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Summary

The plasma disposition and faecal excretion of oxfendazole (FBZ.SO), fenbendazole 

(FBZ) and oxibendazole (OBZ), and enantiospecific disposition of FBZ.SO were 

investigated in horses following oral administration at a dose rate of 10 mg/kg. 

Fenbendazole and FBZ.SO were metabolised extensively to the sulphone metabolite. 

Significantly greater plasma concentrations were found for sulphone (SO2) metabolites 

than for the parent molecules of FBZ and FBZ.SO. The sulphone metabolite is known to 

have relatively very low or no anthelmintic activity. Significantly higher mean maximum 

concentration (Cmax) and larger area under the concentration time curve (AUC) of parent 

molecules were obtained for FBZ.SO (Cmzx: 0.35±0.07 pg/ml, AUC: 4.40±0.90 pg.h/ml) 

compared to FBZ (Cmax: 0.04±0.01pg/ml, AUC: 0.61±0.01 pg.h/ml). At the same oral 

dose rate, it is possible that FBZ.SO produces greater activity in the systemic circulation 

than FBZ since the plasma concentration of active metabolite of FBZ.SO was larger than 

that of FBZ however the tubulin binding of FBZ.SO is much lower than FBZ and activity 

probably reflects both concentration present and inherent affinity for the known receptor 

conforming activity. High concentrations of FBZ in the gut following FBZ 

administration could confer good activity on the parent compound for gastrointestinal 

parasites. The estimated plasma concentrations of OBZ from samples were very low 

(Cmax* 0.006 pg/ml). In faeces the highest faecal excretion was determined at 24 h for all 

molecules. A high FBZ concentration (-20% of parent molecule) was found in the faecal 

samples after FBZ.SO administration although faecal concentrations of administered 

moiety were always higher. Enantiospecific analysis of FBZ.SO showed that the first 

enantiomer (FBZ.SO-1) was predominant in six of the eight animals whereas in two 

animals the second enantiomer dominated in the plasma samples.

The effect of piperonyl butoxide, a cytochrome P450 inhibitor was determined on the 

pharmacokinetic and chiral disposition of FBZ.SO in ponies. Oxfendazole was given 

intravenously at a dose rate of 10 mg/kg bodyweight and piperonyl butoxide was 

administered by nasogastric intubation at a dose rate of 31 mg/kg bodyweight, 30 

minutes prior to FBZ.SO administration. The plasma concentrations of FBZ.SO and its 

sulphide and sulphone metabolites were determined following administration of FBZ.SO 

alone or with PB. It was shown that piperonyl butoxide significantly inhibited the 

metabolism of FBZ.SO and increased its plasma concentration. It was apparent that one



of the FBZ.SO enantiomers (FBZ.SO-2) was metabolised much more rapidly than the 

other enantiomer (FBZ.SO-1). On the other hand, the plasma concentrations of FBZ.SO- 

2 were higher than those of FBZ.SO-1 when the animals were given FBZ.SO with 

piperonyl butoxide. Thus the metabolism or excretion of FBZ.SO-2 was inhibited by 

piperonyl butoxide more effectively than that of FBZ.SO-1.

Hepatic microsome samples were prepared from horse liver tissue to determine the in 

vitro metabolism of FBZ.SO, FBZ and OBZ with and without piperonyl butoxide. Only 

the sulphone metabolite was formed after FBZ.SO incubation and the sulphone, 

sulphoxide and hydroxy metabolite were formed after FBZ incubation. The sulphonation 

pathway of the metabolism of FBZ.SO and FBZ was inhibited significantly by piperonyl 

butoxide. The extent of metabolism for FBZ.SO and FBZ was significantly higher when 

the anthelmintics were incubated alone than in the presence of piperonyl butoxide. The 

enantiospecific metabolism was also determined following incubation of FBZ.SO as a 

racemate substrate and following incubation of FBZ as a prochiral drug with and without 

piperonyl butoxide. Microsomal metabolism was apparently enantiospecific since the 

enantiomers were metabolised differently from each other. There was a marked change in 

the enantiomer ratio when FBZ.SO was incubated with piperonyl butoxide. 

Fenbendazole (FBZ) metabolism to sulphoxide (FBZ.SO) was also shown to be 

enantiospecific since FBZ.SO-1 predominated in the reaction mixture. Piperonyl 

butoxide affected the enantiospecific character of the metabolism. Oxibendazole (OBZ) 

was metabolised extensively to its unidentified metabolites (Ml, M2, M3 and M4) and 

piperonyl butoxide significantly inhibited the metabolism of OBZ. Three unidentified 

metabolites (M l, M2 and M4) were significantly decreased and one unidentified 

metabolite (M3) was significantly increased when OBZ was incubated with piperonyl 

butoxide.

The pharmacokinetic disposition and faecal excretion of IVM, MXD and DRM were 

reported in horses following oral administration at a dose rate of 0.2 mg/kg. Large 

interindividual variations of kinetic parameters were observed from animals in this study. 

A similar pattern of absorption and time till Cmax (tmax) were found. The Cmax and tmax 

were not significantly different for IVM, DRM and MXD. The AUC of MXD (86.81 

ng.d/ml) was significantly larger than that of IVM (46.41 ng.d/ml) and the mean 

residence time (MRT) of MXD (16.31 day) was significantly longer than DRM (4.0 day)



and IVM (2.4 day). The faecal excretion patterns of IVM DRM and MXD were similar 

and no significant difference was observed for Cmax and AUC values of all molecules in 

faeces. The highest faecal excretion was determined at 24 h for all molecules.

The plasma pharmacokinetic disposition and faecal excretion of pyrantel (PYR) was 

determined after oral administration. PYR was detected in plasma between 1 h and 72 h. 

The Cmax was 0.09±0.02 pg/ml and was achieved at 7.50±1.41 h (tmax). The AUC and 

MRT of PYR were 1.06±0.24 pg.h/ml and 11.99±1.30 h, respectively. Pyrantel was 

detected in faeces between 12 h and 72 h. The highest faecal excretion (1.034 mg/g) was 

determined at 24 h.
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General Introduction
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1.1 INTERNAL PARASITIC INFECTIONS IN HORSES

In modem horse management, parasite infections are still a serious animal health 

problem. Horse parasites include large strongyles {Strongylus vulgaris and Strongylus 

edentatus), small strongyles (Cyathostomum spp.), ascarids (Parascaris equorum), bots 

{Gastrophilus spp.) and pinworms (Oxyuris equi). Other parasites of minor importance 

include strongyloides (Strongyloides westeri), stomach worms {Trichostrongylus axei), 

tapeworms (Anoplocephala perfoliata), eye worms and filaroides (Herd, 1992).

Nematode parasites, which cause serious pathological disorders in the gastrointestinal 

tract and its blood supply, are more important than other internal parasites with regard to 

parasite control programmes and anthelmintic chemotherapy. Nematodes are widespread 

in horses in all climatic regions of the world (Ogboume, 1976; Reinemeyer et al., 1984; 

Krecek et a l , 1989; Mfitilodze and Hutchinson, 1990). A variety of nematodes can be 

parasitic in the gastrointestinal tract of Equids. Trichostrongylus axei, Drachia 

megastoma and Habronema spp. are found in the stomach, mature forms of S. westeri 

and P. equorum inhabit the small intestine, and the mature and immature forms of the 

strongyles, O. equi and Probstmayria vivipara are found in the large intestine. In the 

host, these parasites can produce a number of pathological disorders including diarrhoea 

(Mair et al., 1990; Love et al., 1992), rapid progressive weight loss (Love et al., 1991; 

Love, 1992a, b); functional disorders of the intestine (Ogboume and Duncan, 1977); 

colic and pathological changes in the mesenteric arterial system (Wright, 1972; Duncan 

and Dargie, 1975; White, 1985; Drudge and Lyons, 1986).

The strongyles affect all ages of horses and represent the largest variety of parasitic 

nematodes in this animal species. They are classified in the family Strongylidea which is 

divided into subfamilies Strongylinea (large strongyles) and Cyathostominea (small 

strongyles). Strongylinea consist of the species of the Oesophagodontus, 

Triodontophorus, Strongylus and Craterostomum (Lichtenfels, 1975). After ingestion 

some strongyle larvae leave the gastrointestinal tract and migrate in the body of the host 

following a specific route. Strongylus vulgaris, the most harmful of the large strongyles 

migrates from the gastrointestinal tract and at the fourth-larval stages of development in 

the arterial system, causes arteritis and thrombosis, especially in the anterior mesenteric 

artery and its main branches. Strongylus edentatus reaches the liver via the portal system 

and arrives at the base of the caecum through the hepatorenal ligament (McCraw and
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Slocombe, 1974). The parasites move easily by this route and may be found in the flanks, 

lungs and pancreas (McCraw and Slocombe, 1978).

Other members of the subfamily Strongylinea as well as all Cyathostominea spp. do not 

migrate from the mucosa or submucosa of the caecum and colon (Soulsby, 1965; 

Ogboume, 1978). The main injury they cause is to the gut wall.

Strongyloides westeri and P. equorum are also important equine gastrointestinal 

nematodes. These parasites inhabit the small intestine and are frequently the cause of 

diarrhoea. After birth, the foals ingest the larvae of S. westeri in infected mare’s milk 

(Lyons et a l, 1973; Enigk et a l, 1974). This parasite can cause diarrhoea in foals up to 6 

months old (Lyons et al., 1973). Parascaris equorum can also be a serious problem in 

young horses. In contrast with S. westeri, ascarid infections are not only restricted to 

foals, but also can be found in older horses (Mirck, 1985).

Oxyuris equi is the common pinworm in the colon. It causes anal pruritus induced by 

allergens in the gelatinous egg mass deposited by the female in the perianal region 

(Slocombe, 1985).

Microfilariae of Onchocera cervicalis are frequently found in the skin of the head, face, 

eyelid, neck and ventral thorax (Slocombe, 1985) and cause dermatitis (McMullan, 1972) 

and ocular lesions (Cello, 1971). Development of lesions may involve antigen release by 

microflariae, microfilarial death, and/or development of hypersensitivity to microfilariae 

in susceptible horses (McMullan, 1972).

Dictyocaulus amjieldi is the only lungworm in equids and can cause chronic catharral 

bronchitis. Gross lesions in infected animals are similar with discrete areas of 

hyperinflated pulmonary parenchyma, mostly in the caudal lobe (Clayton and Duncan,

1981).

In horses, Fasciola hepatica infections are uncommon. Horses are considered to be more 

resistant to infection (Boray, 1969) than domestic ruminants. However, under 

environmental conditions favourable to the development of fasciola, horses and 

particularly donkeys may become patently infected with considerable burdens 

(Pankhurst, 1963; Hatch, 1966; Kearney, 1974).
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1.2 ANTHELMINTICS IN HORSES

Modem equine anthelmintic drugs can be classified into seven distinct classes on the 

basis of their chemical structure and pharmacological behaviour. Namely 

benzimidazoles, pro-benzimidazoles, tetrahydropyrimidines, imidazothiazoles, simple 

heterocycles, organophosphates and macrocyclic lactones (Table 1-1). Each class of 

anthelmintics has a different spectrum of activity and pharmacokinetic behaviour. The 

agents which have a broad spectrum of anthelmintic activity can be classified into three 

groups: Benzimidazoles and pro-benzimidazoles, imidazothiazoles and

tetrahydropyrimidines, and macrocyclic lactones. The other drugs including heterocyclics 

and most of the organophosphates have a narrow spectrum of activity (DiPietro and 

Todd, 1987).

1.2.1 BENZIMIDAZOLES IN HORSES

The benzimidazole anthelmintics are a large family of compounds that are related to 

thiabendazole (TBZ) (Brown et al., 1961), which was first released for use in horses in 

1961 (Dmdge et al., 1981). Benzimidazole anthelmintics licensed for use in the horse 

worldwide, include TBZ, mebendazole (MBZ) (Brugman et al., 1971), oxibendazole 

(OBZ) (Theodorides et al., 1973), fenbendazole (FBZ) (Baeder et al., 1974), oxfendazole 

(FBZ.SO) (Averkin et al., 1975), cambendazole (CBZ) (Hoff et al., 1970) and the pro- 

benzimidazole, febantel (FBT) (Delatour and Euzeby, 1983). Cambendazole and FBT are 

not licensed for use in horses in the UK.

Benzimidazole and pro-benzimidazole anthelmintic drugs have common features such as 

broad-spectrum anthelmintic activity and relatively low mammalian toxicity.

1.2.1.1 Chemistry and Metabolism

The benzimidazole anthelmintics can be classified into four groups according to their 

chemical structure (Lanusse and Prichard, 1993). Namely, Group 1. Benzimidazole 

thiazolyl, including thiabendazole (TBZ) and cambendazole (CBZ); Group 2. 

Benzimidazole methylcarbamates, including parbendazole (PBZ), mebendazole (MBZ), 

flubendazole (FLBZ), ciclobendazole (CIBZ), oxibendazole (OBZ), luxabendazole 

(LBZ), albendazole (ABZ), albendazole sulphoxide (ABZSO), fenbendazole (FBZ) and 

oxfendazole (FBZ.SO); Group 3. Halogenated benzimidazole thiols, including
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Table 1-1. Chemical classification of anthelmintics and related compounds used in 

horses.

Class

Benzimidazoles
Cambendazole*
Parbendazole*
Thiabendazole
Mebendazole
Fenbendazole
Oxfendazole
Oxibendazole
Albendazole*

Pro-benzimidazoles
Netobimin+
Febantel*
Thiophanate+

T etrahydopyrimidines 
Pyrantel pamoate 
Pyrantel tartrate 
MoranteU- 

Imidazothiazole 
Levamisole*

Simple heterocyclics 
Phenothiazine 
Piperazine 

Organophosphates 
Dichlorvos 
Haloxon 
Trichlorfon 

Macrocyclic lactones 
Avermectins 

Ivermectin 
Abamectin+ 
Doramectin+ 

Milbemycins 
Moxidectin 
Milbemycin D+ 
Milbemycin oxime+

Route of 
administration

p.o
P'O
p.o
p.o
p.o
p.o
p.o
p.o

p.o.
p.o.

p.o.
p.o.

p.o.

p.o.
p.o.

p.o.
p.o.
p.o.

p.o.

Dosage (mg/kg) Formulation
(not all licensed for horses)

p.o.

20
2.5 
50 
8.8
7.5 
10 
10 
5

6.6
6.6

10

75
200

20
60
40

0.2

0.2

paste
powder, susp. 
paste, susp.,powder 
paste, granule 
paste,susp.,granule 
pellet, susp. 
paste, susp. 
paste, susp.

paste, susp., granule 
powder

paste
powder

solution

powder
powder

paste, pellet 
paste, powder 
paste, powder

paste, solution

p.o.: per os; susp.: suspension. 
*Not licensed in UK 
+Not licensed for horses
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triclabendazole (TCBZ) and Group 4. Probenzimidazoles, including thiophanate (TPT), 

febantel (FBT) and netobimin (NTB). A 1,2 diaminobenzene ring forms the central ring 

structure of all the benzimidazole anthelmintics. The difference between each agent is 

associated with different substitutions at the 2 and 5 substituent positions of the central 

ring structure (Figure 1-1).

Figure 1-1. Primary substituent positions of the benzimidazole anthelmintics.

Although xenobiotic metabolism occurs mainly in the liver, extrahepatic tissues 

including plasma, kidney and gastrointestinal tract are also involved. Biotransformation 

of drugs generally results in metabolites of the parent drug which have reduced or no 

activity (Baggot, 1974). These reactions are usually biphasic. Phase I (non-synthetic) 

reactions include oxidation, reduction and hydrolysis and Phase II (synthetic, 

conjugation) reactions entail addition of sulphate groups, glucuronides, acetylation or 

methylation. A number of enzyme complexes determine the Phase I reactions. The 

cytocrome P450-mediated mixed function oxidase (MFO) system is the major one. The 

MFO comprises cytochrome P450, and NADPH-cytochrome P450 reductase and lipid. 

The flavin-containing monooxygenase (FMO) drug system is another important group of 

enzymes, which play a major role in oxidative drug metabolism. Functional groups such 

as hydroxy, carboxy, amino and sulphydryl groups are introduced into the organic 

substrates. The FMO enzyme system is found in many tissues but the highest 

concentrations occur in the microsomal fraction of the liver. It uses either NADH or 

NADPH as a source of reducing equivalents in the oxygenation of many nucleophilic 

organic nitrogen and sulphur compounds (Gibson and Skett, 1994), such as the

4 3

H
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phenothiazines and sulphide benzimidazoles. Mixed function oxidase and FMO systems 

are involved in sulphoxidation and sulphonation. Both systems are equally involved in 

monogastric animals, whereas FMO is the predominant system in ruminants (Delatour et 

al., 1994).

Benzimidazoles are extensively metabolised in all animal species. Generally the plasma 

elimination half-lives of the parent drugs are short and the metabolic moieties 

predominate in plasma and tissues and in excreta of the host as well as in parasites 

recovered from benzimidazole-treated animals (Delatour and Parish, 1986; Lanusse and 

Prichard, 1993). Albendazole, FBZ, TCBZ and the pro-benzimidazoles (FBT andNTB), 

which are commercially available thioether and sulphide benzimidazoles, commonly 

undergo microsomal sulphoxidation in liver. They are reversibly metabolised to their 

sulphoxide derivatives (Marriner and Bogan, 1980, 1981a; Gyurik et al, 1981; 

Mohammed Ali et al., 1987). Irreversible sulphonation follows sulphoxidation and is a 

slower oxidative step resulting in a sulphone metabolite (Averkin et al., 1975)

Hydroxylation is another important metabolic pathway of the benzimidazoles. In sheep, it 

was demonstrated that hydroxy oxfendazole (OH-FBZ.SO) and hydroxy fenbendazole 

(OH-FBZ) were major hepatic metabolites of FBZ, 5 mg/kg, after intraruminal 

administration (Hennessy et al., 1993). These metabolites are excreted directly into the 

bile as free or conjugated metabolites (Short et al., 1987 a, b; 1988; Hennessy et al., 

1993). Lacey and co-workers (1987) reported that OH-FBZ was intrinsically more active 

than the parent FBZ in vitro in binding to parasite tubulin.

Mebendazole and FLBZ undergo carbonyl reduction to the corresponding alcohol (Van 

den Bossche et al., 1982). The alcohol metabolite of MBZ was found at higher 

concentrations than the parent drug in sheep plasma (Behm et al., 1983). However, MBZ 

metabolites are not thought to be biologically active (Meuldermans et al., 1976).

Febantel, NTB and TPT are commercially available pro-benzimidazole drugs. Their 

anthelmintic activity is due to the fact that they are metabolised in the animal to form the 

biologically active benzimidazole carbamate nucleus. Febantel is a phenylguanidine that 

is hydrolysed and then cyclized to the active metabolite FBZ (Delatour et al., 1982). 

Netobimin is a nitrophenylguinidine which undergoes both reduction and cyclization to 

form the active compound ABZ (McDougall et al., 1985; Delatour et al., 1986).



Thiophanate is cyclized to form the active compound, lobendazole and then loberdazole 

is oxidised to a phenol metabolite (Gardiner et al., 1974).

1.2.1.2 Efficacy and Spectra of Activity

Benzimidazole and pro-benzimidazole drugs are used widely to treat gastroiirestinal 

helminthiasis including migrating strongyle larvae and lungworm infections (Marriner 

and Bogan, 1985) (Table 1-2.). Most of the benzimidazoles (CBZ, FBZ.SO, FBZ. MBZ, 

OBZ, ABZ and PBZ) and the pro-benzimidazole (FBT) are highly effective (above 90%) 

against adult forms of the large strongyles, small strongyles, mature O. equi, the small 

pinworm (Probstmayria vivipara), and T. axei in horses (Courtney and Robertson, 1997).

There are some notable differences in the efficacy of benzimidazoles against particular 

parasite species. Thiabendazole needs to be given at a higher dosage for P. equorum and 

TBZ, FBZ.SO and FBZ are effective against S. westeri when given at a higher dose. At 

7.5mg/kg daily for five days, FBZ is 94.6% effective against larval stages of small 

strongyles in mucosa, 80% effective against migrating larvae of S. vulgaris and fully 

effective against migrating stages of S. edentatus (Duncan et al., 1980). Oxibendazole 

has little or no effect against migrating stages of S. vulgaris, T. axei, H. muscae and D. 

megastoma (Kates et al., 1975; Nawaliski and Theodorides, 1976, 1977). Parbendazole, 

at 20 mg/kg body weight, is fully effective against migrating larvae of S. edentatus 

(Lyons et al., 1980), but ineffective against 7-day-old larvae of S. vulgaris (Drudge and 

Lyons, 1970). Parbendazole has no activity against T. axei, Habronema spp. D. 

megastoma and S. westeri (Lyons et al., 1980). Albendazole is effective against fourth- 

stage larvae of S. vulgaris with minor signs of toxicity at a dosage rate of 50 mg/kg twice 

a day for 2 days (Georgi et al., 1980). The benzimidazoles have no activity againsl bots.

1.2.1.3 Mode of Action

Benzimidazoles and pro-benzimidazoles are considered to have a similar mode of action. 

Differences in their efficacy reflect differences in bioavailability. Benzimidazole 

anthelmintic compounds prevent polymerisation of the microtubules in eukaryotic cells 

by selectively binding to parasite p-tubulin (Martin, 1997). Borgers and co-workers 

(1975) reported that after exposure to mebendazole, the cytoplasmic micrctubules 

disappeared and this caused disruption in the migration of subcellular organelles with a
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failure of transport of secretory materials in the cells of the nematode parasites.
v;

Prolonged storage of the secretory granules caused lysis of the cell cytoplasm and 

disintegration of the cells. It was found that the benzimidazoles competed for the 

attachment site on (3-tubulin with colchicine, a substance known to prevent cell division 

in the metaphase (Sangster et a l , 1985; Lacey and Gill, 1994).

The anthelmintic action of benzimidazoles is due to differences in the sensitivity of host 

and parasite cells to the tubulin binding effects of these drugs (Friedman and Platzer,

1980). Benzimidazoles bind reversibly to mammalian tubulin, whereas they bind 

irreversibly to nematode tubulin (Lacy and Gill, 1994) and thus prevent tubulin 

polymerisation to microtubules. In addition, the selective toxicity may be due to 

differences between the structure of host and nematode microtubules. Mammalian cells 

have 13 microtubule protofilaments whereas the nematode cells have 11, 12 and 14 

protofilaments (Chalfie and Thompson, 1979; Davis and Gull, 1983).

The benzimidazole anthelmintics also inhibit the uptake of glucose (Van den Bossche, 

1982; Van den Bossche and De Nollin, 1973) and inhibit the activity of various 

metabolic enzymes in nematode parasites such as malate dehydrogenase (Tejada et al., 

1987; Sharma et al., 1989) and fumarate reductase (Prichard, 1970, 1973; Barrowman et 

al., 1984). However, a much higher concentration of benzimidazole is required to inhibit 

fumarate reductase than to inhibit tubulin polymerisation in nematode parasites (Kohler 

and Backman, 1978; Dawson et al., 1984).

1.2.1.4 Safety and Toxicity

The benzimidazole and pro-benzimidazole anthelmintics have a high therapeutic index 

and are extremely well tolerated by mammals. Benzimidazole compounds with low- 

solubility may be less toxic than the more water-soluble compounds because insufficient 

drug is absorbed to exert a systemic toxic effect (McKellar and Scott, 1990).

Sheep and cattle tolerated 5000 and 2000 mg/kg FBZ respectively and in rats the LD50 

was greater than 10000 mg/kg (Baeder et al, 1974; Duwel, 1977). For FBZ.SO the LD50 

was greater than 6400 mg/kg in rats and 1600 mg/kg in dogs (Averkin et al, 1975). In 

horses, including pregnant mares, FBZ at a dose of 100 mg/kg produced no adverse 

effects (Becker, 1975) and reproductive function of stallions was not affected (Squires et 

al, 1978). In sheep FBZ is generally safe at high doses but when FBZ was given at
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45mg/kg daily for 30 days, myocardial lesions and vacuolation of the liver parenchyma 

were observed (Booze and Oehme, 1982).

The main toxic effect of benzimidazoles is teratogenicity. This varies with the structure 

of the benzimidazole compound and the animal species (Delatour and Parish, 1986). The 

teratogenic activity of FBZ.SO and ABZ.SO has been shown when administered to rats 

in early pregnancy (Delatour et al., 1984). Sheep and rats are much more sensitive than 

other species of animals to teratogenic activity of the benzimidazoles and extensive 

studies have been carried out in these species. Congenital malformations were reported 

during early gestation in ewes following administration of cambendazole (Delatour et al, 

1975), FBZ.SO (Delatour et al., 1977) ABZ (Jhons and Philip, 1977) and FBT (Chement,

1982). The main congenital defects identified in the lambs were skeletal malformations, 

occurring mainly in the long bones, pelvis, joints and digits. The microtubular activity of 

benzimidazole compounds may lead to their teratogenic activity (McKellar and Scott, 

1990). It is probably the unbound drug or metabolites, which are likely to exert toxic 

effects in mammals and the tightly protein-bound residues that persist in the tissues for 

longer periods of time, are thought to be of lower significance toxicologically (Delatour 

and Parish, 1986).

The teratogenic activity studies of the benzimidazoles in early pregnancy of rats have 

shown that this species has similar sensitivity to sheep (Delatour and Parish, 1986). 

Teratogenic and embryolethal effects have been reported for PBZ, MBZ, CBZ, 

ciclobendazole, carbendazim, FBZ.SO, ABZ, FBT and netobimin (Delatour and Parish, 

1986). In male rats, testicular degeneration and abnormal spermatogenesis were produced 

by high doses of carbendazim (Styles and Gamer, 1974) and mutagenic effects of 

carbendazim have also been shown in other species at high doses (Seiler, 1976).

1.2.1.5 Pharmacokinetics

The active benzimidazole anthelmintics are thought to have a similar mode of action 

(Coles, 1977). The different efficacies of the benzimidazoles in vivo have been attributed 

largely to different pharmacokinetics within the host (Bogan, 1983) and in vitro, to 

different solubility and therefore absorption of drug from culture media by the test 

parasites (Scott, 1988). The benzimidazole anthelmintics are only sparingly soluble in 

water. In ruminants, the absorption and pharmacokinetics of these drugs are affected by 

their aqueous solubility (Table 1-3.). The rapid dissolution and consequent absorption



12

and elimination of some benzimidazoles explain their relatively short residence in the 

body. Thus more soluble compounds have shorter residence in comparison to less soluble 

benzimidazoles, which are absorbed over prolonged periods. Thiabendazole and CBZ, 

the most water soluble of the therapeutic benzimidazoles, are extensively dissolved in

Table 1-3. The solubility (jiig/ml) of benzimidazoles in phosphate buffer at different pH 

values (Ngumuo, 1983).

pH 7.4 pH 6.0 pH 2.2

Thiabendazole 45.01 >24.67 >480.78

Albendazole 0.85 >0.48 >26.58

Fenbendazole 0.05 >0.07 >1.60

Oxfendazole 5.97 >3.01 >44.12

Parbendazole 0.2 >0.27 >27.07

Oxibendazole 0.44 >0.34 >18.51

rumen fluid and absorbed rapidly in ruminants (McKellar and Scott, 1990). The less 

soluble benzimidazole compounds are absorbed over prolonged periods and thus remain 

in the plasma for a long time and since an equilibrium exists between the plasma and the 

gastrointestinal tract, the duration of exposure of the gut parasites to effective 

concentration of drug is extended. Extremely insoluble anthelmintics may be less 

effective, since they may not be absorbed and are excreted unchanged in the faeces. This 

may explain the difference between the plasma concentrations of FBZ.SO achieved 

following oral administration of FBZ.SO, the parent drug and its interconvertible 

metabolite FBZ (Ngomuo, 1983). A large proportion of the less soluble FBZ is known to 

be excreted in the faeces (Duwel, 1977; Prichard, 1978).

There are significant differences in the pharmacokinetics of benzimidazole anthelmintics 

between monogastrics and ruminant species (Mariner and Bogan, 1981b; McKellar et al., 

1990). Anatomic features influence the passage of digesta, and the bioavailability and
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pharmacokinetics of anthelmintics may be affected by different gut transit time in animal 

species (McKellar and Scott, 1990). The benzimidazole anthelmintic drugs have lower 

bioavailability in monogastric animals (e.g. dog and horse), which have relatively faster 

gut transit time than ruminants, since rapid passage of food in the gut causes a decrease 

in the bioavailability of the drugs. Dougherty (1992) reported gut transit time of 8.47 h in 

horses. In ruminants, this time may range from 30 to 80 h depending on the digestibility 

of food, since highly digestible food has a shorter retention time (Warner, 1981; 

McDonald et al., 1995). The systemic bioavailability of most drugs administered orally is 

lower in herbivorous species (horse and ruminants) than in dogs and cats. The greater 

“first-pass effect” and higher drug metabolising capacity of the reticulo-rumen and liver 

may produce this effect in herbivorous species. In ruminants, the opposite is true for 

benzimidazole drugs. After oral administration to ruminants, greater bioavailability is 

observed than in monogastric species because in ruminants, the relatively slower gut 

transit time conferred by the fore stomach reservoir means that benzimidazoles are more 

extensively absorbed than in monogastric animals (Baggot and McKellar, 1994). In 

horses, after oral administration of FBZ.SO (10 mg/kg body weight), the area under the 

curve (AUC) for the parent drug and its metabolite FBZ were of 3.17 and 2.32 pg.h/ml 

respectively. In a similar study carried out with FBZ at the same dose rate, lower plasma 

concentrations of parent drug, FBZ, and its metabolite FBZ.SO were obtained, with 

FBZ.SO being below the limit of detection (<0.04pg/ml) and FBZ having an AUC of 

1.77 pg.h/ml (Mariner and Bogan, 1985). In contrast to other species (sheep, cattle, man), 

horses generate relatively higher concentrations of sulphone metabolite than of 

sulphoxide. This may be due to relatively rapid conversion of sulphoxide to the sulphone 

by equine hepatocytes (Mariner and Bogan, 1985). Anthelmintic activity depends on the 

duration of parasite exposure to effective concentrations of the active compound (Baggot 

and McKellar, 1994), thus observations on the pharmacokinetics of benzimidazoles are 

extremely important.

Significant differences in the pharmacokinetics of benzimidazoles exist between 

ruminant species also. In sheep, after oral administration of FBZ.SO at a dose rate of 10 

mg/kg body weight, the AUC of FBZ.SO was 49.6 ± 12.3 pg.h/ml whereas in goats the 

AUC was 19.9 ± 7.0 pg.h/ml (Bogan et al., 1987). In addition the AUC for FBZ orally 

administered at 7.5 mg/kg to cattle was 11.4 ± 3.5pg.h/ml and for its metabolite, 

FBZ.SO, was 21.5 ± 7.7 pg.h/ml. However, in buffalo the AUC of FBZ and FBZ.SO
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were 3.7±2.1pg.h/ml and 1.8 ± 0.5 pg.h/ml, respectively (Knox et al., 1994). Different 

rates of hepatic metabolism and passage time of food in gut may contribute to cause these 

different pharmacokinetic profiles in ruminant species (McKellar and Benchaoui, 1994).

In animals, diet can substantially affect the bioavailability of drugs. Some non-steroidal 

anti-inflammatory drugs bind to food particles in horses which delay the absorption of 

the drugs significantly (Maitho et al, 1986; Lees et al, 1988; Welsh et al, 1992; 

Landoni and Lees, 1995). Hennessy (1993) emphasised the role played by the adsorption 

of benzimidazoles on the ruminal particulate material in the extension of their 

bioavailability. The physicochemical nature of drug association with particulate material 

is likely to be due to physical adsorption rather than specific chemical binding (Lees et 

a l , 1988). In sheep, the relative bioavailability of benzimidazoles decreased when 

administered concomitantly with food (Taylor et a l , 1992; Ali and Hennessy, 1993). In 

cattle, it was demonstrated that fasting or restricted feed intake increased the relative 

bioavailability of ABZ metabolites (Sanchez et a l, 1996, 1997). However, in the dog 

(McKellar et a l, 1993a) and horse (McKellar, 1997a) feeding increased the 

bioavailability of benzimidazoles after oral administration.

The rumen affects the bioavailability of anthelmintics by acting as a metabolic 

compartment for foreign compounds. Mariner and Bogan (1981b) reported that the oral 

administration of FBZ resulted in higher and more sustained plasma concentrations of 

parent drug and its metabolites than when the anthelmintic had been given by the intra- 

abomasal route. In sheep, it was shown that partial or complete oesophageal groove 

closure occurred in 42% of animals treated with an oral FBZ.SO preparation and this 

caused a reduction in FBZ.SO bioavailability and efficacy (Prichard and Hennessy,

1981). Although similar results were obtained in goats (Sangster et al, 1991), Ngomuo 

and co-workers (1984) did not find significant differences between the (AUC) of 

FBZ.SO and its metabolites in plasma following oral and intra-ruminal administration to 

cattle. In addition, the ruminal micro flora sometimes increase the bioavailability and 

efficacy of benzimidazoles. The conversion of the pro-benzimidazole netobimin into its 

active form ABZ is determined by the ruminal microflora (Delatour et al, 1986).

The efficacy of benzimidazoles and pro-benzimidazoles can be improved by some 

potentiating agents. The hepatic cytochrome P450 metabolic pathway is considered to be 

responsible for sulphonation (Souhaili-el-Amri et al, 1988) and the flavin-containing
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mono-oxygenase for sulphoxidation (Galtier et al, 1986). Metabolic inhibitors such as 

methimazole which inhibits flavin-containing mono-oxygenase and metyrapone which 

inhibits cytochrome P450 prevent the oxidative metabolism of netobimin and 

albendazole sulphoxide thus improving the efficacy of these anthelmintics and 

pharmacokinetic profile of the active metabolites (Lanusse and Prichard, 1991, 1992a, 

1992b). The bioavailability of anthelmintic metabolites was also improved when FBZ 

and FBZ.SO were co-administered with methimazole (Lanusse et al., 1995). Co­

administration of PBZ with FBZ.SO has been shown to increase the anthelmintic activity 

of FBZ.SO and confer activity against benzimidazole-resistant nematodes. This has been 

attributed to a reduction in hepatic biotransformation and biliary secretion of FBZ.SO. 

Parbendazole promotes an increase in extra-biliary transfer of FBZ.SO into the intestinal 

lumen and thus exposure of the parasites to increased drug concentrations in the 

gastrointestinal lumen (Hennessy et al, 1985, 1987, 1992). The methylenedioxiphenyl 

compound piperonyl butoxide is a potent inhibitor of the cytocrome P450 oxidation of 

benzimidazole sulphides to sulphoxides and it was shown to reduce the metabolism of 

FBZ in cultured rat hepatocytes by 50% in 24 h (Benchaoui and McKellar, 1996). In 

sheep, it was demonstrated that co-administration of piperonyl butoxide with FBZ 

significantly enhanced the pharmacokinetic profile and potentiated the antinematodal 

activity of the benzimidazoles. A dose-dependent inhibition of FBZ sulphoxidation by 

piperonyl butoxide improved the efficacy of the drug against nematodes of sheep, 

including benzimidazole-resistant Ostertagia circumcincta and Haemonchus contortus 

(Benchaoui, 1994; Benchaoui and McKellar, 1996). A similar study was carried out in 

horses and showed that piperonyl butoxide had a more dramatic pharmacokinetic effect 

in horses than in ruminants (McKellar, 1997a), probably because horses oxidise 

benzimidazole sulphides to sulphoxide more rapidly than ruminants. The AUC of parent 

FBZ was 0.32±0.11 pg.ml/h and 3.51±0.40 pg.ml/h after oral administration of FBZ at 

10 pg/kg dose-level alone and in combination with piperonyl butoxide (63 mg/kg), 

respectively (Muzandu, 1997). The potentiating agents for the benzimidazoles and pro- 

benzimidazoles may be useful in practice since an increase in the ratio of sulphide + 

sulphoxide: sulphone metabolites occur, and the less oxidized metabolites (sulphide) of 

the benzimidazoles are considered to exhibit greater binding to nematode tubulin (Lacey 

eta l.y 1987).
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Parasitic infestation of the gastrointestinal tract has been demonstrated to affect the 

bioavailability of anthelmintics in animals. In sheep infected with O. circumcincta and 

treated with FBZ, plasma concentrations of both FBZ and FBZ.SO were reduced when 

compared with uninfected animals treated with the same dose of FBZ (Marriner et al,

1984). Moreover, the plasma concentration of FBZ.SO was reduced 25% in goats 

infected with the same nematode compared to uninfected goats given the same dose of 

FBZ.SO (Bogan et al., 1987). In contrast, after intraruminal administration of ABZ, the 

AUC of the ABZ.SO was higher in sheep naturally and artificially infected with H. 

contortus than in non-infected animals (Alverez et al., 1997). It has been shown that the 

pH of abomasal fluid was decreased by the presence of nematode parasites (Mostofa and 

McKellar, 1989; McKellar et al., 1990b). In addition helminthiasis produces a constant 

stimulus for gastrin secretion leading to hypergastrinaemia and pronounced hyperplastic 

changes in the abomasal mucosa (Anderson et al., 1988). These changes probably affect 

absorption of benzimidazoles; hence the pharmacokinetic behaviour and expected 

efficacy may be reduced by the presence of the parasites. An  elevation in gastric pH 

causes a reduction in solubility of the benzimidazoles and this would contribute to 

decreased bioavailability. It has been reported that there is a reduction in the 

bioavailability of the pro-benzimidazole, FBT in lambs infected with Ostertagia and in 

those infected with T. colubriformis (Debackere et al., 1993). The T. colubriformis 

infection caused a reduction in gastrointestinal motility and mucosal villous atrophy, both 

of which could affect drug absorption (Debackere et al., 1993). The parasitic infection 

may also alter drug metabolism, which could effect the disposition of the anthelmintics. 

