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Summary

This research work is mainly concerned with the service and ultimate load 

behaviour of reinforced concrete slabs and deep beams designed using nonelastic

stress fields. The nonelastic stress fields, at design ultimate load were determined 

using a finite element procedure using uncracked stiffness, along with von Mises 

yield criteria. The orthogonal reinforcement was provided based on Wood-Armer

and Nielsen—Clark yield criteria, respectively for slabs and deep beams.

The experimental study consisted of six simply supported slabs, two of which were 

additionally supported by a column in the middle and two simply supported deep 

beams with different span depth ratios. The first and the third slab were designed 

using 70 and 30% of plasticity stress distribution whereas the rest of the models

were designed using 100% plasticity stress distribution. The major parameter varied

was the levels of plasticity to observe their effect on the behaviour of the 

structures studied.

A  nonlinear finite element program based on plate bending layer approach for slabs 

and inplane formulation for deep beams was used to study the behaviour of the 

designed models. The steel is modelled as embedded and smeared and assumed to 

be elastic perfectly plastic or with allowance for strain hardening. Kupfer— Hilsdrof 

criterion was adopted as the failure criterion for concrete. Smeared crack approach 

was used to account for the development of concrete cracks. Good agreement 

between experimental and numerical results was obtained.

Results indicate that all the models designed by this method showed, when tested, 

satisfactory behaviour both at service load and ultimate load. Both deflections for 

slabs and crack width for slabs and deep beams were within acceptable limits at 

service loads. All the models failed in a ductile manner with cracks spread over 

the structure. For all the models the failure load was above the design ultimate 

load.

It is concluded that the proposed design procedure produces a natural smoothing 

out of the stress peaks, leading to a reasonably uniform steel distribution over the 

slab avoiding congestion in the critical areas of slabs, which is desirable in practice. 

For simply supported deep beams it appears that no significant redistribution of 

stresses takes place and the use of elastic stress field in the design is sufficient.

A  nonlinear procedure which treats reinforced concrete as an elasto— plastic 

material is developed. This is applied to the analysis of inplane and plate bending 

problems. The results appear encouraging.
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Notations

M a jo r symbols used in  the  t e x t  are l i s t e d  below.  Others a re  d e f i n e d  

when t h e y  f i r s t  appear.

( a ) Flow v e c t o r .

{ ab ) Flow v e c t o r  f o r  p o s i t i v e  y i e l d  s u r f a c e .

( a t ) Flow v e c t o r  f o r  n e g a t iv e  y i e l d  s u r f a c e .

Ac Area  o f  co n cre te  s e c t i o n .

Ai The e q u iv a l e n t  a re a  o f  s t e e l  o f  i t b  l a y e r .

As Area o f  s t e e l  in  the l o n g i t u d i n a l  d i r e c t i o n .

AX , Ay Area o f  s t e e l  in  x and y d i r e c t i o n s  r e s p e c t i v e l y .

b Sect  ion b r e a t h .

bs Body f o r c e s .

[B] S t r a i n  m a t r i x

[Bf ] S t r a i n  m a t r i x  a s s o c ia t e d  w i t h  f l e x u r a l  d e fo r m a t io n

[Bp ] S t r a i n  m a t r i x  a s s o c i a t e d  w i t h  in p lan e  d e fo rm a t io n .

[Bs ] S t r a i n  m a t r i x  a s s o c ia t e d  w i t h  shear d e fo r m a t io n .

c l> c 2 C o e f f i c i e n t  f o r  t e n s io n  s t i f f e n i n g .

D F l e x u r a l  s t i f f n e s s  per  u n i t  w id th .

[D] E l a s t i c i t y  m a t r i x  f o r  any m a t e r i a l .

[D* ] In s tan tan eo u s  e l a s t i c i t y  m a t r i x .

[DcrJ R i g i d i t y  in p la ne  m a t r i x  f o r  cracked c o n c r e te .

[Be p] E l a s t o - p l a s t i c  s t r e s s - s t r a i n  m a t r i x .

d E f f e c t i v e  depth.

dn Depth o f  n e u t r a l  a x i s .

{dj  } d isp lacement  v e c t o r .

E Young's modulus.

Ec Young's modulus o f  c o n c r e te .

Ei In s tan tan eo us  Young's modulus fo r  co n c r e te .

Es Young's modulus o f  s t e e l .



Ex , Ey Young's modulus in  X and Y d i r e c t i o n s  r e s p e c t i v e l y .

f c ' C y l i n d e r  compressive s t r e n g t h  o f  c o n c r e t e .

f cc In t e r m e d i a t e  y i e l d  s u r fa ce  s t r e n g t h  o f  c o n c r e t e .

f cu Cube s t r e n g t h  o f  co n c re te .

f d Equ i v a l e n t  b i a x i a l  compressive s t r e n g t h  o f  c o n c r e te .

f t  T e n s i l e  s t r e n g t h  o f  c o n c re te ,

f y  Y i e l d  s t r e n g t h  o f  s t e e l .

{F } V e c t o r  o f  nodal fo rces  in  the c a r t e s i a n  c o o r d in a t e  system.

{F 1} V e c to r  o f  nodal fo rces  in  the lo c a l  c o o r d in a t e  system ( n , t ) .

C Shear modulus.

H S t r a i n  h ard en in g  parameter  f o r  s t e e l .

I c r  Second moment o f  a rea  o f  a c racked s e c t i o n .

I e f f  E f f e c t i v e  second moment o f  a rea  o f  a s e c t i o n .

I g  Second moment o f  a rea  o f  gross c on c re te  s e c t i o n

( s t e e l  n e g le c t e d )

[K] S t i f f n e s s  m a t r i x .

Lx Length o f  the member in  X d i r e c t i o n .

Lx Length o f  the member in  Y d i r e c t i o n .

m R a t i o  o f  t e n s i l e  to compressive s t r e n g t h s  o f  c o n c r e te .

M Bending moment a t any s tage o f  lo a d in g .

Mc r  C rac k in g  moment.

Mn , Mt , Mnt A p p l ie d  moment components at a p o in t  in  the lo ca l  

c o o r d in a t e  system ( n , t ) .

Mx , My, MXy  A p p l ie d  moment components a t a p o in t  in  the c a r t e s i a n  

c o o r d in a t e  system.

Mx , My Design moments in  X and Y d i r e c t i o n s  r e s p e c t i v e l y .

Mp P l a s t i c  moment.

M1 , M2 P r i n c i p a l  moments.

N t o t a l  number o f  node p o i n t s .

Nj Shape f u n c t i o n  a s s o c ia te d  w i t h  node i .

Nx , Ny, NXy A p p l ie d  inp la ne  fo rces  at  a p o in t  in  the c a r t e s i a n



c o o r d in a t e  system.

P A p p l ie d  load .

Pc r  F i r s t  c r a c k i n g  load .

P^ Design  load .

Ps c r  Load at a c rack  w id th  o f  0 . 3  mm.

PS(j Load a t the  l i m i t  s e r v ic e  d e f l e c t i o n .

Pu U l t i m a t e  load .

Py Load a t f i r s t  y i e l d  o f  s t e e l ,

q I n t e n s i t y  o f  the u n i fo rm  d i s t r i b u t e d  load .

Qx» Qy Shear fo rc e  components in  c a r t e s i a n  c o o r d i n a t e .

S Loaded s u r fa c e  a r e a .

Sx , Sy E f f e c t i v e  shear moduli  in  the x and y d i r e c t i o n s .

[T]  T r a n s f o r m a t io n  m a t r i x  f o r  c racks ,

t P l a t e  t h ic k n e s s .

AU The t o t a l  i n t e r n a l  s t r a i n  energy.

AV The t o t a l  e x t e r n a l  energy.

u, v ,  w D isplacem ents at  a p o in t  in  X , Y , Z  d i r e c t i o n s  r e s p e c t i v e l y .

U q  , V 0 , W 0 Displacements at  a p o in t  in  a r e f e r e n c e  p la n e  o f  a p l a t e  

X, Y,  Z R e c ta n g u la r  c a r t e s i a n  c o o r d in a t e s ,  

x ,  y ,  z  c o o r d in a t e s  a t  a p o in t  in  X, Y, Z system.

Zf  D is ta n c e  from the re fe r e n c e  p lane  to  c e n t r e  o f  the i **1

l a y e r .

0 Shear r e t e n t i o n  f a c t o r .

B Shear r e t e n t i o n  f a c t o r  at c r a c k i n g  s t r a i n  o f  c o n c r e t e .

dX P l a s t i c  m u l t i p l i e r .

y  Area shear f a c t o r .

7xz» 7yz  Shear s t r a i n  components in  the c a r t e s i a n  c o o r d in a t e s .

{5} Nodal d isp lacement  v e c t o r  in the c a r t e s i a n  c o o r d i n a t e s .

ec r  Crack  s t r a i n  o f  c o n c r e t e .

E l a s t i c  s t r a i n .



cp P l a s t i c  s t r a i n .

cpk Peak s t r a i n .

{ € f } S t r a i n  v e c t o r  a s s o c ia t e d  w i t h  f l e x u r a l  d e f o r m a t io n s .

{ £g} S t r a i n  v e c t o r  a s s o c ia t e d  w i t h  shear d e fo r m a t io n s .

€x , €y, y Xy  S t r a i n  components in  the  c a r t e s i a n  c o o r d i n a t e s .

eys Y i e l d  s t r a i n  o f  s t e e l .

$ , 1 7  Local  c o o r d in a t e  system.

6 Angle o f  the p r i n c i p a l  p la n e .

6c r  Angle o f  c ra c k  w i t h  respect  to  X a x i s .

0X , 8y R o t a t io n s  about x and y a x is  r e s p e c t i v e l y .

6n , R o t a t i o n s  about n and t a x is  r e s p e c t i v e l y .

u P o is s o n 's  r a t i o .

{<j} S t ress  v e c t o r .

{ cr0 } I n i t i a l  s t r e s s  v e c t o r .

<j S t r e s s  at  a p o i n t .

Aoj The i **1 in crem enta l  s t r e s s  at  a p o i n t .

ooct  The o c ta h e d r a l  s t r e s s  at  a p o i n t .

<Jn Normal s t r e s s .

Op The peak s t r e s s .

o x > CTy, a Xy  S t re s s  components in  a c a r t e s i a n  c o o r d in a t e s .  

o 1 , a 2 The p r i n c i p a l  s t r e s s e s .

Txy» Txz> Tyz s^ear  s t r e s s e s  in xy,  xz ,  yz planes  r e s p e c t i v e l y .

C urva tu re  r a t i o  d e f i n i n g  d u c t i l t i t y  demand.

Cy^ Cy C u rv a tu re  at  y i e l d  and at  u l t i m a t e  c a p a c i t y  o f  the s la b  

respect  i v e l y . 

px , py S t e e l  r a t i o s  in  X and Y d i r e c t i o n .

$ Re inforcement bar  d ia m e te r .

$x , <t>y T ra n s v e r s e l  shear r o t a t i o n s  in  the XZ and YZ p lanes

respect  i v e l y .

$1 ,  <t>2 Red u ct io n  f a c t o r  r e l a t e d  to  Ig  and I c r  r e s p e c t i v e l y .



Chapter 1

Introduction

Reinforced concrete slabs and deep beams find extensive applications in

engineering practice. Slabs are used as floors and roofs of buildings, and as bridge 

decks to carry traffic loads. Their main function is to transmit loading acting 

normal to their plane. Deep beams appear frequently in complex structures in the

form of transfer girders, foundation walls etc. They are loaded in their plane in

which shear is adominant feature.

Present design procedure of reinforced concrete structures is based on limit state 

concepts. These concepts ensure that a structure has a suitable factor of safety

against failure, and in addition, it is serviceable when subjected to its design 

working load. According to limit analysis, it is generally difficult to calculate the 

exact value of limit load of a reinforced concrete structure. The methods in use 

give either:

i— a stress distribution not violating the yield criterion and satisfying equilibrium 

with the external load and the prescribed boundary conditions. A  stress distribution 

such as this is denoted safe and statically admissible stress distribution. The load 

corresponding to this stress distribution will always be less than or equal to the 

true collapse load of the structure, hence the name lower bound solution. 

Hillerborg's strip method and direct design method are of this nature.

ii— a valid collapse mechanism compatible with the boundary conditions of the



structure so that the internal dissipation of energy on yield lines must be equal to 

the work done by the external loads. The load corresponding to this collapse 

mechanism will always be greater than or equal to the true collapse load, thus the

name of upper bound solution. The true collapse load corresponds to the collapse

mechanism giving the least load. Yield line methods for slabs and deep beams fall 

in to this category. Further details of the methods is the subject of the next 

chapter.

Modern limit state design specifications require designers to consider the behaviour 

of a structure as it reaches its limit of resistance, which includes nonelastic 

response in most cases. To produce designs that account for this behaviour requires 

the use of either conventional elastic analysis supplemented by semi— empirical or 

judgemental allowances for nonlinearity, or more advanced methods of analysis.

The object of the present study is to explore the possibility of using nonelastic 

stress fields in the direct design of reinforced concrete slabs and deep beams. The 

direct design method is described in chapter three. The finite element method, 

which is the object of chapter four, was used to design and analyse the models.

Nonlinear analysis of reinforced concrete slabs and deep beams was carried out

usings layer approach by considering material nonlinearities as presented in chapter 

five. The details of the test set— up and material properties for the tested models 

are given in chapter six. Generation of nonelastic stress fields and design of slab 

and deep beam models tested are described in chapter seven. The behaviour of the 

models, at service and ultimate load, both experimentally and numerically based on 

nonlinear finite element analysis, are examined in chapter eight. The possibility of 

treating reinforced concrete as an elasto— plastic material obeying Wood— Armer and 

Nielsen— Clarck yield criteria for both plate bending and inplane problems, 

respectively, is the object of chapter nine.
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Chapter 2

Analysis and Design of Slabs and Deep Beams

2.1 Introduction:

In practice, loads to which a structure will be normally subjected to, with in 

certain bounds  ̂ are normally known. Design consists of finding the stress 

distribution in the structure for the concrete section and calculating the required 

reinforcement steel area. The stress distribution in any structure is dependent 

upon the geometry, loading, boundary condition and the state of the material in 

the structure, whether elastic or plastic. Accordingly the analysis and design 

methods can be classified into two main categories, viz: elastic and plastic 

methods of analysis and design.

The purpose of this chapter is to discuss the basis of the methods used for the 

analysis and design reinforced concrete slabs and deep beams.

2.2 Elastic Methods of Analysis:

In these methods, classical elasticity theory (s. used to obtain the stress 

distribution.



2.2.1 Elastic Methods of Analysis for Slabs:

The behaviour of linearly elastic thin plates loaded normal to their plane was 

investigated by Lagrange(90). In developing a satisfactory approximate theory of 

bending, the following assumptions are made:

i— During bending, middle plane of the plate remains unstretched.

ii— Stresses perpendicular to the plane of the plate are ignored.

iii— Plane section remain plane before and after bending, figure 2.2.

iv— The deflections of the slab are small in comparison with its thickness.

By considering the equilibrium of forces acting on the slab element in figure 2.1 

with dimensions dx and dy in the x and y directions respectively, the following 

equation can be derived:

a 2mx a 2Mxy a 2My
+ 2 . 0  ----------   +   q 2.1

d x 2 dxdy d y :

This equation 2.1 is known as the plate equilibrium equation. If  the plane 

sections remain plane before and after bending, the strain due to the 

displacement at any level Z  are given by:

a#x d d y

£ x = “ Z , fy  = ~ z
ax ay

a$x d 6 y

and 7xy = -  Z ( ------------  + --------------  ) 2 .2
ay ax

where ex , ey and 7 Xy are the inplane strains at level Z  from the neutral plane 

of a given point in x,y cartesian system coordinates. 6 X  and 6 y are the rotations 

of normals to neutral axis and can be written in Mindlin plate theory as:
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dw

ax
X »

3w

dy
2 .3

Where w is the deflection in Z  direction.

In the classical plate theory and ^y, which are average rotations due to the

transverse shear effects in x and y respectively, are neglected. Thus, by replacing 

equations 2.3 in equations 2.2 the normal and shearing strain at level Z  can be 

written, in terms of deflection w as follows:

3 2w
ex Z

a x 2

£y -  -  Z
a 2,

d y ;

a 2w
and ^xy - 2 . 0  Z

dydx
2 .4

Using Hooke's law for isotropic material, the stresses are related to the strains 

by:

° x E v E 0

= v E E 0

. 7 *y . 0 0 G

ex
€y
Txy,

2 .5

where E and G are the independent material constants defining the elastic 

properties of the plate and v is the Poisson's ratio. The moments are given, by 

integrating the stress over the thickness of the plate t.

r t / :

- V :

crx Z dZ =
r t / :

i t
( E + vE ev ) Z dZ

Thus Mx = -
* / :

- V

( E
a 2w

dx

a 2w
+ vE ) Z 2 dZ

d y :



6

a— Moment per Unit Length

Q
y

b -  Shear Force per Unit Length

Fig. 2.1 Equilibrium of Slab Element
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d 2w d 2w
( D ----------  + I'D ---------

d x 2 ay :

S i m i l a r l y :

My "

d 2w d 2w
( D ---------- + ----------

ay : a x 2

2 . 6 a

2 . 6 b

Mxy = 2 . 0  Dxy
a 2w

axay

Where

D =
t 3

1 -  v 2 12

Dxy "
2 ( 1  + v) 1 2

Substituting expressions 2.6 in the equilibrium equation 2.1 we obtain the 

following expression:

a 4w a 4w a 4w q
  + 2 . 0    +   -    2 . 7
a x 4  a x 2 a y 2 a y 4  d

E t 3

where D = --------------------
12(1  -  v 2 )

and q is  the normal lo a d in g  i n t e n s i t y  per  u n i t  a re a .

In the analytical procedures, the deflected surface of the plate is represented by

either a double infinite Fourier Series (Navier Solution) or by a single infinite

trigonometric series (Levy's solution). Detailed accounts of such methods can be

found in text books on plate theory(90).

2.2.2 Elastic Analysis Methods for Deep Beams:

Deep beam members in structural frame have always presented structural
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analysts and designers an interesting dilemma. On the one hand, design codes 

usually require the designers to account for the deep beam action and, on the

other hand, there are no available general solutions for the deep beam problem. 

However, two types of solutions to the deep beam problems are available in 

literature, i.e., elasticity and finite element solutions. Timonshenko and 

Goodier(91) presented elasticity solutions for inplane problems with different 

loading and boundary conditions. A  rigourous theory of elasticity solutions for the 

case of the deep beam that is either simply supported or is resting on infinite 

number of equally spaced support have been given for gravity as well as for

surface loading(92). Later Bhatt(93) presented a general solution procedure to any

statistically indeterminate support of continuous deep beams. In the following, the 

description of inplane solution development is discussed.

Consider the equilibrium of a small rectangular element in figure 2.3 and by

neglecting the body forces, the equations of equilibrium for two dimensional 

problems are:

d<rx ^Txy
  +   = 0  2 . 8 a
dx dy

do- d r xy
 —  +  —  = 0  2 . 8 b
dy dx

These equations are not sufficient for determination of the three stress component 

ax , ay and aXy. Therefore the problem is statistically indeterminate. In order to 

obtain the solution, the elastic deformation of the body must also be considered 

by using the condition of compatibility of strain distribution with the deformations 

u and v. For two dimensional problems this is presented as follows:

du dv
: Cy

dx dy
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3u dv
an d  7 Xy =   +-------------

3y 3x

Eliminating -yXy from the above equations,

a 2ex a 2e a 27
  +   =    2 . 9
a x 2 a y 2 ax3y

The above equation is called condition of compatibility which must be satisfied by 

the strain components. By using Hooke's law for isotropic materials and equations 

2.8, equation 2.9 can be written in terms of stress as follows:

a 2 a 2
(   +    ) ( <TX +  <7y ) =  0 2 . 10

ax2 ay2

Equations 2.8a, 2.8b and 2.10 are sufficient to solve for the stress components. 

The solution must be compatible with the boundary conditions. To solve these 

equations, usually a so called Airy's stress function $ is used from which the 

stress components can be calculated as follows:

a 2$ a 2<j, £ 2$
(Xx * ' ■■■ , (ty ' and t xy * ~ 2 .1 1

a y 2 a y 2 dxdy

Substituting expressions 2.11 into equation of 2.9, thus the stress function $

must satisfy the equation:

a4(j) 34$ £4$
  +  2 . 0    +    =  0 . 0  2 . 1 2
3x 4 a x 2a y 2 a y 4

A number of practical two dimensional problems can be solved using equation 

2.12, for more details reference can be made to reference (91).
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Fig. 2.3 Equilibrium of an Element Under Inplane Stress



2.3 Plastic Methods of Analysis and Design:

Concrete is a brittle material in tension, but exhibits a little ductility in 

compression. However, stress redistribution occurs in most reinforced concrete 

structures. This means that the member sections are sufficiently ductile so that 

the yielded sections continue to deform at constant strength, but the available

ductility, unlike steel section, is limited. This section discusses some of the plastic
i

methods applied to the analysis and | design of reinforced concrete slabs and deep 

beams.

2.3.1 Plastic Methods for Slabs:

2.3.1.1 Upper Bound Analysis (Yield line Theory of Slabs!:

Yield line theory is an upper bound method, introduced by Johansen(99). The 

method determines upper bound load based on an assumed failure mechanism. It 

is assumed that all the reinforcement crossing the yield line, defining the

postulated mechanism, yields. The moment at plastic 'hinges' (yield line) is equal 

to the ultimate moment of resistance of the section and the collapse mechanism 

is compatible with the boundary conditions. To design by yield line theory a 

layout of reinforcement must be selected and then various collapse mechanisms 

are examined to find the one which corresponds to the lowest load. The shape of

the assumed mechanism depends on the slab geometry, support conditions and the

type of loading. If  the collapse mechanism is incorrectly chosen this can leads to 

unsafe design. Thus the designer is forced to seek all possible modes, for correct 

analysis. This would create some difficulties for slabs with uncommon shapes.

The main advantage of the yield line theory for slab is that it requires relatively 

simple calculation. The method can be applied to any shape of slab, any load 

and any edge condition but restricted in practice to slabs of constant thickness, 

uniformly reinforced in each of the two orthogonal or skew directions. The



method suffers from some disadvantages. It does not give any information on the 

best steel distribution within the slab, load distribution to supports and stress 

distribution inside rigid regions. Moreover, the method provides no information on 

the slab deflections or crack width at any stage of the loading. For slabs of 

complex shape, it is difficult for the designer to find an appropriate collapse 

mechanism, therefore the application of this method requires considerable 

experience.

2.3.1.2 Lower Bound Analysis (Hillerborg Strip Method for Slabs'!:

Other plastic methods of slab analysis are used, like strip method presented by 

Hillerborg(59). Based on the lower bound approach, Hillerborg made use of the 

strip action in slab, and choose his solution to equation 2 . 1  so that the torsional 

moment M ^  is equal to zero, everywhere in the slab. Thus equation 2.1 reduces 

to:

d 2 Mx d 2My
----------  + --------------  = -  q 2 .13

d x 2 d y 2

The load q is divided into a component oq carried in x direction and (1— o)q in 

y direction, so that equation 2 . 2 0  can be split into two equilibrium equations:

d 2 Mx d 2My
  -  -aq  and ------------  = - ( 1  - a ) q  2 .1 4

d x 2 d y 2

It is usual to choose ot between zero and unity (O^c^l). The load is thus carried 

by bending action created by parallel strips spanning in two direction x and y. 

One important drawback of the strip method is that, in pursuit of simple 

solution, the designer may choose stress distributions which might depart far from 

those required for a good serviceability behaviour. This may seriously impair the 

function of the slab at early stages of loading.



2.3.2 Plastic Method for Deep Beams:

The solution of deep beam type problems using plasticity concepts was 

developed by Nielsen. He derived some solutions for deep beams considered as 

wall elements. An extensive work on the method was presented by Nielsen(74), 

Jensen(57) and Braestrup(58). The authors assumed that concrete has no 

resistance in tension and introduced an effectiveness factor X to account for 

limited ductility of concrete in compression, so that f£ =  X f<!. Where f£ is the 

concrete effectiveness strength and f^ is concrete cylinder strength. The strength 

of reinforcement under compression was neglected.

Consider an yield line in a plane concrete element separating two rigid parts of 

the body figure 2.6. The relative displacement rate of the rigid part is 8, 

inclined at an angle a  to the yield line figure 2.6. In the local displacement zone 

A we have:

6 5
€t = 0 , en — ----------  s i n a ,  Ynt — ----------  cosa 2 .1 5

A A

Thus the principal strain rates are as follows:

8 8
e1 = ----------  ( 1  + s i n o ) ,  e2 = -  ----------  ( 1  -  s i n a )  2 .1 6

2A 2A

For — 7t/ 2  4 a  4 it 12 it can be seen that e, ^ 0 and e 2 4  0. According to the 

associated flow rule, the only state of stress in concrete for which such 

deformations can occur is when =  0 and <r2 =  — f£ =  — X f^, figure 2.7  ̂

where X is the effectiveness factor accounting for limited ductility of concrete. 

The internal work per unit length of the yield line of plain concrete and over 

the element of thickness b is:
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w, i "  A l b (cri 61 + db 2 .17

Wc i  -  A b [ 0 + f * ( 1  -  s i n a )  ] 2 .18
2A

1

Wc j = ------ b f *  5 (1 -  s in a )  2 .19
2

It is clear that if the relative displacement 6 is perpendicular to the yield line, 

that is a  =  x/2, the work W cj =  0. This reflects the assumption of zero tensile

concrete strength. However as soon as 5 has a tangential component that is a  ^

ti72 the resistance increases. If  a =  0, that means pure shear where r =  f£/2. 

For pure crushing a  =  — tt/2, the compressive resistance a  is equal to the

factored concrete strength f£.

The total rate of internal work dissipated in the plain concrete along the yield

line of length L  is:

1
Wc i  L b 5 f *  (1 -  s i n a )  2 . 20

For a reinforced bar crossing an yield line at an angle y  figure 2.6, the 

contribution of steel to the internal work rate is:

Ws i -  Ty c o s ( 7 ~a) 6 2 . 2 1

Ty is the longitudinal reinforcement yield force.

In the following, both upper and lower bound solutions are discussed.

2.3.2.1 Upper Bound Analysis:

Figure 2.7 shows an admissible failure mechanism of a deep beam with an 

yield line running at an inclination 0 from the edge of the load platen. The
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Fig. 2.4 Yield Line in Plain Concrete
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Fig. 2.5 Square Yield Locus for Concrete

Fig. 2.6 Yield Line Crossed by Reinforcing Bar
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relative displacement rate is 6 inclined at an angle a to the yield line. The rate 

of the work done by the load V  is:

We = V s in (o + /3 ) 6

With reference to equation 2.20 the internal work dissipated in the plain

concrete, along the yield line L  =  h/sin/3 is:

1 h
Wc j =  b 5 f *  (1 -  s in a )

2 sin|3

The reinforced bar is assumed to yield in tension so that in figure 2.7 cr+- /3 ^

x/2. The contribution of reinforced bar, crossing the yield line, of longitudinal 

yield force Ty, is:

Ws { = -  Ty cos(o t+(3) 5 

Thus the total internal work is calculated as follows:

1 h
^ i = wc i + ^ s i “ ---------------- b { f *  (1 -  s in a )  -  Ty cos(a+/3)S 2 .2 2

2 sin/3

The upper bound solution is given by the work equation of external and internal 

work: Wj =  W e which gives the upper bound solution:

h b f *  (1 -  s in a )  -  2 Ty c o s (a + /3 )s in (3
V ---------------------------------------------------------------------------------------------------------------2 .22

2 s in (a+ /3 ) sin/3

The lowest upper bound solution is found by minimising equation 2.22 with 

respect to the variable a. A  minimum is found for d V /d a=0 .0 , which gives:

b h f £  c o s  (a+/3) = -  ( b h f £  -  2 T y )  s in /3  2 . 2 3

With longitudinal reinforcement under tension, thus cr+- (3 ^  x/2 . This means that
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(bhf£ — 2Ty) in equation 2.23 must be greater than zero. That is 2Ty/bh ^ f£, 

thus: $  4. X/2, where $  is the ratio of longitudinal reinforcement force to

9 |
concrete compressive force <f> =  Ty/bhfc and X =  fc/fc.

By replacing the resulting value of a  and cot(S =  a/h in equation 2.22, the

minimum is:

V = 1 /2  b X ^  { J [ a 2 +  4 h 2$ ( X - $ ) / X 2] -  a} 2.24

valid for $  ^ X/2.

If  reinforced bar is under compression, thus ar+- 0 ^ 7r/2 for which dV/do: ^0.0,

The lowest upper bound solution is obtained when: or+- (3 =  ir/2, thus :

V = 1 /2  b X f i  [ 7 ( a 2 + h 2) -  a] 2.25
valid for $  ^ X/2.

2.3.2.2 Lower bound Analysis:

Nielsen and Braestrup(57) assumed the stress distribution in the shear span as 

shown in figure 2.8. The load was assumed to be running along the compressive 

strut between the load and the support, and inclined at an angle 0. The
W«i

triangular shaded area/Vconsidered to be under biaxial hydrostatic compression. The 

force in the tensile reinforcement is T . The stress state is statistically admissible

in the sense that it satisfies the equilibrium equations and the statical boundary

conditions on the upper and lower face. The anchored reinforcement at the

support transmits a compressive force on concrete of intensity T  distributed over

the depth Y  as shown in figure 2.8. The width of x and y, defining the region

in biaxial compression under the point load and on the support area figure 2.8,

are determined by considering vertical and horizontal equilibrium:

V = b x a 2 . 2 6
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T = b y a 2 .27

where a is the compressive stress of concrete. In general the length of the load 

platen t is equal to x. The dimension s is determined so that equilibrium

condition at the support is guaranteed, that is:

V ( s / 2  -  x)  ■= T ( y / 2  -  c)  2 .28

From figure 2.8, the inclination 8 satisfies the geometrical relation:

co t#  = y / x  = (a  + x ) / ( h - y )  2 .29

and using equation 2.26 and 2.27, the lower bound solution can be written as:

V -  1 /2  {J  [ ( b a a ) 2 + 4 T ( b h a - T ) ] -  baa} 2 .30

The highest lower bound is determined by maximising equation 2.30 with respect 

to the statical parameters a and T . It appears that:

dV
----------- ^ 0 a l w a y s .

da

av
   ̂ 0 fo r  T £ bha/2

dT

Therefore the highest lower bound is obtained with the maximum concrete stress, 

i.e. a =  f£ =  Xf^.

For T  - ^ 1 / 2  bhf£ the highest lower bound is obtained with the maximum 

reinforcement force (T  =  Ty). Thus, by introducing the same constants as 

defined for the upper bound solution; the highest lower bound solution is given 

by the following equation:

V = 1 /2  b X f'c {7 [ a 2 + 4 h 2$ ( X - $ ) / X 2] -  a) 2. 31



valid for $ ^ x/2.

For T  ^ 1/2 bhf£ the highest lower bound is obtained with T  =  1/2 bhf£,

thus:

V = 1 /2  b X f'c [ 7 ( a 2 + h 2) -  a] 2 .3 2

valid for $ ^ X/2.

In general the methods are used to find the ultimate load of an existing beam. 

For more detailed explanation of the methods and their practical applications 

reference should be made to references (77,74,58).

It is clear that the lower bound solution equations 2.31 and 2.32 are identical 

with the upper bound solution, equations 2.24 and 2.25. Thus the method is an 

exact plastic solution for deep beams subjected to point loading.

