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S u m m a r y

In this thesis univariate and multivariate statistical inference is examined and then used 

to model the joint distributions of the environmental winds, waves and currents recorded by the 

DB1 data buoy. This model is then used to examine the return period responses of a tension leg 

platform using a linearised frequency domain solution.

The thesis is arranged into eight chapters each of which has its own nomenclature, 

conclusions, tables, and figures. The references use a name and year system and are given at the 
end of the thesis.

Chapter 1 reviews the contents of the thesis and outlines the analysis methodologies used 

to synthesise a joint probabilities model for wind, wave, and current magnitudes and directions. 
The use of this model in a level III, time-variant reliability analysis is then discussed to 

illustrate the two different design philosophies used by the American Petroleum Institute and 

the United Kingdom Department of Energy.

Chapter 2 summarises the wind, wave and current data recorded by the United Kingdom 

Offshore Operators (UKOOA) DB1 data buoy. This data has been assembled into a 

multivariate dataset and screened to assess if there is any underlying structure in the data. The 

marginal distributions of the population and monthly componentwise maxima are then 

examined to assess if the data result from the mixture of more than one population.

Chapter 3 reviews both parametric and intrinsic estimators for univariate samples of data. 

The desirable characteristics of an estimator are examined and then used to select maximum 

likelihood (ML) as the best estimator for this project. One major advantage of this method is 

that the sampling covariance matrix for the model parameters can easily be estimated from 

the sample information matrix. The ML estimators and sample information matrices for the 

Weibull and Generalised extreme value distributions are then developed and applied to both 

the DB1 data and a sample of structural response time series. A comparison of population and 

extreme asymptotic methods is then made to determine which approach is most suited to 

environmental datasets. The results indicate population modelling is reasonable when the
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correct model is used and that the asymptotic approach can lead to poor estimators in the small 

sample case.

Chapter 4 examines both intrinsic and parametric estimators for multivariate samples of 

data. The multivariate kernel density estimator is discussed and then used with the bivariate 

pairs of DB1 data to confirm the multivariate sample is unstructured in the statistical sense. 

The transformation of the marginal DB1 data to near-Normal distributed variates is then 

examined and extended to the multivariate case using the method of maximum likelihood. 

This method is applied to bivariate and multivariate sets of the DB1 data and the results are 

then used to select the best set of transformation parameters. The selection criterion for the best 

parameters is the accuracy of the extreme value predictions from the population model. The 

results demonstrate the transformed Normal estimator has margins that give accurate 

predictions for the 50 year return period values. In addition, when the modal value of say zero- 

up-crossing period conditioned on significant height is checked against the scatter plots it is 

found the results are in close agreement. The chapter then concludes with a review of the 

currently available multivariate extreme value models.

Chapter 5 deals with the modelling of directional probabilities and in particular uses 

circular statistical theory with standard directional wave analysis theory to infer the 

parameters of cosine and von Mises models of directional spreading. The robustness of simply 

equating the angular moments of the data to the angular moments of a model is examined using 

simulation. The results indicate the second angular moments are more robust to noise in the buoy 

response. Consequently they are used with the directional spectra recorded in seastates with 

significant wave heights greater than 6.0 metres to determine if the spreading is more narrow 

in extreme seas than predicted by the Hasselmann and Mitsuyasu models. This comparison 

indicates that the Hasselmann study is applicable to extreme seas.

Chapter 6 describes the frequency domain model of a tension leg platform that is used in a 

subsequent reliability study. The stochastic wind, stochastic first and second order wave, and 

steady current loading calculations are explained and then a series of parametric sensitivity 

studies are discussed. This identifies the winds, and waves as the primary causes of the 

response of the platform. The response calculation considers all six degrees of freedom and 

allows for the coupling of some modes of motion.

Chapter 7 brings together all of the previous chapters into a time-variant reliability 

analysis of the tension leg platform developed in chapter 6. The effects of spectral shape, wind 

speed, and directional spreading on the within seastate exceedance probabilities for a variety 

of thresholds are examined to assess which parameters have a significant influence on the 

levels of structural reliability. The multivariate transformed normal model for the DB1 data
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is then used in the reliability calculation to determine the motion and tendon stress response 

levels with return periods of 50 years. These values are then compared with the responses that 

result from a design event approach in which the wind speed, wave height, and current speed 

are set at their 50 year return period values.

Chapter 8 contains the final discussion and conclusions and ends with some 

recommendations for future research work.
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1. In t r o d u c t io n

The philosophy used to design an offshore structure can influence the lifetime levels of 
operational risk and structural reliability ( see Madsen et al (1986) ) owing to the large 
uncertainties in the loading, strength, and modelling. These uncertainties have been examined 
by Miller (1987) who concludes the only rational way of setting acceptance levels for safety is 

to use reliability based methods. An early attempt at using probabilistic methods to set 
environmental criterion for the design of a tension leg platform is described by Leverette et al 

(1982). They examined the joint behaviour of wind speed and significant wave height using 
simple methods of analysis which unfortunately do not generalise to the complete multivariate 
case. Other models for joint probabilities have been proposed: for example, Pugh & Vassie 
(1980) examined the joint distribution of tidal and storm induced surge elevations, and 
Mathisen & Bitner-Gregersen (1990a) examined the joint distribution of significant wave 

height and wave zero-up-crossing period ( which as we shall see is one of the most difficult 

pair of variates to m odel). Finally, it is worth noting the work reported in the Exploration & 
Production Forum (1985).

The rules and recommendations of several classification societies and regulatory 

authorities are currently used to design mobile or compliant offshore structures: most of them 

have been critically reviewed in Miller (1987) from the point-of-view of loading uncertainties. 

The United Kingdom, Department of Energy (1990) guidance for designing offshore installations 
implicitly uses a design event approach in which the environmental wind, wave, and current 

loads are determined using concurrent 50 year return period extreme values for the wind speed, 

wave height, and current speed. The wave zero-up-crossing period used in the analysis can be 

determined from wave steepness limits. Whilst it is simple, this approach will lead to 
populations of structures with widely varying levels of structural reliability since it is the 

combined wind, wave and current load effect which is of interest.
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Introduction

If the use of design Guidelines or Recommendations are to result in populations of structures 

with near uniform levels of reliability then the structure must be designed so that the 

component and system reliabilities for each design check ( displacements, yield strength, 

interaction equations, collapse mechanism etc. ) are the same. The American Petroleum 

Institute: Recommended Practice for tension leg platforms - RP2T (1987) - recognises this fact 

and states:

Environmental criteria should be associated with a recurrence interval of the response 

of the structure.

This criterion is stipulated because RP2T recognises there may be different design events which 
give rise to the worst responses in different parts of the structure. For example, the return 

period tendon stresses may be induced by one of several combinations of wind speeds, wave 
heights, zero-up-crossing periods, tide levels and so on. The disadvantages of the criterion 
however are that it requires a detailed joint probabilities model for the environmental 
variables; and the analysis required for the conceptual and detailed design is more complex. An 
example of how environmental criterion can be set for floating structures is given by Leverette et 
al (1982) for the Hutton tension leg platform.

For Tension leg platform design several cases must be checked to ensure fitness-for-purpose 
during the operational life. For example, RP2T recommends: project, system condition, 
environment, and safety criteria all be examined. This thesis concentrates on modelling 
methodologies for the environmental criteria which are classified as: extreme, reduced 

extreme, normal, and calm. A joint probabilistic model for these cases must therefore apply 
both to the population as well as the extremes whilst being sufficiently general to deal with 

large numbers of random variables. The aim of this thesis is to define a methodology for the 

statistical inference of a probabilistic model of the environmental parameters used in a 
reliability study.

There are several approaches to reliability calculations which are generally classed as 

levels I, II or III, see Thoft-Christensen & Baker (1982). This work examines how a level III 

joint probabilities model can be synthesized; using data measured by the United Kingdom 

Offshore Operators data buoy DB1 as an example. This dataset was chosen because it contains 
hourly ten minute mean wind, hourly five minute mean current, and three hourly heave, pitch 

and roll measurements, see Freathy et al (1982). These values were recorded continuously for a 

period of four years, thus they provide sufficient data for a detailed statistical model.
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In conventional deterministic design 'fitness-for-purpose' is checked using design codes or 

recommendations in which thresholds are set for the responses. For example, members 

sustaining tension forces are designed so that the peak expected stress during the design life 

does not exceed the yield stress divided by some factor of safety. In fact most structural 

reliability problems can be formulated in terms of loading and response variables.

The loading on an offshore structure arises from the combination of several correlated, time 

varying, environmental processes. The historical development of data measurement 

programmes, see Tucker (1991), has resulted in the development of a seastate based analysis 
methodology for marine and offshore structures in which the wind, wave and current stochastic 

processes are assumed to be stationary for some finite duration. Clearly none of the processes 

are stationary in the strict sense, see Prince-Wright (1991a), however most seastates can be 

assumed to be weakly stationary ( in their mean, and variance ) for durations of say three 
hours. This point was confirmed recently by Labeyrie (1990).

The adoption of a seastate based model enables steady-state solutions for the responses of 
compliant systems to be calculated using frequency, or time, domain analysis procedures. The 
problem of calculating exceedance probabilities, or its complement survivor probability, can 
then be formulated as a short-term/long-term problem which is expressed in integral form as

Pr = \ . . . \P t (x)f{x)dx  [l.i]
V*

In this time-variant integral the within seastate ( short-term ) probability of the response

exceeding some level £ is given by where X  is the vector of environmental loading

variables. The second term in the integral, which is also used by Bjerager et al (1988), is 

effectively a weighting function for the probability of occurrence of the set of variables X  . 

The integral is similar to the Battjes (1970) summation used for the determination of extreme 

wave height and enables the long-term survivor or exceedance probabilities to be calculated for 

the threshold level. In Ch.7 it is shown how this method can be generalised using the time- 
invariant reliability method, see Madsen et al (1986), to obtain failure probabilities for 

systems with uncertain strength.

One disadvantage of reliability methods is the frequent lack of suitable parametric models 

for a given set of loading and strength variables. The statistical modelling problem is in fact 

more difficult for the environmental variables since it is extremes of the combined loading
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process which result in crossings of the design thresholds. On the other side of the equation the 

strength models generally have some well defined lower bounds imposed by the use of quality 

control in the fabrication yard. Models for the strength uncertainty do not therefore need to be 

accurate in the upper tails of the distribution since at the time of a threshold exceedance, or 
failure, the strength will be at or near its mean value. Another reason why strength 

uncertainty is more simple to model is the variables are generally independent. One 

complication which does arise for some structures is time degrading strength. This is 

particularly important for cargo ships which are often poorly maintained and susceptible to 

damage during operation. In such cases a time-variant strength model is preferable, see Shi 

(1991).

This thesis does not examine the modelling of strength and fatigue uncertainties in any 

detail. However, it should be borne in mind that the statistical methods used for the 

environmental winds, waves, and currents, are also applicable to any set of variables, and in 

fact the transformation modelling method discussed below is in many ways better suited to 

strength uncertainty.

Equation [1.1] can be reduced to three separate problems. The first is estimation of the 
short-term exceedance probability for the threshold level, conditioned on the occurrence of the 
set of variables X .  The second is modelling the joint density for the environmental parameters 
f (x ) .  And third, the solution of the integral, which for most practical purposes will have 

several dimensions. Although the intention was to concentrate on modelling the joint density 
/ ( x) for use in the reliability integral, a new approach to solving the integral developed out 

of the use of data transformation methods. The importance of this new approach is most easily 
understood by comparing it with the contemporary methods used to model f ( x )  and the 

solution methods usually used to solve the integral

Several joint probability models for winds, wave and currents have been proposed. For 
example, Bitner-Gregersen & Haver (1991), Haver & Winterstein (1990), and Turner & Baker 

(1988) all give models for the North Sea. The formulations for these models were to some 

extent determined by the use of the Rosenblatt transformation (see Ch.4, Appendix C) in the 

level III reliability method outlined in Ch.7. In this method the joint density function is 
defined by a marginal distribution and then a series of conditional density functions, each of 
which are modelled using parametric functions that have been fitted to the conditioned data 

using some form of estimation process. Whilst this approach is simple it requires the data be 

conditioned and then used to fit empirical functions to relate, for example, the parameters for 

the wind speed distribution to the level of the seastate.
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The primary disadvantage of the conditional modelling approach is that there is no 

theoretical method for selecting the best way of defining the joint density. For example, do we 

use wind speed or significant wave height as the marginal distribution off which all the other 

variables are conditioned? A second disadvantage of the method is that there is no way of 

assessing the shape, scale and location parameter uncertainties for the fitted models; this 

makes it difficult to test whether one model is more appropriate than another. Finally, the 

last disadvantage is the Rosenblatt method itself which is computationally expensive and 
usually requires a series of numerical integrations.

Before attempting to model the multivariate sample, univariate estimation methods 
were reviewed. Univariate statistical estimators using intrinsic kernel density methods, and 

parametric maximum likelihood methods were developed with a view to their extension to the 
multivariate case. The normally subjective nature of comparing models was reduced by first 
defining those characteristics which exemplify a good estimator and then by selecting the 
'best* estimation process for the problem. The method of maximum likelihood is selected for 
both its overall performance and the ease with which it can be generalised to the multivariate 
case. In addition, it is shown how the information matrix can be used to quantify the sampling 
uncertainty of the estimated model parameters. This theory is of importance to designers 
wishing to specify confidence limits or partial safety factors for design event environmental 
parameters.

Population and asymptotic methods were then compared as estimators of design return 
period values for winds, waves, and currents. This comparison shows that the population
modelling approach can be used reliably given the correct population model: this is significant 
because the statistical uncertainty estimated using the information matrix is much smaller in 

the large sample case. Furthermore, the assumption of asymptotic Normality for the 

parameter sampling distribution is only accurate for large samples.

In this work two parametric approaches to modelling the multivariate density were 

examined. The first used the asymptotic multivariate models of Tiago de Oliveira (1980), and 

Tawn (1990). In their work they use the concept of marginal M-ordering in which 

componentwise maxima are extracted from the vector observations. This approach is suitable 
for some applications, like for example the hydrology problem of predicting the probability 

i that no floods occur at any of several sites during a year. However, because the events are

! virtual events, some of which may be physically inadmissible, it is questionable whether
I
t
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these models are suited for use with compliant structures. This is currently the subject of 
research by J.A Tawn at Sheffield University.

The second approach is to use population models for the joint data: however, unlike the 

conditioned models outlined above, a transformation approach was used in which the 

parameter estimation is performed using the full sample. There are several good estimation 

procedures for a model's parameters: moments, least squares, maximum likelihood are 

examples. In this work, the method of maximum likelihood was selected as the best overall 

estimator because in the large sample case: its estimates have the optimal sampling variance 

obtainable from any estimator; and the estimates are generally unbiased. Two further 

advantages are that it can be generalised easily to the multivariate case and furthermore 
estimates of the parameter covariance matrix can be obtained simply from the Hessian matrix 

of the log-likelihood at the maximum likelihood point.

The heave pitch, and roll time series recorded by the DB1 data buoy were converted to co- 
and quadrature spectral densities to enable the directional characteristics of the wave process 
to be identified. During the initial stages of this study in 1988 it was unclear whether or not 
the spreading models developed by Hasselmann et al (1980), and Mitsuyasu et al (1975) were 
satisfactory for use with extreme waves. One oil company stated their doubts that any 
significant amount of spreading was present and consequently it was decided to examine the 
directional spectra recorded by the DB1 in those seastates with significant wave heights 
greater than 6.0 m. The directional wave analysis mostly follows the work of Cartwright 
(1963), Longuet-Higgins et al (1963), and kuik et al (1988). However, the use of Mardia's (1972) 
detailed account of circular statistics resulted in a solution for the parameters of a von Mises 
distribution which has been presented as an alternative to the conventional cosine half angle 

model.

The repeated use of the time-variant reliability method of probabilistic analysis enables 
us to calculate the response levels with a given return period, as required by the API 

Recommendations. This method has been used with: a transformed Normal model of the joint 

density for the winds, waves, and currents recorded by the DB1 data buoy; and a tension leg 

platform defined by Tan & de Boom (1981).

The first order wave loading on the TLP was modelled using a combination of a Mori son 

loading model for the pontoons and Chakrabarti (1987) closed form solutions for the columns. 

Second order slowly varying wave drift forces were calculated only for the columns using the 

simple MacCammy and Fuchs method as modified by Chakrabarti (1984). The responses of the
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TLP were calculated for all six degrees of freedom taking into account all coupling between 
modes of motion. The first order wave farce and motion transfer functions were then compared 

with the results from a comparative study in which several organisations had analysed the 

same structure, see Eatok-Taylor & Jeffereys (1986). This comparison demonstrated the loading 

and response model was accurate for all but the high frequency waves which are diffracted by 

the structure.

The wind and current forces on the TLP were also modelled. The Ochi (1988) wind gust 
spectrum was used to model the stochastic wind forces and a simple single degree of freedom 
oscillator was used to determine the in-line responses of the platform. The current forces on the 

platform were taken as constant during the three hour duration seastates. Sensitivity studies 
were performed to assess the effects of varying the significant wave height, zero-up-crossing 

period, wind speed, and current speed. This demonstrated the responses were small for currents, 

and significant for the gusting wind and wave drift. The influence of currents in the reliability 
analysis was found to be small, as expected for this type of structure, however it should be borne 

in mind that the current forces on shallow water fixed structures are significant, see Department 
of Energy (1988).

The motion and tendon stress responses of the TLP corresponding to a 50 year return period 
were examined in both unidirectional and directional seas. These response levels were 

calculated using the time-variant reliability method and the DB1 data joint probabilities 
model. The results were then compared with a notional design event approach in which the 

responses were calculated for concurrent 50 year wind speed, significant wave height, and 
current speed. Two zero-up-crossing periods were used based on the upper and lower wave 
steepness limits recommended by the Department of Energy Guidance notes. The results of the 

comparison show the design event approach results in response estimates which are some 

15-25% higher than the responses predicted by the reliability approach. This comparison is 

however rather artificial since like is not being compared with like, the real importance of the 

reliability method is as a calibration tool which can be used to quantitatively assess the 

importance of variations in one or more random variables.
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1.1. MATHEMATICAL NOTATION

The mathematical notation used in this thesis is defined at the beginning of each 

chapter, however, some general rules apply. To unambiguously identify a quantity in an 

equation we must differentiate between:

• deterministic values
• randomly selected samples from a population

• specified variables for a population

• vectors of deterministic values
• vectors of samples

• vectors of random variables

• expected values
• sample means
• maximum likelihood estimates for model parameters

• kernel estimates
• sample estimates of statistics and model parameters

The conventions adopted in the subsequent chapters are as follows:

• a deterministic value or sample is written in plain, lower case

• a random variable is written in plain,uppercase
• a vector of samples or deterministic values is written in boldjowercase
• a vector of random variables is written in bold,uppercase
• a maximum likelihood or kernel estimate has the caret ( X  ) symbol on top

• a sample estimate has the tilde ( X  ) symbol on top

Random variables which are independent, identically distributed are denoted iid and the 

condition if and only if is denoted as iff .

We use the terms survivor probability for Pr{X < x) = Fx(x) and exceedance probability for 

Pr(X > x) -  1 - F x(x).

9
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Chapter 2 

A n a l y s is  o f  th e  D B 1  d a t a s e t
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NOMENCLATURE

Dw wind direction 

Dc current direction 

/ / ( / )  transfer function

H. significant wave height

m component maxima event

n number of samples

P number of variables

s(f) spectral density

T, zero - u p -  crossing period

u w mean wind speed

Uc mean current speed

X random vector

X observed sample on vector X

xy ith sample of the jth variable

11
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2. In t r o d u c t o r y  r e m a r k s : A n a l y s is  o f  th e  D B 1
DATASET

This chapter summarises an analysis of the joint wind, wave and current data recorded 
by the United Kingdom Offshore Operators Association (UKOOA) data buoy DB1 during its 
operation in the South Western approaches to the United Kingdom. The primary objective here 
is to describe the multivariate data set used in the statistical modelling chapters of this 
thesis. The ultimate aim is to produce a multivariate parametric model suitable for use in a 
probabilistic analysis of a tension leg platform. This results in two requirements: first, a 
descriptive joint statistical model of the observed wind, wave and current populations; and 
second, a joint model for estimating the wind, wave and current extremes, or return period 
values.

The first stage of any multivariate analysis is to assess if the data are structured in the 
statistical sense. By structured we mean there is some functional relationship between one or 
more of the random variables. The simplest way of identifying structure in a multivariate 

sample is to examine the bivariate scatter plots for each pair of variables. The scatter plots 

also give an indication of the dependence between the pairs which provides a qualitative 

check on the results from the multivariate analysis in Ch. 4.

The DB1 data buoy was deployed at location 48° 42’ 55" N, 8° 58* 15" W during the 
period from June 1978 until March 1982. In total the buoy was operative for a period of 45 

months during which time the data return was 'fair' for the heave displacement and wind 

speed, and poor for the pitch angle, roll angle, and current speed. The dataset was selected 

after consultation with the Institute of Oceanographic Sciences (IOS); essentially, it is one of 

the few datasets which is not confidential and contains wind, wave and current measurements 

taken in the same location and at approximately the same time. The raw ( unprocessed ) data

12
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was analysed using a FORTRAN time and frequency domain program which uses some of the 

standard time series analysis theory discussed in Tucker (1991). A more detailed account of the 

methods used for this work is given in Prince-Wright (1991a).

2.1 VARIABLES MEASURED BY THE DB1 DATA BUOY.

In total, the buoy recorded both meteorological and oceanographic environmental data 

for a period of four years, during which time it recorded 32981 hourly summaries of:

Meteorological -

10 minute mean wind speed (8.7m elev.) (2)

3 second gust wind speed (2)
Wind direction (2)

Barometric pressure (2)

Air temperature (2)

Oceanographic -

Sea surface temperature (2)
Surface current (3m below surface) (1)

And 9034 three hourly 20 minute duration time series of:

Oceanographic -
Heave (1)
Pitch (1)

Roll (1)
Compass heading (1)

The numbers in brackets indicate the numbers of sensors used to record the data, and hence the 
level of redundancy in the system. A more detailed description of the specification of the 

recording instruments is given in Table 2.1, and Freathy et al (1982).

2. 1.1 SPECIFICATION OF THE DB1 RECORDING INSTRUMENTS

The general arrangement of the DB1 data buoy is shown in Fig. 2.1. The hull and 

mooring arrangements were designed to provide wave following characteristics and the ability 

to survive a 50 year return period wave. The specification of the meteorological and 

oceanographical sensors is reproduced from an IOS report in Table 2.1 .O f particular note is the
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field accuracy of ±0.2m for the heave elevation, and ±1° for the pitch and roll. Note also 
that the currents are recorded as a five minute mean taken about the half hour with a field 

accuracy of 0.02 m/s. This means the current data is recorded approximately ten minutes after 

the wave record has been recorded. However, visual examination of the time series for heave, 

and checks on the stationarity using autocorrelation show this is sufficiently close for them to 

be taken as concurrent. Likewise the wind speeds, which are recorded with a field accuracy of 

lm /s, are practically concurrent being recorded as an average during the ten minutes preceding 

the 20 minute wave recordings.

2.2 BUOY RESPONSE TRANSFER FUNCTION: SURFACE FOLLOWING QUALITIES

The integrated heave, pitch and roll accelerations give the response time series for the 

buoy displacements. Model testing was performed by the Institute of Oceanographic Sciences to 

determine the surface following characteristics of the buoy; they found that for frequencies less 
than 0.2 Hz the transfer function was approximately 1.0. At higher frequencies the transfer 

function was less ideal with a value of 0.75 at a frequency of 0.33 Hz, however, the scatter plots 

indicate the minimum observed wave period was approximately 4.0 seconds.

For this study we are primarily concerned with the higher seastates in which the zero- 
crossing period would be greater than 5 seconds, consequently, any bias in the buoy response at 

the higher frequencies is unlikely to significantly affect the estimated significant height and 
zero-up-crossing period. On the other hand it would be worth checking the bias if the buoy 

response transfer function were available since the true surface elevation spectrum Sx( f ) can be 

recovered from the measured response spectrum SR( f )  using

s * ( / ) = W ) / ( / / » ( / ) ) 2

For simplicity, in this study the seastate characteristics have been calculated using the 

moments of SR ( / )  since the precise form of the buoy transfer function was not known.

2.3. CHECKS ON THE DATA ANALYSIS

The first objective of the data analysis is to provide a reliable database of jointly 

occurring winds, waves and currents. To ensure the results from this analysis are correct a sample 

of this study’s ( denoted GU ) frequency domain results is compared with the results from the 

original frequency domain analysis ( denoted UKOOA ). The results are shown in Fig. 2.2 and

2.3 which compare estimates of significant wave height and zero-crossing period. In general,
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the results for the significant wave height are in dose agreement with a few exceptions, 
however, the results for the zero-up-crossing period have larger scatter and a number of 

outliers.

The second objective of the data analysis is to provide a sample of multivariate random 

variables corresponding to the extreme winds, waves and currents. To ensure the monthly 

extremes are error free the results from this study with seastates greater than or equal to 5.0 

metres significant height were cross-checked visually against the original frequency domain 
results supplied by the Marine Information Advisory Service (MIAS), Bidston. This check 

shows that in general the estimates agree but there are again some differences, in many cases 

the cause was corrupted observations.

2.4 OBSERVED VECTOR EVENTS FOR THE POPULATION MODEL

The data recorded by the DB1 can be treated as independent, identically distributed vector 

observations drawn from a multivariate process X  where the set of observed environmental 
variables is

x,T = {H„T„UW,U ',D W.DC} i = 1. 9034

In this work, H s is the significant wave height, Tt is the zero-up-crossing period, Uw is the 10 

minute mean wind speed (8.7m elev.), Uc is the surface current 3m below surface, and Dw and 

Dc are the associated directions for the wind and the currents, respectively. Note the winds 

and the waves are assumed to be colinear in this work. In matrix notation the full sample of 

vector observations is written as X ~ ; i  = Here Tl is the number of complete

vector observations - that is observations in which there are no missing values - and p  is the 

number of variables. Writing the matrix long-hand then we have

*11 X 12 . ... V
T *21 * . X 2 ,

X  =

/ . J  • • v

7*where the columns of X  represent the marginal sample of data, and the rows represent each 
jointly occurring vector observation. In fact, after eliminating the vectors with missing values 

the number of samples left in X  was 5673. This complete sample has been used in all of the 

statistical inference in Ch. 3 and Ch. 4.
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2.5 COMPONENTWISE MAXIMA FOR THE MULTIVARIATE EXTREMES MODEL

Multivariate extreme value theory provides a framework for modelling the joint 

distribution between component maxima. Denoting all of the environmental data recorded by 

the DB1 in some fixed period of time, or number of samples t , as

In terms of the DB1 data the vectors of componentwise maxima mi might correspond to the 

monthly largest values of the components of X  , that is

mk = { largest Uw in month k,

Here we instantly see the limitation of current asymptotic multivariate theory which deals 
with the distribution of the random vector mk. The problem is that mk primarily consists of 

virtual events, for example, the largest wind speed Uw does not necessarily occur at the same 

time as the largest current speed Ue observed in the same month! The consequences of this 

limitation are generally ignored in the work of Tawn, Pickands and others, and further 

research is needed to identify the effects of this limitation of the theory.

2.6 RELIABILITY OF THE TIME SERIES ANALYSIS

Problems with the time series were frequently encountered when analysing the heights 

and periods using the time domain method outlined in Section [2.6.1] below. Overall some 20% 

of the data is corrupted by spikes and missing values which cause significant bias in the 

estimated mean level and resulted in the time domain analysis giving inaccurate results for the 
characteristic heights and periods. The sensitivity of time domain analysis to errors in the 

time series was identified by the original data collectors who eventually came to regard the 

time domain height and period results as so unreliable, compared to the spectral estimates, 

that they were never quality controlled. Their findings are therefore largely validated by our

the component maxima are then the random vectors

m = max x, = ( max xJ ; t maxxp;t)

largest Ht in month k, 
largest Tt in month k, 
largest Ucin month k}
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experience, however, it is essential to realise that the wave records used for this project's time 

domain processing are the same as those used by their spectral analysis software. It is therefore 

important to ensure the frequency domain results are not biased by corrupted data and 

consequently it was processed both in the time and frequency domain to compare one with the 

other.

2.6.1 TIME DOMAIN ANALYSIS

The time domain analysis of the wave 'burst' recordings follows the recommendations of 

Draper (1963), Tucker (1963), and Goda (1985).

The datum level for each wave record was determined by fitting a parabolic mean level to 

each sample using a simple least squares method, Goda (1985). Once the datum level for the 

heave displacements was found the record of discrete points is examined in order to estimate 

the location of: zero up-crossings; local maxima at the crests; and local minima at the troughs. 
The results were then used to calculate the zero-crossing and crest periods. The procedure 

adopted was an approximate one and is only satisfactory when the sample rate is sufficiently 

high to define the occurrence and location of the peaks and crossings. A sample period of not 
greater than one tenth the significant wave period is recommended by Goda (1985). However, 
the DB1 sample period for the heave, pitch and roll signals was 1.2 seconds suggesting a 
minimum significant wave period of 12 seconds. Clearly, this is too high for the bulk of the 
recorded data and we could only ignore this advice.

A summary of the time domain estimated wave statistics calculated by the program is 
illustrated in Fig. 2.4, which also shows how the heights and periods are defined. Using the 

wave-by-wave statistics the significant height is defined as the average of the highest one 
third zero-up-crossing waves, and the zero-up-crossing period is defined as the average period 
of the wave zero level up-crossings.

2.6.2 SPECTRAL ANALYSIS

Harmonic or spectral analysis of data provides a powerful and robust means of 

analysing the composition and statistics of a random process given finite duration samples. 

There are several classical, and contemporary texts on Fourier analysis, perhaps the best known 

early works are those of Blackman & Tukey (1958) and Cooley & Tukey (1965). More recently 

Chatfield (1991) and Newton (1988) presented useful and theoretical texts and Tucker (1991) 
wrote a detailed practical and theoretical book on wave measurement and analysis.

Meteorological and oceanographical time series are generally difficult to record 

reliably and inevitably some data will be corrupted. Spectral methods, however, rarely fail to
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produce an estimate for the characteristics and are therefore more robust However, they can 

often be too robust since they will transform just about any signal, no matter how corrupt it is. 

This often results in spectral estimates of statistics which are at best biased, and sometimes 

completely wrong . On this project, the policy adopted when analysing the heave time series 

was to process the signal in both the time and frequency domain and then compare the results to 

determine if it was likely the data were corrupted. In most cases the results were reasonably 
close and the data was included in the database. However, when estimates of variance and 

mean period were not in agreement the data was rejected.

2.6.3 COMPARISON OF TIME AND FREQUENCY DOMAIN ESTIMATORS

As a further check on the quality, and accuracy of the results from 'DBl' 50 pairs of 

significant wave height, and zero-crossing period were compared with results supplied by 

MIAS in listings from the original spectral analysis. Fig. 2.5 shows the GU time and GU 
frequency domain results for the significant wave height. The GU time domain values of 

significant height are calculated as the average height of the highest one third crest to 

subsequent trough waves, ie H U3. The spectrally calculated significant height H m0, based on

, is consistently higher than the time domain estimate, with the difference appearing

as a gradient of 1.12 in the linear regression equation shown on the graph. The scatter of the 
estimated Hs is relatively low giving a correlation coefficient 'R ' of 0.987.

A comparison of the GU time domain and UKOOA frequency domain significant wave 
heights is shown in Fig. 2.6. The original analysis produces estimates with slightly lower bias 
but larger scatter. Overall the trend is the same as for the GU time and frequency domain 

results with the original frequency domain estimator overestimating the significant heights by 

some ten per cent. The GU time and GU frequency domain estimates for the average zero-up- 
crossing period are compared in Fig. 2.7. Clearly, there is a linear trend with larger scatter 

than is the case for the significant height. The frequency domain estimates of period are 
generally shorter than the time domain estimates, however, this is a well known 

characteristic of spectral estimates which has been examined by Goda (1974), he found the 

ratio Tt (fre([) /  Tt ("time)  varies with At / T  , where At is the sample rate in seconds and Tp 

is the spectral peak period.

Goda loc cit suggests a correction factor Tz(freq) = 0 .83  Tt ( timej and attributes the 

differences to both non-linear harmonic components in the high frequency range, and aliasing. 
This value is close to the 0.86 correction suggested by Fig. 2.8, however, if we examine the 

example time series and its heave spectra, shown in Fig. 2.9, it is clear the effects of aliasing

18



QuZz2. Anattsis o f f a  PR I P a ten t

are small for the DB1 data. Tucker (private communication) disagrees with Goda however and 

believes the differences are due to the thresholds of the recording instruments.

The effect of non-linearity has been examined by Longuet-Higgins (1963), and Bitner- 

Gregersen (1980) who adopt the Gram-Charlier perturbation of the Gaussian distribution to 

model the effects of mildly non-Gaussian surface elevation. These methods were not used since 

the wave buoy tends to act as a linear filter on the surface process time series.

2.7 SCATTER DIAGRAMS FOR PAIRS OF VARIABLES

The scatter diagram for significant wave height and zero-crossing period is the basic 

environmental input for a long-term, compliant systems response analysis. The information in a 
scatter diagram, which is effectively a bivariate histogram, suffers from the same drawback 

as the univariate histogram in that some of the information is lost by binning the data. 
Nonetheless they do provide a convenient way of summarising pairs of random variables and 

are simple to interpret. The data recorded by the DB1 during its four year operation has been 
sorted and grouped to form the scatter diagrams shown in Tables 2.2 to 2.10. Note the rows and 
columns have been summed in each table to give the marginal histograms and that the cells 
contain the actual number of observations in the range, the upper limit of which is given for 
each cell.

In Ch. 3 and Ch. 4 both parametric maximum likelihood methods and non-parametric 

kernel methods are outlined for the univariate and multivariate case and then applied to the 
data.

2.7.1 SIGNIFICANT HEIGHT AND PERIOD

Scatter diagrams for the time and frequency domain estimates of significant wave height 
and zero-crossing period are shown in Tables 2.2 and 2.3. The correlation between the frequency 

domain and time domain estimators is illustrated in Table 2.4 which shows the results agree 

very well for the lower wave heights, albeit with some scatter about the mean, but that the 

bias appears to increase with increasing wave height. At the extreme sea states the frequency 
domain estimator overestimates the significant height giving a bias of approximately 10 per 

cent.

2.7.2 SIGNIFICANT WAVE HEIGHT AND WIND SPEED

The ten minute mean wind speed and significant wave height scatter diagram is given in 

Table 2.5. The degree of correlation is difficult to assess since there is considerable scatter about 

the mean. This is perhaps surprising since we might expect the wind and the waves to be
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strongly correlated, one reason for the low correlation is the short duration of the 10 minute 

wind time average which is reasonable for the design of fixed and compliant systems. It has 
been suggested ( Dr. C. Graham, personal communication ) that the correlation is stronger if a 

longer time average is chosen, however, it is the short duration average (3 seconds up to 10 
minutes ) which is of interest for design since this is consistent with the size, and motion periods 

of typical offshore structures.

In fully developed seas the Pierson-Moskowitz surface elevation spectrum predicts the 

mean significant height to be Hs = 0.0227 * ifi,  where the wind speed II is the 10 metre 

reference height, hourly averaged, wind speed which is closely related to the ten minute 

average wind speed recorded by the DB1 buoy. If we superpose this on the scatter plot the 

quadratic mean model follows the mode of the bivariate data at the lower wind speeds; at 

higher wind speeds it is difficult to assess where the mode lies because of the small number of 
samples recorded in extreme conditions, however, it is dear the quadratic model overestimates 
the significant height by a large amount. This is most likely because the fetch length is usually 

too short for the seas to develop fully and suggests that even the pair are

unstructured - or at least can be treated as such.

2 .7 3  TEN MINUTE MEAN AND THREE SECOND GUST WIND SPEEDS

The scatter diagram for the ten minute mean wind speed and the three second gust speed is 
shown in Table 2.6. The two wind speeds are dosely correlated over the whole range of speeds 
with a linear mean of the form Uw(10m) — 1.33U]0(3s) which corresponds dosely to the 

recommendations of the Department of Energy (1990a),Table 11.5.

2.7.4 SIGNIFICANT WAVE HEIGHT AND CURRENT SPEED

Currents are generated by a number of mechanisms for example, tidal and storm induced 
surge, density differences, large scale eddies, and ocean circulation. The tidal component of a 
current results from the daily, seasonal, and 'nodal' changes in the earth's gravitational field 
caused by the motion of the moon and the sun, see Pugh (1987). This imposes a periodidty with 

two dominant components and a number of sub-harmonics, each with random phase and 

amplitude. Storm induced currents are caused by the shear forces at the air-water interface and 

pressure gradients over the storm system. Unlike tidal currents storm induced currents are not 

periodic but random in occurrence ( though of course they are seasonal). The result of summing 
each component is a current with both periodic, and random components, as seen in Fig. 2.10.

In the analysis of the DB1 data no distinction is made between the separate components and 

the total current will be assumed to be the variable of interest for the design of offshore 
structures. The scatter diagram for significant wave height and current speed is shown in Table
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2.7. The quadrant of the scatter plot defined by the marginal extremes tends to suggest that the 

extreme values of significant wave height and current speed are asymptotically independent, 

with low probability of occurrence for simultaneous high waves and current speed. This 

indicates that the conventional design approach of combining extreme seastates with extreme 

currents will result in an over-conservative model for the South Western Approaches site; 
though of course the currents at other sites may be more highly correlated with the waves.

2.7.5 WIND SPEED AND CURRENT SPEED

The 10 minute mean wind speed and the 5 minute mean current speed show little or no 

correlation in the scatter diagram shown in Table 2.8. This may be due to the currents being 

dominated by the tidal component and suggests a refined analysis - in which the tidal and 

storm currents are deconvolved - would give an improved model. This could be done in a future 
investigation using the methods discussed in Pugh (1987).

2.7.6 DIRECTIONAL DISTRIBUTION OF SIGNIFICANT WAVE HEIGHT AND ZERO-UP- 

CROSSING PERIOD

The directional distributions of the time domain significant height and zero-up-crossing 

period with wind direction are shown in Tables 2.9 and 2.10. Note that the conditional, 

directional distribution P{0 | Hs} can be inferred by summing the number of occurrences in the

required range of heights and that a more rigourous analysis of the directionality is given in 
Ch. 5., where the within seastate, and long-term directional distributions are examined using 
Fourier methods.

2.8 POPULATION MODELS FOR THE MARGIN

The marginal histograms for the sample X  can be inferred from the scatter plots: however, 
a better non-parametric estimator is the kernel density estimator. The theory for this method 

is discussed in Ch. 3 but it is worth looking at the kernel estimates for the marginal densities of 
the significant wave height, zero-up-crossing period, wind speed and current speed. The results 

are shown in Fig. 2.11 in which a quadratic ( Epanechnikov ) kernel with optimal window 

width has been used for each density. Note that each distribution is unimodal and that none of 

them seem to be the result of a mixture of random variables. This suggests that, providing the 
correct model can be found, a parametric modelling approach is reasonable and may be 

acceptable for the extremes.

2.9. MONTHLY MAXIMA
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The need for componentwise maxima is outlined in Section [2.5] with a view to the 

requirements of the multivariate extreme value model discussed in Ch. 4. The vector of all 

11000 or so environmental random variables Z was used to determine the vector of monthly 

virtual events ( or componentwise maxima ) m. The result is given in Table 2.11 which shows 

the 42 monthly maxima recorded by the DB1 buoy. The table includes both the time and 

frequency domain estimators for the seastate heights and periods, and missing wind and current 

values appear as zeros. Ideally, annual maxima should be used in the extreme value models 

since the component maxima are seasonal and therefore periodic, however, the DB1 was only 
operational for four years and no other multivariate dataset was available. One possibility 
would be to use the model for dependent extremes given by Tawn (1988a), this method would be 

preferable if the results were for use in a real design but in this work the dependence is ignored 

since ultimately a population modelling approach is used in the reliability analysis.

2.9.1 UNIVARIATE MONTHLY EXTREMES

The marginal monthly extreme value data given in Table 2.11 has been analysed using the 

theory and software described in Ch. 3. The results are summarised in Table 2.12 which gives:

(i) the sample mean, variance, skewness, and kurtosis

(ii) the shape, scale, and location parameters for the Weibull and GEV estimators

(iii) the covariance matrices for the parametric models

Both the 3-parameter Weibull and the GEV models were fitted to the extremes to enable a 
comparison of the two estimators.

The Weibull and GEV models ( see Ch. 3. ) fit the time domain and frequency domain 
estimates of significant height very well, with the negative GEV shape parameter indicating 

the population of extremes is Frechet distributed with a lower bound. It is interesting to note 

that the Weibull parameter covariance matrix contains negative terms for both the variance of 

the location parameter, and the covariance of the scale and location. This suggests the GEV 
model is a better conditioned solution. The Weibull and GEV models both fit the time and 

frequency domain estimates of zero-crossing period, however, the error residual plots show the 

GEV model has slightly smaller residuals, furthermore the covariance matrix for the GEV 

indicates the model parameters have lower uncertainty associated with them. However, we 

shall see in Ch. 3 that in some cases the GEV model gives poor estimates of the extremes 
corresponding to design return periods.
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2.10 CONCLUSIONS

Two vector samples of wind, wave, and current data have been created from the DB1 data; 
one for the population of three hourly observations and the other for the monthly, 

componentwise, maxima.

Inspection of the scatter diagrams for the data indicate that it can be treated as 
unstructured in the statistical sense for the multivariate modelling. The only evidence of 

structure appears in the significant wave height and zero-up-crossing period density. This is 

the result of the breaking wave criterion which results in a steep rise of the density on the 
forward face of the distribution.

The marginal kernel densities show no evidence of bimodality or mixing of different 
statistical populations in the modal region or indeed for moderately large values. However, 
the irregularity of the tails needs to be examined using an adaptive kernel ( see Ch. 3 ) in 
which the degree of smoothing is matched by the local density.

The data return for complete vector observations with no missing values was only 50%, 
however, there was no systematic reason for the missing values which occurred in both low and 
high seastates. We can conclude therefore the missing observations occurred randomly for the 
univariate and multivariate statistical inference.

The lack of strong structure in the data suggests a population modelling approach is 
reasonable, providing the correct tail behaviour can be guarantied by the use of a suitable 
population model and estimation process.
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Measured
variable

Sensor type 
A

manufacture

Range Location on 
buoy

Time, 
averaging 
period or 
sampling 
rate

Calibration
accuracy

Printed
resolution

Field
accuracy

Wind
speed

1 Cup 
counter 
Vector 
instruments 
A100R
2 Cup 
counter 
Vector 
instruments 
A100R

0 to 77 m/s 
(150 kn)

6.0m above 
sea level

8.7m above 
sea level

mean value 
during last 
10 minutes 
of hour

±0.26 m/s 
(0.5 kn) 0.1 kn

±1 m/s 
(±2fa») 

or ±5%

Wind
direction

1 Wind vane 
-self
referencing
Vector
instruments
SRW1G
2 Weather 
measure 
W102 
Referencing 
from digital 
compass

0 to 360° 6.0m above 
sea level

mean value 
during last 
10 minutes 
of hou

±2° 1° ±10°

Air pressure 
(one sutic  
pressure 
head)

(2) Aneroid
capsule
KDG8190

925 to
1050 mb

Head at 
6.0m
but measure­
ment made 
at
sea level

mean value 
during last 
45 seconds 
of hour

±0.2 mb 0.1 mb ±lmb

Air
temperature

(2) Platinum 
resistance 
Rosemount 
Lid
E13418

-10 to 40° C

Stevenson's 
screen 5.8m 
above sea 
level

mean value 
during last 
45 seconds 
of hour

±0.1° C 0.1° C ±0.2° C

Relative
humidity

(2) Chemical
Hygrometer
Phys-
Chemical
Res.
Corp.
PCRCT

0 to 
100% RH

Stevenson's 
screen 5.8m 
above sea 
level

mean value 
during last 
45 seconds 
of hour

±3% 0.01%

±5% 0
to 85%

±3%
over 85%

Sea surface 
temp. (1)

Sea surface 
temp. (2)

Platinum
resistance

Platinum
resistance

-10 to
+40°C 

-5  to 
+20° C

Base of hull 

Base of hull

45 secs, 
mean every 
hour

±04° C 

±0.001° C

0.1° C 

0.06° C

±0.2° C 

±0.06° C

Heave
amplitude

Pitch and 
roll

Accelero­
meter 
Datawell 
HIPPY 
Gravity 
stabilised 
platform 
Datawell 
PIRO M402

-20m to
+20m

0 to 60° C

Centre well

Main battery 
compartment

continuous 
record for 
20 minutes 
at the start 
of each hour

3% up to 
15s period

1% up to 

30°C
25%  up to 
60°

0.1m

0.1°

±0.2 m 

±1°

Surface
current
magnitude
EW&NS

Direction

Acoustic
pulse
velocity
ABRE

Magnetic
compass
Colnbrook
Instruments
Ltd

0 to 2.55 
m/s
(no lower 
threshold)

0 to 360°

3 metres 
below sea 
level

5.2 metres 
above sea 
level

5 minutes 
mean about 
the half 
hour

±0.01 m /s 

±2°

0.01 m/s 

0.4°

±0.02 m /s 

±2°

Table 2.1 Specifications of the recording instruments on-board the DB1 data buoy
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Hs
11.3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0.000
11 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 3 0.000

10.3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0.000
10 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 3 0.000

9.5 0 0 0 0 0 0 0 0 0 0 1 2 1 1 0 0 0 5 0.001
9 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 4 0.001

8.5 0 0 0 0 0 0 0 0 0 2 5 2 2 0 0 0 0 11 0.001
I 0 0 0 0 0 0 0 0 0 2 3 4 0 0 0 0 1 10 0.001

7.3 0 0 0 0 0 0 0 0 0 4 8 3 1 0 0 0 0 16 0.002
7 0 0 0 0 0 0 0 0 0 7 9 8 0 1 I 0 0 26 0.003

6.5 0 0 0 0 0 0 0 0 4 16 12 9 2 0 1 0 0 44 0.006
6 0 0 0 0 0 0 0 0 9 30 20 11 3 1 1 0 0 75 0.010

5.5 0 0 0 0 0 0 0 1 39 50 19 8 10 1 0 0 0 128 0016
5 0 0 0 0 0 0 0 16 73 63 26 6 1 0 0 0 0 185 0.024

4.5 0 0 0 0 0 0 0 40 119 64 43 10 4 0 0 0 0 280 0.036
4 0 0 0 0 0 0 5 94 167 94 43 14 4 0 0 0 0 421 0.054

3.5 0 0 0 0 0 0 28 212 237 94 33 3 2 1 0 0 0 610 0.078
3 0 0 0 0 0 0 121 324 212 127 38 11 I 1 1 0 0 836 0.107

2.5 0 0 0 0 0 31 354 411 188 92 33 6 1 0 0 0 0 1116 0.143
2 0 0 0 0 0 154 559 394 209 83 9 0 0 0 0 0 0 1408 0.180

1.5 0 0 0 0 7 379 650 358 129 34 6 1 0 0 0 0 0 1564 0.200
1 0 0 0 0 51 458 350 95 19 6 0 0 0 0 0 0 0 979 0.125

0.5 0 0 0 0 2 45 20 7 1 1 0 0 0 0 0 0 0 76 0.010
0 0 0 0 60 1067 2087 1952 1406 769 308 107 35 7 4 0 1 7803 <-TOTAL

0.00 0.00 0.00 0.00 0.01 0.14 0.27 0.25 0.18 0.10 0.04 0.01 0.00 0.00 0.00 0.00 0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Tz

TABLE 2.2 SCATTER DIAGRAM FOR THE TIME DOMAIN ESTIMATES OF 
SIGNIFICANT WAVE HEIGHT (M) AND ZERO CROSSING PERIOD (S)

Hs
12J 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 2 0.000

12 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0.000
t u 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0.000

11 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0.000
10.5 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 5 0.001

10 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 3 0.000
9 J 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 5 0.001

9 0 0 0 0 0 0 0 0 0 1 3 1 0 0 0 5 0.001
15 0 0 0 0 0 0 0 1 0 4 9 2 0 0 0 16 0.002

8 0 0 0 0 0 0 1 0 1 3 9 1 0 1 0 16 0.002
7 J 0 0 0 0 0 0 0 0 0 11 7 3 2 1 0 24 0.003

7 0 0 0 0 0 0 0 1 7 21 10 7 2 1 0 49 0.006
6,5 0 0 0 0 0 0 1 I 13 37 15 3 2 0 0 72 0.009

6 0 0 0 0 0 0 2 5 38 39 16 8 0 0 0 108 0.014
J J 0 0 0 0 0 1 2 12 74 41 11 6 1 0 0 148 0.019

5 0 0 0 0 0 2 11 38 96 47 22 2 0 0 0 218 0.028
4 5 0 0 0 0 0 7 7 93 139 64 19 4 1 0 0 334 0.043

4 0 0 0 0 1 10 33 170 157 67 22 2 1 0 0 463 0.0S9
3.5 0 0 0 0 5 11 91 254 168 64 12 5 0 0 0 610 0.078

3 0 0 0 0 6 13 270 338 120 59 15 0 3 0 0 824 0.106
2-5 0 0 0 0 4 100 468 321 142 56 9 1 0 0 0 1101 0.141

2 0 0 0 0 2 362 549 286 112 26 3 0 0 0 0 1340 0.172
1-5 0 0 0 0 42 585 504 199 71 8 0 0 0 0 0 1409 0.181

1 0 0 0 0 206 472 256 47 6 0 0 0 0 0 0 987 0.126
0.5 0 0 0 0 24 30 5 0 0 0 0 0 0 0 0 59 0.008

0 0 0 0 290 1593 2200 1766 1144 548 192 54 13 3 0 7803 <-TOTAL
0 0 0 0 0.04 0.2 0.28 0.23 0.15 0.07 0.02 0.01 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Tz