It has been shown that the enzymatic activity of the hepatic microsomal cytochrome 

P450-dependent monooxygenase system is depressed in rats infected with Fasciola 

hepatica (Tekwani et al, 1988). Similarly, in sheep, F. hepatica infection decreased 

sulphonation of ABZ and this was related to a decline in liver microsomal P450- 

dependent monooxygenase activity (Galtier et al., 1986). In contrast to these 

observations, there were no significant differences in the bioavailability of anthelmintics 

(levamisole, ivermectin, NTB and ABZ) in sheep infected with Nematodirus battus and 

non-infected sheep (McKellar et al., 1991, 1993b).
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1.2.1.6 Chirality of Benzimidazoles

Chiral compounds are extensively used in veterinary practice. Pharmacodynamic and 

pharmacokinetic properties of enantiospecific pairs are commonly different and are of 

major importance for their effective and safe therapeutic use.

Sulphoxide benzimidazoles (FBZ.SO, ABZ.SO), which have a chiral centre about the 

sulphur atom, are formed as metabolites of sulphides and are metabolised into sulphones. 

The sulphones are anthelmintically inactive, whereas sulphides and sulphoxides are both 

active. The stereospecific behaviour of benzimidazole sulphoxides has been investigated 

in the plasma of various species following administration of the prochiral sulphide parent 

molecule (Delatour et al., 1990a, b; 1991a, b). In sheep, the ratio of fenbendazole 

sulphoxide (FBZ.SO) enantiomers changed from 1.8 to 6.7 between 9 h and 120 h, and 

albendazole sulphoxide (ABZ.SO) enantiomer ratio changed from 3.3 to 22.4 between 3 

h and 36 h. The enantiospecific ratio of AUC values of sulphoxide metabolites, following 

administration of sulphides, was 26:74 for fenbendazole sulphoxide and 14:86 for 

ABZ.SO enantiomers (Delatour et al., 1990b). The stereospecific behaviour of ABZ.SO 

was shown to be different between monogastrics and ruminants (Delatour et al., 1991a, 

b). The enantiospecific ratio (+/-) of plasma concentration of ABZ.SO changed over time 

in favour of (+) in all species examined, with the exception of rats, and the initial (+)/(-) 

plasma ratio was close to a racemate (50:50) in monogastrics, but was 75:25 in sheep. 

These results were confirmed by incubation of liver microsomes using ABZ as the 

substrate (Galtier et al., 1986; Moroni et al., 1995). It is thought that the flavine- 

containing monooxygenase (FMO) is mainly responsible for sulphoxidation, whereas 

cytochrome-dependent monooxygenase is responsible for sulphonation (Benoit et al.,

1992). The initial enantiospecific ratio was 30:70 when co incubated with methimazole 

(an inhibitor of FMO) and 65:35 in the presence of clotrimazole (an inhibitor of 

cytochrome P450). These data indicate that the FMO is product stereoselective and 

produces (+) ABZ.SO, whereas cytochrome specifically uses (-) ABZ.SO as substrate 

(Moroni et al., 1995). Both systems act equally in rats and probably in other 

monogastrics (man, dog, horse), while the FMO system is predominant in ruminants. 

Differences of interspecies stereoselectivity for the benzimidazole sulphoxides exist and 

may be explained by different relative enzyme contributions.
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The eudismic (potency) ratios of the enantiospecific pair of benzimidazole sulphoxides 

have not been determined yet, and their anthelmintic activity is still unclear (Landoni et 

al, 1997).

1.2.2 AVERMECTINS AND MILBEMYCINS IN HORSES

Avermectins and milbemycins comprise a series of natural and semisynthetic molecules, 

including ivermectin (IVM), abamectin (ABM), moxidectin (MXD), doramectin (DRM), 

eprinomectin (EPM), selamectin (SLM) and milbemycine oxime, which share some 

structural and physicochemical properties, and have a similar antiparasitic activity at 

extremely low dosage rates based on a common mode of action (Lanusse and Prichard,

1993). They are highly effective against nematode and ectoparasitic arthropods in host 

species (Jones et al., 1993; Kennedy and Philips, 1993; Logan, et a l, 1993; Miller et a l, 

1994; Xiao et a l, 1994; Lyons et a l, 1996; DiPietro et a l, 1997; Dorchies et a l, 1998 

and reviewed by Benz and Cox 1989; Benz et a l, 1989; Cambell et a l, 1989; Conder 

and Cambell, 1995; McKellar and Benchaoui, 1996). However, avermectins and 

milbemycins are not effective against trematodes or cestodes (Shoop et a l, 1995). It was 

the unique combination killing of endo- and ectoparasites by the avermectins that gave 

rise to the name “endectocide”.

The milbemycins were discovered in 1973 as acaricidal and insecticidal compounds for 

crop protection (Takiguchi et a l, 1980). However, the full potential of these chemical 

groups was not realized until the acaricidal, insecticidal and nematocidal activity of the 

avermectins was documented in 1975 (Egerton et a l, 1979). This discovery started a new 

chapter in the treatment of endoparasitic and ectoparasitic infections in animal and 

human medicine.

During anthelmintic development, the excellent microfilaricidal activity of IVM was 

recognized in Dirofilaria immitis infections in dogs (Blair and Campbell, 1979) and 

Onchocerca cervicalis infections in horses (Herd and Donham, 1983; Pulliam and and 

Preston 1989). Ivermectin was firstly introduced as an animal endectocide in 1981 in 

France (Shoop et a l, 1995) and within 5 years, it became the most popular anthelmintic 

worldwide (Bloomfield, 1988). It was shown that avermectins had good activity against 

microfilaria of Onchocerca volvulus in humans, and were well tolerated (Aziz et a l,

1982). Abamectin was introduced commercially as a veterinary parasiticide in 1985 in
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Australia (Tahir et al., 1986). Moxidectin, which is a milbemycin, was developed as an 

endectocide for livestock in the USA (Webb, et ah, 1991) and was marketed firstly in 

Argentina in 1990. It has been commercialized for use in cattle as an injectable and pour- 

on preparation, in sheep as an oral drench and in horses as an oral gel (at 2 0 0 pg/kg 

therapeutic dose level). Milbemycin oxime has been licensed in the USA for use against 

adult Ancylostoma caninum as a therapeutic agent and against Dirofilaria immitis as a 

prophylactic agent since 1990 (Bowman, et al., 1990; Stansfield and Hepler, 1991). 

Doramectin, the most recently introduced avermectin compound, was first marketed in 

1993 in Brasil and South Africa (Vercruysse, 1993). Like other avermectins, it has 

prophylactic as well as therapeutic activity against gastrointestinal nematodes and 

arthropod parasites (Conder, 1995).

Avermectins and milbemycins are widely used in horses for the treatment of 

gastrointestinal and ectoparasitic infections. Ivermectin was first marketed for horses as a 

micellar formulation containing 20 mg of IVM per millilitre of sterile aqueous solution 

(2% w/v) for intramuscular injection. After parenteral administration, rare adverse 

reactions such as, Clostridial spp. infections and anaphylaxis were observed and these 

undesirable effects were responsible for the withdrawal of the parenteral preparation of 

IVM for use in the horse in 1984 (Randi, 1984; Campbell et al., 1989). An oral paste 

formulation of IVM (1.87%) in titaniumdioxide and propylene glycol is now available in 

graduated delivery syringes of which each part is designed to administer sufficient IVM 

(at 200 jig/kg) for 100 kg of body weight. A liquid formulation of IVM is also marketed 

for administration by nasogastric intubation in some countries. Moxidectin 2% oral gel 

formulation is commercially available for antiparasitic treatment of horses in some 

markets. Doramectin has not yet been licensed for use in horses.

1.2.2.1 Chemistry and Metabolism

The chemical structures of avermectins and milbemycins are closely related. 

Avermectins are all 16-membered macrocyclic lactones, with a disaccharide substitution 

at C-13 (Fisher and Mrozik, 1989) (Figure 1-2). The major structural difference between 

the two groups is a bisoleandrosyloxy substituent found at the C-13 position of the 

macrolide ring of the avermectins whereas that position is unsubstituted in milbemycins. 

The sugar moiety at C-13 together with the hydroxy group at C-5 may determine
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anthelmintic and insecticidial activity (Jackson, 1989). Avermectins are derived from the 

mycelia of Streptomyces avermitilis and milbemycins are produced from fermentation of 

Streptomyces hygroscopicus and Streptomyces cyanegriseus. Fermentation of S. 

avermitilis produces eight different components and they are named avermectin Aia, Aib, 

A2a, A2b, Bu, Bib, B2a and B2b- The A-components have a methoxy group at the 5- 

position, whereas the B-components have a hydroxy group; the 1-components have a 

double bond between the 2 2 - and 23-position, whereas the 2 -components have a single 

bond with a hydroxy group at the 23-position; and a-components have a secondary butyl 

side chain at the 25-position, whereas the b-components have an isopropyl substituent at 

the 25-position. Abamectin (avermectin Bi) contains at least 80% of avermectin Bia and 

not more than 20% avermectin Bib. A semisynthetic derivative of the avermectin family, 

IVM, contains at lest 80% of 22-23 dihydroavermectin B]a and less than 20% of the 22- 

23 dihydroavermectin Bib.

Avermectins are highly lipophilic substances and dissolve in most organic solvents, such 

as chloroform, acetone, toluene and methylene chloride. Their solubility in water is very 

low (0.006-0.009 mg. I"1) (Fisher and Mrozik, 1989). Moxidectin has a lower molecular 

weight (639.8 kDa) and higher water solubility (4.3 mg. I'1) than ABM and IVM (mol. 

wt. -870 kDa) (Lanusse and Prichard, 1993). These physicochemical differences may 

affect pharmacokinetic behaviour, development of drug resistance and parasite uptake 

mechanism (Lanusse and Prichard, 1993). Liver and fat are two main tissue sites of IVM 

biotransformation. Unchanged parent compound is the main liver residue in cattle, sheep 

and rats treated with IVM and the major liver metabolite is a 24-hydroxy-methyl-H2-Bia 

and H2-Bib (Chiu, et al., 1987). The monosaccaride and aglycone forms of these 

metabolites were also identified in the liver. It was indicated that cytocrome P450 3A is 

the predominant isoform, which is primarily responsible for the metabolism of 

avermectins, by liver microsomes in rat (Zeng et al., 1997) and humans (Zeng et al., 

1998). N-deacetylation of AAB1 has been shown to be the primary metabolic route of 

EPM in rats (Zeng et al., 1996). The major excretion routes of avermectins are bile and 

faeces in all animal species (Chiu and Lu, 1989). Ivermectin has been shown to be 

excreted in high concentrations in the bile of ruminants (Bogan and McKellar, 1988) and 

primarily eliminated in faeces, with less than 2 % of the total dose being excreted in urine 

(Chiu et al., 1990). Considerable amounts of IVM are also excreted via the mammary 

gland. In lactating cows, plasma and milk concentration of IVM showed a parallel



22

disposition (Toutain, et al., 1988). Ivermectin was detected in milk for 18 days and 

approximately 5% of the total given dose was recovered in milk in this period. In 

addition, in IVM treated ewes, their suckling lambs received about 4% of a therapeutic 

dose via the milk (Bogan and McKellar, 1988).

1.2.2.2 Efficacy and Spectra of Activity

Ivermectin and MXD which are licensed macrocyclic lactones for use in horses, are 

highly effective against bots, lungworms, thread worms, cutaneous onchocerciasis and 

ectoparasites (Christenson et al., 1984; Herd, 1987; Lyons et al., 1992; Klei et al., 1993; 

Bello and Laningham, 1994; Miller et al., 1994; Xiao et al., 1994; Jacobs et al., 1995; 

Monahan et al., 1995; Lyons et al., 1996; DiPietro et al., 1997; Boersema et al., 1998; 

Dorchies et al., 1998). Ivermectin, 0.2 mg/kg body weight given orally, is highly active 

against adult and third-stage pulmonary larvae (L3) of Parascaris equorum (French et al.,

1988) but has variable activity against fourth-stage (L4) intestinal larvae (Campbell et al.,

1989) in horses. It is more than 90% effective against adult cyathostomes, but has very 

little or no activity against hypobiotic early third-stage or mucosal late third-or forth 

stage larvae (Eysker et al., 1992; Klei et al., 1993). An efficacy study of IVM for 

ascarids indicated that the oral formulation of IVM is 90 to 100% effective against 

pulmonary and small intestinal stages in foals and weanlings (Austin et al., 1991). 

Ivermectin is highly effective against adult Strongylus spp., arterial stages of Strongylus 

vulgaris, migratory Strongylus edentatus, (Klei et al., 1984; Slocombe and McCraw,

1984), Strongyloides westeri (Ryan and Best, 1985) and Dictyocaulus amfleldi (French 

et al., 1988). In ponies, IVM is fully effective against oral and gastric stages of 

Gasterophilus spp. after oral administration at 0.2 mg/kg body weight (Bello, 1989).

It has been shown that moxidectin has excellent activity against equine nematodes (Bella 

et al., 1992; Lyons et al., 1992; Xiao, 1994; DiPietro et al., 1997; Dorchies et al., 1998). 

It has higher activity than IVM against tissue strongyle larvae when given at an equal 

oral dose (DiPietro et al., 1997). In MXD treated horses it was reported that strongyle 

mean egg per gram counts (EPG) remained low for longer than in IVM treated horses 

(Boersema et al., 1998). The greater lipid solubility of MXD as compared to IVM may 

explain its increased activity against these parasites (Hayes, 1994; Zulalian et al., 1994). 

The activity of MXD, given orally at 0.4 mg/kg, is 100% effective against 

Trichostrongylus axei, Triodontophorus spp., O. equi L5 and Cyathostomes adult and L5 ;
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99% against O. equi L4  and 92% against S. edentatus L5 and G. intestinalis ( Dorchies et 

al., 1998). One hundred per cent reduction of strongyle Faecal Egg Counts (FECs) was 

reported after MXD treatment (Genchi et al., 1995; Jacobs et al., 1995; Demeulenaer et 

al., 1997; Dorchies et al., 1997, 1998). It was shown that IVM and MXD were equally 

effective in reducing P. equorum EPG (egg per gram counts) (DiPietro et al., 1997). 

After oral administration, MXD and IVM were fully effective in the control of 

Onchocerca cervicalis microfilariae in horses (Mancebo et al., 1997).

1.2.2.3 Mode of Action

Although the mechanism of action of avermectin and milbemycin anthelmintics is not 

fully understood, it is likely that they share the same mechanism of action. It appears that 

these compounds cause irreversible changes by increasing Cl" permeability of the muscle 

membrane in nematodes (Martin and Pennington, 1989; Martin, 1997; McKellar and 

Benchaoui, 1996) but, the identity of the channel targeted by the avermectins has been 

controversial (Arena, 1994). In Ascaris lumbricoides, avermectins reduced inhibitory 

neuromuscular transmission by a GABA-mediated mechanism at a concentration of 

5x10"6 M (Kass et al., 1984). At this concentration, avermectins were thought to induce 

presynaptic GABA release or function as GABA agonists. At lower concentrations 

(2xl0"12 M), avermectins open GABA-independent chloride channels in A. suum muscle 

membranes and surprisingly, avermectins were shown to be antagonistic to GABA-gated 

chloride ion channels at concentrations >10"8 M (Martin and Pennington, 1988). Thus, at 

high concentrations, avermectins open the GABA-gated ion channel directly and, at 

lower concentrations, they potentiate the effect of glutamate (Martin, 1997).

Early reports suggested that the chloride channels were associated with gamma 

aminobutric acid (GABA) receptors (Turner and Schaeffer, 1989), but more recent 

evidence indicates that there is no GABA-gated Cl" channel association (Geary et al., 

1992; Martin, 1997). Expression cloning experiments using Xenopus oocytes have 

suggested an action of avermectins on avermectin-sensitive glutamate-gated Cl" (GluCl) 

channels (Cully et al., 1994) and avermectins and milbemycin mediate their nematocidal 

effects on Caenorhabditis elegans via interaction with a common receptor molecule at 

glutamate-gated channels (Arena et al., 1995). Molecular studies showed that the Glu-Cl 

p-subunit of the glutamate channel was expressed in the pharyngeal muscle of C. elegans 

(Laughton et al., 1995). It was demonstrated that avermectin-sensitive glutamate-gated
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chloride channels were present on the pharyngeal muscle of A. suum by using a 

microelectrode current clamp technique (Martin, 1996). However, IVM has been shown 

to have excellent binding affinity for a P-glycoprotein which acts as a transmembrane 

efflux pump (Didier and Loor, 1996; Pouliot et al., 1997) and that the high tolerance of 

mammals to IVM is abolished if the blood-brain barrier P-glycoprotein is deleted 

(Schinkel et al., 1994). Thus, avermectins and milbemycin probably have more than one 

mechanism of action against nematodes (Martin et al., 1997).

In ectoparasites (Shistocerca gregaria) it has been reported that IVM interacted with both 

a GABA receptor-Cf ion channel (IO*10 M) in a reversible dose-dependent fashion and 

with GABA-insensitive neurones, where an irreversible increase in C f conductance was 

noted at 10‘ 10 M (Duce and Scott, 1985). In contrast, in the ectoparasite, Periplaneta 

americans, avermectin Bja had no effect on GABA-independent neuronal conductance 

(Mellin et al., 1983), although avermectin-sensitive GABA binding sites have been 

identified in nerve cord (Lummis and Satelle, 1995).

The selective therapeutic effects of avermectins and milbemycins may be explained by an 

action on a Glu Cf ion-channel, present in nematodes and ectoparasites, but not in 

mammals (Martin, 1997). In addition, the pharmacokinetic and pharmacodynamic 

properties of avermectins and milbemycins may determine their selective activity in 

nematodes (reviewed by McKellar and Benchaoui, 1996). Ivermectin distributes poorly 

into the brain of mammalian species (Chiu and Lu, 1989) and the affinity of IVM for 

specific binding sites in C. elegans is much higher (100-fold) than in rat brain (Turner 

and Schaeffer, 1989).

Transcuticular absorption of avermectins and milbemycins could be as effective as oral 

absorption for many nematodes (Court et al., 1988). In blood sucking parasites such as

H. contortus and arthropods, it is likely that the oral route contributes substantially to the 

uptake of these drugs (reviewed by McKellar and Benchaoui, 1996). This is supported by 

their greater activity against sucking lice, Haematopinus eurystemus and Linognathus 

vituli, than the biting lice, Damalinia bovis, and mites such as Sarcoptes scabia var bovis 

(Benz et al., 1989).

The effects of avermectins are variable on different nematode species. While a slow rigid 

paralysis was observed in the free-living nematode, C. elegans, a flaccid paralysis was 

reported following injection into A. suum (Turner and Schaeffer, 1989). It was also
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shown that avermectins reduced the fecundity (amount of eggs in uterus) of Cooperia 

curticei by 99% (McKellar et al., 1988) and the reproductive potential of Dermacentor 

alpictus and Amblyomma americanum by >96% (Egerton et al., 1980; Wilkins et al., 

1981).

1.2.2.4 Safety and Toxicity

Avermectins and milbemycins have a substantial margin of safety and high therapeutic 

indices when compared with other anthelmintic xenobiotics. Since GABA is a 

neurotransmitter limited to the central nervous system in mammals, neurotoxicity may 

occur when avermectins and milbemycins are administered at high doses (Lankas and 

Gordon, 1989). Neurotoxicity characterised by ataxia, tremors and coma was identified 

(Lankas and Gordon, 1989). Avermectins cause the release of endogenous GABA from 

cerebral cortex synaptosomes of the rat (Pong et al., 1980). Avermectins bind to two 

different sites in the GABA-gated chloride channel, activating the channel on binding to 

the high-affinity site and blocking it on further binding to the low-affinity site in rat 

cerebellar granule neurones (Huang and Casida, 1997). The specific avermectin-binding 

sites may be blocked by GABA and GABA agonists (Draxler and Sieghart, 1984). 

Deficiency of P-glycoprotein, a transmembrane glycoprotein associated with multidrug 

resistance (Goldstein et al., 1989), was shown in the intestinal epithelium and brain 

capillary endothelium in CF-1 mice which were 100-fold more sensitive to avermectin 

neurotoxicity than other species and normal mice (Lankas et al., 1997).

The toxicity of macrocyclic lactones has been correlated with their disposition in 

susceptible species and breeds of animals (McKellar, 1997b). The distribution of IVM is 

restricted by the blood-brain barrier in the central nervous system of mammalian species 

(Chiu and Lu, 1989). The central nervous system of neonatal rats is more sensitive to 

toxicity than that of adult rats due to the immature blood-brain barrier (Lankas and 

Gordon, 1989). More recent studies have shown that IVM is pumped as an efflux by a P- 

glycoprotein in the blood-brain barrier of mice and this may prevent the accumulation of 

IVM in normally tolerant animals (Schinkel, et al., 1994, 1996).

Although mammalian species have different sensitivity, similar signs of acute avermectin 

and milbemycin toxicity, such as ataxia, tremors and coma are observed in most species 

(Lankas and Gordon, 1989). The oral lethal doses for 50% of a population (LD50) are 25, 

50 and 80 mg/kg in mouse, rat and dog (beagle), respectively (Fisher and Mrozik, 1992).
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Some Collie dogs are more sensitive to IVM than other dog species and this may be 

attributed to greater distribution of IVM into the CNS of sensitive dogs (Pulliam and 

Preston, 1989; Tranguilli et al., 1991). Similar breed sensitivity was reported in Murray 

Grey cattle in Australia to abamectin (Seaman et al., 1987).

In cattle, sheep, horses and swine, at more than double therapeutic dose administration, 

IVM was not embryotoxic and had no adverse effect on male reproductivity in target 

animal species (Hotson, 1983; Leaning et al., 1983; Campbell and Benz, 1984; Schroder 

et al., 1986; McKissick et al., 1987). Ivermectin did not adversely affect the fertility of 

mares or the organogenesis of their developing foals following oral treatment at a 

600pg/kg dose-rate (therapeutic dose x 3) (McKissick et al., 1987).

Genotoxicity and carcinogenicity studies indicated that ABM and IVM had no genotoxic 

activity and no carcinogenic potential, respectively (Lancas and Gordon, 1989).

1.2.2.5 Pharmacokinetics

Pharmacokinetics and bioavailability studies of avermectins and milbemycins have been 

well documented in the last few years and are summarized in Table 1-4. The 

pharmacokinetic behaviour of IVM has been investigated more extensively than that of 

the other members of the macrocyclic lactones. The macrocyclic lactones possess large 

volumes of distribution and long persistence. The pharmacokinetic behaviour of this 

group of anthelmintics is significantly affected by route of administration, the 

formulation of the drug, and interspecies and interindividual variation (reviewed by 

McKellar and Benchaoui, 1996).

Avermectins and milbemycins are highly lipophilic substances that are extensively 

distributed from the bloodstream to different tissues and slowly eliminated from body 

compartments, especially liver and fat (Zulalian et a l 1994), and for this reason larger 

volumes of distribution (Vd) may be obtained for these compounds than for other 

anthelmintics (Lanusse et al., 1997). The volume of distribution of IVM has been 

reported to be 1.9 L/kg for cattle, 4.62 L/kg for sheep (Lanusse et al., 1997) and 2.4 L/kg 

for dogs (Lo et al., 1985b). The different chemical structure of MXD, in particular the 

lack of the avermectin glycosides, contributes extensive lipophilicity in subcutaneous fat 

(Hennessy, 1997). Hayes (1995) indicated that MXD is 100 times more lipophilic than
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Table 1-4. Plasma pharmacokinetic parameters of macrocyclic lactones in different 

animal species.

Species Drug Dose (mg/kg) n r'-'max
(ng/ml)

tmax (h) AUC
(ng.h/ml)

References

Cattle IVM 0 .2 -s.c 4 42.8 96 11016 Lanusse et al. (1997)
0 .2 -s.c. 5 54.6 35 10790 Toutain et al. (1988)
0.5-pour-on 1 2 1 2 . 2 82 2760 Gayrard et al. (1997)
0.5-pour-on 4 28.3 48 - Herder al. (1996)
0.3-i.r. 29.0 24 3960 Chiu et al. (1990)

MXD 0 .2 -s.c. 4 39.4 8 5208 Lanusse et al. (1997)
0 .2 -s.c. 3 75.0 4-6 - Miller et al. (1994)

DRM 0 .2 -s.c. 2 0 27.8 72-144 11400 Nowakowski etal. (1995)
0 .2 -s.c. 4 37.5 144 15048 Lanusse et al. (1997)
0.5-pour-on 1 2 1 2 . 2 103 4032 Gayrard et al. (1997)

Sheep IVM 0 .2 -s.c. 5 30.8 60 5718 Marriner et al. (1987)
0 .2 -p.o. 5 2 2 . 0 16 2039 Marriner et al. (1987)

MXD 0 .2 -s.c. 5 8.3 2 1 2688 Alvinerie etal. (1998)
0 .2 -p.o. 5 28.07 5 2373 Alvinerie et al. (1998)

Goat IVM 0 .2 -p.o. 6 16.0 <24 516 Scott etal. (1990)
0 .2 -i.r. 5 10.54 29 831 Escudero et al. (1997)
0.5-topical 6 4.0 48 317 Scott et al. (1990)

Horse IVM 0 .2 -s.c. 3 60.7 80 13209 Marriner et al. (1987)
0 .2 -p.o. 3 46.28 7 2646 Scott (1997)
0 .2 -p.o. 5 43.99 9 3185 Perez et al. (1999)
0 .2 -p.o. 3 82.3 3 4822 Marriner et al. (1987)
0 .2 -p.o. 6 16.4 15 - Asquith etal. (1987)

MXD 0.4-p.o. 5 70.35 9 8726 Perez et al. (1999)
0.4-p.o. 70.35 2 0 8712 Alvinerie & Galtier, (1997)

Donkey IVM 0.3-p.o. 3 43.20 8 1811 Scott (1997)
Pig IVM 0.3-s.c 5 28.4 27 1714 Scott & McKellar (1992)
Camel IVM 0 .2 -s.c. 2 . 6 8 - 1591 Alvinerie & Galtier, (1997)

MXD 0 .2 -s.c. 3 8.51 37 1761 Oukessou et al. (1997)
Dog IVM 0 .1 -p.o. 16 44.3 4 1035 Daurio etal. (1992)
Deer IVM 0 .2 -s.c. 1 0 15.3 28 - Andrews et al. (1993)

0.4-s.c. 1 0 28.3 28 - Andrews et al. (1993)
Rabbit IVM 0.4-s.c. 6 42.0 37 3543 McKellar et al. (1992)
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IVM. In sheep, after oral administration of MXD, a significantly larger Vd (12.6 L/kg) 

was observed than that observed for IVM, 5.3 L/kg (Prichard et al., 1985). Recently, in 

cattle, it was reported that there was no marked difference in the Vd obtained for IVM 

(3.35 L/kg) and DRM (2.92 L/kg), whereas a significantly larger Vd was obtained for 

MXD (13.6 L/kg) after their subcutaneous administration (Lanusse et al., 1997). The 

concentrations of MXD in fat tissues 28 days after treatment in cattle have been shown to 

be ninety-fold higher than these detected in plasma following subcutaneous 

administration at 0.2 mg/kg body weight (Zulalian et al., 1994). The half-life of MXD in 

fat was 14 days (Zulalian et al., 1994) compared to that of IVM (7 days) (Chiu et al., 

1987) after subcutaneous administration to cattle. In addition, the fat /liver residue 

concentration ratio was 7:3 for MXD compared to 1:7 for IVM 7 days after treatment 

(Hayes, 1995).

The physicochemical properties of macrocyclic lactones may account for differences in 

formulation flexibility and in their kinetic behaviour (Lanusse et al., 1997). In cattle, the 

pharmacokinetic profiles of IVM (Lo et al., 1985), DRM (Wicks et al., 1993) and MXD 

(Delay et al., 1997) were significantly affected by the composition of the administered 

formulation. Ivermectin, administered in non-aqueous injectable form (60% propylene 

glycol / 40% glycerol formal), was absorbed more slowly from the site of subcutaneous 

injection than when the drug was administered as an aqueous solution in cattle, and the 

elimination half-life of the non-aqueous form of IVM was much longer than that obtained 

with an aqueous preparation (Lo et al., 1985). The long persistence of the non-aqueous 

injectable formulation for cattle is reflected in the persistence of its clinical effect 

(Campbell and Benz, 1984). On the other hand, the elimination half-life of IVM given by 

the oral / intraruminal route to cattle has been shown to be similar to that obtained after 

the iv administration of the drug (2.8 days) (Fink and Porras, 1989).

After oral administration of the aqueous micelle and propylene glycol solutions, no 

significant difference was observed in the bioavailability of IVM in sheep. The maximum 

plasma concentrations of both formulations were achieved within 1 day, and elimination 

half-life ranged between 3 and 5 days (Fink and Porras, 1989). In horses, a paste 

formulation and an aqueous formulation of IVM were administered at the 200 pg/kg dose 

rate (Asquith et al., 1987). Although the peak concentration was observed within 4 to 5 h 

for the liquid formulation, a delay of 15 h occurred before Cmax was reached for the paste
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form. In addition, after treatment of horses with a liquid form of IVM via nasogastric 

tube, 20% higher bioavailability was obtained than for the oral paste form. Nevertheless, 

the efficacy of the two formulations was similar in reducing faecal egg count (Asquith et 

al., 1987). In dogs, after dosing with a beef-based chewable preparation better absorption 

was reported than after dosing with a tablet formulation (Daurio et al., 1992). In man, 

50% greater bioavailability was observed for aqueous IVM solution than for a capsule or 

tablet form (Fink and Porras, 1989). While, in cattle, a non-aqueous formulation of MXD 

provided a slower rate of absorption, lower peak plasma levels and longer residence time 

compared to the aqueous form of MXD (Delay et al., 1997). Fat reservoirs of 

avermectins may determine their residence in plasma; but the slow distribution of 

avermectins from the bloodstream may also be related to slow absorption of their non- 

aqueous formulations (especially for DRM) (Lanusse et al., 1997). This generates flip- 

flop kinetics by which the absorption constant is the rate-limiting step in the disposition 

of DRM (Nowakowski et al., 1995).

The disposition kinetics of macrocyclic lactones is significantly affected by the route of 

administration (Table 1-4). Subcutaneous administration of IVM is more effective than 

oral administration against some endo- and ecto-parasites. After subcutaneous 

administration of IVM to sheep and horses, considerably greater plasma bioavailability 

and longer persistence were observed for both drug compared to oral administration at 

the same dose rate (Marriner et al., 1987) (Table 1-4). In periparturient ewes, 

subcutaneously treated with IVM, more persistent plasma concentrations and extended 

efficacy as assessed by egg output were reported than when the drug was administrated 

as an oral drench form (McKellar and Marriner, 1987). Similarly, 100% persistent effect 

was found against reinfections with H. contortus and C. curucei for a period of at least 10 

days when the injectable formulation was used, (Borgsteede, 1993).

It has been suggested that a more frequent treatment regimen is necessary when the oral 

formulation is used (Zajac et al., 1992). In sheep, it was shown that systemic 

bioavailability of IVM was 25% following intraruminal administration compared with 

almost 100% bioavailability after intraabomasal injection. This marked difference was 

attributed to degradation or metabolism of the drug within the rumen (Prichard et al., 

1985). In cattle, similar biodegradation may explain the higher bioavailability of IVM 

obtained after subcutaneous administration compared to intraruminal treatment (Chiu et
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al., 1990). But a recent study in vitro indicated that no metabolism of IVM occurred in 

rumen fluid (Andrew and Hailey, 1996). An alternative explanation for the low 

bioavailability of orally or intrarumially administered IVM may be absorption or binding 

to the particulate phase of the digesta which has been shown to influence the 

pharmacokinetics of some drugs (Bogan et al., 1984; Lees et al., 1988). In swine, after 

subcutaneous injection of IVM, the absorption was much slower and the bioavailability 

was 41% higher than after oral administration (Fink and Porras, 1989). The precipitation 

of drug at the injection site also contributes to the slow absorption phase of these drugs 

(Lo et al., 1985; Scott and McKellar, 1992). Different pharmacokinetic behaviour 

following subcutaneous injection and oral administration have been also shown for 

MXD. Following subcutaneous treatment of MXD, 200 pg/kg, achieved a maximum 

plasma concentration of 75 ng/ml, whereas following oral administration at the same 

dose rate, Cmax was approximately 6.5 ng/ml, and a longer persistence was observed 

when administered by the subcutaneous route (Miller et al., 1994). More recently, after 

oral administration of MXD to sheep, a faster absorption rate and shorter MRT were 

obtained compared to subcutaneous administration and these data suggest that 

gastrointestinal absorption is not rate limiting, in contrast with the slow absorption 

process following subcutaneous injection (Alvinerie et al., 1998).

Topical (pour-on) formulations have been developed and marketed for IVM, MXD, 

DRM and EPM in cattle. Yazdanian and Chen (1995) modified the lipophilicity of the 

carrier to enhance IVM absorption using combinations of Miglyol (caprylic and capric 

acid triglyceride) with Transcutol (dietylene glycolmonoetyl ether: DGME). There is 

little information available, which describes pharmacokinetics of these drugs given 

transcutaneously. Hennessy (1997) claimed that this route of administration would be 

expected to enhance the bioavailability of IVM. Nevertheless, in goats, following 

transcutaneous administration of the IVM pour-on formulation at 500 pg/kg, more 

persistent but much lower plasma concentrations were observed than after oral 

administration at the 200 pg/kg (Scott et al., 1990). The maximum plasma concentration 

(Cmax) of IVM pour-on formulation was reported to be 28.3 ng/ml at 48 h following 

administration of 0.5 mg/kg in cattle (Herd et al., 1996). In a recent study, topical 

administration of IVM pour-on formulation was compared with DRM pour-on 

formulation at 500 pg/kg in cattle (Gayrard et al., 1997). These authors reported that Cmax



31

and tmax were not significantly different, however, the mean AUC of DRM was 45% 

higher than following IVM administration.

Interspecies differences also significantly affect the pharmacokinetic behavior of 

avermectins and milbemycins. The higher Vd for IVM in sheep (5.3 L/kg) (Prichard et 

al., 1985) compared with cattle (2.41L/kg) (Wilkinson et al., 1985), correlates with the 

lower plasma AUC found in sheep than in cattle after intravenous administration (Fink 

and Porros, 1989). Thus the plasma concentration of IVM is markedly lower and the 

clearance rate more rapid in sheep because of its large distribution volume (Stell, 1993). 