The problem with this method is finding the effectiveness parameters X, which at

first instance was taken to reflect the limited ductility of concrete which depends

on the strength f^. However this factor must account for other neglected features, 

notably the size effect, the tensile concrete strength, and the state of stresses at 

failure(58). Many workers have compared the plastic solution to the existing 

published test results. An attempt to find relationships between certain parameters 

of the tested beam and the effectiveness factor X was carried out by Stewart and 

Watt(118). They concluded that more results should be analysed from different 

sources. By analysing nearly a hundred beams, Bhatt(60) concluded that the

results appear very promising with X =  0.44. Braestrup(58) reported that a

comprehensive investigation of published test results has been carried out by 

Chen(61) and yielded the following formula of X, for rectangular non—prestressed 

beams.

X = ( 1 - 0 . 2 5 ) ( 2 - 0 . 2 5 h ) ( 2 - 0 . 4 a / h ) ( 2 + 1 0 0 p )  0 . 6 0 / 7 ^  2 . 3 3

with h ^ lm ; h/a ^ 2.5 and the steel percentage p ^ 0.02.

Nielsen and Braestrup(57) reported a series of five rectangular simply supported
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prestressed beams under two point loading. The beams had different shear span 

ratio a/h. The authors concluded that the results were in excellent agreement with 

the solution, with an effective factor X =  0.46.

For design engineer^ all the methods described above are not design orientated, 

and simplified methods have always been employed, unless of course design tables 

and charts are available.

2.4 Current Simplified Methods of Design and Analysis:

2.4.1 Simplified Method for Slabs:

For slabs Rankine— Grashof method, which generally approximates the slab to a 

set of parallel beams resisting the load by bending actions and where torsional 

moments are ignored, is used. The condition of compatibility is only 

approximately satisfied. For a given uniform load q, the proportion of the load 

carried by orthogonal strips in x and y directions are such that

qx + qy -  q- 2 - 34

The value of qx and qy are determined from the condition of deflection 

compatibility at the centre strips. Thus using simple beam deflections:

5qx l<  5qy l<
--------------------  =    2 . 3 5

3 8 4 E X I X 3 8 4 E y I y

By assuming equal rigidities in the two strips, and solving for qx and qy using

equations 2.34 and 2.35, it results in:



Thus the maximum bending moments in x and y directions can be obtained as:

qLx2
-  Qsx qLx 2 2 .3 8

I 4  +  T 4Lx T *-y 8

M
Lx 2L y 2 qLx 2

:sy qLx 2 2 .3 9'y
L 4 + L 4 8

Coefficient asx and c^y depend on aspect side ratio, and are given in table 3.14 

of BS8110(1). This method applies for rectangular simply supported slabs under 

uniform load.

2.4.2 Simplified Method for Deep Beam. CIRIA Guide 2 :

For a shallow beam subjected to concentrated loading, the capacity is governed 

by either the strength in flexure of the maximum moment section or the strength 

in shear of the span. However, for a deep beam, the ultimate load is determined 

by transfer of forces between load and support. Usually for shallow beams, 

bending, shear and axial forces are considered separately. This becomes less 

appropriate in beams with span/depth ratio less than 2.5, because of the 

interdependence and interaction of vertical and horizontal stresses. It was Kaar(94) 

who concluded, by testing homogenous and isotropic materials, that when the 

span to depth ratio was less than 1.5 the use of flexural formula for measuring 

the stresses was seriously in error. By using elastic stress distribution in deep 

beams C IR IA  Guide 2(98) revealed that:

i— Plane sectiom of the beam do not remain plane after deformation.

ii— Area£ over the supports are highly stressed. Therefore splitting forces arise 

more frequently in deep beams.

iii— The distance between the centroids of the tensile zones varies along the
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length of the beam and is greatest at mid span.

iv— In deep beams vertical and shear strains are largely comparable with bending 

strains.

C IR IA  Guide 2 report(98) was intended to provide designers guidance on the 

design of reinforced concrete deep beams. Its rules were mainly based on the 

published information which had been assessed critically and presented in a form 

suitable for application(97). The guide applies to beams having an effective 

span/depth ratio Z/h less than 2 for single span and 2.5 for continuous beams. 

This guide was intended to be  used in conjunction with British code CPI 10(95). 

However Kong et al.(96) concluded that C IR IA  Guide could safely be used with 

BS8110(1). O f all the currently used main design documents, C IR IA  Guide gives 

the most comprehensive recommendations(85). In the following some sections of 

the Guide are discussed, in conjunction with the reinforced concrete code of 

practice BS8110(1).

The effective span length Z and the active hight ha are determined with reference 

to figure 2.9 as follows:

Z «= Z 0 + [ l e s s e r  o f  ( c i / 2  and 0 . 1 Z 0)

+ le s s e r  o f  (C 2 /2  and 0 . 1 Z 0) ]  2 . 4 0

ha= minimum o f  ( h , Z )  2 .41

The part of the beam which is above this active hight ha acts as a load— bearing 

wall.

The flexural and shear strength of the beams are determined as follows: 

a— flexural strength:

i— Calculate the ultimate moment capacity of concrete section:

Mu = 0 . 1 2  f cu bha 2 2 . 4 2

where fcu is the concrete characteristic strength and b is the beam thickness.



ii— I f  Z/ha 1.5, the applied moment must not exceed Mu.

iii— Calculate the area of the main longitudinal reinforcement:

M

0 . 8 7  f y  Z
As =   2 .43

fy is the steel characteristic strength and Z  the lever arm calculated as follows:

For single span beams;

Z = 0 .2  I + 0 .4  ha 2 .4 4 a

For continuous beams;

Z = 0 .2  I + 0 .3  ha 2 . 4 4 b

iv— The calculated reinforcement area Ag must be distributed over a depth of 

0.2 ha and appropriately anchored at the end.

b— Shear strength:

For a given beam under concentrated load and with reinforcement A^horizontal 

and vertical), the applied shear force must not exceed the limit imposed by 

equation 2.45 ie:

V x e
  ^ X, [ 1 .0  -  0 .3 5    ] 7 f cu +

bha ha

Ar  y r  s i n 20r
+ \ 7 ? 10 0 .0  ----------r-r----------------  2 . 4 5

2 *  bha

where xe is the clear shear span of the point load (in figure 2.10 xe =  x).

X ,=  0.44 and 0.32 for normal and light weight concrete respectively. \ 2 =  1.95 

and 0.58 N /m m 2 for deformed and plain bars respectively. yr is the depth at 

which the typical web bar intersects the critical diagonal crack Y— Y in figure 

2.10. dr  is the angle between the bar being considered and the line Y—Y in 

figure 2.10. The rest of the parameters in equation 2.45 are as defined
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previously.

Equation 2.45 is essentially the Kong et al.(97) equation where X1? X2 are 

modified to introduce the necessary safety factors for design purposes. According 

to C IR IA  Guide2(98) this equation applies only for xe/ha over the range 0.23 to 

0.7. However later Kong et al.(96) concluded that equation 2.45 can be applied 

to an extended range of xe/ha from 0 to 0.70. In equation 2.45 the first factor 

of the right side is the concrete contribution to the shear capacity. The second 

term is the steel contribution to the shear capacity. The total contribution of the 

steel reinforcement must not be less then 0.2 V. If  it is less than this value, the 

web reinforcement must be increased up to 0.2 V. The shear force also must not 

be greater than the shear capacity of concrete defined in section 3.4.2 of C IR IA  

Guide 2(98) as:

V
  ^ 1 .3  X, 7  f cu 2 .46

bha

All these methods of analysis and design, whether plastic, elastic or based on 

experimental test results, fail to be general and independent of the shape, 

boundary and loading conditions. However numerical methods have been found to 

be more convenient to overcome most of these limitations. In  these methods 

stress distribution, deflections and other informations on slabs and deep beams can 

be calculated easily.

2.5 Numerical Methods:

2.5.1 Finite Element Method:

The finite element method is the most versatile method used, in the design 

and analysis of slabs and deep beams. The method can be used to analyse 

variable thickness slabs and deep beams with curved, stepped or inclined edges. 

Edge stiffening, openings and loading at any location can be easily dealt with,



and different material properties of the constituent materials, concrete and steel 

can be included. The continuum is replaced by an equivalent idealized structure 

composed of discrete elements connected together at a finite number of nodes. 

The conditions of equilibrium are applied at every node of the idealized structure 

and the solution of the set of equilibrium equations yields nodal displacements, 

which in turn are used to calculate the internal strains and stresses. Further 

details of the method are given in chapter 4. The method is extensively used in 

the present work both for the analysis and design of slabs and deep beams. The 

direct design method, which is a lower bond method and described in the next 

chapter, is used in the design of the present models using a nonelastic stress 

fields generated by finite element procedures.



Chapter 3

Direct Design of Reinforced Concrete

3.1 Introduction:

In chapter two, various methods for the design of concrete slabs and deep 

beams were described. Most of these methods concentrated on the calculation of 

the ultimate loads, and no other information is given. It is desirable that the

method of design itself must not be a complicated task for the designer and 

capable of handling any geometry, boundary and loading conditions with minimum 

difficulties. The direct design method is one attractive method which is design 

orientated and in addition pays attention to serviceability limit states as well. The

method will be described in the following sections for both plate bending and

inplane problems.

Currently, the recommendations in British practice for reinforced concrete are

based on limit state design and are given in British Standard Code of Practice BS 

8110(1). In practice any structure must satisfy the following two limit sates:

a— Ultimate lim it state (ULS):

This state is associated with the maximum load carrying capacity of the



structure. The collapse of the structure or part of it, may arise from rupture of 

one or more critical sections, from the loss of static equilibrium (transformation 

into mechanism) or from buckling due to elastic or plastic instability. In practice 

the designed structure must have a security margin, assured by an appropriate 

load factor.

b— Serviceability limit state (SLS):

This condition requires that the structure should not exceed certain limitations

in terms of deflections, crack widths, steel strains and for some structures

vibration under service loads.

In general, reinforced concrete structures are designed for the ultimate limit state 

and checked for the serviceability limit state.

3.2 D irect Design Approach:

The speed of developments in computer technology have diverted the 

attention of the designers from using conventional design methods in conjunction 

with code prescribed rules to a more highly sophisticated computer aided design 

(C AD) procedures. The advances in finite element techniques has also increased 

the need to find an automatic design procedure. In other words a computer

design orientated method, so that a structure can be designed with minimum

intervention by the designer. 'Direct Design' is one attractive method. This 

method combines analysis and design into a single continuous operation.

The direct design method satisfies theoretically all the basic classical plasticity 

theory requirements, viz equilibrium, yield condition, mechanism and ductility 

demand.



Equilibrium condition:

In classical approaches, the distribution of stress in reinforced concrete

structures are determined using elastic theory. In fact any stress distribution, in 

equilibrium with the applied loads, can be used. In this study the stress fields are

obtained using finite elements of the unreinforced concrete structure with the

uncracked properties of concrete, so the equilibrium condition is automatically

satisfied.

Yield condition:

Using direct design procedure, the steel of reinforced concrete structure is

determined directly from yield criteria so that the resistance provided by concrete

and the steel, at each point, must be equal to, or greater than the applied 
H e-

stresses. Inm irect design technique, the resistance of the structure at each point

is matched as closely as possible to the applied stress. This will let all points of 

the structure, theoretically, y. yield simultaneously.

Mechanism condition:

Since the steel area, at any point of the structure, is obtained directly by 

satisfying the yield condition, thus at ultimate load all the points attain their 

ultimate strength with a minimum of redistribution of stresses converting the

structure into mechanism.

Ductility demand:

It is assumed, in the classical plasticity theory, that the material possesses

unlimited ductility. This means that the early yielded region in the structure will

continue to deform without any reduction in their strength. However, this 

requirement can be avoided if the difference between the load at first yielding 

and the ultimate load of the whole structure is made as small as possible, so that 

the early yielded points or regions can deform at constant stress before reaching



the descending branch of stress-strain of material. Theoretically using this 

method, this condition will be satisfied automatically as the required steel is 

determined directly from the yield criterion, thus all the points of the slab will 

yield simultaneously.

3.2.1 Assumptions and Definitions:

Simplifying assumptions are further made and can be summarized as follows:

i— The reinforcing bars carry only uniaxial stress in their original directions. So 

kinking and dowel actions are neglected.

ii— For inplane problems the reinforcement is taken to be positioned 

symmetrically with respect to the middle surface of the section and to be in two 

orthogonal directions (fig. 3.2 and 3.8).

iii— The reinforcing bars are assumed to be elastic perfectly plastic with yield 

stress fs in tension and fs' in compression (fig. 3.5).

iv— The bars are considered in terms of area per unit length rather than as 

individual bars, because it is assumed that the bar spacing is small in 

comparison with the overall dimensions of the structure.

v— The concrete is assumed to have no resistance in tension, to satisfy a square 

yield criterion in inplane stress (fig. 3.6) and to be perfectly plastic. This last 

assumption obviously does not reflect the true behaviour of the concrete.

vi— Instability failure and bond failure are assumed to not happen, by proper 

choice of the section and reinforcement.

3.2.2 Plate Bending:

It was Hillerborg(65) who first proposed a method for the reinforcement of 

slabs and shells designed according to the theory of elasticity. This method was



later reconsidered by Kemp(82) and finally Wood(71) reexamined and enlarged the 

idea of Hillerborg by establishing simple rules and equations for the optimum

steel in slab elements subjected to the moment field (Mx>My,MXy) without

membrane forces. Wood's equations for the design of orthogonal steel of slab

elements at the top and bottom faces have been extended by Armer(72) to cover 

skew reinforcement.

In the following sections, the derivation of the yield criterion and design

equations of reinforced concrete slabs, will be briefly described.

3.2.2.1 Derivation of the yield criteria:

The yield criterion for any material is a mathematical relationship between a set 

of applied stress and strength of the material. The yield condition is satisfied if 

the strength of the material at any point is equal to the applied stress.

Consider an element of a slab subjected to bending moments M x, M y and 

torsional moment M ^  as shown in figure 3.1. The slab element can provide a 

flexural strength of M x* ,  M y* in x and y directions (fig. 3.4). The yield criterion 

can be written as:

F(MX, My> MXy , Mx * ( My* )  -  0 . 0  3 . 1

Consider as shown in figure 3.3, at any point in the slab element, a line with a 

normal n and tengent t. The normal applied moment M n must not exceed the 

value of the moment of resistance that the reinforced section in the slab could 

develop in direction n. This is called a normal moment criterion.

Taking the normal to the yield line at an angle 6 to the x axis and considering 

the equilibrium of the element shown in figure 3.3 we have :

Mn = Mx c o s 2 6 + My s i n 2 0 -  2 . 0  Mxy  s i n #  c o s 6 3 . 2
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Mt = Mx s i n 20 + My c o s 20 + 2 . 0  MXy s i n 0  c o s 6 3 . 3

^ n t  = (Mx _ My) s i n 0  c o s d  +  MXy ( c o s 2 0 -  s i n 2#) 3 . 4

The resisting normal moment at the yield line can be expressed as:

Mn* = Mx * c o s 20 + My* s i n 20 3 . 5

The value of in equation 3.5 must always be greater than that for M n

calculated from equation 3.2, that is:

^ 0 - 0  3 , 6

Substituting equation 3.2 and 3.5 in 3.6, thus:

(Mx^ -  Mx ) c o s 20 + (My^ -  M y ) s i n 20 + 2 .0  MXy S i n 0 c o s 0   ̂0 .0  3 .7

If we take:

A = Mx * -  Mx 3 .8

>>IICQ -  Mny 3 .9

C = M ^ 1 *xy 3 .1 0

equation 3.7 will be in the form:

A c o s 2f) + B s i n 2tf + 2 . 0  C cosflsinfl 0 . 0  3 .11

Divid ing by cos2 0 , equation 3.11 reduces to:
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F ( 0 )  = A + B t a n 2 0 + 2 . 0  C t a n 0  ^ 0 . 0  3 . 1 2

For optimum steel, excess strength must be a minimum, that is to say:

dF(  0)
  = 0 . 0  3 . 1 3
d t a n 0  

d 2F ( 0)
> 0 . 0  3 . 1 4

d t a n 2

d F ( 0) C
  = B t a n 0  + C = 0 . 0  =» t a n 0  = -    3 . 1 5
d t a n 0  B

Mxy
t a n 0  = -  ----------------- — -  3 . 1 6

My* '  My

d 2F ( 0)
  = B > 0 . 0  =» M *  > My 3 . 1 7

d t a n 2 0

Substituting equation 3.15 in equation 3.11 then:

C C
A + B (  ) 2 + 2 . 0  C (  ) = 0 . 0  3 .1 :

B B

o r  A B -  C 2 = 0 . 0  3 . 1 9

Replacing A, B and C by their values, one gets:

-  (Mx *  -  Mx ) (M y *  -  My) +  MXy 2 = 0 . 0  3 . 2 0

This is the yield criterion for reinforced concrete slabs, known as Wood 

criterion(71). Armer(72) extended the work of Wood to take account of skew 

reinforcement.

For the yield criterion in the negative steel at the top of the slab, similar
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procedure can be adopted. The yield condition for negative steel ( top steel ) 

can be written as:

-  (Mx * t  +  Mx ) ( M y * 1 +  My) +  Mx y 2 = 0 . 0  3 . 2 1

The validity of the criterion was confirmed for the case of orthogonal steel by

extensive experimental work carried out by many research workers such as 

Lenschow and Sozen(66), Cardenas and Sozen(67) and Jain et al(68). Cardinas

and Sozen(67) concluded from an extensive experimental investigation that in 

nonisotropically reinforced slabs, the yield lines do not necessarily coincide with

the principal direction of either the applied or resisting moments. Consequently,

twisting moments do exist at the yield line in addition to the flexural moments.

Later Hago and Bhatt(69), and Bhatt et al.(70) used elastic stress field, in

conjunction with Wood— Armer yield criterion, for the design of slabs with 

orthogonal and skew reinforcement and concluded that it is a highly practical 

design procedure which leads to lower bound solution of reinforced slabs. Bhatt

and Benredouane(13,14) also investigated theoretically the possibility of using 

nonelastic stress fields in the design of reinforced concrete slabs in conjunction

with the above yield criterion.

3.2.2.2 Design Equations:

From the yield condition derived previously, the following equation can be used 

for the design of slabs.

a— Positive moment field: (Bottom steel)

Referring to equation 3.20:

Mxy 2
Mx X = --------- ;---------------- + Mx

V  -  My

The total amount of bottom steel M x* -+- M y* at any point, is presented by the



following equation:

*  *  Mx y 2 *
Mx + My --------------7---------------  + Mx + My*

M y *  -  M y

d (M x *  +  My * )
So t h a t  f o r  minimum s t e e l    = 0

d My*

Hence

M M +  My = y -  xy

S i n c e  i n  e q u a t i o n  3 . 1 7  My* > My

*My" = My +  |MXy |  3 . 2 2

By substituting equation 3.22 in 3.20 we get:

Mx *  =  Mx +  |Mx y | 3 . 2 3

b— Negative moments fields:(Top Steel)

Similar procedure can be adopted to the negative yield criterion, equation 3.21,

to get the following equations:

M^ 1 =  Mx  _ | Mx y | 3 . 2 4

M y * 1 =  My  “  1Mx y I  3 - 2 5

c— Mixed moment fields:

When calculating with the previous equations 3.22 and 3.23 if:

My* < 0.0; My* is considered to be equal to zero and from the yield 

condition 3.20 the following expression can be obtained:



and if Mx* < 0.0 , from equation 3.20 the following equation can be written

as:

M,, -  My +
Mxy'

3 . 2 6 b

The same procedures can be adopted for the negative moment fields, and the 

corresponding expressions are:

Mx * t _  Mx
Mxy'

M,
3 . 2 7 a

V *  "  My -
Mxy

M,
3 . 2 7 b

3.2.2.3 Rules for Placing Reinforcement:

At any point of the slab, given the trial stress field (M x , My, M Xy) the 

reinforcement in x and y directions will be placed according to the following 

rules:

a— Bottom steel:

i— Compute the design moment M x* and M y* from equation 3.23 and 3.22 

respectively.

ii— If  both Mx* and My* are negative, then no reinforcement is needed at the 

bottom.

iii— If both M x* and My* are positive, the calculated values are adopted as the 

resistant moments.

iv— If Mx* < 0.0 then set M x* =  0.0 and compute My'" from equation 3.26b.



v— If  My* < 0.0 then set My* = 0.0 and compute Mx* from equation 3.26a. 

b— T op  s t ee l :

The same procedure is adopted for top steel by changing negative sign to 

positive.

i— Compute the design moment M x** and M y*1 from equation 3.24 and 3.25 

respectively.

ii— If  both M x** and M y*1 are positive, then no reinforcement is needed at the 

top.

iii— If  both M x** and M y *1 are negative, the calculated values are adopted as 

the resistant moments.

iv— If  M x** > 0.0 then set M x** =  0.0 and compute M y** from equation 3.27b.

v— If  My** > 0.0 then set My** = 0.0 and compute Mx** from equation 

3.27a.

3.2.3 Inplane Prob lems :

With regard to the problem of inplane forces, Nielsen(73) has presented the

yield criterion for a section having known orthogonal isotropic or orthotropic

reinforcement which can carry either tension or compression and is symmetrically

placed with respect to the middle surface of the section. He derived the equations

for the determination of the orthogonal tension reinforcement to resist a particular

inplane force triad. Nielsen(75) has also considered the case of skew tension

reinforcement. In his work he assumed that the concrete has sufficient

compressive strength such that no compression reinforcement is required. If  the
tWe

compressive strength of the concrete section is violated,Vconcrete section must be 

increased. Subedi(76) presented a graphical approach to design compression 

reinforcement. It was Clark(78) who finally presented equations for proportioning 

skew or orthogonal tension and/or compression reinforcement to resist a triad of
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inplane forces. Using ̂ elastic stress field, Clark's equations were used by Lin(79), 

Memon(80) and Khaskheli(81) for the design of deep beams, perforated deep 

beams and transfer q  irders respectively.

3.2.3.1 Derivation of Yield Criteria:

Let the principal stresses in the concrete element be and a 2 (fig- 3.8)

with the major principal stress at 8 to the x axis. Let the area of reinforcement, 

per unit length in the x and y direction, be Ax and Ay and their associated

stresses fx and fy.  From equilibrium of the reinforced concrete element, (fig.

3.8), of thickness t under the external inplane normal and shear forces per unit

length nx ny nXy (fig. 3.7) the three following equations can be written for

orthogonal reinforcement as:

n x = Ax f x + <J\ t  c o s 2 6 +  <j 2  t  s i n 2 0

n y =  Ay f y  + cr 1 t s i n 20 + <72 t  c o s 2 8

n Xy = — t c o s 0 s i n 0  + (72 t  c o s 0 s i n 0

If  we take:

n x n y n xy
(7X = , d y  = , TXy =

t t  t

Ax f x Ay f y
an d  <JX^ =  , <jy^ = ---------------

t  t

Where a x , <7y an d  r Xy a r e  t h e  n o rm a l  a n d  s h e a r  s t r e s s e s .

<7X* , a r e  th® r e s i s t a n t  s t r e s s e s  p r o v i d e d  by s t e e l

r e i n f o r c e m e n t  i n  x a n d  y d i r e c t i o n s  r e s p e c t i v e l y .

Equations 3.28 to 3.29 can be presented as follows:

3 . 2 8  

3 . 29 

3 . 3 0

( jx = cr-]_ c o s 2 8 +  a 2 s i n 20 + rrx 'r 3 . 31
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<jy = cri s i n 20 + a 2 co s 2 6 + oy*  3 .32

r Xy = ( 0"2 -  OT)cos0s in0  3 .3 3

Now if tensile steel is to be provided, then =  0.0, hence the above equations 

become:

crx =  (72 s i n 2 0 + a x *  3 .3 4

Cy = CF2 c o s 20 + (Ty* 3 .3 5

t X y  = cos0s in 0  3 .36

thus :

° x *  “ ° x  = a 2 s *n 2 0

(Ty* -  ( Jy  =  (J2 C O S 2 0

r X y  = <J2 cos0s in0

Eliminating 0 2  and 0 from the above equations we have:

(<rx * -  <rx )(<Ty* -  (Ty) -  r x y 2 = 0 .0  3 .3 7

This is the yield criterion derived by Nielsen(73) for a section having known 

orthogonal isotropic or orthotropic reinforcement carrying tension forces and 

symmetrically placed with respect to the middle surface of the section. Nielsen 

assumed that the concrete had sufficient compressive strength so as not to require 

compression reinforcement. Nielsen also developed design equations for four 

different cases of reinforcement design. Later Clark(78) introduced the compressive 

reinforcement by extending these later four cases to nine cases for different 

combination of stresses. Table 3.1 shows the possible combination of 

reinforcement. From this table it can be noticed that all the cases can be solved 

by direct solution except for cases 1 and 4 where the minimisation of the total 

reinforcement in both directions of the member is necessary. The principal stress
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ai  is considered equal to zero when tension reinforcement is required and a j

equal to the concrete compressive strength fc when the compressive reinforcement 

is required. The way, the design equations were developed, is presented in the

following section.

3.2.3.2 Derivation of Design Equations: 

a—Cases where tensile steel is to be provided:

C ase  1 : <rx * a n d  a y *  >  0

( ° x *  -  *x>

The t o t a l  p r o v i d e d  s t e e l  i n  x d i r e c t i o n  i s  minimum when:

d
  ( ° x * +0'y *) "  0i *  *d a x

Thus :
d

( a x *  + a y  + 0
d a x * ( a x *  -  a x ) ( a x *  -  a x ) 2

S i n c e  a x *  > a x , a x *  =  a x  + | r Xy |

The s t e e l  r a t i o  i s :  px = l / f s ( c x + | r Xy I )

S i m i 1a r 1y

Cas e  2 : a x *  = 0 a n d  a y *  >  0

D i r e c t l y  fo rm  e q u a t i o n  3 . 3 7  we g e t  Cy* = a y

Hence P x  -  0

Py ( ° y
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Case 3 : ax > 0 an<i °y = 0

T  ^xy
S i m i l a r  t o  c a s e  2 :  p x = l / f s ( c x -  ---------  )

ay
Px =  0

b— Cases where compression steel is to be provided:

In this case the minor principal stress in the concrete reaches the concrete 

strength, thus =  — fcu and <j\ <  0.0. Equations 3.31 to 3.33 can be written 

as follows:

crx  =  a i  c o s 2 8 -  f c u  s i n 20 +  a x *  3 . 3 8

oy = cr  ̂ s i n 20 -  f c u  c o s 20 + a y *  3 . 3 9

r Xy = ( -  f cu -  O i ) c o s 0 s i n 0  3 . 4 0

t h u s :

° x  + f c u  = a l  c ° s 2 0 +  f c u  c o s 2 0 + a x * 3 . 4 1

<7y + f c u  = s i n 2 0 + f c u  s i n 20 + ay *  3 . 4 2

TXy = ( -  f c u  -  O " i ) c o s 0 s i n 0  3 . 4 3

h e n c e :

0x ^cu -  o-x = (o"i + fc u ) co s 20

a y  + (Ty “  + f c u )  s i n 20

r Xy = -  + f c u )  c o s 0 s i n <

-( crx + f c -  a x  ) ( a y  + f c -  o y * )  + 7 Xy 2 = 0 . 0  3 . 4 4

I n  t h e  f o l l o w i n g :  a x f  = crx  +  f c an d  Oyf  ~ a y  + f c

Case  4 : a x c < 0 a n d  cy* < 0

From e q u a t i o n  3 . 4 4 ,  oy* = + o y f
T 2xy

( ° x f  -  ° x " )
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Case 3 : dx*  > 0 and dy* = 0

T  ^xy
S i m i l a r  t o  c a s e  2:  p x = l / f s ( crx -  ---------  )

Px = 0

b— Cases where compression steel is to be provided:

In this case the minor principal stress in the concrete reaches the concrete 

strength, thus ^  =  — fcu and a \  <  0.0. Equations 3.31 to 3.33 can be written 

as follows:

° x  =  a l  c o s 2 0 ~ f c u  s i n 2 0 +

d y  = <J\ s in 20 -  f c u  c o s 2 6 +  n y *

r Xy = ( -  f c u  -  d i ) c o s 0 s i n 0

t h u s :

d x + f c u  — u \  c o s  2 0 + f c u  c o s 2 0 + d x*

(Ty + f cu  = s i n 20 + f c u  s i n 2 0 + dy*

r Xy = ( -  f cu  -  d i ) c o s 0 s i n 0  

h e n c e :

fcu  ~ 0-x = (P"l fc u ) c o s 2 6

a y + f c u  “ a y *  = ( ° 1  + f c u )  s i n 2 0

r Xy = -  (< j \  + f c u ) c o s 0 s i n 0

- (<JX + f c -  d x* ) ( d y + f c -  d y *)  + TXy 2 = 0 . 0  3 . 4 4

In  t h e  f o l l o w i n g :  d x f  = d x +  f c a n d  d y f  = dy  + f c

Case  4 : d x " < 0 an d  dy* < 0

T ^xy
From eq u a t io n  3 . 4 4 ,  d v”  = + d v f  -  ----------------

( d x f  d x )

3 . 3 8

3 . 3 9

3 . 4 0

3 . 4 1

3 . 4 2

3 . 4 3
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d
Minimum p r o v i d e d  s t e e l  when:    ( P ^ + P y * )  = 0

dax

T  2xy
T h u s :  1 -  ----------------------- = 0

(o 'xf  " o’x * ) 2

S i n c e  a x* < crx f ,  (Tx *  =  a x f  -  17-Xy |

The s t e e l  r a t i o  i s :  px = 1 / f g  ( P x f  -  l Tx y l )

S i m i l a r l y  p y = l / f ^  ((Ty f  -  I t xy  I )

C ase  5 : <rx* = 0 a n d  <ry* < 0

D i r e c t l y  fo rm  e q u a t i o n  3 . 4 4  we g e t  cry * — c y f  -
^ x f

Hence px = 0
T  ^7xy

Py = V f s ( ° y f --------------- )
° x f

Case  6 : c x* < 0 a n d  (Ty* = 0

T ^xy
Same a s  c a s e  5:  p x = l / f s (P'xf ”   )

T  ^xy

ffyf

Py ~  0

c — Mixed  c a s e s : (7X* an d  cry* a r e  o f  d i f f e r e n t  s i g n s :

C as e  7:  crx *  > 0 a n d  cry * < 0

<r 1 = 0 a n d  <j 2 = f c t h u s  e q u a t i o n s  3 . 3 1  t o  3 . 3 3  become:

a x  = f c s i n 20 +  a x x = [ f c / 2 . 0 ]  ( l - c o s 2  0) + a x "  3 . 4 5

ory = f c c o s 2 8 +  cry *  = [ f c / 2 . 0 ]  ( l + c o s 2  0) + (7y *  3 . 4 6

r xy  = f c s in f l co s f l  = [ f c / 2 . 0 ]  s i n 2 0  3 . 4 7

^ ' x y  2
From e q u a t i o n  3 . 4 1  (3 = c o s 2 0 = 7 [ 1  -  -----------

^c
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Case Reinforcement description Known values Method of solution

1 Both tension > II > II >> II O Minimization of (p* +  pa)

2 No x  
a tension

f x  — fs , Px — 0, al — 0 Direct solution

3 No a 
x  tension f x  =  fs , ?x — 0 ,  <*! =  0 Direct solution

4 Both compression > II > II q II Minimization of (p* +  pa)

5 No x
a compression f x  =  fs  , Px =  CT2 =  fc Direct solution

6 No a
x  compression f x  =  f s ' ,  Pa =  0 , <*2 ~  fc Direct solution

7 x  tension 
a compression f x  =  fs , f  — fs  , a l ~  0 ,  ct2 =  f c Direct solution

8
x  compression 
a tension f x  =  f s ',  f  =  fs ,  <*i =  0 ,  o ,  =  f c Direct solution

9 No reinforcement px =  pa =  0 Direct solution

T a b l e  3 . 1  P o s s i b l e  C o m b i n a t i o n s  o f  R e i n f o r c e m e n t .

