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Abstract

Abstract.

Herpes simplex virus type 1 (HSV-1) DNA replication results in the formation of head- 

to-tail concatemers which are cleaved into genome size units and packaged into the 

procapsid in the nuclei of virus-infected cells. The procapsid is a spherical structure with 

icosahedral symmetry and contains an internal protein scaffold which is removed at the 

same time viral DNA is encapsidated. During the DNA packaging process the procapsid 

angularises and the DNA-containing capsid can subsequently mature into an infectious 

virion. The product of the HSV-1 UL25 gene is a minor component of the viral capsid and 

has been implicated in the HSV-1 DNA packaging process (Addison et al., 1984, Ali et al., 

1996, McNab et al., 1998, Ogasawara et al., 2001).

The overall goal of this thesis was to investigate the role of the UL25 protein in the 

HSV-1 lytic cycle. Before a detailed study of this protein could be undertaken, a number of 

reagents had to be prepared, including potent UL25-specific antibodies. Therefore, an 

initial aim of the project was to express the UL25 protein in a variety of in vivo 

recombinant protein expression systems and to purify the soluble recombinant UL25 

protein for use as an antigen in the production of UL25-specific monoclonal antibodies. 

Maltose binding protein (MBP)-tagged UL25 and polyhistidine (His)-tagged UL25 were 

expressed in Escherichia coli and recombinant baculovirus-infected S fl\  cells respectively. 

BALB/c mice were immunised with purified soluble MBP-UL25 fusion protein and given 

a final boost with purified soluble His-tagged UL25 protein. Twelve hybridoma cell lines 

secreting UL25-specific monoclonal antibodies were isolated. The monoclonal antibodies 

were characterised using Western blot, immunoprecipitation and immunofluorescence 

assays. From this analysis a monoclonal antibody that reacted strongly with the UL25 

protein in each of the immunoassays was purified for use in subsequent experiments.

In the absence of other HSV-1 proteins, UL25 localised predominantly to the 

cytoplasm of cells transiently expressing the protein. In cells infected with HSV-1, 

however, UL25 protein was concentrated in the nuclei at late times. To investigate whether 

the HSV-1 capsid shell proteins, VP5, VP23 and VP19C, were required for the nuclear 

localisation of UL25 in HSV-1-infected cells, the distribution of UL25 protein was 

examined in cells infected with HSV-1 mutants which fail to express these proteins. In 

non-complementing cells infected with VP23 or VP5 null mutants, the distribution of 

UL25 protein was similar to the pattern in wild-type (wt) virus-infected cells indicating 

that neither VP23 nor VP5 were necessary for the nuclear localisation of the UL25 protein
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during HSV-1 infection. Since capsid assembly did not occur under these conditions 

(Desai et al., 1993), nuclear localisation of UL25 was independent of capsid assembly. The 

intracellular distribution of UL25 was also examined in non-complementing cells infected 

with a VP19C null mutant of HSV-1. However, this virus appeared to have an additional 

mutation, one which affected late viral protein production, and no conclusive results were 

obtained through the use of this virus. The localisation of the UL25 protein was therefore 

investigated in cells infected with ts2, a mutant of HSV-1 that contains a temperature 

sensitive (ts) lesion in the VP19C protein. In cells infected with tsl at the non-permissive 

temperature (NPT), UL25 co-localised with the capsid shell proteins at the perinuclear 

region of cells with little, if any, UL25 protein observed in the nuclei. These findings 

suggested that the VP19C protein was necessary for the nuclear distribution of UL25 

during wt HSV-1 infection. However, in cells infected with a tsl marker rescuant at the 

NPT, UL25 remained localised to the perinuclear region while the capsid shell proteins 

were found in the nuclei. This result indicated that the altered intracellular distribution of 

UL25 in cells infected with tsl at the NPT was not a consequence of the ts lesion in the 

VP19C protein. Furthermore, UL25 also localised to the perinuclear region of cells 

infected with HSV-1 A44, the parental syncytial strain of ts l , at the NPT. This virus 

formed syncytia to a greater extent in cells infected at the NPT compared to the permissive 

temperature and it is possible that the altered intracellular distribution of UL25 protein in 

cells infected with HSV-1 A44 at the NPT may have resulted from the formation of 

syncytia or from an aberrant interaction with a component of the HSV-1 tegument.

The association of UL25 protein with the capsid was initially examined using the 

recombinant baculovirus expression system to obtain information about the copy number 

and the location of the UL25 protein in the capsid as well as its interaction with capsid 

shell proteins. The UL25 protein was incorporated into capsids generated in insect cells 

multiply infected with recombinant baculoviruses expressing the HSV-1 capsid shell, 

scaffolding and the UL25 proteins, suggesting that the UL25 protein can interact with 

capsids in the absence of other viral proteins. This finding is in agreement with earlier 

results of McNab et al. (1998). The level of the UL25 protein associated with recombinant 

capsids was consistently found to be about eight-fold higher than the amount of UL25 

protein bound to HSV-1 B capsids, and was similar to the levels detected in DNA- 

containing C capsids by Sheaffer et al. (2001). Treatment of the recombinant capsids with 

2M guanidine hydrochloride (GuHCl) did not remove significant amounts of the UL25 

protein, indicating that the protein was tightly associated with these capsids. The high level
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of UL25 protein in recombinant capsids allowed an estimate of the copy number of the 

UL25 protein in the HSV-1 B capsid to be made, which was found to be approximately 40 

copies per capsid. This result suggested that the UL25 protein was not located at a unique 

site within the B capsid. In contrast to the UL25 bound to recombinant capsids, the UL25 

protein appeared to be more loosely associated with HSV-1 B capsids and treatment with 

2M GuHCl removed a significant amount of the protein. It is therefore possible that the 

UL25 protein may be associated with the pentons and/or peripentonal triplexes in B 

capsids. Interestingly, the UL25 protein co-purified with VP5/19C particles generated in 

insect cells multiply infected with recombinant baculoviruses expressing the VP5, VP19C 

and UL25 proteins. Immunoprecipitation analysis of HSV-1 infected cells identified a 

protein of approximately 55,000 molecular weight that appeared to interact specifically 

with the UL25 protein. This protein was probably of viral origin although the exact identity 

of the protein remains unknown. In contrast to data presented by Ogasawara et al. (2001) 

no direct evidence was found for an interaction between UL25 and VP5 or VP19C. In an 

immunofluorescence assay polyclonal rabbit antiserum, specific for the UL25 protein, 

reacted with cytoplasmic capsids in HSV-1-infected cells during the initial stages of the 

virus life cycle, suggesting that at least part of the UL25 protein was located on the exterior 

of capsids derived from input virions.

Early work by Addison et al. (1984) on the ts mutant te l204, which has a lesion in the 

UL25 gene, implicated UL25 at a very early stage in virus infection as well as at a late 

stage. To obtain more insight into the function of the UL25 protein, te l204 and another 

UL25 mutant, tel208, were further characterised, using electron microscopic, DNA and 

immunofluorescent analysis. Initial experiments revealed that te l204 had an additional ts 

mutation and therefore subsequent work was carried out on te l249 which contained only 

the ts lesion from the UL25 gene of te l204. 7s 1249, like te l204, exhibited two defects in 

cells infected at the NPT. The first appeared to be in the uncoating of the virus and the 

second defect was found to be in the DNA packaging process. 7s 1208 had a major defect 

in the latter stage only. Contrary to a report on the properties of a UL25 null mutant virus 

grown in non-complementing cells (McNab et al., 1998), both te l249 and tel208 packaged 

low-levels of HSV-1 DNA in cells infected at the NPT, encapsidating 1.2% and 0.45% of 

replicated HSV-1 DNA respectively. Additionally, these mutants packaged amplicon DNA 

with greater efficiently than the full-length HSV-1 genome. These findings indicated that 

the UL25 protein has a direct role in the HSV-1 DNA cleavage and packaging process and 

does not function solely to retain the newly packaged DNA within the viral capsid.
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Introduction

1.1 The Herpesviruses.

1.1.1 The Herpesviridae Family.

Members of the Herpesviridae family are large, structurally similar viruses containing 

double stranded (ds) DNA genomes. Herpesvirus virions are roughly spherical in shape with 

an average diameter of approximately 200 nm and are composed of four very distinct 

morphological elements (Figure 1.1). The dsDNA genome is packaged within a icosahedral 

protein shell termed the capsid. An amorphous protein layer known as the tegument surrounds 

the capsid and the whole structure is enclosed within a lipid envelope derived from the host 

cell. To date, more than 100 herpesviruses have been isolated from a wide variety of 

eukaryotic organisms. Although the majority of known herpesviruses were isolated from 

vertebrate organisms (fish, amphibians, reptiles, birds and mammals), a herpesvirus which 

infects an invertebrate organism has also been identified (Comps & Cochennec, 1993). As a 

general rule, the natural host range of individual viruses is highly restricted and most 

herpesviruses are thought to have evolved in association with a single host species, though 

occasional transfer to other species can occur in nature. Herpesviridae family members share 

four common characteristics:

i. All encode enzymes involved in nucleic acid synthesis and metabolism e.g. DNA 

polymerase and deoxyuridine triphosphatase. Herpesviruses also encode at least one 

protease and several protein kinases.

ii. The synthesis of viral DNA, capsid assembly and the initial envelopment stage all occur 

in the nucleus of the infected host cell.

iii. Virion production leads to host cell death.

iv. Most herpesviruses are known to establish a latent infection in their natural host.

Latency is a central feature of herpesvirus infection and is defined as the persistence of

virus in the absence of a clinically apparent infection. After primary infection of their natural 

host, herpesviruses frequently establish a latent infection. Recurring lytic infections are 

produced by the reactivation of the quiescent genome in response to certain stimuli.
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Figure 1.1 The HSV-1 Virion.

Negatively stained HSV-1 virions (a) and schematic representation of an HSV-1 virion
(b).
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1.1.2 Classification of the Herpesviruses.

Table 1.1 illustrates the classification of the Herpesviridae family according to the seventh 

report from the Herpesvirus Study Group of the International Committee on Taxonomy of 

Viruses.

1.1.3 Biological Properties of the Alpha-, Beta- and Gammaherpesvirinae.

1.1.3.1 The Alphaherpesvirinae.

The members of this subfamily are classified on the basis of their variable host range in 

vitro, relatively short reproductive cycle, rapid spread in culture, efficient destruction of 

infected cells and capacity to establish latent infections primarily, but not exclusively, in 

sensory ganglia. The prototype alphaherpesvirus is HSV-1. Its natural host is man and primary 

infection usually occurs in the mucosa of the mouth or throat although HSV-1 is also capable 

of infecting the mucosa of the genital tract. Primary infection is usually asymptomatic but can 

lead to illness characterised by lesions in the mouth and throat, fever and a general malaise. 

Latency is usually established in the trigeminal ganglia, from where reactivation may occur. 

Reactivation is often associated with stress, fever, exposure to UV light, tissue damage or 

immuno-suppression. Reactivated virus-infection usually results in lesions of the skin in the 

area served by the trigeminal ganglia e.g. herpes labialis (cold sores). Complications can result 

from infection with HSV-1 and include encephalitis, although this is usually restricted to 

neonatal and immuno-compromised individuals, keratitis and disseminated infection involving 

organs such as the liver and adrenal glands.

Other notable human pathogens which belong to the Alphaherpesvirinae subfamily include 

varicella-zoster virus, the causative agent of chicken pox and shingles, and HSV-2 which is 

responsible for recurrent genital lesions.

1.1.3.2 The Betaherpesvirinae.

Members of this subfamily often exhibit a restricted host range both in vivo and in vitro, 

they have long reproductive cycles and virus-infection progresses slowly in culture. The 

infected cells frequently become enlarged (cytomegalia) and latent infections are established 

in a variety of tissues including secretory glands, lymphoreticular cells and the kidneys.
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SUBFAMILY Alphaherpesvirinae

Genus Simplexvirus

Genus Varicellovirus

Genus “Marek’s disease-like viruses”

Genus “Infectious laryngotracheitis-like viruses”

SUBFAMILY Betaherpesvirinae

Genus Cytomegalovirus

Genus Muromegalvirus

Genus Roseolovirus

SUBFAMILY Gammaherpesvirinae

Genus Lymphocryptovirus

Genus Rhadinovirus

Unassigned Genus “Ictalurid herpes-like viruses”

Table 1.1 Taxonomic Structure of the Herpesviridae Family.
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Human cytomegalovirus (HCMV) is a betaherpesvirus which frequently infects man. Primary 

infection typically occurs in monocytes or endothelial cells (Turtinen et al., 1987, Saltzman et 

aL, 1988) and is usually asymptomatic even in immuno-compromised individuals. Where 

clinical disease does occur, infection with HCMV results in a persistent fever and myalgia and 

infrequent complications include pneumonia, hepatitis and encephalitis. The sites of HCMV 

viral latency remain unclear but HCMV DNA has been identified in monocyte populations of 

peripheral blood (Taylor-Wiedeman et al., 1991).

AIDS patients are particularly susceptible to HCMV infection and the virus frequently 

infects the liver, the lungs and the central nervous system of these people. HCMV often infects 

the gastrointestinal tract of AIDS patients where disease can vary from superficial ulceration 

to more severe necrosis which often leads to a fatal perforation of the gut (Cotte et al., 1993).

1.1.3.3 The Gammaherpesvirinae.

The experimental host range of the members of this subfamily is limited to the family or 

order to which the natural host belongs. In vitro all members replicate in lymphoblastoid cells, 

and some cause lytic infections in some types of epithelioid and fibroblastic cells. Viruses in 

this group are specific for either T- or B-lymphocytes and latent virus is frequently 

demonstrated in lymphoid tissue. Epstein-Barr virus (EBV) is a gammaherpesvirus that infects 

man. Primary infection probably occurs in the mucosa of the nose and mouth and rapidly 

progresses to B-lymphocytes which are transformed into an immortal lymphoblastoid state. 

Primary infection is usually asymptomatic although EBV has been identified as the causative 

agent of infectious mononucleosis in a proportion of adolescent primary infections. In 

immuno-compromised individuals the outcome of infection can be more severe, resulting in 

tumours such as oral hairy leukoplakia and Burkitt’s lymphoma.

A relatively new addition to the Gammaherpesviridae subfamily was discovered in 1994 

(Chang et al., 1994). Known as human herpesvirus 8 (HHV-8) or Kaposi’s sarcoma-associated 

herpesvirus (KSHV), this herpesvirus is the infectious cause of Kaposi’s sarcoma (reviewed 

by Schulz, 1998).
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1.1.4 Herpesvirus Virions.

1.1.4.1 Herpesvirus Genome Structures.

The genomes of all herpesviruses characterised to date are linear dsDNA which range in 

size from 120-240 kbp and contain a G+C content of 31% to 75%. Herpesvirus genomes often 

have multiple internal and terminal repeat sequences and exhibit a diverse range of genome 

structures which differ in the arrangement of unique and repeated regions (Roizman et al., 

1992, Davison & McGeoch, 1995) (Figure 1.2). For simplicity, herpesviruses genome 

structures will be referred to using the classification system designated by Davison and 

McGeoch (1995).

Genomes which contain a single unique region flanked by direct repeat sequences are 

designated as group 1 genomes and include the genome of channel catfish virus (Davison,

1992).

Group 2 and group 3 genomes both have multiple copies of a repeat sequence at their 

termini. However, while group 2 genomes have a single unique region, group 3 genomes have 

additional copies of the repeat sequence positioned internally. This gives rise to two unique 

regions which are flanked by inverted copies of the same repeat sequence. In addition, the two 

unique regions of group 3 genomes invert, giving rise to four genome isomers which are 

present in an equimolar amount in DNA isolated from virions. Group 2 genomes include the 

genome of herpesvirus saimiri (Albrecht et al., 1992), while group 3 genomes include the 

genome of cottontail rabbit herpesvirus (Cebrian et al., 1989).

The genome structure of Epstein-Barr virus is characteristic of group 4 and has a set of 

internal repeat sequences that are unrelated to the terminal repeat sequences (Baer et al., 

1984).

Group 5 genomes have two unique regions which are flanked by inverted repeat 

sequences. The repeats are not related and the repeat flanking the long unique region ( U l )  is 

significantly shorter than that flanking the short unique region (Us). The two genomic 

orientations of Us are present in an equimolar amount in DNA isolated from virions but Ul is 

found in predominantly one orientation. The genome structure of varicella-zoster virus is 

characteristic of group 5 (Davison & Scott, 1986).
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Figure 1.2 Herpesvirus Genome Structures.

The above figure is a schematic representation of the genome structures found within 

the Herpesviridae family. Unique and repeat regions are shown as horizontal lines and 

rectangles, respectively. The orientations of the repeats are shown by arrowheads and 

alternative genome structure nomenclature is indicated on the left of the diagram.
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Group 6 is similar to group 5 except the inverted repeat sequences flanking the U l region 

are larger and an additional repeat sequence known as the a sequence is found at the termini 

and at the junction between the long (L) and short (S) segments. The UL and US regions are 

both capable of inversion and the resulting four genomic isomers are found in an equimolar 

amount in DNA isolated from virions. The genome structures of HSV-1 and HSV-2 are 

characteristic of group 6 genomes (Roizman, 1979).

The genome structure designated as group F by Roizman et al. (1992) consists of a single 

unique sequence which lacks both internal and terminal repeat sequences. The genome 

structure of tree shrew herpesvirus is characteristic of this group (Koch et al., 1985).

1.1.4.2 Herpesvirus Capsids.

Although within the herpesvirus family there is limited sequence homology between the 

primary amino acid sequences of any of the herpesvirus major capsid proteins, cryoelectron 

microscopy and image reconstruction have demonstrated that even evolutionary distinct 

herpesviruses assemble morphologically similar capsids (Booy et al., 1996). All herpesvirus 

capsids are approximately 120 nm in diameter and exhibit icosahedral symmetry. The 

icosahedral capsid is composed of 20 identical equilateral triangles and displays three different 

forms of rotational symmetry. A fivefold symmetry axis is present through each of the 12 

vertices of the icosahedron, each of the 20 faces has a threefold axis of symmetry and each of 

the 30 edges shows a twofold axis of symmetry.

The minimum number of protein subunits required to form an icosahedral capsid is equal 

to the number of asymmetric units that comprise the icosahedron. The icosahedron is 

composed of 60 asymmetric units derived from dividing each of the 20 triangular faces into 

three equal units. One of the simplest and smallest icosahedral capsids seen in nature belongs 

to that of satellite tobacco mosaic virus. The capsid of this virus is composed of only 60 

protein subunits, each subunit constitutes one asymmetric unit of the icosahedron (Larson et 

al., 1993). However, complex viruses such as the herpesviruses, require larger icosahedral 

capsids to contain their genetic material. Increasing the size of the icosahedral capsid within 

the constraints of symmetry can only be achieved through increasing the number of protein 

subunits that form the asymmetric units of the icosahedron. Casper and Klug (1962) 

demonstrated that only certain multiples of the minimum 60 protein subunits are likely to
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occur and these multiples are termed triangulation numbers. When the triangulation number is 

greater than one it is no longer possible to pack the protein subunits in a strictly equivalent 

way such as in satellite tobacco mosaic virus (which has a triangulation number of T=l) where 

all the subunits have an identical environment and packing interactions. However, Casper and 

Klug demonstrated that for certain multiples of T it is possible to pack the protein subunits in a 

‘quasi-equivalent’ manner. This meant that in order to construct an icosahedral capsid with a 

triangulation number above T=l, the asymmetric units must be formed by packing together the 

various protein subunits using slightly different bonding patterns between them.

Herpesvirus capsids consist of a T=16 icosahedral lattice and thus, each of the 60 

asymmetric units of the icosahedral capsid are composed of 16 quasi-equivalent protein 

subunits. The 960 protein subunits are arranged into 162 capsomers, of which 150 are hexons 

and 12 are pentons. The pentons are positioned at the vertices of the icosahedron and the 

hexons form the faces and edges of the icosahedron. A small decorating protein is located on 

the rim of the hexons and both the hexons and pentons have a central transcapsomeric channel 

approximately 3-5 nm in width. The capsomers are connected together by heterotrimeric 

protein complexes known as triplexes. Each icosahedral capsid contains 320 triplex complexes 

which are located at points of local threefold symmetry.

The nuclei of cells infected with herpesvirus contain three types of capsid structure known 

as A, B and C capsids that can be distinguished from one another in electron micrographs 

(Gibson & Roizman, 1972, Gibson & Roizman, 1974, Perdue et al., 1975) (see Figure 3.44a). 

Further studies have identified a fourth type of capsid structure termed the procapsid (Trus et 

al., 1996). The procapsid is not normally seen during wt HSV-1 infection but is observed 

following infection of cells with a virus lacking a functional maturational protease gene 

(Preston et al., 1983, Newcomb et al., 2000), and is also generated in in vitro capsid assembly 

systems (Newcomb et al., 1994, Newcomb et al., 1999). Procapsids are spherical structures 

which exhibit icosahedral symmetry and contain an uncleaved internal protein scaffold. Newly 

replicated concatameric HSV-1 DNA is cleaved and packaged into procapsids in the nucleus 

of virus-infected cells. The packaging of viral DNA into the procapsid results in concomitant 

angularisation of the capsid and loss of the protein scaffold leading to the formation of a 

DNA-containing (C) capsid which is an intermediate in the pathway to infectious virions. 

Abortive DNA packaging is thought to result in the formation of A capsids which are
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angularised icosahedral structures that lack both an internal protein scaffold and a packaged 

viral genome. The other form of angularised capsids are B capsids, which contain a small, 

dense core formed by cleavage of the protein scaffold, and arise in the absence of DNA 

packaging. The latter capsid type is the predominant form of capsid present in the nuclei of 

HSV-1 infected cells.

1.1.4.3 Herpesvirus Tegument.

The tegument is a proteinaceous layer of variable thickness surrounding the capsid and is 

unique to herpesviruses. Approximately 20 proteins comprise the herpesvirus tegument and 

they are typically defined as being those structural proteins that are not components of purified 

capsids or of the envelope. Several of them have been shown to be involved in very early 

events during infection, such as the virion associated host shutoff protein (VHS) (Smibert et 

al., 1992), and VP 16 (Batterson & Roizman, 1983), and their presence in the virion ensures 

their availability at this time. However, the precise roles of many tegument proteins have not 

yet been determined and there are several areas of the herpesvirus lytic cycle in which they are 

likely to be involved. Among these are packaging and release of the viral genome (Batterson 

et al., 1983, Salmon et al., 1998), intracellular transport of the capsid (Bearer et al., 2000) and 

formation of the virion envelope. An insight into the nature of the tegument came from the 

identification of a virus-related particle produced in infected cells, namely the L particle 

(Szilagyi & Cunningham, 1991, McLauchlan & Rixon, 1992). L particles are composed of 

tegument and envelope but lack capsids and cores and are consequently non-infectious. Their 

existence demonstrated that the tegument has an inherent structural integrity and that its 

assembly can take place independently of capsids. Further insight into the structure of the 

tegument has come from cryoelectron microscopy and image reconstruction of herpesvirus 

virions such as HSV-1 (Zhou et al., 1999), HCMV (Chen et al., 1999) and SCMV (Trus et al., 

1999). Generally, at least a portion of the tegument is icosahedrally ordered and the 

attachment areas of the tegument to the capsid vary in herpesviruses from a few sites only, 

such as the pentons and peripentonal triplexes (HSV-1), to that of a more extensive association 

involving the penton, hexon and triplex components of the capsid (HCMV and SCMV).
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1.1.4.4 Herpesvirus Envelope.

The lipid membrane surrounding herpesviruses is termed the envelope and is derived from 

patches of altered host cell membranes (Morgan et al., 1959). Envelopment occurs at the inner 

nuclear membrane, but there is some controversy regarding whether or not this process also 

takes place in the cytoplasm. Non-enveloped capsids are seen in the cytoplasm of HSV-1 

infected cells and whereas some evidence suggests that these are non-infectious particles 

resulting from terminal de-envelopment (Campadelli-Fiume et al., 1991), other evidence 

suggests that these de-enveloped capsids are re-enveloped in the cytoplasm to generate 

infectious virions (Rixon, 1993, Browne et al., 1996).

No host proteins have been unambiguously detected in the envelope of purified 

herpesviruses but a number of virus-encoded glycoproteins have been identified. Viewed 

under the electron microscope these glycoproteins appear as spikes, approximately 8 nm in 

length protruding from the envelope (Wildy & Watson, 1963). The number of glycoproteins 

encoded by different herpesviruses varies but HSV-1 encodes at least eleven. HSV-1 

glycoproteins such as gB (Sarmiento et al., 1979), gC (Trybala et al., 1993), gD (Ligas & 

Johnson, 1988) and gH (Forrester et al., 1992) are believed to be involved in attachment 

and/or penetration of virus into the host cell. The glycoproteins also appear to have a role in 

modulation of the host immune response e.g. the HSV-1 gE/gl complex (Johnson et al., 1988), 

and in cell-to-cell spread of virus e.g. HSV-1 gK (Hutchinson et al., 1992).
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1.2 The Molecular Biology of HSV-1.

1.1.1 The HSV-1 Genome.

1.2.1.1 Structure of the HSV-1 Genome.

The HSV-1 genome is approximately 152 kbp in size with a G+C content of 68%. The 

genome is classified as a group 6 structure as described in section 1.1.4.1 and consists of two 

covalently linked regions designated L (long) and S (short). L and S components each contain 

unique sequences U l (108 kbp) and Us (13 kbp) respectively, and both these regions are 

bracketed by inverted repeat sequences. Ul is flanked by a (250-500 bp) and b (8.8 kbp) 

sequences and Us is surrounded by a and c (6.6 kbp) sequences. The terminal L repeat (TRl) 

is composed of a variable number of a sequences and one b sequence while the terminal S 

repeat (TRs) is composed of one a sequence and one c sequence. The internal repeats are 

inverted with respect to the terminal repeats and the number of a sequences found at the L-S 

junction and the L terminus is variable. The HSV-1 genome structure can thus be represented 

as amb-UL-b’a’nc’-Us“Ca where the numbers designated by m and n are variable (Wadsworth 

et al., 1975). Figure 1.3 shows a diagrammatic representation of the HSV-1 genome structure 

(McGeoch et al., 1988). The L and S components of HSV can invert relative to one another, 

yielding four linear isomers which are present in an equimolar amount in DNA isolated from 

virions. The four isomers have been designated as P (prototype), IL (inversion of the L 

component), Is (inversion of the S component) and Isl (inversion of both S and L components) 

(Hayward et al., 1975).

1.2.1.2 The a Sequence.

The a sequence of HSV-1 strain 17 is 380 bp in size and is composed of both quasi unique 

sequences and repeat elements. The ends of the a sequence are flanked by a repeat element 

known as the DR1 repeat which is 20 bp in length. Single a sequences are bounded by 

separate DR1 repeats but two tandemly repeated a sequences share the intervening DR1 

repeat. The DR1 repeat contains the site for cleavage of the concatemeric viral DNA during 

the DNA packaging process although the actual sequence of the DR1 repeat has been shown 

to be unimportant (Varmuza & Smiley, 1985) (section 1.2.6).
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Introduction

The a sequence contains two quasi unique regions, Ub and uc, separated by a number of 

repeat elements known as DR2 repeats. The variability in size of a sequences from different 

strains of HSV-1 is due to diversity in the number and length of these internal repeats. 

Approximately 19 copies of the 12 bp DR2 repeat separates the 80 bp Ub element from the 72 

bp uc element. The DR2 repeats are neither required for DNA encapsidation nor genome

isomerisation (Varmuza & Smiley, 1985), and their exact role remains to be elucidated.

Two specific regions of the Ub and uc elements are necessary for HSV-1 DNA cleavage 

and packaging. These sequences are termed the p a d  and pac2 homologies and correspond to 

regions of conserved sequence found at the termini of many herpesvirus genomes (Deiss et al., 

1986). Using DNA sequence comparisons Deiss et al. (1986) identified four distinct regions 

within the p ad  and pac2 homology elements (below and Figure 1.4):

P ad , in 5’ to 3’ order,

1. A G+C rich region.

2. A region of uninterrupted runs of C and G residues.

3. A T rich element.

4. A G  rich region.

Pac2, in 5’ to 3’ order,

1. A short DNA consensus sequence of CGCCGCG.

2. An unconserved region of variable length.

3. A T rich element.

4. A G+C rich region.

Using a larger number of herpesvirus sequences, subsequent investigators have preferred 

to define the pac2 homology element as two GC rich regions separated by a T rich element 

(Broil et al., 1999). The regions within the p a d  and pac2 homologies have not been 

investigated further and the functional significance of these elements is not known.
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1.2.1.3 Functions of the a Sequence.

a). Genome Isomerisation and Recombination.

Genome isomerisation is tightly linked to viral DNA replication and is believed to occur 

via sequence-independent homologous recombination mediated by dsDNA breaks generated 

by cleavage of the viral DNA (Sarisky & Weber, 1994). Initially, it was thought that the viral 

DNA was cleaved at the a sequence to generate the dsDNA breaks necessary for 

recombination, possibly by a host cell endonuclease (Wohlrab et al., 1991). However, in 1996 

it was shown that the a sequence was dispensable for isomerisation of the HSV-1 genome 

using a recombinant virus which was engineered without a sequences at the L-S junction or at 

the L and S termini (Martin & Weber, 1996). In infected cells, this virus, which contained a 

single a sequence within the thymidine kinase gene, was able to invert its L and S segments at 

wt levels and all four isomers were readily detected at a stage of infection co-incident with the 

onset of DNA replication. This work suggested that genome isomerisation is mediated by an a 

sequence-independent homologous recombination mechanism which is enhanced by the 

process of viral DNA replication.

b). Genome Circularisation.

The exact mechanism by which the HSV-1 genome circularises prior to DNA replication 

remains unknown but it almost certainly involves the terminal repeats and more specifically, 

the a sequence. The L and S termini of the HSV-1 genome end with an 18.5 bp and a 1.5 bp 

DR1 repeat respectively (Davison & Wilkie, 1981, Mocarski & Roizman, 1982). The 0.5 bp 

represents a single nucleotide 3’ overhang present at each termini and suggests a potential 

genome circularisation mechanism whereby the two ends are directly ligated via their single 

base overhang to generate a complete 20 bp DR1 repeat. Although this remains a hypothesis 

for HSV-1, the genome circularisation mechanism of GPCMV is proposed to occur through 

the direct ligation of the genome termini and appears to involve the pac2 homology element 

(McVoy et al., 1997). The direct ligation of the genome termini could also function as a 

genome circularisation mechanism for those herpesviruses that lack a terminally redundant 

element. Another possible mechanism for genome circularisation of HSV-1 involves 

homologous recombination and the a sequence of this virus is able to direct circularisation
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both by imprecise end joining and non-conservative homologous recombination (Yao et al., 

1997). Since the structure of the genomic termini varies amongst the herpesviruses, it is 

possible that individual herpesviruses utilise different mechanisms for genome circularisation. 

In the case of HSV-1, there is evidence that this process may also involve cellular proteins. 

HSV-1 DNA remains linear in infected BHK cells that lack the RCC1 gene (regulator of 

chromosome condensation) implicating a possible involvement of this host cell gene product 

in the circularisation mechanism of the HSV-1 genome (Umene & Nishimoto, 1996).

c). Cleavage and Packaging of Viral DNA.

The role of the a sequence in the viral DNA cleavage and packaging process was first 

identified by Stow et al. (1983) who demonstrated that a plasmid containing the HSV-1 origin 

of replication and sequences from the termini of the virus genome could be packaged into viral 

particles. Subsequent investigations have determined that the entire viral DNA cleavage and 

packaging signal lies within a 179 bp sequence containing the p a d  and pac2 homology 

elements from the junction between two tandemly repeated a sequences (Nasseri & Mocarski, 

1988). The role of the a sequence in the viral DNA cleavage and packaging process is 

discussed in detail in section 1.2 .6.

1.2.1.4 HSV-1 Genes.

HSV-1 encodes a total of 74 genes of which 58 are located in the U l region, 13 are found 

in Us, 2 are found in RL and a single ORF is found in Rs (McGeoch et al., 1985 and 1988, 

Dolan et al., 1998). HSV-1 genes are divided into three classes according to the timing of their 

expression during the HSV-1 replication cycle. These classes are designated immediate early 

or IE (a), early (P) and late (y) genes and are sequentially expressed in a cascade fashion 

during HSV-1 infection (Honess & Roizman, 1974, Honess & Roizman, 1975).

a). The IE Genes.

The IE genes are the first to be expressed during the HSV-1 replication cycle and the 

synthesis of IE polypeptides reaches peak rates at approximately 2 to 4 hours pi. The IE genes 

are expressed in the absence of prior viral protein synthesis and are characterised by the 

presence of a TAATGArAT DNA sequence (where r is a purine) within their promoters

13
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(Gaffney et al., 1985). This sequence is a binding site for the cellular factor Oct-1 (octamer 

DNA-binding protein) which is necessary for IE-gene transcription. Four of the five IE genes 

are involved in regulation of gene expression (ICP4/Vmwl75, ICPO/Vmwl 10, ICP22/Vmw68 

and ICP27/Vmw63). The fifth, (ICP47/Vmwl2), functions in the inhibition of antigen 

presentation by HSV-1-infected cells.

b). The Early Genes.

The early genes are expressed in very low levels in the absence of competent IE proteins. 

In the presence of IE proteins the early genes reach peak rates of synthesis at about 5 to 7 

hours pi. The early gene class is further subdivided into the Pi and p2 genes. The Pi proteins 

appear very early after infection but are distinguished from IE proteins by their lack of the 

TAATGArAT DNA sequence within their promoters and their dependence on IE proteins for 

their synthesis. Most viral proteins involved in nucleic acid metabolism appear to be in the 

early class of genes, such as the pi UL29 gene which encodes the major DNA binding protein 

(Conley et al., 1981) and the P2 UL30 gene which encodes the viral DNA polymerase 

(Chartrand et al., 1980).

c). The Late Genes.

This class of gene generally reach peak rates of expression after the onset of viral DNA 

synthesis and is further subdivided into the leaky-late (yi) and the true-late (72) genes 

according to their dependence on viral DNA synthesis. The UL27 gene, encoding glycoprotein 

gB, is a characteristic leaky-late gene which is expressed relatively early in infection and is 

only minimally affected by inhibitors of DNA synthesis. In contrast, typical true-late genes 

such as UL44, which encodes glycoprotein gC, are expressed late in infection and at very low 

levels when viral DNA synthesis is inhibited. Most virion proteins appear to be in the late 

class of genes. Late gene expression peaks at 8-10 hours pi and persists for the remainder of 

the lytic cycle (Harris-Hamilton & Bachenheimer, 1985).
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1.2.1.5 The Structure of Encapsidated HSV-1 DNA.

Encapsidated HSV-1 DNA exists in a semi liquid-crystalline state closely resembling that 

of the icosahedral dsDNA bacteriophages. The packaged DNA forms a uniformly dense ball, 

extending radially as far as the inner surface of the icosahedral capsid shell (Booy et al., 1991, 

Cerritelli et al., 1997). Electron cryomicroscopy and image reconstruction of HSV-1 virions, 

computed to a resolution of 20 A, have allowed the visualisation of encapsidated HSV-1 DNA 

(Zhou et al., 1999). Inside the HSV-1 virion the DNA appears as concentric spherical shells 

spaced 26 A apart and this pattern is similar to the structure of packaged phage DNA.

Early studies using electron microscopy and low-angle X-ray scattering indicated that in 

icosahedral dsDNA bacteriophages such as T7, the DNA is wound into a spool-like structure 

surrounding a central protein plug (Eamshaw & Harrison, 1977, Cerritelli et al., 1997). 

According to the spool model, DNA passes into the capsid through a unique entry port and 

then wraps around the inner surface of the capsid shell. It accumulates one layer at a time, 

with the layers becoming less well ordered as their distance from the shell increases (Harrison, 

1983). Although HSV-1 does not appear to possess a central protein plug, or spindle, inside 

the capsid around which the genome is arranged, the close parallels between the structure of 

the encapsidated HSV-1 genome and that of the icosahedral dsDNA bacteriophages strongly 

suggests that the spool model may also describe the organisation of the HSV-1 genome.

1.2.2 The Structure of the HSV-1 Capsid.

The experimental work described in this study concerns the characterisation of the HSV-1 

UL25 DNA packaging protein, which is also a minor component of the capsid. The following 

section therefore reviews in greater depth, the molecular structure of the HSV-1 capsid and is 

an expansion of section 1.1.4.2.

1.2.2.1 Protein Composition of the HSV-1 Capsid.

The HSV-1 capsid shell has a diameter of 1250 A and is 160 A thick. The capsid shell of 

A, B and C capsids is composed of four predominant protein components, a major capsid 

protein (VP5); and three less abundant proteins, VP19C, VP23 and VP26 (Gibson & Roizman, 

1972, Newcomb et al., 1993, Rixon, 1993). The interior of B capsids contain large amounts of 

the VP22a major scaffolding protein and smaller amounts of the VP24 pro tease and VP21
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minor scaffolding protein (Gibson & Roizman, 1974, Cohen et al., 1980, Newcomb et al.,

1993) (Table 1.2). The HSV-1 B capsid also contains several minor proteins, including the 

products of the UL6, UL12.5, UL15, UL17, UL25, UL28 genes (Table 1.4). These minor 

capsid proteins are not required for the assembly of icosahedral capsids and the majority are 

involved in the DNA cleavage and packaging process. These proteins are described in section 

1.2 .6 .

1.2.2.2 The Pentons and Hexons.

The VP5 protein is essential for the capsid assembly process and no capsid structures are 

assembled in its absence (Desai et al., 1993). VP5 is the major structural subunit of the 162 

capsomers, of which 150 are hexons and 12 are pentons (Newcomb et al., 1993). Electron 

microscopic analysis of HSV-1 capsids revealed that both the pentons and the hexons 

appeared as cylindrical protrusions from the capsid shell (Newcomb et al., 1993, Zhou et al.,

1994) (Figure 1.5). However, biochemical analysis and image reconstruction of capsids to a 

resolution of 26 A have shown that structurally, they differ in several respects (Newcomb & 

Brown, 1991, Trus et al., 1992, Newcomb et al., 1993, Zhou et al., 1994, Wingfield et al., 

1997). Pentons each contain five copies of VP5 and exhibit fivefold rotational symmetry while 

hexons have six copies of VP5 and exhibit sixfold rotational symmetry. All capsomers have an 

axial channel that traverses their entire length. The axial channel of hexons is approximately 

20-30 nm in diameter and is smaller than the axial channel of the pentons. Additionally, the 

status of the penton axial channel varies according to the type of capsid particle. In A capsids, 

the axial channel of the pentons is approximately 50 A in diameter (Zhou et al., 1998), 

whereas in DNA containing capsids the penton channel appears to be either closed or blocked 

(Zhou et al., 1999). Newcomb and Brown (1994) demonstrated that viral DNA was extruded 

from the pentons, but not the hexons, of HSV-1 C capsids treated with 0.5 M GuHCl. These 

findings led the workers to suggest that during the DNA packaging process the viral DNA 

genome enters the capsid through the penton channel The closure of the penton channel, as 

seen in DNA containing capsids, would then function to retain the packaged genome within 

the capsid.

Whereas the 12 pentons of the icosahedral capsid appear to be identical, the 150 hexons 

are composed of three distinct quasi-equivalent populations (Figure 1.6): P (peripentonal),
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Gene Protein Molecular
Weight

* Predicted 
Copy Number

Structural Function and 
Location in Capsid

UL19 VP5 149,075 960 Forms hexons and pentons of  
outer capsid shell.

UL38 VP19C 50,260 375 ± 22
Component o f the triplex 

heterotrimer o f outer capsid 
shell.

UL18 VP23 34,268 572 ± 67
Component o f the triplex 

heterotrimer o f outer capsid 
shell.

UL35 VP26 12,095 952 ±315 Located on the outer surface of 
hexons.

UL26 VP21 39,875 87 ± 4 2
Minor component o f the 

scaffold structure, present inside 
the capsid sh e ll.

UL26 VP24 26,618 147 ± 67 Protease, present inside the 
capsid shell.

UL26.5 VP22a 33,765 1153 ± 6 9
Major component o f the 

scaffold structure, present inside 
the capsid shell.

* predicted protein copy numbers from  cryoelectron microscopic studies on HSV-1 B capsids (Newcomb et 

al., 1993).

Table 1.2 The Major Protein Components of HSV-1 B Capsids.



Figure 1.5 The HSV-1 B Capsid.

The above figure is a computer generated reconstruction o f a HSV-1 B capsid at a 

resolution of 8.5 A viewed through a threefold axis of symmetry. The capsid is composed 

of 162 capsomers. Pentons, of which there are 12 (coloured red), are located at the 

icosahedral vertices while the 150 hexons (coloured blue) are found at the faces and edges 

of the capsid. The 320 triplexes (coloured green) connect the capsomers and are located at 

points o f local threefold symmetry. Image kindly supplied by F. Rixon taken from Zhou et 

al. (1998).
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Figure 1.6 The Arrangement of Hexons in the HSV-1 Capsid.

The above figure is a schematic diagram of a single face from the icosahedral HSV-1 

capsid viewed along the threefold axis of symmetry. The three quasi-equivalent hexon 

populations, which differ in terms of their local bonding environments, are indicated, together 

with the relative locations of the pentons.
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those immediately adjacent to the pentons (surrounding the icosahedral fivefold axis of 

symmetry); E (edge), those located on an edge of a triangular face (on the icosahedral twofold 

axis of symmetry); and C (central), those lying in the centre of a triangular face (surrounding 

the icosahedral threefold axis of symmetry) (Steven et al., 1986, Schrag et al., 1989). The 

quasi-equivalent hexons differ in terms of their local bonding environments through their 

respective configurations of adjacent capsomers and their relative proximities to the vertices 

and edges of the icosahedral capsid. The quasi-equivalent hexons also differ in the nature of 

their interactions with the quasi-equivalent triplex complexes as discussed in section 1.2.2.4. 

At a resolution of 26 A, subtle structural differences concerning the size and shape of the 

quasi-equivalent hexons are also evident (Zhou et al., 1998). The arrangement of the quasi­

equivalent hexons and pentons in one of the sixty asymmetric units of the icosahedral capsid is 

illustrated in Figure 1.7.

1.2.2.3 The VP26 Protein.

The VP26 protein is associated with the hexameric but not the pentameric capsomers of 

the HSV-1 capsid (Wingfield et al., 1997). Six VP26 subunits are distributed symmetrically 

around the outer tip of each hexon protrusion and the VP26 protein is readily dissociated from 

and reattached to the capsid (Booy et al., 1994). Therefore, the protein does not appear to 

contribute significantly to the structural stability of the capsid and recombinant capsids can be 

assembled in its absence (Tatman et al., 1994, Thomsen et al., 1994, Trus et al., 1995). The 

exact function of VP26 is unknown and the protein is not required for the growth of virus in 

cell culture although it does appear to be important for virion production in the nervous system 

of HSV-1 infected mice (Desai et al., 1998).

1.2.2.4 The Triplexes.

The triplexes mediate intercapsomeric interactions at sites of local threefold symmetry 

within the capsid (Figure 1.5). The triplex is a heterotrimeric protein complex composed of 

two copies of the VP23 protein and one copy of the VP19C protein (Newcomb et al., 1993), 

and both proteins are essential for the assembly of capsids in HSV-1 infected cells (Desai et 

al., 1993, Person & Desai, 1998). Although the primary function of the triplexes is the 

formation of intercapsomeric interactions, it has been reported that the VP19C protein binds

17
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Figure 1.7 The Asymmetric Unit of the HSV-1 Capsid.

The above figure is a diagrammatic representation of one asymmetric unit of the HSV-1 

capsid viewed along the threefold axis of symmetry. Each of the 60 asymmetric units of the 

HSV-1 capsid is composed of one P, one C, and 1/2 E hexons, 1/5 penton, one each of Ta -  Te 

triplexes, and 1/3 Tf triplex. Due to the T=16 icosahedral symmetry of the capsid there are 16 

quasi-equivalent positions in each asymmetric unit for the VP5 protein subunits of the pentons 

and hexons (labelled 1 -  16). The more extensive molecular interactions between the quasi­

equivalent triplexes and neighbouring capsomeric subunits are shown with thick lines, the less 

extensive ones with thin lines and the dotted line represents a low degree of interaction.
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DNA (Braun et al., 1984). This suggests that VP19C may also function in anchoring the DNA 

to the capsid, however, since this finding is unrepeatable, the exact significance of the 

proposed DNA binding properties of the VP19C protein are unknown.

The VP19C and VP23 proteins directly interact with one other to form triplex complexes 

in the absence of other proteins (Desai & Person, 1996). In vitro assembled triplexes are 

functional in terms of capsid assembly (Spencer et al., 1998) and therefore, all the information 

required to form a functional triplex is encoded by the VP19C and VP23 proteins. There are 

six types of quasi-equivalent triplexes based on their locations within the icosahedral lattice 

(Zhou et al., 1994). They are labelled Ta -  Tf and their arrangement in one of the sixty 

asymmetric units of the icosahedral capsid is illustrated in Figure 1.7. The quasi-equivalent 

triplexes vary considerable in the nature of their interactions with neighbouring capsomers and 

it is believed that the VP23 protein, which exists as a molten globule in solution (Kirkitadze et 

al., 1998), is involved in imparting this flexibility on the protein complex.