A marked difference was reported between goats and sheep in IVM disposition, with 

goats clearing the drug more rapidly (Scott et al., 1990). After oral administration at 200 

pg/kg, IVM was absorbed from the gastrointestinal tract and reached peak plasma 

concentrations more slowly in donkeys than in ponies and the persistence of drug in 

plasma was greater in ponies (Scott, 1997). In camels, lower AUC (1760 ng.h/ml) and 

Cmax (8.51 ng/ml) were reported following subcutaneous injection of MXD at 0.2 mg/kg 

(Oukessou et al., 1997) compared to cattle (AUC=5208 ng.h/ml, Cmax=39.4 ng/ml) at 

same dose rate (Lanusse et al., 1997). In general, herbivore species (horses and 

ruminants) metabolize lipid soluble drugs more rapidly than do carnivores (dogs and 

cats) (Baggot and McKellar, 1994). However, there are notable exceptions to this trend 

that defy explanation, such as IVM which has a ti/2 of 1.8 days in dogs compared with 

2.8 days and 2.7 days in cattle and sheep, respectively (Lo et al., 1985). In addition, 

swine eliminate IVM much faster than ruminants with a half-life of 0.5 day following 

oral administration with feed (Lo et al., 1985). In guinea-pigs, after subcutaneous, oral 

and topical treatments, the bioavailability of IVM at 500 pg/kg was much lower than in 

other species given equivalent and lower doses (McKellar et al., 1992). Similarly, lower 

AUC of IVM was observed in rabbits after subcutaneous administration at a 400 pg/kg 

dose level compared with other species (McKellar et al., 1992).

Interindividual variations have been reported to affect the pharmacokinetic disposition of 

IVM (Marriner et al., 1987; Scott and McKellar, 1992; Andrews et al., 1993; 

Nowakowski et al., 1995; Scott, 1997). The reason for such differences could not be 

explained. Shoop and co-workers (1997) have shown that there was a correlation (r =

0.922) between body weight and the zero detectable time of MXD in plasma i.e. the 

lightest lamb (20.9 kg) reached zero detectable plasma concentration of MXD at day 24,
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while the heaviest lamb (38.6 kg) still possessed detectable plasma concentrations at day 

60. It was reported that in sheep, IVM was associated with particulate matter in the 

rumen (Hennessy et al., 1994) and kinetic disposition was increased with reduced feed 

intake (Ali and Hennessy, 1995, 1996). In grazing lambs, a lower AUC of IVM was 

reported than in housed lambs and this was attributed to shorter gastrointestinal transit 

time in the animals eating grass (Taylor et al., 1992). The bioavailability of IVM was not 

affected by intestinal parasitism (Nematodirus battus) in lambs after parenteral or oral 

administration (McKellar et al., 1991).

1.2.3 PYRANTEL IN HORSES

1.2.3.1 Chemistry and Metabolism

Pyrantel (PYR) is an imidazothiazole derivative (Figure 1-3) which belongs to the 

tetrahydropyrimidine class of anthelmintics (Roberson, 1988). It is available as a 

pamoate (syn. embonate) salt, which is almost insoluble in water, and as a tartrate, which 

is soluble in water (180 mg/ml). Pyrantel pamoate was developed as an anthelmintic, 

which is poorly absorbed from the gastrointestinal tract since 50%-70% of an ingested 

dose is excreted in the faeces (Arundel, 1983), and blood levels do not exceed 1 pg/ml 

(Davis, 1973). Reduced systemic absorption of PYR potentially increases availability in 

the lumen of the intestine (Bjom et al., 1996). Hydroxylation of the thiophene ring seems

Figure 1-3. Chemical structure of pyrantel.

to be the main route of metabolism of PYR since the w-methyl-1,3-propanediamidine 

skeleton of the tetrhydropyrimidine ring is relatively resistant to metabolic processes. It is
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assumed that polar metabolites recovered in urine and bile are anthelmintically inactive 

(Lanusse and Prichard, 1993).

Pyrantel citrate is absorbed rapidly and extensively from the intestine of monogastric 

animals and the maximum concentration (Cmax) of PYR in the blood stream of pigs was 

observed within 3 h of administration (Faulkner et al., 1972).

1.2.3.2 Efficacy and Spectra of Activity

Pyrantel is highly effective (95%-97%) against small strongyles, P. equorum and S. 

vulgaris, and has moderate active against S. edentatus (70%) and O. equi (65%) (Mirck,

1985). Pyrantel is not effective against Gasterophilus spp., but it has activity against the 

Anoplocephalan tapeworms if used at 13.2 mg/kg (Theodorides, 1985). Continuous low- 

level daily administration of pyrantel tartrate to horses was highly effective against 

common gastrointestinal parasitic infections of horses, including large strongyles (S. 

vulgaris, S. edentatus and Triodontophorus spp.), adult small strongyles (Cyathostomum 

spp., Cylicocyclus spp., and Cylicostephanus spp.), and adult and fourth-stage P. 

equorum (Valdez et al., 1995).

1.2.3.3 Mode of Action

Pyrantel acts selectively as an agonist at synaptic and extrasynaptic nicotinic 

acetylcholine receptors on muscle cells of nematodes. It produces contraction and spastic 

paralysis, which serves to eliminate them from the host (Martin, 1997). Simultaneous 

application of acetylcholine and PYR showed that both agonists acted on the same 

nicotinic receptors (Harrow and Gration, 1985) and PYR is up to 100 times more potent 

than acetylcholine in inducing muscular contraction (Aubry et al., 1970). It has been 

shown that PYR increases the membrane conductance and depolarizes the membrane by 

opening non-selective ion channels that are permeable to both Na+ and K+ (Harrow and 

Gration, 1985).

1.2.3.4 Safety and Toxicity

The oral LD50 of PYR was 175 mg/kg in mice and 170 mg/kg in rats (Van Den Bossche,

1985). First signs of toxicosis associated with pyrantel tartrate were observed at a dose 

rate of 55 mg/kg and consisted of sweating, dyspnoea and even death (Cornwell and 

Jones, 1968). In horses, no adverse effects occurred at doses up to 20 times greater than 

the therapeutic dose of PYR pamoate (Slocombe and Smart, 1975). The maximum
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tolerated oral dose of pyrantel tartrate in sheep was 173 mg/kg (Austin et al., 1966) 

although the toxicity of pyrantel tartrate in water in adult sheep varies according to the 

method of administration (Cornwell, 1966).

The reproductive performance of stallions and pregnant mares was not affected by 

pyrantel (Bentley et al., 1978).

1.2.3.5 Pharmacokinetics

Pyrantel citrate was absorbed rapidly from the intestine in mono gastric animals and 

achieved Cmax within 3 h in pigs (Faulkner et al., 1972). Due to the poor solubility of 

pyrantel pamoate, little is absorbed from the gastrointestinal tract and most passes 

unchanged in the faeces (Arundel, 1983). The pharmacokinetic disposition of PYR was 

determined following intravenous and oral administration in pigs (Bjom et al., 1996). 

Pyrantel citrate was extensively distributed (2.74 L/kg) and cleared rapidly (1.09 L/kg.h) 

following intravenous administration. After oral administration tmax (3.26 h) was 

significantly longer, Cmax (0.23 pg/ml) lower and AUC (3.18 pg.h/kg) smaller for 

pyrantel pamoate than pyrantel citrate (tmax: 1.51 h, Cmax: 1.92 (ig/ml, AUC: 8.42 

pg.h/kg). Although a significantly greater quantity of pyrantel citrate was absorbed 

(mean bioavailability of 41%) than pyrantel pamoate (mean bioavailability of 16%), the 

rapid clearance of the citrate resulted in a lower MRT (4.92 h) compared to the pamoate 

form (11.74 h). The more insoluble pamoate salt is less well absorbed and therefore 

provides a safer dosage formulation with greater passage into the large intestine. This 

may contribute significantly to the increased efficacy of the pamoate against the parasites 

at this site (Bjom et al., 1996).

The influence of the digesta flow rate and pyrantel solubility on pharmacokinetics was 

recently investigated in pigs (Prasliska et al., 1997). The authors reported that lower 

fibre diets provided lower digesta flow rate and allowed more time for absorption of the 

drug than diets with high fibre content.
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1.3 ANTHELMINTIC RESISTANCE IN HORSES

In recent years, anthelmintic resistance to chemotherapeutic agents has become an 

increasing problem in human and domestic animals throughout the world. Anthelmintic 

drug resistance is a heritable reduction in the sensitivity of the nematode population to 

the action of a drug at a recommended therapeutic dose level (Conder and Campbell,

1995). Irreversible resistance develops in helminths, usually within 5 years of 

introduction of the drug (Roos, 1997). It has been reported that resistance occurres in 

nematode parasites to all major groups of the anthelmintics including benzimidazoles, the 

levamisole/morantel group, salicylanilides and avermectins (McKellar and Scott, 1990). 

Resistance to one drug of the benzimidazole group in a nematode population generally 

confers resistance to other drugs in the same group (Donald, 1983). This is also the case 

imidazothiazoles and avermectins (Sangster, 1999). This phenomenon is designated side- 

resistance and has been defined as resistance to a compound, which is the result of 

selection by another compound with a similar mode of action (Prichard et al., 1980). 

Furthermore there is evidence for cross-resistance (resistance among different 

anthelmintic classes) between the imidazothiazoles and organophosphates (Sangster,

1996).

The key issue in the development of resistance is the contribution that helminths 

surviving therapy make to the next generation (Geerts et al., 1997). These survivors are 

the most resistant component of the population and carry resistance genes, which they 

pass to their offspring (Sangster, 1996). After several generations, the number of 

survivors of therapy increases as the number of genes conferring resistance accumulate 

(Sangster, 1996). There are three phases in the selection process (Prichard, 1990). Firstly, 

an initial anthelmintic susceptibility phase occurs where the frequency of resistant 

individuals within the population is low. Secondly, development of a phase in which the 

frequency of heterozygous resistant individuals increases within the population and 

finally, sustained selection pressure results in a resistant phase where homozygous 

resistant individuals predominant within the population.

In horses, anthelmintic resistance was first described to phenothiazine by Drudge and 

Elam (1961). A few years later, resistance to thiabendazole was also observed (Drudge 

and Lyon, 1965). In both cases only small strongyles were involved. Since 1974, the 

existence of side-resistance has been reported among benzimidazoles (Drudge et al.,
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1974, Hope and Camp, 1980). However, oxibendazole was highly effective against 

strongyles resistant to other benzimidazoles for unknown reasons (Drudge et al., 1979). 

Unfortunately, recent studies have reported that further use of oxibendazole has produced 

resistance in horses (Lyon et al., 1996; Rolfe, 1998). Anthelmintic resistance has been 

recognised throughout the world in small strongyles to various anthelmintics including 

piperazine (Drudge et al., 1988), benzimidazoles (McKellar and Scott, 1990) and 

pyrantel (Conder and Campbell, 1995). Avermectins/milbemycins resistance to small 

strongyles have not been reported in horses (Sangster, 1999). The mechanisms of 

anthelmintic resistance among the small strongyles are unknown and knowledge is 

available only by extrapolation from studies in sheep nematodes and the free-living 

Caenorhabditis elegans (Lloyd and Soulsby, 1998). Resistance in large strongyles has 

not been clearly demonstrated.

To delay anthelmintic resistance and to prevent multiple resistance, a single class of 

anthelmintic is used annually and rotation of classes may limit passage of resistant genes 

to next the generations (Conder and Campbell, 1995). Benzimidazole-resistant small 

strongyles may be treated by using the non-benzimidazole drugs including piperazine, 

avermectins, dichlorvos or pyrantel. Mixtures of two broad-spectrum drugs from 

different classes could be used against anthelmintic-resistant parasites in preventive 

strategies (Martin et al., 1990; Anderson et a l , 1990) which have been shown to be 

beneficial in mathematical models. The co-administration of oxfendazole with 

parbendazole (Hennessy et al., 1985) and fenbendazole with piperonyl butoxide 

(Benchaoui and McKellar, 1996) in sheep increased systemic availability of the 

oxfendazole and fenbendazole, respectively and thus efficacy even against resistant 

parasites, and these strategies may be used to extend the useful lifespan of the 

benzimidazole drugs. In recent years, mathematical models have been used to evaluate 

factors contributing to resistance and/or strategies to limit its development (Echevarria et 

al., 1993; Jackson, 1993).
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1.4 STUDY OBJECTIVES

The aim of the studies described in this thesis were:

1. To determine the pharmacokinetics and faecal excretion of benzimidazoles

(FBZ.SO, FBZ, OBZ), macrocyclic lactones (IVM, DRM, MXD) and PYR in horses.

2. To determine whether the efficacy of benzimidazole anthelmintics can be

improved by the co-administration of piperonyl butoxide, a metabolic inhibitor of hepatic 

drug oxidative metabolism (cytochrome P450).

3. To study in vitro metabolism of FBZ.SO, FBZ and OBZ using horse liver

microsomes and to investigate the effects of piperonyl butoxide on the metabolism of 

these benzimidazole anthelmintics.

4. To determine the in vivo and in vitro enantioselective nature of the disposition

and metabolic inhibition of sulphoxide benzimidazoles.
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CHAPTER 2

Pharmacokinetics, metabolism and chirality of benzimidazoles in horses
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Section 1

Pharmacokinetics and faecal excretion of oxfendazole, fenbendazole and

oxibendazole in horses

2.1.1 Introduction

Benzimidazoles and pro-benzimidazoles are highly efficacious anthelmintics widely used 

in the horse for treatment of gastrointestinal helminthiases including migrating strongyle 

larvae and lungworm infections (Marriner and Bogan, 1985). Helminth parasites cause 

serious pathological changes in the horse including diarrhoea (Mair et al., 1990), rapid 

progressive weight loss (Love, 1992), functional disorders of the intestine (Ogboume and 

Duncan, 1977), colic and pathological changes in the mesenteric arteries (Duncan and 

Dargie, 1975). The selection of anthelmintic resistant populations has increased since 

phenothiazine resistance was first recognized in horses in 1961 (Drudge and Elam, 

1961). Anthelmintic resistance has developed rapidly in the horse (Love et al, 1989) 

probably because the epidemiology of equine parasites is less seasonal than that of 

ruminant parasites. Horses are consequently treated frequently throughout the year even 

in temperate climates, thus exerting great selection pressure on the nematodes.

Benzimidazole anthelmintics have limited water solubility and differences in solubility 

may influence their absorption and clinical efficacy. Oxfendazole and FBZ are 

interconvertable and irreversibly metabolised to their sulphone metabolite (Figure 2-1-1). 

The pharmacokinetics of oxfendazole (FBZ.SO) and fenbendazole (FBZ) in horses has 

been investigated by Marriner and Bogan (1985) who observed that the maximum 

plasma concentration (Cmax), mean residence time (MRT) and area under the curve 

(AUC) were lower for the parent molecules and the active metabolites of these 

anthelmintics in the horse than in ruminant species which had been investigated 

previously (Marriner and Bogan, 1981; Ngomuo et al, 1984). Furthermore, the 

sulphoxidation and sulphonation of the benzimidazoles appeared to be extremely rapid in 

horses (Marriner and Bogan, 1985). Sulphide and sulphoxide benzimidazoles are known 

to bind nematode tubulin (Lacey et al, 1987) and therefore have activity against 

nematodes. In most animal species examined, the sulphoxide moiety predominates in 

plasma and is though to confer activity against gut dwelling nematodes following
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Figure 2-1-1. Major metabolic pathways of fenbendazole.
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secretion across the gastrointestinal wall into the gut lumen. There is a paucity of data 

available in the literature on the pharmacokinetics of OBZ in animals including horses.

The excretion of anthelmintics in the faeces of livestock has given rise to concern since it 

was observed that the avermectins have adverse effect in the dipteran flies and 

coleopteran beetles which inhabit and feed in dung (Wall and Strong, 1987). While it is 

recognized that benzimidazoles are unlikely to affect dung dwelling arthropods 

(McKellar, 1997b), their excretion in the faeces of horses has not been characterized and 

consequently the associated environmental impact is not known.

The aim of this study was to determine and compare the plasma disposition kinetics and 

faecal excretion of FBZ.SO, FBZ (and their metabolites) and OBZ in horses after oral 

administration. Stereospecific disposition of FBZ.SO was also examined in this study.

2.1.2 Materials and methods 

2.1.2.1 Animals

Thirty-two horses weighting 390-720 kg were used in this study. Animals were kept at 

pasture but were put into a corral for the period of drug administration and for 4 hours 

thereafter. Water was available ad libitum during the experimental period (Picture 2-1-1). 

No invasive procedures were involved beyond blood and faecal sampling procedures. 

Horses were allocated into four groups of eight such that the mean weight of animals in 

each group was similar and the horses were identified by unique freeze brand or natural 

markings.

The animals used in the study were treated with Panacur (10%) biannually however they 

were not treated prior to the study.

2.1.2.2 Drug administration and sampling procedure

Commercially available formulations of FBZ.SO (Systamex 906®, 9.06% w/v, 

Mallinckrodt), FBZ (Panacur®, 18.75% w/w, Hoechst) and OBZ (Equidin Paste®, 30% 

w/w, Vetoquinol) were administered orally as a single bolus dose on the back of the
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Picture 2-1-1. The animals used in this study were kept in the corral for the 

period of drug administration (A) and then kept at the pasture during the 

experimental period (B).
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tongue at a dose rate of 10 mg/kg bodyweight. Heparinized blood samples were collected 

by jugular venipuncture prior to drug administration and 1, 2, 4, 8, 12, 20, 24, 32, 48, 72, 

96 and 120 h thereafter. Faecal samples (>10 g) were collected per rectum throughout the 

blood-sampling period, before drug administration and then at 4, 8, 12, 20, 24, 32,48, 72, 

96 and 120 h in order to determine faecal excretion of the benzimidazoles under study. 

Blood samples were centrifuged at 1825 g for 30 min and plasma was transferred to 

plastic tubes. All the plasma and faecal samples were stored at -20°C until estimation of 

drug concentration.

2.1.2.3 Drug analysis

Plasma and wet-faecal concentration of FBZ.SO, its sulphide (FBZ) and sulphone 

(FBZ.SO2) metabolites for the FBZ.SO study, FBZ and its sulphoxide (FBZSO), 

sulphone (FBZSO2) and hydroxy (OH.FBZ) metabolites for the FBZ study and OBZ 

were estimated by high performance liquid chromatography (HPLC) with a liquid phase 

extraction procedure adapted from that described by Marriner and Bogan (1980).

2.1.2.3.1 Standard preparation

Stock solutions (100 pg/ml and 1 mg/ml) of pure standards of FBZ.SO, FBZ, FBZ.SO2 

and OH.FBZ (Hoechst, Frankfurt, Germany), and OBZ (Vetoquinol Ltd., UK) were 

prepared using acetonitrile (Rathbum Chemical Ltd., UK) as the solvent. These were 

diluted to give 0.1, 0.5, 1,5, 10 and 10, 50, 500 jig/ml standard solutions for plasma and 

faecal samples, respectively for calibration as standard curves and to add to drug-free 

plasma and faecal samples to determine the recovery.

2.1.2.3.2 Extraction from plasma

Drug-free plasma samples (1 ml) were spiked with standards of FBZ, and its metabolites 

(FBZ SO, FBZ SO2 and OH.FBZ) for the FBZ study, FBZ.SO and its metabolites (FBZ, 

FBZ.SO2 and OH.FBZ) for the FBZ.SO study and OBZ to reach the following final 

concentrations: 0.01, 0.05, 0.1, 0.5, and 1 pg/ml. Ammonium hydroxide (200pl, 0.1N, 

pH 10) was added to 10 ml-ground glass tubes containing 1 ml spiked or experimental 

plasma samples. After vortexing for 15 seconds, 6 ml chloroform (Rathbum Chemical 

ltd., UK) was added. The tubes were shaken on a slow rotary mixer for 10 min. After
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centrifugation at 1825 g for 15 min, the supernatant was removed with a pasteur pipette. 

The organic phase (4 ml) was transferred to a thin-walled 10 ml-conical glass tube and 

evaporated to dryness at 43°C in a sample concentrator (model SC210A, Svant 

Instrument Inc., Holbrook, NY, USA). The dry residue was resuspended with 50 pi 

dimethyl sulphoxide (DMSO) and 200 pi of 25% acetonitrile. Then the tubes were placed 

in ultrasonic bath and finally, 50 pi of this solution was injected into the chromatographic 

system.

2.1.2.3.3 Extraction from faeces

Wet-faecal samples were mixed finely with a spatula to obtain homogeneous 

concentrations. Drug-free wet faeces samples (0.5 g) were spiked with benzimidazole 

standards to reach the following final concentrations: 1, 5, 50, 100, 200 pg/g. Sodium 

hydroxide buffer (200 pi, 0.4M, pH 10) and 2 ml acetonitrile were added to 10 ml- 

ground glass tubes containing 0.5 g spiked or experimental wet-faecal samples. After 

vortexing for 15 seconds, 8 ml chloroform was added. The tubes were shaken on a slow 

rotary mixer for 15 min. After centrifugation at 1825 g for 15 min, the supernatant was 

removed with a pasteur pipette. The organic phase (5 ml) was transferred to a thin-walled 

10 ml-conical glass tube and evaporated to dryness at 43 °C in the sample concentrator. 

The dry residue was resuspended with 50 pi dimethyl sulphoxide (DMSO) and diluted 

appropriately with 35% acetonitrile. After ultrasonication, the samples were filtered with 

GF/C glass microfibre filter (Whatman International Ltd., Maidstone, England). Finally, 

50pl of this solution was injected into the chromatographic system.

2.1.2.3.4 HPLC system

The mobile phase was a mixture of acetonitrile-water to which glacial acetic acid was 

added (0.5%, v/v). For FBZ.SO, FBZ and their metabolites it was pumped through the 

column (Genesis nukleosil Cis 4 pm, 150mm x 4.6mm, Crawford Scientific, Strathaven, 

UK) in a linear gradient fashion changing from 35:65 (acetonitrile-water) to 60:40 for 9 

min, 60:40 to 35:65 for 1 min and the last ratio was maintained for 2 min. The flow rate 

was 1 ml/min. Samples were processed on a computerized HPLC system (PC 1000, 

Spectra Physics Analytical Inc., UK) comprising a gradient pump (model SP 4000), a 

UV-detector (SP Focus) set at 292 nm, an autosampler (model AS 3000) and a controller 

(model SN 4000). The retention times were 5.51 min (FBZ.SO), 6.82 min (OH.FBZ),
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7.42 min (FBZSO2) and 10.23 min (FBZ) for plasma samples (Figure 2-1-2). For OBZ, 

acetonitrile:water (35:65) with trifluoro acetic acid 0.5% (w/w) pumped through the 

column (Nemesis nukleosil C l8, 4p, 150 mm x 4.6mm, Phenomenex, Cheshire, UK) as a 

mobile phase for 9 min at lml/min flow rate. The retention time was 5.20 min for OBZ.

2.1.2.3.5 Recovery and precision

Recovery of the three parent molecules and the metabolites under study was measured by 

comparison of the peak areas from spiked plasma samples with the areas resulting from 

direct injections of standards. The inter-assay precision of the extraction and 

chromatography procedures was evaluated by processing replicate aliquots of drug-free 

horse plasma and faecal samples containing known amounts of the drugs on different 

days. Recoveries and coefficients of interassay variations for plasma and faecal 

extractions are reported in Appendices A-l and A-8 for the FBZ.SO and FBZ study, 

respectively and A-17 and A-19 for the OBZ study. The limit of detections of the plasma 

and faecal assays were 0.005 pg/ml and 0.2 pg/g, respectively for FBZ.SO and FBZ 

studies, and 0.001 pg/ml and 0.2 pg/g, respectively for the OBZ study.

The concentrations of parent molecules and their metabolites in unknown samples were 

calculated by reference to plasma samples to which known amounts of drug (and 

metabolites) had been added and taken through the analytical procedure.

To determine the dry proportion of wet faecal samples, 1.0 g of wet faeces from each 

sample was weighed exactly into an evaporating bowl and heated in an oven at 70°C for 

10 h. The weight of each was determined and the percentage of each dry sample was 

calculated.

2.1.2.3.6 Pharmacokinetic and statistic analysis of data

The plasma concentration versus time curves obtained after each treatment in individual 

animals, were fitted with the WinNonlin software program (Scientific Consulting Inc., 

North Carolina, USA). The value of zero (0.00) shown in the time-plasma concentration 

tables in Appendices indicates the drug measurement was under the limit of detection. 

Pharmacokinetic parameters for each animal were analysed using non-compartmental
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Figure 2-1-2. Typical chromatogram for standard mixtures of oxfendazole (FBZ.SO) (1),

hydroxy fenbendazole (OH.FBZ) (2), fenbendazole sulphone (FBZ.SO2) (3) and

fenbendazole (FBZ) (4).
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model analysis with extravascular input. The Cmax and time to reach Cmax (tmax) were 

obtained from the plotted concentration-time curve of each drug in each animal. The 

linear trapezoidal rule was used to calculate the area under the plasma concentration time 

curve (AUC):

AUCowg C‘ 2CM

Where C represents the plasma concentration, i-1 and i are adjacent data point times. The 

area under the first moment curve (AUMC) was calculated using the equation:

V  Cjtj + Cj.jtj.j ( ^
AUMC0.iaa=sJ 2---------  (V  m)

and, the mean residence time (MRT) was calculated as:

MRTo-last = AUMCo-last / AUCo-last

The pharmacokinetic parameters are reported as mean ± SEM. Individual 

pharmacokinetic parameters for FBZ.SO, FBZ, their metabolites and OBZ obtained 

following oral administration to horses were statistically compared by the Mann-Whitney 

U test. Mean values were considered significantly different at p < 0.05.

2.1.2.4 Chiral analysis

Plasma samples of FBZ.SO obtained from this study were extracted in a similar fashion 
to the procedure outlined previously. The residue was re-suspended with 50 pi DMSO 
and 150 pi H2O. Finally, 50 pi of this solution was injected into the chromatographic 
system.

The enantiomers of FBZ.SO were estimated by using chiral chromatography adapted 

from that described by Delatour and colleagues (1990b). A mobile phase of 

acetonitrile:water (7:93) was pumped at a flow rate of 0.9 ml/min through a Chiral-AGP 

column (5p, 100x40 mm) (BAS Technical, Cheshire, UK) with ultraviolet detection at 

296 nm. Retention times were 7.87 min for the first enantiomer (FBZ.SO-1) and 10.43 

min for the second enantiomer (FBZ.SO-2) (Figure 2-1-3).

Recovery of the enantiomers was measured by comparison of the peak areas from spiked 

plasma with the areas resulting from direct injections of racemate (50:50) standard
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Figure 2-1-3. Typical chromatogram for enantiomers (FBZ.SO-1 and FBZ.SO-2) of 

oxfendazole (FBZ.SO) as racemate.
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solution of FBZ.SO. The limit of detection of the assay was 0.01 pg/ml for both 

enantiomers. Mean recoveries were 88.35% (inter assay CV=8.0%) for FBZ.SO-1 and 

88.60% (inter assay CV=10.3%) for FBZ.SO-2 (Appendix A-21).

2.1.3 Results

Mean plasma concentrations of FBZ.SO and its metabolites, FBZ and FBZ.SO2 following 

administration of FBZ.SO (Table 2-1-1, Appendices A-2, A-4, A-6 for individual values, 

respectively) are plotted in Figure 2-1-4 and their mean plasma pharmacokinetic 

parameters are shown in Table 2-1-2 (Appendices A-3, A-5, A-7 for individual values). 

Oxfendazole was detected in plasma between 1 h and 72 h after administration. An 

unidentified absorbance peak, which achieved larger chromatographic peak than the 

parent molecule, and sulphide and sulphone metabolites, was detected at 2.77 min, 

between 1 h and 48 h in the plasma. Double peaks were observed for FBZ.SO at 4 h and 

20 h. Maximum plasma concentrations (Cmax) (0.35 pg/ml- FBZ.SO, 0.09 pg/ml-FBZ, 

0.76 pg/ml-FBZ.S02) were obtained at (tmax) 8.88 h (FBZ.SO), 13.50 h (FBZ) and 12.00 

h (FBZ.SO2). The areas under the curves (AUC) were 4.36 pg.h/ml (FBZ.SO), 1.40 

pg.h/ml (FBZ) and 13.00 pg.h/ml (FBZ.SO2). The AUC ratios of 

sulphoxide:sulphide:sulphone were approximately 3:1:9 following FBZ.SO 

administration. Mean dry-faecal concentrations of FBZ.SO and its metabolites (Table 2- 

1-3, Appendix A-9 for individual values) are plotted in Figure 2-1-5. The highest dry 

faecal concentrations (1.02 mg/g- FBZ.SO, 0.21 mg/g-FBZ, 0.014 mg/g-FBZ.S02) were 

detected at 24 h for all molecules. In contrast to plasma, the parent molecule 

predominated and higher concentrations of the sulphide metabolite were detected than 

that of the sulphone metabolite following FBZ.SO administration in faeces. Mean plasma 

concentrations of FBZ and its metabolites, FBZ.SO and FBZ.SO2 (Table 2-1-4, 

Appendices A -10, A-12, A-14 for individual values, respectively) are plotted in Figure 2-

1-6 and their mean plasma pharmacokinetic parameters are shown in Table 2-1-5 

(Appendices A -ll, A-13, A-15 for individual values). Fenbendazole was detected in 

plasma between 1 h and 48 h after administration. The hydroxy metabolite was not 

detected in plasma at any time. Maximum plasma concentration (Cmax) (0.04 pg/ml-FBZ, 

0.01 pg/ml-FBZ.SO, 0.06 pg/ml-FBZ.SO2) was obtained at (tmax) 8.00 h (FBZ), 9.50 h 

(FBZ.SO) and 10.50 h (FBZ.SO2). The areas under the curves (AUC) were 0.61 pg.h/ml
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Table 2-1-1. Mean (± SEM) plasma concentrations (pg/ml) of oxfendazole (FBZ.SO)

and its metabolites, fenbendazole (FBZ) and fenbendazole sulphone (FBZ.SO2)

following oral administration of oxfendazole at 10 mg/kg bodyweight in horses.

Mean ± SEM (n = 8)

Time (h) FBZ.SO FBZ FBZ.S02

0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
1 0.10 ±0.03 0.00 ± 0.00 0.15 ±0.02
2 0.12 ±0.02 0.01 ±0.00 0.29 ± 0.03
4 0.23 ± 0.05 0.02 ± 0.01 0.54 ± 0.09
8 0.20 ± 0.08 0.05 ± 0.01 0.63 ±0.14
12 0.08 ± 0.02 0.07 ± 0.01 0.41 ±0.10
20 0.11 ±0.05 0.06 ± 0.02 0.29 ± 0.05
24 0.10 ±0.06 0.05 ± 0.02 0.27 ± 0.07
32 0.03 ± 0.02 0.02 ± 0.02 0.14 ±0.08
48 0.01 ±0.00 0.00 ± 0.00 0.02 ±0.01
72 0.01 ±0.00 0.00 ± 0.00 0.01 ±0.01
96 0.00 ± 0.00 0.00 ±0.00 0.00 ± 0.00
120 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
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Figure 2-1-4. Mean (± SEM) plasma concentrations (pg/ml) of oxfendazole (FBZ.SO)

and its metabolites, fenbendazole (FBZ) and fenbendazole sulphone (FBZ.SO2)

following oral administration of oxfendazole at 10 mg/kg bodyweight in horses.
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Table 2-1-2. Mean (± SEM) pharmacokinetic parameters of oxfendazole (FBZ.SO) and

its metabolites fenbendazole (FBZ) and fenbendazole sulphone (FBZSO2) following oral

administration of oxfendazole (10 mg/kg) to horses.

Mean ± SEM

Pharmacokinetic
parameters FBZ.SO FBZ FBZ.SO2

Cmax (pg/ml) 0.35 ± 0.07 0.09 ± 0.02 0.76 ± 0.09

tmax (h) 8.88 ±3.02 13.50 ± 1.99 12.00 ±3.63

AUQ ast (pg.h/ml) 4.36 ±0.89 1.40 ±0.32 13.00 ± 1.55

AUMCiast (pg.h2/ml) 69.07 ±21.85 23.45 ± 6.98 210.24 ±45.84

MRTiast (h) 14.77 ± 2.32 15.58 ± 1.01 15.45 ±2.10

Cmax' peak plasma concentration; tmax: time to reach peak plasma concentration; AUQast: 

area under the (zero moment) curve from time 0 to the last detectable concentration; 

AUM Qast- area under the moment curve from time 0 to the last detectable concentration 

t; MRTiast: mean residence time.
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Table 2-1-3. Mean (± SEM) dry faecal concentrations (mg/g) of oxfendazole (FBZ.SO)

and its metabolites, fenbendazole (FBZ) and fenbendazole sulphone (FBZ.SO2)

following oral administration of oxfendazole at 10 mg/kg bodyweight in horses.

Mean ± SEM (n = 8)

Time (h) FBZ.SO FBZ FBZ.S02

0 0.00 ± 0.00 0.00 ± 0.00 0.000 ± 0.000
4 0.00 ± 0.00 0.00 ± 0.00 0.000 ± 0.000
12 0.00 ± 0.00 0.00 ± 0.00 0.000 ± 0.000
20 0.76 ±0.11 0.14 ±0.00 0.010 ±0.001
24 1.02 ±0.22 0.21 ±0.05 0.014 ±0.002
32 0.53 ± 0.07 0.12 ±0.01 0.009 ± 0.001
48 0.06 ± 0.01 0.03 ± 0.00 0.003 ± 0.001
72 0.00 ± 0.00 0.00 ± 0.00 0.000 ± 0.000
96 0.00 ± 0.00 0.00 ± 0.00 0.000 ± 0.000
120 0.00 ± 0.00 0.00 ± 0.00 0.000 ± 0.000
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Figure 2-1-5. Mean (± SEM) dry faecal concentrations (mg/g) of oxfendazole (FBZ.SO)

and its metabolites, fenbendazole (FBZ) and fenbendazole sulphone (FBZ.SO2)

following oral administration of oxfendazole at 10 mg/kg bodyweight in horses.
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Table 2-1-4. Mean (± SEM) plasma concentrations (pg/ml) of fenbendazole and its

metabolites, fenbendazole sulphoxide (FBZ.SO) and fenbendazole sulphone (FBZ.SO2)

following oral administration of fenbendazole at 10 mg/kg bodyweight in horses.

Mean ± SEM (n = 8)

Time (h) FBZ FBZ.SO FBZ.S02

0 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
1 0.009 ± 0.002 0.002 ±0.001 0.004 ± 0.002
2 0.022 ± 0.006 0.006 ± 0.002 0.021 ±0.006
4 0.031 ±0.007 0.008 ±0.001 0.049 ± 0.007
8 0.023 ± 0.005 0.007 ±0.001 0.054 ± 0.005
12 0.021 ±0.005 0.010 ± 0.002 0.037 ± 0.005
20 0.016 ±0.005 0.004 ±0.001 0.030 ± 0.005
24 0.013 ±0.004 0.003 ±0.001 0.026 ± 0.004
32 0.007 ± 0.003 0.002 ± 0.000 0.015 ±0.003
48 0.002 ± 0.001 0.000 ± 0.000 0.002 ± 0.001
72 0.000 ± 0.000 0.000 ± 0.000 0.001 ±0.000
96 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
120 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
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Figure 2-1-6. Mean (± SEM) plasma concentrations (pg/ml) of fenbendazole and its 

metabolites, fenbendazole sulphoxide (FBZ.SO) and fenbendazole sulphone (FBZ.SO2) 

following oral administration of fenbendazole at 10 mg/kg bodyweight in horses.
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Table 2-1-5. Mean (± SEM) pharmacokinetic parameters of fenbendazole (FBZ) and its

metabolites fenbendazole sulphoxide (FBZ.SO) and fenbendazole sulphone (FBZSO2)

following oral administration of fenbendazole (10 mg/kg) to 8 horses.

