussion

Of the substances tested, only melatonin and forskolin were found to alter 

glucocorticoid receptor binding. Melatonin added in the summer months produced a rise 

in receptor Kd but no significant change in receptor number. Forskolin treatment in the 

winter months produced a significant fall in receptor Kd and in receptor number. 

Previous reports on the effects of melatonin on glucocorticoid receptor function are 

limited. One previous report also showed melatonin treatment increased Kd in receptors 

in rat brain (Marinova et al 1991) while an earlier report (Familiari et al 1988) showed 

no effect in receptor binding in rat thymocytes or on glucocorticoid-induced weight 

loss, adrenal atrophy or thymus atrophy.

The effects of forskolin on receptor binding remain controversial. Penuelas et al (1998) 

found forskolin increased promoter activity of the glucocorticoid receptor gene 2-fold in 

HeLa cells, although neither levels of receptor protein nor receptor binding were 

measured, this might be predicted to increase the number of receptors. In rat myocardial 

cells forskolin increased the affinity of the receptor for nuclear binding (Sato et al 1996) 

without increasing receptor protein levels. Receptor binding for ligand was, however, 

not measured. In a human breast carcinoma cell-line, forskolin treatment was found to 

increase glucocorticoid-mediated gene transcription without any detectable effect on 

receptor expression or receptor-ligand affinity (Moyer et al 1993). Using a rat hepatoma 

cell-line Dong et al (1989) found that forskolin increased receptor mRNA and saturation 

receptor binding capacity, although receptor affinity was not assayed. All of these 

experiments involved short term incubation with forskolin. The fall in Kd seen in the 

experiment here may, over a 20 hour incubation, increase the feedback on further
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glucocorticoid receptor expression resulting in the fall in receptor number seen. 

Alternatively, the differences seen in the number of receptor sites may be a function of 

the different cell types used as many glucocorticoid-mediated effects show different 

responses in different tissue-types (e.g. the induction of phosphoenolpyruvate kinase in 

liver and the inhibition in adipose tissue).

Tri-iodothyronine is an extremely effective agent in inducing expression of the low- 

affmity glucocorticoid binding site in rat liver (Lopez-Guerra et al 1997). However, the 

identity of this binding site remains unknown and may represent a glucocorticoid and 

progesterone metabolising enzyme. Direct effects on the orthodox glucocorticoid 

receptor have been shown in the rat (Meaney et al 1987) where postnatal administration 

of tri-iodothyronine or thyroxine increased receptor concentrations in the hippocampus 

but not in hypothalamus or pituitary suggesting a tissue-specific effect. The only report 

in leukocytes is in the goat (Murakami et al 1980) where administration of thyroxine did 

not alter glucocorticoid receptor binding capacity, in keeping with the negative data 

from this study.

There are no reported data on the effect of insulin on glucocorticoid receptor binding or 

on receptor expression. In many tissues, the effects of these hormones are mutually 

antagonistic, although in some tissues their effects are synergistic (e.g. the induction of 

leptin in adipose tissue). This would tend to argue against a significant effect of insulin 

on glucocorticoid receptor binding: most of the reported interactions of these hormones 

have been reported to occur at a transcriptional level.

There are no reports of any effect of all-tram  retinol, or frww-retinoic acid on 

glucocorticoid receptor binding although activation of the retinoic acid receptors RAR
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and RXR are well known to cross-talk with glucocorticoid receptors at a transcriptional 

level in the expression of a number of genes.

The effects we see on glucocorticoid receptor binding are, therefore, consistent with 

previous reports for melatonin and forskolin. The antagonistic effects of melatonin and 

forskolin on receptor Kd may be accounted for by their effects on cAMP generation. 

Forskolin increases cAMP production by activating the enzyme adenylyl cyclase. 

Melatonin in contrast binds to a membrane-bound melatonin receptor: currently 3 

melatonin receptors are characterised. The MLia receptor is mainly present in the 

suprachiasmatic nucleus and is involved with regulation of circadian rhythms (Reppert 

et al 1994). The MLib receptor is the product of a separate gene and is found in the 

retina and some areas of brain and is involved in retinal physiology (Reppert et al 1995). 

The ML2 receptor has recently been cloned, although its physiological role remains to 

be determined (Ebisawa et al 1994). The MLi receptors both inhibit cAMP generation 

through a pertussis-sensitive G protein while ML2 receptors increase inositol tris- 

phosphate breakdown (Popova et al 1995). A high-affinity binding site has recently 

been found on T-lymphocytes, but not B-lymphocytes, which has the binding 

characteristics of the MLi receptor and is present in greater amounts on CD4+ cells than 

CD8+ cells (Gonzalez-Haba et al 1995). This would suggest the main mechanism of 

action of melatonin in lymphocytes will be inhibition of cAMP. The opposite effects on 

glucocorticoid receptor Kd caused by incubation with either melatonin or forskolin 

could, therefore, be explained by their opposite effects on intracellular cAMP 

concentration.

How cAMP affects glucocorticoid receptor Kd is less well understood. An effect on 

receptor affinity would most probably be effected by altering the conformation of the
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receptor either by covalent modification of the protein or by altering the properties of 

interacting proteins required to maintain normal receptor conformation. The most likely 

candidate mechanisms for an effect of cAMP would be altered protein phosphorylation 

by cAMP-dependent protein kinase-A mediated phosphorylase or dephosphorylase 

activity. Direct examination of receptor protein and Hsp90 protein (the major 

component of the heat-shock-receptor complex) shows striking increases in 

phosphorylation shortly after ligand binding (Orti et al 1992). However, neither 

measures which increase or decrease phosphorylation appear to alter receptor-ligand 

affinity (Bamberger et al 1996). The phosphorylation state of the receptor may instead 

be involved in subcellular localisation between the cytosolic and nuclear components 

(DeFranco et al 1991).

From discussion in sections 4.4.4, 5.7 and 6.4 Kd rises in winter and falls in summer. 

Melatonin, which is at its highest levels in winter when day length is at its minimum, 

produces similar effects on Kd increasing this above normal summer values. No effect 

was found after co-incubation of melatonin on receptor sites per cell, although a trend 

was found for an increase (adjusted p=0.08): a similar pattern found in winter months.

The effect of forskolin on these effects was opposite producing a fall in Kd and a fall in 

sites per cell, broadly imitating the effects seen in summer. Melatonin acting through 

the Mli receptor to alter cAMP levels is, therefore, a candidate mediator of the seasonal 

effect on glucocorticoid receptor binding.
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Chapter 8 

Screening the Glucocorticoid Receptor Gene for Mutations

8.1 Introduction

As discussed earlier in section 1.6, mutations of the glucocorticoid receptor gene that 

disrupt glucocorticoid receptor signalling often have a relatively subtle phenotype with 

hypertension, relative insulin resistance, hirsutism in women, hypercholesterolaemia 

(Arai et al 1994) and presumed increased cardiovascular risk. It is also noteworthy that 

the most striking features of glucocorticoid excess include central obesity, hypertension, 

hyperglycaemia, hyperlipidaemia, insulin resistance and increased cardiovascular risk 

(Ross et al 1982). These are also features of the metabolic syndrome X (Reaven 1988). 

Thus it is reasonable to ask whether some aspects of common cardiovascular 

phenotypes reflect variability in glucocorticoid action. There is indeed wide inter­

subject variability in circulating cortisol (Huizenga et al 1998) and inter-individual 

sensitivity to exogenous glucocorticoids is also known to be widely variable (Hirano et 

al 1998). I hypothesised, therefore, that polymorphisms at the glucocorticoid receptor 

locus either altered glucocorticoid receptor protein through mutations in the coding 

sequence of the gene, or altered the expression of the gene by variation in the structure 

of the promoter. In considering the likely phenotypes of either of these types of 

mutation in the receptor gene, we acknowledged that mutations in the coding part of the 

gene may have relatively minor effects on receptor affinity or number. Furthermore, as 

such mutations would be expressed in all tissues with relative insensitivity centrally 

being compensated by increased cortisol concentrations circulating peripherally, a 

distinct phenotype may not be obvious.
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Mutations in the promoter that affected receptor number to the same extent in all tissues 

would, for the same reason, be expected to produce little significant physiological 

disturbance. However, if tissue-specific components of the promoter contained 

polymorphisms then the possibility would exist for differential tissue regulation and for 

relative glucocorticoid imbalance in different tissues and cardiovascular disease.

As an illustration of this principal, the rare syndrome of thyroid hormone resistance 

(Chatteijee et al 1994) exists as generalised and as tissue-specific forms. In the 

generalised syndrome, the pituitary and peripheral tissues are partially resistant to the 

active thyroid hormone, tri-iodothyronine. As a result of reduced negative feedback at 

the pituitary, thyroid stimulating hormone secretion increases stimulating the secretion 

of thyroid hormones to a level that satisfies the pituitary requirement and to a variable 

extent peripheral tissue requirements.

In the tissue specific forms the pituitary is relatively resistant to thyroid hormone. 

Reduced negative feedback at the pituitary increases the TSH drive to the thyroid and 

increases thyroid hormone secretion as before. However, as peripheral tissue sensitivity 

to thyroid hormone is normal this results in tissue hyperthyroidism with the usual 

symptoms and signs of thyroid hormone excess.

