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SUMMARY

In this thesis univariate and multivariate statistical inference is examined and then used
to model the joint distributions of the environmental winds, waves and currents recorded by the
DB1 data buoy. This model is then used to examine the return period responses of a tension leg

platform using a linearised frequency domain solution.

The thesis is arranged into eight chapters each of which has its own nomenclature,
conclusions, tables, and figures. The references use a name and year system and are given at the

end of the thesis.

Chapter 1 reviews the contents of the thesis and outlines the analysis methodologies used
to synthesise a joint probabilities model for wind, wave, and current magnitudes and directions.
The use of this model in a level III, time-variant reliability analysis is then discussed to
illustrate the two different design philosophies used by the American Petroleum Institute and
the United Kingdom Department of Energy.

Chapter 2 summarises the wind, wave and current data recorded by the United Kingdom
Offshore Operators (UKOOA) DB1 data buoy. This data has been assembled into a
multivariate dataset and screened to assess if there is any underlying structure in the data. The
marginal distributions of the population and monthly componentwise maxima are then

examined to assess if the data result from the mixture of more than one population.

Chapter 3 reviews both parametric and intrinsic estimators for univariate samples of data.
The desirable characteristics of an estimator are examined and then used to select maximum
likelihood (ML) as the best estimator for this project. One major advantage of this method is
that the sampling covariance matrix for the model parameters can easily be estimated from
~the sample information matrix. The ML estimators and sample information matrices for the
Weibull and Generalised extreme value distributions are then developed and applied to both
the DB1 data and a sample of structural response time series. A comparison of population and
extreme asymptotic methods is then made to determine which approach is most suited to

environmental datasets. The results indicate population modelling is reasonable when the
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correct model is used and that the asymptotic approach can lead to poor estimators in the small

sample case.

Chapter 4 examines both intrinsic and parametric estimators for multivariate samples of
data. The multivariate kernel density estimator is discussed and then used with the bivariate
pairs of DB1 data to confirm the multivariate sample is unstructured in the statistical sense.
The transformation of the marginal DB1 data to near-Normal distributed variates is then
examined and extended to the multivariate case using the method of maximum likelihood.
This method is applied to bivariate and multivariate sets of the DB1 data and the results are
then used to select the best set of transformation parameters. The selection criterion for the best
parameters is the accuracy of the extreme value predictions from the population model. The
results demonstrate the transformed Normal estimator has margins that give accurate
predictions for the 50 year return period values. In addition, when the modal value of say zero-
up-crossing period conditioned on significant height is checked against the scatter plots it is
found the results are in close agreement. The chapter then concludes with a review of the

currently available multivariate extreme value models.

Chapter 5 deals with the modelling of directional probabilities and in particular uses
circular statistical theory with standard directional wave analysis theory to infer the
parameters of cosine and von Mises models of directional spreading. The robustness of simply
equating the angular moments of the data to the angular moments of a model is examined using
simulation. The results indicate the second angular moments are more robust to noise in the buoy
response. Consequently they are used with the directional spectra recorded in seastates with
significant wave heights greater than 6.0 metres to determine if the spreading is more narrow
in extreme seas than predicted by the Hasselmann and Mitsuyasu models. This comparison
indicates that the Hasselmann study is applicable to extreme seas.

Chapter 6 describes the frequency domain model of a tension leg platform that is used in a
subsequent reliability study. The stochastic wind, stochastic first and second order wave, and
steady current loading calculations are explained and then a series of parametric sensitivity
studies are discussed. This identifies the winds, and waves as the primary causes of the
response of the platform. The response calculation considers all six degrees of freedom and

allows for the coupling of some modes of motion.

Chapter 7 brings together all of the previous chapters into a time-variant reliability
analysis of the tension leg platform developed in chapter 6. The effects of spectral shape, wind
speed, and directional spreading on the within seastate exceedance probabilities for a variety
of thresholds are examined to assess which parameters have a significant influence on the

levels of structural reliability. The multivariate transformed normal model for the DB1 data

Xix



is then used in the reliability calculation to determine the motion and tendon stress response
levels with return periods of 50 years. These values are then compared with the responses that
result from a design event approach in which the wind speed, wave height, and current speed
are set at their 50 year return period values.

Chapter 8 contains the final discussion and conclusions and ends with some

recommendations for future research work.
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1. INTRODUCTION

The philosophy used to design an offshore structure can influence the lifetime levels of
operational risk and structural reliability ( see Madsen et al (1986) ) owing to the large
uncertainties in the loading, strength, and modelling. These uncertainties have been examined
by Miller (1987) who concludes the only rational way of setting acceptance levels for safety is
to use reliability based methods. An early attempt at using probabilistic methods to set
environmental criterion for the design of a tension leg platform is described by Leverette et al
(1982). They examined the joint behaviour of wind speed and significant wave height using
simple methods of analysis which unfortunately do not generalise to the complete multivariate
case. Other models for joint probabilities have been proposed: for example, Pugh & Vassie
(1980) examined the joint distribution of tidal and storm induced surge elevations, and
Mathisen & Bitner-Gregersen (1990a) examined the joint distribution of significant wave
height and wave zero-up-crossing period ( which as we shall see is one of the most difficult
pair of variates to model ). Finally, it is worth noting the work reported in the Exploration &
Production Forum (1985 ).

The rules and recommendations of several classification societies and regulatory
authorities are currently used to design mobile or compliant offshore structures: most of them
have been critically reviewed in Miller (1987) from the point-of-view of loading uncertainties.
The United Kingdom, Department of Energy (1990) guidance for designing offshore installations
implicitly uses a design event approach in which the environmental wind, wave, and current
loads are determined using concurrent 50 year return period extreme values for the wind speed,
wave height, and current speed. The wave zero-up-crossing period used in the analysis can be
determined from wave steepness limits. Whilst it is simple, this approach will lead to
populations of structures with widely varying levels of structural reliability since it is the

combined wind, wave and current load effect which is of interest.



If the use of design Guidelines or Recommendations are to result in populations of structures
with near uniform levels of reliability then the structure must be designed so that the -
component and system reliabilities for each design check ( displacements, yield strength,
interaction equations, collapse mechanism etc. ) are the same. The American Petroleum
Institute: Recommended Practice for tension leg platforms - RP2T (1987) - recognises this fact

and states:

Environmental criteria should be associated with a recurrence interval of the response

of the structure.

This criterion is stipulated because RP2T recognises there may be different design events which
give rise to the worst responses in different parts of the structure. For example, the return
period tendon stresses may be induced by one of several combinations of wind speeds, wave
heights, zero-up-crossing periods, tide levels and so on. The disadvantages of the criterion
however are that it requires a detailed joint probabilities model for the environmental
variables; and the analysis required for the conceptual and detailed design is more complex. An
example of how environmental criterion can be set for floating structures is given by Leverette et

al (1982) for the Hutton tension leg platform.

For Tension leg platform design several cases must be checked to ensure fitness-for-purpose
during the operational life. For example, RP2T recommends: project, system condition,
environment, and safety criteria all be examined. This thesis concentrates on modelling
methodologies for the environmental criteria which are classified as: extreme, reduced
extreme, normal, and calm. A joint probabilistic model for these cases must therefore apply
both to the population as well as the extremes whilst being sufficiently general to deal with
large numbers of random variables. The aim of this thesis is to define a methodology for the
statistical inference of a probabilistic model of the environmental parameters used in a

reliability study.

There are several approaches to reliability calculations which are generally classed as
levels 1, IT or III, see Thoft-Christensen & Baker (1982). This work examines how a level III
joint probabilities model can be synthesized; using data measured by the United Kingdom
Offshore Operators data buoy DB1 as an example. This dataset was chosen because it contains
hourly ten minute mean wind, hourly five minute mean current, and three hourly heave, pitch
and roll measurements, see Freathy et al (1982). These values were recorded continuously for a

period of four years, thus they provide sufficient data for a detailed statistical model.
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In conventional deterministic design 'fitness-for-purpose’ is checked using design codes or
recommendations in which thresholds are set for the responses. For example, members
sustaining tension forces are designed so that the peak expected stress during the design life
does not exceed the yield stress divided by some factor of safety. In fact most structural
reliability problems can be formulated in terms of loading and response variables.

The loading on an offshore structure arises from the combination of several correlated, time
varying, environmental processes. The historical development of data measurement
programmes, see Tucker (1991), has resulted in the development of a seastate based analysis
methodology for marine and offshore structures in which the wind, wave and current stochastic
processes are assumed to be stationary for some finite duration. Clearly none of the processes
are stationary in the strict sense, see Prince-Wright (1991a), however most seastates can be
assumed to be weakly stationary ( in their mean, and variance ) for durations of say three

hours. This point was confirmed recently by Labeyrie (1990).

The adoption of a seastate based model enables steady-state solutions for the responses of
compliant systems to be calculated using frequency, or time, domain analysis procedures. The
problem of calculating exceedance probabilities, or its complement survivor probability, can

then be formulated as a short-term/long-term problem which is expressed in integral form as

Po=[.. [P(x)f(x)dx [1.1]

In this time-variant integral the within seastate ( short-term ) probability of the response
exceeding some level & is given by P,((f) where X is the vector of environmental loading

variables. The second term in the integral, which is also used by Bjerager et al (1988), is
effectively a weighting function for the probability of occurrence of the set of variables X .
The integral is similar to the Battjes (1970) summation used for the determination of extreme
wave height and enables the long-term survivor or exceedance probabilities to be calculated for
the threshold level. In Ch.7 it is shown how this method can be generalised using the time-
invariant reliability method, see Madsen et al (1986), to obtain failure probabilities for

systems with uncertain strength.

One disadvantage of reliability methods is the frequent lack of suitable parametric models
for a given set of loading and strength variables. The statistical modelling problem is in fact

more difficult for the environmental variables since it is extremes of the combined loading

4



chawr ] Introduction

process which result in crossings of the design thresholds. On the other side of the equation the
strength models generally have some well defined lower bounds imposed by the use of quality
control in the fabrication yard. Models for the strength uncertainty do not therefore need to be
accurate in the upper tails of the distribution since at the time of a threshold exceedance, or
failure, the strength will be at or near its mean value. Another reason why strength
uncertainty is more simple to model is the variables are generally independent. One
complication which does arise for some structures is time degrading strength. This is
particularly important for cargo ships which are often poorly maintained and susceptible to
damage during operation. In such cases a time-variant strength model is preferable, see Shi
(1991).

This thesis does not examine the modelling of strength and fatigue uncertainties in any
detail. However, it should be borne in mind that the statistical methods used for the
environmental winds, waves, and currents, are also applicable to any set of variables, and in
fact the transformation modelling method discussed below is in many ways better suited to

strength uncertainty.

Equation [1.1] can be reduced to three separate problems. The first is estimation of the
short-term exceedance probability for the threshold level, conditioned on the occurrence of the
set of variables X. The second is modelling the joint density for the environmental parameters
f(x). And third, the solution of the integral, which for most practical purposes will have
several dimensions. Although the intention was to concentrate on modelling the joint density
f(x) for use in the reliability integral, a new approach to solving the integral developed out
of the use of data transformation methods. The importance of this new approach is most easily
understood by comparing it with the contemporary methods used to model f(x) and the
solution methods usually used to solve the integral.

Several joint probability models for winds, wave and currents have been proposed. For
example, Bitner-Gregersen & Haver (1991), Haver & Winterstein (1990), and Turner & Baker
(1988) all give models for the North Sea. The formulations for these models were to some
extent determined by the use of the Rosenblatt transformation (see Ch.4, Appendix C) in the
level III reliability method outlined in Ch.7. In this method the joint density function is
defined by a marginal distribution and then a series of conditional density functions, each of
which are modelled using parametric functions that have been fitted to the conditioned data
using some form of estimation process. Whilst this approach is simple it requires the data be
conditioned and then used to fit empirical functions to relate, for example, the parameters for

the wind speed distribution to the level of the seastate.



The primary disadvantage of the conditional modelling approach is that there is no
theoretical method for selecting the best way of defining the joint density. For example, do we
use wind speed or significant wave height as the marginal distribution off which all the other
variables are conditioned? A second disadvantage of the method is that there is no way of
assessing the shape, scale and location parameter uncertainties for the fitted models; this
makes it difficult to test whether one model is more appropriate than another. Finally, the
last disadvantage is the Rosenblatt method itself which is computationally expensive and

usually requires a series of numerical integrations.

Before attempting to model the multivariate sample, univariate estimation methods
were reviewed. Univariate statistical estimators using intrinsic kernel density methods, and
parametric maximum likelihood methods were developed with a view to their extension to the
multivariate case. The normally subjective nature of comparing models was reduced by first
defining those characteristics which exemplify a good estimator and then by selecting the
‘best’ estimation process for the problem. The method of maximum likelihood is selected for
both its overall performance and the ease with which it can be generalised to the multivariate
case. In addition, it is shown how the information matrix can be used to quantify the sampling
uncertainty of the estimated model parameters. This theory is of importance to designers
wishing to specify confidence limits or partial safety factors for design event environmental

parameters.

Population and asymptotic methods were then compared as estimators of design return
period values for winds, waves, and currents. This comparison shows that the population
modelling approach can be used reliably given the correct population model: this is significant
because the statistical uncertainty estimated using the information matrix is much smaller in
the large sample case. Furthermore, the assumption of asymptotic Normality for the

parameter sampling distribution is only accurate for large samples.

In this work two parametric approaches to modelling the multivariate density were
examined. The first used the asymptotic multivariate models of Tiago de Oliveira (1980), and
Tawn (1990). In their work they use the concept of marginal M-ordering in which
componentwise maxima are extracted from the vector observations. This approach is suitable
for some applications, like for example the hydrology problem of predicting the probability
that no floods occur at any of several sites during a year. However, because the events are

virtual events, some of which may be physically inadmissible, it is questionable whether



these models are suited for use with compliant structures. This is currently the subject of
research by J.A Tawn at Sheffield University.

The second approach is to use population models for the joint data: however, unlike the
conditioned models outlined above, a transformation approach was used in which the
parameter estimation is performed using the full sample. There are several good estimation
procedures for a model's parameters: moments, least squares, maximum likelihood are
examples. In this work, the method of maximum likelihood was selected as the best overall
estimator because in the large sample case: its estimates have the optimal sampling variance
obtainable from any estimator; and the estimates are generally unbiased. Two further
advantages are that it can be generalised easily to the multivariate case and furthermore
estimates of the parameter covariance matrix can be obtained simply from the Hessian matrix
of the log-likelihood at the maximum likelihood point. '

The heave pitch, and roll time series recorded by the DB1 data buoy were converted to co-
and quadrature spectral densities to enable the directional characteristics of the wave process
to be identified. During the initial stages of this study in 1988 it was unclear whether or not
the spreading models developed by Hasselmann et al (1980), and Mitsuyasu et al (1975) were
satisfactory for use with extreme waves. One oil company stated their doubts that any
significant amount of spreading was present and consequently it was decided to examine the
directional spectra recorded by the DB1 in those seastates with significant wave heights
greater than 6.0 m. The directional wave analysis mostly follows the work of Cartwright
(1963), Longuet-Higgins et al (1963), and kuik et al (1988). However, the use of Mardia's (1972)
detailed account of circular statistics resulted in a solution for the parameters of a von Mises
distribution which has been presented as an alternative to the conventional cosine half angle
model.

The repeated use of the time-variant reliability method of probabilistic analysis enables
us to calculate the response levels with a given return period, as required by the API
Recommendations. This method has been used with: a transformed Normal model of the joint
density for the winds, waves, and currents recorded by the DB1 data buoy; and a tension leg
platform defined by Tan & de Boom (1981).

The first order wave loading on the TLP was modelled using a combination of a Morison
loading model for the pontoons and Chakrabarti (1987) closed form solutions for the columns.
Second order slowly varying wave drift forces were calculated only for the columns using the
simple MacCammy and Fuchs method as modified by Chakrabarti (1984). The responses of the

7



TLP were calculated for all six degrees of freedom taking into account all coupling between
modes of motion. The first order wave farce and motion transfer functions were then compared
with the results from a comparative study in which several organisations had analysed the
same structure, see Eatok-Taylor & Jeffereys (1986). This comparison demonstrated the loading
and response model was accurate for all but the high frequency waves which are diffracted by
the structure.

The wind and current forces on the TLP were also modelled. The Ochi (1988) wind gust
spectrum was used to model the stochastic wind forces and a simple single degree of freedom
oscillator was used to determine the in-line responses of the platform. The current forces on the
platform were taken as constant during the three hour duration seastates. Sensitivity studies
were performed to assess the effects of varying the significant wave height, zero-up-crossing
period, wind speed, and current speed. This demonstrated the responses were small for currents,
and significant for the gusting wind and wave drift. The influence of currents in the reliability
analysis was found to be small, as expected for this type of structure, however it should be borne
in mind that the current forces on shallow water fixed structures are significant, see Department
of Energy (1988).

The motion and tendon stress responses of the TLP corresponding to a 50 year return period
were examined in both unidirectional and directional seas. These response levels were
calculated using the time-variant reliability method and the DB1 data joint probabilities
model. The results were then compared with a notional design event approach in which the
responses were calculated for concurrent 50 year wind speed, significant wave height, and
current speed. Two zero-up-crossing periods were used based on the upper and lower wave
steepness limits recommended by the Department of Energy Guidance notes. The results of the
comparison show the design event approach results in response estimates which are some
15~25% higher than the responses predicted by the reliability approach. This comparison is
however rather artificial since like is not being compared with like, the real importance of the
reliability method is as a calibration tool which can be used to quantitatively assess the

importance of variations in one or more random variables.



1.1. MATHEMATICAL NOTATION
The mathematical notation used in this thesis is defined at the beginning of each
chapter, however, some general rules apply. To unambiguously identify a quantity in an

equation we must differentiate between:

. deterministic values

. randomly selected samples from a population

. specified variables for a population

. vectors of deterministic values

. vectors of samples

. vectors of random variables

. expected values

. sample means

. maximum likelihood estimates for model parameters
. kernel estimates

. sample estimates of statistics and model parameters

The conventions adopted in the subsequent chapters are as follows:

. a deterministic value or sample is written in plain, lower case

. a random variable is written in plain,uppercase

. a vector of samples or deterministic values is written in bold,lowercase

. a vector of random variables is written in bold,uppercase

. a maximum likelihood or kernel estimate has the caret ( X ) symbol on top
. a sample estimate has the tilde ( X ) symbol on top

Random variables which are independent, identically distributed are denoted iid and the

condition if and only if is denoted as iff .

We use the terms survivor probability for Pr(X < x) = F;(x) and exceedance probability for
Pr(X > x)=1-F(x).



Chapter 2

ANALYSIS OF THE DB1 DATASET
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NOMENCLATURE

wind direction

current direction
transfer function
significant wave height
component maxima event
number of samples
number of variables
spectral density

zero— up — cros sin g period
mean wind speed

mean current speed
random vector

observed sample on vector X

ith sample of the jth variable
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2. INTRODUCTORY REMARKS: ANALYSIS OF THE DB1
DATASET

This chapter summarises an analysis of the joint wind, wave and current data recorded
by the United Kingdom Offshore Operators Association (UKOOA) data buoy DBI during its
operation in the South Western approaches to the United Kingdom. The primary objective here
is to describe the multivariate data set used in the statistical modelling chapters of this
thesis. The ultimate aim is to produce a multivariate parametric model suitable for use in a
probabilistic analysis of a tension leg platform. This results in two requirements: first, a
descriptive joint statistical model of the observed wind, wave and current populations; and
second, a joint model for estimating the wind, wave and current extremes, or return period

values.

The first stage of any multivariate analysis is to assess if the data are structured in the
statistical sense. By structured we mean there is some functional relationship between one or
more of the random variables. The simplest way of identifying structure in a multivariate
sample is to examine the bivariate scatter plots for each pair of variables. The scatter plots
also give an indication of the dependence between the pairs which provides a qualitative
check on the results from the multivariate analysis in Ch. 4.

The DB1 data buoy was deployed at location 48° 42' 55" N, 8° 58' 15" W during the
period from June 1978 until March 1982. In total the buoy was operative for a period of 45
months during which time the data return was 'fair' for the heave displacement and wind
speed, and poor for the pitch angle, roll angle, and current speed. The dataset was selected
after consultation with the Institute of Oceanographic Sciences (IOS); essentially, it is one of
the few datasets which is not confidential and contains wind, wave and current measurements

taken in the same location and at approximately the same time. The raw ( unprocessed ) data
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was analysed using a FORTRAN time and frequency domain program which uses some of the
standard time series analysis theory discussed in Tucker (1991). A more detailed account of the
methods used for this work is given in Prince-Wright (1991a).

2.1 VARIABLES MEASURED BY THE DB1 DATA BUOY.

In total, the buoy recorded both meteorological and oceanographic environmental data

for a period of four years, during which time it recorded 32981 hourly summaries of:

Meteorological -
10 minute mean wind speed (8.7m elev.) ()
3 second gust wind speed ()
Wind direction (2)
Barometric pressure (2)
Air temperature )
Oceanographic -
Sea surface temperature (2)
Surface current (3m below surface) (1)

And 9034 three hourly 20 minute duration time series of:

Oceanographic -

Heave 0y
Pitch (M
Rall (1
Compass heading (1

The numbers in brackets indicate the numbers of sensors used to record the data, and hence the
level of redundancy in the system. A more detailed description of the specification of the

recording instruments is given in Table 2.1, and Freathy et al (1982).

2. 1.1 SPECIFICATION OF THE DB1 RECORDING INSTRUMENTS

The general arrangement of the DB1 data buoy is shown in Fig. 2.1. The hull and
mooring arrangements were designed to provide wave following characteristics and the ability
to survive a 50 year return period wave. The specification of the meteorological and

oceanographical sensors is reproduced from an IOS report in Table 2.1 . Of particular note is the
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field accuracy of 10.2m for the heave elevation, and 11° for the pitch and roll. Note also
that the currents are recorded as a five minute mean taken about the half hour with a field
accuracy of 0.02 m/s. This means the current data is recorded approximately ten minutes after
the wave record has been recorded. However, visual examination of the time series for heave,
and checks on the stationarity using autocorrelation show this is sufficiently close for them to
be taken as concurrent. Likewise the wind speeds, which are recorded with a field accuracy of
1m/s, are practically concurrent being recorded as an average during the ten minutes preceding

the 20 minute wave recordings.
2.2 BUOY RESPONSE TRANSFER FUNCTION: SURFACE FOLLOWING QUALITIES

The integrated heave, pitch and roll accelerations give the response time series for the
buoy displacements. Model testing was performed by the Institute of Oceanographic Sciences to
determine the surface following characteristics of the buoy; they found that for frequencies less
than 0.2 Hz the transfer function was approximately 1.0. At higher frequencies the transfer
function was less ideal with a value of 0.75 at a frequency of 0.33 Hz, however, the scatter plots

indicate the minimum observed wave period was approximately 4.0 seconds.

For this study we are primarily concerned with the higher seastates in which the zero-
crossing period would be greater than 5 seconds, consequently, any bias in the buoy response at
the higher frequencdies is unlikely to significantly affect the estimated significant height and
zero-up-crossing period. On the other hand it would be worth checking the bias if the buoy

response transfer function were available since the true surface elevation spectrum Sy(f) canbe

recovered from the measured response spectrum Sg(f) using

S¢(F) = Se(f) / (He(f))’

For simplicity, in this study the seastate characteristics have been calculated using the

moments of Sg(f) since the precise form of the buoy transfer function was not known.

2.3. CHECKS ON THE DATA ANALYSIS

The first objective of the data analysis is to provide a reliable database of jointly
occurring winds, waves and currents. To ensure the results from this analysis are correct a sample
of this study's ( denoted GU ) frequency domain results is compared with the results from the
original frequency domain analysis ( denoted UKOOA ). The results are shown in Fig. 2.2 and
2.3 which compare estimates of significant wave height and zero-crossing period. In general,
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the results for the significant wave height are in close agreement with a few exceptions,
however, the results for the zero-up-crossing period have larger scatter and a number of

outliers.

The second objective of the data analysis is to provide a sample of multivariate random
variables corresponding to the extreme winds, waves and currents. To ensure the monthly
extremes are error free the results from this study with seastates greater than or equal to 5.0
metres significant height were crosschecked visually against the original frequency domain
results supplied by the Marine Information Advisory Service (MIAS), Bidston. This check
shows that in general the estimates agree but there are again some differences, in many cases

the cause was corrupted observations.
2.4 OBSERVED VECTOR EVENTS FOR THE POPULATION MODEL

The data recorded by the DB1 can be treated as independent, identically distributed vector
observations drawn from a multivariate process X where the set of observed environmental

variables is

'={H,1,0,U,.D,,D,} i=1, 9034

In this work, H, is the significant wave height, T, is the zero-up-crossing period, U,, is the 10
minute mean wind speed (8.7m elev.), U, is the surface current 3m below surface, and D, and
D, are the associated directions for the wind and the currents, respectively. Note the winds
and the waves are assumed to be colinear in this work. In matrix notation the full sample of
vector observations is written as x;;i=1,..,n,j=1,..,p. Here n is the number of complete
vector observations - that is observations in which there are no missing values - and p is the

number of variables. Writing the matrix long-hand then we have

Xy X2 Xip
X X
21 2
5T = P
X, xM

where the columns of xrrepresent the marginal sample of data, and the rows represent each
jointly occurring vector observation. In fact, after eliminating the vectors with missing values
the number of samples left in X was 5673. This complete sample has been used in all of the
statistical inference in Ch. 3 and Ch. 4.
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2.5 COMPONENTWISE MAXIMA FOR THE MULTIVARIATE EXTREMES MODEL

Multivariate extreme value theory provides a framework for modelling the joint
distribution between component maxima. Denoting all of the environmental data recorded by

the DB1 in some fixed period of time, or number of samples ¢ , as

x,={H,T,U,U.}. i=1, .t

the component maxima are then the random vectors

m= maxx; = (max x,'.,,...,maxxp'_,)

In terms of the DB1 data the vectors of componentwise maxima m; might correspond to the

monthly largest values of the components of X , that is

m, = { largest U, in month k,
largest H, in month k,

largest T, in month k,
largest U.in month k}

Here we instantly see the limitation of current asymptotic multivariate theory which deals
with the distribution of the random vector m,. The problem is that m, primarily consists of

virtual events, for example, the largest wind speed U,, does not necessarily occur at the same
time as the largest current speed U, observed in the same month! The consequences of this

limitation are generally ignored in the work of Tawn, Pickands and others, and further

research is needed to identify the effects of this limitation of the theory.
2.6 RELIABILITY OF THE TIME SERIES ANALYSIS

Problems with the time series were frequently encountered when analysing the heights
and periods using the time domain method outlined in Section [2.6.1] below. Overall some 20%
of the data is corrupted by spikes and missing values which cause significant bias in the
estimated mean level and resulted in the time domain analysis giving inaccurate results for the
characteristic heights and periods. The sensitivity of time domain analysis to errors in the
time series was identified by the original data collectors who eventually came to regard the
time domain height and period results as so unreliable, compared to the spectral estimates,
that they were never quality controlled. Their findings are therefore largely validated by our
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experience, however, it is essential to realise that the wave records used for this project’s time
domain processing are the same as those used by their spectral analysis software. It is therefore
important to ensure the frequency domain results are not biased by corrupted data and
consequently it was processed both in the time and frequency domain to compare one with the

other.

2.6.1 TIME DOMAIN ANALYSIS _
The time domain analysis of the wave ‘burst’ recordings follows the recommendations of
Draper (1963), Tucker (1963), and Goda (1985).

The datum level for each wave record was determined by fitting a parabolic mean level to
each sample using a simple least squares method, Goda (1985). Once the datum level for the
heave displacements was found the record of discrete points is examined in order to estimate
the location of: zero up-crossings; local maxima at the crests; and local minima at the troughs.
The results were then used to calculate the zero-crossing and crest periods. The procedure
adopted was an approximate one and is only satisfactory when the sample rate is sufficiently
high to define the occurrence and location of the peaks and crossings. A sample period of not
greater than one tenth the significant wave period is recommended by Goda (1985). However,
the DB1 sample period for the heave, pitch and roll signals was 1.2 seconds suggesting a
minimum significant wave period of 12 seconds. Clearly, this is too high for the bulk of the

recorded data and we could only ignore this advice.

A summary of the time domain estimated wave statistics calculated by the program is
illustrated in Fig. 2.4, which also shows how the heights and periods are defined. Using the
wave-by-wave statistics the significant height is defined as the average of the highest one
third zero-up-crossing waves, and the zero-up-crossing period is defined as the average period

of the wave zero level up-crossings.

2.6.2 SPECTRAL ANALYSIS

Harmonic or spectral analysis of data provides a powerful and robust means of
analysing the composition and statistics of a random process given finite duration samples.
There are several classical, and contemporary texts on Fourier analysis, perhaps the best known
early works are those of Blackman & Tukey (1958) and Cooley & Tukey (1965). More recently
Chatfield (1991) and Newton (1988) presented useful and theoretical texts and Tucker (1991)

wrote a detailed practical and theoretical book on wave measurement and analysis.

Meteorological and oceanographical time series are generally difficult to record

reliably and inevitably some data will be corrupted. Spectral methods, however, rarely fail to
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produce an estimate for the characteristics and are therefore more robust. However, they can
often be too robust since they will transform just about any signal, no matter how corrupt it is.
This often results in spectral estimates of statistics which are at best biased, and sometimes
completely wrong . On this project, the policy adopted when analysing the heave time series
was to process the signal in both the time and frequency domain and then compare the results to
determine if it was likely the data were corrupted. In most cases the results were reasonably
close and the data was included in the database. However, when estimates of variance and

mean period were not in agreement the data was rejected.

2.6.3 COMPARISON OF TIME AND FREQUENCY DOMAIN ESTIMATORS

As a further check on the quality, and accuracy of the results from ‘DB1' 50 pairs of
significant wave height, and zero-crossing period were compared with results supplied by
MIAS in listings from the original spectral analysis. Fig. 2.5 shows the GU time and GU
frequency domain results for the significant wave height. The GU time domain values of
significant height are calculated as the average height of the highest one third crest to
subsequent trough waves, ie H,,;. The spectrally calculated significant height H,,, based on

4,/M, , is consistently higher than the time domain estimate, with the difference appearing

as a gradient of 1.12 in the linear regression equation shown on the graph. The scatter of the
estimated Hs is relatively low giving a correlation coefficient 'R ' of 0.987.

A comparison of the GU time domain and UKOOA frequency domain significant wave
heights is shown in Fig. 2.6. The original analysis produces estimates with slightly lower bias
but larger scatter. Overall the trend is the same as for the GU time and frequency domain
results with the original frequency domain estimator overestimating the significant heights by
some ten per cent. The GU time and GU frequency domain estimates for the average zero-up-
crossing period are compared in Fig. 2.7. Clearly, there is a linear trend with larger scatter
than is the case for the significant height. The frequency domain estimates of period are
generally shorter than the time domain estimates, however, this is a well known
characteristic of spectral estimates which has been examined by Goda (1974), he found the
ratio T, (freq)/ T, (time) varies with At/ T, ,where At is the sample rate in seconds and T,

is the spectral peak period.

Goda loc cit suggests a correction factor T, (freq) = 0.83 T, (time) and attributes the

differences to both non-linear harmonic components in the high frequency range, and aliasing.
This value is close to the 0.86 correction suggested by Fig. 2.8, however, if we examine the

example time series and its heave spectra, shown in Fig. 2.9, it is clear the effects of aliasing

18



are small for the DB1 data. Tucker (private communication) disagrees with Goda however and
believes the differences are due to the thresholds of the recording instruments.

The effect of non-linearity has been examined by Longuet-Higgins (1963), and Bitner-
Gregersen (1980) who adopt the Gram-Charlier perturbation of the Gaussian distribution to
model the effects of mildly non-Gaussian surface elevation. These methods were not used since

the wave buoy tends to act as a linear filter on the surface process time series.

2.7 SCATTER DIAGRAMS FOR PAIRS OF VARIABLES

The scatter diagram for significant wave height and zero-crossing period is the basic
environmental input for a long-term, compliant systems response analysis. The information in a
scatter diagram, which is effectively a bivariate histogram, suffers from the same drawback
as the univariate histogram in that some of the information is lost by binning the data.
Nonetheless they do provide a convenient way of summarising pairs of random variables and
are simple to interpret. The data recorded by the DB1 during its four year operation has been
sorted and grouped to form the scatter diagrams shown in Tables 2.2 to 2.10. Note the rows and
columns have been summed in each table to give the marginal histograms and that the cells
contain the actual number of observations in the range, the upper limit of which is given for
each cell.

In Ch. 3 and Ch. 4 both parametric maximum likelihood methods and non-parametric
kernel methods are outlined for the univariate and multivariate case and then applied to the

data.

2.7.1 SIGNIFICANT HEIGHT AND PERIOD

Scatter diagrams for the time and frequency domain estimates of significant wave height
and zero-crossing period are shown in Tables 2.2 and 2.3. The correlation between the frequency
domain and time domain estimators is illustrated in Table 2.4 which shows the results agree
very well for the lower wave heights, albeit with some scatter about the mean, but that the
bias appears to increase with increasing wave height. At the extreme sea states the frequency
domain estimator overestimates the significant height giving a bias of approximately 10 per

cent.

2.7.2 SIGNIFICANT WAVE HEIGHT AND WIND SPEED
The ten minute mean wind speed and significant wave height scatter diagram is given in
Table 2.5. The degree of correlation is difficult to assess since there is considerable scatter about

the mean. This is perhaps surprising since we might expect the wind and the waves to be
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strongly correlated, one reason for the low correlation is the short duration of the 10 minute
wind time average which is reasonable for the design of fixed and compliant systems. It has
been suggested ( Dr. C. Graham, personal communication ) that the correlation is stronger if a
longer time average is chosen, however, it is the short duration average (3 seconds up to 10
minutes ) which is of interest for design since this is consistent with the size, and motion periods
of typical offshore structures.

In fully developed seas the Pierson-Moskowitz surface elevation spectrum predicts the
mean significant height to be Hs = 0.0227 * U2, where the wind speed U is the 10 metre
reference height, hourly averaged, wind speed which is closely related to the ten minute
average wind speed recorded by the DB1 buoy. If we superpose this on the scatter plot the
quadratic mean model follows the mode of the bivariate data at the lower wind speeds; at
higher wind speeds it is difficult to assess where the mode lies because of the small number of
samples recorded in extreme conditions, however, it is clear the quadratic model overestimates

the significant height by a large amount. This is most likely because the fetch length is usually
too short for the seas to develop fully and suggests that even the {H,.U.,} pair are

unstructured - or at least can be treated as such.

2.7.3 TEN MINUTE MEAN AND THREE SECOND GUST WIND SPEEDS

The scatter diagram for the ten minute mean wind speed and the three second gust speed is
shown in Table 2.6. The two wind speeds are closely correlated over the whole range of speeds
with a linear mean of the form U,,(10m)=1.33U,,(3s) which corresponds closely to the

recommendations of the Department of Energy (1990a) ,Table 11.5.

2.74 SIGNIFICANT WAVE HEIGHT AND CURRENT SPEED

Currents are generated by a number of mechanisms for example, tidal and storm induced
surge, density differences, large scale eddies, and ocean circulation. The tidal component of a
current results from the daily, seasonal, and ‘nodal' changes in the earth's gravitational field
caused by the motion of the moon and the sun, see Pugh (1987). This imposes a periodicity with
two dominant components and a number of sub-harmonics, each with random phase and
amplitude. Storm induced currents are caused by the shear forces at the air-water interface and
pressure gradients over the storm system. Unlike tidal currents storm induced currents are not
periodic but random in occurrence ( though of course they are seasonal ). The result of summing

each component is a current with both periodic, and random components, as seen in Fig. 2.10.

In the analysis of the DB1 data no distinction is made between the separate components and
the total current will be assumed to be the variable of interest for the design of offshore

structures. The scatter diagram for significant wave height and current speed is shown in Table
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2.7. The quadrant of the scatter plot defined by the marginal extremes tends to suggest that the
extreme values of significant wave height and current speed are asymptotically independent,
with low probability of occurrence for simultaneous high waves and current speed. This
indicates that the conventional design approach of combining extreme seastates with extreme
currents will result in an over-conservative model for the South Western Approaches site;

though of course the currents at other sites may be more highly correlated with the waves.

2.7.5 WIND SPEED AND CURRENT SPEED

The 10 minute mean wind speed and the 5 minute mean current speed show little or no
correlation in the scatter diagram shown in Table 2.8. This may be due to the currents being
dominated by the tidal component and suggests a refined analysis - in which the tidal and
storm currents are de-convolved - would give an improved model. This could be done in a future
investigation using the methods discussed in Pugh (1987).

2.7.6 DIRECTIONAL DISTRIBUTION OF SIGNIFICANT WAVE HEIGHT AND ZERO-UP-
CROSSING PERIOD

The directional distributions of the time domain significant height and zero-up-crossing
period with wind direction are shown in Tables 2.9 and 2.10. Note that the conditional,

directional distribution P(O | Hs) can be inferred by summing the number of occurrences in the
required range of heights and that a more rigourous analysis of the directionality is given in

Ch. 5., where the within seastate, and long-term directional distributions are examined using

Fourier methods.
2.8 POPULATION MODELS FOR THE MARGIN

The marginal histograms for the sample X can be inferred from the scatter plots: however,
a better non-parametric estimator is the kernel density estimator. The theory for this method
is discussed in Ch. 3 but it is worth looking at the kernel estimates for the marginal densities of
the significant wave height, zero-up-crossing period, wind speed and current speed. The results
are shown in Fig. 2.11 in which a quadratic ( Epanechnikov ) kernel with optimal window
width has been used for each density. Note that each distribution is unimodal and that none of
them seem to be the result of a mixture of random variables. This suggests that, providing the
correct model can be found, a parametric modelling approach is reasonable and may be

acceptable for the extremes.

2.9. MONTHLY MAXIMA
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The need for componentwise maxima is outlined in Section [2.5] with a view to the
requirements of the multivariate extreme value model discussed in Ch. 4. The vector of all
11000 or so environmental random variables Z was used to determine the vector of monthly
virtual events ( or componentwise maxima ) m. The result is given in Table 2.11 which shows
the 42 monthly maxima recorded by the DB1 buoy. The table includes both the time and
frequency domain estimators for the seastate heights and periods, and missing wind and current
values appear as zeros. Ideally, annual maxima should be used in the extreme value models
since the component maxima are seasonal and therefore periodic, however, the DB1 was only
operational for four years and no other multivariate dataset was available. One possibility
would be to use the model for dependent extremes given by Tawn (1988a), this method would be
preferable if the results were for use in a real design but in this work the dependence is ignored
since ultimately a population modelling approach is used in the reliability analysis.

2.9.1 UNIVARIATE MONTHLY EXTREMES
The marginal monthly extreme value data given in Table 2.11 has been analysed using the
theory and software described in Ch. 3. The results are summarised in Table 2.12 which gives:

(i) the sample mean, variance, skewness, and kurtosis
(ii) the shape, scale, and location parameters for the Weibull and GEV estimators

(iii) the covariance matrices for the parametric models

Both the 3-parameter Weibull and the GEV models were fitted to the extremes to enable a

comparison of the two estimators.

The Weibull and GEV models ( see Ch. 3.) fit the time domain and frequency domain
estimates of significant height very well, with the negative GEV shape parameter indicating
the population of extremes is Frechét distributed with a lower bound. It is interesting to note
that the Weibull parameter covariance matrix contains negative terms for both the variance of
the location parameter, and the covariance of the scale and location. This suggests the GEV
model is a better conditioned solution. The Weibull and GEV models both fit the time and
frequency domain estimates of zero-crossing period, however, the error residual plots show the
GEV model has slightly smaller residuals, furthermore the covariance matrix for the GEV
indicates the model parameters have lower uncertainty associated with them. However, we
shall see in Ch. 3 that in some cases the GEV model gives poor estimates of the extremes

corresponding to design return periods.
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2.10 CONCLUSIONS

Two vector samples of wind, wave, and current data have been created from the DB1 data;
one for the population of three hourly observations and the other for the monthly,

componentwise, maxima.

Inspection of the scatter diagrams for the data indicate that it can be treated as
unstructured in the statistical sense for the multivariate modelling. The only evidence of
structure appears in the significant wave height and zero-up-crossing period density. This is
the result of the breaking wave criterion which results in a steep rise of the density on the
forward face of the distribution.

The marginal kernel densities show no evidence of bimodality or mixing of different
statistical populations in the modal region or indeed for moderately large values. However,
the irregularity of the tails needs to be examined using an adaptive kernel ( see Ch. 3 ) in
which the degree of smoothing is matched by the local density.

The data return for complete vector observations with no missing values was only 50%,
however, there was no systematic reason for the missing values which occurred in both low and
high seastates. We can conclude therefore the missing observations occurred randomly for the

univariate and multivariate statistical inference.
The lack of strong structure in the data suggests a population modelling approach is

reasonable, providing the correct tail behaviour can be guarantied by the use of a suitable

population model and estimation process.