Mean ± SEM

Pharmacokinetic
parameters FBZ FBZ.SO FBZ.SO2

Cmax (pg/ml) 0.04 ± 0.01 0.01 ±0.00 0.06 ±0.01

tmax (h) 8.00 ± 2.70 9.50 ±3.52 10.50 ±3.20

A U C ^ t (pg.h/ml) 0.61 ±0.11 0.17 ±0.02 1.12 ± 0.19

AUMC,ast (pg.h2/ml) 9.33 ±2.89 2.26 ± 0.46 17.54 ±2.43

M RT,ast(h) 14.21 ± 1.74 12.90 ± 1.33 16.50 ± 1.00

C max' peak plasma concentration; tmax: time to reach peak plasma concentration; A U Q ast' 

area under the (zero moment) curve from time 0 to the last detectable concentration; 

AUMCiast: area under the moment curve from time 0 to the last detectable concentration 

t; MRTiast: mean residence time.
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(FBZ), 0.17 |iig.h/nil (FBZ.SO) and 1.12 pg.h/ml (FBZ.S02). The AUC ratios of 

sulphoxide:sulphide:sulphone were approximately 1:4:7 following FBZ administration. 

Mean dry-faecal concentrations of FBZ and its sulphoxide metabolites (Table 2-1-6, 

Appendix A-18 for individual values) are plotted on Figure 2-1-7. Fenbendazole was 

detected between 20 h and 72 h and the sulphoxide metabolite was detected between 20 h 

and 48 h in faeces after FBZ administration. The highest dry faecal concentration (0.97 

mg/g-FBZ, 0.017 mg/g-FBZ.SO) was detected at 24 h for both molecules. No sulphone 

or hydroxy metabolites were detectable in faeces at any time.

Mean plasma concentrations of OBZ (Table 2-1-7, Appendix A-18 for individual values) 

are plotted in Figure 2-1-8. An unidentified absorbance peak, which generated larger 

chromatographic peak than the parent molecule, was detected at 1.87 min, between 1 h 

and 72 h in the plasma. Oxibendazole was detected only at 0.5, 1 and 2 h in plasma after 

administration. Maximum plasma concentration (Cmax) of OBZ (0.008 pg/ml) was 

obtained at (tmax) 0.81 h. Mean dry-faecal concentrations of OBZ (Table 2-1-8, Appendix 

A-22 for individual values, respectively) are plotted in Figure 2-1-9. Oxibendazole was 

detected in faeces between 12 h and 72 h after administration. The highest dry faecal 

concentration (0.53 mg/g) was detected at 24h.

Mean plasma concentrations of enantiomers (FBZ.SO-1 and FBZ.SO-2) of FBZ.SO 

(Table 2-1-9, Appendices A-24 and A-25 for individual values) are plotted in Figure 2-1- 

10 and the mean percentages of each enantiomer are shown in Figure 2-1-11. The first 

enantiomer (FBZ.SO-1) was predominant in six of the eight animals whereas in two 

animals (animal 2 and 3), the second enantiomer dominated in plasma.
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Table 2-1-6. Mean (± SEM) dry faecal concentrations (mg/g) of fenbendazole (FBZ) and 

its metabolites, fenbendazole sulphoxide (FBZ.SO) and fenbendazole sulphone 

(FBZ.SO2) following oral administration of fenbendazole at 10 mg/kg bodyweight in 

horses.

Mean ± SEM (n = 8)

Time (h) FBZ FBZ.SO FBZ.S02

0 0.00 ± 0.00 0.000 ± 0.000 0.00 ± 0.00
4 0.00 ± 0.00 0.000 ± 0.000 0.00 ± 0.00
12 0.00 ± 0.00 0.000 ± 0.000 0.00 ± 0.00
20 0.59 ±0.21 0.004 ± 0.000 0.00 ± 0.00
24 0.97 ± 0.09 0.017 ±0.005 0.00 ±0.00
32 0.89 ± 0.20 0.014 ±0.002 0.00 ± 0.00
48 0.20 ± 0.06 0.004 ± 0.002 0.00 ± 0.00
72 0.01 ±0.00 0.000 ± 0.000 0.00 ± 0.00
96 0.00 ± 0.00 0.000 ± 0.000 0.00 ± 0.00
120 0.00 ± 0.00 0.000 ± 0.000 0.00 ± 0.00
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Figure 2-1-7. Mean (± SEM) dry faecal concentrations (mg/g) of fenbendazole (FBZ) 

and its metabolites, fenbendazole sulphoxide (FBZ.SO) and fenbendazole sulphone 

(FBZ.SO2) following oral administration of fenbendazole at 10 mg/kg in horses (n=8).
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Table 2-1-7. Mean (± SEM) plasma concentrations (pg/ml) of oxibendazole (OBZ) 
following oral administration to horses at 10 mg/kg bodyweight (n=8).

Mean ± SEM

Time (h) OBZ

0 0.000 ± 0.000
0.5 0.005 ± 0.000
1 0.006 ± 0.003
2 0.000 ± 0.000
4 0.000 ± 0.000
6 0.000 ± 0.000
8 0.000 ± 0.000
12 0.000 ± 0.000
16 0.000 ± 0.000
24 0.000 ± 0.000
32 0.000 ± 0.000
48 0.000 ± 0.000
72 0.000 ± 0.000
96 0.000 ± 0.000
120 0.000 ± 0.000
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Figure 2-1-8. Mean (± SEM) plasma concentrations (pg/ml) of oxibendazole (OBZ) 

following oral administration of oxibendazole at 10 mg/kg bodyweight in horses (n=8).
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Table 2-1-8. Mean (± SEM) dry faecal concentrations (mg/g) of oxibendazole (OBZ) 

following oral administration of oxibendazole at 10 mg/kg bodyweight in horses (n=8).

Mean ± SEM

Time (h) OBZ

0 0.00 ± 0.00
4 0.00 ± 0.00
6 0.00 ± 0.00
8 0.00 ± 0.00
12 0.02 ± 0.00
16 0.2010.06
24 0.5310.15
32 0.3410.10
48 0.03 1 0.01
72 0.0110.01
96 0.001 0.00
120 0.001 0.00
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Figure 2-1-9. Mean (± SEM) dry-faecal concentrations (mg/g) of oxibendazole (OBZ) 

following oral administration of oxibendazole at 10 mg/kg bodyweight in horses (n=8).
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Table 2-1-9. Mean (± SEM) plasma concentration (pg/ml) of enantiomers (FBZ.SO-1 

and FBZ.SO-2) of oxfendazole (FBZ.SO) following oral administration in horses.

Mean ± SEM (n=8)

Time (h) FBZ.SO-1 FBZ.SO-2

0 0.000 ± 0.000 0.000 ± 0.000

1 0.032 ±0.011 0.036 ± 0.009

2 0.054 ±0.015 0.052 ± 0.009

4 0.068 ±0.012 0.073 ±0.018

8 0.085 ±0.031 0.057 ±0.021

12 0.040 ± 0.009 0.028 ±0.014

20 0.041 ±0.019 0.043 ± 0.027

24 0.043 ± 0.030 0.029 ±0.017

32 0.007 ± 0.007 0.002 ± 0.002

48 0.000 ± 0.000 0.000 ± 0.000

72 0.000 ± 0.000 0.000 ± 0.000

96 0.000 ± 0.000 0.000 ± 0.000

120 0.000 ± 0.000 0.000 ± 0.000
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Figure 2-1-10. Mean (± SEM) plasma concentrations (pg/ml) of enantiomers (FBZ.SO-1 

and FBZ.SO-2) of oxfendazole (FBZ.SO) in horses following oral administration of 

oxfendazole (10 mg/kg).
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Figure 2-1-11. Ratio of the percentage of enantiomers (FBZ.SO-1 and FBZ.SO-2) 

(pg/ml) in horses following oral administration of oxfendazole (10 mg/kg).
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2.1.4. Discussion

Oxfendazole (FBZ.SO) and FBZ are both known to be anthelmintically active and 

metabolically interconvertible. The results reported here indicate that the plasma 

concentrations of FBZ.SO and FBZ were relatively low and that they are extensively 

metabolised to their sulphone metabolite at the same oral dose rate (10 mg/kg). These 

results support the work of Marriner and Bogan (1985) who reported that in horses, the 

bioavailability and residence time of FBZ.SO and FBZ were lower and shorter, 

respectively than in ruminants (Marriner and Bogan, 1981a, b). The AUCs for FBZ.SO 

following its oral administration at dose rate of 10 mg/kg in sheep and goats were 49.6 

and 19.9 pg.h/ml, respectively (Bogan et al., 1987), whereas in the present study, the 

AUC of FBZ.SO at the same oral dose rate was 4.36 pg.h/ml in horse. It is also apparent 

that the sulphone metabolite (FBZ.SO2) was predominant in plasma following 

administration of either FBZ.SO or FBZ administration whereas in ruminants FBZ.SO 

was predominant after either FBZ.SO (Ngomuo et al., 1984) or FBZ administration 

(Benchaoui and McKellar, 1996). It is probable that horses metabolise sulphide and 

sulphoxide benzimidazoles to their sulphone metabolites more quickly than ruminants 

since the large AUC of the sulphone in the horse is not associated with a substantially 

increased MRT. In goats, the MRT of FBZ.SO2 was 34.4 h after FBZ administration at

7.5 mg/kg (Benchaoui and McKellar, 1996) whereas in this study, MRT was 16.50 h for 

the sulphone metabolite following FBZ administration at 10 mg/kg in horse. Relatively 

different enzyme contributions could explain the faster sulphonation in horses. The FMO 

system, which is responsible for sulphoxidation, predominates in ruminants in 

comparison to monogastrics in which the FMO and MFO systems act equally (Delatour 

et al, 1994). The sulphone metabolite has relatively little anthelmintic activity and this 

may contribute to its relatively poor efficacy.

The low plasma concentrations of active moieties (FBZ, FBZ.SO) following FBZ 

administration probably accounts for the higher and repeated dosage required for the 

treatment of migrating larval and tissue stages of strongyles and lung worms (Marriner 

and Bogan, 1981). In the present study, the AUC of FBZ.SO (4.36 jig.h/ml) was 

significantly larger than that of FBZ (0.61pg.h/ml) following their oral administration at 

the same dose rate. This reflects the better absorption and greater systemic availability of 

FBZ.SO compared to FBZ since each compound produces the same metabolites and
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these would be expected to have similar metabolic and excretory rates. It is of interest 

that the AUC of the sulphide moiety was 2.3 times greater in horses administered 

FBZ.SO than in horses given FBZ as the parent molecule. Much higher solubility of 

FBZ.SO (3.01 mg/1) than that of FBZ (0.07 mg/1) (Marriner and Bogan, 1985) may 

explain its greater absorption at a rate exceeding its oxidative clearance and thus provide 

sufficient substrate for reductive metabolism to the sulphide in horses. The limited 

adsorption rate of FBZ may be matched by rapid oxidative metabolism with consequent 

low concentrations achieved in plasma following its oral administration in the present 

study.

It is probable that faster gut transit time in horses (between 25.9 h and 37.9 h - Wolter et 

al., 1974) than in ruminants (between 30 and 80 h - Warner, 1981; McDonald et al., 

1995) contributes to the shorter absorption time and lower plasma concentration of parent 

molecules after oral administration. In the present study, the 12 h delay in appearance of 

benzimidazoles in faeces and the time for the maximum faecal concentrations (24 h) 

reflect the gut transit time following oral administration. The parent drugs were 

predominant in faecal samples although substantial concentrations (>0.1 mg/g) of the 

sulphide (FBZ) were detected following oral administration of FBZ.SO. In sheep and 

cattle, it was reported that the reduction of FBZ.SO to sulphide (FBZ) occurred in 

ruminal fluid (Beretta et al, 1987). The reductive environment of the gastrointestinal tract 

of the horse could be responsible for metabolic reduction and this could be the source of 

sulphide metabolites in plasma since no sulphide metabolite was observed after FBZ.SO 

incubation in the in vitro studies with horse liver microsomes reported in section 3. Very 

low concentrations of sulphone were detected in faeces following FBZ.SO 

administration, possibly as a consequence of redistribution from the plasma compartment 

into the gut.

The unidentified absorbance peak detected between 1 h and 48 h after FBZ.SO treatment 

could be the hydroxy metabolite of FBZ.SO. It was reported that in sheep, hydroxy 

oxfendazole was the major biliary metabolite after intraruminal administration of FBZ (5 

mg/kg) but, this metabolite was not observed in plasma samples (Hennessy et al, 1993). 

The double peaks were observed in the plasma concentration-time profiles following 

FBZ.SO administration (Figure 2-1-4) and this was also confirmed by chiral analysis 

(Figure 2-1-11). Some of the administered drug may have been absorbed directly from
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the small intestines, but the bound drug may have been absorbed at the later stage in the 

colon and caecum as it was being released by fermentative digestion.

Plasma levels of the parent drug were very low following oral administration of OBZ in 

horses. Gottschall and Wang (1996) reported that in swine, OBZ was quickly 

metabolised and liver was the only tissue which contained significant residues following 

oral administration at 15 mg/kg. The unidentified absorbance peak detected between 1 h 

and 72 h in the plasma could be the hydroxy- metabolite of OBZ since 5-hydroxy- and 6- 

hydroxy-oxibendazole were identified in swine urine and tissues following oral 

administration (Gottschall and Wang, 1996) and their anthelmintic activities are unclear. 

It is likely that the high first-pass metabolism decreased OBZ bioavailability in horses.

The chiral analysis indicated that FBZ.SO displayed inter-individual variation in the 

enantiospecific disposition after its oral administration. In six of the eight animals, the 

first enantiomer was predominant in the plasma and these findings support the results 

described in the in vivo study in section 2 and in the in vitro study in section 3. However 

in two animals (animal 2 and 3 in Appendices A-22 and A-23) the second enantiomer 

was predominant. The reasons for this are unclear, but some pathological changes in the 

liver could affect the activities of the enzyme systems that are responsible for the 

different enantiospecific disposition of FBZ.SO. However, all horses were clinically 

healthy and had normal haematological profiles.

In conclusion, this study showed that the bioavailability of FBZ.SO was significantly 

higher than that of FBZ and that the plasma concentrations of OBZ were very low 

following their oral administration at the same dose rate (10 mg/kg) in horses. High 

intestinal concentrations could be effective against gastrointestinal nematodes that inhabit 

the gut lumen, but very low plasma concentrations of FBZ and OBZ may not be effective 

against the for migrating fourth-larval stages of large strongyles, lungworms. Repeated 

dosage regimes of FBZ and OBZ or co-administration with metabolic inhibitors could be 

utilised to migrating larval, tissue stages of strongyles and lungworms.
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Section 2

Effect of piperonyl butoxide on the pharmacokinetics and chirality of oxfendazole in

ponies; in vivo studies

2.2.1. Introduction

Oxfendazole, a member of the benzimidazole group of anthelmintics, is used worldwide 

for the treatment of gastrointestinal parasites in horses.

Piperonyl butoxide, which belongs to a group of chemicals known as 

methylenedioxyphenyl compounds or benzodioxole compounds, has been extremely 

widely used in medicine and animal and crop production for many decades with 

extremely low toxicity (Breathnach, 1998). Piperonyl butoxide was well-adsorbed 

following oral administration and 65% and 73% of the dose was excreted in the urine of 

mice and rats, respectively (Casida et al., 1966; Kamienski and Casida, 1970). It was 

shown that piperonyl butoxide inhibited the microsomal oxidation of xenobiotics in a 

number of mammalian species whether the piperonyl butoxide was administered in vivo 

prior to the preparation of the microsomes or if both substrate and inhibitor were 

administered together in vitro (Hodgson and Philpot, 1974). Early studies demonstrated 

that the inhibition of microsomal oxidations associated with piperonyl butoxide was due 

to a direct effect on the P450 enzyme system (Perry and Bucknor, 1970) and that the 

apparent loss of P450 activity was due to the formation of a metabolite-inhibitory 

complex, which blocked CO binding to the cytochrome (Philpot and Hodgson, 1971). 

More recently, it was demonstrated clearly that the major route of metabolism of 

piperonyl butoxide involved the opening of the methylenedioxy ring followed by loss of 

the methylene group into the endogenous metabolic pool (Cockbum and Needham, 

1998). This is also believed to be the basis of the initial inhibition of the cytochrome 

P450 enzyme system, which is essential for the compound’s efficacy as a synergist. 

Current evidence suggests that it is the carbene intermediate formed with the methylene 

group that complex with the Fe** ion of cytochrome P450 (Wilkinson et al., 1984; Ortiz 

de Montellano and Reich, 1986) that induces its effect. Isozyme specificity of piperonyl 

butoxide has been shown in rats using different probe drugs for hepatic drug- 

metabolising activity (Bachmann, 1989). While the clearance of antipyrine, used as a 

probe for the cytochrome P450 IIB1 and P450 IIB2 isoforms, was decreased by 50%
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following pre-treatment with piperonyl butoxide, the disposition of quanidine, expressing 

the activity of the cytochrome P450IIIA subfamily, was unaffected by this inhibitor.

Piperonyl butoxide also induces of xenobiotic P450 metabolising enzymes. Recent 

studies concerned primarily with the isozyme specificity of the induction process have 

reported that piperonyl butoxide not only induced P450 2B10, but also induced P450 

1A2 in mice by an Ah-receptor-independent mechanism and at high doses, P450 1A1 by 

an Ah-receptor-dependent mechanism (Adams et al., 1993a, b). Several studies using fish 

have shown an increase in P450 activities after treatment with piperonyl butoxide 

(Vodicnik et al., 1981; Erickson et al., 1988). However, the identity of the most part of 

the P450 species induced by piperonyl butoxide has not been defined clearly (Hodgson 

and Levi, 1998).

The present study was carried out to investigate the effect of piperonyl butoxide as a 

metabolic inhibitor on the pharmacokinetics and chiral disposition of oxfendazole 

(FBZ.SO) in horses.

2.2.2. Materials and methods

2.2.2.1 Animals

Six ponies weighing 164-250 kg were used for this study. They were kept indoors 

(University of Glasgow, Veterinary School, Cochno Research Farm) and hay and water 

were provided ad libitum throughout the experimental period. They were photographed 

and the photographs used to distinguish them from each other.

2.2.2.2 Experimental design

The ponies were randomly allocated into two groups and each group consisted of three 

animals. Oxfendazole and piperonyl butoxide were administered according to a two- 

phase crossover design protocol. In phase I, group 1 received FBZ.SO alone while group 

2 received FBZ.SO and piperonyl butoxide. In phase II, group 1 received FBZ.SO and 

piperonyl butoxide and group 2 received FBZ.SO alone. A four-week washout period 

was allowed between the two phases.
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2.2.2.3 Drug administration and sampling procedure

Oxfendazole (Syntex, 99.9%) (FBZ.SO) was prepared in dimethylsulphoxide (DMSO) 

(500 mg/ml) for intravenous injection. This solution was given at a dose rate of 10 mg/kg 

bodyweight by right jugular venipuncture. Piperonyl butoxide (Aldrich Chemicals, 90%) 

was administered by nasogastric intubations at a dose rate of 31 mg/kg bodyweight, 30 

minutes prior to FBZ.SO administration. Heparinized blood samples were collected by 

jugular venipuncture prior to drug administration and 10, 20, 30, 45, 60, 75, 90, 105 min 

and 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10, 12, 16, 20, 24, 30, 36, 48, 54, 72, 96 h thereafter. 

Blood samples were centrifuged at 1825 g for 30 min and plasma was transferred to 

plastic tubes. The samples were stored at -20°C until estimation of drug concentration.

2.2.2.4 Drug analysis

Oxfendazole and its sulphide and sulphone metabolites were analysed according to the 

methods described in section 1. The plasma concentrations of piperonyl butoxide were 

not measured in this study.

2.2.2.5 Chiral analysis

Plasma samples obtained from this study were extracted and analysed in a similar fashion 

to the procedure outlined in section 2.1.2.4.

2.2.3. Results

The plasma concentrations of FBZ.SO (Table 2-2-1 for mean values and Appendices B-2 

and B-3 for individual values), FBZ (Table 2-2-2 for mean values and Appendices B-4 

and B-5 for individual values) and FBZ.SO2 (Table 2-2-3 for mean values and 

Appendices B-6 and B-7 for individual values) are plotted in Figures 2-2-1, 2-2-2 and 2-

2-3 following administration of FBZ.SO alone or in combination with piperonyl 

butoxide. The mean pharmacokinetic parameters (tmax, Cmax and AUC) are presented in 

Table 2-2-4.

The plasma profile of FBZ.SO alone or in combination with piperonyl butoxide was 

atypical for iv administration, with an early increase in plasma drug concentration such 

that zero time did not represent maximum concentration. After an initial short decline 

phase (a similar initial short decline phase was observed for its sulphide metabolite
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Table 2-2-1. Mean (± SEM) plasma concentrations (pg/ml) of oxfendazole (FBZ.SO) in

ponies following iv, administration of oxfendazole (10 mg/kg) either alone or in

combination with piperonyl butoxide (PB) (31 mg/kg).

Mean ± SEM (n=6)

Time FBZ.SO alone FBZ.SO with PB
10 min 1.31 ±0.14 1.51 ±0.11
20 min 1.19 ±0.07 1.33 ±0.08
30 min 1.14 ±0.08 1.20 ±0.02
45 min 0.98 ± 0.07 1.43 ±0.12
60 min 1.04 ±0.04 1.53 ±0.10
75 min 1.01 ±0.10 1.75 ±0.10
90 min 0.95 ±0.10 1.77 ±0.16
105 min 1.03 ±0.11 1.82 ±0.16
120 min 1.08 ±0.10 2.01 ±0.14

2.5 h 1.04 ±0.08 2.36 ±0.18
3 h 1.12 ±0.08 2.67 ±0.13

3.5 h 1.15 ±0.07 2.88 ± 0.26
4 h 1.22 ±0.08 3.07 ±0.29
5 h 1.00 ±0.13 3.19 ±0.41
6 h 1.07 ±0.11 3.33 ±0.38
7 h 1.03 ±0.10 3.69 ± 0.50
8 h 1.50 ±0.31 2.98 ± 0.44
10 h 1.08 ±0.08 2.72 ± 0.32
12 h 1.18 ±0.21 1.81 ±0.39
16 h 0.86 ±0.10 1.58 ±0.29
20 h 0.65 ± 0.08 0.87 ± 0.25
24 h 0.44 ± 0.07 0.52 ±0.12
30 h 0.32 ±0.10 0.26 ± 0.04
34 h 0.20 ± 0.06 0.14 ±0.02
48 h 0.17 ±0.04 0.09 ±0.01
54 h 0.14 ±0.03 0.07 ±0.01
72 h 0.11 ±0.04 0.04 ±0.01
96 h 0.06 ± 0.03 0.03 ± 0.00
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Figure 2-2-1. Mean (± SEM) plasma concentrations (pg/ml) of oxfendazole (FBZ.SO)

following administration of oxfendazole alone or with piperonyl butoxide (PB) in ponies

(n=6).
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Table 2-2-2. Mean (± SEM) plasma concentrations (pg/ml) of fenbendazole (FBZ) in

ponies following iv administration of oxfendazole (FBZ.SO) (10 mg/kg) either alone or

in combination with piperonyl butoxide (PB) (31 mg/kg).

Mean ± SEM (n=6)

Time FBZ.SO alone FBZ.SO with PB
10 min 0.012 ±0.004 0.027 ± 0.008
20 min 0.011 ±0.006 0.022 ± 0.008
30 min 0.017 ±0.004 0.020 ± 0.004
45 min 0.010 ±0.004 0.020 ± 0.005
60 min 0.009 ± 0.003 0.013 ±0.004
75 min 0.007 ± 0.004 0.009 ± 0.003
90 min 0.003 ± 0.002 0.017 ±0.007
105 min 0.000 ± 0.000 0.012 ±0.003
120 min 0.005 ± 0.005 0.017 ±0.004

2.5 h 0.002 ± 0.002 0.015 ±0.003
3 h 0.006 ± 0.006 0.018 ±0.004

3.5 h 0.017 ±0.011 0.020 ± 0.003
4 h 0.007 ± 0.003 0.025 ± 0.005
5 h 0.010 ±0.007 0.032 ± 0.004
6 h 0.020 ± 0.006 0.044 ± 0.005
7 h 0.026 ±0.012 0.054 ± 0.006
8 h 0.030 ± 0.007 0.056 ± 0.009
lOh 0.033 ± 0.004 0.076 ± 0.008
12 h 0.032 ± 0.008 0.074 ± 0.009
16 h 0.038 ± 0.009 0.100 ±0.010
20 h 0.030 ± 0.007 0.079 ±0.010
24 h 0.034 ±0.013 0.064 ± 0.007
30 h 0.027 ±0.010 0.066 ±0.013
34 h 0.020 ±0.013 0.038 ±0.011
48 h 0.004 ± 0.004 0.018 ±0.012
54 h 0.000 ± 0.000 0.005 ± 0.002
72 h 0.000 ± 0.000 0.000 ± 0.000
96 h 0.000 ± 0.000 0.000 ± 0.000
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Figure 2-2-2. Mean (± SEM) plasma concentrations (jig/ml) of fenbendazole (FBZ)

(mean ± SEM) following administration of oxfendazole (FBZ.SO) alone or with

piperonyl butoxide (PB) in ponies (n=6).



77

Table 2-2-3. Mean (± SEM) plasma concentrations (pg/ml) of fenbendazole sulphone

(FBZ.SO2) in ponies following iv administration of oxfendazole (10 mg/kg) either alone

or in combination with piperonyl butoxide (PB) (31 mg/kg).

Mean ± SEM (n=6)

Time FBZ.SO alone FBZ.SO with PB

10 min 0.25 ± 0.03 0.23 ± 0.02
20 min 0.33 ± 0.01 0.29 ± 0.04
30 min 0.41 ± 0.04 0.30 ± 0.03
45 min 0.44 ± 0.03 0.39 ± 0.04
60 min 0.55 ± 0.03 0.42 ± 0.05
75 min 0.59 ± 0.05 0.47 ± 0.06
90 min 0.62 ± 0.05 0.45 ± 0.06
105 min 0.59 ±0.14 0.48 ± 0.09
120 min 0.68 ±0.15 0.46 ± 0.06

2.5 h 0.84 ± 0.07 0.52 ± 0.06
3 h 1.01 ±0.05 0.57 ± 0.06

3.5 h 1.05 ±0.07 0.62 ±0.12
4 h 1.18 ±0.07 0.65 ±0.10
5 h 1.09 ±0.14 0.64 ±0.11
6 h 1.28 ±0.14 0.75 ±0.11
7 h 1.28 ±0.14 0.82 ±0.11
8 h 1.47 ±0.19 0.92 ±0.14
lOh 1.49 ±0.12 0.84 ± 0.09
12 h 1.36 ±0.12 0.90 ±0.15
16 h 1.42 ±0.14 1.40 ±0.13
20 h 1.23 ±0.15 1.35 ±0.23
24 h 0.84 ±0.18 1.34 ±0.18
30 h 0.67 ±0.18 1.14 ± 0.17
34 h 0.55 ±0.12 0.73 ±0.13
48 h 0.28 ± 0.06 0.27 ± 0.05
54 h 0.21 ±0.03 0.17 ±0.03
72 h 0.08 ± 0.01 0.07 ± 0.01
96 h 0.04 ±0.01 0.04 ±0.01
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Figure 2-2-3. Mean (± SEM) plasma concentrations (pg/ml) of fenbendazole sulphone

(FBZ.SO2) following administration of oxfendazole (FBZ.SO) alone or with piperonyl

butoxide (PB) in ponies (n=6).
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Table 2-2-4. Mean (±SEM) pharmacokinetic parameters of oxfendazole (FBZ.SO) and 

its metabolites fenbendazole (FBZ) and fenbendazole sulphone (FBZ.SO2) following iv 

administration of oxfendazole (10 mg/kg) alone or in combination with piperonyl 

butoxide (PB) (31 mg/kg) to ponies (n=6).

Mean (± SEM)

FBZ.SO FBZ FBZ.SO2

Parameters -PB + PB -PB + PB -PB + PB

tmax (h) 2.35±1.2
8*

5.92±0.8
8

14.5613.
85

21.3312.
82

11.3311.
53*

20.0011.
47

Cmax

(pg/ml)
1.72±0.2

6*
3.9210.4

0
0.0610.0

1*
0.1110.0

1
1.6510.1

3
1.5910.1

4

AUCiast

(pg.h/ml)
33.97±3.

29*
53.1716.

51
1.0310.2

8*
2.5010.3

0
47.0014.

56
46.9416.

02

* P < 0.05; -PB significantly different from +PB.

tmax* time to reach peak plasma concentration; AUCiast: area under the (zero moment) 
curve from time 0 to the last detectable concentration.
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[FBZ]) lasting approximately 45 minutes, the concentration of FBZ.SO plateaued at 

between 0.94 and 1.5 fig/ml until approximately 12 h from which time concentration 

declined to the limit of detection by 96 h following FBZ.SO administration alone. When 

FBZ.SO was administered with piperonyl butoxide, the concentration of FBZ.SO 

declined after administration for 30 minutes then increased until 7 h by which time the 

plasma concentration was 3.69 ± 0.50 pg/ml. Subsequently, plasma concentrations 

decreased until 96 h, by which time they were lower than concentrations following 

administration of FBZ.SO alone. The Cmax and AUC of FBZ.SO (1.72 ± 0.26 pg/ml and 

33.97 ± 3.39 pg.h/ml, respectively) were significantly smaller following administration 

of FBZ.SO alone than after administration of FBZ.SO in combination with piperonyl 

butoxide (3.92 ± 0.40 pg/ml and 53.17 ± 6.51 pg.h/ml, respectively).

The concentrations of FBZ following FBZ.SO alone or in combination with piperonyl 

butoxide displayed a similar pattern to those of the parent molecule except that maximum 

concentrations were achieved earlier (mean, 15 h) compared to those of FBZ.SO (21 h). 

The Cmax and AUC of FBZ (0.06 ± 0.01 jig/ml and 1.03 ± 0.28 jig.h/ml, respectively) 

were significantly lower following administration of FBZ.SO alone than those of FBZ 

following administration of FBZ.SO in combination with piperonyl butoxide (0.11 ± 

0.0.1 pg/ml and 2.50 ± 0.30 pg.h/ml).

The plasma concentrations of FBZ.SO2 reached a maximum (Cmax̂  1.65 ± 0.13 pg/ml) 11 

h after administration of FBZ.SO alone. When FBZ.SO was given in combination with 

piperonyl butoxide, a similar maximum concentration was achieved (1.59 ± 0.14 pg/ml) 

but not until 20 h. The AUC ratios for sulphide:sulphoxide:sulphone were 1:33:46 

following FBZ.SO alone and 1:21:19 following FBZ.SO in combination with piperonyl 

butoxide.

The plasma concentrations of the enantiomers (FBZ.SO-1, FBZ.SO-2) of FBZ.SO 

following administration of FBZ.SO (as a racemate) either alone or in combination with 

piperonyl butoxide are presented in Table 2-2-5 (mean values) and Appendices B-8, B-9, 

B-10 and B -ll (individual values), respectively. The plasma concentration versus time 

curves and the ratios (as percentages) of each enantiomer are shown in Figures 2-2-4 and

2-2-5, respectively. The FBZ.SO-1 enantiomer was predominant in plasma following 

administration of racemate FBZ.SO alone. The ratio (FBZ.SO-1 :FBZ.SO-2) was
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Table 2-2-5. Mean (± SEM) plasma concentration (jig/ml) of enantiomers (FBZ.SO-1 

and FBZ.SO-2) of oxfendazole (FBZ.SO) in ponies following iv administration of 

oxfendazole (10 mg/kg) either alone or in combination with piperonyl butoxide (PB) (31 

mg/kg).

Mean ± SEM (n=6)

FBZ.SO alone FBZ.SO with PB

Time FBZ.SO-1 FBZ.SO-2 FBZ.SO-1 FBZ.SO-2

10 min 0.66 ±0.10 0.7710.12 0.81 ±0.13 0.8810.17
20 min 0.65 ± 0.08 0.73 1 0.09 0.75 1 0.09 0.7610.11
30 min 0.56 ± 0.07 0.5910.10 0.691 0.07 0.7010.08
45 min 0.56 ± 0.07 0.561 0.09 0.7910.06 0.81 ±0.06
60 min 0.56 ± 0.08 0.5210.09 0.8010.07 0.85 10.09
75 min 0.59 ± 0.08 0.51 ±0.08 0.87 1 0.07 0.9210.07
90 min 0.58 ± 0.07 0.4710.07 0.92 1 0.07 0.9710.07
105 min 0.67 ± 0.05 0.52 10.05 0.9910.10 1.0710.12
120 min 0.65 ± 0.05 0.47 10.05 1.0210.10 1.1410.11

2.5 h 0.69 ± 0.06 0.51 ±0.06 1.1710.11 1.3910.15
3 h 0.72 ± 0.07 0.48 10.04 1.1510.16 1.4710.17

3.5 h 0.76 ± 0.08 0.4910.06 1.3410.19 1.6910.18
4 h 0.79 ± 0.08 0.51 ±0.05 1.3310.17 1.7610.16
5 h 0.75 ± 0.05 0.4610.03 1.3810.22 1.8810.26
6 h 0.67 ± 0.07 0.4010.05 1.3210.23 1.9010.22
7 h 0.61 ± 0.08 0.38 10.07 1.3610.16 1.91 ±0.18
8 h 0.6410.10 0.38 10.07 1.2610.22 1.7110.24
lOh 0.64 ± 0.06 0.3910.05 1.1410.19 1.5210.23
12 h 0.5410.05 0.32 10.04 1.01 ±0.17 1.0310.18
16 h 0.4910.06 0.3010.05 0.8710.16 0.75 10.20
20 h 0.3410.04 0.2210.03 0.6510.18 0.4710.20
24 h 0.2810.03 0.1810.02 0.4310.13 0.2710.12
30 h 0.1410.01 0.11 ±0.01 0.2210.07 0.1310.05
34 h 0.1110.01 0.08 10.01 0.0910.02 0.0610.01
48 h 0.05 10.01 0.05 10.01 0.0410.01 0.0410.01
54 h 0.0410.00 0.0410.01 0.00 0.00
72 h 0.00 0.00 0.00 0.00
96 h 0.00 0.00 0.00 0.00
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Figure 2-2-4. Mean (± SEM) plasma concentrations (pg/ml) of enantiomers (FBZ.SO-1 

and FBZ.SO-2) of oxfendazole (FBZ.SO) in ponies following iv administration of 

oxfendazole (10 mg/kg) either alone (A) or in combination (B) with piperonyl butoxide 

(PB) (31 mg/kg).
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Figure 2-2-5. Ratio of the percentage of enantiomers (FBZ.SO-1 and FBZ.SO-2) (pg/ml) 

in ponies following iv administration of oxfendazole (10 mg/kg) either alone (A) or in 

combination with piperonyl butoxide (31 mg/kg) (B).
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approximately 60:40 from 5 h until 24 h after drug administration and then the ratio 

changed towards that of a racemate between 24 h and 48 h. The co-administration of 

piperonyl butoxide dramatically changed the absolute and relative plasma disposition of 

each enantiomer. The FBZ.SO-2 enantiomer predominated from the time of 

administration until 10 h and the ratio approached 40:60 5 h after FBZ.SO 

administration. From 10 h the FBZ.SO-1 enantiomer predominated and the ratio 

(FBZ.SO-l:FBZ.SO-2) increased until 30 h after administration and then decreased until 

48 h at which time it approached a racemate. The AUCs of FBZ.SO-1 and FBZ.SO-2 

were 15.78 and 10.68 pg.h/ml, respectively whereas they increased to 26.16 and 27.45 

fig.h/ml, respectively following co-administration of FBZ.SO with piperonyl butoxide.