Curve Equation

=  +  00
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I txy I
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f c
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E l i m i n a t i n g  6 f rom e q u a t i o n s  3 . 4 5  and 3 . 4 6  we g e t :

o K*  -  <TX - ( f c / 2 .0)  (1 -  0)

ffy* “ <Ty -  ( f C/ 2 . 0 )  (1 + (3)

The s t e e l  r a t i o s  are  : px = l / f s [cx -  ( f c/ 2 ) ( l  -  (3)]

py = 1 / f ;  [Cy -  ( f c/ 2 )  (1 + (3)]

Case 8 : <rx*  < 0 and cry* > 0

S i m i l a r l y  to  case 7: px = 1 / f g  [ ° x  ” ( f c / 2 ) ( l  +

Py = l / f s [O-y -  ( f C/ 2 ) ( l  -  |5)]

Case 9 : No s t e e l  is  needed. px = py = 0

3.2.3.3 Derivation of the boundary curves:

To know which set of equations in table 3.3 is to be used in design, knowing

the stresses ( ax , dy, t xy) at any point, it is necessary to establish the equations 

of the boundary between the different case surfaces in stress space of horizontal 

axis ^x/,l Txyl anc* vertical axis <Ty/ | rXy | .  Figure 3.9 shows the different case 

surfaces. The circled numbers in the figure represent the cases numbers. All the 

boundary curves were derived by equating the design equations of two considered 

cases. Example: for curve separating case 1 and 2 :

All points belonging to the curve between case 1 and 2 must have equal values

in these two correspondent equations. Thus:

The same equation can be obtained by equating the expressions steel ratios of the 
other direction:

Px 1 = P x2  > ° x - 1 . 0

' xy
2

P y l  = Py2 — * O-y +  I T  Xy I ( T y - 1 . 0

' xy



which is the equation of a straight line marked as number a in figure 3.9. In 

this way all the cases intersection boundaries were determined. Table 3.2 shows 

the boundary equations for orthogonal reinforcement.

For the general case of combinations of moment and inplane forces, a sandwich 

method of design was proposed by Brpndum— Nielsen(84), where the Nielsen's 

equations are applied separately to the two layers of a sandwich model of the 

real slab element. Morley and Gulvanessian(83) presented a general filled 

sandwich method for optimum design of reinforcement in a concrete slab element 

required to resist given combinations of membrane forces and bending moments. 

The method allows for concrete of the filling between the outer layers of a 

sandwich to resist compressive forces.

3.3 Multiple Load Cases:

The previous design equations for both plate bending and inplane problems 

apply only when the structure is subjected to a stress field resulting from a single 

load case. In practice structures are subjected to multiple load cases.pmadvantage 

of direct design method is that it can also handle multiple load cases easily. 

Here, the method is presented in general for plate bending and inplane problems:

1— For any load case i with the applied stresses Sxj, Syj and SXyj, (with i 

=  1 ,n and n is the total number of loading cases), compute the corresponding 

resistant stress Sx* and Sy* using the appropriate equations. Sx*, Sy* can be 

resistant moments (bottom or top) for plate bending problems or resistant inplane 

stress for inplane problems, in x and y direction respectively.

2— At each point compute the maximum of all Sx* and Sy* for i = l , n .  Let 

these be Sx_ max, Sy_ max. Obviously if we use these values as the design
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stresses, then we will get a safe design but not necessarily an economic one. So 

to move to an optimum design the following procedure can be adopted.

3— Assume that in x direction we provide Sx— max» but y direction we 

provide Sy so to satisfy the corresponding yield criterion in each case. For 

example for bottom steel of plate bending problems the yield criterion to be used 

is equation 3.20.

Calculate the maximum of all these Syj, let it be Sy_ emax. Evidently a safe 

design is produced if we use Sx_ max *n conjunction with Sy_ emax.

4— The same procedure as (3) can be adopted for Sy_ max to calculate the

corresponding maximum Sx_ emax so to satisfy the appropriate yield criterion, for 

each load case. Therefore a better design is to choose a set of design moment

where the sum (Sx ■+■ Sy) is the smallest.

We can stop at this stage but if need be we can improve on this by assuming 

that other possible combinations are possible and use a simple search technique 

by examining the feasible design region as shown in figure 3.10.

For each load case, we see if the design stress at the grid points is a better

minimum. If  it is not, we reject it. If  it is check to see if it violates the yield 

criteria. If  it does, reject it, if not we see at which grid point in figure 3.10 is 

better minimum of (Sx + Sy). This definitely gives us the optimum design steel 

volume.



Chapter 4

The Finite Element Method

4.1 Introduction:

In the previous chapter, rules have been established for designing of 

reinforced concrete plate bending and beam inplane problems for a given stress

triad. The stress triad is obtained using a finite element program. In this chapter

the finite element method will be described. Nowadays there are numerous texts 

(2,3,4,5,6,7), which describe finite element methods and their applications. For 

reinforced concrete in particular, the phenomena of cracking, nonlinear multiaxial 

behaviour and other effects can now be considered more rationally. In this work, 

the method is used not only for designing of slabs and deep beams but also to 

carryout a detailed nonlinear analysis of the experimental models.

4.2 Finite Element Concept and Formulation:

As the standard procedure of finite element analysis is well known only a brief

review of the method is presented.

4.2.1 Discretisation by Finite Element:

In any numerical approach an approximate solution is attempted by assuming
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that the continuum can be represented by finite number of element of simple 

geometric shapes. The elements are connected at a finite number of points. This 

process is known as discretisation. In the finite element displacement approach, the 

displacements at any point within an element are dependent only upon the 

unknown nodal displacements as follows:

[N] denotes a rectangular matrix containing the shape functions that relate 

displacements {5} at any point within an element to its nodal displacements {5e}.

For structural applications, the governing equilibrium equations can be obtained by 

minimizing the total energy of the system. The total potential energy can be 

expressed as:

where {ct} and {e} are the stress and strain vectors respectively, {b} is the body 

forces per unit volume, {q} is the applied surface load and {p} are concentrated 

forces, v and s stands for volume and surface respectively. ns represent the total 

potential energy.

The first term of the right hand side of equation 4.2 represents the strain energy 

of internal stresses, the second, the third and the fourth are the loss of potential of 

body forces, distributed surface load and concentrated loads respectively. 

Integrations are taken over the whole structure and will be the energy contribution 

of each individual element, thus:

{5} = [N] { 5e } 4 .1

-  { 5 ) T (p) 4 . 2

n
ns £ ne 4 . 3

i = l



5 7

ne represents the total potential energy of the i1*1 element which can be written 

as:

ve
{ 5e }T [ B ] T [ D ] [ B ] { 5e } -  Jv e {5e ) T [N ] T {b} dv

{ 5e >T [N]T {q} ds - { S Y 4 . 4

where ve and se are volume and surface of element respectively. [B] is the strain 

matrix generally composed of derivatives of shape functions. [D] is linear elastic or 

elsto—plastic material stress strain matrix.

Minimizing the potential energy results in:

an.

ase
-  J v e [ B ] t [ D ] [ B ] { 5e } dv - ve [ N] T { b } dv

-  JsefNlT{q} ds ~ I

The total potential energy ns of the system is minimum, when:

4 . 5

an.

as
=  0 . 0

The equivalent nodal forces for the element are:

{ Fe } = + [ N ] t { b) dv + [ N] T { q } ds + { ? }e Jve . se

and the element stiffness matrix is:

4 . 6

4 . 7

[Ke ] -  J v e [ B ] T [ D ] [ B ]  dv  4 . 8

The summation o f the terms in equation 4.5 over all elements results in:



dns
  [Ks ] { 5 )  -  {Fs } 4 . 9
as

where {Fs} and [Ks] are the global loading vector and structural stiffness matrix 

respectively.

Equating the right side of equations 4.6 and 4.9, gives the following expression: 

[ Ks ] { 5 }  -  [ F s ] =  0 . 0  4 . 1 0

After the insertion of the necessary boundary conditions, equation 4.10 is then

solved by any standard technique to yield the nodal displacements.

{ 6 }  =  [ K g ] " 1 { F s } 4 . 1 1

Once the displacement are determined, the strain and thereafter the stress in each 

element can be evaluated using the following equations:

{ e } =  [ B ] { 5 }  4 . 1 2 a

{(7) = [ D ] { e } 4 . 1 2 b

4.2.2 Laver Approach:

For flexural deformation, material property variation through the thickness must 

be taken into account. This can be accomplished in a discretized fashion via a 

layering approach, where the plate thickness is divided into a finite number of 

layers parallel to the middle plane of the plate fig. 4.1, or by the introduction of 

numerical integration points through the thickness.

The layer concept was adopted in the literature by many research workers, 

Johnarry(42), Hago and Bhatt(69) using a rectangular element with five degrees of



freedom (u,v,w, 0X, 6 y ) .  Later Abdel Hafez(43) used an isotropic eight noded 

element with five degree of freedom. All reported good agreement with 

experimental results. So the last model was adopted in this present study.

4.2.2.1 Basic Assumptions:

In this model, each layer is supposed to be in a state of plane stress condition, 

and a linear strain variation with the depth is assumed based on the small 

deflection theory. The layers are allowed to resist the transverse shear stress fig 

4.2. The variation of the stress through the thickness of a layer is ignored. Each 

layer can be of a different material, thus for a reinforced concrete element, each 

constituent material is assigned a different layer. Perfect bond between all layers is 

normally assumed.

For plate bending cases these assumptions are made:

i— Displacement are small compared to the dimension of the plates.

ii— The stress normal to the plate are negligible.

iii— The Normal to the reference surface deformation remains straight but 

not necessarily normal to the reference surface after deformation fig. 4.3.

4.2.2.2 Displacement Representation:

Using the above assumptions, displacements u, v, w at any point in the 

structure with coordinates (x, y, z) can be expressed as:

u u o(x > y) -  z 0x ( x , y )

V = v 0 ( x , y ) -  z f ly (x ,y )

w w o ( x > y )

where u 0, v Q, w Q are the displacement at the plate reference surface, figure 4.3. 

in the x, y, z directions respectively. 0X, Oy are the rotations of the normal in



Fig. 4.1 Layer Idealization.

Fig. 4.2 Layer Plate Model, Stress Sign Convention. 

(Positive as shown).
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xz and yz plane respectively, z is the distance from  the reference surface to the 

m id— plane o f the layer under consideration.

The r o t a t i o n s  a r e  d e te rm in e d  as f o l l o w s :

*x
a w ( x , y )

dx + $x ( x , y )

ey
d w ( x , y )

+ $ y ( x , y )

.

4>x and $y denote the shear deformations, figure 4 .3 .

Since in this study the same fin ite  element program was adopted fo r both plate 

bending and inplane nonlinear analysis problems, the displacement vector, for 

inplane problems, is composed only of u and v with z kept equal to zero.

4.2.3 Shape Functions:

Using the fin ite  element idealization, the displacement vector at any point in an 

eight node isoparametric element is given by the expression:

8
<5 = £ Nj Sj 4 . 1 5

i - 1

Where N j is the shape function of node i and 6j is the vector of the nodal 

displacements at node i. The shape functions are given in terms of the local 

coordinates ($ , 17), where on the edges of an isoparametric element the values of £ 

and 17 are — 1 , figure 4 .5 . Therefore the displacement 6 at any point w ithin the 

element can be expressed as fo llow :

8
6($ , V ) =  I  Nj ( t  , 77) 6 ,• 4 . 1 6

i =1



4.2.4 Strain Displacement Relationship:

Once the nodal displacement are expressed in terms of shape functions, the 

strain within the element can be expressed in terms of displacements or their 

derivatives. In the two dimensional analysis based on the Mindlin plate bending 

and plane stress assumption, the strain displacement relationship may be written 

as:

aNj
0 I 0

zl 
X 

fX>N1 0fcx ax

ey 0
aNj
dy I 0 0 _ z d N iay

^xy • = aNj
ay

aNj
ax

1
1

aNj
ay

aNj
dx

Y x z 0 0 l c a N i1 ax -CNj 0

Y y z 0 0 ' c a N il a y
1

0 -CNj

u i

v i

i1 
X

 
1

0y i

4.17

in which ex , £y and yXy are the inplane strains components. y xz and yyZ are the 

transversal shear strain components. Z  is the distance from the reference plane to 

the layer centre, as shown in figure 4.1. C is the shear strain coefficient which 

depends on the shape of the cross section(5), and assumed to be equal to 1.0. 

Strain displacement can be presented in a simple form:

{6} = I  B i { 
i = l

4.18

where Bj is the 5x5 matrix which contains cartesian derivatives of the shape 

functions. Bj can be written as:

Bj =

Bp j 1 Bf l
1
1

0
1
1 Bsi

4.19

Bpj is the strain matrix associated with plane stress deformation. It is the one



which is used for plate bending and inplane problems. Bfj is the strain matrix 

associated with the flexural deformation. Bsj is the strain matrix associated with 

the shear deformation. The two strain matrices Bfj and Bsj are used for plate 

bending only.

4.2.5 Cartesian Derivatives of Shape Functions:

Since the shape function Nj are defined in terms of local coordinates S and rj 

of the element, transformation from local to global coordinates is required to 

obtain the strain matrix [B]. This is done by using the chain rule for 

differentiation to give Jacobian transformation as follows:

aNj aNj dx aNj ^y

as dx as as

aNj a Nj dx aNj dy

dr] dx dr] dy dr]

in m a t r i x  form:

an,- dx dv aNj
as as as dx

aNj dx dy aNj
dr) dr] dr) ay

4.20

4.21

= [J 4.22
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dNj dNj
dx as

-  [ J ] " 1

dNj dNj
ay dry

4.23

wh e r e  [ J ]  i s :

[ J ]  =

dx
w

dx

a y
as

4.24

Since we a re  f o l l o w i n g  is o p a r a m e t r ic  f o r m u l a t i o n ,  

x = E Nj Xj and y = E Nj yj

dx
"as"

a y
as

V dNiE 1 x
i = l

d$ ’
dx ^ dNj= y  *- x̂
dr] i =1 dry 1

v dNi
i - i  y i

3 y  _dNi
^ Ay, y 1aty ii=1 ary

4.25

Thus [J ] = £ 
i =1

dNj
d ^  X i

dN;
5 ^  X*

dNj
a r 1 y i

dNj
dry y i

4.26

where xj and yj are the nodal coordinates. 

The in v e rs e  o f  Jacob ian  m a t r i x  is:

as ary d y dv
dx dx

1

de t J

dr} as

as dry dx dx
a y a y dry Ats
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The cartesian derivatives of the shape functions can thus be calculated from

equation 4.23. They are used for the computation of the strain matrix [B] as

shown in equation 4.17.

4.2.6 Stress Strain Relationship:

Using the basic theory of elasticity, the stress strain relationship, for each layer

may be written in the form:

{o-} = [D] { e } 4 .2 8

where [D] is the elasticity matrix given by:

1 V 0 o o
i

V 1 0 | 0 0

E
0 0 1 - v

1

1 0 0 

1
l - , . 2 2

0 0 0 15( 1 - 0  n
| 12

0 0 0 ! o 5 ( i - ,,) 12

E and v represent young's modulus and poisson's ratio of the concrete. 

[D] matrix can also be written in the form:

D1 =

Dp i

1
1
1 o 
1 
1

0
1
1 Ds i 
1

4 .3 0

where Dpj is related to plane stresses and Dsj is related to the transverse shear 

stresses.



Reinforcing steel layer is assumed to be smeared into a thin layer of thickness 

equivalent to its total area. This smeared layer of steel is assumed to have 

unidirectional stiffness corresponding to the direction of its physical layout. [D] 

matrix is given by:

D1 = Et

0 0

0 0

0 0

4 . 3 1

If  the steel is disposed at an angle a counter clockwise, from the x—axis, the

local modulus matrix is transformed to the global cartesian axis.

4.2.7 Element Stiffness Matrix and Force Vector:

For elastic material behaviour, all the information required to evaluate the

element stiffness matrix [K] has been given previously so that it will be as 

follows:

[K] -  I  f f [ B ] T [D] [B] dx dy t j  4 . 3 2
i - 1

where tj is the thickness of the i1*1 layer, n is the total number of layers, [B] is

the strain matrix and [D] is the material constitutive matrix depending on the type

of the material ( concrete or steel ) and the state of the stress (elastic, cracked,

plastic etc...). In the next chapter the material constitutive matrix in the nonlinear

range will be described.

Numerical integration is used to evaluate the stiffness matrix given by the above

expression and Gauss integration rules are chosen to carryout the integration over

the element area as follows:
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K1 = I
n
y

i = l

1 1

I  I
-1 -1

[B ] T [D] [B] det J d$ d rj t 4 . 3 3

and numerically can be written as: 

n m m
[K] -  I  I  I  Wj Wk [B] [D] [B] det J 4 . 3 4

i - 1  j = l  k = l

m is the number of Gauss point in each direction, n is the number of layer.

Wj, W k are the weight coefficient corresponding to the specified Gauss point with 

local coordinates ($ ,rj).

The equivalent load vector at the nodes due to the effect of uniformly distributed 

element surface load is :

{ F} = J [ N] T { q } ds 4 .3 5
s

which can be written in the form: 

m m
{F } = I  I  W; Wj [N] {q } det J 4 .3 6

j - 1  i - 1

4.3 Nonlinear Solution Techniques:

I f  the applied loading is small compared with the ultimate load, it may be 

assumed that the structure behaves elastically and a linear elastic analysis can be 

performed to give the stress distribution in different part o f the structure. If 

nearly fu ll ultim ate loading is considered then it is necessary to establish a full 

nonlinear analysis. Three procedures are usually used namely incremental, iterative 

and mixed.
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4.3.1 Incremental Procedure:

In this procedure the load is divided into a number of equal or unequal load

increment. At each step only one increment of load is added to the structure. At

each stage of loading the stiffness of the structure may have a different value 

depending on the deformation reached and constitutive law adopted for the 

material as well as the method for estimating the stiffness at that stage.

The total load and displacement at any stage is given by the sum of the 

increments of all the loads and displacements of the previous stages. The process 

is repeated until the ultimate or the total load is reached. This method has the

advantage that it is simple to apply but the accuracy is rather low unless the load

increments are very small. The method has a serious drawback that at each step

the stiffness matrix has to be assembled and the solution procedure for the linear 

equation has to be performed at each time. This is uneconomical in terms of 

computational efforts.

4.3.2 Iterative Procedure:

In the iterative procedure, the load is applied to the structure and then the

displacement is adjusted in accordance with the constitutive laws until equilibrium

is attained. In this method either the stiffness matrix remains constant or varies 

throughout a solution. One distinct advantage of this method is that the same 

stiffness matrix can be used at each step of iteration which involves a small

amount of computing effort in each subsequent iteration step for the determination 

of the corresponding displacement. Other methods with variable stiffness matrix [K] 

such as the secant method and Newton— Raphson method may have a faster 

convergence rate but only at the expense of having to reassemble and solve a new 

system of linear equations at each iteration.



4.3.3 Mixed Procedure:

In practice, usually a combination of both the incremental and iterative

procedures is used. The total load is divided into a number of load increments. 

At every increment of load, iterative procedure is applied until convergence is 

obtained under that load increment. The constant stiffness procedure can be used. 

For nonlinear analysis of reinforced concrete structures, experience seems to 

indicate that relatively small load increments with fairly frequent updating of the 

stiffness for just a few iteration steps are required to produce the best 

results(36,89). In this work the modified Newton—Raphson(2) approach is used to 

evaluate the stiffness matrix by updating the stiffness at some chosen iteration. 

This algorithm gives satisfactory results for reasonable computational effort. 

Developments in numerical analysis and applied mathematics can be used to 

further improve the efficiency of solution techniques at low additional coast.

Recently, a number of techniques have been introduced in order to accelerate the 

rate of convergence, such as the accelerated method and arc length 

methods(86,87,88).

4.4 Convergence Criteria:

Since in a numerical process, equilibrium conditions are unlikely to be satisfied

exactly, criteria to determine convergence have to be established for objective 

analysis. The main purpose for reliable convergence criterion is to monitor the 

gradual elimination of the out— of— balance residual forces until the desired 

accuracy has been achieved. The convergence criteria, usually used, is based on 

displacement or out— of— balance forces norm and sometimes on internal strain 

energy. In the present work, convergence is based on out— of— balance force

norms. They indicate directly how well equilibrium requirements are met(36). Since 

it is difficult and expensive to check the decay of residual forces for every degree 

of freedom, an overall evaluation of convergence is preferable. This is achieved by
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using norms as follows:

ARY

F t
*  100 ^ Tc 4 .41

where

Tc : A user p r e s c r i b e d  convergence t o l e r a n c e .

AR* : Norm o f  the  r e s i d u a l s  

ARf = J  { R j i T f R j )

{R j } is  the r e s i d u a l  fo rc e  v e c t o r  at i 1 1̂ i t e r a t i o n  g iven  

by e q u a t io n  4 . 4 0 .

F *  : Norm o f  the  t o t a l  a p p l i e d  load.

{ F j }  i s  the t o t a l  a p p l i e d  load v e c t o r .

Fine tolerances are theoretically desirable but can be very expensive to obtain 

because they quite often require a large number of iterations. Steep discontinuities 

in material laws (cracks, yielding ...) can cause large residuals and these residuals 

need to be distributed. However this redistribution will cause more discontinuities 

in other parts of the structure and hence residuals in subsequent iterations. In 

such cases the rate of accumulation of residuals can be higher than the rate of 

distributing them. An intermediate solution is to choose a tolerance value at initial 

stages and increase it towards the later part of the load history. In the present 

study, the load increment is reduced in the cracking stages.

4.5 Basic Steps in the Nonlinear Program:

The major steps in the linear and the nonlinear analysis of a typical finite 

element program are:



1— Subdivision of the structure and representing different parts by appropriate 

types of finite elements.

2— Generation and assembly of the load vector {F}.

3— Generation of the element stiffness [Ke].

4— Assembly of the structure stiffness [K].

5— Solution for the nodal displacements {5j} =  [K]~ * {Fj} and hence the strain:

{e} =  S [B]T  {«i>

6— Determination of element stresses {<r} =  [D] {e}

F o r n on linear analysis:

7— Check for cracking, yielding, and failure.

8— Determination of unbalanced nodal forces.

9— Check for convergence.

10— (a) If  not converged apply the unbalanced nodal forces again to the structure

and go to step 3 if the stiffness is to be updated and to 5 if constant

stiffness solution is adopted.

(b) If converged apply the next load increment and go to step 2.

11— Stop when failure occurs or when full loading has been applied.

Figure 4.6 shows the main steps of the finite element nonlinear analysis 

procedure.
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Chapter 5

Material Modelling and Numerical Applications

5.1 Introduction:

In the present state of development of finite element computer programs, the 

problem of modelling the mechanical behaviour of concrete for use for analytical 

studies of reinforced concrete structures remains one of the most difficult challenges 

in the field of structural concrete. The analysis of the complete response of 

structural systems of steel and concrete requires consideration of a number of

nonlinear effects. The most important effects include tensile cracking, yielding of

steel, nonlinear material behaviour, compressive crushing of concrete, aggregate 

interlock, bond between concrete and steel and dowel action of reinforcing bars.

The basic information required is the multidimensional stress— strain relationships 

describing adequately the characteristics of reinforced concrete materials. These are

called constitutive laws which describe mathematically the behaviour of constituent 

materials approximating closely the real behaviour. These laws are based on

experimental data and allow the formulation of relationship between applied 

multiaxial stress state and the resulting strains. Currently the constitutive properties 

of concrete have not yet been universally defined and there is no generally



accepted material law which fully describes the concrete behaviour in combined 

stress conditions(8). The scatter of the results can be attributed to variations in 

three principle factors namely: i— materials tested, ii— the test method it self and 

iii— the loading systems.

In the following sections, the behaviour of concrete and steel is described as well 

as the model adopted and its applications to experimental tests for both plate 

bending and inplane problems.

5.2 Mechanical Behaviour of Concrete:

This section summarizes some of the facts of the experimental behaviour of 

plain concrete under uniaxial and biaxial states of stress.

5.2.1 Uniaxial Compressive Stress—Strain Response:

The comprehension of the behaviour of plain concrete under uniaxial 

stress— strain response is a useful starting point for a discussion of more complex 

conditions. A  typical stress strain relationship for concrete under uniaxial 

compression is shown in figure 5.1a. The main experimental observations can be 

summarized as follows:

i— The concrete has nearly linear behaviour up to 30 percent of its maximum 

compressive strength f^.

ii— Stress above 0.3 f^ shows a gradual increase in deformation up to about 0.75 

f^ to 0.90 f<!, whereupon it bends more sharply when approaching the peak 

strength f^.

iii— Beyond the peak strength f^, the stress strain curve has a descending branch 

until crushing failure occurs at some ultimate strain (c u). This strain is in the



range of 0.003 and 0.004 approximately.

Figure 5.1b shows that the initial modulus of elasticity of concrete is highly

dependent on the compressive strength. Also a high strength concrete behaves in a 

linear fashion to a relatively higher stress level than low strength concrete, but all 

peak points are located close to 0.002 strain. On the descending portion of the 

stress— strain curve, high strength concretes tend to behave in a more brittle

manner, and the stress dropping off more sharply than it does for concrete with 

low strength.

Numerous mathematical expressions based on the above experimental data have 

been used to predict uniaxial compressive stress— strain response using curve fitting

techniques. An excellent and comprehensive summary of these efforts have been 

presented by Popvics(lO).

5.2.2 Uniaxial Tensile Stress—Strain Response:

Figure 5.2 shows the stress strain relationship for different concrete specimens 

tested in uniaxial tension(ll). The curves are relatively linear up to a high 

percentage of its ultimate tensile strength f t. Three testing methods are generally 

used to measure the tensile strength. They are direct, flexural and indirect, figure

5.3. O f all the indirect methods used, cylinder splitting test , figure 5.3, is the 

most commonly used. In this test, a concrete cylinder is laid horizontally between 

the loading platens of a testing machine and compressed until the specimen splits a 

long a vertical diameter-ical plane.

In general the effective tensile strength of concrete is difficult to determine, despite 

its importance in tracing the history and the behaviour of reinforced concrete 

structures. It is considered as the most important criterion for the onset of 

cracking and the development of constitutive models.



5.2.3 Biaxial Concrete Behaviour:

Many important classes of structures can be approximated as being in a state of 

biaxial plane stress, such as beams, panels, and thin shells. Concrete, under 

different combinations of biaxial loading, exhibits stress and strain behaviour

different from that under uniaxial conditions. A  large amount of research has 

been done in recent years regarding determination of mechanical properties of 

concrete in biaxial loading. At present, considerable experimental data are available 

regarding the strength, deformational characteristics, and microcracking behaviour of 

concrete under biaxial stresses(15,16,17).

Figure 5.4 illustrates a typical biaxial strength envelop for concrete subjected to 

proportional biaxial loading. In general the maximum concrete compressive strength 

increases for the biaxial compression stress state fig. 5.5a. Also for biaxial 

compression, concrete exhibits an increased initial stiffness that may be due to

Poisson's effect. Under biaxial tension, concrete exhibits a constant(17) perhaps a 

slightly increased(16), tensile strength, compared with values obtained under

uniaxial. Under combination of compression and tension state, concrete exhibits a 

noticeably reduced strength. The compressive strength decreases almost linearly as 

the tensile strength is increased, figures 5.4 and 5.5b.

5.3 Constitutive Formulations of Concrete Modelling:

To date, procedures for the analysis and design o f reinforced concrete structures 

have been based mainly on empirical expressions, or on some simplified rules of 

material properties. Constitutive laws fo r reinforced concrete are simple analytical

form ulations to f it  numerically the complicated behaviour and relations between 

stress and strain in concrete. A  large number o f numerical models and techniques 

has been developed in an attempt to analyse d ifferent reinforced concrete structures 

(22,23,24,25). The state of the art ASCE 1982(22) classified the present constitutive 

models into the follow ing models:
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i— Elasticity based models (linear/nonlinear).

ii— Plasticity based models.

iii— Plastic— Fracture type models.

iv— Endochronic models.

A  brief description of the above models will be given in the following:

5.3.1 Elasticity based models:

During the past three decades, a relatively large number of elasticity— based

constitutive models have been developed to represent the behaviour of concrete 

under general types of loading. In this model the stress strain behaviour can be 

expressed as either

{ct ) = [ D] { e } 5 . 1

or {da} -  [D] {d e } 5 . 2

Where [D] represents either the secant or tangential constitutive matrix, {o'} and {e} 

are the stress and the strain vectors, respectively.

From a purely formal point of view there is no basic difference between elasticity 

based models and the other models. They all result in variable increment material 

stiffness matrix. In the elasticity— based models, the tangential constitutive matrix is 

obtained or Induced directly by intuitive or approximate considerations that do not

use more sophisticated concepts such as flow rules, intrinsic time, etc. In general,

two different approaches are employed in the formulation of the nonlinear elastic 

models for characterizing the degradation of concrete stiffness under loading. They 

are: i— finite or total material characterization in the form of secant stress—strain 

formulation, where the current state of stress is assumed to be uniquely determined 

as a function of the current state of strain, ii— Incremental or different material 

description in the form of tangential stress— strain models. It is often used to 

describe the behaviour of materials in which the state of stress depends on the 

current state of strain as well as on the stress path followed to reach that state.

In the present work, the elasticity—based model was adopted.



5.3.2 Plasticity based models:

Initially, the theory of plasticity was developed for metals. It has been extended 

recently to predict the behaviour of reinforced concrete structures. In general, 

models based on the theory of plasticity describe concrete as an elastic— perfectly 

plastic material or with allowance for some hardening as an elasto— plastic 

hardening material. The elastoplastic matrix is determined by specifying a yield 

function F, a flow rule (associated or non— associated) and a hardening rule 

(isotropic, kinematic or mixed). The yield function specifies the state of stresses 

corresponding to the beginning of plastic flow. This method has been used by 

many researchers by altering the von Mises criterion (26,27). Later new failure 

theories were therefore developed with specific application to concrete (28). It was 

demonstrated that the use of non—associated flow rule is necessary (29). The 

application of non— associated flow rule has been introduced and showed to be 

successful in controlling the main aspects affecting the behaviour of concrete 

structures(30).

5.3.3 Plastic—Fracturing Models:

The application of normality flow rule used for plastic flow of concrete does not 

reflect the observed behaviour in the case of fractured concrete (32). This 

conclusion by Andenaes (32) led to constitutive models based on the 

plastic— fracturing theory. This theory requires two loading surfaces depending on 

both stresses and strains (33). It combines plastic strain increments and fracturing 

stress decrements, which reflect microcracking and accounts for the degradation of 

elastic moduli, internal friction etc.. The disadvantage of the method is that it 

requires six inelastic parameters. The theory was verified (34) and gives good 

agreement with the experimental results.