TABLE 2.3 SCATTER DIAGRAM FOR THE FREQUENCY DOMAIN ESTIMATES OF 
SIGNIFICANT WAVE HEIGHT (M) AND ZERO CROSSING PERIOD (S)
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Hsfreq
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
13 0 0 0 0 0 0 0 0 0 0 1 1 2 0.000
12 0 0 0 0 0 0 0 0 0 1 4 0 5 0.001
U 0 0 0 0 0 0 0 I 1 4 0 0 6 0.001
10 0 0 0 0 0 0 0 1 12 1 0 0 14 0.002
9 0 0 0 0 0 0 2 19 2 0 0 0 23 0.003
8 0 0 1 0 0 0 44 5 0 1 0 0 SI 0.007
7 0 0 0 1 6 124 24 0 0 0 0 0 155 0.022
6 0 1 I 2 227 79 0 0 0 1 0 0 311 0.043
5 0 0 4 419 232 0 0 0 0 0 0 0 655 0.091
4 1 3 624 606 0 0 0 0 0 0 0 0 1234 0.172
3 2 560 1291 3 0 0 0 0 0 0 0 0 1856 0.258
2 457 2386 31 0 0 0 0 0 0 0 0 0 2874 0.400
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000

460 2950 1952 1031 465 203 70 26 15 8 5 1 7186 <-TOTAL
0.06 0.41 0.27 0.14 0.06 0.03 0.01 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 Hs lime

TABLE 2.4 SCATTER DIAGRAM FOR TIME AND FREQUENCY DOMAIN 
ESTIMATES OF THE SIGNIFICANT WAVE HEIGHT

Hs
11.5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 I 0.000

11 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 3 0.000
10L5 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 2 0.000

10 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 3 0.000
9.5 0 0 0 1 0 I 0 0 0 0 1 1 0 0 0 4 0.001

9 0 0 0 0 0 1 0 1 I 0 0 1 0 0 0 4 0 001
8.5 0 0 0 2 3 0 0 2 2 2 0 0 0 0 0 11 0.002

8 0 0 1 1 0 4 0 3 1 0 0 0 0 0 0 10 0.001
7.5 0 0 0 3 4 t 2 1 2 0 0 0 0 0 0 13 0.002

7 0 0 2 3 2 2 3 6 2 4 1 0 0 0 0 25 0.004
6.5 0 2 3 7 4 3 6 4 5 1 2 0 0 0 0 37 0.005

6 0 3 4 8 8 8 6 12 5 1 1 0 0 0 0 56 0.008
5.5 1 3 5 14 14 14 19 14 6 2 1 0 0 0 0 93 0.014

5 0 10 11 II 23 25 25 23 14 2 2 0 0 0 0 146 0 021
4 5 1 11 21 32 30 43 35 20 11 1 1 1 0 0 0 207 0.030

4 2 17 30 60 70 67 40 28 12 4 0 0 0 0 0 330 0.048
35 5 16 49 87 117 96 90 27 14 1 0 0 0 0 0 502 0.073

3 11 33 93 118 173 172 71 24 10 2 1 2 0 0 0 710 0.104
I S 15 65 118 189 238 219 81 33 12 2 1 0 0 0 0 973 0.142

2 24 110 216 311 313 196 53 20 6 2 1 0 0 0 0 1252 0.183
tS 55 158 349 420 299 103 38 14 9 4 2 2 0 0 I 1454 0.213

1 48 176 291 278 93 19 10 5 7 3 0 0 0 0 0 930 0.136
051 5 24 24 14 2 0 0 0 1 0 0 0 0 0 0 70 0.010

167 628 1217 1559 1395 975 480 238 121 31 16 7 0 1 1 6836 <-TOTAL
0.02 0.09 0.18 0.23 0.2 0.14 0.07 0.03 0.02 0 0 0 0 0 0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Uw

TABLE 2.5 SCATTER DIAGRAM OF THE TIME DOMAIN ESTIMATES OF SIGNIFICANT 
HEIGHT (M) AND THE TEN MINUTE MEAN WIND SPEED (M/S)
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U3
-40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0.000
38 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.000
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
34 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 2 0.000
32 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 4 0.001
30 0 0 0 0 0 0 0 0 1 2 2 3 0 0 0 8 0.002
28 0 0 0 0 0 0 1 0 3 5 2 2 0 0 0 13 0.002
26 0 0 0 0 0 1 0 3 8 9 5 0 0 0 0 26 0.005
24 0 0 0 0 0 0 0 9 35 8 1 0 0 0 0 53 0.010
22 0 0 0 1 0 0 8 40 39 4 0 0 0 0 0 92 0.018
20 0 0 0 0 0 10 41 73 23 0 0 0 0 0 0 147 0.028
18 0 0 0 0 5 37 147 74 0 0 0 0 0 0 0 263 0.050

0 0 0 2 37 201 178 6 0 0 0 0 0 0 0 424 0.081
14 0 0 0 16 194 412 34 0 0 0 0 0 0 0 0 656 0.126
12 0 1 12 147 644 127 0 0 0 0 0 0 0 0 0 931 0.179
10 0 5 71 626 243 0 0 0 0 0 0 0 0 0 0 947 0.182
8 1 29 466 400 0 0 0 0 0 0 0 0 0 0 0 896 0.172
6 8 208 266 0 0 0 0 0 0 0 0 0 0 0 0 482 0.093
4 74 164 0 0 0 0 0 0 0 0 0 0 0 0 0 238 0.046
2 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 005

109 407

00 1192 1123 788 409 205 109 29 13 7 0 1 1 5210
0.02 0.08 0.16 0.23 0.22 0.13 0.08 0.04 0.02 0.01 0 0 0 0 0
' 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Uw

TABLE 2.6 SCATTER DIAGRAM OF THREE SECOND GUST AND TEN MIUTE MEAN WIND 
SPEEDS

Hs
11.5 0 0 0 0 0 0 0 0 0 0 0 0.000

11 0 1 0 1 0 1 0 0 0 0 3 0.000
10.3 1 0 0 1 0 0 0 0 0 0 2 0.000

10 0 0 0 0 I 1 0 0 0 0 2 0.000
9.5 0 1 0 0 I 1 0 0 0 0 3 0.000

9 0 2 0 0 0 1 0 0 0 0 3 0.000
8.5 0 0 0 1 4 1 0 0 0 0 6 0.001

8 1 1 3 1 1 0 0 0 0 0 7 0.001
7.5 1 4 2 3 2 0 1 0 0 0 13 0.002

7 4 3 7 6 2 3 0 0 0 0 25 0.004
6 3 5 2 8 8 5 I 0 0 0 0 29 0.004

6 6 9 10 13 7 1 1 0 0 0 47 0.007
5.5 6 19 15 19 11 6 3 0 0 0 79 0.012

5 10 21 36 28 22 13 1 I 0 0 132 0.020
4.5 16 29 52 50 30 6 4 1 0 0 188 0.029

4 14 54 76 61 47 32 3 1 0 0 288 0.044
3 3 31 106 110 101 68 37 8 4 0 0 465 0.071

3 41 127 185 152 108 51 14 1 1 1 681 0.103
2.5 44 145 222 265 167 73 34 13 6 0 969 0.147

2 57 172 282 299 216 133 54 14 8 1 1236 0.188
1.5 46 189 322 355 266 158 54 21 12 0 1423 0.216

1 34 129 217 216 170 95 40 7 1 0 909 0.138
0.5 7 7 14 17 IS 9 7 0 0 0 76 0.012

324 1021 1561 1597 1143 623 224 63 28 2 6586 <-TOTAL
0.05 0.16 0.24 0.24 0.17 0.09 0.03 0.01 0 0 Uc

0.1 0 3 03 0.4 0.3 0.6 0.7 0 3 0.9 1

TABLE 2.7 SCATTER DIAGRAM FORTHE TIME DOMAIN ESTIMATE OF 
SIGNIFICANT WAVE HEIGHT (M) AND CURRENT SPEED (M/S)

27



QuseLL

Uc
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 2 0.000

OS 0 6 6 7 7 0 2 0 0 0 0 0 0 0 0 28 0.004
0.8 3 11 9 12 11 12 4 2 0 0 0 0 0 0 0 64 0.010
q.7 5 35 47 59 43 19 10 2 1 1 0 0 0 0 0 222 0.035
0.6 22 68 111 153 110 73 37 12 14 7 4 0 0 0 0 611 0.096
0.5 29 120 214 232 219 153 68 41 27 2 4 3 0 0 0 1112 0.174
0.4 41 144 274 356 323 220 110 41 17 8 2 0 0 0 1 1537 0.240
03 30 122 269 349 321 230 100 56 20 7 2 0 0 0 0 1506 0.235
0.2 17 47 167 235 212 160 79 47 22 1 3 2 0 1 0 993 0.155
0.1 6 26 53 63 57 49 33 19 9 3 1 1 0 0 0 320 0.050

153 579 1150 1466 1304 917 443 220 110 29 16 6 0 1 1 6395 <-TOTAL
0.02 0.09 0.18 0.23 0.2 0.14 0.07 0.03 0.02 0 0 0 0 0 0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Uw

TABLE 2 8 SCATTER DIAGRAM OF TEN MINUTE MEAN WIND SPEED (M/S) AND FIVE 
MINUTE MEAN CURRENT SPEED (CM/S)

Hs
11.5 0 0 0 0 0 0 0 0 0 I 0 0 1 0.000

11 0 0 0 0 0 0 0 0 1 2 0 0 3 0.000
10.5 0 0 0 0 0 0 0 0 2 0 0 0 2 0.000

10 0 0 0 0 0 0 0 0 1 2 0 0 3 0.000
9.5 0 0 0 0 0 0 0 0 2 2 0 0 4 0.001

9 0 0 0 0 0 0 0 1 1 2 0 0 4 0.001
8.5 0 1 0 0 0 0 1 1 3 4 1 0 11 0.002
'8 0 0 0 0 0 0 0 2 4 3 0 0 9 0.001

7.5 0 0 0 0 1 0 2 3 3 6 0 1 16 0.002
7 0 2 0 0 0 1 4 3 7 7 0 2 26 0.004

6_5 1 1 1 0 0 2 3 4 9 17 4 1 43 0.006
6 2 1 2 0 0 5 2 15 11 16 9 8 71 0.010

5.5 4 1 1 0 4 8 10 14 19 30 18 7 116 0.016
5 8 5 5 2 6 8 18 29 24 29 21 12 167 0.023

4.5 13 4 11 3 7 13 39 37 44 38 21 12 242 0.034
4 17 23 11 7 12 28 47 61 58 50 39 16 369 0.051

3.3 29 16 7 19 19 50 73 109 60 66 71 40 559 0.078
3 50 43 23 9 25 73 102 123 70 77 103 69 767 0.107

2.5 58 44 48 22 43 75 107 149 114 130 124 108 1022 0.143
2 104 59 76 45 61 100 143 150 110 165 191 124 1328 0.185

1.5 163 97 89 66 66 95 114 106 113 189 210 139 1447 0.202
1 119 74 64 70 47 79 68 47 44 81 116 78 887 0.124

0.5 2 4 14 16 4 6 6 1 2 4 8 3 70 0.010
570 375 352 259 295 543 739 855 702 921 936 620 7167 <-TOTAL

0.08 0.05 0.05 0.04 0.04 0.08 0.1 0.12 0.1 0.13 0.13 0.09
30 60 90 120 150 180 210 240 270 300 330 360 Dw

TABLE 2.9 SCATTER DIAGRAM OF SIGNIFICANT WAVE HEIGHT (M) AGAINST THE 
WIND DIRECTION (DEGREES)
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Tz
17 0 0 0 0 0 0 0 0 0 1 0 0 1 0.000
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
13 1 0 0 0 0 0 0 1 1 0 0 1 4 0.001
14 0 0 0 0 1 0 0 1 1 3 0 1 7 0.001
13 1 0 0 0 1 1 1 6 5 10 3 3 31 0.004
12 0 0 0 2 2 2 11 10 27 24 15 6 99 0.014
11 12 7 8 3 5 12 34 53 40 51 27 26 278 0.039
10 37 36 21 19 19 69 89 111 79 97 81 37 695 0.097
9 84 62 57 27 48 102 141 196 153 161 148 83 1262 0.176
8 134 77 93 58 76 143 207 230 164 211 222 164 1779 0.248
7 169 98 95 68 89 151 171 203 178 258 292 193 1965 0.274
6 124 85 72 77 51 60 81 44 54 99 144 99 990 0 138
5 8 10 6 5 3 3 4 0 0 6 4 7 56 0 008
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000

570 375 352 259 295 543 739 855 702 921 936 620 7167 <-TOTAL
008 0.05 0.05 0.04 0.04 0.08 0.1 0.12 0.1 0.13 0.13 009

30 60 90 120 150 180 210 240 270 300 330 360 Dw

TABLE 2.10 SCATTER DIAGRAM OF ZERO CROSSING PEROD (S) AGAINST THE WIND 
DIRECTION (DEGREES)
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index year/monUi Hs(TIME) Hs(FREQ.) TzfTIME) Tz(FREO) Uw Uc
I 7806 4.1 4.2 9.4 8.4 15.5 89.0
2 7807 3.2 3.3 10.9 9.7 13.15 76.0
3 7808 2.6 2.8 10.5 9.7 11.6 87.0
4 7809 5.5 5.9 14.5 12.9 17.75 82.0
5 7810 3.9 4 12.4 11.4 14.5 88.0
6 7811 5.3 5.5 11.8 14.3 19.5 77.0
7 7812 11.5 12.3 13.9 12.3 119 70.0
8 7902 6.4 7.5 14.5 14 17.9 0.0
9 7903 6.9 7.8 14.5 13.5 0 0.0
10 7904 4.7 5 12.2 11 0 55.0
11 7905 3.5 3.6 8 7.5 0 42.0
12 7906 3.3 3.4 9.9 9.6 12.7 71.0
13 7907 2.4 2.5 9.8 9.3 14.3 81.0
14 7908 5.7 5.9 9.4 9.2 18.4 88.0
15 7909 4.3 4.4 11 9.8 15.1 87.0
16 7810 5.2 5.6 12.6 12.1 19.25 59.0
17 7911 4.4 4.6 10.3 10.1 13.9 47.0
18 7912 10.9 11.7 12.8 11.9 26.4 67.0
19 8002 10.2 10.5 11.8 11.1 22.7 66.0
20 8003 11 12.4 12.9 12.3 22.7 71.0
21 8004 3 3.3 10 11.1 15.2 71.0
22 8005 3 3.1 10.4 9.5 14.05 68.0
23 8006 5.4 5.6 10 9.5 15.15 65.0
24 8007 3.5 3.7 9.2 8.6 15.6 68.0
25 8008 2.8 3 9.6 13.1 12.35 96.0
26 8009 4.2 4.5 9.9 9.2 14.25 61 0
27 8010 7.9 8.4 12.8 12.6 20.25 78.0
28 8011 5.6 6.5 11.3 11.5 18.1 58.0
29 8012 8.4 9.3 13 11.6 17.6 61.0
30 8102 7.3 8.2 11.3 10.6 17.5 65.0
31 8103 2.3 2.5 8.1 10 20.3 36.0
32 8104 3.9 4.4 11 10.2 12.45 65.0
33 8105 5 5.7 101 9.7 17.2 77.0
34 8106 4 4 9.7 9.2 14.2 68.0
35 8107 3.5 3.6 9.7 9 14.75 75.0
36 8108 3.1 2.9 10.7 10.1 12.45 81.0
37 8109 6.1 6.3 10.6 9.7 21.6 83.0
38 8110 6.6 7.5 13.2 12.5 21.65 76.0
39 8111 5.6 6.5 11.3 11.5 14.7 73.0
40 8112 3.1 2.9 10.7 10.1 28.55 65.0
41 8202 5.8 6.4 12.3 12 0 0.0
42 8203 9.5 8 16.9 11.5 16.2 51.0

TABLE 2.11 VECTORS OF MONTHLY COMPONENTWISE MAXIMA FOR THE UKOOA-DB1 DATA
SET
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TABLE 2.12 STATISTICAL MOMENTS AND MAXIMUM LIKELIHOOD PARAMETERS FOR THE WEIBULL AND 
GENERALISED EXTREME VALUE DISTRBUTIONS

VARIABLE OOL«f d d te s l OHOKOll --**-- M--- J-«worm Braci GEV model

am pin mean variance dcewnem Fnrtnais *-pe scale location Aape scale lootian

Hstime 42 5.348 6.1118 1.005 0.1009 1.39 3.622 2.053 -0.2448 1.532 4.052

Hsfreq. 42 3.695 7.201 0.9577 0.107 1.319 3.767 2.232 -0.267 1.665 4.255

Tztime 42 11.31 3.497 0.7051 0.3022 2.086 4.163 7.616 0.06684 1.554 10.5

Tz freq. 42 10.78 2.36 0.2933 -0.7414 2.611 4.315 6.952 0.1889 1.463 10.16

current velocity 39 70.36 176.4 -0.4565 •0.05362 6.983 82.83 -7.098 0.4231 13.96 66.63

wind speed 38 16.88 15.98 0.973 0.4973 1.473 6.284 11.2 •0.1324 2.747 14.91

time domian significant height frequency domain significant height time domain zoo crossing period

WEIBULL->

scale
0.030162

shape
0.009145
0.010847

location
0.002944
-0.00647
-0.00554

0.02832 0.00843
0.00863

0.001737
-0.006

-0.0042

0.021099 0006918
0.009097

0.0084899
-0.0055377
-0.010937

frequency domain zero crossing period current speed wind speed

WEIBULL->
0.011732 0.006652

0.07569
0.016334
•0.00602
-0.0196

-0.0436 0.003266
0.00334

0067762
-0.00324
-0.07167

0.030162 0009145
0.010847

0002944
-0.0064721
-0.0055395

time domian significant height frequency domain sigruficarf height time domain zero crossing period

scale shape location

GEV ->
0008607 0 003753 0.006468 

0.029348 0.008003 
0.012552

0.00971 0.006148 
0.038834

0.007704
0.010873
0.013681

0010687 0.004105 
0.011838

0.0050878
0.005884
0.021142

frequency domain zero crossing period ca ra tq e e d wind speed

GEV ->
0.015052 0.010023 0.007636 

0.018348 0.011689 
0.028676

0.023575 0.016778 
0.016757

0.017813
0.020904
0.045311

0.010214 0.005017 
0.027224

0.006856
0.0088122
0.016568

COVARIANCE MATRICES FOR THE ENVIRONMENTAL DATA MARGINAL DISTRIBUTIONS
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FIGURE 2.1 GENERAL ARRANGEMENT OF THE UNITED KINGDOM OFFSHORE OPERATORS
BUOY DB1
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Figure 2.2 Comparison of the UKOOA frequency domain 
and GU frequency domain significant wave height
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Figure 2.3 Comparison of UKOOA frequency domain 
and GU frequency domain zero crossing period

5
13 -

12 -

11 -0Q>
vP

10 -

8 -

127 1 18 1 09
Tz(GU) s e c .

33



O u**2 A n a l y s i s  o f  t h s  D B t  I t e m * *
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FIGURE 2.4 DEFINITION OF WAVE STATISTICS
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Figure 2.5 Comparison of GU calculated time 
and frequency domain estimates for 

significant wave height
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Figure 2.6 Comparison of GU calculated time domain 
and UKOOA supplied frequency domain estimates 

for significant wave height
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Hgure 2.7 Comparison of GU calculated time 
and frequency domain estimates for 

zero crossing period
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Figure 2.8 Comparison of GU calculated time domain 
and UKOOA supplied frequency domain estimates 

for zero crossing period
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The first 200 three hourly samples of current speed recorded by
the DB1
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FIGURE 2.10 CURRENT TIME SERIES
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Figure 2.11 Kernel density plots using an optimal window for the populations of significant wave 
height (m), zero-up-crossing period (s), wind speed (m/s), and current speed (cm/s).
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Chapter 3

M o d e l l in g  u n iv a r ia t e  e n v ir o n m e n t a l  d a t a
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NOMENCLATURE

*i coefficients for a linear function
un-centred sample moments

b bandwidth

*.(*<) bias in model parameter 0.
c Weibull shape parameter
cov[.] covariance

C(0) expected covariance matrix for model parameters 0

c(0) observed information matrix

£[•] expected value operator £ [ / ]  = J ykf(x)dx

E, the event r

/(* ) probability density function

F(x) cumulative distribution function F(x) -  Pr(X < x)

r \ x ) inverse distribution function

sample joint density with parameters 0

G(.) extreme value distribution OR gradient vector

H(0;x) entropy function on the sample x
k GEV shape parameter
k{x) kernel density function
I vector of lower bounds
1(0) Fisher's information matrix

L(0,X) likelihood random variable

l(0 ,x) likelihood function on the sample x
m maximum amplitude

largest in sample of size n
A

mr rth centred sample moment, ie m ^ O

K m probability weighted moment
n number of samples
P probability P = Pr{X £ x}
P number of model parameters or 

counter for order stat's
Pr() probability

tr return period
u vector of upper bounds
V /J variance

j th weight
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* sample vector
x{ ith sample in the vector x of observations

on the variable X 
X random variable
X random vector

a  Weibull Scale parameter
A

8 threshold estimated probability of exceedance
y  Euler's constant - 057721 5664....
r{.} gamma function
AOi finite difference interval

A

0- 0. ith model parameter and maximum
f

likelihood estimate 
0 parameter vector
p  GEV location parameter
£2 set of possible parameters for 0

Weibull lower bound 
n Pi - 3.14159 2654....

]~J multiplication operator
P correlation coefficient
p(0) error function
G GEV scale parameter or standard deviation
&(.) function of the ML parameters
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3. I n t r o d u c t o r y  r e m a r k s : M o d e l l in g  u n iv a r ia t e
ENVIRONMENTAL DATA

Statistical estimation is dominated by large sample asymptotic methods which aim to 
describe data using optimal measures of, say, location and spread. The synthesis of a model can 
either be parametric, or intrinsic however, as Hoaglin (1983) points out the distinction between 
the two classes is not clear. Parametric estimation involves fitting a functional form to the 
data under the hypotheses that the data are drawn from some known distribution and usually 
that the distribution of errors is Gaussian. Intrinsic ( or nonparametric ) estimation makes less 
rigid assumptions about the sample and seeks to estimate the statistics for the population using 
the data directly: examples are order statistics and kernel density estimators. In this chapter, 

both parametric and intrinsic estimation of univariate data is examined and applied to 
modelling environmental data. Although most of the theory in this chapter is intended for use 

in modelling the DB1 data discussed in Ch 2. it should be borne in mind the methods and 

conclusions are general and equally applicable when modelling strength data.

Predictive and descriptive statistical models of environmental data are required in: the 
calibration of design codes; the formulation of reliability methods; and the prediction of 

’design events'. In most cases, estimation must be performed using small samples with missing 

values. There are therefore three main sources of uncertainty, which Thoft-Christensen & 

Baker (1982) define as physical, statistical, and modelling uncertainty. Physical uncertainty 

arises from the basic randomness of the variable and is quantified by the parametric or intrinsic 

model; statistical uncertainty arises from the use of finite sample sizes and is characterised by 
the bias and variance of the model parameters; and finally modelling uncertainty arises from 

the need to hypothesise a parametric form in the estimation (even kernel density estimators 

and order statistic estimators suffer from this uncertainty since they require a parametric 

smoothing function, and quantile estimation formula, respectively).
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For design, a descriptive environmental model is required in fatigue damage calculations 

and operations analysis. On the other hand, predictive models are used to specify design 

events, which are usually taken as the combination of marginal extremes corresponding to some 
return period like 50 or 100 years. Two approaches are therefore used to model the data. The 

first is population modelling in which the full sample of data is used in the estimation; this 

approach benefits from a large sample which reduces the statistical uncertainty in the 

estimated model parameters and allows us to use the asymptotic properties of the parameter 

uncertainty, Silvey (1975). The population method is ideal for descriptive analysis but can 

result in biased estimates when used as a predictive model for the most probable largest 

extreme value in a large number of observations N. This is because N is usually large and 

therefore F{x)N, Fig. 3.1, is only significant in the region of the largest few data, Galambos 

(1984). In consequence, if the wrong population model is used for F(x) then it will give poor 

estimates for the 50 or 100 year return period values.

The second modelling method is extreme value estimation in which the largest values 
occurring in a fixed time period, or sample size, are modelled using one of the extreme value 
distributions, Gumbel (1958). The problem with modelling only the largest values ( annual 
maxima ect ) is the sample size is generally very small. This results in large statistical 
uncertainty in the estimated parameters which in turn results in wide confidence limits for the 
model. The motivation of extreme value theory is to reduce the modelling uncertainty in the 
model by identifying the set of distributions from which the extremes must have been drawn. 

Fisher & Tippet (1928) demonstrated that, under the assumption of independent and 
identically distributed events, the distribution of the largest drawn from any population F (x) 

is attracted to one of only three distributions.

The assumption of independence is reasonable when using annual maxima but real datasets 

like the DB1 recordings are generally only recorded for a few years. With such small samples 

it is necessary to consider modelling say the monthly maxima, in which case the assumption of 

independence and identical distribution is questionable. Carter & Challenor (1981), for 

example, examine the error in estimates of return period values resulting from the iid 

assumption. They model the monthly maxima separately and then obtain the annual maxima 

from the individual distributions (assuming independence between the months). Challenor ( 
1982) later improved the method by modelling the seasonal variation in the location 

parameter of the monthly maxima models. However, we cannot use the method with the 

multivariate asymptotic methods reviewed in Ch. 4 since they require that the marginal data 

first be transformed to unit exponential survivor functions using, for example, the generalised 

extreme value (GEV) distribution.
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There are therefore three choices to be made when modelling the data:

whether to model the population or the extremes 
whether to use intrinsic or parametric methods 
the type of estimation process

In Section 1 those properties which characterise a 'best' estimator are defined using classical 

statistics and practical limitations. Section 2 examines how to choose amongst the various 

estimation procedures using the criterion for best. This involved a comparison of results from a 

number of Monte Carlo simulations reported in various statistical journals. The maximum 

likelihood method was selected as the best procedure because of its good overall performance 
despite some methods performing better under certain conditions. Section 3 shows how 

nonparametric kernel density estimators can be used to aid data visualisation, which is used as 

the basis for parametric model selection. Section 4 introduces the theoretical basis of maximum 
likelihood estimation and shows how statistical uncertainty can be estimated using the 

information matrix. It is then shown how this information can be used to calculate the 
uncertainty in functions of the model parameters using level II reliability methods. Section 5 

outlines the modelling procedure adopted in this thesis and Section 6 then develops the 
likelihood function and information matrix for the Weibull model. Section 7 introduces the 
generalised extreme value distribution, its likelihood and information matrix. Section 8 
discusses some of the numerical difficulties associated with the likelihood method and then 
Section 9 applies the theory to simulated datasets in order to check the likelihoods and 
derivatives derived for this study. Section 10 introduces a simple peak over threshold (POT) 
approach which is intended to overcome the problems associated with using the Weibull 
distribution to model extremes. The POT method is then applied in Section 11 to a sample of 
structural response time series to illustrate the generality of the likelihood method. Finally, 
in Section 12 both population and monthly maxima models are used with the DB1 wind, wave 

and current data.
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3.1 CHARACTERISTICS OF A GOOD ESTIMATOR

Before looking at the principal methods used to estimate a model's parameters we must 

define those characteristics which exemplify a good estimator: unfortunately, it is not 

straightforward to define what is meant by good. In the statistical context Ledermann (1984) 

defines four desirable characteristics for an estimator which are summarised below:

Consistency - The estimation procedure should produce an estimate which is accurate. That is,
A

if a sample replicates the population the estimated parameters 0  should be close to the 

population parameters and, moreover, the estimates should improve as the sample size 

increases

To satisfy these conditions the estimated parameters must have a high probability of being 
dose to the population parameters. A problem is encountered when modelling extremes because 

the assumption of multivariate normality for the distribution of the model’s parameters is 
invalid when the sample size is too small; but, how small is too small? We shall see later that 
for practical estimation less than 20 is too small for the model parameters to be taken as 
multivariate Normal distributed.

Sufficiency - some procedures enable more information to be extracted from the sample than 
others do. A suffident estimator is one which can extract all the information from the sample 

which is relevant to the parameter.

Bias - The estimate may differ from the population parameter 0it due to a bias 

=  0 — is[ 0 , j . An unbiased estimate is not necessarily the most important property for an
A

estimation procedure since an unbiased estimate 6i will not result in an unbiased estimate for 

some quantile f (x0;Q j if the model parameters have non-zero variance.

Low sampling variance - Each parameter derived using an estimator with a finite sample size 

will have some statistical uncertainty usually characterised by its bias and variance. 
Furthermore, models with more than one parameter will have multivariate distributed 

parameters. A good estimator will provide parameter estimates with the minimum sampling 

variance attainable for the sample size.

as n -*oo
v{ o ] - » o
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In addition to consistency/ sufficiency/ low bias and low sampling variance/ two further 
characteristics should be added for the method to be of practical use by engineers and scientists:

Reliability - From the practical point of view the methods must be robust, that is, it should be 

possible to obtain solutions to the model parameters for nearly all samples of data without 

prior knowledge of the model parameters.

Simplicity - The process of estimating the model parameters, and their sampling covariance 
matrix, should be simple to apply and interpret.

Several estimators have one or more of these desirable characteristics: moments, least squares, 

and maximum likelihood are a few. The final choice of estimator must allow for the objectives 

of the modelling process, which in our case is the modelling of extreme quantiles with low bias 

and low variance.

3.2 ESTIMATING THE MODEL PARAMETERS

Five methods are commonly used to estimate the parameters of a model given a sample of 

data X  = The simplest method is to calculate the integrated moments of the

theoretical distribution, ak where

* - £  a  4 ( * ) ‘ ] [3.i]

and then equate them to the sample moments of the data ak, where

In the case of a Weibull distribution with three parameters, the first three moments are 

required, i.e. k=l,2,3, to solve for the shape, scaling, and location parameters. The parameters 
are then obtained by solving three nonlinear simultaneous equations ak = ak. This solution 

procedure is relatively simple since closed form gamma functions are available for the moments 

of a Weibull model.

The second method is a least squares fit based on percentile estimation and order 

statistics. This approach is intuitively appealing since the process can be performed 

graphically when the model has two parameters, in which case the minimisation of the sum of
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squares error is done by visually fitting the distribution to the data on logarithmically scaled

If the model has more than two parameters the process can be automated by using some 

form of weighted, orthogonal distance/ regression routine to minimise an error function p (0 ) 

which is a function of the model parameters 0

Other plotting positions are given in Gumbel (1958), and Crowder et al (1991).

The third method is parametric maximum likelihood estimation in which the model 
parameters are estimated directly from the data. In common with the method of moments, and 

the method of least squares, the realisation X  is assumed to be a sample of independent, 
identically distributed random variables drawn from the population random vector 

X  = {Xlt....XH} with sample pdf denoted by

The set £2 is the set of possible parameters, and the form of g (X ; 0)  is guessed at after 

graphical and numerical examination of the data. The likelihood function of 0 on the sample 
X is then defined as

where a ( x )  is any multiplier solely a function of X and independent of 0. It may be chosen 

arbitrarily to aid estimation of the parameter vector. If the sample X is assumed to comprise 

iid Weibull random variables then the sample likelihood is given by

paper.

[3.31

Here, the expected probability E < xpĵ  for the observation xp is given by ordering the

data from the smallest xJf to the largest X p ,  up to the largest X H. The expected probability 

for the quantile X p is then found using an order statistic plotting position like

[3.4]

g (x ;0 )  = g(xj, xm;0j....Op) 0<=G

l ( 0 ; x )  = a(x)g(x;0)
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/(  0 ; x )  = n / ( * ; . •••*.) • 0  = { a , c , Q
j-1

w here/(a:) is the Weibull probability density function, and 0  is the vector of Weibull model
A

parameters. An estimate for the parameters 0  is found by maximising / (  0 ; x ) over the range 

of feasible parameters.

The fourth method of estimation is the probability weighted moments (PWM) estimator 
examined by Hosking et al (1985). The PWM are defined by

MTJJ= f y r { F ( x ) } ' { l - F ( x ) } ' \  ;r,s,t = 1,2,3...

Where r,s,and t are chosen to give a sufficient number of equations to solve for the model 

parameters. The solution procedure is similar to the ordinary moments method in that the 
expected moments are compared with the sample moments. At first sight the additional 
complexity of this estimation process might seem unwarranted, however, the behaviour of 
PWM for the Generalised Extreme Value distribution is shown to be superior to the ordinary 
method of moments in Hosking et al (1985) for cases where the sample has a high COV.

The fifth method is entropy estimation, Jaynes (1982). This method uses entropy as a 
measure of the amount of information in a sample and has proven popular with physicists. 
Given a continuous distribution / ( x)  the entropy is defined as

H(0;x)  = £ / ( ; t; 0)ln{f(x; 0)}dx

The solution for the model's parameters 0 is then found by maximising the entropy over the 
feasible region on the sample of data X .

3.2.1 CHOICE OF ESTIMATION PROCEDURE

Five methods for estimating the parameters of a model have been discussed briefly. 

Amongst engineers least squares and moment methods are favoured for their simplicity, 
robustness and ease of implementation, moreover, both methods generally provide good model 

fits to both large and small samples. Statisticians on the other hand favour the method of 
maximum likelihood and scientists often use entropy methods which were developed for 

statistical physics applications. In order to choose the best method for modelling the design 

events of ships and offshore structures it is necessary to define what is meant by best. In Section 

[3.1] six desirable characteristics are defined for an estimation procedure:
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• consistency
• sufficiency
• low bias
• low sampling variance
• reliability
• simplicity

These six characteristics can be used to assess the relative performance of an estimator, but the 

process is not straightforward since low bias can be less desirable than low sampling variance. 
This is because we are generally interested in estimating the quantiles of a random variable 

(that is, values which correspond to a particular probability level or return period) and in 

general the quantiles will be biased, even when the parameters are not. This is dealt with in 

more detail in Section [3.4.21 which shows how confidence limits can be estimated for both a 

model’s parameters and arbitrary, non-linear functions of the model's parameters.

Monte Carlo simulation can be used to assess the parameter bias and sampling error 
associated with an estimation procedure by generating a large number of samples from a 
predefined model with known parameters. Singh et al ( 1990 ) present the results of their 
extensive computer experiments using a two parameter Weibull model. They simulated seven 
Weibull populations having a range of COV from 0.3 to 3.0. For each case they used the simple 
inversion

x(F) = a [ - lo g , ( l - P ( X < x ) ) f ‘

to create a large number of random samples with sizes 10, 20, 30, 50, 75, 100, 500, 1000. Each 
sample was then used to determine the Weibull shape and scale parameters using five different 

estimation methods:

• moments MOM
• maximum likelihood ML
• entropy ENT
• probability weighted moments PWM
• least squares LSQ

The results from each method were used to determine the bias in each parameter and their root 

mean square errors (RMSE). Furthermore, they calculated the bias and RMSE for a range of 

quantiles corresponding to low probability events like annual maxima for winds and currents. A 

summary of their major conclusions follows

Bias in shape, and scale parameters - ML, LSQ, and ENT performed consistently for each case 
and sample size when estimating the shape parameter - though it may be significant LSQ had 

a negative bias. MOM did not perform well and PWM performed very poorly for the small 

sample COV cases giving a large negative bias. On the other hand PWM performed very well

49



g g f l r i m *d*Uinr  mtnt/Trintf ^ fp n m tn ln l Hnln

far data having high COV ( this suggests the PWM method would be a poor estimator for 
extremes which generally have low COV }

Bias in quantile estimates - As expected, bias in the quantile estimates reduces as the size of 

sample increases, and for a given sample size the bias increases as the quantile ( or equivalent 

return period ) increases. ML and ENT both perform well though they have a negative bias for 

the small COV cases, this would result in an under-estimate for the value of a random variable 

corresponding to some return period. MOM performed the best for the sample with the lowest 

COV suggesting it is well suited to the estimation of extremes in samples with COV's of less 

than 0.3. In general, all methods performed better with the data having larger COV's.

RMSE of shape, and scale parameters - As before both ML and ENT perform well, however, the 

best result for the shape parameter of the smallest sample was obtained with LSQ. The best 
estimator for the scale parameter was always ML. MOM performed poorly for small samples 

over the whole range of COV’s; furthermore, the error increased significantly as the size of 
sample increased. All five methods showed a deterioration in their estimates of the shape 
parameter as the sample COV increased.

RMSE of quantile estimates - MOM and ML performed best over the whole range of COV's 
especially for the small samples. PWM and LSQ performed poorly in all cases with their 
estimates particularly poor for the larger COV's.

Based on the above summary of Singh's results we can conclude both ML and ENT are the 
best estimators of the Weibull parameters if the statisticians criterion are taken. However, it 
is worth noting MOM gave good unbiased results for the extreme quantiles, albeit with the 
highest sampling error. In the remainder of this work the ML method is adopted as the 

primary estimation method. At first sight this might seem at odds with practicality since the 
maximum likelihood method requires the derivation of complex likelihoods which must then 
be optimised using multivariate function minimisation routines. A reasonable question is then 

why not use a simpler estimator for the problem at hand, for example, the method of moments 

for fitting a model to small samples with low COV. Previously this argument has won in 
engineering and, as Crowder et al (1991) point out, in consequence the statistical analysis 
performed by engineers has fallen behind the methods adopted by for example the medical and 

clinical sciences. The principal advantage of maximum likelihood over the simpler 

alternatives is the rigourous formalisation of likelihood estimation, and its wide degree of 

application. By adopting the method we avoid having to use various ad hoc estimators like 

weighted least squares to determine the ’optimal’ parameters. In addition, the method 

provides a general procedure which allows the statistical uncertainty of functions of the
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models parameters to be found using the information matrix. This avoids having to perform 

time consuming and expensive Monte Carlo simulations to determine the levels of uncertainty in 
a statistic derived from a fitted modeL

Before discussing likelihood estimation in detail a brief introduction to kernel density 

estimation will be given to highlight some of the problems with parametric estimation and 

demonstrate the differences between parametric and non-parametric methods of density 
estimation. Non-parametric kernel methods have been popular in the medical and clinical 

sciences for many years since for large samples they can provide accurate, low bias estimates of 

the density without pre-supposing a parametric form. The advantage of this method is that it 
enables the presence of multi-modality to be identified, for example when analysing data 

which result from the mixing of more than one random process. For our purposes, this might be of 
use when analysing wave zero-up-crossing period populations which result from the mixing of 
swell and wind driven seas.

3.3 KERNEL DENSITY ESTIMATORS: NON PARAMETRIC ESTIMATION

In this section, three procedures which allow data to be explored graphically are 

briefly examined. These procedures can be used subjectively to identify the nature of the 
distribution function underlying a sample of data with distribution function f ( x ) .  Engineers are 

familiar with histogram and quantile plots as methods for examining the distribution of a 

sample xt; i = but these methods can only give a subjective measure of the central

tendency, skewness and kurtosis for the sample. Furthermore, neither histograms nor quantile 
plots can be used reliably to visually identify the family of underlying distribution functions 
when the sample is small (<50). Normally, a quantile plot is more informative than a 

histogram, however, because it is a plot of probability level and not density against variate it 

is difficult, without experience, to identify the underlying distribution function.

For this work it is useful to determine non-parametric estimates for the density function 
which can be used to select the correct model for use in a parametric study. Rosenblatt (1971) 

shows that for large samples the kernel density estimator gives low bias and low variance 

estimates of density. Kernel estimators are used primarily as graphical tools, however, they 

can also be used to determine robust estimates of density for use in, for example, hazard rate 

estimation.

Perhaps the simplest estimator is the Nearest Neighbour Estimate for which
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} ( x ) J ( x i) - F ( x ) ^ ' 4 L_

\X i-X i- l i  [X i-X i-l]

This estimator is of little use for practical applications however it does illustrate how the
A

density f (x )  can be estimated from the samples. The kernel density estimator uses a similar 

principal but instead of using only two 'adjacent1 samples it uses a weighted average over the 
samples within the bandw idth^ window, with width b.

The two principal advantages of kernel estimators are that they assume no particular 
functional form for the density and that their behaviour is well defined mathematically in the 

large sample case, Silverman (1986). A further advantage of the method is that it can be 

extended to the multivariate case (see Ch.4 ) to explore the underlying structure of joint 
probability distributions. The general form of the univariate kernel estimator is

j(x) = i p i ^ r }  [3-51

where n is the number of samples, b is the bandwidth for the smoothing, and k(.) is a kernel 
function which must satisfy

J k(x)dx = J; k (x )< l ;  J x k(x) dx = 0

The kernel is therefore a density function with zero mean. Several types of kernel have been 
proposed but most users agree that the choice of kernel is less important than the selection of an 
optimal bandwidth, consequently for this work we use the well known Epanechnikov (1969) 

kernel for which

k(y) = % ( l - y 2) ; k(y) = 0, otherwise [3.6]

This kernel has been studied extensively and simulation shows that it provides asymptotically 

unbiased estimates with low variance given the correct choice of bandwidth. The optimal 

smoothing width is dependent on sample size and sample standard deviation, as a rough guide 
it should be taken as b = 2<Jrf115 , however, if a more accurate result is needed, for example 

when using the estimate in hazard rate calculations, the method of maximum likelihood 
should be used. It is worth noting however that the results may be biased and noisy when the 
distribution is long tailed, in such cases adaptive kernel estimation (in which the bandwidth 

varies) should be used.
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Applications for these procedures using populations of wind wave and current data 

were given in Chapter 2 which examines the environmental time series recorded by the IOS 

DB1 data buoy. To demonstrate the method, a sample of 1000 Weibull distributed random 

numbers with shape, scale and location 0  = {2.0,1.463,10.16} is generated and then 

examined using the fixed bandwidth, Epanechnikov, kernel estimator outlined above. The 

results are shown in Fig. 3.2 which shows the population model plotted against two kernel 

estimates each having different bandwidth. Overall, the optimal window width kernel 
estimates agree well with the population model with good fit in the body of the distribution.

3.4 MAXIMUM LIKELIHOOD ESTIMATION

The likelihood random variable for the vector of observed values X  — is

defined as the joint density for the observation. Assuming the observations are iid then the 

joint density is

/ (  *) = /(* ,; 0)xf (X, ;  fl)x x/(X,; 0)

the likelihood random variable is then defined as

L ( 0 ; * )  = n / ( X , . ; 0 )
i«/

For a sample of iid data the sample likelihood is defined by

i { 0 ; x ) = Y [ f { x i ; o)
i-1

where the lowercase I  denotes the quantity is the sample likelihood, that is an observation on 

the random variable L. The sample likelihood is simply the product of the density for each of 

the samples with the model parameters as the unknowns. The principal of the maximum 

likelihood method is that the best explanation’ for the sample of data X  is provided by the
A

value 0  e  £2 which maximises the the sample likelihood l{0  ; X ) , that is

In real applications there are theoretical and practical advantages gained from working with 

the natural logarithm of the likelihood, in fact it is the log-likelihood which is fundamental
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to the derivation of the parameter covariance matrix. The solution for the most likely set of

parameter space Q . For the case when the parameters of the model are unbounded the solution

where, p is the number of parameters in 0 ; for example, six in the case of a bivariate Normal
A

and three in the case of the univariate Weibull. The solution for 0  will usually involve a non­

linear minimization of the negative likelihood — t{0;x),  since

However, in practice, the solution for 0 is sought using the natural logarithm of the 

likelihood since the log-likelihood is used in the calculation of model parameter uncertainty. 
In this work the Numerical Algorithms Group (NAg) gradient based, minimisation routine 
E04VDF was chosen for the optimisation. This routine has proven ideal since it is capable of 
handling large numbers of model parameters, and can deal with non-linear, and linear 
inequality constraints. The initial position of the search for the maximum must be chosen with 
care to avoid the location of local and not global minima. However, the starting value of the 
parameters can generally be estimated by graphical inspection of the marginal distribution.

3.4.1 THE INFORMATION MATRIX

Each parameter vector 0 estimated using a finite realization of a random vector

X  =  will itself be a random vector drawn from a sampling distribution. For large

samples it is well known that maximum likelihood estimates are asymptotically multivariate 

normal distributed with minimum bias and accuracy not far from the theoretical optimum. 

Furthermore, under certain conditions on the joint density, and assuming the estimator is 

unbiased, the symmetric pxp Hessian matrix of the negative log-likelihood, called the 
information matrix, is related to the sampling distribution covariance matrix C where

parameters 0 , for the chosen distribution function/(x; 0), is obtained by maximising 0  on the

0 , is then defined by the turning points given by

max[t(0; *)] s  m in[- t (0 ; jc ) ]

[3.7]

that is
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c  =

- E

- E

32 log. L -E S2 log' L
30,90, | 36,36,

\ d 2log.L ........- E 32log'L
[ 36,36, 30 ,3 6 , J

T -I

[3.8]

The proof of this important result, is given in Ledermann (1984). In practice, the expected 

values of each second derivative in Equation [3.8] can be difficult to determine and in this work 

the covariance matrix is approximated by the observed information matrix

c =

d2log.t
36.36,

d2log.l
30.36,

3 2log.l
36.30,

32 log, I
3 0 .3 0 ,

-1

[3.9]

The joint sampling distribution of the random vector 0, is then multivariate normal, with zero 
expectation vector, and covariance matrix given by the second derivatives of the log- 
likelihood function. The asymptotic form for the distribution of the maximum likelihood set of 
parameters is then approximated by

m ~ ( 2 n f 2^ eXP^ * ° T C' ‘ 13101

A knowledge of f ( 0 )  enables the confidence regions for the parameters to be constructed. This

information is important since for design purposes it means we can identify characteristic upper 
and lower bounds on the form of the distribution function and hence allow for the uncertainty in 

the maximum likelihood model. Of course we often have small sample sizes (<50) in which 
case the assumption of asymptotic normality will be approximate, or may not hold.

3.4.2 CONFIDENCE INTERVALS AND REGIONS

There are two possible ways of using the model parameter covariance matrix. In the 

simplest case each parameter 0i is considered independently of the other model parameters, 

which are assumed to be deterministic. We have seen that the model parameters are 

approximately multivariate normal, and consequently the random variable 6i is 

approximately normal with zero expectation, and variance approximated by
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[3.11]

using the properties of the standard Normal distribution confidence intervals can be calculated 

for the individual model parameters, for example, the approximate 95% confidence limits for 
Qi are

et -  1.96o(e,) <-> 0, +1.960(0,) [3.12]

In practice, the single parameter case is of little use other than to indicate the degree of 

uncertainty in the parameter, thereby indicating the goodness of fit. For the two parameter 

case the confidence limits become an ellipse and therefore rather more difficult to compare 

between models and fits. Ultimately, we are interested in the uncertainty in some function of 

the parameters like the quantiles for a given design return period. In this case the contribution 
of each parameter to the uncertainty in the quantity of interest must be allowed for using a 
method like the Rao (1973) delta method.

3.4.3 FUNCTIONS OF MLE PARAMETERS

In most cases, we are interested in functions of the maximum likelihood estimates of a 
model’s parameters. We have seen the model parameters can be assumed to be approximately 
multivariate Normal, with zero mean vector, and variance-covariance matrix determined by 
the second derivatives of the log-likelihood. Assuming asymptotic normality holds for small 
samples we can generally apply the delta method, Rao op cit, to determine the mean value and 
variance for functions of the model parameters. One obvious class of functions which are of 
interest are the quantiles X P corresponding to a design life with survival probability P.

Assuming <£>(£?) = X p ( 0 )  , then the mean value of the quantile X P is given by substituting

the maximum likelihood set of parameters into the function <P(0) i.e. =  xp Ôj = X p .

The variance is given by

v[ i , ]  =  v[F-'(/>)]

Providing the inverse distribution function F '1 can be found the variance of a quantile can be 

approximated by assuming the parameters are multivariate normal. In practice, this enables 
the mean value of a design parameter to be determined for a given level of probability or return 

period, together with an estimate of its statistical uncertainty. This information is of 

considerable use since it could directly be used to assess the magnitude of a partial safety factor 

required to give a defined level of reliability.
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In the simplest case the quantile is a simple linear function of the model parameters 0  
with coefficients <2.

the mean is then given by

= Z ' , ai£ [0.]

and the variance is

vW  1= yL ' . M e-1+ Z ' , £ -.,a . coA e‘ • 6j ] 13131

One example of the simple linear case which is of importance to the design of ships and 

offshore structures is the G umbel model, F{x) = exp^—exp— (” <r"))/ which has quantiles

xr = n - o l o g ( - b g P ) [3.14]

with mean xp and variance

a2
{ l + 6/ x l ( i - y - log (-logP ))2]-n [3.151

In this case maximum likelihood estimates of the mean quantile, and its variance, can be 
calculated very simply using the estimates /i , <7.

If <&(0) is not a simple linear function of the model parameters but a non-linear, 

continuous, differentiable function of the probability model parameters 0  then the mean and 

variance of <P(0) can be found to a first approximation using the Taylor expansion

0 < 6 ) = 0 ( d ) + '£ ( e i - 9 1) 9 0
90:

The mean value of the function & is then approximated by

E [ 0 (0 ) ] = 0 (6 )  + '£(ei - 6 l) 90
90:

=  0 ( 0)
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that is the mean value is given by substituting the maximum likelihood parameters in to the 

function <£>( 0 j. The variance of the function of the model parameters is given by

[3.16]

This equation can be written in matrix notation giving a more compact form which is easily 

programmed using standard library routines

v[<P(0)1 = Gt(0 )C  G(<P) [3.17|

Where C is the parameter covariance matrix, and G (0 )  is the function gradient vector. In the 

simplest case, the model has a single parameter 6 and the variance of the function 0 ( 6 )  at 

the maximum likelihood point is

-HM,  ( 3 _ 1 8 ]

For the two parameter case we use the summation Equation [3.16] to obtain

v[0 (O )J  = v[61]
~ 60~

2
f  *  1 6 0 6 0 A 6 0

661
+ 2cov[6l f62 J

d6j 662
+ v[02]

662 [3.19]

Some applications of these techniques are given later using the Weibull and GEV models 

developed in Sections [3.6&3.7J.