The VP19C protein also interacts with the VP5 protein (Rixon et al., 1996). The 

significance of this interaction was revealed through the characterisation of recombinant 

capsid-like particles formed in the presence of only these two proteins (Saad et al., 1999). This 

study demonstrated that the VP5-VP19C interaction alone was the key to forming an 

icosahedral particle. However, the VP5-VP19C particles are structurally very different to wt 

HSV-1 capsids; they are smaller, spherical in size and exhibit T=7 icosahedral symmetry (see 

Figure 3.34, section 3.4). This study suggested that, together with the scaffolding proteins, the 

VP23 protein was responsible for modulating the VP5-VP19C interaction to form a T=16 

icosahedral lattice. Additionally, this study indicated a potential interaction between the VP5 

and VP23 proteins and although no such interaction has been detected in either fluorescence 

(Nicholson et al., 1994), or yeast two-hybrid (Desai & Person, 1996) assays, Rixon et al. 

(1996) suggested that this interaction might form in the context of the capsid.

1.2.2.5 The Protein Scaffold.

In addition to the shell proteins discussed above, HSV-1 B capsids contain a large amount 

of the VP22a major scaffolding protein encoded by the UL26.5 gene, and smaller amounts of 

the VP24 serine protease and VP21 minor scaffolding protein, both encoded by the UL26 gene

18
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(Gibson & Roizman, 1972, Preston et al., 1983, Rixon et al., 1988, Davison et al., 1992, 

Person et al., 1993).

The UL26.5 gene overlaps and is in frame with the C-terminal half of the UL26 gene so 

the 329 amino acid scaffolding protein is identical in sequence to the C-terminal 329 amino 

acids encoded by the UL26 gene (Figure 1.8 i) (Liu & Roizman, 1991a, Liu & Roizman,

1993). The full-length protease cleaves itself at two places, the R site, which separates the 

VP24 protease from the VP21 protein, and the M site, which removes the C-terminal 25 amino 

acids from the VP21 protein as shown in Figure 1.8ii and iii (Dilanni et al., 1993, Liu & 

Roizman, 1993, Weinheimer et al., 1993).

A direct interaction between the preVP22a protein and the VP5 protein is essential for the 

assembly of 125 nm T=16 icosahedral capsids in virus-infected cells and the site recognised 

by VP5 has been localised to a hydrophobic domain within the C-terminal region of the 

preVP22a protein (Thomsen et al., 1994, Newcomb et al., 1994, Nicholson et al., 1994, 

Tatman et al., 1994, Thomsen et al., 1995, Hong et al., 1996, Desai & Person, 1996, Oien et 

al., 1997). Since the preVP22a protein is identical in sequence to the C-terminal 329 amino 

acids of preVP21, the M site is also found in preVP22a where it is cleaved by the VP24 

protease releasing the mature VP22a protein and the C-terminal 25 amino acid peptide as 

shown in Figure 1.8ii and iii (Preston et al., 1992). Cleavage of the preVP22a protein at the M 

site disrupts the interaction between preVP22a and VP5 as it is the C-terminal region of the 

preVP22a protein that binds to the VP5 protein. This causes a structural alteration to the 

scaffold leading to a more condensed form. The initiation of the DNA packaging process 

results in the selective loss of the VP22a and VP21 scaffolding proteins from the capsid and 

the subsequent removal of the scaffold structure.

The UL26 gene products are essential for productive infection. The HSV-1 M201 mutant 

has a ts lesion which maps to the UL26 gene and results in the production of an inactive 

protease in cells infected at the NPT (Preston et al., 1983). Large cored B capsids (procapsids) 

containing the uncleaved form of the scaffolding protein (preVP22a) accumulate in the nuclei 

of cells infected with M201 at the NPT and viral DNA is not encapsidated. However, when 

virus-infected cells are shifted to the PT, preVP22a is cleaved and capsids containing DNA are 

observed. Mutations within the UL26.5 gene are not lethal (Matusick-Kumar et al., 1994) but 

result in a marked reduction in the efficiency of capsid production compared to that of wt virus
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i). The UL26 and UL26.5 Gene Products. 
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Figure 1.8 The Relationship between the HSV-1 UL26 and UL26.5 Gene Products.

The scaffolding protein (preVP22a) has the same sequence as the C-terminal 329 aa of 

the protease (i). The protease cleaves preVP22a to create VP22a and a 25aa peptide (ii). It 

also cleaves itself in two places (iii), to generate VP24, the cleaved form of preVP21 and 

the same 25aa peptide generated in step ii). This C-terminal 25 aa peptide contains the VP5 

binding site.
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and it is thought that the VP21 minor scaffolding protein can partially substitute for the VP22a 

major scaffold protein (Gao et al., 1994, Tatman et al., 1994, Robertson et al., 1997, Sheaffer 

et al., 2000).

1.2.2.6 The Capsid Floor.

At a computed resolution of 26 A, the floor of the capsid is seen as a continuous mass 

density punctuated by the transcapsomeric channels (Zhou et al., 1994). The prominent 

portion of this continuous density is formed by the close association of the lower domains of 

the penton and hexon subunits. The VP23 triplex protein also contributes to this continuous 

density and appears to have a role in connecting the body of the triplex to the capsid floor 

(Saad et al., 1999). The close interaction between the lower domains of these various subunits 

is important in maintaining the stability of the capsid. In addition, the inner surface of the 

capsid floor contains the regions of contact with the scaffolding protein in the B-capsid (Zhou 

et al., 1998), and would also be expected to contain the regions of contact with the packaged 

viral genome in the C capsid.

1.2.2.7 HSV-1 Capsid-Tegument Attachment Sites.

The locations of interaction between the capsid and the tegument are confined to the 

icosahedral vertices and involve contacts between the tegument and the penton and some P 

hexon subunits and their adjacent triplexes (particularly the Ta and Tc triplexes) (Zhou et al., 

1999). The binding of tegument proteins to these positions does not influence the assembly of 

capsids, or more specifically, the formation of the pentons, since stable capsids are formed in 

their absence (Tatman et al., 1994, Thomsen et al., 1994). Thus, the locations of these 

tegument proteins are presumably related to other properties of the capsid such as the release 

of viral DNA from the capsid. Consistent with this hypothesis, Zhou et al. (1999) have 

suggested that the VP 1-3 tegument protein, encoded by the UL36 gene (McGeoch et al., 

1988), represents a good candidate for the penton bound tegument material since the estimated 

copy number of VP 1-3 can be accounted for by the mass observed by electron cryomicroscopy 

at these sites. This protein forms a tight association with the capsid (Gibson & Roizman, 

1972), and is essential for the envelopment of capsids within the cytoplasm of HSV-1-infected 

cells (Desai, 2000). Additionally, the HSV-1 mutant tsB l contains a ts lesion in the UL36
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gene and at the NPT the virus is defective for the release of DNA from infecting capsids 

(Knipe et al., 1981, Batterson et al., 1983). Since the penton has been suggested to be the 

route by which the virus DNA leaves the capsid (Newcomb & Brown, 1994), an interaction 

between the VP 1-3 protein and the pentons would place it in an appropriate position to 

influence the passage of the viral genome.

1.2.3 The HSV-1 Procapsid.

Procapsids are not observed in wt HSV-1 infected cells. They are seen in cells infected 

with HSV-1 mutants lacking a functional VP24 protease gene (Preston et al., 1983, Gao et al., 

1994, Rixon & McNab, 1999, Newcomb et al., 2000) (Figure 1.9), and are also observed as 

capsid assembly intermediates in HSV-1 cell-free assembly systems (Newcomb et al., 1996, 

Newcomb et al., 1999). Procapsids are closed structures composed of 162 capsomers lying on 

a T=16 lattice as in the mature capsid form. Unlike mature capsids, however, procapsids are 

spherical rather than icosahedral in overall morphology and contain a large, uncleaved, 

scaffolding core. The procapsid is cryosensitive, indicating that it is structurally less stable 

than the mature icosahedral capsid, and purified procapsids are able to undergo a structural 

transformation upon extended incubation in vitro to form polyhedral capsids (Newcomb et al., 

1996). Although this finding indicated that no additional protein subunits were required for the 

structural transformation to take place in vitro, procapsids formed in cells infected with te l201 

at the NPT undergo a prompt structural transformation when the temperature is shifted down 

to the PT (Preston et al., 1983). This suggests that other proteins may be involved in the 

structural transformation of the procapsid in vivo. In wt HSV-1 infected cells, procapsids are 

believed to have an extremely short half life, rapidly undergoing a structural transformation 

concomitant with DNA packaging to form an icosahedral DNA-containing (C) capsid. In this 

respect the procapsid is thought of as an intermediate product in the capsid assembly/DNA 

packaging process.

The structure of the procapsid has been determined to a resolution of 27 A by cryoelectron 

microscopy and three-dimensional image reconstruction (Newcomb et al., 1996, Trus et al., 

1996). Compared to the icosahedral B capsid, the procapsid is a more open, porous structure. 

The transcapsomeric channels are enlarged compared with those of the B capsid and there are 

small holes between the capsomers that are not found in B capsids. The triplexes appear to

21



Figure 1.9 Comparison of Procapsids Formed by 7sl201 at the NPT with Angularised 

Capsids of wt HSV-1.

(a.) BHK cells were infected with te l201 at a moi of 5 pfu.cell' 1 for 10 hours at 39°C. 

The cells were harvested and prepared for analysis by electron microscopy as described in 

section 2.3.4. The electron micrograph shows the accumulation of large-cored spherical 

capsids (procapsids) in the nucleus of a cell infected with te l201 at the NPT. For 

comparison, angularised small-cored B capsids (Bsc) formed in wt HSV-1-infected cells 

are shown in (b.) (A and C capsids are also labelled). Images kindly supplied by F. Rixon, 

taken from Rixon and McNab (1999). Scale bars represent 500 nm.
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constitute the primary links by which the capsomers are held together since the floor layer 

found in B capsids is largely absent in the procapsid. The hexons of the procapsid also have an 

altered morphology and are elongated or triangular as opposed to the hexagonal-shaped 

structures characteristic of the B capsid. The structural transformation of the procapsid to the 

polyhedral capsid involves extensive morphological changes (Trus et al., 1996). Although 

cleavage of the scaffolding protein by the maturational protease is known to be involved, the 

exact step at which cleavage takes place is not known and the overall process is similar to the 

prohead expansion step involved in dsDNA phage head morphogenesis (Steven et al., 1992).

1.2.4 The HSV-1 Lytic Cycle.

The events starting with the attachment of an HSV-1 virion to the surface of a permissive 

cell through to the production of infectious progeny virus within that cell are known as the 

lytic cycle. These events are discussed briefly below and are outlined schematically in Figure 

1. 10.

1.2.4.1 Attachment to and Penetration into the Host Cell.

The receptor mediated attachment of an HSV-1 virion to the host cell surface involves 

several of the 11 glycoproteins found within the viral envelope, reviewed by Spear, (1993) and 

Steven & Spear, (1997) (step 1, Figure 1.10). The initial attachment of the virion to the host 

cell is thought to involve an interaction of gC and/or gB with heparan sulphate (Shieh & 

Spear, 1994), a cell surface glycosaminoglycan. However, the binding of viral glycoproteins 

to heparan sulphate is not sufficient for virus penetration (Lee & Fuller, 1993) and an 

interaction with a second group of receptors, termed the herpesvirus entry mediators (HveA- 

D), is required. The specificity of these receptors varies and can depend on the cell type. For 

example, HveA is a member of the tumour necrosis factor receptor family and while it is the 

principle receptor for HSV-1 entry into human lymphoid cells, it will not support the entry of 

other alphaherpesviruses, such as PRV, into this cell type (Montgomery et al., 1996). HveB-D 

are related to the poliovirus receptor proteins and although HveB and HveD can mediate the 

entry of a number of alphaherpesviruses, these two receptors do not support the entry of HSV- 

1 which has been shown to involve HveC. This receptor binds strongly to HSV-1 gD and not
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Figure 1.10 Schematic Representation of the HSV-1 Lytic Life Cycle.
Stage 1, The virus initiates infection of the host cell through the fusion of the viral envelope with the 

cellular plasma membrane following receptor mediated attachment to the cell surface. 2, Fusion o f the 

membranes releases virus tegument proteins into the host cell, including VHS (viral host-shutoff protein) 

which disrupts host cell protein synthesis (broken RNA in open polyribosomes) and VP 16 (IE fra/w-inducing 

factor) which is transported to the nucleus. 3, Utilising the microtubule network, the capsid is transported to 

the nuclear pore where the viral genome is released into the nucleus and immediately circularises to form an 

episome. 4, The transcription o f IE genes by cellular enzymes is stimulated by VP 16. Viral DNA is 

transcribed throughout the replication cycle by host RNA polymerase II, but with the participation o f viral 

factors at all stages o f infection. The 5 IE mRNAs are translated in the cytoplasm (filled polyribosomes) and 

the IE proteins are transported into the nucleus. 5, IE proteins enable the expression of the early genes which 

encode proteins necessary for viral DNA synthesis, acting at the transcriptional or post-transcriptional level. 

6, Viral DNA is replicated in the nucleus o f infected cells probably by a rolling circle mechanism which 

yields head-to-tail- concatemers o f unit-length viral DNA. 7a, A new round of transcription and translation 

produces the late proteins, consisting o f proteins involved in DNA cleavage and packaging together with the 

viral structural proteins. Membrane associated structural proteins, predominantly glycoproteins, become 

incorporated into the rough endoplasmic reticulum. 7b, Membrane proteins may then become glycosylated 

and some localise to the inner and outer nuclear membranes and the endoplasmic reticulum. Further 

modification occurs within the Golgi apparatus and mature glycoproteins are transported to the plasma 

membrane. The capsid proteins are transported to the nucleus and procapsids are assembled. 8, Concatemeric 

viral DNA is cleaved into unit-length (152 kbp) molecules and packaged into the preformed procapsids. The 

inner protein scaffold o f the procapsid is lost and the procapsid angularises to form a DNA-containing C 

capsid. A and B capsids are also seen in the nucleus at this stage and are thought to result from defective 

DNA cleavage and packaging. 9, The DNA-containing capsids, probably in association with some tegument 

proteins, acquire an envelope by budding through the inner nuclear membrane. Two theories exist concerning 

virion egress. 10, In the de-envelopment pathway, the enveloped capsids are then de-enveloped at the outer 

nuclear membrane and the capsid-tegument structure is released into the cytoplasm. The capsids acquire 

additional tegument proteins within the cytoplasm and the capsid-tegument structure is re-enveloped at Golgi 

compartments containing mature viral membrane associated proteins. 11, In the luminal pathway, enveloped 

virus is engulfed by a transport vesicle and delivered to the Golgi apparatus. The precursor viral envelope 

proteins are processed in situ  as part o f the virion. 12, In both cases the mature virion is transported to the 

plasma membrane and released by exocytosis. 13, Progeny virus in the extracellular space can either 

establish lytic infections in surrounding epithelial cells or, following infection o f neuronal cells, may be 

transported to sensory ganglia where latent infection can take place. In fully permissive tissue culture cells, 

the entire lytic replication cycle takes approximately 18 to 20 hours.
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only facilitates the entry of HSV-1 but also HSV-2, PRV and BHV-1 (Geraghty et al., 1998, 

Krummenacher et al., 1998).

Following receptor mediated attachment of an HSV-1 virion to the host cell surface, the 

capsid and tegument are internalised through the fusion of the viral envelope with the host cell 

plasma membrane. This is a rapid process which proceeds in a pH-independent manner and 

involves a number of viral glycoproteins including gD, gB and the gH-gL complex (Wittels & 

Spear, 1991, Spear, 1993).

1.2.4.2 Disruption of Host Cell Protein Synthesis.

The fusion of the viral envelope with the plasma membrane of the host cell not only serves 

to internalise the nucleocapsid but also releases tegument proteins into the cytoplasm. The 55 

kDa VHS tegument protein is encoded by the UL41 gene of HSV-1 and is involved in the 

disruption of host cell protein synthesis during the initial stages of infection (step 2, Figure 

1.10). Although this protein degrades both cellular and viral mRNAs in a non-specific manner, 

the rate of viral mRNA synthesis has been shown to be greater than VHS-induced degradation 

(Schek & Bachenheimer, 1985, Kwong & Frenkel, 1987, Kwong et al., 1988, Elgadi et al.,

1999). VHS is not the only HSV-1 encoded protein that can modulate host cell protein 

synthesis, the IE protein ICP27 and the virion associated UL13 protein kinase are also 

believed to function in the regulation host cell protein synthesis (Overton et al., 1994, Sandri- 

Goldin, 1998, Laurent et al., 1998).

1.2.4.3 Transport of the Nucleocapsid to the Nucleus.

Once inside the cell, the nucleocapsid is actively transported to the nuclear pore (step 3, 

Figure 1.10). Within neurons, nucleocapsids travel from the presynaptic membrane to the 

nucleus by retrograde transport along the axon (Lycke et al., 1988, Penfold et al., 1994, Smith 

et al., 2000). In other cell types, such as epithelial cells, transport of the HSV-1 nucleocapsid 

to the nuclear pore is thought to be mediated by the cytoskeleton and, in particular, the 

microtubule network (Sodeik et al., 1997). The UL34 protein may be component of the HSV- 

1 capsid-tegument structure and has been shown to interact with a cytoplasmic dynein 

intermediate polypeptide chain (Ye et al., 2000). The cytoplasmic dynein protein is a 

microtubule associated motor protein involved in intracellular transport. The UL34 protein is
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believed to anchor the capsid-tegument structure to the microtubule network through an 

interaction with dynein to facilitate retrograde transport of the nucleocapsid to the nuclear pore 

in an ATP dependent manner. The nucleocapsid attaches to the nuclear pore and the viral 

genome is released into the nucleus where it circularises to form an episome (Batterson et a l , 

1983, Ojala et al., 2000).

1.2.4.4 HSV-1 Gene Expression.

Transcription of the viral DNA within the nucleus is carried out by host cell DNA- 

dependent RNA polymerase II with the participation of viral factors. Following HSV-1 

penetration into the host cell, the VP 16 tegument protein translocates to the nucleus and, in 

association with cellular factors Oct-1 and HCF (host cell factor), induces the expression of 

the IE-genes. HSV-1 gene expression then proceeds in a regulated cascade as described in 

section 1.2.1.4 (steps 4,5 and 7, Figure 1.10).

1.2.4.5 HSV-1 DNA Replication.

HSV-1 DNA synthesis commences shortly after the onset of early-gene expression and at 

37°C continues up to 15 hours pi, with a peak between 7-10 hours pi (step 6, Figure 1.10). The 

HSV-1 genome contains three origins of replication (ori) and DNA replication can be initiated 

from any one of these cis-acting elements. In addition, HSV-1 contains seven genes that 

specify proteins with trans-acting functions essential for ori-dependent DNA replication. 

These genes are UL5, UL8, UL9, UL29, UL30, UL42 and UL52 (Table 1.3) and their 

involvement in the process of HSV-1 DNA replication has been comprehensively reviewed 

(Challberg, 1991, Boehmer & Lehman, 1997, Lehman & Boehmer, 1999).

Viral DNA synthesis is believed to be preceded by the sequence-specific binding of the 

UL9/UL29 complex to ori regions (He & Lehman, 2001). The other DNA replication proteins 

are then recruited by virtue of a series of specific protein-protein interactions (described in 

Table 1.3) to form a replication complex. The ori region is unwound, RNA primers are 

synthesised and replication forks are established. All the HSV-1 replication proteins, with the 

exception of UL9, are believed to function in the co-ordination of leading and lagging strand 

synthesis and the RNA primers are probably degraded by the RNase activity of the viral DNA 

polymerase. Host cell enzymes such as DNA ligase I and topoisomerase II and HSV-1
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Gene Size (kDa) Function

UL5 98 Complexes with UL8 and UL52 proteins to form the trimeric primosome 
holoenzyme, enzyme complex has DNA helicase-primase activity.

UL8 79 Component of the primosome holoenzyme, acts as a primase and expresses 
helicase activity in the presence o f UL9 protein. Stabilises interaction 

between primers and DNA template.

UL9 94 Homodimeric ori binding protein, has helicase and ATPase activity. 
Complexes with UL29 protein.

UL29 128 Binds ss DNA, increases helicase and DNA-dependent ATPase activity of
UL9 protein.

UL30 139 DNA polymerase with 3 ’ to 5 ’ exonuclease and RNaseH activity, forms a 
heterodimer with UL42.

UL42 51 Ds DNA-binding phosphoprotein, binds to and increases the processivity of  
UL30 DNA polymerase.

UL52 114 Component o f the primosome holoenzyme, required for DNA helicase-
primase activity.

Table 1.3 The Essential HSV-1 DNA Replication Proteins.



Introduction

encoded enzymes involved in nucleic acid metabolism, for example, thymidine kinase (UL23), 

dUTPase (UL50) and uracil DNA glycosylase (UL2), are also likely to function in viral DNA 

synthesis.

Although the evidence is not conclusive, it is proposed that, like bacteriophage lambda, the 

newly circularised HSV-1 genome is initially amplified by theta form of replication followed 

by a phase of rolling circle DNA synthesis which generates head-tail concatemers of unit- 

length viral DNA molecules. Prior to cleavage and packaging of the newly replicated viral 

DNA, it is thought that branched DNA structures arising from recombination are removed by 

the UL12 alkaline nuclease (Weller et al., 1990, Shao et al., 1993, Martinez et al., 1996a, 

Goldstein & Weller, 1998a). Viral DNA is then cleaved into unit-length monomers and 

packaged into preformed viral procapsids (discussed in section 1.2 .6).

1.2.4.6 Assembly of Procapsids Within the Nucleus of the Infected Cell.

The HSV-1 capsid proteins, VP26, VP5, VP23 VP19C, preVP22a and the UL26 gene 

products, are synthesised in the cytoplasm of the host cell following late-gene transcription. 

These proteins are transported to the nucleus through a network of specific protein-protein 

interactions which are summarised in Figure 1.11 (Nicholson et al., 1994, , Tatman et al., 

1994, Thomsen et al., 1994, Kennard et al., 1995, Rixon et al., 1996, Desai & Person, 1996,).

Newcomb et al. (1996) have proposed a model for capsid assembly based upon their 

observations during cell-free in vitro assembly of HSV-1 capsids. Extracts from SJ9 cells 

infected with recombinant baculoviruses expressing the HSV-1 capsid proteins were prepared 

and mixed together. Distinct capsid-related structures, presumably capsids in various stages of 

assembly, were then isolated at different times from the reaction mixture and characterised. 

Partial capsids were the first type of structure isolated and had the appearance of angular 

segments of procapsids consisting of a partial region of core surrounded by a partial region of 

shell. It is believed that in the nuclei of infected cells, preVP22a-VP5-triplex complexes 

assemble to form partial procapsids through the ability of the preVP22a protein to homo- 

oligomerise. The partial procapsids subsequently enlarge to form closed spherical procapsids. 

Procapsids purified from Vero cells infected with teProtA (a HSV-1 mutant containing an 

identical ts lesion in the UL26 gene to that of M201) at the NPT have been shown to contain 

the UL6, UL15, and UL28 DNA cleavage and packaging proteins which were present in lower
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Figure 1.11 Protein-Protein Interactions Involving the HSV-1 Capsid Proteins.

The HSV-1 capsid proteins are illustrated above with the gene encoding each protein in 

brackets. Protein-protein interactions are shown as solid black lines and the dotted line 

represents the nuclear membrane. Proteins coloured red have an intrinsic capacity to 

localise to the nucleus.
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amounts than in B and C capsids (Sheaffer et al., 2001). However, it is not known at what 

stage the DNA cleavage and packaging proteins are incorporated into the procapsid and the 

nature of this association is also unknown. Newly replicated concatemeric viral DNA is then 

cleaved and packaged into the procapsid (section 1.2.6) (step 8, Figure 1.10). The interior 

protein scaffold is cleaved by the VP24 protease and removed from the procapsid which 

angularises to form a mature DNA-containing polyhedral capsid. Unlike the other capsid 

proteins, the VP26 protein is not required for the formation of procapsids and is only recruited 

to intranuclear sites of capsid assembly once procapsid maturation has begun (Chi & Wison,

2000). This indicates that VP26 binds to the hexons either during, or after angularisation of the 

procapsid.

1.2.4.7 Tegument Acquisition, Envelopment and Virion Egress.

Following viral DNA cleavage and packaging, DNA-containing capsids leave the nucleus 

and acquire tegument and envelope layers before exiting the cell via the exocytic pathway, 

reviewed by Steven & Spear, (1997) and Rixon, (1993) (steps 9-13, Figure 1.10). The exact 

mechanism by which this is achieved by the virus is unknown and two popular theories exist 

to describe this stage of the HSV-1 lytic cycle. The first model, the luminal pathway, proposes 

that capsids acquire tegument and envelope structures by budding through patches in the 

nuclear membranes containing viral proteins. The newly enveloped capsids are delivered to 

the Golgi apparatus by a transport vesicle where the tegument proteins and glycoproteins are 

modified as part of the virion (step 11, Figure 1.10). The second model, the envelopment, 

deenvelopment, reenvelopment (EDR) pathway, suggests that capsids are enveloped by 

budding through the inner nuclear membrane into the perinuclear space but are deenveloped at 

the outer nuclear membrane and released into the cytoplasm of the infected cell (step 10, 

Figure 1.10). Capsids then acquire tegument proteins in the cytoplasm of the host cell whilst 

on route to the Golgi apparatus where they are reenveloped and gain viral-encoded 

glycoproteins. In both cases, the mature virions then leave the cell from the Golgi apparatus 

through the exocytic pathway (step 12, Figure 1.10).

Naked capsids and vesicle-enclosed enveloped capsids are observed in the cytoplasm of an 

HSV-1 infected cell analysed by electron microscopy at a late stage in the lytic cycle 

(Campadelli-Fiume et al., 1991, Rixon, 1993), thus providing evidence in support of both the
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luminal and EDR pathways. However, subsequent studies have provided additional evidence 

in favour the EDR pathway of virion egress. For example, in cells infected with a recombinant 

virus in which the expression of the essential glycoprotein, gH, was restricted to the 

endoplasmic reticulum-inner nuclear membrane by means of an endoplasmic reticulum 

retention motif, progeny virus demonstrated 100-fold less infectivity than virus released from 

wt virus-infected cells (Browne et al., 1996). The virions released from cells infected with the 

recombinant virus did not contain detectable levels of gH and these findings were consistent 

with a model of virus exit whereby naked DNA-containing capsids in the cytoplasm acquire 

their final envelope from a subcellular compartment other than the endoplasmic reticulum- 

inner nuclear membrane. These experiments have been repeated using a HSV-1 mutant which 

encoded endoplasmic reticulum-retrieved glycoprotein D (Skepper et al., 2001). The results 

from this study were similar to those obtained using the gH recombinant virus and also 

supported an EDR model for nucleocapsid maturation.

There is also some controversy regarding the intracellular localisation of the HSV-1 

tegument proteins during wt virus-infection of cells and the cellular site of tegument 

acquisition by DNA-containing capsids has yet to be identified. Some investigators have 

shown that VP22 and VP16 localise to the cytoplasm of HSV-1-infected cells (Elliott et al., 

1995, Elliott & O’Hare, 1999) while others demonstrate these proteins are nuclear during 

HSV-1 infection (Ward et al., 1996, Morrison et al., 1998). Whatever the outcome regarding 

these two proteins, it is likely that at least some tegument proteins, such as the US 11 protein 

(Ward et al., 1996), associate with DNA-containing capsids within the nuclei of HSV-1 

infected cells before they reach the cytoplasm.

1.2.5 HSV-1 Latency: An Overview.

HSV-1 latency has been reviewed extensively (Wagner & Bloom, 1997, Preston, 2000), 

and the following is a brief account concerning the main issues of this phenomenon. After 

infection of a human or experimental animal with HSV-1, virus replication occurs at the site of 

infection. Virus then enter the nerve termini and are transported intra-axonally to sensory 

ganglia, particularly trigeminal ganglia, where infected neurons initially support virus 

replication. Within a few days, however, no free virus can be detected and a latent state of 

infection is established which persists for the duration of the host’s life (Stevens & Cook,

27



Introduction

1971). Approximately 10-100 copies of the HSV-1 genome are present in each latently 

infected neuron and they exist within the nucleus as circular episomes (Mellerick & Fraser, 

1987). During latency, the genes necessary for lytic replication are switched off and are not 

expressed until the signals which induce reactivation are received. Although the mechanism of 

reactivation is poorly understood, the signals that can trigger this process include tissue 

damage, UV radiation and immunosuppression and cause stress either to the animal as a whole 

or to the individual neuron. Reactivation results in the production of infectious progeny virus 

but does not destroy the neuron (Gominak et al., 1990). Additionally, repeated reactivation 

does not normally appear to have a detrimental effect on the function or physiology of the 

trigeminal ganglia (Wagner & Bloom, 1997).

Prior lytic gene expression is not required for the formation of a latent state within a HSV- 

1 infected neuron. Therefore, latency and lytic infection are believed to be alternative and 

separate outcomes following infection of these cells. Once the virus has entered a neuron, 

latency is believed to result from insufficient or repressed HSV-1 IE gene expression. Within 

HSV-1 infected neurones, VP 16 may be incapable of transactivating IE gene expression either 

because its function is inhibited or the protein cannot enter the nucleus. In sensory neurons 

Oct-1 is present at low abundance and other proteins of the Oct family are expressed 

preferentially (He et al., 1989). Since many members of the Oct family can bind the 

TAATGArAT element within IE gene promoters, but only Oct-1 is known to interact with 

VP 16, other Oct proteins could act as competitors to prevent the formation of the VP16/Oct- 

1/HCF transactivation complex. In support of this hypothesis, Oct-2 has been shown to repress 

HSV-1 IE gene expression in cell lines derived from sensory neurons (Lillycrop et al., 1991, 

Lillycrop et al., 1994). HCF has an important role in transporting VP16 to the nuclei of HSV- 

1-infected cells and in many cell types, HCF localises to both the cytoplasm and the nucleus 

(Kristie et al., 1995, La Boissiere et al., 1999). However, this protein is retained almost 

exclusively in the cytoplasm of sensory neurones and, therefore, may be incapable of 

transporting VP 16 to the nuclei of these cells resulting in the inefficient transcription of IE 

genes (Kristie et al., 1999).

During the latent state, viral gene expression is restricted to a set of transcripts known as 

latency-associated transcripts (LATs) that accumulate to high levels predominantly within the 

nuclei of latently infected neurons (Stevens et al., 1987). LATs are viral RNAs transcribed
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anti-sense to, and partially complementary to the coding sequences of Vmwl 10 (ICPO). Their 

exact function is unknown and they are not absolutely required to establish or maintain a latent 

state of infection. Since LATs are partially complementary to Vmwl 10 coding regions, they 

may act as anti-sense inhibitors of this protein (Farrell et al., 1991). The Vmwl 10 protein can 

specifically enhance IE gene expression and therefore, LATs may also function to repress IE 

gene activation.

1.2.6 HSV-1 DNA Cleavage and Packaging.

1.2.6.1 Introduction.

The HSV-1 DNA cleavage and packaging process is essential and no infectious progeny 

are generated in its absence. HSV-1 DNA replication results in the production of head-tail 

concatemers of genomic-length viral DNA which are cleaved at specific sites within the 

genome and packaged into preformed procapsids by tightly linked mechanisms in the nuclei of 

infected cells. Cleavage of the viral genome also appears to be linked with capsid formation 

since HSV-1 mutants that fail to assemble capsids due to the deletion of either the UL18 or 

UL19 genes also fail to cleave replicated concatemeric DNA (Desai et al., 1993). This 

probably reflects the fact that the majority of the HSV-1 cleavage and packaging proteins are 

associated with the capsid structure (Table 1.4). The DNA cleavage and packaging process of 

the icosahedral dsDNA bacteriophages and HSV-1 have many similarities. However, while 

the components of the DNA cleavage and packaging machinery from icosahedral dsDNA 

bacteriophages, such as lambda, have been identified and characterised in detail (Catalano et 

al., 1995), relatively little is known about this area of the HSV-1 lytic-cycle. Through the 

characterisation of various HSV-1 mutants, several HSV-1 encoded proteins that function in 

DNA cleavage and packaging have been identified (Table 1.4 and section 1.2.6.5), although 

their precise role in this process requires further investigation. This section aims to review the 

current knowledge concerning the signals, factors and mechanisms involved in HSV-1 DNA 

cleavage and packaging.
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G ene/
Protein

Size
(kDa)

Association with Capsid Type Required For

Procapsid A B C Cleavage Packaging

UL6 74.1 + +
+

*44±13 + Yes Yes

UL12 85 ? - - - No No

UL12.5 60 ? ? + + No No

UL15 80.9 + + + ± Yes Yes

UL17 74.6 ? ? + + Yes Yes

UL25 62.7 ± ++
+

*42±17 ++ No Yes

UL28 85.6 + + + - Yes Yes

UL31 34 ? - - - No No

UL32 63.9 ? ? - - Yes Yes

UL33 14.4 ? ? - - Yes Yes

* Protein copy number per B capsid, taken from  Ogasawara et al. (2001).

Table 1.4 The HSV-1 DNA Cleavage and Packaging Proteins.

The above table summarises the properties of the HSV-1 proteins essential for viral 

DNA cleavage and packaging (UL6, UL15, UL17, UL25, UL28, UL32 and UL33). The 

remaining proteins (UL12, UL12.5 and UL31) are believed to have a more indirect role in 

this process. ± and ++ represents an decrease or an increase in the protein copy number 

respectively.
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1.2.6.2 HSV-1 DNA Cleavage and Packaging Signals.

Cleavage of concatemeric HSV-1 DNA is a site-specific event controlled by cis-acting 

sequences located at the L-S junctions. Stow et al. (1983) demonstrated that DNA fragments 

from both the L and S termini of the HSV-1 genome contained all the cw-acting elements 

necessary to direct both cleavage and packaging of an HSV-1 amplicon. Since the a sequence 

was common to both these fragments the authors concluded that this sequence contained the 

specific signals recognised by the HSV-1 DNA cleavage and packaging machinery (the 

structure of the a sequence is discussed in section 1.2.1.2). The HSV-1 L and S genomic 

termini both end in partial copies of the 20 bp DR1 component of the a sequence (Davison & 

Wilkie, 1981, Mocarski & Roizman, 1982). Whereas single a sequences are flanked by 

separate DR1 repeats, tandemly repeated a sequences share the intervening DR1 repeat and 

the site at which concatemeric DNA is cleaved to generate the genomic termini lies within the 

shared DR1 repeat (Mocarski & Roizman, 1982).

Several observations have suggested that the process of HSV-1 genome maturation is 

complex. Firstly, although the cleavage site is within the DR1 element, this sequence is not 

required for genome maturation (Varmuza & Smiley, 1985, Deiss & Frenkel, 1986). This has 

led to the hypothesis that cleavage occurs at a fixed distance from separate cleavage signals. 

Secondly, sequences within both the Ub and uc elements appear to be critical for the HSV-1 

DNA cleavage and packaging process (Varmuza & Smiley, 1985, Deiss et al., 1986, Deiss & 

Frenkel, 1986). Lastly, single a sequences predominate in replicating concatemeric HSV-1 

DNA, however, mature progeny molecules have at least one a sequence at each end (Locker & 

Frenkel, 1979, Mocarski & Roizman, 1981). To account for these findings several 

mechanisms have been proposed which are discussed in section 1.2.6 .3 (Varmuza & Smiley, 

1985, Deiss & Frenkel, 1986).

A critical role for the p a d  and pac2 homology elements in HSV-1 DNA cleavage and 

packaging was identified in 1988 (Nasseri & Mocarski, 1988). This group demonstrated that 

all the c/s-acting signals required for the cleavage and packaging of a HSV-1 amplicon were 

contained within a 179 bp DNA fragment which spanned two tandemly repeated a sequences 

from HSV-1 strain F and represents the minimal cleavage and packaging signal identified to 

date. This fragment contained both the p a d  and pac2 elements, situated within the Ub and uc 

regions of the a sequence respectively, separated by a single DR1 sequence and can be
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represented thus [DR4]0.6-uc-DRl-Ub-[DR2]i. The nature of this fragment indicated that the 

cleavage signal was located at a novel junction between two a sequences and that cleavage at a 

single a sequence would only be possible following an a sequence duplication event. The 

cleavage signal between tandemly repeated a sequences is also the only arrangement in which 

the pacl and pac2 sequences are brought into close proximity. In a single a sequence, these 

elements are as much as 400 bp apart. An interesting, although unrepeated, observation 

resulting from these experiments was that cleavage and packaging of the HSV-1 amplicon did 

not require prior replication of the plasmid and this finding suggested that concatemeric DNA 

was not the sole substrate for the HSV-1 DNA cleavage and packaging machinery.

Although much is known about the cleavage and packaging signals of HSV-1, the 

preferred arrangement of the signals required by the virus for this process to occur in vivo 

remain unknown. However, since both genomic termini end with at least one a sequence and 

have single-base 3’ extensions from the DR1 repeat that can only be produced by cleavage 

and, when aligned, re-generate a complete 20 bp DR1 sequence (Mocarski & Roizman, 1982); 

the last step in the genome maturation process is likely to be a specific cleavage at the DR1 

element situated between tandemly repeated a sequences (Figure 1.12).

The genomes of all herpesviruses carry signals located near the genomic termini that are 

required in cis for encapsidating progeny DNA and these signals appear to be structurally 

conserved. The pacl and pac2 homology elements are located at the ends of a variety of 

herpesviruses and have been directly implicated in the DNA cleavage and packaging process 

of HCMV (Spaete & Mocarski, 1985), EBV (Zimmermann & Hammerschmidt, 1995), 

MCMV (McVoy et a l , 1998), HHV-6 (Deng & Dewhurst, 1998) and GPCMV (McVoy et a l ,

1997). The ability of the a sequence of HCMV to direct cleavage and packaging of defective 

HSV-1 genomes demonstrated that the cleavage and packaging signal from at least two 

divergent herpesviruses are functionally conserved (Spaete & Mocarski, 1985).

1.2.6.3 The Production of Genomic-Length DNA Molecules from Concatemeric DNA.

Several models have been proposed to address the question of how the two genomic 

termini, each bearing at least one copy of the a sequence, are generated from concatemeric 

DNA containing predominantly single copies of this sequence. Straight-forward dsDNA 

cleavage at the DR1 element of a single a sequence within concatemeric DNA would produce
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genomic termini composed of incomplete a sequences. However, as described previously, this 

is not the sequence observed at the ends of virion DNA (Wadsworth et al., 1975, Locker & 

Frenkel, 1979, Mocarski & Roizman, 1981). The HSV-1 DNA cleavage models discussed 

below help to explain much of the experimental data collected to date, although none are 

entirely satisfactory, and the actual mechanism used by the virus in infected cells remains 

unknown.

a). Staggered Nick-Repair Model (Varmuza & Smiley, 1985).

This model (also known as the a sequence duplication model) proposes that the genomic 

termini arise by two ss nicks, rather than ds cleavages. For cleavage within a single a 

sequence, the S and L recognition complexes (presumably components of the DNA cleavage 

and packaging machinery) bind to signals in Ub and uc respectively and one strand is nicked at 

the future L terminus and the other strand is nicked at the S terminus. Each terminus would 

then have a 5’ overhang the length of the a sequence. Repair synthesis then ensues across the 

staggered cleavages, producing the two termini, each bearing a single a sequence. In the 

junctions of two or more a sequences, the Ub and uc regions are brought into close proximity 

and could be processed by the co-operative action of the cleavage complexes producing a ds 

break generating ends with a protruding 3’ nucleotide.

b). The Theft Model (Varmuza & Smiley, 1985).

The theft model suggests that the genomic termini are generated by two separate ds 

cleavage events, one creating an L terminus, the other, an S terminus. At any given L-S 

junction composed of a single a sequence, a dsDNA cleavage generates an L terminus ending 

with a single a sequence and an S terminus lacking an a sequence. Packaging of the genome 

with the a sequence-containing L terminus then occurs until the next L-S junction in the same 

orientation is encountered. Here the process is reversed, dsDNA cleavage generates an S 

terminus with an a sequence and an L terminus without one, producing a packaged genome 

with an a sequence at each end. The model essentially proposes that whenever junctions 

composed of a single a sequence are used as cleavage sites, the a sequence is ‘stolen’ from the 

adjacent genome in the concatemer. This model predicts that at least some of the dsDNA 

cleavages result in the formation of protruding 3’ single-base extensions at the termini.
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According to this model, a large number of genomic termini lacking an a sequence would be 

generated in the nuclei of HSV-1-infected cells. Such termini have not been detected and 

raises the possibility they are rapidly degraded (Deiss & Frenkel, 1986). However, neither of 

the above models can explain why the L termini end with a variable number of a sequences 

while the S termini have only one.

c). The Directional Cleavage Model (Modified Theft Model) (Deiss et a l 1986).

The directional cleavage model modifies the theft model (Varmuza & Smiley, 1985) to 

incorporate polarity in the cleavage and packaging reaction. This model postulates the 

packaging complex binds anywhere within the L or S segments of the genome and traverses 

along the genome in either direction (random walk) until a junction containing a uc signal is 

encountered. Cleavage then occurs at the DR1 element proximal to this uc signal (creating a 3’ 

single-base overhang) to form the L terminus while the S terminus is degraded. Packaging 

begins in an L-S direction and continues until a directly repeated junction is reached. A second 

cleavage (also generating a 3’ single-base extension) then occurs proximal to the Ub element. 

This model can account for the distribution of a sequences at the L and S termini but, as with 

the theft model proposed by Varmuza and Smiley (1985), also predicts the formation of 

termini lacking a sequences, which have not been detected.

1.2.6.4 Translocation of DNA Into the Capsid.

Although nothing is known about the mechanism by which DNA is translocated into the 

HSV-1 procapsid, this process is thought to require the presence of ATP (Dasgupta & Wilson,

1999). Additionally, several observations suggest DNA enters the procapsid at the icosahedral 

vertices and, specifically, through the penton axial-channel. Firstly, HSV-1 genomic DNA can 

be extruded from C capsids following treatment with 0.5 M GuHCl (Newcomb & Brown, 

1994). These workers found that DNA appeared to exit the capsid at the icosahedral vertices 

and no DNA was observed leaving the capsid via the icosahedral facets. Secondly, DNA 

packaging is associated with a conformational change of the penton channel. In procapsids, 

the channel is large enough to allow the passage of duplex DNA (Trus et al., 1996), but in C 

capsids the penton channel appears either closed or blocked (Zhou et al., 1999). Lastly, 

through the use of immunogold staining techniques to detect capsid-bound anti-UL25
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antibodies, Ogasawara et al. (2001), tentatively suggested that the UL25 DNA packaging 

protein may be located at the icosahedral vertices although the location of the remaining 

capsid-associated DNA cleavage and packaging proteins remains unknown. It is also not 

known whether HSV-1 DNA is packaged at any icosahedral vertex or if packaging can only 

occur at a unique vertex, as seen in the icosahedral dsDNA bacteriophages.

In icosahedral ds DNA bacteriophages, a single multimeric portal complex (or connector) 

is located at the unique head-tail junction vertex (Bazinet & King, 1982). Image processing of 

electron micrographs of purified portal complexes from T4, <|)29, lambda, T3 and P22 

indicates this component of the bacteriophage head has a ring structure that exhibits 12-fold 

rotational symmetry with a central tube through which the phage genome is believed to enter 

the prohead (Valpuesta & Carracosa, 1994). The portal complex of bacteriophage SPP1 is 

slightly different and appears to display 13-fold rotational symmetry (Dube et al., 1993). The 

three-dimensional structure of the portal complexes from bacteriophages T3 and ([>29 has been 

elucidated and reveals that the portal complex is a cone shaped object divided into three, 

approximately cylindrical regions: the narrow end, the central part and the wide end (Figure 

1.13) (Valpuesta et al., 1992, Simpson et al., 2000). The §29 DNA packaging process is 

absolutely dependent on the presence of an 174 nucleotide RNA species, termed pRNA 

(packaging RNA), which exists as a pentameric ring structure bound to the narrow end of the 

portal complex on the prohead exterior (Zhang et al., 1998, Guo et al., 1998, Simpson et al.,

2000). The pRNA is completely absent from mature phage heads and is considered an 

essential facilitator of the packaging event. This RNA species has only been identified in 

bacteriophage §29 and its closest relatives and it is unclear whether other icosahedral dsDNA 

bacteriophages also utilise RNA in their DNA packaging process.

Simpson et al. (2000) have determined the structure of portal complexes, isolated from 

bacteriophage §29 proheads in the process of packaging DNA, to a resolution of 3.2 A by 

means of X-ray crystallography and found that, during packaging, DNA was translocated 

through the central channel of the portal complex into the bacteriophage prohead. This group 

proposed that the packaging machinery comprised a rotary motor with the prohead-pRNA- 

gp l6 (the gp l6 protein is an ATPase associated with the portal protein) complex acting as a 

stator, the DNA acting as a spindle and the portal complex acting as a ball-race. In their 

model, each monomeric subunit of the portal complex sequentially interacts with the base
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Figure 1.13 Structure of the Bacteriophage (j)29 Portal Complex (Simpson et al., 

2000).