The glucocorticoid receptor is expressed from a single gene on chromosome 5q31. 

However, the start site of transcription from the promoter varies between tissues in the 

mouse (Strahle et al 1992), rat (Gearing et al 1993) and human (Chapman,K.L., 

personal communication). This raises the possibility that polymorphisms within the 

sequences of these start sites may influence the relative balance of glucocorticoid 

expression between different tissues.
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8.2 Screening Strategy

The glucocorticoid receptor gene (see appendix 4 for sequence) was screened for 

mutations using single-stranded conformational polymorphism (SSCP) analysis (Orita 

et al 1989). Briefly, this method uses polymerase chain reaction (PCR) to amplify a 

region of interest and incorporates label (normally radioactive but fluorescent and 

digitonin labels have also been used) either at the 5’ end of each strand or within the 

strand as it elongates. By denaturing the product and resolving it on a non-denaturing 

polyacrylamide gel, each single strand undergoes partial self-annealing within the gel 

that induces a secondary structure and affects its mobility in the gel. As a result each 

strand normally elutes at a slightly different rate within the gel allowing its detection by 

autoradiography. When a single point mutation exists within a product its self-annealing 

properties and elution rate are affected producing bands at differing positions on the 

final autoradiograph. Thus, in a heterozygote 4 principal bands will be seen in place of 

2 , and in a homozygote 2  principal bands will be found which differ in position when 

compared to product from a reference population (figure 8 .1 ).
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Conformational Polymorphism

DNA from subjects homozygous 
for wild-type sequence or 
heterozygous for mutant sequence 
are shown.
Each of the single strands self­
anneals to produce unique 
secondary structure with 
characteristic mobility on 
electrophoresis.
A point mutation results in both 
the sense and antisense strands 
adopting different conformations 
producing different bands on the 
final autoradiograph.
Modified from Grompe 1993

For the method to be optimally sensitive product size should be between 100 and 300 

base pairs and 4 different running conditions (a glycerol containing gel nm at 4°C and 

one at 25°C and a glycerol deficient gel run at 4°C and 25°C) should be used (Hayashi et 

al 1991).

8.3 Primer Design

The glucocorticoid receptor gene is composed of a promoter, an untranslated exon 1, 

exons 2 to 8  and finally 2 alternatively spliced exons 9 (exon 9a and exon 9p). The p 

isoform of the receptor does not bind ligand and its function remains controversial. I 

therefore decided to screen only the sequences of the a  isoform of the receptor for 

mutations including exon 9a and over 2000 bases of the 3’ intron to include any 

enhancer sequence.

Primers were designed to generate fragments of suitable size for SSCP analysis (i.e. 

100-300 base pairs, Hayashi et al 1991). This was done by generating PCR products of

Figure 8.1 Single Strand
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appropriate size, or where exons were large, generating overlapping PCR fragments that 

were digested to the appropriate size by restriction endonuclease digestion. A diagram

Figure 8.2 Primers used for PCR-SSCP analysis
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The structure of the glucocorticoid receptor gene is shown with 
numbered boxes denoting the exons of the gene, and the leading line 
representing the promoter.
The primer positions are shown as right-pointing arrows for the sense 
primers, and left pointing arrows for the antisense primers.
The PCR fragments are shown as lines below the gene and were 
arranged to produce overlapping fragments.
The PCR products that were subsequently digested with restriction 
enzymes are marked with scissors.
The position or each primer, fragment sizes and the enzymes used for 
digestion are detailed in appendix 5.

of the gene with ideograms of the primer positions is shown in figure 8.2. Using this 

method, primers were designed to amplify the promoter and exons of the glucocorticoid 

receptor gene using genomic DNA as template. As much of the intronic sequences were 

not known, primers were designed which spanned as much of the exonic sequence as 

possible.

8.4 Optimisation of PCR

For each pair of primers, PCR of genomic DNA was performed to confirm the reaction 

produced satisfactory product, and where necessary to modify the reaction conditions.
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Where PCR product was to be subsequently digested, restriction enzyme digest 

conditions were optimised. A sample PCR and restriction digest is shown in figure 8.3.

Figure 8.3 Optimisation of PCR and Restriction Digestion

M 1 2 3 4  5 6 7 8  M

Lanes 1 -3 contain optimised PCR product from genomic DNA for exon 2 
segment 3
Lane 4 contains PCR with no DNA
Lanes 5-7 contain PCR product digested with FokI
Lane 8 contains PCR product done with no template and digested with FokI 
Lanes M contain <()X174 bacteriophage/Haelll digest marker DNA 
Complete digestion of PCR product is seen in lanes 5-7 with no DNA 
contamination in lanes 4 or 8

Satisfactory product was not obtained for any of the promoter or exon 1 sequences. 

Initial PCR reactions produced multiple product bands suggesting multiple anneal sites 

or mis-annealing. Increasing the annealing temperature in 2°C steps up to a 10°C 

increment only reduced the amount of product produced without increasing specificity. 

A range of magnesium concentrations from 0.5mmol/l to 2.5mmol/l had no major
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impact on PCR specficity. Increasing the initial denaturation time, prolonging annealing 

time or adding a final longer extension step of 5 minutes made no difference to reaction 

efficiency. Adding the detergent Tween, or the wetting agent Dimethylsulphoxide to the 

PCR reaction had no appreciable effect, although both have been described to increase 

reaction efficiency for difficult templates. Primers were redesigned using longer 

sequences and trying to avoid repetitive GC rich sequences. Unfortunately, none of 

these measures improved the specificity of the PCR reactions sufficiently to 

reproducibly amplify promoter sequence.

8.5 SSCP Reactions

PCR products were labelled either by “end-labelling” the primers or by incorporation 

labelling of the PCR products. End-labelling involves exchanging one of the phosphate 

groups at the 5’ end of the primer with a [32P] y-phosphate group using the enzyme 

polynucleotide kinase purified from the T4 bacteriophage (Berkner, 1977). The reaction 

mixture for each primer was prepared as shown below and incubated for 1 hour at 37°C. 

This mixture produced sufficient primer for 50 SSCP reactions.

Primer 30pl 50pM
Y-[32P] ATP 5 pi 1.85MBq
Polynucleotide Kinase 1 JLll 5U
Buffer x 10 5pl
H20 9pl
Total 50pl

In subsequent SSCP reactions, PCR products were labelled directly by incorporation of 

[a-3 2P] CTP. This was achieved simply by adding lp l (0.37 MBq) to the PCR master 

mix and adjusting the volume of H2O added. No adjustment was made to the amount of

'X'yunlabelled CTP added to the PCR mix as the concentration of a-[ P] CTP compared to
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unlabelled CTP was negligible (0.06pmol/l compared to 50pmol/l, a difference of 

0.1%). Incorporation labelling had the advantage of increased sensitivity in detecting 

mutations in fragments digested by restriction enzymes. Digestion and denaturation of 

PCR product produces 4 single-stranded conformers. Where the product has been 

labelled by end labelling, only the 5’ sense strand and the 3’ antisense strand will be 

labelled, and therefore only 2 of the 4 conformers will be detected on autoradiography. 

Where incorporation labelling is used, all 4 single-stranded products will be detected 

with a theoretical increase in sensitivity.

For each SSCP reaction a master mix was prepared in quantities sufficient for 50 

reactions using either labelled primers or the addition of labelled CTP as described 

above. The composition of a standard PCR mix is shown below. For some reactions the 

concentration of Mg2+ was optimised to reduce non-specific product formation.

Final Concentration
Mg~ 1.5 mmol/1
Taq Buffer x 1

dATP 50 pmol/1
dCTP 50 pmol/1
dGTP 50 pmol/1
dTTP 50 pmol/1
Primer 1 1 pmol/1

Primer 2 1 pmol/1

Taq 50 U
h 2o Added to total volume of 1.25 ml

Genomic DNA from each subject was aliquoted into each well of a 96 well PCR plate 

and air dried at room temperature to fix the DNA to the plastic well (Day et al, 1995). 

The PCR mix was then aliquoted onto each well in 25 pi volumes and overlaid with 2 

drops of mineral oil. For each experiment a blank PCR reaction was included containing 

no added DNA to exclude contamination of the master mix. When any product was
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detected in the blank reaction, all samples were discarded and the experiment repeated. 

PCR cycling was performed at 3 temperatures: a denaturing 94°C step, an annealing 

step that depended on the base composition of the primers, and an extension step at 

72°C. Where necessary, these steps and the time at each temperature were optimised. 