3.5 MODELLING PROCEDURE: APPLIED MAXIMUM LIKELIHOOD

A summary of the most common univariate distributions is given in Lewis & Orav (1989) 

and a more complete discussion is given in the Johnson & Kotz (1970). For multivariate 

distributions see Johnson & Kotz (1972). The procedure for modelling a distribution using 

maximum likelihood involves eight primary steps:

1 graphical examination of the marginal distributions and scatter plots

2 checks for the iid assumption using autocorrelation of the time series

3 hypothesis of the distribution function for the data
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4 formulation of the sample log-likelihood for the chosen model

5 maximization of the sample log-likelihood

6 calculation of the information matrix if the problem is regular

7 estimation of the confidence regions if possible
8 assessment of the uncertainty in the quantity of interest to the

designer

If the random variable can be transformed into a normal variate then the problem of estimation 

is considerably simplified. However, if this is not the case then prior to statistical inference it 
is often advantageous to use a simple transformation which produces a zero mean process, with 

normalised variance

_ ( » ,- £ [ » ] )  [3 20] 

' W )

This transformation to random variable yj scales the data and in some cases improves the 

numerical conditioning of the log-likelihood, thereby improving the solution obtained using 

the optimisation. The probability density for the random variable X , f ( x )  is related to the 

probability density for Y, f { y )  through the simple relationship

fr ~ \ ^ f x  = fx(x)

This is simply a probability preserving transformation such that f r jc/yj =  f x \dx\.

3.6 THE WEIBULL DISTRIBUTION

A popular generalisation of the exponential distribution for extreme value and 

reliability calculations is the Weibull (1951) distribution. The popularity of the Weibull 

model stems from the flexibility of the scaling and shape transformation

Before developing the Weibull sample log-likelihood functions it will be useful to carefully 

examine the properties of the Weibull distribution. The cumulative distribution function and 

density function are given by
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F(x; &) = ! -  exp\ - U- i . )
a

[3.21]

and

v o
a

[3.22]

where, the bounds on the model shape, scale and lower bound parameters are given by

x>!;0; 0 < a < o o ;  0 < c < o o

Inverting the distribution we get the level of variate corresponding to survival probability Ps

X, = a  log\ y j - y  I + 4 [3.23]

This relationship enables us to calculate the return period values for the DB1 wind speed, 
significant wave height, and current speed. It also serves as a check on the fit of the marginal 
models in the extremes.

The first four moments of are given by the gamma functions

£ [* ]=  4„ + a r { l  + i }  [3.24]

var[x]= a * [ r { /  + 4 } - r J{ /  + £}] [3.25]

£[(x -j/]=  <x3[ r { i + i } - 3 r { i + i } r { i + i } + 2 r 3{i+l}]  [3.26]

£[(* -  x)‘]=a [r{i + f } - 4r{i+ j}r{ i  + f } + <5r*{/ + j} r{ i  + f } -3 r ‘{i + ̂ }][3.27]

The lower limit on the range of the variate results in the distribution commonly being referred 

to as the Type in  lower bound distribution since its form corresponds to the third Fisher Tippet 

distribution when X  is replaced by —X . The physical interpretation of the lower bound is that 

the variate cannot be less than some threshold value which very often can be taken as 0.0,
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in which case estimation of the model parameters is relatively simple since only two unknowns 

exist.

The three parameters in the Weibull distribution each control a different aspect of its 

shape. The 'c' value is a shape parameter which influences the skewness and peakedness, and 

the alpha parameter is the scale factor which controls the spread along the variate axis. 

When c = 2 and = 0 the distribution becomes the Rayleigh distribution, and when c=3.25 the 

Weibull distribution is very nearly distributed as a Normal variate, Dubey (1967). Plots of the 

Weibull distribution and density for a range of integer shape parameters from 1 (exponential) 

to 4 are given in Fig. 3.3.

3.6.1 WEIBULL LIKELIHOOD FUNCTION

The sample log-likelihood function for the three parameter Weibull distribution is given

by

n

which on algebraic manipulation gives

A

log{t(0;x)) = nlog.c-cnlog, a  + ( c -  - 40) ~ - 4o)‘

[328]

For the two parameter Weibull ( i.e. £0 — 0) the solution for the maximum likelihood set of 

parameters 6 = {c, Ct} is then given by

Solving for the first derivatives of the log-likelihood gives two non-linear simultaneous
A

equations which are a function of the unknown parameters 0  and the sample X  :
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i ‘̂ i = n { ± - b g ,  a }  + !> < ? .(* , -  & ) + “ ^ £ ( Jt> ~  S°)C -

- b ' L ( x < -Z ° )C h 8 ' ( x ' ~  to )  [3.30]
a  M

Solving this problem is relatively simple when compared to the three parameter case since an 

iterative scheme can easily be implemented to search for the solution of the two equations. 
Unfortunately, for the three parameter case the first derivative of the log-likelihood with 

respect to the lower bound is not zero

[3 '3 1 ]
» « / S o )  (X i~ l

owing to the bound on the parameter %0. Solving Equations [3.29 & 3.30 & 3.31] therefore 

requires classical, constrained optimisation procedures to minimise the negative log- 

likelihood, i.e.

max[logti{0;x)] s  min[-logt£(0;x)]

In this work, the Numerical Algorithms Group (NAg) Fortran subroutine E04AJF was adopted. 
This routine uses a double precision, 'downhill', finite differencing algorithm to solve problems 
of the form

min{F(x)} subject to I < {x} < u

where, F(x) is a smooth nonlinear function, X is the vector of function variables, and l , U  are 

the vectors of upper and lower bounds on the model parameters.

3.7 THE GENERALISED EXTREME VALUE DISTRIBUTION

The three Fisher Tippet distributions can be generalised as a single equation usually 
referred to as the Generalised Extreme Value (GEV) distribution, Jenkinson (1955) . The 
cumulative distribution function for the GEV is

G(x;^i,a,k)-exp [3.32]
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where the scale coefficient G > 0 ,  and the range of X  is determined by the inequality 
7 — k ( x  — f J . ) / G >  0.  Inverting the distribution we get the level of variate corresponding to 

survival probability Pt

[3.33]

The three fundamental forms of the GEV are controlled by the shape parameter k  which can 

either be zero, negative or positive:

k —» 0  Fisher Tippett Type I - in the limit as the shape parameter tends to zero the GEV 
becomes the Gumbel (or double exponential ) distribution with unbounded variate, and 
distribution function given by

G,(x;ii,o) = exp -exp<- x - i l

[3.34]

k < 0  : Fisher Tippett Type II - when the shape parameter is negative the GEV has a Frechet 
distribution with lower bound on the range of X defined by the equality XB = o /k  + JJ.

k >  0  : Fisher Tippett Type III - when the shape parameter is positive the GEV has a upper 
bound on the range of X defined by XB — Gjk + fl

The form of the GEV distribution for -X with positive shape coefficient is Weibull with the 

shape, scale and lower bound coefficients given by C = l j k ; (X ~ G/k; %0 = G /k + /Z. For 

comparison, the three forms of the GEV are plotted in Fig. 3.4 using equal scale and location 
parameters.

3.7.1 THE GEV LIKELIHOOD FUNCTION

Estimation of the parameters of the GEV distribution is discussed in Prescott & Walden 

(1980) in relation to the estimation of extremes in hydrological data. They use an iterative 
scheme involving the Fisher information matrix to derive the maximum likelihood estimates 

for the shape, scale and location parameters. In this work, the problem is solved more directly 
by minimising the negative log-likelihood using a non-linear function minimisation routine. 
This approach was adopted successfully by Tawn (1988a) who examines in detail the fitting of 

a GEV model to data having non-stationary mean. Differentiation of Equation [3.32] gives the 

GEV probability density function
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f ( x )  = - L [ l - k { x - t l ) l  o f 1 exp^-{l -  k { x - l l )  I o f ^  [3.35]

In the normal manner, the natural log of the sample likelihood is given by

log.(t(0;x)) = (•*;.•••*.))
««y

whereupon making the substitution for the density of each sample we get 

logt {l(0;x)) = -n log t a  +

( {  -  I ) 'L l°g-{[1 ~  k(x‘ - ^ ) /CT] } - X [/ - k (x i ~ V ) 1 13-36]
i-y i-y

The maximum likelihood solution 0  = is then found by minimising the negative

sample log-likelihood, subject to the linear and non-linear constraints

0 <cr<«>

—oo < k < l  

l - k ( x - j x ) l  G> 0

The first two constraints are simple bounds on the range of the parameters. The upper limit on 

the shape parameter k corresponds to a limit on the so called regularity space for the log 
likelihood, that is no MLE exists for values of k greater than unity. During the initial stages of 

this work it was assumed that the FT HI was totally equivalent to the upper bounded form of 
the Weibull distribution, however, the limit on k means the GEV cannot model Weibull 

populations for which the shape parameter c is less than 1.0. This suggests both the GEV and 

Weibull models should both be fitted to a sample to test which model fits the data best.

The third constraint makes the GEV more difficult to solve than the individual Fisher 

Tippet distributions since it is non-linear in the scale parameter. Finding the maximum 

likelihood parameters therefore requires minimisation of a non-linear function subject to both 

bounds on the parameters and non-linear constraints. When programming the solution of the 

GEV maximum likelihood parameters two non-linear constraints are required to allow for all 

feasible values of the variate
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1 -  k (.x « . ~  V  1 ° > 0
1 -  K  Xmax-  / G >  0

where, x ^  and Xmas are the smallest and largest values in the sample. The first constraint is 

necessary when the current iteration has a negative value for k corresponding to a lower 

bounded variate with Frechet distribution. The second constraint is necessary when the current 

step has a positive value for k in which case the variate has an upper bound with FT HI 
distribution.

When solving the MLE's for the GEV it was not possible to use the same NAg function 

minimisation routine that was used with the Weibull distribution since it is not capable of 

dealing with the non-linear constraints. It was therefore necessary to use the more general 
minimisation routine, E04VDF, which solves problems having the form

NAg routine E04VDF requires analytical expressions for the derivatives in the log likelihood 

gradient vector G in order to perform the minimisation

X

min{F(x)} subject to u<< Ax ><l

U o .

Where: F(x) is a smooth nonlinear function;

X is the vector of function variables;

( u>0 are the vectors of upper and lower bounds on the

range, linear and non-linear constraints;
A x  are the linear constraint equations;

c(x) are the non-linear constraint equations.

dlogt l  d log 'l 
dG ’ dk ’

This gradient vector is used by the routine to determine the next step length and direction, each 

term ( given by the first partial derivative of the likelihood w.r.t. the model parameters) is 
given in Appendix A.2.
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Experience with the GEV distribution shows the correct choice of starting point is 

essential for the optimisation to converge to the maximum likelihood point. In this work the 
moments estimator for the Gumbel scale and location parameter are chosen as the starting 

point, with a shape factor set to 0.1. The Gumbel model has a mean and variance given by

mean =  /x +  ya  

1 2^2variance = — n c r  [337]

where 7 is Euler's constant. Equating these to the sample moments we get the solutions

[3.38]

[3.391

k * =  0.1 [3.40]

Using these values usually ensures that the correct maximum is found: however, in some cases 
the solution for k is zero indicating the domain of attraction is the Gumbel model. In this case, 

the I l k  terms in the likelihood and its derivatives tend to infinity and a trap is required to 
prevent numerical ill-conditioning. In such cases the results in Tiago de Oliveira (1989a) are 

useful since he shows the location and scale parameters are bivariate normally distributed 

with:

£ [//]  = /2 

£[<t] = a
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where y  = 0.5772.... is Euler's constant, and the asymptotic correlation coefficient is

P = /+ •  *
6 (1 - r )

= 0.313

These results can be compared with the covariance matrix estimated either analytically or 

numerically from the information matrix ( Appendix A.2).

3.8 ESTIMATION OF THE COVARIANCE MATRIX: NUMERICAL PROBLEMS

Confidence intervals, and standard errors can be estimated using the Fisher information 
matrix, which is constructed from the second derivatives of the log-likelihood with respect to 

the model parameters. In most cases, the equations for the second derivatives ( which are given 
in, Appendix A ) were cumbersome and prone to error in their derivation and implementation in 
FORTRAN, consequently a check was made on each result by calculating the derivatives using 
finite differences. Initially, it was hoped that finite difference solutions would be sufficiently 
accurate for the method to be used routinely. However, in practice, a problem was encountered 
in a few instances. The gradients at the maximum likelihood point are, rightly, near zero and 
this caused a number of numerical problems because the central and forward difference 
estimates calculated by the NAg routine were not sufficiently close to allow the routine to 
accept the results. To overcome this problem the gradients and Hessian were calculated at a 
point very close to, but not at, the maximum likelihood point

O = F 0  ; F > 1.0

The size of the perturbation factor F varied with model type and sample of data but generally 

a value of 1.0001 was found to be acceptable. The introduction of the factor F gave biased 

estimates for the gradient vector and the Hessian matrix which are of course already biased by 

the error residuals 0(.)2 of the Taylor approximation.

A further problem was encountered when calculating the parameter uncertainty. In some 

instances, negative estimates appeared on the leading diagonal of the covariance matrix, 

which is clearly incorrect since only the covariance terms can be negative. The cause of the 

negative terms was not clear in some cases, however, in the case of the Weibull model the
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problem was related to the fact the lower bound parameter acts as a constraint in the 
optimisation. Very often the solution for the maximum likelihood point occurred at the 

boundary constraint. In such cases, the asymptotic properties of the likelihood ( which are the 
basis of the derivation of the information matrix ) do not hold.

One 'solution* to this problem was to re-run the analysis using a two parameter Weibull 

model in which the lower bound was set at —£ . This resulted in acceptable covariance 
estimates but as pointed out by Dr. B. Torsney, University of Glasgow Statistics Department, 

this makes the results for the scale and shape parameters conditional on the choice of lower 

bound. One proper solution to this problem would be to include the order statistics estimator for 

the smallest in the sample in the likelihood function, see Galambos (1978); this could be 
included in any extension to this work or a related subject.

3.9 FORTRAN MAXIMUM LIKEUHOOD PROGRAM

The Weibull and GEV models discussed so far have been programmed into a FORTRAN 77 
program called MAXLIK. This program uses Numerical Algorithms Group (NAg) subroutines 
for the optimisations and inversions required by the maximum likelihood method. The core of 
the program is NAg routine E04VDF which is a general minimisation routine which can handle 
functions with large numbers of variables and linear and non-linear boundary constraints. All 
computer code has been written in a modular format to enable new likelihood functions ( ie new 
distributions ) to be added without having to alter the structure of the program.

3.9.1 CHECKS WITH SIMULATED DATA

The Weibull code in the program has been checked by comparing its results with a 

dataset analysed by Menon (1963), and Cohen (1965). The original problem was defined by 
Menon loc d t and consisted of maximum likelihood estimation of the parameters for a Weibull 

population with zero lower bound. The population scale parameter was 0  =  1 .6 4 9  (note 

Cohen writes 6  = 0 tc =  1 .6 4 9 )  and the shape parameter was c = 0 . 5 .  Two years later Cohen 

loc d t examined the data using maximum likelihood and showed how the information matrix 
could be estimated and then used to calculate the covariance matrix for the model parameters. 

The results of moment, Menon, Cohen, and MAXLIK estimators are summarised in Table 3.1 

together with the 20 samples drawn from the population. This table shows that the method of 

moments gives the poorest estimate for the shape parameter and the best estimates are 

obtained with the Cohen, and MAXLIK likelihood estimators which are in error by only 1 per 

cent. The estimates for the scale parameter are more biased than the shape parameter with 

the worst solution given by the moment method.
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In addition to the maximum likelihood estimates of the parameters Cohen loc d t 

estimates the information matrix from the sample log-likelihood and then derives the shape 

and scale parameter covariance matrix. Based on the results in Section [3.4] we can calculate 

the 95% confidence intervals for the shape and scale parameters using the information matrix. 
These values, reported by Cohen, are compared with those calculated by the MAXLIK program 

below

estimator Cohen MAXLIK
scale -6  0.68< 0< 2.05 0.62< 6< 1.81

shape - c 0.30<c<0.70 0.4<c<0.7

The MAXLIK results are a slight improvement over those obtained by Cohen but this is 
probably due to the higher predsion of the NAg routines used for the optimisation. Note the 
width of the 95% confidence limits is quite large for the scale parameter indicating the high 
level of uncertainty caused by the small sample size. The shape parameter has a narrower set 

of limits, which is encouraging since the quality of fit for extreme level quantiles is more 
sensitive to bias and uncertainty in this parameter than the scale parameter. If we examine 

the covariance matrix for the parameters it appears the scale and shape parameters are 

modeately correlated

var(a) cov(a,c) '0.7275 0.022'
cov(a,c) var(c) 0.022 0.0066

As a further check on the fit of the estimators, the parametric form of the exact, moment, 
Menon, Cohen, and MAXLIK estimates can be plotted against the quantile estimate

4 /> r (X £ x 4)] =  ^ -

This has been done in Fig. 3.5 and 3.6 which have been plotted on a linearising scale. Note the 

moment estimator is dearly shifted from the data and has the wrong slope whereas the 

MAXLIK estimator fits the data well and is very dose to the exact model

The GEV estimation subroutines have been checked by using two simulated data sets provided 

by S. Coles at Sheffield University. Each data set contains 30 samples drawn independently 

from a GEV population with location, scale and shape parameters:
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sample location scale shape
dataset 1 -0.20106 1.03457 0.14165

dataset 2 -0.04722 0.88554 -0.14655

Both datasets given in Table 3.2 have been analysed using the MAXLIK program and its' results 

compare favourably with those reported by Coles, suggesting the likelihood and optimisation 

routines are correct.

To check the information matrix terms two approaches have been programmed: the first 

uses analytical expressions for the second derivatives of the sample log-likelihood (Appendix 

A); and the second uses the finite difference method. The results from each method were found 

to be identical to the first four digits of accuracy and no perturbation was required for either 
data set. The results from the finite difference method are presented in Table 3.3. Based on the 
covariance matrices the 95% confidence limits are then:

GEV parameter dataset 1 dataset 2

shape 0.7378 <-> 1.332 0.6112 <->1.160

scale -0.1160 <-> 0.3991 -0.4140 <-> 0.1203
location -0.625 <->0.2227 -0.4044 <-> 0.3101

Note in this case the bounds are more narrow than was the case for the Menon Weibull data due 
to the larger sample size. On the other hand in this case the 95% confidence limits change the 

sign of the scale and location parameters suggesting the sample may not be sufficiently large to 
establish which Fisher-Tippet model is the correct one for the data.

3.10 PEAK OVER THRESHOLD PROBABILITY

When fitting a population model to a sample of data it is often the case that either: the 

order statistic quantiles do not fit the estimated model in the tails of the data; or the model 

tail does not behave as expected when predicting return period levels. Since the F(x)N 

approach to calculating the distribution of the largest or smallest extremes is sensitive to the 

fit in the tails of the distribution it is important to ensure the fit is good for the largest or 

smallest values in the data. One method commonly used to improve the fit in the tails is to use 

a weighted least squares regression, Isaacson (1981). This method suffers from a lack of 
consistency in that the choice of weights is arbitrary, resulting in different estimates of 

extremes given different weights. A better procedure is to censor the data by selecting only the 

r largest in the data sample and then fit the model to these data. This approach is can be used 
successfully with the maximum likelihood method and is useful when data are only recorded
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when the values exceed a threshold value. For example, a data buoy can be designed to record 

heights which are in excess of say 5 metres significant, thereby reducing the amount of 

information which must be stored and analysed.

Assuming independence, the distribution of the largest L in sample of N  amplitudes A is 
given by

F ( L Z I )  = [ F ( A Z a ) f  [3.41]

A

However, a model F(m) fitted only to the r largest in a sample of size k cannot be used in the 

conventional way for estimating the distribution of the maxima since it is not an estimate for
A

the population model F (A 5s a) used above. The model F(m) must therefore be used with the 

theorem of total probability to calculate the distribution of the largest in N independent, 

identically distributed amplitudes.

Let Er be the event that there are r amplitudes greater then some threshold in k 

trials. The probability that there are r values greater than in a sample of size k is given by 

the binomial distribution, where

f k ^
P(E,)= 5r ( 1 - 8  )k~r

VJ [3.42]

here
fk \ k !

r ! ( k - r ) !

Now, given that r  of the amplitudes are greater than the maximum likelihood threshold 

in k samples, the conditional probability of the event that the maximum amplitude M will be 

less than a value m (M  < m / R = /*) is

A

Here, F(m) is the model fitted to the r largest amplitudes using the method of maximum 

likelihood. For our problem, the probability sought is the unconditioned probability 

P(M < m) which, by the theorem of total probability, is given by
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where 8  is the probability that the observed amplitude will be greater than the threshold. 

This simplifies to

P ( M S m )  =  ( i F ( m )  +  / - i f  4  [3.43]

A A

Estimates of the quantities F(m)  and 8  can be obtained using maximum likelihood or,
A £

alternatively, F (m)  may be found using maximum likelihood and o can be estimated using
A A

8  — r/k  For the case r=k, we have 8  =  1 .0  and Equation [3.43] reduces to the correct result 

Ft (M  < m ) = [F(A <t The value of r used for censoring the data must be chosen 

carefully, since if the value is made too small - less than 10 say - the maximum likelihood 

solution will be biased to such a degree that the advantage of the optimal sampling variance 

associated with maximum likelihood methods will be lost. On the other hand if r is too large
A

the fit F(m)  may be poor for the largest values in the sample which are most important for the 

estimation of extremes.

3.11 EXTREME RESPONSES OF A FLARE TOWER

The maximum likelihood procedures discussed previously are so general they can be 
applied to a variety of statistical modelling problems. One useful application is estimation of 
the most probable maximum structured response, in say three hours, given non-linear time 
domain response simulations which last for say 2000 seconds. This problem was of interest to an 
Oil Major who commissioned a study into the use of maximum likelihood for predicting design 
levels of response. Full details are given in Prince-Wright (1990), and a summary of the study is 
included below.

Four time series of the forces in a flare structure brace element, Fig. 3.7, were examined to 

extracted the maxima from each time series. In the linear response case, we would expect the 

maxima to be Rayleigh distributed when the sea is narrow banded. Consequently, the maxima 
were assumed to be Weibull distributed since it includes the Rayleigh model as a special case 

when the shape parameter is 2.0. However, the non-linearity of the structural response means 

this is not so and therefore the shape parameter was included in the likelihood maximisation.

3.11.1 RESPONSE MAXIMA POPULATION

The sample of response maxima was extracted from the four time series. The maxima 

populations were then modelled using both two and three parameter Weibull models which are 

shown in Fig. 3.8 and 3.9. Overall, the three parameter model gave the best fit to the 

populations, which is to be expected, with little systematic curvature in any of the plots: this
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suggests the Weibull model is reasonable as a descriptive model for the maxima. One problem 

with the Weibull model is that it decays rapidly in the upper tail which results in under­

estimation in the case of wave heights. For this reason, a simple threshold approach was 

developed, Prince-Wright (1991b), so that a Weibull model could be fitted to the r largest 
response maxima.

The obvious question is what value should be used for r ? The previous literature review, 

Section 3, indicated that the likelihood approach could be used with samples with as few as 20 

observations. Furthermore, the tests with the simulated Menon data also indicated the model 
parameters' bias and variance were still acceptable for such small samples. Consequently, r 
was taken as 20.

The results are shown for two of the time series in Fig. 3.10. Again the model fit is good, 
however, the small sample size results in a large increase in the statistical uncertainty of the 

Weibull model parameters, which are given in Table 3.4. A further disadvantage of this 

method was that in some cases the best results were obtained when a two parameter Weibull 

was used. This makes it difficult to program the estimator in a 'black box' routine since, 
ideally, both models must be fitted and then compared; when in fact goodness-of-fit tests are 
unreliable in the small sample case. This example therefore tends to suggest it is preferable to 
model the population using a distribution which has the correct tail behaviour.

3.12 MODELS OF THE DB1 WIND, WAVE AND CURRENT DATA

Two approaches were used to model the marginal distributions of the DB1 wind speed, 
significant wave height, and current speed. The first is summarised in ch. 2 where maximum 
likelihood was used to fit both Weibull and GEV models to the marginal monthly maxima 

given in Table 2.11: Ch. 2. The quality of the fits to the monthly maxima was generally good as 

shown in Fig. 3.11 and 3.12. Unfortunately it is difficult to quantitatively compare two models - 

which both seem to linearise the data - so their residuals were plotted. The results are shown 
in Fig. 3.13 and 3.14 but again both appear to be similar.

In the second approach both Weibull and GEV models were fitted to the full population of 

3-hourly records for each variable ( in fact the wind and current data was recorded every hour 
but we only use the values taken simultaneously with the seastate parameters ). The results 
from modelling the population are given in Table 3.5 which shows in general the likelihood 

estimator's mean and variance agree well, the skewness is reasonable, and the kurtosis is poor.

The primary purpose of a marginal model for the wind, wave and current data is to estimate 

the level of a variable exceeded on average only once in a specific return period like 50 or 100

73



QasaJ. m odellin g un ivorial* «nnrnnm eninl tin t*

years. It is therefore essential that the marginal models be capable of modelling the tails of 

the data: this suggests the third and fourth moments of the estimator must agree with the 
sample moments. Using the definition of return period given in Department of Energy (1990b) 

then the survival probability corresponding to the 50 year return period is

1 /(5 0  * 36525*8)
for the population models, and

1 /(50*12)

for the monthly maxima models. Note 8 is the number of 3-hourly observations in one day. The 

return period level for the Weibull estimator is then given by Equation [3.23] and for the GEV 

model the value is given by Equation [3.33]. The results for the 50 year return period wind 
speed, significant wave height, and current speed are given in Table 3.6 for both the population 

and the monthly maxima models obtained using maximum likelihood. In both cases the 

population and monthly maxima models for the significant wave height give obviously poor 
estimates. On the other hand the results for the wind and current speeds are reasonable.

Although these results alone do not indicate population models are definitely superior to 

the monthly maxima models in the small sample case it should be noted only two distributions 
are examined. In fact, Carter & Challenor (1983), and Carter (1987) have shown the FT-1 

model gives good unbiased results when fitted to wave data using moments. Using their method 
the 50 year return period value for the DB1 data is given by

x50 = E[x] + 8.82 l<^x]

This gives
HjS0 -  13.3m 
U w50 = 38.3m / s 

U cSo = 1-7 m / s

Comparing these values with the Department of Energy Guidance notes, which give 
Ht5o » 15.5m and U w5o » 38.5m / S, the significant height is seen to be too low, and the 

wind speed is in agreement - the current speed cannot be compared since we have not 

deconvolved the tidal and storm surge components.

In the next chapter an alternative method for modelling the populations is given in which 

the data are transformed to a normally distributed variate using the Box transformation. This 

approach also gives good estimates for the extremes and has the further advantage of 
generalising to the multivariate case.
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3.13 CONCLUSIONS

The desirable characteristics of a good estimator were stated as: consistency, sufficiency, 

low bias, low sampling variance, reliability, and simplicity. Intrinsic and parametric analysis 

of marginal data has been examined and kernel density and maximum likelihood analysis were 

selected for special attention since they satisfy most of the characteristics.

Univariate kernel density methods are an ideal visualisation tool for large samples (>100) 

and can be generalised to the multivariate case.

Maximum likelihood is an optimal estimator in the large sample case (>100) and can be 

used with population data and extreme value data. ML estimates of a model's parameters are 
efficient with low bias and the parameter variance is close to the optimum attainable from any 
estimator.

The ML method can easily be generalised to the multivariate case providing the 

likelihood can be optimised over the parameter space. Furthermore, the parameter 

uncertainty can be deduced directly from the information matrix if the ML solutions can be 
found. However, in some cases the solution may lie on the bounds to the parameter space and in 
such cases the asymptotic properties of the information matrix will not hold. This problem was 
encountered for the lower bound when using the Weibull model. Two solutions to the problem 
are: to set the lower bound to zero, in which case we are fitting a two parameter model; or, to set 
the lower bound of the model to the smallest observed value, which makes the solution 
conditional on this value.

Likelihood software has been developed to fit Weibull and GEV distributions and estimate 
the parameter uncertainty using the information matrix. The code has been tested using 

simulated data and checked against results reported in the statistical literature.

Both Weibull and GEV population and monthly maxima models have been compared as 

estimators of return period values. Both the population and monthly maxima models gave poor 

results for the significant wave height, with the Weibull model under-estimating and the GEV 

model overestimating the value. By comparing only the return period estimates it is not clear if 

the population method or the extreme value method results in the lowest overall modelling 
uncertainty. However, if the model parameter uncertainty is included in the comparison it is 
clear the population approach results in an estimator with lower statistical uncertainty. This 

suggests that the population modelling method is best when only a few years of data are 

available - providing the correct model can be found.
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The 50 year return period estimate of significant wave height obtained from fitting a 

GEV model to the monthly maxima is inaccurate and has a negative lower bound. The cause is 

the attraction to a lower bounded FT-II ( Frechet ) model which has a long upper tail. Two 

additional constraints in the likelihood optimisation may result in an improvement. The first 

is to restrict the shape parameter to be greater than or equal to zero which effectively 
constrains to the model to be either an FT-I ( Gumbel) or FT-in ( Weibull) model; the second is 

to constrain the lower bound to be zero or positive. This should be examined in a future study.
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APPENDIX A

A.1 WEIBULL PARTIAL DERIVATIVES

The second partial derivatives of the Weibull sample log-likelihood are required for 

estimating the Fisher information matrix. For the simplest case the samples are iid in which 

case the second derivatives are given by

d 2l o g , t _ -c(c+l)^ (
J a 2 a**2 1 ^ ° ' ac

K « r t ( ,  -  s . y  -  « . r  * * ( *  -  5 .)
a c i=i

^ -  s , r - ( '  -  m * .  -  w
««7 i - 7

3j  ad'c ==^  +  ~ ^ T^ x‘ ~ Z'Y log'(x‘ ~^o) + -^hr(J -  d o g , « )X ( * .  ~  !«)‘

d 2logt i _  c2 y / r  _ t  y=-'

cto'So i-; i*y

- i o )
i-7
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K 2  GEV PARTIAL DERIVATIVES

Writing z = (x — fx)f(7 the first derivatives of the Generalised Extreme Value 

distribution sample log-likelihood are given by

i - I  v  i - 1

^ 7 ^  = ~ ( f  -  1) 'Z 2.(I  ~ - n ' £ l log.(1 -  fe() +
OK iml * iml

j E ( j - k .)* { 2.( ;  -  f c . r ' + {iog,{> -  fa,)}

The second partial derivatives of the GEV are given by

k- ^ - p ’ ( i  -  fa , ) " -  fa,)*’ 2

3  f S ' * = p -  S  (;  -  fa ,) + p  S 2, (;  -  f a . -  ( f  -  ; ) S  -  fa .T 2
O K  K  i- 1  * j * l  im l

^ Z ,°« .(2 - 2fai)(7 _ fe i)i - T ( i - 7) E z/ ( 7 - f a i ) i  2 -
C i-7  * im l
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sample

0.806 57.628 1.550 7.057
0.664 1.033 9.098 2.046
0.345 3.532 0.470 0.185
0.001 0.970 0.505 0.435
0.469 0.071 0.033 1.550

parameter population moments Menon Cohen MAXLIK
scale 1.6490 1.2300 1.4000 1.3630 1.3610
shape 0.5 0.4300 0.5700 0.5060 0.5051
scale error - 0.419 0.249 0.286 0.288
shape error - 0.07 0.07 0.006 0.0051
scale error % - -25.4 -15.1 -17.3 -17.3
shape error % - -14.0 14.0 1.2 1.0

Table 3.1 Comparison of MAXLDC results with Menon (1963) and 
Cohen (1965) maximum likelihood estimators

data set 1
2.58405 -0.50394 -1.71630 0.47867 0.26712 0.87737
0.29929 0.08969 0.42083 -0.25574 -0.06714 0.35253
2.46029 3.05271 0.00297 0.59921 -0.34909 1.30477

1.63881 0.51030 -1.22866 -1.15796 -0.69298 0.94734
0.70814 -1.53493 0.81628 -0.24643 -1.39538 0.38320

data set 2

2.12546 0.00580 -0.85963 0.55990 0.36670 0.62464

0.18471 0.64917 0.10151 -0.58044 0.06905 0.53800
2.33662 6.05925 0.38144 1.94203 0.31054 1.54564

-0.16174 0.38654 -0.56694 -0.72557 -1.29499 1.90079

-0.06119 -0.84076 3.27829 0.48357 -0.4093 0.10569

Table 3.2 Two datasets of GEV distributed random numbers 

provided by Coles
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quantity data set 1 data set 2

information '-56.678 27.716 2.1901 ’-71.126 -6.7152 28.779'

matrix -84.318 15.444 -61.670 15.760
-45.773sym -26.206 sym

covariance '0.02207 0.00851 0.00686 '0.01892 0.00107 0.01226

matrix 0.01657 0.01048 0.01784 0.00681
. 0.04491 0.03190

Table 3.3 Information and covariance matrices for the Coles data

time
series

number of 
samples

ML mean values for: 
scale shape

ML variance for: 
scale shape

ML
covariance

tl 155 4.06 4.19 0.009 0.004 0.001
20 largest 20 0.70 0.77 0.046 0.022 0.010

t2 102 7.29 8.68 0.010 0.004 0.001
20 largest 20 1.01 0.89 0.072 0.038 0.017

t3 131 2.06 1.89 0.009 0.004 0.001
20 largest 20 0.74 0.88 0.040 0.030 0.012

t4 158 1.76 1.61 0.008 0.004 0.001
20 largest 20 0.49 0.75 0.024 0.016 0.006

Table 3.4 Population and threshold Weibull models fitted to the maxima in the structural 
response time series. A two parameter Weibull model was fitted using maximum likelihood.
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TABLE5.XLS

modelling univariate ettrironmettial data

variable

no. of 

samples

statistical moments 

sample (top); weibull (middle); GEV (bottom)

mean variance skewness kurtosis shape

Weibull model 

scale location shape

GEV model 

scale location

Hs 5673 2.176 1.589 1.64 4.533 1.595 2 102 0.3 -0.1656 0.8071 1.562

2.185 1 464 0.967 1.059

2 184 1.859 2.675 -16.48

Uw 5673 8.287 11.57 0.7161 0.9111 2.522 9.117 0.2 0.07796 2.914 6.814

8.291 11.8 0.3489 -0.1526

8.286 11 63 0.735 -08373

Uc 5673 33.7 236 0.4166 -0.03817 2.402 39.09 -0.952 0.146 13.96 27.39
33.7 236.2 0.404 -0.09537

33.66 234.6 0.4511 -0.1651

Table 35 Statistical moments and maximum likelihood parameters for the 
Weibull and generalised extreme value distributions fitted to the full 
population of marginal DB1 wind, wave and current data.

variable

monthly maxima model 

weibull GEV

population model 

weibull GEV

Hs (m) 17.6 32.41 10.04 31.61

Uw (m's) 33.35 42.54 24.5 29.42

Uc (ctrvs) 100.98 97 42 108.23 108.62

Table 3.6 50 year return period estimates for the DB1 data obtained from both
monthly maxima and population models.
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Figure 3.3 W eibull m odel with: shape param eters 0.1, 0.5, 1.0, 2.0, 3.25,4; scale 
param eter 1.0; and, location 1.0.
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Figure 3.4 G eneralised extreme value density  functions with: shape param eters 
0.5, -0.01, 0.01, 0.5; scale param eter 1.0; and location 1.0.
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Figure 3.5 Population model and 20 simulated samples with shape parameter 0.5, 
and scale parameter 1.649 ( see Menon (1963)).
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Figure 3.6 Four estimated models for the 20 Menon samples: moments (a), Menon 
(b), Cohen (c) and MAXUK (d).

NOTE THE LINEARISATION OF THE WEIBULL MODEL USES THE FORM 

Io8e loge = ie y  = m x + c
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Figure 3.7 Four nonlinear structural member force response time series.
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t l t2

Figure 3.8 Three parameter Weibull distributions fitted to the maxima in four 
structural response time series.

NOTE THE LINEARISATION OF THE WEIBULL MODEL USES THE FORM 

(  1 ^
log, log, -— —  = c lo g ,( x - ^ ) - c lo g e(a); ie y  = m x + c  

V V 1 “ r /  J
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Figure 3.9 Two parameter Weibull distributions fitted to the maxima in four 
structural response time series.

NOTE THE LINEARISATION OF THE WEIBULL MODEL USES THE FORM 

1
log. log.

v l - P r  j j
= cloge( jc -^ ) -c io g ,(a ) ;  ie y  = m x + c
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Figure 3.10 Weibull models fitted to the 20 largest observations in two structural 
response time series: a three parameter model was used for the time 
series tl, and a two parameter model was used for the time series t2.

NOTE THE LINEARISATION OF THE WEIBULL MODEL USES THE FORM

(  ( 1 log* log*
v V 1 -P r

= c log* ( x ~ ^ ) ~ c  loge ( a); ie y  = mx + c
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Figure 3.11 Weibull models fitted to the DB1 monthly maxima significant wave 
height, zero-up-crossing period, current speed, and wind speed using 
likelihood estimation.

NOTE THE LINEARISATION OF THE WEIBULL MODEL USES THE FORM

log, log
V v l - P r y

= clog, ( * - £ ) - clog, (a); ie y  = m x + c
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Figure 3.12 GEV models fitted to the DB1 monthly maxima significant wave 
height, zero-up-crossing period, current speed, and wind speed using 
likelihood estimation.

NOTE THE LINEARISATION OF THE GEV MODEL USES THE FORM

loge(loge(l/Pr)) = y lo g e( l -£ (x - /* ) /cr ) ,  ie y  = mx + c 
k
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Figure 3.13 Residual plots for the Weibull models fitted to the monthly maxima 
using likelihood estimation.
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Figure 3.14 Residual plots for the GEV models fitted to the monthly maxima using 
likelihood estimation.
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Chapter 4

MODELLING MULTIVARIATE ENVIRONMENTAL DATA
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NOMENCLATURE

1 vector of Vs: { 1,1, . . . , i f
A matrix of eigenvectors for the principal components
a„,bA normalisation coefficients: [aJ;H,...,ap;A},\b1:R,...,bp;H}

A(w) parametric dependence function
A*(h>) int rinsic dependence function

b bandwidth
C a constant
c shape parameter
cp volume of a p -  dimensional sphere
D diagonal matrix with l^Js  ̂on the leading diagonal

Dc current direction
Dw wind direction
£[^|>2] the expected value ofyt given y2

£[.] expected value ( the mean )
f(x)  multi var iate density estimate
F(x, y) cumulative distribution function for x and y
F(x) cumulative distribution function
//(.) the Heaviside function
Hs significant wave height
J determinant of the transformation matrix
£(•) kernel function
k GEV shape parameter
mini max(a, b) the smallest or largest of a and b

MAE mean absolute error
MIAE mean integrated absolute error
n number of samples
p number of variables

R correlation matrix
Rp Riemann domain of integration
Sjj i - j  th element of the covariance matrix

Tt zero - u p -  cros sin g period
Uc current speed
Uw wind speed
v variance OR extreme value model shape parameter
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Wt;H order statistics for the smallest in a sample
w ratio: y / (x + y)
x random vector sample

X random vector
x modal value ofx
Zt:m order statistics for the largest in a sample

a  scale parameter
0 model parameter
0 vector of observed model parameters
X shape parameter in the Box & Cox transformation
p. mean value
p  vector of means
E  matrix of means

a  standard deviation
Z  covariance matrix
£ location parameter in the Box <&. Cox transformation
p correlation coefficient
0  extreme value model dependence parameter
0(.) s tan dard normal CDF
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4. INTRODUCTORY REMARKS: 
MODELLING MULTIVARIATE ENVIRONMENTAL DATA

In Ch. 3 various methods for modelling marginal data using non-parametric, and 
parametric methods were introduced; with Kernel density estimation, and maximum 
likelihood estimation selected for special attention. In this chapter, that work is further 
developed for use in the multivariate context with a view to its ultimate use in a level HI 
reliability calculation.

Multivariate statistical analysis is a broad subject and several approaches can be adopted 

to solve the same problem. Some of the main techniques which can be used to model a sample 
are summarised in Fig. 4.1. This flowchart indicates that the approach taken may be 

determined by the type of analysis to be performed. For example, a fatigue study or a 

comparative reliability study may solve the problem using multivariate kernel or 

transformation models which generally give optimal density estimates for all but the extreme 
values. In particular, we shall see that the transformation approach has the advantage of 

making the computationally expensive Rosenblatt transformation redundant in a reliability 

study. On the other hand, if the analysis is concentrating on the extreme events in the design 

life then either the multivariate parametric models or asymptotic models may be more 

appropriate.

One problem becomes apparent when using parametric methods, namely, the frequent lack 

of a suitable model for a given set of data. This problem is well known to statisticians and 

consequently procedures have been developed to transform observed data into near normally
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distributed variates, see Gnanadesikan (1977). This transformation simplifies the semi- 

analytical structural reliability methods outlined in Ch. 1 because:

• multivariate normal model parameters are useful in all levels of reliability analysis
• Rosenblatt's transformation becomes unnecessary in level in analysis

The major problem with this approach is finding a transformation which is sufficiently 

flexible to transform the marginal and joint behaviour to a normal model with the correct 
extremes. Ideally, transformation methods should be used with results from hindcast studies 
which generally give several decades of simulated metocean data.

By fitting a parametric model to a sample X € X  it is assumed to represent the expected 
behaviour of the population X .  In our case, the model is generally a probability density 

having some functional form dependent on a number of unknown model parameters 0. Fig. 4.1 
summarises several estimation procedures which can be used to estimate the parameters, but in 
this work, Fisher's method of maximum likelihood is adopted since, for a predefined model, it 
generally provides maximum agreement between observed data and model. The method has the 
further advantage of generalising to the multivariate case, with the main principles of score 
statistics and information matrices unchanged from those outlined for the univariate case in 
Ch. 3.

One problem encountered when modelling 'real' data using parametric methods is the 

paucity of suitable models. This is because the margins generally have different distributions 
whereas most multivariate parametric models assume the same form for each margin. In many 
cases, even the best parametric model may not fit the data well, especially in the extremes, 

and it is then necessary to assess whether the model is preferential to the mathematically 

simpler approach of transforming the data to approximate multivariate normality.

This chapter begins in Section 1 by introducing some of the matrix-based algebra notation 
used for the multivariate sample and its statistics. This notation is ideal when using symbolic 

algebra packages like Mathematica since operations on matrices are implemented in fast 

machine code and programming becomes more dear and contise. Section 2 then shows how 

multivariate non-parametric kernel methods can be used to estimate the density for a sample. 
It was initially thought kernel models would be most useful as a graphical tool for comparing 

parametric models with observed data, but their simplidty, and good performance, suggest 

they could be of direct use in reliability studies if, like a hindcast dataset, the sample covers a 

sufficiently long time period. Kernel density estimates for the wave, wind, and current
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populations are presented for selected pairs of variables. In Section 3 , the transformation of 

non-normal multivariate samples into near multivariate normal samples is then examined: 
first, using univariate and bivariate simulated data; and then with the DB1 data. Section 4 

then shows how the 'best' set of parameters is chosen. Section 5 then shows how the 'best' 

model can be transformed to a standard normal format suitable for the reliability calculation.

The initial intention was to use multivariate extreme value theory to model the 

componentwise maxima recorded by the DB1. In this method the margins are first modelled 
using a generalised extreme value (GEV) distribution and then the parameters of a dependence 

function are calculated. Unfortunately, there are two problems with this method: first, 

multivariate extreme value models can only be used for time invariant reliability studies such 

as those performed on fixed structures; and second, the results obtained from fitting the GEV to 
the marginal maxima were highly inaccurate for quantiles which correspond to design return 

periods. The probable cause of the poor behaviour is the limited amount of the data and the use 
of monthly maxima which are seasonally correlated. Although the method was not pursued - 

other than fitting the GEV to the margins - a review of the theory is included in Section 6 and a 
summary of the essential theory is presented.

4.1 REPRESENTING MULTIVARIATE DATA

Every multivariate data set can be represented as a matrix whose rows refer to each 
variable, and whose columns refer to each sample. Denoting the multivariate sample by X  then

Xjj x i2 ••-  * 1 ,

T x 2J *2,
X -

Xnl * V

Several useful summary statistics can be calculated using basic matrix algebra, see for example 
Kraznowski (1990). For example if 1 is an (/z X 7) column vector of ones then the column vector 

of means is given by the matrix dot product

and by writing S T = l.J lT , where dot here denotes an outer product the covariance matrix for 

X  is then
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X  = ( l / n ) ( x - £ ) . ( x - 2 ) T 

Writing the elements of E  as s^;i = l ,p , j  =  l ,p  the correlation matrix is then given by

R = D.E.D

where D is a diagonal matrix with 11 j  =  l ,p  as the leading diagonal.

4.2 M u l t iv a r ia t e  kernel  d e n s it y  e s t im a t io n

Chapter two summarises some graphical tools for exploring univariate statistical data 

using quantile, kernel density, and residual plots. These non-parametric methods provide 

estimators which are an essential prerequisite to parametric modelling since they can be used to 
select the distribution function to be fitted to the data, using the more difficult and expensive 

parametric methods. For the bivariate case, the simplest graphical method used by engineers 
is the scatter plot in which the number of occurrences coinciding with a specific range of values, 
or bin, are recorded. Examples for the DB1 data are given in Ch. 2. In many cases, the number of 
counts is normalised to simplify estimates of the density corresponding to a specific bin, this 
often leads to the scatter plot concealing the extreme occurrences.

Whilst scatter plots can be used to estimate the density and cumulative distribution for 
bivariate random variables, and whilst they provide a general feel for the correlation between 

the variables, they are an inefficient way of presenting the data because the binning process 

looses some of the information in the individual samples. More important, the problem is worse 
in the tails of the distribution where the number of samples (and thus bin count) is small and 

observations are highly dispersed. A better method of presenting bivariate data, used by 
Mathiesen & Bitner-Gregersen (1990), is to contour plot the binned data, Fig. 4.2, however the 

resulting contours are still arbitrary since the bin width is arbitrary and the user has little 

control over the bias and variance of the density estimate.

Multivariate kernel density estimators are the natural non-parametric choice for 
estimating the density of a multidimensional sample. The primary use of kernel estimators in 

this work is to examine the structure of the bivariate pairs of variables (a) before the 

parametric models are fitted to data using maximum likelihood and (b) after the data has been 

transformed.
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The application of kernel estimators is limited by sample size and the number of 
dimensions since kernel smoothing uses local averaging of the density, and for a high number of 

dimensions the neighbourhoods tend to be empty unless the sample is extremely large. Several 

papers on multivariate kernel estimation have been written, most notably by Epanechnikov 

(1969) and Rosenblatt (1971). More recently Silvermann (1986) wrote a monograph on the 

subject, and Scott & Wand (1991) identified the sample sizes required to achieve specified 

levels of accuracy (defined below). In our case, we are primarily interested in the densities of 

bivariate samples - although the methods discussed below are generalised to the 
multidimensional case - for which the sample sizes required to achieve reasonable bivariate 

density estimates are of the order of hundreds. Therefore typical offshore environmental data 

samples, which comprise thousands of observations, are sufficiently large for accurate kernel 
estimation.

A brief outline of the simplest type of kernel estimate is given below and measures of 
optimality are defined. Although more complex and more accurate kernel methods exist, the 
simple fixed kernel estimator with an Epanechnikov (or quadratic) kernel is adopted and 
applied to both simulated bivariate normal data and environmental data recorded by the DB1 
data buoy.

4.2.1 M u l t iv a r ia t e  k e r n e l  T h e o r y

Let X; ,.. .,X„ be a sample of independent p-dimensional random vectors having unknown 

probability density f ( x ) .  Fixed kernel estimators for f ( x )  given a sample X are described by 

Epanechnikov (1969), where

size n —» «>/ then b —tO  and nbp —» <». The fixed kernel estimator K(z) is a p-variate 

density with zero mean vector

[4.1]

The window width or bandwith 'b' is a positive deterministic value such that as the sample

[4.2]

and variance is given by

v = J z2K(z)dz [4.3]
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Scott & Wand (1991) have examined the statistical properties of this estimator and show how 

an optimal bandwidth can be defined as that which minimises either the mean absolute error

In fact, there is a ’trade -off between the square bias and the variance which are controlled by 
the smoothing parameter b. The calculation of optimal window parameters involves the 
solution of a difficult multidimensional integral to minimise Equations [4.4] or [4.5], which are 

dependent on the sample size, population density and kernel type. In most cases, closed form 
solutions for the optimal window are not possible. However, the special case of unit variance 
normal data with a quadratic kernel is solved by Epanechnikov (1969). Defining the optimal 

window width as b„  ̂ thenOpt

w here the coefficients Cp are the volumes of a p-dim ensional sphere: 

Cj = 2, c2 = 71, c3 = 4 n  / 3. The optimal window width is therefore inversely proportional to

4.7] are in fact asymptotic approximations for normal data with a quadratic kernel, however,

not too heavy tailed, as is the case for most pairs of environmental data. In cases where the 

data are highly non-normal Silverman (1986) warns against the ’blind' use of this optimal 

width and recommends the data be transformed in the margins for example using z=log[x] to 

reduce tail length.

An alternative optimal window width has been calculated by Worton (1989) for the case of 

normal data with a normal kernel, however, the computational penalty associated with 

calculating the exponential in the kernel outweighs any benefits and consequently for this work

[4.4]

or the mean integrated error

MlAE{f(x;b)} = E f ( x \ d x [4.5]

bv =A{K)n" {̂ [4.6]
where, for the quadratic kernel

[4.7]

the sample size and converges slowly to zero as n —» «» at the rate n v p̂*4\  Equations [4.6 &

this optimal window width can be used reliably with non-normal data providing the data are
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the simple quadratic is used. If the data are lightly asymmetric the use of a radially 

symmetric kernel, like Epanechnikov's, results in unequal smoothing across each variate. In 

such cases, when the data are not first transformed the optimal window width should be

scaled. One suggestion is to use h — o h ^  where

[4-81

the value G is then the average of the marginal standard deviations.