The above figure is a schematic representation of the (J)29 portal protein complex 

showing a) the structure seen from the tail looking towards the head and, b) the same 

structure viewed within a cross-section of the phage prohead. The portal complex is 

composed of 12 monomeric subunits which form a conical structure made up of a narrow 

part, a central part and a wide end. The wide end is formed from 12 protruding protein 

domains (1 domain contributed per monomer) which imparts 12-fold rotational symmetry 

on the structure. A pentameric pRNA ring structure is associated with the narrow end of 

the portal complex situated on the prohead exterior. The portal protein complex is 

approximately 75 A in length and has an internal channel with a diameter o f about 36 A at 

the narrow end increasing to 60 A at the wide end.
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components of the DNA helix using the energy released from ATP hydrolysis. The helical 

nature of the DNA converts the rotary motion of the portal complex into translocation of the 

DNA into the prohead in a similar manner to that proposed for bacteriophage SPP1 (Dube et 

al., 1993). The model predicts that two base pairs of the DNA helix are packaged per ATP 

hydrolysis and this is consistent with the observed consumption of ATP during in vitro 

bacteriophage <|)29 DNA packaging (Guo et al., 1987).

1.2.6.5 HSV-1 DNA Cleavage and Packaging Proteins.

a). UL6.

The UL6 protein is essential for HSV-1 DNA cleavage and packaging and is found 

associated with all capsid types, including procapsids (Patel & Maclean, 1995, Lamberti & 

Weller, 1996, Patel et al., 1996, Sheaffer et ah, 2001). This protein is able to interact with B 

capsids in the absence of any other HSV-1 DNA cleavage and packaging proteins and this 

observation suggests the association of UL6 with the capsid may be mediated by an interaction 

with one or more of the capsid proteins listed in Table 1.2 (Patel et al., 1996, Yu & Weller, 

1998b). Approximately 44 copies of the UL6 protein are believed to associate with each B 

capsid and the level of this protein remains constant in all capsid types indicating UL6 may be 

an integral capsid-associated component of the HSV-1 DNA cleavage and packaging process 

(Ogasawara et al., 2001, Sheaffer et al., 2001).

The only capsid species assembled in the nuclei of cells infected with a UL6 null mutant 

virus were B capsids and the absence of A or C capsids is taken as evidence that cleavage and 

packaging was not even attempted in these cells (Patel et al., 1996). These findings suggest 

that UL6 functions at a relatively early stage in the DNA cleavage and packaging process. The 

UL15 cleavage and packaging protein associates with B capsids lacking the UL6 protein less 

efficiently than with wt HSV-1 B capsids (Yu & Weller, 1998b). This observation indicated 

that the ability of UL15 to bind to the capsid may, in part, be facilitated by an interaction with 

the UL6 protein, although this remains speculation as an interaction between these two 

proteins has not been demonstrated. Additionally, proteolytic processing of full-length capsid- 

associated UL15 protein did not occur in non-complementing cells infected with a UL6 null 

mutant virus (Salmon & Baines, 1998). However, since this phenotype was not specific to the
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UL6 null mutant virus (refer to page 39), it probably resulted from the absence of DNA 

cleavage and packaging within these cells.

Compared to wt virus-infected cells, the distribution of UL6 protein was altered in cells 

infected with a UL17 null mutant virus and this result indicated that the UL17 protein was 

necessary for the correct localisation of the UL6 protein in virus-infected cells (refer to page 

40) (Taus et al., 1998).

b). UL12.

The HSV-1 UL12 ORF encodes a non-capsid associated protein which exhibits 

deoxyribonuclease activity and is known as the alkaline nuclease since optimal enzyme 

activity requires alkaline pH conditions (Strobel-Fidler & Francke, 1980, Costa et al., 1983). 

The alkaline nuclease displays strong exonuclease activity and degrades both single- and ds 

DNA in the 5’-3’ direction (Knopf & Weisshart, 1990). This enzyme also exhibits a weaker 

endonuclease function that has a preference for supercoiled substrates (Hoffmannn & Cheng, 

1979). The alkaline nuclease is known to be a heavily phosphorylated protein (Banks et al.,

1983) and is phosphorylated by the HSV-1 encoded serine threonine protein kinase, US3 

(Daikoku et al., 1995). The protein also contains a number of potential phosphorylation sites 

for host cell protein kinases such as protein kinase C and casein kinase II (Draper et al., 1986, 

Shao et al., 1993). Thus, it is possible that phosphorylation may represent a system by which 

the endo- and exonuclease functions of the protein are activated/regulated. Despite various 

biochemical analyses of purified UL12 enzyme, little is known about the role of the alkaline 

nuclease in vivo.

A viral mutant lacking most of the UL12 coding region, AN-1, has provided some insight 

into the role of this enzyme in vivo (Weller et al., 1990). AN-1 is severely compromised for 

overall growth, producing infectious virions at only 0 .1-1% the level of wt virus and the 

impaired replication of this virus has been directly attributed to the loss of the exonuclease 

activity of UL12 (Goldstein & Weller, 1998a). AN-1 synthesises wt levels of viral DNA and 

near wt levels of nuclear DNA-containing capsids (Shao et al., 1993). The UL12 enzyme 

therefore has no direct function in HSV-1 DNA synthesis or cleavage and packaging.

In non-complementing cells infected with AN-1, the virus appears defective at the point of 

capsid egress from the nucleus. In contrast to wt virus-infected cells, in which both
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cytoplasmic and nuclear DNA-containing capsids were observed, only nuclear DNA- 

containing capsids were seen in non-complementing cells infected with AN-1 (Shao et al., 

1993). Furthermore, non-complementing cells infected with AN-1 accumulated increased 

numbers of A capsids, which presumably reflect abortive DNA packaging events (Shao et al., 

1993). These observations suggest that the alkaline nuclease plays a role in the production of 

stable DNA-containing capsids which are competent for egress from the nucleus. Replicating 

HSV-1 exists in a complex nonlinear state and contains branched structures that arise from 

recombination between replicated concatemers. Presumably, genomic DNA must be resolved 

into linear concatemers prior to encapsidation and UL12 is proposed to function at nicks and 

gaps in replicating DNA to correctly repair or process the replicating genome into a form 

suitable for packaging into the procapsid (Martinez et al., 1996a, Goldstein & Weller, 1998b). 

Genomes which are cleaved and packaged in the absence of functional alkaline nuclease may 

retain a certain level of complexity such as small branches. Capsids containing these nonlinear 

genomes would be unstable and unable to exit from the nucleus (Shao et al., 1993, Martinez et 

a l , 1996a).

The UL12 protein has been identified as part of a protein complex (together with 

ICP1/UL36) that bound HSV-1 DNA in an a sequence-specific manner (Chou & Roizman,

1989). Therefore, it is possible that the endo- and exonuclease function of UL12 may also be 

involved in the rapid degradation of genomic termini lacking a sequences whose formation is 

predicted in several HSV-1 DNA cleavage models (described in section 1.2.6.3) (Weller et a l ,

1990).

c). UL12.5.

The UL12.5 protein is translated from an internal methionine codon of the UL12 gene to 

generate a 60 kDa amino-truncated version of the alkaline nuclease lacking the 126 N-terminal 

amino acids present in the UL12 protein (Bronstein & Weber, 1996, Martinez et a l , 1996b). 

Although the UL12.5 protein exhibits enzymatic properties identical to that of the full length 

alkaline nuclease it cannot functionally replace the full-length UL12 protein (Martinez et a l , 

1996b, Bronstein et a l , 1997). The UL12 protein is not a component of capsids but the 

UL12.5 protein is found associated with extracellular virions and viral capsids (Bronstein et 

a l , 1997). These observations suggest that the UL12.5 protein may have a separate and more
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direct role in the HSV-1 DNA cleavage and packaging process compared to that of UL12. The 

true function or significance of the UL12.5 protein remains unknown.

d). UL15.

The UL15 gene of HSV-1 contains two exons separated by genes UL16 and UL17 and is 

one of the very few genes known to yield spliced RNAs (McGeoch et al., 1988). A cDNA 

copy of the UL15 gene producing a single, unspliced RNA can replace UL15 exons 1 and 2 

without affecting the capacity of the virus to replicate in cultured cells, suggesting that 

splicing does not have a physiological role (Baines & Roizman, 1992). Nevertheless, all 

herpesviruses characterised to date have a spliced UL15 transcript. The UL15 protein displays 

limited homology with the bacteriophage T4 terminase protein, gpl7 (Davison, 1992). Both 

proteins contain a putative ATP-binding motif known as the Walker A and B boxes and the 

predicted ATP-binding site of UL15 has been shown to be essential for the correct function of 

this protein (Yu & Weller, 1998a). The T4 terminase protein is involved in cleaving 

concatemeric phage DNA into genomic-length molecules prior to encapsidation (Rao & 

Black, 1988) and the homology between the two proteins suggested UL15 may have an 

analogous role in the HSV-1 DNA cleavage and packaging process. The UL15 protein was 

shown to function in the HSV-1 DNA packaging process in 1993, following the 

characterisation of a HSV-1 mutant, ts66A, which had a ts lesion in the UL15 gene (Poon & 

Roizman, 1993). In cells infected at the NPT, viral DNA was synthesised but was not 

encapsidated and no DNA-containing capsids were observed in the nuclei of these cells (Poon 

& Roizman, 1993). A subsequent study demonstrated that the viral DNA generated in cells 

infected with ts66.4 at the NPT was in an endless (concatemeric) form and the UL15 protein 

was therefore proposed to function as a terminase, cleaving concatemeric DNA into unit- 

length molecules for packaging into procapsids (Baines et al., 1994).

The UL15 gene contains within its second exon a novel ORF that is translated in frame 

and is coterminal with the UL15 protein (Baines et al., 1997, Yu et al., 1997). This second 

protein is designated UL15.5 and is approximately 35 kDa in size compared to the full-length 

83 kDa UL15 protein (Baines et al., 1997). The UL15.5 protein is expressed in the absence of 

the UL15 protein, indicating that it does not result from the proteolytic cleavage of the full- 

length UL15 protein (Baines et al., 1997). The functional significance of the UL15.5 protein is
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unknown and a plasmid encoding UL15, but not UL15.5, is able to complement a 

UL15/UL15.5 null mutant virus (Yu & Weller, 1998a). This result demonstrated the UL15.5 

gene product was dispensable for virus replication in cultured cells. In cells infected with a 

UL15 null mutant of HSV-1 (that still expressed UL15.5) enveloped B capsids were observed 

in the cytoplasm, suggesting that in the absence of UL15, envelopment of capsids occurs 

independently of viral DNA cleavage or the presence of DNA within the capsid (Baines et al., 

1997, Yu et al., 1997). It is possible that, in addition to the proposed terminase function, UL15 

may also have a role in blocking the envelopment of particles lacking DNA; thus, in the 

absence of this protein, envelopment may occur indiscriminately.

The UL15 protein associates with all capsid types, including procapsids (Sheaffer et al.,

2001). The capsid-binding ability of UL15 is presumably facilitated through an interaction 

with the VP5 major capsid protein since a complex of the two proteins has been 

immunoprecipitated from HSV-1-infected cells (SmithKline Beecham Corporation, 1998). A 

509 amino acid carboxyl-terminally truncated form of the UL15 protein has been 

demonstrated to bind capsids and the protein domain responsible for interacting with VP5 is 

therefore likely to reside within this region of the UL15 protein (Salmon et al., 1999). Proteins 

of 83 kDa, 80 kDa and 79 kDa, which react with a UL15 specific polyclonal antibody, 

associate with B capsids isolated from wt HSV-1 infected cells but not with B capsids purified 

from cells infected with a UL15 null mutant (Salmon & Baines, 1998). The 80 kDa and 79 

kDa proteins are believed to result from proteolytic cleavage of the amino terminus of the full- 

length UL15 protein (Salmon et al., 1999). The full-length 83 kDa protein is the predominant 

UL15 species present in C capsids isolated from cells infected with wt HSV-1 and it is the 

only UL15 species present in B capsids purified from cells infected with viruses lacking the 

HSV-1 UL6, UL17, UL28, UL32 and UL33 genes, which are essential for cleavage of 

concatemeric HSV-1 DNA (Salmon & Baines, 1998, Salmon et al., 1999). However, all three 

forms of the UL15 protein are detected in capsids lacking the UL25 protein which is not 

essential for viral cleavage (Salmon et al., 1999). These observations suggested that the 

proteolytic cleavage of the full-length UL15 protein, which generated the 79 kDa and 80 kDa 

UL15 species, was tightly linked to the cleavage of viral DNA and that in the absence of viral 

DNA maturation, the full-length UL15 protein was not proteolytically processed.

39



Introduction

The UL15 protein interacts with the UL28 protein and this interaction is necessary to 

localise UL28 to the nuclei of cells expressing these two proteins alone (Koslowski et al., 

1999, Abbotts et al., 2000). The UL28 protein specifically binds to elements within the HSV-1 

a sequence and UL28 and UL15 proteins are believed to form a terminase complex analogous 

to that of the bacteriophage terminases (Adelman et al., 2001). The stoichiometry of the 

UL15-UL28 interaction is unknown but the UL15 protein is capable of self-interaction and the 

possibility exists that the terminase complex may form multimers (Abbotts et al., 2000).

e). UL17.

The UL17 protein is found associated with the tegument in virions (Salmon et al., 1998) 

and with B and C capsids (Goshima et al., 2000). In non-complementing cells infected with a 

UL17 null mutant virus, viral DNA was synthesised but was neither cleaved nor encapsidated 

and only B capsids were assembled in the nuclei (Salmon et al., 1998). These observations 

indicated the UL17 protein was essential for the HSV-1 DNA cleavage and packaging process. 

The intracellular localisation of the HSV-1 capsid proteins has been examined in cells infected 

with the UL17 null mutant virus to determine whether the lack of functional UL17 affected the 

distribution of these proteins (Taus et al., 1998). In the absence of the UL17 protein, UL6 

protein, VP5 and VP22a did not localise to replication compartments of HEp-2 cells as 

observed in wt virus-infection (Taus et al., 1998). Furthermore, in HEp-2 cells infected with 

the UL17 null mutant virus, large aggregates of capsids were detected surrounding the nuclear 

periphery as opposed to a more general, diffuse localisation seen in wt virus-infected cells 

(Taus et al., 1998). These results led to the conclusion that the UL17 gene was required for 

correct targetting of capsids and major and minor capsid proteins to the DNA replication 

compartments of HEp-2 cells and that, in the absence of this function, viral DNA was not 

cleaved or packaged. Consistent with this idea is the observation that in wt HSV-1-infected 

Vero cells, UL17 colocalised with VP5 and VP22a in the nuclei (Goshima et al., 2000).

f). UL25.

The UL25 protein is classed as a leaky-late gene and is found associated with all capsid 

types, including procapsids (Ali et al., 1996, McNab et al., 1998, Sheaffer et al., 2001). The 

involvement of this protein in the HSV-1 DNA cleavage and packaging process was first
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demonstrated in 1984 through the characterisation of te l204 and tel208, two HSV-1 mutants 

that carry te lesions in the UL25 gene (Addison et al., 1984). In cells infected at the NPT, 

tel204 appeared incapable of the penetrating the host cell plasma membrane (Addison et al.,

1984). This defect could be relieved through a brief incubation at the PT before shifting the 

temperature up to the NPT. Under these conditions, it was discovered that tel204 also had a 

defect in capsid assembly and DNA packaging. Following a shift-up to the NPT, tel204 

assembled fewer capsids in the nuclei of infected cells than wt virus and no DNA-containing 

capsids were produced (Addison et al., 1984). The te l208 virus did not exhibit an early defect 

but was also impaired in capsid assembly and DNA packaging (Addison et al., 1984). 

Although the UL25 protein is now firmly believed to function in the HSV-1 DNA packaging 

process, no additional evidence exists to support a role in cellular penetration.

In non-complementing cells infected with KUL25NS, a UL25 null mutant virus, viral 

DNA was replicated and cleaved but was not packaged (McNab et al., 1998). The UL25 

protein is therefore unique amongst the HSV-1 DNA cleavage and packaging proteins since its 

function is not absolutely required for viral DNA cleavage. Additionally, the nuclei of 

KUL25NS-infected non-complementing cells contained a large amount of A capsids. This 

observation led to the suggestion that, in the absence of the UL25 protein, DNA is cleaved and 

packaged but not retained in the capsid, hence the large numbers of empty capsids seen in the 

nuclei of these cells (McNab et al., 1998). The terminase proteins, UL15 and UL28, were 

found in higher amounts in B capsids isolated from cells infected with KUL25NS compared to 

B capsids purified from cells infected with wt virus (Yu & Weller, 1998b). This finding raised 

the possibility that in addition to retaining newly packaged DNA within the capsid, the UL25 

protein may also function to enhance the turnover rate of the terminase by disassociating it 

from capsids.

In 2001 Ogasawara et al. (2001) published several observations concerning the biological 

properties of the UL25 protein. Using far-Westem blot analysis of denatured capsid samples, 

these workers demonstrated that the UL25 protein was capable of interacting with both the 

VP5 and the VP19C proteins. On the basis of results obtained using immunogold labelling 

techniques to detect the location of capsid-bound anti-UL25 antibodies, Ogasawara et al. 

(2001) suggested that the UL25 protein associated with the capsid vertices and the capsid- 

binding property of UL25 was facilitated through an interaction with VP5 and/or VP19C. This
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group went on to present data which indicated that the VP19C protein could translocate the 

UL25 protein to the nuclei of cells expressing these two viral proteins alone and this result 

provided further evidence for an interaction between UL25 and VP19C. Gel mobility shift 

analysis experiments indicated that the UL25 protein could bind HSV-1 DNA. However, since 

full-length genomic HSV-1 DNA was used to test the DNA-binding properties of UL25, it is 

not known whether this association was sequence-specific. An indirect observation resulting 

from the DNA-binding experiments was that the amino-terminal portion of the UL25 protein 

was not only capable of binding HSV-1 DNA but also formed homo-oligomers. Based on their 

observations, Ogasawara et al. (2001) concluded that the UL25 protein functioned to anchor 

the packaged viral genome within the capsid through a direct interaction with the DNA. 

Although some of the data presented by this group was consistent with the proposed function 

of UL25, these findings require further clarification and much of the data conflicted with that 

of previous studies.

The amount of UL25 protein associated with the capsid is not constant and varies within 

the different capsid types. Procapsids contain reduced amounts of UL25 protein relative to that 

in B capsids (4-6-fold less) (Sheaffer et al., 2001). Moreover, C capsids contain the most 

UL25 protein and have levels 15-fold higher than that in procapsids (and 3-4-fold more than in 

B capsids) (Sheaffer et al., 2001). The scaffold may have a role in regulating the amount of 

UL25 that can bind to the capsid since capsids formed in the absence of preVP22a contain 

significantly higher levels of UL25 than capsids assembled in the presence of preVP22a 

(Sheaffer et al., 2000). These observations have led to the suggestion that during the DNA 

packaging process, the loss of the scaffold mediates the binding of additional UL25 to the 

capsid. This extra UL25 protein is then proposed to retain the DNA within the capsid. The 

gp4, gplO and gp26 proteins of phage P22 have a similar function in the phage DNA 

packaging process and bind to the portal protein complex after the phage genome has been 

packaged to seal the DNA within the phage head by blocking the portal complex channel 

(Poteete & King, 1977, Strauss & King, 1984). The phenotype of mutants defective in these 

gene products is similar to that of KUL25NS; in infected bacterial cells the DNA-containing 

phage heads of the mutants were unable to retain their DNA and this resulted in the 

accumulation of empty phage heads (Poteete & King, 1977, Strauss & King, 1984). It is
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possible that UL25 may retain packaged HSV-1 DNA within the capsid in an analogous 

manner, blocking or sealing the route of DNA entry.

The PRV UL25 homologue appears to exhibit some interesting biological properties and 

has been shown to bind specifically to the microtubule component of the cellular cytoskeletal 

structure (Kaelin et al., 2000). At least a part of the PRV UL25 protein is also located on the 

capsid surface and since infecting HSV-1 capsids are believed to utilise the microtubule 

network in order to reach the nucleus (Sodeik et a l, 1997), these findings raise the possibility 

that UL25 may play a role in the intracellular transport of capsids. However, this hypothesis 

remains unproven.

g). UL28.

In cells infected at the NPT with te l203, a HSV-1 mutant containing a te defect in the 

UL28 gene, viral DNA was replicated but was neither cleaved nor packaged and only B 

capsids were observed in the nuclei (Addison et al., 1990). These findings indicated the 

function encoded by the UL28 gene was essential for the HSV-1 cleavage and packaging 

reaction. The UL28 protein is present in all capsid types, including procapsids (Taus & 

Baines, 1998, Yu & Weller, 1998b, Sheaffer et al., 2001). However, the amount of UL28 

protein is reduced in DNA-containing capsids and is absent from virions, suggesting that the 

association of this protein with the capsid is only transient and is linked to the cleavage and 

packaging process (Taus & Baines, 1998, Yu & Weller, 1998b). The UL28 protein is capable 

of binding to B capsids lacking the UL6, UL15 or UL25 proteins although it is not known 

whether the absence of UL17 protein can affect the capsid-binding property of UL28 (Taus & 

Baines, 1998, Yu & Weller, 1998b).

As mentioned in section 1.2.6.6d, the UL28 and UL15 proteins directly interact with each 

other and this interaction results in the translocation of UL28 to the nuclei of cells expressing 

these two proteins alone (Koslowski et al., 1999, Abbotts et al., 2000). The terminase of 

icosahedral dsDNA bacteriophages is composed of two subunits and, in light of the homology 

between UL15 and the large subunit of the T4 terminase, it is likely that the UL28 protein is 

the second subunit of the HSV-1 terminase, especially since the HCMV UL28 homologue has 

been shown to bind the DNA cleavage and packaging signals of this virus (Bogner et al.,

1998). This hypothesis was reinforced recently by the finding that the HSV-1 UL28 bound to

43



Introduction

the p a d  homology element of the a sequence from the HSV-1 genome in a sequence- and 

structure-specific manner (Adelman et al., 2001). DNA fragments containing the p a d  motif 

were induced by heat treatment to form novel, non-duplex DNA structures which were high- 

affmity substrates for the UL28 protein (Adelman et al., 2001). The protein did not bind to ds 

DNA of identical sequence composition and it was also discovered that only one DNA strand 

of the p ad  motif was responsible for the formation of novel DNA structures to which UL28 

specifically bound (Adelman et al., 2001). The way in which UL28 is proposed to bind DNA 

is similar to the mechanism by which the UL9 protein interacts with the HSV-1 oriS. High- 

affinity binding of UL9 to oriS involves the formation of novel DNA structures in which parts 

of the oriS are extruded as single strands. The separate strands adopt different structures, only 

one of which is bound tightly by UL9 (Aslani et al., 2000). The exact conformation which the 

novel p a d  structures adopt following heat treatment and whether these novel structures pre­

exist within newly replicated viral DNA, or are induced to form during the cleavage and 

packaging reaction, are currently unknown.

h). UL31.

The UL31 protein is a non-capsid associated phosphoprotein which has been found to 

associate with the nuclear matrix (Chang & Roizman, 1993). In non-complementing cells 

infected with a UL31 null mutant, viral DNA is replicated, cleaved and packaged but both the 

yields of viral DNA synthesis and the extent of concatemer cleavage are reduced compared to 

wt virus-infected cells (Chang et al., 1997). These results have led to the suggestion that, 

although the UL31 gene product is not directly involved in the HSV-1 DNA cleavage and 

packaging process, its function is to form a network to which the viral proteins involved in 

DNA replication and/or cleavage and packaging are anchored within the nucleus (Chang et al.,

1997). This hypothesis is supported by the observation that UL31 interacts with the UL34 

gene product, which is believed to be involved in the intracellular transport of capsids (Ye et 

al., 2000, Reynolds et al., 2001). The UL34 protein localises to the nuclear membranes and it 

is therefore possible that at the nuclear membrane, the UL34 protein anchors a nuclear 

network containing UL31 which, in turn, enables efficient packaging of DNA into procapsids 

(Ye et al., 2000).

44



Introduction

i). UL32.

The UL32 protein is a non-capsid associated protein essential for HSV-1 DNA cleavage 

and packaging (Schaffer et al., 1973). The amino acid sequence of the UL32 protein contains 

potential N-linked glycosylation sites and sequences that are conserved in aspartyl proteases 

and in zinc-binding proteins (Chang et al., 1996). However, no UL32 specific proteolytic 

activity has been demonstrated and the corresponding sequences are dispensable for virus 

replication in tissue culture cells (Chang et al., 1996). In non-complementing cells infected 

with hr64, a UL32 insertion mutant, HSV-1 DNA was replicated to wt virus levels but was not 

cleaved or packaged and only B capsids were observed in the nuclei (Lamberti & Weller,

1998). Furthermore, the capsids were more diffusely distributed throughout the nuclei and 

were not restricted to replication compartments as seen in wt virus-infected cells (Lamberti & 

Weller, 1998). These results suggest that UL32 may function to localise preassembled capsids 

to the nuclear sites where DNA cleavage and packaging occur. Although the proposed role of 

UL32 does not involve a direct association with the cleavage and packaging machinery its 

presence is, nevertheless, essential for this process to take place.

j). UL33.

Consistent with the phenotype of other HSV-1 DNA cleavage and packaging mutants, in 

cells infected with the UL33 ts mutant, £sl233, replicated viral DNA was neither cleaved nor 

packaged and only B capsids were observed in the nuclei, indicating the UL33 protein is 

essential for the HSV-1 DNA cleavage and packaging process (Al-kobaisi et al., 1991). The 

UL33 protein does not associate with capsids and localises to nuclear replication 

compartments during wt virus-infection (Reynolds et al., 2000). This may be a consequence of 

an interaction with the UL14 protein which has been shown to affect the intracellular 

localisation of a number of HSV-1 encoded proteins (Yamauchi et al., 2001). Nothing further 

is known about the function of UL33 and the absence of UL31, UL32 and UL33 cleavage and 

packaging proteins from the HSV-1 capsid suggest they play very different roles from those of 

the minor capsid-associated cleavage and packaging proteins. Possible functions include steps 

in the cleavage and packaging process that only require a transient association with the capsid, 

chaperone-like functions to ensure the correct assembly of the cleavage and packaging 

machinery or intracellular transport of the DNA cleavage and packaging components.
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2.1 Materials.

2.1.1 Chemicals and Reagents.

The majority of analytical grade chemicals and reagents were obtained from Sigma 

Chemical Co. Ltd. and BDH Laboratory Supplies. The exceptions are tabulated below :

Table 2.1 Chemicals and Reagents.

CHEMICAL/REAGENT SUPPLIER
Ethanol 100% Joseph Mills (denaturants) Ltd
Acetic Acid PROLABO

30% (w/v) Acrylamide : 0.8% Bis- 
Acrylamide Stock Solution (37.5:1)

National Diagnostics

Ammonium Persulphate BIO-RAD
Amylose Resin New England Biolabs

Benzyldimethylamine (BDMA) Agar Aids
Chloroform PROLABO

Dried Skimmed Milk Marvel
Electron Microscopy Grade 25% 

Glutaraldehyde
Agar Scientific Ltd

e n 3h a n c e NEN Life Science Products
Glycerol PROLABO

LipofectAMINE Gibco BRL
Medium Grade Electron Microscopy 

Resin and Hardener
TAAB Laboratories

Methanol PROLABO
Mowiol 4-88 Hoechst

Ni-NTA Agarose Qiagen
Osmium Tetroxide TAAB Laboratories

Propan-2-ol PROLABO
Protease Inhibitor Cocktail Tablets Boehringer Mannheim

SeaPlaque Agarose Flowgen Instruments Ltd
Sodium Chloride PROLABO
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2.1.2 Additional Materials.

Additional materials and their suppliers are tabulated below :

Table 2.2 Additional Materials.

ADDITIONAL MATERIAL SUPPLIER
10 ml Columns for Protein Purification BIO-RAD

Dialysis Tubing Medicell International Ltd.
Fibracel Disks Bibby Sterilin Ltd.

Hybond-XL Membrane AmershamPharmacia Biotech
Hybond-ECL Membrane AmershamPharmacia Biotech

Phosphorimager Screen and Cassette BIO-RAD
500 ml Spinner Culture Vessel New Brunswick Scientific
250 ml 0.22 pm Stericup Filter Millipore

X-Omat UV Film Kodak

2.1.3 Solutions.

Table 2.3 Solutions.

SOLUTION COMPOSITION
Alkaline Transfer Solution 400 mM NaOH, 600 mM NaCl.

Amylose Resin Column Buffer 20 mM Tris.HCl pH 7.5, 200 mM NaCl, 
1 mM EDTA.

Denatured Calf Thymus DNA 5 mg.ml' 1 in TE, phenol/chloroform 
extracted, quantitated by UV absorbance, 

incubated at 100°C for 10 minutes.
2x CLB (Cell Lysis Buffer) 20 mM Tris.HCl pH 7.5, 2 mM EDTA, 

1.2% w/v SDS.
Coomassie Blue Stain 0.2% w/v Coomassie blue in 

polyacrylamide gel fix.
CSK Buffer 10 mM PIPES pH 6.8, 100 mM KC1, 300 

mM sucrose, 2.5 mM MgC^
DNase Storage Buffer 20 mM Tris.HCl pH 7.6, 50 mM NaCl, 1 

mM DTT, 50% v/v Glycerol, 0.1 mg.mf1 
BSA.

Formyl Dye Solution 0 .1% w/v bromophenol blue, 0 .1% w/v 
xylene-cyanol, 20 mM Na2EDTA in 

deionised formamide.
5x Hepes Buffered Saline 680 mM NaCl, 25 mM KC1, 3.5 mM 

Na2HPC>4, 28 mM D-glucose, 100 mM 
Hepes pH 7.05

His-UL25 Harvest / Binding Buffer 20 mM Tris.HCl pH 7.0, 5 mM 
imidazole, 10 mM CHAPS, 10% v/v 
glycerol, 10% v/v DMSO, 1M NaCl.

His-UL25 Elution Buffer 20 mM Tris.HCl pH 7.0, 1 M imidazole,
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10 mM CHAPS, 10% v/v glycerol, 10% 
v/v DMSO, 1M NaCl.

His-UL25 Wash Buffer 20 mM Tris.HCl pH 7.0, 60 mM 
imidazole, 10 mM CHAPS, 10% v/v 
glycerol, 10% v/v DMSO, 1M NaCl.

IF Fixing Solution 5% v/v formaldehyde, 2% w/v sucrose in 
PBSA.

IF Permeabilisation Solution 0.5% v/v NP40, 10% w/v sucrose in 
PBSA.

IP Buffer 25 mM Tris.HCl pH 7.5, 25 mM NaCl, 
0.5% (v/v) NP40

3% LGT Agarose 3% w/v SeaPlaque agarose in H2O.
Lysis Buffer 10 mM Tris.HCl pH 7.5, 10 mM NaCl, 2 

mM MgCl2, 0.5% (v/v) NP-40.
MAb Elution Buffer 100 mM glycine.HCl pH 2.7.

MAb Neutralisation Buffer 1 M Tris.HCl pH 9.0.
MAb Start Buffer 10 mM Na2H P04, 10 mM NaH2P 04, pH 

7.0.
Methyl Cellulose 3% w/v carboxymethylcellulose sodium 

salt in H20.
Membrane Wash Buffer 0.2x SSC, 0.1% w/v SDS.

Mowiol 100 mM Tris.HCl pH 8.5, 10% w/v 
Mowiol 4-88, 25% v/v glycerol, 2.5% v/v 

l,4-diazobicyclo-r2.2.21-octane.
NaCl / EDTA Mix 4 M NaCl, 50 mM EDTA pH 8.0.

Neutralising solution 500 mM Tris.HCl pH 7.0, 1 M NaCl.
NTE (purification of HSV-1 capsids) 20 mM Tris.HCl pH 8.0, 500 mM NaCl, 

1 mM EDTA.
NTE (production of HSV-1 DNA) 10 mM Tris.HCl pH 7.6, 100 mM NaCl, 

1 mM EDTA.
Oligonucleotide Gel Elution Buffer 20 mM Tris.HCl pH 7.5, 0.5 M 

CH3COONH4 (pH 7.0), 2 mM EDTA, 
0.1% (w/v) SDS.

PBS Complete 170 mM NaCl, 3.4 mM KC1, 10 mM 
Na2H P04, 6.8 mM CaCl2, 4.9 mM 

MgCl2.
Phenol / Chloroform / Isoamylalcohol TE saturated phenol: chloroform : 

isoamylalcohol 25:24:1.
Polyacrylamide Gel Destain 5% v/v methanol, 7% v/v acetic acid in 

H20 .
Polyacrylamide Gel Fix 50% v/v methanol, 7% v/v acetic acid in

h 2o.
PGEB (Polyacrylamide Gel 

Electrophoresis Buffer)
50 mM Tris base, 35 mM glycine, 0.1% 

w/v SDS.
PGSB (Polyacrylamide Gel Sample 

Buffer)
125 mM Tris.HCl pH 6.8, 20% glycerol, 

4% w/v SDS, 5% v/v 2-mercaptoethanol, 
0.01% w/v bromophenol blue.

RSB 10 mM Tris.HCl pH 7.5, 10 mM KC1, 1.5
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mM MgCl2.
4x RGB (Running Gel Buffer) 1.5 M Tris.HCl pH 8.8, 0.4% w/v SDS.
4x SGB (Spacer Gel Buffer) 500 mM Tris.HCl pH 6 .8, 0.4% w/v SDS.

0.8 M Sodium Phosphate Buffer 700 mM Na2H P04, 100 mM NaH2P 0 4, 
pH 7.4.

Southern Hybridisation Buffer 500 mM sodium phosphate buffer pH 7.4, 
7% w/v SDS.

Southern Pre-Hybridisation Buffer 500 mM sodium phosphate buffer pH 7.4, 
7% w/v SDS, 100 pg.m f1 denatured calf 

thymus DNA (sheared).
20x SSC 3 M NaCl, 300 mM tri-sodium citrate.

STET Buffer 8% w/v sucrose, 5% v/v Triton X-100, 50 
mM EDTA, 50 mM Tris.HCl pH 8.0.

Sucrose Buffer 10 mM Tris.HCl pH 7.5, 10 mM NaCl, 2 
mM MgCl2, 10% (w/v) sucrose.

lx T4 DNA Ligase Buffer 50 mM Tris.HCl pH 7.5, 10 mM MgCl2, 
10 mM dithiothreitol, 1 mM ATP, 25 

pg.m f1 bovine serum albumin.
lxTA E 40 mM Tris.acetate, 1 mM EDTA.
lxTB E 90 mM Tris base, 89 mM boric acid, 1 

mM EDTA.
TE 10 mM Tris.HCl pH 7.5, 1 mM EDTA.

TER TE + 20 pg.ml-1 RNase A
Tris Saline 20 mM Tris.HCl pH 7.5, 500 mM NaCl

Trypsin 0.25% w/v trypsin in Tris saline.
Versene 0.6 mM EDTA, 0.02% phenol red in PBS 

lacking MgCl2 and CaCl2.

2.1.4 Enzymes.

Restriction endonuclease enzymes and buffers were supplied by New England Biolabs 

or Boehringer Mannheim. Other enzymes and their suppliers are tabulated below :

Table 2.4 Enzymes.

ENZYME SUPPLIER
Dnase 1 Sigma Chemical Co. Ltd.

Lysozyme (from chicken egg whites)
Protease XIV (pronase from S.griseus)

Proteinase K
Rnase A

Staphylococcus aureus Protein-A - 
Horseradish Peroxidase Conjugate

Calf Intestinal Phosphatase Boehringer Mannheim
T4 DNA Ligase New England Biolabs
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2.1.5 Radiochemicals.

35S L-Methionine at 1175 Ci.mmol' 1 (10 pCi. p i'1) and 5’ [a-32P] deoxyribonucleoside 

triphosphates at 3000 Ci.mmol’1 (10 pCi. p i'1) were supplied by NEN Radiochemicals.

2.1.6 Immunological Reagents.

Table 2.5 Immunological Reagents.

NAME REAGENT SPECIFICITY SUPPLIER/
REFERENCE

DM165 Mouse monoclonal 
antibody

HSV-1 VP5 Dr F.J. Rixon

MCA406 Mouse monoclonal 
antibody

HSV-1 UL26.5 
Gene Product

Serotec

NCI Rabbit polyclonal 
antibody

HSV-1 VP5 Dr G. Cohen

NC2 Rabbit polyclonal 
antibody

HSV-1 VP19C Dr G. Cohen

166 Mouse monoclonal 
antibody

HSV-1 UL25 
Gene Product

Produced by S.
Graham and 

P.Targett-Adams
184 Rabbit polyclonal 

antibody
HSV-1 VP5 Dr F.J. Rixon

186 Rabbit polyclonal 
antibody

HSV-1 VP23 Dr F.J. Rixon

335 Rabbit polyclonal 
antibody

HSV-1 UL25 
Gene Product

Dr V.G. Preston

Anti mouse- 
FITC

Goat polyclonal antibody 
-  fluorochrome 

conjugate

Mouse 
Immunoglobin G

Sigma Chemical 
Co. Ltd

Anti rabbit- 
FITC

Goat polyclonal antibody 
-  fluorochrome 

conjugate

Rabbit 
Immunoglobin G

Sigma Chemical 
Co. Ltd

Anti rabbit- 
Texas Red

Goat polyclonal antibody 
-  fluorochrome 

conjugate

Rabbit 
Immunoglobin G

Sigma Chemical 
Co. Ltd

Anti rabbit-Cy5 Goat polyclonal antibody 
-  fluorochrome 

conjugate

Rabbit 
Immunoglobin G

Amersham­
Pharmacia Biotech

Staphylococcus 
aureus Protein- 
A immobilised 
on sepharose 

beads

Immunoglobin binding 
protein-sepharose 

conjugate

Non-species 
specific 

Immunoglobin G

Sigma Chemical 
Co. Ltd
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2.1.7 Plasmids.

Table 2.6 Plasmids.

PLASMID DESCRIPTION REFERENCE / 
SUPPLIER

pAcCL29.1 Baculovirus transfer 
vector.

Livingstone & Jones, 1989

pAT153 Probe for the detection of 
pSAl in Southern blot 

hybridisation.

Twigg & Sherratt, 1980

pCMVIO Mammalian transient 
protein expression vector.

White & Cipriani, 1989, 
Stow etal., 1993

pMAL-c2 Maltose binding protein 
fusion vector.

New England Biolabs

pSAl pAT153 containing HSV-1 
Oris replication and uc- 

DRl-Ub packaging 
sequence.

Dr N. Stow

pPTA3 pMAL-c2 containing 
HSV-1 UL25 ORF, 

encoding MBP-UL25 
fusion protein.

Generated by Paul Targett- 
Adams

pPTA5 pUC19 containing HSV-1 
UL25 ORF.

Generated by Paul Targett- 
Adams

pPTA8/76 pUC19 containing 
polyhistidine-tagged UL25 

ORF.

Generated by Paul Targett- 
Adams

pPTA10/9 pAcCL29.1 baculovirus 
transfer vector containing 

polyhistidine-tagged UL25 
ORF.

Generated by Paul Targett- 
Adams

pUC19 Vector for the 
manipulation of cloned 

DNA.

New England Biolabs

2.1.8 Bacterial Strains and Culture Media.

Plasmids were manipulated and propagated in E. coli strain DH5a. Recombinant 

proteins were expressed in E. coli strains BL21 and BL21(DE3). All bacteria were grown 

in L-broth supplemented with 50 p-g.ml' 1 of ampicillin, and 100 p-g-ml' 1 of 

chloramphenicol when appropriate. Bacterial stocks containing plasmids were stored at -  

70°C in growth media containing 7.5% DMSO.
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2.1.9 Cell Lines.

Baby hamster kidney (BHK) 21 clone 13 cells (MacPherson & Stocker, 1962), Vero 

cells (Rhim & Schell, 1967) and 5/21 (Vaughn et al., 1977) cells were obtained from Dr 

V.G. Preston and routinely used during the course of this study. G5-11 cells were used to 

complement the K23Z null mutant virus and 8-1 cells were used to complement the 

K25NS null mutant virus. Both complementing cell lines were kindly supplied by S. 

Person (Desai et al., 1993). A HSV-1 UL19 transformed rabbit skin cell line (generated by 

Dr V.G. Preston) was used to complement the K5AZ null mutant virus. Hybridoma cell 

lines were constructed by Susan Graham at the Institute of Virology.

2.1.10 Cell Culture Media.

All cell culture media were supplied by Gibco BRL. BHK21 C l3 cells were 

maintained in Glasgow modified Eagle’s medium (GMEM) supplemented with 10% (v/v) 

newborn calf serum, 10% (v/v) tryptose phosphate broth, 100 units.mr1 of penicillin, 100 

pg.ml' 1 of streptomycin, 0.25% (v/v) sodium bicarbonate and 2 mM L-glutamine. Fully 

supplemented GMEM was designated as EC 10.

Vero cells were maintained in Dulbecco’s modified Eagle’s media (DMEM) 

supplemented with 10% (v/v) foetal bovine serum, 100 units.mr1 of penicillin, 100 pg.ml' 1 

of streptomycin and 2 mM L-glutamine. Fully supplemented DMEM was designated as 

DC 10.

5/21 cells were maintained in TCI00 media supplemented with 5% (v/v) foetal bovine 

serum, 100 units.mr1 of penicillin and 100 pg.ml' 1 of streptomycin. Fully supplemented 

TCI00 was designated as TC5.

G5-11 and 8-1 cells were constructed from Vero cells and were therefore maintained in 

DC10.

Hybridoma cell lines were maintained in DMEM supplemented with lx HAT medium 

(a 50x solution from Sigma Chemical Co. Ltd. contained 5 mM hypoxanthine, 50 pM 

aminopterin and 800 pM thymidine), 10% (v/v) foetal bovine serum, 100 units.mr1 of 

penicillin, 100 pg.ml' 1 of streptomycin and 1 mM L-glutamine. Fully supplemented 

hybridoma medium was designated HATc.
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2.1.11 Viruses.

HSV-1 strains 17+ (McGeoch et al., 1985, McGeoch et al., 1988), 17 syn (Brown et al., 

1973) and KOS (Holland et al., 1983) were obtained from the Institute of Virology stocks. 

The HSV-1 ts mutants of strain 17+ used in this investigation were tel204 and tel208 

(Addison et al., 1984) and were obtained from Dr V.G. Preston. Tsl (Pertuiset et al., 

1989), a ts mutant of the syncytial strain A44, was also supplied by Dr V.G. Preston. A te+ 

marker rescue virus of tsl was constructed and termed te2/Hindk MR#6. The HSV-1 null 

mutants of strain KOS used in this investigation were KUL25NS (UL25 null mutant) 

(McNab et al., 1998), K5 AZ (UL19 null mutant), K23Z (UL18 null mutant) (Desai et al., 

1993) and KA 19C (UL38 null mutant) (Person & Desai, 1998). These viruses were kindly 

supplied by S. Person. A UL28 null mutant of strain KOS was also used (Tengelsen et al., 

1993). A recombinant baculovirus expressing a polyhistidine tagged HSV-1 UL25 protein, 

referred to as PTA10bac#14, was generated. Other recombinant baculoviruses used in this 

investigation were Ac26.5/19/38, which expressed the HSV-1 UL26.5, UL19 and UL38 

genes; Ac26/18/35, which expressed the HSV-1 UL26, UL18 and UL35 genes (both 

constructed by J. McVicar, Institute of Virology); AcUL25, which expressed the HSV-1 

UL25 gene (constructed by Dr V.G. Preston, Institute of Virology) and Acl9/38 which 

expressed the HSV-1 UL19 and UL38 genes (obtained from Dr F.J. Rixon, Institute of 

Virology).
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2.2 Methods.

2.2.1 Tissue Culture.

2.2.1.1 Serial Passage of Cells.

BHK, Vero, G5-11, 8-1 and hybridoma cell lines were incubated at 37°C in an 

atmosphere supplemented with 5% CO2. S/21 cells were incubated at 28°C in an 

unsupplemented atmosphere. The various cell lines were passaged in the appropriate media 

as described in section 2 .1.2

Tissue culture flasks (175 cm2) were seeded with 1-2 x 106 cells. Confluent BHK, Vero 

and G5-11 monolayers were washed with 20 ml of versene followed by a 40 ml wash with 

trypsin: versene (1:1 v/v) and the trypsinised cells were resuspended in 10 ml of the 

appropriate medium. Hybridoma and S fl\  cell monolayers were disrupted by agitation and 

resuspended in 10 ml of appropriate medium. An aliquot of the resuspended cells was used 

to seed another 175 cm2 tissue culture flask. BHK cells were discarded after 10 passages, 

other cell lines were discarded after approximately 30 passages.

2.2.1.2 Storage of Cells.

The cells from confluent 175 cm2 tissue culture flasks were harvested as previously 

described, pelleted by centrifugation at 1500 rpm in a Sorvall RT6000B centrifuge for 5 

minutes at 4°C and resuspended in the appropriate medium containing 10% (v/v) DMSO.
7 1 1Cells were stored in 2 ml vials at a concentration of approximately 1 x 1 0  cells.ml" . The

vials were cooled slowly to -70°C and then transferred to liquid nitrogen storage (-140°C).

The cells were recovered from storage by thawing the contents of the vial and

transferring the cells to 9 ml of the appropriate medium (without DMSO). The cells were

pelleted by centrifugation at 1500 rpm in a Sorvall RT6000B centrifuge for 5 minutes at
2 ,

4°C and resuspended in 10 ml of the appropriate medium prior to seeding a 175 cm tissue 

culture flask.