23



Time,
Measured Seasor type {Range Location on |averaging |Calibration |Printed Field
variable & buoy period or accuracy resolution  |accuracy
manufacture sampling
rate
Wind 1 Cup 6.0m above
speed counter sea level
Vector mean valoe (’;12':{;
instrumeats |0 to 77 m/s during last | $0.26 m/s
A100R (150 kn) 10 minutes | (0.5 kn) 0.1 kn or 5%
2 Cup 8.7m above |of hour
counter sea level
Vector
instruments
A100R
Wind 1 Wind vane
direction -self
referencing
Vector mean value
instrumeats during last
SRWIG 010360° [6.0m above {10 minutes 12° 1° +10°
2 Weather sea level of hou
measure
w102
Referencing
from digital
compass
Air pressure |(2) Aneroid Head at mecan value
(one static |capsule 925 o 6.0m during last
pressure KDG8190 1050 mb|but measure- |45 seconds 0.2 mb 0.1 mb +Ilmb
head) meat made |of hour
at
sca level
Air (2) Platinum Stevenson's [mean value
temperature [resistance screea 5.8m |during last
Rosemount |-10 0 40°C |above sca |45 seconds | 40.1°C 0.1°C 10.2°C
Lad level of hour
E13418
Relative (2) Chemical Stevenson's 5% 0
humidity Hygrometer screen 5.83m {mean value w 85%
Phys- 0 to above sea  |during last
Chemical [100%RH  |level 45 scconds 3% 001% | 40
Res. of hour
Corp. over 85%
P
PCRCIl
Sea surface Ph.n'nnm -10 0 Base of hull 101°C 0.1°C 40.2°C
temp. (1) |resistance +40°C 45 secs.
mean every
Sea surface | Platinum -5 to Base of hull hour 40.001°C 0.06°C 10.06°C
temp. (2) |resistance +20°C
Heave Accelero- -20m to Ceatre well 3% up ©
amplitude | meter +20m continous |15s period 0.lm £0.2m
Datawell record for
HIPPY 20 minutcs
Pitch and | Gravity 01w 60°C |[Main batterylat the mart 1% up to0
roll stabilised compartment]of cach hour 30°C
0.1° 11°
platform 25% up w0
Datawell up
PIRO M402 60°
Surface Acoustic 0 to 255 3 metres
curreat pulse m/s below sea $0.01 m/s 0.0l m/s |10.02 m/s
magnitude | velocity (no lower |level 5 minutes
EW&NS AERE threshold) mean about
the half
Direction Magnetic 0to360° |3-2 metres }hour 490 0.4° 420
compass above sca
Colnbrook level
Instruments
Ld

Table 2.1 Specifications of the recording instruments on-board the DB1 data buoy




6.7 74 Analvsis of the DB1 Daiaset
Hs
11.51 0 0 0 0 0 0 o o 0 0 0 0 0 1 0 0 0 1 0.000
11 0 0 0 0 0 0 0 0 0 0 1] 1 2 (1] ¢ 0 0 3 0.000
103§ 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0.000
01 0 0 0 0 0 0 0 [} 0 0 0 2 ! 0 0 0 0 3 0.000
95| o 0 (1] 0 0 0 0 0 0 0 i 2 1 | 0 0 Q 5 0.001
9 0 ] 0 0 0 o [1] 0 0 0 0 4 0 [} 0 0 0 4 0.001
85| o 0 0 0 ] 0 0 0 0 2 5 2 2 0 0 ] 0 11 0.001
8 0 0 0 o 0 [} 0 0 0 2 3 4 0 0 0 0 1 10 0.001
75} 0 0 0 0 0 1} 0 0 0 4 8 3 1 [} 0 0 0 16 0.002
7 0 0 0 0 0 0 0 Q 1] 7 9 3 0 1 1 0 0 26 0.003
65] 0 0 0 0 0 0 0 0 4 16 12 9 2 0 1 0 0 4 0.006
6 0 0 0 0 0 0 0 0 9 30 20 11 3 1 1 0 0 75 0.010
ss| o 0 0 1] 0 0 0 1 39 s0 19 8 10 1 0 o 0 128 00l6
s 0 0 0 0 0 0 0 iI6 73 63 26 6 1 0 0 /] [} 185 0.024
451 0 0 0 0 0 0 QO 40 119 64 43 10 4 0 0 (1] 0 280 0.036
4 0 0 0 0 [} 0 5 94 167 94 43 14 4 0 0 0 0 421 0.054
35| o 0 [ 0 ] 0 28 212 237 94 33 3 2 1 0 0 ] 610 0.078
3 o 0 0 0 0 0 121 324 212 127 38 11 1 1 1 0 0 836 0.107
25| 0 0 0 0 0 31 354 411 188 92 33 6 1 0 0 0 o (| 1116 0.143
2 0 0 0 0 0 154 3559 394 209 8 9 (4] 0 0 [} 0 o | 1408 0.180
151 0 0 1] 0 7 379 650 358 129 34 6 1 0 0 0 Q 0 } 1564 0.200
1 0 0 0 0 51 458 350 95 19 6 0 0 0 0 0 0 0 979 0.125
03] 0 0 0 0 2 45 20 1 1 1 0 0 0 0 0 0 0 76 0.010
0 [ 0 0 60 1067 2087 1952 1406 769 308 107 35 7 4 0 1 | 7803 <-TOTAL
0.00 0.00 0.00 0.00 001 0.14 0.27 0.25 0.18 0.10 004 0.01 0.00 0.00 0.00 0.00 0.00
1 2 3 4 S 6 7 3 9 10 11 12 13 14 IS 16 17 Tz

TABLE 22  SCATTER DIAGRAM FOR THE TIME DOMAIN ESTIMATES OF
SIGNIFICANT WAVE HEIGHT (M) AND ZERO CROSSING PERIOD (S)
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TABLE 23  SCATTER DIAGRAM FOR THE FREQUENCY DOMAIN ESTIMATES OF
SIGNIFICANT WAVE HEIGHT (M) AND ZERO CROSSING PERIOD (S)
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TABLE 2.5 SCATTER DIAGRAM OF THE TIME DOMAIN ESTIMATES OF SIGNIFICANT
HEIGHT (M) AND THE TEN MINUTE MEAN WIND SPEED (M/S)
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TABLE 2.7 SCATTER DIAGRAM FORTHE TIME DOMAIN ESTIMATE OF
SIGNIFICANT WAVE HEIGHT (M) AND CURRENT SPEED (M/S)
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TABLE 2.8 SCATTER DIAGRAM OF TEN MINUTE MEAN WIND SPEED (M/S) AND FIVE
MINUTE MEAN CURRENT SPEED (CM/S)
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TABLE 29 SCATTER DIAGRAM OF SIGNIFICANT WAVE HEIGHT (M) AGAINST THE
WIND DIRECTION (DEGREES)
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TABLE 2.10 SCATTER DIAGRAM OF ZERO CROSSING PEROD (S) AGAINST THE WIND
DIRECTION (DEGREES)




index ] year/month | HSs(TIME)  HS(FREQ.) | Tz(TIME) Tz(FREQ. Uw Uc
i 7806 4.1 42 94 84 15.5 89.0
2 7807 32 i3 109 9.7 13.15 76.0
3 7808 26 28 10.5 9.7 116 87.0
4 7809 55 59 145 129 17.75 820
5 7810 39 4 124 114 14.5 880
6 7811 53 55 11.8 143 195 770
7 7812 1.5 12.3 139 123 119 700
8 7902 6.4 75 145 14 17.9 0.0
9 7903 69 78 14.5 13.5 0 0.0
10 7904 4.7 5 122 11 0 55.0
11 7905 35 36 8 15 0 420
12 7906 33 34 99 9.6 12.7 71.0
13 7907 24 25 9.8 93 143 81.0
14 7908 5.7 5.9 9.4 92 184 88.0
15 7909 43 44 11 9.8 15.1 870
16 7810 52 56 126 12.1 19.25 590
17 7911 44 46 10.3 10.1 139 47.0
18 7912 10.9 11.7 12.8 119 264 67.0
19 8002 t0.2 10.5 11.8 1t 217 66.0
20 8003 11 124 129 12.3 27 710
21 8004 3 33 10 11.1 15.2 1.0
22 8005 3 31 10.4 95 14.05 68.0
23 8006 54 5.6 10 9.5 15.15 65.0
% 8007 35 37 92 8.6 15.6 68.0
25 8008 28 3 9.6 13.1 12.35 96.0
26 8009 42 45 99 9.2 14.25 61.0
27 8010 79 84 128 126 20.25 78.0
28 8011 5.6 6.5 113 115 18.1 58.0
29 8012 84 93 13 116 17.6 61.0
30 8102 73 82 113 10.6 17.5 65.0
31 8103 23 25 8.1 10 203 36.0
32 8104 39 44 i1 10.2 12.45 65.0
33 8105 b 517 10.1 9.7 17.2 770
34 8106 4 4 9.7 92 142 68.0
35 8107 3s 36 9.7 9 14.75 750
36 8108 31 29 10.7 10.1 12.45 81.0
37 8109 6.1 6.3 10.6 917 216 83.0
38 8110 6.6 7.5 132 12.5 21.65 76.0
39 8111 5.6 6.5 113 1.5 147 730
40 8112 3.1 29 10.7 10.1 28.55 65.0
41 8202 58 6.4 123 12 0 0.0
42 8203 9.5 8 16.9 11.5 16.2 510
TABLE 2.11 VECTORS OF MONTHLY COMPONENTWISE MAXIMA FOR THE UKOOA-DB1 DATA

SET
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TABLE2.12 STATISTICAL MOMENTS AND MAXIMUM LIKELIHOOD PARAMETERS FOR THE WEIBULL AND
GENERALISED EXTREME VALUE DISTRBUTIONS
VARIABLE oo. of ical waibull model GEV model
il mean varisnce { skevmens | kuortosis shape scale [ shepe scale focut
Hs time 42 5348 6.1118 1.005 0.1009 1.39 3622 2053 0.2448 1.532 4.052
Hs freq. L 7] 3.695 7.201 09577 0.107 1319 3.767 2232 0.267 1.665 4.255
Tz time 42 11.31 3.497 0.7051 | 0.3022 2.086 4.163 7.616 | 0.06684 1.554 10.5
Tz froq. 42 10.78 2.56 0.2933 £0.7414 2611 4318 6.952 0.1889 1.463 10.16
jcurrent velocity 39 70.36 176.4 0.4565 | 005362 ] 6983 82.83 -7.098 0.4231 13.96 66.63
wind spoed 38 16.83 15.98 0.973 0.4973 1.473 6.284 11.2 0.1324 2.747 14.91
time domian significant height froquency domain significant height time domain 2aro crossing period
scale shape location
0.030162 0.009145 0.002944 002832 0.00843 0.001737 0021099 0.006918  0.0084899
WEIBULL -> 0.010847 -0.00647 0.00863 0.006 0.009097 -0.0053377
-0.00554 -0.0042 -0.010937
frequency domain zero crossing period current speed wind speed
0011732 0.006652 0.016534 0.0436 0.003266 0.067762 0.030162 0.009145 0.002944
WEIBULL -> 0.07569 0.00602 0.00354 0.00324 0.010847 -0.0064721
£0.0196 0.07167 -0.0055395
scale shape location
0.008607 0.003753 0.006463 0.00971 0.006148 0.007704 0.010687 0.004105 0.0050878
GEV > 0.029348 0.008003 0.038334 0.010873 0.011338 0.005884
0.012552 0.013681 0.021142
0.015052 0.010023 0.007656 0023575 0.016778 0.017813 0.010214 0005017 0.006856
GEV > 0.018348 0.011689 0.016757 0.020904 0.027224 0.0088122
0.028676 0.045311 0.016568

COVARIANCE MATRICES FOR THE ENVIRONMENTAL DATA MARGINAL DISTRIBUTIONS
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Figure 22  Comparison of the UKOOA frequency domain
and GU frequency domain significant wave height
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Figure 23  Comparison of UKOOA frequency domain
and GU frequency domain zero crossing period
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Figure 2.11  Kernel density plots using an optimal window for the populations of significant wave
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Chapter 3

MODELLING UNIVARIATE ENVIRONMENTAL DATA
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NOMENCLATURE
4; coefficients for a linear function
a, un-centred sample moments
b bandwidth
b,(6;) bias in model parameter 0,
c Weibull shape parameter
cov[.] covariance
c(0) expected covariance matrix for model parameters @
¢(0) observed information matrix
E[] expected value operator  E[y*]= J_-_ ¥ f(x)dx
E, the event r
f(x) probability density function
F(x) cumulative distribution function F(x)= Pr(X < x)
F! (x) inverse distribution function
g(x;0) sample joint density with parameters 0
G() extreme value distribution OR gradient vector
H(0;x) entropy function on the sample x
k GEV shape parameter
k(x) kernel density function
l vector of lower bounds
1(0) Fisher's information matrix
L(6,X) likelihood random variable
£(0,x) likelihood function on the sample x
m maximum amplitude
m, largest in sample of size n
m, rth centred sample moment, ie m, =0
M, ,, probability weighted moment
n number of samples
P probability P = Pr{X < x}
)/ number of model parameters or
counter for order stat’s
Pr(.) probability
T; return period
u vector of upper bounds
v[.] variance
w jth weight
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sample vector

ith sample in the vector x of observations
on the variable X

random variable

random vector

Weibull Scale parameter

threshold estimated probability of exceedance
Euler's constant - 057721 5664....

gamma function

finite difference interval

ith model parameter and maximum
likelihood estimate

parameter vector

GEYV location parameter

set of possible parameters for 0

Weibull lower bound
Pi-3.14159 2654....

multiplication operator
correlation coefficient

error function
GEYV scale parameter or standard deviation

function of the ML parameters
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3. INTRODUCTORY REMARKS: MODELLING UNIVARIATE
ENVIRONMENTAL DATA

Statistical estimation is dominated by large sample asymptotic methods which aim to
describe data using optimal measures of, say, location and spread. The synthesis of a model can
either be parametric, or intrinsic: however, as Hoaglin (1983) points out the distinction between
the two classes is not clear. Parametric estimation involves fitting a functional form to the
data under the hypotheses that the data are drawn from some known distribution and usually
that the distribution of errors is Gaussian. Intrinsic ( or nonparametric ) estimation makes less
rigid assumptions about the sample and seeks to estimate the statistics for the population using
the data directly: examples are order statistics and kernel density estimators. In this chapter,
both parametric and intrinsic estimation of univariate data is examined and applied to
modelling environmental data. Although most of the theory in this chapter is intended for use
in modelling the DB1 data discussed in Ch 2. it should be borne in mind the methods and
conclusions are general and equally applicable when modelling strength data.

Predictive and descriptive statistical models of environmental data are required in: the
calibration of design codes; the formulation of reliability methods; and the prediction of
'design events'. In most cases, estimation must be performed using small samples with missing
values. There are therefore three main sources of uncertainty, which Thoft-Christensen &
Baker (1982) define as physical, statistical, and modelling uncertainty. Physical uncertainty
arises from the basic randomness of the variable and is quantified by the parametric or intrinsic
model; statistical uncertainty arises from the use of finite sample sizes and is characterised by
the bias and variance of the model parameters; and finally modelling uncertainty arises from
the need to hypothesise a parametric form in the estimation (even kernel density estimators
and order statistic estimators suffer from this uncertainty since they require a parametric

smoothing function, and quantile estimation formula, respectively).
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For design, a descriptive environmental model is required in fatigue damage calculations
and operations analysis. On the other hand, predictive models are used to specify design
events, which are usually taken as the combination of marginal extremes corresponding to some
return period like 50 or 100 years. Two approaches are therefore used to model the data. The
first is population modelling in which the full sample of data is used in the estimation; this
approach benefits from a large sample which reduces the statistical uncertainty in the
estimated model parameters and allows us to use the asymptotic properties of the parameter
uncertainty, Silvey (1975). The population method is ideal for descriptive analysis but can
result in biased estimates when used as a predictive model for the most probable largest
extreme value in a large number of observations N. This is because N is usually large and
therefore F (x)", Fig. 3.1, is only significant in the region of the largest few data, Galambos
(1984). In consequence, if the wrong population model is used for F(x) then it will give poor
estimates for the 50 or 100 year return period values.

The second modelling method is extreme value estimation in which the largest values
occurring in a fixed time period, or sample size, are modelled using one of the extreme value
distributions, Gumbel (1958). The problem with modelling only the largest values ( annual
maxima ect ) is the sample size is generally very small. This results in large statistical
uncertainty in the estimated parameters which in turn results in wide confidence limits for the
model. The motivation of extreme value theory is to reduce the modelling uncertainty in the
model by identifying the set of distributions from which the extremes must have been drawn.
Fisher & Tippet (1928) demonstrated that, under the assumption of independent and
identically distributed events, the distribution of the largest drawn from any population F(x)
is attracted to one of only three distributions.

The assumption of independence is reasonable when using annual maxima but real datasets
like the DB1 recordings are generally only recorded for a few years. With such small samples
it is necessary to consider modelling say the monthly maxima, in which case the assumption of
independence and identical distribution is questionable. Carter & Challenor (1981), for
example, examine the error in estimates of return period values resulting from the iid
assumption. They model the monthly maxima separately and then obtain the annual maxima
from the individual distributions (assuming independence between the months). Challenor (
1982) later improved the method by modelling the seasonal variation in the location
parameter of the monthly maxima models. However, we cannot use the method with the
multivariate asymptotic methods reviewed in Ch. 4 since they require that the marginal data
first be transformed to unit exponential survivor functions using, for example, the generalised

extreme value (GEV) distribution.
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There are therefore three choices to be made when modelling the data:

whether to model the population or the extremes
whether to use intrinsic or parametric methods

the type of estimation process

In Section 1 those properties which characterise a ‘best’' estimator are defined using classical
statistics and practical limitations. Section 2 examines how to choose amongst the various
estimation procedures using the criterion for best. This involved a comparison of results from a
number of Monte Carlo simulations reported in various statistical journals. The maximum
likelihood method was selected as the best procedure because of its good overall performance
despite some methods performing better under certain conditions. Section 3 shows how
nonparametric kernel density estimators can be used to aid data visualisation, which is used as
the basis for parametric model selection. Section 4 introduces the theoretical basis of maximum
likelihood estimation and shows how statistical uncertainty can be estimated using the
information matrix. It is then shown how this information can be used to calculate the
uncertainty in functions of the model parameters using level II reliability methods. Section 5
outlines the modelling procedure adopted in this thesis and Section 6 then develops the
likelihood function and information matrix for the Weibull model. Section 7 introduces the
generalised extreme value distribution, its likelihood and information matrix. Section 8
discusses some of the numerical difficulties associated with the likelihood method and then
Section 9 applies the theory to simulated datasets in order to check the likelihoods and
derivatives derived for this study. Section 10 introduces a simple peak over threshold (POT)
approach which is intended to overcome the problems associated with using the Weibull
distribution to model extremes. The POT method is then applied in Section 11 to a sample of
structural response time series to illustrate the generality of the likelihood method. Finally,
in Section 12 both population and monthly maxima models are used with the DB1 wind, wave

and current data.
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3.1 CHARACTERISTICS OF A GOOD ESTIMATOR

Before looking at the principal methods used to estimate a model's parameters we must
define those characteristics which exemplify a good estimator: unfortunately, it is not
straightforward to define what is meant by good. In the statistical context Ledermann (1984)

defines four desirable characteristics for an estimator which are summarised below:

Consistency - The estimation procedure should produce an estimate which is accurate. That is,
if a sample replicates the population the estimated parameters 6 should be close to the

population parameters and, moreover, the estimates should improve as the sample size

E[é]—)ﬂ

v[é]-m

increases

as n-—>oo

To satisfy these conditions the estimated parameters must have a high probability of being
close to the population parameters. A problem is encountered when modelling extremes because
the assumption of multivariate normality for the distribution of the model's parameters is
invalid when the sample size is too small; but, how small is too small? We shall see later that
for practical estimation less than 20 is too small for the model parameters to be taken as
multivariate Normal distributed.

Sufficiency - some procedures enable more information to be extracted from the sample than
others do. A sufficient estimator is one which can extract all the information from the sample
which is relevant to the parameter.

Bias - The estimate may differ from the population parameter 6, due to a bias

b

A

( 9,-) =0~-E [ é,] An unbiased estimate is not necessarily the most important property for an
estimation procedure since an unbiased estimate é,. will not result in an unbiased estimate for

some quantile F (xo N é) if the model parameters have non-zero variance.

Low sampling variance - Each parameter derived using an estimator with a finite sample size
will have some statistical uncertainty usually characterised by its bias and variance.
Furthermore, models with more than one parameter will have multivariate distributed
parameters. A good estimator will provide parameter estimates with the minimum sampling

variance attainable for the sample size.
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In addition to consistency, sufficiency, low bias and low sampling variance, two further
characteristics should be added for the method to be of practical use by engineers and scientists:

Reliability - From the practical point of view the methods must be robust, that is, it should be
possible to obtain solutions to the model parameters for nearly all samples of data without
prior knowledge of the model parameters.

Simplicity - The process of estimating the model parameters, and their sampling covariance

matrix, should be simple to apply and interpret.

Several estimators have one or more of these desirable characteristics: moments, least squares,
and maximum likelihood are a few. The final choice of estimator must allow for the objectives
of the modelling process, which in our case is the modelling of extreme quantiles with low bias

and low variance.

32 ESTIMATING THE MODEL PARAMETERS

Five methods are commonly used to estimate the parameters of a model given a sample of
data x= {x,,....x,,}. The simplest method is to calculate the integrated moments of the

theoretical distribution, a, where

a,=] @'f@d = E[(x'] [3.1]

and then equate them to the sample moments of the data d,, where

&= f‘-i(x,-)* B3.2)

j=1

In the case of a Weibull distribution with three parameters, the first three moments are
required, i.e. k=1,2,3, to solve for the shape, scaling, and location parameters. The parameters
are then obtained by solving three nonlinear simultaneous equations @, = a,. This solution
procedure is relatively simple since closed form gamma functions are available for the moments
of a Weibull model.

The second method is a least squares fit based on percentile estimation and order
statistics. This approach is intuitively appealing since the process can be performed

graphically when the model has two parameters, in which case the minimisation of the sum of
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squares error is done by visually fitting the distribution to the data on logarithmically scaled
paper.

If the model has more than two parameters the process can be automated by using some
form of weighted, orthogonal distance, regression routine to minimise an error function p(6)
which is a function of the model parameters @

min{p( 0)=3w, (F(x;)-F(x;: é))z} 331

j=1

Here, the expected probability E | Pr{ X < x_}| for the observation X is given by ordering the

data from the smallest x,, to the p”' largest x,, up to the largest x,. The expected probability

for the quantile x,, is then found using an order statistic plotting position like

F(x,)=E[F(x)] =2 B4

Other plotting positions are given in Gumbel (1958), and Crowder et al (1991).

The third method is parametric maximum likelihood estimation in which the model
parameters are estimated directly from the data. In common with the method of moments, and
the method of least squares, the realisation X is assumed to be a sample of independent,

identically distributed random variables drawn from the population random vector

X= {X,,....X,} with sample pdf denoted by
g(x;0)=g(x,, ..... x,;B,....O,) 0cQ

The set £2 is the set of possible parameters, and the form of g(x;@) is guessed at after
graphical and numerical examination of the data. The likelihood function of @ on the sample
X is then defined as

£(0;x)=a(x)g(x;0)

where a(x) is any multiplier solely a function of X and independent of @. It may be chosen
arbitrarily to aid estimation of the parameter vector. If the sample X is assumed to comprise
iid Weibull random variables then the sample likelihood is given by
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j=1
where f(x) is the Weibull probability density function, and @ is the vector of Weibull model
parameters. An estimate for the parameters 6 is found by maximising £( @ ;x ) over the range
of feasible parameters.

The fourth method of estimation is the probability weighted moments (PWM) estimator
examined by Hosking et al (1985). The PWM are defined by

M, = E[x’{F(x)}’{I— F(x)}'] rs,t=1,23...

Where r,s,and t are chosen to give a sufficient number of equations to solve for the model
parameters. The solution procedure is similar to the ordinary moments method in that the
expected moments are compared with the sample moments. At first sight the additional
complexity of this estimation process might seem unwarranted, however, the behaviour of
PWM for the Generalised Extreme Value distribution is shown to be superior to the ordinary
method of moments in Hosking et al (1985) for cases where the sample has a high COV.

The fifth method is entropy estimation, Jaynes (1982). This method uses entropy as a
measure of the amount of information in a sample and has proven popular with physicists.

Given a continuous distribution f(x) the entropy is defined as

H(0;x)= [ f(x:0)in{f(x;0)}dx

The solution for the model's parameters 0 is then found by maximising the entropy over the

feasible region on the sample of data X.

3.2.1 CHOICE OF ESTIMATION PROCEDURE

Five methods for estimating the parameters of a model have been discussed briefly.
Amongst engineers least squares and moment methods are favoured for their simplicity,
robustness and ease of implementation, moreover, both methods generally provide good model
fits to both large and small samples. Statisticians on the other hand favour the method of
maximum likelihood and scientists often use entropy methods which were developed for
statistical physics applications. In order to choose the best method for modelling the design
events of ships and offshore structures it is necessary to define what is meant by best. In Section

[3.1] six desirable characteristics are defined for an estimation procedure:
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consis

sufficiency

low bias

low sampling variance
reliability

simplicity

These six characteristics can be used to assess the relative performance of an estimator, but the
process is not straightforward since low bias can be less desirable than low sampling variance.
This is because we are generally interested in estimating the quantiles of a random variable
(that is, values which correspond to a particular probability level or return period) and in
general the quantiles will be biased, even when the parameters are not. This is dealt with in
more detail in Section [3.4.2] which shows how confidence limits can be estimated for both a

model's parameters and arbitrary, non-linear functions of the model's parameters.

Monte Carlo simulation can be used to assess the parameter bias and sampling error
associated with an estimation procedure by generating a large number of samples from a
predefined model with known parameters. Singh et al ( 1990 ) present the results of their
extensive computer experiments using a two parameter Weibull model. They simulated seven
Weibull populations having a range of COV from 0.3 to 3.0. For each case they used the simple

inversion

x(F)= a[— log,(I1- P(X < x))]%

to create a large number of random samples with sizes 10, 20, 30, 50, 75, 100, 500, 1000. Each
sample was then used to determine the Weibull shape and scale parameters using five different
estimation methods:

. moments MOM
. maximum likelihood ML

. entropy ENT
. probability weighted moments PWM
U least squares LSQ

The results from each method were used to determine the bias in each parameter and their root
mean square errors (RMSE). Furthermore, they calculated the bias and RMSE for a range of
quantiles corresponding to low probability events like annual maxima for winds and currents. A

summary of their major conclusions follows

Bias in shape, and scale parameters - ML, LSQ, and ENT performed consistently for each case
and sample size when estimating the shape parameter - though it may be significant LSQ had
a negative bias. MOM did not perform well and PWM performed very poorly for the small
sample COV cases giving a large negative bias. On the other hand PWM performed very well
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for data having high COV ( this suggests the PWM method would be a poor estimator for
extremes which generally have low COV }

Bias in quantile estimates - As expected, bias in the quantile estimates reduces as the size of
sample increases, and for a given sample size the bias increases as the quantile ( or equivalent
return period ) increases. ML and ENT both perform well though they have a negative bias for
the small COV cases, this would result in an under-estimate for the value of a random variable
corresponding to some return period. MOM performed the best for the sample with the lowest
COV suggesting it is well suited to the estimation of extremes in samples with COV's of less
than 0.3. In general, all methods performed better with the data having larger COV's.

RMSE of shape, and scale parameters - As before both ML and ENT perform well, however, the
best result for the shape parameter of the smallest sample was obtained with LSQ. The best
estimator for the scale parameter was always ML. MOM performed poorly for small samples
over the whole range of COV's; furthermore, the error increased significantly as the size of
sample increased. All five methods showed a deterioration in their estimates of the shape

parameter as the sample COV increased.

RMSE of quantile estimates - MOM and ML performed best over the whole range of COV's
especially for the small samples. PWM and LSQ performed poorly in all cases with their
estimates particularly poor for the larger COV's.

Based on the above summary of Singh's results we can conclude both ML and ENT are the
best estimators of the Weibull parameters if the statisticians criterion are taken. However, it
is worth noting MOM gave good unbiased results for the extreme quantiles, albeit with the
highest sampling error. In the remainder of this work the ML method is adopted as the
primary estimation method. At first sight this might seem at odds with practicality since the
maximum likelihood method requires the derivation of complex likelihoods which must then
be optimised using multivariate function minimisation routines. A reasonable question is then
why not use a simpler estimator for the problem at hand, for example, the method of moments
for fitting a model to small samples with low COV. Previously this argument has won in
engineering and, as Crowder et al (1991) point out, in consequence the statistical analysis
performed by engineers has fallen behind the methods adopted by for example the medical and
clinical sciences. The principal advantage of maximum likelihood over the simpler
alternatives is the rigourous formalisation of likelihood estimation, and its wide degree of
application. By adopting the method we avoid having to use various ad hoc estimators like
weighted least squares to determine the 'optimal’ parameters. In addition, the method

provides a general procedure which allows the statistical uncertainty of functions of the
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models parameters to be found using the information matrix. This avoids having to perform
time consuming and expensive Monte Carlo simulations to determine the levels of uncertainty in
a statistic derived from a fitted model.

Before discussing likelihood estimation in detail a brief introduction to kernel density
estimation will be given to highlight some of the problems with parametric estimation and
demonstrate the differences between parametric and non-parametric methods of density
estimation. Non-parametric kernel methods have been popular in the medical and clinical
sciences for many years since for large samples they can provide accurate, low bias estimates of
the density without pre-supposing a parametric form. The advantage of this method is that it
enables the presence of multi-modality to be identified, for example when analysing data
which result from the mixing of more than one random process. For our purposes, this might be of
use when analysing wave zero-up-crossing period populations which result from the mixing of

swell and wind driven seas.
3.3 KERNEL DENSITY ESTIMATORS: NON PARAMETRIC ESTIMATION

In this section, three procedures which allow data to be explored graphically are
briefly examined. These procedures can be used subjectively to identify the nature of the
distribution function underlying a sample of data with distribution function f(x). Engineers are
familiar with histogram and quantile plots as methods for examining the distribution of a
sample x;; i =1,....,n, but these methods can only give a subjective measure of the central
tendency, skewness and kurtosis for the sample. Furthermore, neither histograms nor quantile
plots can be used reliably to visually identify the family of underlying distribution functions
when the sample is small (<50). Normally, a quantile plot is more informative than a
histogram, however, because it is a plot of probability level and not density against variate it
is difficult, without experience, to identify the underlying distribution function.

For this work it is useful to determine non-parametric estimates for the density function
which can be used to select the correct model for use in a parametric study. Rosenblatt (1971)
shows that for large samples the kernel density estimator gives low bias and low variance
estimates of density. Kernel estimators are used primarily as graphical tools, however, they
can also be used to determine robust estimates of density for use in, for example, hazard rate

estimation.

Perhaps the simplest estimator is the Nearest Neighbour Estimate for which
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This estimator is of little use for practical applications however it does illustrate how the

density f (x) can be estimated from the samples. The kernel density estimator uses a similar
principal but instead of using only two ‘adjacent’ samples it uses a weighted average over the
samples within the bandwidth,or window, with width b.

The two principal advantages of kernel estimators are that they assume no particular
functional form for the density and that their behaviour is well defined mathematically in the
large sample case, Silverman (1986). A further advantage of the method is that it can be
extended to the multivariate case (see Ch.4 ) to explore the underlying structure of joint
probability distributions. The general form of the univariate kernel estimator is

a 1 o, [x-X,
(x) = — k{ ‘ } 35
fx) = — 2, > 35]
where n is the number of samples, b is the bandwidth for the smoothing, and k(.) is a kernel
function which must satisfy

J:k(X) dx=1; k(x)<1; J:x k(x) dx=0

The kernel is therefore a density function with zero mean. Several types of kernel have been
proposed but most users agree that the choice of kernel is less important than the selection of an
optimal bandwidth, consequently for this work we use the well known Epanechnikov (1969)
kernel for which

Ky)=34(1-y*) <1 : k(y)=0, otherwise [3.6]

This kernel has been studied extensively and simulation shows that it provides asymptotically
unbiased estimates with low variance given the correct choice of bandwidth. The optimal
smoothing width is dependent on sample size and sample standard deviation, as a rough guide
it should be taken as b=20n™" , however, if a more accurate result is needed, for example
when using the estimate in hazard rate calculations, the method of maximum likelihood
should be used. It is worth noting however that the results may be biased and noisy when the
distribution is long tailed, in such cases adaptive kernel estimation (in which the bandwidth
varies) should be used.
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Applications for these procedures using populations of wind wave and current data
were given in Chapter 2 which examines the environmental time series recorded by the I0S
DBI1 data buoy. To demonstrate the method, a sample of 1000 Weibull distributed random
numbers with shape, scale and location 0={2,0,],463, ]0,16} is generated and then
examined using the fixed bandwidth, Epanechnikov, kernel estimator outlined above. The
results are shown in Fig. 3.2 which shows the population model plotted against two kernel
estimates each having different bandwidth. Overall, the optimal window width kernel
estimates agree well with the population model with good fit in the body of the distribution.

3.4 MAXIMUM LIKELIHOOD ESTIMATION

The likelihood random variable for the vector of observed values X = {X ,,....,X.} is

defined as the joint density for the observation. Assuming the observations are iid then the
joint density is

F(X)=f(X,; 0)x f(X,; O)x......xf(X,; 0)
the likelihood random variable is then defined as
10 x)=TT/(x 6)

For a sample of iid data the sample likelihood is defined by

a
L(0;x)= Hf(x,-; 0)

where the lowercase £ denotes the quantity is the sample likelihood, that is an observation on

the random variable L. The sample likelihood is simply the product of the density for each of

the samples with the model parameters as the unknowns. The principal of the maximum

likelihood method is that the ‘best explanation’ for the sample of data X is provided by the

value @ € Q which maximises the the sample likelihood £(0; x), that is

f6:x)240;x)

In real applications there are theoretical and practical advantages gained from working with
the natural logarithm of the likelihood, in fact it is the log-likelihood which is fundamental
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to the derivation of the parameter covariance matrix. The solution for the most likely set of
parameters 6, for the chosen distribution function f(x; ), is obtained by maximising 6 on the
parameter space £2. For the case when the parameters of the model are unbounded the solution

A

0, is then defined by the turning points given by

2(6;x) :
—_—t=0 =1,...
E7) /

where, p is the number of parameters in 8; for example, six in the case of a bivariate Normal
and three in the case of the univariate Weibull. The solution for @ will usually involve a non-

linear minimization of the negative likelihood —£(8; x), since

max[4(0 ; x)] = min[-£(0 ; x)]

However, in practice, the solution for 6 is sought using the natural logarithm of the
likelihood since the log-likelihood is used in the calculation of model parameter uncertainty.
In this work the Numerical Algorithms Group (NAg) gradient based, minimisation routine
E04VDF was chosen for the optimisation. This routine has proven ideal since it is capable of
handling large numbers of model parameters, and can deal with non-linear, and linear
inequality constraints. The initial position of the search for the maximum must be chosen with
care to avoid the location of local and not global minima. However, the starting value of the
parameters can generally be estimated by graphical inspection of the marginal distribution.

34.1 THE INFORMATION MATRIX

Each parameter vector O estimated using a finite realization of a random vector
X= {X ,,....,Xn}, will itself be a random vector drawn from a sampling distribution. For large
samples it is well known that maximum likelihood estimates are asymptotically multivariate
normal distributed with minimum bias and accuracy not far from the theoretical optimum.
Furthermore, under certain conditions on the joint density, and assuming the estimator is
unbiased, the symmetric pxp Hessian matrix of the negative log-likelihood, called the
information matrix, is related to the sampling distribution covariance matrix C where

C= (I (0))_1 (3.7]

that is
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d*log L [ 92log, L]
-E peverenny —E | 52—
[ 36,36, ] 736,06,

20,36, [ | 96,06, | (3.8]

2 [ 42 T
_E[a Iog,L]' _E d‘log, L

The proof of this important result, is given in Ledermann (1984). In practice, the expected
values of each second derivative in Equation [3.8] can be difficult to determine and in this work

the covariance matrix is approximated by the observed information matrix

-1

_ d*log, t _ d*log, ¢ ]
20,00, " T 36,00,
c= . : .
_dlog, ¢ _dlog, ¢
| 96,96, T 96,99, | 3.9]

The joint sampling distribution of the random vector 8, is then multivariate normal, with zero
expectation vector, and covariance matrix given by the second derivatives of the log-
likelihood function. The asymptotic form for the distribution of the maximum likelihood set of

parameters is then approximated by

__ I [ T
f(9)-(2”),,z \/Hexp{ 10" c" 0} [3.10]

A knowledge of f() enables the confidence regions for the parameters to be constructed. This

information is important since for design purposes it means we can identify characteristic upper
and lower bounds on the form of the distribution function and hence allow for the uncertainty in
the maximum likelihood model. Of course we often have small sample sizes (<50) in which

case the assumption of asymptotic normality will be approximate, or may not hold.

3.4.2 CONFIDENCE INTERVALS AND REGIONS
There are two possible ways of using the model parameter covariance matrix. In the

simplest case each parameter 6; is considered independently of the other model parameters,

which are assumed to be deterministicc. We have seen that the model parameters are

approximately multivariate normal, and consequently the random variable 6; is

approximately normal with zero expectation, and variance approximated by
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P log LT
N

using the properties of the standard Normal distribution confidence intervals can be calculated
for the individual model parameters, for example, the approximate 95% confidence limits for

0, are

0,-1.960(6,) & 6, + 1.960(6,) 3.12]

In practice, the single parameter case is of little use other than to indicate the degree of
uncertainty in the parameter, thereby indicating the goodness of fit. For the two parameter
case the confidence limits become an ellipse and therefore rather more difficult to compare
between models and fits. Ultimately, we are interested in the uncertainty in some function of
the parameters like the quantiles for a given design return period. In this case the contribution
of each parameter to the uncertainty in the quantity of interest must be allowed for using a
method like the Rao (1973) delta method.

3.4.3 FUNCTIONS OF MLE PARAMETERS

In most cases, we are interested in functions of the maximum likelihood estimates of a
model's parameters. We have seen the model parameters can be assumed to be approximately
multivariate Normal, with zero mean vector, and variance-covariance matrix determined by
the second derivatives of the log-likelihood. Assuming asymptotic normality holds for small
samples we can generally apply the delta method, Rao op cit, to determine the mean value and
variance for functions of the model parameters. One obvious class of functions which are of
interest are the quantiles X, corresponding to a design life with survival probability P.

Assuming @(0) = x,(0) , then the mean value of the quantile x, is given by substituting
the maximum likelihood set of parameters into the function @(0) i.e. di(é) = xp(é) = %p.

The variance is given by

V[ ]|=V[F(P)]

Providing the inverse distribution function F~' can be found the variance of a quantile can be
approximated by assuming the parameters are multivariate normal. In practice, this enables
the mean value of a design parameter to be determined for a given level of probability or return
period, together with an estimate of its statistical uncertainty. This information is of
considerable use since it could directly be used to assess the magnitude of a partial safety factor
required to give a defined level of reliability.
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In the simplest case the quantile is a simple linear function of the model parameters @
with coefficients a;

14
Xp = a0,

im] ?

the mean is then given by

E[x,]=), aE[6]

and the variance is
x]=2 . aM8]+ X, Y aco6,.6)] [3.13]

One example of the simple linear case which is of importance to the design of ships and

offshore structures is the Gumbel model, F(x) = exp( exp— ( )) which has quantiles

=y - olog(—logP) (3.14]

. A 0
with mean X, and variance

{1 +9, (-7 —-log(—logP))z}%j— [3.15]

In this case maximum likelihood estimates of the mean quantile, and its variance, can be

calculated very simply using the estimates /i , G.

If @(0) is not a simple linear function of the model parameters but a non-linear,
continuous, differentiable function of the probability model parameters @ then the mean and
variance of @(0) can be found to a first approximation using the Taylor expansion

®(8)= <1>(o)+z(e e)[gg’}

The mean value of the function P is then approximated by

P

E[®(0)]= cb(o)+2(e 9)[90

} ()
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that is the mean value is given by substituting the maximum likelihood parameters in to the

function d)(é) The variance of the function of the model parameters is given by

V[W")FZ"F{%] ZZ "[ { :l[g::] (3.16]

This equation can be written in matrix notation giving a more compact form which is easily

programmed using standard library routines

v[D(0)] =G" (D) C G(P) (3.17]

Where C is the parameter covariance matrix, and G(@P) is the function gradient vector. In the

simplest case, the model has a single parameter 8 and the variance of the function (@) at

the maximum likelihood point is

P
v[D(8)] = VIBI[ Y ] (3.18]

For the two parameter case we use the summation Equation [3.16] to obtain

2
oD || D
v[D(0)] = vIOI[—z-] +2co [0"01[8 ][ae] [9][ ] [3.19]

Some applications of these techniques are given later using the Weibull and GEV models
developed in Sections [3.6&3.7].

3.5 MODELLING PROCEDURE: APPLIED MAXIMUM LIKELIHOOD

A summary of the most common univariate distributions is given in Lewis & Orav (1989)
and a more complete discussion is given in the Johnson & Kotz (1970). For multivariate
distributions see Johnson & Kotz (1972). The procedure for modelling a distribution using
maximum likelihood involves eight primary steps:

1 graphical examination of the marginal distributions and scatter plots
2 checks for the iid assumption using autocorrelation of the time series
3 hypothesis of the distribution function for the data
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formulation of the sample log-likelihood for the chosen model
maximization of the sample log-likelihood

calculation of the information matrix if the problem is regular
estimation of the confidence regions if possible

assessment of the uncertainty in the quantity of interest to the

@ 3 N U e

designer

If the random variable can be transformed into a normal variate then the problem of estimation
is considerably simplified. However, if this is not the case then prior to statistical inference it
is often advantageous to use a simple transformation which produces a zero mean process, with

normalised variance

_(x,—E[x) (3.20]

G

This transformation to random variable ¥j scales the data and in some cases improves the
numerical conditioning of the log-likelihood, thereby improving the solution obtained using
the optimisation. The probability density for the random variable X, f(x) is related to the
probability density for ¥, f(y) through the simple relationship

fr= I%’fx = 0, fy(x)
This is simply a probability preserving transformation such that f, |dy|= f |dx].

3.6 THE WEIBULL DISTRIBUTION

A popular generalisation of the exponential distribution for extreme value and
reliability calculations is the Weibull (1951) distribution. The popularity of the Weibull
model stems from the flexibility of the scaling and shape transformation

]

Before developing the Weibull sample log-likelihood functions it will be useful to carefully

examine the properties of the Weibull distribution. The cumulative distribution function and

density function are given by
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F(x;0)=1- exp{—[(‘—;g—)]‘} 3.21]

and
f(x:6) =—2{x—;i}’ exp{—[(x%f')]‘} [3.22]

where, the bounds on the model shape, scale and lower bound parameters are given by
x>&,; 0<a<oo; 0<c<oo

Inverting the distribution we get the level of variate corresponding to survival probability P,

lle
1
=al +
x, og{ -7 } $ (3.23]

This relationship enables us to calculate the return period values for the DB1 wind speed,
significant wave height, and current speed. It also serves as a check on the fit of the marginal

models in the extremes.

The first four moments of are given by the gamma functions

E[x]= & +ar{1+4} (3.24]

var[x]= o?[{1+2}-r*{1+4}]] [3.25]

E(x-3)]= &’[F{1+3}-3r{1+ {}r{1+2}+2r'{1+1}] B2l
E[Ge- 2o’ {1+ £} - ar{a+ 2r{1+ 2} + 68 {1+ hr{1+ 3} - 57 {1+ )] B27)

The lower limit on the range of the variate results in the distribution commonly being referred
to as the Type III lower bound distribution since its form corresponds to the third Fisher Tippet
distribution when X is replaced by —X . The physical interpretation of the lower bound is that

the variate cannot be less than some threshold value cfo which very often can be taken as 0.0,
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in which case estimation of the model parameters is relatively simple since only two unknowns

exist.

The three parameters in the Weibull distribution each control a different aspect of its
shape. The 'c’ value is a shape parameter which influences the skewness and peakedness, and
the alpha parameter is the scale factor which controls the spread along the variate axis.
Whenc=2and 50 = 0 the distribution becomes the Rayleigh distribution, and when ¢=3.25 the
Weibull distribution is very nearly distributed as a Normal variate, Dubey (1967). Plots of the
Weibull distribution and density for a range of integer shape parameters from 1 (exponential)
to 4 are given in Fig. 3.3.

3.6.1 WEIBULL LIKELIHOOD FUNCTION
The sample log-likelihood function for the three parameter Weibull distribution is given

by

log,(8( 0% )= Y log,(fi, .. (x1--%,))

i=]

which on algebraic manipulation gives

log(£(0;x)) =nlog,c—cnlog, o +(c - I)ZIog, x,—&) -2 Z(Jc,.—fo)c

i=] i=]

[328]

For the two parameter Weibull ( i.e. &, =0) the solution for the maximum likelihood set of

parameters 0 = {5, d} is then given by

a6, x) _ -0

c or=12
96, 4

Solving for the first derivatives of the log-likelihood gives two non-linear simultaneous

equations which are a function of the unknown parameters @ and the sample ¥ :

alogt C (x—éo) L)

Ja C +1 [3.29]

i=]
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— c log a . c
az;i £ = nfL-tog, a}+i§-;log,(xi—§o)+—‘—z%—j§-;(xj_ &) -

Jgi(x.- - 'go)c log, (xi - go) (3.30]

QA =1

Solving this problem is relatively simple when compared to the three parameter case since an
iterative scheme can easily be implemented to search for the solution of the two equations.
Unfortunately, for the three parameter case the first derivative of the log-likelihood with
respect to the lower bound is not zero

olog. ! (c-n¥—1 (21 .
&, (c ])E(Xi—éo)+;%§(x‘ &) T =0 [3.31]

owing to the bound on the parameter &,. Solving Equations [3.29 & 3.30 & 3.31] therefore

requires classical, constrained optimisation procedures to minimise the negative log-
likelihood, i.e.

max[log,2(0; x)] = min[-log,¢(6; x)]
In this work, the Numerical Algorithms Group (NAg) Fortran subroutine E04AJF was adopted.

This routine uses a double precision, ‘downhill’, finite differencing algorithm to solve problems

of the form

min{F(x)} subjectto I<{x}<u

where, F(x) is a smooth nonlinear function, X is the vector of function variables, and I, u are

the vectors of upper and lower bounds on the model parameters.
3.7 THE GENERALISED EXTREME VALUE DISTRIBUTION
The three Fisher Tippet distributions can be generalised as a single equation usually

referred to as the Generalised Extreme Value (GEV) distribution, Jenkinson (1955) . The
cumulative distribution function for the GEV is

G(x;p,0,k)=exp {—{1 —k(’;" )}f ] [3.32]
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where the scale coefficient 0> 0, and the range of x is determined by the inequality
1-k(x- ﬂ) / o> 0. Inverting the distribution we get the level of variate corresponding to

survival probability P,

x, = p+Z(1-(-log{R})) [3.33]

The three fundamental forms of the GEV are controlled by the shape parameter k which can

either be zero, negative or positive:

k — 0 Fisher Tippett Type I - in the limit as the shape parameter tends to zero the GEV
becomes the Gumbel (or double exponential ) distribution with unbounded variate, and

distribution function given by
x —
G,(x;p,0)=exp [ - exP{"("‘E&]} ] [3.34]

k <0 :Fisher Tippett Type II - when the shape parameter is negative the GEV has a Frechet
distribution with lower bound on the range of x defined by the equality x, = o/k + 1

k > 0 :Fisher Tippett Type III - when the shape parameter is positive the GEV has a upper
bound on the range of x defined by x; = O/k + i

The form of the GEV distribution for -x with positive shape coefficient is Weibull with the
shape, scale and lower bound coefficients given by ¢ = I/k; a=o/k; &, =ofk+ . For
comparison, the three forms of the GEV are plotted in Fig. 3.4 using equal scale and location

parameters.

3.71 THE GEV LIKELIHOOD FUNCTION

Estimation of the parameters of the GEV distribution is discussed in Prescott & Walden
(1980) in relation to the estimation of extremes in hydrological data. They use an iterative
scheme involving the Fisher information matrix to derive the maximum likelihood estimates
for the shape, scale and location parameters. In this work, the problem is solved more directly
by minimising the negative log-likelihood using a non-linear function minimisation routine.
This approach was adopted successfully by Tawn (1988a) who examines in detail the fitting of
a GEV model to data having non-stationary mean. Differentiation of Equation [3.32] gives the
GEV probability density function
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f(x)=&[1-k(x-p)/ a]{—lap{—[l-k(x—,u)/ a]*} (3.35]
In the normal manner, the natural log of the sample likelihood is given by

10g,(£(8:x)) = 3 log. (fe, s, (¥1--%.))

im]

whereupon making the substitution for the density of each sample we get

log,(£(6;x))=—nlog, o +

(£- 1)210&{[1 —k(x,—p)/ o]} - g[z — k(x, - )/ a]f [3.36]

The maximum likelihood solution 6 = {0“,12, ﬁ} is then found by minimising the negative

sample log-likelihood, subject to the linear and non-linear constraints

0<0<oo

~oo< k<]
I-k(x—p)/o>0

The first two constraints are simple bounds on the range of the parameters. The upper limit on
the shape parameter k corresponds to a limit on the so called regularity space for the log
likelihood, that is no MLE exists for values of k greater than unity. During the initial stages of
this work it was assumed that the FT III was totally equivalent to the upper bounded form of
the Weibull distribution, however, the limit on k means the GEV cannot model Weibull
populations for which the shape parameter ¢ is less than 1.0. This suggests both the GEV and
Weibull models should both be fitted to a sample to test which model fits the data best.

The third constraint makes the GEV more difficult to solve than the individual Fisher
Tippet distributions since it is non-linear in the scale parameter. Finding the maximum
likelihood parameters therefore requires minimisation of a non-linear function subject to both
bounds on the parameters and non-linear constraints. When programming the solution of the
GEV maximum likelihood parameters two non-linear constraints are required to allow for all

feasible values of the variate



1-k(x,—-W! o>0

1= k(Xpax— )/ 0> 0

where, X, and X, are the smallest and largest values in the sample. The first constraint is
necessary when the current iteration has a negative value for k corresponding to a lower
bounded variate with Frechet distribution. The second canstraint is necessary when the current
step has a positive value for k in which case the variate has an upper bound with FT II
distribution.

When solving the MLE's for the GEV it was not possible to use the same NAg function
minimisation routine that was used with the Weibull distribution since it is not capable of
dealing with the non-linear constraints. It was therefore necessary to use the more general

minimisation routine, E04VDF, which solves problems having the form

x
min{F(x)}  subjectto u<{Ax p<l

¢(x)

Where: F(x) is a smooth nonlinear function;
X is the vector of function variables;
(ul) are the vectors of upper and lower bounds on the
range, linear and non-linear constraints;
Ax are the linear constraint equations;
c(x) are the non-linear constraint equations.