5.3.4 Endochronic Modelling:

The endochronic theory was proposed by Valinas (18) and applied to predict the 

mechanical response of metals under complex strains histories. The basic concept

underlying the endochronic formulations is the characterisation of the material strain 

state in terms of an intrinsic time. Valinas termed the materials for which the 

stress is a function of the strain history with respect to an intrinsic time scale as 

endochronic (Greek: end =  inner, chronic =  time). The intrinsic time is a 

non— decreasing scalar variable used to measure the extent of the irreversible

damage of the internal structure of the concrete material, when subjected to

deformation histories.

The endochronic theory was first applied to concrete by Bazant and Bhat (19,20)

by extending the formulation of metals, developed by Valinas (18), to include many 

nonlinear features of concrete. Reddy and Gopal (21) stated that, the endochronic 

theory is the only constitutive theory which can model most of the nonlinear 

features of concrete at the present time. However Al— Manaseer(36) concluded that 

the method is complicated and simplifications need to be introduced so that the 

theory becomes more accessible.

5.4 Cracking Models:

As is well known, concrete has a low strength in tension, resulting in a cracking 

type of failure at early stages of loading before steel starts yielding. Therefore, the 

brittleness of concrete in tension and the formation of the cracks is the most

important nonlinear phenomena which governs the behaviour of concrete. In the 

finite element analysis of concrete structures, three different crack models have

been employed by researchers, depending on the purpose of the analysis:

1— Smeared cracking models.

2— Discrete cracking models.



a

3— Fracture mechanics models.

In this study the smeared crack approach was adopted. Most structural engineers 

adopt this model for its simplicity. In general, if overall load deflection behaviour 

is desired, without regard to completely realistic crack patterns and local stresses, 

the smeared crack model is probably the best choice. For special problems in 

which fracture mechanics is the appropriate tool, a specialised fracture model might 

be necessary.

5.4.1 Smeared Cracking Model:

In this model the cracked solid is imagined to be a continuum fig. 5.6a. The 

behaviour of cracked concrete can then be described in terms of stress— strain 

relationship and it is sufficient to switch from the initial isotropic to an orthotropic 

stress— strain relationship after cracking. In this model the topology of the original 

finite element mesh remains preserved which is computationally convenient. It is 

for this reason that this model is widely used and quickly replaced the early 

discrete crack model. This model was first introduced by Rashid (35).

Smeared crack concepts can be modelled as either fixed or rotating cracks. With 

the fixed crack concept the orientation of the crack is fixed during the entire 

computational process, whereas a rotating concept allows the orientation of the 

crack to co—rotate with the axes of principal strains. To account for aggregate 

interlock on the cracked concrete plane interface, a reduced shear modulus can be 

assumed. For stiffness calculation it is necessary to transform the local material 

stiffness matrix into global coordinates, by using the well known transformation 

matrix relating crack direction to global direction.

5.4.2 Discrete Cracking Model:

The discrete cracking model was introduced by Ngo and Scordellis(7) in 1967



when analysing the behaviour of beams with predefined cracks. The discrete crack 

is modelled by disconnecting the nodes for adjoining elements along the length of 

the crack. Almahaidi (37) improved the model by introducing a new definition, so 

that at a single point, continuity is preserved by two or four nodes tied together 

by stiff linkage elements until cracking occurs in one or two directions respectively, 

figure 5.6b. In general the crack directions and locations are not known in advance 

and with geometrical restrictions imposed by the preselected finite element mesh it 

is obvious that this approach suffers difficulties, so that the crack is constrained to 

follow a predefined path along the element edges. The second disadvantage is that, 

after cracking there is a continuous change in nodal connectivity which does not fit 

the nature of finite element method which requires a narrow band width on the 

structural stiffness matrix. Because of its lack of generality in a possible crack

direction and redefinition of element nodes, this concept has resulted in very

limited acceptance in structural application. Only in very special problems involving 

a few dominant cracks or predefined cracks, is the discrete crack model a realistic 

choice.

To date, there is not yet a consensus on the question of which type of approach

should be preferred for a given problem (38). Crisfield(39) concluded that there is

a danger of spurious mechanisms which can blow up the entire iterative procedure 

in smeared model. To sum up, both approaches presently seen to have their own 

merits and demerits.

5.4.3 Fracture Mechanics Model:

This model is used in solving various types of cracking problems in metals, 

ceramics and rocks. Chen(23) concluded that, the use of fracture mechanics model 

for reinforced concrete is still questionable and much remains to be done. In its 

current state of development, the practical applicability of fracture mechanics to 

reinforced concrete materials is still under investigation by several researchers(40).
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5.5 Present Model for Concrete:

An international competition putting into test the different theories, described 

previously, organised by Collins and Vicchio(41) concluded that there is no

correlation between the complexity of the analytical models and the accuracy of 

the resulting predictions. Very simple models can produce predictions that are just 

as good or just as bad as those arrived at by very complex models.

The model used in this study is simple but capable of simulating the nonlinear 

behaviour of slabs and deep beams. This model was used by Johanry(42) and

Adel— H afez43) in the analysis of reinforced concrete slabs.

5.5.1 Yield Criterion:

There have been a number of failure theories proposed and used by various 

investigators. Recently, investigations have been made towards developing a 

consistent failure theory for concrete(22,24). In any well designed reinforced

concrete structure, the cracking of concrete in tension, and compressive and tensile 

yielding of steel are the major source of nonlinearity. In this study the octahedral 

shear stress, linearised in term of the octahedral normal stress, is used, to fit the

yield surfaces for concrete under biaxial stress states fig. 5.7, in the form:

7o c t  a + b (To c t 5 . 3

Where r o c t  i s  t h e  o c t a h e d r a l  s h e a r  s t r e s s  g i v e n  by:

J 2
7 o c t

3
(Ox2 + ° y 2 ~ ° x ° y  + 3 7x y 2 ) 1 /2 5 . 4

a n d  (To c t  i s  t h e  o c t a h e d r a l  s t r e s s  g i v e n  a s :



8 9

1

^ o c t  =  ( * X  +  ° y )  5 . 5

Taking fc as the uniaxial compressive strength of concrete, as the equivalent

compressive strength under biaxial compression, assumed to be 1.16 f<! and m =  

f^f^, constants a and b in equation 5.3 are determined as follows:

5.5.1.1 Compression yielding:

i -  F o r  u n i a x i a l  c o m p r e s s i o n :  <rx = -  , (Ty =  r Xy = 0 . 0

J  2 f,r
f~  a n d  (j  c

c
o c t  cW1'J u o c t

3

Substituting in equation 5.3 we get:

J  2 f c b f c
+ a 5 . 6

i i -  F o r  b i a x i a l  c o m p r e s s i o n :  a x  = cry = -  f d  = - 1 . 1 6  f  'c , r Xy = 0 . 0

J  2 2 f c
o c t  = 1 A e    f c and  ° o c t  = 1 - 16 --------

3 3

Thus equation can be written as:

J  2 f c 2 b f c
1 . 1 6  -----------------  = - 1 . 1 6    + a 5 . 7

Solving for a and b, the biaxial compression yield criterion is given by:

' o c t  a o c t
  + ( 0 . 1 7 1 4    -  0 . 4 1 4 3  ) = 0 . 0
r '  f '1 c 1 c

5 . 8
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5.5.1.2 Tension— Compression:

0"x = -  f c > = m f c

Using the same procedure, it results:

r  o c t  1-m ^ o c t  272 m
---------------  + J  2 ---------- ---------  ----------------------------= 0 . 0  5 . 9

f 'c  1+m 3 1+m

5.5.1.3 Tension— Tension:

For biaxial tension the simple circular criterion is adopted.

1

b
"

2
- j-

1

K
)

c
t

1 1 r+

-  1 . 0  =  0 . 0 5.10

where cr, and o 2 are the standard principal stresses.

5.6 Concrete Nonlinearitv:

5.6.1 Concrete under Compression:

To account for nonlinear stress—strain relationship of concrete in the principal 

stress direction, equation describing concrete in elastic stage ( a  =  D  e ) is 

adopted as proposed by Saenz(45) and modified by Liu et al.(46), to account for 

biaxial effects. It takes the form:

A + B £
a  = ------------------------------------------------------------------------  5.11

( l - r a ) ( l + C e + D e 2 )

where a  is the ratio of the principal stresses, a =  /  a 2 , r  is the Poisson's

ratio and A, B, C and D are parameters which depend on the shape of the



stress—strain curve. They were calculated from the following conditions:

i— At the initiation of loading, that is e =  0.0:

da
  = Ec/ ( 1 - v a )  and a = 0 .0

de

ii— At the peak stress of concrete ap the corresponding strain is ep and the slope 

of the stress—strain curve become zero, thus at e =  ep we have:

da
  = 0 .0  and a = ap

de

The above conditions provide four equations sufficient to define the unknown 

parameters A, B, C and D of equation 5.11. After solving for the constants we 

have:

a =

(1  -  rat)
r  6 -I

1 + ( -  2 )
1 -  voi Ese L epJ

• • 5 M

where:

ap is the ultimate strength of concrete in compression, equal to f<!.

€p is the strain at maximum concrete compression stress, taken as equal to 0.0025.

Ec is the initial modulus of elasticity of concrete for uniaxial loading.

Ese is the secant modulus of elasticity at the peak stress and given by the

expression Ese =  ap / ep.

a is the ratio of the principal stresses, a  =  a 1 / a 2 

v Poisson's ratio.

a and e are stress and strain in biaxial loading.

Equation 5.12 is used to generate the stress—strain behaviour of concrete in biaxial 

compression up to peak strain tp, after which this equation ceases to be valid due
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to the strain softening deformation. In this work softening is neglected by assuming 

perfectly plastic behaviour up to the ultimate strain eu.

To accommodate the early changes in stiffness of concrete, equation 5.12 is 

incrementally linearized during loading by assuming intermediate surfaces similar to 

that used by Bell and Elms(47) and Chen et al.(48). Such surfaces are shown in 

figure 5.7. The first loading surface corresponds to the initial discontinuity in the 

stress— strain diagram. The subsequent loading surfaces are assumed to have the 

same shape of limiting yield surface. Accordingly, the intermediate surfaces will be 

represented by equation $.3  but with an intermediate concrete strength fcc 

replacing the ultimate strength f^. Jolferry(42) proposed the following equation:

Ec
f c c = ^co ~ + f t  5 . 13

Ei

Where :

fco =  0.5 f'c

ft : Tensile strength of concrete.

Ec : Modulus of elasticity of concrete.

Abdel— Hafez(43) used the above equation and concluded that it is a useful

proposition.

Up to the peak strain ep, the concrete instantaneous modulus is computed using 

equation 5.12 and for strain above this value the following expression was used up

to the assumed crushing strain (0.0035).

fc
Ej  =  -----------  5 . 1 4

ei

The concrete is considered to be crushed if  one of the two conditions are violated:

i— if  the fa ilure criteria o f equation 5.8 is violated or,

i i— if  the principal compressive strain exceeds the ultimate compressive strain f u 

=  0.0035.
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5.6.2 Concrete in Tension:

Cracking of concrete, under tension is the major source of nonlinearity in 

reinforced concrete structures . The main features, accounted for concrete in 

tension, are summarized:

i— Cracking in one or two direction?is allowed.

ii— Cracks are allowed to transmit the shear to account for aggregate

interlock.

iii— Different crack direction is allowed for each layer.

iv— Tension stiffening is included.

5.6.2.1 Singly cracked Concrete:

The crack is supposed to open, if one of the yield criterion of equations 5.9

and 5.10 are violated, depending on the state of stress is in tension—compression 

or in tension— tension state. The direction of the crack is taken as normal to the 

major principal tensile stress. For fixed crack direction analysis, the direction of

the first crack is fixed. The stiffness perpendicular to the crack is assumed to be

equal to zero (if tension stiffening is neglected). However, material parallel to the

crack, is still capable of carrying stress prevailing at the crack, and some shear

force can be transferred along the rough surfaces of a crack. Accordingly the

material stiffness of concrete, in the local coordinate system (n,t) fig. 5.6a, is

given as:
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A reduced shear modulus |3G is assumed to account for aggregate interlock ( 0 ^ 

(3 ^ 1 ). G is the shear modulus. The Poisson's effect is neglected due to the 

assumption that there is no interaction between the two principal directions after 

concrete cracking.

i— Calculate the principal stress using the following standard expression:

° x  +  ° y +
a x a  y

-,1
2

+  T 5 .1 6

ii— Compute the principal angle 6, with report to x axis, in the form:

The angle 6 given in the above equation lies between — 4 5 0 and 4 5 0 therefore it 

can lead to confusion on the principal direction. To determine the correct principal 

angle, the following step is used.

iii— Calculate the normal stress associated with the angle 6 using the following 

expression:

° n  = a x c o s ^0 + 0"y s i n ^ f l  + 2 r Xy s i n t f cos f l  5 . 1 8

iv— Compare the values of o’1 and c 2 with the above normal stress <rn .

_  If  crn =  cr2, then <r, in inclined at 0 + 9 0 °  to x axis. Therefore the crack 

angle is at 8 to x axis.

— If  <rn =  cr1, then the crack is normal to a r  Hence the crack angle is 0 +  

90°.
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5.6.2.2 Doubly Cracked Concrete:

The presence of shear retention and tension stiffening if not neglected at the 

previously formed crack will cause subsequent cracking and effectively produces 

changes in the crack orientation. In fact, accounting for aggregate interlock implies 

that the primary crack direction does not coincide with the principal direction and 

consequently the second cracks may not be necessarily orthogonal to the previous 

crack. Thus the orthogonal fixed crack approach results in conflict with the 

assumption of the principal planes. It has been confirmed experimentally by Vfcchio 

and Collins(49) that changes in crack orientation takes place especially for panels 

not equally reinforced.

For the previously uncracked concrete, smeared cracks occur in two orthogonal 

directions when both the principal stresses exceed the tensile strength of concrete 

f t . In this case, the material stiffness matrix in the local coordinates (n,t) becomes:

D' c r

0 (SG

5 . 1 9

The first two diagonal terms in the above matrix may be updated if tension 

stiffening is considered.

Since the material stiffness matrix [D 'lcr is expressed in local coordinates system 

(n ,t), it is, therefore, transformed to the global coordinates system (x,y) using the 

standard transformation matrix [T] as fellows:

[ D l c r  "  [ T ] T [ D ' ] c r  [T] 5 . 20
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c2 cs

Where [T] = C2 -CS 5 . 2 1

-2CS 2CS C2 - S 2

Where C =  cos0cr and S =  sin0cr

5.6.2.3 Shear Transfer:

Along reinforced concrete crack interfaces, aggregate interlock (fig. 5.8a) and to 

some extent dowel action (fig. 5.8b) are the main mechanisms of load transfer(50). 

The aggregate interlock is caused by the nature of the concrete crack roughness, 

where as dowel action occurs due to steel bars crossing cracks. These bars tend to 

resist sliding shear movement and resist opening of the crack. Experimental results 

have shown that the aggregate interlock resist more shear than dowel action(51,52). 

Because large amount of deformation is required to develop significant dowel 

action, and to reach that amount the concrete surrounding the bars may have 

already deteriorated.

Based on many experimental studies, various analytical models of shear transfer 

have been developed, figure 5.8. Hand et al.(53) proposed the shear modulus 

approach to overcome some numerical difficulties, where they used a constant value 

of @ after cracking of concrete. A  variable shear retention factor, which decreases 

linearly with a fictious strain normal to the crack, was later introduced by Cedolin 

and Deipoli(54). AJ—Mahaidi(37) has also suggested a hyperbolic variation of shear 

stiffness G with the fictious strain normal to the crack fig. 5.8c. In this work the 

Al—Mahaidi's model was used with a value of reduced shear modulus as follows:

B
13 = ------------

f f / ec r
5 . 2 2
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a- Aggregate interlock a long a cracked plane.

FLE X U R E

I

SHEAR

r i l l

K IN K IN 6

b -  D o w e l  a c t io n  m e c h a n is m s  a c ro s s  a  c r a c k  in te r fa c e s .

1

B

f

c- Hypebolic shear retention.

Fig. 5.8 Mechanism of shear t r a n s f e r  and model adopted.
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W here:

0 ^ B ^ 1 and ef is the fictious strain normal to the crack and expressed as:

ef  = ex s i n 2 0c r  + t y  c o s 2 0c r  -  YXy s i n 0 c r  c o s 0 c r  5 . 2 3

ec r  is the concrete cracking strain, ec r=  h / E c 

ex , ey and 7 Xy are the inplane strains.

^cr is the angle of the crack to x axis figure 5.6a.

In this work dowel action of the bars, crossing crack interfaces, was neglected.

5.6.2.4 Tension Stiffening:

As the cracks form, the tensile strength of that particular region drops to zero 

and the residual stresses are transferred to steel, figure 5.9a. However, between 

cracks, load is shared between steel and concrete due mainly to bond between steel 

and the surrounding concrete. Tension stiffening is introduced to model the ability 

of concrete between two adjacent cracks, to assist steel in carrying tensile stress.

The use of tension stiffening is not only more realistic, but tensile forces released 

from cracked zones are gradually redistributed into the structure. It was Scanlon 

and Murray(55) who introduced a descending branch, for the stress strain curve, 

beyond the cracking strain. Later Clark and Speirs(56) showed, from the results for 

beams and one way spanning slabs with different steel ratios, that the effect of 

tension stiffening decreases with an increase in the steel ratios and steel strain.

The results suggest that tension stiffening can be ignored for steel ratio above 

1.5% and for steel strains greater than about 0.0016. A  simple form of tension 

stiffening was adopted in the present work, figure 5.9b, as follows:

I f  e j < ec r  (T =  E j e j



S tre s s  d is t r ib u t io n  in  a  c r a c k e d  r e in f o r c e d  c o n c re te .
( a )

cr

N.
\

c r

Fig. 5.9 Tension stiffening idealization.
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(C2 ec r  -  e j )
I f  cCj- < f j  < C2 cCj- cr = Cl  f^

ec r (C2 -  1)

I f  C2 q  > C2 ec r  ( 7 = 0

where ecr is the concrete cracking strain ( ecr=  ^t/Ec), cr and q  are local stress 

and strain orthogonal to the crack, ft is the tensile strength of concrete. The

coefficients C l and C2 are taken as: 0.5 < C l < 1 . 0  and 10.0 < C2 < 20.0. 

Discussion on the values chosen for C l and C2 in the present work will be

presented later.

5.7 Modelling of steel:

In contrast to concrete, steel bar behaviour is comparatively well understood, and 

since, steel reinforcement elements in concrete construction are mostly one 

dimensional, it is generally not necessary to introduce a complex multiaxial 

constitutive relationships. Generally steel bars exhibit an initial elastic portion, a 

yield plateau at which the strain increases with a little or no increase in stress, a

strain hardening range in which stress again increases with strain, and finally a

range in which stress drops until fracture occurs. In the present study a simple 

bilinear idealisation of figure 5.10 is incorporated, simulating the behaviour of 

reinforcing steel as elastic perfectly plastic or with allowance of some hardening as 

follows:

i— At elastic stage, the incremental stress strain is given by:

A ct =  Es A  c 5 . 24

ii— When the stress in the steel bar reaches its yield value fy, the incremental 

elastic—plastic stress relationship takes the form:

A ct =  E s ( 1  -  E s /  ( E s +  H ) )  Ae 5 . 25
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Where H  is the hardening parameter and Es is the Young's modulus of steel. 

Generally for mild steel an elastic— perfectly plastic model is quite adequate, 

whereas for high yield steel bars, the strain hardening effect, may be important.

5.7.1 Finite Element Representation of Steel Bars:

To account for the effect of steel reinforcements in stiffness calculations, three 

alternative approaches can be used namely smeared, embedded and discrete.

5.7.1.1 Smeared Model:

In the smeared model, reinforcements are assumed to be distributed over the 

element, figure 5.11. This model is convenient for structures where a large number 

of reinforcing bars are placed. Due to this feature it is rather difficult to model 

each reinforcing bar individually. This model is widely used in reinforced concrete 

plate and shell structures, in which the structure is divided into layers. This 

approach was first adopted by Wegmuller in 1974(100) and improved by 

others(101,102). In this model the stress strain relationship for each layer is given 

by:

{o-} = [D's ] {e} 5 . 2 6

where Dg is the constitutive relationship for steel.

For steel layer the behaviour is first described in the local coordinate direction of

the steel so that the bar can be orientated at any angle to the global axes (x,y),

then the constitutive relationship is transformed from the local to the global axes

in terms of the angle 0S between the local axes and the global axes.
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5.7.1.2 Embedded Model:

Over the past decade, a number of embedded representation for reinforcement 

have been published. Phillips and Zeinkiewicz(103) developed embedded 

representation in which virtual work integration is performed along the reinforcing 

bar. In their formulation, the reinforcement was restricted to lie along one of the 

local coordinate lines, figure l ib .

Chang et a l.(104) recently published the embedded representations that allows for a 

reinforcing bar to be placed at an angle to the local isoparametric element axes 

but restricted to problems having straight reinforcing and rectilinear meshes. Elwi 

and Hrudey(105), and Phillips and Wu(106) developed a formulation presenting a 

general oriented and curved embedded reinforcement.

The advantage of using embedded model is that the geometry of the finite element 

mesh can be constructed independently of the reinforcement layout and every bar 

is modelled in its correct position. Since we are following the usual procedure for 

isoparametric mapping, and full compatibility between the bar and basic element is 

assumed, the displacements {u,v} of any point on the bar are obtained from the 

displacement field of the basic element as:

V

For bars only one component of strain contributes to the strain energy and is 

defined locally as:

£p =  du'/dx'

where x' and y' are the local coordinate system at any point on the bar with y' 

being normal to the bar, and u', v' are the corresponding displacements.

In this work, only reinforced bars laying parallel to the coordinate lines x or y are 

considered. I f  a bar is laying along £, all points of the bar have a constant r j =  r j c 

and vise versa.

The element stiffness matrix o f steel reinforcement has the follow ing form :
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[Ks l “  As L  l B) T tD) [B] d l 5 .2 7

Where Ag is the cross sectional area of reinforcement. [D] is the elasticity matrix 

determined as follows:

If the bar is laying in x direction: D ( l , l )  =  Es 

While in y direction D(2,2) =  Es.

[B] is the nodal displacement—strain matrix .for isoparametric element but 

accounting only for one degree of freedom in the direction of the reinforced bar. 

dl is the segment along the reinforcement.

The integration in equation 5.27 is performed over the whole bar length crossing 

the element. A  two Gauss point system was used.

Both smeared and embedded formulations are adopted in the present work by 

assuming perfect bond between steel and concrete. Thus the overall constitutive 

relationship is simply evaluated by adding the material matrices for concrete and 

steel together, as follows:

[Ke ] = [Kc ] + [Ks ] 5 .2 8

In which [Ke] is the stiffness matrix of the composite element, [K J  and [K^ are 

the element concrete and steel stiffness matrices respectively.

In fact the name embedded can be given for all models when full bound between 

steel and concrete is assumed. The so called embedded model could be better 

named as partially discrete model, since the strains of steel are calculated in their 

exact position on the bar, whereas its stiffness is distributed between the nodal 

points of the parent element, depending on the position of the bar within the 

element.

5.7.1.3 Discrete model:

In the discrete model, figure 5.11c, a one dimensional bar element is 

superimposed on the two dimensional parent element by assuming that the bar is
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FLEXURAL ELEMENTS

c -  D is c r e t e  m o d e l

Fig. 5.11 Finite element representations of steel.
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pin connected with two degrees of freedom at nodal points. Alternatively, discrete 

beam elements can be used, in which the steel is assumed to be capable of 

resisting axial force, shear force and bending moment. The use of the beam 

elements, with three degrees of freedom per node, may be suitable and necessary 

in the case of heavy bars for which bending is a significant effect. The discrete 

model was first used by Ngo and Scordelis(7) in the analysis of beams.

In either case, bar or beam element, steel—concrete interaction can be represented 

by linkage element to account for possible relative displacement of the 

reinforcement to the surrounding concrete. In this model the stiffness and the 

strains are calculated exactly on the bar position. In spite of its simplicity, the 

discrete model has one major disadvantage in that the finite element mesh patterns 

are restricted by the locations of the reinforcement, which leads to an increase in 

the size of the stiffness matrix.

5.8 Numerical Applications:

In this section some practical application of the model adopted are presented.

The main purpose is to verify the applicability and the accuracy of the numerical 

model, for reinforced concrete structures classified as plate bending and inplane 

problems. This is done by testing the model against various carefully conducted 

experimental tests involving different types of reinforced concrete structures 

exhibiting various modes of failure. The load deformation response, cracking history 

and crack locations and directions, steel yielding, ultimate load were recorded as 

well as the mode of failure. In the nonlinear solution, the combined algorithm is 

adopted in which the stiffness is updated at 2nd, 5th, 10th iterations and so on 

until convergence or collapse of the structure is obtained. A  convergence force 

tolerance of 4% was adopted for the analysis, the maximum number of iteration of 

30 and 50 were fixed for the analysis of slabs and deep beams respectively. The 

reason for increasing the number of iteration for beams is that, they show a slow 

rate of redistribution of the residual stress, at the first stages of cracking of the
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structure, but, unlike slabs, with a small increase in deformations. Also in order to 

keep costs down, small load increments are applied only for highly nonlinear parts 

of the solution. It was concluded(43) that there is not much difference in results 

using different load increment sizes. By analysing slabs, Abdel— Hafez(43) also 

showed that the results and the cost of the analysis are only slightly influenced by 

the number of layers used. A  total of 10 layers, including steel layers, were fixed 

for slab analysis.

5.8.1 H A G O ’s slabs:

Two slabs with different types of support conditions were chosen from the six 

slabs tested by Hago (115). The analysis of these slabs, with various degrees of

orthotropy of reinforcement, allows the effect of the amount of steel reinforcement 

to be tested as well as different types of support conditions.

a— Simolv supported slab (Model N. 31

This example is a square simply supported slab, designed for a total load of 210 

KN, applied as four point loads. The thickness of the slab is 100 mm, with

orthotropic reinforcement as shown in figure 5.12. The material properties used are 

as follows:

fcu =  44.2 N/mm2 ; fy =  460.0 N/mm2

E c =  21500.0 N/mm2 ; Es =  214000.0 N/mm2 

ft = 3 . 4  N/mm2

A quarter of the slab was analysed as shown in figure 5.12a. To study the

effect of the finite element mesh size, different mesh arrangements were used.

Figure 5.13 shows that a more flexible deformation was obtained when a larger

number of elements were used. The time cost of the analysis was significantly
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influenced by the number of element used. A  4x4 finite element mesh gives an 

acceptable solution at a reasonable cost. The time increases by almost four times 

when using 8x8 element mesh instead of 4x4. The slab was loaded using 0.2 Pd 

for the first increment, where Pd is the design ultimate load, and a load increment 

of 0.05 Pd was adopted in the first stage where cracking starts. A  load increment 

of 0.1 Pd was fixed beyond this last stage until design load was reached after 

which it was reduced to 0.05 Pd.

Generally slabs, failing flexurally, start cracking in the range of 20 to 35% of their 

ultimate strength. A  maximum of 18 iteration was recorded, during the analysis, at 

the early stages of cracking. Different value of the shear retention factor ( B =  

0.0, 0.4, 0.7 and 1.0) have been used to study the effect of shear transfer to 

simulate variations from very smooth to very rough concrete crack faces. Load 

deflection curves of the central point of the slab are illustrated in figure 5.14. 

From the results only small difference can be noticed between the deflections for 

the different values of B chosen. A  little improvement in the ultimate load can be 

seen when B was increased to the value of 0.4, while above this value there is no 

difference in the ultimate load. A  simple model for tension stiffening was used 

with values of C2 equal to 10.0, 15.0 and 20.0 ( the factor C2 determines the 

descending branch in figure 5.10b). Figure 5.15 shows that deflection values are 

sensitive to the tension stiffening especially at service load, where predictions are 

better predictions. In terms of ultimate load, using high values of C2 leads to 

higher ultimate load.

b—Hago*s two adjacent edges simply supported and one comer supported slab N .4 :

This is a 2100 x 2160 mm square slab with two adjacent sides simply supported 

and one corner on column support. The thickness of the slab is 100mm with 

orthotropic reinforcement as shown in figure 5.16. The slab had the following 

material properties:
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fcu =  37.3 KN/mm2 ; fy =  473 KN/mm2

ft =  2.97 KN/mm2 ; E s =  214000 KN/mm2

Ec =  20400 KN/mm2

Since the slab was not symmetric, a 6x6 finite element mesh is used over the 

whole plate as shown in figure 5.17. The cross section of the slab was divided into 

six concrete layers and four steel layers when top and bottom steel were present. 

Figure 5.18 compares the load—deflection curve obtained by experimental and 

numerical results. The numerical results were obtained using a shear retention 

factor B of 0.4. A  better correlation between the experimental and the numerical 

deflection was obtained using tension stiffening, where as in term of ultimate load 

there is no difference, figure 5.18.

Tension stiffening had a significant influence on the convergence rate of the 

solution at working load. Taking tension stiffening into consideration, a maximum 

of 9 iterations was required at the first stages of cracking, while analysis without 

tension stiffening increases the maximum number of iteration* to 24.

The incremental load size was reduced to 2.5 %  of the design load near the 

ultimate load. Figure 5.19 shows crack pattern comparison between the 

experimental results and the numerical, for both top and bottom concrete faces, at 

ultimate load.

The bottom steel yielded numerically at 0.9 Pd, in both analysis with or without 

tension stiffening, where as experimentally the steel yielded at the design load. 

Numerical failure took place at 98 %  of the experimental ultimate load. The 

predicted mode of failure was flexural as was the experimental.

5.8.2 McNeice comer support slabfll61:

This example was a 914.0 mm square corner supported slab, loaded with a 

central concentrated force. This slab was chosen to assess the present model for 

the two— way bending and corner supported slabs. Material properties are given as
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follows:

fcu =  32.4 N/mm2 ; fy =  345 N/mm2

ft =  3.2 N/mm2 ; E s =  200000 N/mm2

Ec =  29000 N/mm2

 ̂ =  0.15

A  mesh of 4x4 elements over a symmetric quadrant was used as shown in figure 

5.20. The experimental failure load was at 14.3 KN. Two results of analysis are

given here, one considering tension stiffening ( with C l =  0.5 and C2 =  10.0 ) 

and the other without tension stiffening. The agreement, between analytic with 

tension stiffening and experiment, is good at working load of the slab but the 

numerical results are stiffer beyond 0.7 of the ultimate load. Results without 

tension stiffening gives large deflection at working load range. The slab failed at 

1.10 and 1.125 of the experimental ultimate load excluding and including tension 

stiffening, respectively.

5.8.3 V IC C H IO  and COLLINS Panels:

Two panels were chosen from an experimental research program, conducted by 

Vfbchio and C o llin s (lll) . The program involved testing reinforced concrete panels 

under a variety of well— defined and uniform stresses in a specially designed test

rig, figure 5.21. These two panels were part of an international competition(41)

organised to compare analytical methods for predicting the response of reinforced 

concrete elements subjected to general two dimensional stress states. Twenty seven 

predictions from thirteen contries were submitted. The predictions were concerned 

with the ultimate strength and deformation using different analytical methods. This 

competition was organized to highlight the difficulties in assessing numerically the

behaviour of reinforced concrete structures. Figure 5.23 shows the scatter in the 

predicted ultimate strengths of the panels.