55



Materials and Methods

2.2.2 Virus Culture and Purification.

2.2.2.1 Production of HSV-1 Stocks.

Stocks of wt HSV-1 strain 17 and ts mutants were produced in BHK cells. K23Z null 

mutant virus was propagated in G5-11 cells, K5 AZ was grown in UL19 transformed rabbit 

skin cells and K25NS was cultivated in 8-1 cells.

A confluent monolayer of the appropriate cell type in a 850 cm2 plastic roller bottle 

was infected with virus at a moi of 0.003 pfu per cell in 20 ml of cell culture medium. 

After an adsorption period of 1 hour at 37°C, 50 ml of fresh medium was added to the 

virus-infected cells and incubation continued at 31°C for 3-4 days until extensive cpe had 

developed. The virus-infected cells were harvested into the medium by agitation and 

pelleted by centrifugation at 1500 rpm in a Sorvall RT6000B centrifuge for 10 minutes at 

4°C. Cell-associated virus was prepared by sonicating the virus-infected cell pellet in a 

small amount of medium in a sonicating waterbath until the sample was homogenous. 

Cellular debris was removed by centrifugation as before and the cell-associated virus stock 

was divided into aliquots and stored at -70°C.

The clarified culture medium was centrifuged at 12,000 rpm in a Sorvall SLA 1500 

rotor for 2 hours at 4°C to pellet cell-released virus. The cell-released virus was 

resuspended in GMEM supplemented with 20% (v/v) newborn calf serum and stored at 

-70°C in 100 pi aliquots.

2.2.2.2 Preparation of High Titre Recombinant Baculovirus Stock.

Plastic roller bottles (850 cm2) were seeded with 6 x 107 S fl\  cells in 300 ml of TC5 

and incubated at 28°C. When a density of 5 x 105 cells.mf1 was reached, the cells were 

infected with recombinant baculovirus at a moi of 0.1 pfu per cell and incubation was 

continued at 28°C. At 6 days pi the virus-infected cells were removed from the medium by 

centrifugation at 3000 rpm in a Sorvall SLA3000 rotor for 5 minutes at 4°C and the 

clarified medium was centrifuged at 12,000 rpm in a Sorvall SLA1500 rotor for 2 hours at 

4°C. Each virus pellet was resuspended in 2 ml of TC5, transferred to a sterile glass 

universal bottle and sonicated using a sonicating waterbath to disperse the virus. The virus 

was stored at -70°C in 1 ml aliquots.
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2.2.23 Sterility of Viral Stocks.

The sterility of viral stocks was checked by streaking a sample a onto blood agar plate. 

The plates were incubated at 31°C for up to 5 days and any viral stocks containing bacterial 

contamination were discarded.

2.2.2A Titration of HSV-1.

Tissue culture dishes (35 mm) were seeded with 8 x 105 cells per dish in 2 ml of 

growth medium. The following day the medium was removed and the cells were infected 

with 100 pi of virus serially diluted 10-fold in growth medium (or PBS complete 

containing 5% newborn calf serum). Titrations of wt virus and the null mutant viruses used 

in this study were carried out at 37°C. Titrations of the ts mutant viruses used in this study 

were performed at 31°C, the PT, and 39.2°C, the NPT, with the exception of ts\20& which 

was incubated at a NPT of 39.5°C. After a 1 hour adsorption period at the appropriate 

temperature the virus inoculum was removed and 2 ml of medium containing 5% human 

serum was added to the virus-infected cells to prevent secondary plaque formation. 

Incubation was continued at the appropriate temperature until plaques were clearly visible. 

The monolayers were fixed and stained with Giemsa stain for 10 minutes at room 

temperature. The stain was removed with running water and the plaques were counted 

using a dissecting microscope.

2.2.2.5 Titration of Recombinant Baculovirus (Brown & Faulkner, 1977).

Tissue culture dishes (35 mm) were seeded with 1 x 106 5/21 cells per dish in 2 ml of 

TC5. The following day the medium was removed and the cells were infected with 100 pi 

of recombinant baculovirus serially diluted 10-fold in TC5. After a 1 hour adsorption 

period at room temperature the virus inoculum was removed and 1.5 ml of 3% LGT 

agarose:TC5 (1:1, v/v) at 45°C was added to the virus-infected cells. When the agarose had 

set 1.5 ml of TC5 was added to each of the dishes which were then incubated at 28°C. At 4 

or 5 days pi, the liquid overlay was removed and replaced with 1 ml of TC5 containing 

0.5% neutral red and 250 pg.ml' 1 of X-gal. After 3-4 hours incubation at 28°C, the stain 

was removed and the dishes were left at 28°C overnight in an inverted position. The 

following day plaques were counted if a viral titre was required or picked into 1 ml of TC5 

for plaque purification.
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2.2.2.6 Purification of HSV-1 Virions (wt and ts mutants).

Confluent monolayers of BHK cells in 850 cm2 plastic roller bottles were infected with 

HSV-1 at a moi of 0.002 pfu per cell in 20 ml of EC 10. After the virus had been adsorbed 

to the cells for 1 hour at 37°C, 50 ml of fresh EC 10 was added and incubation was 

continued at 31°C for 5 days until extensive cpe had developed. The virus-infected cells 

were harvested into the medium by agitation and pelleted by centrifugation at 3000 rpm in 

a Sorvall RT6000B centrifuge for 10 minutes at 4°C. The supernatants were pooled and 

centrifuged at 12,000 rpm in a Sorvall SLA 1500 rotor for 2 hours at 4°C and the resulting 

pellet was resuspended in 1 ml of EC 10 by sonication in a sonicating water bath. A 5-15% 

w/v ficoll gradient in lx Eagles without phenol red was prepared in a Beckman 25 x 89 

mm centrifuge tube using a Biocomp Gradient Master and the resuspended pellet was 

gently layered on top. The gradient was centrifuged at 12,000 rpm in a Sorvall AH629 

rotor for 2 hours at 4°C. Virion bands were visualised by light scattering and harvested by 

puncturing the centrifuge tube just below the virion band with an 18G syringe needle 

attached to a 5 ml syringe. The virions were transferred to a fresh Beckman 25 x 89 mm 

centrifuge tube, diluted with lx Eagles (without phenol red) and pelleted by centrifugation 

at 20,000 rpm in a Sorvall AH629 rotor for 1 hour at 4°C. The virion pellet was 

resuspended in lx Eagles (without phenol red) supplemented with 20% (v/v) foetal bovine 

serum by sonication as before, divided into aliquots and stored at -70°C.

2.22.1 Purification of HSV-1 Capsids.

a). Purification of HSV-1 Capsids from Wt Virus-Infected Cells.

Confluent monolayers of BHK cells in 850 cm2 plastic roller bottles were infected with 

HSV-1 17 at a moi of 5 pfu per cell in 20 ml of EC 10. After the virus was adsorbed for 1 

hour at 37°C, 50 ml of fresh EC 10 was added to the cells and incubation was continued at 

37°C for 14-18 hours. The virus-infected cells were harvested by washing with NTE 

containing 1% NP40 in a final volume of 100 ml and pelleted by centrifugation at 3000 

rpm in a Sorvall RT6000B centrifuge for 10 minutes at 4°C. The resulting pellet (nuclei) 

was washed with 50 ml of NTE complete containing 1% NP40, centrifuged as before and 

resuspended in 50 ml of NTE containing 1% NP40. The nuclei were disrupted by 

sonication using a probe sonicator and the debris was removed by centrifugation. The 

supernatant was layered on to a 5 ml 40% (w/v) sucrose cushion (in NTE) in a Beckman 

25 x 89 mm centrifuge tube and the sample was centrifuged at 25,000 rpm in a Sorvall
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AH629 rotor for 1 hour at 4°C. The resulting pellet was resuspended in 2 ml of NTE 

containing 1% NP40 and loaded onto 10-40% sucrose (w/w in NTE) gradients, prepared in 

Beckman 14 x 95 mm centrifuge tubes using a Biocomp Gradient Master, and centrifuged 

at 40,000 rpm in a Sorvall TST41.14 rotor for 20 minutes at 4°C. A, B and C capsid bands 

were visualised by light scattering and harvested separately by puncturing the centrifuge 

tube with 18G syringe needles attached to 5 ml syringes. The A, B and C capsid samples 

were each transferred to a fresh Beckman 14 x 95 mm centrifuge tube, diluted with NTE 

and pelleted by centrifugation at 25,000 rpm in a Sorvall TST41.14 rotor for 1.5 hours at 

4°C. The capsid pellets were resuspended in 100 pi of NTE using a sonicating water bath 

and stored at -70°C.

b). Purification of Recombinant B Capsids from S/21 Cells Infected with 

Recombinant Baculoviruses.

Plastic roller bottles (850 cm2) were each seeded with 2 x 107 5/21 cells in 100 ml of 

TC5. The cells were incubated at 28°C for 2-3 days until a density of 1 x 106 cells.mf1 was 

reached. At this point, 200 ml of fresh TC5 medium was added to the roller bottles and 

incubation was continued at 28°C until a density of 0.8-1.0 x 106 ceUs.ml' 1 was reached 

(usually the next day). The cells were then infected with Ac26.5/19/38 and Ac26/18/35 

recombinant baculoviruses at a moi of 5 pfu per cell of each virus (and on occasion with 

AcUL25 as well). At approximately 70 hours pi the virus-infected cells were pelleted by 

centrifugation at 3000 rpm in a Sorvall RT6000B centrifuge for 10 minutes at 4°C and 

resuspended in 30 ml of NTE containing 1% NP40. The cell extract was sonicated using a 

probe sonicator and capsids were purified in a similar manner to HSV-1 capsids from wt 

virus-infected cells. The purified capsids were centrifuged through a second sucrose 

gradient to remove non-capsid associated proteins, then harvested as before. In an 

alternative protocol, the second sucrose gradient was fractionated into 0.5 ml aliquots and 

the protein content of these fractions was examined by Western blot analysis.

c). Purification of VP5-19C Particles from S/21 Cells Infected with Recombinant 

Baculoviruses.

This protocol was identical to that of section 2.2.2.7b with the exception that Ac 19/38 

and, on occasion, AcUL25 were used to infect 5/21 cells.
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2.2.3 The Generation of a Polyhistidine-Tagged UL25 Expressing Recombinant 

baculovirus.

2.2.3.1 Overview of the Baculovirus Expression System.

To produce a recombinant baculovirus that expresses a gene of interest, the gene is first 

cloned into a baculovirus transfer vector. The baculovirus transfer vector used to generate 

the polyhistidine-tagged UL25 expressing recombinant baculovirus was the pAcCL29.1 

plasmid (Livingstone & Jones, 1989) and is shown in Figure 2.1. This plasmid vector 

contains the baculovirus polyhedrin promoter followed by a multiple cloning site to 

facilitate foreign gene insertion. Once cloned into the pAcCL29.1 vector, the foreign gene 

is flanked both 5’ and 3’ by viral-specific sequences and the recombinant vector is then 

transfected along with PAK6 baculovirus DNA into insect cells. The baculovirus PAK6 

DNA contains the p-galactosidase gene in place of the polyhedrin gene and in a 

homologous recombination event, the foreign gene contained within the pAcCL29.1 vector 

is inserted into the viral genome and the P-galactosidase gene is excised. Once a viral stock 

is obtained after cotransfection, recombinant virus is identified by plaque assay in the 

presence of X-gal. In the absence of a recombination event the p-galactosidase gene 

encoded by the PAK6 DNA reacts with the X-gal substrate resulting in the formation of a 

blue plaque. Since a successful homologous recombination event results in the excision of 

the p-galactosidase gene, plaques formed by recombinant viruses remain colourless. 

Colourless plaques are therefore isolated and the baculoviruses are screened for 

recombinant protein production prior to plaque assay purification and generation of a high- 

titre stock.

2.2.3.2 Preparation of PAK6 Baculovirus Vector DNA.

PAK6 baculovirus vector DNA (5 pg) was digested with 30 units of Bsu36\ enzyme 

for 3 hours at 37°C. The reaction mixture was then treated with 20 units of CIP and 

incubated at 37°C for a further 2 hours. The reaction mixture was subsequently treated with 

an additional 10 units of CIP and incubation was continued for a further 2 hours. The 

reaction was terminated by incubating the reaction mixture at 80°C for 20 minutes and the 

digested PAK6 DNA was stored at 4°C. Digestion of the PAK6 DNA with Bsu36l 

converts the baculovirus DNA into linear forms, increasing the frequency of homologous 

recombination with the baculovirus transfer vector (Kitts et al., 1990). This digestion also
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Figure 2.1 The Structure of Baculovirus Transfer Vector pAcCL29.1.

This vector contains the M l3 intergenic region necessary for single strand production 

(M l3 IG), the beta-lactamase gene (AMP), an origin of replication for propagation in 

bacteria (ORI) and baculovirus expression signals (polyhedrin promoter and terminator). 

The multiple cloning site (MCS) contains restriction endonuclease recognition sites for 

insertion of the foreign gene of interest.
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deletes an essential portion of the 1629 ORF and results in the recovery of a high 

percentage of recombinant baculoviruses after cotransfection with a baculovirus transfer 

vector that can correct this deletion by replacing the deleted gene through homologous 

recombination (Kitts & Possee, 1993),

2.2.3.3 Cotransfection of 5/21 Cells with PAK6 Baculovirus Vector DNA and 

pPTA10/9.

Optimem medium (500 pi) was used to dilute 1 pg of Bsu2>6\ digested PAK6 DNA 

and 2 pg of pPTA10/9 DNA in a 15 ml Falcon tube (the construction of pPTA10/9 is 

described in section 3.2). In a separate 15 ml Falcon tube, 15 pi of lipofectin was also 

diluted in 500 pi of Optimem medium. The contents of both tubes were then gently mixed 

together and incubated for 15 minutes at room temperature. The transfection mixture was 

then added to Optimem washed 5/21 cells seeded in 35 mm tissue culture dishes (1 x 106 

cells.dish'1). The tissue culture dishes were incubated at 28°C in a sealed sandwich box 

containing a small piece of dry ice to maintain a slightly acidic environment optimal for 

the growth of 5/21 cells. At 5 hours post-transfection the mixture was removed from the 

cells, replaced with 2 ml of TC5 and the tissue culture dishes were incubated at 28°C. After 

3 days incubation the medium from the cotransfected cells was transferred to 15 ml Falcon 

tubes and cells were removed by low-speed centrifugation. The resulting supernatant, 

containing potential recombinant baculovirus was stored at -70°C.

2.2.3.4 Selection of Recombinant Baculoviruses.

Putative recombinant baculoviruses in the supernatant from the cotransfected cells 

were titrated on 5/21 cells and the cells stained with neutral red in the presence of X-gal. 

Approximately 20 colourless plaques were each picked into 1 ml of TC5 and stored at 

-70°C.

A small scale virus stock of each plaque isolate was prepared. Tissue culture dishes (35 

mm) seeded with 3 x 105 5/21 cells per dish were infected with 200 pi of the initial plaque 

isolate. After the virus had been adsorbed for 1 hour at room temperature, 2 ml of TC5 was 

added to the virus-infected cells and the samples were incubated at 28°C. At 3-4 days pi 

the medium from the virus-infected cells transferred to 15 ml Falcon tubes and the floating 

cells were removed by centrifugation at 1500 rpm in a Sorvall RT6000B centrifuge for 5 

minutes at 4°C. The resulting small scale virus stock was stored at -70°C.
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2.2.3.5 The Identification of Recombinant Baculoviruses Expressing the His-UL25 

Protein.

A 24 well tissue culture dish was seeded with 2 x 105 S fl\  cells per well in 1 ml of 

TC5. The following day the medium was removed and the cells were infected with 200 pi 

of the small scale virus stocks produced from plaque isolated virus. PAK6 virus and mock- 

infected cells were included as controls. After the virus was adsorbed at room temperature 

for 1 hour, 1 ml of TC5 was added to the virus-infected cells and the samples were then 

incubated at 28°C. At 30 hours pi the medium was replaced with 0.5 ml of methionine free 

TC100 containing 0.5% (v/v) foetal bovine serum, 1/10 the normal concentration of 

methionine and 20 pi of 35S L-methionine and incubation was continued at 28°C. After lb- 

20 hours incubation the radiolabelled cells were detached from the bottom of the wells by 

gentle pipetting into the TC5 medium and transferred to 1.5 ml Eppendorf tubes. The cells 

were concentrated by low speed centrifugation, washed with PBS complete and 

resuspended in 100 pi of PGSB. The protein profile of the virus-infected cells was 

examined by SDS-PAGE and visualised by fluorography.

2.2.3.6 Plaque Purification of His-UL25 Expressing Baculovirus.

Selected virus isolates which expressed the His-UL25 protein were plaque purified as 

described previously. After the third plaque purification, small scale stocks of each virus 

isolate were prepared (as in section 2 .2 .3.4) and this small virus stock was used to produce 

a high titre recombinant baculovirus stock.

2.2.4 Isolation of HSV-1 Virion DNA.

2.2.4.1 Infection of Cells with Virus and Isolation of Cell-Released Virus and Cell- 

Associated Capsids.

Confluent monolayers of BHK cells in 850 cm2 plastic roller bottles were each infected 

with 1 x 106 pfu HSV-1 in 20 ml of EC 10. After the virus was adsorbed for 1 hour at 37°C, 

50 ml of fresh EC 10 was added to the virus-infected cells and incubation was continued at 

31°C for 3-4 days until cpe had developed. The virus-infected cells were harvested into the 

medium by agitation and pelleted by centrifugation at 2000 rpm in a Sorvall RT6000B 

centrifuge for 10 minutes at 4°C. The resulting supernatant (cell-released virus) was 

centrifuged at 12,000 rpm in a Sorvall SLA 1500 rotor for 2 hours at 4°C to concentrate the
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virus particles. The cell pellet was resuspended in RSB containing 0.5% NP40 and 

incubated on ice for 10 minutes with occasional gentle agitation. The nuclei and cellular 

debris were pelleted by centrifugation at 2000 rpm in a Sorvall RT6000B centrifuge for 10 

minutes at 4°C and the supernatant (de-enveloped cytoplasmic virions and capsid-tegument 

structures) was centrifuged at 12,000 rpm in a Sorvall SLA1500 rotor for 2 hours at 4°C. 

Both pellets were resuspended in 5 ml of NTE using a sonicating waterbath.

2.2.4.2 Extraction of Viral DNA.

SDS was added to the samples at a final concentration of 2% (w/v) and the samples 

were gently mixed by inverting the tubes. An equal volume of NTE saturated phenol was 

added to the samples which were incubated on a rocking platform for 20 minutes at room 

temperature. The samples were centrifuged at 3000 rpm in a Sorvall RT6000B centrifuge 

for 10 minutes at 4°C and the aqueous top layer containing the viral DNA was transferred 

to a fresh tube. Phenol extraction was carried out several times until there was a negligible 

amount of material (protein and SDS) at the interphase. An equal volume of chloroform 

was added to the DNA solution and the sample was incubated for 10 minutes on a rocking 

platform prior to centrifugation as before. The top layer was transferred to a clean tube, 

NaCl was added to a final concentration of 100 mM and the DNA was precipitated with

2.5 volumes of ethanol. DNA isolated from cell-released virus was pelleted by 

centrifugation as before, dried and gently resuspended in 2 ml of TE. DNA isolated from 

cell-associated virus was pelleted by centrifugation and resuspended in 10 ml of TE 

containing 100 mM NaCl, 1 mM MgCh and 10 pg.ml'1 of RNase A. After a 20 minute 

incubation at room temperature the DNA was extracted using 1:1 (v/v) unsaturated 

phenol/chloroform followed by an extraction with chloroform alone. The DNA was 

subsequently precipitated with ethanol, pelleted by centrifugation and gently resuspended 

in 2 ml of TE. The quality of both viral DNA samples was determined by electrophoresis 

of 1 pi of the viral DNA through a 0.5% TBE-agarose gel.

2.2.5 Preparation of Soluble/Insoluble Fractions from HSV-1 Infected Cells.

Tissue culture dishes (35 mm) were seeded with 8 x 105 Vero cells per dish in 2 ml of 

DC 10 medium. The following day the medium was removed and the cells were infected 

with a 100 pi of HSV-1 in DC 10 at a moi of 10 pfu per cell. After the virus had been 

adsorbed for 1 hour at the appropriate temperature, 2 ml of prewarmed DC 10 medium
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were added to the dishes and the cells were incubated at the appropriate temperature. At 10 

hours pi the medium was removed and the cells were scraped gently into 1 ml of PBS 

complete and the cell suspension transferred to 1.5 ml Eppendorf tubes. The cells were 

pelleted by centrifugation at 6500 rpm in an MSE microfuge for 1 minute at room 

temperature and resuspended in 100 pi of ice-cold lysis buffer. The cells were incubated on 

ice with occasional vortexing for 5 minutes and centrifuged at 6500 rpm in an MSE 

microfuge for 5 minutes. The soluble fraction (supernatant) was removed and combined 

with 50 pi of 3x PGSB. The insoluble fraction (pellet) was resuspended in 1 ml of ice-cold 

sucrose buffer by vortexing and then centrifuged at 6500 rpm in an MSE microfuge for 5 

minutes. The supernatant was removed and the insoluble pellet was resuspended in 150 pi 

lx PGSB. Both samples were then incubated in a waterbath set at 100°C for 10 minutes 

prior to analysis by SDS-PAGE.

2.2.6 Preparation of Plasmid DNA.

2.2.6.1 Large Scale Plasmid Preparation (CsCl banding).

Medium to low copy number plasmids were purified using the following method :

A 2 L flask containing 300 ml of L-broth supplemented with the relevant antibiotic was 

inoculated with a 5 ml overnight culture of bacteria and shaken overnight at 37°C. The 

bacteria were pelleted by centrifugation at 5000 rpm in a Sorvall SLA1500 rotor for 5 

minutes at 4°C, resuspended in 20 ml of STET buffer, transferred to a 50 ml beaker and 

incubated for 1 minute at room temperature in the presence of 1 mg.mf1 of lysozyme. The 

mixture was brought to the boil with continuous stirring, using a Bunsen burner and 

transferred to a waterbath at 100°C for approximately 50 seconds. The now viscous 

mixture was centrifuged at 18,000 rpm in a Sorvall SS34 rotor for 45 minutes at 4°C. The 

supernatant was collected and combined with 0.9 volumes of isopropanol, mixed gently 

and centrifuged at 3000 rpm in a Sorvall RT6000B centrifuge for 5 minutes at 4°C. The 

resulting pellet was resuspended in TE and 200 pi of ethidium bromide (from a 10 mg.ml'1 

stock) was added to give a total volume of 6.3 ml. The sample was incubated on ice for 10- 

15 minutes prior to the addition of 7 g of CsCl. After the CsCl had been dissolved the 

sample was centrifuged at 3000 rpm in a Sorvall RT6000B centrifuge for 10 minutes at 

4°C to pellet any debris. The supernatant was transferred to 6 ml centrifuge tubes which 

were balanced, crimp sealed and centrifuged at 45,000 rpm in a Sorvall 65 V I3 rotor for 16
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hours (or overnight) at 15°C. The supercoiled plasmid DNA was harvested using a 2 ml 

syringe attached to a 18G syringe needle; the ethidium bromide was removed from the 

plasmid DNA solution by repeated butanol (saturated with TE) extraction and the CsCl 

was removed by dialysis for 2 hours against 2 L of TE. The plasmid DNA solution was 

treated with 100 pg.ml'1 of RNase A for 1 hour at 65°C and then incubated at 37°C for 1 

hour with 0.1% (v/v) SDS and 100 pg.ml'1 of proteinase K. The plasmid DNA was 

phenol/chloroform extracted and precipitated by addition of 1/20 volumes of 5M NaCl and

2.5 volumes of ethanol followed by incubation at -20°C for 1 hour. The plasmid DNA was 

pelleted by centrifugation at 3000 rpm in a Sorvall RT6000B centrifuge for 10 minutes at 

4°C, redissolved in 400 pi of H2O, transferred to a 1.5 ml Eppendorf tube and precipitated 

as before. The DNA was pelleted by centrifugation at 13,000 rpm for 10 minutes in an 

MSE microfuge, washed in 70% ethanol and resuspended in 100-300 pi of H2O depending 

on the size of the pellet. The concentration of the plasmid DNA was determined by 

measuring the UV absorbance at 260 nm (an absorbance reading of 1.0 corresponds to 50 

pg.ml'1 of dsDNA) and the quality of the plasmid DNA was established by electrophoresis 

of 0.5 pg of the plasmid DNA through a 0.8% agarose gel.

2.2.6.2 QIAGEN MIDI Plasmid Purification.

High copy number plasmids were routinely isolated from bacterial clones using a 

QIAGEN MIDI plasmid purification kit (QIAGEN) according to the manufacturer’s 

instructions.

2.2.6.3 Small Scale Plasmid Preparation (miniprep) (Chowdhury, 1991).

To screen bacterial colonies for the presence of plasmid DNA, 2 ml of L-broth 

supplemented with the relevant antibiotic was inoculated with a single bacterial colony 

picked from an L-broth agar plate and shaken overnight at 37°C. Of this culture, 0.5 ml 

was mixed with 0.5 ml of phenol/chloroform/isoamylalcohol by vortexing the solutions 

together for 1 minute in a 1.5 ml Eppendorf tube. The mixture was then centrifuged at

13,000 rpm in an MSE microfuge for 1 minute. The upper aqueous phase was carefully 

removed, leaving the interphase undisturbed, and transferred to a fresh tube containing 0.5 

ml of isopropanol. The solution was mixed thoroughly and centrifuged at 13,000 rpm in an 

MSE microfuge for 10 minutes. The resulting pellet was washed twice with 70% ethanol, 

vacuum dried and resuspended in 100 pi of TER.
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2.2.7 Manipulation of DNA.

2.2.7.1 Synthesis and Purification of Oligonucleotides.

Oligonucleotides were synthesised within the Institute of Virology using a Cruachem 

PS250 synthesiser.

The newly synthesised oligonucleotides were supplied attached in their synthesis 

column. They were removed from the column with 1.5 ml of concentrated ammonia 

solution which was pushed through the column in 0.2 ml aliquots at 20 minute intervals. 

The oligonucleotides were deprotected for 5 hours at 55°C, vacuum dried overnight and 

resuspended in 90% (v/v) of deionised formamide in TBE.

The oligonucleotides were purified by PAGE. Briefly, for a 15-100 mer 

oligonucleotide, a 15% acrylamide gel with 4% cross-link was prepared and 

oligonucleotides were electrophoresed overnight. The oligonucleotides were visualised by 

fluorescence quenching under short wave UV, excised from the gel and incubated at 45°C 

overnight in oligonucleotide gel elution buffer. The next day the oligonucleotides were 

precipitated with ethanol, pelleted by centrifugation, washed in 70% ethanol and 

resuspended in 100 pi of TE. The purified oligonucleotide solution was quantitated by 

measuring the absorbance at 260 nm (an absorbance reading of 1.0 corresponds to 20 

pg.ml'1 of oligonucleotide).

Single stranded oligonucleotides were annealed by incubating 2 pg of each 

oligonucleotide in a water bath set at 100°C for 10 minutes followed by slow cooling. This 

resulted in the formation of 4 pg of double stranded oligonucleotide.

2.2.7.2 Gel Electrophoresis of DNA.

DNA was typically analysed by electrophoresis through a 0.8% non denaturing agarose 

gel using a BRL horizontal electrophoresis apparatus according to the manufacturer’s 

instructions. Briefly, the agarose gel was prepared in TBE buffer which contained 0.5 

pg.ml'1 of ethidium bromide, immersed in TBE buffer prior to electrophoresis, and the 

samples in formyl dye solution were loaded into the wells of the gel. Electrophoresed DNA 

was visualised using a short wave UV light source. When it was necessary to purify DNA 

fragments, an agarose gel was prepared and electrophoresed in TAE buffer. The 

electrophoresed DNA was visualised using a long wave UV light source and agarose gel 

slices containing the DNA of interest were excised from the gel.
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2.2.7.3 Southern Blotting and Hybridisation.

a). Southern Blot Transfer (Southern, 1975).

Prior to transfer, DNA restriction enzyme products were electrophoresed through a 

0.8% non-denaturing agarose gel as described above. The DNA was denatured by gentle 

agitation in alkaline transfer buffer for 30 minutes and the gel was transferred onto 2 sheets 

of Whatman 3mm chromatography paper which were in contact with, but not immersed in, 

alkaline transfer buffer. A sheet of Hybond-XL membrane, the exact size of the gel, was 

soaked in alkaline transfer buffer and placed on top of the gel. Six sheets of Whatman 

3mm chromatography paper, cut 2 mm smaller than the gel, were soaked in alkaline 

transfer buffer and placed on top of the membrane. Finally, a weighted stack of paper 

towels was laid on top of the Whatman paper. Approximately 17 hours later, the membrane 

was removed, neutralised by immersion in neutralisation solution with gentle agitation for 

15 minutes and the DNA was cross-linked to the membrane using a Stratagene UV 

crosslinker (1200 Jem2).

b). Preparation of Radio-Labelled Probe for Southern Blot Hybridisation.
• 3 2Approximately 200 ng of purified DNA fragment was labelled with 50 pCi of [a P] 

dNTP using an NEBlot kit (New England Biolabs) which is used to radio-label DNA in a 

reaction utilising random primers, dNTPs and Klenow enzyme. Radio-labelled probe was 

separated from unincorporated nucleotides using a G50 sephadex column. Prior to 

hybridisation the probe was denatured in a waterbath at 100°C for 5 minutes.

c). Southern Blot Hybridisation.

During the hybridisation procedure the temperature was kept constant at 65°C and the 

tubes were rotated in a hybridisation oven (Hybaid) The dried Hybond-XL membrane was 

placed in a hybridisation tube (Hybaid) with 50 ml of Southern pre-hybridisation buffer 

and incubated for 2 hours. The Southern pre-hybridisation buffer was then replaced with 

10 ml of Southern hybridisation buffer prewarmed to 65°C and the membrane was 

incubated for a further 3 hours. The purified, denatured, radio-labelled probe was added 

and incubation continued for a further 16-20 hours. The membrane was washed once in 50 

ml of Southern hybridisation buffer and once in 50 ml of membrane wash buffer, dried and 

exposed to either autoradiography film or a phosphorimager screen.
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d). Quantitative Analysis.

Quantitative measurements of the amount of replicated or packaged DNA were made 

using the Quantity One software package (BIO-RAD). The Southern blot membrane was 

exposed to the phosphorimager screen and scanned into the computer using a Personal 

Molecular Imager FX phosphorimager (BIO-RAD). The scanned phosphorimage file was 

used for quantitation by volume analysis which sums the pixel values within a given object 

and subtracts the summed background pixel values. Identically sized rectangles were 

drawn around each of the objects for which intensities were to be calculated. An identically 

sized rectangle was also positioned somewhere on the image outwith the sample lanes to 

calculate the background volume. The volume contained within each of the rectangles was 

then calculated, subtracting the volume of the background.

2.2.1 A Restriction Endonuclease Enzyme Digestion of DNA.

Restriction enzyme digestion of DNA was carried out using commercial enzymes and 

the buffers supplied. Typically, 1 pg of DNA was incubated with 10-20 units of enzyme 

for 3 hours at 37°C in a final reaction volume of 20-30 pi.

2.2.7.5 Purification of DNA Fragments.

DNA fragments of 70 bp to 10 kb were purified from agarose gel slices using a 

QIAquick Gel Extraction Kit according to the manufacturer’s instructions. Typically, 50- 

60% of digested DNA was recovered using this method.

2.2.7.6 Ligation of DNA Fragments.

Prior to ligation of DNA fragments, the linearised plasmid backbone was treated with 

CIP to prevent recircularisation. The ligation reaction consisted of a 3:1 molar ratio of 

insert with respect to plasmid backbone together with 1 unit of T4 DNA ligase in lx 

ligation buffer (and on occasion the reaction mixture also contained 5 ng of dsDNA 

oligonucleotide). The reaction mixture was incubated at 16°C overnight in a final reaction 

volume of 15-20 pi prior to transformation of competent E. coli.
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2.2.8 Preparation and Transformation of Competent E. colL

2.2.8.1 Preparation and Transformation of Competent BL21 E. coli (CaCh Method).

L-broth (10 ml) was inoculated with a single bacterial colony picked from an L-broth 

agar plate and shaken overnight at 37°C. Of this culture, 0.5 ml was used to inoculate 50 

ml of prewarmed L-broth which was shaken at 37°C until an optical density reading of 0.3 

at 590 nm was reached. The bacterial culture was chilled on ice for 10 minutes and pelleted 

by centrifugation at 3000 rpm in a Sorvall RT6000B centrifuge for 15 minutes at 4°C. The 

resulting pellet was resuspended in 20 ml of 0.1 M CaCL and incubated on ice for 1-2 

hours. The bacterial cells were pelleted by centrifugation as before and resuspended in 3 

ml of 0.1 M CaCb. The competent bacteria were stored at -70°C in 100 pi aliquots 

containing 7.5% (v/v) DMSO.

To transform the bacteria, 100 pi of competent cells was mixed with 1, 2 and 5 pi of 

ligation mix and incubated on ice for 1 hour. The cells were heat shocked at 42°C for 90 

seconds, cooled on ice for 2-3 minutes and shaken for 1 hour at 37°C in 900 pi of L-broth 

containing 20 mM D-glucose. Finally, the cells were plated out on L-broth agar plates 

supplemented with the relevant antibiotic and incubated overnight at 37°C.

2.2.8.2 Preparation of Electrocompetent DH5a E. coli.

L-broth (50 ml) was inoculated with a sterile toothpick scraped on a frozen DH5a 

bacterial stock and shaken overnight at 37°C. This culture was used to inoculate 1 L of 

prewarmed L-broth in a 2 L flask and shaken at 37°C until an optical density reading of 

0.5-0.6 at 550 nm was reached. The culture was transferred to pre-chilled 250 ml 

centrifuge tubes, incubated on ice for 30 minutes and pelleted by centrifugation at 3000 

rpm in a Sorvall RT6000B for 15 minutes at 0°C. The cells were resuspended in a total of 1 

L of sterile, pre-chilled H2O, centrifuged as before and then resuspended in 500 ml of 

sterile, pre-chilled H2O and centrifuged again. The cells were then resuspended in 40 ml of 

sterile, ice-cold 10% glycerol (v/v) in H2O and transferred to ice-cold 50 ml centrifuge 

tubes and centrifuged at 6000 rpm in a Sorvall SS34 rotor for 15 minutes at 0°C. The 

supernatant was discarded and the pellet was resuspended in 2 ml of ice-cold 10% glycerol 

(v/v) in H2O. The electrocompetent cells were divided into 80 pi aliquots, frozen rapidly 

on dry ice and stored at -70°C.
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2.2.8.3 Transformation of Electrocompetent D H 5aJE. coli.

Transformation of electrocompetent DH5a E. coli was carried out using a BIO-RAD 

GenePulser according to the manufacturer’s instructions. Briefly, 1-2 pi of DNA (usually 

from a ligation reaction) was diluted with water to give a final volume of 20 pi and mixed 

with an aliquot of electrocompetent DH5a E. coli. The cells were transferred to BIO-RAD 

electroporation cuvettes and electroporated with the following settings, capacitance 25 

pFD, resistance 400 OHMS and voltage at 1.6 V. The cells were added to 1 ml of 2YT 

broth, incubated for 1 hour at 37°C with shaking and plated on L-broth agar plates 

supplemented with the appropriate antibiotic and incubated overnight at 37°C.

2.2.9 Generation of Monoclonal Antibodies Specific for the HSV-1 UL25 Protein.

2.2.9.1 Immunisation of Mice with MBP-UL25.

Female BALB/c mice, aged 6-8 weeks, were immunised sub-cutaneously with 20 pg of 

purified MBP-UL25 in Freunds Complete Adjuvant and boosted sub-cutaneously three 

times, at two week intervals, with 20 pg of purified MBP-UL25 in Freunds Incomplete 

Adjuvant. An analysis of the immunoreactivity in serum isolated from blood taken in a test 

bleed revealed a disproportionate immune response in favour of the MBP constituent of the 

MBP-UL25 fusion protein. Mice were therefore boosted with 20 pg of purified His-UL25 

in Freunds Incomplete Adjuvant to expand B lymphocyte populations secreting antibodies 

specific for the UL25 constituent of the MBP-UL25 fusion protein prior to harvesting the 

spleen of the mouse. Immunisations and test bleeds were performed by biological services 

technicians.

2.2.9.2 Fusion of Splenic Lymphocytes with Myeloma Cells.

Most of the work on the isolation of hybridoma cells secreting monoclonal antibodies 

specific for UL25 was carried out by Susan Graham at the Institute of Virology. Briefly, 

lymphocytes were harvested from the spleens of immunised mice and fused with Sp2/0- 

Ag 14 myeloma cells (Shulman et al., 1978) in the presence of polyethylene glycol. 

Multiwell plates were seeded with the fused cells in HATc medium to select for hybridoma 

cells which result from the successful fusion of splenic lymphocytes with Sp2/0-Ag 14 

myeloma cells. HATc medium consists of normal DC 10 culture medium with three 

additives: hypoxanthine, aminopterin and thymidine. Aminopterin is an antibiotic which
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effectively blocks the de novo nuclei acid biosynthesis pathway, forcing all cells to use the 

alternative ‘salvage’ nucleic acid biosynthesis pathway. This pathway is dependent on the 

enzyme HGPRT which utilises hypoxanthine and thymidine to synthesise to purine and 

pyrimidine components of nucleic acids. If this enzyme is absent, as in the case with 

myeloma cells, purine and pyrimidine biosynthesis cannot occur and the cells will die. 

Hybrid cells of enzyme-deficient myeloma and enzyme-positive lymphocytes will be able 

to survive because they will have inherited the enzyme from the lymphocyte parent. 

Therefore after incubation for 10-14 days at 37°C in HATc medium, the only surviving 

cells in the fusion mixture will be myeloma/spleen hybrids as unfused spleen cells will 

eventually die.

2.2.9.3 Screening Hybridoma Cell Colonies for Production of Monoclonal Antibodies 

Specific for UL25.

Approximately 50 pi of medium was removed from wells containing single hybridoma 

cell colonies and was screened in an ELISA assay for UL25-specific antibodies using a cell 

extract from S fl\  cells infected with AcUL25 as a source of antigen. Hybridoma cell 

colonies that tested positive in this assay were seeded on to 24 well tissue culture dishes 

and subsequently grown up in small tissue culture flasks. The medium from the tissue 

culture flasks was used to further characterise the monoclonal antibodies and the cells were 

stored at-140°C.

2.3.0 Protein Purification.

2.3.0.1 MBP-UL25 Purification.

a). Expression of MBP-UL25 Fusion Protein and Generation of Soluble Cell Extracts.

A 2 L flask containing 1 L of 2YT broth, 2 g of D-glucose and 100 pg.ml' 1 of 

ampicillin was inoculated with a 10 ml overnight culture of E. coli BL21 carrying the 

pPTA3 and shaken at 37°C until the bacterial culture had reached an optical density 

reading of 0.5-0.6 at 590 nm. The culture was incubated with shaking at 15°C for 20 

minutes and a sample of uninduced cells was removed for subsequent analysis by SDS- 

PAGE (1 ml cells were pelleted by centrifugation and resuspended in 100 pi of PGSB). 

Expression of MBP-UL25 fusion protein was induced by the addition of IPTG to 0.1 mM
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and the induced culture was incubated with shaking at 15°C for a further 6 hours. After 

incubation, a sample of induced cells was taken as before and the remaining bacteria were 

pelleted by centrifugation at 6000 rpm in a Sorvall SLA1500 rotor for 15 minutes at 4°C. 

The bacterial pellet was resuspended in 50 ml of amylose resin column buffer and frozen 

in a dry ice/ethanol bath. The cell extract was either thawed for immediate use or stored at 

-20°C for no longer than 1 month. The thawed extract was sonicated using a probe 

sonicator and centrifuged at 15,000 rpm in a Sorvall SS34 rotor for 20 minutes at 4°C. The 

supernatant (soluble protein extract) was collected and a sample was taken to ascertain 

whether the induction of the soluble fusion protein was successful. The supernatant was 

either used to purify MBP-UL25 immediately or stored at -20°C for no longer than 1 

month. The pellet (insoluble protein) was resuspended in 25 ml of amylose resin column 

buffer and a sample was taken to determine the relative amount of insoluble fusion protein 

present in the sample.

b). Purification of MBP-UL25 Fusion Protein by Affinity Chromatography.

Amylose resin columns were prepared using five 10 ml protein purification columns 

(BIO-RAD), each containing 1 ml of amylose resin, and were washed with 8 ml of 

amylose resin column buffer prior to the addition of the soluble protein extract. The 

soluble protein extract was diluted 1:2 with amylose resin column buffer and allowed to 

percolate through the amylose resin by gravity flow. The columns were washed with 10 ml 

of amylose resin column buffer and then plugged with the sleeve provided (BIO-RAD). A 

volume of 500 pi of amylose resin column buffer containing 10 mM maltose was added to 

each plugged column and mixed into the resin by pipetting. The columns were incubated 

for 10 mins at room temperature with occasional mixing and the elutes were collected and 

pooled. A sample was taken for subsequent analysis and the purified protein was stored at 

-70°C.

2.3.0.2 Purification of His-UL25 from PTA10bac#14 Infected S/21 Cells.

a). Preparation of Virus-Infected Cell Extracts.

Tissue culture flasks were seeded with 2 x 107 S fl \  cells in TC5. The following day the 

medium was removed and the cells were infected with PTA10bac#14 at an moi of 5 

pfu.celf1. After an adsorption period of 1 hour at room temperature 40 ml of TC5 was
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added to the virus-infected cells. After incubation at 28°C for 3 days, the cells were 

dislodged into the medium by agitation and pelleted by centrifugation at 3000 rpm in a 

Sorvall RT6000B centrifuge for 5 minutes at 4°C. The cells were washed in 5 ml of cold 

PBS complete, centrifuged as before and resuspended in 1 ml of PBS complete. The cells 

were pelleted for a final time in an MSE microfuge and resuspended in 0.5 ml of His-UL25 

harvest buffer. DNase 1 and MgCh were added to a final concentration of 20 pg.ml' 1 and 

10 pg.mf1 respectively and the cells were incubated for 10 minutes at room temperature 

with occasional gentle mixing. The cell extract was sonicated using a sonicating waterbath 

and centrifuged at 13,000 rpm in an MSE microfuge for 5 minutes. Half of the resulting 

supernatant was transferred to a fresh 1.5 ml tube on ice and the pellet was sonicated as 

before in the remaining 250 pi of supernatant prior to centrifugation as before. This 

supernatant was pooled with the first supernatant and a sample of virus-infected cell 

extract was taken for subsequent analysis by SDS-PAGE. The virus-infected cell extract 

was used immediately to purify His-UL25 by affinity chromatography.

b). Purification of His-UL25 by Affinity Chromatography.

Ni-NTA agarose beads (0.5 ml) were washed once with 0.5 ml of distilled water and 

once with 0.5 ml of His-UL25 binding buffer. The agarose beads were added to the 0.5 ml 

of virus-infected cell extract and incubated for 1 hour in an end-over-end shaker at 4°C. 

The agarose beads were pelleted by centrifugation at 6500 rpm in an MSE microfuge for 1 

minute and the supernatant was discarded. The agarose beads were then washed three 

times in 1 ml of His-UL25 binding buffer and three times in 1 ml of His-UL25 wash buffer 

and finally resuspended in 300 pi of His-UL25 elution buffer. The agarose beads were 

incubated for 10 minutes in an end-over-end shaker at 4°C and pelleted by centrifugation at 

13,000 rpm in an MSE microfuge for 1 minute. The supernatant containing the purified 

His-UL25 protein was removed, stored at 4°C and a sample was taken for subsequent 

analysis.

2.3.0.3 Purification of Monoclonal Antibodies by Affinity Chromatography.

Fibracel disks (5g) were seeded with approximately 3-6 x 107 hybridoma cells in a 

spinner culture vessel containing 500 ml of HATc medium buffered with 10 mM MOPS 

and incubated at 37°C with continuous stirring. After 4 days, half of the HATc medium 

was removed and stored at 4°C and 250 ml of fresh HATc medium was added to the
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spinner culture vessel and incubation was continued as before. After a total of 8 days 

incubation at 37°C the HATc medium from the spinner culture vessel was collected and 

pooled with the previous batch of medium to give approximately 0.75 L of medium which 

contained monoclonal antibodies secreted by the cultured hybridoma cells. The HATc 

medium from the cultured hybridoma cells was filtered through a 0.22 pm membrane and 

dialysed against MAb start buffer. The monoclonal antibodies were purified from the 

HATc medium using a Hi-Trap Protein G column (PharmaciaBiotech) and an AKTA 

automated purifier (PharmaciaBiotech) according to the manufacturer’s instructions. Using 

this method approximately 15 mg of purified monoclonal antibody per 0.75 L of HATc 

medium was recovered. The purified monoclonal antibody was dialysed against PBS 

complete, divided into aliquots and stored at -20°C.