However, for the majority of PCR reactions this standard cycling programme was 

satisfactory:

Step Temperature Time
1 .Initial denaturation 94°C 60 seconds

2.Denaturation 94°C 30 seconds
3. Annealing 55°C-65°C 30 seconds
4.Extension 72°C 30 seconds
Repeat steps 2-4 for 30
cycles

5.End reaction -4°C 1 0  minutes

8.6 Verification of SSCP

The SSCP method was tested for sensitivity using DNA containing a single point 

mutation. Plasmids containing cDNA for the human aldosterone synthase gene 

(Genbank sequence Gbmem:HUMCYPBB) ligated into a pGEM plasmid and 

containing either the wild-type sequence or a sequence with a T3 6 8 5—»C point mutation 

were kindly provided by Miss A. Fisher. A segment of the insert was amplified using

T9[ P] end-labelled primers and a standard PCR reaction. The 225 base pair product was 

run on an SSCP gel with glycerol at 25°C at 30 watts for 4 hours. When developed, the 

autoradiograph showed an altered banding pattern, correctly identifying the point 

mutation (figure 8.4).
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Figure 8.4 SSCP of point mutations of the aldosterone 
synthase gene

Lane 1 contains labelled PCR product
from human genomic DNA 
Lane 2 contains labelled PCR product
from a plasmid with a site-directed point 
mutation of the CYP11B1 gene 
Lane 3 contains labelled PCR product
from a plasmid containing the wild type
CYP11B1 gene
Lane 4 contains a labelled PCR control 
(with no DNA template)

The point mutation is clearly identified by 
altered mobility of 2 of the 4 principal 
bands

8.7 SSCP Screening o f Subjects ’ DNA

Initially 40 healthy subjects from the MONICA IV study recruited from central 

Scotland (Davies et al 1999), were screened for mutations using a total of 22 primer 

pairs and run at 4 different conditions on polyacrylamide gels. The primer sequences for 

exonic PCR are shown in appendix 5. Although primers were designed against 1000 bp 

of the published promoter sequence of the glucocorticoid receptor gene, PCR and 

subsequent SSCP performed at a variety of optimising conditions, failed to produce 

product.

All exonic regions scanned produced successful reactions, if necessary after minor 

optimisation steps. In this initial run no polymorphisms were identified in any of the 

exonic regions.
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As the frequency of polymorphisms in the normal population was unknown for this 

gene, it was decided to screen a further population of 40 healthy subjects recruited from 

the Monica IV study for whom detailed phenotypic data were available. The same 

strategy was used with the minor modification that PCR reactions labelled by

T9incorporation of [a- P]-cytosine triphosphate. This provided the advantages of 

convenience, faster throughput and greater sensitivity in detecting mutations in 

restriction digested fragments. Using the same strategy, and the same primers, 4 

subjects were found with an altered banding pattern for a region in exon 5 of the gene 

(figure 8.5).

Figure 8.5 SSCP of Exon 5

Lanes 1 and 6 show wild-type 
banding
Lanes 2 - 5 are products from 
the subjects with an altered 
banding pattern 
Lane 7 is PCR control (with 
no DNA template)
Extra bands in lanes 2 to 5 are 
indicated by the white arrows.

The PCR reactions for these subjects and 2 normal banding subjects were repeated and 

re-run on an SSCP gel to confirm the findings.
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8.8 Sequencing

Several variations of the dideoxy termination sequencing method (Sanger, 1977b) were 

employed to identify the sequence of the polymorphic regions identified from SSCP 

screening.

In initial attempts, PCR product was sequenced directly, after separation from primers, 

salts and enzymes using a spin-separation column with a size filter o f <10kDa (to 

remove proteins and enzymes) and a second filter of <100 base pairs to trap PCR 

product but allow salts and primers to pass unhindered (Amicon, USA). However, using 

a proprietary sequencing kit (Amersham, UK) and end labelled primers this method 

failed to produce clearly legible sequence (figure 8.6).

Figure 8.6 Sequence of PCR Template

From left to right, sequences 
were loaded in the order 
G,A,T,C.
Sequence 1 is of a subject with a 
wild-type band for SSCP of exon 
5.
Sequences 2 and 3 are from 
subjects with variant SSCP 
bands for exon 5.
Numerous ambiguous bands are 
seen in sequences 2 and 3 
(labelled with white arrows). 
Several ambiguous bands were 
seen in all four lanes of all three 
sequences (labelled with black 
arrows)
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Bands in all four lanes (“BAFL”) are normally a sequencing artefact caused by complex 

secondary DNA structure, residual primer in the template, or by high salt concentration 

interfering with the DNA polymerase activity. As there were numerous double bands in 

the sequences of the subjects with altered SSCP patterns, we felt these were also artefact 

bands. Repeating the PCR of exon 5 with repeated purification through centrifugation 

columns failed to yield better sequence data and many of the ambiguous bands 

remained. An alternative method of removing residual primers after PCR amplification 

using shrimp alkaline phosphatase to digest single stranded DNA and remaining 

nucleotides produced no better sequence data.

As an alternative method of sequencing, PCR products from each subject were 

subcloned into pGEM-T-easy vector and at least 6 subclones from each subject 

sequenced using the universal SP6 and T7 primers. The rationale for sequencing this 

number of subclones was to ensure that at least one clone from each allele was detected. 

Since the probability of detecting both alleles derives from binomial probability as 

/?(both alleles)=l-2(1'n) where n is the number of subclones sequenced, using 6 subcones 

gave a probability of sequencing both alleles of 0.97. Using conventional radioactive 

sequencing methods we found what appeared to be several point mutations in the 

subjects suspected of having mutations in exon 5. However, some of these bands 

remained ambiguous.

In an attempt to improve sequence quality of these subjects, PCR products for exon 5 

were freshly prepared and re-ligated into the pGEM-T-Easy sequencing vector. Using a 

commercial sequencing kit, sequence was generated with fluorochrome-labelled di- 

deoxynucleotides and resolved and read in an ABI 373 automated sequencer. Briefly, 

the method uses the same Sanger sequencing chemistry, but each dideoxy nucleotide is
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labelled with a different fluourochrome that fluoresces at a different frequency of light. 

When the sequencing reaction is performed with all 4 dideoxynucleotides in the same 

reaction and resolved on a polyacrylamide gel, the identity of the base at each 

termination position is determined by its fluorescence and is read by a scanning laser- 

photodiode couple. Using this method, the ambiguous bands seen on manual sequencing 

were confirmed as mutations, “stop” artefacts were absent and several additional point 

mutations were identified in each subject. In total a complex of 15 point mutations in 

the exon was found ( C ^ T ,  T1738C, T1746G, T1755C, AnssG, A1764G, C1794T, A1798G, 

TisooA, GisoeA, C1809T, TisisC, GisisA, A1833T, G1839T). Each subject screened was a 

heterozygote for all 15 mutations. The automated sequences of wild-type and mutant 

sequences are shown below in figure 8.7.
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Figure 8.7 Automated Sequences of Subcloned PCR Fragments of Exon 5

W ild  Type
A C C C C T A C C C T G  G T G  T C A C T  G T T G G A  G G T T A T T G A A C C  T G A A G T G  T T A T A T

A C C C C T  A C C B r  G G T G  T C A C T G D T G  G A GG T i A T T G i  AC C H G  A H G T G T  T H T A T

Published
Sequence

M utant
ACCC C T  a c c | | t g  GT G T C A C T  G f i r  G G a g g i H a  t t g  a  a c c H g  a H g  T G  T f i T  A 1 

1726 \  1738 , 1746 1755 1758 1764

Wild-Type Published Sequence
C T C A A C T T G G A G G A T C A T G A C T A C G C T C A A C A T G T T A G G A G G G C G G C A A G T G A T T G C A G C A G T G

B  L A ■ c | l G  G A G f l  M l A T G A C l i C H C T C A A C A T G T T A G  G f G G G C G i C i A G T G A T T G C A G C A G T G

Mutant
| T C A B : | t G G  A G | A T | a T G A C | a c B g  f C A A C A T G T  T A G  l,  v. l , P l  a  a  G 1 G A T T G C  A GC A G I  G

1794 1798 1800 1806 1809 1815 1818 1833 1839
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8.9 Discussion

SSCP is a well established method of triaging sequences that may contain mutations for 

subsequent sequencing. The sensitivity of the method has been estimated to be in excess 

of 99% for sequences of 100-300 base pairs when 4 different running conditions are 

used (Hayashi et al 1991), but falls dramatically to 90% for sequences in the range 300- 

450 base pairs.

Using SSCP with products in the size range 100-300 base pairs and running gels at the 4 

recommended conditions, we confirmed the method worked for sequences with a 

known point mutation. Screening a population of 40 normal healthy subjects chosen at 

random I found no mutations in any exon. However, screening a different population of 

40 normal subjects found 4 subjects with products with altered mobility, thus 

identifying them as possibly containing a mutation.

The failure to amplify any promoter sequences was disappointing. Several attempts 

were made to amplify the promoter from genomic DNA by PCR using different 

primers, altered cycling conditions, a range of magnesium concentrations and the 

addition of detergents and agents said to reduce secondary DNA structure. The failure 

of these measures and the multiple bands seen on PCR suggests this may have been due 

to multiple annealing sites. The glucocorticoid receptor promoter is extremely GC rich 

with a high annealing temperature and several repetitive motifs that could allow for 

primer misannealing. Promoters with high GC content are often difficult to PCR and 

sequence and detailed sequence analysis is often obtained by cloning the sequence in 

plasmid or cosmid vectors. Due to the limited time available for this project we had to 

abandon attempts to amplify the promoter sequence.
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The PCR products with altered SSCP banding patterns were subsequently sequenced 

and found to have a complex pattern of 15 point mutations. First attempts at manual 

sequencing used PCR product as template. Multiple ambiguous bands in the sequencing 

ladder were interpreted as sequencing artefact. Attempts to further purify template did 

not resolve the extra bands, and in retrospect these represented heterozygote mutations. 