The panels have the same dimensions as shown in figure 5.22, 890mm square and 

70mm thickness. They are reinforced by two layers of isotropic reinforcement 

(px=  py) and parallel to the edges.

Panel A  was loaded under pure shear, whereas panel B was subjected to combined 

biaxial compression and shear. The panels were heavily reinforced and hence 

failure could be expected by concrete crushing. Material properties, reinforcement 

ratio, and loading details are summarized in table 5.1 and the remaining 

parameters are adopted as given by Chang et al.(104). The concrete elastic 

modulus and the tensile strength were taken as 0.2x10^ MPa and 0.1 fc

respectively. The steel reinforcement was assumed to be perfectly elastic— plastic 

material with Es =  0.2x10^ MPa.

The panels were analysed using 4x4 finite element mesh as shown in figure 5.22. 

The response of the panels A  and B in terms of the applied shear stress V  versus 

shear strain 7 Xy is shown in figures 5.24 and 5.25 respectively. Figure 5.24a and 

5.25a show that the variation of the shear retention factor had no effect on the 

panels behaviour both at working load and at ultimate load of the panels. Taking 

tension stiffening into account, for panel A , made no difference in the shear 

deformation obtained at cracking load, figure 5.24b. This is mainly due to the 

uniformly sudden cracking of the panels. In contrast, panel B shows higher

stiffening when tension stiffening constant C2 increased, figure 5.25b. This is may 

be explained by the presence of compressive forces. In term of ultimate load 

tension stiffening had no effect for both panels.

The presence of the compressive forces in the second panel increased the cracking 

load of the panel.

Panel B was designed to answer the question, if a panel is failing in crushing of 

the concrete, will the addition of biaxial compression weaken the panel or 

strengthen the panel?. Both the experimental and numerical results show that the

presence of biaxial compression increase the ultimate shear strength of the panel, 

so that the failure shear strength in panel B was increased by almost 50% 

experimentally and by 15% numerically over that of panel A. Comparisons also,
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f c ' MPa Rat io
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MPa

Pane 1 A 2 0 .5 Px” Py“

0 .0 1 7 8 5
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0 — T ^ T u 

a x  -  a y  -  0

Pane 1 B 1 9 . 2 Px“ Py“

0 .0 1 7 8 5

446
0 ^ T ^  t  xx

° x  ”  ° y  = 

0 . 7  r u

1 MPa = 1 N/mm2

Table 5.1 Materail properties, reinforcement ratio and loading details.
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Panel A Panel B

Figure 5.26 Experimental and Numerical crack pattern comparison.



were made with Chang et al.(104) numerical results and show good agreement in 

the predictions for panel A , figure 5.24c, while the present prediction for panel B 

are better both at working’ load and at ultimate load, figure 5.25c. Figure 5.23 a 

and b show that the present results are in the scatter range, where most 

competitors (41) predicted the ultimate strength of the panels. The crack pattern at 

collapse load are presented in figure 5.26. In both the panels steel did not yield in 

the experiment and this was true in the case of numerical results also. The

crushing of the concrete was noted on the last increment and convergence could

not be attained at this level.

5.8.4 C E R V E N K A  Panel W 2 :

The panel was chosen from finite element investigation26) of several shear 

panels which Cervenka had tested experimentally. The panels were studied 

numerically by many investigators(102,110). Dimensions, loading, reinforcing scheme 

and method of loading are shown in figure 5.27. The experimental failure load 

took place at Pu =  230 KN.

Different finite element meshes, of 4x4, 6x6 and 8x7, were used in the numerical

analysis. Figure 5.28a shows that as the number of element decreased the stiffness

of the panel increased especially as approaching the failure load of the 4x4 mesh 

analysis. The predicted ultimate load was almost the same for all the meshes used. 

Both smeared and embedded representation of steel reinforcement give good 

correlation with the experimental results, figure 5.28b. When taking into account 

tension stiffening, the panel stiffened at working load, while the ultimate load was 

almost the same as the one given excluding tension stiffening. Shear retention 

factor variation, simulating smooth to rough concrete crack interface, seems to have 

little influence on the behaviour of the panel as well as its ultimate load, figure 

5.28c. This may be due to the flexural behaviour of the panel and the presence of 

important vertical steel reinforcement. Crack patterns, both experimental and 

numerical at failure load, are presented in figure 5.29 and shows the ability of this
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Reinforcement: # 3 4 X 4  mcsli

30"

Steel ratio, p v = 0.0092

Elevation

30' 30"

n\ i. i\ ,_ijT J

,.1Ui ♦ 1J/ ■ jJ

4"

Steel ratios

h / )w = 0.0092

pH =0.0183

Concrete: f ’c = 26.8 MPa / ,  =  3.6 MPa

Ec = 2.0 X 104 MPa

Steel: / , =  353 MPa e , = 1.9 X 10s MPa

Fig. 5.27 Dimensions, reinforcement, loading and material properties.
Cervenka Panel W2.
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Fig. 5.29 Experimental and numerical crack patterns comparison.
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model to duplicate the experimental crack patterns. The panel failed flexurally by 

yielding of longitudinal steel corresponding with experimental mode of failure.

5.8.5 Khaskheli Transfer Girder:

Four two span continuous deep beams TRGRAS1, TRGRAS2, TRGRAS3 and 

TRGRAS4 were chosen from the test program carried out by Khaskheli(81). The 

purpose of the experimental work was mainly to validate the direct design 

procedures for designing deep beams in general and continuous deep girders in 

particular, for serviceability and ultimate conditions.

The aim of analysing these beams was to check the performance of the present 

analytical model, both at service and ultimate loads, in predicting the behaviour of 

such structures, which had different reinforcement distribution and span depth ratio. 

The geometry of the first three beams were the same with span to depth ratio of 

1.07. The span to depth ratio of the fourth beam TRGRAS4 was 1.61. All the 

beams were designed according to direct design rules. The difference between 

beams TRGRAS1 and TRGRAS2 was in the amount of shear reinforcement 

provided, which was greater in TRGRAS1, while the main reinforcement was the 

same. The analysis of these two beams will evaluate the effect of the shear 

reinforcement on the ultimate load of the beams. The difference between the beam 

TRGRAS2 and beam TRGRAS3 was in the longitudinal reinforcement, while the 

shear reinforcement was the same. The design load, Pd =  1100KN, of TRGRAS3 

was higher than that of TRGRAS2. The design ultimate load of TRGRAS4 was the 

same as that of the first two girders and was equal to 810KN. The overall depth 

and the thickness of all the beams was kept constant equal to 900mm and 100mm 

respectively. The span between the centres of the support bearings was 960mm for 

the first three beams whereas for the forth beam it was increased to 1450mm. 

Figures 5.30 show the steel layout and the dimensions of the beams. The material 

properties of the beams are presented in table 5.2.
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C oncrete  

Propert i e s Span- 

Depth 

Rat io

Shear 

Span- 

Depth 

Rat io

D esig n

Load

Pd

KN
Ec

KN/mm2

f1 cu 
KN/mm2

f t
KN/mm2

TRCRAS1 19 . 3 6 3 . 0 3 . 2 1 . 07 0 . 4 2 810

TRGRAS2 23. 2 6 1 . 0 3 . 7 1 . 07 0 . 42 810

TRGRAS 3 20 . 8 6 1 . 0 3 . 4 1 . 07 0 . 42 1100

TRGRAS4 19. 2 5 2 . 0 2 . 6 1 . 61 0 . 69 810

S t e e l  diam. 6mm f y  = 513 N/mm2 , Es =199000 N/mm2 

S t e e l  diam. 8mm f y  = 520 N/mm2 , Es =195000 N/mm2

T a b le  5 .2  K h askh e li Beams p ro p e r t ie s

Taking advantage of symmetry, only one span of the beams was analysed using 8x7 

finite element mesh. Beam TRGRAS1 was analysed using both smeared and

embedded steel formulations. The first crack opened in the two numerical analysis

at the same level of loading (0.4 Pd) while experimentally, it was reported to have

appeared at 0.3 Pd in the same location as in the numerical analysis, at the soffit

of the beam in the mid—span. The first yielding of longitudinal steel, in the

middle span of the beam soffit, was experimentally recorded at 1.30 Pd, whereas

numerically it was at 1.0 Pd. A  little enhancement in the ultimate load, using

embedded bar analysis, was recorded as presented in figure 5.31. Closer

examination of the load displacement curve reveals an important loss of stiffness of 

the beam at 1.075 Pd caused by a sudden shear cracks. It is instructive to plot
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the crack pattern just before this irregularity (at 1.05 Pd) and after (at 1.075 Pd), 

figures 5.32a and 5.32b. Note that this load level roughly coincide with the 

experimental load of the inclined shear cracks which opened in the internal shear

span of the beam at 1.16 Pd. It can be seen that no inclined shear cracks in the

interior span of the beam opened at 1.05 Pd(figure 5.32a), while suddenly at 1.075 

all the interior span was covered by cracks. Notice that there is almost no 

difference in crack pattern at this level and the one where failure load was 

considered, figure 5.32b and 5.32c. This explains that the cracks opened at 1.075 

Pd had an important effect on the ultimate behaviour of the beam.

Figure 5.31c shows different load deflection curves corresponding to different shear 

retention factor B ranging from 0.1 to 1.0. Using low value of B (0.1) gives low 

ultimate load and equal to the load where the shear cracks opened in the interior

span of the beam. This confirms that the cracks opened at 1.075 Pd were caused

by high shear stresses. The other values of B gives almost the same ultimate load, 

although B =  0.4 resulted in higher ultimate load. For steel strain of the

longitudinal bar at the soffit of the beam, a reasonable agreement can be seen 

between the numerical and the experimental results, figure 5.31b. The curves show 

that no significant strain prior cracking of concrete was recorded. Numerically the 

steel yielded at 1.075 Pd. At failure, good agreement between experimental and 

numerical crack patterns was obtained as shown in figure 5.32c. The experimental 

failure load (Pu) took place at 1.56 Pd. The Numerical failure load was of 0.92 of 

the experimental one, using embedded formulation, while using smeared the 

ultimate load was of 0.87 Pu. No vertical steel yielded both experimentally and 

numerically.

The load deflection curves for beam TRGRAS2 and TRGRAS3 are shown in 

figures 5.33a and 5.33b respectively and are similar to beam TRGRAS1. The

difference was in the load where the inclined cracks of the interior shear span

opened. For TRGRAS2 this crack opened at 0.975 Pd (828.5 KN) lower than the 

corresponding load of the first beam, which was at 1.075 Pd ( 914 KN). The

failure took place numerically at 1.375 Pd (1164 KN) and at 1.43 Pd (1216 KN)



experimentally. Both numerical and experimental results gave a lower ultimate load 

for this beam TRGRAS2 than the one of the previous beam. For TRGRAS3 the 

load corresponding to the shear cracking of the interior shear span of the beam,

was at 0.8 Pd (880 KN). The failure load took place numerically at 1.275 Pd

(1402.5 KN) while experimentally it was at 1.36 Pd (1500 KN). Beam TRGRAS4 

was chosen to ascertain the effect of the span— depth ratio on the beam behaviour 

and failure mechanism, sine its span— depth ratio was greater than that of the

previous beams. The design load was the same as for the first and the second 

beam (Pd =  850 KN). The beam was loaded using the same load increments as 

for the previous beams. The first crack was detected at 0.3 of the design load at 

the soffit of the beam, whereas experimentally it opened at 0.12 Pd. As the load 

increased the cracks propagate towards the loading point. The cracks opened at the 

top of the intermediate support at 0.65 Pd numerically and at 0.70 Pd 

experimentally. Up to this level of loading the load deflection relationship was 

almost linear, figure 5.34. As for previous beams, at 0.725 Pd a large number of

cracks, in the interior span of the beam, opened (compare figure 5.35a and

5.35b). A  maximum of 43 iteration require to achieve convergence at this load

increment. The inclined shear crack was reported experimentally at 1.05 Pd. The

steel yielded earlier numerically (0.80 Pd) than experimentally (0.92 Pd). The 

failure took place at 1.15 Pd and 1.34 in the numerical and experimental results, 

respectively. The load deflection and load strain curves, both numerical and

experimental, show that the beam behaved more flexurally than the previous 

beams, although failure took place experimentally in shear. In this beam the strain 

in horizontal steel was several time of its yield strain. It is unfortunate that in the 

the experiment, the strain gage was failed before the ultimate load of the beam 

was reached, thus providing no comparison with experimental values. At failure no 

vertical steel had yielded both experimentally and numerically.
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Fig. 5.32a Crack pattern at 1.05 Pd. Beam TRGRAS1
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5.8.6 Giiesbers and Smit Beam:

This beam which was tested by Gijesbers and smit(112) and described by Rots et 

al.(114) as a challenging beam to be analysed. The beam was subjected to a 

uniformly distributed load, while the majority of test report in the literature has 

concentrated on a finite number of point loading systems. As shown in figure 

5.36a, the beam was relatively small compared with large supporting end— blocks 

that had been added in order to fix the desired moment shear ratio. By varying 

the sizes a, e, and 1 in figure 5.36a, this moment/shear ratio as well as the 

slenderness of the beam could be varied. In this way a wide range of shear failure 

mechanism have been investigated(112), such as diagonal tension failure and shear 

compression failure. This beam contained both tensile and compressive 

reinforcement, but no stirrups. The dimensions and finite element mesh adopted 

are shown in figure 5.36b. The material properties of the beam were as follows:

Ec =  25000 KN/mm2 ; fy =  415 KN/mm2 

ft =  2.0 N/mm2 ; Es =  210000 KN/mm2

*  =  0.2

Since the compressive strength of concrete was not given, it was calculated from 

the empirical equation as given by ACI code 318—77(113).

Ec -  33 W1/ 2 7  fg  5 . 29

where W  =  unit weight in pounds per cubic foot and E c and f^ are expressed in 

pound per square inch.

This beam was studied by Rots et al.(114) by adopting a very sophisticated model 

based on plastic—fracturing model. They used 120 elements. In this analysis only 

64 elements were used, as shown in figure 5.33b, and seems to give reasonable 

results.

The experimental result shows almost elastic behaviour up to a loading level of q 

=  68 KN/m  when there was an abrupt loss of stiffness due to the sudden
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development of diagonal tension crack. Figure 5.37 shows good duplication of the

numerical and experimental crack patterns at experimental failure load (q =  75

KN/m ). Although the type of failure mechanism is reproduced quite well, it is

rather disappointing that the numerical analysis does not predict well the

corresponding ultimate load. Beyond the experimental ultimate load, numerically the

beam behaved elastically until the numerical ultimate load. To simulate rough,

smooth and almost frictionless of concrete crack surfaces, different shear retention

factors ( B =  0.99, 0.4 and 0.1 ) were used in the analysis. Figure 5.38 reflects

the effect of the variation of the shear retention factor on the load displacement

relationship. The influence of the shear retention B, up to certain values, was

found to be significant for this beam. As B increased there was an increase in
£

stiffness, but in terms of ultimate load there is no difference for B grater than 

0.4. No steel yielded until the ultimate load was reached. Experimentally no steel 

yielding was reported. In comparison with the numerical results presented by Rots 

et al.(114), the present model gives acceptable predictions.

5.9 CO NC LUSIO NS:

1 — The present computational model is capable of providing a good prediction of 

the overall behaviour of reinforced concrete slabs and deep beams, both at working 

and ultimate load. The mode of failure is in general well predicted.

2— A  mesh of 4x4 is adequate to produce acceptable results for the range of slabs 

used, whereas for beams an average of 7x7 can be adopted.

3— Tension stiffening has a significant influence on the accuracy of the predictions 

at working load. However as approaching the ultimate load, the predictions are 

stiffer. In addition, tension stiffening has a significant effect on the convergence at 

early cracking of the structure. In fact tension stiffening is affected by many 

factors such as the amount of steel, type of tension stiffening curve, type of



structure and its behaviour. So it is difficult to suggest a fixed values but in 

general a value of 0.5 and 10.0 for the constants C l and C2 can be adopted, 

respectively.

4— For slabs and deep beams failing in flexure, the shear retention factor has 

almost no influence on the results. In general a value 0.4 for the shear retention 

factor at cracking strain can be used.
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Chapter 6

Experimental Set— up and Instrumentation

6.1 Introduction:

The theory given in chapter 3 for the Direct Design of reinforced concrete slabs 

and deep beams has been verified experimentally by many research 

workers(43,115,79,80,81) using elastic stress field distribution. The object of this 

experimental investigation is to study the behaviour of reinforced concrete slabs and 

deep beams designed using nonelastic stress fields, at working and ultimate load. A 

total of six slabs and two deep beams were tested. Three square slabs were simply 

supported, designed using different levels of plasticity, two square slabs were simply 

supported with mid— column support, and one was rectangular simply supported. The 

deep beams were of different span— depth ratio and simply supported at their ends. 

Tables 6.1 and 6.2 show the geometric details of all slabs and deep beams 

respectively. The method of determination of plasticity levels for both slabs and deep 

beams are described in the next chapter.



T a ble  6 . 1  T e s t e d  s l a b s - d e s i g n a t  i o n s  and d i m e n s i o n s .

T e s t D e s i g n a t  i o n S u p p o r t  C o n d i t i o n s Dimens  i o n s  

mm

1 Model S . l S q u a r e  S im p l y 2 1 4 0 x 2 1 4 0 x 1 0 0
S u p p o r t e d

2 Model S . 2 / / 2 1 4 0 x 2 1 4 0 x 1 0 0

3 Model  S . 3 / / 2 1 4 0 x 2 1 4 0 x 1 0 0

/ /
+

M i d - C o 1umn

4 Mode 1 S .4 2 1 4 0 x 2 1 4 0 x 1 0 0

□

R e c t a n g u l a r  S i m p l y
S u p p o r t e d

5 Mode 1 S .5 3 1 4 0 x 2 1 4 0 x 1 0 0

S q u a r e  s i m p l y
S u p p o r t e d  + M i d - C o l .

6 Model S . 6 2 1 4 0 x 2 1 4 0 x 1 0 0

□
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T a ble  6 . 2  T e s t e d  Deep B e a m s - d e s i g n a t i o n s  and d i m e n s i o n s .

Support C o n d itio n s Dimens  i o n sD esignat ionTest

mm

Beam B . l 1050x500x100

Beam B .2 1050x900x100
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6.2 Description of Experimental Parameters:

Since the design procedure gives a continuously varying reinforcement pattern, it is 

necessary to use large scale models, in order that the variation in steel can be 

properly represented. The thickness of the designed slab models were chosen to 

comply with the limiting span—depth ratio and as required by sections 3.2.1.1 of 

BS8110(1) Part 1. For all the slabs tested, a fixed span length of 2000mm is used. 

The other length was changed only for model S.5, having an aspect ratio of 1.5. 

The support conditions considered was simple support along the edges for all models. 

A  steel column support was used in the middle of slab Models S.4 and S.6. Models

5.1 and S.3 were designed using 70% and 30% plasticity level stress distribution 

respectively. The other models were designed using 100% plasticity level. Figure 6.1 

shows the slabs dimensions, support system and loading point locations.

Two different span— depth ratios were chosen for the tested deep beams. The first 

beam had a ratio of 1.8 where as the second had 0.9. The beams had the same 

thickness of 100mm and were designed using 100% plasticity stress level.

6.3 Loading Rig:

6.3.1 Slabs:

The rig for slabs was adopted from earlier research programs(43,115) involving 

tests on square and rectangular reinforced slabs at a maximum dimensions of 3000mm 

x 2000mm. The loading rig is shown in figures 6.2. The 2000mm span was fixed but 

the other dimensions can be varied. The rig allows 1500mm headroom under the slab 

so that the bottom concrete surface of the slabs can be examined during the tests 

and the width of the cracks can be measured. The rig was designed to carry safely 

600 KN.
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Loads are applied as concentrated loads, by using loading cables passing through holes 

provided in the slab at the time of casting, and corresponding holes in the floor of 

the laboratory.

6.3.1.1 Support System:

For all slabs, a simple support system was used along their edges. This support 

system consisted of two mild steel flats of 12mm thick and 100mm wide separated by 

a steel roller of 25mm diameter as shown in figure 6.3. This support was extended 

over the whole length except near the corners and in the middle of two adjacent 

sides of the slab, where a V  plates— Roller were placed to stabilize the slab on the 

rig. Since uplift forces were expected at the corners, which were held down using a 

corner support shown in figure 6.4. The uplift forces are caused by the presence of 

high twisting moments at the corner region. Load cells were used to measure the 

corner uplift forces. The comer support was designed so to provide an equivalent 

spherical support. A  6mm diameter high tension strength steel bar which passes 

through the load cell, through the hole in the slab corner and then through a set of 

flats and rollers system was finally anchored to the loading rig. For model S.4 and 

S.6 a steel column was placed under the middle of the slabs. The head of the 

column provided a spherical support in contact directly with the bottom concrete face 

of the slab. Figure 6.5 shows the column support system used.

6.3.1.2 Loading System:

Two different Systems of loading were used for applying concentrated load on the 

slab models They are:

1—Direct Point load.
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2— Indirect point load.

6.3.1.2.1 Direct Point Load System:

This system was adopted for all slabs except for model S.5. The loads were 

applied by four prestressing cables symmetrically placed through four holes in the 

slab, as shown in figure 6.6. The cables were anchored on the top of load cells 

which were placed on the hydraulic jacks. The load cells were used to measure the 

applied load on the slabs. At the other end, the cables were anchored under the 

laboratory strong floor on to 60 ton Hydraulic jacks. The bottom jacks were operated 

by hand pumps, whereas the top ones were operated by an electrical motor pump. 

The hand pumps were used to adjust the load applied at each point.

6 .3 .1 .2 .2  Indirect two point load system:

This was used for Model S.5 only and the load was applied through four 30mm 

diameter prestressing cables passing through four holes in the slab. Each cable 

transmits equal load on two point of the slab by a system of simply supported 

spreader beams as shown in figure 6.7. A  V —Roller support system was used at one 

end of each spreader beam, while on the other end plates— roller system was placed.

6.3.2 Deep Beams:

Figure 6.8 shows the set up for deep beams tested. The Beams were 

accommodated in a 10.000 KN Losenhausen Universal Testing Machine. The rig was

designed for a total loading capability of 2000 KN and comprised of:

1— Two Support Girders
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2— Supporting Bearings

3— Loading Point System

4— Losenhausen Platen

6.3.2.1 Support Girders:

Support girders of 250x250x16 Kg/m hollow square box cross section were used. 

The girders were used a previous test program(81).

6 .3 .2.2 Support Bearings:

The support bearings were made of mild steel. One support was provided with 

rollers to allow free horizontal translation and the second was made to be restrained 

horizontally and vertically, with allowance of rotation. The support bearing plates

dimensions were 150x100x50mm and the 25 mm rollers were used. To restrain the

local bursting forces, steel plates of 200x150x15mm were used, fig. 6.8.

6.3.2.3 Loading point system:

The loading point system consisted of two mild steel plates of 200x100x50mm and 

roller of 25mm diameter. Two mild steel plates of 200x200x15mm were used to

confine the concrete under the point load.

6.3.2.3 Losenhausen Machine Platen:

The two platens of the machine were used. One of them was on the top of the 

machine to transmit the load on the beam, the second was in the bottom and moves 

only in the horizontal direction to transport the test beam under the machine. This
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platen is restrained at the time of testing.

6.4 Formwork:

For all the slabs, the same formwork was used. It was adjusted as required by the 

dimensions of the slabs. For beams, since they were cast simultaneously, it was 

necessary to design two form works on one base.

The form works were made from 200mm thick polywood panels. To maintain the

stability and strength of the mould during casting, 50x50mm timber battens were 

nailed at close spacing along the length of the mould. Prior to casting, the mould

was coated in oil in order to prevent the concrete sticking to the mould.

6.5 M aterial:

6.5.1 Concrete:

The same concrete mix was used for all the specimens. The mix consisted of 

Rapid Hardening Portland Cement (RHPC), Hyndford uncrushed gravel of maximum

aggregate size of 10mm and Hyndford sand grading zone 2. The mix proportions by

weight were 1 : 1.48 : 2.61 (ie. cement : sand : gravel ) with a water cement ratio

of 0.48. The weighed quantities of cement, sand, gravel and water were mixed

thoroughly in a 3 cu.ft capacity pan mixer.

When the bending of steel and cementing of strain gages on the steel was completed, 

the fabrication of steel reinforcement mat commenced by placing the steel bars in 

their required locations for both slabs and deep beams. Plastic spacers were attached 

to the bars, before casting at a certain intervals to ensure adequate cover to the 

reinforcement on both sides of the specimens.

All the specimens were cast horizontally. The holes on the models were positioned in
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their right places for loading the slab and also holding down the corners of the 

slabs. Each model was cast in several batches and was properly compacted using a 

12mm diameter poker vibrator. The vibration continued until a reasonably good 

compactation was achieved. The models were left for about six hours to dry in the

open air of the laboratory. In addition to the main specimen, four 100x100 mm

cubes and six 150x300mm cylinders were cast as control specimens from different 

batches. All the control specimens and the main specimen were kept under a 

polythene cover for the first 24 hours. The cover was removed after this period and

50% of the control specimens were cured in the water tank, whereas the remaining

ones were kept under the laboratory conditions near the main specimen.

The cubes were used to determine the cube strength, two cylinders were used to 

determine the tensile strength and the remaining four others were used to determine 

modulus of elasticity of concrete.

The concrete tensile strength ft obtained from cylinder splitting test as follows:

2 P
f t ------------------

n d l

Where L =  300mm is the length of the cylinder

D  =  150mm is the diameter of the cylinder 

P is the ultimate load.

Average value for concrete properties for each model were calculated and are given 

in table 6.3.

6.5.2 Reinforcing Steel:

Figures 6.9a and 6.9b show the steel layout fo r slab and deep beam respectively.

High yield deformed bars of 6, 8 and 10mm diameter were used. The yield stress of

all d ifferent bar sizes were measured on samples taken from different batches of steel
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bars using a Tinius Olsen Universal Class A  testing machine, fitted with an S— type 

electronic extensometer. The testing procedure followed the manufacture's instruction 

manual. Table 6.4 shows average steel properties measured.

The yield stress of the bars was taken as the stress at which a line starting from 0.2 

%  strain and parallel to the initial slope of the curve intersects the stress— strain 

curve. Typical steel stress strain curve is presented in figure 6.10.

6.6 Instrumentation:

6.6.1 Deflections:

Deflections were measured using Linear Voltage Displacement Transducers (LVD T) 

at the bottom concrete surface for slabs at chosen points, and at the bottom soffit 

for the beams. Figure 6.10a to 6.10c show the chosen points position for slab 

models. The transducers, capable of measuring 50 and 70 mm, were mounted on an 

independently supported measuring frame. Each transducer was given an identification 

number and was then connected to the data logger for data processing.

Beam deflections are very small and also the plaster between the supports plates and 

the beam is subjected to a high stress causing extra deflections. Thus for beams the 

deflections must be measured with a great care.

6.6.2 Steel strains:

Strains in steel bars were measured by 6mm electrical resistance strain gages. The 

gages were cemented to the steel bars at a chosen points to record the strain history. 

Prior to the fixing of strain gages, the surface of the steel bars were prepared by 

filling and then smoothening with sand paper. During this process, care was taken 

not to remove a considerable area which would weaken the steel bars. The surface
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was then treated with M — prep conditioner A  and M — Prep neutraliser 5 to remove

LK
any dirt and grease. After fixing the gage on the bar, it is checked using an 

voltmeter before cementing. The strain gage was protected from moisture and 

mechanical damage during fabrication and casting, using an air drying protective

coating type M — coated and epoxy resin was applied over the gage and terminal. At

u
all the strain gage position on a bar, a pair of strain gages were fixed on 

diametrically opposite sides.

6.7 Test Procedure:

When each specimen was fully cured, it was white painted. All the specimens were 

taken to the test rig by crane. Once the specimens were installed properly, all the

strain gages, load cells and displacement transducers were connected to a 3530 Orion

data logger for automatic recording. All connections were checked before testing 

started. Deflection transducers were checked to ensure that they were truly vertical, 

and they would operate properly under test. The strain gages were also checked and 

defective ones were immediately disconnected. The load cells were checked by 

applying a small load to the slab and then unloaded.

At each load increment, results were printed and saved on a floppy disc to be 

processed later. During testing, load displacement and load strain curves at a critical 

points were plotted to follow and examine the behaviour of the specimen. The 

concrete faces of each specimen was illuminated using powerful light sources. Crack 

widths were measured at each load increment using a micro— crack reader for small 

cracks and a crack ruler for large cracks. The cracks development were traced with a 

black marker at each load increment. The whole procedure was repeated until the 

ultimate load was reached.



P r o p e r t i e s  —» 

Des ig n a t i on^

Des i gn 
Load (KN)

f1 cu
KN/mm^

f t
N/mm^

Ec
KN/mm^

Model S . l 210 51 . 30 4 . 3 0 20 . 70

Model S . 2 210 56 . 30 3 . 40 21 . 50

Model S . 3 210 60 . 50 3 . 50 2 2 . 80

Model S . 4 320 58 . 77 3 . 07 22 .45

Model S . 5 210 59 . 26 3 . 46 23 . 12

Model S .6 320 57 . 62 3 . 59 22 . 73

Beam B . l 250 58 . 63 3 . 17 23 . 13

Beam B .2 500 58 . 63 3 . 17 23 . 13

Tab l e  6 . 3  Concrete P r o p e r t i e s .

f c u : Concrete  Cube S t r e ng t h  f t : Concrete  T e n s i l e  S t r engt h  

Ec : Concrete  E l a s t i c  Young Modulus

Bar  

di  ameJer
fy

mm ̂

Es
KN/ 2 /  mm^

ey 
*  1 0 " 3

H

$ 6 mm 580 . 0 195 . 0 2 . 974 0 . 028

8 mm 4 7 7 . 0 186 . 0 2 . 565 0 . 025

$ 10 mm 4 8 3 . 0 203 . 0 2 . 379 0 . 0 0 0

Tab l e  6 . 4  Stee l  P r o p e r t i e s .

f y : S t ee l  y i e l d  s t r e s s  es : Stee l  y i e l d  s t r a i n

Es : S t e e l  Young modulus H: Steel  hardeni ng  paramet er .
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Chapter 7

Nonelastic Stress Fields and Design of Experimental Models

7.1 Introduction:

During the early development of analytical methods for stress analysis of 

structures, the assumption that the system was linearly elastic was generally 

accepted for nearly all structural systems. One reason for this simplified approach

was that the design stresses were expected to remain well within the elastic range

of the material. With the introduction of more complicated structures and 

experimental evidence that most structural elements dissipate energy by exhibiting 

nonelastic deformations, major effort was directed towards the development of 

analytical methods that deal with the nonelastic behaviour of structures. In the 

present work the use of nonelastic stress fields in the design of reinforced concrete 

slabs and deep beams will be examined. In particular the effect of using nonelastic 

stress fields on the distribution of steel reinforcement in slabs and simply supported

deep beams will be studied.



7.2 Design Procedure For Slabs:

The design procedure is dependent on the nonlinear finite element Mindlin plate 

analysis program(5) using von Mises yield criterion. The program uses an eight 

node isoparametric element.

The major steps in the determination of nonelastic stress fields are as follows:

1— Treat the slab as a metallic plate, with any assumed properties and 

determine the elastic stress distribution (Mx , My, MXy) under ultimate 

design load.

2— Determine the von Mises stress J  ( M x 2 •+■ M y 2 — M xMy •+- 3M X̂ ) 

at the most highly stressed point at design ultimate load and set it as 

plastic moment capacity Mp. ie.