2.3.1 Protein Analysis.

2.3.1.1 SDS-PAGE.

A 30% (w/v) acrylamide:0.8% bis-acrylamide stock solution (37.5:1) was used for 

analysis of proteins. The final concentration of polyacrylamide used depended on the 

molecular weights of the proteins to be examined but was generally between 8- 12% (w/v) 

polyacrylamide in RGB. The polyacrylamide gel was assembled and protein samples were 

electrophoresed using a Mini Protean II gel kit (BIO-RAD) according to the 

manufacturer’s instructions. Briefly, the polyacrylamide gel solution was polymerised by 

the addition of ammonium persulphate and TEMED at a final concentration of 0.1% (w/v) 

and 0.16% (v/v) respectively. A 5% (w/v) polyacrylamide solution in SGB was prepared, 

the polymerising agents added and the solution layered onto the solidified gel. Wells were 

formed with Teflon combs and protein samples in PGSB were denatured in a water bath at 

100°C for 5 minutes prior to loading into the wells of the gel. Denatured proteins were 

separated by electrophoresis in freshly prepared PGEB.

2.3.1.2 Coomassie Blue Staining of Polyacrylamide Gels.

Electrophoresed proteins were stained by immersing the polyacrylamide gel in 

Coomassie Blue stain for 10 minutes with gentle agitation at room temperature. The stain 

was removed and protein bands were visualised by immersing the polyacrylamide gel in
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polyacrylamide gel destain with gentle agitation for 2-3 hours at room temperature in the 

presence of rolled up tissue paper.

2.3.1.3 Fluorography.

Radiolabelled proteins were separated by electrophoresis as described above and the 

polyacrylamide gel was immersed in polyacrylamide gel fix for 1 hour with gentle 

agitation at room temperature. The gel was transferred to 5 gel volumes of EN3HANCE 

and agitation was continued for an additional hour. The gel was then rinsed thoroughly 

with deionised H2O for 30 minutes. Finally, the gel was dried under vacuum at 80°C onto a 

sheet of Whatman 3 mm paper and placed in contact with autoradiography film for 20-48 

hours at -70°C.

2.3.1.4 Western Blotting.

Proteins were separated by electrophoresis as described above and then transferred to 

Hybond-ECL membrane using a Mini Protean II blotting kit (BIO-RAD) according to the 

manufacturer’s instructions. Non-specific protein binding sites on the membrane were 

blocked by immersing the membrane in PBSA containing 5% (w/v) dried skimmed milk 

powder and 0.05% (v/v) Tween-20 for 1 hour with gentle agitation at room temperature. 

The membrane was incubated with primary antibody diluted to the appropriate 

concentration in PBSA, containing 5% (w/v) dried skimmed milk powder and 0.05% (v/v) 

Tween-20, for 2 hours with gentle agitation at room temperature. Unbound primary 

antibody was removed by washing the membrane extensively with PBSA containing 

0.05% (v/v) Tween-20. The membrane was then incubated with Staphylococcus aureus 

Protein-A-horseradish peroxidase conjugate, diluted at 1/1000 with PBSA containing 2% 

(w/v) dried skimmed milk powder and 0.05% (v/v) Tween-20, for 1 hour with gentle 

agitation at room temperature. Unbound Protein-A conjugate was removed by washing the 

membrane extensively with PBSA. Bound antibody was visualised using an ECL 

chemiluminescent kit (Amersham) according to the manufacturer’s instructions and the 

membrane was exposed to film for usually no longer than 10 seconds.

2.3.1.5 Immunofluorescence.

Linbro wells, each containing a sterile 13 mm glass coverslip, were seeded with 7 x 104 

Vero cells per well in DC 10. The following day the medium was removed and the dishes 

were infected with 100 pi of virus at a moi of 10 pfu per cell in DC 10. After a 1 hour
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adsorption period at 37°C the virus inoculum was replaced with 1 ml of DC 10 and 

incubation was continued at 37°C for 8-12 hours. The DC10 medium was removed from 

the wells and the cells were washed twice with PBSA prior to treatment with IF fixing 

solution for 10 minutes at room temperature. The cells were subsequently incubated with 

IF permeabilisation solution for 10 minutes at room temperature. Non-specific protein 

binding sites were blocked by incubating the permeabilised cells with PBSA containing 

10% (v/v) human serum (or on occasion PBSA containing 10% (v/v) newborn calf serum) 

for 1 hour at room temperature. The cells were incubated with primary antibody, diluted to 

the appropriate concentration in PBSA containing 10% (v/v) newborn calf serum for 1-2 

hours at room temperature. Unbound primary antibody was removed by washing the cells 

with PBSA containing 1% newborn calf serum. The cells were then incubated with a 

secondary antibody conjugated to an appropriate fluorochrome. Unbound secondary 

antibody was removed by washing the cells with PBSA and the coverslips were placed on 

a paper towel to dry prior to mounting onto glass slides using Mowiol mounting fluid. The 

samples were examined using a Zeiss Axioplan 2 LSM510 confocal microscope and the 

images obtained using the associated LSM510 software. The images were exported to 

Adobe Photoshop v4.0 to be arranged in a manner suitable for publication.

2.3.1.6 Immiinoiluorescent Detection of Incoming Capsids.

This experiment was carried out essentially as above with the exception cells were 

infected with purified virions at an moi of 50 pfu per cell in the presence of 100 pg.ml' 1 of 

cycloheximide at the NPT of 39.2°C. After 1 hour, virus inoculum was removed and 

replaced with 1 ml of DC10 containing 100 pg.ml' 1 of cycloheximide prewarmed to 42°C 

and the cells were incubated at the NPT for a further 1 hour prior to processing as in 

section 2.3.1.5.

2.3.1.7 Immunoprecipitation of HSV-1 Infected Cells.

Tissue culture dishes (24 well) were seeded with 3 x 105 Vero cells per well in DC 10. 

The following day the medium was removed and the dishes were infected with 100 pi of 

HSV-1 virus at a moi of 10 pfu per cell in DC 10. After a 1 hour adsorption period at 37°C 

the virus inoculum was replaced with 1 ml of DC 10 and incubation was continued at 37°C 

for 6 hours. The DC 10 medium was removed from the wells and the cells were washed in 

unsupplemented methionine-minus Eagle’s medium. The virus-infected cells were overlaid
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with 500 pi of Eagle’s medium containing 1/5 the normal concentration of methionine and 

25 jj,Ci of 35S L-methionine per well and incubated overnight at 37°C. Alternatively, the 

virus-infected cells were incubated with 500 pi of methionine-free Eagle’s medium 

containing 100 pCi of 35S L-methionine per well for 2 hours at 37°C. The labelling 

medium was replaced with 500 pi of PBS complete and the cells were dislodged from the 

plastic well surface. The suspended cells were transferred to 1.5 ml Eppendorf tubes and 

pelleted by centrifugation at 6500 rpm in an MSE microfuge. The cells were washed in 500 

pi of PBS complete and lysed in 150 pi of IP buffer. After the gentle agitation on ice for 15 

minutes the cells were centrifuged at 13,000 rpm in an MSE microfuge for 10 minutes. The 

clarified virus-infected cell extract was transferred to a fresh tube, 10 pi of primary 

antibody (either polyclonal or purified monoclonal antibody) was added and immune 

complexes were allowed to form for 3-5 hours in an end-over-end shaker at 4°C. A volume 

of 50 pi of 50% (w/v) Staphylococcus aureus Protein-A (immobilised on sepharose beads) 

in IP buffer was added to the sample to bind any immune complexes and incubation was 

continued as before for a further 1 hour. The Protein-A beads were pelleted by 

centrifugation at 6500 rpm in an MSE microfuge for 1 minute and washed four times using 

150 pi of IP buffer per wash. Before the final wash the beads were transferred to a fresh 

tube. The beads were finally resuspended in 50 pi of PGSB, incubated in a water bath at 

100°C for 5 minutes to dissociate the immune complexes and proteins were separated by 

SDS-PAGE and visualised by fluorography.

2.3.2 Transient Transfection of Cells Using LipofectAMINE.

Tissue culture dishes (24 well) were seeded with 7 x 104 Vero cells per well in DC 10. 

If transfected cells were to be examined by immunofluorescence cells were seeded on to 

sterile 13 mm glass coverslips placed within the wells (1 coverslip per well). The following 

day plasmid DNA (pCMVIO containing the ORF to be expressed) was diluted in 

Optimem. For single transfections, 1 pg of DNA was used in a final volume of 50 pi and 

for multiple transfections 0.5 pg of each plasmid in final volume of 50 pi was used. 

LipofectAMINE (3 pi) was diluted in 47 pi of Optimem, added to the diluted DNA and the 

sample was incubated at room temperature. After 45 minutes incubation, 400 pi of 

unsupplemented DMEM was added to the transfection mixture. Meanwhile, the DC 10 

medium was removed from the wells and the cells were washed twice with 

unsupplemented DMEM. The transfection mixture was then added to the washed cells
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which were incubated at 37°C. After 5 hours incubation, 500 pi of DC10 containing 20% 

(v/v) foetal calf serum was added to the cells and incubation continued overnight at 37°C. 

The cells were ready for analysis the following day.

2.3.3 Detergent Extraction of Transiently Transfected Cells.

Tissue culture dishes (24 well) containing sterile 13 mm glass coverslips (1 coverslip 

per well) were seeded with 7 x 104 Vero cells per well in DC 10. The following day the 

medium was removed and the cells on each coverslip were transfected with 1 pg of 

plasmid DNA as described in section 2.3.2. At 24 hours post-transfection the DC 10 

medium was removed from the wells and the cells were washed twice with CSK buffer. 

The cells were then incubated with CSK buffer containing 1% NP40 for 5 minutes on ice. 

The detergent-insoluble cell components were washed with CSK buffer and fixed with 

methanol for 5 minutes at -20°C. The cells were washed three times in PBSA containing 

1% (v/v) newborn calf serum and then incubated with primary antibody diluted to the 

appropriate concentration in PBSA containing 10% (v/v) newborn calf serum for 1-2 hours 

at room temperature. Unbound primary antibody was removed by washing the cells with 

PBSA containing 1% (v/v) newborn calf serum. The cells were then incubated with a 

secondary antibody conjugated to an appropriate fluorochrome. Unbound secondary 

antibody was removed by washing the cells with PBSA and the coverslips were placed on 

a paper towel to dry prior to mounting onto glass slides using Mowiol mounting fluid. The 

samples were examined using a Zeiss Axioplan 2 LSM510 confocal microscope and the 

images obtained using the associated LSM510 software. The images were exported to 

Adobe Photoshop v4.0 to be arranged in a manner suitable for publication.

2.3.4 Analysis of Virus-Infected Cells by Electron Microscopy.

2.3.4.1 Virus Infection of Cells.

Tissue culture dishes (35 mm) were seeded with 8 x 105 Vero cells per dish in 2 ml of 

DC 10 medium. The following day the medium was removed and the cells were infected 

with 100 pi of virus at an moi of 20 pfu per cell in DC 10. An adsorption period of 2 hours 

at 36°C was used for cells infected with te l249. The virus inoculum was then replaced with 

2 ml of DC 10 prewarmed to 42°C and incubation was continued for 16 hours pi at the NPT 

of 39.2°C. An adsorption period of 1 hour at the NPT of 39.5°C was used for cells infected
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with M208. The virus inoculum was then replaced with 2 ml of DC10 prewarmed to 42°C 

and incubation was continued for 16 hours pi at the NPT. Marker rescue and wt virus were 

used as controls at the appropriate temperature.

2.3.4.2 Embedding Virus-Infected Cells in Epon Resin.

The DC 10 medium was removed from the virus-infected cell monolayers and the cells 

were washed once with PBS complete. The cells were harvested into 0.5 ml of PBS 

complete, transferred to beem capsules and pelleted by centrifugation at 1500 rpm for 10 

minutes at room temperature. The PBS was removed and the cells were fixed with 2.5 % 

(v/v) glutaraldehyde in PBS complete for up to 48 hours at 4°C. After a brief wash in 

PBSA the cell pellets were fixed with 1% (w/v) osmium tetroxide for 1 hour, washed with 

PBSA and dehydrated through a series of increasing ethanol concentrations (30, 50, 70, 90, 

100% v/v in PBSA). The cell pellets were incubated overnight in epon resin containing 

1.5% (v/v) BDMA which was replaced the following day with fresh epon resin containing 

BDMA. Polymerisation of the resin was achieved by incubating the samples at 65°C for 2 

days.

2.3.4.3 Thin Sectioning.

Pelleted cells, embedded in polymerised epon resin, were sectioned with a diamond 

knife on an ultra-microtome (Ultracut E, Reichert-Jung), and thin sections were collected 

on parlodium-coated copper grids. Sections were stained with saturated uranyl acetate in 

50% (v/v) ethanol for 1 hour, washed with deionised H2O and counter-stained with lead 

citrate for 90 seconds. The sections were washed again, dried and examined at 80 KV in a 

Jeol 100S transmission electron microscope.

2.3.4.4 Negative Staining.

Recombinant HSV-1 capsids and VP5/19C particles were purified as described in 

sections 2.2.2.7b and c respectively. A 2 pi sample was applied to a parlodium-coated 

copper grid and incubated for 30 seconds at room temperature. The excess liquid was 

removed from the grid using filter paper and 5 pi of 1% phosphotungstic acid (PTA) was 

layered carefully onto the grid and incubated for 3-5 minutes at room temperature. The 

excess PTA was removed as before and the grids were dried and examined at 80 KV in a 

Jeol 100S transmission electron microscope.
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2.3.5 HSV-1 DNA Packaging Assay.

2.3.5.1 Virus Infection of Cells.

Tissue culture dishes (60 mm) were seeded with 2 x 106 Vero cells per dish in 4 ml of 

DC 10 medium. The following day the medium was removed and the cells were treated 

with 4 ml of DC 10 containing 100 pg.ml’1 of cycloheximide for 15 minutes at 36°C prior 

to virus infection. The medium was removed and the cells were infected with HSV-1 (wt 

virus, /s i249, /s i208 and marker rescuant viruses) in 500 pi of DC 10 containing 100 

pg.ml' 1 of cycloheximide at an moi of 10 pfu per cell. After an adsorption period of 2 

hours at 36°C the virus inoculum was removed and the cells were washed with 4 ml of 0.14 

M NaCl and non-penetrated virus was inactivated by incubating the cells for 1 minute with 

4 ml of 0.14 M NaCl/0.1 M glycine pH 3.0. The cycloheximide was removed from the 

cells with three, 90 second washes with 4 ml of DC 10 prewarmed to 42°C. Samples were 

either harvested immediately (0 hour time point) or incubated at the NPT in 4 ml of DC 10 

for 24 hours pi.

2.3.5.2 Harvesting the Virus-Infected Cells.

The medium was removed and the virus-infected cells were harvested into 2.3 ml of 

PBS complete. The cells were transferred to a 10 ml tube, dispersed by gentle vortexing 

and divided into two, 1 ml samples. Packaged (DNase resistant) DNA was prepared from 

the first sample and total DNA was prepared from the second sample.

2.3.5.3 Preparation of HSV-1 Packaged DNA.

The virus-infected cells were pelleted by centrifugation at 6500 rpm in an MSE 

microfuge for 2 minutes and resuspended in 184 pi of RSB containing 0.5% (v/v) NP40 

and 100 pg.ml’1 of DNase 1. After the samples were incubated at 37°C for 1 hour with 

occasional mixing, 184 pi of 2x CLB containing 1 mg.ml’1 of Protease XIV was added to 

each preparation and incubation was continued at 37°C for a further 2 hours. Following the 

incubation, 35 pi of NaCl/EDTA mix was added and the nucleic acids were sequentially 

extracted with phenol/chloroform, precipitated with 2.5 volumes of ethanol and 

resuspended in 50 pi of lx B buffer (Boehringer Mannheim) containing 20 units of 

BamHl restriction endonuclease enzyme and 10 pg.ml’1 of RNase A.
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2.3.5.4 Preparation of Total DNA.

The virus-infected cells were pelleted by centrifugation at 6500 rpm in an MSE 

microfuge for 2 minutes and resuspended in 184 pi of RSB containing 0.5% (v/v) NP40. 

The cells were placed on ice and 184 pi of 2x CLB containing 1 mg.ml' 1 of Protease XIV 

was added to each preparation. After the samples had been incubated at 37°C for 3 hours, 

35 pi of NaCl/EDTA mix was added and the nucleic acids were sequentially extracted with 

phenol/chloroform, precipitated with 2.5 volumes of ethanol and resuspended in 50 pi of 

lx B buffer containing 20 units of BamHl restriction endonuclease enzyme and 10 pg.ml' 1 

of RNase A.

2.3.5.5 Analysis of Total and HSV-1 Packaged DNA.

A 20 pi portion of each sample was digested for an additional 3 hours at 37°C using 10 

units of BamUl restriction endonuclease enzyme in lx B buffer in a final reaction volume 

of 30 pi. The samples were electrophoresed through a 0.8% TBE-agarose gel, transferred 

to a Hybond-XL membrane and hybridised to an [a32P] dGTP labelled HSV-1 specific 

probe.

2.3.6 HSV-1 Transient DNA Packaging Assay.

2.3.6.1 Transfection of Vero Cells with pSAl.

Tissue culture dishes (60 mm) were seeded with 1.4 x 106 Vero cells per dish in 4 ml of 

DC10 medium. The following day 2 pg of pSAl plasmid was diluted in 250 pi of DMEM 

containing 8 pi of LipofectAMINE PLUS reagent (Gibco BRL) and incubated at room 

temperature. After 15 minutes, 12 pi of LipofectAMINE was also diluted in DMEM to a 

final volume of 250 pi and following a 15 minute incubation at room temperature the two 

solutions were mixed together. The cells were washed twice with DMEM prior to addition 

of the transfection mixture and were then incubated at 37°C. At 3 hours post-transfection 4 

ml of DC 10 was added to the cells and incubation was continued as before.

2.3.6.2 Superinfection of Vero Cells with HSV-1.

At 12 hours post-transfection the medium was removed and the cells were incubated 

with 4 ml of DC 10 containing 100 pg.ml"1 of cycloheximide at 36°C prior to virus 

infection. After 15 minutes the medium was removed and the cells were infected with
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HSV-1 (wt virus, M 249, tel 208 and marker rescuant viruses) at an moi of 10 pfu per cell 

in 500 pi of DC 10 containing 100 pg.ml' 1 of cycloheximide. After an adsorption period of 

2 hours at 36°C the virus inoculum was discarded and the cycloheximide was removed 

with three, 90 second washes with 4 ml of DC 10 prewarmed to 42°C. The virus-infected 

cells were then incubated in 4 ml of DC 10 at the NPT.

2.3.6.3 Detection of Replicated and Packaged Amplicon DNA.

At 21 hours pi the cells were harvested and total and DNase resistant DNA were 

prepared as described in section 2.3.5. The samples were digested with EcoRl and Dpn\, 

electrophoresed through an 0.8 % TBE-Agarose gel, transferred to Hybond-XL membrane 

and hybridised to [a32P] dGTP labelled pAT153 plasmid.

2.3.7 Marker Rescue of HSV-1 Ts2 with Cloned wt HSV-1 H indlll k DNA Fragment.

2.3.7.1 Cotransfection of Cells with Ts2 DNA and H ind lll k DNA.

Tissue culture dishes (35 mm) were seeded with 8 x 105 Vero cells per dish in 2 ml of 

DC 10. The following day, a 436 pi transfection mixture containing 0.5 pg of DNA isolated 

from ts2 virions, 1 pg of purified wt HSV-1 Hindlll k DNA fragment and 2.4 pg of calf 

thymus carrier DNA (pre-optimised) was prepared in hepes buffered saline and mixed 

gently. A transfection mixture without the Hindlll k DNA fragment was also included as a 

control to examine the reversion rate from ts l virus to ts+ virus. The volume of the 

transfection mixture was increased to 500 pi using 1 M CaCL, mixed gently and incubated 

at room temperature for 5 minutes. The DC 10 medium was removed from the tissue 

culture dishes and the cells were washed with serum free medium. Half the transfection 

mixture was added to each dish and the cells were incubated at 37°C. After 45 minutes, 2 

ml of DC 10 was added to each dish of cells and incubation was continued at 37°C. At 4 

hours post-transfection the cells were washed once with fresh DC 10 and incubated for 4 

minutes with 25% (v/v) DMSO in hepes buffered saline at room temperature. The cells 

were then washed three times with DC 10 and incubated at 3 1°C for 3 days.

2.3.7.2 Selection and Isolation of Marker Rescue Virus.

The transfected cells were harvested into the medium and sonicated with a sonicating 

water bath. The progeny virus was titrated at 31°C (the PT) and 39.2°C (the NPT) using
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methyl cellulose (1:1 v/v) in DC 10 as an overlay to prevent secondary plaque formation. 

Plaques formed at the NPT were isolated using a sterile glass Pasteur pipette and 

transferred to vials containing 0.5 ml of DC 10. The virus was plaque purified three times 

before a high-titre stock was prepared. At this stage the plating efficiency of the virus at 

the PT and the NPT was examined to ensure the virus was exhibiting a phenotype close to 

that of wt virus and an isolate referred to as te2/Hindk MR#6 was selected for use in 

subsequent experimentation.
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Results

3.1 Sequence Analysis of the HSV-1 UL25 Protein.

3.1.1 Introduction

In the absence of any direct experimental information concerning the structure of a 

given protein it is often useful to utilise several of the many online bioinformatic software 

tools. These programs examine the primary amino acid sequence of a protein to produce 

multiple homology alignments and predictions of protein secondary structure. As there is 

no direct experimental data available concerning the structure of the HSV-1 UL25 protein, 

these bioinformatic tools were employed to examine the HSV-1 UL25 amino acid 

sequence.

3.1.2 Sequence Alignment of the HSV-1 UL25 Protein and its Homologues.

The HSV-1 17+ UL25 amino acid sequence was submitted to the JPRED sequence 

alignment program (Cuff et al., 1998) and the results are shown in Figure 3.1. This 

program searches for and aligns homologous amino acid sequences and indicates areas of 

conservation between them. The results demonstrated a large degree of conservation 

between the homologues of the UL25 protein from alpha- beta- and gammaherpesviruses. 

The protein exhibited the highest degree of conservation within the C-terminal 200 amino 

acids whilst the N-terminal portion showed the least conservation within the protein. 

Furthermore, the UL25 amino acid sequence was exclusive to the herpesvirus family, 

displaying no significant homology with any other amino acid sequences of viral or non- 

viral origin.

3.1.3 Predicted Secondary Structure of the HSV-1 UL25 Protein.

3.1.3.1 PSIPRED and PHDsec Secondary Structure Predictions.

The HSV-1 UL25 17+ amino acid sequence was submitted to the PSIPRED protein 

secondary structure prediction program (Jones, 1999) and the results are shown in Figure 

3.2. This program assigns an amino acid residue to a secondary structural element based 

upon the probability of that residue adopting a specific secondary structure within the 

context of its surrounding amino acid residues This program predicted that the UL25 

polypeptide chain adopted a predominantly helical secondary structure and this finding is 

consistent with the results from the PHDsec secondary structure prediction program (Rost

85



Figure 3.1 Sequence Alignment of the HSV-1 UL25 Protein and its Homologues.

The HSV-1 UL25 amino acid sequence was analysed using the JPRED sequence 

alignment programme which aligned UL25 amino acid sequences from a l pha - ,  beta- and 

gammaherpesviruses. Heavy shading represents strongly conserved regions whereas 

lighter shading represents regions of lesser conservation. The viruses used in this 

alignment were IISV-1, herpes simplex virus type 1; IISV-2, herpes simplex virus type 2; 

BHV-1, bovine herpesvirus type 1; EHV-4, equine herpesvirus type 4; GHV-1, gallid 

herpesvirus type 1; GHV-2, gallid herpesvirus type 2; I LTV, infectious laryngotracheitis 

virus; PRV, pseudorabies virus; VZV, varicella zoster virus; HCMV, human 

cytomegalovirus; HHV6, human herpesvirus type 6; HHV7, human herpesvirus type 7; 

ALCELAPHINE HV-1, Alcelaphine herpesvirus type 1; ATELINE HV-3, Ateline 

herpesvirus type 3; EBV, Epstein-Barr virus; EHV-2, equine herpesvirus type 2; KSHV, 

Kaposi’s sarcoma associated herpesvirus; MHV-4 murid herpesvirus type 4 and MMRV, 

macaca mulatta rhadinovirus.
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Figure 3.2 PSIPRED Predicted Secondary Structure of the HSV-1 UL25 Protein.

The HSV-1 17+ UL25 amino acid sequence was analysed using the PSIPRED program 

which predicted the amino acid residues that were likely to form a-helices and P-sheets 

(strands) together with an indication of the confidence of that prediction.
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iBaBsasaBlBBflBaaaaalflaafllflflBfllBflflfllBflflBaE

HHHCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHH
LLYRNTHGAADDSDRAPVTFGDLLGRLPRYLACLAAVIGT



C o n f  :

P r e d :

P r e d : 
AA:

C o n f  :

P r e d :

P r e d : 
AA:

C o n f :

P r e d :

P r e d : 
AA:

C o n f  :

P r e d :

P r e d : 
AA:

C o n f  :

P r e d :

P r e d : 
AA:

C o n f  :

P r e d :

P r e d : 
AA:

C o n f  :

P r e d :

P r e d :
AA:

CCCCEEEEEECCCCCCCCCCCCCCCCCCCCCCCHHHHHHH
EGGRPQYRYRDDKLPKTQFAAGGGRYEHGALASHIVIATL

I I  I  I

2 9 0  3 0 0  3 1 0  3 2 0

] | l B l l ! ! l I l ! l l l l i l l s a 9 l l l l a s B l a B B B I 9 B l l l l E

HHHCCCCCCCCCCCCCCCCEECCCCCCCCCHHHHHHHHHH 
MHHGVLPAAPGDVPRDASTHVNPDGVAHHDDINRAAAAFL

3 3 0 3 4 0 3 5 0 3 6 0

CCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHCCCCCCC
SRGHNLFLWEDQTLLRATANTITALGVIQRLLANGNVYAD

a a i  i

3 7 0  3 8 0  3 9 0  4 0 0

JllIlBBaaaaBflaBBBBBBBflBlllllllBBBBBBllflfllE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCHH
RLNNRLQLGMLIPGAVPSEAIARGASGSDSGAIKSGDNNL

l  • I  I

4 1 0  4 2 0  4 3 0  4 4 0

]B B lIlB aB B 9 aaB B lIIiflaaB flfllIIIIIlB B a9 B llllE

HHHHHHCCHHEEECCCCCCEEHHHHHHHHHHHHCCCCCCC
EALCANYVLPLYRADPAVELTQLFPGLAALCLDAQAGRPV

4 5 0 4 6 0 4 7 0 4 8 0

]||lB 9B lB B aiB B aaaaB a9B B lllB lB B 9aB lB aB lIllE

CCCCEEEECCCCCCCCHHHHHHHHHHHHHHCCCCCHHHHH
GSTRRWDMSSGARQAALVRLTALELINRTRTNPTPVGEV

4 9 0 5 0 0 5 1 0 5 2 0

] I I lB 9 B B B B 9 B B B B l l l lB 9 lI l la B l lI I I I I l9 B l l ia E

HHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHCCCCC 
IHAHDALAIQYEQGLGL LAQQARIGLGSNTKR FSAFNVS S

530 540 550 560



Conf: ]ii9-lISi9aaaiB9sSi9l[

P r e d :  CCCCHHHHHHHHHHHCEEEC 
AA: DYDMLYFLCLGFIPQYLSAVI I

5 7 0 5 8 0

Legend:

= helix Conf ]■ 11 11 E = confidence of prediction

= strand Pred
+

predicted secondary structure

= coil AA: target sequence
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& Sandler, 1993). The PHDsec program has been demonstrated to have an accuracy of 

over 70% when compared to experimentally derived data and predicted that 47.4% of the 

UL25 protein was composed of a-helices, 5.9% was composed of p sheets and 46.7% was 

composed of non-specific coiled loops.

3.1.3.2 ISREC COILS Secondary Structure Prediction.

The HSV-1 17+ UL25 amino acid sequence and homologous UL25 amino acid 

sequences from alpha-, beta- and gammaherpesviruses were submitted to the ISREC 

COILS protein secondary structure prediction program (Lupas et al., 1991) and the results 

are shown in Figure 3.3. COILS is a program that calculates the probability of an amino 

acid sequence adopting an a-helical coiled-coil structure which is formed when two 

parallel a-helical subunits coil around each other. The program compares an amino acid 

sequence to a database of known parallel two-stranded coiled-coils and derives a similarity 

score. By comparing this score to the distribution of scores in globular and coiled-coil 

proteins, the program then calculates the probability that the sequence will adopt a coiled- 

coil conformation. The program strongly predicted the presence of an a-helical coiled-coil 

region within the first 120 amino acids of the N-terminus of the HSV-1 17+ UL25 protein 

(Figure 3.3a) which was also identified in the homologous region of pseudorabies virus, 

another alphaherpesvirus (Figure 3.3b), human herpesvirus 7, a betaherpesvirus (Figure 

3.3c) and to a lesser extent in Epstein-Barr virus, a gammaherpesviruses (Figure 3.3d). 

This is not an exhaustive list of the UL25 homologues examined and in all amino acid 

sequences submitted to the ISREC COILS program an a-helical coiled-coil region was 

predicted within the first 120 amino acids of the N-terminus of the UL25 protein 

homologues. Furthermore, additional coiled-coil prediction programs such as COILSCAN 

from the genetic computer group (GCG) also predicted the presence of an a-helical coiled- 

coil structure within this region of the UL25 homologues (data not shown).

3.1.4 Discussion.

The large degree of homology within the UL25 protein of the herpesviruses suggested 

a highly conserved function. Bioinformatic analysis of the UL25 protein failed to detect 

any characterised protein domains such as zinc finger regions and it is likely that the UL25 

protein performs a function that is not associated with a specific protein domain or motif. 

Although a PROSITE motif search (Bairoch et al., 1997) revealed the presence of a
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Figure 3.3 ISREC COILS Analysis of the HSV-1 17+ UL25 Amino Acid Sequence and 

its Homologues.

Herpesvirus UL25 amino acid sequences were analysed using the ISREC COILS 

program which plotted the probability (P) of each amino acid residue forming an a-helical 

coiled-coil against the amino acid number in the primary sequence. The window size 

indicates that the program analysed the full primary amino acid sequence, sequentially, in 

groups of 14, 21 and 28 amino acids, a). HSV-1 17+ UL25 (alphaherpesvirus), b). 

Pseudorabies virus UL25 (alphaherpesvirus), c). Human herpesvirus 7 VP U50 (UL25) 

(betaherpesvirus) and d). Epstein-Barr BVRF1 (UL25) (gammaherpesvirus).
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myristylation, a glycosylation and several phosphorylation sites within the primary amino 

acid sequence of the UL25 protein, it is unlikely that the UL25 protein is post- 

translationally modified because there do not appear to be multiple high molecular weight 

forms of the protein.

The UL25 polypeptide was predicted to fold into a protein with a secondary structure 

composed largely of a-helices which is typical of globular proteins. The a-helix is 

predominantly a structural motif and is also associated with portions of transmembranal 

proteins that cross lipid bilayers although there is no evidence to suggest that the UL25 

protein is associated with viral or cellular lipid bilayers. The UL25 protein was also 

predicted to contain an a-helical coiled-coil region near the N-terminus. This structural 

feature was conserved throughout the herpesviruses even though the sequence alignment 

data suggested that the N-terminus was not as highly conserved as the C-terminus. This 

was probably due to the nature of the coiled-coil motif which consists of a heptad repeat of 

hydrophilic and hydrophobic amino acid residues and not necessarily a repeat of specific 

amino acid residues. Amino acid positions within the heptad repeat are designated a to g 

and the coiled-coil is characterised by hydrophobic residues at positions a and d and 

hydrophilic residues at positions b, c, e, /  and g. The hydrophobic residues constitute the 

helix interface and are evident as a 4-3 repeat in the primary amino acid sequence. Coiled- 

coil regions are known to mediate a variety of interactions including protein 

heterodimerisation (Krammerer et al., 1999) and homo-oligomerisation (Procopio et al., 

1999). These regions are also known to facilitate the DNA binding properties of some 

proteins (Akhmedov et al., 1999) and the possibility exists that the predicted coiled-coil 

region of the UL25 protein is involved in similar interactions.
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3.2 Generation and Characterisation of Reagents Used in This Study.

3.2.1 The Generation of a Polyhistidine-Tagged UL25 Expressing Recombinant 

Baculovirus.

3.2.1.1 Introduction.

The most widely used baculovirus expression system utilises a lytic virus known as 

Autographa californica nuclear polyhedrosis virus (hereafter referred to as baculovirus). 

This virus forms proteinaceous viral occlusions called polyhedra within the nuclei of 

infected cells; the major protein component of these occlusion bodies is the baculovirus- 

encoded polyhedrin protein. Although the polyhedrin protein is essential for survival of the 

virus in nature, it is dispensable for virus propagation and viability in tissue culture cells 

and recombinant baculoviruses have been generated by replacing the polyhedrin gene with 

a foreign gene through homologous recombination.

Initially, the pET expression system (Novagen) was used to generate and express a 

polyhistidine-tagged UL25 protein in E. coli. However, despite thorough investigation into 

the conditions of protein production and purification, the recombinant protein remained 

predominantly insoluble. Since recombinant proteins produced in the baculovirus system 

are often more soluble than proteins synthesised in bacterial expression systems, the aim of 

the work described in this section was to utilise the baculovirus system to produce high 

levels of a soluble polyhistidine-tagged UL25 protein. The polyhistidine tag functions as a 

metal-binding domain to enable purification of the recombinant protein by affinity 

chromatography using a column composed of nickel-agarose. Purified recombinant protein 

was to be used as an immunogen in the production of monoclonal antibodies specific for 

the UL25 protein. Provided a sufficient amount of soluble recombinant protein could be 

purified to near homogeneity, an additional goal was to examine the properties of the 

protein using biochemical techniques.

3.2.1.2 The Generation of Oligonucleotide OG3.

A dsDNA oligonucleotide was designed for the purpose of engineering a polyhistidine 

tag onto the N-terminal portion of the UL25 protein. This oligonucleotide was termed OG3 

and was formed by annealing single stranded DNA oligonucleotides VP226 and VP227 

(Figure 3.4 and step 1 of Figure 3.5). The OG3 oligonucleotide contained EcoRl and
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Figure 3.5 An Outline of the Cloning Strategy used to Generate the pPTAlO Plasmid 

(pAcCL29.1 Baculovirus Transfer Vector Encoding the Polyhistidine Tagged UL25 

Protein).

1. Oligonucleotide OG3 was constructed and purified.

£coRI Bam  HI Nde  I

□— o— &
6 x Histidine 5 ’ UL25 A a tl l

- a  3-

OG3, 67 bp

2. The UL25 gene DNA fragments were isolated and purified.

A a t \ \ - A a t \ \  962 bp /laHI-////idIII 737 bp
 ►  ►

A a t l l  A a t l l  H in d i  11

5 — | ------------------------------------------------------------------------------1  1  3

UL25 GENE IN pPTA5 PLASMID

3. The OG3 oligonucleotide and the UL25 DNA fragments were ligated to 

Zsc0RI///i7idIII linearised pUC19 plasmid to create the pPTA8 plasmid.

OG3

E = £coRI Recognition Site 

A = A a t l l  Recognition Site 

H = H in d l l l  Recognition Site

pUC19

pPTA8PLASMID

UL25



4. An EcoRAIHindlW screen was used to identify constructs in which the pUC19 

plasmid backbone and all three HSV-1 DNA fragments had ligated successfully to 

form the pPTA8 plasmid.

E coR l -  H in d l l l  1766 bp

5- -------------------------------------------------------------------------------------------------- ^  3-

E coR l A a t l l  A a t l l  H i n d l l l

• H  _ _ 4 > --------------- -------------— “ {]

MODIFIED UL25 GENE, 1766 bp

5. An EcoRV/H indlll screen was used to identify constructs containing the UL25 

Aat\\-A at\\ DNA fragment in the correct orientation within the pPTA8 plasmid.

CORRECT ORIENTATION = E co R V  -  H in d l l l  1519 bp

^  3 ’

E c o R l A a t l l  £coRV A a t l l  H i n d l l l

■ H — I -------------------------------------------------------------------------- 1 ----------------------------------------------------------------------------1

MODIFIED UL25 GENE, 1766 bp

INCORRECT ORIENTATION = E c o R V  -  H in d l l l  758 bp

5’ 3’ 5’

ZfcoRl A atl  1

■- H -

£coRV A atl  I

— D— D—
H i n d l l l

- i

MODIFIED UL25 GENE, 1766 bp

6. The modified UL25 gene was excised from the pPTA8 plasmid as a BamUl 

fragment and ligated to BantHl linearised pAcCL29.1 baculovirus transfer vector 

to generate the pPTAlO plasmid.



7. A BamUl screen was used to plasmids in which the pAcCL29.1 plasmid and the 

modified UL25 gene had ligated successfully to form the pPTAlO plasmid.

BamWl -  BamYW 1770 bp

5’

BamYW BamWl

-D-
MODIFIED UL25 GENE, 1766 bp

8. A Kpttl screen was used to identify constructs containing the modified UL25 gene 

in the correct orientation within the pPTAlO plasmid.

5 ’

Kpn I

CORRECT ORIENTATION = K pn\  -  Kpnl  621 bp 

3 ’

K pnl

4 H

MODIFIED UL25 GENE, 1766 bp

Kpn  I

I \<  ORRFC I ORIENTATION = K p nl  -  Kpnl 1145 bp

5’

K pnl

MODIFIED UL25 GENE, 1766 bp
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BamHl restriction endonuclease recognition sites at the 5’ terminus to facilitate cloning, 

and an Ndel site to provide an ATG translational start signal. Sequences specifying a hexa- 

histidine motif were incorporated downstream of the Ndel recognition site at the 5’ portion 

of the UL25 gene. The natural start ATG codon of the UL25 gene was removed to ensure 

translation resulted only in the production of a polyhistidine tagged protein. The UL25 

gene contains Aatll restriction endonuclease recognition site between nucleotides 31-36 

(inclusive) and the OG3 oligonucleotide was designed to contain the 5’ portion of the 

UL25 gene up to and including this site.

3.2.1.3 Purification of UL25 Gene Fragments and Linearised pUC19 Plasmid.

In order to generate the UL25 gene fragments necessary for the cloning procedure, the 

pPTA5 plasmid (the HSV-1 UL25 gene in a pUC19 plasmid vector) was digested with 

Aatll and separately with Aatll and Hindlll enzymes. At the same time, the pUC19 

plasmid was digested with EcoRl and Hindlll enzymes. The digested DNA samples were 

electrophoresed through a 0.8% agarose-TBE gel containing 0.5 pg.ml' 1 ethidium bromide 

and the DNA was visualised using a long wave UV source. The 962 bp Aatll-Aatll UL25 

gene fragment, the 737 bp Aatll-Hindlll UL25 gene fragment and the large EcoRl/Hindlll 

fragment from the pUC19 plasmid were excised from the gel and purified using a 

QIAquick gel extraction kit (step 2 Figure 3.5). A small amount of each DNA fragment 

were electrophoresed through a 0.8% agarose-TBE gel containing 0.5 pg.m f1 ethidium 

bromide and the DNA was visualised using a short-wave UV source. The concentration of 

each DNA fragment was estimated by comparing the intensity of the fluorescent band with 

50 ng and 100 ng of X DNA run on the same gel. The DNA fragments were purified to a 

sufficient quantity to allow the preparation a ligation reaction.

3.2.1.4 Ligation of the OG3 Oligonucleotide and UL25 Gene Fragments to the 

Linearised pUC19 Plasmid.

The OG3 ligation reaction (step 3 Figure 3.5) was prepared as described in section

22.1.6 and electrocompetent E. coli were transformed with the reaction mixture as 

described in section 2 .2 .8.3.
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3.2.1.5 An EcoRl!Hindlll Screen was Used to Identify Plasmids Containing the Full- 

Length UL25 ORF Modified at the 5’ End.

One hundred ampicillin resistant bacterial colonies were selected and used to produce 

small scale DNA samples which were screened using an EcoRHHindlll DNA digestion to 

determine whether all three DNA fragments had been ligated into the pUC19 plasmid 

backbone (step 4 Figure 3.5). Due to the nature of the ligation reaction there were two 

possible end products. The first would be the pUC19 plasmid backbone containing only the 

OG3 oligonucleotide and the 737 bp Aatll-Hindlll UL25 gene fragment and would 

produce a DNA fragment of 804 bp as a result of EcoRHHindlll digestion. The second and 

desirable end product would be the pUC19 plasmid backbone containing the OG3 

oligonucleotide and both the 962 bp Aatll-Aatll and the 737 bp ^4<z/II-//mdIII UL25 gene 

fragments and would produce a DNA fragment of 1766 bp as a result of EcoRl/Hindlll 

digestion. Figure 3.6 shows the results of the EcoRHHinddll screen using bacterial clones 

92-100 and demonstrates that clones 93, 97 and 99 produced the desired 1766 bp fragment 

as a result of the EcoRUHindlll digestion. Out of the 100 bacterial clones screened only 

five cultures, derived from numbers 76, 91, 93, 97 and 99, contained a plasmid which had 

the EcoRl/Hindlll fragment of 1766 bp. The plasmid contained within these clones was 

termed pPTA8.

3.2.1.6 An 2jc0RV//7/«dIII Screen was Used to Identify Constructs Containing the 

UL25 A atll-A atll DNA Fragment in the Correct Orientation Within the pPTA8 

Plasmid.

Since the 962 bp Aatll-Aatll UL25 gene fragment within the pPTA8 plasmid of 

bacterial clones 76, 91, 93, 97 and 99 may have been present in either the correct or the 

incorrect orientation, the small scale DNA samples from these clones were screened using 

an EcoRY /Hindlll DNA digestion (step 5 Figure 3.5). The UL25 Aatll-Aatll gene 

fragment contains an EcoRV site 180 bp downstream from the 5’ terminus and if this 

fragment was present in the correct orientation, EcoRY /Hindlll digestion of the pPTA8 

plasmid would result in the production of a 1519 bp DNA fragment. If the UL25 Aatll- 

Aatll gene fragment was present in the incorrect orientation, EcoRV /Hindlll digestion of 

the pPTA8 plasmid would generate a 917 bp DNA fragment. Figure 3.7 demonstrates that 

the pPTA8 plasmid of bacterial clone numbers 76, 93 and 99 contained the UL25 Aatll- 

Aatll gene fragment in the correct orientation whereas clones 91 and 97 contained this 

fragment in the incorrect orientation. A large culture of clone number 76 was grown up and
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Modified 
UL25 Gene, 
1766 bp

Figure 3.6 An EcoRA! H indlll Screen was Used to Identify Constructs in which the 

Modified UL25 Gene had been Introduced Into the pUC19 Plasmid Backbone to 

Form the pPTA8 Plasmid.

Electrocompetent E.coli DH5a were transformed with the ligation reaction containing 

the OG3 oligonucleotide and plated on L-broth agar plates containing 50 pg.ml'' ampicillin 

to select for transformed bacteria. One hundred bacterial colonies were isolated and small 

scale DNA samples prepared. The EcoRMHin&UX digested DNA fragments were separated 

by electrophoresis through a 0.8% agarose-TBE gel containing 0.5 pg .m f1 ethidium 

bromide and the DNA was visualised using a short-wave UV source. The above figure 

illustrates the results of this screen using bacterial clones 92-100. The presence of the full- 

length modified UL25 gene containing the OG3 oligonucleotide and both the UL25 gene 

fragments would result in the formation of a DNA fragment o f 1766 bp as exemplified by 

clones 93, 97 and 99. A DNA fragment o f 804 bp would be generated in the absence of the 

962 bp UL25 Aath-AatU gene fragment and this is exemplified by clones 92, 94, 95, 98 

and 100. Zfa/EII digested X DNA was used as marker DNA (M).



Correct 
Orientation, 
1519 bp

Figure 3.7 An EcoYWIHin&XW Screen was Used to Identify Plasmids Containing the 

UL25 Aatll-A atll DNA Fragment in the Correct Orientation Within the pPTA8 

Plasmid.

The bacterial clones that contained the pPTA8 plasmid were screened using an 

EcoRV/Hindlll DNA digest to determine whether the UL25 Aatll-Aatll gene fragment was 

present in the correct orientation. Digested small scale DNA was electrophoresed through a 

0.8% agarose-TBE gel containing 0.5 pg-ml'1 ethidium bromide and the DNA was 

visualised using a short-wave UV source. The presence of the UL25 Aatll-Aatll gene 

fragment in the correct orientation would result in the formation of a 1519 bp DNA 

fragment as exemplified by clones 76, 93 and 99. The presence of the UL25 Aatll-Aatll 

gene fragment in the incorrect orientation would result in the formation of a 758 bp DNA 

fragment as exemplified by clones 91 and 97. Z?s/EII digested X DNA was used as marker 

DNA (M).
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plasmid DNA was purified using a QIAGEN MIDI plasmid purification kit and termed 

pPTA8/76.

3.2.1.7 The Cloning of the Modified UL25 Gene Into Baculovirus Transfer Vector 

pAcCL29.1 to Generate the pPTAlO Plasmid.

The modified UL25 gene was isolated by BamHl digestion of pPTA8/76. At the same 

time, the pAcCL29.1 baculovirus transfer vector was linearised with BamHl and treated 

with CIP (step 6 Figure 3.5). The digested DNA fragments were isolated and purified as 

described in section 3.2.1.3. The two DNA fragments were ligated together plasmid as 

described in section 2.2.7.6 and electrocompetent E. coli were transformed with the 

reaction mixture as described in section 2 .2 .8.3.

3.2.1.8 A BamHl Screen was Used to Identify Plasmids in Which the Modified UL25 

Gene had Ligated Successfully into pAcCL29.1.