Subcloning PCR product had the advantage of producing clear bands with no 

heterozygote sequences as each allele is cloned and sequenced separately. However, 

several bands at the beginning or end of the sequence were not sufficiently clear to be 

sure of additional point mutations. Finally, using an automated sequencer which has 

greater resolution and base-calling sensitivity revealed clear evidence of all 15 point 

mutations. The use of these three separate methods with fresh template preparation on 

each occasion increases the confidence I have in this unusual mutation being genuine. 

The effect of these point mutations on the expected protein sequence is surprisingly 

small. Two of the mutations (A1798G and TigooA) change a codon from ACT (threonine) 

to GCA (alanine), but all the other mutations are conservative in the translated protein. 

The effect this has on receptor function remains unexplored in this study, but transient- 

transfection into a suitable cell-line would allow this to be explored.

The frequency of this haplotype in the population we screened was around 4 in 80 

subjects (5%). Screening a large population to define the true frequency was not 

completed in this project and a more accurate estimate of prevalence is not available. 

However, phenotypic data collected from the 4 subjects we identified showed no 

significant difference from the reference population in glucocorticoid receptor binding 

characteristics, blood pressure, body mass index, fasting glucose or lipids. The lack of 

any difference may not be surprising given the small numbers involved and smaller
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differences would require more subjects with these mutations to be identified. The 

mutations responsible for a codon usage change neither introduce nor abolish a 

restriction site. Rapid screening of a large population for this mutation would therefore 

have to use a dot-blot triage method followed by sequencing, or take a direct sequencing 

approach. The time allowed for this project was insufficient to extend work to these 

studies.
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Chapter 9

Summary and Conclusions

9.1 Seasonal Variation Receptor Binding

In three separate populations I found seasonal variation in receptor binding with the 

peaks for both Kd and receptor sites per cell in winter and the troughs in summer. The 

physiological effect of combined changes in Kd and sites is difficult to predict. 

Although the response may be unchanged to a fixed concentration of ligand, the 

response to changing concentrations of ligand is grossly altered. When Kd falls, the gain 

on the system is increased, while a fall in sites reduces the maximum response 

achievable. This may be particularly important for hormones such as cortisol, which 

have a pronounced circadian concentration gradient.

How receptor binding characteristics are changed by climate requires some 

consideration. As discussed in section 6 .6 , Kd is likely to be altered by stable changes in 

the receptor itself such as covalent modification, or its interaction with other 

intracellular proteins such as the heat shock protein complex. Preliminary work, 

presented in Chapter 7, suggests this is due to an effect of melatonin, possibly by 

inhibiting adenylyl cyclase. Confirmation of this could be performed in cell culture, 

with a dose-response curve for melatonin-induced elevation in glucocorticoid receptor 

Kd. The effect of forskolin and cAMP concentrations could also be determined in this 

manner. If confirmed in this model, altered Kd could be due to changes in the receptor 

protein or accessory proteins. This could be tested by combining cell-free extracts 

enriched or depleted of glucocorticoid receptor (e.g. by passage through a 

dexamethasone-affinity column) from cells pre-treated with vehicle, melatonin or 

forskolin. A persistently elevated Kd after recombination of melatonin treated
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glucocorticoid-enriched extract with vehicle treated glucocorticoid-depleted extract 

would suggest covalent alteration of glucocorticoid receptor protein.

9.2 Cardiovascular Risk

Although our original hypothesis that variation in glucocorticoid receptor Kd might 

predispose to cardiovascular risk, this proved not to be the case in the population 

studied. Consideration of a large number of established risk factors including blood 

pressure, cholesterol and body mass index showed no correlation with receptor binding 

variables. Furthermore, urinary steroid metabolites and plasma cortisol showed no 

correlation with receptor binding characteristics. However, it is possible that the 

receptor in lymphocytes is not regulated in the same way as the hypothalamic and 

pituitary receptors. Whether it reflects receptor binding in the key tissues involved in 

cardiovascular disease remains to be determined.

9.3 Glucocorticoid Receptor Gene Mutation Screening

After screening the gene for mutations by SSCP of 80 normal subjects, 4 subjects were 

found to possess a complex mutation. This had 15 substitutions in exon 5 only 2 o f 

which affected the coded protein, substituting alanine for threonine, by affecting the 

same codon. This was a rare mutation in normal subjects, with no obvious phenotypic 

correlate. It would be of interest to examine a larger population for the mutation, 

particularly with reference to phenotypic changes of increased glucocorticoid sensitivity 

discussed in section 1.7.

The mutation described lies close to the secondary transactivation domain and the 

ligand binding domain of the receptor and could affect both of these activities. In vitro 

studies using site directed mutagenesis to generate the same mutation in a mammalian
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expression vector could be used to examine both ligand binding and transactivation 

activity in more detail.
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Appendix 1

Buffers for Molecular Biology

Cell Lysis Buffer

Sucrose 0.32 mol/1

TRIS 1 0  mmol/1

Magnesium Chloride 5 mmol/1

Triton X-100 1 %

Adjusted to pH 7.5

Nuclear Lysis Buffer

TRIS 1 0  mmol/1

Sodium Chloride 0.4 mol/1

EDTA 2  mmol/1

Adjusted to pH 2.8

Phenol/Chloroform

Phenol (molecular biology grade) 500ml

Chloroform (molecular biology grade) 500ml

TE Buffer

TRIS 1 0  mmol/1

EDTA 1 0  mmol/1

Adjusted to pH 7.5
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TBE Buffer

Tris Base 54g

Boric Acid 27.5g

0.5M EDTA 2 0 ml

Made up to 1000ml with dHiO

pH 8.0

Formamide Loading Dye

Deionised Formamide 1 0 ml

Bromophenol Blue lmg

Xylene Cynol Green lmg
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Appendix 2

Non-Linear Regression Modelling o f  Receptor Binding.

Modelling Receptor Binding Characteristics

In saturation receptor binding assays the fractional occupancy (r) of a receptor 

population by ligand is defined in equation 1, where Kd is the dissociation constant of 

the receptor and x is the concentration of ligand.

xr = ............   Equation 1
x + Kd

As ligand concentration increases receptor occupancy increases, reaching half-maximal 

occupancy when ligand concentration equals Kd.

In a homologous displacement receptor binding assay, the concentration of labelled 

radioligand is kept constant and the concentration of unlabelled, or “cold”, ligand is 

increased. The signal measured from a scintillation counter at each concentration of 

“cold” ligand is the sum of specific binding of radioligand to receptor and non-specific 

binding to protein and lipid components of cells and the matrix used to handle receptor 

incubations and harvesting. The fractional occupancy due to radioligand binding will 

then be (1-r) and the total signal measured, s, will be the product of maximum specific 

binding, Max. plus the component due to non-specific binding, M in.

xs = Max( 1 -  (-------- )) + Min ............................................................ Equation 2
x + Kd

This describes the curve seen in figure 1, where ligand concentration is shown in 

imaginary units on a logarithmic scale, the measured signal shown in imaginary liner 

units, and Kd, Min and Max are illustrated graphically
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Figure 1 Ideal Homologous Displacement Curve

Homologous Displacement Curve30 Signal

Max

Min
Kd 1 0 0 0 0  1 0 0 0 0 0 0

Unlabelled Ligand Concentration
100

Development o f  Least-squares Non-linear regression Method

In order to extract values of Max, Min and Kd from experimental data with the least 

inaccuracy, a method of fitting equation 2 to observed data is required. Since error is 

proportional to variance, a least-squares method was used, and since equation 2 is non­

linear (i.e. is not of the form y=mx+c) a non-linear fitting approach was taken.

The equation for the squared-residuals, y, between expected (i.e. calculated data), s, 

observed data, d, will be:

y  = ( s - d ) 2 ...........................................................Equation 3

Expanding this equation using equation 2 gives:

. . .  Max.x . . .  2y  = {Max------------ 1- Min - a )  .................................................
x + Kd

........ Equation 4
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By further expansion:

2 2 2 2 2 2 2.x.MinMax 2.x.Max 2.x.d.Max x .Max
y  = Max + Min + d  + 2.Max.Min -  2.d.Min -  2.d.Max---------------------------------------- + ---------------+ --------------—

x + Kd x + Kd x + Kd (* + ^

........................................................... Equation 5

The best fit of the calculated data, equation 2, to observed data occurs when the square 

of the residuals is minimised. This occurs when values are found for each of Max, Min 

and Kd that produce the minimum of equation 4.

For each variable Max, Min and Kd, the minimum of equation 4 is reached when the 

first derivative of equation 4 equals zero, i.e. at the root of the first derivative. To find 

the root of this first derivative, a recursive method, Newton-Raphson iteration, was 

used.

Briefly, for any function that crosses the x-axis, the nearest root can be found from a 

point on the function as follows. The gradient of the function at the point is found, a 

line extended to the x-axis along this gradient, and the new value of x applied to the 

function to find a new point on the function. By recursively applying this principle, the 

value of x is found such that f(x)=0.