Mp =  max of [J  (Mx 2 -+- M y 2 — M xMy +  3M X̂ )] any where in the 

plate.

3— The material is assumed to be elasto— plastic obeying von Mises 

criterion and normality rule and having the plastic moment capacity of 

Mp. Accordingly for the fully yielded region the elastic material matrix 

is replaced by an elasto— plastic material matrix so that tangent stiffness 

matrix approach can be adopted. Figure 7.1 shows a typical 

load—deflection curve. As can be seen, yielding starts exactly at the 

applied load equal to the design ultimate load. At the start of yielding, 

the percentage spread of plasticity is zero and at the true ultimate load, 

spread of plasticity is designated as 100%.

4— Let the ultimate load be equal to (1+  X) design load. At any 

percentage of plasticity p, the stresses in equilibrium with the applied 

load are given by 1 / ( 1 + pX) of the stresses at the chosen level of 

plasticity percentage. The resistant moment M x and My at this level of



plasticity can now be determined using Wood— Armer criterion. M x and 

M y are determined, for both top and bottom slab reinforcement using 

equations of chapter 3.

7.3 Design of Slab Models and Discussion:

A  total of six slab models were designed using different plasticity levels. For 

more details reference can be made to section 6.2.

7.3.1 Models S .l. S.2 and S.3:

The slab models S. l ,  S.2 and S.3 were 2140mm (2000mm effective span) square 

simply supported slabs. One quarter of the slab was analysed using a 4x4 finite 

element mesh. They were designed for a total load of 210 KN, using 70, 100 and 

30% of plasticity stress distribution levels. The dimensions and the loading system 

were described in the previous chapter in table 6.1 and figure 6.1. A typical 

load— deflection curve, obtained from the elastoplastic analysis, is shown in figure

7.1. This curve is used to calculate the different percentage of plasticity spread 

over the slab. The spread of the yielded points over the slab at different levels of 

plasticity are shown in figure 7.2. The plastification of the slab started in the 

corner and as the percentage of plasticity increases, the yield points spread towards 

the applied point loads. At 100% of plasticity, the whole area of the corner of the 

slab and the inner square between the point loads had yielded. Figure 7.3 and 7.4 

show the distribution of bottom and top design moment over the slab as a function 

of the degree of plasticity spread. It can be seen that the bottom design moment 

surface peaks under the point load and in the corner at the elastic stage and tends 

to flatten as the degree of plasticity level increases, figure 7.3. At 100% of 

plasticity spread we can see that the maximum design moment peak shifted to the 

middle of the slab and covers a large area.

As shown in figure 7.4, at elastic level the top design moment peaks at the corner 

of the slab. As the percentage of plasticity reached 100%, the peak spreads along 

the edges and towards the point load. Also the maximum design moment decreases,
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J 01 o f  p lm m t lo l ty 70 1  o f  p lm m t lo l t y
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Fig. 7.2 Plasticity Spread over the Slab. (SI, S2, S3)
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B o t to m  s t e e l  i n  x d i r e c t i o n :  P r o v i d e d  s t e e l

(Com puted  s t e e l )

A

0 . 1300 0 . 3900 0 . 3900 0 . 39 0 0

( 0 . 1 1 7 6 ) ( 0 . 3 1 0 4 ) ( 0 . 4 0 3 9 ) ( 0 . 3 2 9 0 )

0 . 2600 0 . 3900 0 . 3900 0 . 3 9 0 0

( 0 . 1 9 1 4 ) ( 0 . 3 3 6 5 ) ( 0 . 4 2 8 6 ) ( 0 . 2 8 3 3 )

0 . 3000 0 . 3000 0 . 3000 0 . 30 0 0

( 0 . 2 6 9 9 ) ( 0 . 3 9 3 1 ) ( 0 . 3 0 8 4 ) ( 0 . 1 8 6 8 )

0 . 3000 0 . 3000 0 . 3000 0 . 3 0 0 0

( 0 . 2 4 8 1 ) ( 0 . 2 9 2 0 ) ( 0 . 1 9 6 1 ) ( 0 . 0 9 0 4 )
----- »

Top s t e e l  i n  x d i r e c t i o n :  P r o v i d e d  s t e e l
(Com pu ted s t e e l )

0 . 0000

( 0 . 0 0 6 1 )

0 . 0000

( 0 . 0 0 0 0 )

0 . 0000

( 0 . 0 0 0 0 )

0 . 0 0 0 0

( 0 . 0 0 0 0 )

0 . 1300

( 0 . 0 4 4 0 )

0 . 0 0 0 0

( 0 . 0 0 0 0 )

0 . 0 0 0 0

( 0 . 0 0 0 0 )

0 . 00 0 0

( 0 . 0 0 0 0 )

0 . 2000

( 0 . 1 3 0 7 )

0 . 2000

( 0 . 0 1 8 6 )

0 . 0 0 0 0

( 0 . 0 0 0 0 )

0 . 0 0 0 0

( 0 . 0 0 0 0 )

0 . 2000

( 0 . 1 9 0 3 )

0 . 2 0 0 0

( 0 . 1 0 9 3 )

0 . 2000

( 0 . 0 4 4 0 )

0 . 0000

( 0 . 0 0 6 9 )

Table 7.1 Numerical Required and Provided Steel Area per mm 
Model S 1 (70% Plasticity)



1 8  9

a -  Bottom s t e e l  a rea  &

0 .0972 0

( 0 .3 7 7 0 )

0 .3609  

( 0 . 3 7 7 0 )

0 .4109

( 0 . 3 7 7 0 )

0 .3581

( 0 . 3 7 7 0 )

A

0 .183 6

( 0 . 3 7 7 0 )

0 .2848

( 0 . 3 7 7 0 )

0 .374 6

( 0 .3 7 7 0 )

0 .277 7

( 0 . 3 7 7 0 )

0 .2891

( 0 . 3 7 7 0 )

0 .3595

( 0 . 3 7 7 0 )

0 .3641

(0 . 3 7 7 0 )

0 . 2 4 6 2

( 0 . 3 7 7 0 )

0 .2291

( 0 . 3 7 7 0 )

0 .331 3

( 0 . 3 7 7 0 )

0 .3333  

( 0 . 3 7 7 0 )

0 . 1 4 5 4

( 0 . 3 7 7 0 )

b -  Top s t e e l  a rea

Nf
0 .0315

( 0 . 0 0 0 0 )

0 . 0 0 0 0

( 0 . 0 0 0 0 )

0 .0 000

( 0 . 0 0 0 0 )

0 .0 0 0 0

( 0 . 0 0 0 0 )

A  

— >

0.0591

( 0 . 0 0 0 0 )

0 . 0 0 0 0

( 0 . 0 0 0 0 )

0 .00 00

( 0 .0 0 0 0 )

0 .0 0 0 0

( 0 . 0 0 0 0 )

0 .0755

( 0 . 1 7 7 9 )

0 . 0 0 2 8  

( 0 . 1 7 7 9 )

0 .000 0

( 0 .0 0 0 0 )

0 .0 0 0 0

( 0 . 0 0 0 0 )

0 .1577

( 0 . 1 7 7 9 )

0 .0 4 8 7

( 0 . 1 7 7 9 )

0 .0457

( 0 .0 0 0 0 )

0 .0 0 0 0

( 0 . 0 0 0 0 )

Table 7.2 Numerical Required and Provided Steel Area per mm 
Model S2 (100% Plasticitv)

betweem b r a c k e t s  t he  p r o v i d e d  s t e e l  a r e a s .



1 9  0

a -  B o t t o m  s t e e l  a r e a  p e r  mm *

0 .1 130  

( 0 . 3 4 4 8 )

0 .2882

( 0 . 3 4 4 8 )

0 .3546

( 0 .3 4 4 8 )

0 .2 968

( 0 . 3 4 4 8 )

0 .1 895

( 0 .4 5 9 7 )

0 .3429

( 0 . 4 5 9 7 )

0 .4192

( 0 .4 5 9 7 )

0 .2 646

( 0 . 4 5 9 7 )

0 .2770

( 0 .3 5 3 9 )

0 .398 8

( 0 . 3 5 3 9 )

0 .3 226  

( 0 . 3 5 3 9 )

0 . 1 8 5 4

( 0 . 3 5 3 9 )

0 .2838

( 0 . 3 5 3 9 )

0 .291 2

( 0 . 3 5 3 9 )

0 .1909

( 0 . 3 5 3 9 )

0 .0895

( 0 . 3 5 3 9 )

b -  Top s t e e l  a r e a  p e r  mm &
0 .0057

(0 .0 0 0 0 )

0 .0 0 0 0

( 0 . 0 0 0 0 )

0 .0 000

( 0 . 0 0 0 0 )

0 .0 0 0 0

( 0 . 0 0 0 0 )

0.0442

( 0 .1 7 9 9 )

0 .0 000

( 0 . 0 0 0 0 )

0 .000 0

( 0 .0 0 0 0 )

0 .0 0 0 0

( 0 . 0 0 0 0 )

0 .1542  

( 0 . 1 7 7 9 )

0 .0 3 5 0

( 0 . 1 7 7 9 )

0 .000 0

( 0 . 0 0 0 0 )

0 .0 0 0 0

( 0 . 0 0 0 0 )

0 .3537

(0 .3 5 5 8 )

0 .1 4 0 4  

( 0 . 3 5 5 8 )

0 .0412

( 0 .0 0 0 0 )

0 .0066

( 0 .0 0 0 0 )

4 -

Table 7.3 Numerical Required and Provided Steel Area per mm 
Model S3 (30% Plasticity)
between b r a c k e t s  t he  p r o v i d e d  a r e a s .



a -  Bo t t o m s t e e l

1 9 1

P4P 6

I i p  5

P 3

p e

P9

5 0  1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 8 0  8 0  8 0  8 0  8 0  8 0  8 0  8 0  8 0  8 0  8 0  8 0  8 0  1 0 0 1 0 0 1 0 0 1 0 ?-1 0 9 5 0

pi  2

p i  3

b -  Top s t e e l

p 1 o pi  i

5 0  1 5  0 1 8 0  1 8 0  2 0 0  3 1 0
H— I--------- 1----------1--------- 1-------------- 1-----------

Fig. 7.6 Steel Layout for Model SI and Strain Guage Positions.
SI Designed Using 70% Plasticity. ( A l l  b a r s  $ 6mm)



a -  Bo t t o m s t e e l

1 9 2

P4

P 2

pe

P 3

p a

P 9

b -  Top s t e e l

4 0 0 2 0

Fig. 7.7 Steel Layout for Model S2 and Strain Guage Positions.
S2 Designed Using 100% Plasticity, (am bars <t> 8mm)



a -  B o t t o m  s t e e l

ps

P 2P 3

P4

P 6

2 0 0  1 5 0  1 0 0  1 0 0  1 2 0  1 5 0  1 5 0  1 2 0  1 0 0  1 0 0  1 5 0 2 0 05 0 2 0 0 2 0 0 5 0

I

4 ~ ~

-4>6 mm

P 9 -46 mm
b -  Top s t e e l

pe
-46mm

,46 mm

5 0 2 0 0  3 0 0  3 0 0  2 2 0

Fig. 7.8 Steel Layout for Model S3 and Strain Guage Positions.
S3 Designed Using 30% Plasticity.

( Al l  non m a r k e d  b a r s  a r e  4  8mm )



for both top and bottom reinforcement, as the percentage of plasticity reached 

100%, as shown in figure 7.3 and figure 7.4. Although as shown in figure 7.5 the 

design moment volume shows little decrease as the percentage of plasticity

increases, designing using high level of plasticity leads to an economical design,

since the moment peaks are smoothed out. Table 7.1, 7.2 and 7.3 show the 

required and the provided steel area per mm for slab models S . l ,  S.2 and S.3

respectively. It can be noticed that the provided steel area is greater than the

required one, especially for models S.2 and S.3. The reason for this is that model

S.l was reinforced using 6 mm diameter steel bars while 8 mm diameter were used 

for S.2 and S.3. The steel layout for these models are presented in figure 7.6, 7.7 

and 7.8 respectively.

7.3.2 Model S5:

This was a rectangular slab of overall dimension 3140mm, 2140mm and 100mm 

thick. The slab was designed for a total load of 210 KN, applied as eight point 

loads as shown in figure 6.1. The stress distribution level used in the design was 

the 100% of plasticity distribution. By taking advantage of symmetry only a quarter 

of the slab was analysed, using a 4x8 finite element mesh. The load deflection 

curve is illustrated in figure 7.9. The plasticity spread over the slab is shown in 

figure 7.10. The plastification started in the corner of the slab. At 50% of 

plasticity distribution figure 7.10a the yielding points start to cover the area of the 

corner along the long edge and under the point loads. At 100% plasticity the 

whole diagonal between the corner and the point along the line of the point loads 

had yielded. Figure 7.11 and 7.12 show the bottom and the top design moment in 

x direction, respectively. At the elastic stage the peak moment can be seen to be 

under the point loads. At 100% plasticity level there is a little smoothing out of 

the moment near the corner and the peaks of the loaded area. The moment 

volume which defines the steel volume to be used to reinforce the slab is almost 

constant and independent of the level of plasticity, as shown in figure 7.13.
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50% o f  p l a s t i c i t y

1 9 6

70% o f  p l a s t i c i t y 5<?

+ 4+ 4 4
4444 4 44 4- 44 

4
4- 4 
4- 4

4 4

4 4 

4 4

4
4 44 4 

4 4-f 4 4 

4 44 4 4

100% o f  p la s t  I c I t y

4
4444444 4 44 4 4

4 44444444 4 44 4 4j
4 4 44444444 4 44 4 4

4 4 44 4 44

4 4 44 4 44 4 44 4 
U- 4 44 4 44 4 44 4

[ 4 4 4 4 4 4 4 4 4 4 4

4 4 44 4 44 4 44 4

4

-f- Y i e l d e d  G a u s s  P o i n t

Fig. 7.10 Plasticity Spread over the Slab S5. 
( 1 / A  S L A B )



1 9 7

- 3 U

n x .  (SOX P L A S T IC IT T In x .  (01 PLA S TIC ITY )

n x .  (1001 PLASTICITY)

M X .  (701 PLASTICITY!

Fig. 7.11 Bottom Design Moment Distribution at Different 
Levels of plasticity in x Direction S5.



1 9 8

fix. (OX PLASTICITn
fix. I50X PLASTICITY)

fix. (70X PLASTICITY) fix. IIOOX PLASTICITY)

Fig. 7.12 Top Design Moment Distribution at Different 
Levels of Plasticity in x Direction S5.



1 9  9

c -  Bottom S te e l  Area Per mm in y D i r e c t i o n  
Numerical  Requi red and Between Bra cke ts  the Provided

.085

( . 3 7 0 )

.173

( . 3 7 0 )

.246

( . 2 4 7 )

.310

( . 2 4 7 )

.357

( . 3 1 9 )

.382

( . 4 7 8 )

.389

( . 4 7 8 )

. 391 

( . 4 7 8 )

.166

( . 3 7 0 )

.253

( . 3 7 0 )

.338

( . 2 4 7 )

.405

( . 2 4 7 )

.457

( . 3 1 9 )

.459

( . 4 7 8 )

.432

( . 4 7 8 )

.413

( . 4 7 8 )

.233

( . 3 7 0 )

.311

( . 3 7 0 )

. 388 

( . 2 4 7 )

.435

( . 2 4 7 )

.440

( . 3 1 9 )

.448

( . 4 7 8 )

.422

( . 4 7 8 )

. 350 

( . 4 7 8 )

. 233 

( . 3 7 0 )

.263

( . 3 7 0 )

. 284 

( . 2 4 7 )

.294

( . 2 4 7 )

. 373 

( . 3 1 9 )

. 236 

( . 4 7 8 )

.191

( . 4 7 8 )

. 134 

( . 4 7 8 )

d-  Bottom S te e l  Area Per mm in x D i r e c t i o n  
Numerical  Required  and Between Brackets  the P ro v ided

&
.050

( . 2 3 1 )

.091

( . 2 3 1 )

. 136 

( . 2 3 1 )

.203

( . 2 3 1 )

.246

( . 2 3 1 )

.256

( . 2 3 1 )

.282

( . 2 3 1 )

. 303 

( . 2 3 1 )

. 139 

( . 2 3 1 )

. 151 

( . 2 3 1 )

.248

( . 2 3 1 )

.295

( . 2 3 1 )

.249

( . 2 3 1 )

.265

( . 2 3 1 )

.280

( . 2 3 1 )

.056

( . 2 3 1 )

.207

( . 2 3 1 )

.255

( . 3 5 6 )

.260

( . 3 5 6 )

.315

( . 3 5 6 )

.299

( . 3 5 6 )

.262

( . 3 5 6 )

.279

( . 3 5 6 )

.122

( . 3 5 6 )

.221

( . 3 5 6 )

.232 

( .  356)

.249

( . 3 5 6 )

. 259 

( . 3 5 6 )

.231

( . 3 5 6 )

.190

( . 3 5 6 )

. 153 

( . 3 5 6 )

.095

( . 3 5 6 )

v
1 1—

Table 7.4 Numerical Required and Provided Steel Area per mm 
Model S5 (100% Plasticity)



2 0 0

a -  Top S t e e l  A r e a  P e r  mm i n  y  D i r e c t i o n  
N u m e r i c a l  R e q u i r e d  a n d  B e tw e e n  B r a c k e t s  t h e  P r o v i d e d

t i p

.012

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.075

( . 0 0 )

.008

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.161

( . 2 4 7 )

.079

( . 2 4 7 )

.151

( . 0 0 )

.057

( . 0 0 )

.002

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.200

( . 2 4 7 )

.167

( . 2 4 7 )

.140

( . 2 4 7 )

.119

( . 0 0 )

.081

( . 0 0 )

.045

( . 0 0 )

.023

( . 0 0 )

.045

( . 0 0 )

b -  Top S t e e l  A r e a  P e r  mm i n  x D i r e c t i o n  
N u m e r i c a l  R e q u i r e d  a n d  B e tw e e n  B r a c k e t s  t h e  P r o v i d e d

.240

( . 0 0 )

.001

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.107

( . 0 0 )

.054

( . 0 0 )

.004

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.190

( . 2 6 6 )

.162

( . 2 6 6 )

.087

( . 0 0 )

.028

( . 0 0 )

.007

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.00

( . 0 0 )

.212

( . 2 6 6 )

.198

( . 2 6 6 )

.177

( . 2 6 6 )

.153

( . 0 0 )

.119

( . 0 0 )

.071

( . 0 0 )

.029

( . 0 0 )

.006

( . 0 0 )

y
T̂ x
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a -  B o t t o m S t e e l  Layou t  ( i  s l a b )

I |P2 IIP1IIP4

P7P8

IIP5

P9
I |P3

I |P6

o -  -

1 0  0 1 0  0 1 0  0 
------ 1--------1-------

1 5  0 1 0  0 1 0  01 5 01 5 01 5 02 0 05 0 2 2 0

a -  Top S tee l  Layout ( i  s l a b )

7

6o

P l l

IIP10
2
50

5
0 - -

9 7 03 0 0

Fig. 7.14 Steel Layout for Model S5 and Strain Guage Positions. 
S5 Designed Using 100% Plasticity.

( A l l  bars d i a m e t e r  8 mm)



7.3.3 Model S.4 and S.6:

These two models S.4 and S.6 were square simply supported slabs with a column 

support at the middle of the slab. Both slabs had the same length of 2140 mm 

(with a clear span of 2000mm), boundary and loading conditions, but were 

different in thickness. The first model was 100 mm thick while the second was 150 

mm thick. The reason for increasing the thickness of S.6 is to facilitate the 

provision of shear links on the column. The models were designed for the same 

ultimate load of 320 KN using 100% of plasticity stress distribution. Dimensions 

and loading system were presented in table 6.1 and figure 6.1.

Generally over a column support, the moment tends to have a sharp peak. The

object of these tests was to see:

i— How far can the peak be reduced to facilitate the placing of reinforcement.

ii— What effect this would have on the serviceability behaviour.

The slabs were designed by analysing a quarter of the slabs, using 4x4 element 

mesh. Tables 7.5 and 7.6 show the required and the provided steel areas. As can 

be seen, the ratio of the provided steel volume is greater than the theoretical 

required one in most cases. This is due to practical constraints. The different levels 

of plasticity are determined from figure 7.15 which shows the load deflection of 

the point where the load is applied for both models S.4 and S.6. The required 

moment, for both top and bottom, from which the required steel area is 

determined, are plotted in figures 7.16 and 7.17. Figures 7.18 presents the points 

which yielded at different levels of stress redistribution. The points started to yield 

on the column and under the point load. As the percentage of plasticity increases 

the yielded points cover a large area of the diagonal joining the corner to the 

column. The design moment distribution in figures 7.16 and 7.17 show a 

considerable redistribution and smoothing out of the peaks for both top and bottom 

design moments as the percentage of plasticity increases. Figure 7.19 represents the

moment volume at different levels of plasticity. Since the thickness of the slab S.6

is greater than that of S.4, it is obvious that the required steel amount will be less 

for S.6 than the one for S.4. From figures 7.16 and 7.17 it can be noticed that.



at 100% of plasticity, there is an important reduction of the peak moment on the 

column which is redistributed to the surrounding points. The moment volume 

increased as the percentage of plasticity increased, figure 7.19.

Shear design:

Both slabs were checked for shear failure, using section 3.7.7 of BS8110(1) part 1. 

The failure zones near the column and under the point loads, for model S.4, were 

checked at the design load and no shear reinforcement was needed. Because the 

provided steel is greater than the required one as shown in table 7.5, this resulted 

in an ultimate load for S.4 greater than the value for which it was designed. 

Therefore the shear capacity of the slab near the columnVreached before the slab 

attefined its full strength flexurally. To prevent this, model S.6 was designed to 

resist a shear force 40% greater than the reaction of the column given by the 

analysis at the design load. And the shear links were provided on the column area 

of the slab as shown in figure 7.21. The thickness of the slab S.6 was increased to 

150 mm, to facilitate the provision of shear links near the column. Under the 

point load no shear reinforcement was needed. The shear reinforcement was 

provided in the failure zone of the column as required by section 3.7.7.5 of 

BS8110(1).
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(FI AFT IT  STAHFI

n o t  PLA STICITY )

IX A, 

(100X PLASTICITY)
(BOX PL A STIC ITY )

Fig. 7.16 Bottom Design Moment Distribution at Different 
Levels of Plasticity. Models S4 andS6.



2  0 ?

(40X PLASTICITY)(ELASTIC STAGE)

( I00X  PLASTICITY)(BOX PLASTICITY)

Fig. 7.17 Top Design Moment Distribution at Different Levels of Plasticity. 
Models S4 and S6.
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Fig. 7.18 Plasticity Spread over the Slab. S4 and S6.
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a -  Bo t t o m s t e e l  a r e a  p e r  mm

0 . 2 8 8 8

( 0 . 0 1 6 7 )

0 . 2 8 8 8

( 0 . 0 3 6 7 )

0 . 2 8 8 8

( 0 . 0 2 3 2 )

0 . 2 8 8 8

( 0 . 0 9 0 7 )

0 . 2 8 8 8

( 0 . 0 8 6 9 )

0 . 2 8 8 8

( 0 . 2 7 6 6 )

0 . 2 8 8 8

( 0 . 2 5 3 4 )

0 . 2 8 8 8

( 0 . 0 3 0 2 )

0 . 3 5 5 8

( 0 . 2 1 7 9 )

0 . 3 5 5 8

( 0 . 2 8 4 4 )

0 . 3 5 5 8

( 0 . 2 4 0 7 )

0 . 3 5 5 8

( 0 . 1 2 7 9 )

0 . 3 5 5 8

( 0 . 2 0 0 3 )

0 . 3 5 5 8

( 0 . 3 1 3 9 )

0 . 3 5 5 8

( 0 . 2 2 3 4 )

0 . 3 5 5 8

( 0 . 0 4 7 6 )

b - Top s t e e l  a rea  per  mm

f t

0 . 0 0 0 0

( 0 . 0 0 9 7 )

0 . 0 0 0 0

( 0 . 0 0 0 0 )

0 . 3 4 6 6

( 0 . 0 0 4 7 )

0 . 3 4 6 6  

( 0 . 1 8 7 1 )

0 . 2 3 1 1

( 0 . 0 3 8 3 )

0 . 0 0 0 0

( 0 . 0 2 7 3 )

0 . 2 3 1 1

( 0 . 0 0 1 0 )

0 . 2 3 1 1

( 0 . 1 3 3 5 )

0 . 2 3 1 1

( 0 . 0 5 6 0 )

0 . 0 0 0 0

( 0 . 0 1 6 1 )

0 . 0 0 0 0

( 0 . 0 1 0 2 )

0 . 0 0 0 0

( 0 . 0 0 0 0 )

0 . 3 5 3 5

( 0 . 1 4 1 3 )

0 . 3 5 5 8

( 0 . 0 3 8 6 )

0 . 3 5 5 8

( 0 . 0 1 2 2 )

0 . 0 0 0 0

( 0 . 0 6 7 1 )

Prov ided  s t e e l  area  and between b rac ke ts  the t h e o r e t i c a l  
r e q u i r e d  a re a .

Table 7.5 Numerical Required and Provided Steel Area per mm 
Model S4.



a -  Bo t t o m s t e e l  a r e a  p e r  mm

0 .2 3 1 1

( 0 . 1 0 2 4 )

0 .2311

( 0 . 2 2 6 0 )

0 .2311

( 0 . 1 4 2 9 )

0 .2311

( 0 . 0 5 7 3 )

0 .2 3 1 1

( 0 . 0 4 8 2 )

0 .2 311

( 0 . 1 6 7 8 )

0 .2311

( 0 . 1 5 5 5 )

0 .2 311

( 0 . 0 1 5 8 )

0 .1 7 7 9

( 0 . 1 3 5 1 )

0 .1 7 7 9

( 0 . 1 7 9 7 )

0 .1 7 7 9

( 0 . 1 5 0 1 )

0 .1 7 7 9

( 0 . 0 8 2 3 )

0 . 1 7 7 9  

( 0 . 1 2 9 8 )

0 .1 7 7 9

( 0 . 1 9 3 3 )

0 .1 7 7 9

( 0 . 1 3 4 6 )

0 .1 7 7 9

( 0 . 0 3 1 9 )

■ *

b -  Top s t e e l  a r e a  p e r  mm

0 .0 0 0 0

( 0 . 0 0 3 5 )

0 .0 0 0 0

( 0 . 0 0 0 0 )

0 .1 2 9 9

( 0 . 0 0 2 8 )

0 .1 2 9 9

( 0 . 1 1 5 4 )

0 . 0 0 0 0

( 0 . 0 2 6 3 )

0 .0 0 0 0

( 0 . 0 1 9 1 )

0 .1 2 9 9

( 0 . 0 0 0 2 )

0 .1 299

( 0 . 0 8 5 2 )

0 . 1 0 0 0

( 0 . 0 3 5 7 )

0 .0 0 0 0

( 0 . 0 0 7 8 )

0 . 0 0 0 0

( 0 . 0 0 8 6 )

0 .0 0 0 0

( 0 . 0 0 0 0 )

0 .1 0 0 0

( 0 . 0 8 1 7 )

0 .0 0 0 0

( 0 . 0 2 4 3 )

0 . 0 0 0 0

( 0 . 0 0 8 2 )

0 .0 0 0 0

( 0 . 0 0 3 6 )

P r o v id e d  s t e e l  area  and between b r a c k e ts  the t h e o r e t i c a l  
r e q u i r e d  a r eas .

Table 7.6 Numerical Required and Provided Steel Area per mm 
Model S6.



a -  B o t t o m  s t e e l .  Ba r  s i z e  8 mm.

1 5 o 1 5 o1 5 0 1 5 05 0 2 2 0 2 0 0
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b -  Top s t e e l  l a y o u t .  B a r  s i z e  6 mm.

1 5 0 1 5 0

+

p6

5 0  2 5 0  3 0 0  3 0 0  1 7 0

H 1-------------- I--------------------1------------------- 1----------

Fig. 7.20 Steel Layout for Model S4 and Strain Guage Positions.
S4 Designed Using 100% Plasticity.



a -  B o t t o m s t e e l .  Bar  d i a m e t e r  s i z e  8 mm.

P2

\

i P 3 * JV J

4

p4

►

Pi p s j

5 0  3 0 0  2 7 0  3 0 0  > 1 5 0

H—I----------------- 1--------------------1--------------------1--------

b -  Top s t e e l  l a y o u t .  B a r  d i a m e t e r  s i z e  6 mm.

c -  P o s i t i o n  o f  s h e a r  l i n k s ( * )
p6 •

2 0 0

Co 1umn
3 0 0

 *.

1 0 0

c 3 5 0 6 0 0

^  S t r a i n  guage p o s i t i o n .  ^ P o s i t i o n  o f  shear l i n k s .

Fig. 7.21 Steel Layout for Model S6 and Strain Guage Positions.
S6 Designed Using 100% Plasticity.



7.4 Design of Deep Beams:

To obtain the stress fields at different levels of plasticity, an elastoplastic finite 

element inplane program (5) using von Mises criterion was adopted. The element 

used was isoparametric with eight nodes. For the determination of different levels 

of plasticity stress fields, similar approach to that of slabs was adopted as follows:

1— The beam was considered as a metallic member with uniform

thickness obeying von Mises criterion.

2— At the design ultimate load the elastic stress distribution was 

determined from which the von Mises stress a 0 at the most stressed

point was computed and taken as yield stress of the beam material.

a 0 =  J  ( ax 2 +  Oy2 -  <rxOy +  3.0 r xy2 )

3— The material was assumed to behave as an elastoplastic material 

obeying von Mises criterion and normality rule(5). At the design ultimate 

load, where yielding started, plasticity percentage p was assumed to be 

zero. At the true ultimate load, which is assumed to be equal to (1+  X) 

of the design load, 100% of plasticity is adopted. Different levels of 

plasticity can be chosen between these two states. The stresses, at each 

plasticity level, were factored as for slabs using 1 /(1+  pX), such that the 

stress distribution was in equilibrium with the design load.

5— At each level of plasticity, using the stress <jx , cry, r xy, which are 

in equilibrium with the design load, the required steel ratio was

calculated, using rules described in chapter 3. This ratio varies from 

point to point and from one element to another. In order to simplify

this, all the steel ratios for each element were averaged in each 

direction.

Although this procedure is adopted, the variation of the averaged steel ratio still

var ^from element to element. Since the test beams are small in comparison to the 

usual practical dimensions, there was little possibility of varying the steel by 

curtailing the steel bars. To match better the theoretical steel requirements, the



following two ways can be adopted:

i— Choose the maximum steel ratios at each band of the beam and 

place the required steel through the corresponding band.

ii— Take average steel ratios at each band, and place the steel bar

accordingly.

It is clear that the first method is uneconomical but provides a safe design, since 

it uses higher steel areas in most regions of the structure while averaging 

procedure, though more economical, might give an unsafe design, since some areas 

of structures would be under reinforced. Because the steel is already averaged in 

the element, the first method was adopted.

7.4.1 Design of Support Bearings:

Many authors have reported that local failure due to point load is the most 

common example of premature failure in deep beams. This is because under point 

load, a considerable force is transmitted to the support directly through the 

compression strut. The concentration of the stress in these areas may become 

higher than the permissible allowable bearing stress. As a result many codes of

practice have proposed a criteria for checking bearing capacity. Section 3.4.3 of

C IR IA  Guide 2(98) states that the compression stress in the contact should not 

exceeds 0.4 fcu under ultimate loads. Stresses in excess of 0.8 fcu should only be 

used in laboratory under special conditions with proper provision of reinforcement.