4.2.2 Q u a d r a t ic  kernels

Epanechnikov (1969) proposed a univariate kernel, k = — y2) ; |yj ^  1 with good

properties as an estimator. This smoothing function is a simple quadratic defined on the range 
—7 < y < 7 such that

i

JyK(y)dy = 0 & JK(y)dy - 1

This simple univariate kernel points to the use of a multivariate quadratic kernel density for 
which

K(z) = C { l - z T.z ) h { K ( z )}; z t .z £ 1 ;  i = l , . .,p [49]

where T is the transpose of the the vector z

x - X .
z = — -—-

ZT .Z is the well known quadratic form, Miller (1964), and //{.} is the Heaviside function 

which ensures K{z)  ̂0. The form of this kernel for the bivariate case is shown in Fig. 4.3. 

Substituting this kernel into Equation [4.1] gives the kernel density estimator for the true 

density

[4.10]
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This kernel density estimator is of the simplest type since the window width is fixed over the 
sample and equal in each dimension. Other more sophisticated kernels have been suggested, for 

example, Worton loc tit examines the optimal window parameters for adaptive kernels in 

which the window width is varied over the sample using a pilot estimate of the density. This 

method gives improved results when the data are highly non-normal since the degree of 

smoothing is varied according to the local density. However, the method requires longer 

computational run-times. Another notable method for selecting the optimal window is to use 

the maximum likelihood estimate; this method again involves further computation and is more 

suited to studies in which the density estimates are actually used in a reliability calculation. 
For this work the kernels have been used primarily as a graphical tool for checking the density 
of the data before and after transformation.

4.3 T r a n s f o r m a t i o n s  t o  M u l t i v a r i a t e  N o r m a l i t y

Visual inspection of the scatter plots for the random variables recorded by the DB1 data 

buoy (Ch. 2) show that in some cases the data are nearly bivariate normal distributed, with 
the obvious exception that the data are all positive and therefore bounded. In some cases the 
data can be conveniently transformed into a multivariate normal sample. Box & Cox (1964) 
present a method for transforming marginal data 'x' into a normal variate 'y' using maximum 

likelihood and Andrews et al (1971) have extended the method to the multivariate case.

The importance of transforming the data into a multivariate sample is dear when level II 
and level in  reliability methods are examined since each method can directly use the mean 
and covariance matrix of the transformed random vector, (for example a good account is given by 

Melchers ,1987) . A further advantage of transforming the data is apparent when fitting 

parametric models to them since very often a suitable multivariate model does not exist. This is 
a well-known limitation in the statistical analysis of multi-response data pointed out by 

Gnanadesikan (1977). As an example, consider the bivariate Weibull models obtained by 

transformation of the bivariate Gumbel Type I and type II exponential distributions:

type I F(x.y) = / - « ' ■ - e'y + x 2 0 ; y > 0  W-W

type II F(x,y) = ( / -  e" )(7  -  « ')[/ + ck*-1-’*] x > 0;y > 0 [4.12]

Setting

[4.13]
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and then using the Jacobian transformation

f (v ,w)  = J.f(x,y)

the resulting distributions /(v ,w ) are bivariate Weibull. However, the range of correlation 

that they can model is limited to —0 . 4 < p < 0  and -0.25 < p  < 0 .25 , respectively, see 

Gumbel (1960). This is too restrictive and if we examine Table 4.1 which shows the vector of 

means, the covariance matrix, and the correlation coefficient matrix for each pair of random 

variables recorded by the DB1 we see that these models can only model those values which are 

either weakly or negatively correlated! ( In fact the correlation coefficients for the terms 

involving direction are meaningless because the directional distributions are multi-modal ( Ch.

Aside from the paucity of multivariate non-normal distributions almost all of the 
alternatives ( many of which are described in Johnson & Kotz (1972)) are defined so that each 
margin has the same distributional form. Obvious examples are the multivariate exponentials 

like the Gumbel, and Marshal-Olkin distributions. Multivariate samples of environmental 
data rarely have the same distributional form on each margin: for example, Bitner-Gregersen 
& Haver (1991) found the joint distribution significant wave height and zero crossing period 
had a Weibull marginal distribution for the significant height, and a log-normal distribution 
for the zero crossing period. It is therefore very unlikely that a single multivariate distribution 
can be found to model all random variables without first transforming the data. Ultimately, 
the modelling procedure finally chosen should take into account the merits of each estimator. It 

may well be the case that a parametric model can be found which fits the data well. However, 

if this is not the case then the error associated with using a multivariate normal model with 
transformed variate may be less than, or no worse than, that resulting from imposing an ill- 

fitting parametric model on the data.

4.3.1 Transformation  of the Margins

When data are skewed positively it is often found that the transformations y  =  log t X  or

y — x1/H will produce a symmetric variate y. Both transformations have the effect of 

lengthening the left tail and shortening the right tail; in particular, as X  —> 0 theny —> — oo. 

Box & Cox (1964) consider the transformations

5)) .

X * 0  
X = 0 [4.14]
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This transformation is very flexible and has several important properties which are discussed 
in both the original paper by Box & Cox (1964) and in Hoaglin et al (1983). The optimal 

parameter A can be determined from the data using maximum likelihood in the following 
way.

Given samples =  l,n and the value X the transformed variate y f xK where the superscript 

(A) indicates y's dependence on A, is given by Equation [4.14]. Now, assuming we have 

transformed correctly to a normal variate with mean flx and standard deviation Ox the 

likelihood is

[4.i5]

The maximum likelihood estimates of the mean and standard deviation f ix, Ox are given by 

the sample mean and sample variance respectively

f i l = ^ l T-yT ; d x2 = t { y - ( i x. i ) . { y - ( i x. i f  [4.16]

Substituting into Equation [4.15] gives the profile likelihood

= {2n a x ) " '2 ej5p{- ^ } r i x>"‘ [4i7]

since

’L { y i(x)- ^ x ) 2= nsx
im l

A

The maximum likelihood parameter A is then found by the one-dimensional maximisation of 

t(X) over the parameter A . Note, this method also provides a means of checking a sample of 

data to see if it is already normally distributed since the ML estimate of A will then be close 

to one.

A check on this transformation process can be done by: 1, simulating a sample of normal 

random numbers with known mean and standard deviation; 2, transforming this data using some
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known function y. = OJC,* to obtain a non-normal sample; and 3, maximising the likelihood to 

obtain the optimum parameter which transforms the data to near normality. A sample of 1000 

normal random numbers was simulated with mean 3.5 and standard deviation 0.4, this data was 

then transformed using a-2.1 and b=3. This transformation gives a sample which is highly non­

normal. The sample likelihood for this data is shown in Fig. 4.4 in which the optimum X is
A

located near X = 0 .5 . Numerical maximisation of the likelihood gives X = 0.312 which is 

close to the actual value of 0.33.

4.3.2 Transform ation  of joint data

In the multi-variable case, the data can be transformed to an approximately multivariate 

normal sample using the above procedure on each margin individually. However, this is an 

approximation which may result in incorrect modelling of the dependence between the random 

variables. A more rigourous extension to the Box transformation is given by Andrews et al (1971) 

who present a transformation process which results in approximate joint normality of a 

multivariate sample. The advantage of using this transformation is clear when we examine 
second order reliability analysis methods in which the resistance and loading random 
variables are transformed into the standard normal u-space, using for example Rosenblatt’s 
transform. These procedures are computationally expensive and can be avoided if the data are 

modelled as multivariate normal random variables, N (/i,X ), with known transformation

shape and location parameters (X ,£ ) . All that is required then is the diagonalisation of the 

covariance matrix using its orthonormal eigenvectors, Madsen (1986). The new transformed, and 
now uncorrelated, variables are then given by z  = A Ty  where A is an orthogonal matrix with 

columns equal to the orthonormal eigenvectors of Z .

If X T = { ^ } r ; i = l , p , j  = l ,n  is a non-normal multivariate sample, then we seek the

transformation which results in a multivariate normal sample Y  with mean vector /i  and 
covariance matrix Z .  The procedure for transforming data X  into near normal dataT given in 

Andrews et al (1971) is based on the Box transformation presented for the univariate case 

above. We shall see later the parameter X is sensitive to skewness in the data X  and that
A

maximum likelihood solutions Xjl j  = 1,2 ( found by optimising the bivariate likelihood in

Gnanadesikan (1977) ) result in a transformed sample with near-zero skewness but variable 

kurtosis. Non-zero excess kurtosis arises when the fourth moment of the data is not consistent 

with a jointly normal sample and suggests the largest values in the sample are not adequately 

transformed for our purposes in which the extremes may be important. To improve the kurtosis 
Gnanadesikan (1977) suggests including a location parameter in the transformation giving the 

set of transformations
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f e & K + s , ]  ^ i = ° [4.18]

This transformation has two set of parameters for each random variable (A ,£) which

effectively control skewness and kurtosis, respectively. A procedure for estimating these 

parameters in the multivariate case is outlined below using a generalisation of the method 

adopted by Gnanadesikan (1977) - which is for the bivariate case with the one parameter Box 
transform.

If it is assumed the set of transformations yielding multivariate joint normality is given by 

Equation [4.18] then the joint density for the random vector X is given by

transformed variate ; f t  is the vector of means of the transformed random variables; £  is the

[4.19]

Where: N (y)  is the multivariate normal; /  is the jacobian of the transformation; y  is the

covariance matrix of the transformed random variables; and (* .« )  are the vectors of 

transformation parameters.

The general form of the multivariate normal ( see Appendix A . l ) is given by

and the Jacobian is the determinant of the matrix of partial derivatives

<hi <hi
dXj dxp

J  =

dyP

For the transformation in Equation [4.18] the Jacobian is
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The likelihood for a sample X,-;i =  l ,n is then given by

<(*i x,)  = f {N [y) f i ,E ,X ,^) .J
iml

The parameters 0 = which maximise the sample likelihood are the same as

those which maximise the natural logarithm of the likelihood, where

logt = ' 2 , l ~ t o g { 2 x } ~ I- l o ^ - ^ ( y ^ ()- n ) TZ - ‘(yil‘i ( ) - f i ) + Y l(XJ - l) log(xii+4j)

In appendix B it is shown how this simplifies to

logl(ll,£,X,S) =  ~ l o ^ I + X ( * y  + $j) [4.22]
*  j-1 i-7

Here, the maximum likelihood estimators for the vector of means and the covariance matrix 
are given by

and the transformation parameters are determined by maximising the log-likelihood over the 

parameter space. The solutions for the 2p-unknowns are obtained in the same way as discussed 

in Ch.3 for the parametric modelling of marginal data using an optimisation program.

Monte Carlo simulation can also be used to check the performance and correct functioning of 
a multivariate transformation procedure. A sample of 1000 bivariate normal random numbers 

was generated - using the procedure outlined in appendix C - with population mean vector and 

covariance matrix given by
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r 2.0 2.21
M = [ 0 0 , 0 . 0 ]  c = [ 22  J 0 j

The sample mean vector and covariance matrix was calculated as

[ t i ’fi2] = [-0-0026,-0.0240] c =
2.0324 2 
2.2412

2.24121 
3.028 J

The population density for the data is shown in Fig. 4.5, together with the scatter plot of 

observed values Fig. 4.6. The density estimate obtained using a quadratic kernel is shown in Fig. 
4.7.

The sample was next transformed to sample >y using the one parameter Box transform on 

each margin, with X; = 2 and X2 — 4 . The sample y^ was highly non-normal with large 

skewness and kurtosis; the statistics are given in Table 4.2. In the next step, the likelihood 

given by Equation [4.22] was maximised over the parameter space (X,%) to obtain the optimum 

parameters which transform the data back to near multivariate normality. The results from 
the optimisation are also given in Table 4.2 together with the resulting statistics of the 

transformed sample. The skewness and excess kurtosis are reduced by two orders of magnitude

and become near zero as expected for a bivariate sample. The location parameters £ are both
A

zero, as was the case for the original transformation, however the optimum X is less close to 

the expected values of \0.5,0.25\ due to the high powers in the transformation.

This simple example indicates the process can transform even highly non-normal data to 

near multivariate normality with known mean vector, covariance matrix and transformation 

parameters.

4.3.3 T r a n s f o r m a t io n  o f  t h e  DB1 d a t a

The four years of data recorded by the DB1, summarised in Ch.3, provides a multivariate 

sample of wind wave and current magnitudes and directions. This data can be used with 

multivariate inference methods to estimate a model of the joint behaviour suitable for the 
Monte Carlo reliability analysis described in Ch. 7. The vector of environmental variables 

examined in this report is taken as

X = {H„TI,U',UW,DW,DC}
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where the wind and current directions are included in separate brackets because they are 

multimodal and bounded on (0 ,2 n ) - note the waves are assumed to be colinear with the wind. 

This prevents them from being transformed to normal variates and each must be modelled using 

the Fourier model described in Ch. 5.

Writing the four years of observations as a ( p  X ri) matrix X  we seek the transformation 

parameters which result in a matrix y  of multivariate normal parameters. The maximum 

likelihood solution for the transformation parameters is that set which maximises the log- 

likelihood given by Equation [4.22]. The feasibility of solving for the eight parameters (A.,£) 

is improved by first calculating the marginal transformation parameters, and then the 

parameters for all bivariate pairs, i.e.

{H„TI}{H„UW}{H„UC}{T„UC}{T„U.}{UW,UC}

The values of the transformation parameters obtained from this initial work are then used as 

the starting points for solving the full eight dimensional problem. This initial analysis also 
allows the bivariate results to be presented graphically using contour plots of the kernel 
density estimates.

4.3.4 MARGINAL TRANSFORMATIONS

The sample matrix x for the wind, wave and current magnitudes was used to obtain 
estimates of the sample mean vector / i ,  covariance matrix C , and correlation matrix R . The 

results are given in Table 4.1 which shows the correlation is most strong for: the significant 

wave height and zero up-crossing period; and, the wind speed and wave height. The low 

correlation between the wind speed and the zero up-crossing period is caused by a combination 
of: the mixing of wind driven and swell seas; and the varying stages of development of the 

seastates.

One parameter, and two parameter Box & Cox (1964) transformations were used to 

normalise the data. The statistics for each margin of the matrix x  both before and after 

transformation are given in Table 4.3 and Table 4.4, together with the maximum likelihood 
shape and location parameters. Plots for the sample likelihoods of the one parameter 

transformations are given in Fig. 4.8 which shows the maxima are all well defined. The results 

for the one parameter case show the transformed data have near zero skewness in all cases 

other than significant wave height, which starts with a skewness of 1.64 and has a skewness of
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0.265 after transformation. The results for the excess kurtosis are not as good with the values 

increasing in two cases.

The two parameter transformation gives improved results: however, it does not confirm 

Gnanadesikan's claim that the location parameter responds more to kurtosis in the data than 

the shape parameter. This time the skewness is reduced more than before and the changes of 

excess kurtosis are similar to those obtained in the one parameter case. Note the results for the 

mean current speed suggest the un-transformed data are near normal distributed before 
transformation.

4.3.5 BIVARIATE TRANSFORMATIONS

The values of the transformation parameters for each bivariate pair are given in Table 4.5 
together with the skewness and excess kurtosis of each margin. The skewness of the margins for 

each transformed bivariate pair are all reduced to near zero, with the largest value of 0.11 
occurring on the Hs margin of the [Hs,Tz] pair. The excess kurtosis values have also reduced to 
near zero; with the exception of the current, which started as very near normal before 
transformation. The effect of transforming each pair can be assessed graphically by plotting 

the kernel density estimates for the sample both before and after transformation. Figures 4.9 to 
4.14 show both the natural logarithm of the kernel density for the data before transformation, 
and the natural logarithm of the kernel density after transformation. The log of the density 

has been used to exaggerate the behaviour around the periphery of the density. Contours are 
plotted at 10 equidistant elevations with intervals determined by the maximum elevation of 
the modal point.

The kernel density plot for the joint distribution of significant wave height and zero up- 

crossing period is shown in Fig. 4.9(a). The irregularity of the outer contours, highlighted by 

taking the log, is caused partly by the density of grid used for the generation of the contour plot 
and partly by the low numbers of observations in the extremes. The apparent cutoff of the 
contours at the bottom of each plot is caused by the positioning of the plot frame. The second 

kernel plot, Fig. 4.9(b), confirms the distribution is near bivariate normal with low correlation 

between the transformed Hs and Tz.

The kernel for the joint mean wind speed and significant wave height is shown in Fig. 

4.10(a). This set of contours shows the near quadratic dependence of Hs on the wind speed, 
suggesting the sample may be structured, and therefore benefit from the use of a likelihood 

which reflects this dependence. After transformation, the correlation between Hs and Uw is 

strong, compared with the Hs and Tz data, but the contours are not symmetric about the
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principal axes of the data. On the other hand, Table 4.5 shows the skewness and excess kurtosis 

for this bivariate pair are close to zero on both margins.

Kernel estimates for the remaining pairs are plotted in Fig. 4.11 to 4.14. These all indicate 

the transformation has reduced the data to near bivariate normal, weakly correlated, 
variables.

It is important to note that the kernel density plots used in this work are intended to be 

illustrative and consequently the simplest form of kernel has been used. Scott & Wand (1991) 

and Worton (1989) have shown both numerically and analytically that improved results can be 

obtained when adaptive methods are used. Furthermore, since the multivariate kernels are 

generally symmetric, it is best to first transform the data so that it too is near radially 
symmetric; this would ensure the degree of smoothing is the same in all directions (dimensions). 
One way of doing this would be to use Andrews’ method and the eigenvalue transformation 

described previously. The kernels can then be transformed back into the original x-space 
variables if required.

4.3.6 MULTIVARIATE TRANSFORMATION
A A

The solutions for the ML parameters for the marginal distributions were used as the 

initial points for the numerical optimisation of the likelihood for the full eight dimensional 
problem in which the transformation parameters are solved for the vector [Hs,Tz,Uw,Uc). The 
optimisation was performed using a NAg routine E04JAF in which simple bounds on the 

parameters can be modelled to allow for the condition X  + £ > 0. The solution process for a 

sample of 6000 observations with four variables was straightforward, and robust, taking some 
3000-4000 seconds of CPU on a 486/33 PC. The results are summarised in Table 4.6 which gives: 
the ML location and shape parameters; the vector of means for the transformed data; the 

covariance matrix for transformed data; and the sample statistics for each margin. This set of 

transformation parameters provides a complete probabilistic description for the magnitudes of 

the jointly occurring wind speed, significant wave height, zero-up-crossing period, and current 
speed in a format which can be used in a reliability calculation.

4.4 SELECTION OF THE 'BEST' TRANSFORMATION PARAMETERS FOR THE DB1 DATA

The transformation shape and location parameters for the marginal, bivariate, and 

complete vector cases have been given in Tables 4.3 to 4.6. In most instances the values for each 

margin are similar for all three cases. This confirms Gnanadesikan's (1977) comment that use of 

the marginal parameters should result in near multivariate normality. Our main objective is to
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model the moderate and extreme values with greatest accuracy and consequently it seems 

reasonable that we should use the results from all three cases to select those parameters which 

result in the lowest marginal skewness and excess kurtosis. The 'best' set of transformation 
parameters are then those given in Table 4.7.

Theoretically, the mixing of margined bivariate, and multivariate estimates of the 

location and shape parameters is not unreasonable when the values chosen fall within the a% 
confidence limits around the ML point obtained from the multivariate optimisation. But, of 

course, the larger a  needs to be for this to be true the more questionable the use of the "mix ’n' 

match" approach.

4.4.1 BEHAVIOUR OF THE MODEL IN THE EXTREMES

The transformation of the marginal and multivariate data x  into our normal variates y is 

an approximate process. Thus far we have examined the normality of y using both the skewness 
and kurtosis of each margin; and kernel density plots for each bivariate pair. A further check 

on the quality of the transformed model must be made to ensure the extremes are correct since 
they make the biggest contribution to structural failure probabilities, Ch. 1. The approach 
taken by Mathisen & Bitner-Gregersen (1990) for the bivariate [hsjz] pair was to plot contours 
of the normalised deviations between the proposed parametric model, and the observed data. 
This gives a good subjective feel for the quality of fit and highlights regions where the model 
does not agree with the data. On the other hand, the method does not give a qualitative 

measure for the accuracy of the extreme occurrences.

A more rigourous method for assessing the quality of fit for the largest values would be to 
compare the marginal extremes, for some return period TRf obtained from both fitting an 

asymptotic distribution to say the monthly or annual maxima, and the extremes predicted by 

the transformed normal model.

The choice of definition for return period is examined by Tucker in Department of Energy 

(1990b) who suggests that it be defined by:

the return period of a stated value of a metocean variable is the 
average period of time between exceedances of that value.

This definition of return period is more in keeping with the way metocean data are recorded 

than the statisticians quantile estimate of return period, Ch. 3. The definition is therefore used
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below in the calculation of the return period estimates for marginal wind speeds, wave heights, 

and current speeds.

After the data have been transformed, using either the Box & Cox (1964) or Andrews et al 

(1971) method, the marginal distributions are normal with density

/ W  = o y4 2 n
exp r y - n ^

\  ° y  J

Here, the transformed variate y is given by

y =
log(x + t;) X = o

|( j c  +  <5)A - i j / A  X * o

The distribution for the untransformed variate is thus

dy 
dx

\X-1

f { x ) = - ^ r exph
(x + 4 ) l - i - X n ,

Xa. [4.23]

We are essentially interested in how well Equation [4.23] models moderate and extreme values. 
Defining XR as the return period value of the metocean parameter we must solve

Jf(x)dx = Pr{X<  xR} [4.24]

Following the discussion above for return period, for the DB1 data we have

P50 = Pr{X<.xR} = l ---------- --------- = 0.999993155
50*365.25*8

for the 50 year survivor probability, and
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P1Q0 — Pr{X  ^ Xrjoq}  — 1 0.9999965777

for the 100 year return value. The solution for the unknown value of X R in Equation [4.24] was 

done numerically using a root finding algorithm.

A second method has been used to estimate the return period values for the metocean 

parameters. In Ch. 3 the parameters of both a generalised extreme value model, and a three 
parameter Weibull model are given. These models correspond to monthly maxima models 

which have been fitted using maximum likelihood. As has been noted earlier, these models are 

questionable when so few data are available and no account is taken for the seasoned cycles in 
the monthly maxima. Nevertheless, we might still expect them to give representative results 

since they clearly fit the data. The solution for the return period values for these two 
distributions are given by solving

where F(xR) is either the Weibull or GEV cumulative distribution fitted to the monthly 
maxima, and TR is the return period in years.

Each method described above has been used to estimate the 50 year and 100 year return 
period wind speed, significant wave height, and current speed. Again, with so few data we 

cannot expect to extrapolate to these return periods without some bias. However, we can check 

the results for Hs and Uw against the Department of Energy (1990) contour plots, which give

The wind speed value Uw5o is the hourly mean wind speed at 10 m above still water level, 

whereas the DB1 data was taken as the average of two records made at 6.0 and 8.7 m above 

still water. Using the usual wind speed power laws, this suggests the DB1 values should be 
factored by ~ 0.955 to allow for the duration of the time average, however this effect cancels 

the effect of the elevation. The average DB1 wind speeds are therefore taken as equivalent to 
the hourly mean winds.

[4.25]

Hj5o ~ 15.5m and Uw5o -  38.5m / s.

The 50 and 100 year return period values for the significant wave height, wind speed, and 

current speed are given in Table 4.8 for each modelling method. The population estimated wind
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speed and significant height compare well with the values suggested by the Department of 
Energy Guidance notes. The current extremes cannot be compared however, since we have made 

no allowance for the harmonic tidal components.

In all cases the GEV model gave the worst results and it is difficult to identify why this 

was the case. Correlation between monthly maxima may contribute to the inaccuracies, but we 

would then expect the Weibull model to give poor results as well. In fact in two cases the 

Weibull model agrees closely with the transformed normal model. The irregularities need 
further investigation.

4.4.2 MOST PROBABLE ZERO-UP-CROSSING PERIOD CONDITIONED ON THE 

SIGNIFICANT WAVE HEIGHT

The two most important variables in a stochastic response analysis are the significant 
wave height Hs and the wave zero-up-crossing period Tz. To correctly predict systems 

reliabilities it is essential the multivariate normal model accurately predict the most probable 

Tz for the moderate to extreme values of significant wave height. Any bias in the extremes 
would have a serious effect on a platform's responses.

In normal space the expected value of X1 conditioned on x 2 is given by

I sn (y2 -  4 ^  1) I4-261

where S- jure the elements of the covariance matrix for y  ( for more general multivariate 

results see Appendix A. ). For a normal variate the modal and expected values are coincident 
therefore we can write

y, =

For the Box transformation

y = {(x + tf-l}n

Setting a value of x2, the value y2 is then calculated. The most probable value y} given by 

Equation [4.26] can then be transformed back to z-space using the inverse Box transformation
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S = {A ? + / } " * - §  [4.27]

Using the data in Table 4.7 the distribution for the modal zero-up-crossing period conditioned 

on some level of significant height can be calculated. For example, the 50 year return period Hs 

is 15.02m, this value is first mapped into y space using the maximum likelihood shape and 
location parameters

yHt = {(15.02 -  0.3686)°2m -  /} / 0.2703 = 3.9438 

then the expected value of Tz conditioned on Hs is calculated in y-space

4 y r . K = 3-9438]= 1278+ y ^ T i {39438 ~ °'443)=3 7053

hence the modal zero-up-crossing period is given by

Tt = (0.4485 * 3.705 + i f 2296 + 4.5 = 13.3secs

This value can be checked using the limits on wave steepness given by the Department of Energy 
(1990) who give

3.2Hsm < T z<  3.6Hs112

This gives a range of 12.4 to 14.0 seconds, with central value 13.2. This value is remarkably 
close to the prediction of the multivariate model modal value of 13.3.

The variation of Tt predicted by the multivariate model over the whole range of Hs is 

shown in Fig. 4.15 (top). If this line is superimposed on the scatter plot for Hs and Tz ( Ch. 3 ) 

then it is found the model predicts the correct modal period over the complete range of values in 
the scatter plot.

4.4.3 MOST PROBABLE WIND SPEED CONDITIONED ON THE WAVE HEIGHT

The most probable wind speed for a given seastate significant wave height has also been 

examined. Fig. 4.15 (bottom) shows the modal wind speed conditioned on the significant wave 

height together with the upper bound given by the assumption of fully developed seas

Hs = 0.022716V
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In this quadratic model U l0 is the hourly mean wind speed at 10m elevation. At high wind 

speeds the model prediction generally falls below the quadratic model because the fetch 

distances are rarely long enough to develop the seas fully in high winds. Again, when the 

multivariate model is superimposed on the scatter plot for Hs and Uw ( Ch.3 ) the model 

prediction is found to be good.

4.5 TRANSFORMATION TO UNCORRELATED STANDARD NORMAL VECTORS

In Ch. 7 the multivariate normal model for the joint wind, wave, current and structure 

random variables is transformed into standard normal space 17. This enables classical first 

order reliability methods to be used in the calculation of failure probabilities. To uncorrelate 
the variables the principal component axes must first be identified, for example using the 

method in Kraznowski (1988). This is done by first diagonalising the covariance matrix H y of 

the variables y  (which are obtained from the Box transformation on X ). The linear 

transformation z = A Ty  is then used to obtain a set of uncorrelated variables Z .. Here A is the 

matrix containing the eigenvectors of H y. The diagonal covariance matrix (i.e. uncorrelated 

with cov- = o fo r  i & j )  of Z is then given by

=  A TE yA  [4.28]

Note that the terms on the diagonal of X s are also the eigenvalues of X y . Since the

transformation from y  —> z  is linear, we have

/ l t  = E[zJ  =  A TH y [4.29]

Whilst Z is uncorrelated it must be scaled on each margin to obtain standard normal variates II 

where

u = Z ; " \ z - i i t ) = i; i-,nA T{ y - i i y) = {ATZ y A f A T( y - p y) [4.30]

This relationship must be inverted to obtain the format required in Ch. 7, noting A .A T — I  and 

£ 1/2Z~1/2 — J we have
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y  = A Z }m u + n }

= A (A T£ , A ) m u + n )

= Ku + fi,  t4.31]

This expression enables us to calculate a y  co-ordinate for any U co-ordinate. The 

transformation matrices and vectors JLy,A .,E t , l ly,l l l ,E 112, £  1,2 are all given in Table 4.9. 

These values, together with the Box transformation parameters in Table 4.7 enable us to map 

between X, Y, and U space as required in the reliability calculations. As an example, Fig. 4.16

(top) shows 300 pairs of observations after transformation using the Box & Cox (1964)

method. The transformation matrices given in Table 4.9 were used to transform the data into U- 
space variates, Fig. 4.16 (bottom). The data are now approximately uncorrelated with zero 

mean values on each margin.
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4.6 A REVIEW OF MULTIVARIATE EXTREME VALUE THEORY

The asymptotic theory of extremes was reviewed for this work with the intention of using 

it in an offshore structure reliability study. Unfortunately, it was not possible to use die method 
in earnest with the sample of DB1 data for two reasons. First, the GEV models fitted to the 

monthly maxima were not able to accurately predict extreme values for the 50 and 100 year 

return period design events. The probable cause was seasonal correlation in the monthly values 

and the limited sample size of only four years. The second reason is the models are for virtual 

events which may be physically inadmissible. The basis of multivariate extreme value theory 

is given in Galambos (1978) so this review concentrates on the more recent developments and 

applications. A summary of the main bivariate models is given together with appropriate 

estimation procedures.

The current procedures can be classed as either intrinsic ( often called non-parametric ) or 
parametric estimation for componentwise maxima. By componentwise maxima we mean the 
largest value in each margin observed during either some time period, or a large number of 
observations. The implications of this are important in design since the theory is not modelling 
the simultaneously occurring values. If, for example, the time period is a year then the 
component maxima for the wind speed, significant wave height, and current speed, may occur 
during different seastates, days, or even months. The models must therefore be thought of as 
bounds on the true joint behaviour and the implications need to be examined thoroughly.

The theory and estimation of univariate extremes has received, and still continues to 
receive ( Davison & Smith (1990), Hosking et al (1985), Tawn (1988a)), considerable attention 

in the statistical and engineering literature. On the other hand, the estimation of multivariate 

extremes is comparatively recent and many problems are still to be solved. This subject is of 

potential importance in the design of offshore structures but does seem to require a large sample 
of annual maxima to be practical. It is therefore suggested the method be considered for use 

with hindcast data in a future study.

4.6.1 MOTIVATION AND NOTATION

In most practical cases only a small number of extremes can be observed which means the 

parametric estimation is performed using a very small sample size. A small sample results in 

large uncertainty in the estimated model parameters, therefore further information is required 

in the estimation process. This information is provided by the asymptotic theory of extremes 
which, broadly speaking, tells us that providing suitable normalisation coefficients exist the 

distribution of the largest in a sample tends to one of the three Fisher-Tippet distributions as
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the sample size tends to infinity. This greatly simplifies the estimation process since by 

choosing the largest from several samples of observations their distribution will be one of the 

Fisher-Tippet distributions. These three distributions can be generalised using the Jenkinson- 
von Mises distribution as ( Ch. 3)

G{x;p, <7,k) =  expl -T/ - y\
[4.32]

For the bivariate and multivariate case we seek that set of distributions which characterise 

the vector extremes. However, since no natural ordering exists for dimensions greater than one it 

is necessary to define the model in terms of the componentwise ( or virtual) events.

After Galambos let the random vector X — |X y,  Xp} and Xt; i = be the matrix

of n observations. The order statistics of the t‘h component are w ritten as
Xt 1;n < Xt 2;H 5s < Xt n;n. The smallest value of the component is denoted as

Wt;n = Xt J:H and the largest as Ztn = Xt n:lt. The problems of interest are the asymptotic joint

distributions of WIM = ...... ,Wp;H} and ZI:H = {ZJ:ll,Z2:H Zp n] .

The joint population distribution of the random vector X is defined by

F(X) = Pr{X  5 jr} = Pr{x,  <.x„...... Xr <,xp}

In a similar manner to the theory of univariate extremes we seek vectors am and bM> 0  such 

that

Pr(z ,  < o . +  b.z) = G„(a, + b,z)

converges to a stable p-dimensional extreme Veilue distribution function H(z) •

4.6.2 P r o pe r t ie s  o f  M u l t iv a r ia t e  D ist r ib u t io n s

To begin it is necessary to define some simple properties of multivariate distributions. Let 

A!” be a random column vector and XT = be an observation or point in p-dimensional

Euclidean space, then

F(X) = Pr{X <*} = Pr{x,  <, x,........Xp <, xp}
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Clearly, F{x) is a non-decreasing function of X , and as Xj —> F(x)  tends to an (p — 1)*

dimensional distribution. That is, the distribution of X  with X j  removed. The process of

removing successive components finally results in the marginal distribution of the remaining 

variable consequently F(x) defines all marginal distributions F (x). On the other hand the 

marginal distributions only specify bounds on the multivariate distribution, Galambos (1978).

4.6.3 T h e  D is t r ib u t io n  o f  Ve c t o r  Extrem es

Let F (X )  be the multivariate distribution function of the independent, identically 

distributed random vector X .  The maxima of the components AT,.; i = n have the joint 

distribution function

Pr{Xl:.  < x ,  X p:, Z x p} = F '(x )

in the limit as n —> 00 we get the asymptotic distribution

tint / xH (x)=  F "(a ,+ b .x )
/2->°o V 1

Here the vectors and bH are the sequence of the standardising coefficients such that 

H h + bHx)  converges to a non-degenerate distribution function H (x ) :

H .{ a ,+ b ,x ) ------>H(x)

In fact, Galambos (1978) shows the the vectors and bM are determined from the margins of 

F (X )  using univariate extreme value theory. Recent research has concentrated on defining the 

mathematical forms of H (x).  For example, the general structure of bivariate extremes was 

identified by Tiago de Oliveira (1962) and Sibuya (1960). More recently: Pickands (1981), and 
Tiago de Oliveira (1989b) have identified a number of joint distributions for bivariate extremes 
based on non-parametric estimators for the dependence structure; and Tawn (1990), and Coles (to 

be published ) have identified several bivariate and multivariate distributions based on 

parametric estimators for the dependence structure.
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4.6.4 BIVARIATE EXTREME MODELS

Let {xity^;i  = 1, n be a sequence of independent indenticaUy distributed pairs drawn

from the bivariate random process (Z,Y) having distribution Pr{X < x ,Y  2s y} = F(x,y). 

Following Tiago de Oliveira, Pickands, and Tawn we must use the notion of componentwise 

ordering, that is

Z,,. = * W  Z2;n^ X 2̂

where
z = [ z , . . z 2„}

One unsolved problem with this approach is that in general some of the virtual observations Z 

are not physically realisable as vector random observations. An obvious example is the joint 

distribution of individual wave height and period which is bounded by the breaking wave 

criterion. Since this problem is unsolved we shall continue to use the component approach and 

ignore this limitation.

As previously mentioned it is assumed that attraction coefficients ai:M and bi:H can be 

located for the margins such that

lim + b,„x,a2:,  + b2:,y) -> H(x,y)

We have seen the bivariate extreme value distribution H{x) uniquely defines the marginal 
distributions of X and y which we also know will be GEV distributed. It is well known that the

Fisher-Tippet distributions are interchangeable through transformation and it is a matter of 

convenience which form is assumed for the margins of the bivariate extremes model. In this 

work we follow Tawn, and Pickands who assume the margins are transform into unit 

exponential survivor functions

Pr{X > x} = e~x, Pr{Y > y} = e~y; (x>0,y> 0) [4.33]

Pickands (1981) shows that the bivariate extreme value survivor model must have the form



Q q * r4  __ M odtlliiti Multivariai* EmirotumiUal Daia

where the function A(w) is called the dependence function of the pair (x,y).  Note this is not 

the simple function described by Galambos, and Tiago de Oliveira in their earlier works. 

Assuming we have transformed the marginal data to unit exponentials the bivariate model in 
Equation [4.341 can be estimated using either intrinsic or parametric methods.

The dependence function A(w) must have several properties for

G(jc,;y) =  exp{-{x + y)A(w)}

to be a bivariate extreme value survivor function:

• (i) A(0) = A(7) = 7;
• (ii) m a x ( w , l - w ) £ A ( w ) £ l  (0 < w < l );

• (iii) ^ ( w) isconvexon ( 0 ^ w ^ 7 )

• (iv) ^ ( w) ! {1 ~~w) is a non-decreasing function and A(w) / w  is a

non-increasing function

If we examine the joint survivor function for (jt,y) then clearly for the upper bound on A(w) 

gives

G(x, y)  = exp{-(x  + y)} = e~xe 'y [4.35]

that is X  and Y are independent. The lower bound in condition (ii) corresponds to complete 
dependence X  = Y . The correlation between X  and Y is given by

r  aw i 
P ~ S o A {w f

This can be compared with the usual estimator of correlation

[4.36]

X(xi_£:W)2Z U _£M)3L«'-v I-7
[4.37]

where the quantity

125



Qw&4 Modelling Multivariate Environmental Data

T ~b

is asymptotically normal for a given b. This allows us to test for independence (p =  0;b =  i)  

using the acceptance region

where &(.) is the standard normal distribution evaluated using the error function, see 

Abramowitz & Stegun (1965). Whilst the properties of A(w) have been examined above no 

estimators have yet been presented. Generally two approaches are adopted for estimating

Pickands, and the parametric estimators preferred by Tawn. In this review both types of 
estimator are examined.

4.6.5 INTRINSIC ESTIMATORS OF DEPENDENCE

Several intrinsic estimators for the dependence function A(w) have been proposed. Perhaps 

the best known are those developed by Pickands (1981)

A(w) namely the intrinsic (or non-parametric) estimators developed by Tiago de Oliveira and

[4.38]

z,(w) = m//i{(7- w)~J w< l [4.39]

and more recently Tiago de Oliveira

[4.40]

where a  = l  I n
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Given a realisation from a bivariate random process these estimators are very simple to 

determine and for this reason they are used to explore the structure of a bivariate sample. One 
simple check on the correctness for the estimated dependence function is to integrate its inverse 

squared using Equation [4.38], and compare this estimator of the correlation with the sample 
estimator Equation [4.37].

4.6.6 PARAMETRIC MODELS OF DEPENDENCE

During the past thirty years a number of parametric dependence functions have been 

developed, Sibuya (I960), and Gumbel (1960). Parametric estimators for A(w) must satisfy 

similar conditions to the intrinsic estimators

A(0) = A(7) = 7 ; -7<SA '(0)£0; 0 £ A ' ( 7 ) £ 7 ;  A " ( w ) > 0 ;  ( 0 < w < 7 )

Four dependence models are identified in Tawn and have been summarised in Table 4.10, two 
are mixed models, and two are logistic models. The two mixed models are symmetric about 
w=0.5, making X and Y interchangeable, and the logistic models are either symmetric or 
asymmetric about w=0J5 depending on the choice of the symmetry parameters. As an example 
we shall examine how to estimate the parameters of the asymmetric logistic model which has 
three parameters in its dependence function.

4.6.7 SYMMETRIC LOGISTIC DEPENDENCE FUNCTION LIKELIHOOD

In Ch. 3 the joint distribution function f x x (xlt...,X^) for the vector of observed 

univariate random variables is used to define the likelihood function for the observed data 

7(0; Jt). Given a bivariate sample {xifyt ; i = 7,...,/l} the joint distribution of the observed 

value is

f x ,  (x , .....* . ) = x  .X/ K . y . )

which gives the log-likelihood

log,t{6;x) = 'Y4log{f(xi,yi;0)}
i~J

The joint survivor function for the asymmetric logistic model is given by

G(x,y) = « ? { - ( / -  6)x -  (1 -  0 )y  -  ({*0}'" + {y0}"v) VJ [4.41]

127



Quna± Modelling Multivariaie Environmental Data

taking the second partial derivatives gives the joint survivor density

g(x,y;0) = -

The log-likelihood or the sample is then given by

log.t(0;x) = '£bg{g(x i,yi;O)}
i-1

The maximum likelihood set of parameters is then found by maximising the likelihood on the 
bounded feasible region defined by the ranges of the model parameters. In Ch. 3 it is shown that 
the finite differences method gives acceptable accuracy for the hessian matrix of the log- 

likelihood and furthermore to avoid calculating the second derivatives analytically the 
information matrix is also calculated using finite difference estimates of the gradients and 

curvatures.

Unlike the boundary constraints for the asymmetric mixed model which define a closed 
region the boundary constraints for the asymmetric logistic model only restricts the search to 

the region defined by
0 Z 0 ,  0 < 1 ,  O Z v Z l

This makes solution of the maximum likelihood logistic parameters rather more difficult to 
obtain.

Complete dependence for the asymmetric logistic corresponds to the 0 = 0  = 1 and v = 0, 
complete independence corresponds to 0 = 0 or 0  = 0 or v = ]. Therefore a suitable starting 

point for locating the ML parameters is 0 =  0  = v = 0.5. There are problems with the 

independence case because the maximum likelihood estimators exhibit NON-REGULAR 

behaviour at independence. The effect of this is that the expected Fisher information is 

infinite and cannot be used to assess the variance, covariance matrix for the model parameters. 
Tawn (1988b) discusses this problem in relation to the logistic model in some depth however we 

can avoid the problem of non-regular estimation by ensuring we do not use the models with 
independent random variables for which there is a trivial solution. One method of checking 

whether X, and Y are in fact only weakly dependent or independent is to examine the non-
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parametric estimator A(w). In this way we can easily assess whether Equation [4.41] is a 

sensible model.
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4.7 CONCLUSIONS

Multivariate kernel density methods have been used to examine the bivariate structure of 
the DB1 environmental data. The results confirm the conclusions in Ch.2 that the data can be 

modelled as unstructured providing a suitable set of transformations and population model can 

be found.

The kernel densities used for this study were of the simplest type. Improved estimates can 

be obtained by using adaptive kernels in which the degree of smoothing is adjusted to the local 
density.

Univariate and multivariate transformation methods have been examined with a view to 
mapping the joint wind, wave and current data into a standard normal space. One of the best 

transformations is the Box & Cox (1964) transformation which includes the log-normal model as 

a special case. This transformation can be used on each individual margin to reduce a 

multivariate sample to multivariate normal.

The Box & Cox transformation is powerful enough to transform even highly non-normal 
data. Furthermore, the shape and location parameters respond strongly to the skewness and 
kurtosis in the data. This ensures the models are capable of modelling the extremes since these 
moments are dominated by the tails of the data.

The transformation of the data to a normal model has considerable advantages when used 
in level m  reliability studies. Most important is that it makes the Rosenblatt transformation 

redundant. Second is that the method is simple to implement and, when used with a good non­
linear optimiser, is very efficient.

It is necessary to extend the number of parameters in the multivariate Andrew's 
transformation to ensure the model is scale invariant and responds to kurtosis. A location and 

scale parameter have therefore been added to the Box & Cox transformation.

The population model has been assembled from a mixture of ML parameters obtained from 
the marginal, bivariate,and multivariate datasets. The criterion used for selecting the best set 
of transformation parameters has been the accuracy with which the resulting population model 

can predict the marginal 50 year return period values. This approach is reasonable providing 

the chosen set of parameters lies within the confidence limits obtained from the likelihood
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analysis of the full sample of data. In fact the parameters obtained from the marginal, 
bivariate, and multivariate samples were generally in dose agreement

The margins of the multivariate transformed normal population model have been examined 

to check the accuracy with which it can predict extreme values. The 50 year return period 

estimates for the wind speed ( 33 m /s ), current speed ( 1.0 m /s ), and the significant wave 

height (15m ) were found to be dose to those values recommended by the Department of Energy 

suggesting the model is suffidently accurate for use in:

operations analysis 

long-term fatigue assessments 

reliability studies of the extreme events

Checks on the variation of the modal values for zero crossing period conditioned on wave 
height and wave height conditioned on wind speed indicate that the model can be used to 

correctly predict values at the 50 year return period levels. This is espedally important for the 
significant height and zero up-crossing period case because compliant structures are sensitive to 

wave period.

Overall the transformation approach has several advantages over the Rosenblatt 
transformation. This study shows the population models obtained from the application of 

likelihood theory are accurate even for the 50 year return period values. Furthermore, the 

general structure of the fitted model matches the behaviour seen in the scatter plots given in 

Ch. 2. The only aspect of the model that requires improvement is the forward face of the joint 
distribution for significant wave height and zero-up-crossing period where the breaking wave 
condition results in a sharp increase in the density on the forward face of the joint distribution. 

However, it is likely that this aspect of the model can be improved by using a structured 
likelihood.
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APPENDIX A

A .l PROPERTIES OF THE MULTIVARIATE NORMAL DISTRIBUTION

In the preceding work, and in the reliability analysis discussed in Ch.7, the multivariate 

normal distribution is used repeatedly. For example the multivariate normal appears in 
Section [4.3.2] and the conditional expectations for the transformed normal model are use in 

Section [4.4.2]. Several useful properties of the normal distribution are presented below in 

matrix format for the general p-dimesional vector case.

Let X p — {Xl , Xp\  be a random vector with mean vector Ap and a symmetric, positive

definite covariance matrix

If X p is multivariate normal then its probability density function is

[Al]

The conditional distribution of X p_r = {xr+J,Xr+2,-‘-’fXp} given 

defined by
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The conditional density function g() is the ip-r) dimensional density function of the random

variables X p_r with X r held as constant parameters. If the covariance matrix M p is 

partitioned so that the upper left square contains the covariances of X T and the lower right 

square contains the covariance of X p_r then the corresponding partitions in the inverse of M p 

can be determined using the identity

[M,\ r, 1 * 1 'h\ o-

1-- Hi . R'T\ p ■'P~r _ jV T-r.

Solving for the unknown sub-matrices we get four equations

where the bars indicate determinant. The first two are called Shur’s identities, and the third 
is called Jacobi's theorem. Miller (1964) shows the conditioned distribution of g() is also 

multivariate with mean vector Bp_r and ( p-r*p-r ) covariance matrix Pp_r

K r \ =  K M

[A3]
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APPENDIX B

B .l SIMPLIFICATION OF TRANSFORMED NORMAL LIKELIHOOD

The likelihood for transforming a sample of data to a multivariate normal sample is 

described in Section [4.3.2]. This simple form is obtained from the general form of the 

likelihood using the following method.

If the general form for the sample likelihood is given by

=fi(2*r2i*r «?{-f (*<1,{) -**) v (*(i,4)-^)}nK - i f 1"

then on taking the log and rearranging we get

lo g l  =  .5 l o ^ - L £ {(*< >  « - n ) Tr ‘ ( y , ^  - 4  + £(*,. - 7) £ l o g ( x ,  -  S j )
*• i~ l  1 J j-1  i=l

By taking 

and
E r = l . f lT

where is now a matrix containing the sample of transformed data, and E T is a matrix 

containing repeated copies of the mean vectors, we can rewrite the middle term of the sample 

likelihood

£ { { y , ™ - / i ) }  =  < r { i r -  s ) ( ^ ' 5) - s ) r ]

The likelihood can now be written as

logl =  ~log\Z\ -  | r r | 2 r ' ( y il{) -  s ) ( j r (1-{) -  s ) T|  +  “  1)'LlMxt ~ l )

However, since
E t -  l . ( l r
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then the sam ple covariance is

Consequently, the middle term of the likelihood reduces to a simple additive constant which 

can be ignored for the optimisation of the likelihood. We then have the final form for the 

likelihood

l0gt( tl ,E,X,^) = ~ l o g \ M  + 'Z{Xi - l ) ' Z b g ( x ,  -
jm j i=l

Where, it should be noted the covariance matrix is dependent on the transformation 

parameters.

APPENDIX C

C l T ransform ation  id  a untthypercube: R osenblatt* s  tra n sfo r m y iic n

Most level HI reliability calculations performed by engineers involve the transformation of 
the basic and correlated design variables like wind speed, wave height, material yield 
strength, etc, into a multivariate standard normal space. The transformation most commonly 
quoted is one based on the discussion in Rosenblatt (1952) which shows how a general 

multivariate probability distribution function can be mapped from X -space variates into Z - 

space variates that are uniformly distributed on the p -dimensional hypercube:

z, = P { X ,Z x , }  = F{xl) 

z2 = P{X2 < x 2IX, = x,} = F{x2lx,)  

z p  =  p { x ,  *  X p l x , - i  =  x p - i  x i  =  x i }  =  F {x , l x p - i ’ ...............

These marginal and conditional distribution functions define a transformation vector T which 

maps the distribution function into space Z = T(x) . Once the variables are mapped into this 

new space then it is simple to calculate joint probabilities

P{Zi < z i;i = J ,p}  = f lz ,
i-y
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where 0 £ z i £ ] ; i  = ] ,  n  (that is, the marginal distributions Zj  are uniform on the

interval [0,1]). In order to transform from the Z -space to a standard normal space we simply 

map the variables from the Z-space to U- space using the inverse normal distribution

«, = ) ,1 = 7,.......p

The above transform is widely used for level II and level HI reliability calculations which 
require the location of a design point in standard normal space.

C.2 G e n e r a t in g  n o r m a l  r a n d o m  v e c t o r s

The special case of the Rosenblatt transformation for a normal model can now be derived from 

the conditioned distribution g(.) in Equation [A3] by writing X p = with

X ,- '  =  {*;} and X , •  {x , .......* „ ,}  hence

zj =Fj(x , / x i - i -  x i ) = 0
f x l - a - T rTM r-‘( X ' - A S '

p j - T rTM r-% [Cl]

This equation is a matrix generalisation of the result in Rosenblatt. As an example, consider the 

bivariate normal distribution with mean vector A . and covariance matrix

II V * s> II
i

Ki

1----«?

* 2 . mC21 C22_

the conditional distribution is then

-  c„2) /  c„
Exp

(  VX2~a2 ~ (C12 ! Cl/)(X1 ~ ai)
v "yj(C22 ~ C2J I C11) [ C 2 ]

Substituting the covariance terms with the standard deviations and the correlation coefficient 
gives

s(X2IX,) =
(2n)"2a j l - p 2

Exp
'22

w 77

[C3]
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If we examine Equation [A3] carefully we can see how it may be used to generate 

multivariate normal random vectors when the mean vector and covariance matrix are known.