NAg routine E04VDF requires analytical expressions for the derivatives in the log likelihood

gradient vector G(é) in order to perform the minimisation

G(é) _]dlog, l, dlog, ¢ ’ dlog, L r
Jo ok au

This gradient vector is used by the routine to determine the next step length and direction, each
term ( given by the first partial derivative of the likelihood w.r.t. the model parameters) is

given in Appendix A.2.
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Experience with the GEV distribution shows the correct choice of starting point is
essential for the optimisation to converge to the maximum likelihood point. In this work the
moments estimator for the Gumbel scale and location parameter are chosen as the starting
point, with a shape factor set to 0.1. The Gumbel model has a mean and variance given by

mean = |1 + Yo

. 1,
variance = — n’o’

where 7 is Euler's constant. Equating these to the sample moments we get the solutions

§ = {)%ix} - 0.58J 7!26N Eﬂ:(x,. - Elx])’ [3.38]

i=] i=]

) 6 ol 2
o =\=y ?_;(xs —~ E[x]) (3.39]
k" =0.1 (3.40]

Using these values usually ensures that the correct maximum is found: however, in some cases
the solution for k is zero indicating the domain of attraction is the Gumbel model. In this case,
the I/ k terms in the likelihood and its derivatives tend to infinity and a trap is required to
prevent numerical ill-conditioning. In such cases the results in Tiago de Oliveira (1989a) are
useful since he shows the location and scale parameters are bivariate normally distributed

with:
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E{(u~Elul)o - EloD)] = 5 Z1-7)

where y = (.5772.... is Euler's constant, and the asymptotic correlation coefficient is

nz -112
= ]+-—— =0313
P [ 61-7)

These results can be compared with the covariance matrix estimated either analytically or

numerically from the information matrix ( Appendix A.2).
3.8 ESTIMATION OF THE COVARIANCE MATRIX: NUMERICAL PROBLEMS

Confidence intervals, and standard errors can be estimated using the Fisher information
matrix, which is constructed from the second derivatives of the log-likelihood with respect to
the model parameters. In most cases, the equations for the second derivatives ( which are given
in, Appendix A) were cumbersome and prone to error in their derivation and implementation in
FORTRAN, consequently a check was made on each result by calculating the derivatives using
finite differences. Initially, it was hoped that finite difference solutions would be sufficiently
accurate for the method to be used routinely . However, in practice, a problem was encountered
in a few instances. The gradients at the maximum likelihood point are, rightly, near zero and
this caused a number of numerical problems because the central and forward difference
estimates calculated by the NAg routine were not sufficiently close to allow the routine to
accept the results. To overcome this problem the gradients and Hessian were calculated at a
point very close to, but not at, the maximum likelihood point

The size of the perturbation factor F varied with model type and sample of data but generally
a value of 1.0001 was found to be acceptable. The introduction of the factor F gave biased

estimates for the gradient vector and the Hessian matrix which are of course already biased by

the error residuals 0(,)2 of the Taylor approximation.

A further problem was encountered when calculating the parameter uncertainty. In some
instances, negative estimates appeared on the leading diagonal of the covariance matrix,
which is clearly incorrect since only the covariance terms can be negative. The cause of the

negative terms was not clear in some cases, however, in the case of the Weibull model the
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problem was related to the fact the lower bound parameter acts as a constraint in the
optimisation. Very often the solution for the maximum likelihood point occurred at the
boundary constraint. In such cases, the asymptotic properties of the likelihood ( which are the
basis of the derivation of the information matrix ) do not hold.

One 'solution’ to this problem was to re-run the analysis using a two parameter Weibull
model in which the lower bound was set at —§ . This resulted in acceptable covariance
estimates but as pointed out by Dr. B. Torsney, University of Glasgow Statistics Department,
this makes the results for the scale and shape parameters conditional on the choice of lower
bound. One proper solution to this problem would be to include the order statistics estimator for
the smallest in the sample in the likelihood function, see Galambos (1978); this could be
included in any extension to this work or a related subject.

3.9 FORTRAN MAXIMUM LIKELIHOOD PROGRAM

The Weibull and GEV models discussed so far have been programmed into a FORTRAN 77
program called MAXLIK. This program uses Numerical Algorithms Group (NAg) subroutines
for the optimisations and inversions required by the maximum likelihood method. The core of
the program is NAg routine E04VDF which is a general minimisation routine which can handle
functions with large numbers of variables and linear and non-linear boundary constraints. All
computer code has been written in a modular format to enable new likelihood functions ( ie new

distributions ) to be added without having to alter the structure of the program.

39.1 CHECKS WITH SIMULATED DATA

The Weibull code in the program has been checked by comparing its results with a
dataset analysed by Menon (1963), and Cohen (1965). The original problem was defined by
Menon loc cit and consisted of maximum likelihood estimation of the parameters for a Weibull
population with zero lower bound. The population scale parameter was 6 = 1.649 (note
Cohen writes 8 = a° = 1.649) and the shape parameter was ¢ =0.5. Two years later Cohen
loc cit examined the data using maximum likelihood and showed how the information matrix
could be estimated and then used to calculate the covariance matrix for the model parameters.
The results of moment, Menon, Cohen, and MAXLIK estimators are summarised in Table 3.1
together with the 20 samples drawn from the population. This table shows that the method of
moments gives the poorest estimate for the shape parameter and the best estimates are
obtained with the Cohen, and MAXLIK likelihood estimators which are in error by only 1 per
cent. The estimates for the scale parameter are more biased than the shape parameter with

the worst solution given by the moment method.
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In addition to the maximum likelihood estimates of the parameters Cohen loc cit
estimates the information matrix from the sample log-likelihood and then derives the shape
and scale parameter covariance matrix. Based on the results in Section [3.4] we can calculate
the 95% confidence intervals for the shape and scale parameters using the information matrix.
These values, reported by Cohen, are compared with those calculated by the MAXLIK program
below

estimator Cohen MAXLIK
scale -0 0.68< 0<2.05 0.62< 6<1.81
shape - ¢ 0.30<c<0.70 0.4<c<0.7

The MAXLIK results are a slight improvement over those obtained by Cohen but this is
probably due to the higher precision of the NAg routines used for the optimisation. Note the
width of the 95% confidence limits is quite large for the scale parameter indicating the high
level of uncertainty caused by the small sample size. The shape parameter has a narrower set
of limits, which is encouraging since the quality of fit for extreme level quantiles is more
sensitive to bias and uncertainty in this parameter than the scale parameter. If we examine
the covariance matrix for the parameters it appears the scale and shape parameters are

modeately correlated

= var(a) cov(a,c)| [0.7275 0.022
“|cov(a,c) var(c) | | 0.022 0.0066

As a further check on the fit of the estimators, the parametric form of the exact, moment,

Menon, Cohen, and MAXLIK estimates can be plotted against the quantile estimate

k

E[Pr(X < x,) = —1\7:—]

This has been done in Fig. 3.5 and 3.6 which have been plotted on a linearising scale. Note the
moment estimator is clearly shifted from the data and has the wrong slope whereas the

MAXLIK estimator fits the data well and is very close to the exact model.
The GEV estimation subroutines have been checked by using two simulated data sets provided

by S. Coles at Sheffield University. Each data set contains 30 samples drawn independently

from a GEV population with location, scale and shape parameters:
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sample location scale shape
dataset 1 -0.20106 1.03457 0.14165
dataset 2 -0.04722 0.88554 -0.14655

Both datasets given in Table 3.2 have been analysed using the MAXLIK program and its' results
compare favourably with those reported by Coles, suggesting the likelihood and optimisation

routines are correct.

To check the information matrix terms two approaches have been programmed: the first
uses analytical expressions for the second derivatives of the sample log-likelihood (Appendix
A); and the second uses the finite difference method. The results from each method were found
to be identical to the first four digits of accuracy and no perturbation was required for either
data set. The results from the finite difference method are presented in Table 3.3. Based on the

covariance matrices the 95% confidence limits are then:

GEV parameter dataset 1 dataset 2

shape 0.7378 <->1.332 0.6112 <-> 1.160
scale -0.1160 <-> 0.3991 -0.4140 <-> 0.1203
location -0.625 <->0.2227 -0.4044 <-> 0.3101

Note in this case the bounds are more narrow than was the case for the Menon Weibull data due
to the larger sample size. On the other hand in this case the 95% confidence limits change the
sign of the scale and location parameters suggesting the sample may not be sufficiently large to
establish which Fisher-Tippet model is the correct one for the data.

3.10 PEAK OVER THRESHOLD PROBABILITY

When fitting a population model to a sample of data it is often the case that either: the
order statistic quantiles do not fit the estimated model in the tails of the data; or the model
tail does not behave as expected when predicting return period levels. Since the F(x)"
approach to calculating the distribution of the largest or smallest extremes is sensitive to the
fit in the tails of the distribution it is important to ensure the fit is good for the largest or
smallest values in the data. One method commonly used to improve the fit in the tails is to use
a weighted least squares regression, Isaacson (1981). This method suffers from a lack of
consistency in that the choice of weights is arbitrary, resulting in different estimates of
extremes given different weights. A better procedure is to censor the data by selecting only the
r largest in the data sample and then fit the model to these data. This approach is can be used
successfully with the maximum likelihood method and is useful when data are only recorded
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when the values exceed a threshold value. For example, a data buoy can be designed to record
heights which are in excess of say 5 metres significant, thereby reducing the amount of
information which must be stored and analysed.

Assuming independence, the distribution of the largest L in sample of N amplitudes A is
given by

F(Lsl)=[F(A<a)] [3.41]

However, a model £ () fitted only to the  largest in a sample of size k cannot be used in the
conventional way for estimating the distribution of the maxima since it is not an estimate for
the population model F(A < g) used above. The model F (m) must therefore be used with the
theorem of total probability to calculate the distribution of the largest in N independent,
identically distributed amplitudes.

Let E, be the event that there are r amplitudes greater then some threshold &, in k
trials. The probability that there are 7 values greater than &, in a sample of size k is given by
the binomial distribution, where

P(E)= (f) &(-8)" [3.42]

o)

Now, given that r of the amplitudes are greater than the maximum likelihood threshold 50

here

ink samples, the conditional probability of the event that the maximum amplitude M will be
less than a valuem (M <m [R=r)is

P(MSm/R=r)=[}7'(m) ]'
Here, E (m) is the model fitted to the 7 largest amplitudes using the method of maximum

likelihood. For our problem, the probability sought is the unconditional probability
P(M < m) which, by the theorem of total probability, is given by

w3, (o] (41"

r=0
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where 5 is the probability that the observed amplitude will be greater than the threshold.
This simplifies to

A A s

P(MSm)=(5F(m)+1-3)" mz§, [3.43]

Estimates of the quantities ﬁ (m) and 5 can be obtained using maximum likelihood or,
A A

alternatively, F (m) may be found using maximum likelihood and § can be estimated using

5= r/k For the case r=k, we have 5=1.0 and Equation [3.43) reduces to the correct result

FM<sm)= [F (A< a)]N. The value of r used for censoring the data must be chosen
carefully, since if the value is made too small - less than 10 say - the maximum likelihood
solution will be biased to such a degree that the advantage of the optimal sampling variance
associated with maximum likelihood methods will be lost. On the other hand if r is too large
the fit F (m) may be poor for the largest values in the sample which are most important for the

estimation of extremes.
3.11 EXTREME RESPONSES OF A FLARE TOWER

The maximum likelihood procedures discussed previously are so general they can be
applied to a variety of statistical modelling problems. One useful application is estimation of
the most probable maximum structural response, in say three hours, given non-linear time
domain response simulations which last for say 2000 seconds. This problem was of interest to an
Oil Major who commissioned a study into the use of maximum likelihood for predicting design
levels of response. Full details are given in Prince-Wright (1990), and a summary of the study is
included below.

Four time series of the forces in a flare structure brace element, Fig. 3.7, were examined to
extracted the maxima from each time series. In the linear response case, we would expect the
maxima to be Rayleigh distributed when the sea is narrow banded. Consequently, the maxima
were assumed to be Weibull distributed since it includes the Rayleigh model as a special case
when the shape parameter is 2.0. However, the non-linearity of the structural response means

this is not so and therefore the shape parameter was included in the likelihood maximisation.

3.11.1 RESPONSE MAXIMA POPULATION

The sample of response maxima was extracted from the four time series. The maxima
populations were then modelled using both two and three parameter Weibull models which are
shown in Fig. 3.8 and 3.9. Overall, the three parameter model gave the best fit to the
populations, which is to be expected, with little systematic curvature in any of the plots: this
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suggests the Weibull model is reasonable as a descriptive model for the maxima. One problem
with the Weibull model is that it decays rapidly in the upper tail which results in under-
estimation in the case of wave heights. For this reason, a simple threshold approach was
developed, Prince-Wright (1991b), so that a Weibull model could be fitted to the r largest

response maxima.

The obvious question is what value should be used for r ? The previous literature review,
Section 3, indicated that the likelihood approach could be used with samples with as few as 20
observations. Furthermore, the tests with the simulated Menon data also indicated the model
parameters’ bias and variance were still acceptable for such small samples. Consequently, r

was taken as 20.

The results are shown for two of the time series in Fig. 3.10. Again the model fit is good,
however, the small sample size results in a large increase in the statistical uncertainty of the
Weibull model parameters, which are given in Table 3.4. A further disadvantage of this
method was that in some cases the best results were obtained when a two parameter Weibull
was used. This makes it difficult to program the estimator in a 'black box' routine since,
ideally, both models must be fitted and then compared; when in fact goodness-of-fit tests are
unreliable in the small sample case. This example therefore tends to suggest it is preferable to

model the population using a distribution which has the correct tail behaviour.

3.12 MODELS OF THE DB1 WIND, WAVE AND CURRENT DATA

Two approaches were used to model the marginal distributions of the DB1 wind speed,
significant wave height, and current speed. The first is summarised in ch. 2 where maximum
likelihood was used to fit both Weibull and GEV models to the marginal monthly maxima
given in Table 2.11: Ch. 2. The quality of the fits to the monthly maxima was generally good as
shown in Fig. 3.11 and 3.12. Unfortunately it is difficult to quantitatively compare two models -
which both seem to linearise the data - so their residuals were plotted. The results are shown
in Fig. 3.13 and 3.14 but again both appear to be similar.

In the second approach both Weibull and GEV models were fitted to the full population of
3-hourly records for each variable ( in fact the wind and current data was recorded every hour
but we only use the values taken simultaneously with the seastate parameters ). The results
from modelling the population are given in Table 3.5 which shows in general the likelihood

estimator's mean and variance agree well, the skewness is reasonable, and the kurtosis is poor.

The primary purpose of a marginal model for the wind, wave and current data is to estimate

the level of a variable exceeded on average only once in a specific return period like 50 or 100
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years. It is therefore essential that the marginal models be capable of modelling the tails of
the data: this suggests the third and fourth moments of the estimator must agree with the
sample moments. Using the definition of return period given in Department of Energy (1990b)
then the survival probability corresponding to the 50 year return period is

1/(50%36525*8)
for the population models, and
1/(50%*12)

for the monthly maxima models. Note 8 is the number of 3-hourly observations in one day. The
return period level for the Weibull estimator is then given by Equation [3.23] and for the GEV
model the value is given by Equation [3.33]. The results for the 50 year return period wind
speed, significant wave height, and current speed are given in Table 3.6 for both the population
and the monthly maxima models obtained using maximum likelihood. In both cases the
population and monthly maxima models for the significant wave height give obviously poor

estimates. On the other hand the results for the wind and current speeds are reasonable.

Although these results alone do not indicate population models are definitely superior to
the monthly maxima models in the small sample case it should be noted only two distributions
are examined. In fact, Carter & Challenor (1983), and Carter (1987) have shown the FT-1
model gives good unbiased results when fitted to wave data using moments. Using their method
the 50 year return period value for the DB1 data is given by

x5, = E[x]+8.8210{x]

This gives
H,,=133m
U, =383mls
U,,=17mls

Comparing these values with the Department of Energy Guidance notes, which give
H,,=155m and U,;, = 38.5m/ s, the significant height is seen to be too low, and the

ks

wind speed is in agreement - the current speed cannot be compared since we have not

deconvolved the tidal and storm surge components.

In the next chapter an alternative method for modelling the populations is given in which
the data are transformed to a normally distributed variate using the Box transformation. This
approach also gives good estimates for the extremes and has the further advantage of

generalising to the multivariate case.

74



5 Llling wnivari . L

3.13 CONCLUSIONS

The desirable characteristics of a good estimator were stated as: consistency, sufficiency,
low bias, low sampling variance, reliability, and simplicity. Intrinsic and parametric analysis
of marginal data has been examined and kernel density and maximum likelihood analysis were
selected for special attention since they satisfy most of the characteristics.

Univariate kernel density methods are an ideal visualisation tool for large samples (>100)

and can be generalised to the multivariate case.

Maximum likelihood is an optimal estimator in the large sample case (>100) and can be
used with population data and extreme value data. ML estimates of a model's parameters are
efficient with low bias and the parameter variance is close to the optimum attainable from any

estimator.

The ML method can easily be generalised to the multivariate case providing the
likelihood can be optimised over the parameter space. Furthermore, the parameter
uncertainty can be deduced directly from the information matrix if the ML solutions can be
found. However, in some cases the solution may lie on the bounds to the parameter space and in
such cases the asymptotic properties of the information matrix will not hold. This problem was
encountered for the lower bound when using the Weibull model. Two solutions to the problem
are: to set the lower bound to zero, in which case we are fitting a two parameter mode}; or, to set
the lower bound of the model to the smallest observed value, which makes the solution
conditional on this value.

Likelihood software has been developed to fit Weibull and GEV distributions and estimate
the parameter uncertainty using the information matrix. The code has been tested using

simulated data and checked against results reported in the statistical literature.

Both Weibull and GEV population and monthly maxima models have been compared as
estimators of return period values. Both the population and monthly maxima models gave poor
results for the significant wave height, with the Weibull model under-estimating and the GEV
model overestimating the value. By comparing only the return period estimates it is not clear if
the population method or the extreme value method results in the lowest overall modelling
uncertainty. However, if the model parameter uncertainty is included in the comparison it is
clear the population approach results in an estimator with lower statistical uncertainty. This
suggests that the population modelling method is best when only a few years of data are

available - providing the correct model can be found.
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The 50 year return period estimate of significant wave height obtained from fitting a
GEV model to the monthly maxima is inaccurate and has a negative lower bound. The cause is
the attraction to a lower bounded FT-II ( Frechet ) model which has a long upper tail. Two
additional constraints in the likelihood optimisation may result in an improvement. The first
is to restrict the shape parameter to be greater than or equal to zero which effectively
constrains to the model to be either an FT-I ( Gumbel ) or FT-II ( Weibull ) model; the second is
to constrain the lower bound to be zero or positive. This should be examined in a future study.
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APPENDIX A
A.1 WEIBULL PARTIAL DERIVATIVES

The second partial derivatives of the Weibull sample log-likelihood are required for
estimating the Fisher information matrix. For the simplest case the samples are iid in which
case the second derivatives are given by

3210 R Gas,

x-l

ja—;%—f—'—f = —;—?— —'l'z(xi —-50)‘{Iog‘(x,- - 60)} -

o &
Mi x 50 MZ( i"éo)clog.(xi‘éo)
3 lOg‘ = —C(C—I)Z(x éo c—Z_(C 1)2 x §0 _2
&’ Py P
a;:zg; =+ anl ;(x go log,(x éa) I clog, o ;(x éo
d*log, t _ ¢

3&&:0 P (xi - éo)ﬂ

im]

’log, L 3 gyl
T)go —Z §0 1 clog a)z(x,. 50) +

i=] i=]

-;72; x, =€) log, (x, - &,)
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A2 GEV PARTIAL DERIVATIVES

Writing z=(x— u)/O’ the first derivatives of the Generalised Extreme Value

distribution sample log-likelihood are given by
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The second partial derivatives of the GEV are given by
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sample
0.806
0.664
0.345
0.001
0.469
parameter
scale
shape
scale error
shape error
scale error %

shape error %

57.628 1.550
1.033 9.098
3.532 0.470
0.970 0.505
0.071 0.033
population moments Menon Cohen
1.6490 1.2300 1.4000 1.3630
0.5 0.4300 0.5700 0.5060
- 0.419 0.249 0.286
- 0.07 0.07 0.006
- -25.4 -15.1 -17.3
- -14.0 14.0 1.2

7.057
2.046
0.185
0.435
1.550
MAXLIK
1.3610
0.5051
0.288
0.0051
-17.3
1.0

Table 3.1 Comparison of MAXLIK results with Menon (1963) and
Cohen (1965) maximum likelihood estimators

data set 1
2.58405
0.29929
2.46029
1.63881
0.70814

data set 2
2.12546
0.18471
2.33662

-0.16174
-0.06119

-0.50394
0.08969
3.05271
0.51030

-1.53493

0.00580
0.64917
6.05925
0.38654
-0.84076

-1.71630
0.42083
0.00297

-1.22866
0.81628

-0.85963
0.10151
0.38144

-0.56694
3.27829

0.47867
-0.25574
0.59921
-1.15796
-0.24643

0.55990
-0.58044
1.94203
-0.72557
0.48357

0.26712
-0.06714
-0.34909
-0.69298
-1.39538

0.36670
0.06905
0.31054
-1.29499
-0.4093

Table 3.2 Two datasets of GEV distributed random numbers

provided by Coles

0.87737
0.35253
1.30477
0.94734
0.38320

0.62464
0.53800
1.54564
1.90079
0.10569
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quantity

information

matrix

covariance

matrix

[-56.678

[ sym

data set 1
27.716 2.1901
-84.318 15.444

-26.206

0.01657

’_0.02207 0.00851 0.00686

0.01048
0.04491

sym

data set 2

[~71.126 -6.7152 28.779
-61.670 15.760
—45.773 |

[0.01892 0.00107 0.01226]
0.01784 0.00681
0.03190 |

Table 3.3 Information and covariance matrices for the Coles data

time number of | ML mean values for: ML variance for: ML
series samples scale shape scale shape | covariance
tl 155 4.06 4.19 0.009 0.004 0.001
20 largest 20 0.70 0.77 0.046 0.022 0.010
2 102 7.29 8.68 0.010 0.004 0.001
20 largest 20 1.01 0.89 0.072 0.038 0.017
t3 131 2.06 1.89 0.009 0.004 0.001
20 largest 20 0.74 0.88 0.040 0.030 0.012
14 158 1.76 1.61 0.008 0.004 0.001
20 largest 20 0.49 0.75 0.024 0.016 0.006

Table 3.4 Population and threshold Weibull models fitted to the maxima in the structural
response time series. A two parameter Weibull model was fitted using maximum likelihood.




3 Llli - . 14
TABLES.XLS
statistical moments
aple (1op), werbull (middlc); GEV {bottom) Weibuli model GEV model
no. of
variable samples mean variance skewness kurtosis shape scale location shape scale location
Hs 5673 2.176 1.589 1.64 4.533 1.595 2102 03 | -0.165%6 0.8071 1.562
2185 1.464 0.967 1.059
2.184 1.859 2675 -16.48
Uw 5673 8.287 1157 0.7161 09111 | 2522 9.117 02 | 007796 2914 6.814
8291 118 03489  -0.1526
8286 11.63 0.735 0.8373
Uc 5673 337 236 04166  -0.03817 | 2402 3909 0952 | 0146 1396 27.39
337 236.2 0.404  -0.09537
33.66 2346 04511 0.1651
Table 3.5 Statistical moments and maximum likelihood parameters for the
Weibull and generalised extreme value distributions fitted to the full
population of marginal DB1 wind, wave and current data.
monthly maxima model population model
variable weibull GEV weibull GEV
Hs (m) 176 3241 10.04 3161
Uw (m's) 33.35 42.54 245 29.42
Uc (cnvs) 100.98 97.42 108.23 108.62
Table 3.6 50 year return period estimates for the DB1 data obtained from both

monthly maxima and population models.
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Figure 3.3 Weibull model with: shape parameters 0.1, 0.5, 1.0, 2.0, 3.25.4; scale
parameter 1.0; and, location 1.0.
density
0.5r
04
03
02
0.1
2 4 6 8
Figure 3.4 Generalised extreme value density functions with: shape parameters

0.5, -0.01, 0.01, 0.5; scale parameter 1.0; and location 1.0.
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Figure 3.5 Population model and 20 simulated samples with shape parameter 0.5,
and scale parameter 1.649 ( see Menon (1963) ).

a 1
-3 -2 -1 1

-1
-2
-3

2 2

d
c L 1
-3 -2 4 1 2 -3 -2 -1, 1 2

-1 -1

-2 7 -2

~3 -3

Figure 3.6 Four estimated models for the 20 Menon samples: moments (a), Menon

(b), Cohen (c¢) and MAXLIK (d).

NOTE THE LINEARISATION OF THE WEIBULL MODEL USES THE FORM

loge[loge(ﬁ)) =clog,(x- &) —clog,(a), ie y=mx+c
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Four nonlinear structural member force response time series.
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Figure 3.8 Three parameter Weibull distributions fitted to the maxima in four

structural response time series.

NOTE THE LINEARISATION OF THE WEIBULL MODEL USES THE FORM

1
Ioge(loge[]-_—P;)) =clog,(x - 5)—cloge(a); ie y=mx+c
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Figure 3.9 Two parameter Weibull distributions fitted to the maxima in four
structural response time series.

NOTE THE LINEARISATION OF THE WEIBULL MODEL USES THE FORM

loge(loge(l—_ll;;)) =clog,(x-¢&)-clog,(a), ie y=mx+c
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Figure 3.10 Weibull models fitted to the 20 largest observations in two structural
response time series: a three parameter model was used for the time
series t1, and a two parameter model was used for the time series t2.

NOTE THE LINEARISATION OF THE WEIBULL MODEL USES THE FORM

loge(loge(—lflp—r)) =clog,(x- &) —clog,(a), ie y=mx+c

89



Hs(m) Tz(s)
1 /e
-3 -2 -1 4 1
L] 7 -1
. -2
-3
1 1
- -3 2 1y 1 4 -3 =2 -1 1
-1 —1
-2
-2
-3
-3
-4
-4
Uc(cmv/s) Uw(m/s)

Figure 3.11 Weibull models fitted to the DB1 monthly maxima significant wave
height, zero-up-crossing period, current speed, and wind speed using
likelihood estimation.

NOTE THE LINEARISATION OF THE WEIBULL MODEL USES THE FORM

loge(loge(If—Pr)) =clog,(x-¢&)-clog,{a);, ie y=mx+c
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Figure 3.12 GEV models fitted to the DB1 monthly maxima significant wave
height, zero-up-crossing period, current speed, and wind speed using
likelihood estimation.

NOTE THE LINEARISATION OF THE GEV MODEL USES THE FORM
1 .
loge(loge(l/Pr)) = ;loge(l ~k(x—p)/ cr), ie y=mx+c
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Figure 3.13 Residual plots for the Weibull models fitted to the monthly maxima

using likelihood estimation.
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Figure 3.14 Residual plots for the GEV models fitted to the monthly maxima using
likelihood estimation.
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MODELLING MULTIVARIATE ENVIRONMENTAL DATA
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Chpir 4 Modelling Multivariate Environmental Data
NOMENCLATURE

1 vectorof I's: {11,...,1)"

A matrix of eigenvectors for the principal components

a,b, normalisation coefficients: {a,:_,...,a’:,},{b,:,,...,b,:.}

A(w) parametric dependence function

A'(w) int rinsic dependence function

b bandwidth

C a constant

c shape parameter

c, volume of a p - dimensional sphere

D diagonal matrix with I\IS_,.J.' on the leading diagonal

D, current direction

D, wind direction

E[y,l Y; the expected value of y, giveny,

E[] expected value ( the mean )

f(x) multivariate density estimate

F(x,y) cumulative distribution function for x and y

F(x) cumulative distribution function

H() the Heaviside function

H, significant wave height

J determinant of the transformation matrix

K() kernel function

k GEV shape parameter

min/ max(a,b) the smallest or largest of a and b

MAE mean absolute error

MIAE mean integrated absolute error

n number of samples

D number of variables

R correlation matrix

R? Riemann domain of integration

8 i- j th element of the covariance matrix

T, zero — up — cros sin g period

U, current speed

U, wind speed

v variance OR extreme value model shape parameter
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()

order statistics for the smallest in a sample
ratio: y/(x+y)

random vector sample

random vector

modal value of x
order statistics for the largest in a sample

scale parameter

model parameter

vector of observed model parameters

shape parameter in the Box & Cox transformation
mean value

vector of means

matrix of means

standard deviation

covariance matrix
location parameter in the Box & Cox transformation

correlation coefficient
extreme value model dependence parameter
standard normal CDF
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4. INTRODUCTORY REMARKS:
MODELLING MULTIVARIATE ENVIRONMENTAL DATA

In Ch. 3 various methods for modelling marginal data using non-parametric, and
parametric methods were introduced; with Kernel density estimation, and maximum
likelihood estimation selected for special attention. In this chapter, that work is further
developed for use in the multivariate context with a view to its ultimate use in a level Il

reliability calculation.

Multivariate statistical analysis is a broad subject and several approaches can be adopted
to solve the same problem. Some of the main techniques which can be used to model a sample
are summarised in Fig. 4.1. This flowchart indicates that the approach taken may be
determined by the type of analysis to be performed. For example, a fatigue study or a
comparative reliability study may solve the problem using multivariate kernel or
transformation models which generally give optimal density estimates for all but the extreme
values. In particular, we shall see that the transformation approach has the advantage of
making the computationally expensive Rosenblatt transformation redundant in a reliability
study. On the other hand, if the analysis is concentrating on the extreme events in the design
life then either the multivariate parametric models or asymptotic models may be more

appropriate.

One problem becomes apparent when using parametric methods, namely, the frequent lack
of a suitable model for a given set of data. This problem is well known to statisticians and

consequently procedures have been developed to transform observed data into near normally
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distributed variates, see Gnanadesikan (1977). This transformation simplifies the semi-
analytical structural reliability methods outlined in Ch. 1 because:

* multivariate normal model parameters are useful in all levels of reliability analysis
* Rosenblatt's transformation becomes unnecessary in level Il analysis

The major problem with this approach is finding a transformation which is sufficiently
flexible to transform the marginal and joint behaviour to a normal model with the correct
extremes. Ideally, transformation methods should be used with results from hindcast studies

which generally give several decades of simulated metocean data.

By fitting a parametric model to a sample x € X it is assumed to represent the expected
behaviour of the population X. In our case, the model is generally a probability density
having some functional form dependent on a number of unknown model parameters 0. Fig. 4.1
summarises several estimation procedures which can be used to estimate the parameters, but in
this work, Fisher's method of maximum likelihood is adopted since, for a predefined model, it
generally provides maximum agreement between observed data and model. The method has the
further advantage of generalising to the multivariate case, with the main principles of score
statistics and information matrices unchanged from those outlined for the univariate case in
Ch. 3.

One problem encountered when modelling ‘real' data using parametric methods is the
paucity of suitable models. This is because the margins generally have different distributions
whereas most multivariate parametric models assume the same form for each margin. In many
cases, even the best parametric model may not fit the data well, especially in the extremes,
and it is then necessary to assess whether the model is preferential to the mathematically

simpler approach of transforming the data to approximate multivariate normality.

This chapter begins in Section 1 by introducing some of the matrix-based algebra notation
used for the multivariate sample and its statistics. This notation is ideal when using symbolic
algebra packages like Mathematica since operations on matrices are implemented in fast
machine code and programming becomes more clear and concise. Section 2 then shows how
multivariate non-parametric kernel methods can be used to estimate the density for a sample.
It was initially thought kernel models would be most useful as a graphical tool for comparing
parametric models with observed data, but their simplicity, and good performance, suggest
they could be of direct use in reliability studies if, like a hindcast dataset, the sample covers a

sufficiently long time period. Kernel density estimates for the wave, wind, and current
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populations are presented for selected pairs of variables. In Section 3 , the transformation of
non-normal multivariate samples into near multivariate normal samples is then examined:
first, using univariate and bivariate simulated data; and then with the DB1 data. Section 4
then shows how the 'best’ set of parameters is chosen. Section 5 then shows how the best’
model can be transformed to a standard normal format suitable for the reliability calculation.

The initial intention was to use multivariate extreme value theory to model the
componentwise maxima recorded by the DB1. In this method the margins are first modelled
using a generalised extreme value (GEV) distribution and then the parameters of a dependence
function are calculated. Unfortunately, there are two problems with this method: first,
multivariate extreme value models can only be used for time invariant reliability studies such
as those performed on fixed structures; and second, the results obtained from fitting the GEV to
the marginal maxima were highly inaccurate for quantiles which correspond to design return
periods. The probable cause of the poor behaviour is the limited amount of the data and the use
of monthly maxima which are seasonally correlated. Although the method was not pursued -
other than fitting the GEV to the margins - a review of the theory is included in Section 6 and a
summary of the essential theory is presented.

4.1 REPRESENTING MULTIVARIATE DATA

Every multivariate data set can be represented as a matrix whose rows refer to each

variable, and whose columns refer to each sample. Denoting the multivariate sample by x then

Xy X e X,
X X
21 2p
=
Xy - - X,

Several useful summary statistics can be calculated using basic matrix algebra, see for example
Kraznowski (1990). For example if I is an (72X 1) column vector of ones then the column vector

of means is given by the matrix dot product

and by writing E7 = ], yT , where dot here denotes an outer product the covariance matrix for

X is then



= (Ifn)(x - 2).(x -2
Writing the elements of X as 5;;i=1,p,j =1, p the correlation matrix is then given by
R=D.Z.D
where D is a diagonal matrix with 1/ \/.—r: ;J = 1,p as the leading diagonal.

4.2 MULTIVARIATE KERNEL DENSITY ESTIMATION

Chapter two summarises some graphical tools for exploring univariate statistical data
using quantile, kernel density, and residual plots. These non-parametric methods provide
estimators which are an essential prerequisite to parametric modelling since they can be used to
select the distribution function to be fitted to the data, using the more difficult and expensive
parametric methods. For the bivariate case, the simplest graphical method used by engineers
is the scatter plot in which the number of occurrences coinciding with a specific range of values,
or bin, are recorded. Examples for the DB1 data are given in Ch. 2. In many cases, the number of
counts is normalised to simplify estimates of the density corresponding to a specific bin, this

often leads to the scatter plot concealing the extreme occurrences.

Whilst scatter plots can be used to estimate the density and cumulative distribution for
bivariate random variables, and whilst they provide a general feel for the correlation between
the variables, they are an inefficient way of presenting the data because the binning process
looses some of the information in the individual samples. More important, the problem is worse
in the tails of the distribution where the number of samples (and thus bin count) is small and
observations are highly dispersed. A better method of presenting bivariate data, used by
Mathiesen & Bitner-Gregersen (1990), is to contour plot the binned data, Fig. 4.2, however the
resulting contours are still arbitrary since the bin width is arbitrary and the user has little

control over the bias and variance of the density estimate.

Multivariate kernel density estimators are the natural non-parametric choice for
estimating the density of a multidimensional sample. The primary use of kernel estimators in
this work is to examine the structure of the bivariate pairs of variables (a) before the
parametric models are fitted to data using maximum likelihood and (b) after the data has been

transformed.
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The application of kernel estimators is limited by sample size and the number of
dimensions since kernel smoothing uses local averaging of the density, and for a high number of
dimensions the neighbourhoods tend to be empty unless the sample is extremely large. Several
papers on multivariate kernel estimation have been written, most notably by Epanechnikov
(1969) and Rosenblatt (1971). More recently Silvermann (1986) wrote a monograph on the
subject, and Scott & Wand (1991) identified the sample sizes required to achieve specified
levels of accuracy (defined below). In our case, we are primarily interested in the densities of
bivariate samples - although the methods discussed below are generalised to the
multidimensional case - for which the sample sizes required to achieve reasonable bivariate
density estimates are of the order of hundreds. Therefore typical offshore environmental data
samples, which comprise thousands of observations, are sufficiently large for accurate kernel

estimation.

A brief outline of the simplest type of kernel estimate is given below and measures of
optimality are defined. Although more complex and more accurate kernel methods exist, the
simple fixed kernel estimator with an Epanechnikov (or quadratic) kernel is adopted and
applied to both simulated bivariate normal data and environmental data recorded by the DB1
data buoy.

4.2,1 MULTIVARIATE KERNEL THEORY

Let x,,...,X, be a sample of independent p-dimensional random vectors having unknown
probability density f(x). Fixed kernel estimators for f(X) given a sample x are described by
Epanechnikov (1969), where

a1 & [x=X,
f(x;b) = nb,ZK{ A } [4.1]

iml

The window width or bandwith ‘b’ is a positive deterministic value such that as the sample
size n— oo then b— 0 and nb” — . The fixed kernel estimator K(z) is a p-variate

density with zero mean vector

[ 2k(z) dz=0 [4.2]
R
and variance is given by
v=[ 2K(2)dz [4.3]
R?
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Scott & Wand (1991) have examined the statistical properties of this estimator and show how
an optimal bandwidth can be defined as that which minimises either the mean absolute error

MAE{f(x:b)} = E[|f(x:b)- (x| 4l

or the mean integrated error
MIAE{f(x;b)} = E[ [[fex:b)- fx) dx:l [45]
R'

In fact, there is a 'trade -off' between the square bias and the variance which are controlled by
the smoothing parameter b. The calculation of optimal window parameters involves the
solution of a difficult multidimensional integral to minimise Equations [4.4] or [4.5], which are
dependent on the sample size, population density and kernel type. In most cases, closed form
solutions for the optimal window are not possible. However, the special case of unit variance
normal data with a quadratic kernel is solved by Epanechnikov (1969). Defining the optimal

window width as b,,, then

by = A(K )"+ [4.6]
where, for the quadratic kernel
1(p+4)
A(K) = 8p(p+2)(p+4)N=)
¢ (2p+1) c, 4.7]

where the coefficients ¢, are the volumes of a p-dimensional sphere:
¢, =2,¢c,=m, c;=4n/ 3. The optimal window width is therefore inversely proportional to
the sample size and converges slowly to zero as n —» e at the rate el Equations [4.6 &
4.7] are in fact asymptotic approximations for normal data with a quadratic kernel, however,
this optimal window width can be used reliably with non-normal data providing the data are
not too heavy tailed, as is the case for most pairs of environmental data. In cases where the
data are highly non-normal Silverman (1986) warns against the 'blind’ use of this optimal
width and recommends the data be transformed in the margins for example using z=log[x] to
reduce tail length.

An alternative optimal window width has been calculated by Worton (1989) for the case of
normal data with a normal kernel, however, the computational penalty associated with

calculating the exponential in the kernel outweighs any benefits and consequently for this work
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the simple quadratic is used. If the data are lightly asymmetric the use of a radially
symmetric kernel, like Epanechnikov's, results in unequal smoothing across each variate. In
such cases, when the data are not first transformed the optimal window width h,,, should be

scaled. One suggestion is to use A = o1, where

I P
o= _Zsi (4.8]
p j=1

the value O is then the average of the marginal standard deviations.

4.2.2 QUADRATIC KERNELS

Epanechnikov (1969) proposed a univariate kernel, k =‘%(1 —)’2) ; IS 1 with good

properties as an estimator. This smoothing function is a simple quadratic defined on the range
—1<y<1 such that

1
[yk)y=0 & [K(ndy =1
2l Id

This simple univariate kernel points to the use of a multivariate quadratic kernel density for
which

K(z)=C{1-7"z}H{K(2)}; 2".2sI; i=1..p 9l
where T is the transpose of the the vector z
=24
b

z'.z is the well known quadratic form, Miller (1964), and H {} is the Heaviside function
which ensures K(z) 2 0. The form of this kernel for the bivariate case is shown in Fig. 4.3.
Substituting this kernel into Equation [4.1] gives the kernel density estimator for the true
density

A

f(x:b) = %i{] - 2"z} H{k(z)} [4.10]

i=]
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This kernel density estimator is of the simplest type since the window width is fixed over the
sample and equal in each dimension. Other more sophisticated kernels have been suggested, for
example, Worton loc cit examines the optimal window parameters for adaptive kernels in
which the window width is varied over the sample using a pilot estimate of the density. This
method gives improved results when the data are highly non-normal since the degree of
smoothing is varied according to the local density. However, the method requires longer
computational run-times. Another notable method for selecting the optimal window is to use
the maximum likelihood estimate; this method again involves further computation and is more
suited to studies in which the density estimates are actually used in a reliability calculation.
For this work the kernels have been used primarily as a graphical tool for checking the density

of the data before and after transformation.

4.3 TRANSFORMATIONS TO MULTIVARIATE NORMALITY

Visual inspection of the scatter plots for the random variables recorded by the DB1 data
buoy (Ch. 2) show that in some cases the data are nearly bivariate normal distributed, with
the obvious exception that the data are all positive and therefore bounded. In some cases the
data can be conveniently transformed into a multivariate normal sample. Box & Cox (1964)
present a method for transforming marginal data 'x' into a normal variate 'y’ using maximum
likelihood and Andrews et al (1971) have extended the method to the multivariate case.

The importance of transforming the data into a multivariate sample is clear when level II
and level III reliability methods are examined since each method can directly use the mean
and covariance matrix of the transformed random vector, (for example a good account is given by
Melchers ,1987) . A further advantage of transforming the data is apparent when fitting
parametric models to them since very often a suitable multivariate model does not exist. This is
a well-known limitation in the statistical analysis of multi-response data pointed out by
Gnanadesikan (1977). As an example, consider the bivariate Weibull models obtained by

transformation of the bivariate Gumbel Type I and type II exponential distributions:

type I F(x,y)=1-e*—e” +e 7% x>0;,y20 [4.11]
type II F(x,y)=(1-e*)1-¢7)1+ 0] x20;y20 [4.12]
Setting

x={v-&)/ o} and y={(w-£)/a}" [4.13]
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and then using the Jacobian transformation
fvow)=J.f(x,y)

the resulting distributions f(v,w) are bivariate Weibull. However, the range of correlation
that they can model is limited to —0.4<p <0 and —0.25 < p < 0.25, respectively, see
Gumbel (1960). This is too restrictive and if we examine Table 4.1 whichvshows the vector of
means, the covariance matrix, and the correlation coefficient matrix for each pair of random
variables recorded by the DB1 we see that these models can only model those values which are
either weakly or negatively correlated! ( In fact the correlation coefficients for the terms
involving direction are meaningless because the directional distributions are multi-modal ( Ch.
5)).

Aside from the paucity of multivariate non-normal distributions almost all of the
alternatives ( many of which are described in Johnson & Kotz (1972) ) are defined so that each
margin has the same distributional form. Obvious examples are the multivariate exponentials
like the Gumbel, and Marshal-Olkin distributions. Multivariate samples of environmental
data rarely have the same distributional form on each margin: for example, Bitner-Gregersen
& Haver (1991) found the joint distribution significant wave height and zero crossing period
had a Weibull marginal distribution for the significant height, and a log-normal distribution
for the zero crossing period. It is therefore very unlikely that a single multivariate distribution
can be found to model all random variables without first transforming the data. Ultimately,
the modelling procedure finally chosen should take into account the merits of each estimator. It
may well be the case that a parametric model can be found which fits the data well. However,
if this is not the case then the error associated with using a multivariate normal model with
transformed variate may be less than, or no worse than, that resulting from imposing an ill-

fitting parametric model on the data.

4.3.1 TRANSFORMATION OF THE MARGINS

When data are skewed positively it is often found that the transformations y = log, X or

y=x"* will produce a symmetric variate y. Both transformations have the effect of
lengthening the left tail and shortening the right tail; in particular, as x — 0 theny — —co.

Box & Cox (1964) consider the transformations

[4.14]

105



This transformation is very flexible and has several important properties which are discussed
in both the original paper by Box & Cox (1964) and in Hoaglin et al (1983). The optimal
parameter A can be determined from the data using maximum likelihood in the following

way.

Given samples X;,i = 1,n and the value 4 the transformed variate y,.("), where the superscript
(A) indicates y's dependence on A, is given by Equation [4.14]. Now, assuming we have
transformed correctly to a normal variate with mean {1, and standard deviation O, the

likelihood is

19 I
3 Z(y.-‘”—#z)z}nx.-‘ ! [4.15]

Yu,,0,.4) = (2""12)-‘/2 exp{' 20,° & 1
A = i=

The maximum likelihood estimates of the mean and standard deviation ﬁ;v 0",' are given by

the sample mean and sample variance respectively

1 n 1 - -
f=try 0.12=.;(y—;11,1).(y—ﬂ1.1)r [4.16]

Substituting into Equation [4.15] gives the profile likelihood

(A)=(2n0,2)™" exp{—%}ﬁ x! [4.17]

i=]

since

L) l 2
20 -pa) =5
im]
The maximum likelihood parameter ): is then found by the one-dimensional maximisation of
l(}.) over the parameter A . Note, this method also provides a means of checking a sample of
data to see if it is already normally distributed since the ML estimate of A will then be close

toone.

A check on this transformation process can be done by: 1, simulating a sample of normal

random numbers with known mean and standard deviation; 2, transforming this data using some
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known function y; = ax,’ to obtain a non-normal sample; and 3, maximising the likelihood to
obtain the optimum parameter which transforms the data to near normality. A sample of 1000
normal random numbers was simulated with mean 3.5 and standard deviation 0.4, this data was
then transformed using 4=2.1 and b=3. This transformation gives a sample which is highly non-
normal. The sample likelihood for this data is shown in Fig. 4.4 in which the optimum A is
located near A =0.5. Numerical maximisation of the likelihood gives A =0.312 which is
close to the actual value of 0.33.

4.3.2 TRANSFORMATION OF JOINT DATA

In the multi-variable case, the data can be transformed to an approximately multivariate
normal sample using the above procedure on each margin individually. However, this is an
approximation which may result in incorrect modelling of the dependence between the random
variables. A more rigourous extension to the Box transformation is given by Andrews et al (1971)
who present a transformation process which results in approximate joint normality of a
multivariate sample. The advantage of using this transformation is clear when we examine
second order reliability analysis methods in which the resistance and loading random
variables are transformed into the standard normal u-space, using for example Rosenblatt's
transform. These procedures are computationally expensive and can be avoided if the data are

modelled as multivariate normal random variables,N(i, X), with known transformation

shape and location parameters (l,g). All that is required then is the diagonalisation of the
covariance matrix using its orthonormal eigenvectors, Madsen (1986). The new transformed, and
now uncorrelated, variables are then given by z = AT y where A is an orthogonal matrix with

columns equal to the orthonormal eigenvectors of X.