Small scale DNA samples were prepared from twenty-four ampicillin resistant 

bacterial colonies and screened using BamYll DNA digestion to determine whether the 

modified UL25 gene had ligated into the pAcCL29 plasmid (step 7 Figure 3.5). Figure 3.8 

demonstrates that all 24 bacterial clones screened produced the desired 1770 bp DNA 

fragment as a result of the BamHl digestion. The plasmid contained within these clones 

was named pPTAlO.

3.2.1.9 A Kpnl Screen was Used to Identify Plasmids Containing the Modified UL25 

Gene in the Correct Orientation Within the pPTAlO Plasmid.

To determine the orientation of the HSV-1 fragment within the pAcC129.1 plasmid, the 

small scale DNA samples were digested with Kpnl (step 8 Figure 3.5). If the modified 

UL25 gene was present in the correct orientation, Kpnl digestion of pPTAlO would 

produce a 621 bp DNA fragment. If the modified UL25 gene was present in the incorrect 

orientation, Kpnl digestion of pPTAlO would generate a 1145 bp DNA fragment. Figure

3.9 demonstrates that clone numbers 5, 7, 9, 10, 11, 13, 14, 15, 16, 20 and 22 contain a 

plasmid which had a Kpnl DNA fragment of 621 bp. A large culture of the bacterial clone 

number 9 was grown up and plasmid DNA was purified using a QIAGEN MIDI plasmid 

purification kit and was referred to as pPTA10/9.
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Figure 3.8 A BamHl Screen was Used to Identify Constructs in which the pAcCL29.1 

Plasmid and the Modified UL25 Gene had Ligated Successfully to Form the pPTAlO 

Plasmid.

Electrocompetent E.coli DH5a were transformed with the ligation reaction mixture 

containing the linearised pAcCL29.1 plasmid and the modified UL25 gene and plated on 

L-broth agar plates containing 50 pg.ml 1 ampicillin. Small scale DNA samples were 

prepared from twenty-four of the resulting colonies and the samples digested with BamHl. 

The digested DNAs were electrophoresed through a 0.8% agarose-TBE gel containing 0.5 

pg .m f1 ethidium bromide and the DNA was visualised using a short-wave UV source. The 

presence o f the full-length modified UL25 gene would result in the formation of a DNA 

fragment o f 1770 bp and all the 24 bacterial clones tested contained this DNA fragment. 

to E II  digested X DNA was used as marker DNA (M).
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Figure 3.9 A Kpn\ Screen was Used to Identify Constructs Containing the Modified 

UL25 Gene in the Correct Orientation Within the pPTAlO Plasmid.

The bacterial clones that contained the pPTAlO plasmid were screened using an Kpn\ 

DNA digest to determine whether the modified UL25 gene was present in the correct 

orientation. The digested DNA was electrophoresed through a 0.8% agarose-TBE gel 

containing 0.5 pg .m f1 ethidium bromide and the DNA was visualised using a short-wave 

UV source. The presence of the modified UL25 gene in the correct orientation would result 

in the formation of a 621 bp DNA fragment as exemplified by clones 5, 7, 9, 10, 11, 13, 

14, 15, 20 and 22. The presence o f the modified UL25 gene in the incorrect orientation 

would result in the formation of a 1145 bp DNA fragment as exemplified by clones 1, 2, 4, 

8, 12, 17, 18 and 21. BstEW digested X DNA was used as marker DNA (M).
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3.2.1.10 The Isolation of PTA10bac#14: A His-UL25 Expressing Recombinant 

Baculovirus.

S fl l  cells were cotransfected with PAK6 and pPTA10/9 DNA and recombinant 

baculoviruses were isolated and screened for the ability to synthesise the His-UL25 protein 

in virus-infected cells as described in sections 2.2.3.2 to 2.2.3.5. Figure 3.10 demonstrates 

that, with the exception of isolate number 8, all baculovirus isolates synthesised a large 

amount of the 62 kDa His-UL25 protein which was not present in mock- or PAK6-infected 

S fll  cells.

Baculovirus isolates 3 and 14, whose small scale virus stocks demonstrated good 

expression of the His-UL25 protein, were plaque purified as described previously. After 

the third plaque purification small scale virus stocks were prepared. A high titre 

recombinant baculovirus stock was produced from a small scale virus stock originating 

from isolate number 14. This recombinant baculovirus expressing the His-UL25 protein 

was termed PTA10bac#14.

3.2.2 The Generation of a MBP-UL25 Fusion Protein Expressing Bacterial Clone.

The pMAL-c2 plasmid contains the malE gene of E. coli which encodes maltose- 

binding protein (MBP) and is used to express a gene of interest fused to this protein. Since 

MBP is soluble in E. coli, foreign proteins are often less insoluble in bacteria when fused 

to MBP (Maina et a i, 1988). Additionally, MBP binds amylose with high affinity and 

MBP-fusion proteins can be purified by chromatography with a column composed of 

amylose resin. The HSV-1 UL25 gene was cloned into the pMAL-c2 plasmid with a view 

to obtaining soluble, purified MBP-UL25 fusion protein for use as an antigen in the 

production of monoclonal antibodies.

The UL25 ORF was isolated by BamHl digestion of pPTA5 and ligated to BamHl 

linearised, and CIP treated, pMAL-c2 plasmid vector. Competent BL21 E. coli were 

transformed with the ligated DNA and ampicillin resistant bacterial clones were isolated. 

To establish that the UL25 ORF had ligated to the pMAL-c2 plasmid, small scale DNA 

samples were prepared from the ampicillin resistant bacterial clones and digested with 

BamHl. The correct orientation of the UL25 ORF within the pMAL-c2 plasmid was 

determined by digesting the small scale DNA samples with Kpnl and Xbal. The plasmid 

that contained the UL25 ORF in the correct orientation was termed pPTA3 and bacterial 

clones that carried this plasmid were named PTA3.
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Figure 3.10 His-UL25 Recombinant Protein Screen of Plaque Isolated Small Scale 

Virus Stocks.

Radiolabelled virus-infected S fll  cells were prepared from small scale virus stocks as 

described in section 2.2.3.5. PAK6 virus (P) and mock-infected (Mi) cells were included 

as controls. Samples of radiolabelled virus-infected cell extracts were resolved on an 8% 

SDS polyacrylamide gel and the protein profile was visualised by fluorography. The lane 

numbers are equivalent to the original plaque isolates from which the small scale virus 

stocks were produced.



I

I



Results

3.2.3 The Generation and Characterisation of Monoclonal Antibodies Specific for the 

HSV-1 UL25 Protein.

3.2.3.1 Introduction.

There are no commercially available antibodies specific for the HSV-1 UL25 protein 

and a polyclonal antiserum specific for UL25 demonstrated non-specific activity in indirect 

immunofluorescent analysis of wt HSV-1-infected cells. Additionally, the UL25 specific 

polyclonal antiserum did not appear to bind to the UL25 polypeptide with a high affinity in 

these types of experiments. Thus, the aim of the work described in this section was to 

generate highly specific monoclonal antibodies against the HSV-1 UL25 protein, primarily 

for use in indirect immunofluorescent assays. Furthermore, the isolation of UL25 specific 

monoclonal antibodies would enable dual labelling of virus-infected cells for the detection 

of two HSV-1 antigens in colocalisation studies. Following the protocol outlined in section 

2.2.9, 12 hybridoma cell lines that produced monoclonal antibodies specific for UL25 as 

judged by ELISA were isolated as a result of two spleen fusion experiments. Hybridoma 

cell lines secrete monoclonal antibodies into their growth medium and the HATc medium 

from each of the cultured hybridoma cell lines was harvested and analysed for specific 

immunoreactivity in Western blot, immunoprecipitation and indirect immunofluorescent 

assays.

3.2.3.2 Purification of MBP-UL25 and His-UL25 Proteins.

3.2.3.3 Purification of MBP-UL25 Protein for Immunisation of BALB/c Mice.

A clarified cell extract from IPTG-induced PTA3 bacteria was used as a source of 

MBP-UL25 protein for purification by affinity chromatography with a resin composed of 

amylose immobilised to agarose beads as described in section 2.3.0. A sample of purified 

protein was resolved by SDS-PAGE and visualised by Coomassie blue staining and the 

result is shown in Figure 3.11. Approximately 1 mg of MBP-UL25 protein per litre of 

induced PTA3 bacterial culture was recovered with a purity of 60-70%. This purified 

protein sample was used directly as a source of antigen for immunisation of 4 BALB/c 

mice.
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Figure 3.11 Purification of MBP-UL25 from IPTG Induced PTA3 Bacteria Carrying 

pPTA3.

A clarified cell extract from a culture o f IPTG-induced PTA3 bacteria was used as a 

source o f MBP-UL25 protein for purification by affinity chromatography with amylose 

resin. A sample of purified MBP-UL25 protein (lane 2) was resolved on an 8% SDS 

polyacrylamide gel and visualised by Coomassie blue staining. Lane 1 represents 

molecular weight markers (5 pg of each marker).
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3.2.3.4 Purification of His-UL25 Protein for Boosting Immunised BALB/c Mice.

An analysis of the specific immunoreactivity in serum isolated from blood taken in a 

test bleed from MBP-UL25 immunised mice revealed a disproportionate immune response 

in favour of the MBP constituent of the MBP-UL25 fusion protein (Figure 3.12). The 

immunised mice were therefore boosted with His-UL25 protein in an attempt to expand the 

population of immune cells secreting antibodies specific for the UL25 constituent of the 

MBP-UL25 protein prior to the preparation of a spleen fusion experiment.

A clarified cell extract from PTA10bac#14-infected S fll  cells was used as a source of 

soluble His-UL25 protein for purification by affinity chromatography with a resin 

composed of nickel ions immobilised to agarose beads (Ni-NTA) as described in section 

2.3.0. A sample of purified protein was resolved by SDS-PAGE and visualised by 

Coomassie blue staining. These results are shown in Figure 3.13. Approximately 75-100 

pg of His-UL25 protein with a purity of 80-90% was recovered from each 175 cm2 flask of 

S fll  cells infected with PTA10bac#14. This purified protein sample was used directly as a 

source of antigen for boosting the 3 surviving BALB/c mice immunised with MBP-UL25.

3.2.3.5 The Reactivity of Monoclonal Antibodies Specific for the UL25 Protein in a 

Western Blot Assay.

The monoclonal antibodies were screened for their ability to react with UL25 in a 

Western blot assay as described in section 2.3.1.4 and a typical positive result is shown in 

Figure 3.14. The antibodies were screened against an AcUL25-infected S fll  cell extract 

which contained the unmodified UL25 protein as an antigen. Samples of purified MBP- 

UL25 and MBP alone were also included as controls together with a sample of PAK6- 

infected S fll  cells. The proteins within each sample were separated by SDS-PAGE, 

transferred to Hybond-ECL membrane and probed with HATc medium collected from the 

hybridoma cell lines. Seven of the twelve monoclonal antibodies isolated bound the UL25 

protein in this assay and the data are summarised in Table 3.1, together with an indication 

of the affinity each monoclonal antibody had for the UL25 antigen. However, as the 

concentration of the antibodies in the HATc medium was not established this may not 

represent a true indication of the affinity each monoclonal antibody had for the UL25 

antigen in this assay.
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Figure 3.12 Western blot Analysis of the Specific Immunoreactivity in Serum from 

Blood Taken in a Test Bleed from MBP-UL25 Immunised Mice.

A 20 pi sample o f blood was taken from the tail o f each immunised mouse and the 

serum was used as a source of primary antibody in a Western blot assay. The above figure 

is typical of the result achieved using each of the four serum samples. Protein samples 

were resolved on an 8% SDS polyacrylamide gel and transferred to Hybond-ECL 

membrane. In the above case, serum from mouse number 3 diluted to a concentration of 

1/500 was used to probe the membrane. Lane 1, PAK6-infected S fl\  cell extract; lane 2, 

Ac25-infected S fl \  cell extract; lane 3, 2 pg MBP; lane 4, 2 pg MBP-UL25.



His-UL25

Figure 3.13 Purification of His-UL25 from S f l l  Cells Infected with PTA10bac#14.

A clarified cell extract from S fl\  cells infected with PTA10bac#14 was used as a 

source of soluble His-UL25 protein for purification by affinity chromatography with Ni- 

NTA resin. Clarified infected-cell extract from three preparations (lanes 2, 3, 4) and 

purified protein (lanes 5, 6, 7) was resolved on a 10% SDS polyacrylamide gel and 

visualised by Coomassie blue staining. Lane 1 represents molecular weight markers (5 pg 

of each marker).



MBP-UL25

UL25

Figure 3.14 Monoclonal Antibody 166 Functions in a Western blot Assay.

The monoclonal antibodies were tested for their ability to react with UL25 in a Western 

blot assay. Protein samples were resolved on an 8% SDS polyacrylamide gel, transferred to 

Hybond-ECL membrane and probed using 10 ml of undiluted HATc medium from 

hybridoma cell lines as a source of primary antibody. The above figure is typical of a 

positive result and was achieved using medium from hybridoma cell line number 166. 

Lane 1, 1 pg MBP; lane 2, 1 pg MBP-UL25; lane 3, Ac25-infected Sf2\ cell extract; lane 

4, PAK6-infected S fl\  cell extract.



Monoclonal
Antibody WB IP IF

116 - - -

126 ++ - -

162 + + -

166 +++ +++ -H -+ +

174 + - -

195 ++ + + +

220 - I I I I + +

230 + + + - + +

439 + - -

453 - - -

485 - - + +

526 - - -

Table 3.1 Summary of the Characterisation of Monoclonal Antibodies Specific for the 

HSV-1 UL25 Protein.

The above table indicates the affinity of the monoclonal antibodies for the UL25 

protein in each of the immunoassays used. WB, Western blot; IP, immunoprecipitation; 

IF, immunofluorescence.
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3.2.3.6 The Reactivity of Monoclonal Antibodies Specific for the UL25 Protein in an 

Immunoprecipitation Assay.

The UL25 specific monoclonal antibodies were tested for their ability to function in an 

immunoprecipitation assay as described in section 2.3.1.7 and a typical positive result is 

shown in Figure 3.15. The antibodies were screened against an HSV-1 17+-infected Vero 

cell extract which contained the unmodified UL25 protein as an antigen. A sample from a 

mock-infected Vero cell extract was also included as a control. Four of the twelve 

monoclonal antibodies isolated bound the UL25 protein in this assay and the data are 

summarised in Table 3.1 together with an indication of the affinity each monoclonal 

antibody had for the UL25 antigen. However, as before, this may not represent a true 

indication of the affinity each monoclonal antibody had for the UL25 antigen in this assay.

3.2.3.7 The Reactivity of Monoclonal Antibodies Specific for the UL25 Protein in 

Indirect Immunofluorescence Assays.

The monoclonal antibodies were screened for their ability to react with the UL25 

polypeptide in an indirect immunofluorescence assay. Vero cells were transfected as 

described in section 2.3.2 with the pCMV10-UL25 plasmid which expressed the 

unmodified UL25 protein and mock-transfected Vero cells were included as a control. Five 

of the twelve monoclonal antibodies isolated bound the UL25 protein in this assay and the 

data are summarised in Table 3.1 together with an indication of the affinity each 

monoclonal antibody had for the UL25 antigen. Again, this may not represent a true 

indication of the affinity each monoclonal antibody had for the UL25 antigen in this assay.

A similar indirect immunofluorescent assay was also employed to examine whether the 

monoclonal antibodies could also react with the UL25 polypeptide in HSV-1-infected cells 

as described in section 2.3.1.5. Vero cells were either mock-infected or infected with HSV- 

1 17+. At 10 hours pi the cells were fixed, permeabilised and probed with HATc medium 

from the hybridoma cell lines. The specific reactivity of the monoclonal antibodies with 

HSV-1-infected cells and pCMV10-UL25 transfected cells was similar and the same five 

antibodies bound the UL25 protein in both assays although a slightly higher level of non­

specific activity was observed in HSV-1 infected cells.

3.2.4 Discussion.

The polyhistidine-tagged UL25 expressing recombinant baculovirus proved to be a 

valuable reagent for the isolation of monoclonal antibodies specific for UL25. In S fl\  cells
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Figure 3.15 Monoclonal Antibody 220 Functions in an Immunoprecipitation Assay.

The monoclonal antibodies were tested for their ability to immunoprecipitate the UL25 

polypeptide using 50 pi of undiluted HATc medium from hybridoma cell lines as a source 

of primary antibody. The protein samples were resolved on an 8% SDS polyacrylamide gel 

and visualised by fluorography. The above figure is typical of a positive result and was 

achieved using medium from hybridoma cell line number 220. Lane 1, Mock infected 

Vero cells; lane 2, HSV-1 17+ infected Vero cells.



Results

infected with PTA10bac#14 the His-UL25 protein was expressed in large amounts and was 

predominantly soluble. To purify a sufficient quantity of soluble His-UL25 protein 

necessary for the immunisation of mice, the purification protocol had to be modified 

extensively. In the first instance, the solubility of the His-UL25 protein in S fll  cells 

infected with PTA10bac#14 was examined over a period of 96 hours pi. The highest level 

of soluble His-UL25 protein had accumulated by 72 hours pi and therefore, 6/21 cells 

infected with PTA10bac#14 for the purpose of protein purification were subsequently 

never incubated longer than 72 hours pi. Additionally, purified His-UL25 protein was 

unstable and would precipitate out of solution when stored in a buffer containing only 

Tris.HCl and NaCl. Therefore, to increase the solubility of the purified protein, the 

composition and pH of the purification buffer was investigated thoroughly. The final 

purification buffer (pH 7.5) contained CHAPS, NaCl, DMSO and glycerol (refer to Table 

2.3, His-UL25 Harvest / Binding Buffer) and purified His-UL25 protein stored in this 

buffer at 4°C remained soluble for up to 8 weeks. Unfortunately, purified His-UL25 

protein was insoluble above a concentration of 250 pg.m f1 under the conditions used and 

could not be purified to a concentration of 1 mg.ml' 1 necessary for many of the procedures 

involved in the biochemical analysis of proteins.

As a consequence of two spleen fusion experiments using BALB/c mice immunised 

with the purified MBP-UL25 and His-UL25 proteins, 12 hybridoma cell lines secreting 

monoclonal antibodies specific for the HSV-1 UL25 protein were isolated. These 

antibodies were characterised using a variety of immunoassays and the results are 

summarised in Table 3.1.

The results identified nine monoclonal antibodies that reacted with the UL25 protein in 

one or more of the three assays used. From the pattern of reactivity of the monoclonal 

antibodies in the immunoassays it was clear that each of the monoclonal antibodies was 

directed against one of at least six epitopes on the UL25 protein. Three antibodies, 116, 

453 and 526 did not recognise the UL25 protein in Western blot, immunoprecipitation or 

immunofluorescent assays and it is likely that these antibodies either recognised the protein 

by ELISA only or that the concentration of antibody in the HATc medium was below that 

required to elicit a positive result. Monoclonal antibody 166 demonstrated a strong affinity 

for the UL25 protein in each of the immunoassays used and was purified by affinity 

chromatography using a Hi-Trap Protein G column and an ATKA automated purifier 

primarily for use in subsequent experimentation involving indirect immunofluorescent
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analysis. At this stage in the project there was no need to identify the exact epitope of the 

UL25 protein to which each of the monoclonal antibodies bound and priority was given to 

more pressing experiments.
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3.3 A Study of the Factorfs) Required for the Nuclear Localisation of the 

UL25 Protein in Cells Infected with HSV-1.

3.3.1 Introduction.

Protein-protein interactions are important for transporting certain HSV-1 proteins 

within the cell, for example, the VP5 and VP23 capsid proteins. In both these cases, an 

interaction in the cytoplasm of HSV-1 infected cells with the VP19C protein, which 

contains a nuclear localisation signal, results in the translocation of these proteins to the 

nucleus (Rixon et al., 1996). In a similar manner, the localisation of the VP5 protein to the 

cell nucleus requires the presence of the VP22a scaffolding protein (Nicholson et al., 

1994). In the absence of any other viral proteins the UL25 protein localised almost 

exclusively to the cellular cytoplasm (Figure 3.16). However, during wt HSV-1 infection 

the UL25 protein exhibited a predominantly nuclear localisation (Figure 3.17). Thus, the 

aim of the work described in this section was to ascertain which proteins were involved in 

directing or retaining the UL25 protein to the nuclei of HSV-1 infected cells and to 

investigate whether the capsid assembly process was necessary for the nuclear retention of 

the UL25 protein.

3.3.2 The Intracellular Localisation of the UL25 Protein in Non-Complementing Cells 

Infected with K23Z, K5AZ and KA19C.

To determine whether capsid assembly was required for the nuclear localisation of the 

UL25 protein in cells infected with wt virus, the intracellular localisation of the UL25 

protein was examined in non-complementing cells infected with K23Z by indirect 

immunofluorescent analysis. K23Z is a UL18 null mutant of HSV-1 strain KOS and does 

not synthesise VP23 or assemble capsids in infected non-complementing cells. The UL25 

protein co-localised with the VP19C protein in the nuclei of Vero cells infected with K23Z 

(Figure 3.18). This indicated that neither capsid assembly nor the VP23 protein was 

required for the nuclear localisation of the UL25 protein in non-complementing cells 

infected with this virus.

The intracellular localisation of the UL25 protein was also examined in non­

complementing cells infected with K5AZ, a UL19 null mutant of HSV-1 strain KOS, by 

indirect immunofluorescent analysis. This mutant does not synthesise VP5 or assemble 

capsids in infected non-complementing cells. The UL25 protein co-localised with the
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Figure 3.16 In the A bsence o f O ther Viral Proteins the UL25 Protein Localises to the 

C ellular Cytoplasm .

Vero cells were transfected with 1 pg of pCMV10-UL25 (refer to section 2.3.2). At 24 

hours post-transfection the cells were fixed with 5% formaldehyde and permeabilised with 

0.5% NP40. The transfected cells were incubated with UL25 protein specific monoclonal 

antibody 166 diluted to a concentration o f 1/100 for 1 hour followed by a 30 minute 

incubation with an anti mouse-FITC conjugated secondary antibody. The cells were then 

examined by confocal microscopy.



Figure 3.17 The UL25 Protein Localises Prim arily to the Nucleus D uring W t HSV-1 

Infection.

Vero cells were infected with HSV-1 ts+ 17 using a moi o f 10 pfu.celf1. At 10 hours post­

infection the cells were fixed with 5% formaldehyde and permeabilised with 0.5% NP40. The 

infected cells were incubated with UL25 protein specific monoclonal antibody 166 diluted to a 

concentration of 1/100 for 1 hour followed by a 30 minute incubation with an anti mouse- 

FITC conjugated secondary antibody. The cells were then examined by confocal microscopy.
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Results

VP23 protein in the nuclei of Vero cells infected with K5AZ (Figure 3.19). This confirmed 

that capsid assembly was not required for the nuclear localisation of the UL25 protein and 

also indicated that the VP5 protein was not required for the nuclear localisation of the 

UL25 protein in non-complementing cells infected with this virus.

To investigate whether the nuclear localisation of the UL25 protein during wt virus 

infection was dependent on the presence of VP19C protein, the intracellular localisation of 

the UL25 protein was examined in non-complementing cells infected with KA19C, a UL38 

null mutant of HSV-1 strain KOS, by indirect immunofluorescent analysis (data not 

shown). However, this virus appeared to have an early replication defect in non­

complementing cells since it synthesised reduced levels of UL25 and the capsid shell 

proteins in comparison to wt virus. It is therefore likely that this virus contained at least 

one additional mutation. The low level of UL25 protein produced in these cells resulted in 

the inability to conclusively identify the intracellular location of the UL25 protein under 

these conditions and no further information was obtained through the use of this virus.

3.3.3 The Intracellular Localisation of the UL25 and Capsid Proteins in Cells Infected 

with Ts2.

To determine if the VP19C protein was necessary for the nuclear localisation of the 

UL25 protein during wt HSV-1 infection, the intracellular distribution of UL25 protein 

was examined in cells infected with ts2 at the NPT. The ts2 virus used in this study was 

derived from a ts mutant of HSV-1 strain A44, ts2 syn, and contains a ts lesion in the 

VP19C protein encoded by the UL38 gene (Pertuiset et al., 1989). As previously 

mentioned, the VP19C protein interacts with the VP23 protein, to form the triplex 

component of the capsid and also associates with the major capsid protein VP5. In cells 

infected with ts2 at the NPT capsids are not assembled (Pertuiset et al., 1989). As 

expected, in Vero cells infected with ts2 at the PT, the UL25, VP19C, VP23 and VP5 

proteins all localised to the nuclei, typical of the intracellular localisation of these proteins 

during wt virus infection (Figure 3.20). However, in Vero cells infected with ts2 at the 

NPT, the UL25 protein was found exclusively in the cytoplasm, characteristically 

surrounding the nuclear periphery and strongly colocalised with the VP23 protein (Figure 

3.21). The UL25 protein colocalised to a lesser extent with the VP19C protein which was 

also present in the cytoplasm, but in contrast to UL25 protein, a small proportion of 

VP19C was distributed in the nucleus (Figure 3.22). The VP5 protein displayed a similar

99



H4g>' s- a 

'

tf . 1 _^P

Is  JS
■Shv]

i  ' M m

M g

N<
m

X

-o
a t
u

U
OX)

s
a t

E
Ea
E
0  

U1so
Z

—

3

at

oLa
On
f*)
n
0-
>
a>x

C/2
V

a5*
13
U
0
1

o
U

©&■*ft.
»T)
<S
-J

o>
-=
H
Os
1—H
<*)
a t
La
3
OX)

T3
C
o3
<D

"C
Xat
IE
03

03

"0Oi

cE
£in
X

T3o>
XtG

atat
at 

X  +->
c_o

"■t—>cj
tE0—i
c

C/2
Oa.

~  E3
S -t-
-  <

at
o

<Ea,
o
O-io
'o
S
03

ooC

9in

" a t  ^

~o 
a>4—>0)

<E »n 
.g o
© xl-i 4->at -r; 
£ *

atat
os-at
>

X
03
at

atco

03

X
T3
at
£o
sO—i

SO
sO

~ao
X
■i—>
c
o3

13
c_o

l jo
co
E
0)

s
'atat
co
C/2

at
IE+-<a,at
CO

J—' o
CO

m
(N
X5

13at4—>
o3

X
3at
c

at
0)

X
at4—<at

,a t

at
X
H

oTt-
PO

s-
3
O

X

<E
oo
in

O h

O
co

Xat

<n
<NCO
>
atx

cE
at

soatCO

X
ooH
>4Xo

X
’■(-<a
o3

"Ec_o
at
Er*o
C O
Xc
03

o 'o

Xat1/3 X

Oho
Co

30 
m

in
ut

e 
in

cu
ba

tio
n 

wi
th 

an
ti 

m
ou

se
-F

IT
C 

an
d 

an
ti 

ra
bb

it-
CY

5 
co

nj
ug

at
ed

 
se

co
nd

ar
y 

an
tib

od
ie

s. 
Th

e 
ce

lls
 

we
re

 
the

n 
ex

am
in

ed
 

by 
co

nf
oc

al
 

m
ic

ro
sc

op
y.

 I
m

ag
e 

a)
. 

U
L2

5;
 b

). 
V

P2
3;

 c
). 

M
er

ge
.



a). UL25 b). VP23 c). Merge

m

d). UL25 VP19C f). Merge

g). VP5

Figure 3.20 The Intracellular Localisation of the UL25 and Capsid Proteins in Cells 

Infected with Tsl at the PT.

Vero cells were infected with ts2 at the PT using a moi of 10 pfu.cell'1. At 10 hours post- 

infection the cells were fixed with 5% formaldehyde and permeabilised with 0.5% NP40. The 

infected cells were incubated with primary antibodies 166 a) and d), 186 b), NC2 e) and 

DM165 g) specific for UL25, VP23, VP19C and VP5 respectively, for 1 hour. After a 30 

minute incubation with the appropriate secondary antibodies, the cells were washed and 

examined by confocal microscopy.
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Results

intracellular distribution to that of the VP19C protein localising primarily to the 

perinuclear region of cells infected with ts2 at the NPT with a small proportion located in 

the nucleus (Figure 3.23). To confirm that the UL25 protein was perinuclear in cells 

infected with ts2 at the NPT, /s2-infected Vero cells were probed with monoclonal 

antibody 166 specific for the UL25 protein and then stained with propidium iodide which 

binds to nucleic acids and autofluoresces at a wavelength of 543 nm. Figure 3.24 

demonstrates that in cells infected with ts2 at the NPT, the UL25 protein was localised to 

the perinuclear region, with little if any protein localised to the nuclei.

Western blot analysis revealed that a larger proportion of UL25 and VP23 protein was 

insoluble in cells infected with ts2 at the NPT compared to cells infected with wt virus 

(Figure 3.25). This finding suggested that, as the VP19C protein co-localised with the 

insoluble UL25 and VP23 proteins at the perinuclear region, it too was likely to be 

insoluble in cells infected with ts2 at the NPT. This result combined with the data from 

indirect immunofluorescent analysis of te2-infected cells indicated that the ts mutation of 

ts2 altered the conformation of the VP19C protein such that the triplex became insoluble 

and was unable to enter nuclei of virus-infected cells. This also resulted in the failure of the 

VP5 protein to enter the nuclei and it too localised to the perinuclear region of cells 

infected with ts2 at the NPT. The evidence suggested that the cessation of capsid assembly 

in cells infected with ts2 at the NPT was a consequence of the altered solubility and 

intracellular localisation of the triplex and the VP5 proteins. This also resulted in the 

altered intracellular localisation of the UL25 protein which indicated that the nuclear 

localisation of the UL25 protein during wt virus-infection of cells was dependent on the 

presence of functional triplex complexes. Additionally, the data indicated a potential 

interaction between the UL25 protein and the VP23 and/or the VP19C protein.

3.3.4 The Construction of 752Hindk MR#6, a Ts2 Marker Rescue Virus.

To ensure that the altered intracellular localisation of the UL25 protein in cells infected 

with ts2 at the NPT was due to the ts2 lesion, a marker rescue virus of ts2 was constructed 

as described in section 2.3.7. Cloned wt virus H M IW  k DNA fragment, containing the 

UL38 gene, was recombined with ts2 viral DNA by calcium-phosphate transfection of both 

DNA species into Vero cells (Stow & Wilkie, 1976). After extensive cpe had developed 

the progeny viruses were harvested and screened for the ability to form plaques on Vero 

cell monolayers infected at the NPT of 39.2°C. A ts+ virus was isolated, plaque purified 

and used to produce a high titre stock of marker rescue virus which was termed /^2Hindk

100



Figure 3.23 The Intracellular Localisation o f the VP5 Protein in Cells Infected with  

Ts2 at the NPT.

Vero cells were infected with ts l using a moi of 10 pfu.cell1. At 10 hours post­

infection the cells were fixed with 5% formaldehyde and permeabilised with 0.5% NP40. 

The infected cells were incubated with VP5 specific monoclonal antibody DM165 diluted 

to a concentration o f 1/500 for 1 hour followed by a 30 minute incubation with an anti 

mouse-FITC conjugated secondary antibody. The cells were then examined by confocal 

microscopy.
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UL25

VP23

Figure 3.25 An Analysis of the Solubility of the UL25 and VP23 Proteins in Cells 

Infected with Tsl at the NPT.

Vero cells were infected with HSV-1 ts4 17 (lanes 1, 2) or ts l (lanes 3, 4) at a moi of 

10 pfu.celf1 and incubated at the NPT. At 10 hours pi the cells were harvested, lysed in a 

buffer containing 0.5% NP40 and then centrifuged at 6500 rpm (refer to section 2.2.5). A 

sample of the soluble fraction (lanes 1, 3) and the insoluble fraction (lanes 2, 4) was 

resolved on a 10% SDS polyacrylamide gel, transferred to Hybond-ECL membrane and 

probed with polyclonal antibody 335 and 186, specific for UL25 and VP23 proteins 

respectively. The membrane was washed extensively and bound antibody was visualised 

using an ECL chemiluminescent kit (Amersham) as described in section 2.3.1.4.



Results

MR#6. The plating efficiency of this virus at the PT and the NPT was compared to that of 

wt virus to ensure that £s2Hindk MR#6 exhibited a wt virus phenotype. Table 3.2 

demonstrates that /s2Hindk MR#6 formed plaques on Vero cell monolayers with 

approximately the same efficiency as wt virus at the PT and the NPT and this marker 

rescue virus of ts2 was therefore used for subsequent analysis.

3.3.5 The Intracellular Localisation of the UL25 and Capsid Proteins in Cells Infected 

with 7s2Hindk MR#6.

Indirect immunofluorescent analysis demonstrated that replacement of the defective 

UL38 gene of ts l with the wt UL38 gene resulted in the ability of the VP23 (Figure 3.26), 

VP19C (Figure 3.27) and VP5 (Figure 3.28) proteins to localise to the nucleus of cells 

infected with ^2Hindk MR#6 at the NPT. However, as Figures 3.26 and 3.27 also 

demonstrate, most of the UL25 protein was still unable to enter the nuclei of cells infected 

with £s2Hindk MR#6 at the NPT and remained localised to the perinuclear region of these 

cells. Clearly a sufficient proportion of UL25 protein must have been directed to the nuclei 

of cells infected with te2Hindk MR#6 at the NPT since this virus did not appear to have a 

growth defect at the higher temperature (Table 3.2). In cells infected with /s2Hindk MR#6 

at the PT the UL25 protein was concentrated in the nuclei and co-localised with the VP23 

protein and the VP19C protein (Figure 3.29). These findings indicated that an unidentified 

ts lesion(s) was responsible for the altered intracellular localisation of the UL25 protein in 

cells infected with tsl at the NPT.

3.3.6 The Intracellular Localisation of the UL25 Protein in Cells Infected with Ts+ 

A44.

To determine whether the altered intracellular localisation of the UL25 protein in cells 

infected with /s2Hindk MR#6 at the NPT was the result of mutation(s) acquired during the 

construction and selection of the ts l marker rescue virus, the distribution of the UL25 

protein in cells infected with the syncytial strain HSV-1 ts+ A44, the parental virus of tsl 

syn, was examined by indirect immunofluorescence. The original tsl syn virus formed 

large syncytia in infected cells and was crossed with HSV-1 ts+ 17 syn+ to generate the 

virus that was used in this study. This isolate retained the ts l defect but had a reduced 

capacity to form syncytia in infected cells and therefore grew better than the original tsl 

syn virus at the PT. In cells infected with this virus at the PT the UL25 protein was found 

almost exclusively in the nuclei (Figure 3.30a.). However, in cells infected with ts+ A44 at
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Virus
Titre at the 
Permissive 

Temperature (31°C)

Titre at the 
Non-Permissive 

Temperature 
(39.2°C)

Efficiency
of

Plating

Wild-Type 
(HSV-1 ts* \T )

3.3 x 108 pfu.mr1 2.5 x 108 pfii.ml"1 0.76

te2Hindk MR#6 4.9 x 108 pfii.ml'1 5 x  108 pfii.ml'1 1.02

Table 3.2 The Plating Efficiency of 7s2Hindk MR#6 and Wt Virus at the PT and the 

NPT.

Samples of both viruses were diluted to a concentration of approximately 5 x 108 

pfu.mr1 and titrated on Vero cells at the PT and the NPT. When plaques became visible, 

the cells were fixed with Giemsa stain and plaques were counted using a dissecting 

microscope. The efficiency of plating was derived by dividing the titre at the NPT over the 

titre at the PT.
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Figure 3.28 The Intracellular Localisation o f the VPS Protein in Cells Infected with 

7s2H indk M R#6 at the NPT.

Vero cells were infected with te2Hindk MR#6 using a moi of 10 pfu.celf1. At 10 hours 

post-infection the cells were fixed with 5% formaldehyde and permeabilised with 0.5% NP40. 

The infected cells were incubated with VP5 specific monoclonal antibody DM165, diluted to a 

concentration of 1/500, for 1 hour followed by a 30 minute incubation with an anti mouse- 

FITC conjugated secondary antibody. The cells were then examined by confocal microscopy.



a). UL25 b). VP23 c). Merge

A * .

%

UL25 VP19C Merge

g). VP5

Figure 3.29 The Intracellular Localisation of the UL25 and Capsid Proteins in Cells 

Infected with 7s2Hindk MR#6 at the PT.

Vero cells were infected with /.s'2Hindk MR#6 at the PT using a moi o f 10 pfu.cell '. At 10 

hours post-infection the cells were fixed with 5% formaldehyde and permeabilised with 0.5% 

NP40. The infected cells were incubated with primary antibodies 166 a) and d), 186 b), NC2

e) and DM165 g) specific for UL25, VP23, VP19C and VP5 respectively for 1 hour. After a 

30 minute incubation with the appropriate secondary antibodies, the cells were washed and 

examined by confocal microscopy.



a). b).

Figure 3.30 The Altered Intracellular Localisation of the UL25 Protein in Cells 

Infected with HSV-1 Ts+ A44 at the NPT.

Vero cells were infected HSV-1 ts+ A44 using a moi of 10 pfu.celf1. At 10 hours post­

infection the cells were fixed with 5% formaldehyde and permeabilised with 0.5% NP40. 

The infected cells were incubated with UL25 protein specific monoclonal antibody 166, 

diluted to a concentration of 1/100, for 1 hour followed by a 30 minute incubation with an 

anti mouse-FITC conjugated secondary antibody. The cells were then examined by 

confocal microscopy. Image a). UL25 PT; b). UL25 NPT.



Results

the NPT the UL25 protein localised to the perinuclear region with little protein found in 

the nuclei (Figure 3.30b). This strongly suggested that the altered intracellular distribution 

of the UL25 protein in cells infected with tsl at the NPT was due to an additional ts 

mutation(s) present in tsl and was not connected to the lesion in the UL38 gene found in 

the ts l virus. Interestingly, both ts+ A44 and tsl used in this study displayed a ts syncytial 

phenotype whereby the virus induced the formation of syncytia in cells infected at the NPT 

to a considerably larger degree compared to cells infected at the PT. It is tempting to 

speculate that the formation of syncytia in cells infected with these viruses at the NPT was 

connected to the drastic alteration of the intracellular localisation of the UL25 protein. To 

examine whether the intracellular localisation of the UL25 protein was altered by the 

formation of syncytia, HSV-1 ts+ 17 syn infected cells were examined by indirect 

immunofluorescence. HSV-1 ts+ 17 syn is a strain of HSV-1 that induces the formation of 

syncytia in infected cells and Figure 3.31a shows that the UL25 protein localised to the 

nuclei of cells infected with HSV-1 17 syn at the NPT in a similar manner to cells infected 

with ts+ 17 syn+ (Figure 3.31b). This indicated that the formation of syncytia in itself did 

not alter the subcellular localisation of the UL25 protein and it appeared likely that an 

unidentified ts mutation(s) was responsible for the different intracellular distribution of 

UL25 in cells infected with ts l at the NPT. Surprisingly, this did not affect the viral 

replication cycle in as much as te2/Hindk MR#6 grew to titres similar to those of ts+ 17 

syn+ and formed plaques with the same efficiency as ts+ 17 syn+ in cells infected at the 

NPT (Table 3.2).

3.3.7 Discussion.

Since UL25 is a capsid-associated protein, the distribution of UL25 protein was 

examined in cells infected with HSV-1 mutants which fail to express the VP5, VP23 or 

VP19C capsid shell proteins to investigate whether these proteins were required for the 

nuclear localisation of UL25 in HSV-1-infected cells. The analysis of non-complementing 

cells infected with either K23Z or K5AZ null mutants indicated that neither capsid 

assembly nor the VP23 and VP5 proteins were necessary for the nuclear localisation of the 

UL25 protein. Although capsid assembly was not required for the nuclear distribution of 

the UL25 protein it is clear that at least one viral protein was responsible for this 

localisation. Transient transfection assays coupled to indirect immunofluorescent analysis 

demonstrated that neither the VP19C, VP5, VP23 or VP22a proteins alone or in
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Figure 3.31 The Intracellular Localisation of the UL25 Protein in Cells Infected with 

HSV-1 Ts+ 17 syn and Ts+ 17 syn+ at the NPT.

Vero cells were infected with HSV-1 ts+ 17 syn (a) or HSV-1 ts' 17 syn (b) using a 

moi of 10 pfu.celf1. At 10 hours post-infection the cells were fixed with 5% formaldehyde 

and permeabilised with 0.5% NP40. The infected cells were incubated with monoclonal 

antibody 166, specific for the UL25 polypeptide, diluted to a concentration of 1/100 for 1 

hour followed by a 30 minute incubation with an anti mouse-FITC conjugated secondary 

antibody. The cells were then examined by confocal microscopy.
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combination could translocate the UL25 protein into the nucleus (data not shown). This 

suggested that the nuclear localisation of the UL25 protein during wt virus (HSV-1 ts+ 17 

syn+) infection either did not depend on the presence of these proteins or required 

additional, as yet unidentified, protein factors.

Experiments using a UL38 null mutant virus, KA19C, yielded no further information 

regarding the viral factors necessary to direct the UL25 protein to the nuclei of HSV-1 - 

infected cells. Therefore, the intracellular localisation of the UL25 protein was examined in 

cells infected with tsl at the NPT. This virus contained a ts lesion in the UL38 gene and 

failed to assemble capsids in cells infected at the NPT. Indirect immunofluorescent 

analysis of cells infected with ts l at the PT revealed that the UL25 protein and the capsid 

shell proteins, VP5, VP19C and VP23 were all localised to the nuclei in a manner expected 

of wt virus infection (Rixon et al., 1996). However, infection of cells with ts l at the NPT 

resulted in a drastic alteration of the intracellular localisation of these proteins which 

colocalised to the nuclear periphery and were unable to enter the nuclei. Western blot 

analysis revealed that at least the UL25 and the VP23 proteins were largely insoluble in 

cells infected with tsl at the NPT. Thus, in cells infected with tsl at the NPT the ts lesion 

within the UL38 gene resulted in the formation of an insoluble triplex complex which 

altered the intracellular localisation patterns of the triplex proteins and the VP5 protein. 

The end result of this was the failure to assemble capsids. The inability of the UL25 

protein to enter the nuclei of cells infected with ts l at the NPT indicated that the nuclear 

localisation of the UL25 protein during wt virus infection was dependent on the presence 

of functional triplex complexes. Additionally, the colocalisation of the UL25 and triplex 

proteins in cells infected with tsl at the NPT suggested a potential interaction between 

these proteins. However, the characterisation of a ts l marker rescue virus indicated that the 

altered intracellular localisation of the UL25 protein in cells infected with ts l at the NPT 

was not a consequence of the ts lesion within the UL38 gene of tsl and was related to an 

unidentified ts lesion(s). Examination of cells infected with ts+ A44 at the NPT revealed a 

similar phenotype to that of te2Hindk MR#6 infected cells at the NPT. This finding 

suggested that in addition to the ts lesion in the UL38 gene, tsl contained a further ts 

mutation(s) which was responsible for the altered intracellular distribution of the UL25 

protein in cells infected at the NPT. Although these viruses formed syncytia to a larger 

degree in cells infected at the NPT compared to cells infected at the PT, no additional 

evidence was found to link the intracellular distribution of the UL25 protein with the
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formation of syncytia. However, the formation of syncytia in HSV-1-infected cells has 

been linked to several different genes (Raucina et al., 1984, Goodman & Engel, 1991, 

Dolter et al., 1994, Wilson et al., 1994) and the genes involved in the formation of syncytia 

in cells infected with ts+ A44 at the NPT may be different from those of HSV-1 ts+ 17 syn. 

Therefore, it remained possible that the formation of syncytia in cells infected with ts+ A44 

at the NPT resulted in the altered intracellular localisation of the UL25 protein. Although 

the tsl virus used in this study did not form syncytia in infected cells to the same extent as 

ts+ A44, it nevertheless retained the ts lesion of A44 which was also present in the tsl 

marker rescue virus. Unfortunately, the mapping of the additional lesion(s) within these 

viruses would be hindered by the lack of any selectable marker. The ts l marker rescue 

virus contained the additional defect(s) but grew to titres similar to that of wt virus and no 

difference was detected in plaque morphology or plating efficiency. The identification of 

the additional defect(s) of tsl therefore remained unresolved.
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3.4 Protein-Protein Interactions Involving the UL25 Protein.

3.4.1 Introduction.

Protein-protein interactions involving the HSV-1 capsid shell proteins have been 

identified and have contributed to a basic understanding of the capsid assembly process 

(Desai & Person, 1996, Rixon et al., 1996). Initial interactions involving these proteins 

results in the formation of unstable spherical procapsids. The transformation of the 

procapsid requires the extensive re-modelling of these interactions to form a stable, 

angularised capsid with a defined capsid floor layer not present in the procapsid. In 

contrast to the information obtained about capsid protein association, little is known about 

the protein-protein interactions involving the HSV-1 DNA cleavage and packaging 

proteins. The UL6, UL15, UL17, UL25 and UL28 DNA cleavage and packaging proteins 

have been shown to associate with different types of HSV-1 capsids (Patel & Maclean, 

1995, McNab et al., 1998, Yu & Weller, 1998, Goshima et al., 2000, Sheaffer et al., 2001). 