The first step is to generate a p-variate uniform random vector Z = |z 7f...,z^J, using a pseudo­

random number generator. The first uniform random number z; is then transformed to a normal 

variate using

and then the second z2 is generated using

x2 = <P~1(z2) ^ m22-'mi2mn ' Im2J +a2+ mi2mu~J(XI ~  ai) 

ihsubsequently the j terms in the vector are given by the matrix form

x, = p j - T / M ' - X  + a, + -  A,) [C4]

By repeating the process a sample of multivariate normal random vectors can be generated with 
known mean vector and covariance matrix. This method is used to generate the multivariate 
normal random samples for the kernel density estimation discussed in Section [4.2]. The form of 
the random number generator given by Equation [C4] is ideal for the Mathematica symbolic 

algebra packages which are written to smooth and contour the wind, wave and current data. 

However, the efficiency of this multivariate normal random number generator in a Fortran 
program has not been compared with other methods like for example those given by Rubinstein 

(1981).
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mean vector

Hi Tz Uw Uc Dm Dc

[  2.17552 7.43897 8.2867 33.7114 206.766 166.805 ]

covariance matrix

Hs Tz Uw Uc Dw Dc

1.58877 1.2443 1.95825 -2.04062 16.4086 -5.68063 Hi

1.2443 2.01003 0.557186 -0.783 15.5017 -1.97301 Tz

1.95825 0.557186 11.5705 -4.77697 62.8678 -22.6279 Uw

-2.0406 -0.783 -4.77697 235.809 -7.53868 -155.126 Uc

16.4086 15.5017 62.8678 -7.53868 9852.84 -553.377 Dw

-5.6806 -1.97301 -22.6279 -155.126 -553.377 10140.1 Dc

Hs Tz

correlation matrix

Uw Uc Dw Dc

1 0.696297 0.456733 -0.10543 0.131147 -0.044755 Hs

0.6963 1 0.115538 -0.03597 0.110153 -0.01382 Tz

0.45673 0.115538 1 -0.09145 0.186197 -0.066061 Uw

-0.1054 -0.03597 -0.09145 1 -0.00495 -0.100319 Uc

0.13115 0.110153 0.186197 -0.00495 1 -0.055363 Dw

-0.0448 -0.01382 -0.06606 -0.10032 -0.05536 1 Dc

Hs, Tz - significant wave height and zero-up-crossing period from the frequency 
domain estimates; Uw,Dw ten minute mean wind speed and direction; Uc,Dc 5 
minute mean current speed.

Table 4.1 Mean vector, covariance matrix, and correlation matrix for the DB1
wind, wave, and current data.
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DATA BEFORE TRANSFORMATION

VARIABLE MEAN ADEV VAR SDEV SKEW KURT XMTN XMAX

I 2.051 1.957 9.184 3.03 3.145 13.004 0 25.848
2 31.774 45.279 99 110.832 8.518 102.84 0 1872.412

COVARIANCE MATRIX

9.1746 250.174
250.174 12271.51

DATA AFTER TRANSFORMATION

LAMDA 0.2735 0.1249
ETA 0 0

VAR1ABLI MEAN ADEV VAR SDEV SKEW KURT
1 -0.013 1.32 2.675 1.635 0.209 -0.239
2 0.777 2.996 13.395 3.66 0.186 -0.397

COVARIANCE MATRIX

2.672 4.2918
4.2918 13.3819

Table 4.2 Transformation of 1000 simulated bivariate normal random numbers. 

Statistics before and after using Andrews (1971) method.
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SUMMARY STATISTICS
sig. wave hgt 

(m)
x y

zero cross, prd 
(s) 

x y

current speed 
(cm/s)

* y

wind speed 
(m/s)
* y

mean value 2.176 0.635 7.439 1.208 33.710 12.760 8.287 3.356
variance 1.589 0.315 2.010 0.004 235.800 19.070 11.570 1.087
skewness 1.640 0.265 0.705 0.010 0.417 -0.056 0.716 -0.005
excess kurtosis 4.533 -0.274 0.381 •0.488 -0.039 -0.221 0.911 0.024
minimum value 0.400 -0.906 4.500 1.025 0.000 -1.573 0.300 -0.936
maximum value 11.000 2.470 14.500 1.403 94.000 26.680 28.550 7.614
standard deviation 1.260 0.561 1.418 0.062 15.360 4.367 3.402 1.043
average deviation 0.948 0.455 1.141 0.051 12.400 3.523 2.684 0.832

maximum likelihood lamda 0.025 -0.548 0.636 0.437
maximum of the likelihood -2566. -4069. -17730. -9076.

Table 43  Summary statistics for the DB1 data before transformation "x" and 
after transformation "y" using a one parameter Box & Cox method.

SUMMARY STATISTICS
sig. wave hgt 

(m)
x y

zero cross, prd 
(s) 

x y

current speed
(cm/s) 

x y

wind speed 
(m/s) 
x y

mean value 2.176 0.622 7.439 1.402 33.710 32.690 8.287 3.400
variance 1.589 0.357 2.010 0.017 235.800 235.500 11.570 1.134
skewness 1.640 0.040 0.705 0.010 0.417 0.417 0.716 0.009
excess kurtosis 4.533 -0.242 0.381 -0.466 -0.039 -0.039 0.911 0.022
m inim um  value 0.400 -1.006 4.500 1.005 0.000 -1.000 0.300 -0.931
maximum value 11.000 2.633 14.500 1.824 94.000 92.930 28.550 7.780
standard deviation 1.260 0.598 1.418 0.132 15.360 15.340 3.402 1.065
average deviation 0.948 0.483 1.141 0.109 12.400 12.390 2.684 0.850

maximum likelihood lamda 0.079 -0.288 1.000 0.448
maximum likelihood eta -0.049 -1.224 0.000 0.000
maximum of the likelihood -2565. -4064. -17870. -9076.

Table 4.4 Summary statistics for the DB1 data before transformation "x" and 
after transformation "y" using a two parameter Box & Cox method.
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variables {1.2} shape location skewness excess
lamda eta kurtosis

tz 0.4821 -4.5 0.03 -0.188
hs 0.2718 -0.3084 0.11 -0.037
uw 0.51 -0.3 0.055 0.069
hs 0.2703 -0.3686 0.011 0.056
uc 0.6329 0 -0.06 -0.22
hs 0.3263 -0.4 0.024 0.362
uc 0.6323 0 -0.06 -0.219
tz 0.4518 -4.5 -0.017 •0.151
uw 0.48448 -0.3 0.018 0.078
tz 0.4485 -4.5 -0.022 ■0.146
uw 0.4392 -0.0105 ■0.003 0.025
uc 0.6346 0 •0.057 -0.221

hs: significant wave height (m)
tz: zero up-crossing period (s)
uw: ten minute mean wind speed (m/s)
uc : five minute mean current speed (cm/s)

Table 45  Andrews' transformation parameters plus the skewness and excess 
kurtosis of the transformed margins for bivariate pairs of DB1 
significant wave height (m), zero-up-crossing period (s), mean wind 
speed (m/s) and mean current speed (cm/s).

Transformation parameters:
hs tz uw uc

shape lamda 0.2799 0.5021 0.4769 0.6352
location eta -0.2991 -4.5 -0.3 0

parameter mean average variance standard skewness kurtosis

deviation deviation
hs 0.5080 0.6170 0.5920 0.7690 0.1380 -0.0360

tz 1.3270 0.6790 0.7000 0.8370 0.0600 -0.2040

uw 3.4200 0.9230 1.3400 1.1580 0.0070 0.0820

uc 12.7500 3.5180 19.0230 4.3620 -0.0560 -0.2210

Covariance matrix:
Is tz uw uc

hi 0.5915 0.4518 0.4088 -0.3530

tz 0.4518 0.7000 0.0972 -0.1335
uw 0.4088 0.0972 1.3400 -0.4910

uc -0.3530 -0.1335 -0.4910 19.0198

Determinant of covariance: 0.364627E+01

Table 4.6 Andrews' transformation parameters for the multivariate set of DB1 
significant wave height (m), zero up-crossing period (s), wind speed 
(m/s), and current speed (cm/s).
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variables {1,2} shape

lamda

location

eta

skewness excess

kurtosis

transformed

mean

hs 0.2703 -0.3686 0.011 0.056 0.443

tz 0.4485 -45 -0.022 •0.146 1.278

uw 0.448 0 -0.009 0.022 3.4

uc 1 0 0.417 •0.039 32.711

covariance matrix for foe transformed data

hs tz uw uc

hs 0.6421 0.4452 0.3854 -1.2592

tz 0.4452 0.6321 0.0836 0.3624

uw 0.3854 0.0836 1.0979 -1.5726

uc -1.2592 -0.3624 -1.5726 235.7674

Table 4.7 Best set of optimisation parameters for the DB1 winds, waves, and 
currents.

50 year 100 year 50 year

parameter transformed

normal

weibull GEV transformed

normal

weibull GEV DEn
Guidance

hs 15.02 17.61 32.41 15.81 18.88 39.41 15.5

uw 33.02 33.35 42.54 35.6 34.9 42.7 38.5
uc 100.5 100.9 97.4 103.4 102.5 97.98

Table 4.8 50 and 100 year return period estimates from the transformation normal,
Weibull, and generalised extreme value distributions.
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covariance matrix for the Box transformed data Y

0.642141
0.445167
0.392191

-1.259152

0.445167
0.632069
0.085384

-0.362383

eigenvalues for the covariance of y

235.786 0.138602

eigenvectors for the covariance of y

-0.00536893
-0.00155363
-0.00681952

0.999961

0.742001
-0.627534
-0.235868

0.00140034

0.392191
0.085384
1.135713

-1.598023

1.45152

0.553058
0.37419

0.744334
0.00862702

-1.259152
-0.362383
-1.598023

235.767429

0.801576

0.378857
0.682774

-0.624729
-0.00116556

mean vector for Z

32.6822

covariance matrix for z

meanz = Transpose[Ay] meany

■1.2299 3.53764 -1.12303

235.786
0
0
0

0
0.138602

0
0

0
0

1.45152
0

0
0
0

0.801576

transformation matrix K

-0 0824416 
-0.0238564 

-0.104716 
15.3547

0.276242
-0.233627

-0.0878121
0.000521338

0.66632
0.450821
0.896768

0.0103938

0.339194
0.611293

-0.559324
-0.00104353

Table 4.9 Vectors and matrices required to transform the y-space variates to u- 
space variates (or vice versa).
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Hs(m)

12

10

8

6

4

2

0

Figure 4.2 Contour plot of the bin-count natural log in the significant wave height 
(m) and zero-up-crossing period (s) scatter diagram.

0 10 12 142 4 6 8
Tz (s)

Figure 4.3 Contour and 3d plots of the Epanechnikov (1969) kernel smoothing 
function.
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Figure 4.4 Log-likelihood for 1000 transformed normal random numbers.
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Figure 4.6 Scatter ptot for 1000 samples with mean ={0 0} and 
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Figure 4.7 Kernel density  estim ate for 1000 sam ples w ith m ean = {0,0} and  
covariance = {{2.0,2.2},{2.2,3.0}}.
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Figure 4.8 Log-likelihood functions for the transformation of the wave, wind and 
current marginal data, using the Box & Cox method.
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Figure 4.9 Kernel density plots of joint significant wave height (m) and zero-up-crossing 
period (s); (a) before transformation; (b) after transformation.
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Figure 4.10 Kernel density plots of joint mean wind speed (m/s) and significant wave 
height (m); (a) before transformation; (b) after transformation.
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Figure 4.11 Kernel density plots of joint mean current speed (cm/s) and significant wave 
height (m); (a) before transformation; (b) after transformation.
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Figure 4.12 Kernel density plots of joint zero-up-crossing period (s) and mean current 
speed (cm/s); (a) before transformation; (b) after transformation.
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Figure 4.13 Kernel density plots of joint mean wind speed (m/s) and zero-up-crossing 
period (s); (a) before transformation; (b) after transformation.
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Figure 4.14 Kernel density plots of joint mean wind speed (m/s) and mean current speed 
(m/s); (a) before transformation; (b) after transformation.

155



a*2fc£ U txU llbu Mulliitwiat* FjgnrommtMlai PaM

Ha (* )

20

15

10

5

Hs (» )

Plerson-Moskowitz

mvn model

40

Figure 4.15 Modal zero-up-crossing period (s), and wind speed (m /s) conditioned on 
the significant wave height (m).
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Figure 4.16 300 y-space (top) and corresponding w-space (bottom) variates.
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NOMENCLATURE

C 
C

Cv
m

D(f , e )

E

(/,./.)

I.

*(/)
m,

n

P
P

a ,

rms
R
R
So

4 f )  
s

S(f,6)

S(f)
W(<P)

a p

PP

I
r
e
e

normalisation constant 
real part of characteristic function 

co-spectrum of i* and j*  signals 

directional spreading function 

frequency dependent directional spreading PDF 

expectation operator 

probability distribution function 

for random variable x 
modified Bessel function of order n 

frequency dependent wave number 

factor on noise component in directional spread 
number of directional observations 

order of trigonometric moment, or cosine power 
unit direction vector
quadrature spectrum of i^  and signals
root mean square
normalising constant
resultant
angular variance
frequency dependent cosine spreading power 

imaginary part of characteristic function 

directional surface elevation variance spectrum 

point surface elevation variance spectrum 
weighting function

trigonometric moment of the distribution function 

trigonometric moment of the distribution function 

centred moment of the distribution function

centred moment of the distribution function 

gamma function 
Wave propagation direction 
mean wave propagation direction
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*,0 pth resultant mean wave propagation direction
Mean direction

K Concentration parameter

angle on [0,2 n \  0 = 0 - 0

0 characteristic function
f frequency in Hz
G standard deviation
° 0 i equivalent linear standard deviation determined from ith

angular moments
Yi circular variance
Yi circular variance
C mean direction o f the noise in D(f ,  0)
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5. I n t r o d u c t o r y  r e m a r k s : m o d e l l in g  d ir e c t io n a l  
SEAS

The extreme responses of fixed, compliant and articulated offshore structures can be 
affected by the degree of directional wave spreading in storms. It is therefore essential that 
empirically determined directional distributions accurately represent the expected degree of 
directional spreading over the full range of frequencies. Calculations of structural response in 

directional seas generally model the directional spreading of wave energy as deterministic 
using a frequency dependent uni-modal function. Most often, this function is modelled by the 
cosine power distribution, originally proposed by Cartwright (1963) and Longuet-Higgins et al 
(1963a).

Studies of the frequency dependent directional distribution of wave variance using 
maximum likelihood, Jeffereys (1986), and maximum entropy, Ochoa (1990), all indicate that 

in real seas the directional distributions contain a considerable amount of detail which may be 

further complicated by the crossing of wind driven and swell seas. For design this detail must be 

simplified and in practice no more than the mean direction and the concentration of the 

directional spread is required. In this respect, the cosine directional distribution is satisfactory. 

However the Longuet-Higgins approach is sensitive to noise in the co and quadrature spectra, 

and the occurrence of asymmetric or non-cosine distributed directional spreads. The presence of 

noise and asymmetry is inevitable in recorded spectra and consequently models based on fitting 

an exponentiated cosine model using an angular moments approach must be subject to uncertainty 

and bias.

The effect of noise is examined theoretically by Tucker (1989), who suggests the frequency 

dependent spreading models developed by Hasselmann and Mitsuyasu may be more a reflection 

of the buoy response than the true nature of the directional spread, Tucker (1991). To overcome
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some of the problems he proposes a method of allowing for imperfect buoy response, however, 

this does not address the robustness of simply equating the cosine model angular moments to 

those inferred by the measured spectra. The application of angular statistical methods to the 

modelling of directional wave spreading results in some improvements to the conventional 

cosine model estimator. Borgman (1969) proposed the use of circular statistics together with the 

von Mises directional probability distribution. This model has advantages when compared 

with the conventional cosine model used by Cartwright (1963), Longuet-Higgins et al (1963a), 
Mitsuyasu et al (1975), Hasselmann et al (1980) and Ewing & Laing (1987); especially if the 

distribution can be fitted using weighted estimation techniques.

The need for robust measures of location and spread is noted by Kuik et al (1988) who 

proposed a set of model free parameters to measure location, circular variance, skewness, and 
kurtosis. Their estimators are based on the use of those circular statistics which can be 

determined naturally from pitch-and-roll buoy co- and quadrature spectra using the theory 

developed by Cartwright and Longuet-Higgins, Appendix A. Whilst these quantities are non- 
parametric they leave interpretation of the location, skewness, and kurtosis to the designer 
who will ultimately need to fit some parametric form to the summary statistics.

The problem of fitting parametric models to directional data is addressed by Borgman 
(1969) who examines Longuet-Higgins et al (1963a) suggestion of using a weighting function to 
’smooth' the raw Fourier summation form of the directional distribution. The principle of 

weighting the distributions assumes that the true directional distribution is D{6) and the 

Fourier summation estimate Dp(6)  is the weighted distribution

De{e)= \D {e ' )w x{6-e ')de'  B1]
o

where the weight function can be written as

Unfortunately, this weighting has the undesirable property of broadening the estimated 

directional distribution and allowing negative estimates for D(0). An alternative weight 

function which removes negative estimates was also proposed with the form:

W2(<f)) = R cos2N(<P /2 ) ,  where R is a normalising constant such that J W2d0* = 1.0- However,
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this weighting broadens the distribution even more than Wx and results in a COS4 ( 0 /2 )  

estimate for the directional spread of unidirectional seas.

The obvious way to improve the directional model is to increase the number of Fourier 

coefficients. This was the motivation for the development of clover-leaf buoys and wave gauge 

arrays but neither method has become a routine method for data acquisition. The second 

approach to modelling directional spreading is to assume D(Q) has some parametric form and 

then estimate the model parameters using moment estimation. This approach was adopted by: 

Longuet-Higgins et al (1963a), who used moments to fit a half angle cosine model to the data; 

and Borgman (1969) who suggests the von Mises and wrapped Normal distributions are 

appropriate models. Their results were the basis of subsequent experimental work to determine 
the frequency dependence of the directional spreading in wind driven seas.

In this chapter, the robustness of the parametric modelling is examined in a simple way by 
simulating double cosine directional distributions and then fitting cosine and von Mises models 

to them using moment estimation. This demonstrates the sensitivity of the simple circular 
moments estimator and consequently a weighted estimator based on Huber's W-estimation 
process (1981) is examined for the parameters of a von Mises distribution. Unfortunately, the 
new estimator requires some knowledge of the physics of wave generation and consequently the 
method is only presented for discussion and possible future development.

5.1. EMPIRICAL MODELS OF SPREADING

In order to make use of existing uni-directional wave elevation spectrum models the 

directional variance spectrum is usually written in the form

Sn( f , 0 )  = Sn( f ) x D ( f , 0 )

where D(f ,  0) is a frequency dependent directional distribution function which must satisfy

f b ( f , 6 ) d 0  = 1.0

Longuet-Higgins et al. (1963a) proposed a half angle cosine spreading function based on 
observations made using a pitch and roll buoy. Their model is defined on 0,2n  as

D ( f  ,<(>)= Ceos2'^ -j0^ ; 0 = 0 - 0

163



C h a ta l. Modell'ini Directional Seas

where,

c . 2^  r * ( t + n
X r(2s+j)

The value 's' is the spreading power, and 0 is the angle measured from the mean wave 

direction 0 which in this work is assumed to correspond to the mean wind direction. Plots 

showing the form of the cosine spreading function, about the mean wave direction, for a variety 
of spreading powers (2s) between 0 and 20 are given in Fig. 5.1.

Several other models have been proposed as directional distributions, for example Borgman 

(1969) suggests the wrapped normal and circular von Mises distributions; and Chase et al (1957) 

recommends the full angle cosine distribution. Whilst each of these models has its own merits, 

with only the first five Fourier coefficients available to estimate the parameters there is no 
theoretical reason for favouring any particular model. That said, the von Mises distribution 

does have some desirable practical properties and a considerable literature to support its use 
and estimation. Plots showing the form of the von Mises distribution for concentrations between 

0 and 20 are shown in Fig. 5.2.

In wind seas the concentration parameter of a model appears to be frequency dependent. For 
example, Longuet-Higgins et al (1963a) noted die power of the spreading appeared to be 
related to the dimensionless frequency or (17/c) where U is the wind speed and c is the wave 

phase speed

i  2nfU U _ g
8 c '

This frequency dependence of the spreading power must be modelled accurately because, as 

shown by Helvadoglu (1990), the responses of articulated and compliant systems can be 
sensitive to the spreading at the lower frequencies due to their long natural periods. Two 

frequency dependent spreading models commonly used far structural response calculations are 

examined below.

5.1.1 MITSUYASU SPREADING FUNCTION

The relationship between resonance angle and the power of the directional spreading was 

examined by Mitsuyasu et al (1975). Their work was based on surface elevation measurements 

using clover leaf buoys located at two Japanese sites; one at Hakata Bay in a water depth of 5m; 

and the other in open seas north of Fukuoka. The two locations both have limited fetch in some 

directions. They found the normalised form of their spectra for the open sea case corresponded
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to the Pierson-Moskowitz form of the spectrum, whilst the results measured at Hakata Bay 

corresponded to the JONSWAP form. This is consistent with the non-dimensianalised wind 

fetch for each location and suggests the results should be applicable to the North Sea where 
designers commonly use both the P-M and JONSWAP spectra. Mitsuyasu finds a relationship

between the spreading power s and resonance angle by plotting S = -£[5, + £ 2 ]  against U I C  and

then fitting a suitable model using regression analysis. That is, they take the average of the 
first and second angular moment estimates of the spreading power giving the result summarised 
in Table 5.1.

5.1.2 HASSELMANN SPREADING FUNCTION

The directional spreading function adopted by Mitsuyasu was examined by Hasselmann, et 
al (1980) using data measured during JONSWAP. They conclude the spreading power is not a 

function of the resonance angle U/c; rather it is a function of the normalised frequency ftfm. 

This was substantiated by comparing the correlation coefficients from the linear regression of 

spreading power onto U/c and f/fm. Their equations are also reproduced in Table 5.1. Note that 
the equation for f/fm > 0 does not yield the same result at f/fm  = 1.0 as the equation for f/fm < 

0. This is overcome by swapping equations at f=1.05fm rather than f= fm .

The spreading powers given by Hasselmann’s model are consistently lower over the whole 
frequency range than those given by Mitsuyasu's model. This observation is noted by 
Hasselmann who points out that their model is strictly only valid for U/c >1.0 whereas 

Mitsuyasu included data for fully developed seas for which U/c <1.0 . Hasselmann suggests 
the higher values of s may be due to including swell seas - with low U/c - in the Mitsuyasu 

data. In fact, Hasselmann's model is based on fitting to Sj to f/ fm  and not the average of SI and 

s2 . We shall see in the next section that this results in biased estimates of spreading power 

because of the lack of robustness of the first moment estimator; and that the differences between 
Hasselmann and Mitsuyasu models are partly due to the poor quality of S} as an estimator of s.

5JZ. ROBUSTNESS OF THE COSINE POWERS

For this work robustness is defined as insensitivity to small deviations from the modelling 

assumptions. When fitting parametric models to directional wave data we pre-suppose some 
functional form for the directional distribution and then use some estimator of the location and 

concentration parameters. This estimator must be robust to departures of the true directional 

spread from the idealised models, whilst still being efficient in some sense ( efficiency is 

examined in detail by Huber (1981) ). Robust estimates of location and concentration are 

required if the results of directional wave analysis are to be used as the basis for spectral 

analysis of offshore structures, since the responses of fixed and compliant systems can be
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sensitive to the degree of spreading. For example, when the responses of fixed structures are 

calculated using directional spectra the in-line forces are decreased by some 5 per cent, Prince- 

Wright & Perdval (1989), to 15 per cent, Haver & Natvig (1991). Conversely, when the 

responses of articulated systems are calculated using directional spectra the forces can be 

amplified, Helvacioglu (1990). It is therefore important to ensure directional seas are 

modelled correctly if unconservative modelling of fixed and articulated structures is to be 
avoided.

The data recorded by directional wave recorders will always be contaminated by noise and 

bias which may arise from random error; spectral leakage in the Fourier analysis; or imperfect 
surface following characteristics. The effect of bias - caused by buoy heave, pitch, and roll 
response transfer functions not being uncoupled and unity - is examined theoretically by Tucker 

(1989) who demonstrates how the first angular moments are dependent on the linear buoy 

response transfer functions, and the second angular moments are independent of them. This 

would suggest that the second moment estimators are more robust and should be used to 
determine the degree of directional spreading. Ewing & Laing (1987) had previously examined 

the effects of noise in recorded directional data using numerical simulation and came to the 
same conclusions as Tucker; whilst also pointing out the first moment estimator has been 
adopted by most oceanographers which might suggest their models overestimate the degree of 
directional spreading in real seas.

The effects of noise and bias are important. However, there is a second problem with the 
Longuet-Higgins estimator for the cosine model parameters and that is the sensitivity of 
simple moment estimation to deviations from the assumed cosine form for the directional 

distribution. In real seas it is almost certain that the true directional spread will not be 
perfectly cosine distributed since wind fields are constantly veering and wind and swell seas 

may cross each other. The poor robustness of simple moment estimators is well known to 
statisticians who favour the use of robust measures of mean and concentration when the 

distribution of errors is known to be non-normal. In this study we do not have discrete 

observations of direction with error since only the first five Fourier-Stieltjes coefficients are 

known. These coefficients will contain limited information about the degree of skewness and 

kurtosis in the recorded data which arises from not only bias and noise but also real asymmetry 

due to crossing seas. The question is therefore: how robust are the estimates for the cosine model 

parameters, given that the angular harmonics correspond to real seas and may be corrupted by 

bias and noise? We can examine this in a simplistic way using simulation.
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5.2.1 BIAS IN ESTIMATES OF SPREADING

Assume we have S(f,  0) for a given frequency and that it can be written in the form 

S(f ,0)  = S(f)D(f,Q);  where S(f)  is the one-dimensional spectrum and D(f ,0 )  is the 

frequency dependent wave directional probability density. By simulating the directional 
distribution as the mixture of two cosine distributions

D(f ,  0) = ntj cos**(p / 2) + (7 -  m1)cos2p((6 -  f ) / 2) [5.41

the angular harmonics can be calculated by numerical integration as shown Appendix A. These 

can be used in Equations [All to A14] to estimate the mean directions 9Jf62 and cosine powers 

Sj,s2 for the idealised directional distribution. The results of some simulations for a range of 

directional distributions are shown in Table 5.2. Some examples are plotted in Fig. 5.3 which 
shows the effect of the second cosine term is to introduce varying degrees of asymmetry when 

£ & Otfflj & 0 or flatness when £ = 0;mt & 0. In measured spectra such small departures from a 

perfect cosine model must be commonplace and it is therefore important to note the large bias in 
the Sj,s2 values for only small imperfection. The two estimators for mean direction 6l t 92 are 

generally robust but it should be noted only small degrees of imperfection have been introduced 
in these simple examples; in cases where wind and swell seas are crossing, the true directional 
distributions may be bi-mod al and then 02, 02 will be significantly biased.

This simple simulation suggests a more robust approach for the estimation of concentration 
and location is required if a design model is to be developed for directional wave response 

analysis. Alternative estimators have been suggested, for example Long & Hasselmann (1979) 
suggest a variational approach, and Hasselmann et al (1980) examined the use of fitting a 

double cosine model to the angular harmonics. These models are however probably no more 
robust them the simple moments estimator, see Kuik et al (1988), Ochoa (1990), and 
consequently in Section [5.5] the statistical theory for robust 'W-estimates' of directional 
random variables is discussed.

5.3 CIRCULAR STATISTICS FOR ANGULAR RANDOM VARIABLES

The fundamental difference between a line statistical model and the corresponding circular 
model, in which the angle is the random variable, is the range of integration. A function fx is a

circular distribution if and only if
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2 m

j f , ( e ) d $  = 1.0 , 0 ± e ± 2 n  ; f ( 6 ) Z0
O

In line statistics the model is characterised by its line moments; however, in circular statistics 

the model is characterised by the jP1 trigonometric moments about the angular origin

a p = E[Cos pO] where £  7 [5.5]

Pp =  E[iSm pO] where \jip\ < 1 [5.6]

The expectation operator E[.] is given by

£[Z(0)]=J Z( 9) . f e dd
o

and the complex characteristic function &p of the random variable 6 is defined as

0 r = E\e*e] = a r +iPr p  = 0, ± l , ± 2 ......  [5.7]

To be mathematically exact, a circular distribution is always defined by its trigonometric 
moments. Use of the characteristic function is more readily understood by thinking of the 
directional distribution as wrapped around a unit circle in the complex ’z-plane', Fig. 5.4 (a). 

The characteristic function can then be written as

2 m

®p[0] = J{cospO + isinpQ}D(6) dQ = a p + ifip 
o

where the coefficients 0tp , can then be thought of as the p^1 angular moments about the real 

and complex axes. The characteristic function is similar to the coefficients of a Fourier series . In 

fact, Mardia shows the numbers 2n&p are Fourier-Stieltjes coefficients of D{&) and that when 

the summation

i>,2+/vpml
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is convergent the directional distribution is given by

m - j ;  I * , * - *  [5.81

Given only the first two angular harmonics Equation [5.8] is not useful as an estimator of D(0) 

however, Mardia (1972) shows how the angular moments can be used to define measures of 

location, concentration, skewness and kurtosis.

One potential use of Equation [5.8] is to determine the long-term directional distributions of 

winds, waves and currents using sample estimates of the characteristic function. The process, 

outlined later, is implemented very simply using observations of direction.

5.3.1 THE MEAN OR LOCATION

A measure of mean, or location for the directional variance spectrum, can be defined as the 

weighted integral of the unit direction vectors P = \cospQ,sinpQ\;p = 1,2. .; the weighted

integral of Pp has resultant Rp = |c tf2 + Pp2} and direction 6 such that (Xp = Rp cos p O ,

and (lp = RpsinpO. Recalling Equation [A8] the real and complex components of the first

moment can be calculated using the first three Fourier coefficients obtained from the co and 
quadrature spectra. These values give estimates of the location 0l td2 and resultant RltR2-

Having calculated the mean direction the centred circular moments OCp,fip can be calculated

using

a p = £[cos(/?(e -  0))] =  a p cos (pO) + Pp sin(/?0) [5.9]

Pp = £[sin(/?(0 -  0))] = - a p sin(/?0) + pp cos (pO) l5-101

Taking the line moment measures of width, skewness and kurtosis Mardia op cit defines 

circular equivalents with similar properties. His values are essentially those adopted by Kuik

et al (1988) who examined the relative performance of the line and circle estimators using
Monte Carlo simulations. One useful result which can be used as a quality check on data is the 

inequality
l - a } - p 2- 2 a , 2( l - a 2) i 0  [5I1]
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this check was used with the constraints on ft, ,/?; to identify gross measurement errors in the 

DB1 data.

53.2 CIRCULAR VARIANCE, SKEWNESS AND KURTOSIS

The dispersion of the directional distribution about the reference vector P' , Fig. 5.4 (b), is 

defined by Mardia (1972) as

I „ = i - / c o s ( 0 ‘ -  e )D (e y e '  [5.12]
o

noting that cos^O — 0 ) = cos 0 cos 0 + sin 0 sin 0 we get 

s01= l - R j  ; 0 <  s0J < 1 and s02 = l - R 2 ; 0 < s O2< l

This measure of dispersion is related to the line equivalent G0 using the fact that for 

symmetric cases = 0  in which case

= a .  = ep p

hence,

o„i = {-2 log .(l -  Jo,)}"1 ; 0 < a 0,<oo

and,

<*02 =  -  i ra)}"J ; 0 < o Q2 < °° [513]

Alternatively, both the location and concentration can be defined by the second angular 

moments. The relative robustness of each method is examined later by fitting the von Mises 

distribution to Monte Carlo simulated directional distributions.

The asymmetry and peakedness of line variables is generally measured by skewness and 

kurtosis. Circular analogs of these quantities are defined by Mardia (1972) using the centred 

second angular moments OC2,fi2. He proposes a measure of skewness given by yx =  /?2 / S0V2. For 

a perfectly symmetric distribution J3 will be zero and consequently the skewness 7; is zero as 

expected. In the limiting case when the variance S0 is 1.0 then the data are evenly distributed
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on the unit circle and Yi has no meaning. In the line case, kurtosis is measured relative to the 

normal distribution, consequently, Mardia suggests kurtosis be measured by

Yi =  {a 2 ~ ( l _,so) } ^ o  15.14]

Kuik et al (1988) points out that this measure is, in a sense, model dependent since it is made to 
equal zero for the wrapped normal distribution. At first sight this should not be used as 

justification for rejecting it as a measure of kurtosis, however, the simulation results presented 
below show that Mardia's model free measure is a better measure of kurtosis, as suggested by 

Kuik et al (1988), where

t i  = {«2 -  4 S t + 3} / s„2 [5,15]

The performance of these measures of width, skewness and kurtosis is examined in Section 

[5.3.5] using Monte Carlo simulation. Unlike the work of Kuik et al (1988) the simulation is 

used to examine whether or not these measures can be used to assess likely bias in observed 
estimates of directional spreading recorded by a floating buoy.

5.33 VON MISES DISTRIBUTION

The circular equivalent of the normal distribution proposed by von Mises has a density

function f 6{0;jX0, fc) given by

h ( e - P f * )  = 2J  ( k) exp[~KCoS( °  -  **•)] [5.16]

0 < 0 < 2 i t  ; k > 0 ; 0 < i i o£ 2 ji

where: f l0 is the mean direction; K is the concentration; and In(x) is the modified Bessel 

function of the first kind and order n

“ §  22k*' k!r(n + k + I)

Since the argument of the gamma function is a natural number the factorial form can be used 

where r {x  +1 ) = x!  , consequently the zeroeth order Bessel function is given by
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[5.17]

This function is real valued for all real x and takes values greater than zero for all x &0. The 

von Mises distribution is symmetric about the mean and uni-modal. When the concentration

the limit when K = 0 the distribution tends to the circular uniform distribution. The 

trigonometric moments of the von Mises distribution are given in closed form by Mardia (1972) 

as

That is, Ap( K) = Ip( K)/IQ( K), where Ip is the order modified Bessel function of the first 

kind. Knowing the first moments of the directional distribution then enables us to solve for the 

location and concentration.

5.3.4 SOLUTION FOR THE VON MISES PARAMETERS

Characteristics of the directional probability distribution can be estimated using the 
circular equivalents of the mean, standard deviation, skewness and kurtosis. Kuik et al (1988) 

show how these parameters can be estimated using the Fourier coefficients derived from the co- 
and quadrature-spectra inferred from a buoy heave, pitch and roll time series. Recalling 
Equations [5.18 & 5.19], the parameters in the von Mises distribution can be solved using the four 

equations in CXp,fip

about the mean is narrow then K is large and the distribution tends to the normal distribution 

N(x;iX ,d), conversely, when the concentration about the mean is wide then K is small and, in

a r = Ar (K)Cos{pn0) =
I,(K)Cos(pfl ')

/„(*■)
[5.18]

[5.19]

I. Cos 9.
r _  /  V

^  I, Sin 6.

I2Cos20o n  — t s.
2 / .
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^ _ l,Sin20.

Noting 1  ̂= Ip( K), these equations therefore contain two unknowns K and 0o . The angle 0O is 

most simply solved using either the first moment estimator

a,  cosdn
Pi sinO0

> 90 = tan"1*i i
a, [5.20]

or the second moment estimator

a 2 _ Cos2$0 - _ l  -i I P2 I
_ >  e° 2 mn  Z  t5-2,]

Having found 90 the first moment estimate of the concentration parameter K can be solved 

either by using a numerical algorithm or by using the least squares estimator suggested by Lenth 
(1981)

— = 2(1 - R , )  + ( l  -  R ,y .{0.48794 -  0.82905R, -  1.3915R,1}  15.22]

this simple estimator has an absolute error of less them 0.005 per cent for resultants Rj<> 0.12 

which will be the case for nearly all directional wave data in which there is a predominant 
wave direction. The second moment estimator for the concentration can be obtained by noting

12( k ) =  Iq( k ) - 2 //(k’) / K  [5.23]

and,

R2 = tJ<X22 +P2 = I 2( k) / I 0(k ) [5.24]

Then

*, = 7-2/,(*)/{/„(*)*} 
= 1 - 2 R , I k

k2 = -2R, / (R2 - 1 )  t5’251

The second moment estimate is therefore calculated using both the first and second moment 
resultants RJfR2 ; it is therefore necessary to examine the behaviour of this estimator using 

simulation since we have seen the first moment resultant gives highly biased estimates for the
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cosine model spreading power Sj when only small amounts of noise are introduced into the 

directional distribution.

5.3.5 ROBUSTNESS OF MARDIA'S DESCRIPTIVE PARAMETERS

Before applying the modelling methods discussed above to the DB1 data it is 

instructive to examine the robustness of the cosine and von Mises model parameter estimates. A 

sample of randomly simulated directional distributions was generated using the double cosine 
mixture Equation [5.4b with parameters given by

Si =1.0 + 20U(0,1)

Pi = 7.0 + 4.017(0,7) 

nti = 0.477(0,7)
£ = ( * I2)U (0 ,1) [5.26]

Here U (0 ,1 )  is the uniform random number on the interval (0,1). Each parameter used a 

separate random number to ensure independence. The real and imaginary components of the 
characteristic function ( Equation [5.7]) were calculated by numerical integration of Equation 

[5.4] and the solutions for the cosine and von Mises model parameters were obtained by using 
Equations [All to A14] and Equations [5.20 to 5.25]. The range of simulated distributions given 

by the double cosine mixture is of course arbitrary, nonetheless, if tfl, COS2*1 ( 9/ 2)  is regarded as

the true peak, and (7 — mi)cos2p‘ ([0 — £.] / 2) is regarded as noise, then tentative estimates of

the bias in estimated directional parameters may be made using the results from this 
simulation.

The angular harmonics {#,» A»* = 7,2} are plotted in pairs in Fig. 5.5 which shows 

that only &I,Gt2 are strongly correlated. In fact Mardia (1972) shows that CX2 *  2ocf — 7. The 

correlation increases as (Xl t<X2 increases, that is, correlation increases as the directional 

variance decreases. Other pairing show little or no correlation, on the other hand the bounds 

a 2 + f52 < 1 can be seen in the scatter plots. One important property is the correlation between 

resultants Rj and R2 shown in Fig. 5.6 for the 100 simulated distributions. As the resultants 

increase so does the correlation, which suggests for narrow beam seas the buoy response can be 

checked by comparing the first and second moment resultants.

Mardia's measure of skewness is based on scaling the second imaginary component of the 

characteristic function by the variance obtained from the first resultant S0. The bias in cosine
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power s2 is plotted against both fl2 and skewness, fi2 / S0m , in Fig. 5.7. The bias has been

defined as

[5.27]

Strong correlation does not exist in either case, however, a least squares fit to fi2 / SQm  vs bias 

gives

6 ,= 0 .2 |y ,| + 0.22 [5.28]

The bias of cosine power S2 is also affected by kurtosis y 2. Various estimators have been 

proposed for kurtosis, for example one suggestion is CC2 alone , and Mardia (1972) suggests 

standardising with respect to the wrapped normal giving

The correlation between these estimators and bias in cosine power s2 is shown in Fig. 5.8. The 
simple a 2 estimator (b) and excess kurtosis (c) shows little correlation with S2 bias, only the 

model free kurtosis (d) shows any real correlation and consequently it has been adopted for this 
work. Using least squares regression it was found an estimator of bias in s2 due to kurtosis is 

given by

If we can assume skewness and kurtosis are bivariate Normal the expected total bias of bj is 

given by E[bp] =  E[bj] + E\b2] where b £ l -  The effect of using Equations [5.28 & 5.31] as

results in some significant overestimates of spreading power.

5.4. SPREADING RECORDED BY DB1 IN STORM SEAS.

Previous studies of wave directional spreading have concentrated on establishing a

[5.29]

More recently, Kuik et al (1988) recommend a model free kurtosis

[5.30]

b2 = 0.061y2 + 0.07 [5.31]

corrections can be seen in Fig. 5.9 which shows that for S < 70 the correlation between 'true' 

spread power and the corrected second moment estimate is good, but, for S >  10 the method

model which is consistent with the physics of ocean wave generation. For example, Ewing &
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Laing (1987) examine the spectra of seas near full development with a view to checking 

Komen's assertion that spreading is most narrow at some frequency greater than die spectral 

peak. Such studies are aimed at developing a unified model of directional spreading which can 
be used by oceanographers and designers in the same way that Pierson-Moskowitz and 

JONSWAP spectra are used as frequency dependence models. At present, the most accurate 

models of directional spreading are probably those due to Hasselmann et al (1980) and 

Mitsuyasu et al (1978). However, both models are based on data recorded by pitch and roll 

buoys in relatively low seastates and both show the spreading is sensitive to the frequency 

ratio /  / f m.

The importance of directional spreading on structural response is discussed in detail in 

Ch. 6 in which it is shown that fixed and compliant system response can either be attenuated by 

up to 15% if spreading is allowed for; or amplified by some 10% in some of the modes of motion 

of an articulated structure like a tower-tanker mooring. However, there remains considerable 

scepticism amongst designers about the degree of spreading in extreme seas which effectively 
dominate structural design (ISSC 1991, Committee 1.2). For this reason it was decided this 
chapter should examine the spreading in the most extreme seas recorded by the DB1 buoy.

In what follows no attempt was made to ensure the environmental conditions correspond 
to a stationary wind field and seas near full development. Instead, the spread in each extreme 
sea was examined unconditionally in order to identify whether, or not, the spread of extreme 
seas was more narrow than predicted by Hasselmann or Mitsuyasu models.

The DB1 buoy recorded heave acceleration, pitch and roll for 20 minutes every three 

hours at 1.2 second intervals, giving a Nyqvist frequency of 0.4167Hz. As mentioned previously, 

a faster sampling rate would have been desirable, especially in low seastates, however, for 
the extreme seas examined in this chapter the minimum zero crossing period is 10 seconds which 

suggests aliassing should be less of a problem. The co- and quadrature spectra recorded by the 

buoy were corrected to correspond to slope time series in compass north-east axes. The auto and 
cross spectra were formed from averages of 11 non-overlapping sections, each of 100 second 

duration, resulting in spectra estimates with a resolution of 0.01Hz and having 22 degrees of 

freedom. This sampling scheme was later recognised as responsible for leakage in the spectra 

which may contribute to some of the scatter found in the directional estimates, Tucker (1991).

The frequency domain analysis results reported in Ch. 3 were used to identify the dates 

and times when seastates exceeded 6.0m significant height. This identified 100 samples of 

which 68 datafiles had satisfactory quality control flags. The year, month, day, time, 

significant wave height and zero up-crossing period are given for the largest 100 in Table 5.3.
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The cosine model parameters were calculated for each of the 68 seastates using the method 
proposed by Lonquet-Higgins et al (1963a) and Cartwright (1963), Appendix A, and the von 
Mises model parameters were calculated using the procedures outlined in Section [5.3.4]. A 

check on the results was made by comparing them with Fig. 3 from Ewing & Laing (1987).

The results for each of the 68 storms were first examined visually to determine the 
overall quality of the estimates. As shown previously the effect of noise and bias due to 'non- 

cosine' form can be assessed using

A the check ratio R = (2TCf)2 / g.\cn / (Ĉ  + c5J)]

B the skewness and kurtosis

C the difference between first and second angular

resultants in narrow seas 
D Mardia's inequalities

The check ratios for the largest seastates are plotted in Fig. 5.10 which shows that values at or

near the spectral peak ( f //***!.())  are close to 1.0. Below the peak the ratio

k(theory)/k(buoy ) is generally less than 1.0 and above the peak the check ratio is generally > 

1.0. This suggests values of power s or concentration k  are likely to be unreliable above and 
below the spectral peak.

When skewness is examined no obvious correlation or trend with ( / / / » )  exists with 

values ranging from 0 to + 4; which is similar to the values obtained from the simulations 
described in Section [5.3.5]. Whether this is evidence of asymmetry in buoy response, or the 
wave elevation variance is not clear. Ewing (private communication) suggests that in fact the 
true directional distribution will be very nearly symmetric in which case the buoy response is 

probably responsible for the asymmetry. This is supported by the fact that the sign of the 

skewness changes over the range of frequencies in most spectra, if turning wind fields were 

responsible for asymmetry we would expect the signs to be consistent over the energetic parts of 
the spectrum.

Kurtosis values are weakly correlated with the concentration, as suggested by the 

simulation results. However, in many cases negative values were given at several frequencies in 

a spectrum. The likely cause of negative values is bias in a lf due to noise. This suggests that ct2 

may well be a more practical measure of kurtosis providing the seas are narrow beam and buoy 

response is a reasonable measure of surface displacement and slope.
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In Section [5.3.5] it was found that correlation between resultants Rj and R2 increased 

with decreasing angular variance. The resultants at the spectral peak for each of the 68 storm 

spectra are shown in Fig. 5.11, where the continuous line, suggested by Tucker (1991), is given by 

solving

R, / ( 1 -  R,) =  { ; +  3R, +  (1 + 14R3 + « / ) " '}  / 2(1 -  R,)  £5331

Note that for Rj < 0.5 only negative solutions are obtained for R2 using Equation [A14]. In fact 

the plot of SJtS2 against Rt,R2 shown in Fig. 5.12 shows the minimum possible value of S2 is 

1.0. This explains the behaviour shown in Fig. 4 of Hasselmann et al (1980) which shows poor 
correlation between Sj and S2 for low S2, together with a bound on S j .

5.4.1 ANGULAR VARIANCE

The variation of angular variance ^oi with resonance angle or frequency ratio (f  I f m)

is generally accepted as a real physical phenomenon. Unfortunately, the presence of noise and 

bias in the DB1 data makes it difficult to categorically confirm that the spread is narrowest at 
the spectral peak. Nonetheless, in all 68 cases the spreading at or near the spectral peak was 
found to be more narrow than in the fore and aft tails of the spectrum, this is shown in Fig. 5.13 
in which, after allowing for noise, the spread is clearly narrowest at the peak. This is reflected 
in the second moment estimates of cosine spread power S2 shown in Fig. 5.14 in which the values 

at the peak range from 3 —> 37.

We have seen how large values of skewness 7; and kurtosis y 2 can reduce the 

concentration parameter, consequently, it is worth looking at some examples where low powers 

were estimated. Three examples are shown in Fig. 15,16 & 17 which correspond to 13th 
February 1979 1800hrs, 28th March 1980 1500hrs and 10th December 1979, OOOOhrs. In each case

the frequency axis has been scaled to ( f  I f m), where f  is the frequency corresponding to the 

largest observed cn  value the spectrum. The directional spectrum recorded on 13th February 

1979, Fig. 5.15, shows some variability away from the main peak and could be due to a mixture 

of wind driven and swell seas. The directional variance S0 shows considerable variation over

the full range of frequencies with a definite minimum near the peak of the spectrum. Neither 
skewness, kurtosis or check ratio suggest that the spread parameters S2 and K 2 will be

excessively biased, and the first moment estimator of mean direction 0j is stable over most of 

the spectrum. If this is a pure wind driven spectrum, and not a mixture of swell and wind seas, 

then this seems to be a case where storm seas are not narrowly spread. It is interesting to note, 

however, that the frequency dependence of angular variance is relatively weak compared to 

Hasselmann or Mitsuyasu models.
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In the second example, Fig. 5.16, recorded 28th March 1980 at 1500hrs, the spectrum is 

more narrow band with the lowest angular variance at one frequency interval past the spectral 

peak. Again, the skewness, kurtosis and check ratio do not suggest the results are doubtful and 
this is another case where spreading is not narrow beam.

The final example, Fig. 5.17, recorded 10th December 1979 at OOOOhrs, is a case where 

the seas are very narrow beam at the spectral peak, with large skewness and kurtosis and check 

ratio of 1.006. This is clearly a case of near extreme seas which are practically uni-directional 

at the most energetic parts of the spectrum, and shows clearly that adoption of Hasselmann or 

Mitsuyasu models will in some cases result in unrealistic attenuation of wave forces on offshore 

structures.

5.4.2 PARAMETRIC MODELS OF SPREADING PARAMETERS

Hasselmann and Mitsuyasu propose a parametric form for their observed spreading 

powers based on least squares fitting to Sj values (Hasselmann) and 2 (̂ 7 + ̂ 2) values

(Mitsuyasu). Since recent work by Ewing, Tucker and this author demonstrates second moment 
estimators are more robust we propose a parameterisation based on S2 using the model suggested 

by Hasselmann et al (1980)

The Sm parameter effectively controls the maximum spread which is assumed to occur at the 

spectral peak, and the A parameter controls the ’peakyness' of the model. The use of two 

parameterisations results in a discontinuity at /  = f M which Hasselmann resolved by 

switching equations at /  =  1.05fm. Unlike the work of Hasselmann no attempt is made to 

further parameterise 'A' using the resonance angle U / Cm, furthermore, by simply modelling 

the 68 largest seastates recorded by the DB1 we have mixed seas at different stages of 

development. This can be seen in three examples discussed earlier.

To fit Equations [5.34] the data was subdivided into two groups: group I corresponds to 

data with 0.2 < f  I f m <1.0 and group II corresponds to data with 1.0 < f  J f m < 3.0. Both 

groups are plotted on double log scales in Fig. 5.18 for S2 and K2; truncation of the upper and

/< / .

f * f . [5.34]
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lower tails of the spectrum was chosen to be consistent with Fig. 3 of Hasselmann. The results of 

a least squares fit to the data gives

* = 9 . ; { / / / „ r '

K = 4 . 9 { f / f . Y M ' 

s - 7 . 3 { f l f . r  

*  =  4 .7 { /

Comparing these models with Table 5.1 shows that the peak values at f  — f m are similar to 

Hasselmann’s results with 73 instead of 9.77 and 9.1 instead of 6.97. On the other hand, the 

decay of spreading powers A, A  is slower than Hasselmann’s on both sides of the peak, Fig. 

5.19. At first sight it may seem contradictory that the peaks agree so closely when in fact 
Equations [5.35] use S2 when Hasselmann uses St . However, the simulations in Section [5.3.5] 

demonstrate that as angular beam width reduces the correlation between resultants, and 
therefore spreading powers, increases. Either side of the spectral peak the two resultants 

reduce and so too does their correlation giving rise to large differences between s 2 and S2. This 

is probably the reason why our exponents, A ,A ,  are lower than those found by Hasselmann.