T
¥ XT= {X,’} ; i=1,p,j=1,n isa non-normal multivariate sample, then we seek the

transformation which results in a multivariate normal sample Y with mean vector # and
covariance matrix X The procedure for transforming data X into near normal dataY given in
Andrews et al (1971) is based on the Box transformation presented for the univariate case

above. We shall see later the parameter A is sensitive to skewness in the data X and that
maximum likelihood solutions 4 j»J=1,2 ( found by optimising the bivariate likelihood in
Gnanadesikan (1977) ) result in a transformed sample with near-zero skewness but variable
kurtosis. Non-zero excess kurtosis arises when the fourth moment of the data is not consistent
with a jointly normal sample and suggests the largest values in the sample are not adequately
transformed for our purposes in which the extremes may be important. To improve the kurtosis
Gnanadesikan (1977) suggests including a location parameter in the transformation giving the

set of transformations
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y,34) = (["-u- + 5;]% - 1) /2-,- A;#0
i Iog.[x,,. + ‘5;'] 1,=0 18]

This transformation has two set of parameters for each random variable (l,g) which
effectively control skewness and kurtosis, respectively. A procedure for estimating these

parameters in the multivariate case is outlined below using a generalisation of the method
adopted by Gnanadesikan (1977) - which is for the bivariate case with the one parameter Box

transform.

If it is assumed the set of transformations yielding multivariate joint normality is given by

Equation [4.18] then the joint density for the random vector X is given by

@) =N(p.Z.4,8).0 [4.19]

Where: N(y) is the multivariate normal; ] is the jacobian of the transformation; y is the

transformed variate ; i is the vector of means of the transformed random variables; ¥ is the
covariance matrix of the transformed random variables; and (l,f) are the vectors of

transformation parameters.

The general form of the multivariate normal ( see Appendix A.1) is given by

N(.Ylll,z) = (zﬂ.)-plzlzrllz exp(_%(y(lﬁ _#)T Z—I(y(l.g) —[l)) [4.20]

and the Jacobian is the determinant of the matrix of partial derivatives

9%, 9]

ax, = o

o oo
J=] . . .= =L

9, 9,

ox, o,

For the transformation in Equation [4.18] the Jacobian is
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J= ﬁ(x, +&) [4.21]

i=!

The likelihood for a sample x;;i = I,n is then given by

U(xnx,)=[ [Nt 2.2, 8).T

i=l

The parameters 6 ={t,%,41,&} which maximise the sample likelihood are the same as
those which maximise the natural logarithm of the likelihood, where

logl= Z{ Iog{Zzt}-—IogII.‘I——( (A8) _ ”)TE_I(yi(A.é)_p)+i(lj-I)Iog(x,.j+§j)}

iml j=1

In appendix B it is shown how this simplifies to

logt(p,Z,2 §)———log'l1+ , A;-1) Zlog(x +&;) [4.22]

i=]

Here, the maximum likelihood estimators for the vector of means and the covariance matrix

are given by

n T
i = {i( 7.y %8 )

I= l(y(l.é) _ é—)'(y(a,,g) _ é)r

S

and the transformation parameters are determined by maximising the log-likelihood over the
parameter space. The solutions for the 2p-unknowns are obtained in the same way as discussed
in Ch.3 for the parametric modelling of marginal data using an optimisation program.

Monte Carlo simulation can also be used to check the performance and correct functioning of
a multivariate transformation procedure. A sample of 1000 bivariate normal random numbers
was generated - using the procedure outlined in appendix C - with population mean vector and

covariance matrix given by
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20 22
(1.1, =[0.0,0.0] c=[2‘2 3.0]

The sample mean vector and covariance matrix was calculated as

20324 2.2412
[4,.4,]=[-0.0026,-0.0240] a:[ ]

2.2412 3.028

The population density for the data is shown in Fig. 4.5, together with the scatter plot of
observed values Fig. 4.6. The density estimate obtained using a quadratic kernel is shown in Fig.
4.7.

The sample X; was next transformed to sample y; using the one parameter Box transform on
each margin, with ;=2 and A, =4. The sample y; was highly non-normal with large
skewness and kurtosis; the statistics are given in Table 4.2. In the next step, the likelihood
given by Equation [4.22] was maximised over the parameter space (1, -f) to obtain the optimum
parameters which transform the data back to near multivariate normality. The results from
the optimisation are also given in Table 4.2 together with the resulting statistics of the
transformed sample. The skewness and excess kurtosis are reduced by two orders of magnitude
and become near zero as expected for a bivariate sample. The location parametersé are both

zero, as was the case for the original transformation, however the optimum 4 is less close to

the expected values of [(.5,0.25] due to the high powers in the transformation.

This simple example indicates the process can transform even highly non-normal data to
near multivariate normality with known mean vector, covariance matrix and transformation

parameters.

4.3.3 TRANSFORMATION OF THE DB1 DATA

The four years of data recorded by the DB1, summarised in Ch.3, provides a multivariate
sample of wind wave and current magnitudes and directions. This data can be used with
multivariate inference methods to estimate a model of the joint behaviour suitable for the
Monte Carlo reliability analysis described in Ch. 7. The vector of environmental variables

examined in this report is taken as

X={H,T,U,U,.D,,D,}
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where the wind and current directions are included in separate brackets because they are
multimodal and bounded on (0,27) - note the waves are assumed to be colinear with the wind.
This prevents them from being transformed to normal variates and each must be modelled using
the Fourier model described in Ch. 5.

Writing the four years of observations as a (p X 1) matrix X we seek the transformation
parameters which result in a matrix y of multivariate normal parameters. The maximum
likelihood solution for the transformation parameters is that set which maximises the log-
likelihood given by Equation [4.22]. The feasibility of solving for the eight parameters (l,é)
is improved by first calculating the marginal transformation parameters, and then the

parameters for all bivariate pairs, i.e.

{4, THH4, U HH, UHT.UNT.UHU,.U.}

The values of the transformation parameters obtained from this initial work are then used as
the starting points for solving the full eight dimensional problem. This initial analysis also
allows the bivariate results to be presented graphically using contour plots of the kernel

density estimates.

4.3.4 MARGINAL TRANSFORMATIONS

The sample matrix x for the wind, wave and current magnitudes was used to obtain
estimates of the sample mean vector g, covariance matrix C , and correlation matrix R . The
results are given in Table 4.1 which shows the correlation is most strong for: the significant
wave height and zero up-crossing period; and, the wind speed and wave height. The low
correlation between the wind speed and the zero up-crossing period is caused by a combination
of: the mixing of wind driven and swell seas; and the varying stages of development of the

seastates.

One parameter, and two parameter Box & Cox (1964) transformations were used to
normalise the data. The statistics for each margin of the matrix x both before and after
transformation are given in Table 4.3 and Table 4.4, together with the maximum likelihood
shape and location parameters. Plots for the sample likelihoods of the one parameter
transformations are given in Fig. 4.8 which shows the maxima are all well defined. The results
for the one parameter case show the transformed data have near zero skewness in all cases

other than significant wave height, which starts with a skewness of 1.64 and has a skewness of
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0.265 after transformation. The results for the excess kurtosis are not as good with the values

increasing in two cases.

The two parameter transformation gives improved results: however, it does not confirm
Gnanadesikan's claim that the location parameter responds more to kurtosis in the data than
the shape parameter. This time the skewness is reduced more than before and the changes of
excess kurtosis are similar to those obtained in the one parameter case. Note the results for the
mean current speed suggest the un-transformed data are near normal distributed before

transformation.

4.3.5 BIVARIATE TRANSFORMATIONS

The values of the transformation parameters for each bivariate pair are given in Table 4.5
together with the skewness and excess kurtosis of each margin. The skewness of the margins for
each transformed bivariate pair are all reduced to near zero, with the largest value of 0.11
occurring on the Hs margin of the (Hs,Tz} pair. The excess kurtosis values have also reduced to
near zero; with the exception of the current, which started as very near normal before
transformation. The effect of transforming each pair can be assessed graphically by plotting
the kernel density estimates for the sample both before and after transformation. Figures 4.9 to
4.14 show both the natural logarithm of the kernel density for the data before transformation,
and the natural logarithm of the kernel density after transformation. The log of the density
has been used to exaggerate the behaviour around the periphery of the density. Contours are
plotted at 10 equidistant elevations with intervals determined by the maximum elevation of
the modal point.

The kernel density plot for the joint distribution of significant wave height and zero up-
crossing period is shown in Fig. 4.9(a). The irregularity of the outer contours, highlighted by
taking the log, is caused partly by the density of grid used for the generation of the contour plot
and partly by the low numbers of observations in the extremes. The apparent cutoff of the
contours at the bottom of each plot is caused by the positioning of the plot frame. The second
kernel plot, Fig. 4.9(b), confirms the distribution is near bivariate normal with low correlation
between the transformed Hs and Tz.

The kernel for the joint mean wind speed and significant wave height is shown in Fig.
4.10(a). This set of contours shows the near quadratic dependence of Hs on the wind speed,
suggesting the sample may be structured, and therefore benefit from the use of a likelihood
which reflects this dependence. After transformation, the correlation between Hs and Uw is

strong, compared with the Hs and Tz data, but the contours are not symmetric about the
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principal axes of the data. On the other hand, Table 4.5 shows the skewness and excess kurtosis
for this bivariate pair are close to zero on both margins.

Kernel estimates for the remaining pairs are plotted in Fig. 4.11 to 4.14. These all indicate
the transformation has reduced the data to near bivariate normal, weakly correlated,

variables.

It is important to note that the kernel density plots used in this work are intended to be
illustrative and consequently the simplest form of kernel has been used. Scott & Wand (1991)
and Worton (1989) have shown both numerically and analytically that improved results can be
obtained when adaptive methods are used. Furthermore, since the multivariate kernels are
generally symmetric, it is best to first transform the data so that it too is near radially
symmetric; this would ensure the degree of smoothing is the same in all directions (dimensions).
One way of doing this would be to use Andrews' method and the eigenvalue transformation
described previously. The kernels can then be transformed back into the original x-space

variables if required.

4.3.6 MULTIVARIATE TRANSFORMATION

The solutions for the ML parameters i,é for the marginal distributions were used as the
initial points for the numerical optimisation of the likelihood for the full eight dimensional
problem in which the transformation parameters are solved for the vector {Hs,Tz,Uw,Uc). The
optimisation was performed using a NAg routine E04JAF in which simple bounds on the
parameters can be modelled to allow for the condition x + & > 0. The solution process for a
sample of 6000 observations with four variables was straightforward, and robust, taking some
3000-4000 seconds of CPU on a 486/33 PC. The results are summarised in Table 4.6 which gives:
the ML location and shape parameters; the vector of means for the transformed data; the
covariance matrix for transformed data; and the sample statistics for each margin. This set of
transformation parameters provides a complete probabilistic description for the magnitudes of
the jointly occurring wind speed, significant wave height, zero-up-crossing period, and current

speed in a format which can be used in a reliability calculation.
4.4 SELECTION OF THE 'BEST' TRANSFORMATION PARAMETERS FOR THE DB1 DATA

The transformation shape and location parameters for the marginal, bivariate, and
complete vector cases have been given in Tables 4.3 to 4.6. In most instances the values for each
margin are similar for all three cases. This confirms Gnanadesikan's (1977) comment that use of

the marginal parameters should result in near multivariate normality. Our main objective is to
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model the moderate and extreme values with greatest accuracy and consequently it seems
reasonable that we should use the results from all three cases to select those parameters which
result in the lowest marginal skewness and excess kurtosis. The best' set of transformation

parameters are then those given in Table 4.7.

Theoretically, the mixing of marginal bivariate, and multivariate estimates of the
location and shape parameters is not unreasonable when the values chosen fall within the a%
confidence limits around the ML point obtained from the multivariate optimisation. But, of
course, the larger a needs to be for this to be true the more questionable the use of the "mix n’

match" approach.

4.4.1 BEHAVIOUR OF THE MODEL IN THE EXTREMES

The transformation of the marginal and multivariate data x into our normal variates y is
an approximate process. Thus far we have examined the normality of y using both the skewness
and kurtosis of each margin; and kernel density plots for each bivariate pair. A further check
on the quality of the transformed model must be made to ensure the extremes are correct since
they make the biggest contribution to structural failure probabilities, Ch. 1. The approach
taken by Mathisen & Bitner-Gregersen (1990) for the bivariate {hs ¢z} pair was to plot contours
of the normalised deviations between the proposed parametric model, and the observed data.
This gives a good subjective feel for the quality of fit and highlights regions where the model
does not agree with the data. On the other hand, the method does not give a qualitative

measure for the accuracy of the extreme occurrences.

A more rigourous method for assessing the quality of fit for the largest values would be to
compare the marginal extremes, for some return period T, obtained from both fitting an

asymptotic distribution to say the monthly or annual maxima, and the extremes predicted by
the transformed normal model.

The choice of definition for return period is examined by Tucker in Department of Energy
(1990b) who suggests that it be defined by:

the return period of a stated value of a metocean variable is the

average period of time between exceedances of that value.

This definition of return period is more in keeping with the way metocean data are recorded

than the statisticians quantile estimate of return period, Ch. 3. The definition is therefore used
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below in the calculation of the return period estimates for marginal wind speeds, wave heights,
and current speeds.

After the data have been transformed, using either the Box & Cox (1964) or Andrews et al
(1971) method, the marginal distributions are normal with density

2
_ 1 __l Y—R,
f(y)—a,«fz_yzexP{ 2( o, ]}

Here, the transformed variate y is given by

log(x + &) A=o
{(x+§)"—1}/l A#o

The distribution for the untransformed variate is thus

f,(x)=f,(y)l%|

(x+)" _1[(”5)‘-1—1#,]2

fx)= o~Nm 7|2 Ao, (4.23)

We are essentially interested in how well Equation [4.23] models moderate and extreme values.
Defining X, as the return period value of the metocean parameter we must solve

[ f(x)dx=Pr{X < x,} 4241

Following the discussion above for return period, for the DB1 data we have

1
P o=Pr{X<x.)=]-—"  =0.999993155
o= PriX <X )=l svs

for the 50 year survivor probability, and
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1
Pao = Pr{X S Xy} = I = 5o s = 0.9999965777

for the 100 year return value. The solution for the unknown value of x; in Equation [4.24] was
done numerically using a root finding algorithm.

A second method has been used to estimate the return period values for the metocean
parameters. In Ch. 3 the parameters of both a generalised extreme value model, and a three
parameter Weibull model are given. These models correspond to monthly maxima models
which have been fitted using maximum likelihood. As has been noted earlier, these models are
questionable when so few data are available and no account is taken for the seasonal cycles in
the monthly maxima. Nevertheless, we might still expect them to give representative results
since they clearly fit the data. The solution for the return period values for these two

distributions are given by solving

F(XR) = 12+ TR [4.25]

where F(x,) is either the Weibull or GEV cumulative distribution fitted to the monthly
maxima, and T is the return period in years.

Each method described above has been used to estimate the 50 year and 100 year return
period wind speed, significant wave height, and current speed. Again, with so few data we
cannot expect to extrapolate to these return periods without some bias. However, we can check
the results for H, and U,, against the Department of Energy (1990) contour plots, which give

H,,=155m andU,;, = 38.5m/s.

The wind speed value U,

wso is the hourly mean wind speed at 10 m above still water level,

whereas the DB1 data was taken as the average of two records made at 6.0 and 8.7 m above
still water. Using the usual wind speed power laws, this suggests the DB1 values should be
factored by ~ 0.955 to allow for the duration of the time average, however this effect cancels
the effect of the elevation. The average DB1 wind speeds are therefore taken as equivalent to

the hourly mean winds.

The 50 and 100 year return period values for the significant wave height, wind speed, and
current speed are given in Table 4.8 for each modelling method. The population estimated wind
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speed and significant height compare well with the values suggested by the Department of
Energy Guidance notes. The current extremes cannot be compared however, since we have made

no allowance for the harmonic tidal components.

In all cases the GEV model gave the worst results and it is difficult to identify why this
was the case. Correlation between monthly maxima may contribute to the inaccuracies, but we
would then expect the Weibull model to give poor results as well. In fact in two cases the
Weibull model agrees closely with the transformed normal model. The irregularities need

further investigation.

4.4.2 MOST PROBABLE ZERO-UP-CROSSING PERIOD CONDITIONED ON THE
SIGNIFICANT WAVE HEIGHT

The two most important variables in a stochastic response analysis are the significant
wave height Hs and the wave zero-up-crossing period Tz. To correctly predict systems
reliabilities it is essential the multivariate normal model accurately predict the most probable
Tz for the moderate to extreme values of significant wave height. Any bias in the extremes

would have a serious effect on a platform's responses.

In normal space the expected value of X; conditioned on X, is given by

E[ylly2] = E[)’z] +58,;/ szz()’z - E[)’z ]) [4.26]
where 5; are the elements of the covariance matrix for y ( for more general multivariate

results see Appendix A. ). For a normal variate the modal and expected values are coincident

therefore we can write
9= E[yly,]
For the Box transformation
y={(x+§)" —I}/l

Setting a value of X,, the value y, is then calculated. The most probable value y, given by

Equation [4.26] can then be transformed back to x-space using the inverse Box transformation
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i={Ay+1}"* ¢ [4.27]

Using the data in Table 4.7 the distribution for the modal zero-up-crossing period conditioned
on some level of significant height can be calculated. For example, the 50 year return period Hs
is 15.02m, this value is first mapped into y space using the maximum likelihood shape and

location parameters

Yu, ={(15.02-0.3686)"7 - 1}/ 0.2703 = 3.9438

then the expected value of Tz conditioned on Hs is calculated in y-space

0.4452
0.6421

Vi = 3.9438]=1.278 +

E[yr, (3.9438-0.443) = 3.7053

hence the modal zero-up-crossing period is given by

T, =(0.4485*3.705 + )" + 4.5 = 13.3secs

This value can be checked using the limits on wave steepness given by the Department of Energy
(1990) who give
3.2Hs5"* <Tz < 3.6Hs"?

This gives a range of 12.4 to 14.0 seconds, with central value 13.2. This value is remarkably
close to the prediction of the multivariate model modal value of 13.3.

The variation of T; predicted by the multivariate model over the whole range of Hs is
shown in Fig. 4.15 (top). If this line is superimposed on the scatter plot for Hs and Tz (Ch. 3)
then it is found the model predicts the correct modal period over the complete range of values in
the scatter plot.

4.4.3 MOST PROBABLE WIND SPEED CONDITIONED ON THE WAVE HEIGHT

The most probable wind speed for a given seastate significant wave height has also been
examined. Fig. 4.15 (bottom) shows the modal wind speed conditioned on the significant wave
height together with the upper bound given by the assumption of fully developed seas

Hs=0.022716U ;}
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In this quadratic model U, is the hourly mean wind speed at 10m elevation. At high wind

speeds the model prediction generally falls below the quadratic model because the fetch
distances are rarely long enough to develop the seas fully in high winds. Again, when the
multivariate model is superimposed on the scatter plot for Hs and Uw ( Ch.3 ) the model
prediction is found to be good.

4.5 TRANSFORMATION TO UNCORRELATED STANDARD NORMAL VECTORS

In Ch. 7 the multivariate normal model for the joint wind, wave, current and structure
random variables is transformed into standard normal space U. This enables classical first
order reliability methods to be used in the calculation of failure probabilities. To uncorrelate
the variables the principal component axes must first be identified, for example using the
method in Kraznowski (1988). This is done by first diagonalising the covariance matrix X, of
the variables ¥ (which are obtained from the Box transformation on X ). The linear
transformation z = A"y is then used to obtain a set of uncorrelated variables Z.. Here A is the

matrix containing the eigenvectors of 2,. The diagonal covariance matrix (i.e. uncorrelated

with cov; = o for i # j) of Z is then given by
X, =A"ZA (4.28)

Note that the terms on the diagonal of X, are also the eigenvalues of X, . Since the

transformation from y — z is linear, we have
— - T
H.=E[z] = A'p, {4.29]

Whilst Z is uncorrelated it must be scaled on each margin to obtain standard normal variates U

where

u=E7z-p)= 57 AT (y-p,)=(A"Z, A) ¥ AT(y-p,) [430]

This relationship must be inverted to obtain the format required in Ch. 7, noting A.A” = I and

yl2y-12 — 1 we have
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y=AZu+p,
1m
=A(AZ, A) “u+p,
=Ku + ”, [4.31]

This expression enables us to calculate a y co-ordinate for any # co-ordinate. The
transformation matrices and vectors 2,,:4,2,.#,.#,.2'”2.}3—"2 are all given in Table 4.9.

These values, together with the Box transformation parameters in Table 4.7 enable us to map
between X, Y, and U space as required in the reliability calculations. As an example, Fig. 4.16

(top) shows 300 pairs of {H‘,T‘} observations after transformation using the Box & Cox (1964)

method. The transformation matrices given in Table 4.9 were used to transform the data into U-
space variates, Fig. 4.16 (bottom). The data are now approximately uncorrelated with zero

mean values on each margin.
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4.6 A REVIEW OF MULTIVARIATE EXTREME VALUE THEORY

The asymptotic theory of extremes was reviewed for this work with the intention of using
it in an offshore structure reliability study. Unfortunately, it was not possible to use the method
in earnest with the sample of DB1 data for two reasons. First, the GEV models fitted to the
monthly maxima were not able to accurately predict extreme values for the 50 and 100 year
return period design events. The probable cause was seasonal correlation in the monthly values
and the limited sample size of only four years. The second reason is the models are for virtual
events which may be physically inadmissible. The basis of multivariate extreme value theory
is given in Galambos (1978) so this review concentrates on the more recent developments and
applications. A summary of the main bivariate models is given together with appropriate

estimation procedures.

The current procedures can be classed as either intrinsic ( often called non-parametric ) or
parametric estimation for componentwise maxima. By componentwise maxima we mean the
largest value in each margin observed during either some time period, or a large number of
observations. The implications of this are important in design since the theory is not modelling
the simultaneously occurring values. If, for example, the time period is a year then the
component maxima for the wind speed, significant wave height, and current speed, may occur
during different seastates, days, or even months. The models must therefore be thought of as

bounds on the true joint behaviour and the implications need to be examined thoroughly.

The theory and estimation of univariate extremes has received, and still continues to
receive ( Davison & Smith (1990), Hosking et al (1985), Tawn (1988a) ), considerable attention
in the statistical and engineering literature. On the other hand, the estimation of multivariate
extremes is comparatively recent and many problems are still to be solved. This subject is of
potential importance in the design of offshore structures but does seem to require a large sample
of annual maxima to be practical. It is therefore suggested the method be considered for use

with hindcast data in a future study.

4.6.1 MOTIVATION AND NOTATION

In most practical cases only a small number of extremes can be observed which means the
parametric estimation is performed using a very small sample size. A small sample results in
large uncertainty in the estimated model parameters, therefore further information is required
in the estimation process. This information is provided by the asymptotic theory of extremes
which, broadly speaking, tells us that providing suitable normalisation coefficients exist the
distribution of the largest in a sample tends to one of the three Fisher-Tippet distributions as
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the sample size tends to infinity. This greatly simplifies the estimation process since by
choosing the largest from several samples of observations their distribution will be one of the
Fisher-Tippet distributions. These three distributions can be generalised using the Jenkinson-
von Mises distribution as (Ch. 3)

G(x;p,0.k)= exp{—[l - k( z ;" )]%} (4.32]

For the bivariate and multivariate case we seek that set of distributions which characterise

the vector extremes. However, since no natural ordering exists for dimensions greater than one it

is necessary to define the model in terms of the componentwise ( or virtual ) events.

After Galambos let the random vector X = {X,, ....... X,} and X;;i=1,...,n be the matrix

of n observations. The order statistics of the ™ component are written as
X xS X 0 S <X

¢, l:n t,2:n (XY N

W,., =X, ., and the largest as Z,, = X

tLan®

The smallest value of the ¢ component is denoted as

The problems of interest are the asymptotic joint

distributions of W,,, ={W,..,Wy.s,.eec0., W, } and Z,,, ={2,.,.Z,........ Z,,.} .

*p:n
The joint population distribution of the random vector X is defined by
F(X)=Pr{X sx}=Pr{X,<x,,.....X, <x,}

In a similar manner to the theory of univariate extremes we seek vectors g, and b, >0 such

that
Pr(z,<a, +b,z)=G,(a, +b,2)

converges to a stable p-dimensional extreme value distribution function H(z).

4.6.2 PROPERTIES OF MULTIVARIATE DISTRIBUTIONS
To begin it is necessary to define some simple properties of multivariate distributions. Let

X bearandom column vector and x” = {x,,..,x,} be an observation or point in p-dimensional

Euclidean space, then

F(X)=Pr{X<x}=Pr{X,<x,.....X,<x,}
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Clearly, F(x) is a non-decreasing function of X , and as x; — oo, F(x) tends to an (p— I)"'
dimensional distribution. That is, the distribution of X with X; removed. The process of

removing successive components finally results in the marginal distribution of the remaining
variable consequently F(x) defines all marginal distributions F(x). On the other hand the
marginal distributions only specify bounds on the multivariate distribution, Galambos (1978).

4.6.3 THE DISTRIBUTION OF VECTOR EXTREMES
Let F(X) be the multivariate distribution function of the independent, identically

distributed random vector X. The maxima of the components X;;i=],...,n have the joint

distribution function

in the limit as n — oo we get the asymptotic distribution
H(x)= . F "( +b, )
X a X
L] A

Here the vectors @, and b, are the sequence of the standardising coefficients such that

H, (a,, + b,_x) converges to a non-degenerate distribution function H(x):

H,(a, + bx)— H(x)

In fact, Galambos (1978) shows the the vectors @, and b, are determined from the margins of
F(X) using univariate extreme value theory. Recent research has concentrated on defining the
mathematical forms of H(X). For example, the general structure of bivariate extremes was
identified by Tiago de Oliveira (1962) and Sibuya (1960). More recently: Pickands (1981), and
Tiago de Oliveira (1989b) have identified a number of joint distributions for bivariate extremes
based on non-parametric estimators for the dependence structure; and Tawn (1990), and Coles (to
be published ) have identified several bivariate and multivariate distributions based on

parametric estimators for the dependence structure.
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4.6.4 BIVARIATE EXTREME MODELS

Let {x,., y,.};i = ],....,n be a sequence of independent indentically distributed pairs drawn
from the bivariate random process (X,Y) having distribution Pr{X < x,Y Sy}=F(x,y).
Following Tiago de Oliveira, Pickands, and Tawn we must use the notion of componentwise
ordering, that is

Zl:n = X

1.a:n ;

Z,, =X

n 2.A:0

where

Z = {Zl:n ’ ZZ.-n}

One unsolved problem with this approach is that in general some of the virtual observations Z
are not physically realisable as vector random observations. An obvious example is the joint
distribution of individual wave height and period which is bounded by the breaking wave
criterion. Since this problem is unsolved we shall continue to use the component approach and

ignore this limitation.

As previously mentioned it is assumed that attraction coefficients @;, and b,, can be

located for the margins such that

lim F* (al:u + b):nx’ Ay:n + b2:uy) - H(x’y)

Ares

We have seen the bivariate extreme value distribution H(x) uniquely defines the marginal
distributions of x and y which we also know will be GEV distributed. It is well known that the

Fisher-Tippet distributions are interchangeable through transformation and it is a matter of
convenience which form is assumed for the margins of the bivariate extremes model. In this
work we follow Tawn, and Pickands who assume the margins are transform into unit

exponential survivor functions
PriX>x}=e*, Pr{Y>y}=e; (x>0,y>0) (4.33]

Pickands (1981) shows that the bivariate extreme value survivor model must have the form

G(x,y)= exp{-(x + y)A(;i—y)} ; (x>0,y>0) [4.34]
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where the function A(W) is called the dependence function of the pair (x,). Note this is not
the simple function described by Galambos, and Tiago de Oliveira in their earlier works.
Assuming we have transformed the marginal data to unit exponentials the bivariate model in
Equation [4.34] can be estimated using either intrinsic or parametric methods.

The dependence function A(W) must have several properties for
G(x,y)= exp{~(x +y)A(w)}

to be a bivariate extreme value survivor function:

e (i) A(0)=A)=1;

o (i) max(w,]-w)S A(w)<1 (0Sw<);

o (iii) A(w) isconvexan (0Sws 1)

e (iv) A(w)/ (I -w) is a non-decreasing function and A(w)/w isa

non-increasing function

If we examine the joint survivor function for (x, y) then clearly for the upper bound on A(w)
gives

G(x,y)= exp{—(x + y)} =e¢*e™? [4.35]

that is X and Y are independent. The lower bound in condition (ii) corresponds to complete
dependence X =Y . The correlation between X and Y isgiven by

1 dw ~7
0 A(w)’

p= [4.36)

This can be compared with the usual estimator of correlation

> (x —E[z])(%: - Ely])

p = =]

, , 7
[2 (x - Elx])’ Y (% - E[y)) ] [4.37)

i=] i=]

where the quantity
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is asymptotically normal for a given b. This allows us to test for independence (p =0;b = 1)
using the acceptance region

Vnso'(1-a)

where @(.) is the standard normal distribution evaluated using the error function, see
Abramowitz & Stegun (1965). Whilst the properties of A(w) have been examined above no
estimators have yet been presented. Generally two approaches are adopted for estimating
A(w) namely the intrinsic (or non-parametric) estimators developed by Tiago de Oliveira and
Pickands, and the parametric estimators preferred by Tawn. In this review both types of

estimator are examined.

4.6.5 INTRINSIC ESTIMATORS OF DEPENDENCE
Several intrinsic estimators for the dependence function A(w) have been proposed. Perhaps
the best known are those developed by Pickands (1981)

A‘(w)=n{iz.-(w)}' .

i=]
z,(w)= min{(] - w)"x,.;w"y,.};i =1,..,n0Sw<l (4.39]

and more recently Tiago de Oliveira

. o)~ .| 1-w w
A =]-—=—) min{ ——,——
() n § m{a-i-x,. a+y,.} [4.401
where a=1/n
1
ca)=———-
(@) I+logn
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Given a realisation from a bivariate random process these estimators are very simple to
determine and for this reason they are used to explore the structure of a bivariate sample. One
simple check on the correctness for the estimated dependence function is to integrate its inverse
squared using Equation [4.38], and compare this estimator of the correlation with the sample
estimator, Equation [4.37].

4.6.6 PARAMETRIC MODELS OF DEPENDENCE
During the past thirty years a number of parametric dependence functions have been
developed, Sibuya (1960), and Gumbel (1960). Parametric estimators for A(w) must satisfy

similar conditions to the intrinsic estimators
A(0)=A(l)=1; -ISA(0)S0; 0SA'()SL A”(W)20; (0sw<))

Four dependence models are identified in Tawn and have been summarised in Table 4.10, two
are mixed models, and two are logistic models. The two mixed models are symmetric about
w=0.5, making X and Y interchangeable, and the logistic models are either symmetric or
asymmetric about w=0.5 depending on the choice of the symmetry parameters. As an example
we shall examine how to estimate the parameters of the asymmetric logistic model which has

three parameters in its dependence function.

4.6.7 SYMMETRIC LOGISTIC DEPENDENCE FUNCTION LIKELIHOOD

In Ch. 3 the joint distribution function fx,."..x. (x,,...,x') for the vector of observed
univariate random variables is used to define the likelihood function for the observed data
£(0; x). Given a bivariate sample {x,., Y, i= I,...,n} the joint distribution of the observed

value is
fx,x, (x,,...,x,) = f(xl:)'z) X f(xz’yz)' ''''' ’xf(xn’yn)

which gives the log-likelihood

log, L(0;x) = ilog{f (xi’yi ’ 0)}

i=]

The joint survivor function for the asymmetric logistic model is given by

G(x,y)= exp{—(I — 6)x—(I1- @)y —({x6}" + {ye}”')v} [4.41)
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taking the second partial derivatives gives the joint survivor density

8(x.y:0)= i’gé%yw

The log-likelihood or the sample is then given by

log, £(0;x) = ilog{g(x,-,y.- ;0)}

im]

The maximum likelihood set of parameters is then found by maximising the likelihood on the
bounded feasible region defined by the ranges of the model parameters. In Ch. 3 it is shown that
the finite differences method gives acceptable accuracy for the hessian matrix of the log-
likelihood and furthermore to avoid calculating the second derivatives analytically the
information matrix is also calculated using finite difference estimates of the gradients and

curvatures.

Unlike the boundary constraints for the asymmetric mixed model which define a closed
region the boundary constraints for the asymmetric logistic model only restricts the search to

the region defined by
0<6, o<1, 0svsl

This makes solution of the maximum likelihood logistic parameters rather more difficult to

obtain.

Complete dependence for the asymmetric logistic corresponds to the 0 = @ =] and v=0,
complete independence corresponds to 8 = 0or @ =0 or v=1. Therefore a suitable starting
point for locating the ML parameters is 8 = @ =v=0.5. There are problems with the
independence case because the maximum likelihood estimators exhibit NON-REGULAR
behaviour at independence. The effect of this is that the expected Fisher information is
infinite and cannot be used to assess the variance, covariance matrix for the model parameters.
Tawn (1988b) discusses this problem in relation to the logistic model in some depth however we
can avoid the problem of non-regular estimation by ensuring we do not use the models with
independent random variables for which there is a trivial solution. One method of checking

whether X, and Y are in fact only weakly dependent or independent is to examine the non-
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parametric estimator A(w). In this way we can easily assess whether Equation [4.41] is a
sensible model.
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4.7 CONCLUSIONS

Multivariate kernel density methods have been used to examine the bivariate structure of
the DB1 environmental data. The results confirm the conclusions in Ch.2 that the data can be
modelled as unstructured providing a suitable set of transformations and population model can
be found.

The kernel densities used for this study were of the simplest type. Improved estimates can
be obtained by using adaptive kernels in which the degree of smoothing is adjusted to the local
density.

Univariate and multivariate transformation methods have been examined with a view to
mapping the joint wind, wave and current data into a standard normal space. One of the best
transformations is the Box & Cox (1964) transformation which includes the log-normal model as
a special case. This transformation can be used on each individual margin to reduce a

multivariate sample to multivariate normal.

The Box & Cox transformation is powerful enough to transform even highly non-normal
data. Furthermore, the shape and location parameters respond strongly to the skewness and
kurtosis in the data. This ensures the models are capable of modelling the extremes since these

moments are dominated by the tails of the data.

The transformation of the data to a normal model has considerable advantages when used
in level III reliability studies. Most important is that it makes the Rosenblatt transformation
redundant. Second is that the method is simple to implement and, when used with a good non-
linear optimiser, is very efficient.

It is necessary to extend the number of parameters in the multivariate Andrew's
transformation to ensure the model is scale invariant and responds to kurtosis. A location and

scale parameter have therefore been added to the Box & Cox transformation.

The population model has been assembled from a mixture of ML parameters obtained from
the marginal, bivariate,and multivariate datasets. The criterion used for selecting the best set
of transformation parameters has been the accuracy with which the resulting population model
can predict the marginal 50 year return period values. This approach is reasonable providing

the chosen set of parameters lies within the confidence limits obtained from the likelihood

130



analysis of the full sample of data. In fact the parameters obtained from the marginal,
bivariate, and multivariate samples were generally in close agreement.

The margins of the multivariate transformed normal population model have been examined
to check the accuracy with which it can predict extreme values. The 50 year return period
estimates for the wind speed ( 33 m/s ), current speed ( 1.0 m/s ), and the significant wave
height ( 15 m ) were found to be close to those values recommended by the Department of Energy

suggesting the model is sufficiently accurate for use in:

operations analysis
long-term fatigue assessments

reliability studies of the extreme events

Checks on the variation of the modal values for zero crossing period conditioned on wave
height and wave height conditioned on wind speed indicate that the model can be used to
correctly predict values at the 50 year return period levels. This is especially important for the
significant height and zero up-crossing period case because compliant structures are sensitive to
wave period.

Overall the transformation approach has several advantages over the Rosenblatt
transformation. This study shows the population models obtained from the application of
likelihood theory are accurate even for the 50 year return period values. Furthermore, the
general structure of the fitted model matches the behaviour seen in the scatter plots given in
Ch. 2. The only aspect of the model that requires improvement is the forward face of the joint
distribution for significant wave height and zero-up-crossing period where the breaking wave
condition results in a sharp increase in the density on the forward face of the joint distribution.
However, it is likely that this aspect of the model can be improved by using a structured
likelihood.
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APPENDIX A
A.1 PROPERTIES OF THE MULTIVARIATE NORMAL DISTRIBUTION

In the preceding work, and in the reliability analysis discussed in Ch.7, the multivariate
normal distribution is used repeatedly. For example the multivariate normal appears in
Section [4.3.2] and the conditional expectations for the transformed normal model are use in

Section [4.4.2]. Several useful properties of the normal distribution are presented below in

matrix format for the general p-dimesional vector case.

Let X = {x,,....,xp} be a random vector with mean vector A, and a symmetric, positive

definite covariance matrix
M,=E[(X,-4,)X,-4,) ]

If X, is multivariate normal then its probability density function is

_ ExP[—%(Xr - AP)T Mr-l (XP -4, )]
) (2n)* ], (A1

£,(%,)

The conditional distribution of X,,_, ={x,”,x,+2,....,xp} given X, ={x,,....,x,} is then
defined by
X
g(Xp—r/Xr) = __jL;)__.
J £, ’(X’)dX’_,

[A2]
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The conditional density function g() is the (p-r) dimensional density function of the random

variables X, with X held as constant parameters. If the covariance matrix M, is

7

partitioned so that the upper left square contains the covariances of X, and the lower right
square contains the covariance of X ,-r then the corresponding partitions in the inverse of M,

can be determined using the identity

g (Ml D el R[4 0
=|-—g4==~- ————b . =]t
PP I:T-E S’—' RT: P -1 0: I

Solving for the unknown sub-matrices we get four equations

T _ Tag -l
F_R = -T'M,
-1 _ - T

er_ Mrl+Rer—rRr

|P,_,|= IMJM,"

_ Tryg -1
Pp—r -S’-r—I; Mr 1;

where the bars indicate determinant. The first two are called Shur's identities, and the third
is called Jacobi's theorem. Miller (1964) shows the conditional distribution of g() is also

multivariate with mean vector B, , and ( p-r"p-r ) covariance matrix P,_,

Eol-4(x,.-5,.) £ (x5,
e ] [A3)

p-r

8(X,.,/X,)=

B,,=A,,~P,_R7(X,-A)

pP-r P
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APPENDIX B
B.1 SIMPLIFICATION OF TRANSFORMED NORMAL LIKELIHOOD

The likelihood for transforming a sample of data to a multivariate normal sample is
described in Section [4.3.2]. This simple form is obtained from the general form of the

likelihood using the following method.

If the general form for the sample likelihood is given by

e=YTen "o {2 (540 - ) =1 (500 - ) 15, - &,

im] jal

then on taking the log and rearranging we get

logl———loglEI——Z{( (a8 _ )z'l(yi(z.é)_y)}+zp"(}.j—I)ilog(x,.i—é)

in] j=1 i=]

By taking
A,
y( ) =y, (2.8)
and
ET =] ”T
where y(z.g) is now a matrix containing the sample of transformed data, and ET is a matrix

containing repeated copies of the mean vectors, we can rewrite the middle term of the sample
likelihood

{000 - ) (349 - )} = {249 - 229 - =)

i=]

The likelihood can now be written as

logt=-" IogIEl {2_;( (. :)_5)(y(1.;)_5)r}+zr: ( l,-—l)i tog(x, ~ &)

j=1 i=1

However, since
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then the sample covariance is

= f(y(z.:) _ é-)(y(a.e) - ;.:-)’

Consequently, the middle term of the likelihood reduces to a simple additive constant which
can be ignored for the optimisation of the likelihood. We then have the final form for the
likelihood

logt(p,2,1,8) = —g—’oglﬁ + i(lj - ])ilog(x‘.j - 51)

j=1 ixl

Where, it should be noted the covariance matrix is dependent on the transformation

parameters.

APPENDIX C

C1TRANSFORMATION TOA UNITHYPERCUBE: ROSENBLATT'S TRANSEORMATIGN

Most level I reliability calculations performed by engineers involve the transformation of
the basic and correlated design variables like wind speed, wave height, material yield
strength, etc, into a multivariate standard normal space. The transformation most commonly
quoted is one based on the discussion in Rosenblatt (1952) which shows how a general
multivariate probability distribution function can be mapped from X -space variates into Z -
space variates that are uniformly distributed on the p -dimensional hypercube:

z,=P{X,sx,}=F(x)
z,=P{X,<x,/X,=x,}=F(x,/x,)

zp=P{Xpr,/Xp-1 = X, =x,}=F(xP/x,_,, ........ ,x,).

These marginal and conditional distribution functions define a transformation vector T which
maps the distribution function into space Z = T(X). Once the variables are mapped into this
new space then it is simple to calculate joint probabilities

P{Z,<z;i=1,...p} = IL[zi
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where 0Sz;S1yi=1,....,n (that is, the marginal distributions Z; are uniform on the

interval [0,1] ). In order to transform from the Z -space to a standard normal space we simply
map the variables from the Z-space to U- space using the inverse normal distribution

The above transform is widely used for level II and level I reliability calculations which
require the location of a design point in standard normal space.

C.2 GENERATING NORMAL RANDOM VECTORS
The special case of the Rosenblatt transformation for a normal model can now be derived from

the conditional distribution g(.) in- Equation [A3] by writing X, ={X,.--...X,}, with

X, = {xj} and X, ={x,,....,x,_, } hence

xj -aj - I:TM"I(X' - Ar)
\/sj -T'™M,”'T, [C1]

zj=Fj(xj/xj_,, ........ ,x,)=¢(
This equation is a matrix generalisation of the result in Rosenblatt. As an example, consider the

bivariate normal distribution with mean vector A’, and covariance matrix M ,

the conditional distribution is then

2
] x,—a,—(c,,/c, )(x,—a,)
. i x 12! Cu/X =9
&(X,/X,) (2“)112J(c”cu_clzz)/c“£'9[ ‘f’[ J(cz—cu’/C,,) le [C2]

Substituting the covariance terms with the standard deviations and the correlation coefficient

gives

2
=& _p'gi(xz -a)
E, - 11
S c3)

1
B (Zn)llzazz‘JJ_ P2

g(lexz)
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If we examine Equation [A3] carefully we can see how it may be used to generate

multivariate normal random vectors when the mean vector and covariance matrix are known.
The first step is to generate a p-variate uniform random vector Z = {z,,...,zp}, using a pseudo-
random number generator. The first uniform random number z, is then transformed to a normal

variate using

x,= @7 (z,)y/m,; +q,

and then the second 2, is generated using

X, = ¢—1(22 )\/ my, — mzzmu_lmz: +a,+ mnmu-l (xl - az)

h

subsequently the ft terms in the vector are given by the matrix form

x;=07z;)S;~T"M,"T, +a,+T"M, (X, - A,) [C4)

By repeating the process a sample of multivariate normal random vectors can be generated with
known mean vector and covariance matrix. This method is used to generate the multivariate
normal random samples for the kernel density estimation discussed in Section [4.2]. The form of
the random number generator given by Equation [C4] is ideal for the Mathematica symbolic
algebra packages which are written to smooth and contour the wind, wave and current data.
However, the efficiency of this multivariate normal random number generator in a Fortran
program has not been compared with other methods like for example those given by Rubinstein
(1981).
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mean vector
Hs Tz Uw Ue Dwr Dec

[2.17552 7.43897 8.2867 33.7114 206.766  166.805 _-_]

covariance matrix
Hs Tz Uw Ue Dw Dc
1.58877 1.2443 195825 -204062 16.4086 -5.68063 Hs
1.2443 201003 0.557186 -0.783 155017 -1.97301 Tz
1.95825 0.557186 11.5705 -4.77697 62.8678 -22.6279 Uw
-2.0406 -0.783 477697 235809 -7.53868 -155.126 Ue
16.4086 155017 62.8678 -7.53868 9852.84 -553.377 Dw
| -5.6806 -1.97301 -22.6279 -155.126 -553.377 101401 | pc
correlation matrix
Hs Tz Uw Uc Dw De
1 0696297 0.456733 -0.10543 0.131147 -0.044755 Hs
0.6963 1 0.115538 -0.03597 0.110153 -0.01382 Tz
0.45673 0.115538 1 009145 0.186197 -0.066061 Uw

<0.1054 -0.03597 -0.09145 1 £0.00495 -0.100319

Uc
0.13115 0.110153 0.186197 -0.00495 1 <0.055363 Dw
| 0.0448 -0.01382 -0.06606 -0.10032 -0.05536 1 Dc

Hs, Tz - significant wave height and zero-up-crossing period from the frequency
domain estimates; Uw,Dw ten minute mean wind speed and direction; Uc,Dc 5
minute mean current speed.

Table 4.1 Mean vector, covariance matrix, and correlation matrix for the DB1
wind, wave, and current data.
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DATA BEFORE TRANSFORMATION

VARIABLE MEAN ADEV VAR SDEV SKEW KURT XMIN XMAX
1 2.051 1.957 9.184 3.03 3.145 13.004 0 25.848
2 31.774 45.279 99 110.832 8.518 102.84 0 1872.412
COVARIANCE MATRIX
9.1746  250.174
250.174 12271.51
DATA AFTER TRANSFORMATION
LAMDA 0.2735 0.1249
ETA 0 0
VARIABLI MEAN ADEV VAR SDEV  SKEW  KURT
1 -0.013 1.32 2675 1.635 0.209 0.239
2 0.777 2.996 13.395 3.66 0.186 0.397
COVARIANCE MATRIX
2.672 4.2918
4.2918 13.3819
Table 4.2 Transformation of 1000 simulated bivariate normal random numbers.