2.2.4 Discussion

The intravenous administration of FBZ.SO generated an unusual plasma profile since an 

initial decline phase was followed by an incline and subsequently a plateau in the parent 

molecule concentration. Since the total dose was administered as a single intravenous 

bolus administration over a short period of approximately one minute, this should have 

been followed by a decline associated with distribution and elimination processes. The 

reasons for this concentration-time profile are unclear, however it is hypothesized that 

they may be related to drug solubility. It is difficult to prepare benzimidazole compounds 

for intravenous injection because of their poor water solubility. In this study, FBZ.SO 

was dissolved in dimethylsulphoxide (DMSO) for administration and a very concentrated 

(50% FBZ.SO) solution was prepared for practical administration purposes such that the 

volumes for delivery were 2 ml/100 kg. It is possible that upon delivery into the aqueous 

environment of the jugular blood, FBZ.SO came out of solution and particulate material 

was trapped at a tissue site such as the lung. Release of this reservoir over time could 

have accounted for the unusual increases in plasma concentration. When FBZ.SO was 

co-administered with piperonyl butoxide, after an initial short decline phase (similar to 

administration of FBZ.SO alone) the plasma concentration time curve of parent molecule 

followed an increase phase.

The metabolism of sulphide to sulphoxide benzimidazoles is thought to be catalysed 

principally by the flavine monooxygenase (FMO) system (Galtier et al, 1986) whereas 

metabolism of sulphoxide to sulphone is thought to be catalysed by hepatic cytochrome 

P450 (Souhaili-el-Amri et al., 1988). Benchaoui and McKellar (1996) have reported that
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the pharmacokinetic disposition and antinematodal potentiation of FBZ was significantly 

increased by the co-administration of piperonyl butoxide, an inhibitor of cytochrome 

P450 (Franklin, 1977) in sheep and goats. Moreover it was demonstrated recently that in 

fasted horses the AUC of fenbendazole was increased from 0.32±0.11 jig.h/ml (FBZ 

alone) to 3.51±0.40 pg.h/ml when FBZ (10 mg/kg) was administered in combination 

with piperonyl butoxide (63 mg/kg) (McKellar, 1997a). In the present study, the parent 

drug (FBZ.SO) and its sulphide metabolite (FBZ) achieved significantly greater 

concentrations (AUC and Cmax) following administration of FBZ.SO with piperonyl 

butoxide. This was probably associated with inhibition of metabolism of the FBZ.SO to 

FBZ.SO2 since the elimination rates of each moiety appeared to be the same or faster 

(Figure 2-2-3) when administered with piperonyl butoxide and because the drug was 

administered intravenously, absorption was not relevant.

The presence of both enantiomers of benzimidazole sulphoxides has been reported after 

administration of the prochiral sulphide parent molecules (ABZ and FBZ) in the plasma 

of sheep, goats and cattle (Delatour, 1990a,b; 1991a,b). The flavine containing 

monooxygenase that is responsible for sulphoxidation produces the (+) sulphoxide 

whereas the cytochrome dependent monooxygenase that is responsible for sulphonation 

specifically uses the (-) enantiomer as a substrate (Landoni et al, 1997). Both the FMO 

and the MFO systems (cytochrome P450 mediated mixed function oxidases) act equally 

in rats, and probably in other monogastrics (man, dog, horse), while the FMO system is 

predominant in ruminants (Delatour et al, 1994). In the present study, FBZ.SO displayed 

enantiospecific disposition in the horse since the FBZ.SO-1 enantiomer was predominant 

following administration of the racemate and the FBZ.SO-l:FBZ.SO-2 ratio was 60:40 

throughout most of the disposition period in plasma. The co-administration of piperonyl 

butoxide dramatically altered the enantiospecific disposition of FBZ.SO since the 

FBZ.SO-2 enantiomer predominated for the first 12 h following administration and then 

the ratio changed in favour of the FBZ.SO-1 enantiomer.

In conclusion, co-administration of FBZ.SO with piperonyl butoxide significantly 

affected its plasma disposition. The increased AUC of active moieties (FBZ.SO and 

FBZ) following co-administration of FBZ.SO with piperonyl butoxide may improve its 

anthelmintic activity since this has been demonstrated previously in sheep (Benchaoui 

and McKellar, 1996). The pharmacokinetics of FBZ.SO was shown to be
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enantioselective and the co-administration of piperonyl butoxide markedly altered the 

disposition of both enantiomers in the horse.
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Section 3

The effect of piperonyl butoxide on the metabolism and chirality of benzimidazoles 

in microsome samples of equine liver: in vitro studies

2.3.1. Introduction

Benzimidazole anthelmintics are extensively metabolised in all animal species and the 

parent drug is short-lived and metabolic products predominate in plasma. The primary 

metabolites, usually produced by oxidation and hydrolysis, are all more polar and water 

soluble than the parent drug. For thioether and sulphoxide benzimidazole compounds, 

liver microsomal oxidation is a common metabolic pathway and they are metabolised 

into their sulphoxides, which in turn are oxidized into the more polar and less 

anthelmintically active sulphone metabolites (Lanusse and Prichard, 1993). The less 

oxidized moieties of benzimidazoles are thought to have greater affinity for nematode 

tubulin and consequently metabolic inhibitors which increase their total relative 

bioavailability, could be particularly useful in improving efficacy.

The present study was undertaken to determine the effect of piperonyl butoxide, a 

cytochrome P450 inhibitor, on the in vitro metabolism of oxfendazole, fenbendazole and 

oxibendazole using horse liver microsome samples.

2.3.2. Materials and methods 

2.3.2.I. Liver microsome preparations

2.3.2.1.1 Chemicals

Sodium chloride (0.9%), potassium chloride (1.15%) (BDH Chemicals Ltd., Coole, UK) 

and tris buffer in 20% glycerol (Sigma Chemical Ltd., UK) were used for the isolation of 

microsomes from liver tissue.

The chemicals used for the cofactor solution were as follows: Trizma hydrochloride, 

trizma base, isocitrate dehydrogenase, nicotinamide adenine dinucleotide phosphate 

(NADP) and tri sodium isocitrate, all obtained from Sigma Chemical Ltd. (UK); and 

MgCb from BDH Chemicals Ltd. (Poole, UK).



The standard compounds used were FBZ, FBZ.SO, FBZ.SO2 and OH.FBZ from Hoechst 

Ltd. (Frankfurt, Germany), OBZ (Vetoquinol Ltd., UK) and 90% piperonyl butoxide 

(Aldrich Chemicals Ltd., UK). Solvents used in this experiment included varying 

proportions of acetonitrile (Rathbum Chemicals Ltd., UK) with water and acetic acid 

(BDH Chemicals Ltd., Coole, UK). Dimethylsulphoxide (DMSO) (BDH Chemicals Ltd., 

Coole, UK) was used to dissolve standard compounds to be added to incubation 

mixtures.

Microsome protein was measured using the Coomassie Blue Protein Assay Reagent 

(Fluka, Switzerland) with bovine serum albumin (BSA) (Sigma Chemical Ltd., UK).

2.3.2.1.2 Isolation of microsomes

Liver microsomes were prepared from livers obtained from seven horses euthanased for 

reasons other than hepatic diseases. After euthanasia, the liver was removed and perfused 

with ice-cold saline (0.9%, NaCl solution) through the hepatic veins. A piece of the liver 

lobe (300-400 g) was then drained of excess moisture and weighed. One hundred grams 

(100 g) of the liver portions were used from each animal. All procedures were performed 

at 0-4°C. The liver tissue was placed in 300 ml of 1.15% KC1 solution and finely 

chopped with a sharp knife before homogenisation using a Potter-Elvehjem homogeniser. 

Several passages of the teflon pestle were necessary to disrupt the tissue. The liver 

homogenate was centrifuged for 20 minutes at 9000 g  to clean the tissue (Removal of 

debris, nuclei and mitochondria). The floating fat layer was removed with a pasteur 

pipette, and the supernatant decanted into 6 Beckman Ultra-Clear tubes (California, 

USA). The tubes were centrifuged at 105000 g for 75 minutes in Beckman L8-70 

refrigerated ultracentrifuge. After discarding the cytosolic fraction (supernatant), the 

microsomal pellet was resuspended in 60 ml of 0.1 M tris-phosphate buffer (pH 7.4) 

containing 20% (v/v) glycerol using an Ultra-turrax. The microsomal suspensions were 

then stored at -70°C until the incubation assays. The protein content was determined 

using the Coomassie Blue Protein Assay Reagent. Diluted (x200) microsomal 

suspensions were used for determination of total protein. Bovine serum albumin (BSA) 

was used as a standard and a standard curve was run with each assay. The assay is based 

on the absorbance shift from 465 to 595nm that occurs when the regent binds to proteins 

in an acidic solution. Cytochrome P450 concentrations were not determined in this study.
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2.3.2.1.3 Drug incubation

Incubations were carried out in a shaking-water bath at 37°C for a period of 1 h. Ten-ml 

glass test tubes were used. One assay of an incubation mixture containing 4 mg of 

microsomal protein, 5 pi of test drugs (0.5 pM, 1 pM and 2.5 pM of FBZ.SO, FBZ and 

OBZ standards were each dissolved in DMSO) alone or with 5 pi of piperonyl butoxide 

(PB), and 1 ml of the co-factor solution (the precise amounts of co-factor solution are 

shown in Appendix C-l). Piperonyl butoxide was used at a constant concentration of 5 

pM. Tubes without microsome were used as controls for possible non-enzymatic drug 

conversion. Incubations were conducted in triplicate. After incubation, the test tubes with 

the reaction mixture were placed in boiling water for 2 minutes to terminate the reaction 

and then immediately stored at -20°C until analysis.

2.3.2.2 Drug analysis

2.3.2.2.1 Extraction

Oxfendazole, FBZ (and their relevant metabolites) and OBZ in microsome samples were 

extracted in a similar fashion to the procedure outlined in section 1. Incubated blank 

microsome samples were used for calibration. The drug extraction method involved the 

use of total samples of the incubation mixture and each incubation tube was rinsed with 1 

ml acetonitrile. Chloroform (6 ml) was added to each tube. The tubes were shaken on a 

slow rotary mixer for 10 min. After centrifugation at 1825 g for 15 min, 3 ml of the 

organic phase was transferred to a 10-ml glass tube for analysis of FBZ.SO, FBZ and 

their metabolites, and another 3 ml transferred to another tube for chiral analysis.

2.3.2.2.2 HPLC system

This was carried out as described in section 1 except for the following modifications. The 

column used was a Nemesis nukleosil Cig column (4p, 150x4.6mm) (Phenomenex, 

Cheshire, UK). For FBZ.SO, FBZ and their metabolites, the mobile phase through the 

column utilised a gradient profile changing from 25:75 (acetonitrile:water) to 45:55 for 6 

min, to 75:25 for 11 min and this changed to 25:75 which was maintained for up to 13 

min for equilibration of the column. The flow rate was 1.5 ml/min. The retention times 

were 3.48 min (FBZ.SO), 4.68 min (OH.FBZ), 5.58 min (FBZ.SO2) and 8.41 min (FBZ).
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For OBZ and its unidentified metabolites a mobile phase of acetonitrileiwater) with 

trifluoro acetic acid 0.5% (w/w) pumped as a gradient profile changing from 15:85 

(acetonitrileiwater) to 65:45 in 8 min and this changed to 15:85 for equilibration of 

column for 3 min at 1.5 ml/min flow rate. The retention times were 2.6 min for the first 

unidentified metabolite (Ml), 3.6 min for the second unidentified metabolite (M2), 5.4 

min for the third unidentified metabolite (M3), 6.2 min for the fourth unidentified 

metabolite (M4) and 7.4 min for OBZ. The amounts of unidentified metabolites produced 

in the incubation medium were estimated by using OBZ standard.

The HPLC system used for chiral analysis was as described in section 1.

2.3.2.2.3 Statistical analysis

The extent of conversion and the amount of unchanged drug, with and without metabolic 

inhibition were compared by one-way analysis of variance. Results were considered 

significant when P < 0.05.

2.3.3 Results

The microsomal protein content of the different equine livers used is given in Appendix 

C-2. Incubation done without microsomes resulted in negligible sulphonation (~1%) of 

the parent molecule (FBZ.SO).

Oxfendazole (FBZ.SO), FBZ and OBZ were incubated in liver microsome preparations 

alone or with piperonyl butoxide for 1 h. Only the sulphone (Figure 2-3-2, Appendix C- 

4) metabolite was detected after incubation of FBZ.SO. Sulphoxide (Figure 2-3-4 and 

Appendix C-6), Sulphone (Figure 2-3-5 and Appendix C-7) and hydroxy (Figure 2-3-6 

and Appendix C-8) metabolites were detected after incubation of FBZ. Four unidentified 

metabolites (Ml, M2, M3 and M4) were detected following OBZ incubation (Figures 2-

3-7,2-3-8, 2-3-9,2-3-10 and 2-3-11, and Appendices C-9, C-10, C-l 1, C-12 and C-13).

The extent of metabolism was 90.0%, 87.8% and 78.7% for FBZ.SO (Figure 2-3-1 and 

Appendix C-3) and 88.4%, 83.2% and 68.3% for FBZ (Figure 2-3-3 and Appendix C-5) 

after 0.5 pM, 1 pM and 2.5 pM substrate incubation, respectively. Whereas 12.1%, 7.8% 

and 11.4% of FBZ.SO, and 17.6%, 20.3% and 16.9% of FBZ were metabolised in the 

presence of piperonyl butoxide following 0.5 pM, 1 pM and 2.5 pM drug incubation,
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FBZ.SO (oxfendazole alone) 
FBZ.SO (oxfendazole + PB)

* * *

0.5 pM 1 pM 2.5 pM

Figure 2-3-1. Total amount of unchanged oxfendazole (FBZ.SO) remaining in the 

microsomal reaction mixture following incubation (0.5, 1 and 2.5 pM) with (5pM) and 

without (control) piperonyl butoxide (PB). (***) P<0.001.
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Figure 2-3-2. Amount of fenbendazole sulphone (FBZ.SO2), produced in microsomal

reaction mixture following oxfendazole (0.5, 1 and 2.5 pM) incubation with (5 pM) and

without piperonyl butoxide (PB). (***) PO.001.
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FBZ (fenbendazole alone) 
FBZ (fenbendazole + PB)

0.5 pM 1 pM 2.5 pM

Figure 2-3-3. Total amount of unchanged fenbendazole (FBZ) remaining in the 

microsomal reaction mixture following incubation (0.5, 1 and 2.5 pM) with (5pM) and 

without (control) piperonyl butoxide (PB). (***) P<0.001.
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Figure 2-3-4. Amount of fenbendazole sulphoxide (FBZ.SO), produced in microsomal

reaction mixture following fenbendazole (0.5, 1 and 2.5 pM) incubation with (5 pM) and

without (control) piperonyl butoxide (PB). (***) P<0.001.
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Figure 2-3-5. Amount of fenbendazole sulphone (FBZ.SO2), produced in microsomal 

reaction mixture following fenbendazole (0.5, 1 and 2.5 pM) incubation with (5 pM) and 

without (control) piperonyl butoxide (PB). (*) P<0.05, (***) P0.001.
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Figure 2-3-6. Amount of hydroxy fenbendazole (OH.FBZ), produced in microsomal

reaction mixture following fenbendazole (0.5, 1 and 2.5 pM) incubation with (5 pM) and

without (control) piperonyl butoxide (PB).
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OBZ (alone) 
OBZ (with PB)

***

0.5 pM 1 pM 2.5 pM

Figure 2-3-7. Total amount of unchanged oxibendazole (OBZ) remaining in the 

microsomal reaction mixture following incubation (0.5, 1 and 2.5 pM) with (5|iM) and 

without (control) piperonyl butoxide (PB). (***) PO.OOl.
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Figure 2-3-8. Amount of the first unidentified metabolite (Ml) produced in microsomal

reaction mixture following oxibendazole (0.5, 1 and 2.5 pM) incubation with (5 pM) and

without (control) piperonyl butoxide (PB). (*) P<0.05, (**) PO.01, (***) P0.001.
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Figure 2-3-9. Amount of the second unidentified metabolite (M2) produced in 

microsomal reaction mixture following oxibendazole (0.5, 1 and 2.5 pM) incubation with 

(5 pM) and without (control) piperonyl butoxide (PB). (***) PO.OOl.
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Figure 2-3-10. Amount of the third unidentified metabolite (M3) produced in 

microsomal reaction mixture following oxibendazole (0.5,1 and 2.5 pM) incubation with 

(5 pM) and without (control) piperonyl butoxide (PB). (***) PO.OOl.
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Figure 2-3-11. Amount of the fourth unidentified metabolite (M4) produced in 

microsomal reaction mixture following oxibendazole (0.5, 1 and 2.5 pM) incubation with 

(5 pM) and without (control) piperonyl butoxide (PB). (***) PO.OOl.
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respectively. The ratios between the sulphone (FBZ.SO2) metabolites formed without PB 

and in the presence of PB after 0.5 pM, 1 pM and 2.5 pM FBZ.SO or FBZ incubation 

were approximately 2:1, 3:1, 5:1 and 2:1, 3:1, 7:1, respectively. This was associated with 

a concurrent significant (P<0.001) reduction in the formation of the sulphone (FBZ.SO2) 

metabolite when the substrate was incubated with piperonyl butoxide. After FBZ 

incubation, the formation of the sulphoxide (FBZ.SO) metabolite was inhibited 

significantly (PO.OOl) only at the highest concentration (2.5 pM) (Figure 2-3-4) in the 

presence of piperonyl butoxide, however the generation of the hydroxy metabolite 

(OH.FBZ) of FBZ was not affected by piperonyl butoxide (Figure 2-3-6).

Oxibendazole was extensively metabolised to its unidentified metabolites (Ml, M2, M3 

and M4) and this was also inhibited by piperonyl butoxide (Figure 2-3-7). Following 0.5 

pM, 1 pM and 2.5 pM OBZ incubation, 1%, 4% and 17% of the parent drug remained in 

the medium, respectively whereas 24%, 36% and 60% of the substrate (OBZ) remained 

after OBZ incubation with piperonyl butoxide. Three unidentified metabolites (Ml, M2, 

M4) were significantly inhibited but one of the unidentified metabolites (M3) was 

increased markedly after OBZ incubation with piperonyl butoxide.

The enantiospecific metabolism was determined following incubation of FBZ.SO 

(Figures 2-3-12, 2-3-13 and Appendices C-14, C15) as a racemate substrate and 

following incubation of FBZ (Figures 2-3-14, 2-3-15 and Appendices C-16, C l7) with 

and without piperonyl butoxide). Microsomal metabolism was apparently enantiospecific 

since metabolism of the enantiomers was significantly different (P<0.001) and the ratios 

(FBZ.SO-l:FBZ.SO-2) of enantiomers (remaining in the incubation medium) were 7:1, 

7:1 and 5:1 after incubation of 0.5 pM, 1 pM and 2.5 pM FBZ.SO (alone), respectively 

(Figure 2-3-12). There was a marked change in the ratio when FBZ.SO was incubated 

with piperonyl butoxide such that the ratios (FBZ.SO-l:FBZ.SO-2) approached 1:1 for 

all 3 concentration incubations (Figure 2-3-13). Fenbendazole (FBZ) metabolism to 

sulphoxide (FBZ.SO) was also shown to be enantiospecific since FBZ.SO-1 

predominated in the reaction mixture and the ratios were 10:0, 20:1 and 10:1 after 

incubation of 0.5 pM, 1 pM and 2.5 pM FBZ (alone), respectively (Figure 2-3-14). 

Piperonyl butoxide affected the enantiospecific character of the metabolism since the 

ratios (FBZ.SO-l:FBZ.SO-2) were 6:1, 4:1 and 3:1 when 0.5 pM, 1 pM and 2.5 pM FBZ 

were incubated with piperonyl butoxide (Figure 2-3-15), respectively.
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Figure 2-3-12. Total enantiomers (FBZ.SO-1 and FBZ.SO-2) remaining in microsome 

reaction mixture following oxfendazole (0.5, 1, 2.5 pM) incubation. (***) PO.OOl.
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Figure 2-3-13. Total enantiomers (FBZ.SO-1 and FBZ.SO-2) remaining in microsome 

reaction mixture following oxfendazole (0.5, 1, 2.5 pM) incubation with (5pM) 

piperonyl butoxide (PB).
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Figure 2-3-14. Enantiomers (FBZ.SO-1 and FBZ.SO-2) produced in microsome reaction 

mixture following fenbendazole (0.5, 1,2.5 pM) incubation. (***) PO.OOl.
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Figure 2-3-15. Enantiomers (FBZ.SO-1 and FBZ.SO-2) produced in microsome reaction

mixture following fenbendazole (0.5, 1, 2.5 pM) incubation with (5pM) piperonyl

butoxide (PB). PO.OOl.
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2.3.4 Discussion

The in vitro studies with liver microsome samples supported the in vivo studies described 

in section 1 and section 2. It has been demonstrated that both sulphoxidation and 

sulphonation of fenbendazole were inhibited by piperonyl butoxide in rat liver 

microsomes and hepatocytes (Benchaoui and McKellar, 1996). In the present study, 

piperonyl butoxide inhibited significantly (PO.OOl) the sulphonation of FBZ.SO and the 

sulphoxidation and sulphonation of FBZ. The mean substrate concentrations metabolised 

were 85.5% and 80.0% following 3 different concentrations (0.5, 1 and 2.5 pM) of 

FBZ.SO and FBZ incubations, respectively, whereas only 10.4% and 18.3% of the 

substrates (FBZ.SO and FBZ), respectively were metabolised in the presence of 

piperonyl butoxide. Both FBZ.SO and FBZ extensively metabolised their sulphone 

metabolites as reported in the study in vivo in section 1 and 2. Only sulphone metabolite 

was detected after FBZ.SO incubation whereas sulphoxide, sulphone and hydroxy 

metabolites were detected after FBZ incubation. This could be due to the cytochrome 

P450 enzyme system which is thought to be responsible for sulphonation and this system 

may be more predominant than the FMO enzyme system in horse. Piperonyl butoxide did 

not inhibit the formation of FBZ.SO metabolite following 0.5 and 1 pM FBZ incubation 

but significantly inhibition occurred after the highest (2.5 pM) FBZ incubation 

(PO.OOl). No significant inhibition was observed for formation of the OH.FBZ 

metabolite after FBZ incubation with piperonyl butoxide. These data suggest that 

piperonyl butoxide does not affect the enzyme system that is responsible for the 

hydroxylation of FBZ.

The present liver microsome study showed that OBZ was metabolised extensively to its 

unidentified metabolites and piperonyl butoxide significantly inhibited the metabolism of 

OBZ. Three unidentified metabolites (Ml, M2 and M4) were significantly decreased 

whereas one of the unidentified metabolite (M3) was significantly increased when OBZ 

was incubated with piperonyl butoxide. Piperonyl butoxide not only inhibits many P450 

enzyme systems but also induce some P450 metabolising enzymes (Vodicnik et al., 

1981; Erickson et al., 1988; Adams et al., 1993a, b). However, such induction is unusual 

after one-hour incubation since enzyme induction typically requires a much longer 

incubation period (Delatour, personal communication).
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The chiral analysis also supported the in vivo study reported in section 2. It was apparent 

that FBZ.SO-2 was metabolised much more rapidly than FBZ.SO-1 in liver microsomes 

and that piperonyl butoxide altered the metabolism such that the ratio of FBZ.SO- 

l:FBZ.SO-2 remaining in the medium after incubation of FBZ.SO was much closer to 

racemate (50:50). However, FBZ.SO-1 was produced much more extensively than 

FBZ.SO-2 following FBZ administration and the proportion of FBZ.SO-2 was increased 

significantly in total enantiomers (FBZ.SO-l+FBZ.SO-2) formed after incubation with 

piperonyl butoxide present. The stereo-selective character of P450 (responsible for the 

sulphonation) and FMO (responsible for sulphoxidation) enzyme systems possibly 

explain the differential metabolism and generation rates of enantiomers after FBZ.SO and 

FBZ incubation, respectively. Furthermore, the inhibition of the P450 enzyme systems by 

piperonyl butoxide may alter the rates of enantiomer metabolism.

In conclusion, piperonyl butoxide inhibited the metabolism of FBZ.SO, FBZ and OBZ in 

vitro. Piperonyl butoxide also altered the metabolism of the enantiomers after FBZ.SO 

incubation and generation of enantiomers after FBZ incubation in vitro using equine liver 

microsomes. This finding may have important applications in vivo when aiming to 

enhance the efficacy of FBZ.SO, FBZ and OBZ.
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CHAPTER 3

Pharmacokinetics and faecal excretion pattern of ivermectin, doramectin and

moxidectin in horses
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3.1 Introduction

Avermectins and milbemycins have been used intensively to control parasites in animals, 

humans and on crops worldwide. Both chemical groups are naturally derived 16- 

membered macrocyclic lactones (Takiguchi et al., 1980) and are produced by the soil 

dwelling actinomycetes, Streptomyces spp. Avermectins and milbemycins have excellent 

activity against nematodes and have systemic activity against several pathogenic 

ectoparasites of domestic animals at low dosage rates. Due to the high activity of 

avermectins and milbemycins against both nematodes and arthropods, they are now 

classified as “endectocides” (McKellar and Benchaoui, 1996). However these drugs have 

no useful activity against trematodes or cestodes (Shoop et al., 1995).

The pharmacokinetic behaviour of ivermectin (IVM) has been investigated more 

extensively than that of the other members of the macrocyclic lactones, since IVM was 

the first avermectin used commercially and is the most widely used endectocide across 

animal species. The pharmacokinetic behaviour of avermectins and milbemycins are 

significantly affected by route of administration, formulation of the drug, and interspecies 

and interindividual variation (McKellar and Benchaoui, 1996). These anthelmintics are 

highly lipophilic substances, and are extensively distributed throughout the body and 

slowly eliminated from tissues such as liver and fat (Zulalian et al., 1994). For this 

reason a larger volume of distribution (Vd) is generally obtained for these compounds 

compared to other anthelmintics (Lanusse et al., 1997).

In the present study, the pharmacokinetic disposition and faecal excretion of IVM, 

doramectin (DRM) and moxidectin (MXD) were studied in horses after oral 

administration.

3.2 Materials and methods

3.2.1 Animals

Twenty-four horses weighing 490-880 kg were used in this study. Animals were kept at 

pasture but were gathered into a corral for the period of drug administration and for 4 h 

thereafter. Water was available ad libitum during the experimental period. No invasive 

procedures were involved beyond blood and faecal sampling procedures. Horses were
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allocated into three groups of eight such that the mean weight of animals in each group 

was similar and the horses were identified by unique freeze brand or natural markings.

The animals used in the study were treated with Panacur (10%) biannually however they 

were not treated prior to the study.

3.2.2 Drug administration and sampling procedure

The commercially available equine formulation of IVM (Eqvalan® paste, 1.87% w/v) and 

MXD (Equine® gel, 2% w/v), and the injectable cattle formulation of DRM (Dectomax® 

1% w/v) were administered orally as a single bolus dose on the back of the tongue each 

at 200 jug/kg bodyweight.

Heparinized blood samples were collected by jugular venipuncture prior to drug 

administration and 1, 2,4, 8, 12, 20, 24, 32, 48, 72, 96, 120 h and 8, 11, 25, 39, 66 and 80 

days later. Supplementary samples were collected on day 197 following administration of 

MXD to cater for the longer residence time of this drug. Faecal samples (>10 g) were 

also collected per rectum throughout the blood sampling period, before drug 

administration and thereafter at 4, 8, 24, 32, 48, 120 h and 8, 11, 25, 39 days in order to 

determine the pattern of faecal excretion. Blood samples were centrifuged at 1825 g for 

30 min and plasma was transferred to plastic tubes. All the plasma and faecal samples 

were stored at -20°C until estimation of drug concentration.

The stability of IVM, DRM and MXD in stored experimental samples was corroborated 

by HPLC determination of fortified plasma kept under the same conditions throughout 

the period of the experiment.

3.2.3 Drug analysis

The parent compounds of IVM, DRM and MXD in plasma and faeces were analyzed by 

high performance liquid chromatography (HPLC) with a liquid phase extraction 

procedure adapted from that described by Scott and McKellar (1992).

3.2.3.1 Standard preparation

Stock solutions (100 jig/ml) of pure standards of IVM (Merck, Rahway, NJ, USA), DRM 

(Pfizer Inc., Groton, USA) and MXD (American Cyanamid, Princeton, NJ, USA) were
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prepared using acetonitrile (Rathbum Chemical Ltd., UK) as a solvent. These were 

diluted to give 5, 10, 100, 200 500 ng/ml and 0.5, 1, 5, 10, 50 pg/ml standard solutions 

for plasma and faecal samples, respectively for calibration as standard curves and to add 

to drug-free plasma and faecal samples to determine the recovery.

3.2.3.2 Extraction from Plasma

Drug-free plasma samples (1 ml) were spiked with either IVM, DRM or MXD standards 

to reach the following final concentrations: 0.5, 1, 10, 20, 50 ng/ml, and acetonitrile (1 

ml) was added. After vortexing for 15 seconds, chloroform, 5 ml, (Rathbum Chemical 

ltd., UK) was added. The tubes were shaken on a slow rotary mixer for 15 min. After 

centrifugation at 1825 g for 15 min, the supernatant was removed from the tube with a 

pasteur pipette. The organic phase (4 ml) was transferred to a thin-walled 10 ml-conical 

glass tube and evaporated to dryness at 43°C in a sample concentrator (model SC210A, 

Svant Instrument Inc., Holbrook, NY, USA). The dry residue was dissolved in 100 pi of 

N-methylimidazole (Sigma-Aldrich Co. Ltd., Gillingham, Dorset, UK) solution in 

acetonitrile (1:1). To initiate the derivatization, 150 pi trifluoroacetic anhydride (Sigma- 

Aldrich Co. Ltd., Gillingham, Dorset, UK) solution in acetonitrile (1:2) was added. 

Finally, 50 pi of this solution was injected into the chromatographic system.

3.2.3.3 Extraction from faeces

Wet-faecal material was mixed finely with a spatula to obtain a homogeneous sample. 

Drug-free wet faeces samples (0.5 g) were spiked with either IVM, DRM or MXD 

standards to reach the following final concentrations: 0.05, 0.1, 0.5, 1, 5 pg/g. Water (1 

ml) and 4 ml acetonitrile were added to the 10 ml-ground glass tubes including 0.5 g 

spiked and experimental wet-faecal samples. After vortexing for 15 seconds, 6 ml 

chloroform was added. The tubes were shaken on a slow rotary mixer for 15 min. After 

centrifugation at 1825 g for 15 min, the supernatants were removed with a pasteur 

pipette. The organic phase (5 ml) was transferred to a thin-walled 10 ml-conical glass 

tube and evaporated to dryness at 43 °C in the sample concentrator. The dry residue was 

dissolved in 100 pi of N-methylimidazole solution in acetonitrile (1:1). To initiate the 

derivatization, 150 pi trifluoroacetic anhydride solution in acetonitrile (1:2) was added. 

The derivatized samples were diluted appropriately with acetonitrile and filtered with
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GF/C glass microfibre filter (Whatman International Ltd., Maidstone, England). This 

solution (50pl) was injected into the chromatographic system.

3.2.3.4 HPLC system

The mobile phase of 100% acetonitrile for IVM, acetonitrileiwater (99.5:0.5) for DRM 

and acetonitrile:methanol (65:35) for MXD was delivered (model LC-10AS, Shimadzu, 

Kyoto, Japan) at a flow rate of 1.8 ml/min for IVM and DRM, and 1.2 ml/min for MXD. 

A Genesis Cis, 4 pm column (150 mm x 4.6 mm) (Crawford Scientific, Strathaven, UK) 

was used for IVM and MXD, and a Nova-Pak Cis, 4 pm column (150 x 3.9 mm) 

(Waters, Milford, Massachusetts, USA) was used for DRM with florescence detection 

(model RF-10A, Shimadzu, Kyoto, Japan) at an excitation wavelength of 365 nm and an 

emission wavelength of 475 nm. Retention times were 8.90 min (IVM), 5.43 min 

(DRM), and 4.82 min (MXD) (Figure 3-1).

For faecal samples a solvent delivery system (Spectra Physics SP4000, Burke Electronics 

Ltd., Glasgow, UK) connected to a Nemesis Cis, 4pm column (150 mm x 4.6 mm) 

(Phenomenex, Cheshire, UK) and a florescence detector (Spectra Physics FL3000) at an 

excitation wavelength of 365 nm and an emission wavelength of 475 nm was used. The 

mobile phase was 100% acetonitrile for IVM, acetonitrileiwater (97:3) for DRM and 

acetonitrileiwater (96.5:3.5) for MXD.

3.2.3.5 Recovery and precision

Recovery of the three parent molecules under study was measured by comparison of the 

peak areas from spiked plasma samples with the areas resulting from direct injections of 

standards in acetonitrile carried through the derivatization procedure. The inter-assay 

precision of the extraction and chromatography procedures was evaluated by processing 

replicate aliquots of drug-free horse plasma or faecal samples containing known amounts 

of the drugs on different days. The limit of quantification of the assay was 0.25 ng/ml for 

plasma and 0.05 pg/g for faecal samples. Recoveries and coefficients of interassay 

variations are reported in Appendices D-l and D-8 for plasma and faecal extractions, 

respectively. To determine the dry proportion of wet faecal samples, 1.0 g of wet faeces 

from each sample was weighed exactly into an evaporating bowl and heated in an oven at
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Figure 3-1. Typical chromatograms for standards of ivermectin (A), doramectin (B) and 

moxidectin (C).
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70°C for 10 h. The weight of each was determined and the percentage of each dry sample 

was calculated.

3.2.4 Pharmacokinetic and statistical analysis of data

The individual data from each animal were analysed using non-compartmental model 

analysis with extravascular input as described in section 1. The pharmacokinetic 

parameters are reported as mean ± SEM. Mean pharmacokinetic parameters for IVM, 

DRM and MXD obtained following oral administration to horses were statistically 

compared by the Mann-Whitney U test. Mean values were considered significantly 

different at P < 0.05.

3.3 Results

The mean plasma concentrations of IVM, DRM and MXD are presented in Table 3-1 for 

mean values and individual values are shown in Appendices D-2, D-4 and D-6, 

respectively. The plasma concentration vs time curves are shown in Figures 3-2 and 3-3 

and the pharmacokinetic parameters of IVM, DRM and MXD are presented in Table 3-2. 

Large variations in kinetic parameters were observed between individual animals in this 

study, however a similar pattern of absorption and the time to reach the peak plasma 

concentration (tmax) was observed for each substance. The peak plasma concentrations 

(Cmax) and times to reach peak plasma concentrations (tmax) were not significantly 

different for IVM, DRM and MXD however the area under the curve (AUC) for MXD 

(86.8 ± 10.4 ng.d/ml) was significantly larger than that of IVM (46.4 ± 8.2 ng.d/ml) but 

not of DRM (76.5 ±15.6 ng.d/ml). The mean residence time (MRT) of MXD (16.3 ± 2.5 

day) was significantly longer than DRM (4.0 ±1.1 day) and IVM (2.4 ± 0.2 day). Mean 

(±SEM) and individual dry-faecal concentrations are shown in Table 3-3 and Appendix 

D-9, respectively and the mean dry-faecal concentration vs time curves presented in 

Figure 3-4. The faecal excretion pattern of IVM, DRM and MXD were similar and no 

significant difference was observed for Cmax and AUC values of any of the molecules in 

faeces. The highest faecal concentrations (19.5 pg/g for IVM, 20.5 pg/g for DRM and 

16.6 pg/g for MXD) were determined at 24 h for all molecules.
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Table 3-1. Mean (± SEM) plasma concentrations (ng/ml) of ivermectin (IVM),

doramectin (DRM) and moxidectin (MXD) following oral administration to horses at 200

|ig/kg bodyweight.