The putative HSV-1 terminase is a heterodimeric complex composed of the UL15 and 

UL28 proteins and appears to transiently interact with the capsid. The levels of UL15 and 

UL28 present in C capsids are diminished compared to those bound to either A or B 

capsids and it is believed that the terminase is removed from the capsid after DNA 

encapsidation. The UL6 and UL25 proteins bind to A, B and C capsids and the UL17 

protein interacts with B and C capsids but it is not known whether this protein is also found 

in A capsids. Although the amount of UL6 protein remains constant in all capsid types 

examined, the level of UL25 varies within different capsid types with the most UL25 

protein being associated with C capsids (Sheaffer et al., 2001). This observation has led to 

the suggestion that additional copies of UL25 bind to the capsid following DNA packaging 

to seal the genome within the capsid.

When the present study was initiated the interactions which mediated the binding of the 

cleavage and packaging proteins to the HSV-1 capsid had not been identified. In 1998, the 

UL15 protein was shown to associate with the VP5 major capsid protein and presumably 

this interaction facilitates the capsid-binding property of the UL15 protein (SmithKline 

Beecham corporation, 1998). As mentioned above, the UL15 and UL28 DNA cleavage and 

packaging proteins interact to form the putative terminase complex (Koslowski et al., 

1999, Abbotts et al., 2000). However, no other interactions involving the capsid-associated 

HSV-1 DNA cleavage and packaging proteins have been identified. Thus, the aim of the
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work described in this section was to identify any protein-protein interactions involving the 

UL25 protein to elucidate the nature by which the UL25 protein associates with the HSV-1 

capsid. Additionally, the identification of any protein-protein interactions involving the 

UL25 protein may provide clues about its role in the HSV-1 DNA cleavage and packaging 

process.

3.4.2 The Association of the His-UL25 Protein with Recombinant HSV-1 Capsids.

It has been previously demonstrated that the UL25 protein associates with A, B and C 

capsids purified from wt virus-infected cells and with B capsids produced from co- 

infection of insect cells with recombinant baculoviruses expressing the major capsid 

proteins (McNab et al., 1998). In order to establish that the His-UL25 protein was able to 

be incorporated into capsids, S fl\  cells were multiply-infected with recombinant 

baculoviruses expressing the VP5, VP23, VP19C, VP22a, VP24, VP21, VP26 and His- 

UL25 proteins. The recombinant B capsids were purified by centrifugation through two 

successive sucrose gradients and the second gradient was fractionated. Samples from the 

fractions were analysed by Western blotting and probed with antibodies 184 and 335, 

specific for VP5 and UL25 protein respectively. The result shown in Figure 3.32 

demonstrates that the recombinant B capsids were located in fractions 5 - 8 as judged by 

the levels of VP5 protein contained within these fractions. The highest levels of the His- 

UL25 protein were also located in fractions 5 - 8 .  This result indicated that the His-UL25 

protein associated with the recombinant B capsids and therefore appeared to be associated 

with B capsids. This finding also indicated that no other cleavage and packaging proteins 

were necessary for the ability of the His-UL25 protein to interact with B capsids produced 

in this system.

3.4.3 The Association of the His-UL25 Protein with VP5/19C Particles.

Virus-like particles termed VP5/19C particles can be purified from S fl\  cells infected 

with recombinant baculoviruses expressing only the HSV-1 VP5 and VP19C proteins 

(Saad et al., 1999). A negatively stained preparation of VP5/19C particles viewed by 

transmission electron microscopy is shown in Figure 3.34a and a sample of recombinant 

HSV-1 B capsids prepared in a similar manner is shown in Figure 3.34b for comparison. 

The VP5/19C particles appear spherical rather than icosahedral in shape and are smaller, 

with a diameter of 88 nm compared to a diameter of 125 nm exhibited by HSV-1 capsids. 

Using electron cryomicroscopy and computer reconstruction, Saad et al. (1999),
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Figure 3.32 His-UL25 Co-Migrates with B Capsids Generated from Co-Infection of 

S f l \  Cells with Recombinant Baculoviruses Expressing the HSV-1 Capsid Proteins.

S fl\  cells were infected with recombinant baculoviruses expressing the VP5, VP23, 

VP19C, VP22a, VP24, VP21, VP26 and His-UL25 proteins using a moi of 5 pfu.celf1 of 

each virus. After 3 days incubation at 28°C the cells were lysed and the cell extract layered 

on a 40% w/v sucrose cushion and centrifuged at 25,000 rpm. The pellet was resuspended 

in a small volume of NTE and centrifuged through a 10-40% w/w sucrose gradient. The 

capsid band was visualised by light scattering and harvested. The capsids were pelleted by 

centrifugation and purified further through a second 10-40% w/w sucrose gradient. 

Approximately 20 0.5 ml fractions were sequentially collected from the gradient and the 

protein content within a sample of each fraction was resolved on a 10% SDS 

polyacrylamide gel and Western blot analysis carried out. The proteins were transferred to 

Hybond-ECL membrane and probed with polyclonal antibodies 335, specific for IJL25 

protein, and 184, specific for VP5, both diluted to a concentration of 1/500. Lanes 1-13 

represent the sequential fractions collected from the gradient starting from the bottom of 

the gradient.
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demonstrated that the VP5/19C particles exhibit T=7 icosahedral symmetry as opposed to 

T=16 icosahedral symmetry exhibited by HSV-1 capsids. This group also showed that the 

VP5/19C particles have a poorly defined capsid floor and the structure as a whole is 

generally more porous (Saad et al., 1999). To determine whether the UL25 protein was 

able to associate with VP5/19C particles, S fl\  cells were infected with recombinant 

baculoviruses expressing the VP5, VP19C and His-UL25 proteins. The VP5/19C particles 

were purified and analysed according to section 3.4.2. The result shown in Figure 3.33 

demonstrates that the VP5/19C particles were located in fractions 6 - 11 as judged by the 

levels of VP5 protein contained within these fractions. To confirm this, the material 

contained within fraction number 9 was pelleted by centrifugation and resuspended in a 

small volume of PBS. A 2 pi sample was stained with 1% phosphotungstic acid as 

described in section 2.3.4.4 and examined using a transmission electron microscope and 

Figure 3.34a shows that VP5/19C particles were present in this fraction. The His-UL25 

protein co-migrated with the VP5 protein on the sucrose gradient, with the highest levels of 

His-UL25 also located in fractions 6 -1 1 . This finding indicated that the His-UL25 protein 

associated with the VP5/19C particles and suggested that the association of the UL25 

protein with the HSV-1 capsid was mediated through an interaction with the VP5 protein 

and/or the VP19C protein.

3.4.4 Is the UL25 Protein Located on the External Surface of the HSV-1 Capsid?

To determine whether the UL25 protein, or at least a portion of the protein, was located 

on the external surface of the HSV-1 capsid, Vero cells at a very early stage of HSV-1 

infection were examined for the presence of the UL25 protein on incoming viral capsids 

using indirect immunofluorescent analysis. Vero cells were infected with wt HSV-1 and at 

1 hour pi the virus-infected cells were fixed, permeabilised and then probed with 

antibodies DM165 and 335, specific for VP5 and UL25 protein respectively. After addition 

of the appropriate secondary antibodies the cells were examined using confocal 

microscopy and the result is shown in Figure 3.35. The incoming viral capsids were clearly 

detectable in the cytoplasm of virus-infected cells probed with DM165 (Figure 3.35a) and 

335 (Figure 3.35b). The co-localisation of the two fluorescent signals in Figure 3.35c 

indicated that an least one epitope of the UL25 protein recognised by the 335 polyclonal 

antibody was located on the external surface of the incoming viral capsids. No fluorescent 

signal was detected in mock-infected cells and prolonged infection periods resulted in the
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Figure 3.33 His-UL25 Co-Migrates with VP5/19C Particles Generated in 5/21 Cells 

Multiply-Infected with Recombinant Baculoviruses Expressing the HSV-1 VP5 and 

VP19C Capsid Proteins and the His-UL25 Protein.

5/21 cells were infected with recombinant baculoviruses expressing the VP5, VP19C 

and His-UL25 proteins each at a moi of 5 pfu.cell"1. VP5/19C particles were purified 

exactly as described in Figure 3.32. Approximately 20 0.5 ml fractions were sequentially 

collected from the second sucrose gradient and the protein content in a sample of each 

fraction was resolved on a 10% SDS polyacrylamide gel. The proteins were transferred to 

Hybond-ECL membrane and Western blot analysis carried out. The membrane was probed 

with polyclonal antibodies 335 and 184, specific for UL25 and VP5 protein respectively, 

both diluted to a concentration of 1/500. Lanes 1-15 represent the sequential fractions 

collected from the centrifuge tube starting from the bottom of the gradient.



Figure 3.34 Negatively Stained VP5/19C Particles and Recombinant HSV-1 Capsids.

S fl\  cells were infected with recombinant baculoviruses expressing either the VP5, 

VP19C and UL25 proteins alone (a) or the VP5, VP23, VP19C, VP22a, VP24, VP21 and 

VP26 proteins (b) using a moi of 5 pfu.cell'1 for each virus. The contents of fraction 

number 9 from the 10-40% sucrose gradient described in Figure 3.33 were pelleted by 

centrifugation at 25,00 rpm and resuspended in a small volume of PBS. The VP5/VP19C 

particles contained within a sample of this fraction were visualised by negative staining 

(refer to section 2.3.4.4) under a transmission electron microscope (a). Recombinant 

capsids were purified as described in section 2.2.2.7b and examined as before (b). 

Recombinant capsid image supplied by F. Rixon taken from Rixon et al, 1996. Bar 

markers represent 100 nm.
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migration of the capsids to the nuclear periphery as described by Sodeik et al. (1997). This 

suggested that genuine incoming viral capsids were observed and that the fluorescent 

signal seen in virus-infected cells was not due to spurious non-specific binding of the 

antibodies. No other available antibody specific for the UL25 protein that tested positive in 

indirect immunofluorescent assays was able to recognise the UL25 protein in the context 

of the incoming capsid, including a mouse polyclonal antibody and monoclonal antibodies 

166, 195, 220, 230 and 485 (data not shown).

3.4.5 An Estimation of the Copy Number of the UL25 Protein in the HSV-1 Capsid.

3.4.5.1 Elevated Levels of the UL25 Protein are Found in Recombinant Capsids 

Compared to Wt HSV-1 Capsids.

Recombinant B capsids were isolated from 5/21 cells multiply-infected with 

recombinant baculoviruses expressing the VP5, VP23, VP19C, VP22a, VP24, VP21, VP26 

and UL25 proteins as described in section 2.2.2.7b and HSV-1 B capsids were purified 

from BHK cells infected with wt HSV-1 according to section 2.2.2.7a. Western blot 

analysis was used to compare the level of UL25 protein associated with HSV-1 B capsids 

with the amount of UL25 protein present in recombinant B capsids. Figure 3.36 

demonstrates that when two approximately equal samples of purified capsids were 

examined, as judged by the levels of VP23 protein, there was substantially more UL25 

protein associated with the recombinant capsids compared to the wt capsids. The 

experiment was repeated using new preparations of both HSV-1 B capsids and 

recombinant capsids and the UL25 protein was consistently found to be present in levels 

approximately eight-fold higher in the recombinant B capsids compared to the wt B 

capsids.

3.4.5.2 The UL25 Protein Found in Recombinant Capsids is Resistant to 2 M GuHCl 

Treatment.

Samples of recombinant capsids made in 5/21 cells were treated with GuHCl to 

determine whether the additional levels of the UL25 protein in these capsids were stably 

incorporated or whether the elevated levels of the protein simply represented UL25 protein 

aggregates that copurified with the recombinant B capsids. Treatment of purified HSV-1 

capsids with 2 M GuHCl leads to the selective removal of some capsid proteins without 

altering the icosahedral nature of the capsid shell (Newcomb & Brown, 1991). The interior
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Figure 3.36 Approximately Eight-Fold More UL25 Protein is Found in Recombinant 

Capsids Compared to Wt HSV-1 Capsids.

The level of the UL25 protein associated with the capsid was examined by Western 

blot analysis using B capsids purified from wt virus-infected cells and recombinant B 

capsids purified from recombinant baculovirus-infected S fl\  cells. The capsid proteins 

were resolved on a 10% SDS polyacrylamide gel, transferred to Hybond-ECL membrane 

and probed with polyclonal antibodies 335 and 186, specific for UL25 and VP23 protein 

respectively, both diluted to a concentration of 1/500. Approximately equal amounts of 

capsid preparation were compared as judged by the level of the VP23 protein in each 

sample. Lane 1, Wt B capsids; lane 2, recombinant B capsids.
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VP21, VP22a and VP24 proteins, together with the exterior 12 pentons, penton-associated 

triplexes and VP26 decorating protein, are lost from the capsid (Newcomb & Brown, 

1991). Figure 3.37 demonstrates that treatment of recombinant B capsids with 2 M GuHCl 

did not result in the total removal of the VP22a scaffolding protein. Approximately 50% of 

VP22a remained associated with recombinant capsids treated in this manner (Table 3.3). 

However, no significant loss of UL25 protein was observed and, compared to untreated 

capsids, 87% of UL25 protein was retained in recombinant capsids under these conditions 

(Table 3.3). This indicated that the elevated levels of the UL25 protein associated with the 

recombinant B capsids were stable and unlikely to represent insoluble aggregates of the 

protein that copurified with the capsids. The UL25 protein associated with HSV-1 B 

capsids was less stable than that associated with recombinant capsids and compared to 

untreated capsids, only 37% of UL25 protein was retained in HSV-1 capsids treated with 2 

M GuHCl.

3.4.5.3 The Additional Levels of the UL25 Protein Found in Recombinant Capsids 

Allow an Estimation of the Copy Number of the UL25 Protein in HSV-1 Capsids.

Samples of purified recombinant B capsids and purified wt HSV-1 B capsids were 

resolved on a 10% SDS polyacrylamide gel and the protein content was visualised by 

Coomassie blue staining (Figure 3.38). This technique was unable to detect the UL25 

protein in the sample of purified wt HSV-1 B capsids, however, the additional levels of the 

UL25 protein associated with the recombinant B capsids was clearly visible. Moreover, the 

amount of protein in the bands representing the VP23 and UL25 proteins was very similar. 

There are 640 copies of the VP23 protein the HSV-1 B capsid (Newcomb et al., 1993) and, 

since the UL25 protein is roughly twice as large as the VP23 protein (62 kDa as opposed to 

34 kDa), this indicated that in the recombinant B capsids the copy number of the UL25 

protein was approximately 320. The work described in section 3.4.5.1 demonstrated that 

there was approximately eight-fold more UL25 protein associated with recombinant B 

capsids than with wt HSV-1 B capsids. Therefore, the approximate copy number of the 

UL25 protein in wt HSV-1 B capsids is 40. This figure is consistent with data presented by 

Ogasawara et al. (2001), who predicted that 42 ± 17 copies of UL25 protein were present 

in each HSV-1 B capsid.
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Figure 3.37 The Elevated Levels of the UL25 Protein Associated with Recombinant 

Capsids are Resistant to 2 M GuHCl Treatment.

Samples of recombinant capsids (lanes 1-3) and wt HSV-1 B capsids (lanes 4-6) were 

treated with 0 M (lanes 1,4), 1 M (lanes 2, 5) and 2 M (lanes 3, 6) GuHCl for 20 minutes 

with occasional mixing. The capsids were pelleted by centrifugation, resuspended in PBS 

complete and the protein content was examined on a 10% SDS polyacrylamide gel (a) and 

Western blot analysis using UL25 protein specific polyclonal antibody 335 and 

monoclonal antibody 406, specific for the HSV-1 UL26.5 gene product carried out (b).



Capsid
Sample

Protein
Guanidine Hydrochloride Concentration (M)

0 1 2

HSV-1
VP22a 100% 113% 66%

UL25 100 % 97% 37%

Recombinant
VP22a 100 % 11% 50%

UL25 100% 91 % 87'%

Table 3.3 The Effect of GuHCl Concentration on the Levels of UL25 and VP22a 

Protein in HSV-1 Capsids and Capsids Generated Using Recombinant Baculoviruses.

The relative amounts of UL25 and VP22a proteins detected by Western blot analysis of 

capsid samples treated with different concentrations of GuHCl shown in Figure 3.37 were 

quantified using the Quantity One software package (BIO-RAD). The level of UL25 and 

VP22a protein remaining in capsids treated with 1 and 2 M GuHCl is expressed as a 

percentage of the protein present in untreated capsid samples.
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Figure 3.38 An Estimation of the Copy Number of the UL25 Protein in the HSV-1 

Capsid.

The protein content in samples of wt HSV-1 B capsids (lane 1) and recombinant B capsids 

(lane 2) was resolved on a 10 % SDS polyacrylamide gel and visualised by Coomassie blue 

staining. To estimate the copy number of UL25 in the HSV-1 capsid, the indicated bands were 

quantified using the Quantity One software package (BIO-RAD). The ratio o f VP23 protein to 

UL25 protein in the recombinant capsid sample was 1:0.96.

UL25

VP23
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3.4.6 The Analysis of Protein-Protein Interactions Involving the UL25 Protein in 

HSV-1 ts+ 17 syn+ Infected Cells Using an Immunoprecipitation Assay with 

Monoclonal Antibody 166.

Vero cells were either mock-infected or infected with KUL25NS or HSV-1 ts+ 17 syn+ 

and incubated at 37°C. At 6 hours pi the cells were washed with methionine-free Eagle’s
35medium and incubated for a further 2 hours in identical medium containing S- 

methionine. Radiolabelled mock- and virus-infected cell extracts were prepared as 

described in section 2.3.1.7 and incubated with monoclonal antibody 166, specific for the 

UL25 protein, for 3 hours at 4°C with continuous agitation. Immunocomplexes were 

isolated from the reaction mixture by the addition of Protein A immobilised to sepharose 

beads followed by low-speed centrifugation. In order to assess the affinity of the protein- 

protein interactions identified, the stringency of the washes in the immunoprecipitation 

assay was varied with respect to the concentration of NaCl which ranged from 25 mM to 

100 mM. Figure 3.39 demonstrates that in the presence of 50 mM or 75 mM NaCl an 

unknown protein of approximately 55 kDa was co-immunoprecipitated with the UL25 

protein from cells infected with HSV-1 but was not immunoprecipitated from mock- or 

KUL25NS-infected cells. This indicated that the presence of the UL25 protein was 

necessary for the association of the unknown protein with the 166 antibody. When the cells 

were radiolabelled prior to infection, the 55 kDa protein was no longer detectable upon 

immunoprecipitation analysis using monoclonal antibody 166, indicating that this protein 

was either of viral origin or was a cellular protein that was induced upon viral infection 

(data not shown). Table 3.4 lists the potential HSV-1 candidates for this protein based upon 

a molecular weight of approximately 55 kDa. The most interesting of these candidates is 

the VP19C protein since the apparent association of the His-UL25 protein with VP5/19C 

particles indicated a potential interaction between the UL25, VP19C and/or the VP5 

proteins. However, due to the lack of a VP19C-specific antibody the possibility that the 

unknown 55 kDa protein was the VP19C protein remained speculation.

3.4.7 The UL25 Protein Associates with the Cellular Cytoskeleton.

To express the functions encoded in the HSV-1 genome, the virus releases the capsid- 

tegument structure into the cellular cytoplasm following receptor-mediated fusion of the 

HSV-1 envelope with the cellular plasma membrane. The capsid-tegument structure is 

transported along the microtubule network to the nuclear pore where the viral genome is 

released into the nucleus (Sodeik et al., 1997). The HSV-1 UL34 virion protein has been
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Figure 3.39 Monoclonal Antibody 166 Co-Immunoprecipitates the UL25 Protein and 

an Unknown Protein of Approximately 55 kDa from Wt Virus-Infected Cells.

Vero cells were either mock-infected (lane 1) or infected with KUL25NS (lanes 2-5) 

and HSV-1 17 (lanes 6-9) using a moi of 10 pfu.cell1. At 6 hours pi the cells were 

labelled for 2 hours with 35S-methionine and then harvested. Radiolabelled virus-infected 

cell extracts were prepared by incubating the cells with 0.5% NP40 and pelleting the 

cellular debris by centrifugation as described in section 2.3.1.7. The supernatant was 

harvested, incubated with monoclonal antibody 166, specific for the UL25 protein, and 

immunocomplexes were precipitated using Protein A immobilised on sepharose beads The 

beads were washed extensively with buffers containing 25 mM NaCl (lanes 2,6), 50 mM 

NaCl (lanes 3,7), 75 mM NaCl (lanes 4,8) and 100 mM NaCl (lanes 5,9) and were finally 

resuspended in lx PGSB. The protein content was resolved on a 10% SDS polyacrylamide 

gel and proteins were visualised by fluorography. The arrowhead indicates the position of 

the unknown protein with a molecular weight of approximately 55 kDa that co- 

immunoprecipitated with the UL25 protein.
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Gene M r (kDa) Protein / Function Reference

UL10 51 Glycoprotein M. Baines & Roizman, 1993

UL13 57 VP 18.8 Tegument Protein, 
Protein Kinase.

Overton et al., 1992

UL21 57 Virion Protein. Baines et al., 1994

UL38 50 VP19C, Triplex Protein. Rixon et al., 1990

UL41 55 Virion Associated Host Shut Off 
Protein.

Smibert et al., 1992

UL42 51 DNA Polymerase Subunit. Johnson et al., 1991

UL48 54 a-TIF, Tegument Protein. Batterson & Roizman, 1983

UL54 55 Vmw63, Gene Regulation. McMahan & Schaffer, 1990

US3 52 Protein Kinase. Purves et al., 1991

Table 3.4 Potential HSV-1 Protein Candidates for Interaction with the UL25 Protein.
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shown to interact with the cytoplasmic dynein intermediate polypeptide chain (Ye et al., 

2000). The cytoplasmic dynein protein is a microtubule-associated motor protein involved 

in intracellular transport. The UL34 protein is believed to facilitate retrograde transport of 

the capsid-tegument structure to the nuclear pore by anchoring the capsid-tegument to the 

microtubule network through an interaction with this protein.

The UL25 protein homologue of pseudorabies virus (PRV) has been shown to associate 

with the microtubule network in cells transiently transfected with PRV UL25 (Kaelin et 

al., 2000). To determine whether the HSV-1 homologue of the PRV UL25 protein 

exhibited a similar phenotype, the ability of the HSV-1 UL25 protein to associate with the 

cellular cytoskeleton was examined. Vero cells were transfected with a plasmid containing 

either the HSV-1 UL25 gene or as a control, the HSV-1 UL18 gene, under the regulation 

of the CMV immediate-early promoter. At 24 hours post-transfection the cells were either 

treated with 1% NP40 to remove the plasma membrane and the cytoplasm and fixed in 

methanol (section 2.3.3), or fixed with formaldehyde and permeabilised with NP40 as 

usual (section 2.3.1.5). The cells were then probed with antibodies 166 and 186 and, after 

addition of a appropriate secondary antibody, the cells were examined using confocal 

microscopy. Figure 3.40 demonstrates that detergent extraction of UL18 transfected cells 

resulted in the formation of small aggregates of the VP23 protein in the cytoplasm. In 

detergent treated UL25 transfected cells the UL25 protein localised to a fibrous network 

surrounding the nucleus, typical of the cytoskeletal structure which indicated that, as with 

the PRV UL25 protein, the HSV-1 UL25 protein associated with the cytoskeletal structure.

3.4.8 Discussion.

The UL25 protein associated with recombinant capsids in the absence of any other 

cleavage and packaging proteins. This suggested that UL25 was interacting with at least 

one of the capsid proteins. The ability of the UL25 protein to associate with capsid-like 

particles composed of only the VP5 and VP19C proteins indicated that the UL25 protein 

was binding to either one or both of these proteins. It is therefore likely that an interaction 

between the UL25 protein and the VP5 and/or the VP19C protein resulted in the ability of 

the UL25 protein to associate with recombinant capsids in the absence of other cleavage 

and packaging proteins. These results were consistent with data presented by Ogasawara et 

al, 2001, who demonstrated that the UL25 protein is capable of interacting with VP19C 

and VP5. However, it should be noted that these findings do not rule out the possibility that 

the His-UL25 protein formed aggregates that copurified with recombinant capsids and
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Figure 3.40. The UL25 Protein Associates with the Cellular Cytoskeletal Structure.

Vero cells were transfected with 1 pg pCMV10-UL18 (a, b) or pCMV10-UL25 (c, d). 

At 24 hours post-transfection the cells were either detergent extracted with 1% NP40 and 

fixed in methanol (b, d) or fixed in formaldehyde and permeabilised with 0.5% NP40 (a, 

c). The cells were probed with polyclonal antibody 186, specific for VP23 protein, diluted 

to a concentration of 1/500 (a, b) or UL25 polypeptide specific monoclonal antibody 166 

diluted to a concentration of l.T 11 vc, d) for 1 hour followed by a 30 minute incubation 

with anti rabbit-FITC and anti mouse-FITC conjugated secondary antibodies respectively. 

The cells were then examined by confocal microscopy.
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VP5/19C particles generated in insect cells. McNab et al. (1998) demonstrated that 

insoluble aggregates of UL25 protein copurified with recombinant capsids but were 

solubilised using 2M GuHCl. No appreciable loss of His-UL25 protein was observed from 

recombinant capsids following treatment with 2M GuHCl (Table 3.3) which suggested that 

His-UL25 formed a tight association with these capsids. Since the icosahedral capsid 

structure of VP5/19C particles is generated and maintained through the interactions formed 

between only two of the HSV-1 capsid proteins, these structures are unlikely to be stable in 

the presence of denaturants such as GuHCl. Therefore, it is highly probable that VP5/19C 

particles would be disrupted during treatment with 2M GuHCl and this procedure was not 

used to test whether the His-UL25 protein bound specifically to these structures. In 

contrast to the findings with recombinant capsids, only 37% of UL25 protein was retained 

in HSV-1 B capsids after treatment with 2M GuHCl. This result suggested that the UL25 

protein formed a stronger interaction with recombinant capsids and it is possible that the 

additional proteins present in B capsids isolated from wt virus-infected cells affected the 

affinity of the UL25 protein for these capsids.

Imunoprecipitation analysis of HSV-1 infected cells using a UL25 specific monoclonal 

antibody revealed an unknown protein of approximately 55 kDa associated with the UL25 

protein. This protein was either a cellular protein induced in response to HSV-1 infection 

or a HSV-1 encoded protein and potential HSV-1 protein candidates based on a mass of 55 

kDa are listed in Table 3.4. Proteins such as a-TIF, which is phosphorylated and gM, 

which is glycosylated, can be eliminated since the post-translational modification of these 

proteins in vivo, increases the mass of the protein to that above the predicted 55 kDa. Of 

the remaining candidates, the VP19C protein is the most obvious interaction partner for 

UL25 although the true identification of this protein remained unresolved. As mentioned in 

section 3.3, no interaction between UL25 and the capsid proteins was detected using 

transient transfection assays. It is possible that an interaction between UL25 and one or 

more of the capsid proteins only occurred in the context of the capsid structure and was 

dependent not on the presence of one protein alone but on a specific conformation formed 

by the capsid proteins within the icosahedral capsid shell.

The elevated level of the UL25 protein found in recombinant B capsids was an 

intriguing but not a unique phenomenon. B capsids formed in non-complementing cells 

infected with AICP35, a null mutant of HSV-1 KOS that does not express the VP22a major 

scaffold protein, contain 2.8-4 fold more UL25 protein than B capsids formed during wt
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virus-infection (Sheaffer et al., 2000). Similarly, 3-4 fold more UL25 protein is associated 

with C capsids isolated from wt virus-infected cells compared to B capsids isolated from 

the same source (Sheaffer et al., 2001). Sheaffer et al. (2000), suggested that the removal 

of the scaffold structure facilitated the addition of extra copies of the UL25 protein and this 

proposal may explain the presence of the additional levels of the protein associated with 

recombinant capsids. It is possible that the scaffold structure did not form correctly or was 

less stable in recombinant capsids which allowed additional levels of the UL25 protein to 

bind. The amount of UL25 protein in the recombinant capsids was consistently eight-fold 

higher than in HSV-1 B capsids. This allowed an estimation of the copy number of UL25 

protein molecules associated with the HSV-1 B capsid. An approximate copy number of 40 

immediately indicated that the UL25 protein is unlikely to be located at one site only 

within the capsid since 40 copies of a 62 kDa protein would represent a 2.5 MDa mass of 

protein which would be detectable by electron microscopy. It is far more likely that the 

UL25 protein is distributed over a number of sites within the HSV-1 capsid. Ogasawara et 

al. (2001) suggested that the UL25 protein interacted with the pentons of HSV-1 B capsids. 

The present study found that recombinant capsid-associated UL25 protein was resistant to 

2 M GuHCl treatment which removes the VP26 decorating protein, the pentons, the 

peripentonal triplexes and the interior scaffold proteins, and it seemed likely that only a 

small proportion of the UL25 protein associated with these capsids was bound to the 

pentons. However, almost two thirds of UL25 protein was removed from HSV-1 B capsids 

following treatment with 2M GuHCl compared to untreated HSV-1 B capsids and may 

indicate that the majority of HSV-1 B capsid-associated UL25 protein interacted with the 

pentons of these capsids. With a copy number of only 40 it is impossible for the UL25 

protein to associate with every hexon or every triplex in the HSV-1 capsid on a 1:1 basis. 

However, if the UL25 protein is distributed in a symmetrical manner within the HSV-1 

capsid then a copy number of 40 may indicate that the UL25 protein associates with a 

subset of hexons or triplexes. The 150 hexomeric capsomeres of the HSV-1 capsid are 

composed of 60 P- and C-hexon capsomeres and 30 E-hexon capsomeres and the 320 

triplex complexes are composed of 60 copies of subsets Ta, Tb, Tc, Td, Te and 20 of 

subset Tf (Zhou et al., 1994). Figure 1.7 shows the arrangement of these capsid 

components in one of the 60 asymmetric units of the icosahedral capsid. It is possible that 

with a copy number of approximately 40, two copies of the UL25 protein could associate 

with each one of the 20 Tf triplex complexes. Since the level of UL25 protein associated 

with HSV-1 C capsids is approximately 3-4 fold higher than that associated with HSV-1 B
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capsids (Sheaffer et al., 2001), the predicted copy number of the UL25 protein in C capsids 

is 120-160. The additional level of UL25 protein found in C capsids could either interact 

with the UL25 protein already present or bind to other sites, presumably associated with 

hexon or triplex subsets. Data presented in this study suggested that the increased levels of 

UL25 protein that were associated with recombinant capsids were more stable than UL25 

protein bound to HSV-1 B capsids. Although it is not known, it is also possible that the 

additional copies of UL25 protein present within C capsids are more stable than the UL25 

protein contained within B capsids. The increased stability of the UL25 protein within 

DNA-containing capsids would presumably serve to retain the newly packaged viral DNA 

within the capsid.

The HSV-1 UL25 protein appeared to associate with the cellular cytoskeleton and in 

this respect exhibited similar biological properties to the PRV UL25 protein (Kaelin et al., 

2000). The cytoskeletal structure is composed of actin filaments and microtubule elements 

and through the use of drugs that specifically depolymerise these components of the 

cytoskeleton Kaelin et al. (2000), demonstrated that the PRV UL25 protein specifically 

associated with the microtubule component of the cytoskeleton. Although not proven it is 

reasonable to conclude that the association of the HSV-1 UL25 protein with the 

cytoskeleton is also mediated through the microtubule component. The functional 

significance of this association is unknown. No interaction between the UL25 protein and 

the UL34 protein or cytoplasmic dynein has been demonstrated but the possibility that 

UL25 is somehow involved in the transport of the capsid-tegument structure to the nuclear 

pore cannot be excluded at this stage. A role in the early events of the HSV-1 life cycle has 

been described for the UL25 protein (Addison et al., 1984) and the finding that at least a 

portion of the UL25 protein was located on the external surface of the protein supported 

the idea that the UL25 protein may be involved in the intracellular transport of capsids. 

However, there is no additional evidence to support this hypothesis. It is clear that in HSV- 

1-infected cells the majority of UL25 is not bound to the cellular cytoskeleton since this 

protein appears to localise predominantly to the nuclei of cells under these conditions and 

it remains possible that the association of the UL25 protein with the cellular cytoskeleton 

in transiently transfected cells is simply an artefact.
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3.5 The Characterisation of 751204 and 751208 Mutants.

3.5.1 Introduction.

Two HSV-1 mutants, tel204 and tel208, that have ts mutations in the UL25 gene have 

been previously characterised (Addison et al., 1984). Ts1204 has two phenotypic defects at 

the NPT, a very early block in virus infection and another in the assembly of functional 

capsids. 751208 has a defect in virus assembly only. Initially, the early defect in tel204 

infection at the NPT was thought to be in the penetration of the virus into the host cell. 

This conclusion was based on two observations, first, infection of the mutant at high moi at 

the NPT prevented subsequent infection by wt HSV-1 but not wt HSV-2 and second, the 

early defect was overcome by treatment of the mutant-infected cells with polyethylene 

glycol, a membrane fusing agent. This latter finding was unable to be repeated and more 

recent work has shown that the UL25 protein is involved in DNA packaging and is 

associated with capsids in the cell nucleus (Ali et al., 1996, McNab et al., 1998). The 

defects in to 1204 and tel208 have therefore been reassessed and the base pair changes 

responsible for these ts mutations have been determined.

3.5.2 Sequence Analysis of the 7$1204 and 7s1208 Mutations.

The alteration in the DNA sequence responsible for the UL25 temperature sensitive 

lesions in te l204 and tel208 was determined by dideoxy sequence analysis (this work was 

carried out by I.M. McDougall, Institute of Virology). Previous marker rescue studies 

using cloned wt virus DNA had mapped each of the mutations to a small region within the 

UL25 gene and the corresponding sequence in the cloned mutant DNAs was sequenced. 

The tel204 phenotype resulted from a single base pair change in the UL25 gene leading to 

the substitution of glutamic acid residue 133 with a lysine. 751208 had an in-frame 

deletion of three base pairs in the coding sequences of the UL25 gene resulting in the loss 

of valine 161.

3.5.3 The Construction of 7s1249.

Ts+ virus isolated from cells transfected with te l204 viral DNA and a cloned fragment 

containing the wt UL25 gene behaved like wt virus at the NPT of 38.5°C. On the basis of 

this finding it was concluded that te l204 had a single ts lesion (Addison et al., 1984). It 

was subsequently discovered that at a higher NPT of 39.5°C the marker rescuant of tel204
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formed plaques at a low efficiency compared with wt virus, and therefore had more than 

one ts defect. A virus with the UL25 lesion only, £sl 249, was constructed by recombining 

the cloned te l204 EcoBl f  fragment containing UL25 gene into wt virus DNA (this work 

was carried out by Dr V.G. Preston, MRC Institute of Virology). The presence of the UL25 

mutation in the ts virus was confirmed by the failure of te l249 to recombine with tel204. 

Ts+ marker rescuants of tel249 (te+1249MR), generated by recombining wt BamUl u 

fragment into the te l249 DNA, formed plaques at 39.5°C and the PT of 32°C with the same 

efficiency as wt virus. 7k 1249 therefore contained a single ts lesion. Ts+ marker rescuants 

of te l208 (te+1208MR) behaved in a similar manner to wt virus at both temperatures, 

suggesting that this mutant had a single ts mutation.

3.5.4 The Protein Profile of 7sl249 and 7sl208 in Cells Infected at the NPT.

To examine the profile of viral polypeptide expression at the NPT, Vero cells were 

infected with wt virus, tel249, te l208 and marker rescuant viruses and labelled with 35S- 

methionine. Mock-infected and tel204-infected cells were also included as controls. At 20 

hours pi the cells were harvested, the protein content analysed by SDS-PAGE and the 

protein profile was visualised using fluorography (Figure 3.41). 7k 1249 and te l204 failed 

to synthesise any detectable viral polypeptides in cells infected at the NPT and the mutant- 

infected polypeptide profiles resembled that of the mock-infected control. This suggested 

that the ts lesion in the UL25 gene of tel204 was responsible for the lack of viral protein 

synthesis in cells infected with this virus at the NPT. This was supported by the finding 

that te+1249MR produced similar levels of viral polypeptides to that of wt virus-infected 

cells at the NPT. 7k 1208 synthesised similar levels of viral polypeptides in cells infected at 

the NPT compared to te+1208MR and wt virus-infected cells at the NPT. All viruses 

produced similar levels of viral polypeptides in cells infected at the PT.

3.5.5 The Entry of 7sl249 Into Cells Infected at the NPT.

To determine whether te l249 had an entry defect, an immunofluorescence assay was 

used to detect incoming capsids. Vero cells were infected with purified virions at a moi of 

50 pfu.ceir1 in the presence of cycloheximide to prevent de novo synthesis of viral 

polypeptides. At 1 hour pi the cells were fixed, permeabilised and probed with monoclonal 

antibody DM165. After incubation with an anti-mouse-FITC secondary antibody the cells 

were examined using the confocal microscope. Ts 1249 and te+1249MR capsids were 

clearly detected in the cytoplasm of Vero cells infected at the PT (Figure 3.42). Similarly,
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Figure 3.41 The Protein Profile of 7sl249 and 7sl208 in Cells Infected at the NPT.

Vero cells were either mock-infected (lanes 1, 6 and 10) or infected with prewarmed 

wt virus (lanes 2, 7 and 11), tel204 (lanes 3 and 12), tel249 (lanes 4 and 13), te+1249MR 

(lanes 5 and 14), tel208 (lanes 8 and 15) or te+1208MR (lanes 9 and 16) viruses using a 

moi of 10 pfu.cell'1. Virus was adsorbed at the PT of 36.5°C (lanes 10-16) or at the NPT of 

39.2°C (lanes 1-5) or 39.5°C (lanes 6-9) for 1 hour. Prewarmed media was added and at 5 

hours pi the plates were washed with prewarmed methionine-free media and prewarmed 

media containing 35S-methionine was added. Incubation was then continued at the 

appropriate temperature and at approximately 20 hours pi the cells were harvested. A 

sample was resolved on a 10% SDS polyacrylamide gel and the protein profile was 

visualised by fluorography.
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ts 1249 capsids were observed in the cytoplasm of Vero cells infected at the NPT (Figure 

3.43) and migrated to the nuclear periphery by 4 hours pi (data not shown). The behaviour 

of the mutant capsids was indistinguishable from that of the marker rescuant in this assay, 

suggesting that ts 1249 did not have a defect in cellular penetration or cytoplasmic transport 

of capsids to the nucleus.

3.5.6 Electron Microscopic Analysis of Mutant Virus-Infected Cells.

Vero cells, infected with ts 1249, wt virus or te+1249MR, were initially incubated for 

two hours at 31°C to allow the virus to enter cells and release its genome from the capsid. 

After this period the cells were transferred to 39.2°C. At 16 hours pi cells were harvested 

and thin sections were prepared for examination under the electron microscope. In the wt 

virus- and the marker rescuant-infected cells DNA-containing capsids were present in the 

cell nuclei and in vacuoles in the cytoplasm (Figure 3.44a and c). Enveloped capsids were 

also observed in the cytoplasm and between the inner and outer nuclear membrane. In cells 

infected with tel249 few DNA-containing capsids were detected in the nuclei of cells but 

no DNA-containing capsids were observed in the cytoplasm. Capsids lacking DNA were 

also present in the nuclei, most of which contained a scaffold but some empty capsids were 

evident (Figure 3.44b).

Vero cells infected with tel208, wt virus or te+1208MR were incubated for 16 hours at 

39.5°C, harvested and thin sections prepared for electron microscopic analysis. Cells 

infected with tel208 did not contain as many capsids as those infected with wt or 

te+1208MR virus (Figure 3.44d and e). The predominant capsid form was a capsid 

containing a cleaved internal scaffold, few DNA-containing capsids were observed and 

these and the other capsid forms were detected only in the cell nuclei. At the high NPT of 

39.5°C, wt virus capsids package DNA less efficiently than at lower temperatures and 

fewer DNA-containing capsids were observed in wt virus-infected cells or te+1208MR- 

infected cells at this temperature than at 39.2°C. Despite the reduction in efficiency of viral 

DNA encapsidation, it was clear that cells infected with the wt virus or te+1208MR 

contained significantly more DNA-containing capsids than those infected with the mutant 

virus. In contrast to the findings with te l208, enveloped DNA-containing capsids were 

observed in the cytoplasm, in vacuoles and between the inner and outer nuclear membranes 

in cells infected with tel208MR or wt virus at the NPT.

Addison et al. (1984), previously found that at 6 hours post infection (pi) at the NPT 

both te l204 and tel208 produced low numbers of capsids in the nuclei of cells in
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Figure 3.44 Electron Microscopic Analysis of Mutant Virus-Infected Cells.

Vero cells were infected with prewarmed M208, te+1208MR or wt virus at 39.5°C 

using a moi of 20 pfu.cell'1 for each virus. Virus was adsorbed for 1 hour and cells 

incubated for 16 hours pi at the same temperature. Ts 1249 or te+1249MR were adsorbed to 

Vero cells for 2 hours at 36.5°C, and DC 10 media, prewarmed to 42°C, was added to the 

virus-infected cells which were transferred to 39.2°C for 16 hours pi. At 16 hours pi the 

cells were harvested and fixed in 2.5% glutaraldehyde. The cells were treated with osmium 

tetroxide and dehydrated by a series of alcohol washes before embedding in resin. Thin 

sections were prepared, stained with uranyl acetate and lead citrate and examined under the 

electron microscope, a). Wt virus, b). &1249, c). /‘s+1249MR, d). &1208, e). te+1208MR.
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comparison with wt virus. In our experiments we used a higher moi of 20 instead of 5 

pfu.celf1 and examined the cells at a later time of 16 hours pi. Using these conditions 

larger numbers of tel204 and tel249 capsids were observed at the NPT after the virus- 

infected cells were shifted up from the PT. It is therefore likely that the low number of 

capsids present in the virus-infected cells resulted from an incomplete reversal of the early 

defect rather than a defect in the assembly of capsids. Interestingly, low numbers of tel208 

capsids were observed in the nuclei of virus-infected cells at the NPT suggesting that this 

mutant, like tel204 and tel249, may have some impairment at an early stage of infection. It 

is unlikely that UL25 has a direct role in capsid assembly since large numbers of virus 

capsids are assembled in the nucleus in the absence of UL25 (McNab et al., 1998).

3.5.7 The Ability of 7sl249 and 7sl208 to Package HSV-1 DNA in Cells Infected at 

the NPT.

A HSV-1 DNA packaging assay was utilised to examine the level of viral DNA 

packaged by the te mutants in cells infected at the NPT. To overcome the early defect 

exhibited by te l249 in cells infected at the NPT, the cells were adsorbed at the PT of 36°C 

for 2 hours. This was done in the presence of cycloheximide to prevent viral polypeptide 

synthesis which may have resulted in the production of low levels of functional UL25 

protein and to synchronise mutant, wt virus and marker rescuant infections. At 0 and 24 

hours pi samples representing total and packaged HSV-1 DNA were prepared and digested 

with BamHl prior to electrophoresis through an agarose gel. The electrophoresed DNA 

was transferred to Hybond-XL membrane and hybridised to 32P-dGTP labelled HSV-1 

Bam g fragment. The membrane was exposed to a phosphorimager screen to obtain the 

image shown by Figure 3.45. The data were quantified and the approximate level of DNA 

packaged by each virus in cells infected at the NPT was calculated. Table 3.5 demonstrates 

that tel 249 packaged 1.2% of replicated HSV-1 genomic DNA in cells infected at the NPT 

compared to 25.9% of the marker rescuant virus DNA. This was consistent with the 

observation that few DNA-containing capsids were observed in the nuclei of cells infected 

with tel249 at the NPT (Figure 3.44b). 7s+1208MR packaged 11.4% of replicated HSV-1 

genomic DNA in cells infected at the NPT. The lower level of DNA packaged by 

te+1208MR compared to te+1249MR in cells infected at the NPT provided evidence that at 

a higher NPT of 39.5°C wt virus capsids package DNA less efficiently than at lower 

temperatures and explains why fewer DNA-containing capsids were seen in the nucleus of 

cells infected at 39.5°C than at 39.2°C (Figure 3.44). 7s 1208 only packaged 0.45% of
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Figure 3.45 Both 7sl249 and 7sl208 Package a Low level of HSV-1 DNA in Cells 

Infected at the NPT.

Vero cells, infected with ts 1249 or ts 1249MR virus at a moi of 10 p f u . c e l l w e r e  

incubated for two hours at 36°C in the presence of 100 pg .m f1 cycloheximide. After virus 

adsorption, the cycloheximide was washed out and the virus-infected cells were incubated 

at the NPT of 39.2°C. Vero cells were infected with to 1208 or /s' 1208MR virus at a moi of 

10 pfu.cell'1 at 39.5°C, virus was adsorbed for 1 hour and incubation continued at this 

temperature. The cells were harvested at 0 and 24 hours pi and samples representing total 

DNA and DNase resistant DNA (packaged DNA) were prepared. DNA samples were 

digested with BamH\ and the fragments were resolved by electrophoresis through a 0.8% 

TBE-agarose gel. The DNA was transferred to Hybond-XL membrane and probed with
32“P-dGTP labelled HSV-1 Bam g fragment, using Southern hybridisation. Lanes 1, 9, 

/sl249 0 hours pi. Lanes 2, 10, /.v 1249 24 hours pi. Lanes 3, 11, /s'l249M R  0 hours pi. 

Lanes 4, 12, /s+1249MR 24 hours pi. Lanes 5, 13, /s i208 0 hours pi. Lanes 6, 14, / s i208 

24 hours pi. Lanes 7, 15, /s+1208MR 0 hours pi. Lanes 8, 16, /s41208MR 24 hours pi.