Statistics before and after using Andrews (1971) method.
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sig. wave hgt zero cross. prd current speed  wind speed
SUMMARY STATISTICS . (m) (s (cmv/s) (mv/s)
X Y X Y X b X Yy
mean value 2176 0635 7439 1208 33710 12.760 8287 3.356
variance 1.589 0315 2010 0.004 235800 19.070 11.570 1.087
skewness 1640 0265 0705 0010 0417 0056 0716 -0.005
excess kurtosis 4533 0.274 0381 0488 0039 -0.221 0911 0.024
minimum value 0400 0906 4500 1025 0000 -1.573 0300 -0.936
maxinmum value 11000 2470 14500 1403 94000 26680 28550 7.614
standard deviation 1260 0561 1418 0062 15360 4.367 3402 1.043
average deviation 0.948 0455 1.141 0051 12400 3.523 2684 0832
maximum likelihood lamda 0.025 <0.548 0.636 0.437
maximum of the likelihood -2566. -4069. -17730. -9076.
Table 4.3 Summary statistics for the DB1 data before transformation "x" and

after transformation "y" using a one parameter Box & Cox method.

sig. wave hgt zero cross. prd current speed wind speed
SUMMARY STATISTICS (m) s) (cm/s) (/)
X y X y X y X y
mean value 2176 0622 7.439 1402 33710 32.690 8287 3.400
variance 1.589 0.357 2.010 0.017 235.800 235.500 11.570 1.134
skewness 1.640 0040 0705 0010 0417 0417 0716 0.009
excess kurtosis 4533 0242 0381 0466 -0039 -0.039 0911 0.022
minimum value 0400 -1.006 4.500 1005 0.000 -1.000 0.300 -0.931
maximum value 11.000 2.633 14500 1.824 94000 92930 28550 7.780
standard deviation 1260 0598 1418 0.132 15360 15340 3402 1.065
average deviation 0948 0483 1.141 0109 12400 12390 2684 0.850
maximum likelihood lamda 0.079 -0.288 1.000 0.448
maximum likelihood eta -0.049 -1.224 0.000 0.000
maximum of the likelihood -2565. -4064. -17870. -9076.
Table 4.4 Summary statistics for the DB1 data before transformation "x" and

after transformation "y” using a two parameter Box & Cox method.



variables {1.2} shape location skewness  excess
lamda eta kurtosis

tz 0.4821 4.5 0.03 -0.188
hs 0.2718 -0.3084 0.11 -0.037
uw 0.51 03 0.055 0.069
hs 0.2703 <0.3686 0.011 0.056
uc 0.6329 0 0.06 0.22
hs 0.3263 0.4 0.024 0.362
uc 0.6323 0 0.06 0.219
iz 0.4518 4.5 0.017 0.151
uw 0.48448 0.3 0.018 0.078
tz 0.4485 4.5 -0.022 -0.146
uw 0.4392 <0.0105 <0.003 0.025
uc 0.6346 0 -0.057 <0.221

hs: significant wave height (m)

tz: zero up-crossing period (s)

uw: ten minute mean wind speed (m/s)

uc : five minute mcan current speed (cny/s)

Table 4.5 Andrews' transformation parameters plus the skewness and excess
kurtosis of the transformed margins for bivariate pairs of DB1
significant wave height (m), zero-up-crossing period (s), mean wind
speed (m/s) and mean current speed (cm/s).

Transformation parameters:
hs -4 uw uc
shape lamda 02799 0.5021 0.4769 0.6352
Jocation eta -0.2991 45 03 0
parameter mean average variance standard skewness  kurtosis
deviation deviation
hs 0.5080 06170 0.5920 0.7690 0.1380  0.0360
2 1.3270 06790 0.7000 0.8370 00600  -0.2040
uw 3.4200 09230 1.3400 1.1580 00070  0.0820
uc 12.7500 3.5180 19.0230 43620 00560  0.210
Covariance matrix:
hs z uw uc
bs 0.5915 0.4518 0.4088 03530
z 04518 0.7000 0.0972 01335
uw 0.4088 0.0972 1.3400 -0.4910
uc 0.3530 £0.1335 -0.4910 19.0198
Determinant of covariance:  0.364627E+01
Table 4.6 Andrews' transformation parameters for the multivariate set of DB1

significant wave height (m), zero up-crossing period (s), wind speed

(m/s), and current speed (cm/s).
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variables {1,2} shape location skewness excess  transformed
lamda cta kurtosis mean
hs 0.2703 0.3686 0.011 0.056 0.443
tz 0.4485 4.5 <0.022 0.146 1273
uw 0.448 0 -0.009 0.022 34
uc 1 0 0.417 -0.039 32.711
covariance matrix for the transformed data
hs tz uw uc
hs 0.6421 0.4452 0.3854 -1.2592
tz 0.4452 0.6321 0.0836 0.3624
uw 0.3854 0.0836 1.0979 -1.5726
uc -1.2592 -0.3624 -1.5726 235.7674

Table 4.7 Best set of optimisation parameters for the DB1 winds, waves, and
currents. .
50 year 100 year 50 year
parameter transformed weibull GEV [transformed  weibull GEV DEn
normal normal Guidance
hs 15.02 17.61 3241 15.81 18.88 39.41 15.5
uw 33.02 33.35 42.54 35.6 349 42.7 385
uc 100.5 100.9 97.4 103.4 102.5 97.98
Table 4.8 50 and 100 year return period estimates from the transformation normal,

Weibull, and generalised extreme value distributions.
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Qi
covariance matrix for the Box transformed data Y
0.642141 0.445167 0.392191 -1.259152
0.445167 0.632069 0.085384 -0.362383
0.392191 0.085384 1.135713 -1.598023
-1.259152 <0.362383 -1.598023 235.767429
eigenvalues for the covariance of y
235.786 0.138602 1.45152 0.801576
eigenvectors for the covariance of y
-0.00536893 0.742001 0.553058 0.378857
-0.00155363 -0.627534 0.37419 0.682774
-0.00681952 0.235868 0.744334 0.624729
0.999961 0.00140034 0.00862702 0.00116556
mean vector for Z meanz = Transpose|[Ay]. meany
32.6822 - -1.2299 3.53764 -1.12303
covariance matrix for z
235.786 0 0 0
0 0.138602 0 0
0 0 1.45152 0
0 0 0 0.801576
transformation matrix K
-0.0824416 0.276242 0.66632 0.339194
-0.0238564 -0.233627 0.450821 0.611293
-0.104716 -0.0878121 0.896768 -0.559324
15.3547  0.000521338 0.0103938  0.00104353
Table 4.9 Vectors and matrices required to transform the y-space variates to u-

space variates (or vice versa).
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Contour plot of the bin-count natural log in the significant wave height

(m) and zero-up-crossing period (s) scatter diagram.

Figure 4.2

Contour and 3d plots of the Epanechnikov (1969) kernel smoothing

Figure 4.3

function.
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Figure 4.4 Log-likelihood for 1000 transformed normal random numbers.
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Figure 4.7 Kernel density estimate for 1000 samples with mean = {00} and
covariance = {{2.0,2.2},{2.2,3.0}}.
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current marginal data, using the Box & Cox method.
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Figure 4.9 Kemnel density plots of joint significant wave height (m) and zero-up-crossing
period (s); (a) before transformation; (b) after transformation.
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Figure 4.10 Kernel density plots of joint mean wind speed (m/s) and significant wave
_height (m); (a) before transformation; (b) after transformation.
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Figure 4.11 Kernel density plots of joint mean current speed (cm/s) and significant wave
~ height (m); (a) before transformation; (b) after transformation.
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Figure 4.12 Kernel density plots of joint zero-up-crossing period (s) and mean current
speed (cm/s); (a) before transformation; (b) after transformation.
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Figure 4.13 Kemnel density plots of joint mean wind speed (m/s) and zero-up-crossing
period (s); (a) before transformation; (b) after transformation.
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(m/s); (a) before transformation; (b) after transformation.
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Chapter 5
NOMENCLATURE
C normalisation constant
C real part of characteristic function
G co-spectrum of i* and j* signals
D(6) directional spreading function
D(f,0) frequency dependent directional spreading PDF
E expectation operator
(f..f,) probability distribution function
for random variable x
I, modified Bessel function of order n
k(f) frequency dependent wave number
mn factor on noise component in directional spread
n number of directional observations
P order of trigonometric moment, or cosine power
o unit direction vector
0, quadrature spectrum of i*h and j*h signals
rms root mean square
R normalising constant
R resultant
So angular variance
s(f) frequency dependent cosine spreading power
S imaginary part of characteristic function
S(f.6) directional surface elevation variance spectrum
S(f) point surface elevation variance spectrum
W(P) weighting function
a, trigonometric moment of the distribution function
B, trigonometric moment of the distribution function
a, centred moment of the distribution function
ﬁp centred moment of the distribution function
r gamma function
0 Wave propagation direction
6 mean wave propagation direction
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pth resultant mean wave propagation direction
Mean direction

Concentration parameter

angleon [0,2n), ¢=6-0

characteristic function

frequency in Hz

standard deviation

equivalent linear standard deviation determined from ith
angular moments

circular variance

circular variance

mean direction of the noise in D(f,0)
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5. INTRODUCTORY REMARKS: MODELLING DIRECTIONAL
SEAS

The extreme responses of fixed, compliant and articulated offshore structures can be
affected by the degree of directional wave spreading in storms. It is therefore essential that
empirically determined directional distributions accurately represent the expected degree of
directional spreading over the full range of frequencies. Calculations of structural response in
directional seas generally model the directional spreading of wave energy as deterministic
using a frequency dependent uni-modal function. Most often, this function is modelled by the
cosine power distribution, originally proposed by Cartwright (1963) and Longuet-Higgins et al
(1963a).

Studies of the frequency dependent directional distribution of wave variance using
maximum likelihood, Jeffereys (1986), and maximum entropy, Ochoa (1990), all indicate that
in real seas the directional distributions contain a considerable amount of detail which may be
further complicated by the crossing of wind driven and swell seas. For design this detail must be
simplified and in practice no more than the mean direction and the concentration of the
directional spread is required. In this respect, the cosine directional distribution is satisfactory.
However the Longuet-Higgins approach is sensitive to noise in the co and quadrature spectra,
and the occurrence of asymmetric or non-cosine distributed directional spreads. The presence of
noise and asymmetry is inevitable in recorded spectra and consequently models based on fitting
an exponentiated cosine model using an angular moments approach must be subject to uncertainty

and bias.
The effect of noise is examined theoretically by Tucker (1989), who suggests the frequency

dependent spreading models developed by Hasselmann and Mitsuyasu may be more a reflection
of the buoy response than the true nature of the directional spread, Tucker (1991). To overcome
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Chapter 5 . Modelling Directional Seas

some of the problems he proposes a method of allowing for imperfect buoy response, however,
this does not address the robustness of simply equating the cosine model angular moments to
those inferred by the measured spectra. The application of angular statistical methods to the
modelling of directional wave spreading results in some improvements to the conventional
cosine model estimator. Borgman (1969) proposed the use of circular statistics together with the
von Mises directional probability distribution. This model has advantages when compared
with the conventional cosine model used by Cartwright (1963), Longuet-Higgins et al (1963a),
Mitsuyasu et al (1975), Hasselmann et al (1980) and Ewing & Laing (1987); especially if the
distribution can be fitted using weighted estimation techniques.

The need for robust measures of location and spread is noted by Kuik et al (1988) who
proposed a set of model free parameters to measure location, circular variance, skewness, and
kurtosis. Their estimators are based on the use of those circular statistics which can be
determined naturally from pitch-and-roll buoy co- and quadrature spectra using the theory
developed by Cartwright and Longuet-Higgins, Appendix A. Whilst these quantities are non-
parametric they leave interpretation of the location, skewness, and kurtosis to the designer

who will ultimately need to fit some parametric form to the summary statistics.

The problem of fitting parametric models to directional data is addressed by Borgman
(1969) who examines Longuet-Higgins et al (1963a) suggestion of using a weighting function to
‘smooth’ the raw Fourier summation form of the directional distribution. The principle of

weighting the distributions assumes that the true directional distribution is D(8) and the

Fourier summation estimate D,(0) is the weighted distribution

2%
D,(6)= [ D(6")W;(0-6")d6* (5.1]
0
where the weight function can be written as

sin([N +1/2]¢)
27sin(¢/2)

W (¢)= [5.2]

Unfortunately, this weighting has the undesirable property of broadening the estimated
directional distribution and allowing negative estimates for D(#). An alternative weight

function which removes negative estimates was also proposed with the form:

W,(¢) = Rcos®" (¢ /2), where R is a normalising constant such that J'Wzdo' =1.0. However,
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this weighting broadens the distribution even more than W, and results in a cos*(¢/2)
estimate for the directional spread of unidirectional seas.

The obvious way to improve the directional model is to increase the number of Fourier
coefficients. This was the motivation for the development of clover-leaf buoys and wave gauge
arrays but neither method has become a routine method for data acquisition. The second
approach to modelling directional spreading is to assume D(@) has some parametric form and
then estimate the model parameters using moment estimation. This approach was adopted by:
Longuet-Higgins et al (1963a), who used moments to fit a half angle cosine model to the data;
and Borgman (1969) who suggests the von Mises and wrapped Normal distributions are
appropriate models. Their results were the basis of subsequent experimental work to determine
the frequency dependence of the directional spreading in wind driven seas.

In this chapter, the robustness of the parametric modelling is examined in a simple way by
simulating double cosine directional distributions and then fitting cosine and von Mises models
to them using moment estimation. This demonstrates the sensitivity of the simple circular
moments estimator and consequently a weighted estimator based on Huber's W-estimation
process (1981) is examined for the parameters of a von Mises distribution. Unfortunately, the
new estimator requires some knowledge of the physics of wave generation and consequently the
method is only presented for discussion and possible future development.

5.1. EMPIRICAL MODELS OF SPREADING

In order to make use of existing uni-directional wave elevation spectrum models the
directional variance spectrum is usually written in the form

S,(f,0)=S,(f)xD(f.8)
where D(f, 6) is a frequency dependent directional distribution function which must satisfy

j: D(f,0)d0 =10

Longuet-Higgins et al. (1963a) proposed a half angle cosine spreading function based on
observations made using a pitch and roll buoy. Their model is defined on 0,27 as

D(f,¢)=Ccos2’( é(p) ;9=0-8 [5.3]
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where,

Y I'"(s+l)
=7 “T@s+))

The value 's' is the spreading power, and ¢ is the angle measured from the mean wave
direction @ which in this work is assumed to correspond to the mean wind direction. Plots
showing the form of the cosine spreading function, about the mean wave direction, for a variety
of spreading powers (2s) between 0 and 20 are given in Fig. 5.1.

Several other models have been proposed as directional distributions, for example Borgman
(1969) suggests the wrapped normal and circular von Mises distributions; and Chase et al (1957)
recommends the full angle cosine distribution. Whilst each of these models has its own merits,
with only the first five Fourier coefficients available to estimate the parameters there is no
theoretical reason for favouring any particular model. That said, the von Mises distribution
does have some desirable practical properties and a considerable literature to support its use
and estimation. Plots showing the form of the von Mises distribution for concentrations between
0 and 20 are shown in Fig. 5.2.

In wind seas the concentration parameter of a model appears to be frequency dependent. For
example, Longuet-Higgins et al (1963a) noted the power of the spreading appeared to be
related to the dimensionless frequency or (U/c) where U is the wind speed and ¢ is the wave
phase speed

This frequency dependence of the spreading power must be modelled accurately because, as
shown by Helvacioglu (1990), the responses of articulated and compliant systems can be
sensitive to the spreading at the lower frequencies due to their long natural periods. Two
frequency dependent spreading models commonly used for structural response calculations are

examined below.

5.1.1 MITSUYASU SPREADING FUNCTION

The relationship between resonance angle and the power of the directional spreading was
examined by Mitsuyasu et al (1975). Their work was based on surface elevation measurements
using clover leaf buoys located at two Japanese sites; one at Hakata Bay in a water depth of 5Sm;
and the other in open seas north of Fukuoka. The two locations both have limited fetch in some
directions. They found the normalised form of their spectra for the open sea case corresponded
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to the Pierson-Moskowitz form of the spectrum, whilst the results measured at Hakata Bay
corresponded to the JONSWAP form. This is consistent with the non-dimensionalised wind
fetch for each location and suggests the results should be applicable to the North Sea where
designers commonly use both the P-M and JONSWAP spectra. Mitsuyasu finds a relationship

between the spreading power s and resonance angle by plotting § = f[s , + sz] against U / ¢ and

then fitting a suitable model using regression analysis. That is, they take the average of the
first and second angular moment estimates of the spreading power giving the result summarised
in Table 5.1.

5.1.2 HASSELMANN SPREADING FUNCTION

The directional spreading function adopted by Mitsuyasu was examined by Hasselmann, et
al (1980) using data measured during JONSWAP. They conclude the spreading power is not a
function of the resonance angle U/c; rather it is a function of the normalised frequency f/fm.
This was substantiated by comparing the correlation coefficients from the linear regression of
spreading power onto U/c and f/fm. Their equations are also reproduced in Table 5.1. Note that
the equation for f/fm > 0 does not yield the same result at f/fm = 1.0 as the equation for f/fm <
0. This is overcome by swapping equations at f=1.05fm rather than f=fm.

The spreading powers given by Hasselmann's model are consistently lower over the whole
frequency range than those given by Mitsuyasu's model. This observation is noted by
Hasselmann who points out that their model is strictly only valid for U/c > 1.0 whereas
Mitsuyasu included data for fully developed seas for which U/c < 1.0 . Hasselmann suggests
the higher values of s may be due to including swell seas - with low U/c - in the Mitsuyasu
data. In fact, Hasselmann's model is based on fitting to §, to f/fm and not the average of s, and
s, - We shall see in the next section that this results in biased estimates of spreading power
because of the lack of robustness of the first moment estimator; and that the differences between
Hasselmann and Mitsuyasu models are partly due to the poor quality of 5, as an estimator of s.

5.2. ROBUSTNESS OF THE COSINE POWERS

For this work robustness is defined as insensitivity to small deviations from the modelling
assumptions. When fitting parametric models to directional wave data we pre-suppose some
functional form for the directional distribution and then use some estimator of the location and
concentration parameters. This estimator must be robust to departures of the true directional
spread from the idealised models, whilst still being efficient in some sense ( efficiency is
examined in detail by Huber (1981) ). Robust estimates of location and concentration are
required if the results of directional wave analysis are to be used as the basis for spectral

analysis of offshore structures, since the responses of fixed and compliant systems can be
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sensitive to the degree of spreading. For example, when the responses of fixed structures are
calculated using directional spectra the in-line forces are decreased by some 5 per cent, Prince-
Wright & Percival (1989), to 15 per cent, Haver & Natvig (1991). Conversely, when the
responses of articulated systems are calculated using directional spectra the forces can be
amplified, Helvacioglu (1990). It is therefore important to ensure directional seas are
modelled correctly if unconservative modelling of fixed and articulated structures is to be

avoided.

The data recorded by directional wave recorders will always be contaminated by noise and
bias which may arise from random error; spectral leakage in the Fourier analysis; or imperfect
surface following characteristics. The effect of bias - caused by buoy heave, pitch, and roll
response transfer functions not being uncoupled and unity - is examined theoretically by Tucker
(1989) who demonstrates how the first angular moments are dependent on the linear buoy
response transfer functions, and the second angular moments are independent of them. This
would suggest that the second moment estimators are more robust and should be used to
determine the degree of directional spreading. Ewing & Laing (1987) had previously examined
the effects of noise in recorded directional data using numerical simulation and came to the
same conclusions as Tucker; whilst also pointing out the first moment estimator has been
adopted by most oceanographers which might suggest their models overestimate the degree of
directional spreading in real seas.

The effects of noise and bias are important. However, there is a second problem with the
Longuet-Higgins estimator for the cosine model parameters and that is the sensitivity of
simple moment estimation to deviations from the assumed cosine form for the directional
distribution. In real seas it is almost certain that the true directional spread will not be
perfectly cosine distributed since wind fields are constantly veering and wind and swell seas
may cross each other. The poor robustness of simple moment estimators is well known to
statisticians who favour the use of robust measures of mean and concentration when the
distribution of errors is known to be non-normal. In this study we do not have discrete
observations of direction with error since only the first five Fourier-Stieltjes coefficients are
known. These coefficients will contain limited information about the degree of skewness and
kurtosis in the recorded data which arises from not only bias and noise but also real asymmetry
due to crossing seas. The question is therefore: how robust are the estimates for the cosine model
parameters, given that the angular harmonics correspond to real seas and may be corrupted by

bias and noise? We can examine this in a simplistic way using simulation.
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5.2.1 BIAS IN ESTIMATES OF SPREADING

Assume we have S(f,0) for a given frequency and that it can be written in the form
S(f,0)=S(f)D(f,0); where S(f) is the one-dimensional spectrum and D(f,6) is the
frequency dependent wave directional probability density. By simulating the directional
distribution as the mixture of two cosine distributions

D(f,0)=m,cos™(6/2)+(I-m,)cos’((6-¢)/2) [5.4]

the angular harmonics can be calculated by numerical integration as shown Appendix A. These
can be used in Equations [A11 to A14] to estimate the mean directions 8,,8, and cosine powers
$,,8, for the idealised directional distribution. The results of some simulations for a range of
directional distributions are shown in Table 5.2. Some examples are plotted in Fig. 5.3 which
shows the effect of the second cosine term is to introduce varying degrees of asymmetry when
¢ #0;m, #0 or flatness when { = 0; m, # 0. In measured spectra such small departures from a
perfect cosine model must be commonplace and it is therefore important to note the large bias in
the §,,5, values for only small imperfection. The two estimators for mean direction 8,,0, are
generally robust but it should be noted only small degrees of imperfection have been introduced
in these simple examples; in cases where wind and swell seas are crossing, the true directional
distributions may be bi-modal and then 8,,0, will be significantly biased.

This simple simulation suggests a more robust approach for the estimation of concentration
and location is required if a design model is to be developed for directional wave response
analysis. Alternative estimators have been suggested, for example Long & Hasselmann (1979)
suggest a variational approach, and Hasselmann et al (1980) examined the use of fitting a
double cosine model to the angular harmonics. These models are however probably no more
robust than the simple moments estimator, see Kuik et al (1988), Ochoa (1990), and
consequently in Section [5.5] the statistical theory for robust 'W-estimates' of directional

random variables is discussed.
5.3 CIRCULAR STATISTICS FOR ANGULAR RANDOM VARIABLES
The fundamental difference between a line statistical model and the corresponding circular

model, in which the angle is the random variable, is the range of integration. A function f, isa

circular distribution if and only if
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Tf,(e)dO=I.O;OSOS2n ; f(6)20

In line statistics the model is characterised by its line moments; however, in circular statistics
the model is characterised by the pﬂ' trigonometric moments about the angular origin

a,=E[Cos p6]  where |a,| <1 5.5]

B, =E[Sin p8]  where lﬂ,l <1 [5.6]

The expectation operator E[.] is given by

2x
E[z(6)]= | 2(6). £, d6
and the complex characteristic function @, of the random variable 0 is defined as

®,=E[e*]=a,+if, p=0,t1t2... (5.7)

To be mathematically exact, a circular distribution is always defined by its trigonometric
moments. Use of the characteristic function is more readily understood by thinking of the
directional distribution as wrapped around a unit circle in the complex ‘z-plane’, Fig. 5.4 (a).
The characteristic function can then be written as

2%
®,[6]= [{cosp6 +isinpO}D(6) d6 = , +iB,
0

where the coefficients @, , B » can then be thought of as the pth angular moments about the real

and complex axes. The characteristic function is similar to the coefficients of a Fourier series . In

fact, Mardia shows the numbers 277, are Fourier-Stieltjes coefficients of D(8) and that when

the summation

N 2 2
2., +B,
p=1
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is convergent the directional distribution is given by

R R PP
D(9)—'2—” Y D 5.8]

p—

Given only the first two angular harmonics Equation [5.8] is not useful as an estimator of D(8)
however, Mardia (1972) shows how the angular moments can be used to define measures of

location, concentration, skewness and kurtosis.

One potential use of Equation [5.8] is to determine the long-term directional distributions of
winds, waves and currents using sample estimates of the characteristic function. The process,

outlined later, is implemented very simply using observations of direction.

5.3.1 THE MEAN OR LOCATION
A measure of mean, or location for the directional variance spectrum, can be defined as the

weighted integral of the unit direction vectors P, = [cos p@,sin pOl;p=1,2..; the weighted
n2 - -
integral of P, has resultant R, = {(:t‘,2 + ﬁ,z} " and direction @ such that a,=R_ cospb,

and ﬂ’ =R, sin po. Recalling Equation [A8] the real and complex components of the first

moment can be calculated using the first three Fourier coefficients obtained from the co and

quadrature spectra. These values give estimates of the location 6,,0, and resultant R, R,.
Having calculated the mean direction the centred circular moments E’,ﬁp can be calculated

using
a,= E[cos(p(e - 5))] = a,cos(pB) + B, sin(p8) [5.9]

B,= E[sin(p(e -~ 5))] =-aq,sin(p8)+ B, cos(pd) [5.10]

Taking the line moment measures of width, skewness and kurtosis Mardia op cit defines
circular equivalents with similar properties. His values are essentially those adopted by Kuik
et al (1988) who examined the relative performance of the line and circle estimators using
Monte Carlo simulations. One useful result which can be used as a quality check on data is the

inequality _
1-a,-B,-2a(1-2,)20 [5.11]
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this check was used with the constraints on ;,B; to identify gross measurement errors in the
DB1 data.

5.3.2 CIRCULAR VARIANCE, SKEWNESS AND KURTOSIS
The dispersion of the directional distribution about the reference vector P’ , Fig. 5.4 (b), is
defined by Mardia (1972) as

2=z
5, =1- [cos(6" - 8)D(6" )6’ [5.12]
0

noting that cos(6—8)=cos@cos8 +sinOsin8 we get
5, =1-R,;0<s,,<Iland s,=1-R,;0<5s,,<1

This measure of dispersion is related to the line equivalent 0, wusing the fact that for

symmetric cases §, = 0 in which case

hence,
Oy = {—ZIog,(I - s,,,)}"2 ; 0<0, <00

and,

O = {“51"& (1- soz)}m ; 0<0y, <o [5.13]

Alternatively, both the location and concentration can be defined by the second angular
moments. The relative robustness of each method is examined later by fitting the von Mises
distribution to Monte Carlo simulated directional distributions.

The asymmetry and peakedness of line variables is generally measured by skewness and
kurtosis. Circular analogs of these quantities are defined by Mardia (1972) using the centred

second angular moments &@,, Bz- He proposes a measure of skewness given by ¥, = Ez /5,>"*. For
a perfectly symmetric distribution F , will be zero and consequently the skewness ¥, is zero as

expected. In the limiting case when the variance S, is 1.0 then the data are evenly distributed
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on the unit circle and 7, has no meaning. In the line case, kurtosis is measured relative to the
normal distribution, consequently, Mardia suggests kurtosis be measured by

7= {Ez -(1- 30)4} 5 (5.14]

Kuik et al (1988) points out that this measure is, in a sense, model dependent since it is made to
equal zero for the wrapped normal distribution. At first sight this should not be used as
justification for rejecting it as a measure of kurtosis, however, the simulation results presented
below show that Mardia's model free measure is a better measure of kurtosis, as suggested by
Kuik et al (1988), where

v, ={@, - 4@, +3}/s,’ [5,15]

The performance of these measures of width, skewness and kurtosis is examined in Section
[5.3.5] using Monte Carlo simulation. Unlike the work of Kuik et al (1988) the simulation is
used to examine whether or not these measures can be used to assess likely bias in observed
estimates of directional spreading recorded by a floating buoy.

5.3.3 VON MISES DISTRIBUTION
The circular equivalent of the normal distribution proposed by von Mises has a density

function £,(6; t,, k) given by

JACHTSE Z—nI](—x_) exp[—x' Cos(0 - u,)] (5.16]

0<0<2n;x20;,0<u,<2r

where: [, is the mean direction; K is the concentration; and I,,(x) is the modified Bessel

function of the first kind and order n

- 2k+n

p 4
I =
) Z; kI (n+k+1)

Since the argument of the gamma function is a natural number the factorial form can be used

where I'(x +1 )= x!, consequently the zeroeth order Bessel function is given by
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L(x)= g W [5.17)

This function is real valued for all real x and takes values greater than zero for all x #0. The
von Mises distribution is symmetric about the mean and uni-modal. When the concentration
about the mean is narrow then K is large and the distribution tends to the normal distribution
N(x;,0), conversely, when the concentration about the mean is wide then K is small and, in
the limit when X = 0 the distribution tends to the circular uniform distribution. The
trigonometric moments of the von Mises distribution are given in closed form by Mardia (1972)

as

a, =A’(K)COS(p'uo)= Ip(K)ICz):-gpﬂa) (5.18)
B, =A,(x)Sin(pp,) = L’(K—)Iszzc()pi") 5.19]

That is, AP( K)= Ip( x)/1,(x), where Ip is the pth order modified Bessel function of the first

kind. Knowing the first moments of the directional distribution then enables us to solve for the

location and concentration.

5.3.4 SOLUTION FOR THE VON MISES PARAMETERS

Characteristics of the directional probability distribution can be estimated using the
circular equivalents of the mean, standard deviation, skewness and kurtosis. Kuik et al (1988)
show how these parameters can be estimated using the Fourier coefficients derived from the co-
and quadrature-spectra inferred from a buoy heave, pitch and roll time series. Recalling
Equations [5.18 & 5.19], the parameters in the von Mises distribution can be solved using the four
equations in @, 3,

_I,Cos26,
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= b

Noting I, = [( ), these equations therefore contain two unknowns X and 0, . The angle 0, is

most simply solved using either the first moment estimator

o, cos6 4B
B, sin6, 0 {a,} (5201

or the second moment estimator

a, Cos26, 1, B
— = — => 0 ==t 2
B, sin26, o= a, (5.21]

Having found 8, the first moment estimate of the concentration parameter K can be solved
either by using a numerical algorithm or by using the least squares estimator suggested by Lenth

(1981)
1

—=2(I-F)+ (1-R,) {0.48794-0.82905R, - 1.3915R*} [5.22)
1

this simple estimator has an absolute error of less than 0.005 per cent for resultants R, 2 (.12

which will be the case for nearly all directional wave data in which there is a predominant
wave direction. The second moment estimatar for the concentration can be obtained by noting

L(x)=1,(x)-2I,(x)/ x [5.23]

and,
R, =+ + B2 = I,(x)/ I,(x) [5.24]

Then

R, =1-2I,(x)/{I,(x)x}
=1-2R,/x

The second moment estimate is therefore calculated using both the first and second moment
resultants R, R, ; it is therefore necessary to examine the behaviour of this estimator using

simulation since we have seen the first moment resultant gives highly biased estimates for the
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cosine model spreading power §; when only small amounts of noise are introduced into the
directional distribution.

5.3.5 ROBUSTNESS OF MARDIA'S DESCRIPTIVE PARAMETERS

Before applying the modelling methods discussed above to the DB1 data it is
instructive to examine the robustness of the cosine and von Mises model parameter estimates. A
sample of randomly simulated directional distributions was generated using the double cosine
mixture Equation [5.4], with paraméters given by

5, =1.0+20U(0,1)

p,=1.0+4.0U(0,1)

m, =0.4U(0,1)

§=(m12)U0.1) [5.26]

Here U(0,1) is the uniform random number on the interval (0,1). Each parameter used a
separate random number to ensure independence. The real and imaginary components of the
characteristic function ( Equation [5.7] ) were calculated by numerical integration of Equation
[5.4] and the solutions for the cosine and von Mises model parameters were obtained by using
Equations [A11 to A14] and Equations [5.20 to 5.25]. The range of simulated distributions given

by the double cosine mixture is of course arbitrary, nonetheless, if m, cos™ (8 / 2) is regarded as

the true peak, and (/- m,-)cosz’ ' ([0 - {,]/ 2) is regarded as noise, then tentative estimates of

the bias in estimated directional parameters may be made using the results from this
simulation.

The angular harmonics {@;,B;;i = 1,2} are plotted in pairs in Fig. 5.5 which shows
that only @,,, are strongly correlated. In fact Mardia (1972) shows that @, = 2a,” — I. The
correlation increases as Q,,0, increases, that is, correlation increases as the directional
variance decreases. Other pairing show little or no correlation, on the other hand the bounds
af + ﬂ,.z <1 can be seen in the scatter plots. One important property is the correlation between
resultants R, and R, shown in Fig. 5.6 for the 100 simulated distributions. As the resultants

increase so does the correlation, which suggests for narrow beam seas the buoy response can be

checked by comparing the first and second moment resultants.

Mardia's measure of skewness is based on scaling the second imaginary component of the

characteristic function by the variance obtained from the first resultant S,. The bias in cosine
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power s, is plotted against both F, and skewness, Ez /5,"?, in Fig. 5.7. The bias has been
defined as

Strong correlation does not exist in either case, however, a least squares fit to Ez /5,>% vs bias
gives

b, =0.2y,|+0.22 (5.28]

The bias of cosine power §, is also affected by kurtosis ¥,. Various estimators have been
proposed for kurtosis, for example one suggestion is &, alone , and Mardia (1972) suggests

standardising with respect to the wrapped normal giving

v, = {az -(I-V,,)‘}/s,,2 [5.29]
More recently, Kuik et al (1988) recommend a model free kurtosis
v, ={a,-4a,+3}/s,} 5.30]

The correlation between these estimators and bias in cosine power &, is shown in Fig. 5.8. The
simple &, estimator (b) and excess kurtosis (c) shows little correlation with §, bias, only the

model free kurtosis (d) shows any real correlation and consequently it has been adopted for this
work. Using least squares regression it was found an estimator of bias in §, due to kurtosis is

given by

b, =0.061y, +0.07 [5.31]

If we can assume skewness and kurtosis are bivariate Normal the expected total bias of by is
given by E[br]= E[b,]+ E[bz] where b < . The effect of using Equations [5.28 & 5.31] as

corrections can be seen in Fig. 5.9 which shows that for § < 10 the correlation between 'true’
spread power and the corrected second moment estimate is good, but, for s > 10 the method

results in some significant overestimates of spreading power.
5.4. SPREADING RECORDED BY DB1 IN STORM SEAS.

Previous studies of wave directional spreading have concentrated on establishing a

model which is consistent with the physics of ocean wave generation. For example, Ewing &
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Laing (1987) examine the spectra of seas near full development with a view to checking
Komen's assertion that spreading is most narrow at some frequency greater than the spectral
peak. Such studies are aimed at developing a unified model of directional spreading which can
be used by oceanographers and designers in the same way that Pierson-Moskowitz and
JONSWAP spectra are used as frequency dependence models. At present, the most accurate
models of directional spreading are probably those due to Hasselmann et al (1980) and
Mitsuyasu et al (1978). However, both models are based on data recorded by pitch and roll
buoys in relatively low seastates and both show the spreading is sensitive to the frequency

ratio f/ f,.

The importance of directional spreading on structural response is discussed in detail in
Ch. 6 in which it is shown that fixed and compliant system response can either be attenuated by
up to 15% if spreading is allowed for; or amplified by some 10% in some of the modes of motion
of an articulated structure like a tower-tanker mooring. However, there remains considerable
scepticism amongst designers about the degree of spreading in extreme seas which effectively
dominate structural design (ISSC 1991, Committee 1.2). For this reason it was decided this
chapter should examine the spreading in the most extreme seas recorded by the DB1 buoy.

In what follows no attempt was made to ensure the environmental conditions correspond
to a stationary wind field and seas near full development. Instead, the spread in each extreme
sea was examined unconditionally in order to identify whether, or not, the spread of extreme

seas was more narrow than predicted by Hasselmann or Mitsuyasu models.

The DB1 buoy recorded heave acceleration, pitch and roll for 20 minutes every three
hours at 1.2 second intervals, giving a Nyqvist frequency of 0.4167Hz. As mentioned previously,
a faster sampling rate would have been desirable, especially in low seastates, however, for
the extreme seas examined in this chapter the minimum zero crossing period is 10 seconds which
suggests aliassing should be less of a problem. The co- and quadrature spectra recorded by the
buoy were corrected to correspond to slope time series in compass north-east axes. The auto and
cross spectra were formed from averages of 11 non-overlapping sections, each of 100 second
duration, resulting in spectra estimates with a resolution of 0.01Hz and having 22 degrees of
freedom. This sampling scheme was later recognised as responsible for leakage in the spectra
which may contribute to some of the scatter found in the directional estimates, Tucker (1991).

The frequency domain analysis results reported in Ch. 3 were used to identify the dates
and times when seastates exceeded 6.0m significant height. This identified 100 samples of
which 68 datafiles had satisfactory quality control flags. The year, month, day, time,
significant wave height and zero up-crossing period are given for the largest 100 in Table 5.3.
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The cosine model parameters were calculated for each of the 68 seastates using the method
proposed by Lonquet-Higgins et al (1963a) and Cartwright (1963), Appendix A, and the von
Mises model parameters were calculated using the procedures outlined in Section [5.3.4]. A
check on the results was made by comparing them with Fig. 3 from Ewing & Laing (1987).

The results for each of the 68 storms were first examined visually to determine the

overall quality of the estimates. As shown previously the effect of noise and bias due to 'non-

cosine’ form can be assessed using

A the check ratio R = (2711")2 /8-[Cu /(sz + Css)]m

(=]

the skewness and kurtosis

the difference between first and second angular
resultants in narrow seas

D Mardia's inequalities

The check ratios for the largest seastates are plotted in Fig. 5.10 which shows that values at or
near the spectral peak ( flf,= 1.0) are close to 1.0. Below the peak the ratio

k(theory)/k(buoy ) is generally less than 1.0 and above the peak the check ratio is generally >
1.0. This suggests values of power s or concentration x are likely to be unreliable above and
below the spectral peak.

When skewness is examined no obvious correlation or trend with (f / f,) exists with
values ranging from 0 to + 4; which is similar to the values obtained from the simulations
described in Section [5.3.5]. Whether this is evidence of asymmetry in buoy response, or the
wave elevation variance is not clear. Ewing (private communication) suggests that in fact the
true directional distribution will be very nearly symmetric in which case the buoy response is
probably responsible for the asymmetry. This is supported by the fact that the sign of the
skewness changes over the range of frequencies in most spectra, if turning wind fields were
responsible for asymmetry we would expect the signs to be consistent over the energetic parts of
the spectrum.

Kurtosis values are weakly correlated with the concentration, as suggested by the
simulation results. However, in many cases negative values were given at several frequencies in
a spectrum. The likely cause of negative values is bias in &, due to noise. This suggests that @,
may well be a more practical measure of kurtosis providing the seas are narrow beam and buoy

response is a reasonable measure of surface displacement and slope.

177



s Modelling Directional §

In Section [5.3.5] it was found that correlation between resultants R, and R, increased
with decreasing angular variance. The resultants at the spectral peak for each of the 68 storm
spectra are shown in Fig. 5.11, where the continuous line, suggested by Tucker (1991), is given by
solving

R, /(1-R)={1+3R,+(1+14R, +R?)""} 1 2(1- R,) [5.33]

Note that for R, < 0.5 only negative solutions are obtained for R, using Equation [A14]. In fact
the plot of §;,S, against R,, R, shown in Fig. 5.12 shows the minimum possible value of s, is

1.0. This explains the behaviour shown in Fig. 4 of Hasselmann et al (1980) which shows poor
correlation between s, and s, forlow s,, together with a bound on §,.

5.4.1 ANGULAR VARIANCE

The variation of angular variance O, with resonance angle or frequency ratio (f / £,)
is generally accepted as a real physical phenomenon. Unfortunately, the presence of noise and
bias in the DB1 data makes it difficult to categorically confirm that the spread is narrowest at
the spectral peak. Nonetheless, in all 68 cases the spreading at or near the spectral peak was
found to be more narrow than in the fore and aft tails of the spectrum, this is shown in Fig. 5.13

in which, after allowing for noise, the spread is clearly narrowest at the peak. This is reflected
in the second moment estimates of cosine spread power S, shown in Fig. 5.14 in which the values

at the peak range from 3 — 37.

We have seen how large values of skewness ¥; and kurtosis ¥, can reduce the
concentration parameter, consequently, it is worth looking at some examples where low powers
were estimated. Three examples are shown in Fig. 15,16 & 17 which correspond to 13th
February 1979 1800hrs, 28th March 1980 1500hrs and 10th December 1979, 0000hrs. In each case
the frequency axis has been scaled to ( f! f'), where f, is the frequency corresponding to the
largest observed c,, value the spectrum. The directional spectrum recorded on 13th February
1979, Fig. 5.15, shows some variability away from the main peak and could be due to a mixture
of wind driven and swell seas. The directional variance s, shows considerable variation over
the full range of frequencies with a definite minimum near the peak of the spectrum. Neither
skewness, kurtosis or check ratio suggest that the spread parameters 5, and kX, will be
excessively biased, and the first moment estimator of mean direction 5, is stable over most of
the spectrum. If this is a pure wind driven spectrum, and not a mixture of swell and wind seas,
then this seems to be a case where storm seas are not narrowly spread. It is interesting to note,
however, that the frequency dependence of angular variance is relatively weak compared to
Hasselmann or Mitsuyasu models.
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In the second example, Fig. 5.16, recorded 28th March 1980 at 1500hrs, the spectrum is
more narrow band with the lowest angular variance at one frequency interval past the spectral
peak. Again, the skewness, kurtosis and check ratio do not suggest the results are doubtful and

this is another case where spreading is not narrow beam.

The final example, Fig. 5.17, recorded 10th December 1979 at 0000hrs, is a case where
the seas are very narrow beam at the spectral peak, with large skewness and kurtosis and check
ratio of 1.006. This is clearly a case of near extreme seas which are practically uni-directional
at the most energetic parts of the spectrum, and shows clearly that adoption of Hasselmann or
Mitsuyasu models will in some cases result in unrealistic attenuation of wave forces on offshore

structures.

5.4.2 PARAMETRIC MODELS OF SPREADING PARAMETERS
Hasselmann and Mitsuyasu propose a parametric form for their observed spreading
powers based on least squares fitting to 5, values (Hasselmann) and -%(S, +S2) values

(Mitsuyasu). Since recent work by Ewing, Tucker and this author demonstrates second moment
estimators are more robust we propose a parameterisation based on s, using the model suggested
by Hasselmann et al (1980)

=5.{f1 5.}

LA

x=k{f/f.}

s=s..{f/f.}3 f2f. 534
x=x{f/f.}

The s, parameter effectively controls the maximum spread which is assumed to occur at the

spectral peak, and the A parameter controls the 'peakyness' of the model. The use of two

parameterisations results in a discontinuity at f = f, which Hasselmann resolved by
switching equations at f = 1.05 f,. Unlike the work of Hasselmann no attempt is made to
further parameterise 'A' using the resonance angle U/ c,,, furthermore, by simply modelling

the 68 largest seastates recorded by the DB1 we have mixed seas at different stages of

development. This can be seen in three examples discussed earlier.

To fit Equations [5.34] the data was subdivided into two groups: group I corresponds to
data with 0.2< f/ f, <1.0 and group II corresponds to data with 1.0< f/ f, < 3.0. Both
groups are plotted on double log scales in Fig. 5.18 for §, and KX,; truncation of the upper and
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lower tails of the spectrum was chosen to be consistent with Fig. 3 of Hasselmann. The results of
a least squares fit to the data gives

s=9.1{f1 £.}"*

<
x=4.9{f1£}" Tt
s=7.3{f11.} ;” f2f [5.35]
x=47{f1 £}

Comparing these models with Table 5.1 shows that the peak values at f = f,, are similar to
Hasselmann's results with 7.3 instead of 9.77 and 9.1 instead of 6.97. On the other hand, the
decay of spreading powers A,A is slower than Hasselmann's on both sides of the peak, Fig.
5.19. At first sight it may seem contradictory that the peaks agree so closely when in fact
Equations [5.35] use 5, when Hasselmann uses 5,. However, the simulations in Section [5.3.5]
demonstrate that as angular beam width reduces the correlation between resultants, and
therefore spreading powers, increases. Either side of the spectral peak the two resultants

reduce and so too does their correlation giving rise to large differences between s, and §,. This

is probably the reason why our exponents, A,A , are lower than those found by Hasselmann.

5.4.3 WEIBULL MODEL OF SPREAD AT THE SPECTRAL PEAK

These models are mean value fits with considerable spread either side of this mean. For
design purposes we need both upper and lower bound models for the spread and given the
uncertainty in the spreading estimates away from the spectral peak ( caused by non-unity check
ratios ) it is sensible to adopt a probabilistic description of the spreading which can be used in
conventional offshore structure reliability analysis.

A 3-parameter Weibull model was fitted by maximum likelihood to the 68 §, and K,

values observed at the spectral peak. The result, shown in Fig. 5.20, shows a lower bound of 1.2
for both §, and K, and a long upper tail, corresponding to near unidirectional seas. The Weibull

model parameters are:

model shape scale location mean
cosine 1.15 17.46 1.6 17.68
von Mises 1.25 8.12 1.28 8.73

Note the mean values demonstrate the regression fit to the data is biased downward at the

spectral peak and therefore the model given by Equations [5.35] are only appropriate for
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fatigue calculations and should not be used in design event simulation. It is recommended that
the Weibull models be used far this purpose.

5.6. ROBUSTNESS OF VON MISES PARAMETER ESTIMATES

The discussion in Section [5.4] examines the classical approach for maximum likelihood
estimation of the parameters of a von Mises distribution. In Section [5.3.5] the robustness of
Longuet-Higgins estimator for the cosine model spreading powers was examined and the results
confirm Kuik et al (1988) assertion that the procedure is not suited to the routine analysis of
directional wave data. This will also be the case for the simple von Mises estimator described
above since it also relies on equating circular moments. A robust estimator is therefore required
which is not sensitive to the presence of either non-colinear wind and wave seas, or asymmetric

directional spreads due to bias, noise or the veering of wind systems.

Robust estimation of directional data is examined by Lenth (1981) for the case when
discrete observations have been taken. Unfortunately there is no direct extension to this method
for this work in which only the first two angular moments are available through co and
quadrature spectra. However, the W-estimator sub-class of Huber's M-Estimation (1981)
principal leads to the development of a weighted density approach for estimating the
directional parameters for a chosen distribution. The concept of a weighted distribution was
formalised by Rao (1965) who recognised that real observations of random variables are very

often modified in some way, far example, by truncation, corruption, and missing values.

Weighted estimation is defined by Patil et al (1977) as follows. Consider a natural process
generating a random variable X with pdf f(x,;0) where @€ £ is the parameter space.