A short column design was employed, to insure that there would be no local 

failure using clause 3.8.4.3 in BS 8110(1) part 1, that is:

P =  0.4 fcu Ac +  0.75 As fy 

where P is the applied force ( eg. reactions or applied load ). f cu is the cube 

strength of concrete. Ac is the concrete area ( eg. the area which is in contact 

with the plate of bearing ). A s is the required compression steel area in the 

bearing area and fy is the characteristic strength of the compression reinforcement. 

In fact usingydirect design method a sufficient amount of steel is directly provided 

in the most stressed areas both in vertical and horizontal directions, figures 7.3a—d



and 7.31a—b. Lin(79) and M em on(^) reported that at the bearing point, bearing 

failure can also be caused by the Poisson's effect. To confine the beam areas 

where stress concentration is high, in this test program, the local lateral force was 

restrained by using metallic plates clamped to the bearing plate which is in contact 

with the concrete surface of the beam for both the support bearings areas and 

under the loading point. Figures 7.22a and 7.22b show test rig set up, the support 

systems and the dimensions of the test specimens.

7.4.2 Bond and anchorage:

The Direct design method assumes that the steel bars are fully bonded and

anchored. This means that the strain in the reinforcement is equal to the adjacent
be

concrete. Clause 3.12.8.3 and 3.12.8.4 of BS 8110(1) mayVused f ° r checking 

anchorage length required. By using hooks of 180° at the end of main bars, an 

additional positive anchorage is provided by the presence of steel cages at the 

supports.

7.4.3 Beam Models Design and Discussion:

One of the main factors affecting the behaviour of deep beams and stress 

distribution is the span depth ratio. Dimensions and the support system, for the 

designed beams B .l and B.2, are shown in figure 7.22a and 7.22b, respectively. 

Two different span/depth ratios were chosen. The ratio of the first beam was 1.8 

and expected to behave like an ordinary beam with flexural stress being dominant. 

Whereas the second beam, which had a ratio of 0.9, was assumed to be heavily 

loaded in shear and the compression forces joining the point load and the 

supports. Both beams were analysed using an elastoplastic finite element inplane 

program, with 8x8 finite element mesh for a symmetrical half. Figure 7.22 and 

7.23 show typical load—deflection relationship obtained from elastoplastic analysis. 

Figures 7.24 and 7.25 show the points which yielded. It can be noticed for both 

beams only the area near the point load and the support yielded. In comparison
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with the slabs designed, beams have small area where the plastic stress capacity is 

reached. The ratio of steel volume at any plasticity level to the elastic steel 

volume is presented in figures 7.26 and 7.27. There is a little increase, in this 

ratio as the percentage of plasticity redistribution level increases. From the principal 

stress representation, figures 7.28 and 7.29, the compressive stress path, joining the

point load to the support, is very clear and the compressive stress is of great

importance as span depth ratio is decreased. The factored stress intensity was

slightly affected as the percentage of plasticity increased.

Unlike slabs, deep beams show little redistribution of stresses. This is shown in 

figures 7.30 and 7.31 where the steel areas were not much affected by the levels 

of plasticity. This means that the redistribution of stresses in simply supported deep 

beams are not taking place as for the plate bending. Finally the steel layout and 

strain gage positions on steel bars, are shown in figures 7.32a and 7.32b, for both 

beam B .l and beam B.2 respectively. The beams were designed using 100%

plasticity stress distribution. It is clear that the direct design method gives not only 

the main reinforcement for beams but also the reinforcement at local areas such as 

under the point loads and on the supports.
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Fig. 7.22a Test Rig and Dimensions Beam 1
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Fig. 7.22b Test Rig and Dimensions Beam 2.
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Fig. 7.32a Steel Layout and Strain Guage Positions.
Beam 1 Designed Using 100% Plasticity.



-J 3 9

8Y8T T

2Y6

P10

2Y6

2Y6

P6P7 2Y6
!P11

2Y64YS IP12
P5 P4 2Y8

P3
2Y8

P2 2Y10

3 0  8 0  3 0  1 1 0  1 1 0  1 1 0  1 1 0  1 1 0  1 1 0  1 1 0  3 0  8 0  3 0  1 0 0
H— I-----------1— I-------------- 1-----------------1---------------- 1--------------------1---------------- 1----------------- 1----------------1— I--------- 1— I- -i-------------

2Y6 2Y8 2Y6 2Y6 2Y6 2Y6 2Y8 2Y6

Fig. 7.32b Steel Layout and Strain Guage Positions.
Beam 2 Designed Using 100% Plasticity



2 4 0

Chapter 8

Experimental and Numerical Analysis 

of Slabs and Deep Beams

8.1 Introduction;

This chapter presents the test results on reinforced slabs and deep beams 

described in chapter seven. The purpose of the experimental investigation was 

mainly to explore in particular the effect on serviceability limits and ultimate 

behaviour, of using nonelastic stress fields in the direct design of reinforced 

concrete slabs and deep beams. A total of six large scale slabs and two deep 

beams were tested to failure, and for each test the following data were recorded:

1— Deflections

2— Steel strains

3— Crack development and crack widths

4— Ultimate load and mode of failure

5— Reactions.

In this chapter Pd and Pu stand fo r the design ultimate load and the experimental 

ultimate load respectively.
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Taking advantage of symmetry, numerically only a quarter of slabs was analysed, 

using 4x4 finite element mesh for all slab models, figures 6.10a and 6.10b, except 

for S.5 where 4x8 element mesh was used as shown in figure 6.10c. For beam 

models 8x8 finite element mesh was used to analyse one half of each beam. For 

all slabs the first increment was 0.20 of Pd. Small increments of 0.1 Pd and 0.05

Pd was used as necessary. As approaching the design load a 0.025 of Pd was

adopted. A  maximum of 50 iterations was fixed at each increment and a 2x2 

sampling points were used over each element. All slab models were divided in to 

10 layers including the steel layers, except S.6 which was divided into 12 layers, 

because of its increased thickness. A  4.0 % tolerance was fixed for all analysis.

A  value of /S =  0.4 for the shear retention is adopted while tension stiffening has

been ignored.

8.2 Slab models:

8.2.1 Simply Supported Slabs:

8.2.1.1 Model S . l :

This was a simply supported square slab with corners held down. The slab was 

designed for a load Pd of 210 KN, using 70% level of plasticity stress field. The 

loading system is four direct points loads system as shown in figure 8.1. 

Dimensions and material properties of the slab were presented in chapter six 

(figure 6.1 and tables 6.3 and 6.4). The steel layout of the slab was presented in 

figure 7.6.

The slab was loaded in small load increments up to failure. The first and second 

load increments were of 0.1 of design load (Pd). The rest of increments were an 

average of 0.05 Pd. The first visible crack was seen under the point load at 0.42 

Pd (0.37 Pu), figure 8.2. The angle of the crack was 45°. On further loading, 

cracks were concentrated on the diagonals of the slab, and spreading towards the 

middle and corners of the slab. At 0.52 Pd (0.46 Pu) the first visible crack in the
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middle appeared, figure 8.3, whereas at 0.57 Pd (0.50 Pu) the cracks parallel to 

diagonals reached the corners. At 0.60 Pd (0.53 Pu) the yield lines had clearly 

developed. The limiting deflection (span/250 =  8 mm) was reached at 0.62 Pd

(0.55 Pu), while the crack limit width of 0.3 mm was at 0.66 Pd (0.58 Pu). 

Beyond this loading intensive cracking occurred represented by fast development of 

new cracks in a very large area of the slab surrounding the point loads and the 

middle of the slab (compare figure 8.2 and 8.4). Further, the old cracks were 

widening and very few new cracks were forming near the corners of the slab. 

This is mainly caused by the increase of steel strain as can be seen in figures 

8.12 to 8.17. The steel yielding was observed at 0.80 Pd (0.71 Pu), under the

point load, figure 8.13. At the design load a large area of the bottom of the slab 

concrete face was cracked, figure 8.4, and the whole steel under point loads and 

in the middle of the slab yielded, figures 8.12 to 8.16. At this stage of loading,

the cracks were widening. A  few new cracks were seen near and parallel to the 

edges. 1st visible crack appeared at the top of the slab at 1.08 Pd (0.95 Pu), 

figure 8.5. Failure occurred at 1.13 Pd (1.0 Pu) with a large crack surrounding 

the point loads as shown in figures 8.6 and 8.7.

Deflections:

The load— deflection curves of different points of the slab are shown in figures

8.8 to 8.11. The load—deflection curves indicate the initiation of nonlinearity near

0.25 Pd which is lower than the loading level at which the first crack was

observed viz. 0.42Pd (0.37 Pu). This is probably caused by the presence of 

invisible micros cracks. At 0.62 Pd (0.55 Pu), the central deflection was equal to 

the limiting service deflection equal to span/250 =  8 mm. This represents an

acceptable permissible serviceability limit on deflection.

Steel strains:

The measured steel strain are shown in figures 8.12 to 8.17 for bottom steel 

and in figure 8.18 for top steel. In the middle and under the point loads, at the 

design load the whole steel has yielded. For top steel from figure 8.18, no



2 4 3

yielding had occurred. This is possibly caused by a lifting of the corners (the 

initial force in the prestressing wire holding the corner down was not sufficient). 

From load— strain curves for bottom steel, we can notice that the whole strain of 

the measured points on the steel bars indicate that steel had yielded. This means 

that the slab behaved in a ductile manner.

Reactions:

The reaction at the corners are shown in figure 8.19. It  is clear that these

reactions were primarily negligible until 0.4 Pd. At collapse load the measured 

corner reactions were almost 20% of the applied point load.

Cracks width:

The first crack was seen under the point load at 0.42 Pd (0.37 Pu). Service 

crack width limit of 0.3 mm was reached at 0.66 Pd (0.58 Pu) under the point 

load. At 0.90 Pd (0.80 Pu) the maximum crack width was 0.65 mm while at the 

middle of the slab it was 0.25 mm. At 1.05 Pd a 0.4 mm wide crack was

recorded at the middle area between the point loads. The crack width which 

caused failure was of 1.0 mm at the top and 3.0 mm in the bottom.

Mode of failure:

It is clear that the slab behaved in a ductile manner up to the ultimate load. 

This can be explained by the crack pattern which had spreaded over the whole

bottom face of the slab and the steel strains were several times the yield strain.

At the end, the crack which caused failure, was primarily a flexural crack and 

which was present in the previous loading increments. It has gone through the 

depth of the slab with no appearance at the top of the slab. At the last 

increment, suddenly sliding happened along this crack. This is caused by the 

inability of the remaining uncracked depth of the slab to transmit the forces to 

the support. The main crack was inclined and joining the point load to the end 

anchorage of the bottom steel.



2 4 4

Num erical analysis:

In general good agreement is obtained between the theoretical analysis and the 

experimental results. The first crack appeared under the point load at 0.40 Pd, 

while experimentally it was seen at 0.42 Pd, figure 8.2. The cracks have the same 

direction as the of the experiment. Load— deflection curves are presented in figures

8.8 to 8.11. The slab shows a loss of stiffness at the first stage of cracking. 

Numerically, the slab reached the service limit deflection of 8mm at 0.45 Pd and 

experimentally at 0.62 Pd. Bottom Steel strains were in good agreement with the 

experimental, figure 8.12 to 8.17. The steel yielded at the same load level under 

the point load, figure 8.13. For top steel strains, figure 8.18, severe deviation 

from the experimental results can be observed. This is due to the uplift of the 

corners during the experimental loading. The failure took place at 1.06 the 

experimental failure load. Crack patterns comparison between experiment and 

numerical up to the failure load are presented in figures 8.2 to 8.6 for bottom 

slab face and in figures 8.5 and 8.6 for top slab face.
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Fig. 8.1 Test setup for slab Models S. 1, S.2 and S.3
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a- Experimental at 0.42 Pd

b- Numerical at 0.40 Pd 1/4 Slab

Fig. 8.2 Bottom first cracks.
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Fig. 8.3 Bottom crack pattern at 0.5Pd.
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a- Experimental at 1.08 Pd.
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Fig. 8.5 Top crack pattern
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Fig. 8.9 Load-deflection curves. Model S.l



2 5 3

o
o

□ v tn  N D is a a /o v tn  r a n d d v

3
0

.0

Fi
g.

 8
.10

 
Lo

ad
-d

ef
le

ct
io

n 
cu

rv
es

. 
M

od
el 

S
.l



2 5 4

o

o

__

inin
o

1
zoM
I—
a

CNl

0Y01 N3IS30/0Y01 Q3I“lddY

Fi
g.

 8
.11

 
Lo

ad
-d

ef
le

ct
io

n 
cu

rv
es

. 
M

od
el

 S
.l



AP
PL

IED
 

LO
AD

/D
ES

IG
N 

LO
AD

 
AP

PL
IED

 
LO

AD
/D

ES
IG

N 
LO

AD

2 5 5

1 .4

1.2

1.0

EXPERIMENT AT PS

NUMERICAL AT PS

1.0 I.S 2.5 LO i !40 3.0
STRAIN/YIELD STRAIN
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Fig. 8.13 Load-strain curve. Bottom steel Model S.l
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Fig. 8.15 Load-strain curve. Bottom steel Model S.l
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8.2.1.2 Model S.2:

This model had the same dimensions as model number 1 but was designed using 

100% plasticity stress field. Details of the loading arrangements together with the 

resulting supports reaction are the same as for the previous model and are shown 

in figure 6.10a.

The slab was loaded up to failure using an average load increment of 0.05 of the 

design load (Pd =  210 KN). The load—deflection curves are given in figures

8.20a to 8.20h. The first visible cracks were observed under the point loads at a

load of 0.38 Pd (0.29 Pu). This early cracking had the effect of producing flexible 

behaviour over the slab loading history. Similar to the previous model, cracks

spread over the central square defined by the loading holes and also along the

diagonals between the corners and these holes. Cracks reached the corners of the 

slab at 0.58 Pd (0.45 Pu). The limiting crack width of 0.3 mm was reached at

0.62 Pd (0.48 Pu), while the limiting service deflection of span/250 =  8.0 mm

was attained at about 0.66 Pd (0.51 Pu), figure 8.20a. At this level the crack

pattern was similar to the collapse mechanism due to the formation of the yield 

lines. For further loading, the old cracks widened and very few new cracks, in the 

area limited by the four load points, opened. Figures 8.21a to 8.21 f show the

crack history of the slab. The crack width varied from 0.06 mm at first visible

crack, to 2.0 mm at the design load, and at the collapse load the maximum crack

width measured was of 6.5 mm in the area under the point load. As can be

seen, the rate of increase of crack width with load is high, mainly because of the 

yielding of steel under the point load in a large area of the slab.

The first yielding of the steel was at 0.80 Pd (0.62 Pu) under the point load,

figure 8.22f, while the top steel yielded at 0.97 Pd (0.75 Pu), figure 8.22i. At 

this level of loading the top corner concrete face of the slab was already cracked. 

Failure took place at 1.30 Pd (1.0 Pu) in a flexural manner.

Deflections:

The load—deflection curves are presented in figures 8.20a to 8.20h. From these
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curves, it is clear that the nonlinearity started at 0.23 Pd (0.18 Pu) which is less 

than the load at the first visible crack, 0.38 Pd (0.29 Pu). The limiting deflection 

of span/250 was reached at 0.67 Pd (0.52 Pu), figure 8.20a. This represents an 

acceptable serviceability limit state deflection.

Steel Strain:

Figures 8.22a to 8.22h and 8.22i to 8.22j show the load steel strain relationship 

for bottom and top steel respectively. As can be seen, all the strain gage readings 

show that the steel reached its yielding strain and in different places of the slab 

the steel strain was several time the yield strain. This indicates the flexural 

behaviour of the slab. The first yielded point was under the point load at 0.8 Pd 

(0.62 Pu), figure 8.22c, while for the top steel, it was at 0.97 Pd (0.75 Pu), 

figure 8.22i.

Reactions:

It can be noticed that the reactions are negligible until the concrete cracked at 

0.38Pd (0.30 Pu), figure 8.23. The slab corner reactions decreased while

approaching the ultimate load. The maximum uplift reactions in the corners, at 

the penultimate load increment was 18% of the point load (P/4), which is 50% 

greater than the one for the previous slab. A  maximum of 16.4 KN was recorded 

in one corner, while for the first slab only 11.0 KN was reached. The ultimate 

load of this slab was greater by 15% of the ultimate load of S .l.

Crack width:

The first crack was 0.06 mm wide at 0.38 Pd (0.29 Pu) under the point load. 

Crack width limit of 0.3 mm was reached at 0.62 Pd (0.48 Pu). At 0.85 Pd (0.65 

Pu) the maximum crack width was 0.55 mm. At the design load the crack width 

was 2.0 mm. In this model the cracks are not near each other like in model S .l. 

This is caused by the distance between steel bars, which was greater than the one 

in model S .l. This model was reinforced using 8 mm diameter bars, whereas in 

model S.l 6 mm diameter bars were used. At the collapse load the maximum
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crack width measured was of 6.5 mm.

Mode of failure:

The slab behaved in a ductile manner. This can be seen by the crack pattern 

over the bottom of the slab, figure 8.21c and 8.21d, and also by the maximum 

flexural bottom crack width which was 6.5 mm, without any crushing of top

concrete slab surface. The slab failed at 1.3 Pd in a flexural mode.

Numerical Analysis:

As for the previous model, using the same finite element mesh and the same 

number of layers through the depth, a quarter of the slab was analysed. The first 

increment was of 0.2 Pd. Small increments of 0.1 of the design load was used till 

approaching the design load after which a value of 0.025 Pd was adopted.

The numerical first crack appeared at 0.35 Pd, while in the experiment it was 

seen at 0.38 Pd. Load— deflection curves, figure 8.20a to 8.22h show good 

agreement between experimental and numerical results. The service load deflection 

limit of 8.0 mm was reached at 0.55 Pd numerically and at 0.66 Pd 

experimentally, both at the central point, figure 20a. Load— Strain curves are

presented in figures 8.22a to 8.22h for bottom steel and figures 8.22i and 8.22j 

for top corner steel. The bottom steel yielded at 0.80 Pd under the point load, 

both numerically and experimentally. At the central point, the bottom steel yielded 

at 1.0 Pd and 0.90 Pd in the numerical and experimental analysis respectively,

figure 8.22a. Good agreement also is obtained in crack pattern development as 

shown in figures 8.21a to 8.21d. The numerical failure load was 0.96 the

experimental one (Pu).
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Fig. 8.20b Load-deflection curve. Model S.2
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Fig. 8.20d Load-deflection curve. Model S.2
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Fig. 8.20f Load-deflection curve. Model S.2
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Numerical 1/4 Slab

Fig. 8.21b Bottom crack pattern
at design load Pd. Model S.2
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AP
PL

IE
D 

LO
AD

/D
ES

IG
N 

LO
AD

 
AP

PL
IE

D 
LO

AD
/D

ES
IG

N 
LO

AD

EXPERIMENT AT P3

NUMERICAL AT P3

2 30 5 76 8 9 10

STRAIN/YIELD STRAIN

Fig. 8.22c Load-bottom steel strain curve. Model S.2

EXPERIMENT AT P4

NUMERICAL AT P4

o 2 3 5 76 8 9 10*♦

STRAIN/YIELQ STRAIN

Fig. 8.22d Load-bottom steel strain curve. Model S.2



AP
PL

IE
D 

L0
AU

/U
E3

IG
N 

LO
AD

 
AP

PL
IE

D 
LO

AD
/D

ES
IG

N 
LO

AD

Z 7 4

O. 4

EXPERIMENT AT P5

NUMERICAL AT P5

o. o
15! 0 139 123 5 6 7 e2D

STRAIN/YIELD STRAIN

Fig. 8.22e Load-bottom steel strain curve. Model S.2

0 .6

0.2 EXPERIMENT AT P6

NUMERICAL AT P6

15139 10 14c 7 8 11 120 3 62

STRAIN/YIELD STRAIN

Fig. 8.22f Load-bottom steel strain curve. Model S.2
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8.2.1.3 Model S.3:

This model was a square simply supported slab. Dimensions, loading 

arrangements were the same as for the previous two models. The slab was 

designed for the same load of 210 KN but using 30% of plasticity stress 

distribution.

Initially the slab was loaded in small increments of 0.1 of the design load for the 

first four increments. For later increments, an average of 0.05 of Pd was used. 

The first visible crack was observed at 0.41 Pd (0.30 Pu) under the point load at 

an angle of 45° and 0.03 mm wide. At 0.48 Pd (0.35 Pu) the cracks reached the 

middle of the slab with some cracks parallel to the lines joining two adjacent load

points. The cracks reached the corner supports at 0.52 Pd (0.38 Pu) and the yield

line pattern had developed, figure 8.24a. The permissible deflection span/250 =  8 

mm and the maximum permissible crack width of 0.3 mm were reached at 0.62

Pd (0.45 Pu), figure 8.25a. At 0.66 Pd more cracks progressed towards the 

corners and a few new cracks were opening in the middle whereas the old ones

were widening. At this level of loading the maximum crack width was 0.35 mm, 

on the line joining the corners to the point loads. More cracks parallel to the 

edges and near the point loads opened at 0.71 Pd (0.51 Pu). First yield of 

reinforcement was detected at 0.75 Pd (0.54 Pu) under the point load, figure 

8.26c, while in the central zone at 0.95 Pd (0.69 Pu), figure 8.26a. During

further load increments few new cracks appeared. The maximum crack width of 

0.6 mm was attained at 0.85 Pd. Figure 8.24b shows that at the design load, 

cracks covered most of the central area surrounded by the points loads and the 

diagonal zones towards the corners. On further loading very few new cracks were

forming, in contrast to the widening of the old cracks. The first crack at the top

face of the slab was seen at 1.05 Pd (0.76 Pu). At this stage most of the strain 

gages in the bottom reinforcement indicate that steel had yielded. At 1.22 Pd 

more cracks opened at the top surface towards the points loads, while the 

maximum bottom crack width along the diagonal was of 1.5 mm. More cracks

spread at the top surface at 1.30 Pd towards the point loads. The failure took
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place at 1.38 Pd with new top surface cracks and the maximum crack width at

the bottom face was of 5.0 mm. Figure 8.24c shows the bottom crack pattern at

collapse load. The top concrete surfaces of the diagonals, between the point loads

and the corners, crushed, figure 8.24d.

Deflections:

Figures 8.25a to 8.25j show the load-deflection curves of the chosen points of 

the slab. The load deflection relationship shows that nonlinearity started before

0.41 Pd where the first visible crack was seen. Limiting service deflection of the

central point (8 mm) was reached at 0.62 Pd (0.45 Pu). This represents a low 

serviceability in terms of the ultimate load. The maximum deflection of the central

point was of 69.12 mm, figure 8.25a.

Steel Strains:

Figures 8.26 and 8.27 represent the load—strain curves of measured points for 

bottom and top reinforcement respectively. The first yielding of steel occurred 

under the point load at 0.75 Pd (0.54 Pu), figure 8.26c. At the design load all 

the bottom steel points had yielded, figures 8.26. Figures 8.27 show that at 

collapse load top steel did not yield.

Crack width:

The first crack appeared at 0.41 Pd (0.30 Pu) in the bottom surface under the 

point load. The service limit crack width of 0.3 mm was reached at 0.62 Pd (0.45 

Pu). A  maximum crack width was 0.85 mm at the design load, while at collapse 

load a 5.0 mm wide crack was recorded. Crack pattern for both bottom and top 

concrete faces are presented in figures 8.24a to 8.24d.

Reactions:

It is clear from figure 8.28 that the reactions at the corners were negligible 

until the bottom concrete surface cracked, at 0.41 Pd. A maximum reaction of 

15.9 KN was recorded which is 3% less than the one of S.2 although the ultimate
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load of this model was 6% greater than the ultimate load of slab S.2.

Mode of failure:

From the steel strains, and crack pattern and width it can be seen that the slab 

behaved in a ductile manner. The slab failed flexurally at 1.38 Pd. A  little

concrete crushing of the top diagonal between the point load and the corner can 

be seen in figure 8.24d.

Numerical analysis:

Good agreement can be seen with the experimental results as shown in figures 

8.25a—j for load-deflection curves and figures 8.26 and 8.27 for load—strain 

curves, for both bottom and top steel, respectively. The serviceability load limit 

deflection of 8mm was reached at 0.5 Pd numerically while in the experiment it 

was reached at 0.62 Pd. The steel yielded at the same level of loading at 0.75 Pd

under the point load as shown in figure 8.26c. While approaching the ultimate

load the numerical values of both deflection and strain prediction were larger than 

the experimental results. Good agreement was obtained for crack patterns at 

different load stages as shown in figures 8.24a to 8.24d. Both numerically and

experimentally the slab failed flexurally. The numerical failure load was 0.94 the 

experimental one.
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8.2.1.4 Comparison of ModelsfS.l. S.2 and S.3>:

These three models S .l, S.2 and S.3 were designed using 70, 100 and 30% of 

plasticity stress distribution. Figure 8.29 and 8.30 show respectively load-deflection  

curves and load— strain curves. Table 8.2 shows the main observations from test

results of these models and Hago(115)'s model N. 3. It  was shown(9) that the

behaviour of the slabs, up to the design load were independent of the stress field

used in the design. At the collapse load for model S.3, the top concrete surface

of the diagonal joining the corners and the point loads was crushed, figure 8.24d. 

This is mainly due to the concentration of the steel under the point load. The

numerical moment curvature curves of these models are presented in figures 8.31. 

It  can be noticed that using 100% plasticity in the design, the slab S.2 behaved in 

a more ductile manner as can be seen also from load— strain curves in figure 

8.30. The ductility ratio ’b, as defined in figure 8.31, is equal 1.0, 3.0 and 2.0

for S .l, S.2 and S.3 respectively. Although the models were designed for a design 

load Pd, because of practical constraints one is forced to use more steel than 

required. Table 8.1 shows the ratio of the provided steel volume to the numerical 

required steel volume. Because of the increased area of steel provided, the

ultimate experimental load Pu is greater than the ultimate design load Pd. Using 

70% plasticity level stress field in design, the ultimate load is less than for the

other two models S.2 and S.3. This is mainly due to the fact that for this model, 

the difference between the required and provided steel is less than for other two 

models.

T ab .  8 . 1  S t e e l  vol um e r a t i o  ( P r o v i d e d  s t e e l / N u m .  r e q u i r e d  s t e e l )

M o d e l s  & S t e e l  
B a r  D i a m e t e r s  

4) i

Bot  tom Top T o t a l

30% p l a s t i c i t y
4> 8 mm

1 . 3 9 1 . 5 8 1 . 4 4

70% P l a s t i c i t y  
4) 6 m w

1 . 0 9 1 . 6 1 1 . 2 1

100% p l a s t i c i t y
% vn tv)

1 . 3 0 1 . 8 2 1 . 4 2
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T a b l e  8 . 2 :  C o m p a r i s o n  b e t w e e n  t h e  d e s i g n e d  m o d e l s  u s i n g  d i f f e r e n t  
s t r e s s  f i e l d s .  Pd i s  t h e  u l t i m a t e  d e s i g n  l o a d .

Pd i s  t h e  e x p e r i m e n t a l  u l t i m a t e  l o a d .

Model  —» 

F a c t s  |

HAGO's 
Model N: 3 

E l a s t i c  s t r .  
f i e l d

Model S . 3  
30% P l a s t  i c . 
S t r e s s  f i e l d

Model S . l  
70% P l a s t i c .  
S t r e s s  f i e l d

Model S .2  
100% P l a s t i c  
S t r e s s  f i e l d

F i r s t  v i s i b l e  c r a c k  
a t  b o t t o m  f a c e 0 . 3 8  Pd 0 . 4 1  Pd 0 . 4 2  Pd 0 . 3 8  Pd

W id th  o f  t h e  f i r s t  
C r a c k 0 . 0 4  mm 0 . 0 3  mm 0 . 0 3  mm 0 . 0 6  mm

L o c a t i o n  o f  t h i s  
f i r s t  c r a c k

U nde r  p o i n t  
l o a d

U nde r  p o i n t  
l o a d

U n d e r  p o i n t  
l o a d

Und er  p o i n t  
l o a d

D i r e c t i o n  o f  t h i s  
f i r s t  c r a c k 45° 45° 45° 45°

S e r v i c e  d e f l e c t i o n  
l i m i t  ( s p a n / 2 5 0 )

0 . 7 2  Pd 
0 . 6 2  Pu

0 . 6 2  Pd 
0 . 4 5  Pu

0 . 6 2  Pd 
0 . 5 5  Pu

0 . 6 6  Pd 
0 . 5 1  Pu

S e r v i c e  c r a c k  l i m i t  
w i d t h  ( 0 . 3  mm)

0 . 6 7  Pd 
0 . 5 7  Pd

0 . 6 2  Pd 
0 . 4 5  Pu

0 . 6 6  Pd 
0 . 5 8  Pu

0 . 6 2  Pd 
0 . 4 8  Pu

L o c a t i o n  o f  t h i s  
c r a c k — D i a g o n .  n e a r  

p o i n t  l o a d
D i a g o n .  n e a r  
p o i n t  l o a d

D i a g o n .  n e a r  
p o i n t  l o a d

A p p e r a n c e  o f  y i e l d  
l i n e  p a t t e r n — 0 . 5 8  Pd 0 . 6 0  Pd 0 . 6 7  Pd

F i r s t  y i e l d i n g  o f  
b o t t o m  s t e e l

1 . 0  Pd 
0 . 8 6  Pd

0 . 7 5  Pd 
0 . 5 4  Pu

0 . 8 0  Pd 
0 . 7 1  Pu

0 . 8 0  Pd 
0 . 6 2  Pu

L o c a t i o n  o f  t h i s  
y i e I d i n g

M i d d l e + U n d e r  
p o i n t  l o a d

Unde r  t h e  
p o i n t  l o a d

U nde r  t h e  
p o i n t  l o a d

Und er  t h e  
p o i n t  l o a d

Y i e l d i n g  o f  t o p  
s t e e l No y i e l d i n g No y i e l d i n g No y i e l d i n g 0 . 9 7  Pd 

0 . 7 5  Pu

F a i l u r e  t o o k  
a t P u = l .16  Pd P u = l .3 8 Pd Pu*=l. 13 Pd P u = l .3 0  Pd

Mode o f  f a i l u r e F l e x u r a l F l e x u r a l F l e x u r a l F l e x u r a l

Maximum c e n t r a l  
d e f 1e c t  i o n 5 0 . 0 0  mm 6 9 . 1 2  mm 3 4 . 0 0  mm 6 4 . 0 0  mm

Maximum c r a c k  w i d t h  
a t  f a i l u r e — 5 . 0  mm 3 . 0  mm 6 . 5  mm
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8.2.1.5 Model S.S:

This model is a rectangular simply supported slab 3000 x 2000 mm and 100 

mm thickness, designed for a total load Pd equal to 210 KN using 100% plasticity 

level. Full details of the slab were shown in figure 6.1. Material properties of 

concrete and steel reinforcement were presented in table 6.3 and 6.4 respectively. 

The steel layout for top and bottom layers were shown in figure 7.14. This slab 

was loaded using an indirect two point load system of four spreader beam, 

resulting in an eight point load, figure 8.32a.