Mean ± SEM

Time IVM DRM MXD
(n=8) (n=8) (n=8)

0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

l h 0.99 ±0.61 1.71 ±0.96 1.67 ± 1.07

2 h 5.08 ± 1.72 6.31 ±2.96 8.05 ±3.19

4 h 19.45 ±4.03 23.62 ±6.59 23.63 ± 5.39

8 h 19.87 ±4.04 23.14 ±5.46 27.26 ± 2.56

12 h 18.48 ±3.03 22.79 ±3.38 21.73 ±2.94

20 h 14.40 ±2.61 17.19 ± 1.87 16.65 ±2.00

24 h 13.20 ±2.23 14.86 ± 1.85 13.11 ±1.95

32 h 10.54 ± 1.73 13.19 ± 1.85 10.15 ± 1.19

48 h 6.86 ± 0.94 10.83 ± 1.64 6.40 ± 0.69

72 h 5.61 ± 1.08 7.95 ± 1.15 4.36 ± 0.36

96 h 3.89 ± 0.70 6.52 ± 1.16 3.29 ±0.41

120 h 2.90 ± 0.62 4.70 ± 0.74 2.46 ± 0.35

8 days 1.54 ±0.40 3.60 ± 0.77 1.87 ±0.23

11 days 0.08 ± 0.06 0.63 ± 0.36 1.00 ±0.14

25 days 0.00 ± 0.00 0.26 ±0.26 0.75 ±0.11

39 days 0.00 ± 0.00 0.18 ±0.18 0.65 ± 0.09

66 days 0.00 ± 0.00 0.00 ±0.00 0.51 ±0.07

80 days 0.00 ± 0.00 0.00 ± 0.00 0.33 ± 0.08

188 days - - 0.00 ± 0.00

197 days - - 0.00 ± 0.00
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Figure 3-2. Semi log plot of mean (±SEM) plasma concentrations of ivermectin (IVM), 

doramectin (DRM) and moxidectin (MXD) following oral administration to horses (n=8) 

at a dose rate of 200 pg/kg.
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Figure 3-3. Mean (±SEM) plasma concentrations of ivermectin (IVM), doramectin

(DRM) and moxidectin (MXD) on the first 8 days following oral administration to horses

(n=8) at a dose rate of 200 pg/kg.
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Table 3-2. Mean (±SEM) pharmacokinetic parameters of ivermectin (IVM), doramectin

(DRM) and moxidectin (MXD) following their oral administration to horses at a dose

rate of 200 pg/kg (n=8).

Mean ± SEM
IVM DRM M XD

Parameters (n=8) (n=8) (n=8)

Cmax (ng/ml) 23.5 ±4.15 26.98 ± 5.46 30.16 ±4.47

tmax (h) 9.6 ±2.16 10.56 ±2.88 7.44 ± 0.96

AUCiast (ng.d/ml) 46.41 ± 8.2 76.54 ± 15.57 86.81 ± 10.45*

AUMCiast (ng.d2/ml) 117.4 ±25.3 390.12 ± 198.1 1550 ±336**

MRTiaSt (d) 2.4 ±0.15 4.00 ± 1.05*** 16.31 ±2.45**

* MXD significantly different from IVM (P < 0.05).
** MXD significantly different from IVM and DRM (P < 0.05).
*** DRM significantly different from IVM (P < 0.05).
Cmax- peak plasma concentration; tmax: time to reach peak plasma concentration; 
AUCiast: area under the (zero moment) curve from time 0 to the last detectable 
concentration; AUM C^: area under the moment curve from time 0 to t last detectable 
concentration; M R T ^  mean residence time.
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Table 3-3. Mean (± SEM) dry-faecal concentrations (|ig/g) of ivermectin (IVM),

doramectin (DRM) and moxidectin (MXD) following their oral administration to horses

(n=8) at 200 jug/kg bodyweight.

Mean ± SEM
Time IVM DRM MXD

(n=8) (n=8) (n=8)

0 0.00 ± 0.00 0.00 ±0.00 0.00 ± 0.00

4 h 0.00 ±0.00 0.00 ± 0.00 0.00 ± 0.00

8 h 1.12 ±0.57 0.07 ± 0.05 0.11 ±0.09

24 h 19.53 ±3.00 20.52 ±2.61 16.61 ±3.74

32 h 10.28 ±2.26 10.91 ±2.30 5.92 ±1.68

48 h 1.26 ±0.28 3.89 ± 1.76 0.91 ±0.32

120 h 0.03 ± 0.03 0.20 ±0.12 0.01 ±0.00

8 day 0.00 ±0.00 0.04 ±0.04 0.00 ± 0.00

11 day 0.00 ±0.00 0.00 ±0.00 0.00 ± 0.00

25day 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

39 day 0.00 ±0.00 0.00 ±0.00 0.00 ± 0.00
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Figure 3-4. Mean (±SEM) dry-faecal concentrations (p.g/g) of ivermectin (IVM),

doramectin (DRM) and moxidectin (MXD) following their oral administration to horses

(n=8) at 200 (xg/kg bodyweight.
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3.4. Discussion

The pharmacokinetics and activity of avermectins and milbemycins are particularly 

influenced by the physicochemical properties of the active molecules. It has been 

reported that MXD is 100 times more lipophilic than IVM (Hayes, 1994) and that the 

water solubility of MXD (4.3 mg/L) (Lanusse and Prichard, 1993) is much higher than 

that of IVM (0.006-0.009 mg/L) (Fisher and Mrozik, 1989). The water solubility and 

lipophilicity of MXD are unusual for a drug since increased water solubility is usually 

directly associated with decreased lipophilicity. In cattle, the concentration of MXD in fat 

tissue has been shown to be ninety-fold higher than that detected in plasma 28 days 

following treatment (Zulalian et al., 1994). Although IVM, DRM and MXD showed 

similar absorption patterns, the plasma decline of MXD was initially faster in comparison 

to IVM and DRM following oral administration in horses in the current study (Figures 3- 

2 and 3-3). In contrast, the MRT of MXD (16.3 ± 2.5 day) was significantly longer than 

the values for DRM (4.0 ±1.1 days) and IVM (2.4 ± 0.2 days). These results may also be 

associated with greater proportions of MXD accumulating in fat tissue than IVM and 

DRM. The higher fat tissue reservoir of MXD may explain the extended persistence of 

that molecule compared to that of the avermectins and could confer persistent efficacy 

against equine parasites due to its longer retention time in plasma and excretion into the 

gastrointestinal tract.

There is a high correlation (r2 = 0.922) between body weight and time until MXD is no 

longer detectable in sheep (Shoop et al., 1997). A similar correlation could not be 

determined for IVM or MXD in the current study due to similar body weight of animals 

in the groups. However a correlation (r2 = 0.703) was found between body weight and 

time until concentrations fell below the limit of detection of DRM. The lightest horse 

(490 kg) demonstrated zero detectable plasma concentration of DRM at day 8 whereas; 

the heaviest horse (880 kg) reached zero detectable plasma concentration at day 39. 

These results could be related to the amount of fat tissue in the animals.

The results of the present study differ substantially from those previously reported for 

IVM and MXD in horses (Perez et al., 1999). In the previous study MXD was 

administered at 400 fig/kg whereas in this study it was administered at 200 pg/kg. 

Nevertheless the Cmax of 70.35 ± 10.73 ng/ml obtained by Perez et a l  (1999) was more
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than double and the AUC {363.6 ± 66.0 ng.d/ml vs 86.81 ± 10.45 ng.d/ml) was 

approximately four times that obtained in the present study. Differences in the two 

studies may not be associated simply with dosage rates since IVM was given at the same 

dosage rate of 200 jig/kg in both studies but produced different pharmacokinetic 

parameters. Thus, the Cmax 43.99 ± 23.05 ng/ml, AUC 132.7 ± 47.3 ng.d/ml and MRT 

4.78 ± 0.64 d obtained by Perez et al. (1999) were all substantially larger than in the 

present study (Cmax 23.5 ± 4.2 ng/ml, AUC 46.4 ± 8.2 ng.d/ml and MRT 2.4 ± 0.2 d). 

These differences may in part be due to differences in methodology although they would 

appear to be too large to be wholly attributed to such differences. It is unlikely that 

formulation differences could be responsible since both studies used Eqvalan® produced 

by Merck, Sharp & Dome. In the present study horses were ‘yarded’ for the period 

during and immediately (4 h) after drug administration and were then returned to a grass 

paddock. Feeding could therefore have caused differences in drug absorption. Parasitism 

could have had an effect since the horses used by Perez et al. (1999) were known to be 

infected with gastrointestinal parasites and such infections may have modest effects on 

absorption of anthelmintics (McKellar et al., 1991). Unfortunately the parasitological 

status of the horses in the present study was unknown, although cyathostomes were seen 

in the faeces of these animals and clearly they were exposed to parasites. The most likely 

factor affecting the pharmacokinetics of ivermectin in the present study was the breed 

and size of the animals used. Perez et al. (1999) used Chilean criollo horses weighing 

390-446 kg whereas a mixed group of thoroughbreds and hunters weighing between 560 

kg and 690 kg were administered IVM in the present study.

The mode of activity of avermectins and milbemycins is not specific to parasitic 

nematodes and arthropods and when these agents reach the environment they may affect 

non-target organisms, which play an important role in the decomposition of faeces 

(McKellar, 1997b). Ivermectin has been shown to be excreted in high concentrations in 

the bile of ruminants (Bogan and McKellar, 1988) and primarily eliminated in faeces 

with less than 2% of the total dose being excreted in urine (Chiu et al., 1990). Wet-faecal 

concentrations of IVM as low as 0.001 ppm are toxic to some dung-breeding insects 

(Strong and James, 1993). Other avermectins and milbemycins have similar 

ecotoxicological effects, since they share similar broad-spectrum antiparasitic activity, 

although the potency of different agents may make them less of a risk for specific non-
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target species (McKellar, 1997b). The present study indicated that highest concentrations 

of all the macrocyclic lactones are found in the faeces for 48 h after drug administration, 

by 120 h after administration, concentrations of the anthelmintics were below the limit of 

detection (0.05 pg/g). This suggests that the period of greatest environmental risk is for 

two days following administration of these drugs to horses although it is known that very 

low concentrations of ivermectin (0.001 ppm) have deleterious effects on some dung- 

breeding organisms (Strong and James, 1993).

In conclusion, the results from this study show that the persistence of MXD in plasma is 

significantly greater than that of IVM and DRM and this may have a positive effect on its 

efficacy. No significant difference was observed for the faecal excretion patterns of IVM, 

DRM and MXD following their oral administration in horses.



118

CHAPTER 4

Pharmacokinetics and faecal excretion pattern of pyrantel embonate in horses
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4.1 Introduction

Pyrantel (PYR) is an imidazothiazole derivative, which belongs to the 

tetrahydropyrimidine class of anthelmintics. It is available as tartrate and pamoate (syn. 

embonate) salts. Different salts of PYR have different pharmacokinetic properties and 

consequently different toxicities to the host. The pamoate salt is almost insoluble in water 

and poorly absorbed from the gastrointestinal tract from which most passes unchanged in 

the faeces (Arundel, 1983). Reduced systemic absorption of the pamoate form potentially 

increases availability in the lumen of the intestine (Bjom et al., 1996). The tartrate salt of 

PYR is soluble in water and absorbed rapidly and extensively from the intestine of 

monogastric animals (Faulkner et al., 1972).

Pyrantel acts selectively as an agonist at synaptic and extrasynaptic nicotinic 

acetylcholine receptors on muscle cells of nematodes. It produces contraction and spastic 

paralysis, which serves to eliminate the parasites from the host (Martin, 1997). Pyrantel 

is highly effective (95%-97%) against small strongyles, Parascaris equorum and 

Strongylus vulgaris, and has moderate active against Strongylus edentatus (70%) and 

Oxyuris equi (65%) (Mirck, 1985). Continuous low-level daily administration of pyrantel 

tartrate to horses was highly effective against common gastrointestinal parasitic 

infections of horses, including large strongyles (S. vulgaris, S. edentatus and 

Triodontophorus spp.), adult small strongyles (Cyathostomum spp., Cylicocyclus spp., 

and Cylicostephanus spp.), and adult and fourth-stage P. equorum (Valdez et al., 1995).

There are no data available in the literature on the pharmacokinetics of PYR in horses. In 

the present study, the pharmacokinetic disposition and faecal excretion of PYR pamoate 

were reported in horses after oral administration.

4.2 Materials and methods

4.2.1 Animals

Eight horses weighing 525-570 kg were used in this study. Animals were kept at pasture 

and water was provided ad libitum during the experimental period. Horses were 

identified by unique freeze brand or natural markings.
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4.2.2 Drug administration and sampling

The commercially available equine formulation of pyrantel embonate (PYR) (Strongid-P, 

43.9%, Pfizer ltd., Kent, UK) was administered orally as a single bolus dose at 13.3 

mg/kg bodyweight to each animal. Heparinized blood samples were collected by jugular 

venipuncture prior to drug administration and 1, 2, 4, 8, 12, 20, 24, 32, 48, 72, 96 and 

120 h thereafter. Faecal samples (>10 g) were also collected per rectum throughout the 

blood sampling period, before drug administration and then at 4, 8, 12, 20, 24, 32,48, 72, 

96 and 120 h in order to determine the faecal excretion of PYR. Blood samples were 

centrifuged at 1825 g for 30 min and the recovered plasma was transferred to plastic- 

stoppered tubes. All plasma and faeces samples were harvested and stored at -20 °C until 

estimation of drug concentration.

4.2.3 Drug analysis

The parent compound of PYR was analysed by high performance liquid chromatography 

(HPLC) with a liquid phase extraction procedure adapted from that described by 

McKellar et al., (1993)

4.2.3.1 Standard preparation

Stock solutions (100 pg/ml and 1 mg/ml) of pure PYR standard (Pfizer Inc., Kent, UK) 

were prepared using acetonitrile (Rathbum Chemical ltd., UK) as the solvent. These were 

diluted to give 0.05, 0.1, 0.5, 1, 5 pg/ml and 5, 50, 500 pg/ml standard solutions for 

plasma and faecal samples respectively, to calibrate as standard curves and to add to 

drug-free plasma and faecal samples to determine the recovery.

4.2.3.2 Extraction from plasma

Briefly, 1 ml drug-free plasma samples were fortified with PYR standard to reach the 

following final concentrations: 0.005, 0.01, 0.05, 0.1, and 0.5 jig/ml. Morantel citrate was 

used as an internal standard. Sodium hydroxide (NaOH) (0.5 ml, 0.4 M) was added to 

tubes containing 1 ml fortified blank and experimental plasma samples. After vortexing 

for 15 seconds, 6 ml chloroform (Rathbum Chemical ltd., UK) was added. The tubes 

were stoppered and shaken for 2 minutes. After centrifugation at 1825 g for 15 min, the 

supernatants were removed from the tubes with pasteur pipettes. Four (4) ml of the
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organic phase was transferred to a thin-walled 10 ml-conical glass tube and evaporated to 

dryness at 43°C in the sample concentrator (model SC210A, Svant Instrument Inc., 

Holbrook, NY, USA). The dry residue was dissolved in 300 pi of mobile phase. After 

placing in an ultrasonic water bath for 1 minute, 100 pi of this solution was injected into 

the chromatographic system.

4.2.3.3 Extraction from faeces

Wet faecal material was mixed finely with a spatula to obtain a homogeneous sample. 

Drug-free wet faecal samples (0.5 g) were fortified with PYR standard to reach the 

following final concentrations: 0.5, 5, 50, 100, and 400 pg/ml. Acetonitrile (2 ml) was 

added to the 10 ml-ground glass tubes containing 0.5 g fortified blank faeces and 

experimental faecal samples. After vortexing for 15 seconds, 6 ml chloroform (Rathbum 

Chemical ltd., UK) was added. The tubes were stoppered and shaken for 2 min. After 

centrifugation at 1825 g for 15 min, the supernatants were removed from the tubes with 

pasteur pipettes. Four (4) ml of the organic phase was transferred to a thin-walled 10 ml- 

conical glass tube and evaporated to dryness at 43 °C in the sample concentrator. The dry 

residue was dissolved in 300 pi of mobile phase and 50 pi of this solution was injected 

into the chromatographic system. Because of the photosensitivity of PYR all preparative 

processes were conducted in covered apparatus.

4.2.3.4 HPLC system

A mobile phase of acetonitrile : water (30:70) with 0.6% (v/v) triflouro acetic acid (TFA) 

pumped at a flow rate 1 ml/min was used for plasma samples and acetonitrile : water 

(15:85) with 0.6% (v/v) TFA pumped at flow rate 1.4 ml/min was used for faecal 

samples. Genesis nukleosil Ci8,4 pm column (15cm x 4.6mm) (Jhones Chromatography, 

Mid Glamorgan, UK) was used with ultraviolet detection (model RF-10A, Shimadzu, 

Kyoto, Japan) at wavelength of 322 nm. The retention times of PYR were 3.65 min for 

plasma (Figure 4-1) and 10.90 min for faeces.

4.2.3.5 Recovery and precision

Recovery of the drugs under study was measured by comparison of the peak areas from 

spiked plasma and faecal samples with the areas resulting from direct injections of 

standard solutions. The inter-assay precision of the extraction and chromatography
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Figure 4-1. Typical chromatograph for pyrantel (1) and internal standard, morantel (2).
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procedures was evaluated by processing replicate aliquots of drug-free horse plasma and 

faecal samples containing known amounts of the drugs on different days. The limit of 

quantification for the assay was 0.005 pg/ml and 0.5 pg/g for plasma and faecal samples 

respectively, and was determined as five times the area at the limit of detection. Mean 

recoveries were 97.5% (inter assay CV=8.2%) for plasma samples and 93.8% (inter assay 

CV=6.6%) for faecal samples.

To determine the dry weight of wet faecal samples, 1.0 g of wet faeces from each sample 
was weighed exactly into an evaporating bowl and heated in an oven at 70°C for 10 h. 
The weight of each was determined and the percentage of each dry sample was 
calculated.

4.2.4 Pharmacokinetic and statistic analysis of data

Data were analysed as described in chapter 2, section 2.1.2.3.6.

4.3 Results

The plasma concentration of PYR administered orally as the embonate salt is presented 

in Table 4-1 for mean values and, in Appendix E-2 for individual value. The plasma 

concentration vs time curve is shown in Figure 4-2 and the pharmacokinetic parameters 

of PYR are presented in Table 4-2. Pyrantel was detected in plasma between 1 h and 60 

h. The maximum plasma concentration (Cmax) was 0.09 ± 0.02 ng/ml and was achieved at 

7.50±1.41 h (tmax). The area under the curve (AUC) and mean residence time (MRT) of 

PYR were 1.06 ± 0.24 pg.h/ml and 11.99 ± 1.30 h, respectively. Pyrantel was detected in 

faeces between 12 h and 72 h. Dry faecal concentration (Table 4-3) vs time is shown in 

Figure 4-3. The highest dry faecal concentration (1.034 mg/g) was determined at 24 h.
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Table 4-1. Mean (± SEM) plasma concentrations (pg/ml) of pyrantel (PYR) following
oral administration to horses at 13.3 mg/kg bodyweight.

Mean ± SEM (n = 8)

Time (h) PYR

0 0.000 ± 0.000

1 0.005 ±0.001

2 0.022 ± 0.006

4 0.064 ± 0.005

8 0.091 ±0.008

12 0.047 ± 0.005

20 0.017 ±0.002

24 0.011 ±0.002

32 0.005 ± 0.001

48 0.001 ±0.000

72 0.000 ± 0.000

96 0.000 ± 0.000

120 0.000 ± 0.000
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Figure 4-2. Mean (±SEM) plasma concentration of pyrantel (PYR) following oral

administration to horses (n=8) at 13.3 mg/kg bodyweight.
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Table 4-2. Mean (±SEM) pharmacokinetic parameters of pyrantel (PYR) following oral 

administration to horses (n=8) at 13.3 mg/kg bodyweight.

Mean ± SEM (n = 8)

Pharmacokinetic
parameters (PYR)

Cmax (ng/ml) 0.09 ± 0.02

tmax (h) 7.50 ± 1.41

AUCiast (pg.h/ml) 1.06 ±0.24

AUMCiast (pg.h2/ml) 12.72 ± 3.26

MRTiast(h) 11.99 ± 1.30
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Table 4-3. Mean (±SEM) dry-faecal concentration (mg/g) of pyrantel (PYR) following 

oral administration to horses (n=8) at a dose rate of 13.3 mg/kg.

Mean ± SEM (n=8)

Time (h) PYR

0 0.000 ± 0.00

4 0.000 ± 0.00

12 0.000 ± 0.00

20 0.705 ±0.19

24 1.034 ±0.06

32 0.730 ± 0.07

48 0.106 ±0.02

72 0.000 ± 0.00

96 0.000 ± 0.00

120 0.000 ± 0.00
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Figure 4-3. Mean (±SEM) dry-faecal concentration (mg/g) of pyrantel (PYR) following 

oral administration to horses (n=8) at a dose rate of 13.3 mg/kg bodyweight.



129

4.4 Discussion

The present results indicate that following oral administration in horses, plasma levels of 

the parent drug were very low. It is likely that the poor solubility of the embonate reduces 

its absorption and provides a safer dosage formulation and higher concentrations in the 

intestines than more soluble formulations.

The pharmacokinetic disposition of PYR has been determined after intravenous and oral 

administration in pigs (Bjom et al., 1996). Pyrantel citrate was extensively distributed 

(2.74L/kg) and rapidly cleared (1.09 L/kg.h) following intravenous administration. After 

oral administration at a dose rate of 32.84 mg/kg bodyweight, tmax (3.26 h) was 

significantly longer, Cmax (0.23 pg/ml) lower and AUC (3.18 jig.h/kg) smaller for 

pyrantel pamoate (syn. embonate) than pyrantel citrate (tmax' 1.51 h, Cmax: 1.92 jig/ml, 

AUC: 8.42 jig.h/kg) (Bjom et al., 1996) given at dose rate 22.00 mg/kg bodyweight. 

Although a significantly greater quantity of pyrantel citrate was absorbed (mean 

bioavailability of 41%) than pyrantel pamoate (mean bioavailability of 16%), the rapid 

clearance of the citrate resulted in a shorter MRT (4.92 h) compared to the pamoate form 

(11.74 h). In the previous study PYR pamoate was administered at 32.84 mg/kg in pigs 

whereas in this study it was administered at 13.3 mg/kg in horses. The lower 

concentrations of PYR pamoate in the plasma of horses than pigs may reflect different 

doses administered between two species and in gastrointestinal pH or transit time. 

Pyrantel is not known to have any substantial effect on faecal invertebrates however it is 

apparent that faeces from treated horses will have high concentrations of PYR for at least 

48 h.

The present study demonstrates limited absorption of PYR following administration as an 

embonate in horses and it seems likely that a substantial component of its dynamic effect 

will be associated with PYR retained in the gastrointestinal tract where the adult stages of 

most parasitic nematodes reside.



CHAPTER 5

General Discussion
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The results of the pharmacokinetic studies of FBZ and FBZ.SO in the horse suggest that 

FBZ.SO would produce greater anthelmintic activity than FBZ since FBZ.SO has greater 

systemic bioavailability than FBZ. Thus, at same dose rate, FBZ.SO could be more 

potent for treatment of migrating stages of strongyles and lungworm. The activity of 

benzimidazole anthelmintics has been associated with their persistence in the body 

(Lacey, 1988) and the more reduced moieties of the benzimidazole sulphides have 

greater activity for binding to nematode tubulin than their oxidised metabolites (Lubega 

and Prichard, 1991) and consequently may have greater activity in vivo. Furthermore, 

FBZ is known to have greater affinity for nematode tubulin than FBZ.SO and therefore is 

likely to have greater inherent potency. It is clear from this study that clinical data should 

be obtained for these two compounds at equivalent doses and under similar experimental 

conditions in order to relate the pharmacokinetic data to dynamic activity.

It is apparent from the results reported here that the plasma levels of the parent OBZ were 

very low following oral administration in horses and the liver microsome study showed 

that OBZ was metabolised extensively to unidentified metabolites. Gottschall and Wang 

(1996) reported that in swine OBZ was quickly metabolised and liver was the only tissue 

which contained significant residue following oral administration at a level of 15 mg/kg 

bodyweight. It was reported that OBZ has little or no effect against migrating stages of S. 

vulgaris, T. axei, H. muscae and D. megastoma (Kates et a l 1975; Nawaliski and 

Theodorides, 1976, 1977). High gastrointestinal concentration of OBZ observed from the 

faecal study could be effective for adult stages of most parasitic nematodes that inhabit in 

the gastrointestinal tract but low plasma concentrations of OBZ are unlikely to be 

effective against migrating larval and tissue stages of the nematodes. It is likely that the 

high first-pass metabolism decreases OBZ bioavailability in horses. The present in vitro 

liver microsome study showed that piperonyl butoxide significantly inhibited the 

metabolism of OBZ. It is possibly that bioavailability of OBZ after oral administration at 

same dose rate can be increased by co-administration of piperonyl butoxide and this may 

improve its efficacy against migrating larval and tissue stages of the nematodes.

This study showed that in horses, the pharmacokinetic behaviour of benzimidazole 

anthelmintics was substantially different from ruminant species and this may cause 

misleading extrapolation of information from ruminants to horses.
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In the present studies horses were ‘yarded’ for the period during and immediately (4 h) 

after drug administration and were then returned to a grass paddock. The maximum 

faecal excretions were observed at 24 h for the benzimidazoles, macrocyclic lactones and 

PYR and this possibly reflects the gastrointestinal transit times in horses for the present 

study. Grass based feeding could increase the gastrointestinal transit time and thus 

decrease the absorption time and systemic bioavailability of anthelmintics drugs. 

Similarly, lower plasma concentrations of benzimidazoles are achieved in ruminants on 

pasture compared to those fed a hay-based diet and these have been correlated with more 

rapid gastrointestinal transit time in the pasture fed animals (Taylor et al., 1992, 1993). It 

was also shown that the feeding regimen affected markedly the pharmacokinetics of the 

active moieties and thus their potential efficacy. The relative bioavailability of 

benzimidazoles increased in dogs (McKellar et al., 1993a) when the benzimidazoles were 

administered with food, whereas bioavailability decreased in sheep (Ali and Hennessy, 

1993) and pigs (Lanusse et al, 1994) with food. In fasted cattle, significantly higher and 

AUC values were obtained for ABZ.SO compared to fed animals following intraruminal 

ABZ (10 mg/kg) administration (Lanusse at al, 1993). Recently, the effect of feeding on 

the bioavailability of benzimidazoles was investigated in horses with and without the 

potentiating agent, piperonyl butoxide (McKellar, 1997a). The area under curve of FBZ 

was 0.32±0.11 pg.h/ml in fasted horses and 0.44±0.1 pg.h/ml in fed horses following 

oral administration of FBZ (10 mg/kg) although this difference was not significant. This 

finding was further investigated with piperonyl butoxide whereby the AUC of parent 

FBZ increased from 3.51±0.40 pg.h/ml to 5.81±1.96 pg.h/ml in unfed and fed horses. It 

is possible that the food increased the absorption of the piperonyl butoxide thus 

improving its dynamic effects on liver metabolism. As well as feeding or fasting feed 

type could therefore have caused differences in absorption and thus, systemic 

bioavailability and efficacy of the anthelmintic drugs in ruminants and monogastrics.

It is likely that metabolic inhibition will be more effective than simply increasing the 

dose rate for improving the efficacy, since the pharmacokinetics of benzimidazoles in 

some monogastrics are dose-independent and absolute bioavailability can not be 

increased by increasing the dose (McKellar et a l, 1993a). The potentiation of the activity 

of benzimidazoles and pro-benzimidazoles has been achieved by the co-administration of 

metabolic inhibitors, which are thought to act principally by improving the
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pharmacokinetic profiles of the active moieties of the administered drug. Parbendazole 

improves the bioavailability and anthelmintic efficacy of oxfendazole by decreasing its 

hepatic metabolism and biliary secretion (Hennessey et a l, 1992). Methimazole, which 

inhibits flavine-containing monooxygenase, improves the bioavailability and disposition 

of ABZ.SO following co-administration with the pro-benzimidazole netobimin, in sheep 

(Lanusse and Prichard, 1992a,) and cattle (Lanusse and Prichard, 1992b). Cimetidine 

inhibits cytochrome P450 by complexing the cytochrome haeme active site. It has thus 

been shown to inhibit ABZ metabolism in rats (Wen et al, 1996) and to improve the 

clinical efficacy of the ABZ against hepatic hydatid cysts in man (Wen et al, 1994). It 

was shown that piperonyl butoxide, an inhibitor of P450 inhibited the sulphoxidation and 

sulphonation of FBZ in an in vitro study using microsomal preparations from rat liver 

and increased significantly the bioavailability and efficacy of active moieties (FBZ and 

FBZ.SO) of FBZ in sheep and goats (Benchaoui and McKellar, 1996).

Fenbendazole, ABZ and their sulphoxide metabolites, which have a chiral centre about 

the sulphur atom, undergo enantioselective biotransformation in ruminant species 

(Delatour et al., 1990a, b; 1991a, b). Following administration of the parent sulphide 

albendazole, the plasma concentration of the enantiomers generated is never a racemate; 

at zero time the +/- ratio is 75/25 and this changed in favour of the (+) enantiomer to 

reach a value of 96/4 at 36 h (Delatour et al., 1990a). When the prochiral FBZ and ABZ 

were administered orally to sheep, the AUCs of the FBZ.SO-1 and FBZ.SO-2 

enantiomers were 26% and 74% after FBZ treatment and (-) and (+) enantiomers were 

14% and 86% after ABZ treatment, respectively (Delatour et al., 1990b).

There have been no studies carried out to determine enantiospecific dispositions of 

benzimidazole sulphoxides in horse. In the present study, enantiospecific 

pharmacokinetics of FBZ.SO enantiomers is demonstrated firstly in the horse. The in 

vivo studies (section 1 and section 2) and in vitro study (section 3) clearly demonstrates 

that the plasma disposition and microsomal metabolism of FBZ.SO are enantiospecific 

and the first enantiomer (FBZ.SO-1) is predominant either in the plasma or in incubation 

medium. In addition, after prochiral FBZ incubation the FBZ.SO-1 enantiomer was 

produced more rapidly than FBZ.SO-2. This suggests that the cytochrome P450 system, 

which is responsible for the sulphonation, uses selectively FBZ.SO-2 and the flavine 

system, which is responsible for the sulphoxidation of FBZ.SO produces selectively
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FBZ.SO-1. The identification (R or S) of the enantiomers of FBZ.SO is still unclear but 

the FBZ.SO-2 enantiomer is likely to be R (-) and the FBZ.SO-1 to be S (+) form since it 

is thought that the enanitioselectivity of the flavine system produces principally S (+) 

sulphoxide whereas the cytochrome P450 enzyme systems specifically use R (-) 

substrate. Furthermore an enantiospecific metabolic effect of the piperonyl butoxide was 

also demonstrated. In the in vivo study (section 2), the co-administration of piperonyl 

butoxide significantly altered the enantiospecific dispositions of FBZ.SO. Thus, the 

FBZ.SO-1 enantiomer predominated in the plasma following administration of FBZ.SO 

alone whereas the FBZ.SO-2 predominated for the first 12 h during which piperonyl 

butoxide was probably present at high concentrations and the ratio of AUCs of the 

enantiomers (FBZ.SO-1 :FBZ.SO-2) was 3:2 when FBZ.SO was administered alone 

whereas the same ratio altered to 1:1 when FBZ.SO was co-administered with piperonyl 

butoxide. These findings were also supported by the in vitro studies after FBZ.SO 

incubation with piperonyl butoxide. The second enantiomer was metabolised more 

rapidly than FBZ.SO-1 after FBZ.SO incubation alone and piperonyl butoxide inhibited 

the metabolism of both enantiomers such that remaining enantiomers in the medium were 

close to racemate. The characterization of the chiral behaviour of the sulphoxide 

benzimidazoles may have a significant impact on their pharmacology and clinical use. 

The eudismic (potency) ratio or the binding affinity to parasite and mammalian tubulin 

for each enantiomer of sulphoxide benzimidazoles are unclear, however the alterations in 

enantiomer use and generation together with the alteration in achiral metabolism of 

benzimidazoles by piperonyl butoxide could have a major impact on the efficacy of 

benzimidazole sulphides and sulphoxides in the horse.

The present studies demonstrate the very great potential for synergy of benzimidazole 

sulphides and sulphoxides when combined with piperonyl butoxide. It is anticipated that 

the synergistic effects demonstrated in the present studies could have major positive 

benefits for the treatment of equine cyathostomiasis and benzimidazole resistant 

parasites.

Anthelmintic activity is generally related to the presence of concentrations of an active 

drug or metabolites at the site of action for a minimum period of time during which the 

parasite is exposal to the drug. The antiparasitic spectrum and efficacy pattern for the 

different endectocide molecules are similar; however differences in physicochemical
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properties among them may account for differences in formulation flexibility, 

pharmacokinetic behaviour and persistence of their anthelmintic activity. In the current 

study, IVM, MXD and DRM showed similar absorption patterns but the plasma decline 

of MXD was initially faster in comparison to IVM and DRM following oral 

administration in horses. In contrast, the MRT value of MXD (16.31 days) was 

significantly longer than the values for DRM (4.0 days) and IVM (2.4 days). The plasma 

pharmacokinetic results may be associated with greater proportions of MXD 

accumulating in fat tissue than IVM and DRM. The higher fat tissue reservoir of MXD 

may explain the extended persistence of that molecule compared to that of the 

avermectins.

It was shown that ivermectin is degraded to some extent by the ruminal microflora. In 

sheep, the bioavailability of IVM after intraruminal administrations was 75% lower than 

following intra-abomasal administration (Chiu et al., 1990) and in vitro incubation of 

ivermectin in ruminal fluid was followed by its gradual disappearance from the incubate 

(Prichard et al., 1985). A similar biodegradation probably occurs in the horse and may 

partly explain the higher bioavailability of IVM after subcutaneous than oral 

administration. Marriner and co-workers reported that following subcutaneous 

administration IVM (200 pg/kg) in horses Cmax was 60.7 ng/ml and the AUC was 550.4 

ng.d/ml whereas in this study, after oral administration at the same dose rate, Cmax and 

AUC of IVM were 23.5 ng/ml and 46.41 ng.d/ml, respectively. A substantial difference in 

pharmacokinetics between the subcutaneous and oral route has also were reported for 

MXD in cattle (Miller et a l , 1994). Lower Cmax (6.5 ng/ml) and shorter mean residence 

time were observed after oral dose (200 pg/ml) compared to subcutaneous injection 

(Cmax* 75 ng/ml) at a same dose rate.

Large interindividual variation was observed for the endectocides in the present study. 

The reasons for such differences are unclear. Several factors could affect drug absorption 

and metabolism such as parasite burden, feeding, breed, animal size and pathological 

changes of liver. The parasitological status of the horses in the present study was 

unknown, although adult cyathostomes were observed in the faeces of these animals. 

There is a paucity of data on the effect of parasitism on the pharmacokinetics of 

anthelmintics in horses. The effects of parasitism on the pharmacokinetics of 

anthelmintics has been investigated in some ruminant species. It has been shown that
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parasitic infections with O. circumcincta and Trichostrongylus colubriformis 

significantly decreased the bioavailability of benzimidazoles in ruminant (Marriner et al, 

1985; Debackere et al., 1993). Helminthiasis can cause hyperplasic changes in the 

abomasum (Anderson et al, 1988), which possibly affects the absorption and the 

disposition of FBZ and increased gastric pH (Mostafa and McKellar, 1989) which causes 

reduced dissolution of fenbendazole in the gastrointestinal tract. In contrast, the 

bioavailability of netobimin, ABZ, LEV and IVM was not altered significantly by 

intestinal parasitism {Nematodirus battus) in ruminants following parenteral and oral 

administration (McKellar et al, 1991) and this is possibly due to the degree of parasitism 

or different pathophysiological changes compared to T. colubriformis (McKellar et al, 

1991, 1993b). The pharmacokinetics and metabolism of anthelmintics could be altered by 

helminth infections and this would potentially affect the drug efficacy.