When measuring a random sample of observations on X we have to use a method of selection
which gives the same chance of including in the sample any observation produced by the true
process. However, in practice our measurements are not perfect and the relative chances of

inclusion of two observations x and y , say, are w(x) and w(y) where w(.) is some non-negative
valued function. Then the recorded value X, has the pdf

f(x;0)=w(x)f(x;0)/ © [5.36)

where

o = E[w(x)]= fw(x) f(x;0) dx (5.37]
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For our purposes f(x; @) is the directional distribution and w(x) is some weighting function
chosen to ‘correct’ the measured data which has been affected by imperfect buoy response or
veering winds. Unlike the classical M-Estimation process in which discrete observations on
direction are available we only have the real and imaginary components of the first two
angular moments. Consequently, if the form of f(x;6) and w(x) are parameterised in some way
then the solution for the weighted estimates of the model's location and scale parameters is

obtained from solving

2x
a, = E[w(0 - ; x).cos p6)] = é jw(e —u;x).cos pb.f(0; u, x)do (5.38)
0

2%
B, = E[w(6 - ; K).sin p6] = é- jw(e — W K).5inp0. £(6; 1, x) (5.39]
0
where,

o =E[w(0-p;x)|= wa(e -1, x).f(0;1,x)d0 (5.40]

0

The density f(6; 1, k) might be the von Mises probability density, and the weight function
W(9 —H; K’) might be some function based on known characteristics of either instrumental or

buoy response.
5.6 LONG-TERM DIRECTIONAL PROBABILITY DISTRIBUTIONS

Two methods can be used to determine the directional distribution of winds and waves given
a sample of observations 6;,i = I,n. The simplest method is to divide the range [0,27] into
class intervals and then count the frequencies in each class, much in the same way as for a line
histogram. Historically, this approach has been modified to produce rose and circular
histogram estimators which are useful graphical aids, but can be difficult to use in practical
analysis of offshore structures. The second approach uses the characteristic function defined in
Section [5.3]. This method is appealing because it enables us to use some of the statistical
theorems outlined in Mardia (1972) for univariate and bivariate observations of directional
data and, in addition, provides a simple parametric form for calculating the directional

density in design or analysis calculations.
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Line histogrammes of circular data are probably the most simple density estimators to
interpret and construct. The range [0, 27] is simply divided into a number of class intervals and

the frequency corresponding to each class is counted. Three examples are shown both in Fig. 5.21
and Fig. 5.22 which show estimates of the directional distribution of currents and winds
recorded by the DB1. The first example has class intervals 1 degree wide and shows a noisy
sinusoidal trend. In places spikes occur which exceed the range of the plot; these are probably
due to instrumental or recording error and could be removed from the data by inspection and
replaced by the average of the estimates either side. The second example, with bin width of 10
degrees, has several minor peaks which do not show up clearly in the first example, and the

third example, with bin width of 20 degrees, shows a smoother variation.

The second method for estimating the directional probability density uses the

characteristic function. Given a sample of discrete observations of directional data 6,,i = 1,n,
sample estimates of the real and imaginary components of the characteristic function are given
by

= 1 = 1 .
C,= ;ZCOSPG‘ S, = ;ZSmpO,- {5.35]

Where
— =2 =2\ - - = = .
R,=(C,+5?) C,=R,CosB, §,=R,Sind [5.36]

In the limit as # — oo then (T'P -a, and .-S"P - ﬂp . An estimate of the directional distribution

is given by the characteristic function using

D(6O) == 34,

pu—

from which , if ZIQ;IZ is convergent as p — oo , the directional density is given by

1 . < .
D(6)= 2—7:{1 + ZZP_J[C cos(p@)+S, sm(pG)]} 5371
Further, the cumulative directional distribution is simply
1 - (= =
F(0)= %{9 + ZZPBI[CP sin(pB) +S (1~ cos p6)/ p]} [5.38]
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If the directional distribution is known to be unimodal then the resultants RZ and the locations
5,,, can be solved using a sample set {9,-}. Use of Equation [5.37] requires sample estimates of

(ap,ﬁp) which are formed by summation over the weighted harmonics of the directional

distribution. To begin with 1000 summations were performed resulting in the current and wind
directional distributions shown in Fig. 5.23 and Fig. 5.24. In both cases the result is noisy and

the general trend is difficult to identify. The effect of increasing the number of (ap, ﬂp) terms

was examined by increasing the number of summations to 50000, however, this required
considerable computing effort and resulted in a more noisy estimator with large bias, this

estimator is therefore not consistent in the sense defined in Ch. 3, Section [3.1]). It was also

2
noticed that ZI(DPI did not seem to be converging as p — oo , this should be examined in

more detail in a future study.

A further problem with using a large number of terms in the summation is the difficulty of
using the result. In fact, what is required is a smoothed estimate, however, we shall see below
that it is better to simply take only the first few terms from Equation [5.38] since this results in
a model which is simple enough to use in design calculations.

5.6.1 SMOOTHING DIRECTIONAL DISTRIBUTIONS

The principles of smoothing have been discussed in the context of kernel density estimation
for line random variables in Ch.3. In this case, where we have noisy histogram and
characteristic function estimators, the simplest approach is to smooth the data f(x)

subjectively by convolution with a kernel weighting function k(x)

F@ = [_fOW(y-x)dy

For large samples, this convolution is performed most quickly by using the fact that convolution

in the space domain is equivalent to multiplication in the frequency domain: that is

F@=F "FILOF k(-2
where, F [ ] is the Fourier transform, and ¥ "[ ] is the inverse Fourier transform. Several

kernel types exist; two simple examples are the square kernel, and the exponential kernel.

Both were tried and the best results were obtained using an exponential kernel. The smoothed
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histogram and characteristic function estimators are shown for the currents and winds in Fig.
5.25 and Fig. 5.26. Both types of estimator agree well with the exception of the sharp
discontinuities in the current estimators ( which are due to the spikes observed in the 1 degree
interval histogram).

5.6.2 DESIGN MODELS OF DIRECTIONALITY

The two estimators discussed so far have not been suitable for design or analysis being too
detailed. A simple parametric model is given by summing only the first few terms of Equation
{5.38], for example, Fig. 5.27 shows the current and wind directional distributions obtained using
only the first ten terms in the summation. In both cases the main and secondary peaks evident in
the smoothed results shown in Fig. 5.25 and Fig. 5.26 can be seen in these simple estimators. Of
course fewer terms in the summation can be used and some experimentation is necessary to obtain

an acceptable fit. The values of the first ten real and imaginary components of @, are given for

the currents and winds in Table 5.4.
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5.7 CONCLUSIONS

Measures of location, spread, skewness and kurtosis have been taken from the work of
Mardia. These non-parametric estimators can be used to assess: the performance of a buoy's
surface following characteristics; and the robustness of the simple moments estimator
developed by Cartwright.

The robustness of equating the first and second angular moments of directional wave data
has been examined by simulating double cosine mixtures for the directional distributions. The
results have then been used to develop an estimator for the probable bias in the estimated

spread given the amount of dircular skewness and kurtosis.

Solutions for the location and concentration parameters of a von Mises distribution have
been derived. The solution uses the real and imaginary components of the characteristic
function which are obtained directly from the co- and quadrature spectra for the buoy heave,
pitch and roll time series. The advantages of the von Mises distribution are the ‘common sense'
nature of the concentration parameter and the considerable literature which supports the

various statistical aspects of estimating its parameters.

The largest significant wave heights observed by the DB1 buoy have been used to select
those co- and quadrature spectra which were recorded in extreme seas ( Hs > 6m ). The intention
being to test whether spreading reduced as the seastate increased. After screening the data 63
samples were assumed to be uncorrupted and composed of wind driven seas. These data were
then used to develop a regression model for the frequency dependent - second moment estimate -

cosine model spreading powers and von Mises model concentration parameters.

The models are largely in agreement with the Hasselmann study results - despite their use
of the average of the first and second moment estimates for the cosine spreading power. The
major differences are either side of the spectral peak where this study predicts a slower
increase in the directional width. There did not seem to be any correlation between the

significant height and the angular variance.

For design it is suggested that the spreading power be taken as frequency independent and
that the results at the spectral peak be used for the whole range of f/fm.

The results at the spectral peak show considerable scatter which has been modelled by
fitting a Weibull distribution to the observed values. The result has a lower bound of 1.2, a
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modal value of 4.6 and a mean of 17.7. It is suggested the effect of this variability be examined
at a later date by including the uncertainty in a reliability analysis.

A method of weighted estimation has been presented in which the moments inferred from
the co- and quadrature spectra are assumed to be from a weighted directional distribution. This
method was tested but with limited success. The major problem seemed to be the large
variability in the skewness values between discrete frequencies in each set of co - and
quadrature spectra. A further problem was that the physical nature of the weighting ( which
is creating the skewness ) was unknown. If the general form of the weighting can be identified
then it is likely the method could be used successfully. In particular, it would be possible to
develop a method in which the fitting is done for the full set of data across all frequencies

rather than on a frequency-by-frequency basis, as for the present case.

The use of circular statistical methods is equally valid for describing the long-term
directional distributions of the winds, waves and currents. A method based on the use of
Fourier-Stieltjes series is presented which enables multimodal directional distributions to be
described using only a few terms from the characteristic function. This method compares well
with conventional circular histogrammes and has the added advantage of being a continuous

function on the circle.
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APPENDIX A - CALCULATION OF THE DIRECTIONAL SPECTRUM

The calculation of a directional spectrum, for example using the heave, pitch and roll motions
of the DB1 buoy, is based on the assumption that the sea surface topography can be represented
as the summation of an infinite number of cosine wave components, linearly su over a
range of directions i and frequencies j . This assumption ignores the non-linear effects like wave
breaking and shallow water harmonics but, nonetheless, provides a model which correlates
well enough with real seas for engineering applications. The double summation is based on the

two dimensional cosine wave equation
n(x,t) =a, cos(ij—?.n'fjH tyj) [A1]

where k; is the wave number, f; is the frequency in Hz, and V¥, is a phase. Equation [A1] may be
transformed into three dimensions, Fig. 1, giving

n(X.Y,1) = a; cos (kj[Xcos 0, +Ysin6,]-2nf;t+ vy, ) (A2]

= Xcos(ei)

m = Y sin( 0;)

Figure1 2_D Wave transformation

Assuming a real sea surface can be modelled as a finite number of linearly superposed waves
with the form of Equation [A1], then

X, Y1) = 22‘1 cos (k,[Xcos6,+Ysin6]-2nft+y; ) [A3]

im] j=1]
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Equation [A3] represents the variation of the sea surface in both space and time, however, the
recordings made with a pitch and roll buoy are the time histories of the surface elevation and

slope derivatives of this equation at some fixed point in space (X",Y"), i.e.

e 2,00 0N
A ) == [A4
XY oy :

The uni-directional variance spectrum S(f) may be determined using one of the standard
procedures - like the fast Fourier transform or maximum likelihood method - and only requires

the heave response history. For this simple case, Equation [A3] reduces to

n(t) = iaj cos( 2nfit+ vf,.) [A5]

j=1

Note in this equation, the amplitudes d; and the phase angle ¥; do not represent physical
reality since at each frequency ’j’ the amplitude and phase are the result of waves from all
directions ‘i * between 0 to 277 radians. To determine the directional variance spectrum S(f,0)
both the heave and two slope derivatives are required. The procedure for calculating the
directional spectrum uses the co and quadrature spectral density matrices for the heave,pitch
and roll time series, for examples see Hasselmann (1980) or Tucker (1991). If subscript 1 denotes
vertical acceleration, and subscripts 2 and 3 denote the tilts in the north and east directions

then there are six independent non-zero spectra

Cuo 0 0 0 Q. Qs
sz CZJ md 0 0
C3 3 0

These co and quadrature spectra are given by Longuet-Higgins as
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Culf)=[, 5(s.6)d6

Calf)= [ K* cos’(6) S(£.6) do

Cu(f)= [ * sin’ (6) S(f,6) B

0,(f)= " keos(6) 5(1.6) do

Qu(f)=], ksin(6) 5(f,6) do

Cyu(f)= f'k’ sin(0) cos(6) S(f,6) do [A6]

where k is the wave number, and the unknown quantity is the directional spectrum §(f,8). To

solve for the directional spectrum a Fourier approximation is assumed, where

2x
a, +ib, =%J'e""aS(f,9)d0 n=0,1,2. (A7]
0

setting n=0,12 and equating the Fourier terms to the relevant co and quad spectra gives solutions

for a,.b, . Ewing & Laing (1987) point out the convenience of the normalised angular harmonics

A =a,/a, , B,=Db,/a, which are then given as

A =0,1[Cu(Cs+Ci)]”

B,=0Q,;/ [Cu (sz + CJJ)]UZ
A, =(C,— CJJ) I{Cypy + C.u)

[A8]
B,=2C,,/ (C22 + C,,)
The wave number can be obtained from both
kz(f )= (sz + Css)/ Cu [A9]

and k = (2af)’ / g; the ratio of the two estimators provides a simple check ratio which is used
to assess the effect of noise in the signals. Longuet-Higgins et al (1963a) and Cartwright (1963)

proposed the directional distribution of variance S(f,8) be written as the product
S(f,6) = D(f,0)S(f); where the directional spread D(f,8) is uni-modal at each frequency.

They suggested a suitable functional form for D( f,0) is given by the exponentiated cosine
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D(f,0)=Ccos*(4(6-8)) : -m<8<n

[A10]

in which the cosine power s is usually frequency dependent s = s(f). By equating the angular

moments of D( f,6) to the angular harmonics from the Fourier coefficients, Equation [A8], two

estimates for the cosine power and the mean direction can be calculated.

6, =tan™ {EL}
AI

s;=¢,1(1-¢,) where ¢ =A?+B}

0, = ltan”{—B—’}
27" 4,

5, = {1 +3c, +(1+ 14c, +czz)m} 1{2(1-c,)}

(i) First moment estimator

(ii) Second moment estimator

where ¢’ =A’+B}

[A11]

[A12]

[A13]

[A14]

The robustness of these estimators is discussed in Section [5.5]. It should be noted the normalised

angular harmonics can be written as

4,(f)= [Cost®) D(7.0)d0
B,(1)= [Sin(@) D(1.6)a0
A(f) = TCOS(ZG) D(f,6)d6

B,(f)= zfsm(zo) D(f,0)do
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Written in this form it will be clear these are equivalent to the real and complex components of
the characteristic function of angular statistics.

In order to calculate more terms in the Fourier approximation additional C and Q terms are
required. Mitsuyasu et al (1975) used a clover-leaf articulated buoy to measure heave, slope,
and curvature, however, measurement of the curvature requires more complex instrumentation,
and equipment has yet to be developed to the level of reliability achieved with the more

common pitch and roll buoy.
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f<fa f2f,
Mitsuyasu
. b a= _}55 b=-2.5
- «Fh =-7.
$=1157"7 a=0.0
Hasselmann
\ s, =6.97{10.83} 9.77{10.43}
= /
s=s{f 11} 1 =4.06{10.22} (—2.33{:t0.06})—(1.45{10.45}){-‘?—1.17]

where: f, is the modal frequency ; f is the dimensionless frequency; ¢ is the wave phase

speed; and U is the wind speed.

Non-dimensional fetch: F= fj—’:—
Frictional velocity: U,=U=25u
Mitsuyasu fetch relation: f. =100F°%
. gF
where: F= %
and:
g
Jo = o

Table 5.1 Parametric form for the cosine model spreading power from Hasselman et al

(1980), and Mitsuyasu et al (1975).
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year month date time Hs To 00. _year month date time Hs To]

1 78 dec 11 18 84 115 51 . 80 dec 15 12 1.7 11.8
2 dec 11 21 83 121 52 . dec 18 9 8.0 12
3 x dec 12 12 83 105 53 . dec 18 12 8.0 12.0
4 x dec 12 15 9.7 114 54 . dec 18 15 7.8 12.6
5 x dec 12 21 127 113 55 x dec 20 9 9.0 1.9
6 x dec 13 3 108 122 56 . dec 20 12 8.1 L1.6
7 x dec 13 6 105 120 57 . dec 20 15 93 12.1
8 x dec 13 9 9.0 120 58 x dec 20 18 8.0 11.2
9 x dec 13 12 96 114 59 . 81 jan 17 9 78 10.9
10 dec 13 15 94 11.4 60 . mar 1 9 78 11.4
3] dec 13 18 92 112 61 mar 28 0 10.5 13
2 . dec 13 21 9.2 121 62 oct 27 9 76 14.0
13 x dec 14 0 78 111 63 . dec 14 21 7.6 11.9
14 79 feb 13 6 7.7 140 64 . 26 12 8.2 11.1
15 feb i3 9 7.5 137

16 feb 13 18 7.5 109 65 . 78 sep 29 12 6.1 11.4
17 mar 4 6 80 146 66 . sep 29 15 6.0 10.5
18 79 dec 10 21 86 109 67 . dec 2 3 6.2 t0.4
19 dec 10 0 8.1 11.2 68 . dec k] 10 6.6 12.04
20 dec 13 [} 8.0 129 69 . dec 3 15 74 1.4
21 . dec 13 3 7.7 118 70 . dec 6 6 6.1 9.3
22 x dec 14 21 9.9 121 71 . dec 6 9 6.0 9.6
23 x dec 15 0 113 124 Y7 dec 7 0 6.8 9.6)
24 x dec 15 3 11.7 - 128 73 . dec 7 3 6.0 9.1
25 x dec 15 6 10.1 122 74 . dec 7 6 6.6 9.4
26 x dec 15 9 0.1 123 5. dec 7 12 6.1 9.7
27 x dec 15 12 10.0 12.1 76 x dec 7 18 6.3 10.3
28 «x dec ] 15 8.0 114 77 x dec 7 21 6.6 11.4
29 x dec 19 (4] 75 109 78 dec 8 0 6.1 10.6
30 =x dec 27 6 75 10.2 79 dec 8 3 6.2 10.3
31 80 jan 21 6 86 108 80 dec 8 6 6.2 103
32 jan 21 9 0.1 1L6 81 . dec 8 18 6.2 L1
33 jan 21 12 92 114 82 «x dec 9 0 6.6 10.6
34 jan 21 15 8.2 115 83 dec 9 3 6.2 10.6
35 jan 21 18 7.7 110 84 dec 9 6 6.3 11.0f
36 jan 31 9 86 112 85 dec 9 9 6.4 10.7
37 feb 5 3 100 133 86 dec 9 12 6.2 10.9
38 feb 5 9 86 119 87 dec 10 9 6.3 9.9
39 . feb 5 12 78 1.7 88 dec I 9 6.5 10.1
40 x mar 7 3 9.2 115 89 dec 4] 12 6.5 10.4
41 x mar 7 6 109 129 920 dec I 15 7.1 11.4
42 x mar 7 9 1S 118 91 . dec 12 0 6.5 10.6
43 x mar 7 12 12.2 136 92 . dec 12 3 6.1 9.5
4 x mar 7 15 1.3 131 93 . dec 12 6 6.9 10.1
45 x mar 7 18 110 128 94 . dec 12 9 65 9.7
46 x mar 7 21 89 116 95 . dec 14 3 70 11.0]
47 x mar 8 0 86 112 9% . dec 14 6 6.7 109
48 . mar 28 15 8.5 10.7 97 . dec 14 9 6.3 [RK
49 x mar 28 18 7.7 106 98 . dec 14 12 638 109
50 mar 28 21 79 111 9 | dec i4 &) 7.1 10.

Table 5.3 Date and time series for seastates with Hs>6.0m.
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Fourier currents winds
Stieltjes alpha beta alpha beta
term

1 -0.05138 0.04149 0.019 -0.25684
2 0.08418 0.17532 0.03298 0.0031
3 -0.04266 -0.03284 -0.06006 -0.04333
4 0.03241 0.00804 -0.00542 0.02079
5 -0.00844 -0.00605 0.00175 0.03763
6 -0.00081 0.02436 -0.02273 0.00191
7 -0.00907 0.00315 -0.03654 -0.00586
8 -0.00388 -0.02905 -0.02288 0.00329
9 -0.00709 -0.00669 -0.03387 0.02291
10 0.0061 0.00768 -0.01781 0.01174

Table 5.4 Real and imaginary components of the characteristic function for the

DB1 currents and waves.
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iFigure 51 Cosine spreading model, s= 0,4,8,12,20. Figure 5.2 von Mises spreading model, k= 0,4,8,12,20.

i
|
“ s=16, p=2, zeta =30.0,i-mi=0.1 s=16, p=2, zoka =60.0,-m/=0.1
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|
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-3 1 2 3 1 2 3
Figure 5.3 Four directional distributions simulated from a double cosine mixture
and the corresponding cosine, moment estimated models.
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Figure 5.4 The characteristic function for angular moments.
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Results for 100 simulated directional distributions with non-zero

skewness. alpha 1 vs alpha 2 (a); beta 1 vs beta 2 (b); alpha 1 vs beta 1
(c); alpha 2 vs beta 2 (d); alpha 1 vs beta 2 (e); alpha 2 vs beta 1 (f).
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Figure 5.7 Results for 100 simulated directional distributions with non-zero

skewness. Bias in cosine power vs: second angular moment (a); Mardia's
measure of skewness (b).
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Figure 5.8 Results for 100 simulated directional distributions with non-zero

skewness. Excess kurtosis vs cosine power (a). Bias in cosine power vs:
second angular moment (b); excess kurtosis (c); model free kurtosis (d).
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Figure 5.10 Check ratios for the largest ten seastates recorded by the DB1
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Figure 5.11 Resultant lengths for the 68 most extreme seastates recorded by the DB1
data buoy. Note values which equal 1.0 are those for which an alpha
and beta moment is >1.0.
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Figure 5.12 Variation of natural log of spreading power with resultants R1 and R2.
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Directional spectrum parameters measured by the DB1 buoy at

15.00hrs, 28 march 1980. Significant wave height 8.5m and zero crossing

period 11.2 sec.
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Figure 5.19 Cosine model spreading powers: (a) Hasselmann et al (1980); (b)
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Figure 5.20 Density functions for the cosine and von Mises spread parameters at the
spectral peak f= fm. Cosine model parameters are: shape = 1.15, scale =
17.46, and location 1.263. von Mises model parameters are: shape = 1.25,
scale = 8.12, and location 1.28.
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Figure 5.21 Three histogram estimates (360:36:18 bins) of the directional
distribution of currents measured by the DBI1 in its four years operating
in the South Western approaches.
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Figure 5.26 Smoothed density estimates of wind direction recorded by the DBI:

(left) histogram estimate with 360 class intervals; (right) smoothed
characteristic function estimate evaluated at 360 angles, in both cases
an exponential kernel was used.
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LLOADING AND RESPONSE MODEL OF A TENSION LEG
PLATFORM
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chapter 6 Loading and response model of a tension lcg platform
NOMENCLATURE

A exposed area for wind force calculations

A cross — sectional area for the tendons

B spacing between column centrelines

o shape coefficient for drag force calculation

C polynomial coefficients for Havelock approximation

Cro surface drag coefficient

C, added mass coefficient

C, drag coefficient in waves

E,, drag coefficient in steady flow

C, linearised drag force

o spectrum modification factor

(o inertia coefficient

C. vector of added inertia coefficients

d damping ratio

D characteristic dimension

D vector of characteristic dimensions

D(8; f) directional spreading function
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elemental lengths

Young's modulus

frequency in hertz

non - dimensional frequency
apparent frequency

vector of Morison forces

steady current force

vector of diffraction forces
vector of viscous drag forces
vector of Froude - Krylov forces
mean viscous drag drift force
mean wave elevation drift force
mean velocity head drift force
total drift force

resultant steady force

steady slow drift force

time varying wind force

steady wind force

ith limit state function
acceleration due to gravity
wave height

response transfer function
Bessel function of the first kind order n

wave number
element of the hydrostatic stiffness matrix

Keulegan - Carpenter number: u,T /| D
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hydrostatic stiffness matrix
tendon stiffness matrix
wave length

length of the tendons
structure mass matrix
matrix of added masses

matrix of Froude - Krylov added inertias

vector of unit normals

pressure in the fluid

dynamic amplification factor

relative displacements between the structure and the fluid
spectral density of the wind force

surface area

vector of cross - sectional areas

response spectral density

surface elevation spectral density

spectral density for wind speed

wave period

mean force in a tendon

wave particle velocities

peak horizontal velocity

shear velocity

ith degree of freedom in the structure reference axes
mean current speed

mean wind speed

mean wind speed at elevation z

time varying component of wind speed
submerged volume

non - dimensional distance

Bessel function of the second kind order n
velocity vector for the platform

wave phase angle

change in tendon tension due to dynamic motions
steady change in tendon tension
undisturbed Airy wave potential
JONSWAP peak enhancement parameter
wave amplitude

vector of eigenvalues

Jfrequency rad | sec

direction of wave propagation

mass density of water

mass density of air

mean water level tendon stress
JONSWAP shape parameter

frequency inrad | sec

spectral peak frequency in rad | sec
wave amplitude

217



chapter 6

6. INTRODUCTORY REMARKS: LOADING AND RESPONSE MODEL OF A
TENSION LEG PLATFORM

A deep water tension leg platform has been chosen to illustrate the relative sensitivity of
an offshore structure's response predictions to the use of joint probabilities and directional wave
spreading. This type of structure is suitable for several reasons: first, its long natural periods in
surge, sway, yaw make it sensitive to wave directional spreading; second, the effects of currents
and winds are important since they contribute a significant amount to the static and dynamic
offsets of the platform; third, the limit states for the tendons are simple functions of the
platform motions; and finally, the capital cost of these platforms is sufficiently large to

reward serious analysis of the platform responses.

This chapter describes a mathematical model of the loading on a tension leg platform
which has been designed for a Monte Carlo simulation in which the long-term responses are
examined using probabilistic methods. The multivariate, environmental density used in the
simulation is based on the work described in ch's 3,4, and 5. This data was recorded in the
conventional way using time-averaged wave, wind, and current measurements recorded at
regular intervals over a four year period. The multivariate probability models obtained from
statistical inference on this data are therefore random vector models for the time-averaged
quantities. This conforms to the requirements of a discrete, point-in-time reliability calculation
in which the long-term variation of the environment is modelled as a discrete vector random

~ process; and the within seastate behaviour is modelled using a stochastic process model for the
waves and constant values for the winds and currents, Bjerager (1988). The details of the

probabilistic analysis are described in more detail in Ch. 7.
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Section 2 of this chapter defines the geometry of the platform together with the so called
limit state functions for the tendons and riser system; which are essentially constraint
equations which define the boundaries between the safe and unsafe responses of the platform as
functions of the system parameters. Section 3 describes the model of the wind, first order wave,
and currents forces. This takes into account viscous, potential, and motion induced forces on the
submerged hull, tendons and risers. Section 4 then shows how the non-linear lateral stiffness of
the tendons has been modelled for the calculation of the platform offsets and tendon tension

changes. These arise in presence of steady forces due winds, currents and waves.

Section 5 shows how the dynamical behaviour has been modelled as a linear six degree of
freedom system in which the coupling between modes has been included to ensure the tendon
tensions are correctly modelled. This model is used to calculate the first order wave force,
motion, and limitstate responses in both long-crested and short-crested seas using the methods
described in Section 6. The spreading models used for the analysis ( which are defined in Ch. 5)

are compared to assess the importance of the angular variance of the wave spread.

Section 7 presents the simplified calculation method used for the mean and slowly varying
second order wave drift forces on the TLP hull. The results of this simple method are then
compared with those obtained from more complex analysis using 3-D source distribution
method. Finally, Section 8 examines the force, motion, and limitstate responses of the TLP for a

variety of wind, wave, and current magnitudes and directions.

For this work, only a small number of design limit states are examined since the purpose is
to assess the differences between: reliability estimates assuming simultaneous occurrence of
load process extremes in unidirectional seas (the design wave method), and reliability

estimates using joint probability models of the load process with directionally spread seas.

6.1. TENSION LEG PLATFORM MODEL

The tension leg platform (TLP) model used in this study is based on published details of a
test structure originally proposed by Tan & de Boom (1981), and later chosen to assess some of
the commercially available compliant systems analysis packages by Eatock-Taylor & Jeffereys
(1986). The geometric model reported by Tan & de Boom (1981) is copied in this work to enable
comparison of: (i) our first order wave force results with the work of Eatock-Taylor & Jeffereys
(1986); and (ii) our second order force results with the results in de Boom et al (1984). By
choosing this structure we can ensure the responses are correctly calculated in the Monte Carlo

analysis discussed in chapter 7.
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The structural and geometric details for the TLP tendons given in Table 6.1, and illustrated
in Fig. 6.1, have been designed for this project using the known vertical stiffness and
information on the dimensions and material strengths given in Burns (1983), and Woo-Sun et al
(1991).

Several methods have been developed for calculating the hydrodynamic loads on
compliant systems. Denis & Heaf (1979) used both linear diffraction-radiation theory and non-
linear time domain solutions to calculate the responses of a TLP. Tagaki et al (1985) carried out
an extensive study of the responses of a semi-submersible using 34 computer programs from 28
organisations. The theories used by these programs were either Morison based or source
distribution based. His results demonstrate that for surge and sway forces the computer
programs, including those based on Morison's approach, all correlated well with their
experimental results. However, agreement was poor in the other modes of motion. More recently
Incecik et al (1987) examined the loading on a semi-submersible and an articulated tower using
both 2D-source distribution and Morison theory. The results confirm that the Morison approach
provides accuracy equivalent to the 2D-source method for surge and sway given carefully chosen
drag and inertia coefficients. Since this work examines the effects of joint probabilities on both
TLP motion and tether force system limit states during the platform lifetime a simple Morison
based loading model has been chosen. The primary advantage of this method is that responses
can be calculated quickly in the frequency domain, by using a simple linearisation of the drag
term. Patel& Witz (1991) shows this approach is reasonable and can produce results which

agree quite well with time domain solutions.

In what follows, the simplified loading and response model of the TLP is discussed. The
response vector of platform displacements for the platform are then used to define the system

limit states for the tethers.

6.1.1 STRUCTURE LIMIT STATES
The structure limit states are a mathematical definition of the design criteria required for
safe operation of the structure. For TLP's the major design criteria are outlined in the American
Petroleum Institute’s APL:RP2T (1987) regulations. In a detailed design several limit states
must all be examined to ensure that operational, environmental, stability and strength design
criteria are all adhered to. Only the most simple limit states which do not require frame or
finite element analysis are considered in this work. These include limit states associated with
" the platform motions like: lateral offsets; platform setdown; and the air gap between the
underside of the deck and the most extreme waves. The most simple structural limit states
considered are those for the tendons: for example, the ultimate tensile strength, and the

requirement that the tendons do not become slack.
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Using the platform reference system shown in Fig. 6.1 the limit states chosen for the tendon
tensions are similar to those given by Woo-Sun et al (1991), with the addition of the effects of
static and dynamic offset forces which change the tendon tensions. Two simple limit state functions
are considered for each tendon group at the corners of the tension leg platform. The first
examines the margin between the pretension in the tethers and the compression which arises
due to heaving, pitching and rolling. The second examines the margin between the ultimate
tensile capacity of the tendon groups and the maximum tensile forces induced by heaving,

pitching and rolling. These two limit states can be expressed as eight equations

tendon 1
G, =T, {WT -k [z, + Bz, + Bz,] - 6T (2,,2,,2,)}
G,=A0, - {A,oo +k[z; + Bz, + Bz; | + 81'(2,,22,26)}

tendon 2
G, =T,—{WT - k[z,— Bz, + Bz;]- 8T (2,,2,,,)}
G,= Ao, —{A,O',, +k[z;— Bz, + Bz ]+ 6’1'(:,,22,26)}

tendon 3
G, =T, —{WT—k,[z, - Bz, - Bz,]- 5T(z,,zz,26)}
G,=Ao0, - {A,ao +k,[zj -Bz,—- st] +6T(z,,2,, 2 )}

tendon 4

G =T,- {WI'T k[z; + Bz, - Bz,] - ST(z,,zz,z6)}
G,=A0, - {A,oa +k [z, + Bz, - Bz, ]+ 8T(2,2,,2,)} (6.1]
Where: A, is the cross sectional area of tendons at each corner; T, is the initial tendon tension
in stil water; WT is the effective tendon weight; O, is the yield strength of the tendon
material; @, is the initial tendon stress; B is half the distance between column centrelines;

and k, is the axial stiffness, and z; are the coordinates of the tendon group centre.

These eight limit states correspond to: exceedance of the ultimate strength in tension, and
the requirement that no tendon group goes into compression at the seabed level. This gives two

limit states per corner which must be evaluated for each stationary seastate.
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6.2. FORCE MODELLING

The three primary sources of environmental loads on a TLP are wind, wave and current
induced. In Ch. 7 the wind and current forces have both been modelled as random variables
which are constant throughout the duration of a seastate: though in fact both will fluctuate
randomly and could be modelled as stochastic processes. The combination of the wind, and

current forces with the wave first and second order forces is then simplified.

The wave forces are more complex with low wave and high frequency components. Only the
low difference-frequency and wave frequency components have been modelled in this work
since they are the primary source of loading on the submerged parts of the platform. Although
the low frequency lateral forces are small when compared to the first order wave force they can
induce large meandering surge and sway oscillations because of the low damping at the surge,
sway and yaw natural frequencies, see Faltinsen & Demirbilek (1989). High frequency wave
loads arise from second order sum-frequency forces and have been identified as the cause of
tendon leg 'ringing' in which high frequency axial vibrations are set-up at the natural

frequency of the tendons.

The slowly varying drift motions are important because they set-up large axial forces in
the tendons upon which the first order wave frequency forces are superposed. The combination
of the first and second order force components is simplified in this work by using Turkstra's rule
in which the square root of the sum of the squares is taken for the combined load process. This is
effectively an assumption of independent gaussian loads which is not true in practice because
the largest wave will occur when the wave envelope is largest. This suggests the first and
second order maxima will be strongly correlated, albeit with a difference in phase. This
problem has been examined by Naess (1989) and needs further research.

The linear first order wave loading on a TLP is given by the linear superposition of: the
Froude-Krylov pressure forces; the acceleration (or diffraction) forces; and the linearised
viscous drag forces. Each force contribution has been modelled for this TLP study and a brief

description of the way each was calculated follows.

6.2.1 WIND FORCES
The conventional method for calculating wind forces on an offshore structure uses the

approximation

E,(6)=4p.C AU, +v()|U, +v(1)) [6.2]
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Where: P, is the mass density of air; Cis the shape coefficient (DnV Table B.5); A is the
projected area normal to the wind direction; U, is the mean wind speed averaged over one hour;
and V(7) is a time varying wind speed about the mean U ,. The wind force expression can be splitplit
into a steady force F,, and a gust force F (1)
F(=F+F.@1)

Where the first term is given by
F,=4p,CAU/}

and the second term is approximated by a linear term plus a quadratic "error” term which is
assumed to be small

Fu(t) = 4p,C AU (1) + E(v(t)’) [63]

The error in the gust force approximation is small if the fluctuating component is small
compared to the mean wind speed. The primary purpose of this approximation is to simplify
the calculation of the wind force using frequency domain methods, Barltrop & Adams (1991),
however, the results discussed below suggest the approximation in extreme winds needs to be
validated using time domain analysis since the significant amplitude ( based on spectrum m,))
of the gusting component is generally some 20-30% of the mean wind speed. The exposed area of
the total structure for this work has been estimated using the Hutton TLP as a typical structural

configuration giving the mean forces shown in Table 6.2.

The wind forces and platform responses can be modelled by a linear system. since the wind
gust process has a near-normal probability distribution, ESDU (1974). The most appropriate
spectral form for gust speeds over the open ocean is that suggested by Eidsvik (1985), and later
adopted by Ochi (1988). Ochi loc cit defines the non-dimensional wind spectrum as

Sw(f)=£'—s;;(“f'—) [6.4]
f=71U,
u, =U gy

C10=6.7€" U,y +6.2¢”
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U,=U, +2.5u.ln(z/10)

Here: S, (f) is the gust velocity spectrum; y, is the shear velocity; f. is the non-dimensional
frequency; f is the frequency in Hz; ¢, is the surface drag coefficient; and U, is the elevation
dependent wind speed. Note the wind speeds recorded by the DB1 were measured by cup

anemometers located at 6.0m and 8.7m above sea level; this is effectively close enough to the
international reference height of 10.0m used in this and the JONSWAP spectrum.

The spectrum of the wind gust force is given by

Sy (w)= M{E—i}z

2n 1%

where the 27 is included to rescale the spectrum from hertz to radians. The lateral
displacement response of the platform can then be calculated using the solution for a single

degree-of-freedom system:

Sy(@) =5, (0).(Q().L; I T,)

Here, the dynamic amplification factor Q(w) is a function of the natural frequency in surge @,,

and the damping ratio d
0(0) = {[1 _ (0%)2]2 . [2(4%)2 d]) }-nz

Some results for the wind gust statistics, forces, and platform responses are given in Table 6.2 (a)
for a range of wind speeds from 10 to 50 m/s. The signifiéant amplitude of the winds speed
increases as the wind speed increases, whereas the zero up-crossing period decreases, Fig.
6.1(a). Contrary to the assumption made earlier the gusting component of the wind speed is not
insignificant which suggests for extreme winds the non-linear drag term should be modelled,

either by time domain simulation or linearised frequency domain methods.

6.2.2 CURRENT FORCES
The current forces are calculated using a modification of the Morison wave force equation

~ with the extra force due to the current included as a third term

F,=AC, % + Ap{(Cyp + T, Julul}
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Here, the drag coefficients Cp, ED are the wave and current drag coefficients, respectively,
which for this study have been taken as constant values of: 1.2 for the columns tendons and
risers; and 2.0 for the pontoons. Modelled in this conventional way the current force is
calculated as though the waves were not present whereas, in practice, there is interaction
which not only shifts the frequency distribution in random seas but also alters the particle
kinematics and creates a drift force term. In design calculations this interaction is difficult to

model and usually ignored.

For simplicity, the current profile is modelled using a modification of the Department of
Energy recommended profile, Fig. 6.2, with a current speed of U, for the columns and pontoons,
and 0.85U, for the tendons and risers. The drag forces are assumed to be fully correlated over
the whole structure so that the component forces can be summed to obtain the total force on the
TLP. Examples of the total forces on the TLP for a range of currents are given in Table 6.2. Note

the wind and current forces have the same order of magnitude for the extreme storm cases.

6.2.3 CURRENT MODIFICATION OF SPECTRA

The interaction of random waves and currents alters the spe::tral form by a significant
amount and should therefore be allowed for when combining wave and current process. The
spectral parameters recorded by the DB1 ( summarised in chapter 2) were recorded without
correction for current speed. This means the significant wave height and zero crossing period, in

effect, correspond to the corrected values discussed below.

In the simplest case, the currents and waves are co-linear resulting in a change in the
apparent wave frequency, that is, a single regular wave of frequency f will be transformed by a
current giving an apparent frequency fy where f, = f + kU, / 21t. Here a positive U, is taken
as being in the direction of the wave. The dispersion relation then becomes

2
(27, = KU} = gktanh(kd) .y v in deep water can be simplified (see Huang et al (1972)) to
give
2
42xf,) /g

k=
{1+T+8Uxf, g} [65]

When the waves are not co-linear with the current the interaction is more complex due to
refraction, so for most work only the component resolved into the direction of the waves is taken

as influencing the apparent wave frequency .
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The current modification of wave elevation spectral form was studied by Huang et al (1972)
who proposed a modification factor C, such that S"(f) = C;.S(f)- For deep water

4
C,=
" {1+ 8u.af 18 {1+ (1+8U,nf 1)} [6.6]

The effect of current on the apparent spectrum is shown in Fig. 6.3 for a range of current speeds
from -1.0 to +1.0 m/s. Negative current increases the area under the spectrum and positive
current decreases it. The influence of current on the spectrum is therefore most important when

the current is in the opposite direction to the waves.

6.2.4 EFFECT OF CURRENT ON DRAG AND INERTIA LOADING
First order hydrodynamic fluid loading has been modelled by the Morison equation using
frequency independent values of drag C, and added mass coefficients C,. The fluid loading on a

TLP is dominated by Froude-Krylov and added mass forces so the effect of current on the added
mass coefficients C,, can be significant. For example, Sarpkaya et al (1984) found that C,,

values (= I+ C, for a cylinder ) in the critical range of Keulegan-Carpenter number K are

increased significantly when currents are introduced. The uncertainty is further compounded by
the large variability in observed measurements and experimental conditions. For this work, the
statistical and modelling uncertainty for the added mass coefficients has been consolidated into

a single uncertainty with the mean values of C, determined using Det norske Veritas rules
(1981) and the distribution of C, taken as Normal with coefficient of variation equivalent to

observed cov's for virtual mass coefficients C,,.

6.2.5 FROUDE-KRYLOV FORCES
The undisturbed, incident wave potential is used to calculate the Froude-Krylov forces F,.

These are given by the integrated hydrodynamic pressure on each wetted structural element
Fop = j prhds
s

Here: F;, is the vector of forces in structure x, y and z directions; n is the vector of unit normals; s
is the element of surface area; and p is the pressure determined by —p d®/dt . In this work, a
simple linear Airy wave potential @, has been used where
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@, = (igH / 2w)—£——°°sc’;s h[(y k;) ]) ot (671

Here: i is the complex number v=I; g is acceleration due to gravity; H is the wave height; @ is
the angular frequency; k is the wave number 27 /[ ; d is the water depth; 8 is the direction in
which the wave propagates; t is time; Y is the phase angle ; and (x,y) are the coordinates in
the (X,Y)-plane. This potential gives the the velocity vector (4,v,w), in which u=0®, / dx,
v=0®,/dy,and w=9D,/0z.

When the section sizes are small compared with the incident wave length the forces for

each element can be estimated using
Frx = M1

WhereT} is the vector of accelerations, and the matrix Mg, is the (6 x 6) Krylov ‘added

inertia’ matrix determined by

Y pS.dl,

k

Here: S, is the cross sectional area in a plane parallel to the flow; and dl, is the kth elemental
length. The summation is taken over the whole structure and the fluid particle accelerations 7}
are determined at the centre of the member cross-section parallel to the flow. This approach is
only acceptable when the wave length is greater than approximately five times the maximum
dimension of the structural components. For the TLP examined in this study the column diameter
is 16.88m which suggest the wave length must be greater than 84m; that is the period must be
greater than 7.3 seconds. In consequence, the Krylov forces on the columns must be calculated
analytically using closed form solutions for the integrated pressure using for example the results

given by Chakrabarti (1987) for the first order wave force

£, = py 20D 12) sinklil17]

[6.8]
* kD /2 k12 °

Here: J, is the Bessel function of the first kind and order 1; k is the wave number; D is the

column diameter; V is the volume; and 1is the length of the cylinder.
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6.2.6 DIFFRACTION FORCES
The presence of the structure disturbs the incident wave potential creating diffraction
forces. These forces can either be calculated using source distribution methods or by simple

Morison approximation in which, for small sections, the diffraction forces are estimated as
F, =M, (ii- Z)

The matrix M, is the (6 x 6) added mass matrix for the submerged structure, and the vector Z is
the vector of platform acceleration responses. The added mass coefficients have been calculated
for the columns and pontoons using the Det norske Veritas (1981) Appendix B recommended

values.

The sum of the Froude-Krylov and the diffraction forces Fyy + F, can be written as
~M,(Z)+ (M, + Mp)

For circular cylinders the second term is approximated in Morison's equation as
| ZP Cm, Sdl,
k

Here, Cm, is a vector of inertia coefficients in the X, y,z directions.

6.2.7 DRAG LOADING
Viscous effects and flow separation result in drag forces which are a non-linear function of

wave amplitude. Resolving the drag forces into x, y and z directions we get
1 A
Fpp = EPZCJ-H(H - Z)I(n - Z)I

Where: H is the vector of element widths normal to the flow; C

, is the vector of drag

coefficients in the x,y,z directions; and (T)—Z) is the relative velocity at the centre of the

member.

Solution of the general equation of motion responses is complicated by the presence of non-
linear forcing and it is necessary to linearise the drag term. The most common method assumes

the linearised drag force dissipates the same energy per wave cycle as the non-linear drag with
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the result that the non-linear term C‘(f)— Z)l(n - Z)l can be replaced by the linear
‘equivalent’ C d,(i] - Z) Here the linearised drag coefficient is given by

8o
C,==—C,(n-z

which is a function of the platform motions.

6.2.8 MOTION INDUCED FORCES
For fixed structures the velocities and accelerations used in Morison's equation are given by
the water particle kinematics, however, for compliant systems the relative velocities and

acceleration must be used

R=(1-Z) and R=(ij-Z)

Where, R is the relative displacement vector, R ={Rx,Ry,R,,9x,0y,9,} and dot denotes

differentiation with respect to time. At the start of a motion analysis the vector R is unknown

and consequently so is C;. An iterative scheme is then needed in which the linearised drag

force is updated by the results of the previous iteration.

6.3. TETHER TENSION MODEL

The response of the tendons is complicated by the large displacements induced by the wind,
wave steady drift, and current forces which change the stiffness characteristics of the system.
In this work, the changes in tendon mean tension induced by the steady offset forces are not
included in the first order response calculation since this would require that the general
equation of motion be solved for each Monte Carlo or FORM iteration. Consequently, in the
generation of the motion and force transfer functions, the tethers are idealised as weightless,

perfectly linear elastic, with constant lateral and axial stiffness.

The non-linear change of tendon tension has been modelled in the calculation of the mean
tension used for the limit state functions discussed in Section [6.2]. Denoting the wind, current,

_and steady drift forces as F,, F, , and F, then the vector resultant F, is simply

\/ F?+F?+F/ . This force creates a change in the tendon mean tension AT at each corner

group and in turn stretches the tendons by an amount Al | inducing strains £ = Al / L,. The force
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diagram for a group of tendons is shown in Fig. 6.4 from which we can see vertical equilibrium

gives

T,cos0+ AT cos 0 =T, +-§k,,l,,(1—cos0—%cos 6)

where: @ is the inclination of the tendons; Tj is the initial tension in the group; £k;, is the

heave hydrostatic stiffness at one corner; A is the cross sectional area of the tendons; E is youngs
modulus for the steel; and the stretch is given by Al = ATL, / AE . On algebraic manipulation

we get

- (T, + 4 k5 Ly )(sec@—1)
[1+4kyL; 1 AE]

[6.9]

Taking moments about the base gives

4F, cos0-T,sin@— 4k, L {1-(1+ AT | AE)cos 8}sin6=0 (6.10]

The two unknowns @, and AT are solved by substituting for AT in Equation [6.10] and then root
finding with a bisection algorithm. One point worth noting is the small effect of the extension
of the tendons. This supports the use of less stiff materials such as parafil and kevlar for deep

water tension legs.