Point 1

Point 3
oot

2.50.5

-0.5 -
Point 2
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The general gradient of a line is defined as: 

m _ y?.— Ti_ Equation 6
X 2 — JCj

where m is the gradient, and Y2 and Yi are the y coordinates of the end and beginning of 

the line, and X2 and xj are the x coordinates of the end and beginning of the line.

It follows that to find the new x-coordinate (from which to calculate the new point on 

the function at each step of the iteration), the increment in x on the previous x- 

coordinate (xi) will be (X2-X1). Since the new y-coordinate will be 0 as the gradient 

crosses the x-axis, this is calculated from equation 6 by rearrangement:

- y
X2 ~ X1 = ................................... ............................. Equation 7

m

Since the function for which we are trying to find a minimum is the first derivative of 

y, the gradient will be given by the second derivative. Thus the increment in x for xi 

will be given by:

_ rd £

x2 - x l = , ...........................................................Equation 8
( d 2y \
K dx1 j

This general principle is applied to find the value of Max which produces the minimum 

square residuals (i.e. minimum of y from equation 4), then applying this revised value 

of Max to calculate the value of Min with the minimum squared residuals and so on. 

The equations for the first and second derivatives of y with respect to Max, Min and Kd 

are shown below:
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dy x.Min 2.x.Max . x 2.Max d.x .= 2 (Min------------+ Max  d + -----------   + ----------)
dMax x + Kd x + Kd {x + Kd)2 x + Kd

d 2y  2.x x 2 .
=  2(1  —  +  - --------- — t )

dMax x + Kd (x + Kdy

dy xM ax— = 2 {Min + Max -------------- d )
dMin x + Kd

d 2y
dMinJ

=  2

Jy _ ^ f x M in .Max _ xM ax2 x 2 .Max2 d.x.Max ^
~  ' tr tv ? 7 ' 77777 7 7 7 m  7 77777/dKd {x + Kd)2 {x + K d f  {x + K d f  {x + Kd):

d 2y  _ .x2 .Max2 2.x.Min.Max 2.xMax2 _ 2.d.x.Max ^
I T — TTTTl 7 7 7 m  7 7777T  7777 77777T/dKd {x + K dY  {x + K d y  {x + K d y  {X  + Kd):

Calculating Number o f  Receptor Sites per Cell

Three steps are involved in calculating the number of specific receptor sites per cell, 

each designed to reduce inter-assay variation.

Calculating the concentration o f  radiolabel

The specific activity for each batch of [1,2,4,6,7 H] Dexamethasone came with the 

accompanying literature, and was generally around 3.07TBq per mmol. The Packard 

scintillation counter contained internal standards which allowed it to calibrate measured 

counts per minute with disintegrations per minute thus allowing direct calculation of 

radiolabel activity and concentration. The equation for dexamethasone concentration is 

given below, where dpm is disintegrations per minute, 3.07x1015 is the number of 

disintegrations per mole, and vol is the volume of sample in litres.

[Label] = ---------------- 1<;-----mol/1
60*3.07*10 .vo/
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Each batch of freshly prepared [1,2,4,6,7 3H] Dexamethasone was adjusted to a 

concentration of 2 nmol/1 using this formula. To reduce pipetting errors and inadvertant 

errors in dilution, each receptor binding assay included quadruplicate 50 pi samples for 

counting. From these, the concentration of label in each incubation (which represented 

a 4-fold dilution of label) was calculated as:

1 dpm * 20,000 * 1 * 109 [ D e x . hal. ] = —-----------------   nmol/1
mcuDanon j  60*307*10

Simplifies:

lDexlmlbalm ] = nmol/1
36840

Calculation o f  the Number o f  Receptor Sites Occupied by Radioligand

Since the specific activity per mole of radioligand was known, the number of receptor 

sites occupied by radioligand in the absence of “cold” ligand was simply calculated as:

dpm* 6.02 n o 23 
b ~ 60*3.07*1015

Calculation o f  Total Receptor Sites per Cell

At concentrations of radioligand used, only a fraction of the total receptor sites are 

occupied by ligand and the total number of receptor sites requires to be calculated. 

Since the fractional receptor occupancy is the ratio of receptors binding ligand to the 

total number of receptors available for receptor binding interactions, and since this is 

calculated simply from ligand concentration and receptor Kd, as seen in equation 1, RT 

can be calculated simply:

r  [*>] *
[Rr ] x + Kd

Rearrangement:

„ _ R b-(x + Kd)
f\.J*
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Since Rb, radioligand concentration and Kd are known with accuracy, the number of 

receptor sites, Rt, can be calculated.

Finally, to adjust to the number of receptor sites per cell, the number of cells per 

incubation are known from samples counted on an automated haemocytology counter. 

Receptor sites/cell are calculated simply as:

R =  ^ T 
c Cells

Choice o f  Receptor Analysis

The mathematics involved in analysing the receptor binding data required some 

development. Two problems caused us to seek a custom solution. One was that no 

commercial software package was available at the time of beginning the project that 

was sufficiently robust or convenient to use for a large volume of data.

Most previously reported receptor binding studies have relied on Scatchard analysis. 

Although a useful graphical way to communicate binding data, Scatchard analysis has 

several mathematical and practical shortcomings. Firstly the method is prone to large 

errors when variation in binding data at either end of the binding curve (i.e. at high and 

low ligand concentrations) are evident. Furthermore, these errors are not linear, or 

symmetrically distributed and therefore are likely to give large errors when binding 

data deviate significantly from the expected curve. We therefore decided to use a non­

linear regression method that was more robust and less prone to deviations due to 

variance in binding points.

We were careful to check the results we obtained for Kd, Max and Min with a 

commercially available package (Graphpad Prism, Graphpad Inc., California, USA) 

and found good agreement. For data with one point in the binding curve with high 

variance we found non-linear regression produced more reliable and less biased results 

than Scatchard analysis, as expected.
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Appendix 3

List of Investigations in Twin Study

The following parameters were measured for each subject in the twin study:

Age

Sex

Receptor Kd 

Receptor Sites per Cell 

Zygosity

Lying systolic and diastolic blood pressure and pulse rate 

Standing systolic and diastolic blood pressure and pulse rate 

Weight 

Height

Waist diameter 

Hip diameter 

Plasma sodium 

Plasma potassium 

Plasma chloride 

Plasma carbon dioxide 

Plasma urea 

Plasma creatinine 

Plasma calcium 

Plasma phosphate 

Plasma protein
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Plasma albumin

Plasma bilirubin

Plasma alkaline phosphatase

Plasma gamma-glutamyl transpeptidase

Plasma aspartate aminotransferase

Plasma alanine aminotransferase

Plasma glucose

Plasma uric acid

Plasma triglycerides

Plasma cholesterol

Plasma very low density lipoproteins

Plasma low density lipoproteins

Plasma high density lipoprotein cholesterol

Plasma 25-Hydroxy cholecalciferol

Plasma C-reactive protein

White cell count

Neutrophil count

Lymphocyte count

Monocyte count

Eosinophil count

Basophil count

Red blood cell count

Haemoglobin concentration

Platelet count
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Erythrocyte sedimentation rate

Femoral neck bone mineral density

Greater trochanter bone mineral density

Intertrochanteric bone mineral density

Ward’s area bone mineral density

Lumbar vertebrae 1-4 combined bone mineral density

24 hour urinary tetrahydrocortisol

24 hour urinary a/Zo-tetrahydrocortisol

24 hour urinary tetrahydrocortisone

In addition, blood was taken for cortisol, aldosterone, deoxycorticosterone, 

corticosterone and 11-deoxycortisol before and 30 minutes after 250pg of 

synacthen™ was given intravenously.
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Appendix 4

Glucocorticoid Receptor cDNA Sequence

The following sequence was derived from Hollenberg et al 1985, and was 
obtained from GenBank (via the National Centre for Biotechnology 
Information at http://www.ncbi.nlm.nih.gov/).

LOCUS HSGCRAR 4788  b p  RNA PRI 1 2 -S E P -
1993
D EFIN ITIO N  Human mRNA f o r  a l p h a - g l u c o c o r t i c o i d  r e c e p t o r  ( c l o n e  0 B 7 ) . 
ACCESSION X 03225  M 10901 
NID g 3 1 6 7  9
KEYWORDS g l u c o c o r t i c o i d  r e c e p t o r .
SOURCE h u m an .