It was reported that there was a high correlation (r2 = 0.922) between body weight and 

time until MXD is no longer detectable in sheep (Shoop et al., 1997). That is, the lightest 

lamb (20.9 kg) reached zero detectable plasma concentration of MXD at day 24, while 

the heaviest lamb (38.6 kg) still possessed detectable plasma concentrations at day 60. A 

similar correlation could not be determined for IVM or MXD in the current study 

because of the similar body weight of animals in the groups. However a correlation (r2 = 

0.703) was found between body weight and time until concentrations fell below the limit 

of detection of DRM. The lightest horse (490 kg) demonstrated zero detectable plasma 

concentration of DRM at day 8 whereas the heaviest horse (880 kg) reached zero 

detectable plasma concentration at day 39. These results could be related to the amount 

of fat tissue in the animals. Moxidectin could confer persistent efficiency against equine 

parasites due to its longer retention time in plasma, although the minimum effective 

plasma concentration would need to be defined or clinical efficacy studies undertaken to 

confirm this. The extraordinary persistence of moxidectin in the horse may make this 

drug very useful for parasite control but also has implications for withdrawal period if 

treated horses are likely to enter the food chain. The plasma persistence is not clearly 

related to substantial faecal excretion and the faecal excretion studies suggest that the 

environmental consequences of administration of the avermectins may be similar - in 

relation to persistence - if not activity, against drug dwelling/feeding arthropods.
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The present results indicate that following oral administration of PYR, plasma levels of 

the parent drug were very low in horses. It is likely that the poor solubility of the 

embonate reduces its absorption and provides a safer dosage formulation and higher 

concentrations in the intestines than more soluble formulations. The present study 

demonstrates limited absorption of PYR following administration as an embonate in 

horses and it seems likely that a substantial component of its dynamic effect will be 

associated with PYR retained in the gastrointestinal tract where the adult stages of most 

parasitic nematodes reside.

Anthelmintics are available with broad-spectrum activity against most of the important 

equine parasites. Unfortunately some developmental stages of the target parasites are 

relatively (early fourth (EL4) stages of cyathostomes) and totally (EL3) unaffected by the 

available drugs, and widespread resistance has developed to phenothiazine and the 

benzimidazole group of anthelmintics (Bennett, 1983; Condor and Campbell, 1995). The 

indiscriminate use of anthelmintics has inevitably resulted in the development of 

anthelmintic resistance and anthelmintics in horses are frequently used without 

consideration of the epidemiology of the parasites, the disposition and residence times of 

the active drug molecules, or the best clinical practice to extent the lifespan of the 

anthelmintics and delay the selection of resistant parasitic populations. Where the 

anthelmintic must be used, the most appropriate strategy to delay the development of 

resistance is to use combination anthelmintic products with different modes of action but 

similar residence times (Anderson et al, 1988, 1991).
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Appendices A

A-l Recovery and coefficients of variation for oxfendazole (FBZ.SO) and its metabolites

following liquid phase extraction from plasma.

Added concentration 

(pg/ml)

Recovery

(%)

Coefficient of variation (%) 

(Between assay)

0.01 94.66 (n=13) 9.99

0.05 94.02 (n=14) 10.76

FBZ.SO 0.1 92.41 (n=15) 9.72

0.5 92.21 (n=16) 11.71

1 93.13 (n=14) 9.85

Mean 93.28 (n=72) 10.40

0.01 87.99 (n=15) 9.22

0.05 87.16 (n=13) 9.57

FBZ 0.1 90.60 (n=15) 7.83

0.5 90.19 (n=15) 9.39

1 89.77 (n=13) 7.60

Mean 89.14 (n=71) 8.72

0.01 90.97 (n=15) 8.92

0.05 96.21 (n=14) 10.78

FBZ.SO2 0.1 97.93 (n=16) 5.85

0.5 95.27 (n=15) 5.09

1 94.73 (n=14) 6.09

Mean 95.02 (n=74) 7.35



174

A-2. Plasma concentration (jig/ml) of oxfendazole (FBZ.SO) following oral

administration of oxfendazole at a dose rate of 10 mg/kg bodyweight.

Animal numbers

Time (h) 1 2 3 4 5 6 7 8

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.11 0.08 0.08 0.12 0.25 0.00 0.05 0.10

2 0.14 0.09 0.17 0.00 0.26 0.06 0.12 0.11

4 0.21 0.14 0.69 0.05 0.21 0.25 0.15 0.18

8 0.10 0.06 0.58 0.01 0.06 0.49 0.06 0.23

12 0.06 0.20 NS 0.01 0.02 0.09 0.07 0.09

20 0.22 0.25 0.06 0.01 0.02 0.01 0.32 0.01

24 0.04 0.15 0.01 0.01 0.02 0.00 0.53 0.02

32 0.01 0.04 0.00 0.01 0.02 0.01 0.14 0.00

48 0.02 0.02 0.00 0.01 0.02 0.02 0.04 0.00

72 0.01 0.01 0.00 NS 0.01 0.00 0.00 0.00

96 NS 0.00 0.00 NS 0.00 0.00 0.00 0.00

120 0.00 0.00 0.00 NS 0.00 0.00 0.00 0.00

A-3. Pharmacokinetic parameters of oxfendazole (FBZ.SO) following oral administration 

of oxfendazole at a dose rate of 10 mg/kg bodyweight.

Animal numbers

Time (h) 1 2 3 4 5 6 7 8

Cmax (H g/m l) 

tmax (h)
AUClast
(pg.h/ml)
AUMCiast
(jig.h2/ml)
M R Tiast(h)

0.21

4.00

3.13

64.40

20.59

0.32

20.00

6.26

131.14

20.95

0.58

4.00

6.67

50.29

7.54

0.10

2.00

0.86

10.61

12.28

0.25

1.00

2.85

52.20

18.30

0.57

8.00

4.10

31.85

7.78

0.53

24.00

8.41

191.68

22.79

0.23

8.00

2.56

20.38

7.97



175

A-4. Plasma concentration (jig/ml) of fenbendazole (FBZ) following oral administration

of oxfendazole a at dose rate of 10 mg/kg bodyweight.

Animal numbers

Time (h) 1 2 3 4 5 6 7 8

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00

4 0.03 0.03 0.02 0.02 0.03 0.00 0.05 0.00

8 0.06 0.04 0.08 0.03 0.02 0.04 0.07 0.05

12 0.05 0.09 NS 0.04 0.03 0.10 0.09 0.09

20 0.03 0.16 0.05 0.02 0.03 0.03 0.09 0.04

24 0.03 0.12 0.02 0.02 0.03 0.00 0.17 0.01

32 0.01 0.02 0.00 0.01 0.02 0.00 0.13 0.00

48 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

72 0.00 0.00 0.00 NS 0.00 0.00 0.00 0.00

96 NS 0.00 0.00 NS 0.00 0.00 0.00 0.00

120 0.00 0.00 0.00 NS 0.00 0.00 0.00 0.00

A-5. Pharmacokinetic parameters of fenbendazole (FBZ) following oral administration of 

oxfendazole at a dose rate of 10 mg/kg bodyweight.

Animal numbers

Time (h) 1 2 3 4 5 6 7 8

Cmax (pg/ml) 0.06 0.16 0.08 0.04 0.03 0.10 0.17 0.09

tmax (h) 8.00 20.00 8.00 12.00 12.00 12.00 24.00 12.00
AUClast 1.06 2.57 1.09 0.65 0.79 0.87 3.10 1.04(jig.h/ml)
AUMCiast
(pg.h2/ml)
MRTiast (h)

17.70 46.64 13.39 9.62 13.22 10.73 62.32 14.01

16.77 18.17 12.25 14.72 16.80 12.33 20.08 13.50
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A-6. Plasma concentration (pg/ml) of fenbendazole sulphone (FBZ.SO2) following oral

administration of oxfendazole at a dose rate of 10 mg/kg bodyweight.

Animal numbers

Time (h) 1 2 3 4 5 6 7 8

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.20 0.17 0.16 0.24 0.20 0.05 0.07 0.13

2 0.31 0.31 0.40 0.35 0.27 0.17 0.14 0.34

4 0.70 0.45 1.07 0.46 0.47 0.50 0.22 0.47

8 0.77 0.32 1.22 0.21 0.45 0.98 0.16 0.90

12 0.27 0.38 NS 0.17 0.35 0.90 0.15 0.65

20 0.14 0.52 0.36 0.09 0.19 0.34 0.26 0.37

24 0.36 0.63 0.08 0.07 0.13 0.22 0.50 0.17

32 0.00 0.16 0.05 0.02 0.05 0.17 0.66 0.04

48 0.02 0.02 0.00 0.01 0.02 0.02 0.07 0.01

72 0.00 0.00 0.00 NS 0.01 0.02 0.04 0.00

96 NS 0.00 0.00 NS 0.00 0.00 0.00 0.00

120 0.00 0.00 0.00 NS 0.00 0.00 0.00 0.00

A-7. Pharmacokinetic parameters of fenbendazole sulphone (FBZ.SO2) following oral 

administration of oxfendazole at a dose rate of 10 mg/kg bodyweight.

Animal numbers

Time (h) 1 2 3 4 5 6 7 8

Cmax (jJ-§/ml) 0.77 0.63 1.22 0.46 0.47 0.98 0.66 0.90

tmax (h) 8.00 24.00 8.00 4.00 4.00 8.00 32.00 8.00
AUCiast
(pg.h/ml) 10.63 14.53 17.29 5.29 8.96 17.17 16.84 13.35

AUMCiast
(pg.h2/ml) 129.93 266.34 167.80 58.17 134.81 276.96 477.45 170.47

MRTjast (h) 12.23 18.34 9.71 11.01 15.05 16.14 28.35 12.77
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A-8. Recovery and coefficients of variation for oxfendazole (FBZ.SO) and its

metabolites following liquid phase extraction from wet faeces.

Added concentration 

(pg/ml)

Recovery

(%)

Coefficient of variation (%) 

(Between assays)

1 95.24 (n=16) 2.99

5 94.86 (n=16) 3.57

FBZ.SO 50 91.25 (n=16) 4.27

100 93.29 (n=16) 4.19

200 91.38 (n=16) 5.97

Mean 93.20 (n=80) 4.20

1 93.38 (n=16) 7.08

5 94.29 (n=16) 6.67

FBZ 50 89.60 (n=16) 8.91

100 87.34 (n=16) 6.12

200 82.79 (n=14) 3.85

Mean 89.48 (n=78) 6.52

1 97.66 (n=8) 3.39

5 95.87 (n=8) 2.19

FBZ.SO2 50 94.23 (n=8) 3.00

100 94.70 (n=8) 1.66

200 93.24 (n=8) 4.76

Mean 95.14 (n=40) 3.00
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A-9. Dry faecal concentrations (mg/ml) of oxfendazole (FBZ.SO) and its metabolites

(FBZ, FBZ.SO2) following oral administration of oxfendazole at a dose rate of 10 mg/kg

bodyweight.

FBZ.SO Animal numbers
Time (h) 1 2 3 4 5 6 7 8
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 NS 0.00 0.00 NS 0.00 0.00
12 NS 0.00 NS NS 0.00 NS NS NS
20 NS NS 0.47 NS 1.07 NS NS 0.75
24 1.05 0.91 0.49 1.18 1.38 0.66 0.25 2.25
32 NS 0.36 0.35 0.73 0.73 0.41 0.72 0.41
48 0.04 0.08 0.05 0.07 0.01 0.09 0.09 0.02
72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS
96 0.00 NS 0.00 0.00 0.00 0.00 0.00 0.00
120 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00

FBZ Animal numbers
Time (h) 1 2 3 4 5 6 7 8
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 NS 0.00 0.00 NS 0.00 0.00
12 NS 0.00 NS NS 0.00 NS NS NS
20 NS NS 0.13 NS 0.14 NS NS 0.14
24 0.20 0.18 0.11 0.19 0.18 0.15 0.11 0.51
32 NS 0.12 0.08 0.16 0.10 0.10 0.11 0.17
48 0.04 0.02 0.02 0.03 0.01 0.04 0.05 0.02
72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS
96 0.00 NS 0.00 0.00 0.00 0.00 0.00 0.00
120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FBZ.S0 2 Animal numbers
Time (h) 1 2 3 4 5 6 7 8
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 NS 0.00 0.00 . NS 0.00 0.00
12 NS 0.00 NS NS 0.00 NS NS NS
20 NS NS 0.01 NS 0.01 NS NS 0.01
24 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.03
32 NS 0.01 0.01 0.01 0.01 0.01 0.01 0.01
48 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS
96 0.00 NS 0.00 0.00 0.00 0.00 0.00 0.00
120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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A-10. Plasma concentrations (pg/ml) of fenbendazole (FBZ) following oral

administration of fenbendazole at a dose rate of 10 mg/kg bodyweight.

Animal numbers

Time (h) 9 10 11 12 13 14 15 16

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.00

2 0.05 0.03 0.01 0.02 0.01 0.03 0.02 0.00

4 0.04 0.02 0.02 0.01 0.01 0.07 0.05 0.03

8 0.02 0.01 0.01 0.01 0.01 0.03 0.05 0.04

12 NS NS 0.01 NS 0.01 0.04 0.02 NS

20 0.03 0.01 0.01 0.04 0.01 0.01 0.00 0.01

24 0.02 0.01 0.01 0.04 0.01 0.01 0.00 0.01

32 0.01 0.01 0.00 0.03 0.01 0.00 0.00 0.00

48 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00

72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A -ll. Pharmacokinetic parameters of fenbendazole (FBZ) following oral administration 

of fenbendazole at a dose rate of 10 mg/kg bodyweight.

Animal numbers

Time (h) 9 10 11 12 13 14 15 16

Cmax (pg/ml) 0.05 0.03 0.02 0.04 0.01 0.07 0.05 0.04

hnax (h) 2.00 2.00 4.00 20.00 20.00 4.00 4.00 8.00
AUCiast 0.77 0.41 0.25 1.18 0.34 0.85 0.56 0.48(jig.h/ml)
AUMCiast
(pg.h2/ml)
MRTlast (h)

10.10 5.45 3.19 28.37 6.38 11.34 4.81 4.98

13.06 13.24 12.59 24.04 18.60 13.31 8.57 10.30

€>
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A-12. Plasma concentrations (pg/ml) of fenbendazole sulphoxide (FBZ.SO) following

oral administration of fenbendazole at a dose rate of 10 mg/kg bodyweight.

Animal numbers

Time (h) 9 10 11 12 13 14 15 16

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00

2 0.02 0.01 0.00 0.01 0.00 0.01 0.01 0.00

4 0.01 0.01 0.01 0.01 0.00 0.02 0.01 0.01

8 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.01

12 NS NS 0.00 NS 0.01 0.01 0.02 NS

20 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00

24 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00

32 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A-13. Pharmacokinetic parameters of fenbendazole sulphoxide (FBZ.SO) following oral 

administration of fenbendazole at dose a rate of 10 mg/kg bodyweight.

Animal numbers

Time (h) 9 10 11 12 13 14 15 16

Cmax (pg/ml) 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.01

tmax (h) 2.00 2.00 4.00 32.00 12.00 4.00 12.00 8.00
AUCiast 0.21 0.08 0.05 0.25 0.16 0.21 0.20 0.16(pg.h/ml)
AUMCiast
(pg.h2/ml)
MRTiast(h)

2.61 0.70 0.48 4.60 3.06 2.19 2.38 2.07

12.38 9.32 9.26 18.46 18.79 10.50 11.91 12.57
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A-14. Plasma concentrations (pg/ml) of fenbendazole sulphone (FBZ.SO2) following oral

administration of fenbendazole at a dose rate of 10 mg/kg bodyweight.

Animal numbers

Time (h) 9 10 11 12 13 14 15 16

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00

2 0.04 0.03 0.00 0.02 0.00 0.04 0.03 0.00

4 0.07 0.03 0.03 0.04 0.00 0.12 0.06 0.04

8 0.06 0.04 0.03 0.02 0.00 0.12 0.09 0.08

12 NS NS 0.02 NS 0.02 0.09 0.02 NS

20 0.07 0.02 0.01 0.04 0.02 0.04 0.01 0.03

24 0.06 0.02 0.01 0.05 0.01 0.02 0.02 0.02

32 0.01 0.01 0.00 0.05 0.00 0.01 0.01 0.01

48 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

72 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A-15. Pharmacokinetic parameters of fenbendazole sulphone (FBZ.SO2) following oral 

administration of fenbendazole at a dose rate of 10 mg/kg bodyweight.

Animal numbers

Time (h) 9 10 11 12 13 14 15 16

Cmax (p§/ml) 0.07 0.04 0.03 0.05 0.02 0.12 0.09 0.08

tmax (h) 4.00 8.00 8.00 32.00 12.00 4.00 8.00 8.00

AUCiast
(pg.h/ml) 1.68 1.00 0.59 1.11 0.30 1.95 0.99 1.32

AUMCiast
(Hg.h2/ml) 25.30 16.91 12.51 21.65 5.09 25.05 14.21 19.60

MRTiast (h) 15.08 16.94 21.35 19.56 17.03 12.84 14.32 14.88
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A-16. Dry faecal concentrations (mg/ml) of fenbendazole (FBZ) and its sulphoxide

metabolite (FBZ.SO) following oral administration of fenbendazole at a dose rate of 10

mg/kg bodyweight.

FBZ Animal numbers
Time (h) 1 2 3 4 5 6 7 8
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 NS 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 NS NS 0.00 NS NS NS NS NS
20 1.36 NS 0.09 0.14 0.75 NS NS NS
24 1.47 1.06 0.79 1.07 1.10 0.86 0.62 0.78
32 0.91 0.69 NS 1.26 0.37 0.37 2.00 0.65
48 0.40 0.33 0.16 NS NS 0.02 0.27 0.03
72 0.03 0.00 0.00 0.00 0.00 0.00 0.01 NS
96 0.00 NS 0.00 0.00 0.00 0.00 0.00 0.00
120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FBZ.SO Animal numbers
Time (h) 1 2 3 4 5 6 7 8
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 NS 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 NS NS 0.00 NS NS NS NS NS
20 0.01 NS 0.00 0.00 0.00 NS NS NS
24 0.01 0.02 0.01 0.05 0.01 0.01 0.01 0.02
32 0.02 0.01 NS 0.02 0.01 0.02 0.01 0.02
48 0.01 0.01 0.01 NS NS 0.00 0.00 0.00
72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS
96 0.00 NS 0.00 0.00 0.00 0.00 0.00 0.00
120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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A-17. Recovery and coefficients of variation for oxibendazole (OBZ) following liquid

phase extraction from plasma.

Added concentration 

(pg/ml)

Recovery

(%)

Coefficient variation (%) 

(Between assay)

0.005 94.54 (n=8) 4.78

0.010 93.85 (n=8) 2.19

OBZ 0.020 89.95 (n=8) 5.72

0.050 95.87 (n=8) 5.04

0.100 98.58 (n=8) 3.17

Mean 94.56 (n=40) 4.18

A-18. Plasma concentrations (pg/ml) of oxibendazole (OBZ) following oral 

administration at a dose rate of 10 mg/kg bodyweight.

Animal numbers
Time (h) 17 18 19 20 21 22 23 24
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.004 0.005 0.006 0.004 0.006 0.006 0.004
2 0.000 0.000 0.005 0.000 0.000 0.028 0.004 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
48 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
72 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
96 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
120 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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A-19. Recovery and coefficients of variation for oxibendazole following liquid phase

extraction from wet faeces.

Added concentration 

(pg/ml)

Recovery

(%)

Coefficient variation (%) 

(Between assay)

0.50 93.94 (n=8) 4.10

5.00 97.50 (n=8) 4.93

OBZ 50.00 93.63 (n=8) 5.73

100.00 94.14 (n=8) 1.48

300.00 88.98 (n=8) 6.65

Mean 93.64 (n=40) 4.58

A-20. Dry faecal concentrations (mg/ml) of oxibendazole (OBZ) following oral 

administration at a dose rate of 10 mg/kg bodyweight.

OBZ Animal numbers
Time (h) 1 2 3 4 5 6 7 8
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.12 0.03 0.03 0.00 0.00 0.00
16 0.00 0.14 0.51 0.30 0.35 0.08 0.04 0.15
24 0.01 0.60 0.22 0.56 1.39 0.82 0.17 0.48
32 0.08 0.15 0.15 0.46 0.77 0.18 0.18 0.73
48 0.04 0.00 3.16 0.05 0.03 0.04 0.05 0.03
72 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00
96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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A-21. Recovery and coefficients of variation for enantiomers (FBZ.SO-1 and FBZ.SO-2)

of oxfendazole following liquid phase extraction from plasma.

Added concentration 

Gig/ml)

Recovery

(%)

Coefficient variation (%) 

(Between assay)

0.025 84.69 (n=5) 3.62

0.050 85.73 (n=6) 8.16

FBZ.SO-1 0.250 94.52 (n=6) 6.72

0.500 85.31 (n=6) 11.47

2.500 91.51 (n=6) 9.80

Mean 88.35 (n=29) 7.96

0.025 80.23 (n=6) 6.51

0.050 81.98 (n=6) 13.03

FBZ.SO-2 0.250 93.65 (n=6) 8.66

0.500 90.59 (n=6) 11.88

2.500 96.52 (n=6) 11.64

Mean 88.60 (n=30) 10.35
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A-22. Plasma concentrations (jag/ml) of the enantiomer (FBZ.SO-1) of oxfendazole

(FBZ.SO) following oral administration of oxfendazole (10 mg/kg) in horse.

Animal numbers
Time
(h)

1 2 3 4 5 6 7 8

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.032 0.019 0.014 0.051 0.098 0.000 0.012 0.030
2 0.059 0.031 0.021 0.054 0.153 0.024 0.028 0.059
4 0.050 0.046 0.110 0.026 0.123 0.090 0.040 0.063
8 0.046 0.029 0.103 0.012 0.052 0.275 0.029 0.136
12 0.026 0.082 NS 0.009 0.023 0.059 0.033 0.051
20 0.035 0.102 0.011 0.006 0.010 0.006 0.145 0.009
24 0.021 0.039 0.005 0.005 0.015 ULQ 0.248 0.007
32 0.000 0.000 ULQ 0.000 0.000 0.000 0.054 0.000
48 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
72 0.000 0.000 0.000 NS 0.000 0.000 0.000 0.000
96 NS 0.000 0.000 NS 0.000 0.000 0.000 0.000
120 0.000 0.000 0.000 NS 0.000 0.000 0.000 0.000

A-23. Plasma concentrations (jig/ml) of the enantiomer (FBZ.SO-2) of oxfendazole 

(FBZ.SO) following oral administration of oxfendazole (10 mg/kg) in horse.

Animal numbers
Time (h) 1 2 3 4 5 6 7 8
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.035 0.037 0.021 0.053 0.085 0.000 0.020 0.039
2 0.059 0.052 0.031 0.047 0.103 0.026 0.030 0.072
4 0.058 0.079 0.190 0.019 0.078 0.072 0.031 0.060
8 0.026 0.039 0.161 0.000 0.012 0.132 0.013 0.070
12 0.018 0.119 NS 0.000 0.007 0.016 0.016 0.020
20 0.025 0.215 0.008 0.000 0.000 0.000 0.099 0.000
24 0.008 0.090 0.000 0.000 0.007 0.000 0.123 0.000
32 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.000
48 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
72 0.000 0.000 0.000 NS 0.000 0.000 0.000 0.000
96 NS 0.000 0.000 NS 0.000 0.000 0.000 0.000
120 0.000 0.000 0.000 NS 0.000 0.000 0.000 0.000
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Appendices B

B-l. Recovery and coefficients of variation for oxfendazole (FBZ.SO) and its metabolites

(in combination with piperonyl butoxide or alone) following liquid phase extraction from

plasma.

Added concentration 

(pg/ml)

Recovery

(%)

Coefficient of variation (%) 

(Between assay)

0.01 95.48 (n=6) 9.55

0.05 98.75 (n=6) 11.12

FBZ.SO 0.1 96.20 (n=6) 9.48

1 97.78 (n=6) 11.29

2 96.64 (n=6) 7.66

Mean 96.97 (n=30) 9.82

0.01 95.89 (n=6) 12.43

0.05 95.07 (n=6) 12.05

FBZ 0.1 92.95 (n=6) 12.61

1 98.58 (n=6) 10.67

2 94.51(n=6) 11.33

Mean 95.40 (n=30) 11.82

0.01 96.91 (n=6) 5.87

0.05 99.63 (n=6) 11.68

FBZ.SO2 0.1 90.39 (n=6) 11.19

1 95.49 (n=6) 13.39

2 98.56 (n=6) 7.84

Mean 96.20 (n=30) 10.00
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B-2. Plasma concentrations (pg/ml) of oxfendazole (FBZ.SO) following iv

administration of oxfendazole (10 mg/kg) alone in ponies.

Animals

Time A B C D E F

10 min 1.85 0.97 1.16 1.02 1.37 1.48
20 min 1.32 1.05 1.32 1.36 0.96 1.14
30 min 1.42 1.16 1.05 1.11 0.83 1.28
45 min 0.93 0.90 1.07 0.95 0.76 1.27
60 min 1.05 1.02 1.05 1.02 0.87 1.20
75 min 1.27 1.32 1.06 0.87 0.71 0.82
90 min 1.15 1.05 1.15 0.99 0.52 0.86
105 min 1.24 1.19 1.13 0.79 0.62 1.23
120 min 1.36 1.26 1.08 0.83 0.77 1.20
2.5 h 0.89 1.25 1.12 0.79 0.92 1.28
3 h 0.92 1.30 1.21 0.95 0.98 1.38
3.5 h 1.28 1.11 1.28 0.92 0.98 1.32
4 h 1.27 1.25 1.30 1.14 0.88 1.50
5 h 1.43 0.72 1.31 0.94 0.63 0.98
6 h 1.38 0.83 1.19 0.87 0.81 1.32
7 h 1.25 1.15 1.26 0.77 0.67 1.08
8 h 1.49 1.23 1.21 0.73 2.95 1.40
10 h 1.18 1.12 1.23 0.86 0.80 1.29
12 h 1.01 0.88 1.10 0.70 2.16 1.25
16 h 0.98 0.80 1.04 0.47 0.74 1.11
20 h 0.81 0.84 0.75 0.36 0.49 0.62
24 h 0.23 0.43 0.69 0.32 0.38 0.56
30 h 0.00 0.44 0.70 0.32 0.20 0.28
34 h 0.00 0.24 0.43 0.18 0.18 0.20
48 h 0.08 0.15 0.36 0.19 0.12 0.14
54 h 0.14 0.12 0.27 0.16 0.05 0.10
72 h 0.11 0.03 0.29 0.15 0.02 0.04
96 h 0.03 0.00 0.20 0.08 0.06 0.02
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B-3. Plasma concentrations (jig/ml) of oxfendazole (FBZ.SO) following iv

administration of oxfendazole (10 mg/kg) in combination with piperonyl butoxide (PB)

(31 mg/kg) in ponies.

Animals

Time A B C D E F

10 min 1.66 1.39 1.83 1.66 1.03 1.47
20 min 1.58 1.39 1.56 1.11 1.20 1.15
30 min 1.18 1.20 1.18 1.20 1.16 1.29
45 min 1.52 1.29 1.76 1.05 1.70 1.24
60 min 1.48 1.68 1.81 1.28 1.71 1.25
75 min 1.86 1.75 1.84 1.69 2.04 1.35
90 min 1.90 1.97 2.12 1.32 2.08 1.25
105 min 2.22 2.11 2.14 1.26 1.61 1.57
120 min 2.18 2.28 2.30 1.79 2.11 1.41
2.5 h 1.96 2.31 2.98 2.12 2.84 1.96
3 h 2.68 2.68 3.11 2.64 2.76 2.12
3.5 h 3.74 3.36 2.06 3.19 2.48 2.47
4 h 3.45 3.24 4.00 3.22 2.45 2.03
5 h 4.19 4.08 4.01 2.46 2.30 2.12
6 h 3.56 3.87 4.82 2.75 2.35 2.61
7 h 4.62 4.61 5.11 2.77 2.35 2.67
8 h 3.88 1.14 4.16 2.94 2.65 3.14
10 h 3.02 3.48 3.70 1.92 2.01 2.16
12 h 2.12 0.89 3.48 1.00 1.48 1.90
16 h 1.38 1.89 2.89 1.02 1.03 1.29
20 h 1.00 1.05 1.93 0.41 0.40 0.42
24 h 0.65 0.59 1.01 0.22 0.33 0.31
30 h 0.35 0.29 0.32 0.13 0.15 0.31
34 h 0.17 0.15 0.21 0.07 0.11 0.13
48 h 0.09 0.09 0.11 0.04 0.10 0.09
54 h 0.06 0.08 0.10 0.03 0.12 0.05
72 h 0.04 0.04 0.06 0.02 0.04 0.04
96 h 0.02 0.02 0.03 0.01 0.05 0.03
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B-4. Plasma concentrations (jag/ml) of fenbendazole (FBZ) following iv administration

of oxfendazole (10 mg/kg) alone in ponies.

Animals

Time A B c D E F

10 min 0.02 0.02 0.00 0.02 0.01 0.00
20 min 0.00 0.01 0.02 0.04 0.00 0.00
30 min 0.01 0.02 0.01 0.03 0.02 0.00
45 min 0.01 0.01 0.03 0.01 0.00 0.00
60 min 0.02 0.02 0.02 0.00 0.01 0.00
75 min 0.01 0.02 0.02 0.00 0.00 0.00
90 min 0.01 0.01 0.00 0.00 0.00 0.00
105 min 0.00 0.00 0.00 0.00 0.00 0.00
120 min 0.03 0.00 0.00 0.00 0.00 0.00
2.5 h 0.00 0.00 0.01 0.00 0.00 0.00
3 h 0.00 0.00 0.04 0.00 0.00 0.00
3.5 h 0.01 0.02 0.07 0.00 0.00 0.00
4 h 0.00 0.02 0.01 0.00 0.01 0.00
5 h 0.01 0.01 0.04 0.00 0.00 0.00
6 h 0.02 0.01 0.04 0.00 0.03 0.03
7 h 0.02 0.01 0.08 0.00 0.02 0.03
8 h 0.04 0.01 0.05 0.01 0.03 0.04
10 h 0.04 0.01 0.04 0.03 0.04 0.04
12 h 0.03 0.01 0.03 0.01 0.05 0.06
16 h 0.05 0.02 0.02 0.03 0.04 0.08
20 h 0.04 0.02 0.02 0.01 0.04 0.05
24 h 0.00 0.03 0.02 0.02 0.09 0.05
30 h 0.00 0.02 0.03 0.01 0.03 0.07
34 h 0.00 0.01 0.01 0.00 0.09 0.01
48 h 0.00 0.00 0.00 0.00 0.03 0.00
54 h 0.00 0.00 0.00 0.00 0.00 0.00
72 h 0.00 0.00 0.00 0.00 0.00 0.00
96 h 0.00 0.00 0.00 0.00 0.00 0.00
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B-5. Plasma concentrations (pg/ml) of fenbendazole (FBZ) following iv administration

of oxfendazole (10 mg/kg) in combination with piperonyl butoxide (PB) (31 mg/kg) in

ponies.

Animals

Time A B C D E F

10 min 0.01 0.02 0.05 0.03 0.00 0.05
20 min 0.02 0.05 0.04 0.01 0.00 0.01
30 min 0.01 0.02 0.02 0.02 0.01 0.04
45 min 0.03 0.02 0.04 0.01 0.02 0.01
60 min 0.01 0.01 0.03 0.01 0.01 0.01
75 min 0.02 0.01 0.00 0.02 0.00 0.01
90 min 0.02 0.01 0.05 0.02 0.00 0.01
105 min 0.01 0.02 0.02 0.01 0.00 0.01
120 min 0.01 0.02 0.01 0.01 0.02 0.03
2.5 h 0.01 0.02 0.01 0.01 0.03 0.01
3 h 0.02 0.04 0.01 0.02 0.01 0.02
3.5 h 0.02 0.03 0.01 0.03 0.01 0.02
4 h 0.02 0.01 0.02 0.04 0.02 0.04
5 h 0.03 0.05 0.02 0.04 0.02 0.04
6 h 0.04 0.04 0.06 0.06 0.03 0.05
7 h 0.05 0.05 0.06 0.08 0.04 0.04
8 h 0.05 0.04 0.06 0.09 0.07 0.04
lOh 0.06 0.07 0.07 0.11 0.08 0.07
12 h 0.07 0.05 0.10 0.08 0.05 0.09
16 h 0.07 0.08 0.09 0.13 0.10 0.13
20 h 0.09 0.11 0.10 0.07 0.05 0.06
24 h 0.07 0.06 0.10 0.05 0.06 0.05
30 h 0.09 0.09 0.10 0.05 0.04 0.03
34 h 0.04 0.06 0.08 0.02 0.01 0.02
48 h 0.01 0.02 0.07 0.00 0.00 0.01
54 h 0.01 0.01 0.00 0.00 0.00 0.01
72 h 0.00 0.00 0.00 0.00 0.00 0.00
96 h 0.00 0.00 0.00 0.00 0.00 0.00
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B-6. Plasma concentrations (jig/ml) of fenbendazole sulphone (FBZ.SO2) following iv

administration of oxfendazole (10 mg/kg) alone in ponies.

Animals

Time A B C D E F

10 min 0.40 0.22 0.22 0.17 0.23 0.26
20 min 0.39 0.31 0.35 0.30 0.30 0.31
30 min 0.51 0.43 0.35 0.32 0.34 0.52
45 min 0.44 0.38 0.44 0.45 0.35 0.60
60 min 0.57 0.51 0.53 0.55 0.48 0.67
75 min 0.75 0.73 0.59 0.48 0.43 0.54
90 min 0.75 0.65 0.70 0.62 0.38 0.62
105 min 0.86 0.80 0.00 0.58 0.39 0.90
120 min 1.01 0.90 0.00 0.69 0.60 0.89
2.5 h 0.63 1.01 0.82 0.74 0.80 1.05
3 h 0.88 1.15 0.98 0.97 0.90 1.15
3.5 h 1.35 0.97 0.98 0.92 0.89 1.19
4 h 1.26 1.21 1.20 1.08 0.94 1.40
5 h 1.64 0.79 1.30 1.09 0.70 1.00
6 h 1.89 0.97 1.30 1.08 1.01 1.43
7 h 1.71 1.59 1.45 0.93 0.86 1.14
8 h 2.15 1.77 1.46 1.11 0.82 1.53
10 h 1.84 1.71 1.61 1.22 1.05 1.50
12 h 1.67 1.44 1.50 0.88 1.10 1.57
16 h 1.72 1.40 1.48 0.76 1.42 1.73
20 h 1.44 1.64 1.25 0.57 1.21 1.28
24 h 0.08 0.95 1.03 0.56 1.15 1.30
30 h 0.00 1.18 0.81 0.24 0.83 0.95
34 h 0.00 0.80 0.66 0.46 0.67 0.72
48 h 0.03 0.45 0.32 0.19 0.30 0.42
54 h 0.09 0.28 0.28 0.12 0.18 0.27
72 h 0.05 0.11 0.11 0.04 0.08 0.09
96 h 0.02 0.03 0.06 0.03 0.07 0.05
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B-7. Plasma concentrations (|ig/ml) of fenbendazole sulphone (FBZ.SO2) following iv

administration of oxfendazole (10 mg/kg) in combination with piperonyl butoxide (PB)

(31 mg/kg) in ponies.

Animals

Time A B C D E F

10 min 0.30 0.26 0.23 0.26 0.15 0.18
20 min 0.41 0.39 0.27 0.21 0.17 0.31
30 min 0.34 0.37 0.25 0.29 0.17 0.39
45 min 0.50 0.44 0.42 0.29 0.22 0.46
60 min 0.48 0.52 0.44 0.38 0.19 0.49
75 min 0.60 0.51 0.44 0.52 0.20 0.55
90 min 0.60 0.53 0.47 0.40 0.19 0.52
105 min 0.63 0.60 0.46 0.37 0.13 0.70
120 min 0.57 0.62 0.47 0.39 0.19 0.54
2.5 h 0.47 0.58 0.55 0.60 0.26 0.68
3 h 0.60 0.64 0.56 0.76 0.22 0.63
3.5 h 0.78 0.78 0.34 0.91 0.20 0.72
4 h 0.71 0.74 0.69 0.98 0.23 0.53
5 h 0.82 0.97 0.49 0.79 0.23 0.54
6 h 0.78 0.95 0.80 0.99 0.26 0.75
7 h 1.04 1.02 0.83 1.01 0.32 0.68
8 h 0.90 1.38 0.69 1.24 0.43 0.85
10 h 0.95 1.13 0.73 1.03 0.56 0.66
12 h 1.09 1.38 0.89 0.87 0.30 0.88
16 h 1.39 1.71 1.43 1.72 0.85 1.30
20 h 1.81 1.93 1.73 1.20 0.80 0.62
24 h 1.64 1.78 1.76 1.00 1.05 0.81
30 h 1.39 1.66 1.40 0.96 0.62 0.78
34 h 0.92 1.02 1.11 0.48 0.43 0.44
48 h 0.45 0.39 0.29 0.20 0.15 0.16
54 h 0.21 0.27 0.20 0.14 0.09 0.12
72 h 0.10 0.10 0.07 0.08 0.03 0.06
96 h 0.04 0.05 0.03 0.03 0.05 0.01
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B-8. Plasma concentrations (pg/ml) of the enantiomer (FBZ.SO-1) of oxfendazole

(FBZ.SO) in ponies following iv administration of oxfendazole (10 mg/kg) alone.