6.4. PLATFORM DYNAMICS

The motion responses have been calculated using the structure reference system shown in
Fig. 6.1. Assuming the platform is modelled as a rigid mass with six degrees of freedom the

general equation of its motion can be written as
MZ+CZ+KZ=F(1) [6.11]

Here: M = (M, +M A) is the (6x6) structural plus added hydrodynamic mass matrix; Z is the
vector of unknown platform displacements; C =(C, +C R)is the (6x6) matrix of viscous and

radiation damping coefficients; K = (Kr +K H)is the (6x6) matrix of tether and hydrostatic

stiffnesses; F is the vector of Morison wave forces. The evaluation of each term is given
explicitly in Patel & Witz (1991) and will be discussed briefly in what follows.
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6.4.1 THE MASS MATRIX
The structure mass matrix is diagonal when the structure axes coincide with the principal
axes. Consequently, m,, = m,, =m;; = the total structure mass (54.5 x 106 kg); and the pitch,

roll, and yaw moments of inertia are those given in Table 6.1.

m, 0 0 0 0 0
0 my 0 0 0 0

yo| 0 0 om0 0 0
0 0 0 m, 0 0

0 0 0 0 my; O

(0 0 0 0 0 m,

The added mass matrix is given by summation of the volume element added masses for the
submerged parts of the structure. Patel op cit gives the added mass matrix terms for a non-
elongated body and these have been used for this work.

6.4.2 THE FLUID DAMPING MATRIX

Fluid damping results from viscous drag effects. The terms of the 6x6 damping matrix can be
derived element by element and then summed to give the total fluid damping. Unlike the
added mass the damping matrix is asymmetric being proportional to the non-linear velocity
squared term in Morison's equation. Again Patel gives expressions for element damping terms

and they have been adopted for this study.

6.4.3 TENDON STIFFNESS MATRIX

The idealised tether stiffness matrix is calculated by assuming the tethers are weightless,
linear elastic and tensioned by a constant amount. These assumptions allow us to ignore the non-
linear tether dynamics and change in tension as the platform oscillates. Taking the axial

elastic stiffness per tether as AE/L; and the equilibrium position tension as T, the restoring

stiffness terms are those given by Patel op cit.

6.4.4 HYDROSTATIC STIFFNESS
The hydrostatic restoring forces arise in the heave, pitch and roll degrees of freedom.

Writing @33, for the water plane area for the ith surface piercing element and V as the vessel

displacement volume we get
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kyy =pg,a33,

ks =pgYy,y.a33
kg; = —ngx_,a33,-
ks =pgY x.y,833;
k., =pgV(GM,)

kss = pgV(GM,)

where: GM, and GM, are the pitch and roll metacentric heights; and x,,,y, are the x and y
coordinates for the centriods of the cut waterplane areas. All other terms are zero.

6.4.5 MOTION NATURAL FREQUENCIES
The natural frequency for each mode of motion of the TLP can be calculated from the mass,
and stiffness matrices for the system. Referring to Equation [6.11] the equation of dynamic

equilibrium for free, undamped vibrations of the platform is given by
MZ+KZ=0
Substituting the solution Z = Be"* then gives
~0’MZ+KZ=0

which can be identified as a classical eigenvalue problem by rearranging to give
(M7K-AZ=0 [6.12]

Here: I is the identity matrix; and the eigenvalues A correspond to the square of the platform
natural frequencies @,. Solution for the eigenvalues of a non-symmetric matrix is not trivial
and consequently a set of library routines is used, Press et al (1989). The procedure consists of
first balancing the matrix, then reducing it to a Hessenberg form, and finally extracting the
eigenvalues using the Housholder QR algorithm. The results are the six natural frequencies

1surge 97.07 sec 2 sway 97.07 sec
3 heave 1.706 sec 4 roll 1.766 sec
5 pitch 1.766 sec 6 yaw 83.52 sec
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These values are consistent with the results obtained by assuming the modes are all uncoupled

and then using the single degree of freedom solution T; = 27+[k; /m; .

)

6.5 STRUCTURAL RESPONSE IN IRREGULAR WAVES

The eight limit state functions outlined above require estimates of the platform
displacements for each realisable event defined by the joint density of environmental
parameters. Both frequency and time domain methods can be used to solve for motion responses
in irregular waves. Time domain methods have the advantage of accurate modelling of free
surface, viscous and stiffness non-linearities, however, the method is computationally too
expensive to be used in Monte Carlo simulation. A frequency domain method has therefore been
adopted for this work.

If the response of the TLP is linearly related to wave amplitude over all frequencies then
classical response analysis, Chakrabarti (1987), gives

S:(F)=S,(A[HE)T

Where: §, (f) is the frequency distribution of surface elevation variance in m’s; H(f)is the

response amplitude operator in response/m; and Si(f ) is the response spectrum with units

response? second . The response of a linear system with gaussian forcing is also gaussian and
several useful statistical properties of the response can be calculated from the moments of the
response spectra using the results obtained by Rice (1944/45). An alternative approach based on
the so-called out-crossing approach developed by Veneziano et al (1977) has been suggested for
vector process models which could be of future use in this work.

In multidirectional seas the response transfer function for each mode of motion and limit

state can be calculated from the directional spectrum S, (f,6) and the directional transfer
function H(f, )

Su(f)= Tsn(f: 0).H(f, 9)2d9
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The directional wave spectrum S,,( f,0) is normally written as the product of the point

spectrum and a directional spreading function

5.(f,8)=5,(f).D(®,f)

The response spectrum can then be evaluated at discrete frequencies f; using transfer functions

calculated at the same frequencies and directions 6;, j = I,nd

Sk(ﬁ)=isn(ﬁ).D(9,; £)-H(f.6,) a6 [6.13]

j=l

Models for the frequency dependent directional probability distribution D( 0, f;) are discussed
in detail in chapter 5. The evaluation of Equation [6.13] therefore requires calculation of the
linear first-order transfer function for each mode of motion and limit state margin G, covering
the range of frequencies for which significant energy is present in the wave surface elevation
spectrum. A piece-wise linear estimate of the safety margin transfer functions Hg, (f, 9) can be

obtained by calculating the responses induced by a unit amplitude wave with range of
frequencies f;;i = 1,...,nf, and directions 6,;i = I,nd.

6.5.1 JONSWAP SPECTRUM

The variance spectral density for fetch limited seas was examined during the JONSWAP
project, Hasselmann et al (1976b). The average shape of their fetch limited seas was found to
have form given by a modified Pierson-Moskowitz (1964) spectrum

2 —~ —(";‘”r )z}
og (0] { 2607,

d [6.14]

W, =21* 3.5(—(}5—)&]“3

~ where: 7 is the peak enhancement factor ; @ is the wave frequency; @, is the spectral peak
frequency; and 7 are the shape factors. The parameter alpha is a function of the fetch

-0.22

a =0.076 (X,)



Here, X, is the non-dimensionalised distance

_8X
TR,

where Uy, is the wind speed at an elevation of +10.0m, and X is the fetch distance. When the
fetch is unknown Phillip's constant is usually used ie @ =0.0081.

When the peak enhancement factor equals 1.0 the spectrum reduces to the form of a Pierson-
Moskowitz spectrum. This enables us to determine the fetch - for a given wind speed - at which
the seas become fully developed using the expression for the spectral peak frequency.

The parameters of the JONSWAP spectrum were determined by fitting the parametric
model to 121 observed spectra using least squares. Hasselmann et al (1976b) reported some
estimates of the statistical variability of {’Y, Q, T} using some 333 spectra observed by a number

of researches; the results given below are useful for reliability studies.

parameter mean S.D.(%) regr. coef.
Y 2.65 44 0.32
T, 0.85 76 -0.32
T, 0.097 47 -0.16
a 0.0109 38.6 0.87

The form of the JONSWAP spectrum given previously is not suited to engineering
applications and has been modified by a number of researchers. Goda (1985) proposed a form
which is a function of the significant wave height, i.e

'(“"mr)z
—

o Hs® 4 1) ap{ 27’0, }
S(w)= w -1.25| —

( ) 0)5 p €Xp [w :l y

[6.15]

The value of alpha is a function of the peak enhancement factor

o = 0.0624
0.185
0.230+0.0336y —
{ AT r)}
7,=0.07 wsw, 7,=0.09 ow>w

4
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Regression analysis of measured data has shown

H,=(0.11661+0.01581y - 0.00065Y°)T;} [6.16]

where the spectral peak period is given by

T, = ===(1.49-0.102y +0.01427* - 0.000797" )T, [6.17)

6.5.2 FIRST ORDER WA VE TRANSFER FUNCTIONS

The first order wave drag and inertia forces have been calculated for a range of frequencies
and directions using the Morison method described previously. The results, which aré
illustrated graphically for forty frequencies and five directions in Fig. 6.5 and 6.6, compare
very favourably with the diffraction results reported by Eatok-Taylor & Jeffereys (1986). The
only major discrepancies occur at high frequencies where the structure dimensions are large
when compared to the wave length and diffraction effects cannot be ignored. For this work this
is not important for two reasons: first, only the extreme seastates which have longer period
waves contribute to the failure probabilities of interest in the reliability analysis; and second,
we are only interested in the difference frequency second order forces for the calculation of mean

and slowly varying drift effects.

The force and motion response functions shown in Fig. 6.5 and 6.6 demonstrate that only the
surge, sway, roll, and pitch responses are sensitive to the direction of the waves. The heave is

little affected by the approach angle.

6.5.3 RESPONSES IN DIRECTIONALLY SPREAD SEAS

The directional spreading of wave elevation variance is examined in Ch. 5 in which the
Hasselmann, Mitsuyasu, and Prince-Wright directional distributions are defined. These have
all been included in the TLP program to enable comparison of the TLP response in seas with
different directionally spread seas. An example of the JONSWAP spectrum and Hasselmann

~ spreading powers is shown in Fig. 6.7(a) for a seastate with 10m significant wave height, and
12 second zero-crossing period. Note the mismatch of the peaks is the result of swapping
equations at f/fm = 1.05 (Ch.5). The shape of the directional spectrum is shown in Fig. 6.7(b) for

a range of frequencies and directions.
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A 3-D plot of the directional surge force and motion transfer functions is shown in Fig. 6.8,
and the surge, heave and pitch force and response spectra are shown in Fig. 6.9 for a seastate
with Hasselmann spreading function. In all three modes, the force spectra in long crested seas
are higher than in short crested seas. This is also true for the surge and heave motions but not
for the pitch motion. This is due to the motions being largest in pitch for a quartering sea case
which can be seen in the motion transfer functions, Fig. 6.6. The ratios long crested surge | short
crested surge are given for a range of JONSWAP shape parameter and three spreading models
in Table 6.3. The results are also plotted in Fig. 6.10 which shows more clearly that, in all
cases, as the seas become more fully developed the long crested seas model overestimates the
motions and forces by up to a maximum of 20% when the Mitsuyasu and Hasselmann models are
used. However, the Prince-Wright model indicates the overestimate is only 10% for the forces
and 16% for the motions. The differences are due to the slower decay of the Prince-Wright
spreading powers away from the spectral peak. Table 6.4 shows in greater detail the ratio of

the force, motion, and limitstates for a Hasselmann sea.

The analysis of the DB1 directional data in Ch. 5 demonstrated the large variability of
the spreading powers at a given frequency ratio f/fm. This variability is due to a combination
of the effects of: randomness; noise in the recorded heave pitch and roll time series; and
sampling error. The relative importance of this variability can be modelled in a reliability

analysis by including the angular variance as a random variable.
6.6. SLOWLY VARYING AND MEAN MOTIONS DUE TO WAVE DRIFT

Fixed and floating offshore structures in regular and irregular waves experience second
order forces with small mean value and frequencies which are harmonics of the first order wave
force. There are several reasons for these forces and the contribution of each cause to the total
effect depends on the type and dimensions of the structure. Large structures like ships or barges
are dominated by the potential drift forces which are linearly related to the wave amplitude
squared - and therefore simple to calculate in irregular seas. Smaller structures like semi-
submersibles and tension leg platforms experience both viscous and drift forces, the latter being
proportional to the cube of the wave elevation and therefore difficult to include in spectral
analysis. In this work the potential drift forces are modelled using a simplified method
developed by Chakrabarti (1984).

The calculation of accurate drift forces on complex geometries generally requires the use of
3D-source distribution methods, see Chan (1990), however for this work a simple
approximation is used in which the MacCamy & Fuchs (1954), and Chakrabarti (1984) closed

form solutions for seabed mounted, surface piercing structures, are used ( despite the fact the
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columns do not reach the seabed ). This simplification is justified because the majority of the
drift force is located near the wave free-surface zone, away from the pontoons, risers, and

tethers.

The mean viscous drift forces on a cylinder in the direction of each axis, F,, can be

approximated by averaging the Morison drag force over the whole cylinder for one wave cycle

F=4pC,p[ |Vl dl [6.18]

Here: C,, are the drag coefficients; D is the cylinder diameter ( radius r ); n is the vector of

direction cosines ; [V®[ is the first order velocity vector squared; and d! is the elemental

length of the cylinder. On substituting the deep water Airy wave potential in to Equation [6.18],
and then integrating, Chakrabarti (1984) gives the simple result

3
F= &Clezb_"”_ [6.19]
T

Note this force is proportional to the wave amplitude cubed, unlike the potential forces

outlined below which are proportional to the wave amplitude squared.

The mean potential drift force on a cylinder in regular seas with frequency @ is used to
calculate the potential drift force transfer functions. These are the basis for Pinkster's ( 1974)
approximate method for calculating drift forces in narrow-band irregular seas.

The mean wave elevation drift force E in a regular wave train is found by averaging the
integral of the hydrodynamic pressures on the wetted area between the still water level and

the instantaneous water level, over one whole wave cycle. For a vertical cylinder we have

F =—4p|[ .00/ 0.ds [6.20]
Here: —pd® / ot is the hydrodynamic pressure; and ds is the elemental surface area.

The velocity head drift force 1-7:, is found by averaging the integral of the velocity head
pressure over the full length of the submerged cylinder, for one wave cycle
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F,=4p[dlVef.ds [6.21]

The deep water ( depth > 0.5 wave length ) closed form solutions for the integrals Equations
[6.20] and [6.21] were determined by Havelock (1940), MacCamy & Fuchs (1954), and
Chakrabarti (1984) who express the sum of the wave elevation and velocity head forces as

= .5 _ PRH’r |, n(n+ ) i 1
2+ = ’2[' (kr)’ ] A, (kr)A,,,(kr) (6.22]

Here: A, (x)=J/(x)’ +Y/(x)’, where J_(x) is the Bessel function of the first kind, order n;
Y, (x) is the Bessel function of the second kind, order n; and prime denotes the derivative with

respect to x. The p* derivatives of the Bessel functions can be expressed in terms of the basic

Bessel function using the results in Abramowitz & Stegun (1965)

zy)=Zip{e,_,—[';)z,_,+,+[;)z,_,+,— ......... H-IfL,,}  p=012.. (2]

Here £ is Jor Y, or any linear combination of the functions, and (P) denotes the P"' derivative.

For our case, where p = I, we have

£.0) =2t s(2)- (D)

in which it should be noted that £_, =(—1)"£,. This simple form enables us to calculate
A, (x)for all x = kr. Plots showing the Bessel functions and their derivatives are shown in Fig.
6.11.

The wave potential drift forces calculated from Havelock's closed form solution correspond
to the forces on an isolated cylinder in an ideal fluid with unidirectional waves. The wave
elevation and velocity head components of the drift force on a cylinder with radius equal to the
TLP column radius are shown in Fig. 6.12 for a range of kr. Here we can see the velocity head

~ force is negative and the wave elevator force is positive, these sum to give a positive wave

drift force which is nearly constant for values of kr > 5.0.
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A procedure for calculating both the mean drift force F and the drift force Sp(i) and
response spectra Sp(®@) in irregular seas is presented by Faltinsen & Demirbilek (1989). This
method is, strictly speaking, only valid for narrow-band seas and uses the force results
described above for regular seas with frequency @ and amplitude 7), . The mean drift is given

as

i‘: = Zjo.sn(w’){%(’-a—:)}dw' [6.24]

where, §_ (@) is the spectral density of the wave surface process, and the transfer function
F(w') is given by summing the viscous and potential drift forces. The spectrum of the slowly
varying drift excitation force S, (@) is then calculated using Pinkster's (1974) method in which

it is assumed the drift forces are a quadratic function of the wave amplitude

Sp(1)=8[ 8,()S, (e’ +ﬂ){f_(9"$2ﬁ/—2—)} do [6.25]

This force spectrum is transferred to a response spectrum for the lateral motions of the platform

by idealising it as a single degree of freedom system with damping d and lateral stiffness
T /L, giving
2
$x(@) = $,(0).(Q(@).L; IT,)

Here, the dynamic amplification factor Q() is a function of the natural frequency in surge @,,
and the damping ratio 4

ctw={[1-(a] «[te |

This model for the wave drift forces is only accurate for low significant wave heights
because of the amplitude cubed term in the viscous drift force equation. As the wave heights
increase the viscous forces dominate the drift loading on the TLP columns. The effect of this

. simplification is to underestimate the total forces due to the viscous drift. This problem has
been examined by Kato & Kinoshita (1990) who suggests the second order forces be formulated

as a Volterra functional series and solved using Wiener's filter theory. This approach will be
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more accurate but computationally too expensive for the Monte Carlo analysis. It is suggested
this be the subject of future research

6.6.1 COMPUTED WA VE DRIFT FORCES: COMPARISON WITH 3-D SOURCE RESULTS
The drift force model developed for this work is a simple approximation which does not
allow for wave force cancellation, spreading, or interference effects. The results compare
favourably with Tan & de Boom (1981) in which a 3-D source distribution method is used to
generate the drift transfer functions. A comparison of our results, with the head seas drift force

spectra, as given in Tan loc cit, is shown in Fig. 6.13.

As an example, the mean and slowly varying wave drift forces on the TLP have been
calculated for a JONSWAP sea with Hs=10.0 metres, Tz=12.0 seconds, and Y=3.3. The
intermediate results in the calculation of the drift statistics are illustrated in Fig. 6.14 which
shows: the seastate spectrum; the viscous forces; the potential drift force; the drift force
spectrum; the single degree of freedom magnification factor; and finally, the drift motion
response spectrum. The drift motion response spectrum is narrow with a peak located at the
surge natural period of the TLP (97sec.) . The mean wave drift force for this case is 3.16e+5 (N),
which is very small when compared with the most probable, maximum (mpm) first order wave
surge force of 7.56e+8 (N). The slowly varying responses are larger with a three hour mpm force
of 2.03e+6 N and a three hour mpm motion amplitude of 20.4m. This motion is significant when

compared with the first order wave mpm amplitude of 53.0m.

6.7. COMBINED WIND, WAVE AND CURRENT MOTIONS AND FORCES

The motions of the TLP and the forces in the tendons consist of three components: a mean
drift response; a first order wave frequency response; and a second order slowly varying drift
response, Fig. 6.15. The mean value of each force acting individually has been examined
previously. In the conventional design approach it is usually assumed that each force acts
colinearly and that they attain their maxima simultaneously. This is conservative for most
structures and it is interesting to examine the effect of varying the directions and magnitudes of

the winds, waves and currents.

Tables 6.6, 6.7,and 6.8 compare the platform responses for seastates with: 12,14 and 16 metre
significant height; zero crossing periods ranging from 11 to 14 seconds; a constant wind speed of
- 50m/s; and a constant current speed of 2.0m/s. These tables show the platform first order wave
frequency motions and tendon responses are sensitive to both the significant wave height and
the zero crossing period. The increases in the motions and the limit state stresses are nearly

linear with increasing significant height and zero-crossing period. However, the second order
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mean and slowly varying wave responses increase with increasing height, but decrease with

increasing period.

The change in motion, force, and limit state variance with height and period demonstrates
the importance of correctly modelling the joint distribution for the significant wave height and
zero crossing period. For example, if we compare the motion and limit state responses in a
seastate with Hs=12 metres, and Tz=14 seconds with the responses in a seastate with Hs=16
metres, and Tz=11 seconds then we find they are almost equal! The period sensitivity of this
sort of structure - due to its' long natural periods in surge sway and yaw - can only be understood
using probabilistic methods since the contribution of the lower, longer period, seastates to the
expected population of extreme response events during the platform life cannot be ignored. The
use of a design wave approach, in which a return period wave is combined with a most probable
or associated wave period,. could in this case be unconservative The significance of the
occurrence of long period, moderate significant height, seastates must of course take into account
the likelihood of their occurrence and this lends support to the use of kernel density estimates

for the joint distribution of the heights and periods, rather than crude scatter plot estimates.
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6.8 CONCLUSIONS

A loading and linear response model of a tension leg platform is presented which is suitable
for reliability calculations. Environmental wind and wave forces are modelled as stochastic
and current forces are modelled as steady throughout the seastate. The responses of the system
are calculated in the frequency domain by assuming the system is linear, and the combined load
effect is modelled using a sum-of-squares approach.

A simple Morison-based method was used to calculate the first order wave forces on the TLP
columns and pontoons. The force and response transfer functions compare very favourably with
the results from several source-sink distribution programs which in themselves gave widely
differing results. The only major differences occur at high frequencies in which case the

structure dimensions are large when compared with the wave length.

The simple MacCamy & Fuchs (1954)and Chakrabarti (1984) closed form solutions for the
second order potential wave drift forces compare reasonably well with the results from the
study by Tan & de Boom (1981). However, in neither their case, or ours, is the cubic non-
linearity of the drag effect properly allowed for and this is probably significant for the
extreme wave case. Since this effect is important it is suggested the effects be quantified by

comparing results with time domain solutions.

The sensitivity studies for the wind,wave and current forces indicate the dominating force
is from the first order wave loads. The slowly varying wind and drift forces contributing the

next largest component, and the steady current forces are small in comparison.

An Ochi wind spectrum was chosen because it is supposed to model spectra over the open
ocean. However, the results from this spectrum seem questionable because the significant
amplitude is generally some 20~30% of the mean wind speed. If the gusts are narrow-band
Gaussian then we would expect the 3-hour most probable maximum amplitude to be some
40~60% of the mean wind speed. It is suggested therefore some time series analysis is performed

on data recorded during extreme storms to check this result.
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APPENDIX A - POLYNOMIAL APPROXIMATION FOR THE POTENTIAL DRIFT FORCES

The CPU time required for the calculation of the potential drift forces was considerably
larger than was practical for the Monte Carlo analysis and consequently a nth order

polynomial approximation was determined by fitting the form

E+F=)Cke) i=120

i=l

to several exact values of the force calculated using Havelock's closed form solution. The result,
summarised in Fig. 6.16 together with the coefficients of the polynomial, gives accurate
approximates for all kr>4.5. For values greater than this the Havelock asymptotic
approximation has been used. Note the coefficients are defined in double precision to ensure the

correct values are calculated for the larger (kr>1.0) values of ka.
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COLUMNS AND PONTOONS:

spacing between column centres 86.25 m
column radius 8.44 m
pontoon width 7.50 m
pontoon height 10.50 m

draft 35.00 m
displacement 54.5 x 106 kg

total mass

Longitudinal metacentric height
Transverse metacentric height
Roll moment of inertia

Pitch moment of inertia
Yaw moment of inertia
Vertical position of C of G above keel

TETHER PROPERTIES:
Vertical stiffness of combined tethers
Total tether pre-tension

no. per corner

40.5 x 106 kg
6.0 m
6.0 m

82.37 x 109 kg m?
82.37 x 199 kg m?
98.07 x 102 kg m?
38.0 m

0.813 x 106 kN/m
14.0 x 106 kg
4 off

outside diameter 1.0m

inside diameter 0.9338m

wall thickness 0.033088m
cross-sectional area 0.10051m?

Youngs modulus 2.098 x 1011 N/m?
mass per unit length 789 kg/m
submerged weight per unit length 0 kg/m

axial stiffness

5.081 x 107 N/m

length 415m

mean ultimate strength 620.0 N/mm?
s.d. of ultimate sgrength 37.5 N/mm2
Weibull parameters of yield strength

shape 1.8

scale 92 N/mm?
lower bound 488 N/mm?

Table 6.1 Structural data for the TLP, from Tan & de Boom (1981).

currents force wind force
(m/s) (N) (m/s) (N)
0.5 1.49¢6 10 1.44¢e5
1.0 5.95e6 30 1.30e6
1.5 1.34e7 50 3.60e7

Table 6.2 Wind and current forces on the tension leg platform
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MEAN WIND SPEED (m/s) 10 20 30 40 S0
ZERO CROSSING PERIOD (s) 48.46 43.53 40.74 3881 37.42
SIGNIFICANT WIND SPEED (mvs) 1.794 4.46 7.557 10.94 14.55
THREE HOUR MPM LARGEST SPEED (mv/s) 295 7.405 12.62 18.35 24.49
SPECTRAL MOMENTS MO 0.8047 4972 14.28 299 52.94
M1 7.58E-02 0.5411 1.704 3.828 7.143
M2 1.35E-02 0.1036 0.3395 0.7836 1.493
ZERO CROSSING PERIOD OF MOTIONS (%) 108.5 106.4 104.8 103.5 1023
SIGNIFICANT WIND MOTION AMPLITUDE (m)|  0.8633 4224 10.66 20.49 3383
THREE HOUR MPM LARGEST MOTION {m) 1.309 6.42 16.23 I 51.63
SPECTRAL MOMENTS MO 10.1863 4.461 28.42 1049 286.1
Ml 1.02E-02 0.2512 1.632 6.129 16.95
M2 6.24E-04 1.36E-02 0.1021 0.3869 1.079
ZERO CROSSING PERIOD OF FORCES (%) 48.46 43.53 40.74 3881 3742
SIGNIFICANT WIND FORCE AMPLITUDE {N) 4.30E+04 2.14E+05 5.44E+05 1.05E+06 1.7SE+06
THREE HOUR MPM LARGEST FORCE  {n) 7.07E+04 3.55E+0S 9.08E+05 1.76E+06 2.94E+06
SPECTRAL MOMENTS MO 4.63E+08 1.14E+10 7.39E+10 2.75E+11 7.61E+11
Ml 4.36E+07 1.25E+09 8.82E+09 3.52E+10 1.03E+11
M2 7.78E+06 2.38E+08 1.76E+09 7.21E+09 2.15E+10

Table 6.2 (a) Statistics of wind speed, wind force and platform motion for a range of mean wind

speeds and the Ochi (1988) spectrum




- chaxr g —Loading and response model of a tension ey platform
|
J
Jjonswap JONSWAP wave spectrum with Hs=10.0m and Tz=12.0sec.
| _gamma ratios long crested/short crested
‘ hassemann mitsuyasu prince-wright
surge force  surge motion surge force  surge motion surge force  surge motion
i 1.181 1.198 1.176 1.155 1.107 L.161
2 1.164 1.173 1.15 1.12 1.098 1.154
3 1.15 1.154 1.139 1.098 1.092 1.151
4 1.14 1.14 1.131 1.085 1.081 1.142
hi 1.132 1.13 1.124 1.075 1.08 1.144
6 1.126 1.129 1.12 1.067 1.077 1.14
7 1.121 1.116 1.118 1.06 1.071 1.138
| Table 6.3 Ratio of the TLP surge responses in long crested seas and short crested
seas.
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hasselmann
MOTIONS surge sway heave rolf pitch yaw
VARIANCE OF MOTIONS : 1.150 0.000 1.024 0.000 0.776 0.000
ZERO CROSSING PERIODS : 1.008 0.863 0.986 1.237 1.033 1.632
SIGNIFICANT AMPLITUDE : 1150 0.000 1.024 0.000 0.776 0.000
THREE HOUR MPM LARGEST: 1.149 0.000 1.025 0.000 0.775 0.000
SPECTRAL MOMENTS MO : 1.322 0.000 1.049 0.000 0.603 0.000
Ml : 1.309 0.000 1.068 0.000 0.583 0.000
M2 : 1.300 0.000 1.080 0.000 0.564 0.000
FORCES surge sway heave roll pitch yaw
VARIANCE OF FORCES : 1.147 0.000 1.024 0.000 1.067 0.000
ZERO CROSSING PERIODS : 0955 0.000 0.985 1.035 0.974 1.668
SIGNIFICANT AMPLITUDE : 1.147 0.000 1.024 0.000 1.067 0.000
THREE HOUR MPM LARGEST: 1181 0.000 1.025 0.000 1.069 0.000
SPECTRAL MOMENTS MO : 1316 0.000 1.048 0.000 1.138 0.000
Ml : 1358 0.000 1.064 0.000 1.185 0.000
M2 : 1.444 0.000 1.079 0.000 1.201 0.000
LIMIT STATES 1 2 3 4 ] 6 7 8
VARIANCE OF LIMIT STATES : 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001
ZERO CROSSING PERIODS : 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SIGNIFICANT AMPLITUDE : 1.001 1.001 1.001 1.001 1.001 1.001 1.c01 1.001
THREE HOUR MPM LARGEST : 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001
SPECTRAL MOMENTS M0 : 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002
Ml 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003
M2 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003
Table 6.4 Ratios of response statistics for long-crested and short crested seas with
Hasselmann spreading function and Hs=10.0m, Tz=12.0sec.
current direction (degrees)
0 45 90 135
SEA DRIFT FORCE FX (N) 3.16E+05 3.16E+05 3.16E+05 3.16E+05
SEA DRIFT FORCE FY (N) 0.00E+00 0.00E+00 0.00E+00 0.00E+00
CURRENT FORCE FX (N) 2.38E+07 1.54E+07 2.76E-08 -1.S4E+07
CURRENT FORCE FY (N) 0.00E+00 1.54E+07 2.38E+07 1.54E+07
WIND FORCE  FX (N) 3.60E+06 3 60E+06 3.60E+06 3.60E+06
WINDFORCE FY (\) 0.00E+00 0.00E+00 0.00E+00 0.00E+00
RESULTANT FORCE FR (N) 2.77TEH07 2.48E+07 241E+07 1.93EH07
' | WIND,CURRENT, DRIFT OFFSET DIR. 0 38573 80.646 126.727
INCLINATION OF TENDONS (deg) 8.75 8.091 7.959 6.772
INCREASE IN TENDON TENSION (N) 1.14E+07 9.73E+06 9.42E+06 6.80E+06
STRETCH OF THE TENDONS (m) 0.056 0.048 0.046 0.033
STATIC OFFSET DISTANCE (m) 63.129 58.407 57.461 48.939
STATIC OFFSET SETDOWN (m) 483 4131 3.997 2.896
Table 6.5 Effect of varying the current direction on the mean wind, wave and 248
current drift forces and responses.




dhaxgd - Loading and response model of g senzion laz platform
zero crossing period (s) ~—> 11sec 12sec 13sec 14sec
response unit
SEA DRIFT FORCE FX N 5.99E+05 4.55E+0S 3.54E+05 2.78E+05
SEA DRIFT PORCE FY N 0.00E+00 0.00E+00 0.00E+00 0.00E+00
CURRENT PORCE FX N 238E+07 238E+07 238E+07 2.38E+07
CURRENT FORCE FY N 0.00E+00 0.00E+00 0.00E+00 0.00E+00
WIND FORCE  FX N 3.60E+06 3.60E+06 3.60E+06 3.60E+06
WIND FORCE FY N 0.00E+00 0.00E+00 0.00E+00 0.00E+00
RESULTANT FORCE FR N 2.80E+07 2. 9E+07 " 2.TBE+07 2.7TEXQT
WIND,CURRENT, DRIFT OFFSET DIR. D 0 [ [/} 0
INCLINATION OF TENDONS D 8.838 8.794 8.794 8.75
STRETCH OF THE TENDONS m 0.057 0.056 0.056 0.055
STATIC OFFSET DISTANCE m 63.758 63.444 63.444 63.129
STATIC OFFSET SETDOWN m 4927 4378 4.878 433
INCREASE IN TENDON STRESSES N/mm2 28614 28328 28328 28.043
INCREASE IN TENDON TENSION N 2876.027 2847.217 2847217 2818.556
VARIANCE OF DRIFT MOTIONS m**2 7.54 567 436 3.40
ZERO CROSSING PERIOD OF MOTIONS S 101.80 101.70 101.60 101.60
SIGNIFICANT DRIFT MOTION AMPLITUDE m 15.08 11.35 8.72 6.81
THREE HOUR MPM LARGEST MOTION m 23.02 17.33 13.32 10.40
VARIANCE OF DRIFT FORCES m**2 9.59E+0S 7.66E+0S 6.25E+H05 5.13E+05
ZERO CROSSING PERIOD OF FORCES S 7.45E+00 7.03E+00 6.63E+00 6.39E+00
SIGNIFICANT DRIFT FORCE AMPLITUDE m 1.92E+06 1.53E+06 1.25E+06 1.03E+06
THREE HOUR MPM LARGEST FORCE N 3.66E+06 2.93E+06 2.490E+06 1.98E+06
MOTION SPECTRUM 118 L2 161 78
VARIANCE OF MOTIONS m**2 14.20 15.36 1639 17‘_30
ZERO CROSSING PERIODS S 2.3 284 323 159
SIGNTFICANT AMPLITUDE m 430 5:14 <:82 6.31
THREE HOUR MPM LARGEST m N -
SPECTRAL MOMENTS Mo 1.39 2.02 2.61 3.09
i 0.60 0.31 0.99 1.1
M2 0.27 0.34 038 0.48
JFORCE SPECTRUM
| VARIANCE OF FORCES Ne*2 2.20E+07 2.29€+07 2.26E+07 2.19E+07
| ZERO CROSSING PERIODS s 1.67E+81 1L17E+01 126E+01 LME+H
N SIGNIFICANT AMPLITUDE N 4.53E+07 4.58E+97 4.52E+07 4.38E+97
| THRex HOUR MPM LARGEST N 343E+97 S4TE+97 $I1E+7 S.01E+7
| sPecTRAL MOMENTS Mo S.14E+14 S26E+14 S12E+14 430E+14
‘ MI 236E+14 2.65E+14 239E+14 2.10E+14
! M2 1.76E+14 1.50E+14 1.25E+14 1LO4E+14
I
|
JLIMITSTATE SPECTRUM
'| VARIANCE OF LIMIT STATES (N/mm"2)"2 2.49 230 248 2.90
ZERO CROSSING PERIODS S 12.00 12.60 14.10 15.70
| SIGNTRICANT AMPLITUDE N/mm"2 499 4.61 4.96 5.80
'| THREE HOUR MPM LARGEST N/mm*™2 9.20 3.47 9.04 10.40
| SPECTRAL MOMENTS Mo 6.22 5.32 6.15 $.43
| ™I 8.21 256 2.64 3.24
» M2 1.70 130 122 1.34
Table 6.6 Variation of TLP surge response statistics with zero-crossing period for
Hs=12.0m
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Hs=14.0m.

chopard Loading and response modal of a tenzion leg platforss
zero crossing period (s) —> 11sec 12sec 13sec 14sec
TESpPONSE unit
SEA DRIFT FORCE FX N 8.15E+08 6.20E+05 4.82E+0S 3.79E+05
SEA DRIFT FORCE FY N 0.00E+00 0.00E+00 0.00E+00 0.00E+00
CURRENT FORCE FX N 238E+07 2.38E+07 238E+7 238E+07
CURRENT PORCE FY N 0.00E+00 0.00E+00 0.00E+00 0.00E+00
WIND FORCE  FX N 3.60E+06 3.60E+06 3.60E +06 3.60E+06
WIND FORCE  FY N 0.00E+00 0.00E+00 0.00E+00 0.00E+00
RESULTANT FORCE FR N 2.82E+07 2.80E+07 2. ME07 2.78E+07
WIND.CURRENT, DRIFT OFFSET DIR. D 0 0 0 0
INCLINATION OF TENDONS D 8.882 8.838 8.794 3.794
STRETCH OF THE TENDONS m 0.057 0.057 0.056 0.056
STATIC OFFSET DISTANCE m 64.073 63.758 63.444 63.444
STATIC OFFSET SETDOWN m 4976 4.927 4.878 4.878
TNCREASE IN TENDON STRESSES N/mm2 28902 28.614 28.328 28.328
INCREASE IN TENDON TENSION N 2904.987 2876.027 2847.217 2847.217
VARIANCE OF DRIFT MOTIONS m**2 10.26 172 5.94 463
ZERO CROSSING PERIOD OF MOTIONS S 101.80 101.70 101.60 101.60
SIGNIFICANT DRIFT MOTION AMPLITUDE m 20.52 15.44 11.87 9.27
THREE HOUR MPM LARGEST MOTION m 3134 23.58 18.13 14.15
VARIANCE OF DRIFT FORCES m**2 1.31E+06 1.04E+06 8.51E+0S 6.98E+0S
ZERO CROSSING PERIOD OF FORCES s T4SE+00 7.03E+00 6.68E+00 6.39E+00
SIGNTFICANT DRIFT FORCE AMPLITUDE m 2.61E+06 2.08E+06 1.70E+06 1.40E+06
THREE HOUR MPM LARGEST FORCE N 4.98E+06 3.99E+06 3.27E+06 2.69E+06
14.02 15.30 1639 1730
ZERO CROSSING PERIODS s
275 330 n 4.10
SIGNTFICANT AMPLITUDE m 581 600 %) 136
THREE HOUR MPM LARGEST m 189 275 355 s
SPECTRAL MOMENTS MO
i 0.82 1.10 134 151
2 037 0.45 0.52 055
FORCE SPECTRUM
VARIANCE OF FORCES N**2 2.64E+07 2.67E+07 2.64E+97 2.56E+08
ZERO CROSSING PERIODS s 1.07E+01 1.17E+91 1.26E+81 1.34E+91
SIGNIFICANT AMPLITUDE N 5.29E+97 5.35E+00 5.28E+97 5.11E+08
THREE HOUR MPM LARGEST N 9.34E+08 9.83E+87 9.69E+07 9.35E+08
SPECTRAL MOMENTS Mo 7.00E+14 7.15E+14 6.9TE+14 6S4E+14
M 3.90E+14 3.61E+14 3.25E+14 236E+14
M2 240E+14 2.04E+14 1L.TIE+14 142E+14
LIMITSTATE SPECTRUM
VARIANCE OF LIMIT STATES (N/mm’ 252 291 2.69 2.39 338
ZERO CROSSING PERIODS S 12.00 12.60 14.00 15.70
SIGNTFICANT AMPLITUDE N/mm”2 582 5.38 579 677
THREE HOUR MPM LARGEST N/mm~2 10.74 9.58 10.50 1224
SPECTRAL MOMENTS MO 847 7.24 830 11.48
Ml .37 348 359 441
M2 2.32 177 1.66 182
Table 6.7 Variation of TLP surge response statistics with zero-crossing period for
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-~ 11 Loading and response model of & tansion icg plotform
zero crossing period (s) —> 1isec 12sec 13sec 14sec
response unit
| SEA DRIFT PORCE FX N 1.06E+06 8.09E+05 6.30E+0S 4.95E+0S
| SEA DRIFT PORCE FY N 0.00E+00 0.00E+00 0.00E+00 0.00E+00
CURRENT PORCE FX N 2.38E+07 2.38E+07 2.38E+07 2.38E+07
CURRENT FORCE FY N 0.00E+00 0.00E+00 0.00E+00 0.00E+00
WIND FORCE  FX N 3.60E+06 3.60E +06 3.60E+06 3.60E+06
WIND FORCE  FY N 0.00E+00 0.00E+00 0.00E+00 0.00E+00
RESULTANT FORCE FR N 2.85E+07 2.82E+07 2.80E+07 2 79E+07
WIND,CURRENT, DRIFT OFFSET DIk D (] 0 0 0
INCLINATION OF TENDONS D 8.925 8.882 8.838 8.7954
STRETCH OF THE TENDONS m 0.058 0.057 0.057 0.056
STATIC OFFSET DISTANCE m 64.387 64.073 63.758 63.444
STATIC OFFSET SETDOWN m 5.025 4976 4927 4878
INCREASE N TENDON STRESSES N/mm2 29.192 28902 28614 28328
INCREASE /N TENDON TENSION N 2934.096 2904.987 2876.027 2847.217
VARIANCE OF DRIFT MOTIONS m**2 13.40 10.08 175 6.0
ZERO CROSSING PERIOD OF MOTIONS S 101.80 101.70 101.60 101.60
SIGNIFICANT DRIFT MOTION AMPLITUDE m 26.80 20.17 15.51 12.10
THREE HOUR MPM LARGEST MOTION m 40.93 30.80 2368 18.49
VARIANCE OF DRIFT FORCES m**2 1.71E+06 1.36E+06 LIE+06 9.11E+0S
ZERO CROSSING PERIOD OF FORCES S 7.45E+00 7.03E+00 6.68E+00 6.39E+00
SIGNIFICANT DRIFT FORCE AMPLITUDE m 3.41E+06 2.72E+06 2.22E+06 1.82E+06
THREE HOUR MPM LARGEST FORCE N 6.51E+06 5.21E+06 4.27E+06 3.51E+06
\L:::L:\?cz o: :«Z:l:):su ! m**2 157 134 215 234

' 14.02 1530 16.30 1738
ZERO CROSSING PERIODS s 314 3.79 431 4.6
SIGNIFICANT AMPLITUDE m 572 686 7.7 )
THREE HOUR MPM LARGEST m
SPECTRAL MOMENTS 0 2.47 3.59 4.64 550
i 1.07 1.44 175 197
M2 043 0.60 0.63 0.72
FORCE SPECTRUM
VARIANCE OF FORCES N#*2 3.02E+07 3.05E+07 381E+07 2.90E+07
ZERO CROSSING PERIODS s 10.78 11.70 12.68 13.46
SIGNIFICANT AMPLITUDE N 6.05E+97 6.48E+07 C.O3EH? 5.80E+07
THREE HOUR MPM LARGEST N 1.12E+08 1.13E+08 L11E+08 1.07E+08
SPECTRAL MOMENTS M0 9.15E+14 9.35E+14 9.10E+14 8SIE+14
Mt 5.09E+14 4.72E+14 425E+14 3.74E+14
M2 3I4E+H4 2.66E+14 223E+14 1.86E+14
LIMITSTATE SPECTRUM
VARIANCE OF LIMIT STATES (Nimuo’ 2y°2 33 3.07 331 3.87
ZERO CROSSING PERIODS S 12.00 12.69 14.08 15.70
SIGNTFICANT AMPLITUDE N/mm"2 6.65 6.15 6.61 7.73
THREE HOUR MPM LARGEST N/mm™2 12.20 1130 12.02 13.90
SPECTRAL MOMENTS M0 11.07 9.46 1095 14.90
Mt 570 455 [ 576
M2 3.03 .32 217 238
Table 6.8 Variation of TLP surge response statistics with zero-crossing period for

Hs=16.0m.

251



chmUr6 t< *ui r*a Upturn Ut nLxfarm

Z: heave (3) and yaw (6)

Y: iway (2) and pilch (5)

X: (urge (1) wtd roil (4)

wind direction
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current direction
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Figure 6.1 General arrangement of the tension leg platform and the
load / structure reference axes. All dimensions are in metres.

252



ZC PERIOD (s)

50
45
40
35
30
25
20
15
10

01—

y
i

10

Figure 6.1(a)

laadint andragorm modd 4 A tuuiatk lu M am

SIG AMP OF GUST SPEED
16

14
12
10

ZERO CROSSING PERIOD

SIGNIFICANT WIND SPEED

30 40 50
MEAN WIND SPEED (m/s)

Significant amplitude and zero crossing periods of the wind gust
velocity obtained from the Ochi spectrum for a range of wind speeds.
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normalised normalised elevation
current depth
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Figure 6.2 Department of Energy guidance notes current profile.
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Figure 6.3 The effect of current on modifying a FM spectrum. The upper curve is
with -1.0 m/s current and the ones below are for currents -0.5, 0.0, 0.5,
and 1.0.
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Tendon force variation due to the TLP offsets.
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Figure 6.5 Force response amplitude transfer functions for the TLP for a range of

wave headings from 0 to 90 degrees.
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Figure 6.12 Potential drift force on a column of the TLP given by Havelock's closed
form solution for the incident wave and diffracted potential.
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Chapter 7

RELIABILITY ANALYSIS OF A TLP
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da? Reliability analesis of a tensian leg plat
NOMENCLATURE

A matrix of eigenvectors for principal components
see Section 4.5

A cross - sectional area of a tendon

a amplitude

w Cw Weibull model shape parameter

dx =dx,...dx,

cD. current direction

wD wind direction

E Young's modulus

E[] expected value

f(x) Jjoint probability density for the loads and strength

F failure domain

F(x) cumulative distribution function: Pr(X < x)

f frequency in hertz

G(x) limit state function in the basic variable space

G(u) limit state function in the standard normal space

H, significant wave height

h() auxillary limit state function

k number of limit states

L(x,) loading: function of random variables x,

M number of current directions

m, ith spectral moment

N number of Monte Carlo samples OR numberof directions.