ORGANISM Homo s a p i e n s
E u k a r y o t a e ;  m i t o c h o n d r i a l  e u k a r y o t e s ;  M e ta z o a ;  C h o r d a t a ;  
V e r t e b r a t a ;  E u t h e r i a ;  P r i m a t e s ;  C a t a r r h i n i ;  H o m in id a e ;

Hom o. 
REFERENCE 

AUTHORS 
O r o ,A . ,

TITLE

JOURNAL
MEDLINE

COMMENT
w h ic h

FEATURES
s o u r c e

CDS

1 ( b a s e s  1 t o  4 7 8 8 )
H o l l e n b e r g , S . M . , W e i n b e r g e r ,C . ,  O n g ,E .S . ,  C e r e l l i , G . ,

L e b o ,R . ,  T h o m p s o n ,E .B . , R o s e n f e ld ,M .G .  a n d  E v a n s ,R .M . 
P r i m a r y  s t r u c t u r e  a n d  e x p r e s s i o n  o f  a  f u n c t i o n a l  hum an  
g l u c o c o r t i c o i d  r e c e p t o r  cDNA 
N a tu r e  318 ( 6 0 4 7 ) ,  6 3 5 -6 4 1  (1 9 8 5 )
8 6 0 9 2 2 0 6
A b o u t 500  b p  o f  t h e  5 1 r e g i o n  w e re  d e r i v e d  f ro m  c l o n e  OB10

r e p r e s e n t s  t h e  b e t a - g l u c o c o r t i c o i d  r e c e p t o r  ( s e e  X 0 3 3 4 8 ) . 
L o c a t i o n / Q u a l i f i e r s  
1 . .4 7 8 8
/o rg a n is m = " H o m o  s a p i e n s "
1 3 3 . .2 4 6 6  
/ n o t e = " ( a a  1 - 7 7 7 ) "
/ c o d o n _ s t a r t = l
/ p r o d u c t = " a l p h a - g l u c o c o r t i c o i d  r e c e p t o r "  
/ d b _ x r e f = " P I D : g 3 1 6 8 0 "
/ d b  x re f= "S W IS S -P R O T :P 0 4 1 5 0 "

/translation="MDSKESLTPGREENPSSVLAQERGDVMDFYKTLRGGATVKVSAS

SPSLAVASQSDSKQRRLLVDFPKGSVSNAQQPDLSKAVSLSMGLYMGETETKVMGNDL 

GFPQQGQISLSSGETDLKLLEESIANLNRSTSVPENPKSSASTAVSAAPTEKEFPKTH 

S DVS SEQQHLKGQTGTNGGNVKLYTTDQST FDILQDLE FS SGS PGKETNES PWRS DLL 

IDENCLLSPLAGEDDSFLLEGNSNEDCKPLILPDTKPKIKDNGDLVLSSPSNVTLPQV 

KTEKEDFIELCTPGVIKQEKLGTVYCQASFPGANIIGNKMSAISVHGVSTSGGQMYHY 

DMNTASLSQQQDQKPIFNVIPPIPVGSENWNRCQGSGDDNLTSLGTLNFPGRTVFSNG 

YSSPSMRPDVSSPPSSSSTATTGPPPKLCLVCSDEASGCHYGVLTCGSCKVFFKRAVE 

GQHNYLCAGRNDCIIDKIRRKNCPACRYRKCLQAGMNLEARKTKKKIKGIQQATTGVS 

QETSENPGNKTIVPATLPQLTPTLVSLLEVIEPEVLYAGYDSSVPDSTWRIMTTLNML 

GGRQVIAAVKWAKAIPGFRNLHLDDQMTLLQYSWMFLMAFALGWRSYRQSSANLLCFA 

PDLIINEQRMTLPCMYDQCKHMLYVSSELHRLQVSYEEYLCMKTLLLLSSVPKDGLKS
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QELFDEIRMTYIKELGKAIVKREGNSSQNWQRFYQLTKLLDSMHEWENLLNYCFQTF
LDKTMSIE FPEMLAE11TNQIPKYSNGNIKKLL FHQK" 

m i s c _ f e a t u r e  3 1 0 1 . .3 1 0 6
/ n o t e = " p o t . 

m i s c _ f e a t u r e  4 6 7 9 . .4 6 8 4
/ n o t e = " p o t . 

m i s c _ f e a t u r e  4 7 6 2 . .4 7 6 7
/ n o t e = " p o t .
4788

939 c

p o ly A  s i g n a l "  

p o ly A  s i g n a l "  

p o ly A  s i g n a l "
p o l y A _ s i t e  

BASE COUNT 1471
ORIGIN

970 g  1408  t

HSGCRAR
1

51
101
151
201
251
301
351
401
451
501
551
601
651
701
751
801
851
901
951

1001
1051
11 01
1151
1201
1251
1301
1351
1 4 0 1
1451
1 5 0 1
1551
1601
1 6 5 1
1701
1751
1801
1851
1901
1951
2001
2 0 5 1
2101
2 1 5 1
220 1
2 2 5 1
2 3 0 1
2 3 5 1
2 4 0 1
2 4 5 1
2 5 0 1
2 5 5 1
2 6 0 1
2 6 5 1
2 7 0 1

L e n g th :  4788  A u g u s t  2 1 , 1 9 9 6  2 1 :3 8  T y p e : N C h e c k : 54 9 7  
TTTTTAGAAA AAAAAAATAT ATTTCCCTCC TGCTCCTTCT GCGTTCACAA 
GCTAAGTTGT TTATCTCGGC TGCGGCGGGA ACTGCGGACG GTGGCGGGCG 
AGCGGCTCCT CTGCCAGAGT TGATATTCAC TGATGGACTC CAAAGAATCA 
TTAACTCCTG GTAGAGAAGA AAACCCCAGC AGTGTGCTTG CTCAGGAGAG 
GGGAGATGTG ATGGACTTCT ATAAAACCCT AAGAGGAGGA GCTACTGTGA 
AGGTTTCTGC GTCTTCACCC TCACTGGCTG TCGCTTCTCA ATCAGACTCC 
AAGCAGCGAA GACTTTTGGT TGATTTTCCA AAAGGCTCAG 
GCAGCAGCCA GATCTGTCCA AAGCAGTTTC ACTCTCAATG 
TGGGAGAGAC AGAAACAAAA GTGATGGGAA ATGACCTGGG ATTCCCACAG 
CAGGGCCAAA TCAGCCTTTC CTCGGGGGAA ACAGACTTAA AGCTTTTGGA 
AGAAAGCATT GCAAACCTCA ATAGGTCGAC CAGTGTTCCA GAGAACCCCA 
AGAGTTCAGC ATCCACTGCT GTGTCTGCTG CCCCCACAGA GAAGGAGTTT 
CCAAAAACTC ACTCTGATGT ATCTTCAGAA CAGCAACATT TGAAGGGCCA 
GACTGGCACC AACGGTGGCA ATGTGAAATT 

TTTGCAGGAT TTGGAGTTTT 
GAGATCAGAC

TAAGCAATGC
GGACTGTATA

CCTTTGACAT 
GAGACGAATG AGAGTCCTTG 
TTTGCTTTCT CCTCTGGCGG 
ACTCGAATGA GGACTGCAAG

GTATACCACA GACCAAAGCA 
CTTCTGGGTC CCCAGGTAAA

ATTAAGGATA ATGGAGATCT 
GCCCCAAGTG AAAACAGAAA AAGAAGATTT

CTGTTGATAG ATGAAAACTG 
GAGAAGACGA TTCATTCCTT TTGGAAGGAA 
CCTCTCATTT TACCGGACAC TAAACCCAAA 
GGTTTTGTCA AGCCCCAGTA ATGTAACACT 

CATCGAACTC TGCACCCCTG

CTGGAGATGA 
CCCTGGTCGA ACAGTTTTTT

GGGTAATTAA GCAAGAGAAA CTGGGCACAG TTTACTGTCA GGCAAGCTTT 
CCTGGAGCAA ATATAATTGG TAATAAAATG TCTGCCATTT CTGTTCATGG 
TGTGAGTACC TCTGGAGGAC AGATGTACCA CTATGACATG AATACAGCAT 
CCCTTTCTCA ACAGCAGGAT CAGAAGCCTA TTTTTAATGT CATTCCACCA 
ATTCCCGTTG GTTCCGAAAA TTGGAATAGG TGCCAAGGAT 
CAACTTGACT TCTCTGGGGA CTCTGAACTT 
CTAATGGCTA TTCAAGCCCC AGCATGAGAC CAGATGTAAG CTCTCCTCCA 
TCCAGCTCCT CAACAGCAAC AACAGGACCA CCTCCCAAAC TCTGCCTGGT 
GTGCTCTGAT GAAGCTTCAG GATGTCATTA TGGAGTCTTA ACTTGTGGAA 
GCTGTAAAGT TTTCTTCAAA AGAGCAGTGG AAGGACAGCA CAATTACCTA 
TGTGCTGGAA GGAATGATTG CATCATCGAT AAAATTCGAA GAAAAAACTG 
CCCAGCATGC CGCTATCGAA AATGTCTTCA GGCTGGAATG AACCTGGAAG 
CTCGAAAAAC AAAGAAAAAA ATAAAAGGAA TTCAGCAGGC CACTACAGGA 
GTCTCACAAG AAACCTCTGA AAATCCTGGT AACAAAACAA TAGTTCCTGC 
AACGTTACCA CAACTCACCC CTACCCTGGT GTCACTGTTG GAGGTTATTG 
AACCTGAAGT GTTATATGCA GGATATGATA GCTCTGTTCC AGACTCAACT 
TGGAGGATCA TGACTACGCT CAACATGTTA GGAGGGCGGC AAGTGATTGC 
AGCAGTGAAA TGGGCAAAGG CAATACCAGG TTTCAGGAAC 