5.4.3 WEIBULL MODEL OF SPREAD AT THE SPECTRAL PEAK

These models are mean value fits with considerable spread either side of this mean. For 
design purposes we need both upper and lower bound models for the spread and given the 
uncertainty in the spreading estimates away from the spectral peak ( caused by non-unity check 
ratios ) it is sensible to adopt a probabilistic description of the spreading which can be used in 

conventional offshore structure reliability analysis.

A 3-parameter Weibull model was fitted by maximum likelihood to the 68 S2 and K2 

values observed at the spectral peak. The result, shown in Fig. 5.20, shows a lower bound of 1.2 
for both s2 and K2 and a long upper tail, corresponding to near unidirectional seas. The Weibull 

model parameters are:

model shape scale location mean

cosine 1.15 17.46 1.6 17.68
von Mises 1.25 8.12 1.28 8.73

Note the mean values demonstrate the regression fit to the data is biased downward at the 

spectral peak and therefore the model given by Equations [5.35] are only appropriate for

/< / .

/* / . (5.351
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fatigue calculations and should not be used in design event simulation. It is recommended that 

the Weibull models be used for this purpose.

5.6. ROBUSTNESS OF VON MlSES PARAMETER ESTIMATES

The discussion in Section [5.4] examines the classical approach for maximum likelihood 

estimation of the parameters of a von Mises distribution. In Section [5.3.5] the robustness of 

Longuet-Higgins estimator for the cosine model spreading powers was examined and the results 

confirm Kuik et al (1988) assertion that the procedure is not suited to the routine analysis of 

directional wave data. This will also be the case for the simple von Mises estimator described 

above since it also relies on equating circular moments. A robust estimator is therefore required 

which is not sensitive to the presence of either non-colinear wind and wave seas, or asymmetric 

directional spreads due to bias, noise or the veering of wind systems.

Robust estimation of directional data is examined by Lenth (1981) for the case when 

discrete observations have been taken. Unfortunately there is no direct extension to this method 

for this work in which only the first two angular moments are available through co and 

quadrature spectra. However, the W-estimator sub-class of Huber’s M-Estimation (1981) 

principal leads to the development of a weighted density approach for estimating the 

directional parameters for a chosen distribution. The concept of a weighted distribution was 

formalised by Rao (1965) who recognised that real observations of random variables are very 

often modified in some way, far example, by truncation, corruption, and missing values.

Weighted estimation is defined by Patil et al (1977) as follows. Consider a natural process 

generating a random variable X with pdf f ( x ; 6) where 0 e f 2  is the param eter space. 

When measuring a random sample of observations on X we have to use a method of selection 

which gives the same chance of including in the sample any observation produced by the true 

process. However, in practice our measurements are not perfect and the relative chances of 

inclusion of two observations x and y , say, are zv(x) and w(y) where w(.) is some non-negative 
valued function. Then the recorded value X^ has the pdf

f w(x; 0) = w(x)f(x; 0) / (O [5.36]

where

[5.37]
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For our purposes f(x; 0) is the directional distribution and w(x) is some weighting function 

chosen to 'correct' the measured data which has been affected by imperfect buoy response or 

veering winds. Unlike the classical M-Estimation process in which discrete observations on 

direction are available we only have the real and imaginary components of the first two 

angular moments. Consequently, if the form of f (x;  0) and w(x) are parameterised in some way 

then the solution for the weighted estimates of the model's location and scale parameters is 

obtained from solving

1 29
a p =  E[w(6 -  p ;  k ) .cos p9]  =  — jw (0 -p ;K ) .co sp O . f (0 ;p ,  K)dO [5.38]

® o

1 29
P p = E[w(6-p ;K) .s inp0 ] =  — J w ( 0 - p ;  K).sinpO.f(0;p,K) [5.39]

o
where,

2*
co -  E\w{0 - p ;  k:)] = J w(d - p ;  K).f(Q;p, ic)d6 [5.40]

o

The density f {0 ;p ,K ) might be the von Mises probability density, and the weight function 

w{0 — p;  k) might be some function based on known characteristics of either instrumental or 

buoy response.

5.6 LONG-TERM DIRECTIONAL PROBABILITY DISTRIBUTIONS

Two methods can be used to determine the directional distribution of winds and waves given 

a sample of observations 0i t i — l ,n.  The simplest method is to divide the range [0,2n ] into 

class intervals and then count the frequencies in each class, much in the same way as for a line 

histogram. Historically, this approach has been modified to produce rose and circular 

histogram estimators which are useful graphical aids, but can be difficult to use in practical 

analysis of offshore structures. The second approach uses the characteristic function defined in 

Section [5.3]. This method is appealing because it enables us to use some of the statistical 

theorems outlined in Mardia (1972) for univariate and bivariate observations of directional 

data and, in addition, provides a simple parametric form for calculating the directional 

density in design or analysis calculations.
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Line histogrammes of circular data are probably the most simple density estimators to 

interpret and construct. The range [0,2 ft] is simply divided into a number of class intervals and 

the frequency corresponding to each class is counted. Three examples are shown both in Fig. 5.21

recorded by the DB1. The first example has class intervals 1 degree wide and shows a noisy 

sinusoidal trend. In places spikes occur which exceed the range of the plot; these are probably 

due to instrumental or recording error and could be removed from the data by inspection and

degrees, has several minor peaks which do not show up clearly in the first example, and the 

third example, with bin width of 20 degrees, shows a smoother variation.

The second m ethod for estim ating the directional probability density uses the 

characteristic function. Given a sample of discrete observations of directional data Q.;i — l ,n, 

sample estimates of the real and imaginary components of the characteristic function are given

In the limit as n —» «> then Cp —> OCp and Sp —*fip - An estimate of the directional distribution 

is given by the characteristic function using

and Fig. 5.22 which show estimates of the directional distribution of currents and winds

replaced by the average of the estimates either side. The second example, with bin width of 10

by

[5.35]

W here

[5.36]

1

from which , if is convergent as p  —» <*> , the directional density is given by

[5.37]

Further, the cumulative directional distribution is simply

FW  =  + 2yL~=j[CPSin(Pe ) + Sp(] -  COSpO)! /?]} [5.38]
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If the directional distribution is known to be unimodal then the resultants /?„ and the locations 

0 ^  can be solved using a sample set {$;}. Use of Equation [5.37] requires sample estimates of

which are formed by summation over the weighted harmonics of the directional

distribution. To begin with 1000 summations were performed resulting in the current and wind 

directional distributions shown in Fig. 5.23 and Fig. 5.24. In both cases the result is noisy and

the general trend is difficult to identify. The effect of increasing the number of terms

was examined by increasing the number of summations to 50000, however, this required 

considerable computing effort and resulted in a more noisy estimator with large bias, this 

estimator is therefore not consistent in the sense defined in Ch. 3, Section [3.1]. It was also

noticed that did not seem to be converging as p  —» oo , this should be examined in

more detail in a future study.

A further problem with using a large number of terms in the summation is the difficulty of 

using the result. In fact, what is required is a smoothed estimate, however, we shall see below 

that it is better to simply take only the first few terms from Equation [5.38] since this results in 

a model which is simple enough to use in design calculations.

5.6.1 SMOOTHING DIRECTIONAL DISTRIBUTIONS

The principles of smoothing have been discussed in the context of kernel density estimation 

for line random  variables in Ch.3. In this case, where we have noisy histogram and 

characteristic function estimators, the simplest approach is to smooth the data f ( x ) 
subjectively by convolution with a kernel weighting function k(x)

~f(x) = \ l j { y ) k { y - x ) d y

For large samples, this convolution is performed most quickly by using the fact that convolution 

in the space domain is equivalent to multiplication in the frequency domain: that is

f ( x ) = f  - '[r f /M j-r  [k,(y-x)}\

where, T  [ ] is the Fourier transform, and T  1 [ ] is the inverse Fourier transform. Several 

kernel types exist; two simple examples are the square kernel, and the exponential kernel. 

Both were tried and the best results were obtained using an exponential kernel. The smoothed
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histogram and characteristic function estimators are shown for the currents and winds in Fig. 

5.25 and Fig. 5.26. Both types of estimator agree well with the exception of the sharp 

discontinuities in the current estimators ( which are due to the spikes observed in the 1 degree 

interval histogram).

5.6.2 DESIGN MODELS OF DIRECTIONALITY

The two estimators discussed so far have not been suitable for design or analysis being too 

detailed. A simple parametric model is given by summing only the first few terms of Equation

[5.38], for example, Fig. 5.27 shows the current and wind directional distributions obtained using 

only the first ten terms in the summation. In both cases the main and secondary peaks evident in 

the smoothed results shown in Fig. 5.25 and Fig. 5.26 can be seen in these simple estimators. Of 

course fewer terms in the summation can be used and some experimentation is necessary to obtain 

an acceptable fit. The values of the first ten real and imaginary components of <2> are given for

the currents and winds in Table 5.4.
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5.7 CONCLUSIONS

Measures of location, spread, skewness and kurtosis have been taken from the work of 

Mardia. These non-parametric estimators can be used to assess: the performance of a buoy's 

surface following characteristics; and the robustness of the simple moments estimator 

developed by Cartwright.

The robustness of equating the first and second angular moments of directional wave data 

has been examined by simulating double cosine mixtures for the directional distributions. The 

results have then been used to develop an estimator for the probable bias in the estimated 

spread given the amount of circular skewness and kurtosis.

Solutions for the location and concentration parameters of a von Mises distribution have 

been derived. The solution uses the real and imaginary components of the characteristic 

function which are obtained directly from the co- and quadrature spectra for the buoy heave, 

pitch and roll time series. The advantages of the von Mises distribution are the 'common sense' 

nature of the concentration parameter and the considerable literature which supports the 

various statistical aspects of estimating its parameters.

The largest significant wave heights observed by the DB1 buoy have been used to select 

those co- and quadrature spectra which were recorded in extreme seas ( Hs > 6m ). The intention 

being to test whether spreading reduced as the seastate increased. After screening the data 63 

samples were assumed to be uncorrupted and composed of wind driven seas. These data were 

then used to develop a regression model for the frequency dependent - second moment estimate - 

cosine model spreading powers and von Mises model concentration parameters.

The models are largely in agreement with the Hasselmann study results - despite their use 

of the average of the first and second moment estimates for the cosine spreading power. The 

major differences are either side of the spectral peak where this study predicts a slower 

increase in the directional width. There did not seem to be any correlation between the 

significant height and the angular variance.

For design it is suggested that the spreading power be taken as frequency independent and 

that the results at the spectral peak be used for the whole range of f/fm.

The results at the spectral peak show considerable scatter which has been modelled by 

fitting a Weibull distribution to the observed values. The result has a lower bound of 1.2, a
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modal value of 4.6 and a mean of 17.7. It is suggested the effect of this variability be examined 

at a later date by including the uncertainty in a reliability analysis.

A method of weighted estimation has been presented in which the moments inferred from 

the co- and quadrature spectra are assumed to be from a weighted directional distribution. This 

method was tested but with limited success. The major problem seemed to be the large 

variability in the skewness values between discrete frequencies in each set of co - and 

quadrature spectra. A further problem was that the physical nature of the weighting ( which 

is creating the skewness ) was unknown. If the general form of the weighting can be identified 

then it is likely the method could be used successfully. In particular, it would be possible to 

develop a method in which the fitting is done for the full set of data across all frequencies 

rather than on a frequency-by-frequency basis, as for the present case.

The use of circular statistical methods is equally valid for describing the long-term 

directional distributions of the winds, waves and currents. A method based on the use of 

Fourier-Stieltjes series is presented which enables multimodal directional distributions to be 

described using only a few terms from the characteristic function. This method compares well 

with conventional circular histogrammes and has the added advantage of being a continuous 

function on the circle.
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APPENDIX A - CALCULATION OF THE DIRECTIONAL SPECTRUM

The calculation of a directional spectrum, for example using the heave, pitch and roll motions 

of the DB1 buoy, is based on the assumption that the sea surface topography can be represented 

as the summation of an infinite number of cosine wave components, linearly superposed over a 

range of directions i and frequencies j . This assumption ignores the non-linear effects like wave 

breaking and shallow water harmonics but, nonetheless, provides a model which correlates 

well enough with real seas for engineering applications. The double summation is based on the 

two dimensional cosine wave equation

T](x,t) =  cij c<w( kjX-2nf j t+ \ i / j )  [Al]

where k- is the wave number, / ; is the frequency in Hz, and Yj  is a phase. Equation [Al] may be 

transformed into three dimensions, Fig. 1, giving

Tj(X,Y,t) =  a- cos ( kj[Xcos6t + Y sind ^ \ -2 n f j t+  i/a. ) [A2]

m

►

Figure 1 2_D Wave transformation

Assuming a real sea surface can be modelled as a finite number of linearly superposed waves 

with the form of Equation [Al], then

a  m

I I  <bi COS (kj[XcosOi +YsinOi]-2icfjt+iirl  ) [A3]
»-i
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Equation [A3] represents the variation of the sea surface in both space and time, however, the 

recordings made with a pitch and roll buoy are the time histories of the surface elevation and 

slope derivatives of this equation at some fixed point in space (X',Y') ,  i.e.

W 1

The uni-directional variance spectrum S(f)  may be determined using one of the standard 

procedures - like the fast Fourier transform or maximum likelihood method - and only requires 

the heave response history. For this simple case, Equation [A3] reduces to

m

rl(t) = ' L ai C0S{ 2n f j ‘ +Vj)  [A5]
j-l

Note in this equation, the amplitudes Oj and the phase angle Yj  do not represent physical 

reality since at each frequency amplitude and phase are the result of waves from all

directions ' i ' between 0 to 271 radians. To determine the directional variance spectrum S(f,0)  

both the heave and two slope derivatives are required. The procedure for calculating the 

directional spectrum uses the co and quadrature spectral density matrices for the heave,pitch 

and roll time series, for examples see Hasselmann (1980) or Tucker (1991). If subscript 1 denotes 

vertical acceleration, and subscripts 2 and 3 denote the tilts in the north and east directions 

then there are six independent non-zero spectra

'C„ 0 0 " '0 Qn Qn

^22 Cz3 and 0 0

C33. 0 m

These co and quadrature spectra are given by Longuet-Higgins as
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C M ) ‘ I  S(f,e)d6

C»{f) = \l'k2cos2(e)S(f,6)d6 

C11(f) = fo'k2sin!(e)S(f,6)dO 

Q M )  = \ l '  kcos{e)S{f ,6) d6 

Q M ) = \ l '  ksin(e) S{f,0) dd

C M )  = t , ’ k* sin(O)cos(0) S(f,0) d0 1A61

where k is the wave number, and the unknown quantity is the directional spectrum £ ( / ,  0 ). To 

solve for the directional spectrum a Fourier approximation is assumed, where

a . + i b . = ± J e MS(f,0)d0 n = 0,1,2. [A7]
n  0

setting n=0,12 and equating the Fourier terms to the relevant co and quad spectra gives solutions 

for . Ewing & Laing (1987) point out the convenience of the normalised angular harmonics 

am / a0 , Bh = bn / a0 which are then given as

A  “  Qj2 I [Q X Q 2 + Q j) ]

=  Q l3  !  \ p u { f^ 2 2  +  ^ j j ) ]

^2 =  (^22 — C3j )  ! [£22 C33)
B2 = 2C23l{Ca + C n ) tA8)

The wave number can be obtained from both

k ( /)  = (C22 + C„) / Cjj [A9]

and k = (2lrf)2 I g; the ratio of the two estimators provides a simple check ratio which is used 

to assess the effect of noise in the signals. Longuet-Higgins et al (1963a) and Cartwright (1963)

proposed the directional distribution of variance S ( f , 6 ) be written as the product

S( f ,6 )  =  D ( f ,6 ) S ( f ); where the directional spread D (f ,0 )  is uni-modal at each frequency. 

They suggested a suitable functional form for Z )(/, 0) is given by the exponentiated cosine
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D(f,e)=ccosu(i(e-e))  - n < e < n  i a i o j

in which the cosine power s is usually frequency dependent S =  s( f ) .  By equating the angular 

moments of D ( f  ,6) to the angular harmonics from the Fourier coefficients, Equation [A8], two 

estimates for the cosine power and the mean direction can be calculated.

(i) First moment estimator

e ' = M n~ '{ t }  [All]

s2 = Cj i (1-Cj) where c 2 -  A 2 + B 2 [A12]

(ii) Second moment estimator

' H H t }  [Ai3]

i ,  =  { ; + 3c2 + (1 + 14c2 + c / ) " 2 } I {2(1 -  c2)} [A14]

where c22 = A22 + B 2

The robustness of these estimators is discussed in Section [5.5]. It should be noted the normalised 

angular harmonics can be written as

2 %

M f )  = fcos(e)D(f,e)de
O
2%

B,( f )  = jS in (e )D ( f ,e )dd
O

2 %

4 ( / ) =  jCos(26)D(f ,6)d6
O

2 %

B2( f )= j S i n ( 2 6 )D( f , 6 ) d 8  [A15]
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Written in this form it will be dear these are equivalent to the real and complex components of 
the characteristic function of angular statistics.

In order to calculate more terms in the Fourier approximation additional C and Q terms are 
required. Mitsuyasu et al (1975) used a dover-leaf articulated buoy to measure heave, slope, 
and curvature, however, measurement of the curvature requires more complex instrumentation, 
and equipment has yet to be developed to the level of reliability achieved with the more 
common pitch and roll buoy.
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/ < / . f * f .

M itsuyasu 

s = U . 5 f  •/„*
<1 = 5 

b = -7 .5

* 
7

11 <=> 
u

Hasselmann
sm = 6.97{±0.83} 

fi = 4.06{±0.22}

9.77 {±0.43} 

{-2.33{±0.06})-(l.45{±0.45}) - - 1 . 1 7
Lc* J

where: fmis the modal frequency; f  is the dimensionless frequency; c is the wave phase 
speed; and U is the wind speed.

of
Non-dimensional fetch: F =

U2
Frictional velocity: y  = u  = 25il

and:

Mitsuyasu fetch relation: f m = 1.00F~°J3

■* &Fwhere: F -  —jIL

f  = ___ *___
Jm US34.?*-33

Table 5.1 Parametric form for the cosine model spreading power from Hasselman et al 
(1980), and Mitsuyasu et al (1975).
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Chaster 5 Modelling Directional Stas

n o . y e a r m o n th d a te tim e H r T o no . y ear m o n th d a te tim e H s T o

1 78 d ec 11 18 8.4 11.5 51 8 0 d ec 15 12 7.7 11.8

2 d ec 11 21 8.3 12.1 52 d e c 18 9 8 .0 12 .0

3 X d ec 12 12 8 .3 10.5 53 d e c 18 12 8 .0 12.0
4 X d ec 12 15 9.7 11.4 54 d ec 18 15 7 .8 12.6
5 X d ec 12 21 12.7 11.3 55 x d ec 2 0 9 9 .0 11.9
6 X d ec 13 3 10.8 12.2 56 d ec 2 0 12 8.1 11.6
7 X d ec 13 6 10.5 12.0 57 d ec 2 0 15 9.3 12.1
8 X d ec 13 9 9 .0 12.0 58  x d ec 2 0 18 8 .0 11.2
9 X. d e c 13 12 9 .6 11.4 59 81 ja n 17 9 7.8 10.9
10 d ec 13 15 9 .4 11.4 6 0 m a r 1 9 7 .8 11.4

11 d ec 13 18 9 .2 11.2 61 m ar 2 8 0 10.5 1 3 .0

12 d e c 13 21 9 .2 12.1 6 2 o ct 27 9 7 .6 14 .0

13 d ec 14 0 7 .8 1 1 1 63 d ec 14 21 7 .6 11.9

14 79 feb 13 6 7 .7 1 4 .0 64 26 12 8.2 11.1

15 feb 13 9 7.5 13.7
16 feb 13 18 7.5 10.9 65 78 se p 29 12 6.1 11.4

17 m ar 4 6 8 .0 14.6 6 6 se p 29 15 6 .0 10.5

18 79 d ec 10 21 8 .6 10.9 67 d ec 2 3 6 .2 10.4

19 d ec 10 0 8.1 11.2 68 d ec 3 10 6 6 12.0

2 0 d ec 13 0 8 .0 12.9 69 d e c 3 15 7.4 11.4

21 d ec 13 3 7 .7 11.8 7 0 d e c 6 6 6.1 9 .3

22 X d ec 14 21 9 .9 12.1 71 d ec 6 9 6 .0 9 .6

23 X d ec 15 0 11.3 12.4 72 d e c 7 0 6 .8 9 .6

2 4 X d ec 15 3 11.7 12.8 73 d ec 7 3 6 .0 9.1

25 X d ec 15 6 10.1 12.2 74 d e c 7 6 6 .6 9 .4

26 X d ec 15 9 10.1 12.3 75 d e c 7 12 6.1 9 .7

27 X d ec 15 12 10.0 12.1 76  x d ec 7 18 6 .3 10.3

2 8 X d e c 15 15 8 .0 11.4 77  x d ec 7 21 6 .6 11.4

2 9 X d ec 19 0 7.5 10.9 78 d ec 8 0 6.1 10.6

3 0 X d ec 27 6 7.5 10.2 79 d e c 8 3 6 .2 10.3

31 8 0 ja n 21 6 8 .6 10.8 8 0 d ec 8 6 6 .2 10.3

32 ja n 21 9 10.1 11.6 81 d e c 8 18 6 .2 11 .0

33 ja n 21 12 9 .2 11.4 82  x d ec 9 0 6 .6 10.6

34 ja n 21 15 8 .2 11.5 83 d ec 9 3 6 .2 10.6

35 ja n 21 18 7 .7 11 .0 84 d e c 9 6 6 .3 11 .0

36 ja n 31 9 8 .6 11.2 85 d ec 9 9 6 .4 10.7

37 feb 5 3 10.0 13.3 86 d e c 9 12 6 .2 10.9

38 feb 5 9 8 .6 11.9 87 d ec 10 9 6 .3 9 .9

39 feb 5 12 7 .8 11.7 88 d ec 11 9 6 .5 10.1

4 0 X m ar 7 3 9 .2 11.5 89 d e c 11 12 6 .5 10.4

41 X m ar 7 6 10.9 12.9 9 0 d e c 11 15 7.1 11.4

4 2 X m ar 7 9 11.5 11.8 91 d ec 12 0 6 .5 10.6

43 X m ar 7 12 12.2 13.6 92 dec 12 3 6.1 9 .5

44 X m ar 7 15 11.3 13.1 93 d ec 12 6 6 .9 10.1

45 X m ar 7 18 11.0 12.8 9 4 d e c 12 9 6 .5 9 .7

4 6 X m ar 7 21 8 .9 11.6 95 d ec 14 3 7 .0 11.0

4 7 X m ar 8 0 8 .6 11.2 9 6 d ec 14 6 6 .7 10.9

48 m ar 28 15 8 .5 10.7 9 7 d ec 14 9 6 .3 11.0

49 X m ar 28 18 7.7 10.6 9 8 d ec 14 12 6 .8 10 .9

5 0 m ar 28 21 7 .9 1 1 1 9 9 d ec 14 15 7.1 10.0

Table 53 Date and time series for seastates with Hs>6.0m.
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Outers M ffd tU ia tJ lin a kn a l h u

Fourier
Stieltjes

term

currents
alpha beta

winds
alpha beta

1 -0.05138 0.04149 0.019 -0.25684
2 0.08418 0.17532 0.03298 0.0031
3 -0.04266 -0.03284 -0.06006 -0.04333
4 0.03241 0.00804 -0.00542 0.02079
5 -0.00844 -0.00605 0.00175 0.03763
6 -0.00081 0.02436 -0.02273 0.00191
7 -0.00907 0.00315 -0.03654 -0.00586
8 -0.00388 -0.02905 -0.02288 0.00329
9 -0.00709 -0.00669 -0.03387 0.02291
10 0.0061 0.00768 -0.01781 001174

Table 5.4 Real and imaginary components of the characteristic function for the 
DB1 currents and waves.
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Figure 5.1 Cosine spreading model, s= 0,4,8,12,20.
|
t

s  = 16, p=2 , ‘zeta =30 .0 ,i-mi =0 .1

2 32 -1 13

s = 16, p=2, i c t a  =90 . 0 ,|-mi =0 .1

2 1 1 2 3-3

p df
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t h e t a
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Figure 5.2 von Mises spreading model, k= 0,4,8,12,20.

s  = 16, p=2, i £ t a  .=60 . 0 ,1-mJ =0 .1

321-2-3 -1

s = 1 6 , p=2 , l e f c a  =0 . 0 ,1-mJ =1

321-2 -1-3

Figure 5.3 Four directional distributions simulated from a double cosine mixture 
and the corresponding cosine, moment estimated models.
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Figure 5.4 The characteristic function for angular moments.
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Figure 5.5 Results for 100 simulated directional distributions with non-zero
skewness, alpha 1 vs alpha 2 (a); beta 1 vs beta 2 (b); alpha 1 vs beta 1 
(c); alpha 2 vs beta 2 (d); alpha 1 vs beta 2 (e); alpha 2 vs beta 1 (0.

I
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R2

R1
0 . 7 0 . 8 0 . 9

Figure 5.6 Resultants R1 vs R2 for 100 simulated directional distributions with 
NON-zero skewness.
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Figure 5.7 Results for 100 simulated directional distributions with non-zero 
skewness. Bias in cosine power vs: second angular moment (a); Mardia's 
measure of skewness (b).
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Figure 5.8 Results for 100 sim ulated  d irectional d is trib u tio n s w ith  non-zero  
skewness. Excess kurtosis vs cosine pow er (a). Bias in cosine pow er vs: 
second angular m om ent (b); excess kurtosis (c); model free kurtosis (d).
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Figure 5.9 Results for 100 simulated directional distributions showing true 
spreading power 's' plotted against bias corrected estimate
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Figure 5.10 Check ratios for the largest ten seastates recorded by the DB1
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Figure 5.11 Resultant lengths for the 68 most extreme seastates recorded by the DB1 
data buoy. Note values which equal 1.0 are those for which an alpha 
and beta moment is >1.0.
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Figure 5.12 Variation of natural log of spreading power with resultants R1 and R2.
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Figure 5.13 Angular variance vs frequency ratio f/fm  for the ten largest storms 
recorded by the DB1. Note the check ratios are not screened for this 
plot.
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Figure 5.14 Second moment estimate of spreading power s2 vs frequency ratio for the 
most extreme seas.
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Figure 5.15 Directional spectrum  param eters m easured by the DB1 buoy at
18.00hrs, 13 Feb 1979. Significant wave height 7.8m and zero crossing
period 10.1 sec.
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Figure 5.16 Directional spectrum  param eters measured by the DB1 buoy at
15.00hrs, 28 march 1980. Significant wave height 8.5m and zero crossing
period 11.2 sec.
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Figure 5.17 Directional spectrum parameters measured by the DB1 at OOOOhrs, 10
dec. 1979. Significant wave height 8.1m and zero crossing period 11.2
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Figure 5.18 Second m om ent spread param ete rs s2 and k2 for the extrem e seas 
recorded by the DB1. ( com pare w ith Fig. 3 of Hasselmann et al, 1980 )
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Figure 5.19 C osine m odel sp read ing  powers: (a) H asselm ann  et al (1980); (b) 
M itsuyasu et al (1975); (c) DB1 - this work.

pdf

0 08

0 06

0 04

0 02

80 1 0 0
s2  k2

Figure 5.20 Density functions for the cosine and von Mises spread param eters at the 
spectral peak f = fm. Cosine model param eters are: shape = 1.15, scale = 
17.46, and  location 1.263. von Mises model param eters are: shape = 1.25, 
scale = 8.12, and  location 1.28.
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Figure 5.21 Three histogram estimates (360:36:18 bins) of the directional 
distribution of currents measured by the DB1 in its four years operating 
in the South Western approaches.
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Figure 5.22 Three histogram estimates (360:36:18 bins) of the directional 
distribution of winds measured by the DB1 in its four years operating in 
the South Western approaches.
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Figure 5.23 Raw characteristic function estim ate of the d irectional density  for 
currents recorded by the DB1.
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Figure 5.24 Raw characteristic function estim ate  of the d irectional density  for 
w inds recorded by the DB1.
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Figure 5.25 Smoothed density  estim ates of current direction recorded by the DB1: 
(left) h istogram  estim ate  with 360 class intervals; (right) sm oothed  
characteristic function estim ate evaluated at 360 angles. In both cases 
an exponential kernel was used.
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Figure 5.26 Sm oothed density  estim ates of wind direction recorded by the DB1: 
(left) h istogram  estim ate  with 360 class intervals; (right) sm oothed  
characteristic function estim ate evaluated at 360 angles, in both cases 
an exponential kernel was used.
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Figure 5.27 Characteristic function estimates of the directional density of currents 
(top) and winds (bottom) recorded by the DB1.
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Chapter 6

L o a d in g  a n d  r e s p o n s e  m o d e l  o f  a  t e n s io n  l e g
PLATFORM
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shaeudL loadint and response model o f a tension U* platform

NOMENCLATURE

A exposed area fo r wind force calculations
cross-sectional area fo r  the tendons

B spacing between column centrelines
C shape coefficient fo r drag force calculation
ct polynomial coefficients for Havelock approximation
cio surface drag coefficient
C. added mass coefficient
Cd drag coefficient in waves

Ct drag coefficient in steady flow
C<a linearised drag force

Cf spectrum modification factor
cm inertia coefficient
C * vector of added inertia coefficients
d damping ratio
D characteristic dimension
D vector of characteristic dimensions
D (6 ; f ) directional spreading function
dlt elemental lengths
E Young's modulus
f frequency in hertz
f. non - dimensional frequency
fo apparent frequency
F vector o f Morison forces
Fc steady current force
Pdf vector of diffraction forces
PDR vector o f viscous drag forces
^F K vector ofFroude - Krylov forces

Pi mean viscous drag drift force

P2 mean wave elevation drift force

Ps mean velocity head drift force
F total drift force
Pr resultant steady force
P« steady slow drift force

P j f ) time varying wind force
P. steady wind force
G, ith limit state function
g acceleration due to gravity
H wave height

response transfer function

W Bessel function of the first kind order n
k wave number
ka element of the hydrostatic stiffness matrix

K Keulegan - Carpenter number: u0T / D
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chapters I tiO d in e  a n d  r e s p o n s e  m ix ie l a f  a  U tu u m  U t  p la tfo r m

K h hydrostatic stiffness matrix
K t tendon stiffness matrix
I wave length
Lt length o f the tendons
M structure mass matrix
M A matrix o f added masses
MFK matrix ofFroude - Krylov added inertias
n vector o f unit normals
P pressure in the fluid
Q(w) dynamic amplification factor
R relative displacements between the structure and the fluid
w spectral density o f the wind force
s surface area
S* vector o f cross - sectional areas

S , ( f ) response spectral density

S' ( f ) surface elevation spectral density

S M ) spectral density for wind speed
T wave period
Tl 0 mean force in a tendon
(u,v,w) wave particle velocities
*0 peak horizontal velocity
u. shear velocity
Zi ith degree of freedom in the structure reference axes
Uc mean current speed
u w mean wind speed
u , mean wind speed at elevation z
v(0 time varying component o f wind speed
V submerged volume
x 0 non - dimensional distance

n o Bessel function o f the second kind order n
z velocity vector for the platform
Y wave phase angle
$ r change in tendon tension due to dynamic motions
AT steady change in tendon tension
*o undisturbed Airy wave potential
r JONSWAP peak enhancement parameter
na wave amplitude
X vector o f eigenvalues

frequency rad / sec
0 direction of wave propagation
p mass density o f water
Pa mass density of air
P0 mean water level tendon stress
X JONSWAP shape parameter
CO frequency in rad / sec

°>p spectral peak frequency in rad / sec

Va wave amplitude
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6. INTRODUCTORY REMARKS: LOADING AND RESPONSE MODEL OF A 
TENSION LEG PLATFORM

A deep water tension leg platform has been chosen to illustrate the relative sensitivity of 

an offshore structure's response predictions to the use of joint probabilities and directional wave 

spreading. This type of structure is suitable for several reasons: first, its long natural periods in 

surge, sway, yaw make it sensitive to wave directional spreading; second, the effects of currents 

and winds are important since they contribute a significant amount to the static and dynamic 

offsets of the platform; third, the limit states for the tendons are simple functions of the 

platform motions; and finally, the capital cost of these platforms is sufficiently large to 

reward serious analysis of the platform responses.

This chapter describes a mathematical model of the loading on a tension leg platform 

which has been designed for a Monte Carlo simulation in which the long-term responses are 

examined using probabilistic methods. The multivariate, environmental density used in the 

simulation is based on the work described in ch's 3,4, and 5. This data was recorded in the 

conventional way using time-averaged wave, wind, and current measurements recorded at 

regular intervals over a four year period. The multivariate probability models obtained from 

statistical inference on this data are therefore random vector models for the time-averaged 

quantities. This conforms to the requirements of a discrete, point-in-time reliability calculation 

in which the long-term variation of the environment is modelled as a discrete vector random 

process; and the within seastate behaviour is modelled using a stochastic process model for the 

waves and constant values for the winds and currents, Bjerager (1988). The details of the 

probabilistic analysis are described in more detail in Ch. 7.
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chapter 6 I/ta tfin t and response model o f a tension U f platform

Section 2 of this chapter defines the geometry of the platform together with the so called 

limit state functions for the tendons and riser system; which are essentially constraint 

equations which define the boundaries between the safe and unsafe responses of the platform as 

functions of the system parameters. Section 3 describes the model of the wind/ first order wave, 

and currents forces. This takes into account viscous, potential, and motion induced forces on the 

submerged hull, tendons and risers. Section 4 then shows how the non-linear lateral stiffness of 

the tendons has been modelled for the calculation of the platform offsets and tendon tension 

changes. These arise in presence of steady forces due winds, currents and waves.

Section 5 shows how the dynamical behaviour has been modelled as a linear six degree of 

freedom system in which the coupling between modes has been included to ensure the tendon 

tensions are correctly modelled. This model is used to calculate the first order wave force, 

motion, and limitstate responses in both long-crested and short-crested seas using the methods 

described in Section 6. The spreading models used for the analysis ( which are defined in Ch. 5 ) 

are compared to assess the importance of the angular variance of the wave spread.

Section 7 presents the simplified calculation method used for the mean and slowly varying 

second order wave drift forces on the TLP hull. The results of this simple method are then 

compared with those obtained from more complex analysis using 3-D source distribution 

method. Finally, Section 8 examines the force, motion, and limitstate responses of the TLP for a 

variety of wind, wave, and current magnitudes and directions.

For this work, only a small number of design limit states are examined since the purpose is 

to assess the differences between: reliability estimates assuming simultaneous occurrence of 

load process extremes in unidirectional seas (the design wave method), and reliability 

estimates using joint probability models of the load process with directionally spread seas.

6.1. T e n s io n  l e g  p l a t f o r m  m o d e l

The tension leg platform (TLP) model used in this study is based on published details of a 

test structure originally proposed by Tan & de Boom (1981), and later chosen to assess some of 

the commercially available compliant systems analysis packages by Eatock-Taylor & Jeffereys 

(1986). The geometric model reported by Tan & de Boom (1981) is copied in this work to enable 

comparison of: (i) our first order wave force results with the work of Eatock-Taylor & Jeffereys 

(1986); and (ii) our second order force results with the results in de Boom et al (1984). By 

choosing this structure we can ensure the responses are correctly calculated in the Monte Carlo 

analysis discussed in chapter 7.
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The structural and geometric details for the TLP tendons given in Table 6.1, and illustrated 

in Fig. 6.1, have been designed for this project using the known vertical stiffness and 

information on the dimensions and material strengths given in Bums (1983), and Woo-Sun et al 

(1991).

Several methods have been developed for calculating the hydrodynamic loads on 

compliant systems. Denis & Heaf (1979) used both linear diffraction-radiation theory and non­

linear time domain solutions to calculate the responses of a TLP. Tagaki et al (1985) carried out 

an extensive study of the responses of a semi-submersible using 34 computer programs from 28 

organisations. The theories used by these programs were either Morison based or source 

distribution based. His results demonstrate that for surge and sway forces the computer 

programs, including those based on Morison's approach, all correlated well with their 

experimental results. However, agreement was poor in the other modes of motion. More recently 

Incecik et al (1987) examined the loading on a semi-submersible and an articulated tower using 

both 2D-source distribution and Morison theory. The results confirm that the Morison approach 

provides accuracy equivalent to the 2D-source method for surge and sway given carefully chosen 

drag and inertia coefficients. Since this work examines the effects of joint probabilities on both 

TLP motion and tether force system limit states during the platform lifetime a simple Morison 

based loading model has been chosen. The primary advantage of this method is that responses 

can be calculated quickly in the frequency domain, by using a simple linearisation of the drag 

term. Patel & Witz (1991) shows this approach is reasonable and can produce results which 

agree quite well with time domain solutions.

In what follows, the simplified loading and response model of the TLP is discussed. The 

response vector of platform displacements for the platform are then used to define the system 

limit states for the tethers.

6.1.1 St r u c t u r e  l im it  st a t e s

The structure limit states are a mathematical definition of the design criteria required for 

safe operation of the structure. For TLP's the major design criteria are outlined in the American 

Petroleum Institute's API:RP2T (1987) regulations. In a detailed design several limit states 

must all be examined to ensure that operational, environmental, stability and strength design 

criteria are all adhered to. Only the most simple limit states which do not require frame or 

finite element analysis are considered in this work. These include limit states associated with 

the platform motions like: lateral offsets; platform setdown; and the air gap between the 

underside of the deck and the most extreme waves. The most simple structural limit states 

considered are those for the tendons: for example, the ultimate tensile strength, and the 

requirement that the tendons do not become slack.
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Using the platform reference system shown in Fig. 6.1 the limit states chosen for the tendon 

tensions are similar to those given by Woo-Sun et al (1991), with the addition of the effects of 

static and dynamic offset forces which change the tendon tensions. Two simple limit state functions 

are considered for each tendon group at the corners of the tension leg platform. The first 

examines the margin between the pretension in the tethers and the compression which arises 

due to heaving, pitching and rolling. The second examines the margin between the ultimate 

tensile capacity of the tendon groups and the maximum tensile forces induced by heaving, 

pitching and rolling. These two limit states can be expressed as eight equations

tendon 1

Gj = T0 -  {W T -  kt[z3 +  B z4 +  B z5] -  8T {zj, z2, z6)}

G2 =  A ,oy -  +  k,[z3 + B z4 +  Bzs] + $ r ( z Jtz2,z6)}

tendon 2

G3 = T0 -  {WT -  kt [z3 - B z 4 + B z5] - $ r ( z l f z2> z6)}

G4 =  \ a y - {4<t0 + k,[z3 -  B z4 + B z5] + S r (z I fz2,z6)}

tendon 3

Gs - T 0 -  [\VT -  k t[z3 -  B z4 -  Bzs] -  $ r ( z lyz2,z6)}

G6 = A ,cy -  [A.Go +  kt[z3 -  B z4 -  Bzs] + $T (z1, z2, z6)}

tendon 4

G7 = T0 -  [W T j  *,[z, +  B i 4 -  Bz5] - 5 r ( z „ z 2,z(i)}

Gs =  - { A ° o  +  K [ h  +  Dz< ~ B z s \  +  $ r {z i ’z2 ’ zs ) }  16-11

Where: A, is the cross sectional area of tendons at each comer; T0 is the initial tendon tension 

in stil water; WT is the effective tendon weight; Oy is the yield strength of the tendon 

material; c 0 is the initial tendon stress; B  is half the distance between column centrelines; 

and kt is the axial stiffness, and zi are the coordinates o f the tendon group centre.

These eight limit states correspond to: exceedance of the ultimate strength in tension, and 

the requirement that no tendon group goes into compression at the seabed level. This gives two 

limit states per comer which must be evaluated for each stationary seastate.
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6.2. FORCE MODELLING

The three primary sources of environmental loads on a TLP are wind, wave and current 

induced. In Ch. 7 the wind and current forces have both been modelled as random variables 

which are constant throughout the duration of a seastate: though in fact both will fluctuate 

randomly and could be modelled as stochastic processes. The combination of the wind, and 

current forces with the wave first and second order forces is then simplified.

The wave forces are more complex with low wave and high frequency components. Only the 

low difference-frequency and wave frequency components have been modelled in this work 

since they are the primary source of loading on the submerged parts of the platform. Although 

the low frequency lateral forces are small when compared to the first order wave force they can 

induce large meandering surge and sway oscillations because of the low damping at the surge, 

sway and yaw natural frequencies, see Faltinsen & Demirbilek (1989). High frequency wave 

loads arise from second order sum-frequency forces and have been identified as the cause of 

tendon leg 'ringing' in which high frequency axial vibrations are set-up at the natural 

frequency of the tendons.

The slowly varying drift motions are important because they set-up large axial forces in 

the tendons upon which the first order wave frequency forces are superposed. The combination 

of the first and second order force components is simplified in this work by using Turkstra’s rule 

in which the square root of the sum of the squares is taken for the combined load process. This is 

effectively an assumption of independent gaussian loads which is not true in practice because 

the largest wave will occur when the wave envelope is largest. This suggests the first and 

second order maxima will be strongly correlated, albeit with a difference in phase. This 

problem has been examined by Naess (1989) and needs further research.

The linear first order wave loading on a TLP is given by the linear superposition of: the 

Froude-Krylov pressure forces; the acceleration (or diffraction) forces; and the linearised 

viscous drag forces. Each force contribution has been modelled for this TLP study and a brief 

description of the way each was calculated follows.

6.2.1 W i n d  Fo r c e s

The conventional method for calculating wind forces on an offshore structure uses the 

approximation

P M  = iP.CA{Uw + v(r))|(t/„ + v(/))| [6.2]
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Where: P« is the mass density of air; C is the shape coefficient (DnV Table B.5); A is the 

projected area normal to the wind direction; Uwis the mean wind speed averaged over one hour;

and the second term is approximated by a linear term plus a quadratic "error" term which is 

assumed to be small

The error in the gust force approximation is small if the fluctuating component is small 

compared to the mean wind speed. The primary purpose of this approximation is to simplify 

the calculation of the wind force using frequency domain methods, Barltrop & Adams (1991), 

however, the results discussed below suggest the approximation in extreme winds needs to be

of the gusting component is generally some 20-30% of the mean wind speed. The exposed area of 

the total structure for this work has been estimated using the Hutton TLP as a typical structural 

configuration giving the mean forces shown in Table 6.2.

The wind forces and platform responses can be modelled by a linear system, since the wind 

gust process has a near-normal probability distribution, ESDU (1974). The most appropriate 

spectral form for gust speeds over the open ocean is that suggested by Eidsvik (1985), and later 

adopted by Ochi (1988). Ochi loc cit defines the non-dimensional wind spectrum as

and v(r) is a time varying wind speed about themean Uw. The wind force expression can be split 

into a steady force Fw and a gust force F*w(t)

F j t )  = K  + F '~ ( ' )

Where the first term is given by

[6.3]

validated using time domain analysis since the significant amplitude ( based on spectrum m0)

[6.4]

cl0 =6.7e~sUl0+6.2e~l
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U , = U 10+2.5u.ln(zflO)

Here: Sw( f )  is the gust velocity spectrum; n, is the shear velocity; / .  is the non-dimensional 

frequency; f  is the frequency in Hz; cio is the surface drag coefficient; and Ut is the elevation 

dependent wind speed. Note the wind speeds recorded by the DB1 were measured by cup 

anemometers located at 6.0m and 8.7m above sea level; this is effectively close enough to the 

international reference height of 10.0m used in this and the JONSWAP spectrum.

The spectrum of the wind gust force is given by

where the 2 n  is included to rescale the spectrum from hertz to radians. The lateral 

displacement response of the platform can then be calculated using the solution for a single 

degree-of-freedom system:

Here, the dynamic amplification factor Q(co) is a function of the natural frequency in surge©,,, 

and the damping ratio d

Some results for the wind gust statistics, forces, and platform responses are given in Table 6.2 (a) 

for a range of wind speeds from 10 to 50 m /s. The significant amplitude of the winds speed 

increases as the wind speed increases, whereas the zero up-crossing period decreases, Fig. 

6.1(a). Contrary to the assumption made earlier the gusting component of the wind speed is not 

insignificant which suggests for extreme winds the non-linear drag term should be modelled, 

either by time domain simulation or linearised frequency domain methods.

6.2.2 C u r r e n t  Fo r c e s

The current forces are calculated using a modification of the Morison wave force equation 

with the extra force due to the current included as a third term

S,(w) = Swf(w).{Q(<o).LI IT0)2
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Here, the drag coefficients CD, CD are the wave and current drag coefficients, respectively, 

which for this study have been taken as constant values of: 12  for the columns tendons and 

risers; and 2.0 for the pontoons. Modelled in this conventional way the current force is 

calculated as though the waves were not present whereas, in practice, there is interaction 

which not only shifts the frequency distribution in random seas but also alters the particle 

kinematics and creates a drift force term. In design calculations this interaction is difficult to 

model and usually ignored.

For simplicity, the current profile is modelled using a modification of the Department of 

Energy recommended profile, Fig. 62, with a current speed of Uc for the columns and pontoons, 

and 0 .85UC for the tendons and risers. The drag forces are assumed to be fully correlated over 

the whole structure so that the component forces can be summed to obtain the total force on the 

TLP. Examples of the total forces on the TLP for a range of currents are given in Table 6.2. Note 

the wind and current forces have the same order of magnitude for the extreme storm cases.

6.2.3 C u r r e n t  m o d if ic a t io n  o f  s p e c t r a

The interaction of random waves and currents alters the spectral form by a significant 

amount and should therefore be allowed for when combining wave and current process. The 

spectral parameters recorded by the DB1 ( summarised in chapter 2) were recorded without 

correction for current speed. This means the significant wave height and zero crossing period, in 

effect, correspond to the corrected values discussed below.

In the simplest case, the currents and waves are co-linear resulting in a change in the 
apparent wave frequency, that is, a single regular wave of frequency /  will be transformed by a 

current giving an apparent frequency f 0 where f 0 — f  + kUc / 2ll. Here a positive Uc is taken 

as being in the direction of the wave. The dispersion relation then becomes 

{2jrf0 kUc) ~  gktanh(kd ) w^ cj1 jn deep water can be simplified (see Huang et al (1972)) to 

give

t -  4 ( 2 x f 0f l g

{ l + j l  + 8Ucn ] J g } 2 [65]

When the waves are not co-linear with the current the interaction is more complex due to 

refraction, so for most work only the component resolved into the direction of the waves is taken 

as influencing the apparent wave frequency.
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The current modification of wave elevation spectral form was studied by Huang et al (1972) 

who proposed a modification factor Cj such that S*(f) = Cj.S(f ) .  For deep water

C  - ________________- ________________
{ l + 8 U 'V f l g Y 2{ l+ { l+ 8 U cx f l g ) " iyi  16.6]

The effect of current on the apparent spectrum is shown in Fig. 6.3 for a range of current speeds 

from -1.0 to +1.0 m /s. Negative current increases the area under the spectrum and positive 

current decreases it. The influence of current on the spectrum is therefore most important when 

the current is in the opposite direction to the waves.

6.2.4 Effect  of Cu r r e n t  o n  D r a g  a n d  In e r t ia  Lo a d in g

First order hydrodynamic fluid loading has been modelled by the Morison equation using 

frequency independent values of drag Cd and added mass coefficients Ca. The fluid loading on a 

TLP is dominated by Froude-Krylov and added mass forces so the effect of current on the added 

mass coefficients Ca, can be significant. For example, Sarpkaya et al (1984) found that Cm

values (= 1 + Ca for a cylinder ) in the critical range of Keulegan-Carpenter number Kc are

increased significantly when currents are introduced. The uncertainty is further compounded by 

the large variability in observed measurements and experimental conditions. For this work, the 

statistical and modelling uncertainty for the added mass coefficients has been consolidated into 

a single uncertainty with the mean values of Ca determined using Det norske Veritas rules 

(1981) and the distribution of Ca taken as Normal with coefficient of variation equivalent to 

observed cov’s for virtual mass coefficients Cm.

6.2.5 Fr o u d e -Kr y lo v  fo r ces

The undisturbed, incident wave potential is used to calculate the Froude-Krylov forces F . 

These are given by the integrated hydrodynamic pressure on each wetted structural element

FF K = \ p n d s
t

Here: Fp is the vector of forces in structure x, y and z directions; n is the vector of unit normals; s 

is the element of surface area; and p is the pressure determined by —pd<&/dt . In this work, a 

simple linear Airy wave potential &0 has been used where
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0„ =  (igH /  2a)  cosli kb  +f h  [6.7]
cosh(kd)

Here: i is the complex number V—1 > g is acceleration due to gravity; H is the wave height; CO is 

the angular frequency; k is the wave number 271/1 ; d is the water depth; 0  is the direction in 

which the wave propagates; t is time; is the phase angle ; and (x,y) are the coordinates in 

the (X,Y)-plane. This potential gives the the velocity vector (u,v,w), in which u = d<t>0 / dx, 

v =  d& 0 / dy, and w =  d& 0 / d z .

When the section sizes are small compared with the incident wave length the forces for 

each element can be estimated using

Ffk — Mfk tj

W here 7/ is the vector of accelerations, and the matrix MFK is the (6 x 6) Krylov 'added 

inertia' matrix determined by

I p  s ,d it
k

Here: Sk is the cross sectional area in a plane parallel to the flow; and dlk is the kth elemental 

length. The summation is taken over the whole structure and the fluid particle accelerations f\ 

are determined at the centre of the member cross-section parallel to the flow. This approach is 

only acceptable when the wave length is greater than approximately five times the maximum 

dimension of the structural components. For the TLP examined in this study the column diameter 

is 16.88m which suggest the wave length must be greater than 84m; that is the period must be 

greater than 7.3 seconds. In consequence, the Krylov forces on the columns must be calculated 

analytically using closed form solutions for the integrated pressure using for example the results 

given by Chakrabarti (1987) for the first order wave force

p  = v 2J,(kDI2)sinh[kU2}  
‘ H kD 12 k l / 2  0

Here: J l is the Bessel function of the first kind and order 1; k is the wave number; D is the 

column diameter; V is the volume; and 1 is the length of the cylinder.
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6.2.6 D if f r a c t io n  Fo r c e s

The presence of the structure disturbs the incident wave potential creating diffraction 

forces. These forces can either be calculated using source distribution methods or by simple 

Morison approximation in which, for small sections, the diffraction forces are estimated as

For = MA{ i i - Z )

The matrix MA is the (6 x 6) added mass matrix for the submerged structure, and the vector Z is 

the vector of platform acceleration responses. The added mass coefficients have been calculated 

for the columns and pontoons using the Det norske Veritas (1981) Appendix B recommended 

values.