Virus Tsl249 7s+1249MR 7sl208 7s+1208MR

DNA Packaged 
at NPT.

1.2 % 25.9 % 0.45 % 11.4 %

Table 3.5 The Level of DNA Packaged by 7sl249, 7sl208 and Marker Rescuant 

Viruses in Cells Infected at the NPT.

The data illustrated in Figure 3.45 were quantified using the Quantity One software 

package (BIO-RAD). The level of HSV-1 DNA packaged by each virus is expressed as a 

percentage of the total HSV-1 DNA synthesised by that virus at the NPT.
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replicated HSV-1 genomic DNA in cells infected at the NPT and accounted for the low 

level of DNA-containing capsids observed in the nuclei of cells infected with this virus at 

the NPT (Figure 3.44d). The DNA packaging process of /sl208 in cells infected at the 

NPT was not only compromised by the ts mutation in the UL25 protein but also by the 

constraint imposed by the higher NPT. It is therefore likely that both ts mutant viruses have 

a similar DNA packaging defect in cells infected at the NPT.

3.5.8 The Ability of 7sl249 and 7sl208 to Package Amplicon DNA in Cells Infected at 

the NPT.

An amplicon packaging assay was utilised to examine whether the ts mutants could 

package plasmid DNA. Vero cells were transfected with pSAl, an HSV-1 amplicon 

containing a packaging signal (the 200 bp HSV-1 uc-DRl-Ub fragment) and an origin of 

replication (539 bp of HSV-1 Oris) in a pAT153 background. The cells were superinfected 

with virus at the NPT and at 21 hours pi samples representing total and packaged amplicon 

DNA were prepared and digested with EcoRl and Dpnl. The pSAl amplicon contains 

Dpn 1 recognition sites which, when methylated, are resistant to cleavage by this enzyme. 

The transfected pSAl amplicon is unmethylated as a result of propagation in bacteria 

deficient in the methylation process and viral replication of the HSV-1 amplicon within the 

mammalian host cell leads to the methylation of the Dpnl sites. Therefore, digestion with 

Dpnl serves to eliminate amplicon DNA that originated from the transfection event 

leaving only HSV-1 replicated amplicon DNA. The digested DNA samples were resolved 

by electrophoresis through a agarose gel, transferred to Hybond-XL membrane and probed
O'}

with P-dGTP labelled pAT153 using Southern blot hybridisation. The membrane was 

exposed to a phosphorimager screen to obtain the image shown by Figure 3.46. In contrast 

to the UL28 null mutant virus (gCB) which failed to package any amplicon DNA, both 

/s i249 and /s i208 packaged amplicon DNA although not as efficiently as wt- or marker 

rescue viruses.

3.5.9 Discussion.

Sequence analysis demonstrated that the defect responsible for the failure of /si 204 and 

/s i249 to synthesise viral polypeptides in cells infected at the NPT resulted from a single 

base pair change in the UL25 gene leading to the substitution of glutamic acid residue 133 

with a lysine. Early indications suggested that /s i204 was defective in host cell penetration 

and assembly of functional capsids. However, an immunofluorescence assay demonstrated
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Figure 3.46 Both 7sl249 and 7sl208 Package Amplicon DNA in Cells Infected at the 

NPT.

Vero cells were transfected with pSAl plasmid. At 12 hours post-transfection the cells 

were adsorbed with wt virus, /sl249  or /sf 1249MR at a moi o f 10 p fu .ce lf1 for two hours 

at 36°C in the presence o f  100 p g .m f1 cycloheximide. After adsorption, the cycloheximide 

was washed out and the virus-infected cells were incubated at the NPT o f 39.2°C. Cells 

were infected with /sl208, /s+1208MR, gCB or wt virus at a moi o f 10 p fu .ce lf1 at 39.5°C, 

virus adsorbed for 1 hour and incubated at the NPT o f 39.5°C. At 21 hours pi the cells were 

harvested and samples representing total DNA and DNase resistant DNA (packaged DNA) 

were prepared, digested with EcoRl and Dpn\, and the fragments were resolved by 

electrophoresis through a 0.8% TBE-agarose gel. The DNA was transferred to Hybond-XL 

membrane and probed with ,2P-dGTP labelled pAT153 using Southern hybridisation. 

Lanes 1, 9, pSAl alone. Lanes 2, 10, pSAl and gCB. Lanes 3, 11, pSAl and wt virus. 

Lanes 4, 12, pSAl and ts 1249. Lanes 5, 13, pSAl and ts 1249MR. Lanes 6, 14, pSAl and 

wt virus. Lanes 7, 15, pSAl and / s i208. Lanes 8, 16, pSAl and /s+1208MR.
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that tel249 was in fact able to penetrate cells and that te l249 capsids were transported to 

the nuclear periphery in a manner indistinguishable from te+1249MR capsids. These results 

suggested that tel249 was defective in a process subsequent to capsid transport to the 

nuclear periphery, probably in the uncoating of the viral DNA at the nucleus. Electron 

microscopic analysis demonstrated that a two hour incubation at the PT prior to incubation 

at the NPT was sufficient reverse the early defect and allow capsid assembly to take place. 

However, a HSV-1 DNA packaging assay revealed that the level of HSV-1 DNA packaged 

was reduced in cells infected with tel249 at the NPT. This was consistent with the low- 

level of DNA-containing capsids observed in the nuclei of cells infected with te l249 at the 

NPT. Therefore, in addition to the early defect, the ts lesion in the UL25 gene also 

appeared to affect the DNA packaging process. The precise role of UL25 in the HSV-1 life 

cycle is not known but UL25 has been proposed to function in retaining the newly 

packaged viral DNA within the capsid (McNab et al., 1998). The process of uncoating the 

viral DNA is poorly understood but it possible that proteins involved in the retention of 

packaged DNA may also be involved in the release of DNA from the capsid. The evidence 

indicated that the early defect exhibited by tel249 may be in the uncoating of the viral 

DNA at the nucleus. If at the NPT the ts lesion within the UL25 gene induces an altered 

conformation of the protein it is possible that this would result in the inability of UL25 to 

facilitate the release of the viral DNA from the capsid. This study has therefore provided 

the first piece of evidence illustrating the involvement of an HSV-1 DNA packaging 

protein in an early phase of the virus life cycle.

751208 had an in-frame deletion of three base pairs in the coding sequences of UL25 

resulting in the loss of valine 161. Earlier studies indicated that te l208 was defective in the 

assembly of functional capsids in cells infected at the NPT. In contrast to te l249, tel208 

synthesised similar levels of viral polypeptides in cells infected at the NPT compared to 

cells infected with wt virus or te+1208MR at the NPT and electron microscopic analysis 

demonstrated that te l208 assembled capsids in cells infected at the NPT. However, a HSV- 

1 DNA packaging assay demonstrated that the level of HSV-1 DNA packaged was reduced 

in cells infected with tel208 at the NPT in comparison to te+1208MR-infected cells under 

identical conditions. This was consistent with the low-level of DNA-containing capsids 

observed in the nuclei of cells infected with tel208 at the NPT. These results suggested 

that the ts lesion in the UL25 gene of te l208 affected the DNA packaging process.

Both tel249 and tel208 packaged a reduced amount of amplicon DNA in cells infected 

at the NPT compared to wt- and marker rescue virus whereas a UL28 null mutant virus did
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not package any detectable level of amplicon DNA. Since the UL28 protein is a 

component of the putative terminase complex it is likely that the UL28 null mutant virus 

could not process the replicated concatameric amplicon DNA into unit length molecules 

necessary for packaging into the viral capsid. The ability of both te l249 and te l208 to 

package a reduced amount of amplicon DNA in cells infected at the NPT suggested that 

the UL25 protein functions in a later stage of the DNA packaging process. Additionally, 

the ts mutant viruses appeared to package amplicon DNA more efficiently than HSV-1 

DNA in cells infected at the NPT. The reason for this is unknown but it is possible that the 

smaller amplicon DNA (4.4 Kb) is retained more efficiently than the considerably larger 

HSV-1 genomic DNA (152 Kb) in capsids containing the mutated form of the UL25 

protein and in this respect supported the idea that the UL25 protein is involved in 

stabilisation/retention of packaged HSV-1 DNA (McNab et al., 1998).
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4.1 The UL25 Protein.

During the initial stages of the project, various recombinant protein expression systems 

were investigated with a view to obtaining large amounts of soluble UL25 protein in an 

easily purifiable form. Recombinant UL25 protein was expressed in E. coli as MBP- and 

thioredoxin-fusion proteins and polyhistidine-tagged UL25 was also expressed in E. coli as 

well as in recombinant baculovirus-infected S/21 cells. Thioredoxin-UL25 and His-UL25 

proteins produced in E. coli were almost completely insoluble and modification of the 

expression conditions, for example, reducing the temperature and altering the IPTG levels, 

did not increase the solubility of these proteins. The insoluble nature of these proteins was 

probably a result of the formation of inclusion bodies, consisting of insoluble aggregates of 

recombinant protein within the bacterial cell. In contrast to His-UL25 protein produced in 

bacteria, the majority of His-UL25 protein expressed in recombinant baculovirus-infected 

SJ21 cells was soluble and this may have been due to more optimal translation conditions 

within the eukaryotic insect cell. A significant proportion of MBP-UL25 protein 

synthesised in bacteria was soluble and this may have been due to the MBP-fusion partner 

which has been reported to increase the solubility of recombinant proteins in E. coli 

(Maina et al., 1998). Despite the extensive optimisation of the His-Tag Purification 

Procedure (Novagen), purified His-UL25 protein precipitated out of solution at 

concentrations far below that required for many of the procedures involved in the 

biochemical analysis of proteins. Therefore, in order to gain an insight into the secondary 

structure of the UL25 protein, several online bioinformatic software tools were utilised. 

These analyses demonstrated that a putative coiled-coil region was located within the N- 

terminal 120 amino acids of the HSV-1 UL25 protein which was conserved in homologues 

from alpha- beta- and gammaherpesviruses. The N-terminal portion of the UL25 protein is 

thought to bind HSV-1 DNA and may also be capable of homo-oligomerisation 

(Ogasawara et al., 2001). Since coiled-coil structures have been shown to mediate these 

types of interactions, it is possible that the predicted coiled-coil region of the UL25 protein 

is also involved in these functions (Akhmedov et al., 1999, Krammerer et al., 1999, 

Procopio et al., 1999). The areas of high sequence conservation identified within the UL25 

protein could be analysed using site-directed mutagenesis which may help to determine the 

functional relevance of these regions. This approach could also be used to examine 

whether the presence of the putative coiled-coil structure is necessary for the proposed 

functions of the UL25 protein such as capsid association, DNA binding and genome 

packaging.
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Purification of the UL25 protein to a sufficient concentration and purity would allow 

the biochemical characterisation of the protein and could provide accurate data concerning 

the secondary structure of the protein. Providing UL25 could be purified to the 

concentration and purity required to produce pure crystals of the protein, X-ray 

crystallographic analysis would generate a detailed three-dimensional structure of the 

protein. Alternatively, the three-dimensional structure of purified UL25 protein fragments 

could be obtained using NMR imaging. This technique has the advantage of being able to 

analyse the structure of a protein whilst in solution and does not rely on the often 

complicated and lengthy procedure of obtaining protein crystals. However, structural 

motifs generated by the interaction of two or more distant regions of the protein (such as 

discontinuous epitopes) will not form if the amino acid residues involved are located 

within different fragments. Additionally, it is also possible that the protein fragments may 

not fold correctly to generate a tertiary structure identical to that of the full-length protein.

4.2 Interactions Between UL25 and the HSV-1 Capsid Proteins.

In 2001, Ogasawara et al. presented several lines of evidence which indicated that the 

HSV-1 UL25 protein interacted with both the HSV-1 VP19C and VP5 capsid proteins. An 

interaction between UL25 and VP19C/VP5 would be consistent with several of the 

observed biological characteristics of the UL25 protein. Firstly, since VP19C contains a 

nuclear-localisation signal, the association of UL25 with VP19C in the cytoplasm of HSV- 

1-infected cells would result in the transport of the UL25 protein to the nucleus, in keeping 

with the observed nuclear localisation of the UL25 protein during wt virus-infection. 

Secondly, an interaction between UL25 and VP19C or VP5 would presumably facilitate 

the binding of the UL25 protein to the capsid. In the first set of experiments performed by 

Ogasawara et a l  (2001) the UL25 protein was immobilised on a PVDF sheet and 

incubated with a sample of HSV-1 virions which had been solubilised with 8 M urea. The 

virus proteins were renatured by stepwise dialysis and the PVDF sheet was washed to 

remove unbound proteins. Virion proteins that remained attached to the PVDF sheet, 

presumably through an interaction with the UL25 protein, were eluted with a buffer 

containing SDS, resolved by SDS-PAGE and transferred to a nitrocellulose membrane. 

These proteins were visualised on the membrane using Ponceau S stain which revealed the 

presence of six proteins of 150, 120, 80, 52, 34 and <34 kDa. The stained protein bands 

were excised and digested with trypsin and the resulting peptides were purified by reverse- 

phase high-pressure liquid chromatography and subjected to amino-terminal sequencing.
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The 150 and 34 kDa proteins were identified as VP5 and VP23 respectively. At this stage 

the identity of the 52 kDa protein was not known but the results of subsequent experiments 

suggested it was probably VP19C (see below). The identities of the remaining proteins 

were unknown although the 80 kDa protein was thought to be a component of the 

tegument (see below). It is possible that during the renaturation of the capsid proteins, 

partial or entire capsid structures were assembled as the proteins refolded to their native 

conformation. Ogasawara et al. (2001) believed that the apparent interaction between 

UL25 and VP23 was not specific and was mediated through an interaction with the VP19C 

component of re-assembled triplex complexes.

In the next set of experiments, Ogasawara et al. (2001) used far-Westem blot analysis 

to demonstrate that the UL25 protein interacted with both the VP5 and VP19C proteins. 

Samples of purified B capsids were resolved by SDS-PAGE and capsid proteins were 

transferred to a PVDF membrane. The membrane was washed with Tris-buffered saline to 

renature the capsid proteins which were then probed with biotin-labelled UL25. The UL25 

protein appeared to interact with capsid proteins of 150 and 52 kDa which, based upon 

their size, were believed to be VP5 and VP19C respectively. To examine the interaction of 

UL25 with envelope and tegument components, detergent-treated virions were divided into 

envelope and capsid-tegument fractions by centrifugation. Samples of these fractions were 

analysed as before and in addition to VP5 and VP19C, the UL25 protein also appeared to 

interact with a tegument protein of 80 kDa. The major drawback in the experimental 

procedures described above were the lack of appropriate controls. Ogasawara et al. (2001) 

were unable to demonstrate that the denatured proteins immobilised on the membranes had 

folded back to their native conformation following procedures to renature them. It was 

therefore possible that the observed association between the UL25 and VP5 and VP19C 

proteins in the far-Westem blot analysis did not represent a genuine interaction. If this 

group had demonstrated that the two triplex proteins interacted with each other in the far- 

Westem blot experiments, this would have indicated that functional interactions were 

established under the experimental conditions used and would have provided additional 

evidence to support the observed interaction between UL25 and VP19C and VP5.

To determine that the UL25 and VP19C proteins interacted in vivo, Ogasawara et al. 

(2001) examined the intracellular localisation of these proteins in cells transiently 

expressing UL25 and/or VP19C. This group demonstrated that GFP-tagged UL25 protein 

localised primarily to the cytoplasm in cells expressing this protein alone. In cells that were 

cotransfected with plasmids encoding GFP-UL25 and unmodified VP19C proteins, a small
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proportion of the GFP-UL25 protein appeared to localise to the nuclei. Ogasawara et al. 

(2001) concluded that GFP-UL25 formed a complex with VP19C in the cytoplasm of 

cotransfected cells which was transported to the nuclei by virtue of the nuclear localisation 

signal contained within the VP19C protein. However, the apparent interaction between 

GFP-UL25 and VP19C appeared far from conclusive since, in the presence of VP19C, the 

majority of GFP-UL25 still localised to the cytoplasm. The present study found that none 

of the major HSV-1 capsid proteins, either alone or in combination, had any effect on the 

intracellular localisation of the UL25 protein in transiently cotransfected cells. This was 

consistent with observations made by Kaelin et al. (2000) who claimed that the PRV 

VP23, VP5, VP22a and VP24 capsid proteins were unable to translocate the PRV UL25 

homologue to the nuclei of transiently cotransfected cells. Additionally, Dr V. Preston has 

transiently expressed GFP-tagged UL25 protein in Vero cells and has found that, in the 

presence of the VP19C protein, GFP-UL25 did not appear to localise to the nuclei 

(unpublished observations).

The present study also examined the ability of the UL25 protein to interact with the 

triplex proteins using a chromatography assay (data not shown). Purified His-UL25 protein 

was bound to a nickel-agarose column prior to the addition of the triplex proteins. Since 

the VP19C protein interacts with the VP23 protein in the cytoplasm of HSV-1-infected 

cells, the VP23-VP19C protein complex applied to the His-UL25-bound column was a 

relatively accurate refection of the status of the VP19C protein found in the cytoplasm of 

HSV-1-infected cells. The nickel-agarose resin was washed, and the His-UL25 protein was 

removed from the column using a buffer containing 1 M imidazole. The proteins contained 

within the column elute were resolved by SDS-PAGE, transferred to nitrocellulose 

membrane and probed with an antibody specific for the VP23 polypeptide to determine 

whether triplex complexes were specifically retained on the His-UL25 column. The level 

of VP23 protein in the elute from the His-UL25 column was not significantly higher than 

that from a column composed of nickel-agarose alone. This result suggested that under 

these conditions, the UL25 protein did not interact with the triplex proteins.

The present study found that the His-UL25 protein appeared to associate with 

herpesvirus capsids generated in the recombinant baculovirus system in the absence of 

other HSV-1 DNA cleavage and packaging proteins. This finding indicated that the capsid- 

binding properties of UL25 were mediated by an interaction with one or more of the capsid 

proteins listed in Table 1.2. The His-UL25 protein also appeared capable of binding to 

VP5/19C particles suggesting that the association of the UL25 protein with the HSV-1
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capsid was facilitated through an interaction with VP5 and/or VP19C and, in this respect, 

supported the findings of Ogasawara et al. (2001). It was possible that the association of 

UL25 with VP5/19C particles was not specific and represented insoluble aggregates of 

UL25 that either co-purified with, or were trapped within the VP5/19C particles. To 

address this possibility, the HSV-1 UL9 ori binding protein was examined for the ability to 

interact with VP5/19C particles to determine whether a non-capsid associated HSV-1 

protein could also bind to these capsid-like structures (data not shown). However, in S/21 

cells coinfected with a UL9-expressing recombinant baculovirus and one expressing the 

VP5 and VP19C proteins, the UL9 protein was not expressed and this was probably a 

consequence of preferential transcription of the UL19 and UL38 genes under these 

conditions. Thus, the apparent association of the UL25 protein with VP5/19C particles 

remains questionable.

Immunoprecipitation analysis of HSV-1-infected cells identified a protein of 

approximately 55 kDa that appeared to interact with UL25 and this protein was probably of 

viral origin. The 50 kDa VP19C protein represented an attractive candidate for the 

unknown UL25-interaction partner especially since data described in the present study 

suggested UL25 could interact with virus-like particles composed of only the VP5 and 

VP19C proteins. At the time the immunoprecipitation experiments described in the present 

study were carried out, there was a very limited supply of polyclonal antibody specific for 

VP19C. However, there now exists a ready supply of VP19C-specific monoclonal 

antibody (generated within the Institute of Virology) which could be used in a Western blot 

assay to determine whether the protein that interacted with UL25 in these experiments was 

VP19C.

In summary, the means by which the UL25 protein associates with capsids is not yet 

fully understood and until an interaction between UL25 and a capsid component is 

identified conclusively, the data indicating that this ability is mediated through an 

interaction with VP5 and/or VP19C must be interpreted cautiously. Provided the UL25 

protein is specifically associated with HSV-1 recombinant capsids, the construction of 

UL25 gene truncations may help to identify the region(s) of the protein responsible for 

capsid-association using the recombinant baculovirus capsid assembly system. However, 

this type of analysis would provide no further information regarding the protein-protein 

interactions which facilitate this association.
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4.3 The Copy Number and Location of the UL25 Protein in HSV-1 Capsids.

The copy number of UL25 per HSV-1 B capsid was estimated to be approximately 40 

and this number was consistent with the published figure of 42±17 (Ogasawara et al., 

2001). A copy number of 40 immediately indicated that, at least in B capsids, the UL25 

protein was unlikely to be located at a unique position. However, it is known that different 

levels of UL25 protein are found associated with different capsid types; the lowest amount 

is found in procapsids and the highest is found in C capsids (Sheaffer et al., 2001). Since 

there is approximately four to sixfold less UL25 protein present in procapsids than in HSV- 

1 B capsids, it is possible that UL25 is found at one position prior to DNA packaging and 

that additional copies of UL25 bind to the capsid at different sites following DNA 

encapsidation to seal/stabilise the packaged genome. Alternatively, the low levels of UL25 

protein associated with procapsids examined by Sheaffer et al. (2001) may have resulted 

from a non-specific interaction between UL25 and this capsid type. Therefore, it is 

possible that the UL25 protein may only associate with the capsid during, or after capsid 

maturation. It is important to note that the association of UL25 with the capsid is not solely 

dependent on the DNA packaging process since UL25 is also present within B capsids, 

albeit in reduced amounts compared to C capsids. The amount of UL25 protein associated 

with recombinant capsids was similar to the level found in HSV-1 C capsids and it has 

been suggested that the scaffold structure may regulate the amount of UL25 protein that is 

able to bind to capsids (Sheaffer et al., 2000). The presence of a scaffold structure within 

the capsid may serve to prevent the premature association of UL25 protein. The loss of the 

scaffold structure during DNA packaging could therefore facilitate the binding of UL25 

protein to the capsid to ensure that the DNA is packaged efficiently. Accordingly, the 

elevated levels of UL25 protein found associated with recombinant capsids may have 

resulted from the reduced level of scaffold present in many of these capsids.

An accurate quantitation of the copy number of the HSV-1 DNA cleavage and 

packaging proteins within the different capsid types needs to be performed. This could be 

done by comparing the amount of specific protein within a known number of capsids to 

standardised amounts of the same protein as determined by amino acid hydrolysis. The 

analysis could be controlled using the same procedure with one of the capsid proteins for 

which the copy number is already known. The protein samples used for amino acid 

hydrolysis must contain protein purified to homogeneity and His-UL25 protein isolated 

according to the method outlined in section 2.3.0.2 would require additional purification 

prior to this type of analysis. The UL6 protein is present in approximately equal amounts in
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all capsid types, including procapsids and the putative HSV-1 terminase, UL15, is also 

believed to bind to the UL6 protein (Dr C. White, MRC Institute of Virology, unpublished 

observations). Thus, this protein represents a potential candidate for a HSV-1 encoded 

portal protein analogous to that of the ds DNA bacteriophages. Using densitometric 

analysis to determine the relative amounts of capsid proteins contained within a sample of 

B capsids resolved by SDS-PAGE and visualised by Coomassie blue staining, Ogasawara 

et al. (2001) indicated that the UL6 protein was present in 44±13 copies per B capsid. This 

finding strongly suggested that UL6 was not located at a unique position within the HSV-1 

capsid and implied that there may be several sites within the capsid available for DNA 

packaging. Presumably, only one of these potential DNA encapsidation sites is utilised per 

packaging reaction. According to this model, the DNA packaging machinery must be able 

to discriminate against capsids that are undergoing DNA encapsidation in order to prevent 

multiple packaging reactions occurring on the same capsid. Following the initiation of 

DNA packaging, it is possible that the UL25 protein binds to DNA encapsidation sites that 

are not in use to ensure that only one DNA packaging reaction occurs per capsid. The very 

low level of HSV-1 DNA encapsidated in cells infected with te l249 at the NPT may have 

therefore resulted from the inability of this virus to stop DNA packaging commencing at 

additional sites on the capsid. This model predicts that shorter than unit-length genomes 

would be found within capsids located in the nuclei of cells infected with a UL25 null 

mutant virus and this is consistent with observations made by Dr N. Stow following his re­

examination of KUL25NS (manuscript submitted for publication).

Indirect immunofluorescent analysis of incoming capsids during the very early stages 

of HSV-1 infection indicated that at least a part of the UL25 protein was located on the 

capsid exterior. This result was consistent with data presented by Kaelin et al. (2000) who 

demonstrated that at least a portion of the PRV UL25 homologue was present on infecting 

PRV capsids. This group went on to show that the PRV UL25 homologue specifically 

bound the microtubule element of the cellular cytoskeleton. On the basis of these findings, 

Kaelin et al. (2000) concluded that the PRV UL25 homologue was involved in the 

intracellular transport of infecting capsids. The present study also found that at least some 

of the HSV-1 UL25 protein localised to the cellular cytoskeleton of transiently transfected 

cells although the functional significance of this interaction is unknown. It is possible that 

the UL25 protein functions in the intracellular transport of capsids and the apparent 

location of at least a portion of the protein on the capsid exterior would place it in an ideal 

position to influence this process. However, it should be noted that in cells infected at the

129



General Discussion

NPT, incoming ts 1249 capsids were not impaired in transport to the nucleus. Presumably, 

it would be easier for additional copies of UL25 protein to bind to the capsid following 

DNA packaging if the protein was located on the capsid exterior. However, since the 

scaffolding protein is extruded from the procapsid before, or during the DNA packaging 

process, there obviously exists a mechanism whereby protein molecules can traverse the 

procapsid shell prior to capsid maturation. It is therefore possible that the majority of the 

UL25 protein is located within the capsid shell with only a small proportion of the protein 

found on the capsid exterior. The only antibody available which bound to UL25 in this 

context was a rabbit polyclonal antibody raised against denatured GST-UL25 fusion 

protein. The UL25-specific mouse monoclonal and polyclonal antibodies raised against 

soluble His-UL25 failed to react with infecting HSV-1 capsids. The ability of the UL25- 

specific rabbit polyclonal antibody to bind to the region of the UL25 protein on the capsid 

exterior may have therefore resulted from a rabbit-specific immune response and/or the 

form by which the antigen was presented to the animal. Alternatively, it was possible that 

the UL25-specific monoclonal antibodies only recognised a limited portion of the UL25 

protein and that this part of the protein was not located on the capsid surface.

Recombinant capsid-associated UL25 protein was found to be resistant to 2 M GuHCl 

extraction whereas HSV-1 B capsid-associated UL25 was not. Since 2 M GuHCl treatment 

has been reported to remove the VP26 decorating protein, the pentons, peripentonal 

triplexes and scaffolding proteins from HSV-1 capsids (Newcomb & Brown, 1991), it is 

possible that the UL25 protein interacted, at least partly, with one or more of these capsid 

elements of HSV-1 B capsids but not recombinant capsids. With an estimated copy number 

of 40, the UL25 protein could potentially interact with every penton of the capsid. 

Alternatively, if the UL25 protein associates with either the triplex and/or the hexon 

elements of the HSV-1 capsid, a copy number of 40 indicated that UL25 may only be 

capable of interacting with a subset of these capsid components. Using immunogold 

labelling techniques to identify the location of HSV-1 B capsid-bound anti-UL25 

antibodies, Ogasawara et al. (2001) presented data which indicated that the UL25 protein 

associated with the penton component of this capsid type. However, these data were far 

from conclusive and suffered from the lack of appropriate controls such as capsids 

assembled in the absence of UL25. This study and the present study also found that the 

majority of UL25 protein was removed from HSV-1 B capsids following 2 M GuHCl 

treatment and these observations supported the idea that the UL25 protein may, at least in 

part, associate with the pentons and/or peripentonal triplexes of these capsids.
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Cryoelectron microscopy and three-dimensional image reconstruction have been used 

to examine HSV-1 capsids at a resolution of 8.5 A (Zhou et al., 1998). Although this 

process has been used to examine the molecular structure of the HSV-1 capsid in great 

detail, it suffers from one major drawback: This technique employs icosahedral averaging 

to obtain the final structure of the HSV-1 capsid and as a result, capsid-associated 

structures that do not exhibit icosahedral symmetry are not resolved. The HSV-1 DNA 

cleavage and packaging proteins have not been detected in capsids using this technique and 

this is probably because they are either asymmetrically ordered and/or present at very low 

copy numbers within the capsid. The present study found that capsids generated using the 

recombinant baculovirus system contained elevated levels of UL25 protein. These capsids 

were analysed using cryoelectron microscopy and three-dimensional image reconstruction 

to a resolution of approximately 30 A to determine whether the UL25 protein was 

icosahedrally ordered (data not shown). However, the results from preliminary experiments 

indicated that the UL25 protein could not be located in capsids examined under these 

conditions and this may have been because either the resolution was too low or the UL25 

protein was not symmetrically arranged within the capsid.

4.4 The Factors Required to Localise the UL25 Protein to the Nucleus During Wt 

Virus-Infection.

The nuclear localisation of the UL25 protein during wt HSV-1 infection was not 

dependent on capsid assembly nor was it dependent on the presence of the VP5 or VP23 

proteins. These findings suggested that UL25 might be transported to the nuclei of wt 

virus-infected cells by virtue of an interaction with one or more viral-encoded proteins 

other than VP5 and VP23. To determine whether the absence of VP19C protein affected 

the distribution of UL25 protein in virus-infected cells, the intracellular localisation of 

UL25 was examined in cells infected with a UL38 null mutant (Person & Desai, 1998). 

Preliminary experiments revealed that this mutant appeared to have an early replication 

defect in non-complementing cells since it synthesised reduced levels of UL25 and the 

capsid proteins in comparison to wt virus (data not shown). It is therefore likely that this 

virus contained at least one additional mutation. The low level of UL25 protein synthesised 

in non-complementing cells infected with this virus made it difficult to conclusively 

identify the intracellular location of this protein under these conditions. In an attempt to 

overcome this problem, UL38 null mutant virus-infected Vero cells were incubated for up 

to 24 hours pi to allow higher levels of the UL25 protein to accumulate within the cell.
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However, high levels of cpe were observed in mutant-infected cells following extended 

periods of incubation. The cpe was characterised by the rounding of virus-infected cells 

and it became virtually impossible to distinguish the cytoplasm from the nuclei in these 

cells. Therefore, no additional information concerning the factors required for the nuclear 

localisation of the UL25 protein in wt virus-infected cells was gained from these 

experiments. Since UL25 is a capsid-associated protein (Ali et al., 1996, McNab et al., 

1998), the HSV-1 major capsid proteins were examined for their ability to translocate the 

UL25 protein to the nuclei of transiently cotransfected cells. As mentioned previously, 

Ogasawara et al. (2001) presented evidence which suggested that the VP19C protein was 

capable of directing the UL25 protein to the nuclei of cells expressing these two proteins. 

Using a similar assay, the present study found no evidence to suggest that any of the HSV- 

1 capsid proteins could relocate the UL25 protein to the nuclei of transiently transfected 

cells. It is possible that the UL25 protein localised to the nuclei of HSV-1-infected cells 

through a different network of interactions from that used by the capsid proteins (as 

illustrated by Figure 1.11). The HSV-1 tegument-associated protein, UL14, is able to 

translocate the VP26 minor capsid protein to the nuclei of transiently cotransfected cells 

and represents an additional pathway through which a capsid protein is transported to the 

nucleus (Yamauchi et al., 2001). Since UL14 has no effect on the intracellular distribution 

of the UL25 protein (Yamauchi et al., 2001), a different pathway is presumably involved 

in the transport of UL25 protein to the nuclei of HSV-1 infected cells. It is evident that at 

least some of the HSV-1 capsid-associated DNA cleavage and packaging proteins are not 

dependent on the capsid proteins for their localisation to the nuclei of virus-infected cells. 

The UL28 protein is only directed to the nuclei following a functional interaction with the 

UL15 protein in the cytoplasm of cells expressing these two proteins (Koslowski et al., 

1999, Abbotts et al., 2000). Since the UL25 protein is found associated with B capsids 

assembled in cells infected with mutants of HSV-1 that lack the UL6, UL15 or UL28 

genes, it seems likely that UL25 does not require these proteins to either localise to the 

nucleus, or to interact with capsids (Yu & Weller, 1998). In summary, the protein-protein 

interactions responsible for the nuclear localisation of the UL25 protein during HSV-1 - 

infection have yet to be identified and until a genuine UL38 null mutant virus is 

constructed, it is not possible to exclude the VP19C protein.

The cause of the altered intracellular distribution of UL25 protein in cells infected with 

HSV-1 A44 at the NPT is unknown but this phenotype may be linked to formation of 

syncytia. The intracellular localisation of the UL25 protein in cells infected with HSV-1
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A44 at the NPT was similar to that observed for tegument proteins such as UL34, which 

also localise to the perinuclear region of HSV-1-infected cells (Roller et al., 2000, Ye et 

al., 2000, Reynolds et al., 2001). It is possible that, in wt HSV-1-infected cells, the UL25 

protein may act as an anchor for the attachment of tegument proteins to the capsid, and this 

hypothesis is supported by two lines of evidence. Firstly, as mentioned previously, 

Ogasawara et al. (2001) claimed that the UL25 protein interacted with an unidentified 

tegument protein of approximately 80 kDa in size. Secondly, data presented by both the 

present study and by Kaelin et al. (2000), suggested that at least a portion of the UL25 

protein was located on the capsid exterior. The UL25 protein may have been retained to the 

perinuclear region of cells infected with HSV-1 A44 at the NPT through an aberrant 

interaction with a tegument protein which resulted in the transport of decreased amounts of 

UL25 protein to the cell nuclei. Alternatively, since syn strains of HSV-1 are often more 

cell-associated and release fewer virions from infected cells than syn+ strains, it is possible 

that the perinuclear distribution of the UL25 protein in cells infected with HSV-1 A44 at 

the NPT reflected an accumulation of outgoing virus capsids. Indirect immunofluorescent 

analysis of HSV-1 A44-infected cells was carried out using UL25-specific monoclonal 

antibody 166 which did not appear to recognise incoming viral capsids during the early 

stages of HSV-1-infection. However, this finding does not necessarily indicate that this 

antibody did not bind to outgoing capsids. Since this study presented evidence which 

indicated that UL25 may be involved in the viral uncoating process, it is possible that the 

epitope on the UL25 protein, to which monoclonal antibody 166 binds, is masked through 

either a conformational change in the UL25 protein or an alteration in the nature of the 

protein-protein interactions involving UL25 during capsid transport to the nuclei of virus- 

infected cells. This study cannot rule out the possibility that a ts lesion was located within 

the UL25 gene of HSV-1 A44 which affected the ability of this protein to be directed to the 

nucleus at the elevated temperature and/or any potential interaction between UL25 and a 

component of the tegument. To investigate this possibility further, the UL25 gene could be 

cloned from HSV-1 A44 and inserted into a HSV-1 ts+ 17 syn+ background. If the UL25 

protein exhibited a similar phenotype in cells infected with this virus at the NPT, this 

would suggest that there was a ts lesion within the UL25 gene of HSV-1 A44.

4.5 Other Interactions Involving the UL25 Protein.

As mentioned previously, Ogasawara et al. (2001) presented evidence which suggested 

that the UL25 protein interacted with an 80 kDa tegument protein. The product of the
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UL46 gene, a 78 kDa protein termed VP11/12, is a tegument phosphoprotein reported to 

modulate the activity of the VP 16 a-transinducing factor, and based upon its size, 

represents a potential candidate for the 80 kDa tegument protein which Ogasawara et al. 

(2001) claimed to interact with the UL25 protein. It is possible that the VP 11/12 protein is 

anchored within the maturing virion through an interaction with the UL25 protein, 

although there is no additional evidence to support this hypothesis. The present study 

identified an unknown protein of approximately 55 kDa which appeared to interact 

specifically with the UL25 protein in an immunoprecipitation assay (Figure 3.39). The 

HSV-1 UL21 protein is a component of the capsid/tegument and is dispensable for HSV-1 

replication in cultured cells (Baines et al., 1994). This protein has a predicted molecular 

weight of approximately 57 kDa and the PRV UL21 homologue is a capsid protein that has 

been implicated in the DNA cleavage and packaging process of this virus (de Wind et al., 

1992, Wagenaar et al., 2001). This protein therefore represents an attractive candidate for 

the unidentified protein of approximately 55 kDa that interacted with UL25 in the 

immunoprecipitation assay shown in Figure 3.39. However, the UL21 protein appears to 

be extensively modified post-translationally in HSV-1-infected cells and Westem-blot 

analysis of purified HSV-1 virions revealed that UL21 is actually between 62-64 kDa in 

size (Baines et al., 1994). Nevertheless, it is still necessary to investigate whether or not 

the unknown protein is UL21.

Ogasawara et al. (2001) presented evidence which suggested that the UL25 protein was 

capable of binding HSV-1 DNA. This observation was particularly relevant to the 

proposed function of the UL25 protein. It seems logical that a protein which has been 

implicated in sealing the packaged genome within the capsid could fulfil this function 

through a direct interaction with the DNA to effectively anchor the genome within the 

capsid. Ogasawara et al. (2001) prepared samples containing purified His-UL25 with and 

without HSV-1 or baculovirus DNA. The samples were incubated overnight at 4°C to 

allow any potential protein-DNA interactions to form and electrophoresed through an 

agarose gel. Separated, full-length genomic DNA, or a corresponding region of the gel if 

the sample lacked DNA, was extracted and analysed for the presence of UL25 by 

immunoblotting. Under these conditions, the His-UL25 protein appeared to bind HSV-1 

DNA. The His-UL25 protein did not bind to baculovirus DNA in these assays and this 

finding suggested that UL25 bound to HSV-1 DNA in a sequence-specific manner. 

However, since this group used full-length HSV-1 genomic DNA, no conclusion could be
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formed regarding the specific sequences to which the UL25 protein recognised. The most 

obvious candidate sequence for recognition by the UL25 protein is the a sequence since 

this sequence provides the cis-acting signals necessary for cleavage and packaging of the 

genome and clearly these experiments need to be repeated using this sequence as a probe. 

The ability of the UL25 protein to bind to the HSV-1 a sequence was investigated by the 

present study using an electrophoretic mobility shift assay. This experiment was 

compromised by the necessity to perform the DNA-binding reaction in low-salt conditions. 

Purified His-UL25 protein was maintained in a buffer containing 1 M NaCl and the protein 

precipitated out of solution under the low-salt DNA-binding reaction conditions.

4.6 The Further Characterisation of 7sl249 and 7sl208.

Through the use of an indirect immunofluorescence assay which detected incoming 

capsids very early in the infection process, this study established that the early defect 

exhibited by tel249 was not in the cellular penetration process. Since incoming tel249 

capsids did not appear impaired in transport from the plasma membrane to the nuclear 

membrane, it seemed likely that this virus was defective in uncoating the viral genome at 

the nuclear pore. It is not known precisely how the viral DNA is uncoated but this event 

does not require de novo RNA or protein synthesis indicating cellular and/or virion 

polypeptides are required for this process (Hochberg & Becker, 1969). The binding of 

capsids to nuclear pore complexes (NPCs) and subsequent uncoating of the viral genome 

has been reconstituted in an in vitro system described by Ojala et al. (2000). They 

demonstrated that the presence of tegument proteins such as VP 1-3, VP 13/14, VP 16 and 

VP22 were essential for capsid-NPC binding. Additionally, importin p and Ran, two 

cellular protein components of the nuclear import machinery, were found to be involved in 

the binding of capsids to NPCs and this process was independent on the presence of 

metabolic energy. However, ATP was required for the NPC-bound capsids to release their 

genomes. No uncoating was observed in the absence of NPC-binding which suggested that 

this event triggered a conformational change within the capsid that facilitated the release of 

the viral genome.

The early defect exhibited by te l249 appeared identical to the phenotype exhibited by 

another HSV-1 ts mutant, teB7, in cells infected at the NPT (Batterson et al., 1983). This 

virus contained a ts lesion within the UL36 gene which encodes the tegument protein VP1- 

3 and in cells infected at the NPT, teB7 virions were able to bind to the NPC but failed to
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release their DNA. VP 1-3 is a large protein (270 kDa) which is present in the virion in 

approximately 12 copies (McNabb & Courtney, 1992). This protein is also believed to 

constitute part of the tegument material observed around the pentons of isolated capsids 

(Zhou et al., 1999). Since the viral DNA is thought to exit the capsid through the penton 

channel (Newcomb & Brown, 1994), it is possible that VP 1-3 interacts with components of 

the NPC to initiate the change that allows DNA to exit from the capsid. Exactly how the 

UL25 protein is able to influence this process is not known but several possibilities exist. 

Firstly, since additional copies of UL25 are thought to bind to the capsid following 

scaffold disassembly and DNA packaging, it is possible that UL25 must be removed from 

the capsid prior to release of the genome. In cells infected with te l249 at the NPT the ts 

lesion within the UL25 gene may render the protein incapable of disassociating from the 

capsid. Secondly, the ts lesion within the UL25 gene may alter the conformation of the 

protein at the NPT such that the protein blocks the route of DNA exit from capsid by steric 

hindrance. Thirdly, the UL25 protein may interact with VP 1-3 in the HSV-1 virion and this 

interaction may be either altered or disrupted in cells infected with tel249 at the NPT 

resulting in the inability of VP 1-3 to facilitate the uncoating process. Lastly, the UL25 

protein may be involved in the docking of the capsid to the NPC either directly or through 

an interaction with importin p and/or Ran proteins. In tel249-infected cells at the NPT 

these associations may be suppressed resulting in a defect in the uncoating process. 

However, it is important to note that although the evidence presented in this study 

indicated that te l249 was unable to release DNA from the capsid in cells infected at the 

NPT, this was not known for certain. The use of the in vitro uncoating assay described by 

Ojala et al. (2000) could determine whether te l249 is impaired in genome release at the 

NPT.

Electron microscopic analysis of tel249-infected cells following a shift-up from the PT 

to the NPT demonstrated this virus also exhibited a defect in the DNA packaging process. 

This phenotype was similar to that of tel208 which was also impaired in DNA packaging 

in cells infected at the NPT. The phenotype of these viruses in cells infected at the NPT 

was different to that of KUL25NS-infected non-complementing cells (McNab et al., 1998). 

McNab et al. (1998) demonstrated that the UL25 null mutant did not package any viral 

DNA in infected non-complementing cells and the preponderance of A capsids in the 

nuclei of KUL25NS-infected non-complementing cells led these workers to conclude that 

the viral DNA was cleaved and packaged, but was not retained within the capsid.
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However, Dr N. Stow has re-examined the phenotype of KUL25NS during infection of 

non-complementing cells and has found that this mutant can package a low-level of HSV-1 

and amplicon DNA (manuscript submitted for publication). Both ts 1249 and tel208 also 

encapsidated a low-level of HSV-1 and amplicon DNA in cells infected at the NPT and 

exhibited a similar phenotype to that of KUL25NS in infected non-complementing cells 

(Dr N. Stow, MRC Unit of Virology). However, it is possible that in cells infected with the 

ts viruses at the NPT, mutant UL25 was still partially functional and this would explain the 

observation that the mutant viruses were able to package a low level of genomic DNA. The 

amount of UL25 protein associated with B capsids isolated from cells infected with tel249 

at the NPT has subsequently been examined and was approximately four-fold lower than 

that of wt B capsids (Dr V. Preston, unpublished observations). This finding suggested that 

the DNA packaging defect exhibited by te l249 in cells infected at the NPT was due to the 

inability of the UL25 protein to interact with the capsid and indicated that tel 249 acted as a 

null mutant at the NPT. Therefore, data presented in this study concerning the behaviour of 

tel249 and tel208 in cells infected at the NPT, and the findings of Dr N. Stow relating to 

the phenotype of KUL25NS in infected non-complementing cells, indicated that the UL25 

protein did not function solely in the retention of encapsidated DNA and had a more direct 

role in the DNA packaging process from that suggested by McNab et al. (1998). Exactly 

what this role is remains unknown but since the UL25 protein is not required for cleavage 

of concatemeric viral DNA it seems likely that this protein functions at a late stage in the 

packaging process. The UL25 protein can be considered an essential facilitator of the DNA 

packaging process; maximal levels of viral DNA are packaged in its presence while 

minimal amounts are encapsidated in its absence. The UL25 protein probably functions to 

stabilise the highly condensed viral genome during the DNA packaging process possibly 

through a direct interaction with the DNA.

The HSV-1 UL25 protein appears to perform a similar role to that of the bacteriophage 

lambda gpD protein (reviewed by Murialdo, 1991). This protein functions at a late stage in 

the lambda DNA packaging process when approximately 82% of the genome has already 

been packaged into the prohead. At this point, the prohead expands in a process closely 

resembling the structural transformation of HSV-1 procapsids, and creates sites in the 

capsid shell into which gpD is incorporated. The association of gpD with the maturing 

prohead appears to stabilise the head, possibly through a direct interaction with the outer 

layers of the DNA within the phage head, and allows packaging of the remaining 18% of 

the genome. Additionally, lambda null mutants of gpD accumulate large numbers of empty
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phage heads, which have undergone prohead expansion, within infected bacterial cells in a 

manner analogous to the increased levels of A capsids observed in non-complementing 

cells infected with KUL25NS (McNab et al., 1998). Thus, there are clear parallels in the 

apparent functions of lambda gpD and HSV-1 UL25 and continued research into the HSV- 

1 DNA cleavage and packaging process is required in order to assign a specific function to 

the UL25 DNA packaging protein.
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