Animals

Time A B C D E F
10 min 0.98 0.37 0.86 0.53 0.81 0.44
20 min 0.89 0.32 0.71 0.62 0.74 0.59
30 min 0.71 0.30 0.73 0.55 0.61 0.46
45 min 0.71 0.28 0.71 0.54 0.71 0.43
60 min 0.74 0.26 0.64 0.58 0.71 0.41
75 min 0.80 0.31 0.64 0.59 0.79 0.43
90 min 0.78 0.32 0.54 0.66 0.72 0.46
105 min 0.78 0.66 0.67 0.62 0.81 0.46
120 min 0.80 0.63 0.65 0.63 0.75 0.46
2.5 h 0.81 0.68 0.65 0.68 0.86 0.47
3 h 0.80 0.72 0.57 0.77 0.94 0.50
3.5 h 1.00 0.76 0.76 0.81 0.79 0.43
4 h 0.89 0.79 0.86 0.69 1.02 0.47
5 h 0.85 0.79 0.76 0.75 0.84 0.52
6 h 0.87 0.83 0.47 0.71 0.67 0.47
7 h 0.91 0.74 0.58 0.60 0.54 0.30
8 h 0.88 0.00 0.80 0.75 0.50 0.26
10 h 0.78 0.70 0.59 0.68 0.74 0.36
12 h 0.63 0.00 0.55 0.58 0.58 0.34
16 h 0.61 0.50 0.45 0.47 0.69 0.23
20 h 0.44 0.32 0.37 0.42 0.35 0.17
24 h 0.35 0.24 0.30 0.32 0.35 0.13
30 h 0.18 0.13 0.16 0.15 0.12 0.09
34 h 0.12 0.08 0.13 0.11 0.14 0.06
48 h 0.05 0.05 0.06 0.05 0.07 0.00
54 h 0.00 0.00 0.05 0.00 0.00 0.00
72 h 0.00 0.00 0.00 0.00 0.00 0.00
96 h 0.00 0.00 0.00 0.00 0.00 0.00
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B-9. Plasma concentrations (pg/ml) of the enantiomer (FBZ.SO-2) of oxfendazole

(FBZ.SO) in ponies following iv administration of oxfendazole (10 mg/kg) alone.

Animals

Time A B C D E F

10 min 1.07 0.43 1.07 0.58 0.99 0.50
20 min 0.91 0.31 0.88 0.70 0.89 0.67
30 min 0.66 0.25 0.96 0.48 0.72 0.47
45 min 0.69 0.24 0.87 0.53 0.67 0.37
60 min 0.62 0.23 0.69 0.44 0.78 0.35
75 min 0.60 0.25 0.66 0.45 0.79 0.34
90 min 0.58 0.24 0.54 0.44 0.68 0.36
105 min 0.56 0.43 0.63 0.50 0.68 0.34
120 min 0.54 0.42 0.51 0.38 0.67 0.31
2.5 h 0.57 0.44 0.57 0.50 0.70 0.30
3 h 0.52 0.44 0.47 0.52 0.63 0.31
3.5 h 0.66 0.47 0.57 0.45 0.55 0.25
4 h 0.59 0.49 0.57 0.46 0.67 0.29
5 h 0.55 0.48 0.46 0.48 0.50 0.31
6 h 0.59 0.50 0.28 0.41 0.39 0.26
7 h 0.63 0.50 0.33 0.33 0.31 0.16
8 h 0.61 ND 0.48 0.38 0.28 0.14
10 h 0.58 0.46 0.32 0.36 0.38 0.21
12 h 0.47 0.00 0.32 0.31 0.34 0.18
16 h 0.44 0.30 0.28 0.26 0.41 0.13
20 h 0.31 0.19 0.25 0.24 0.22 0.10
24 h 0.23 0.16 0.18 0.19 0.23 0.07
30 h 0.15 0.11 0.12 0.09 0.09 0.07
34 h 0.11 0.07 0.11 0.07 0.11 0.05
48 h 0.06 o.oo 0.06 0.00 0.08 0.00
54 h 0.05 0.00 0.05 0.00 0.05 0.00
72 h 0.00 0.00 0.00 0.00 0.00 0.00
96 h 0.00 0.00 0.00 0.00 0.00 0.00
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B-10. Plasma concentrations (jag/ml) of the enantiomer (FBZ.SO-1) of oxfendazole

(FBZ.SO) in ponies following iv administration of oxfendazole (10 mg/kg) in

combination with piperonyl butoxide (PB) (31 mg/kg).

Animals

Time A B C D E F

10 min 0.85 1.05 1.11 0.98 0.49 0.36
20 min 0.81 0.92 0.96 0.89 0.48 0.45
30 min 0.74 0.87 0.87 0.71 0.52 0.43
45 min 0.84 0.89 0.91 0.78 0.81 0.53
60 min 0.90 1.02 0.93 0.74 0.63 0.56
75 min 0.98 1.10 0.94 0.80 0.75 0.67
90 min 1.08 1.16 0.96 0.78 0.82 0.75
105 min 1.18 1.20 1.25 0.78 0.66 0.85
120 min 1.29 1.28 1.10 0.80 0.81 0.84
2.5 h 1.38 1.55 1.25 0.87 1.09 0.87
3 h 1.44 1.74 1.24 0.80 0.83 0.87
3.5 h 1.55 2.16 1.31 1.00 0.97 1.02
4 h 1.58 1.95 1.51 0.89 1.12 0.93
5 h 1.86 2.06 1.64 0.85 0.99 0.90
6 h 1.71 2.11 1.54 0.87 0.62 1.05
7 h 1.34 2.03 1.51 0.91 1.25 1.09
8 h 0.00 2.04 1.59 0.88 0.97 0.82
10 h 0.00 1.77 1.48 0.78 0.83 0.84
12 h 0.65 1.60 1.40 0.63 0.80 0.97
16 h 1.11 1.19 1.33 0.61 0.54 0.42
20 h 0.75 0.84 1.37 0.44 0.27 0.23
24 h 0.43 0.49 1.01 0.35 0.17 0.13
30 h 0.21 0.28 0.53 0.18 0.07 0.05
34 h 0.12 0.13 0.12 0.12 0.05 0.00
48 h 0.05 0.06 0.05 0.05 0.00 0.00
54 h 0.00 0.00 0.00 0.00 0.00 0.00
72 h 0.00 0.00 0.00 0.00 0.00 0.00
96 h 0.00 0.00 0.00 0.00 0.00 0.00
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B-ll.  Plasma concentrations (fig/ml) of the enantiomer (FBZ.SO-2) of oxfendazole

(FBZ.SO) in ponies following iv administration of oxfendazole (10 mg/kg) in

combination with piperonyl butoxide (PB) (31 mg/kg).

Animals

Time A B C D E F
10 min 1.08 1.07 1.35 1.00 0.47 0.30
20 min 0.84 0.86 1.06 0.95 0.42 0.44
30 min 0.63 0.87 0.90 0.86 0.48 0.47
45 min 0.87 0.90 0.97 0.87 0.69 0.58
60 min 0.99 1.13 0.93 0.82 0.56 0.67
75 min 1.04 1.10 0.97 1.00 0.61 0.80
90 min 1.07 1.16 0.98 1.11 0.69 0.84
105 min 1.18 1.27 1.26 1.15 0.53 1.02
120 min 1.38 1.38 1.13 1.23 0.70 1.03
2.5 h 1.55 1.88 0.00 1.43 0.99 1.11
3 h 1.72 1.98 1.39 1.70 0.86 1.16
3.5 h 1.94 0.00 2.13 1.89 1.03 1.46
4 h 1.96 2.38 1.80 1.76 1.31 1.35
5 h 2.47 2.66 2.20 1.50 1.15 1.29
6 h 2.27 2.71 2.10 1.50 1.30 1.53
7 h 1.86 2.66 2.15 1.61 1.47 1.70
8 h 0.00 2.45 2.20 1.62 1.21 1.09
10 h 0.00 2.15 2.07 1.36 0.98 1.06
12 h 0.42 1.47 0.00 0.78 1.01 1.45
16 h 0.91 0.79 1.65 0.43 0.45 0.28
20 h 0.46 0.45 1.42 0.19 0.19 0.13
24 h 0.23 0.27 0.84 0.14 0.10 0.07
30 h 0.12 0.16 0.36 0.07 0.05 0.05
34 h 0.09 0.09 0.07 0.06 0.00 0.00
48 h 0.05 0.05 0.05 0.00 0.00 0.00
54 h 0.00 0.00 0.00 0.00 0.00 0.00
72 h 0.00 0.00 0.00 0.00 0.00 0.00
96 h 0.00 0.00 0.00 0.00 0.00 0.00
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Appendices C

C-l. Quantities of components of the NADPH-generating cofactor solution for ten 

assays.

Components Amount required per ten assays

Tris buffer, pH 7.4, 0.1 M 8.5 ml

MgCl2, 0.15 M 1.0 ml

Nicotinamide, 0.5 M 1.0 ml

Trisodium isicitrate 40.0 mg

Isocitrate dehydorgenase 2.0 units

NADP+ 8.0 mg

N.B. - 1.0 ml of the above solution is usually required per assay.
- The components should be thoroughly mixed and dissolved prior to use.
- The mixed solution should not be allowed stand for more.than a few minutes;

otherwise the generated NADPH will break down.

C-2. Calculated amounts of microsomal protein used.

Animals
T U V W X Y Z

Microsomal protein 
(mg/g of liver) 7.22 10.11 4.5 6.00 4.95 10.50 8.40

Microsomal protein 
(mg/ml) of microsome 
suspension)

12.04 16.84 7.50 16.60 8.20 17.50 14.00

Weight of liver used (g) 100 100 100 100 100 100 100

Final volume of 
microsome 
suspension (ml)

60 60 60 60 60 60 60

Volume of microsome
suspension
(ml) per 4 mg protein

0.332 0.237 0.533 0.240 0.487 0.228 0.285
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C-3. Amount of oxfendazole (FBZ.SO) (nmol) remaining in the microsomal reaction

mixture after oxfendazole incubation with and without piperonyl butoxide (PB).

FBZ.SO (nmol)

Cone.
(pM) T U V W X Y Z Mean ± 

SD
0.5

(n=7) 468 427 475 339 431 449 490 440 ± 50

With
PB

1
(n=7) 928 911 974 788 881 920 1054 922 ±81

2.5
(n=7) 2149 2307 2135 1973 2183 2352 2393 2213 ± 

147
0.5

(n=7) 98 18 119 32 38 15 30 50 ±41

Without
PB

1
(n=7)

205 55 295 70 79 53 95 121 ±93

2.5
(n=7) 623 708 986 287 304 284 526 531 ±264

C-4. Amount of fenbendazole sulphone (FBZ.SO2) (nmol/mg protein).h'l) formed in the 

microsomal reaction mixture after oxfendazole incubation with and without piperonyl 

butoxide (PB).

FBZ.SO2 (nmol/mg protein).!!'1

Cone.
(HM) T U V W X Y Z Mean ± 

SD
0.5

(n=7) 3 13 7 9 8 10 5 8 ± 3

With
PB

1
(n=7) 5 24 11 16 17 18 11 15 ± 6

2.5
(n=7) 13 54 22 31 35 43 25 32 ±14

! 
11

0 
3 20 15 21 18 21 18 21 19 ± 2

Without
PB

1
(n=7) 40 48 44 37 46 47 46 44 ± 4

2.5
(n=7) 86 148 109 91 121 130 116 114 ±21
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C-5. Amount of fenbendazole (FBZ) (nmol) remaining in the microsomal reaction

mixture after fenbendazole incubation with and without piperonyl butoxide (PB).

FBZ (nmol)

Cone.
(pM) T U V W X Y Z Mean ± 

SD
0.5

(n=7) 446 336 446 409 330 446 473 412 ±57

With
PB

1
(n=7) 834 633 859 782 718 904 849 797 ± 94

2.5
(n=7) 2037 1692 2216 2190 1934 2252 2215 2077 ± 

205
0.5

(n=7) 105 19 63 60 43 78 39 58 ±28

Without
PB

1
(n=7) 297 64 255 184 96 177 104 168 ±86

2.5
(n=7) 1234 533 1222 948 606 474 532 793 ± 335

C-6. Amount of fenbendazole sulphoxide (FBZ.SO) (nmol/mg protein).h_1) formed in the 

microsomal reaction mixture after incubation with fenbendazole with and without 

piperonyl butoxide (PB).

FBZ.SO (nmol/mg protein).!!'1

Cone.
(pM) T U V W X Y Z Mean ± 

SD

With
PB

0.5
(n=7) 9 17 9 13 12 12 14 12 ±3

1
(n=7) 13 25 14 20 21 20 24 20 ± 4

2.5
(n=7) 28 45 23 41 47 35 44 38 ± 9

Without
PB

0.5
(n=7) 16 7 20 30 8 4 6 13 ± 9

1
(n=7) 29 16 40 52 17 10 15 26 ± 16

2.5
(n=7) 64 68 79 105 65 46 60 70 ± 18



201

C-7. Amount of fenbendazole sulphone (FBZ.SO2) (nmol/mg protein).!!'1) formed in the

microsomal reaction mixture after incubation with fenbendazole with and without

piperonyl butoxide (PB).

FBZ.SO2 (nmol/mg protein).!}'1

Cone.
ftiM)

T U V W X Y Z Mean ± 
SD

0.5
(n=7) 0 6 4 8 7 7 0 5 ± 3

With
PB

1
(n=7) 0 6 5 7 8 8 0 5 ± 4

2.5
(n=7) 0 6 5 8 9 9 0 5 ± 4

0.5
(n=7) 4 13 6 9 8 10 9 8 ± 3

Without
PB

1
(ii=7) 8 29 11 17 18 18 17 17 ±7

2.5
(n=7) 14 64 17 27 44 44 33 35 ± 18

C-8. Amount of hydroxy fenbendazole (OH.FBZ) (nmol/mg protein).h_1) formed in the 

microsomal reaction mixture after incubation with fenbendazole with and without 

piperonyl butoxide (PB).

OH.FBZ (nmol/mg protein).h'1

Cone.
(pM) T U V W X Y Z Mean ± 

SD

With
PB

0.5
(n=7) 6 21 3 12 9 6 8 9 ± 6

1
(n=7) 11 33 6 22 19 11 15 17 ± 9

2.5
(n=7) 26 59 11 47 44 24 30 34 ±16

Without
PB

0.5
(n=7) 8 12 6 11 6 4 4 7 ± 3

1
(n=7) 18 27 13 24 14 9 11 16 + 7

2.5
(n=7) 46 79 27 55 50 33 36 47 ±17
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C-9. Amount of oxibendazole (OBZ) (nmol) remaining in the microsomal reaction

mixture after its incubation with and without piperonyl butoxide (PB).

OBZ (nmol)

Cone.
(pM) T U V W X Y Z Mean ± 

SD
0.5

(n=7)
4 3 0 1 14 0 15 5 ± 6

With
PB

1
(n=7) 9 5 2 7 16 78 165 40 ±61

2.5
(n=7)

257 325 126 329 243 739 937 422 ± 297

0.5
(n=7)

110 125 11 34 91 170 296 119 ± 95

Without
PB

1
(n=7) 296 350 96 218 320 425 779 355 ±214

2.5
(n=7) 1324 1688 848 1406 1434 1867 1970 1505 ± 

378

C-10. Amount of the first metabolite (Ml) (nmol/mg protein, h '1) formed in the 

microsomal reaction mixture after oxibendazole incubation with and without piperonyl 

butoxide (PB).

Ml (nmol/mg protein).h'1

Cone.
(pM) T U V W X Y Z Mean ± 

SD
0.5

(n=7) 10 14 12 15 12 18 19 15 ± 3

With
PB

1
(n=7) 24 32 27 33 26 40 38 31 ± 6

2.5
(n=7) 53 62 66 68 51 78 62 63 ±9

0.5
(n=7) 10 12 11 14 10 13 8 11 ±2

Without
PB

1
(n=7) 21 23 23 23 17 18 17 20 ±3

2.5
(n=7)

41 39 43 35 29 28 24 34 ± 7
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C-ll .  Amount of the second metabolite (M2) (nmol/mg protein, h '1) formed in the

microsomal reaction mixture after oxibendazole incubation with and without piperonyl

butoxide (PB).

M2 (nmol/mg protein).h'1

Cone.
GiM) T U V W X Y Z Mean±

SD
0.5

(n=7) 4 14 8 23 10 16 18 13 ± 6

With
PB

1
(n=7) 14 39 25 64 30 46 41 37 ± 16

2.5
(n=7) 44 103 85 153 78 111 84 94 ±34

0.5
(n=7) 2 2 2 3 2 3 0 2 ± 1

Without
PB

1
(n=7) 4 5 5 9 5 5 5 5 ± 2

2.5
(n=7) 8 11 13 19 11 7 8 11 ± 4

C-12. Amount of the third metabolite (M3) (nmol/mg protein, h '1) formed in the 

microsomal reaction mixture after oxibendazole incubation with and without piperonyl 

butoxide (PB).

M3 (nmol/mg protein).h*1

Cone.
(pM) T U V W X Y Z Mean±

SD
0.5

(n=7) 0 0 0 4 1 4 13 3 ± 5

With
PB

1
(n=7)

2 2 3 15 4 13 31 10 ± 11

2.5
(n=7) 34 14 42 47 27 37 60 37 ±15

0.5
(n=7) 31 46 31 53 39 38 30 38 ± 9

Without
PB

1
(n=7) 87 94 78 91 74 93 57 82 ± 13

2.5
(n=7) 186 164 152 128 119 113 88 136 ±33
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C-13. Amount of the fourth metabolite (M4) (nmol/mg protein, h '1) formed in the

microsomal reaction mixture after oxibendazole incubation with and without piperonyl

butoxide (PB).

M4 (nmol/mg protein).h'1

Cone.
(pM) T U V W X Y z Mean ± 

SD
0.5

(n=7) 1 3 2 2 2 2 0 2 ± 1

With
PB

1
(n=7) 4 9 5 7 7 7 6 6 ± 1

2.5
(n=7)

14 23 18 18 16 5 12 15 ± 6

0.5
(n=7)

0 0 0 1 1 0 0 0 ± 0

Without
PB

1
(n=7) 0 1 2 1 1 0 0 1 ± 1

2.5
(n=7) 0 4 4 3 3 0 0 2 ± 2
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C-14. Total enantiomer (FBZ.SO-1) remaining in microsome reaction mixture following 

oxfendazole (0.5, 1, 2.5 pM) incubation with and without piperonyl butoxide.

FBZ.SO-1 (nmol)

Cone.
(pM) T U V W X Y Mean ± SD

0.5 277 199 148 238 199 259 220 ± 47

With
PB 1 536 462 278 458 462 539 456 ± 95

2.5 1442 1191 828 944 1191 1277 1146 ±224

0.5 93 88 21 21 15 25 44 ±36

Without
PB 1 218 182 44 54 52 88 107 ±75

2.5 640 561 238 285 192 516 405 ± 190

C-15. Total enantiomer (FBZ.SO-2) remaining in microsome reaction mixture following 

oxfendazole (0.5, 1, 2.5 pM) incubation with and without piperonyl butoxide.

FBZ.SO-2 (nmol)

Cone.
(pM) T U V W X Y Mean ± SD

0.5 187 185 125 133 240 251 187 ±52

With
PB 1 437 428 266 263 478 518 398 ± 109

2.5 998 1118 822 608 1185 1209 990 ± 235

0.5 0 33 0 0 0 0 6 ± 13

Without
PB 1 0 87 0 0 0 0 15 ±36

2.5 104 341 0 0 0 0 74 ±137
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C-16. Enantiomers (FBZ.SO-1) produced in microsome reaction mixture following 

fenbendazole (0.5, 1, 2.5 pM) incubation with and without piperonyl butoxide.

FBZ.SO-1 (nmol/mg protein).!!"1

Cone.
(pM) T U V W X Y Z Mean ± 

SD

0.5 0 10 8 5 9 8 6 6 ± 3

With
PB 1 8 17 10 10 15 13 13 12 ±3

2.5 22 23 21 17 31 17 26 22 ±5

0.5 17 5 20 9 8 5 5 10 ± 6

Without
PB 1 39 12 35 17 18 11 15 21 ± 11

2.5 88 50 74 42 72 53 63 63 ± 16

C-17. Enantiomers (FBZ.SO-2) produced in microsome reaction mixture following 

fenbendazole (0.5,1,2.5 pM) incubation with and without piperonyl butoxide.

FBZ.SO-2 (nmol/mg protein).!!'1

Cone.
(pM) T U V W X Y Z Mean ± 

SD

0.5 0 3 0 0 0 2 4 1 ± 2

With
PB 1 4 7 0 0 0 3 9 3 ± 4

2.5 11 11 6 0 0 6 18 7 ± 7

0.5 0 0 0 0 0 0 0 0 ± 0

Without
PB 1 8 0 0 0 0 0 0 1 ± 3

2.5 27 7 8 0 0 0 0 6 ± 10
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Appendices D

D-l Recovery and coefficients of variation for ivermectin (IVM), doramectin (DRM) and

moxidectin (MXD) following liquid phase extraction from plasma.

Added concentration 

(ng/ml)

Recovery

(%)

Coefficient of variation (%) 

(Between assay)

0.50 86.00 (n=7) 9.03

LOO 84.64 (n=8) 12.44

IVM 5.00 93.08 (n=7) 8.82

10.00 85.40 (n=7) 8.37

50.00 88.18 (n=7) 6.54

Mean 87.46 (n=36) 9.04

0.50 89.43 (n=8) 3.93

1.00 90.40 (n=8) 6.22

DRM 10.00 91.90 (n=8) 4.62

20.00 88.68 (n=8) 5.90

50.00 88.31 (n=8) 3.27

Mean 89.75 (n=40) 4.79

0.50 95.44 (n=8) 9.22

1.00 96.19 (n=7) 3.74

MXD 10.00 93.25 (n=8) 8.54

20.00 95.20 (n=7) 9.07

50.00 96.51 (n=8) 9.47

Mean 95.32 (n=38) 8.01
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D-2. Plasma concentration (ng/ml) of ivermectin (IVM) following oral administration at

a dose rate of 200 jug/kg bodyweight.

Animal numbers

Time 25 26 27 28 29 30 31 32
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 h 0.28 3.30 0.29 0.00 0.00 0.00 0.00 4.04
2 h 5.77 10.76 2.41 1.34 0.65 1.41 4.41 13.88
4 h 28.77 28.70 20.59 8.53 13.74 6.52 10.87 37.93
8 h 39.48 31.37 17.35 11.91 17.02 7.47 8.52 25.85
12 h 28.04 27.34 17.67 10.11 NS 7.56 13.03 25.62
20 h 25.37 21.89 10.39 8.54 8.18 5.03 16.55 19.23
24 h 18.95 19.12 9.05 7.37 9.63 5.07 22.14 14.29
32 h 17.33 16.75 7.92 6.09 8.76 3.73 13.21 10.56
48 h 10.07 9.50 5.65 3.62 5.49 3.38 8.84 8.36
72 h 10.71 7.14 3.73 2.57 4.00 1.81 6.85 8.05
96 h 6.55 5.35 2.23 1.78 3.74 1.13 5.41 4.89
120 h 5.54 3.91 1.55 1.01 2.07 0.87 4.32 3.95
8 days 3.03 1.85 0.70 0.45 0.82 0.28 3.13 2.04
11 days 0.42 0.00 0.00 0.00 0.00 0.00 0.25 0.00
25 days 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
39 days 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
66 days 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
80 days 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D-3. Pharmacokinetic parameters of ivermectin (IVM) following oral administration at a 

dose rate of 200 pg/kg bodyweight.

Animal numbers
Time (h) 25 26 27 28 29 30 31 32
Cmax 39.48 31.37 20.59 11.91 17.02 7.56 22.14 37.93
tmax (h) 8.00 8.00 4.00 8.00 8.00 12.00 24.00 4.00

AUCiast
(pg.h/ml) 81.70 65.30 33.21 22.46 33.87 16.02 58.35 60.37

AUMCiast
(pg.h2/ml) 232.48 147.66 67.42 46.49 79.78 33.89 188.20 143.07

M R T last (h) 2.85 2.26 2.03 2.03 2.36 2.12 3.23 2.37
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D-4. Plasma concentration (ng/ml) of doramectin (DRM) following oral administration at

a dose rate of 200 pg/kg bodyweight.

Animal numbers

Time 33 34 35 36 37 38 39 40
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 h 0.27 0.00 3.12 0.81 7.79 0.00 1.39 0.30
2 h 3.87 0.26 7.89 2.90 25.96 0.00 3.28 6.30
4 h 22.82 3.38 34.56 14.99 49.39 6.60 8.30 48.90
8 h 17.55 8.25 32.22 16.88 40.58 11.02 9.72 48.86
12 h 18.38 10.78 26.43 19.78 28.58 NS 15.99 39.60
20 h 14.25 10.75 15.51 14.75 23.92 NS 16.06 25.05
24 h 13.57 6.71 13.90 11.91 23.06 13.58 14.51 21.63
32 h 13.01 6.70 NS 8.61 18.16 10.52 13.84 21.52
48 h 8.79 6.84 12.91 6.72 15.85 8.30 8.07 19.14
72 h 7.58 4.25 7.97 5.59 11.07 4.73 8.67 13.77
96 h 4.42 2.56 7.98 4.37 11.49 4.55 5.87 10.90
120 h 3.90 2.19 7.50 4.40 6.75 2.43 3.51 6.90
8 days 3.11 2.09 6.43 1.86 6.10 1.81 1.44 5.99
11 days 0.00 0.33 3.08 0.30 0.85 0.00 0.00 0.50
25 days 0.00 0.00 2.05 0.00 0.00 0.00 0.00 0.00
39 days 0.00 0.00 1.41 0.00 0.00 0.00 0.00 0.00
66 days 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
80 days 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D-5. Pharmacokinetic parameters of doramectin (DRM) following oral administration at 

a dose rate of 200 pg/kg bodyweight.

Animal numbers
Time (h) 33 34 35 36 37 38 39 40
Cmax (pg/ml) 22.82 10.78 34.56 19.78 49.39 13.58 16.07 48.91
tmax (h) 4.00 12.00 4.00 12.00 4.00 24.00 20.00 4.00

AUCiast
(pg.h/ml) 55.58 34.91 154.91 49.82 108.72 40.87 51.08 116.44

AUMCiast
(pg.h2/ml) 151.5 117.99 1754.5 151.13 349.55 108.61 134.45 353.07

MRTiast (h) 2.73 3.38 11.33 3.03 3.22 2.66 2.63 3.03
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D-6. Plasma concentration (ng/ml) of moxidectin (MXD) following oral administration at

a dose rate of 200 pg/kg bodyweight.

Animal numbers

Time 41 42 43 44 45 46 47 48
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 h 0.83 0.53 0.29 9.05 0.92 0.26 1.50 0.00
2 h 6.67 8.68 3.62 29.58 7.11 1.27 4.66 2.79
4 h 15.26 30.69 16.44 57.10 17.92 13.31 27.94 10.36
8 h 31.25 33.48 19.54 37.03 17.84 30.32 28.95 19.70
12 h 22.80 31.12 10.93 29.03 14.98 32.53 15.21 17.19
20 h 19.20 20.78 7.77 24.07 10.26 20.75 16.52 13.84
24 h 16.22 20.53 7.39 20.91 7.29 11.13 9.09 12.32
32 h 9.68 12.98 NS 15.24 5.06 10.88 7.49 9.70
48 h 6.60 7.45 5.74 8.99 2.71 8.36 5.45 5.88
72 h 4.12 3.73 3.77 5.79 NS 5.87 3.55 3.66
96 h 2.96 3.50 2.97 4.48 1.20 5.01 3.48 2.73
120 h 2.13 3.20 2.62 3.63 1.02 2.70 3.32 1.10
8 days 1.06 1.61 2.48 2.72 1.27 2.51 1.97 1.34
11 days 0.70 1.25 0.91 1.21 0.88 0.59 1.82 0.67
25 days 0.41 1.13 0.70 0.61 0.55 0.70 1.29 0.65
39 days 0.40 0.62 0.83 0.58 NS NS 1.08 0.40
66 days NS 0.53 0.49 0.27 NS 0.58 0.82 0.39
80 days NS 0.39 0.25 0.25 NS 0.42 0.64 0.00
188 days NS 0.00 NS . NS 0.00 ULQ NS 0.00
197 days 0.00 NS 0.00 0.00 NS 0.00 ULQ 0.00

D-7. Pharmacokinetic parameters of moxidectin (MXD) following oral administration at 

a dose rate of 200 pg/kg bodyweight.

Animal numbers
Time (h) 41 42 43 44 45 46 47 48
Cmax (pg/ml) 31.25 33.48 19.54 57.10 17.92 32.53 28.95 19.70
tmax (h) 8.00 8.00 8.00 4.00 4.00 12.00 8.00 8.00

AUQast
(pg.h/ml) 60.69 110.62 84.59 110.87 38.33 101.06 122.65 65.66

AUMCiast
(pg.h2/ml) 427.6 2097.7 1933.2 1498.2 252.0 2013.0 3122.4 1058.1

MRTiast (h) 7.04 18.96 22.85 13.51 6.58 19.92 25.46 16.11
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D-8. Recovery and coefficients of variation for ivermectin (IVM), doramectin (DRM)

and moxidectin (MXD) following liquid phase extraction from wet faeces.

Added concentration 

(ng/ml)

Recovery

(%)

Coefficient of variation (%) 

(Between assay)

0.05 99.92 (n=6) 7.22

0.10 93.03 (n=7) 4.48

IVM 0.50 97.78 (n=8) 4.02

1.00 94.61 (n=8) 3.64

5.00 94.78 (n=8) 6.24

Mean 96.02 (n=37) 5.12

0.05 96.52 (n=6) 9.91

0.10 92.39 (n=8) 7.70

DRM 0.50 96.57 (n=8) 10.83

1.00 103.01 (n=8) 11.61

5.00 98.98 (n=6) 5.59

Mean 97.49 (n=36) 9.13

0.05 93.77 (n=6) 7.56

0.10 80.82 (n=8) 5.97

MXD 0.50 85.67 (n=8) 8.60

1.00 89.55 (n=8) 12.67

5.00 92.14 (n=6) 9.45

Mean 88.39 (n=36) 8.85
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D-9. Dry faecal concentrations (iig/ml) of ivermectin (IVM), doramectin (DRM) and

moxidectin (MXD) following oral administration at a dose rate of 200 |ig/kg bodyweight.

IVM Animal numbers
Time 25 26 27 28 29 30 31 32

Oh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 h 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 h 0.0 0.4 0.6 0.0 4.6 2.4 0.9 0.0
24 h 20.1 15.1 8.6 30.0 16.6 19.8 12.5 33.6
32 h 16.9 7.7 3.0 15.6 6.3 13.7 1.5 17.5
48 h 2.8 1.3 0.4 1.1 0.9 1.6 0.8 NS
120 h 0.0 0.0 0.2 0.0 0.0 0.0 0.0 NS
8 days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
39 days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DRM Animal numbers
Time 33 34 35 36 37 38 39 40
Oh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 h 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 h 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3
24 h 18.8 21.6 34.3 16.4 NS 19.3 NS 12.8
32 h 13.3 NS 19.2 14.1 15.4 9.1 4.5 0.7
48 h NS 0.8 1.5 4.7 13.6 2.1 NS 0.6
120 h 0.0 0.1 0.0 0.9 0.0 0.4 0.0 NS
8 days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
11 days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
39 days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MXD Animal numbers
Time 41 42 43 44 45 46 47 48
Oh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 h 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 h 0.0 0.7 0.0 0.0 0.0 0.1 0.0 0.0
24 h 27.8 11.5 NS 7.4 6.2 8.4 23.7 31.2
32 h NS 3.8 NS 3.9 3.6 3.9 NS 14.4
48 h NS 0.2 NS NS NS 0.2 1.2 2.1
120 h 0.0 0.0 0.0 0.0 0.0 0.0 NS 0.0
8 days NS NS 0.0 0.0 0.0 0.0 0.0 0.0
11 days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
39 days 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Appendices E

E-l. Recovery and coefficients of variation for pyrantel (PYR) following liquid phase 

extraction from plasma.

Added concentration 

(pg/ml)

Recovery

(%)

Coefficient of variation (%) 

(Between assay)

0.005 90.81 (n=7) 12.12

0.010 92.82 (n=8) 7.49

PYR 0.050 96.68 (n=8) 7.52

0.100 92.85 (n=8) 11.16

0.500 91.17 (n=8) 6.00

Mean 92.16 (n=39) 8.86
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E-2. Plasma concentration (pg/ml) of pyrantel (PYR) following oral administration at a

dose rate of 13.3 mg/kg bodyweight.

Animal numbers

Time (h) 49 50 51 52 53 54 55 56

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 ULQ 0.008 0.000 0.000 0.005 0.008 0.007 0.009

2 0.011 0.038 0.005 ULQ 0.025 0.039 0.014 0.042

4 0.040 0.070 0.062 0.058 0.060 0.087 0.081 0.058

8 0.089 0.063 0.075 0.070 0.082 0.117 0.122 0.107

12 0.033 0.035 0.039 NS 0.065 0.062 0.052 0.043

20 0.012 0.027 0.014 0.010 0.017 0.020 NS 0.021

24 0.007 0.008 0.009 0.006 NS 0.021 0.012 0.014

32 ULQ 0.006 ULQ ULQ 0.005 0.008 0.007 0.007

48 ULQ 0.000 ULQ 0.000 0.000 ULQ NS ULQ

72 ULQ 0.000 0.000 0.000 0.000 0.000 0.000 0.000
96 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
120 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

E-3. Pharmacokinetic parameters of pyrantel (PYR) following oral administration at a 

dose rate of 13.3 mg/kg bodyweight.

Animal numbers

Time (h) 49 50 51 52 53 54 55 56

Cmax (pg/ml) 0.09 0.07 0.08 0.07 0.08 0.12 0.12 0.11

tmax (h) 8.00 4.00 8.00 8.00 8.00 8.00 8.00 8.00
AUQast
(pg.h/ml) 0.87 0.96 0.89 0.75 1.08 1.46 1.24 1.21

AUMCiast
(pg.h2/ml) 12.50 10.66 10.77 7.81 12.27 18.36 13.64 15.75

MRTiast (h) 14.40 11.15 12.15 10.42 11.34 12.55 10.96 13.00
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E-4. Recovery and coefficients of variation for pyrantel (PYR) following liquid phase

extraction from faeces.

Added concentration 

(pg/ml)

Recovery

(%)

Coefficient of variation (%) 

(Between assay)

0.5 94.35 (n=8) 6.36

5.0 94.85 (n=8) 3.39

PYR 10.0 94.87 (n=8) 7.97

100.0 93.15 (n=8) 5.75

400.0 85.86 (n=7) 0.71

Mean 92.62 (n=39) 4.84

E-5. Dry faecal concentrations (mg/ml) of pyrantel (PYR) following oral administration 

at a dose rate of 13.3 mg/kg bodyweight.

Animal numbers
Time (h) 49 50 51 52 53 54 55 56
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 NS NS 0.000 NS 0.000 NS NS NS
20 1.519 0.277 0.364 1.016 NS NS 0.949 0.106
24 0.721 1.021 NS 1.006 1.099 1.023 1.155 1.215
32 0.542 0.603 NS 0.748 0.867 0.560 1.062 NS
48 0.023 0.111 0.148 0.067 0.193 NS NS 0.095
72 0.000 0.004 0.016 0.000 0.000 0.000 0.004 0.000
96 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
120 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NS