The sum of the Froude-Krylov and the diffraction forces Ffk + FDP can be written as

- M A{z) + ri{MA + MFK)

For circular cylinders the second term is approximated in Morison’s equation as

7/ Cmk Skdlk
k

Here, Cmk is a vector of inertia coefficients in the X , y , z  directions.

6.2.7 D r a g  Lo a d in g

Viscous effects and flow separation result in drag forces which are a non-linear function of 

wave amplitude. Resolving the drag forces into x, y  and z directions we get

Where: H  is the vector of element widths normal to the flow; Cd is the vector of drag

coefficients in the X , y , z  directions; and (17 —Z) is the relative velocity at the centre of the 

member.

Solution of the general equation of motion responses is complicated by the presence of non­

linear forcing and it is necessary to linearise the drag term. The most common method assumes 

the linearised drag force dissipates the same energy per wave cycle as the non-linear drag with
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the result that the non-linear term Cw( 7 f - Z |( l J - - Z ) | can be replaced by the linear 

'equivalent' C ^ (t/ — z ) .  Here the linearised drag coefficient is given by

C ^ ^ C ^ r j - Z )

which is a function of the platform motions.

6.2.8 MOTION INDUCED FORCES

For fixed structures the velocities and accelerations used in Morison’s equation are given by 

the water particle kinematics, however, for compliant systems the relative velocities and 

acceleration must be used

R = ( t } - Z )  and R = { n - Z . )

Where, R  is the relative displacement vector, R  = and dot denotes

differentiation with respect to time. At the start of a motion analysis the vector R  is unknown 

and consequently so is C&- An iterative scheme is then needed in which the linearised drag

force is updated by the results of the previous iteration.

6.3. T ether t e n s io n  m o d el

The response of the tendons is complicated by the large displacements induced by the wind, 

wave steady drift, and current forces which change the stiffness characteristics of the system. 

In this work, the changes in tendon mean tension induced by the steady offset forces are not 

included in the first order response calculation since this would require that the general 

equation of motion be solved for each Monte Carlo or FORM iteration. Consequently, in the 

generation of the motion and force transfer functions, the tethers are idealised as weightless, 

perfectly linear elastic, with constant lateral and axial stiffness.

The non-linear change of tendon tension has been modelled in the calculation of the mean 

tension used for the limit state functions discussed in Section 16.2]. Denoting the wind, current, 

and steady drift forces as Fw, Fc , and F^  then the vector resultant Fr is simply

^Fw2 + Fc2 + F j  . This force creates a change in the tendon mean tension AT at each comer 

group and in turn stretches the tendons by an amount A l f inducing strains £ — A l I L(- The force
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diagram for a group of tendons is shown in Fig. 6.4 from which we can see vertical equilibrium 

gives

Tn cos 9 + AT cos 9  = Tn +  i k , 1Lr\ 1 -  cos 9 -  ̂ £ cos &

where: 9 is the inclination of the tendons; T0 is the initial tension in the group; j k 33 is the

heave hydrostatic stiffness at one comer; A is the cross sectional area of the tendons; E is youngs 

modulus for the steel; and the stretch is given by Al = ATLj. / AE . On algebraic manipulation

we get

= (̂ o + i  k33Lr)(sec 9 — 1)
[7 + 7 ktfLr I AE\ ^ gj

Taking moments about the base gives

iF r cos 9 - T 0 sin 9  -  ̂ ^ ^ { 7  -  (7 + AT / AE)cos 9} sin 9 - 0  ^  1Qj

The two unknowns 9, and AT are solved by substituting for AT in Equation [6.10] and then root 

finding with a bisection algorithm. One point worth noting is the small effect of the extension 

of the tendons. This supports the use of less stiff materials such as parafil and kevlar for deep 

water tension legs.

6.4. Platfo rm  D y n a m ic s

The motion responses have been calculated using the structure reference system shown in 

Fig. 6.1. Assuming the platform is modelled as a rigid mass with six degrees of freedom the 

general equation of its motion can be written as

M Z + C Z + K Z  = F(t) [6.11]

Here: M  = (Mt + MA) is the (6x6) structural plus added hydrodynamic mass matrix; Z  is the 

vector of unknown platform displacements; C = (Cv + C /f)is the (6x6) matrix of viscous and 

radiation damping coefficients; is the (6x6) matrix of tether and hydrostatic

stiffnesses; F is the vector of Morison wave forces. The evaluation of each term is given 

explicitly in Patel & Witz (1991) and will be discussed briefly in what follows.
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6.4.1 The  M a s s  M a tr ix

The structure mass matrix is diagonal when the structure axes coincide with the principal 

axes. Consequently, m n  =  =  m33 = the total structure mass (545 x 106 kg); and the pitch,

roll, and yaw moments of inertia are those given in Table 6.1.

mn 0 0 0 0 0 '
0 m22 0 0 0 0
0 0 m33 0 0 0
0 0 0 m44 0 0
0 0 0 0 m55 0
0 0 0 0 0 m66.

The added mass matrix is given by summation of the volume element added masses for the 

submerged parts of the structure. Patel op d t gives the added mass matrix terms for a non­

elongated body and these have been used for this work.

6.4.2 The  Fluid  D a m p in g  M atr ix

Fluid damping results from viscous drag effects. The terms of the 6x6 damping matrix can be 

derived element by element and then summed to give the total fluid damping. Unlike the 

added mass the damping matrix is asymmetric being proportional to the non-linear velocity 

squared term in Morison’s equation. Again Patel gives expressions for element damping terms 

and they have been adopted for this study.

6.4.3 Te n d o n  Stif f n e ss  M a t r ix

The idealised tether stiffness matrix is calculated by assuming the tethers are weightless, 

linear elastic and tensioned by a constant amount. These assumptions allow us to ignore the non­

linear tether dynamics and change in tension as the platform oscillates. Taking the axial 

elastic stiffness per tether as AE/Lj. and the equilibrium position tension as T0 the restoring 

stiffness terms are those given by Patel op cit.

6.4.4 H y d r o st a t ic  Stiffn ess

The hydrostatic restoring forces arise in the heave, pitch and roll degrees of freedom. 

Writing a33i for the water plane area for the ith surface piercing element and V as the vessel 

displacement volume we get
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*a  = P iZ< *33i

*« = P * E > ’- a i i i

t s]=-pg'Zlxwa33i 

*» = P g J ^ x wy ^ 3 3 t 

k M = p g V ( G M p ) 

k5 5 = p g V ( G M r )

where: GMp and GMr are the pitch and roll metacentric heights; and X w , y w are the x and y 

coordinates for the centriods of the cut waterplane areas. All other terms are zero.

6.4.5 M o t io n  N a t u r a l  Fr eq u en c ie s

The natural frequency for each mode of motion of the TLP can be calculated from the mass, 

and stiffness matrices for the system. Referring to Equation [6.11] the equation of dynamic 

equilibrium for free, undamped vibrations of the platform is given by

M Z + K Z = 0

Substituting the solution Z = B e1** then gives

- a > i M Z  +  K Z  =  0

which can be identified as a classical eigenvalue problem by rearranging to give

(M~‘K -X l ) z  = 0 [6-12]

Here: I  is the identity matrix; and the eigenvalues X correspond to the square of the platform 

natural frequencies CQm. Solution for the eigenvalues of a non-symmetric matrix is not trivial 

and consequently a set of library routines is used, Press et al (1989). The procedure consists of 

first balancing the matrix, then reducing it to a Hessenberg form, and finally extracting the 

eigenvalues using the Housholder QR algorithm. The results are the six natural frequencies

1 surge 97.07sec 2 sway 97.07sec

3 heave 1.706 sec 4 roll 1.766 sec

5 pitch 1.766 sec 6 yaw 8352 sec —------—-------- - ■- -
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These values are consistent with the results obtained by assuming the modes are all uncoupled 

and then using the single degree of freedom solution 7] =  2x^0^

6.5 Str u c t u r a l  r e sp o n se  in  ir r eg u la r  w a v e s

The eight limit state functions outlined above require estimates of the platform 

displacements for each realisable event defined by the joint density of environmental 

parameters. Both frequency and time domain methods can be used to solve for motion responses 

in irregular waves. Time domain methods have the advantage of accurate modelling of free 

surface, viscous and stiffness non-linearities, however, the method is computationally too 

expensive to be used in Monte Carlo simulation. A frequency domain method has therefore been 

adopted for this work.

If the response of the TLP is linearly related to wave amplitude over all frequencies then 

classical response analysis, Chakrabarti (1987), gives

Where: ( / )  is the frequency distribution of surface elevation variance in m 2S; H ( f  )is the

response amplitude operator in response/m; and SR( f )  is the response spectrum with units 

response^ second . The response of a linear system with gaussian forcing is also gaussian and 

several useful statistical properties of the response can be calculated from the moments of the 

response spectra using the results obtained by Rice (1944/45). An alternative approach based on 

the so-called out-crossing approach developed by Veneziano et al (1977) has been suggested for 

vector process models which could be of future use in this work.

In multidirectional seas the response transfer function for each mode of motion and limit 

state can be calculated from the directional spectrum 5Jf( / , 0 )  and the directional transfer 

function H ( f ,  0)

s j f ) = J s , , ( f , 9 ) . H , ( f , e ) 2M
0
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The directional wave spectrum Sn( f , 0 )  is normally written as the product of the point 

spectrum and a directional spreading function

s„(/,e) =<>„(/). D(e,/)

The response spectrum can then be evaluated at discrete frequencies f L using transfer functions 

calculated at the same frequencies and directions 9 j  — l,n d

Models for the frequency dependent directional probability distribution D[Qj ; are discussed

in detail in chapter 5. The evaluation of Equation [6.13] therefore requires calculation of the 

linear first-order transfer function for each mode of motion and limit state margin Gi covering 

the range of frequencies for which significant energy is present in the wave surface elevation 

spectrum. A piece-wise linear estimate of the safety margin transfer functions H Gf ( / ,  9)  can be 

obtained by calculating the responses induced by a unit amplitude wave with range of 

frequencies f ^ ’i = , and directions 0 .;i =  1,nd.

6.5.1 JONSWAP SPECTRUM

The variance spectral density for fetch limited seas was examined during the JONSWAP 

project, Hasselmann et al (1976b). The average shape of their fetch limited seas was found to 

have form given by a modified Pierson-Moskowitz (1964) spectrum

[6.14]

where: /  is the peak enhancement factor ; CO is the wave frequency; (Op is the spectral peak 

frequency; and T are the shape factors. The parameter alpha is a function of the fetch

a  = 0.076 (X0)"° 22
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Here, X0 is the non-dimensionalised distance

where Uw is the wind speed at an elevation of +10.0m, and X is the fetch distance. When the 

fetch is unknown Phillip's constant is usually used ie CC =0.0081.

When the peak enhancement factor equals 1.0 the spectrum reduces to the form of a Pierson- 

Moskowitz spectrum. This enables us to determine the fetch - for a given wind speed - at which 

the seas become fully developed using the expression for the spectral peak frequency.

The parameters of the JONSWAP spectrum were determined by fitting the parametric 

model to 121 observed spectra using least squares. Hasselmann et al (1976b) reported some 

estimates of the statistical variability of { / ,  Ct, t}  using some 333 spectra observed by a number 

of researches; the results given below are useful for reliability studies.

param eter mean S.D.(%) regr. coef.
y 2.65 44 0.32
*« 0.85 76 -0.32

% 0.097 47 -0.16
a 0.0109 38.6 0.87

The form of the JONSWAP spectrum given previously is not suited to engineering 

applications and has been modified by a number of researchers. Goda (1985) proposed a form 

which is a function of the significant wave height, i.e

, a  H s2 ,
S(co) = ------ r—  (0% exp

CO'

~ 4 '
CO

-1 .25
.  P -

[6.15]

The value of alpha is a function of the peak enhancement factor

a  = 0.0624

\0.230 + 0.0336y- 0.185 
(1.9+rl

ra = 0.07 (0 <(Dp xb-0.09 co>cop
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Regression analysis of measured data has shown

H ,=(o .ii66uo .om ir-o .ooo6s f ) r 02 [6.16]

where the spectral peak period is given by

T0 = —  = ( 1 .4 9 - 0 .102y+ 0 .0 1 4 2 f  -0 .0 0 0 7 9 y3 )T, [6.171

6.5.2 Fir st  o r d e r  w a v e  t r a n sf e r  f u n c t io n s

The first order wave drag and inertia forces have been calculated for a range of frequencies 

and directions using the Morison method described previously. The results, which are 

illustrated graphically for forty frequencies and five directions in Fig. 6.5 and 6.6, compare 

very favourably with the diffraction results reported by Eatok-Taylor & Jeffereys (1986). The 

only major discrepancies occur at high frequencies where the structure dimensions are large 

when compared to the wave length and diffraction effects cannot be ignored. For this work this 

is not important for two reasons: first, only the extreme seastates which have longer period 

waves contribute to the failure probabilities of interest in the reliability analysis; and second, 

we are only interested in the difference frequency second order forces for the calculation of mean 

and slowly varying drift effects.

The force and motion response functions shown in Fig. 6.5 and 6.6 demonstrate that only the 

surge, sway, roll, and pitch responses are sensitive to the direction of the waves. The heave is 

little affected by the approach angle.

6.5.3 R e sp o n s e s  i n  d ir e c t io n a l l y  sp r e a d  se a s

The directional spreading of wave elevation variance is examined in Ch. 5 in which the 

Hasselmann, Mitsuyasu, and Prince-Wright directional distributions are defined. These have 

all been included in the TLP program to enable comparison of the TLP response in seas with 

different directionally spread seas. An example of the JONSWAP spectrum and Hasselmann 

spreading powers is shown in Fig. 6.7(a) for a seastate with 10m significant wave height, and 

12 second zero-crossing period. Note the mismatch of the peaks is the result of swapping 

equations at f/fm  = 1.05 (Ch5). The shape of the directional spectrum is shown in Fig. 6.7(b) for 

a range of frequencies and directions.
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A 3-D plot of the directional singe force and motion transfer functions is shown in Fig. 6.8, 

and the surge, heave and pitch force and response spectra are shown in Fig. 6.9 for a seastate 

with Hasselmann spreading function. In all three modes, the force spectra in long crested seas 

are higher than in short crested seas. This is also true for the surge and heave motions but not 

for the pitch motion. This is due to the motions being largest in pitch for a quartering sea case 

which can be seen in the motion transfer functions, Fig. 6.6. The ratios long crested surge / short 

crested surge are given for a range of JONSWAP shape parameter and three spreading models 

in Table 6.3. The results are also plotted in Fig. 6.10 which shows more clearly that, in all 

cases, as the seas become more fully developed the long crested seas model overestimates the 

motions and forces by up to a maximum of 20% when the Mitsuyasu and Hasselmann models are 

used. However, the Prince-Wright model indicates the overestimate is only 10% for the forces 

and 16% for the motions. The differences are due to the slower decay of the Prince-Wright 

spreading powers away from the spectral peak. Table 6.4 shows in greater detail the ratio of 

the force, motion, and limitstates for a Hasselmann sea.

The analysis of the DB1 directional data in Ch. 5 demonstrated the large variability of 

the spreading powers at a given frequency ratio f/fm . This variability is due to a combination 

of the effects of: randomness; noise in the recorded heave pitch and roll time series; and 

sampling error. The relative importance of this variability can be modelled in a reliability 

analysis by including the angular variance as a random variable.

6.6. S l o w l y  v a r y in g  a n d  m e a n  m o t io n s  d u e  t o  w a v e  d r if t

Fixed and floating offshore structures in regular and irregular waves experience second 

order forces with small mean value and frequencies which are harmonics of the first order wave 

force. There are several reasons for these forces and the contribution of each cause to the total 

effect depends on the type and dimensions of the structure. Large structures like ships or barges 

are dominated by the potential drift forces which are linearly related to the wave amplitude 

squared - and therefore simple to calculate in irregular seas. Smaller structures like semi- 

submersibles and tension leg platforms experience both viscous and drift forces, the latter being 

proportional to the cube of the wave elevation and therefore difficult to include in spectral 

analysis. In this work the potential drift forces are modelled using a simplified method 

developed by Chakrabarti (1984).

The calculation of accurate drift forces on complex geometries generally requires the use of

3D-source distribution methods, see Chan (1990), however for this work a simple

approximation is used in which the MacCamy & Fuchs (1954), and Chakrabarti (1984) dosed

form solutions for seabed mounted, surface piercing structures, are used ( despite the fact the
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columns do not reach the seabed ). This simplification is justified because the majority of the 

drift force is located near the wave free-surface zone, away from the pontoons, risers, and 

tethers.

The mean viscous drift forces on a cylinder in the direction of each axis, F} , can be 

approximated by averaging the Morison drag force over the whole cylinder for one wave cycle

F, =  jp C ,D r n .\V 4 > f d t [6.18]

Here: C D are the drag coefficients; D is the cylinder diameter ( radius r ); n is the vector of 

direction cosines ; | v < J f  is the first order velocity vector squared; and dl is the elemental 

length of the cylinder. On substituting the deep water Airy wave potential in to Equation [6.18], 

and then integrating, Chakrabarti (1984) gives the simple result

p  _  pgCpDkH [6.i9]
' 12n

Note this force is proportional to the wave amplitude cubed, unlike the potential forces 

outlined below which are proportional to the wave amplitude squared.

The mean potential drift force on a cylinder in regular seas with frequency CO is used to 

calculate the potential drift force transfer functions. These are the basis for Pinkster’s ( 1974) 

approximate method for calculating drift forces in narrow-band irregular seas.

The mean wave elevation drift force F2 in a regular wave train is found by averaging the 

integral of the hydrodynamic pressures on the wetted area between the still water level and 

the instantaneous water level, over one whole wave cycle. For a vertical cylinder we have

F2 —- \  p J it. d<P / dt. ds [6.20]

Here: —pdd> / dt is the hydrodynamic pressure; and ds is the elemental surface area.

The velocity head drift force F3 is found by averaging the integral of the velocity head 

pressure over the full length of the submerged cylinder, for one wave cycle
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F3 = i p j j  »|V#f .ds [6.21]

The deep water ( depth > 0-5 wave length) dosed form solutions for the integrals Equations 

[6.20] and [6.21] were determined by Havelock (1940), MacCamy & Fuchs (1954), and 

Chakrabarti (1984) who express the sum of the wave elevation and velodty head forces as

f2 + f3 = / Y
**(hr)’

1 -
n(n + l ) 

(kr)2 A,{kr)A „ i(kr)
[6.22]

Here: An(x) = J'n(x)2 + Y'(x)2, where Jm(x) is the Bessel function of the first kind, order n;

Ym(x)  is the Bessel function of the second kind, order n; and prime denotes the derivative with

respect to x. The p A derivatives of the Bessel functions can be expressed in terms of the basic 

Bessel function using the results in Abramowitz & Stegun (1965)

+J+ ...........+ H ) pc , }  p = 0 , 1,2 ..... [6.23]

Here I  is J,or Y , or any linear combination of the functions, and (p)  denotes the p*  derivative. 

For our case, where p  — 1, we have

in which it should be noted that =  (—/)* /„ . This simple form enables us to calculate 

A^JtJfor all x — kr. Plots showing the Bessel functions and their derivatives are shown in Fig. 

6 .11 .

The wave potential drift forces calculated from Havelock’s closed form solution correspond 

to the forces on an isolated cylinder in an ideal fluid with unidirectional waves. The wave 

elevation and velocity head components of the drift force on a cylinder with radius equal to the 

TLP column radius are shown in Fig. 6.12 for a range of kr. Here we can see the velocity head 

force is negative and the wave elevator force is positive, these sum to give a positive wave 

drift force which is nearly constant for values of kr > 5.0.
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A procedure for calculating both the mean drift force F and the drift force SF(jl) and 

response spectra S ^co )  in irregular seas is presented by Faltinsen & Demirbilek (1989). This 

method is, strictly speaking, only valid for narrow-band seas and uses the force results 

described above for regular seas with frequency CO and amplitude Tfa . The mean drift is given 

as

F  =  ( 6 . 2 4 ]

where, S^co)  is the spectral density of the wave surface process, and the transfer function 

F(co') is given by summing the viscous and potential drift forces. The spectrum of the slowly 

varying drift excitation force S^(co) is then calculated using Pinkster’s (1974) method in which 

it is assumed the drift forces are a quadratic function of the wave amplitude

S,(M) = 8 r / 2H dco. [6.251

This force spectrum is transferred to a response spectrum for the lateral motions of the platform 

by idealising it as a single degree of freedom system with damping d and lateral stiffness 
T I  Lj-, giving

St (m) = SAw).{Q((o).Lr IT0f

Here, the dynamic amplification factor Q(co) is a function of the natural frequency in surge (On 

and the damping ratio d

This model for the wave drift forces is only accurate for low significant wave heights 

because of the amplitude cubed term in the viscous drift force equation. As the wave heights 

increase the viscous forces dominate the drift loading on the TLP columns. The effect of this 

simplification is to underestimate the total forces due to the viscous drift. This problem has 

been examined by Kato & Kinoshita (1990) who suggests the second order forces be formulated 

as a Volterra functional series and solved using Wiener’s filter theory. This approach will be
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more accurate but computationally too expensive for the Monte Carlo analysis. It is suggested 

this be the subject of future research

6.6.1 C o m p u t e d  w a v e  d r if t  fo r ces: c o m p a r is o n  w it h  3-D  so u r c e  results

The drift force model developed for this work is a simple approximation which does not 

allow for wave force cancellation, spreading, or interference effects. The results compare 

favourably with Tan & de Boom (1981) in which a 3-D source distribution method is used to 

generate the drift transfer functions. A comparison of our results, with the head seas drift force 

spectra, as given in Tan loc d t, is shown in Fig. 6.13.

As an example, the mean and slowly varying wave drift forces on the TLP have been 

calculated for a JONSWAP sea with Hs=10.0 metres, Tz=12.0 seconds, and 7=3.3. The 

intermediate results in the calculation of the drift statistics are illustrated in Fig. 6.14 which 

shows: the seastate spectrum; the viscous forces; the potential drift force; the drift force 

spectrum; the single degree of freedom magnification factor; and finally, the drift motion 

response spectrum. The drift motion response spectrum is narrow with a peak located at the 

surge natural period of the TLP (97sec.). The mean wave drift force for this case is 3.16e+5 (N), 

which is very small when compared with the most probable, maximum (mpm) first order wave 

surge force of 7.56e+8 (N). The slowly varying responses are larger with a three hour mpm force 

of 2.03e+6 N and a three hour mpm motion amplitude of 20.4m. This motion is significant when 

compared with the first order wave mpm amplitude of 53.0m.

6.7. Co m b in e d  w in d , w a v e  a n d  c u r r e n t  m o t io n s  a n d  fo r ces

The motions of the TLP and the forces in the tendons consist of three components: a mean 

drift response; a first order wave frequency response; and a second order slowly varying drift 

response, Fig. 6.15. The mean value of each force acting individually has been examined 

previously. In the conventional design approach it is usually assumed that each force acts 

colinearly and that they attain their maxima simultaneously. This is conservative for most 

structures and it is interesting to examine the effect of varying the directions and magnitudes of 

the winds, waves and currents.

Tables 6.6, 6.7,and 6.8 compare the platform responses for seastates with: 12,14 and 16 metre 

significant height; zero crossing periods ranging from 11 to 14 seconds; a constant wind speed of 

50m/s; and a constant current speed of 2.0m/s. These tables show the platform first order wave 

frequency motions and tendon responses are sensitive to both the significant wave height and 

the zero crossing period. The increases in the motions and the limit state stresses are nearly 

linear with increasing significant height and zero-crossing period. However, the second order
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mean and slowly varying wave responses increase with increasing height, but decrease with 

increasing period.

The change in motion, force, and limit state variance with height and period demonstrates 

the importance of correctly modelling the joint distribution for the significant wave height and 

zero crossing period. For example, if we compare the motion and limit state responses in a 

seastate with Hs-12  metres, and Tz-14  seconds with the responses in a seastate with Hs-16  

metres, and Tz-11 seconds then we find they are almost equal! The period sensitivity of this 

sort of structure - due to its' long natural periods in surge sway and yaw - can only be understood 

using probabilistic methods since the contribution of the lower, longer period, seastates to the 

expected population of extreme response events during the platform life cannot be ignored. The 

use of a design wave approach, in which a return period wave is combined with a most probable 

or associated wave period,, could in this case be unconservative The significance of the 

occurrence of long period, moderate significant height, seastates must of course take into account 

the likelihood of their occurrence and this lends support to the use of kernel density estimates 

for the joint distribution of the heights and periods, rather than crude scatter plot estimates.
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6.8 CONCLUSIONS

A loading and linear response model of a tension leg platform is presented which is suitable 

for reliability calculations. Environmental wind and wave forces are modelled as stochastic 

and current forces are modelled as steady throughout the seastate. The responses of the system 

are calculated in the frequency domain by assuming the system is linear, and the combined load 

effect is modelled using a sum-of-squares approach.

A simple Morison-based method was used to calculate the first order wave forces on the TLP 

columns and pontoons. The force and response transfer functions compare very favourably with 

the results from several source-sink distribution programs which in themselves gave widely 

differing results. The only major differences occur at high frequencies in which case the 

structure dimensions are large when compared with the wave length.

The simple MacCamy & Fuchs (1954)and Chakrabarti (1984) closed form solutions for the 

second order potential wave drift forces compare reasonably well with the results from the 

study by Tan & de Boom (1981). However, in neither their case, or ours, is the cubic non- 

linearity of the drag effect properly allowed for and this is probably significant for the 

extreme wave case. Since this effect is important it is suggested the effects be quantified by 

comparing results with time domain solutions.

The sensitivity studies for the wind,wave and current forces indicate the dominating force 

is from the first order wave loads. The slowly varying wind and drift forces contributing the 

next largest component, and the steady current forces are small in comparison.

An Ochi wind spectrum was chosen because it is supposed to model spectra over the open 

ocean. However, the results from this spectrum seem questionable because the significant 

amplitude is generally some 20-30% of the mean wind speed. If the gusts are narrow-band 

Gaussian then we would expect the 3-hour most probable maximum amplitude to be some 

40-60% of the mean wind speed. It is suggested therefore some time series analysis is performed 

on data recorded during extreme storms to check this result.
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Ap p e n d ix  A  - Po l y n o m ia l  a p p r o x im a t io n  fo r  t h e  p o t e n t ia l  d r if t  fo r c es

The CPU time required for the calculation of the potential drift forces was considerably 

larger than was practical for the Monte Carlo analysis and consequently a nth order 

polynomial approximation was determined by fitting the form

F] +F, = f t Ci(kr)‘ i= ,l ,2 0
i= l

to several exact values of the force calculated using Havelock’s closed form solution. The result, 

summarised in Fig. 6.16 together with the coefficients of the polynomial, gives accurate 

approximates for all kr>4.5. For values greater than this the Havelock asymptotic 

approximation has been used. Note the coefficients are defined in double precision to ensure the 

correct values are calculated for the larger (fcr>1.0) values of ka.
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COLUMNS AND PONTOONS:
s p a c in g  b e tw e e n  co lu m n  c e n t r e s
co lu m n  r a d iu s
p o n to o n  w id th
p o n to o n  h e i g h t
d r a f t
d i s p la c e m e n t  
t o t a l  m a ss
L o n g i t u d in a l  m e t a c e n t r i c  h e ig h t  
T r a n s v e r s e  m e t a c e n t r i c  h e ig h t  
R o l l  m om ent o f  i n e r t i a  
P i t c h  m oment o f  i n e r t i a  
Yaw moment o f  i n e r t i a
V e r t i c a l  p o s i t i o n  o f  C o f  G a b o v e  k e e l

8 6 .2 5  m 
8 .4 4  m
7 .5 0  m
1 0 .5 0  m
3 5 .0 0  m
5 4 .5  x  10^ kg
4 0 .5  x  10^ kg  
6 . 0 m
6 .0  m
8 2 .3 7  x  1 0 9 k g  m2
8 2 .3 7  x  1 9 9 k g  m2 
9 8 .0 7  x  1 0 9 k g  m2
3 8 .0  m

TETHER PRO PERTIES:

V e r t i c a l  s t i f f n e s s  o f  co m b in ed  t e t h e r s 0 .8 1 3  x  10^ kN/m

T o t a l  t e t h e r  p r e - t e n s i o n 1 4 .0  x  10^ kg

n o . p e r  c o r n e r 4 o f f

o u t s i d e  d ia m e t e r 1 .  0m

i n s i d e  d ia m e t e r 0 .9 3 3 8 m

w a l l  t h i c k n e s s 0 .0 3 3 0 8 8 m

c r o s s - s e c t i o n a l  a r e a 0 .1 0 0 5 1 m 2

Y oungs m o d u lu s 2 .0 9 8  x  1 0 11 N/m2

m ass p e r  u n i t  l e n g t h 7 8 9  k g /m

su b m erg ed  w e ig h t  p e r  u n i t  l e n g t h 0 k g /m

a x i a l  s t i f f n e s s 5 .0 8 1  x  1 0 7 N/m

le n g t h 415m

mean u l t i m a t e  s t r e n g t h 6 2 0 . 0  N/mm2

s . d .  o f  u l t i m a t e  s t r e n g t h 3 7 . 5  N/mm2

W e ib u ll  p a r a m e te r s  o f  y i e l d  s t r e n g t h

sh a p e 1 .8

s c a l e 92 N/mm2

lo w e r  b ou n d 488  N/mm2

Table 6.1 Structural data for the TLP, from Tan & de Boom (1981).

currents

(m/s)

force

(N)

wind

(m/s)

force

(N)

0.5 1.49e6 10 1.44e5

1.0 5.95e6 30 1.30e6

1.5 1.34e7 50 3.60e7

Table 6.2 Wind and current forces on the tension leg platform
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MEAN W IND SPEED (m/i) 10 20 30 40 50

ZERO CROSSING PERIOD (s) 4846 43.53 40.74 38.81 37.42
SIGNIFICANT WIND SPEED (m/s) 1.794 4.46 7.557 10.94 14.55
THREE HOUR MPM LARGEST SPEED (m/s) 2.95 7.405 12.62 18.35 24.49
SPECTRAL MOMENTS MO 0.8047 4.972 14.28 29.9 52.94

Ml 7.58E-02 0.5411 1.704 3.828 7.143
M2 1.35E-02 0.1036 0.3395 0.7836 1.493

ZERO CROSSING PERIOD OF MOTIONS ( .» ) 108.5 106.4 104.8 103.5 102.3
SIGNIFICANT WIND MOTION AMPLITUDE (ivi) 0.8633 4.224 10.66 20.49 33.83
THREE HOUR MPM LARGEST MOTION 1.309 6.42 16.23 31.23 51.63
SPECTRAL MOMENTS MO 0.1863 4.461 28.42 104.9 286.1

Ml 1.02E-02 0.2512 1.632 6.129 16.95
M2 6.24E-04 I.S6E-02 0.1021 0.3869 1.079

ZERO CROSSING PERIOD OF FORCES (» ) 48.46 43.53 40.74 38.81 37.42
SIGNIFICANT WIND FORCE AMPLITUDE <H) 4.30E+O4 2.14E+05 5.44 E+05 1.05E+06 1.75E+06
THREE HOUR MPM LARGEST FORCE (u ) 7.07E+04 3.55E+05 9.08E+05 1.76E+06 2.94E+06
SPECTRAL MOMENTS MO 4.63E+08 I.14E+10 7.39E+10 2.75E+11 7.61 E+11

MI 4.36E+07 1.25E+09 8.82E+09 3.52E+10 1.03E+11
M2 7.78E+06 2.38E+08 1.76E+09 7.21E+09 2.15E+10

Table 6.2 (a) Statistics of wind speed, wind force and platform motion for a range of mean wind 
speeds and the Ochi (1988) spectrum
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jonswap
gamma

JONSWAP wave spectrum with Hs=TO.Om and Tz=12.0sec. 
ratios long crested/short crested

hassemann mitsuyasu prince-wright
surge force surge motion surge force surge motion surge force surge motion

1 1.181 1.198 1.176 1.155 1.107 1.161
2 1.164 1.173 1 15 1.12 1.098 1.154
3 1.15 1.154 1.139 1.098 1.092 1.151
4 1.14 1.14 1.131 1.085 1.081 1.142
5 1.132 1.13 1.124 1.075 1.08 1.144
6 1.126 1.129 1.12 1 067 1.077 1.14
7 1.121 1.116 1.118 106 1.071 1.138

Table 63 Ratio of the TLP surge responses in long crested seas and short crested 
seas.

Iii

247



rtatfrtf

hasselmann
M O T I O N S urge ■way heave roll pitch yaw
VARIANCE OF MOTIONS : 1.130 0.000 1.024 0.000 0.776 0.000
ZERO CROSSING PERIODS: 1.008 0.863 0.986 1.237 1.033 1.632
SIGNIFICANT AMPLITUDE: 1.130 0.000 1.024 0.000 0.776 0.000
THREE HOUR MPM LARGEST: 1.149 0.000 1.025 0.000 0.773 0.000
SPECTRAL MOMENTS MO : 1.322 0.000 1.049 0.000 0.603 0.000

Ml : 1.309 0.000 1.063 0.000 0.583 0.000
M2 : 1.300 0.000 1.080 0.000 0.564 0.000

F O R C E S surge sway heave roll pitch yaw
VARIANCE OF FORCES : 1.147 0.000 1.024 0.000 1.067 0.000
ZERO CROSSING PERIODS: 0.955 0.000 0.985 1.035 0.974 1.668
SIGNIFICANT AMPLITUDE: 1.147 0.000 1.024 0.000 1.067 0.000
THREE HOUR MPM LARGEST: 1 151 0 000 1.025 0.000 1.069 0.000
SPECTRAL MOMENTS MO : 1.316 0.000 1.048 0.000 1.138 0.000

Ml : 1.358 0.000 1.064 0.000 1.155 0.000
M2 : 1.444 0.000 1.079 0.000 1.201 0.000

L I M I T  S T A T E S 1 2 3 4 5 6 7 8
VARIANCE OF LIMIT STATES : 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001
ZERO CROSSING PERIODS : 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SIGNIFICANT AMPLITUDE : 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001
THREE HOUR MPM LARGEST : 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001
SPECTRAL MOMENTS MO : 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002

Ml 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003
M2 : 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003

Table 6.4 Ratios of response statistics for long-crested and short crested seas with 
Hasselmann spreading function and Hs= 10.0m, Tz=12.0sec.

current direction (degrees)
0 45 90 135

SEA DRIFT FORCE FX (N) 3.16E+05 3.16E+05 3.16E+05 3.16E+05
SEA DRIFT FORCE FY (N) 0.00E+00 O.OOE+OO O.OOE+OO 0.00E+00
CURRENT FORCE FX (N) 2.38E+07 1.54E+07 2.76E-08 -1.54E+07
CURRENT FORCE FY (N) O.OOE+OO 1.54E+07 2.38E+07 1.54E+07
WIND FORCE FX (N) 3.60 E+06 3.60E+06 3.60E+06 3.60E+06
WIND FORCE FY (N) 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO
RESULT ANT FORCE FR (N) 2.77E+07 2.48E+07 2.41E+07 1.93E+07

WIND.CURRENT, DRIFT OFFSET DIR. 0 38.573 80.646 126.727
INCLINATION OF TENDONS (deg) 8.75 8.091 7.959 6.772
INCREASE IN TENDON TENSION (N) 1.14E+07 9.73E+06 9.42E+06 6.80E+06
STRETCH OF THE TENDONS (m) 0.056 0.048 0.046 0.033
STATIC OFFSET DISTANCE (m) 63.129 58.407 57.461 48.939
ST ATIC OFFSET SF.TDOWN (m) 4.83 4.131 3.997 2.896

Table 6.5 Effect of varying the current direction on the mean wind, wave and 
current drift forces and responses.
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zero crossing period (s)---- > Usee 12sec 13 sec 14sec
response unit

SEA DRIFT FORCE FX N 5 99E+05 4.55E+05 3.54E+05 2.78E+05
SEA DRIFT FORCE FY N O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO
CURRENTFORCE FX N 2J8E+07 2J8E+07 2JSE+07 2.38E+07
CURRENT FORCE FY N O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO
WIND FORCE FX N 3.60 E+06 3.60E+06 3.60E+06 3.60E+06
WIND FORCE FY N O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO
RESULTANT FORCE FR N 2.80E+07 2.79E+07 2.78E+07 2.77E+07

WIND.CURRENT, DRIFT OFFSET DIR. D 0 0 0 0
INCLINATION OF TENDONS D 8.838 8 794 8.794 8.75
STRETCH OF THE TENDONS m 0.057 0.056 0.056 0.055
STATIC OFFSET DISTANCE m 63.758 63.444 63.444 63.129
STATIC OFFSET SETDOWN m 4.927 4.878 4.878 4.83
INCREASE IN TENDON STRESSES N/mm2 28.614 28.328 28.328 28.043
INCREASE IN TENDON TENSION N 2876.027 2847.217 2847.217 2818.556

VARIANCE OF DRIFT MOTIONS m**2 7.54 5.67 4.36 3.40
ZERO CROSSING PERIOD OF MOTIONS S 101.80 101.70 101.60 101.60
SIGNIFICANT DRIFT MOTION AMPLITUDE m 15.08 11.35 8.72 6.81
THREE HOUR MPM LARGEST MOTION m 23.02 17.33 13.32 10.40

VARIANCE OF DRIFT FORCES m*»2 9.59E+05 7.66E+05 6.25E+05 5.13E+05
ZERO CROSSING PERIOD OF FORCES S 7.45E+00 7.03E+00 6.68E+00 6.39E+00
SIGNIFICANT DRIFT FORCE AMPLITUDE m 1.92E+06 1.53E+06 1.25E+06 1.03E+O6
THREE HOUR MPM LARGEST FORCE N 3.66E+06 2.93E+06 2.40 E+06 1.98E+06

M O T I O N  S P E C T R U M
VARIANCE OF MOTIONS m *»2

1.18 1.42 1.61 1.75

ZERO CROSSING PERIODS S
14.20 1SJ6 16-39 17.J0

SIGNIFICANT AMPLITUDE m 2.36 2.84 3.23 3.57

THREE HOUR MPM LARGEST m 4-J0 5.14 5.82 6.31

SPECTRAL MOMENTS MO 1-19 2.02 2.61 3.09

Ml 0.60 0.81 0.99 1.11

M2 0.27 0.34 0-38 0.48

F O R C E  S P E C T R U M
VARIANCE OF FORCES N**2 2.20E+07 2.29E+07 2.26E+07 2.19E+07

ZERO CROSSING PERIODS S 1.87E+01 1.17E+01 1-26E+01 1-J4E+01

SIGNIFICANT AMPLITUDE N 4.53E+07 4.58E+07 4J2E + 07 4-38E+07

THREE HOUR MPM LARGEST N S.43E+07 8.47E+07 8J1E + 07 8.01E+07

SPECTRAL MOMENTS MO 5.14E+14 5.26E+14 5.12E+14 4R0E+14

j Ml 2.86E+14 2.65E+14 2-39E+14 2.10E+14
M2 1.76E+14 1.50E+14 1.25E+14 1.04E+14

L I M I T  S T A T E  S P E C T R U M
VARIANCE OF LIMIT STATES (N/mnjA2>"'2 2.49 2 J 0 2.48 2.90
ZERO CROSSING PERIODS s 12.00 12.60 14.10 15.70
SIGNIFICANT AMPLITUDE N/imif2 4.99 4.61 4.96 5.80
THREE HOUR MPM LARGEST N/mmA2 9.20 8.47 9.04 10.40

, SPECTRAL MOMENTS MO 6.22 5-32 6.15 8.43
Ml 8.21 2.56 2.64 3.24

j M2 1.70 1.30 1.22 1.34

Table 6.6 Variation of TLP surge response statistics with zero-crossing period for
Hs= 12.0m
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zero crossing period (s) —— > llsec 12sec 13 sec Msec
response unit

SEA DIUFT FORTE FX V 8.15E+05 6.20E+O5 4.82E+05 3.79E+05
SEA DRIFT FORCE FY N O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO
CURRENT FORCE FX N 2.38E+07 2J8E+07 2J8E+07 2J8E+07
CURRENT PORCE FT N O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO
WIND FORCE FX N 3.60E+06 3.60E+06 3.60E+06 3.60E+06
WIND FORCE FY N O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO
RESULTANT FORCE FR N 2.82E+07 2.80E+O7 2.79E+07 2.78E+07

WIND.CURRENT. DRIFT OFFSET DIR. D 0 0 0 0
INCLINATION OF TENDONS D 8.882 8.838 8.794 8.794
STRETCH OF THE TENDONS m 0.057 0.057 0.056 0.056
STATIC OFFSET DISTANCE m 64.073 63.758 63.444 63.444
STATIC OFFSET SETDOWN m 4.976 4.927 4.878 4.878
INCREASE IN TENDON STRESSES N/mm2 28.902 28.614 28.328 28.328
INCREASE IN TENDON TENSION N 2904.987 2876.027 2847.217 2847.217

VARIANCE OF DRIFT MOTIONS m**2 10.26 7.72 5.94 4.63
ZERO CROSSING PERIOD OF MOTIONS S 101.80 101.70 101.60 101.60
SIGNIFICANT DRIFT MOTION' AMPLITUDE m 20.52 15.44 11.87 9.27
THREE HOUR MPM LARGEST MOTION m 3134 23.58 18.13 14.15

VARIANCE OF DRIFT FORCES m**2 1.31E+06 1.04E+06 8.51E+05 6.98E+05
ZERO CROSSING PERIOD OF FORCES S 7.45E+00 7.03E+00 6.68E+O0 6.39E+O0
SIGNIFICANT DRIFT FORCE AMPLITUDE m 2.61E+06 2.08E+06 1.70E+06 1.40E+06
THREE HOUR MPM LARGEST FORCE N 4.98E+06 3.99E+06 3.27E+06 2.69E+06

M O T I O N  S P E C T R U M  
VARIANCE OF MOTIONS 
ZERO CROSSING PERIODS 
SIGNIFICANT AMPLITUDE 
THREE HOUR MPM LARGEST 
SPECTRAL MOMENTS MO 

Ml

m **2
S
m
m

1 J7

14.02
2.75

5.01
1.89
0 2

1.65

15.30

3-30

6.00
2.75
1.10

1.88
1 6J9

3.77
6.79
3-55

1.34

7.05 
17 JO  

4.10 

7 J 6  
4.21 

1.51

M2
0 J 7 0.45 0.52 0.55

F O R C E  S P E C T R U M
VARIANCE OF FORCES N**2 2.64E+07 2.67E+07 2.64E+07 2-56E+08

ZERO CROSSING PERIODS S 1.07E+01 1.17E+01 1.26E+0I 1-34E+01

SIGNIFICANT AMPLITUDE N 5.29E+07 5.35E+00 5.28E+07 5.U E+08

THREE HOUR MPM LARGEST N 9.84E+08 9.88E+07 9.69E+07 9J5E + 08

SPECTRAL MOMENTS MO 7.00E+I4 7.15E+14 6.97E+14 6.54E+14

Ml 3.90E+14 3.61E+14 3.25E+14 2*6E+14

M2 2.40E+14 2.04E+14 1.71E+14 1.42E+14

L I MI T  S T A T E  S P E C T R U M
VARIANCE OF LIMIT STATES (N/mnT 2F2 2.91 2.69 2.89 3.38

ZERO CROSSING PERIODS s 12.00 12.60 14.00 15.70
SIGNIFICANT AMPLITUDE N/rnnT2 5* 2 5.3* 5.79 6.77

THREE HOUR MPM LARGEST N /rnn^ 10.74 9.8S 10-50 12.24
SPECTRAL MOMENTS MO 8.47 7.24 8 J 0 11.48

Ml 4 J 7 3.48 3.59 4.41
M2 2-32 1.77 1.66 1.82

Table 6.7 Variation of TLP surge response statistics with zero-crossing period for
Hs=14.0m.

250



dattdL lijariintmdnntMmodd** ******"!'•

zero crossing period (s )-----> Usee 12sec 13sec 14sec
response unit

SEA DRIFT FORCE FX N 1.06E+O6 8.09E+05 6.30E+05 4.95E+05
SEA DRIFT FORCE FY N O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO
CURRENTFORCE FX N 2J8E+07 2.38E+07 2.38E+07 2.38E+07
CURRENT FORCE FY N O.OOE+OO O.OOE+OO 0.00E+00 O.OOE+OO
WIND FORCE FX N 3.60E+06 3.60E+06 3.60E+06 3.60E+06
WIND FORCE FY N O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO
RESULTANT FORCE FR N 2.85E+07 2.82E+07 2.80E+07 2.79E+07

WIND.CURRENT. DRIFT OFFSET DfR D 0 0 0 0
INCLINATION OF TENDONS D 8.925 8.882 8.838 8.794
STRETCH OF TOE TENDONS m 0.058 0.057 0.057 0.056
STATIC OFFSET DISTANCE m 64.387 64.073 63.758 63.444
STATIC OFFSET SETDOWN m 5.025 4.976 4.927 4.878
INCREASE IN TENDON STRESSES N/mm2 29.192 28.902 28614 28.328
INCREASE IN TENDON TENSION N 2934.096 2904.987 2876.027 2847.217

VARIANCE OF DRIFT MOTIONS m**2 13.40 10.08 7.75 6.05
ZERO CROSSING PERIOD OF MOTIONS S 101.80 101.70 101.60 101.60
SIGNIFICANT DRIFT MOTION AMPLITUDE m 26.80 20.17 15.51 12.10
THREE HOUR MPM LARGEST MOTION m 40.93 30.80 23.68 18.49

VARIANCE OF DRIFT FORCES fn**2 1.71E+06 1.36E+06 1.11E+06 9 11E+05
ZERO CROSSING PERIOD OF FORCES S 7.45E+O0 7.03E+00 6.68E+00 6.39E+00
SIGNIFICANT DRIFT FORCE AMPLITUDE m 3.41E+06 2.72E+06 2.22E+06 1.82E+06
THREE HOUR MPM LARGEST FORCE N 6.51E+06 5.21E+06 4.27E+06 3.51E+06

M O T I O N  S P E C T R U M  
VARIANCE OF MOTIONS 
ZERO CROSSING PERIODS 
SIGNIFICANT AMPLITUDE 

THREE HOUR MPM LARGEST 
SPECTRAL MOMENTS MO 

Ml

m**2
S
m
m

1.57

14.02
3.14

5.72
2.47

1.07

1.84 
15JO  

3.79 
6.86 
3.59 
1.44

2.15
16.30

4J1
7.76
4.64

1.75

2 J4
17-30

4.69

8.41
5.50
1.97

M2 0.48 0.60 0.68 0.72

F O R C E  S P E C T R U M
VARIANCE OF FORCES N**2 3.02E+07 3.05E+07 3.01 E+07 2.90E+07

ZERO CROSSING PERIODS S 10.70 11.70 12.68 13.46

SIGNIFICANT AMPLITUDE N 6.05E+07 6.48E+07 6.03E+07 5-80E+07

THREE HOUR MPM LARGEST N 1.12E+08 1.13E+08 1.11E+08 1.07E+08

SPECTRAL MOMENTS MO 9.15E+14 9 J5E + 14 9.10E+14 8 J4E + 14

Ml 5.09E+14 4.72E+14 4.25E+14 3.74E+14

M2 3.14E+14 2.66E+14 2J3E+14 1J6E + 14

L I M I T  S T A T E  S P E C T R U M
VARIANCE OF LIMIT STATES (N/mm' 2>"2 3.31 3.07 3 J1 3.87

ZERO CROSSING PERIODS s 12.00 12.69 14.08 15.70

SIGNIFICANT AMPLITUDE N/mmA2 6.65 6.15 6.61 7.73
THREE HOUR MPM LARGEST N/imT-2 12.20 11-30 12.02 13.90
SPECTRAL MOMENTS MO 11.07 9.46 10.95 14.90

Ml 5.70 4.55 4.71 5.76
M2 3.03 2.32 2.17 2 J 8

Table 6.8 Variation of TLP surge response statistics with zero-crossing period for
Hs=16.0m.
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Figure 6.1 General arrangement of the tension leg platform and the 
load / structure reference axes. All dimensions are in metres.
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Figure 6.1(a) Significant am p litu d e  and zero crossing periods of the w ind gust 
velocity obtained from the Ochi spectrum  for a range of w ind speeds.
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chapter 6 Istaduir and m oons* model of a tension le i platform
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Figure 6.2 D epartm ent of Energy guidance notes current profile.