GACCCTACTG CAGTACTCCT
GGAGATCATA TAGACAATCA AGTGCAAACC TGCTGTGTTT

ATGACCAAAT
GCTCTGGGGT
TGCTCCTGAT

TTACACCTGG 
GGATGTTTCT TATGGCATTT

CTGATTATTA ATGAGCAGAG AATGACTCTA CCCTGCATGT
ACGACCAATG TAAACACATG CTGTATGTTT CCTCTGAGTT ACACAGGCTT 
CAGGTATCTT ATGAAGAGTA TCTCTGTATG AAAACCTTAC TGCTTCTCTC 
TTCAGTTCCT AAGGACGGTC TGAAGAGCCA AGAGCTATTT GATGAAATTA 
GAATGACCTA CATCAAAGAG CTAGGAAAAG CCATTGTCAA GAGGGAAGGA 
AACTCCAGCC AGAACTGGCA GCGGTTTTAT CAACTGACAA AACTCTTGGA 
TTCTATGCAT GAAGTGGTTG AAAATCTCCT TAACTATTGC TTCCAAACAT 
TTTTGGATAA GACCATGAGT ATTGAATTCC CCGAGATGTT AGCTGAAATC 
ATCACCAATC AGATACCAAA ATATTCAAAT GGAAATATCA AAAAACTTCT 
GTTTCATCAA AAGTGACTGC CTTAATAAGA ATGGTTGCCT TAAAGAAAGT 
CGAATTAATA GCTTTTATTG TATAAACTAT CAGTTTGTCC TGTAGAGGTT 
TTGTTGTTTT ATTTTTTATT GTTTTCATCT GTTGTTTTGT TTTAAATACG 
CACTACATGT GGTTTATAGA GGGCCAAGAC TTGGCAACAG AAGCAGTTGA 
GTCGTCATCA CTTTTCAGTG ATGGGAGAGT AGATGGTGAA ATTTATTAGT 
TAATATATCC CAGAAATTAG AAACCTTAAT ATGTGGACGT AATCTCCACA
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2 7 5 1
2 8 0 1
2 8 5 1
2 9 0 1
2 9 5 1
3 0 0 1
3 0 5 1
3 1 0 1
3 1 5 1
3 2 0 1
3 2 5 1
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3 4 0 1
3 4 5 1
3 5 0 1
3 5 5 1
3 6 0 1
3 6 5 1
3 7 0 1
3 7 5 1
3 8 0 1
3 8 5 1
3 9 0 1
3 9 5 1
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4 0 5 1
4 1 0 1
4 1 5 1
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4 2 5 1
4 3 0 1
4 3 5 1
4 4 0 1
4 4 5 1
4 5 0 1
4 5 5 1
4 6 0 1
4 6 5 1
4 7 0 1
4 7 5 1
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GTCAAAGAAG
AACTTTCTCT
ACTTTCTGTT
TTTATGCATG
GAAGTTGTGC
ATATTTAGTG
AAGTTATTGT
AATAAACTCT
TCTAACCTGA
TCTCCAGTAT
ATATCTGCTT
ACTGGTATAG
TGGTTGCAAA
ACCTAACGCC
TATTTGTCTT
TGTGATTCCA
CAAAGTAATT
GGCAAAAATG
GTTAATCTTT
TTAGAACTGT
GTGTGCCATA
ATTATTTTAA
ACCAACTTTC
ATTTGATTTC
AAATCTAATA
ATAGTTTCAG
GGCTACTGCA
GTATAGTGTA
ATGTTATATA
ATGATTTATA
ACCAAACAGT
GCAGTGAAGG
TCCTCTGCCT
CAGCGCAGGT
TATGTAAACA
CTAATAGCGG
AACAGAAGCT
ATGTAAATAG
TCTATCCTAC
GTTTTCTTTG
AGAAATTATT

GATGGCACCT 
TCATACTTTT 
GGTGTATCCC 
GAAACCTGAA 
CTTTTATAGC 
AACTACGCTT 
ACAGCTGTTT 
AAACATTAAT 
TGGCACTTAG 
TCTTGTCAAA 
CAGTGGAGAA 
AGCACCTAGT 
AGACTAATTT 
CTATTTTTGC 
TCAGGACCTT 
GATAACCAGC 
CCTCTCACTA 
GCTAGACACC 
CCTGATGGTA 
ATGTCAGACA 
GAGTTTAACA 
ACAAAATAGA 
TGTAAACTCA 
TATTCAAGGT 
TTAAAAATAT 
ATATATATCA 
GCTTTACATG 
AAATAAGAAT 
TTTTTTGTAG 
GTTTGTACAT 
TTGCTCTAGG 
TTGCTGAGGC 
CCCATTCTGA 
TTAGTTTACT 
GGAGACAGGA 
GTTACTTTCA 
TCAGAAGTTT 
TGCAGAATCT 
AACAAGAGTT 
AATGCTTTTT 
TAATAAAAAA

AAACCACCAG
TTTCACAGTT
CCCCCTGTAT
AAAAAGTTTA
TATTACTGTC
GCTCATTTTT
AAGATGGGCA
CAATCATCTG
CTATCAGAAG
AAAAAAAAAA
TTATATAGGT
CCAGTGACCT
AAAAAATAAC
AATGGCTATA
TTGAAGTAGT
TGTAACACAG
AACTTTACCC
CATTTTCACA
CAGGAAAGCT
TCCATGTTTG
CAAGTCCTGT
AGCTGTAGTA
AAACTTAACA
GGCCAAATTA
GGAACTTCTA
TATTGGTATT
CAATTTATTA
GATTTTTAGA
GGGTCAAAGA
GCATTCATAC
GGAAGAGGGA
TCTGACCCAG
CCACCCTTCT
CAATCTCCCC
AGGTGGTGCT
CATACAGCCC
GGCAATAGTT
CATAGGTTGC
TATTTCCAAA
GAATGTTATT
ACAATCATTT

TGCCCAAAGT
GGCTGGATGA
AGTTAGGATA
CAAGTGTATA
TGGTTTTAAC
TCTTACATAA
GCTAGTTCGT
TGTGAAAATG
ACCACAAAAA
AAAAAGCTCA
TGTGCAAATT
GCTGGGTAAA
TACCAAGAGG
TGGCAAGAAA
TTGTATAACT
CTGAGAGACT
AAAAACTAAA
TTCCCATCTG
CAGCTACTGA
TAAAACTACA
GAATTTCTTC
GCCCTTTCTG
TATTTACTAA
TTTGTGTAAT
ATATATTTTT
CACTAATCTG
AAATGATTGT
TGAGATTGTT
AATGCTGATG
AGGCAGCGAT
GATGGAGACT
TGAGATTACA
CATTCCAACA
TTGCACTAAA
TACATCCTTA
TCCCCCAGCA
TGCATAGAGG
CAATAATACA
TAAAATGAGG
TGTTATTTTC
GCTTTTTG

CTGTGTGATG
AATTTTCTAG
GCATTTTTGA
TCAGAAAAGG
AATTTCCTTT
TTTTTTATTC
AGCTTTCCCA
GGTTGGTGCT
TTGACTCAAA
TATTTTGTAT
AACAGTCCTA
CTGTGGATGA
CCCTGTCTGT
GCTGGTAAAC
TCTTAAAAGT
TTTAATCAGA
TCTCTAATAT
TCACCAATTG
TTTTTGTGAT
CATCCCTAAT
ACTGTTGAAA
TGTGCACCTT
GCCACAAGAA
AGAAAACTGA
ATATTTAGTT
GGAAGGGAAG
AAAATAGCTT
TTATCATGAC
GATAACCTAT
GGTCTCAGAA
GGTCCTGTGT
GAGGAAGTTA
GTGAGTCTGT
GTATGTAAAG
AAGGCACCAT
GTTGAATGAC
TACCAGCAAT
CTAATTCCTT
ACATGTTTTT
AGTATTTTGG
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Appendix 5 