N(u;0,I) multivar iate standard normal density

N number of waves in a seastate

)/ number of random variables in the analysis

P’ target failure probability

P failure probability for any one three hour period

P long — term failure probability

Py(x) short - term failure probability conditioned
on the seastate

R(xR) resistance: function of random variables x,

S safe domain

S(f) spectral density

T, sample vector
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o()
o7()

o()

OT(t;x)

8T(x)

inverse mapping function fromU — X

design life of the structure

standard normal vector

number of samples

random variable

variance

directional weighting function for winds and currents

all x defined by some domain

yield stress

geometric imperfections
standard normal CDF
inverse standard normal CDF
standard normal PDF

Box & Cox model shape parameter
Box & Cox model location parameter OR

standardised variate
standardised threshold level for tendon tension

standardised threshold level for tendon compression
Weibull model location parameter
Weibull model scale parameter

Box & Cox model scale parameter OR regularity factor
radius of balloon that just touches the failure

surface in the transformed normal space

covariance matrix for z variate: see Section 4.5
covariance matrix for loading random variables

iny-space
covariance matrix for strength random variables

iny-space

mean vector for y - space variate: see Section 4.5
mean value for y

mean vector for all y - space random variables
mean vector for loading variables in 'y - space

mean vector for resistance variables in y - space
time - varying change in tendon tension conditioned

on eventx
steady change in tendon tension conditioned on event x
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7. INTRODUCTORY REMARKS: RELIABILITY ANALYSIS OF
ATLP

The large number of loading and strength random variables used in the design of an offshore
structure makes it difficult to use reliability methods in a routine way. The two major problems
are: the paucity of suitable probabilistic models; and the work required to implement a
generalised algorithm for modelling correlated random variables ( using for example the
Rosenblatt method outlined in Appendix C: Ch. 4 ). This chapter outlines a totally new
methodology for calculating structural reliability using conventional time-variant reliability
methods. The basis of the approach developed out of the work in Ch. 4 in which multivariate
modelling, using maximum likelihood, was applied to the DB1 data.

Structural reliability calculations are usually formulated in terms of loading and resistance
random variables. The loading on an offshore structure is a function of many variables like
significant wave height, wind speed etc., and the resistance is a function of the material
properties, strength model and so on. Each random variable can be defined either
probabilistically or deterministically in the reliability analysis. In this chapter we are
primarily concerned with modelling the environmental loading parameters and use is made of
the model developed from the DBI data. Nonetheless, it is important to realise that the
modelling methodology is general and so two examples of how a resistance model can be
developed using the new method are included. This demonstrates how the available strength
information, for examples see Smith et al (1987), can be used to formulate the required models.

Models for environmental variables are difficult to synthesize because failure is generally
caused by one or a combination of correlated extremes in the wave, wind or current process.

Unlike the strength models, which are primarily independent descriptive models, we require
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predictive models for the environment which are accurate at very high quantile levels. The

problem is further compounded by the site dependence of the environmental variables.

The reliability analysis discussed below uses a model which has eight random variables,

seven of which describe the environment, and one for the strength. The variables are:

significant wave height Hs
wave zero-up-crossing period Tz
wind speed Uw
wind direction Dw
current speed Uc
current direction Dc
spectral shape parameter y
tendon material yield strength oy

Variables like tide, storm surge, pretension, tether geometry, material characteristics, fluid
loading coefficients, wave theory and many others could be added for a more complete analysis.
However, this would increase the computational run time and make it more difficult to
interpret the results. Lotsberg (1991) includes the effect of variables not modelled by using a
normally distributed ‘response uncertainty’ with a coefficient of variation of 8 per cent.

However, the merits of this are not clear and the COV seems rather low.
7.1 GENERAL OUTLINE OF RELIABILITY THEORY

This chapter reports on the results from a reliability analysis of the tension leg platform
described in Ch. 6. The joint probabilities model is based on the work described in Ch.2,3,4 & 5
in which statistical inference was used to model both the wind, seastate, and current
magnitudes and directions. A First Order Reliability (FOR) analysis methodology as been
adopted for the calculation of the failure probabilities to illustrate the real benefit of a
transformed normal multivariate model for the environmental random variables (see Ch.4).
However, a brief description of a Monte Carlo analysis methodology is given below since it
provides the most tangible introduction to the calculation of structural reliability.

The procedure for calculating structural reliability can be most readily understood by
considering what is actually happening to a real structure, which is one from the total
population of 'equivalent’ structures. If we accept the discretisation of the long-term variation
of the environment into independent events of finite duration, during which the winds, waves,

and current are treated as stationary stochastic processes then we can examine the behaviour of
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the structure for every seastate it encounters during its design life. The total failure probability
P during any one event encountered by the structure is then given by

P=].. [P (x)f(x)dx [7.1]

in which x are the random variables governing the behaviour of the system, and Vx denotes

all x. This is most easily interpreted in its discrete form as the sum of all seastate failure
probabilities P, (x,.) weighted by the probability of occurrence of the seastate f (x,.)Ax . The

process is illustrated in Fig. 7.1. In this form, it is apparent there are two kernel problems. The

first is evaluation of a suitable joint density function for both the loading random variables
{H,,T,,Uw....etc} and the resistance {O',,E, 5,....etc}. The second is calculation of the within

seastate failure probability P, (x) for the event x. The central tenet of this thesis is to define a
methodology for estimating f(x) using measured data. The problem has been solved using the

main principles of classical multivariate, and directional analysis, as described in Ch. 4 and 5.

Solution of the integral Equation [7.1] is simple in principle, however for a TLP the
calculation of Pf(x) is a time cohsuming process since it requires the structural responses be

solved for each event X used in the solution. Furthermore, the calculation becomes more time
consuming as the number of variables increases. The most direct way to solve the integral would
be to use crude Monte Carlo methods to sample the joint density f(x) a large number of times
and then use the ‘hit-and-miss' approach to estimate the integrand, Rubinstein (1981). This is
not a feasible approach for problems involving large numbers of dimensions since the number of
points required for a specific level of accuracy increases as N where N is the number of

sampling points required for each of the p variables.

In the crude Monte Carlo method described above the loading and strength random
variables are sampled a large number of times: a separate response analysis is then performed
for each sampled vector X; to create a sample of response 'observations’ which can be used to
establish the statistics of the long term responses. In the past, the method was generally
regarded as computationally too expensive for all but the simplest problems, Thoft-Christensen
& Baker (1982). However, this author shares Shinozuka's (1989) opinion that the more
sophisticated Monte Carlo methods, Rubinstein (1981), are a valuable aid in reliability
analysis and that use of adaptive Monte Carlo methods on modern computers provides a
realistic design tool. This opinion is shared by Ang et al (1992) who describe a method ( which

273



7 Relibili busis of ion leg plack

uses the multivariate kernel theory described in Ch. 4 ) to improve the "importance sampling "
Monte Carlo technique.

7.1.1 THE TIME INVARIANT METHOD

A less expensive estimate of structural reliability can be obtained using the so called time
invariant Level IIl methods, Madsen et al (1986), in which the joint distribution of the loading
and strength parameters must be known. The generic approach requires the definition of limit
state functions which specify the margins between the demand on a component of the structure
and its capacity. Clearly, when demand exceeds capacity the system is judged to be in the
failure set F, rather than the safe set S. Denoting all random variables as X then the

resistance random variables are X, € X and the loading random variables are X, € X. The

margin, or limit state function, can then be defined as
G(x)=R(xp) - L(x,) [7.2]

When capacity exceeds demand G(x) 2 0 and the system is in the safe domain, in shorthand
{Gy(x)2 0} €S and the complementary state is then {G,(x) <0} € F. This is illustrated
graphically in Fig. 7.2 (top) which shows a system governed by two limit state functions, G,
and G,, which are functions of the random load X, and resistance variable x,. The notional
contours of the joint density function of f(x) are also shown. The solution of the failure

probability can now be rewritten as a p-dimensional integral over the failure domain, Melchers
(1991)

Po=[..[f(x)de [7.3]

where the domain of integration in X-space F is

UG,(x) <0

Here, k is the number of limit states, dx = dX,.dx,.....dx,, and the failure domain is defined
by the union of the limit states G;. The evaluation of this integral using multidimensional
quadratures or Simpson's method is only feasible for low numbers of random variables (p < 4).
Consequently, a procedure has been developed to approximate P; called FORM analysis (first
order reliability method). In this method, the random variables X must be transformed into

uncorrelated normal variables in U-space using for example Rosenblatt's method, Appendix C,
Ch. 4.
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The mapping of X — U results in the new integral
P={..[N(u:0,1)du [7.4]
F

where the domain of integration in U-space is

UG, () <0

i=]

and N(u;0,I) is the p-dimensional standard normal distribution illustrated in Fig. 7.2
(bottom). The approximation of this integral is remarkably simple. If we place a spherical

balloon at the origin of the u-space and then blow it up' at some point it will just touch one or
more failure surfaces. The radius of this balloon is usually denoted by 8, and the point at

which it touches the failure surface is called the design point (which is also the most likely
failure point g" ). The failure probability is then estimated using an important property of the
multivariate standard normal, that is the volume contained within the p-dimensional
hypersphere (or circle in the case shown in Fig. 7.2) is given very simply by o’ (ﬁ), where @
is the univariate standard normal cumulative distribution. The whole problem of calculating

failure probabilities using this approach is then reduced to a multidimensional minimisation of
B? =u".u [7.5]

subject to the constraint G(u) = 0. This method is an approximation since the failure function is
assumed to be a hyperplane in the u-space, which is not the case. However, Madsen et al (1986)
found the results for P = <D”(ﬂ) are generally within a factor of 2 to 5 times the actual value,

which is sufficiently accurate for comparative reliability studies like this one.

Checks can be made on the condition of the failure surface at the design point using the
fundamentals of unconstrained extremum theory. The first condition to be satisfied is the

gradients must all be zero

B_B_ B _,
BB ...

The second condition is the hessian matrix - the symmetric matrix of second derivatives - must
be positive definite at . Both conditions are checked internally by the NAg routine used in
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this work, however, the hessian matrix is also useful for assessing the curvature of the failure
surface at the design point; this gives an indication of the accuracy of the tangent hyperplane
assumption which is implicit in the use of @ ([3) as an approximation for the survival

probability.

7.12. A TIME VARIANT SOLUTION

The approximate integration method above assumed the loading was time invariant so
that it could be modelled as a random vector process. This method is therefore appropriate for
an offshore platform if it is not dynamically sensitive since a time-invariant extreme event
approach Equation [7.3] can then be used in which the dominant load process ( the waves ) is
modelled by an extreme value distribution, Turner & Baker (1988). Compliant systems cannot be
modelled using this approach because the stochastic nature of the winds and waves, within
seastate, must be modelled using the methods given in Ch. 6. This is reflected in the integral
Equation [7.1] which is often referred to as a nested reliability integral because the solution for
Pf within a seastate can also be obtained using a FOR method. In this work, however, the
combination of the wind and wave stochastic process has been simplified by using a simple
linear system model for the responses and a 'sum of squares' load combination. This allows one
to use the Rice (1944) distribution for the response maxima of each limit state during some event

X.

The second level of the integral in Equation [7.1] can also be solved by FOR methods if the
integral is first recast in a time invariant format. The method, due to Wen & Chen (1987),
requires the unbounded integral be rewritten as a bounded integral with auxiliary limit state
function h. This is done by introducing an auxiliary standard normal random variable «,,, such

that

P,,— = I JP,(x)f(x)dx = J. If(u)'f(up'bl)dudup"’l [7.6]

h(u,u - ,)<0

Here, f(u) is the joint density in U-space, f (u’" 1) is the standard normal density, and the

auxiliary limit state function A is defined as

i) =y~ @7 [ 2T )] 2
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The term @~/ is the inverse cumulative standard normal, and PI(T“ (u)) is the conditional

failure probability for the event x =T"/(u). In this case, T(x) is the Box & Cox (1964)
transformation followed by the eigenvector transformation, as discussed in Ch. 4. The rhs of
Equation [7.6] is now in a form which allows the use of the time invariant integration method
discussed above to approximate the long term failure probability. Again, the solution is
obtained by minimisation of the Euclidian distance (see Melchers 1987)

B’ =u,,’+u".u subjectto h(u,u,, ,) =0 [7.8]

where the objective function is simply

p
2_, 2 2
B =u,+ Y 7.9]
j=1
The constraint - which is a function of the auxiliary variable 4, and the conditional failure
probability PI(T" (u)) - can be used to reduce the problem to an unconstrained minimisation
giving

B = {(D" [P, (T" (u))]}2 + iuﬁ (7.10]

j=1

The minimisation of B is very simple if a suitable optimisation program is available. For this
work the NAg routine EO4VDF was used successfully although CPU times were considerable on
a 486 PC.

7.1.3 BOUNDS ON THE INVERSE BOX MODEL

Written in its general form the objective function for the distance f§ appears to be

unbounded in u#-space, however, in practice the Box transformation introduces a set of indirect,

model dependent, bounds in the y-space. Inverting the Box transformation we get

LAY -8 a0
boler =€ A =0

To obtain a real solution for x; we must satisfy two sets of inequalities for each variable y;:
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y;>=114; 4,>0
y;i<=114; A;<0

These bounds on the vector y, in the multivariate normal space, are mapped into u-space

through the linear transformation
u=X7"A"(y-p,) (7.11]

see Ch. 4, Section [4.5]. This results in a set of simple bounds on u with the sign of the

inequality determined by the sign of each A,.Of course, if we had used a different

transformation then the bounds would not be the same.
7.2 THE LONG-TERM JOINT DENSITY

The dominant load process for fixed offshore structures is normally wave induced and the
majority of reliability assessments of offshore platforms use an environmental model of the

load process in which the joint density f(x) is given by the marginal extreme value

distribution of the seastate significant wave height f(H,), and a series of conditional

distributions f (xilH,),f (x,._, ,,X,-) ----- etc. This approach is often called a storm based

approach since an extreme value model is usually used for f (H,). The method therefore

assumes an extreme in one of the other processes combined with a moderate significant wave
height will not result in an out-crossing of the safe domain S. This is not the case for tension leg
platforms in which the winds and tidal elevation play an important role in the platform

responses.

The storm based method allows us to use a time independent approach owing to the use of an
extreme value distribution. At this point the motivation for using an extreme value distribution
should be noted. The integral in Equation [7.1] in fact corresponds to the population model f(x),
however, the target failure probabilities of offshore structural systems are generally so small
(<10-3) that only the rare extremes contribute to P,. Since models fitted to population data are
normally biased in the tails, where the most 'interesting’ responses are occurring, extreme
value, or threshold models are employed. However, this method is not suitable for compliant
systems since their response maxima are determined by waves, winds, tide levels etc., and so a

different approach is required to allow for the contribution of more than one load process.
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The multivariate analysis of the DB1 data, described in Ch. 4, gave a model of the joint
distribution for the set x, = {Hs,Tz,Uw,Uc}, whilst the directional analysis of the wind and

current data in Ch. 5 gave the distributions of the set X, = {D,,,D‘}. For this reliability study

we add the yield strength of the tendons, X, = {O',} giving a complete set of 7 random

variables x = {x,x,,x,}. The long-term failure probability Fy is then given by
P.= HPf(x)f(x)dx = Hp,(x)' F(xR)-£(x) f(xpn ). f (x5 )dx [7.12]
vz Vx

Because of the multi-modality of the directional distributions for the winds, and currents, this

integral is rewritten as

360 360

=] ] f(wﬂxm){ﬂ_ e(x)f(xk)f(xb)dx}dxmdxm

The integral enclosed by brackets is the time-variant integral discussed above. It gives the
failure probability conditioned on the wind and current direction; the total failure probability
is then the weighted sum over all combinations of wind and current direction. For simplicity,
the wind and current directions can be modelled as fully correlated and uniform on the circle

[0,27]. The problem can then be simplified once more by using a discrete summation giving

zﬁP x|x f(x)f(x,)dx

a-l vx'

This is read as the uniformly weighted sum of the time-variant probabilities for co-linear
winds and currents approaching from directions §,;i = 1, N. The symmetry of the TLP structure

enables this integral to be further simplified and then written as

b ES [l Y,

N" k(ln ,)<0

which requires N/4 calculations of the time invariant integral. On the other hand if the
relative directionality of the wind and current is to be modelled the single summation must be
replaced by a weighted double summation. The weights W; might be taken as the normalised
values in a wind and current direction scatter diagram (Ch. 2 Table 2.13). The long-term failure
probability is then given by
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The problem with this summation is that we now require NM reliability optimisations
which is computationally expensive.

This chapter examines the reliability of a tension leg platform using a simple set of limit
state functions. The DB1 buoy information therefore allows us to model the wind and wave
processes as stochastic, however, the currents must be modelled as constant during the three
hours. During this event we must calculate the probability that the responses exceed the safety
margins, P,(x) The random load processes must therefore be transformed to response processes

for each limit state in order to calculate the failure probability.
7.3 RETURN PERIODS FOR THE ENVIRONMENT AND RESPONSES

If the total failure probability P has been calculated the chance of failure in any of the
three hour duration events is known. During the life of the structure, T, (hours), the number of
encounters will be T}, / 3. Since it is acceptable to assume the events are independent, Bjerager
et al (1988), the lifetime failure probability Py, is given by

P,=PT,/3
since we assume only one event can lead to failure during the design life. If the design life is 50
years then P;, = 146100P; which means the target failure probability for a single seastate
should be of the order of <10°5. Alternatively, we can define the life of a structure
corresponding to some level of failure probability using T, = 3P;," / P;.

7.4 FORMULATING MODELS FOR THE RELIABILITY ANALYSIS

Transformed normal distributions are required for all of the variables used in this
reliability analysis. Providing the mean, variance, and lower bound are known it is possible to
synthesise a model using simulation for any variable. Two example are given below for the

tendon material yield strength and the JONSWAP shape parameter.

7.4.1 TENDON YIELD STRENGTH MODEL
The yield strength of a TLP's tendon material is generally determined during the design

stage after having performed redundancy, strength and fatigue analysis. There seems to be no
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conventional wisdom for selecting the material properties, API RP2T (1987) gives no guidance
other than the net section stress remains less than 80% of the yield stress F, or 60% of the
ultimate stress F,, whichever is less. In a recent study by Woo-Sun et al (1991), the mean
ultimate strength was taken as 965 N/ mm?Z which corresponds to high strength, low alloy steel
like AISC A709; 100W. The use of such high strength material is questionable because fatigue
damage is proportional to stress range cubed. This suggests a lower grade of steel is more
appropriate. Bea et al (1992) for example reports on the 'Methodologies for Comparison of
Alternative Production Systems' project undertaken in the USA in which the minimum yield
strength was taken as 311 N/ mm? with a mean value of 345.9 N/mm? and standard deviation of
17.4 N/mm?. This data is consistent with the values used by Lotsberg (1991), and has been used
in this work to set the limit states of the tendons (Ch. 6, Section [6.1.1]).

The Weibull distribution is usually found to fit strength data well. Using Bea's (1992) data
we have the lower bound (Ch. 3, Section [3.6]) &, = 311 N/mm?, the mean E[O’,] = 3459 N/mm?

and the variance v[d,] = (302.76 N/mm?}2. These data are sufficient to numerically solve for

the shape ¢, and scale @, parameters of a Weibull model, giving

0" ={c, =2.175,a, = 40.537,¢, = 311.0} (7.13]

To use this model in the reliability analysis it must first be converted into a transformed normal
variate. This has been done approximately by simulation. A sample of 1000 Weibull random
variables with shape, scale and location @ were generated by inversion. The simulated
sample of yield stresses was then transformed to approximately normal variates using the Box
& Cox (1964) method, Ch. 4: Section [4.3.1] . This gave maximum likelihood shape and location

parameters A=139 ,and f‘ = -1.39 respectively, and a transformed sample with mean 0.46, and

standard deviation 0.03. A comparison of the actual population, and the 'normal’ model is
shown in Fig. 7.3 which demonstrates the fit is good.

When estimating the transformed normal parameters for the material strength the
transformation process failed to converge at the first attempt. Large numbers were identified as
the cause which suggests the Box transformation is not scale invariant. The obvious solution
was to introduce a scale parameter in the Box transformation. The value can be chosen
arbitrarily to avoiding including it in the likelihood maximisation. However, it should be

noted the introduction of a scale parameter & changes the density function. Writing x as the

original variate and y as the transformed variate, the model for f(x) becomes
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[7.14]

f(x)=Mew{_l(ax+§)’-_]—luy}

o2 2 }.a,

where {Gy,u’} are the standard deviation and mean value of the normally distributed

variate y and {a,f.l} are the transformation parameters. A sensible value for is the

square root of the maximum likelihood estimate of the sample variance

@ =v{x]= 3 (3 - E[x])

imd [7.15]
This re-scales the data x to have unit variance.

7.4.2 SPECTRAL SHAPE PARAMETER
The statistical uncertainty of the JONSWAP spectrum parameters was summarised in Ch.

6, Section [6.1] where the mean value and standard deviation are given as E(¥) = 2.65 and
0, = 1.166 - In addition, we know the lower bound on Y is 1.0 which corresponds to fully

developed seas. These three statistics are sufficient to estimate the shape and scale
parameters of a Weibull model using the approach given above for the tendon material yield
strength. The 'equivalent’ Weibull model then has shape, scale and location 1.44, 1.87, 1.0,
respectively. Taking these values as the population parameters we can simulate a sample and
then find the maximum likelihood Box transformation parameters. The results are:

A = 0.14
& = 0098
B, = 0.78
o, = 0.43

The Weibull population and transformed normal models are compared in Fig. 7.4.

7.5 MOTION THRESHOLDS

The lateral motion of the platform is made up of static and dynamic components. Static
offset is induced by the wave drift, mean wind, and current forces, and dynamic offset is caused

by first order wave, gusting wind, and second order wave effects. A feature of compliant
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offshore platforms is the need to restrict the lateral motions to within some threshold. In the
case of a TLP the threshold is determined by the design of the tensioning system for the tendons,
and risers; and, in the case of a semi-submersible the thresholds are generally determined by
the moorings. A further limit on lateral displacements is imposed by the minimum clearance
between the crest of an extreme wave, and the underside of the deck. This limit state becomes
increasingly important as the water depth increases because the set-down effect increases

linearly with water depth.

Without details of the tensioning system design it was not possible to identify the true
thresholds on the lateral motions. Furthermore, no details of the still water deck clearance are
given in Tan & de Boom (1981). Instead, for this work, an artificial threshold was defined as
‘the sum of the 3 hour most probable maximum displacements due to the first and second order
wave forces generated by the 50 year return period seastate (15.5 m) with zero current and wind
speed. This gave a threshold of 35 m for surge and sway motions which is used in the parametric
studies below.

7.6 JOINT DISTRIBUTION OF LOAD AND RESISTANCE VARIABLES

The joint distribution of the loading and resistance random variables x = {xL,xR} in
Equation [7.1] can be formulated using the results in Ch. 4, and the model for the tendon yield

strength . Since the loading and resistance are uncorrelated we can write the covariance

matrix for ¥ as

1]
=k
0z,

where the transformed variates y,” are given by the Box transformation:
v ={(x+¢) -1}ia 7.16]
The mean vector of the transformed variates is simply
B={n,,p]

giving a normal joint density for x in y-space where

(') = @ry 2|2 exp{-é(r' -n) £y -l‘)} 7171
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this model is transformed to uncarrelated and standardised variates 4’ using the eigenvector
transformation in Ch. 4, Section [4.5] where

u'=(A"2,4)" Ay - p,) (7.18]
this gives the standard Normal model, N (u' ;0,1 )

In fact, if we examine the objective function Equation {7.10] and then consider how the
optimisation of B is performed, we see the density is never explicitly used. Starting the
optimisation at some point in U-space, u;, the unconstrained optimisation algorithm chooses
the direction of 'steepest descent' using a forward difference estimate of the gradient vector.

Therefore, at each iteration we make 2N + ] evaluations of the objective function to solve

2
(D-I[Pf(u)] . The calculation of the failure probability P, for the current step point u;,

requires a complete frequency domain response analysis for the limit state. This process is

repeated until the algorithm has satisfied some convergence criterion on the objective function.

For this work the NAg quadratic programming method was found to give a satisfactory
convergence rate usually in less than 6 iterations - that is after making (~ 6) * (2N + 1) calls to

the routine that calculates the responses statistics.
7.7 SHORT-TERM STATISTICS: THE LOAD COMBINATION PROBLEM

The theory of stochastic load combination for the within seastate winds, waves and
currents is a complex subject which is made more difficult when the response is non-linear.
Madsen et al (1986) summarises the theory of linear stochastic load combination and discusses
how problems can be formulated using simple rules for codified design. Non-linear, time-
variant, analysis is examined by Wen & Chen (1987); and the International Ship Structures
Congress included a special session on stochastic modelling, see Armand et al (1991). Practical
applications of the full theory tend to be limited to simple systems since the method is
computationally expensive.

For our purposes the load combination problem is made as simple as possible. Each mean
force is summed and then used to calculate the static offset response. The first order wave, wave
drift, and wind force spectra are then used individually to calculate the response spectra for

each limit state function. These response spectra are then summed giving the total response
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spectra Sy, (f) for each limit state i. These spectra are broad-banded with peaks located at the

modal wave frequency, and the structure natural frequency. By assuming the responses are
linear broad-band, and Gaussian, the Rice distribution can be used to calculate the distribution
of the response maxima. Denoting the normalised response amplitude of each limit state

& = a/ m"?, then the distribution of its response maxima is

f(Eu)=VI-a? JT)+ aﬁe""@[‘j-%—JJ [7.19]

Here the regularity factor @ = 1[1_:? , where £ is the bandwidth of the response; ¢(.) is the
standard normal density; and @(.) is the cumulative standard normal. The failure probability
for the component corresponds to the probability that the limit state function will be negative
during the event ¥ = T(x). In Ch. 6 the tendon limit states G;(x) are defined as the margin

between the axial tensile and compressive capacities of the tethers. The compressive capacity
is in fact independent of the material properties whereas the tensile capacity is dependent on
the yield strength of the tendons. The failure probability is then given by

P(T"'w)=1-F(&)=1- db(\/—l?f’j_‘—;] + aﬁe"”’¢(TIa—_%—;) [7.20]

Here, the variance of the response m,, and the regularity factor & are calculated from the
response spectrum moments using the relationships:

m,=Q2x)" [f*.S(f)df  n=0,12,.
E=alm]?
a’=m/(m,m,) (7.21}

The thresholds &; are determined for each limit state, for example, the compression limit state
gives

& =T,+08T(x)>8T(r; x) (7.221
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where T, is the tendon pretension, 57(:) is the mean increase in tendon tension for the
seastate X =T'(u),and &7 (t;x) is the time varying tendon tension induced by the wind,

drift, and wave processes.

For the tension limit state threshold we have
& =Aa,-T,-8T(x)> 6T(t; x) [7.23]

Here: A is the tendon cross sectional area; 0, is the random yield strength of the tendon

material; and the statistics for the amplitudes of the dynamic tension 8T (¢, x) are modelled
using the Rice distribution, see Equation [7.19]. The probabilities of not exceeding the tendon

tension and compression thresholds &;,&. are then F(&,) and F(Z,), respectively, for each

encounter with a maximum in the process 8T (¢; x).

During the seastate there will be on average N encounters. We require the probability that
all encounters are less than the thresholds &;

N
P;!{néj < é.} i=12,.. [7.24]
J=1
By assuming the maxima are all independent, we get
N 1 N . .
PN\ <&=11Pr(& <&)=F"(&) i=12.. [7.25]
=1

j=1

The expected number of encounters was estimated using the number of zero-up-crossings for the

dynamic load process during the three hour seastate

I,= 27t1/mo /' m,
N=3%3600/T, [7.26)

The probability of exceeding the threshold &; - which was our failure probability in Equation
[7.1] - can then be estimated by
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P,(x=T"(u))=I—F"(§,.) [7.27]

This value corresponds to P,(x) in Equation (7.1] and is evaluated several times during the
optimisation for the f distance.

7.8 SENSITIVITY STUDIES

The sensitivity of the within seastate failure probability P/(x) to changes in the

environmental random variables was examined for the tendon stresses and surge motion. In the
examples given below the zero-up-crossing period was increased from 6.00 to 11.0 (s) and the
significant wave height was taken as the most probable value (conditioned on the T, ) using

H, =0.1632T,

This simplified model was determined by visually fitting a quadratic to the contours of the
{H,, Tz} kernel density plot in Ch. 4. It is not recommended as a general rule.

The effect of changing the spreading model, wind speed, and spectral shape is discussed
below. ¥
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7.8.1 WINDS AND CURRENTS

The wind and current loads were compared in Ch. 6 where it was shown gusting wind forces
are significantly larger than the steady current forces. The influence of wind force on the
threshold exceedance probabilities is shown in Fig. 7.5. Note how the higher wind speeds
reduce the failure probability for the compression limit state by increasing the mean tendon
stress. The effect on the tension limit state is adverse with high wind speeds contributing
significantly to the exceedance probabilities.

7.8.2 SPECTRAL SHAPE PARAMETER

The sensitivities of the threshold exceedance probabilities to spectral shape are
illustrated by Fig. 7.6. The ¥ =1 case corresponds to a fully developed sea, and the y =5 case
corresponds to a fetch limited sea with a narrow-band spectrum. The largest surge responses
occur in fully developed seas in which there is a larger amount of energy in the drift force

spectrum at low frequencies near the natural frequencies of the structure in surge, sway and yaw.
7.9 DESIGN EVENT SEASTATE RESPONSES
In ch.4 the marginal extreme wind speed, current speed, and significant wave height

were estimated using both population and monthly maxima models. As a result the 50 year

return period design event environmental variables were defined as:

significant wave height Hs 15.02 m
wind speed Uw 330 m/s
current speed U 10 m/s

These values are close to the Department of Energy (1990a) recommended values. In a design
event analysis the winds, waves and currents would be assumed to act colinearly and
simultaneously. The range of wave zero-up-crossing period associated with the design évent Hs
is usually determined by the maximum, and minimum wave steepness observed around the

British Isles, ie
3.2 (Hs)*"1/2 < Tz < 3.6 (Hs)*"1/2
For the 50 year return period wave height this gives a range of 12.5 to 14.0 seconds so these

values were used as the upper and lower bounds for the Design Event analysis of the TLP model
developed in Ch.6.
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7.9.1 MOTIONS

The motion and tendon stress responses of the TLP were calculated for colinear winds,
waves, and currents using a JONSWAP spectrum with shape factor of 3.3. A zero degree heading
was used. The results are summarised in Table 7.1. The time varying response statistics for the
combined wind, drift, and first order wave forces were calculated using a 'sum-of-squares’
approach ( which corresponds to the sum of independent normal time series ). In uni-directional
waves this gives a combined three hour most probable maximum ( mpm ) offset of 50.1m in the

12.5 second period sea, and 45.0m in the 14.0 second sea.

7.9.2 TENDON STRESSES

The 3 hour mpm combined tendon stresses have also been calculated for the 12.5 and 14.0
second periods, again in JONSWAP seas with a gamma of 3.3. The stresses for the 12.5 second
case have a 3 hr mpm of 101.3 N/mm?2 and the stresses for the 14.0 second case were 106.0
N/mm2.

7.10 CALCULATION RETURN PERIOD RESPONSES FROM THE RELIABILITY ANALYSIS

The American Petroleum Institute recommended practice for TLP design stipulates the
responses be calculated to have a return period of 100 years. This compares with the
Department of Energy (1990a) who specify the environmental parameters be designed to have a
return period of 50 or 100 years.

If a variable x has a return period of 50 years and we have observed it every 3 hours
there will be a total of 146100 observations in the 50 years and, on average, one of these will
have exceeded some value X5. Assuming the events are independent and identically
distributed - and in fact Bjerager et al (1988) has shown using Markov dependence between
seastates that the effect of correlation between seastates is not important - the probability of
exceeding the level X, in any one event will be Pe,, = 6.8446* 107°.

The probability of a response exceeding a threshold x; can then be calculated using the
time-variant reliability methods discussed earlier. As an example, the 50 year return period
compression stress with exceedance probability Pés, can be calculated by setting some
threshold level and then using the time-variant reliability method to calculate the
probability of exceeding the level. The process is then repeated several times using higher
thresholds to build a picture of the variation of exceedance probability. Then having obtained
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a sufficient number of points the threshold with exceedance probability Pe = Pe,, can be found
by simple interpolation.

7.10.1 SURGE MOTIONS

Ten surge motion thresholds were examined with values ranging from 10m to 100m. A
time-variant reliability analysis was then performed for each threshold in which the winds,
waves, and currents were assumed to be colinear. The joint probability model was based on the
multivariate normal, Box-transformed, distribution with the parameters taken from Ch. 4
Table 4.9. The JONSWAP spectrum was used with a gamma=3.3 and a single wave heading
angle of zero degrees was analysed.

The beta distance and exceedance probabilities for each level of threshold are shown in
Fig. 7.7. The beta distance varies almost linearly with increasing motion threshold and the
exceedance probability varies exponentially. The level of surge response with a return period of
50 years, ie Pe5)=6.8446x109, is 35.0m in the unidirectional sea. These values are compared
with the design event results in Table 7.2 where the figures in brackets indicate the percentage

reduction over the design event surge motions.

7.10.2 TENDON STRESSES

The variation of exceedance probability for a range of tendon stress thresholds is shown
in Fig. 7.8 . Interpolating from the graph we get a 50 year return period stress of 102N/mm?2 in
the uni-directional sea. These values are compared with the upper and lower zero-up-crossing
period design event results in Table 7.3. Note in this case the time-varying component of the
tension in the tendons is so small compared to the pre-tension it does not show a signoficant
change from the design event stress obtained using the 12.5 and 14.0 second zer-up-crossing
periods. In a future study using this model the tendons need to be re-designed with smaller cross-
sectional area.
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7.11 CONCLUSIONS

A new level III method has been developed for the calculation of reliability, based on the
transformed normal method outlined in Ch. 4. In this new method the data are transformed to a
normal model whereas in the conventional Rosenblatt transformation method the model fitted
to the data is transformed. In most cases the Rosenblatt transformation requires a set of
numerical integrations which are time consuming, in addition, it usually means the
transformation must be defined in a subroutine which is compiled and then linked to the a main
program. The new method on the other hand makes this step redundant and furthermore is

simple to implement in a generalised computer code.

The time-variant reliability calculation can be converted to a time-invariant calculation
by introducing an auxiliary random variable into the standard normal joint density for the
loading and resistance. This conversion allows us to use the simple beta’ optimisation method
to approximate the solution of the survivor probabilities for sets of threshold or limit state
functions.

The sensitivity studies indicate the importance of spectral shape, directional spreading,
and wind speed for this type of structure. Current forces on the other hand are small for TLP's -
but it should be noted they are significant for jacket structures. The responses of the TLP were
largest in fully developed seas, with no directional spreading. Wind gusting forces and second
order drift forces have the same order of magnitude for this structure and are both some 25 ~

30% of the first order wave force.

A time-variant reliability analysis has been performed on the tension leg platform
specified in Ch. 6 using the statistical models of the DB1 environmental data described in Ch's
3,4, and 5. The transformed normal multivariate model for the joint density of the winds, waves
and currents was used successfully with the new method and, when used with a good non-linear
optimiser, was very efficient. Generally, the number of within seastate analyses performed for
each optimisation for the beta distance was given by (4~8)*(2N+1) where N is the number of
variables. For this work N = 4 ~ 5 and the solution of the within seatstate statistics took some
30~40 seconds. This gave run-times of up to

10*(8*(2*5+1)) * 40 sec. = 35200 seconds

for each threshold run in which ten optimisations were performed to obtain the variation of

survivor probability for a range of thresholds.
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The new reliability method has been used to calculate survivor probabilities for a range of
motion and tendon stress thresholds. This enables the levels of motion, or stress, corresponding
to a given exceedance probability, like the 50 year return period value, to be calculated by
interpolation. These values have been compared with the results from a notional design event
approach in which the motions and stresses corresponding to concurrent 50 year winds, waves
and currents are calculated. The comparisons show that if the return periods are specified on
the responses and not the environmental parameters then the motions and stresses in the
tendons are reduced by 15~25%. The level of reduction is dependent on the threshold type, ie
motion or stress, and the number of variables that are treated as random. In this work the
relative directionality of the winds, waves and currents was ignored. It is likely their inclusion

in the model would lead to further reductions.
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significant wave height 15.02 1502 m
Zero up-crossing period 12.5 140 s
wind speed 33.0 30 m/s
current speed 1.0 10 m/s
steady wind forces 1.31 131 MN
steady drift forces 0.505 035 MN
current forces 5.95 595 MN
resultant steady forces 7.76 771 MN
resultant steady offset 229 23 m
resultant steady setdown 0.617 0.60 m
tendon pretension 85.0 8.0 N/mm?2
change in tendon tension caused by steady forces 3.6 34 N/mm?2
wind motion in x-direc.
standard deviation 6.62 6.62 m
zero up-crossing period : 104.3 1043 s
significant amplitude 13.24 1324 m
drift motion in x-direc.
standard deviation 712 49 m
2ero up-crossing period 97.3 973 s
significant amplitude 14.2 98 m
first order wave motions in x-direc.
standard deviation 1.9 22 m
zero up-crossing period 15.8 173 s
significant amplitude 3.8 44 m
combined wind, drift, and wave
significant amplitude 19.8 171 m

Table 7.1 TLP surge responses for colinear 50 year return period winds, waves, and currents. Uni-
directional, 0 degree heading waves, JONSWAP sea with gamma = 3.3 and zero crossing

periods of 12.5 and 14.0 seconds
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surge motions (m)

wave design wave approach _joint probabilities
z.c.period long crested long crested
12,5 50.1
[30%] 35
14 45
[22%]

Table 7.2 Comparison of design event and reliability method surge

motions in short crested and long crested seas

tendon tensions (N/mm?2)
wave design wave approach |joint probabilities approach
z.c.period long crested long crested
12.5 101
[-1%] 102
14 105
B%]

Table 7.3 Comparison of design event and reliability method tendon

stresses in short crested and long crested seas

Note the small percentage differences are due to the pre-tension being

much larger than the dynamic stress component
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7.8.1 WINDS AND CURRENTS

The wind and current loads were compared in Ch. 6 where it was shown gusting wind forces
are significantly larger than the steady current forces. The influence of wind force on the
threshold exceedance probabilities is shown in Fig. 7.5. Note how the higher wind speeds
reduce the failure probability for the compression limit state by increasing the mean tendon
stress. The effect on the tension limit state is adverse with high wind speeds contributing
significantly to the exceedance probabilities.

7.8.2 SPECTRAL SHAPE PARAMETER

The sensitivities of the threshold exceedance probabilities to spectral shape are
illustrated by Fig. 7.6. The y =1 case corresponds to a fully developed sea, and the ¥ =5 case
corresponds to a fetch limited sea with a narrow-band spectrum. The largest surge responses
occur in fully developed seas in which there is a larger amount of energy in the drift force

spectrum at low frequencies near the natural frequencies of the structure in surge, sway and yaw.
7.9 DESIGN EVENT SEASTATE RESPONSES
In ch.4 the marginal extreme wind speed, current speed, and significant wave height

were estimated using both population and monthly maxima models. As a result the 50 year

return period design event environmental variables were defined as:

significant wave height Hs 15.02 m
wind speed Uw 330 m/s
current speed Uc 10 m/s

These values are close to the Department of Energy (1990a) recommended values. In a design
event analysis the winds, waves and currents would be assumed to act colinearly and
simultaneously. The range of wave zero-up-crossing period associated with the design event Hs
is usually determined by the maximum, and minimum wave steepness observed around the

British Isles, ie
3.2 (Hs)*1/2 < Tz < 3.6 (Hs)*1/2
For the 50 year return period wave height this gives a range of 12.5 to 14.0 seconds so these

values were used as the upper and lower bounds for the Design Event analysis of the TLP model
developed in Ch.6.
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CONCLUSIONS

Probabilistic methods can be used to assess the reliability of complex structures providing
accurate and sufficient models of the random variables are available. This thesis defines some
tools for synthesising models from measured data and from the work undertaken the following

conclusions can be drawn.

The DB1 wind, wave and current data can be treated as unstructured in the statistical sense
for the multivariate modelling. The only evidence of structure appears in the significant wave
height and zero-up-crossing period density. This is the result of the breaking wave criterion.
Furthermore marginal kernel density estimators show no evidence of bimodality or mixing of
different statistical populations in the modal region or indeed for moderately large values.
This suggests a population modelling approach is reasonable, providing the correct tail
behaviour can be guaranteed by the use of a suitable population model.

The desirable characteristics of a good estimator were stated as: consistency, sufficiency,
low bias, low sampling variance, reliability, and simplicity. Maximum likelihood is an
optimal estimator in the large sample case (>100) and can be used with population data and
extreme value data. ML estimates of a model's parameters are efficient with low bias and the
parameter variance is close to the optimum attainable from any estimator. The method can
easily be generalised to the multivariate case and the parameter uncertainty can be deduced
directly from the Information matrix if the ML solutions can be found.

Both Weibull and GEV population and monthly maxima models have been compared as
estimators of return period values. Both the population and monthly maxima models gave the
worst results for the significant wave height with the Weibull model underestimating and the
GEV model overestimating the value. By comparing only the return period estimates it is not
clear if the population method or the extreme value method results in the lowest modelling
uncertainty. However, if the model parameter uncertainty is included in the comparison it is
clear the population approach results in an estimator with much lower statistical uncertainty.
This suggests that the population modelling method is best when only a few years of data are
available - providing the correct model can be found.

The Box and Cox transformation is powerful enough to transform even highly non-normal
data. Furthermore the shape and location parameters respond strongly to the skewness and
kurtosis in the data.
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This ensures the models are capable of modelling the extremes since these moments are
dominated by the tails of the data. The population model has been assembled from a mixture
of ML parameters obtained from the marginal, bivariateand multivariate datasets. The
criterion used for selecting the best set of transformation parameters has been the accuracy with

~ which the resulting population model can predict the marginal 50 year return period values.
This study shows the population models obtained from the application of likelihood theory
are accurate even for the 50 year return period values. Furthermore, the general structure of the
fitted model matches the behaviour seen in the scatter plots given in Ch. 2.

The transformation of the data to a normal model has considerable advantages when used
in level III reliability studies. Most important is that it makes the Rosenblatt transformation
redundant. Second is that the method is simple to implement and, when used with a good non-
linear optimiser, is very efficient. = Overall the transformation approach has several

advantages over the conventional methods summarised in the introduction to the thesis.

Measures of location, spread, skewness and kurtosis have been taken from the work of
Mardia and applied successfully to the DB1 directional wave data. These data were then used
to develop a regression model for the frequency dependent - second moment estimate - cosine
model spreading powers and von Mises model concentration parameters. The models are largely
in agreement with the Hasselmann study results - despite their use of the average of the first
and second moment estimates for the cosine spreading power. The major differences are either
side of the spectral peak where this study predicts a slower increase in the directional width.

For design it is suggested that the spreading power be taken as frequency independent and
that the results at the spectral peak be used for the whole range of f/fm. The results at the
spectral peak show considerable scatter which has been modelled by fitting a Weibull
distribution to the observed values. The result has a lower bound of 1.2 a modal value of 4.6 and
a mean of 17.7. It is suggested the effect of this variability be examined at a later date by
including the uncertainty in a reliability analysis.

The use of circular statistical methods is equally valid for describing the long-term
directional distributions of the winds, waves and currents. A method based on the use of
Fourier-Steiltjes series is presented which enables multimodal directional distributions to be

described using only a few terms from the characteristic function.

A new level III method has been developed for the calculation of reliability, based on the

transformed normal method outlined in ch. 4. In this new method the data are transformed to a
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normal model whereas in the conventional Rosenblatt transformation method the model fitted
to the data is transformed. In most cases the Rosenblatt transformation requires a set of
numerical integrations which are time consuming, in addition, it usually means the
transformation must be defined in a subroutine which is compiled and then linked to the a main
program. The new method on the other hand makes this step redundant and furthermore is
simple to implement in a generalised computer code.

The time-variant reliability calculation can be converted to a time-invariant calculation
by introducing an auxiliary random variable into the standard normal joint density for the
loading and resistance. This conversion allows us to use the simple 'beta’ optimisation method
to approximate the solution of the survivor probabilities for sets of threshold or limit state
functions.

The sensitivity studies indicate the importance of spectral shape, directional spreading,
and wind speed for this type of structure. Current forces on the other hand are small for TLP's,
but it should be noted they are significant for jacket structures. The responses of the TLP were
largest in fully developed seas, with no directional spreading. Wind gusting forces and second
order drift forces have the same order of magnitude for this structure and are both some 25 ~
30% of the first order wave force.

A time-variant reliability analysis has been performed on the tension leg platform
specified in Ch. 6 using the statistical models of the DB1 environmental data described in Ch's
34, and 5. The transformed normal multivariate model for the joint density of the winds,
waves and currents was used successfully with the new method and, when used with a good non-
linear optimiser, was very efficient. The new reliability method has been used to calculate
survivor probabilities for a range of motion and tendon stress thresholds. This enables the
levels of motion, or stress, corresponding to a given exceedance probability, like the 50 year
return period value, to be calculated by interpolation. These values have been compared with
the results from a notional design event approach in which the motions and stresses
corresponding to concurrent 50 year winds, waves and currents are calculated. The comparisons
show that if the return periods are specified on the responses and not the environmental
parameters then the motions and stresses in the tendons are reduced by 15~25%. The level of
reduction is dependent on the threshold type, ie motion or stress, and the number of variables
that are treated as random. In this work the relative directionality of the winds, waves and
 currents was ignored. It is likely their inclusion in the model would lead to further reductions.
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FUTURE WORK

The 50 year return period estimate of significant wave height obtained from fitting a GEV
model to the monthly maxima is inaccurate and has a negative lower bound. The cause is the
attraction to a lower bounded FT-II ( Frechet ) model which has a long upper tail. Two
additional constraints in the likelihood optimisation may result in an improvement. The first
is to restrict the lower bound to be greater than or equal to zero which effectively constrains to
the model to be either an FT-I ( Gumbel ) or FT-III ( Weibull ) model; the second is to constrain
the lower bound to be zero or positive. This should be examined in a future study.

The kernel densities used for this study were of the simplest type. Improved estimates can
be obtained by using adaptive kernels in which the degree of smoothing is adjusted to the local
density.

The multivariate model for the winds, waves, and currents has been treated as unstructured.
The major problem with this approach is that the joint distribution for significant wave height
and zero-up-crossing period is influenced by the breaking wave limit for steep waves. Ideally
the model should be improved to allow for this behaviour, perhaps by using alternatives to the
Box and Cox transformation or alternatively by using a structured likelihood.

The directional wave models are based on fitting parametric forms to the circular moments
at each frequency. This could be improved by fitting a parametric model to all frequencies in
one optimisation. The robustness aspects of the model are also worth detailed study using

simulation.

The response analysis of the TLP is essentially a simple linearised solution which probably
underestimates the non-linear response of for example the tendon stresses. It would be useful if
the work could be extended to include a more sophisticated stochastic linearisation in which
the seastate parameters are taken into account or alternatively if a quadratic programming
method could be used.
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