S ( f  )

100

80

60

40

20

Figure 6.3 The effect of current on m odifying a FM spectrum . The upper curve is 
w ith -1.0 m /s  current and the ones below  are for currents -0.5, 0.0, 0.5, 
and  1.0.
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Tendon force variation due to the TLP offsets.
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Figure 6.5 Force response amplitude transfer functions for the TLP for a range of 
wave headings from 0 to 90 degrees.
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Figure 6.6 Motion response amplitude transfer functions for the TLP for a range 
of wave headings from 0 to 90 degrees
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Figure 6.7 (a) Example spectrum  and spreading pow ers for a range of frequencies.
(b) directional distribution for a range of frequencies and directions.
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Figure 6.8 Directional surge force and motion transfer functions for the TLP.



chapter 6 Loading and rsaaut modd s(a uiuiaxkt platform
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Figure 6.12 Potential drift force on a colum n of the TLP given by Havelock's closed 
form solution for the incident wave and diffracted potential.
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Chapter 7 

R eliability  a n a l y s is  o f  a  TLP
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NOMENCLATURE

A

A

a
cW Cw

dx

E

£[•]
/(*)
F
F(x)
f
G(x)
G ( u )

H,
h(.)
k
L ( * l )

M
m,

N
N (u;0,I)
N

P

?FL
P ,(*)

R(*r)
s
S ( f )

r.

matrix of eigenvectors for principal components 
see Section 4.5
cross - sectional area of a tendon
amplitude 

Weibull model shape parameter

=  dxj...dxp 
current direction 
wind direction

Young's modulus 
expected value
joint probability density for the loads and strength 
failure domain
cumulative distribution function: Pr(X < x) 
frequency in hertz
limit state function in the basic variable space
limit state function in the standard normal space
significant wave height
auxiliary limit state function
number of limit states
loading: function of random variables xL
number of current directions
ith spectral moment
number of Monte Carlo samples OR number of directions.
multivariate standard normal density
number of waves in a seastate
number of random variables in the analysis
target failure probability

failure probability for any one three hour period
long -  term failure probability
short - term failure probability conditioned

on the seastate
resistance: function of random variables xR 

safe domain 
spectral density 

sample vector
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r* (.) inverse mapping function from U —> X
Td design life of the structure

u standard normal vector
Ue number of samples
Uw random variable
v[.] variance
Wtj directional weighting function for winds and currents

V * all x defined by some domain

a y yield stress

8 geometric imperfections
&(.) standard normal CDF

inverse standard normal CDF
<p(.) s tan dard normal PDF
X Box & Cox model shape parameter
4 Box & Cox model location parameter OR

standardised variate 
4T standardised threshold level for tendon tension
4C s tan dardised threshold level for tendon compression
4W Weibull model location parameter
a w Weibull model scale parameter
a  Box & Cox model scale parameter OR regularity factor
P radius of balloon that just touches the failure

surface in the transformed normal space
Et covariance matrix for z variate: see Section 4.5
ZL covariance matrix for loading random variables

in y  - space
Z R covariance matrix for strength random variables

in y  - space
fiy mean vector for y - space variate: see Section 4.5
fiy mean value for y

p  mean vector for all y - space random variables
Fl mean vector for loading variables in y - space

mean vector for resistance variables in y - space 
8T(t;x) time - varying change in tendon tension conditioned
_  on event x
5T(x) steady change in tendon tension conditioned on event x
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7.  I n t r o d u c t o r y  r e m a r k s :  R e l ia b i l i t y  a n a l y s i s  o f
a t l p

The large number of loading and strength random variables used in the design of an offshore 

structure makes it difficult to use reliability methods in a routine way. The two major problems 

are: the paucity of suitable probabilistic models; and the work required to implement a 

generalised algorithm for modelling correlated random variables ( using for example the 

Rosenblatt method outlined in Appendix C: Ch. 4 ). This chapter outlines a totally new 

methodology for calculating structural reliability using conventional time-variant reliability 

methods. The basis of the approach developed out of the work in Ch. 4 in which multivariate 

modelling, using maximum likelihood, was applied to the DB1 data.

Structural reliability calculations are usually formulated in terms of loading and resistance 

random variables. The loading on an offshore structure is a function of many variables like 

significant wave height, wind speed etc., and the resistance is a function of the material 

properties, strength model and so on. Each random variable can be defined either 

probabilistically or deterministically in the reliability analysis. In this chapter we are 

primarily concerned with modelling the environmental loading parameters and use is made of 

the model developed from the DB1 data. Nonetheless, it is important to realise that the 

modelling methodology is general and so two examples of how a resistance model can be 

developed using the new method are included. This demonstrates how the available strength 

information, for examples see Smith et al (1987), can be used to formulate the required models.

Models for environmental variables are difficult to synthesize because failure is generally 

caused by one or a combination of correlated extremes in the wave, wind or current process. 

Unlike the strength models, which are primarily independent descriptive models, we require
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predictive models for the environment which are accurate at very high quantile levels. The 

problem is further compounded by the site dependence of the environmental variables.

The reliability analysis discussed below uses a model which has eight random variables, 

seven of which describe the environment, and one for the strength. The variables are:

significant wave height Hs
wave zero-up-crossing period Tz
wind speed Uw
wind direction Dw
current speed Uc
current direction Dc
spectral shape parameter r
tendon material yield strength °y

Variables like tide, storm surge, pretension, tether geometry, material characteristics, fluid 

loading coefficients, wave theory and many others could be added for a more complete analysis. 

However, this would increase the computational run time and make it more difficult to 

interpret the results. Lotsberg (1991) includes the effect of variables not modelled by using a 

normally distributed 'response uncertainty' with a coefficient of variation of 8 per cent. 

However, the merits of this are not clear and the COV seems rather low.

7.1 GENERAL OUTLINE OF RELIABILITY THEORY

This chapter reports on the results from a reliability analysis of the tension leg platform 

described in Ch. 6. The joint probabilities model is based on the work described in Ch.2,3,4 & 5 

in which statistical inference was used to model both the w ind, seastate, and current 

magnitudes and directions. A First Order Reliability (FOR) analysis methodology as been 

adopted for the calculation of the failure probabilities to illustrate the real benefit of a 

transformed normal multivariate model for the environmental random variables (see Ch.4). 

However, a brief description of a Monte Carlo analysis methodology is given below since it 

provides the most tangible introduction to the calculation of structural reliability.

The procedure for calculating structural reliability can be most readily understood by 

considering what is actually happening to a real structure, which is one from the toted 

population of 'equivalent' structures. If we accept the discretisation of the long-term variation 

of the environment into independent events of finite duration, during which the winds, waves, 

and current are treated as stationary stochastic processes then we can examine the behaviour of
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the structure for every seastate it encounters during its design life. The total failure probability 
PF during any one event encountered by the structure is then given by

pr = j . . . j p f (x)f(x)dx  [7.1]
V*

in which X  are the random variables governing the behaviour of the system, and Vjf denotes 

all X . This is most easily interpreted in its discrete form as the sum of all seastate failure

probabilities Pj (x ,) weighted by the probability of occurrence of the seastate /(x,)A jc . The 

process is illustrated in Fig. 7.1. In this form, it is apparent there are two kernel problems. The 

first is evaluation of a suitable joint density function for both the loading random variables

{Hs,TlfUw....etc} and the resistance j<Ty,£,5,....£fcj. The second is calculation of the within

seastate failure probability Py(x) for the event X .  The central tenet of this thesis is to define a 

methodology for estimating f{x)  using measured data. The problem has been solved using the 

main principles of classical multivariate, and directional analysis, as described in Ch. 4 and 5.

Solution of the integral Equation [7.1] is simple in principle, however for a TLP the 

calculation of Pf{x) is a time consuming process since it requires the structured responses be 

solved for each event X  used in the solution. Furthermore, the calculation becomes more time 

consuming as the number of variables increases. The most direct way to solve the integral would 

be to use crude Monte Carlo methods to sample the joint density / ( x) a large number of times 

and then use the 'hit-and-miss' approach to estimate the integrand, Rubinstein (1981). This is 

not a feasible approach for problems involving large numbers of dimensions since the number of 
points required for a specific level of accuracy increases as N pf where N is the number of 

sampling points required for each of the p variables.

In the crude Monte Carlo method described above the loading and strength random 

variables are sampled a large number of times: a separate response analysis is then performed 

for each sampled vector X i to create a sample of response 'observations' which can be used to 

establish the statistics of the long term responses. In the past, the method was generally 

regarded as computationally too expensive for all but the simplest problems, Thoft-Christensen 

& Baker (1982). However, this author shares Shinozuka's (1989) opinion that the more 

sophisticated Monte Carlo methods, Rubinstein (1981), are a valuable aid in reliability 

analysis and that use of adaptive Monte Carlo methods on m odem  computers provides a 

realistic design tool. This opinion is shared by Ang et al (1992) who describe a method ( which
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uses the multivariate kernel theory described in Ch. 4 ) to improve the "importance sampling " 

Monte Carlo technique.

7.1.1 THE TIME INVARIANT METHOD

A less expensive estimate of structural reliability can be obtained using the so called time 
invariant Level HI methods/ Madsen et al (1986), in which the joint distribution of the loading 

and strength parameters must be known. The generic approach requires the definition of limit 

state functions which specify the margins between the demand on a component of the structure 

and its capacity. Clearly, when demand exceeds capacity the system is judged to be in the 

failure set F, rather than the safe set S. Denoting all random variables as X  then the 
resistance random variables are X R €  X  and the loading random variables are X L €  X . The 

margin, or limit state function, can then be defined as

G(x) = R (x„ )-  L(xl ) [72]

When capacity exceeds demand Gx (jc) > 0  and the system is in the safe domain, in shorthand 

{G *(.r)> 0} e S and the complementary state is then {G*(x) < 0 } e F .  This is illustrated 

graphically in Fig. 7.2 (top) which shows a system governed by two limit state functions, G; 

and G2, which are functions of the random load Xj and resistance variable Jt2. The notional 

contours of the joint density function of f ( x ) are also shown. The solution of the failure 

probability can now be rewritten as a p-dimensional integral over the failure domain, Melchers 

(1991)

PF = \ .. .\ f{ x )d x  [73]
F

where the domain of integration in X-space F is

[)GXx)<0
i - 1

Here, k  is the number of limit states, d x  =  d x 1. d x 2 d x p ,  and the failure domain is defined

by the union of the limit states G,. The evaluation of this integral using multidimensional 

quadratures or Simpson's method is only feasible for low numbers of random variables (p < 4 ). 

Consequently, a procedure has been developed to approximate PF called FORM analysis (first 

order reliability method). In this method, the random variables X  must be transformed into 

uncorrelated normal variables in ll-space using for example Rosenblatt’s method, Appendix C, 

Ch. 4.
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The mapping of X  —» U results in the new integral

Pr = j...jN(u:0,I)du [7.4]
F

where the domain of integration in U-space is

UGj( « ) < 0
i-/

and N(u;0,I) is the p-dimensional standard normal distribution illustrated in Fig. 7.2 

(bottom). The approximation of this integral is remarkably simple. If we place a spherical 

balloon at the origin of the u-space and then blow it up' at some point it will just touch one or 
more failure surfaces. The radius of this balloon is usually denoted by and the point at 

which it touches the failure surface is called the design point (which is also the most likely 
failure point u ). The failure probability is then estimated using an important property of the 

m ultivariate standard normal, that is the volume contained within the p -d im ensional 

hypersphere (or circle in the case shown in Fig. 7.2) is given very simply by where 0

is the univariate standard normal cumulative distribution. The whole problem of calculating 

failure probabilities using this approach is then reduced to a multidimensional minimisation of

/JJ = U T.U [751

subject to the constraint G(li) = 0. This method is an approximation since the failure function is 

assumed to be a hyperplane in the a-space, which is not the case. However, Madsen et al (1986) 

found the results for PF = are generally within a factor of 2 to 5 times the actual value,

which is sufficiently accurate for comparative reliability studies like this one.

Checks can be made on the condition of the failure surface at the design point using the 

fundamentals of unconstrained extremum theory. The first condition to be satisfied is the 

gradients must all be zero

M . b 0 .
duj du2 dup

The second condition is the hessian matrix - the symmetric matrix of second derivatives - must

be positive definite at u . Both conditions are checked internally by the NAg routine used in
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this work, however, the hessian matrix is also useful for assessing the curvature of the failure 

surface at the design point; this gives an indication of the accuracy of the tangent hyperplane 

assumption which is implicit in the use of as an approximation for the survival

probability.

7 . 1 2 .  A TIME VARIANT SOLUTION

The approximate integration method above assumed the loading was time invariant so 

that it could be modelled as a random vector process. This method is therefore appropriate for 

an offshore platform if it is not dynamically sensitive since a time-invariant extreme event 

approach Equation [7.3] can then be used in which the dominant load process ( the waves ) is 

modelled by an extreme value distribution, Turner & Baker (1988). Compliant systems cannot be 

modelled using this approach because the stochastic nature of the winds and waves, within 

seastate, must be modelled using the methods given in Ch. 6. This is reflected in the integral 

Equation [7.1] which is often ref erred to as a nested reliability integral because the solution for 

Pj within a seastate can also be obtained using a FOR method. In this work, however, the

combination of the wind and wave stochastic process has been simplified by using a simple 

linear system model for the responses and a ’sum of squares' load combination. This allows one 

to use the Rice (1944) distribution for the response maxima of each limit state during some event 

x.

The second level of the integral in Equation [7.1] can also be solved by FOR methods if the 

integral is first recast in a time invariant format. The method, due to Wen & Chen (1987), 

requires the unbounded integral be rewritten as a bounded integral with auxiliary limit state 

function h . This is done by introducing an auxiliary standard normal random variable ltp+1 such 

th a t

PF = j...jpf (x)f(x)dx = J... jf(u).f(u^,)duduptl [76]

Here, fi l l)  is the joint density in U-space, f[u p+^ is the standard normal density, and the 

auxiliary limit state function h is defined as

*(*• v / ) = v  ■ ' / ( ^ w ) ]  1771
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The term is the inverse cumulative standard normal/ and Pf {jT~1{u)j} is the conditional

failure probability for the event X  = In this case, T{x) is the Box & Cox (1964)

transformation followed by the eigenvector transformation/ as discussed in Ch. 4. The rhs of 

Equation [7.6] is now in a form which allows the use of the time invariant integration method 

discussed above to approximate the long term failure probability. Again, the solution is 

obtained by minimisation of the Euclidian distance (see Melchers 1987)

p 2 = up+j2 +uT.u subject to h(u,up+J} = 0 [7.8]

where the objective function is simply

p
0 2  _  .. 2 . V  . .  2

[7.9]P 2=Ur+l2+ 'L u/
i-t

The constraint - which is a function of the auxiliary variable Up+] and the conditional failure

probability Pj(T~J(u)} - can be used to reduce the problem to an unconstrained minimisation

giving

The minimisation of ft is very simple if a suitable optimisation program is available. For this 

work the NAg routine E04VDF was used successfully although CPU times were considerable on 

a 486 PC.

7 .13  BOUNDS ON THE INVERSE BOX MODEL

Written in its general form the objective function for the distance p  appears to be 

unbounded in tt-space, however, in practice the Box transformation introduces a set of indirect, 

model dependent, bounds in the y-space. Inverting the Box transformation we get

x . * 0

To obtain a real solution for X i we must satisfy two sets of inequalities for each variable y,-:

“ f t

2 1 1
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y, > - 7 / A,.; A ,> 0  
y. < -7 /A ,.;  Xi<0

These bounds on the vector y, in the multivariate normal space, are mapped into u-space 

through the linear transformation

see Ch. 4, Section [4.5]. This results in a set of simple bounds on u with the sign of the 

inequality determined by the sign of each Xr  Of course, if we had used a different 

transformation then the bounds would not be the same.

7.2 THE LONG-TERM JOINT DENSITY

The dominant load process for fixed offshore structures is normally wave induced and die 

majority of reliability assessments of offshore platforms use an environmental model of the 

load process in which the joint density f(x)  is given by the marginal extreme value

distribution of the seastate significant wave height f ( H t ) , and a series of conditional 

distributions .....  etc. This approach is often called a storm based

approach since an extreme value model is usually used for / ( / / , ) .  The method therefore

assumes an extreme in one of the other processes combined with a moderate significant wave 

height will not result in an out-crossing of the safe domain S. This is not the case for tension leg 

platforms in which the winds and tidal elevation play an important role in the platform 

responses.

The storm based method allows us to use a time independent approach owing to the use of an 

extreme value distribution. At this point the motivation for using an extreme value distribution 

should be noted. The integral in Equation [7.1] in fact corresponds to the population model / ( x), 
however, the target failure probabilities of offshore structural systems are generally so small 
(<10'3) that only the rare extremes contribute to PF. Since models fitted to population data are 

normally biased in the tails, where the most 'interesting' responses are occurring, extreme 

value, or threshold models are employed. However, this method is not suitable for compliant 

systems since their response maxima are determined by waves, winds, tide levels etc., and so a 

different approach is required to allow for the contribution of more than one load process.

[7.11]

278



cttgzeZ. Reliability analysis of a tension let platform

The multivariate analysis of the DB1 data, described in Ch. 4, gave a model of the joint 

distribution for the set XL =  {Hs,Tz,Uw,Uc}, whilst the directional analysis of the wind and

current data in Ch. 5 gave the distributions of the set X D For this reliability study

we add the yield strength of the tendons, X R — {<Ty} giving a complete set of 7 random 

variables x  = { x R , X L , X D } '  The long-term failure probability PF is then given by

Pf  = f j f >, ( x ) / ( x )dx = j j p / x ) '  f ( x „ ).f(xL) . f ( x Dw) .f ( x Dc)dx [7.12]
Vx Vx

Because of the multi-modality of the directional distributions for the winds, and currents, this 

integral is rewritten as

360 360 f  'I

PF =  j  \ f ( X D . ) - f { x D ' ) \ \ \ P A X ) f ( X * ) f ( X L ) d X \ d x I>*d X D '
o o Lvx’ J

The integral enclosed by brackets is the time-variant integral discussed above. It gives the 

failure probability conditioned on the wind and current direction; the total failure probability 

is then the weighted sum over all combinations of wind and current direction. For simplicity, 

the wind and current directions can be modelled as fully correlated and uniform on the circle 

[0 ,2n] .  The problem can then be simplified once more by using a discrete summation giving

-

pp = j j ' L
iml

This is read as the uniformly weighted sum of the time-variant probabilities for co-linear 

winds and currents approaching from directions Q.;i = ] ,N ■ The symmetry of the TLP structure

enables this integral to be further simplified and then written as

j j  f { u ) f { % t ) d u d u p f ,

which requires N/4 calculations of the time invariant integral. On the other hand if the 

relative directionality of the wind and current is to be modelled the single summation must be 

replaced by a weighted double summation. The weights might be taken as the normalised

values in a wind and current direction scatter diagram (Ch. 2 Table 2.13). The long-term failure 

probability is then given by
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p" = i L ' L ' L  w,  J J / K M ' w K ' V /
*{««)< 0

The problem with this summation is that we now require NM reliability optimisations 
which is computationally expensive.

This chapter examines the reliability of a tension leg platform using a simple set of limit 

state functions. The DB1 buoy information therefore allows us to model the wind and wave 

processes as stochastic, however, the currents must be modelled as constant during the three 

hours. During this event we must calculate the probability that the responses exceed the safety 

margins, Pf (x). The random load processes must therefore be transformed to response processes 

for each limit state in order to calculate the failure probability.

7 3  RETURN PERIODS FOR THE ENVIRONMENT AND RESPONSES

If the total failure probability PF has been calculated the chance of failure in any of the 

three hour duration events is known. During the life of the structure, TD (hours), the number of 

encounters will be TD / 3. Since it is acceptable to assume the events are independent, Bjerager 

et al (1988), the lifetime failure probability PfL is given by

PfL = I ^
since we assume only one event can lead to failure during the design life. If the design life is 50 
years then ^FL =  146100PF which means the target failure probability for a single seastate 

should be of the order of <10"^. Alternatively, we can define the life of a structure 

corresponding to some level of failure probability using TD =  3PFL* / PF.

7.4 FORMULATING MODELS FOR THE RELIABILITY ANALYSIS

Transformed normal distributions are required for all of the variables used in this 

reliability analysis. Providing the mean, variance, and lower bound are known it is possible to 

synthesise a model using simulation for any variable. Two example are given below for the 

tendon material yield strength and the JONSWAP shape parameter.

7.4.1 TENDON YIELD STRENGTH MODEL

The yield strength of a TLP's tendon material is generally determined during the design 

stage after having performed redundancy, strength and fatigue analysis. There seems to be no
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conventional wisdom for selecting the material properties, API RP2T (1987) gives no guidance 

other than the net section stress remains less than 80% of the yield stress Fy or 60% of the 

ultim ate stress Fmf whichever is less. In a recent study by Woo-Sun et al (1991), die mean 

ultimate strength was taken as 965 N /m m  which corresponds to high strength, low alloy steel 

like AISC A709; 100W. The use of such high strength material is questionable because fatigue 

damage is proportional to stress range cubed. This suggests a lower grade of steel is more 

appropriate. Bea et al (1992) for example reports on the 'Methodologies for Comparison of 

Alternative Production Systems' project undertaken in the USA in which the minimum yield 

strength was taken as 311 N/m m^ with a mean value of 345.9 N /m m ^ and standard deviation of

17.4 N/m m ^. This data is consistent with the values used by Lotsberg (1991), and has been used 

in this work to set the limit states of the tendons (Ch. 6, Section [6.1.1]).

The Weibull distribution is usually found to fit strength data well. Using Bea's (1992) data 

we have the lower bound (Ch. 3, Section [3.6]) = 311 N/m m ^, the mean £[<*,] = 345.9 N/m m ^

and the variance v[(7yj = [302.76 N /m m V . These data are sufficient to numerically solve for 

the shape Cw and scale Ofw parameters of a Weibull model, giving

0* ={< :„=  2.175, a w =40.537, = 577 .0}  [7.13]

To use this model in the reliability analysis it must first be converted into a transformed normal 

variate. This has been done approximately by simulation. A sample of 1000 Weibull random 

variables with shape, scale and location 0* were generated by inversion. The simulated 

sample of yield stresses was then transformed to approximately normal variates using the Box 

& Cox (1964) method, Ch. 4: Section [4.3.1]. This gave maximum likelihood shape and location
A A

parameters X = 1.39, and £ = -1.39 respectively, and a transformed sample with mean 0.46, and 

standard deviation 0.03. A comparison of the actual population, and the 'normal' model is 

shown in Fig. 7.3 which demonstrates the fit is good.

When estimating the transformed normal param eters for the material strength the 

transformation process failed to converge at the first attempt. Large numbers were identified as 

the cause which suggests the Box transformation is not scale invariant. The obvious solution 

was to introduce a scale param eter# in the Box transformation. The value can be chosen 

arbitrarily to avoiding including it in the likelihood maximisation. However, it should be 

noted the introduction of a scale parameter (X changes the density function. Writing x as the 

original variate and y as the transformed variate, the model for fix) becomes
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.  a ( a x  +  £ )
Act [7.14]

where {cTy ,/Xy are the standard deviation and mean value of the normally distributed

variate y and {(*,£, A} are the transformation parameters. A sensible value forCf is the 

square root of the maximum likelihood estimate of the sample variance

a 2 =  v M  =  - £ ( * . - £ M ) :
n i-i [7.15]

This re-scales the data x to have unit variance.

7.4.2 SPECTRAL SHAPE PARAMETER

The statistical uncertainty of the JONSWAP spectrum parameters was summarised in Ch. 

6, Section [6.1] where the mean value and standard deviation are given as E[y) = 2.65 and 

Oy = 1.166- In addition, we know the lower bound on 7  is 1.0 which corresponds to fully

developed seas. These three statistics are sufficient to estimate the shape and scale 

parameters of a Weibull model using the approach given above for the tendon material yield 

strength. The ’equivalent' Weibull model then has shape, scale and location 1.44, 1.87, 1.0, 

respectively. Taking these values as the population parameters we can simulate a sample and 

then find the maximum likelihood Box transformation parameters. The results are:

X  = 0.14

I  = -0.098

II;*>
=i 0.78

II 0.43

The Weibull population and transformed normal models are compared in Fig. 7.4.

7.5 MOTION THRESHOLDS

The lateral motion of the platform is made up of static and dynamic components. Static 

offset is induced by the wave drift, mean wind, and current forces, and dynamic offset is caused 

by first order wave, gusting wind, and second order wave effects. A feature of compliant
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offshore platforms is the need to restrict the lateral motions to within some threshold. In the 

case of a TLP the threshold is determined by the design of the tensioning system for the tendons, 

and risers; and, in the case of a semi-submersible the thresholds are generally determined by 

the moorings. A further limit on lateral displacements is imposed by the minimum clearance 

between the crest of an extreme wave, and the underside of the deck. This limit state becomes 

increasingly important as the water depth increases because the set-down effect increases 

linearly with water depth.

Without details of the tensioning system design it was not possible to identify the true 

thresholds on the lateral motions. Furthermore, no details of the still water deck clearance are 

given in Tan & de Boom (1981). Instead, for this work, an artificial threshold was defined as 

the sum of the 3 hour most probable maximum displacements due to the first and second order 

wave forces generated by the 50 year return period seastate (15.5 m) with zero current and wind 
speed. This gave a threshold of 35 m for surge and sway motions which is used in the parametric 

studies below.

7.6 JOINT DISTRIBUTION OF LOAD AND RESISTANCE VARIABLES

The joint distribution of the loading and resistance random variables X  = {xL,XR} in 

Equation [7.1] can be formulated using the results in Ch. 4, and the model for the tendon yield 

strength (7y. Since the loading and resistance are uncorrelated we can write the covariance 

matrix for X  as

0

o : -e*.

where the transformed variates y '  are given by the Box transformation:

* ’ = { ( * / +  S ) * - 4 / '1
[7.16]

The mean vector of the transformed variates is simply

giving a normal joint density for JC in y-space where

/ ( / )  = (2*)""2|xr"2« / > j - | ( y ' - / r ) j [7.17]
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this model is transformed to uncorrelated and standardised variates U using the eigenvector 

transformation in Ch. 4, Section [4.5] where

U =  (At£,A)‘" V (/ - f l r ) [7.18]

this gives the standard Normal model, N{u ; 0,1}.

In fact, if we examine the objective function Equation [7.10] and then consider how the 
optimisation of ft is performed, we see the density is never explicitly used. Starting the

optimisation at some point in l/-space, If*, the unconstrained optimisation algorithm chooses 

the direction of ’steepest descent' using a forward difference estimate of the gradient vector. 

Therefore, at each iteration we make 2N  + 1 evaluations of the objective function to solve

. The calculation of the failure probability Pf  for the current step point If,,

requires a complete frequency domain response analysis for the limit state. This process is 

repeated until the algorithm has satisfied some convergence criterion on the objective function.

For this work the NAg quadratic programming method was found to give a satisfactory 

convergence rate usually in less than 6 iterations - that is after making (~  6) * (2N + 1) calls to 

the routine that calculates the responses statistics.

7.7 SHORT-TERM STATISTICS: THE LOAD COMBINATION PROBLEM

The theory of stochastic load combination for the within seastate winds, waves and 

currents is a complex subject which is made more difficult when the response is non-linear. 

Madsen et al (1986) summarises the theory of linear stochastic load combination and discusses 

how problems can be formulated using simple rules for codified design. Non-linear, time- 

variant, analysis is examined by Wen & Chen (1987); and the International Ship Structures 

Congress included a special session on stochastic modelling, see Arm and et al (1991). Practical 

applications of the full theory tend to be limited to simple systems since the method is 

computationally expensive.

For our purposes the load combination problem is made as simple as possible. Each mean 

force is summed and then used to calculate the static offset response. The first order wave, wave 

drift, and wind force spectra are then used individually to calculate the response spectra for 

each limit state function. These response spectra are then summed giving the total response
284



ctw& 7 Reliability analysis of a tension let platform

spectra Sj ( / )  for each limit state i. These spectra are broad-banded with peaks located at the

modal wave frequency, and the structure natural frequency. By assuming the responses are 

linear broad-band, and Gaussian, the Rice distribution can be used to calculate the distribution 

of the response maxima. Denoting the normalised response amplitude of each limit state 

£  =  a / m”2, then the distribution of its response maxima is

/ ( ! | « * ) = V / - a >
P \  (  ~P ^

4 l - a  > cV 1- a
[7.19]

Here the regularity factor CC =  — £2, where £ is the bandwidth of the response; <p(.) is the

standard normal density; and <P(.) is the cumulative standard normal. The failure probability 

for the component corresponds to the probability that the limit state function will be negative 

during the event U =  T(x). In Ch. 6 the tendon limit states G{(x) are defined as the margin 

between the axial tensile and compressive capacities of the tethers. The compressive capacity 

is in fact independent of the material properties whereas the tensile capacity is dependent on 

the yield strength of the tendons. The failure probability is then given by

' J l - a 2
[7.20]

Here, the variance of the response m0, and the regularity factor a  are calculated from the 

response spectrum moments using the relationships:

m .

mm

= (2 n )" ' \ f ' .S ( f )d f  n = 0,1,2,.

1/2

[7.21]

The thresholds are determined for each limit state, for example, the compression limit state 

gives
* _* r , S 'r z - w  [7.22]$c =T0 + 8T(x)>8T{t;x)
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where T0 is the tendon pretension, 8T (x) is the mean increase in tendon tension for the 

seastate x = T~! (w), and 8T{t;x)  is the time varying tendon tension induced by the wind, 

drift, and wave processes.

For the tension limit state threshold we have

&  =  A ay- T a- 8 T ( x ) > 8T(t;x)  [7.23]

Here: A is the tendon cross sectional area; Oy is the random yield strength of the tendon 

material; and the statistics for the amplitudes of the dynamic tension 8T{t;x)  are modelled 

using the Rice distribution, see Equation [7.19]. The probabilities of not exceeding the tendon 

tension and compression thresholds £r ,£ c are then F (£ r ) and  / r(^c), respectively, for each 

encounter with a maximum in the process 8T(t;x).

During the seastate there will be on average N encounters. We require the probability that 

all encounters are less than the thresholds

Pr jf] Z j  K [7.24]

By assuming the maxima are all independent, we get

[7.25]

The expected number of encounters was estimated using the number of zero-up-crossings for the 

dynamic load process during the three hour seastate

Tz = 2n^m 0 / m2

N  = 3* 3600IT ,  17.26]

The probability of exceeding the threshold - which was our failure probability in Equation 

[7.1] - can then be estimated by
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P,(x = T-'(uj) = l - F " ( Z i) 17-27]

This value corresponds to Pfix) in Equation [7.1] and is evaluated several times during the 

optimisation for the distance.

7.8 SENSITIVITY STUDIES

The sensitivity of the w ithin seastate failure probability Pf {x) to changes in the

environmental random variables was examined for the tendon stresses and surge motion. In the 

examples given below the zero-up-crossing period was increased from 6.00 to 11.0 (s) and the 
significant wave height was taken as the most probable value (conditioned on the Tz ) using

H, =  0.1632TZ2

This simplified model was determined by visually fitting a quadratic to the contours of the 

{ / / , ,  Tz } kernel density plot in Ch. 4. It is not recommended as a general rule.

The effect of changing the spreading model, wind speed, and spectral shape is discussed
i

below. -£•
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7.8.1 WINDS AND CURRENTS

The wind and current loads were compared in Ch. 6 where it was shown gusting wind forces 

are significantly larger than the steady current forces. The influence of wind force on the 

threshold exceedance probabilities is shown in Fig. 7.5. Note how the higher wind speeds 

reduce the failure probability for the compression limit state by increasing the mean tendon 

stress. The effect on the tension limit state is adverse with high wind speeds contributing 

significantly to the exceedance probabilities.

7.8.2 SPECTRAL SHAPE PARAMETER

The sensitivities of the threshold exceedance probabilities to spectral shape are 
illustrated by Fig. 7.6. The y  =1 case corresponds to a fully developed sea, and the y  =5 case

corresponds to a fetch limited sea with a narrow-band spectrum. The largest surge responses 

occur in fully developed seas in which there is a larger amount of energy in the drift force 

spectrum at low frequencies near the natural frequencies of the structure in surge, sway and yaw.

7.9 DESIGN EVENT SEASTATE RESPONSES

In ch.4 the marginal extreme wind speed, current speed, and significant wave height 

were estimated using both population and monthly maxima models. As a result the 50 year 

return period design event environmental variables were defined as:

significant wave height Hs 15.02 m

wind speed Uw 33.0 m/s

current speed Uc 1.0 m/s

These values are close to the Department of Energy (1990a) recommended values. In a design 

event analysis the winds, waves and currents would be assumed to act colinearly and 

simultaneously. The range of wave zero-up-crossing period associated with the design event Hs 
is usually determined by the maximum, and minimum wave steepness observed around the 

British Isles, ie

3.2 (Hs)Al /2  < Tz < 3.6 (Hs)Al/2

For the 50 year return period wave height this gives a range of 12.5 to 14.0 seconds so these 

values were used as the upper and lower bounds for the Design Event analysis of the TLP model 

developed in Ch.6.
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7.9.1 MOTIONS

The motion and tendon stress responses of the TLP were calculated far colinear winds, 

waves, and currents using a JONSWAP spectrum with shape factor of 3.3. A zero degree heading 

was used. The results are summarised in Table 7.1. The time varying response statistics for the 

combined wind, drift, and first order wave forces were calculated using a 'sum-of-squares' 

approach ( which corresponds to the sum of independent normal time series ). In uni-directional 

waves this gives a combined three hour most probable maximum ( mpm ) offset of 50.1m in the

12.5 second period sea, and 45.0m in the 14.0 second sea.

7.9.2 TENDON STRESSES

The 3 hour mpm combined tendon stresses have also been calculated for the 12.5 and 14.0 

second periods, again in JONSWAP seas with a gamma of 3.3. The stresses for the 12.5 second 

case have a 3 hr mpm of 101.3 N /m m 2 and the stresses for the 14.0 second case were 106.0 

N/mm2.

7.10 CALCULATION RETURN PERIOD RESPONSES FROM THE RELIABILITY ANALYSIS

The American Petroleum Institute recommended practice for TLP design stipulates the 

responses be calculated to have a return period of 100 years. This compares with the 

Department of Energy (1990a) who specify the environmental parameters be designed to have a 

return period of 50 or 100 years.

If a variable X has a return period of 50 years and we have observed it every 3 hours 

there will be a total of 146100 observations in the 50 years and, on average, one of these will 

have exceeded some value X 50' Assuming the events are independent and identically 

distributed - and in fact Bjerager et al (1988) has shown using Markov dependence between 

seastates that the effect of correlation between seastates is not important - the probability of 

exceeding the level X 50 in any one event will be Pe50 — 6.8446 * 1 0 .

The probability of a response exceeding a threshold Xj can then be calculated using the 

time-variant reliability methods discussed earlier. As an example, the 50 year return period 

compression stress with exceedance probability Pe50 can be calculated by setting some 

threshold level and then using the time-variant reliability method to calculate the 

probability of exceeding the level. The process is then repeated several times using higher 

thresholds to build a picture of the variation of exceedance probability. Then having obtained
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a sufficient number of points the threshold with exceedance probability Pe =  Pe^  can be found 

by simple interpolation.

7.10.1 SURGE MOTIONS

Ten surge motion thresholds were examined with values ranging from 10m to 100m. A 

time-variant reliability analysis was then performed for each threshold in which the winds, 

waves, and currents were assumed to be colinear. The joint probability model was based on the 

multivariate normal, Box-transformed, distribution with the parameters taken from Ch. 4 

Table 4.9. The JONSWAP spectrum was used with a gamma=3.3 and a single wave heading 

angle of zero degrees was analysed.

The beta distance and exceedance probabilities for each level of threshold are shown in 

Fig. 7.7. The beta distance varies almost linearly with increasing motion threshold and the 

exceedance probability varies exponentially. The level of surge response with a return period of 
50 years, ie Pe5Q=6 .8446x10"^, is 35.0m in the unidirectional sea. These values are compared

with the design event results in Table 7.2 where the figures in brackets indicate the percentage 

reduction over the design event surge motions.

7.10.2 TENDON STRESSES

The variation of exceedance probability for a range of tendon stress thresholds is shown 

in Fig. 7.8 . Interpolating from the graph we get a 50 year return period stress of 102N/mm2 in 

the uni-directional sea. These values are compared with the upper and lower zero-up-crossing 

period design event results in Table 73. Note in this case the time-varying component of the 

tension in the tendons is so small compared to the pre-tension it does not show a signoficant 

change from the design event stress obtained using the 12.5 and 14.0 second zer-up-crossing 

periods. In a future study using this model the tendons need to be re-designed with smaller cross- 

sectional area.
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7.11 CONCLUSIONS

A new level m  method has been developed for the calculation of reliability/ based on the 

transformed normal method outlined in Ch. 4. In this new method the data are transformed to a 
normal model whereas in the conventional Rosenblatt transformation method the model fitted 
to the data is transformed. In most cases the Rosenblatt transformation requires a set of 

num erical integrations which are time consuming/ in addition/ it usually means the 

transformation must be defined in a subroutine which is compiled and then linked to the a main 

program. The new method on the other hand makes this step redundant and furthermore is 

simple to implement in a generalised computer code.

The time-variant reliability calculation can be converted to a time-invariant calculation 

by introducing an auxiliary random variable into the standard normal joint density for the 

loading and resistance. This conversion allows us to use the simple 1)613' optimisation method 

to approximate the solution of the survivor probabilities for sets of threshold or limit state 

functions.

The sensitivity studies indicate the importance of spectral shape, directional spreading, 

and wind speed for this type of structure. Current forces on the other hand are small for TLP's - 

but it should be noted they are significant for jacket structures. The responses of the TLP were 

largest in fully developed seas, with no directional spreading. Wind gusting forces and second 

order drift forces have the same order of magnitude for this structure and are both some 25 -  

30% of the first order wave force.

A time-variant reliability analysis has been performed on the tension leg platform 

specified in Ch. 6 using the statistical models of the DB1 environmental data described in Ch's 

3,4, and 5. The transformed normal multivariate model for the joint density of the winds, waves 

and currents was used successfully with the new method and, when used with a good non-linear 

optimiser, was very efficient. Generally, the number of within seastate analyses performed for 

each optimisation for the beta distance was given by (4~8)*(2N+1) where N is the number of 

variables. For this work N = 4 -  5 and the solution of the within seatstate statistics took some 

30-40 seconds. This gave run-times of up to

10*(8*(2*5+1)) * 40 sec. = 35200 seconds

for each threshold run in which ten optimisations were performed to obtain the variation of 

survivor probability for a range of thresholds.
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The new reliability method has been used to calculate survivor probabilities for a range of 

motion and tendon stress thresholds. This enables the levels of motion, or stress, corresponding 

to a given exceedance probability, like the 50 year return period value, to be calculated by 

interpolation. These values have been compared with the results from a notional design event 

approach in which the motions and stresses corresponding to concurrent 50 year winds, waves 

and currents are calculated. The comparisons show that if the return periods are specified on 

the responses and not the environmental parameters then the motions and stresses in the 

tendons are reduced by 15-25%. The level of reduction is dependent on the threshold type, ie 

motion or stress, and the number of variables that are treated as random. In this work the 

relative directionality of the winds, waves and currents was ignored. It is likely their inclusion 

in the model would lead to further reductions.
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significant wave height 15.02 15.02 m

zero up-crossing period 12.5 14.0 s

wind speed 33.0 331) m /s

current speed 1.0 ID m /s

steady wind forces 1.31 131 MN

steady drift forces 0.505 035 MN

current farces 5.95 5.95 MN

resultant steady forces 7.76 7.71 MN

resultant steady offset 22.9 223 m

resultant steady setdown 0.617 0.60 m

tendon pretension 85.0 853 N/mm2

change in tendon tension caused by steady forces 3.6 a4 N/mm2

wind motion in x-direc

standard deviation 6.62 6.62 m

zero up-crossing period 104.3 1043 s

significant amplitude 13.24 1324 m

drift motion in x-direc

standard deviation 7.12 4.9 m

zero up-crossing period 97.3 973 s

significant amplitude 14.2 93 m

first order wave motions in x-direc

standard deviation 1.9 22 m

zero up-crossing period 15.8 173 s

significant amplitude 3.8 4.4 m

combined wind, drift, and wave

significant amplitude 19.8 17.1 m

Table 7.1 TLP surge responses for colinear 50 year return period winds, waves, and currents. Uni­

directional, 0 degree heading waves, JONSWAP sea with gamma = 3.3 and zero crossing 

periods of 12.5 and 14.0 seconds
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surge motions (m)

wave 

z.c. period

design wave approach joint probabilities

long crested long crested

12.5 50.1

[30%] 35

14 45

[22%]

Table 7.2 Comparison of design event and reliability method surge 
motions in short crested and lone crested seas

tendon tensions (N/mm2)

wave design wave approach joint probabilities approach

z.c. period long crested long crested

12.5 101

[-t%] 102

14 105

[3%]

Table 7.3 Comparison of design event and reliability method tendon 
stresses in short crested and long crested seas

Note the small percentage differences are due to the pre-tension being 
much larger than the dynamic stress component
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wind process uw / ---- \

wave process hs

t - T T r v r h r r h
current process uc

i r h r m - T h r h r

uw stochastic process .  „ «

time
hs stochastic process
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r/vr time

uc random variable

time

structural system 
fillers tie forcing 
function of the ith 
seastate to give 
generally non­
linear responses

failure threshold

response process

Figure 7.1 Idealisation of the slow and fast random variables and 
processes for an offshore structure reliability calculation
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failure domain 
G(X)< 0

contours of joint density
fLXl

seasaogg

failure domain 
G(U)< 0

standardised
resistance
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standardised load

circular contours of standardised
normal joint density
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Figure 7.2 Safe dom ain, failure dom ain and joint density for a 
system  w ith one load and one resistance random  variable: in 
basic space (top); and transformed Norm al U - space (bottom).
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7.8.1 WINDS AND CURRENTS

The wind and current loads were compared in Ch. 6 where it was shown gusting wind forces 

are significantly larger than the steady current forces. The influence of wind force on the 

threshold exceedance probabilities is shown in Fig. 7.5. Note how the higher wind speeds 
reduce the failure probability for the compression limit state by increasing the mean tendon 

stress. The effect on the tension limit state is adverse with high wind speeds contributing 

significantly to the exceedance probabilities.

7.8.2 SPECTRAL SHAPE PARAMETER

The sensitivities of the threshold exceedance probabilities to spectral shape are 
illustrated by Fig. 7.6. The y  -1 case corresponds to a fully developed sea, and the y  =5 case

corresponds to a fetch limited sea with a narrow-band spectrum. The largest surge responses 

occur in fully developed seas in which there is a larger amount of energy in the drift force 

spectrum at low frequencies near the natural frequencies of the structure in surge, sway and yaw.

7.9 DESIGN EVENT SEASTATE RESPONSES

In ch.4 the marginal extreme wind speed, current speed, and significant wave height 
were estimated using both population and monthly maxima models. As a result the 50 year 
return period design event environmental variables were defined as:

significant wave height Hs 15.02 m

wind speed Uw 33.0 m/s

current speed Uc 1.0 m/s

These values are close to the Department of Energy (1990a) recommended values. In a design 

event analysis the winds, waves and currents would be assumed to act colinearly and 

simultaneously. The range of wave zero-up-crossing period associated with the design event Hs 

is usually determined by the maximum, and minimum wave steepness observed around the 

British Isles, ie

3.2 (Hs)Al/2  < Tz < 3.6 (Hs)Al/2

For the 50 year return period wave height this gives a range of 12.5 to 14.0 seconds so these 

values were used as the upper and lower bounds for the Design Event analysis of the TLP model 

developed in Ch.6.
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CONCLUSIONS

Probabilistic methods can be used to assess the reliability of complex structures providing 

accurate and sufficient models of the random variables are available. This thesis defines some 

tools for synthesising models from measured data and from the work undertaken the following 

conclusions can be drawn.

The DB1 wind, wave and current data can be treated as unstructured in the statistical sense 

for the multivariate modelling. The only evidence of structure appears in the significant wave 
height and zero-up-crossing period density. This is the result of the breaking wave criterion. 

Furthermore marginal kernel density estimators show no evidence of bimodality or mixing of 

different statistical populations in the modal region or indeed for moderately large values. 

This suggests a population modelling approach is reasonable, providing the correct tail 

behaviour can be guaranteed by the use of a suitable population model.

The desirable characteristics of a good estimator were stated as: consistency, sufficiency, 

low bias, low sampling variance, reliability, and simplicity. Maximum likelihood is an 
optimal estimator in the large sample case (>100) and can be used with population data and 
extreme value data. ML estimates of a model's parameters are efficient with low bias and the 
parameter variance is close to the optimum attainable from any estimator. The method can 
easily be generalised to the multivariate case and the parameter uncertainty can be deduced 
directly from the Information matrix if the ML solutions can be found.

Both Weibull and GEV population and monthly maxima models have been compared as 

estimators of return period values. Both the population and monthly maxima models gave the 

worst results for the significant wave height with the Weibull model underestimating and the 

GEV model overestimating the value. By comparing only the return period estimates it is not 

clear if the population method or the extreme value method results in the lowest modelling 
uncertainty. However, if the model parameter uncertainty is included in the comparison it is 
dear the population approach results in an estimator with much lower statistical uncertainty. 

This suggests that the population modelling method is best when only a few years of data are 
available - providing the correct model can be found.

The Box and Cox transformation is powerful enough to transform even highly non-normal 

data. Furthermore the shape and location parameters respond strongly to the skewness and 

kurtosis in the data.
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This ensures the models are capable of modelling the extremes since these moments are 

dominated by the tails of the data. The population model has been assembled from a mixture 

of ML parameters obtained from the marginal, bivariate,and multivariate datasets. The 

criterion used for selecting the best set of transformation parameters has been the accuracy with 
which the resulting population model can predict the marginal 50 year return period values. 

This study shows the population models obtained from the application of likelihood theory 

are accurate even for the 50 year return period values. Furthermore, the general structure of the 

fitted model matches the behaviour seen in the scatter plots given in Ch. 2.

The transformation of the data to a normal model has considerable advantages when used 

in level III reliability studies. Most important is that it makes the Rosenblatt transformation 

redundant. Second is that the method is simple to implement and, when used with a good non­
linear optimiser, is very efficient. Overall the transformation approach has several 

advantages over the conventional methods summarised in the introduction to the thesis.

Measures of location, spread, skewness and kurtosis have been taken from the work of 
Mardia and applied successfully to the DB1 directional wave data. These data were then used 
to develop a regression model for the frequency dependent - second moment estimate - cosine 
model spreading powers and von Mises model concentration parameters. The models are largely 
in agreement with the Hasselmann study results - despite their use of the average of the first 
and second moment estimates for the cosine spreading power. The major differences are either 
side of the spectral peak where this study predicts a slower increase in the directional width.

For design it is suggested that the spreading power be taken as frequency independent and 

that the results at the spectral peak be used for the whole range of f/fm. The results at the 
spectral peak show considerable scatter which has been modelled by fitting a Weibull 

distribution to the observed values. The result has a lower bound of 1.2 a modal value of 4.6 and 

a mean of 17.7. It is suggested the effect of this variability be examined at a later date by 

including the uncertainty in a reliability analysis.

The use of circular statistical methods is equally valid for describing the long-term 
directional distributions of the winds, waves and currents. A method based on the use of 

Fourier-Steiltjes series is presented which enables multimodal directional distributions to be 

described using only a few terms from the characteristic function.

A new level III method has been developed for the calculation of reliability, based on the

transformed normal method outlined in ch. 4. In this new method the data are transformed to a
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normal model whereas in the conventional Rosenblatt transformation method the model fitted 

to the data is transformed. In most cases the Rosenblatt transformation requires a set of 
numerical integrations which are time consuming, in addition, it usually means the 

transformation must be defined in a subroutine which is compiled and then linked to the a main 

program. The new method on the other hand makes this step redundant and furthermore is 

simple to implement in a generalised computer code.

The time-variant reliability calculation can be converted to a time-invariant calculation 
by introducing an auxiliary random variable into the standard normal joint density for the 

loading and resistance. This conversion allows us to use the simple 'beta' optimisation method 

to approximate the solution of the survivor probabilities for sets of threshold or limit state 
functions.

The sensitivity studies indicate the importance of spectral shape, directional spreading, 
and wind speed for this type of structure. Current forces on the other hand are small for TLP's, 
but it should be noted they are significant for jacket structures. The responses of the TLP were 

largest in fully developed seas, with no directional spreading. Wind gusting forces and second 
order drift forces have the same order of magnitude for this structure and are both some 25 -  
30% of the first order wave force.

A time-variant reliability analysis has been performed on the tension leg platform 
specified in Ch. 6 using the statistical models of the DB1 environmental data described in Ch's 
3,4, and 5. The transformed normal multivariate model for the joint density of the winds, 

waves and currents was used successfully with the new method and, when used with a good non­

linear optimiser, was very efficient The new reliability method has been used to calculate 

survivor probabilities for a range of motion and tendon stress thresholds. This enables the 

levels of motion, or stress, corresponding to a given exceedance probability, like the 50 year 

return period value, to be calculated by interpolation. These values have been compared with 

the results from a notional design event approach in which the motions and stresses 
corresponding to concurrent 50 year winds, waves and currents are calculated. The comparisons 

show that if the return periods are specified on the responses and not the environmental 

parameters then the motions and stresses in the tendons are reduced by 15-25%. The level of 

reduction is dependent on the threshold type, ie motion or stress, and the number of variables 

that are treated as random. In this work the relative directionality of the winds, waves and 
currents was ignored. It is likely their inclusion in the model would lead to further reductions.
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FUTURE WORK

The 50 year return period estimate of significant wave height obtained from fitting a GEV 

model to the monthly maxima is inaccurate and has a negative lower bound. The cause is the 
attraction to a lower bounded FT-II ( Frechet ) model which has a long upper tail. Two 

additional constraints in the likelihood optimisation may result in an improvement. The first 

is to restrict the lower bound to be greater than or equal to zero which effectively constrains to 
the model to be either an FT-I ( Gumbel) or FT-III ( Weibull) model; the second is to constrain 

the lower bound to be zero or positive. This should be examined in a future study.

The kernel densities used for this study were of the simplest type. Improved estimates can 
be obtained by using adaptive kernels in which the degree of smoothing is adjusted to the local 

density.

The multivariate model for the winds, waves, and currents has been treated as unstructured. 
The major problem with this approach is that the joint distribution for significant wave height 
and zero-up-crossing period is influenced by the breaking wave limit for steep waves. Ideally 
the model should be improved to allow for this behaviour, perhaps by using alternatives to the 
Box and Cox transformation or alternatively by using a structured likelihood.

The directional wave models are based on fitting parametric forms to the circular moments 
at each frequency. This could be improved by fitting a parametric model to all frequencies in 

one optimisation. The robustness aspects of the model are also worth detailed study using 
simulation.

The response analysis of the TLP is essentially a simple linearised solution which probably 
underestimates the non-linear response of for example the tendon stresses. It would be useful if 
the work could be extended to include a more sophisticated stochastic linearisation in which 

the seastate parameters are taken into account or alternatively if a quadratic programming 

method could be used.
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