Primer Sequences

Promoter/Exon 1 Segment 1
forward primer (18-mer): -1001 CGCTATCCCGTCCCTTCC -984
reverse primer (21-mer): -864 CCGAGTTGCGTGAAGTGTGTC -884
product length: 138
optimal annealing temperature: 62.8 degrees Celsius 
Promoter/Exon 1 Segment 2
forward primer (19-mer): -916 TTTCCGTGCAACCCCGTAG -898 
reverse primer (19-mer): -651 CGTTAAGAGGGCCACCGAG -669 
product length: 266
optimal annealing temperature: 64.6 degrees Celsius 
Promoter/Exon 1 Segment 3
forward primer (22-mer): -703 GGGAAGGAGGTAGCGAGAAAAG -682
reverse primer (18-mer): -595 CAGGAAAAAGGGTGGCGG -612
product length: 109
optimal annealing temperature: 60.1 degrees Celsius________
Promoter/Exon 1 Segment 4
forward primer (18-mer): -650 CCGCCCCAGAGAGACCAG -633 
reverse primer (19-mer): -224 GCTCGCAAAATGGAGGAGG -242 
product length: 427
PstI restriction site at -466 -> product lengths 184,243 
optimal annealing temperature: 68.0 degrees Celsius 
Promoter/Exon 1 Segment 5
forward primer (18-mer): -271 GTGTCCGCGCTCTCTTCC -254 
reverse primer (18-mer): -165 ACCCACAGAATCCGTCCC -182 
product length: 107
optimal annealing temperature: 60.6 degrees Celsius________
Promoter/Exon 1 Segment 6
forward primer (18-mer): -241 CTCCTCCATTTTGCGAGC -224 
reverse primer (25-mer): -16 AGAGCCCCTATTTAAGAAAGTCTCC -40 
product length: 226
optimal annealing temperature: 63.5 degrees Celsius 
Exon 2 Segment 1
forward primer (22-mer): 128 CACTGATGGACTCCAAAGAATC 149
reverse primer (20-mer): 57 9 AGCAGACACAGCAGTGGATG 560
product length:452
Bglll restriction site at 360 -> product lengths 232,219
optimal annealing temperature: 57.8 degrees Celsius________
Exon 2 Segment 2
forward primer (18-mer): 542 AGAACCCCAAGAGTTCAG 559
reverse primer (18-mer): 1015 CTTGCTTAATTACCCCAG 998
product length:474
Sty I restriction site at 767 -> product lengths 225,249 
optimal annealing temperature: 54.6 degrees Celsius 
Exon 2 Segment 3
forward primer (18-mer): 950 TGCCCCAAGTGAAAACAG 967
reverse primer (19-mer): 1291 TTCGACCAGGGAAGTTCAG 127 3
product length:342
FokI restriction site at 1134 -> product lengths 184,157 
optimal annealing temperature: 56.4 degrees Celsius
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Exon 3
forward primer (19-mer): 1317 ('tttagJCCCCAGCATGAGAC
1330
reverse primer (22-mer): 1480 CCACTGCTCTTTTGAAGAAAAC 1459
product length: 169
optimal annealing temperature: 56.1 degrees Celsius 
Exon 4
forward primer (20-mer): 1484 (tatag)GACAGCACAATTACC 1498
reverse primer (18-mer): 1603 TACCTTCCAGGTTCATTC 1586
product length: 125
optimal annealing temperature: 50.8 degrees Celsius_____________
Exon 5
forward primer (20-mer): 1702 ACGTTACCACAACTCACCCC 1721
reverse primer (18-mer): 1874 ATTGCCTTTGCCCATTTC 1857
product length: 173
optimal annealing temperature: 56.1 degrees Celsius 
Exon 6
forward primer (20-mer) : 1886 GGAACTTACACCTGGATGAC 1905
reverse primer (19-mer): 2015 ATCAGATCAGGAGCAAAAC 1997
product length: 130
optimal annealing temperature: 52.3 degrees Celsius_____________
Exon 7
forward primer (19-mer): 2025 GCAGAGAATGACTCTACCC 2043
reverse primer (20-mer): 2154 TGAAGAGAGAAGCAGTAAGG 2135
product length: 130
optimal annealing temperature: 51.1 degrees Celsius 
Exon 8
forward primer (18-mer): 2156 (tttag) TTCCTAAGGACGG 2168
reverse primer (19-mer): 2311 CATGCATAGAATCCAAGAG 2293
product length: 161
optimal annealing temperature: 51.4 degrees Celsius_____________
Exon 9 Segment 1
forward primer (20-mer) : 2361 GACCATGAGTATTGAATTCC 2380
reverse primer (22-mer) : 2812 GAAGAGAAAGTTCATCACACAG 2791
product length: 452
Haelll restriction site at 2625 -> product lengths 263,189 
optimal annealing temperature: 52.0 degrees Celsius 
Exon 9 Segment 2
forward primer (20-mer): 2741 AATCTCCACAGTCAAAGAAG 2760
reverse primer (18-mer) : 3166 GTGCCATCAGGTTAGAAG 314 9
product length: 426
Nlalll restriction site at 2912 -> product lengths 170,256
optimal annealing temperature: 52.1 degrees Celsius_____________
Exon 9 Segment 3
forward primer (22-mer): 3121 CAATCATCTGTGTGAAAATGGG 3142
reverse primer (22-mer): 3520 GCTGGTTATCTGGAATCACAAC 3499
product length: 400
FokI restriction site at 3360 -> product lengths 238,162 
optimal annealing temperature: 54.5 degrees Celsius
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Exon 9 Segment 4
forward primer (19-mer) : 3461 TCAGGACCTTTTGAAGTAG 3479
reverse primer (19-mer): 3923 GCCACCTTGAATAGAAATC 3905
product length: 4 63
Nlalll restriction site at 3728 -> product lengths 266,197 
optimal annealing temperature: 51.5 degrees Celsius 
Exon 9 Segment 5
forward primer (19-mer): 3905 GATTTCTATTCAAGGTGGC 3923
reverse primer (21-mer): 4348 ACTTCCTCTGTAATCTCACTG 4328
product length: 4 44
PstI restriction site at 4062 -> product lengths 156,288
optimal annealing temperature: 51.2 degrees Celsius________
Exon 9 Segment 6
forward primer (18-mer): 4 301 GCAGTGAAGGTTGCTGAG 4 318
reverse primer (20-mer) : 4706 GAAAACAAAAACATGTCCTC 4687
product length: 4 06
FokI restriction site at 4475 -> product lengths 169,237 
optimal annealing temperature: 54.1 degrees Celsius

Notes
Sequences shown in bold italics refer to sequence in the 
preceding intron. Nucleotide numbers then refer to the first 
nucleotide in upper case, and coincide with the published cDNA 
sequence from Hollenberg et al 1985 (Genbank GEMAM:HUMGCRA)

Primers Exon 9 segment 1 cover the major part of exon 9 while 
Primers Exon 9 segments 2-6 cover over 2 kilobases of the 
3'untranslated region of the gene.

244



Appendix 6 -  Informed Consent

Appendix 6

Informed Consent

The form used to obtain the informed consent for subjects to have 
venepuncture and urine collections take is copied below.

F
|  I V '

FREW - PAISLEY FAMILY HEALTH STUDY CONSENT FORM

irther Information Is Available From: If y°u would like further information
about the study from someone who

Mark Upton - Principal Investigator is not part of the research team, please contact:
•parimeni o f General Practice, Glasgow University,
tods'ule Health Centre, BarrStreet, Glasgow G20 7LR Ms Lisa Schwartz ■ Ethics Consultant

eephone: 0800 413 772 Department o f General Practice, Glasgow University,
Woodside Health Centre, Barr Street, Glasgow G20 7LR 

Telephone: 01413328118
ID Label

i n  i . N A M E ........................................................................................................................................................................................(BLOCKLETTERS)

Is this the name your CP knows you by? If not, the name b ....................................................................................................................

DDRESS.............................................................................................................................................................................................................

ELEPHONE......................................................................................................... DATE OF BIRTH................J................. / .........................

PARTICIPATION
I agree to participate/to the subject participating* in this study.
I have read this consent form and Subject Information Sheet and h id  tbe opportunity to ask questions about them.
I understand that I am/the subject is* under no obligation to take part in this study, and has the right to withdraw at any lime.

Signature of subject/guardian*.......................................................................................

GENERAL PRACTITIONER NOTIFICATION ABOUT PARTICIPATION
I agree for notice to be sent to my/the subject's* General Practitioner about my/their* participation in this study.

Signature of subject/guardian*.......................................................................................

GENERAL PRACTITIONER NOTIFICATION ABOUT RESULTS
1 agree  for m y/the subject's* G eneral P ractitioner to be notified about m y/the subject's" b lood pressure, height, w eight,
ECG, cholesterol level and any other clinically significant information.

S ignature of subject/guardian*........................................................................................

VENF.PLNCTDRE
I agree to a b lood sam ple being taken from  me. the subject*, and for this to he analysed routinely for biochem istry including 
g lucose, cholestero l, blood d o ttin g  and rheology. vitam ins and cotinine (a m arker o f  c igarette sm oke exposure).

Signature of sub ject/guardian*........................................................................................

I IN A (GENETIC MATERIAL)
I give perm ission  for tests to be carried  out on genetic m aterial from the w hite b lood cells in the blood sample that I have/the
subject has* given. I understand that all results w ill he used anonym ously.

Signature o f subject/guardian*........................................................................................

STOKED 1*1 .ASM A AND SERUM
1 g i '  e  pci m iss io n  to r  so m e  o f  th e  b lo o d  s a m p le  th a t I h av e  the su b je c t h as*  g iv e n  to  he s to re d  so  tha t fu rth e r te s ts  ca n  be
c a rr ie d  out in  th e  fu tu re . I u n d e rs ta n d  th a t a ll re su lts  w ill b e  used  a n o n y m o u s ly .

Signature of subject/guardian*........................................................................................

MEDIC.AI. RECORDS
1 g ive perm ission  for m y the subject's*  progress to be followed through m edical records.

Signature of subject/guardian*

GNATURE OF INVESTIGATOR 

V IE ...................................................

*delete us appropriate

W h ite  c o p y : to  be r e a m e d  by Iiim siiim Iiii 
Y ellow  e n p y : to  be le '.a ined  by  Snlijeel. 
B lu e  In h i  v  nl lit S ubjec t v (»)’,__________ yin*«__ __
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