The first cracks were observed suddenly over a large area under the point loads at 

0.38 Pd (0.26 Pu). The maximum width of these cracks was of 0.15 mm in the 

middle of the line joining the loading holes. Figure 8.36a shows the crack pattern 

at the cracking load. Cracks reached the corners of the slab at 0.48 Pd (0.32Pu). 

The service load deflection limit of span/250 was reached at 0.58 Pd (0.39 Pu) 

and the yield line pattern was clear and the maximum crack width was 0.25 mm. 

The cracks start to join each other in the short direction of the slab at 0.61 Pd 

(0.41 Pu) and the service load crack width limit of 0.3 mm was reached under 

the point loads. At 0.84 Pd (0.56 Pu) no new cracks were noticed but old cracks 

were widened to reach a maximum width of 0.4 mm. The steel yielded at this 

level of loading in the central area of the slab. Beyond this load, few new cracks 

were forming while the old ones were widening. This is mainly caused by the 

yielding of steel. The first cracks at the top surface were observed at 1.0 Pd

(0.67 Pu). The maximum bottom crack width of 0.5 mm was under the inner

point loads, whereas in the middle of the slab a width of 0.45 mm was measured.

With increasing loads a few new bottom cracks formed and new top cracks opened

rather than the widening of the existing cracks. At 1.25 Pd (0.84 Pu) the 

maximum crack width under the point loads was of 2.0 mm, while in the central 

area of the slab a 1.1 mm wide crack was registered. As loading increased, the 

width of the cracks under the point load increased, however in the central area of 

the slab the maximum crack width was almost constant, while new cracks were 

forming near the edges. The top corner steel yielded at 1.40 Pd (0.94 Pu), figure
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8.35a. The slab failed in a flexural manner at 1.48 Pd.

Deflection:

Figures 8.33a to 8.33d show the load-deflection curves at different positions of 

the slab. Nonlinearity started at the cracking load of 0.38 Pd. The limiting service 

deflection of span/250 (8.0 mm) was reached at 0.58 Pd (0.39 Pu), figure 8.33a, 

which presents unacceptable service deflection in term of experimental ultimate 

load.

Steel Strains:

Figures 8.34 and 8.35 show the steel strain of the measured points, for both 

top and bottom steel respectively. The bottom steel yielded at 0.84 Pd (0.56 Pu) 

in the central area, figures 8.33a and 8.34b. At the design load (0.67 Pu) the 

measured steel strains were above yield strain. The top steel yielded at 1.40 Pd 

(0.94 Pu), figure 8.35a. At failure the strain of the bottom steel was several times 

the steel yield strain.

Crack W idth:

The first crack appeared in the bottom face of the slab at 0.38 Pd (0.26 Pu) 

with a maximum width of 0.15 mm. The service crack limit width of 0.3 mm was 

reached at 0.61 Pd (0.41 Pu). At failure the maximum crack width of 5.5 mm 

was measured near the holes of the loading wires.

Reactions:

The corner up lift reactions were negligible up to the cracking load of 0.38 

Pd(0.26 Pu), figure 8.37. Beyond this load, the reactions increased almost linearly 

with load. A maximum corner reaction of 25% of the measured load on one 

spreader beam (ie. 0.25 P/4), was measured.

Mode of Failure:

From the crack patterns, load— deflection and steel strain curves, the slab
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behaved and failed flexurally in a ductile manner. The failure took place at 1.48 

Pd, which is greater than the load for which the slab was initially designed. This 

is mainly caused by the provided steel amount which was greater than the 

required one, table 8.3, because of practical constraints that the steel provided can 

not match the exact required steel amount.

Tab. 8 .3  S t e e l  volume r a t i o  (P ro v id ed  s te e l /N um .  r e q u i r e d  s t e e l )  

Model S.5

S t e e l Bot tom Top

D i r e c t  ion X Y X Y

S t e e l  Volume 
Rat io  
P rov i  ded

Requi red

1 .3 6 1 .16 1 .41 1 .6 5

Numerical Comparison:

The first crack opened under the point loads as shown in figure 8.36b at 0.35 

Pd. The bottom steel yielded at almost the same load as in the experiment, 

figures 8.34a and 8.34b. In contrast the top steel yielded earlier than in the 

experiment, figure 8.35a and 8.35b. Near the failure load, the slab is less stiff 

than the experimental values, but in general good agreement was obtained between 

the numerical and the experimental results. A  good comparison also can be seen 

in the crack patterns at failure load in figures 8.36b for the bottom face and 

8.36c for the top one.
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Fig. 8 .32 Loading arrangement. Model S.5
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Fig. 8.36a First appearance of cracks at bottom face. Model S.5
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Fig. 8.36b Bottom experimental and numerical crack pattern at collapse load.
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8.2.2 Simply Supported Slabs with a Column Support in the Middle:

Two models S.4 and S.6 consisted of two square simply supported slabs with a 

mid— column support, figures 8.38a— b. These models have all dimensions same as 

the first three models, except that the thickness of model S.6 was 150 mm. These 

models were designed for the same ultimate load of 320 KN using 100% of 

plasticity level. The material properties can be found in tables 6.3 and 6.4. The 

steel layout of the models were presented in the previous chapter in figures 7.20 

and 7.21 for model S.4 and S.6, respectively. The aim of testing this models is to 

explore the stress smoothening possible over the column supports in flat slab type 

of structures.

8.2.2.1 Model S .4:

The first load increment was of 0.2 of the design load (Pd), after which small 

increments on an average of 0.05 Pd was adopted. The first visible crack occurred 

at 0.48 Pd (0.33 Pu) under the point load and was 0.1 mm wide. At this level 

the cracks spread slowly to the surrounding area under the point load. At 0.62 Pd 

(0.43 Pu) the maximum crack width was of 0.15 mm. The first crack at the top 

concrete surface appeared on the column at 0.75 Pd (0.52 Pu). This crack was 

0.2 mm wide. The cracks at slab edge started to appear at this level of loading 

and the cracks surrounded all the four point loads and along the diagonals towards 

the corners of the bottom face. The maximum crack width reached the

serviceability load limit of 0.3 mm at 0.78 Pd (0.54 Pu). Additional cracks towards

the corners at the bottom face developed at 0.88 Pd (0.61 Pu). At this level no 

new cracks appeared at the top face while the width of the old main cracks 

continued to increase. At 0.94 Pd (0.65 Pu) the permissible deflection limit of

span/250 =  4.0 mm was reached under the point load. Since the slab was

supported by a mid—column, the span was taken as the distance from the column 

to the edge support of the slab. At this level of loading, the old cracks were
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widening and a few new cracks were forming so that the maximum crack width at 

the top slab surface was 0.4 mm. The top cracks were perpendicular to the edge 

supports and formed a cross dividing the top face of the slab into four uncracked 

regions. A t the design load, almost the whole region under the point loads and in 

the corners had cracked on the bottom face.

The top steel over the column yielded at 1.15 Pd (0.80 Pu), figure 8.40b, whereas 

the bottom steel yielded under the point load at 1.20 Pd (0.83 Pu), figure 8.40a. 

Up to the ultimate load the old cracks were widening at an increasing rate but 

very few new cracks were forming. At 1.38 Pd (0.96 Pu) the maximum width of 

cracks at the top face and the bottom face were 3.5 and 1.5 mm respectively. As 

loading increased, noise of concrete cracking could be heard. Suddenly at 1.44 Pd 

the whole area between the point loads lifted by almost 15.0 mm, making a big 

noise and the total load dropped sharply. The punching crack was inclined to the 

plane of the slab as shown in figure 8.41c. Because of practical constraints, the 

steel provided is greater than the theoretically required one as shown in table 8.4, 

thus it resulted in the ultimate load being greater than the design load (Pu= 1.44 

Pd). Unfortunately the shear strength of the slab was lower than this value. Hence 

the slab failed in punching shear.

Deflections:

Figures 8.39a—c present the load—deflections curves up to the ultimate load. 

Nonlinearity started at 0.6 Pd (0.28 Pu), but the cracks were not visible at this 

stage. The limiting service load— deflection was reached, under the point load, at 

0.94 Pd (0.65 Pu) and this represent an acceptable serviceability limit state of 

deflection. The maximum deflection of the slab was of 13.8 mm under the point 

load.

Steel strains:

The load— strain curves for both the bottom and the top steel are shown in 

figures 8.40a to 8.40d. It is clear that the steel was behaving linearly up to the 

cracking load at the critical points. The top steel yielded on the column at 1.15
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Fig. 8.38a Loading arrangement. Model S.4 and S.6
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Numerical 1/4 Slab
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Fig. 8.41a Bottom experimental and numerical crack pattern at collapse load.
Model S.4
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Numerical 1/4 Slab

Fig. 8.41b Top experimental and numerical crack pattern at collapse load.
Model S.4
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Pd (0.80 Pu), figure 8.40b, whereas the bottom steel yielded under the point load 

at 1.2 Pd (0.83 Pu), figure 8.40a.

Crack width:

At 0.48 Pd (0.33 Pu) the first crack was seen under the point load and was 

0.1 mm wide, whereas for top concrete surface the crack appeared at 0.75 Pd 

(0.52 Pu). The limiting service crack width of 0.3 mm was reached at 0.78 Pd 

(0.54 Pu) under the point load. The top crack widened at a faster rate than the 

bottom one so that at collapse load the maximum crack width at the top was 4.5 

mm, while at the bottom it was only 3.0 mm. Figures 8.41a and 8.41b show the 

crack pattern for both top and bottom surfaces after failure of the slab.

Mode of failure:

Figure 8.41c explains the stages which the slab passed through until failure.

Before the ultimate load was reached the steel strain shows that the steel yielded

under the point load for bottom steel, figure 8.40a, and on the column for top 

steel, figure 8.40b. From crack pattern it can be seen that the bottom face of the

slab was covered by flexural cracks. The failure was in punching shear at a load

of 1.44 Pd. The failure was mainly caused by the shear strength of the slab 

reached before the flexural strength was exhausted, because the provided flexural 

steel was greater than the required one.

8.2.2.2 Model S.6 :

The first visible crack occurred at 1.06 Pd (0.66 Pu) under the point load. The 

width of this crack was of 0.05 mm. As loading continued, a few new long cracks 

opened so that at 1.25 Pd (0.77 Pu) the cracks reached the corners. The first 

crack on the top face of the slab was seen at this level of loading on the 

column. At 1.31 Pd (0.81 Pu) the crack parallel to the edges joined the four 

point loads to each other forming an inner square at the bottom face of the slab. 

Also at this loading level the bottom cracks joined each loading point to its
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nearest corner of the slab. At this load increment the service load crack width

limit was reached under the point load. At 1.35 Pd (0.84 Pu) the maximum crack 

width at the top face was 0.75 mm, whereas at the bottom face it was 0.8 mm. 

As the load cell controlling the mid—column reaction, was not properly connected, 

at 1.40 Pd (0.87 Pu) the slab was unloaded. Before unloading no steel had 

yielded. The connection of the load cell was repaired and the slab was reloaded 

at an average loading increment of 0.1 Pd until the loading level reached in the 

previous loading cycle, after which an average of 0.05 Pd was adopted. At 1.40 

Pd (0.87 Pu) the steel yielded both at the top and bottom near the column 

support and under the point load respectively, while at this level of the first 

loading history the steel did not yield. This may be due to the transfer of the 

forces taken previously by the uncracked concrete to the steel in the second

loading history because, at critical points, most of the concrete had already 

cracked. After the steel yielded, the crack width increased rapidly so that at 1.5 

Pd (0.93 Pu) the maximum crack widths at the top and bottom face were of 3.0

mm and 1.5 mm respectively. The maximum crack width of 4.0 mm was reached

at the top face at 1.56 Pd (0.97 Pu), while at the bottom face it was 3.0 mm. 

At this stage the deflection of the slab increased rapidly, figures 8.42a—c and 

some crack opening noise was heard. At 1.60 Pd (0.99 Pu) the old cracks were

widening rapidly and a few new cracks appeared near the column at the bottom 

face and also the crack which caused failure at the next load increment was seen 

at the top face only on one side of the column. The maximum crack width was 

of 5.0 mm and 4.0 mm at top and bottom faces respectively. The failure took

place at 1.61 Pd with the lifting of a large part of the slab area on the column

and between the point loads in a conical shape, figure 8.45c. The loading was

dropping slowly. This is due to the presence of shear reinforcement. The presence 

of shear reinforcement had a significant effect on the punching shear strength of 

the slab and on the failure mode, so that this slab S.6 showed a more ductile

failure. This can be seen from load-deflection of figures 8.42a to 8.42c. Because

this model is thicker than S.4 it was expected that it will not have a defection

greater than that of model S.4. In this model almost at all the points where strain
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was measured, steel had yielded, figures 8.39a—c and 8.40a—c, and the strain was 

several times the yielding strain.

The punching crack formed between the point of application of the loads and the 

mid—column support as in model S.4. Figure 8.45c shows different stages of the 

slab up to failure, which took place by combination of punching and flexure at 

1.61 Pd.

Deflections:

The load-deflection curves are shown in figures 8.42a to 8.42c. It can be 

noticed that a slight nonlinearity started beyond the design load where the cracking 

started. Because the percentage of steel is very small, therefore after cracking of a 

large area of the slab, its stiffness decreased sharply. At 1.4 Pd (0.87 Pu) the

limiting service load deflection was reached. This represents an acceptable 

serviceability level in terms of the ultimate load.

Steel strains:

The steel load-strain curves are shown in figures 8.43a—c and 8.44a—c for

bottom and top steel respectively. The first yielding of steel, both top on the

column and bottom under the point load, was detected at 1.40 Pd (0.87 Pu). The 

corner top steel yielded at 1.60 Pd (0.99 Pu). Most measured steel strains show

the steel had yielded in most parts of the slab.

Crack width:

The first crack occurred on the bottom face under the point load at 1.06 Pd 

(0.66 Pu). At 1.31 Pd (0.81 Pu) the limiting service load crack width of 0.3 mm 

was reached. After the yielding of steel, the crack widened at an increasing rate 

especially at the top face. The crack pattern for both the top and the bottom 

face are presented in figures 8.12a and 8.12b.

Column Reaction:

The variation o f the central reaction with load is presented in figure 8.46 and
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was linear up to the collapse load. The maximum reaction at failure load was

20% greater than the reaction used in the design of the shear capacity of the slab 

on the column. The shear reinforcement for the slab was designed using

BS8110(1).

Mode of failure:

It was expected that the maximum deflection of this model will be much less 

than that of model S.4, because S.6 is 150 mm thick while S.4 is of 100 mm
L

thick. Model number S.4 did not fail in a true ductile manner, this canV'seen from 

the maximum deflection at collapse load. For the first model S.4 the deflection 

was 13.8 mm while for S.6 a value of 23.0 mm was recorded. The experimental 

ultimate load was greater than the one designed for. This is mainly due to the

provided steel which was greater than the required one, table 8.4. It was

confirmed by Marzouk and Hussein(44) that as the slab depth increases, slab 

stiffness increases, and ductility decreases. In contrast here model S.6, because of 

the presence of shear links in the column area, behaved in a more ductile manner 

than S.4. This explains the importance of shear links in the ductility demand for

such structures. The presence of the shear links near the column region for model

S.6 also enhanced its strength, although the volume of the provided steel to the

required one was less than that for model S.4. Also from figures 8.41c and 8.45c 

it can be seen that the concrete at the bottom face near the column head in slab 

S.4 suffered serious damage. This was caused by the push out of the concrete 

surrounding the bottom flexural steel bars, which was not the case in slab S.6, 

where shear links restrained the bottom and the top horizontal steel together. This 

did not allow the horizontal steel to push out the concrete cover of the bars. 

Despite the fact that the method of design does not account directly for the

vertical shear strength, the experimental results of these two slabs give a 

satisfactory behaviour both at service load and at the ultimate load.
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Numerical analysis:

Model S.4 and S.6 were analysed using finite element mesh shown in figure

6.10b. The slab S.4 was divided into 10 layers four of which were steel wherever 

it is present, whereas for the slab S.6 a 12 layers were taken to represent the

150mm concrete thickness and steel layers.

The first increment was of 0.2 Pd and it was reduced to 0.1 Pd up to the design 

load after which it was reduced further to 0.05 Pd. For S.6 the first load

increment was 0.3 Pd and reduced to 0.1 Pd until 0.7 Pd. Afterwards the load

increment was reduced further to 0.05 Pd until the design load after which 0.025

Pd was applied until failure load was reached. For slab model S.4 the first crack 

was detected under the point load at 0.4 Pd. A  good agreement between the

numerical and the experimental values for the load— deflection curves figure 

8.39a— c, load-strain curves figure 8.40a—d and crack pattern 8.41a—b was

obtained. Acceptable results were obtained for model S.6 also in terms of

load—deflections figures 8.42a—c, load steel strains figures 8.43 and 8.44 for 

bottom and top steel respectively. The crack pattern comparison between the 

observed and computed at failure load, for both bottom and top faces of the slab

S.6 respectively, gave good agreement. Good agreement, between the experiment 

and the numerical results, can be seen also for the mid— column reaction as

shown in figure 8.46. Both slabs failed numerically in a flexural manner. For S.6 

all measured steel strains at the bottom exceeded the yield strain both

experimentally and numerically. Whereas for S.4 numerically the slab failed

flexurally while experimentally it can be seen that the slab can carry more load if

it did not fail in shear. Table 8.5 summarizes the comparison between numerical 

and experimental results. The numerical early cracking lead to early yielding of 

steel in comparison to experiment especially in model S.6 where the ratio of steel 

area to the concrete depth is much smaller than in S.4.
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Tab. 8 .4  S t e e l  volume r a t i o  (P ro v id e d  s tee l /N u m .  r e q u i r e d  s t e e l )  

Model S .4  and S . 6

Mode 1

S te e l  R a t i o  P ro v id e d /R e q u i re d

Bottom Top

Model S .4 1 .9 4 1 .8 6

Model S . 6 1 .6 7 1.71

Table  8 . 5  Exper im enta l  and Numerical  R e s u l ts  Comparison.  
S1ab S .1 and S .2 .

Model —» S1 ab S.4 Slab S . 6

Fact s j Exper im. Numer i c a l Experim. Numerical

F i r s t  v i s i b l e 0 .4 8  Pd 1 .0 6  Pd
cra ck  a t  the  

bottom face 0 .3 3  Pu 0 . 5 0  Pd 0 .6 6  Pu 0 .7 5  Pd

Width o f  t h i s 0 .1  mm - 0 . 0 5  mm -

Crack

L o c a t io n  o f  t h i s Under the Under the Under the Under the
Crack p o in t  load p o in t  load p o in t  load p o in t  Load

F i r s t  v i s i b l e 0 .7 5  Pd 1 .2 5  Pd
cra ck  a t  the  

top face 0 .5 2  Pu 0 . 7 0  Pd 0 . 7 7  Pu
0 . 8 0  Pd

Width o f  t h i s 0 . 2  mm - _ -

Crack

L o c a t io n  o f  t h i s On the On the On t he On the
Crack Co 1umn Co 1umn Co 1umn Co 1umn

S e rv ic e  Crack 0 .7 8  Pd 1 .31  Pd
wid th  l i m i t 0 . 5 4  Pu - 0 .8 2  Pu -

Serv i  ce 0 .9 4  Pd 1 .4 0  Pd

d e f 1ect  ion  l i m i t 0 .6 5  Pu 1 . 0  Pd
0 .8 7  Pd

1 .1 5  Pd

1st y i e l d i n g  o f 1 .1 5  Pd 1 . 4 0  Pd
top s t e e l  on the  

co 1umn 0 . 8 0  Pu 1 .2 5  Pd
0 .8 7  Pu

0 . 9  Pd

1st y i e l d i n g  o f 1 .2 0  Pd 1 . 4 0  Pd
bottom s t e e l 0 . 9 0  Pd 0 .8 0  Pd

under Po in .  Loa. 0 .8 3  Pu 0 .8 7  Pu

Fa i 1ure t ook

place  at 1 .4 4  Pd 1 .5 25  Pd 1 .61  Pd 1 .5 75  Pd

Mode o f Shear

fa i l u r e Shear F I e x u r a 1 +
F 1e x u r a 1

FI e x u r a 1
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Numerical 1/4 Slab
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Fig. 8.45a Bottom experimental and numerical crack pattern at collapse load.
Model S.6
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Numerical 1/4 Slab

Fig. 8.45b Top experimental and numerical crack pattern at collapse load.
Model S.6
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8.3 Deep Beam Models:

Two deep beams B.l and B.2 with span depth ratio of 1.8 and 0.9

respectively, were tested. The beams were designed, using 100% plasticity stress 

distribution, for a load of 250 KN for beam B .l and 500 KN for beam B.2.

The dimension of the beams, loading and supporting condition were presented in 

chapter seven figure 7.22a and 7.22b. The beams were cast at the same time and 

have the same material properties as given in table 6.3 and 6.4 for concrete and 

steel respectively.

8.3.1 Beam B . l :

The first visible crack appeared at 0.15 Pd (0.33 Pu) at the mid—span. They 

were flexural cracks of maximum width of 0.1 mm. Figures 8.47a—d and 8.48a—d 

respectively show the load— deflection curves and load— strain curves, from which it 

can be observed that nonlinearity started before the first visible crack. On further 

increase in loading, the cracks propagate towards the load point. The inclined 

shear cracks, joining the point load and the supports, opened suddenly at 0.87 Pd 

(0.40 Pu). The maximum width of these cracks at this level was of 0.15 mm. The 

service load crack width limit of 0.3 mm was reached on the inclined shear crack 

at the mid—shear span, at 1.13 Pd (0.52 Pu). Beyond this stage of loading the 

old cracks were widening and very few new cracks were opening. At 1.32 Pd 

(0.61 Pu) the flexural steel yielded at the bottom mid— span of the beam, figure

8.48a, and the flexural cracks reached the point load, figure 8.49a. Up to 1.98 Pd 

(0.91 Pu) the maximum crack width was measured on the diagonal joining the 

point load and the supports. At 2.05 Pd (0.94 Pu) the maximum crack width of 

2.5 mm at the mid— span was measured. The widening of the flexural cracks was 

increased beyond this level of loading, such that at 2.16 Pd (0.99 Pu) the 

maximum crack width was of 4.0 mm. At this loading stage all the measured

horizontal steel strains reached the yield strain.

Collapse took place, at Pu equal 545 KN (Pu= 2.18 Pd), by a combination of
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Numerical 1/2 Beam

Fig. 8.49a Experimental and numerical crack pattern at 250 KN.
Beam B.l
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Numerical 1/2 Beam

1 1 /  /

Fig. 8.49b Experimental a n d  n u m e r i c a l  c r a c k  pattern at collapse load.
Beam B .l
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flexural and diagonal compression failure with a maximum crack width at mid span 

of 6.5 mm. At the inclined diagonal crack a 5.0 mm width was measured. The 

crack pattern at the collapse load is shown in figures 8.49b and it is clear that 

the cracks covered most parts of the beam. The ultimate load is mainly affected 

by the fact that the provided steel is greater than the numerical required one as 

will be discussed later.

8.3.2 Beam B .2 :

The beam was loaded with an average increment of 0.1 Pd. The first visible 

crack appeared at 0.49 Pd (0.185 Pu). It was a vertical flexural crack at

mid—span and measuring 0.05mm. Up to 0.89 Pd (0.33 Pu) there was a

continuation of the flexural cracks at the mid— span, and formation of additional 

flexural cracks at the bottom mid— shear span. The maximum crack width was 0.1 

mm. Like beam B .l beam B.2 also developed little flexural cracks in the 

mid— span at the first stage of loading. As the load increases these cracks continue 

to propagate towards the point load, while their width is almost insensitive to the 

applied load at this initial stage. At this level of loading the maximum crack

width was 0.15 mm. The service load crack width limit of 0.3 mm reached at

1.37 Pd (0.51 Pu). The first yielding of steel was measured on the horizontal bar 

at the bottom of the mid—span of the beam at 1.78 Pd (0.66 Pu), figure 8.51a. 

Beyond this level the width of the flexural crack increased quickly so that at 1.89 

Pd (0.70 Pu) it was 0.45 mm. The most significant event during loading history of 

this beam is the development of long diagonal inclined shear crack which occurred 

suddenly at 1.99 Pd (0.74 Pu). This crack was accompanied by a loud bang. It 

joined the point load and the support. Before this shear crack opened, the 

triangular flexural concrete area between the mid— shear spans and the point load 

had cracked. At this stage of loading the deflection increased. Figures 8.50a and 

8.50b illustrate that after the yielding of steel and the formation the shear inclined 

cracks the stiffness of the beam was reduced. This can be seen more clearly in 

figures 8.51a and 8.51b where the load-strain curves, of the horizontal steel bar
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at the soffit of the beam, are presented. The maximum crack width of 0.60 mm 

was measured at 2.18 Pd (0.81 Pu), whereas at the diagonal of the crack width 

was only 0.5 mm. At this loading level the vertical steel yielded under the point 

load, figure 8.52c(P10). Most of the measured strains in the vertical steel was 

compression at the early loading history. After cracking of a large area of the 

beam, most these points were under tension, figure 8.52a to 8.52c. As well as the

load increased the speed of the widening of the flexural cracks increased, so that

at 2.59 Pd (0.96 Pu) the maximum flexural crack was 1.75 mm. At this stage a 

0.70 mm wide crack at the diagonal was recorded. Failure took place at 1350 KN  

which is 2.70 times the design load Pd. The maximum crack width was of 4.0

mm and 1.5 mm at the bottom near mid— span and at the inclined crack 

respectively. Figures 14a and 14b show the crack patterns at the design load and 

at ultimate load respectively. From the crack width and the flexural steel strain it 

can be seen that the beam failed flexurally. A  little local crushing of concrete 

under the point load was seen.

Numerical Analysis:

The beams were analysed using a nonlinear inplane analysis program. By 

assuming symmetry, a symmetrical half of the beams was analysed using 8x8 

element mesh. The steel reinforcement is assumed to be elasto— plastic with 

allowance for strain hardening. Two steel models were used in the analysis of

beam B .l ,  smeared and embedded formulations. The prediction of the ultimate 

load is better when using the embedded bar, figure 8.74a.

In figure 8.50a, from the beginning of loading, a little loss of stiffness can be 

noticed in the experimental curve. This is may be due to squeeze of the plaster 

between the support plates and the beam. The load-strain curves figure 8.51a—c 

shows better correlation between experimental and numerical results. The crack 

patterns comparison at the design load and at the experimental collapse load are 

presented in figures 8.53 and 8.54 respectively. The main results are summarized 

in table 8.6. In general good agreement between the experimental and the 

numerical results is indicated.
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T a b l e  8 . 6  E x p e r i m e n t a l  a n d  N u m e r i c a l  R e s u l t s  C o m p a r i s o n .  
Beam B . l  a n d  B . 2 .

Beam — > 

F a c t s J

Beam B. 1 Beam B . 2

E x p e r im . N u m e r i c a l E x p e r im . N u m e r i c a l

F i r s t  v i s i b l e  
C r a c k 0 . 3 3  Pu 0 . 2 3  Pu 0 . 1 8 5  Pu 0 . 2 5  Pu

W i d t h  o f  t h e  
C r a c k 0 . 1  mm - 0 . 0 5  mm -

L o c a t i o n  o f  
t h i s  f i r s t  
C r a c k

M i d - s p a n M i d - s p a n M i d - s p a n M i d - s p a n

S e r v i c e  C r a c k  
w i d t h  l i m i t 0 . 5 2  Pu - 0 . 5 1  Pu -

1 s t  y i e l d i n g  o f
h o r i z o n t a l
S t e e l

0 . 6 1  Pu 0 . 5 9  Pu 0 . 6 6  Pu 0 . 5 8  Pu

1 s t  y i e l d i n g  o f  
v e r t i c a l  s t e e l At f a i l u r e At f a i l u r e No y i e l d . No y i e l d .

F a i l u r e  t o o k  

p l a c e  a t 545 KN 550 KN 1350 KN 1320 KN

Maximum c r a c k  

w i d t h  a t  f a i l u r e 6 . 5  mm - 4 . 0  mm -

Figure 8.55a and 8.55b illustrates the theoretical required and the provided steel 

ratio for beam B .l and B.2 respectively. It is clear that the provided steel is 

higher than the theoretically required one. The ultimate load is affected by the 

provided steel, which is greater than the numerical required one.

The vertical steel ratio in the mid— shear span of beam B.2 is greater than the 

required one, figure 8.55b. This excess helped the beam to behave flexurally, 

although, because of its span depth ratio, it was expected to fail in shear. This 

confirms Rogowski's statement that an increase in the vertical web reinforcement 

leads to a ductile failure of deep beams(62).
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Numerical 1/2 Beam

Fig. 8.53a Experimental and numerical crack pattern at500KN.
Beam B.2
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Chapter 9

Analysis of Reinforced Concrete Slabs and Deep Beams Assuming Reinforced 

Concrete as an Elasto—plastic Material

9.1 Introduction:

In the analysis of reinforced concrete structures, it is important to consider the 

effect of material behaviour. This was carried out in the previous chapters, by

using a detailed nonlinear analysis finite element program. Such an analysis gives 

realistic evaluation of deflections, stresses and strains over the whole range of

loading up to failure. In general,' such an analysis is research rather than practical 

analysis orientated. A  designer is particularly concerned to find out the ultimate 

load of a given structure, without going into too many details. The main objective 

of this study is to develop a simple way to predict the ultimate load for any 

structure which can be classified as being a plate bending or an inplane problem.

This chapter outlines the steps in the development of such finite element programs.

The programs predictions are compared with the experimental and the detailed 

nonlinear finite element results.

9.2 Program Content:

The programs used for this study were originally written by Hinton and Owen(5) 

for plate bending and inplane problems using von Mises and Tersca yield criteria, 

which closely approximate metals behaviour. For these programs, the yield criteria, 

presented in chapter three for plate bending and inplane problems are 

implemented, with additional developed yield criteria for mixed state of stress for

inplane structures. For plate bending problems, reduction factors <t>l and $2 a re
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proposed to im prove deflection prediction, which were stiff w hen using the original 

Branson's(31) equation.

9.2.1 M athem atical Form ulation  o f the  Yield C rite ria :

In essence, plastic behaviour is characterised by an irreversible straining which is

not tim e dependent and which can only be sustained once a certain  level of stress 

has been reached. In this section a sum m ary of the basis assum ptions and the 

associated theoretical expressions, are  presented.

T he yield criteria determ ines the stress level a t which plastic deform ation begins. In 

order to form ulate a theory which models elasto— plastic m aterial deform ation three 

requirem ents have to be m et:

i— U nder elastic conditions an explicit relationship between stress and strain must

be form ulated to describe m aterial behaviour.

ii— A  postulation of yield criterion defining the stress state to com m ence plastic 

flow.

iii— A  relationship betw een stress arid strain increm ent m ust be developed for post 

yield behaviour. In this range the deform ation is m ade up o f both elastic and

plastic com ponents as follows:

W here de is the total increm ental strain, d ee represents the elastic com ponent of 

the strain given by:

de -  d e e + d e p 9 .1

w i t h  de de y

d e e *= [D] 1 do- 9 .2
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d a ,

w i th  d a d a ,

d a xy

and d ep represents the plastic com ponent. [D] is the elasticity m atrix  of the 

m aterial, a  can be m om ents (M) or stresses. In order to derive the relationship 

between the plastic strain increm ent d ep and the stress increm ent d a , it is assumed 

that the  m aterial obeys norm ality rule. This rule states that the increm ental strain, 

is in the  direction norm al to the yield surface at the point considered, and is given 

by:

d e P ‘ dX

dF

d a x

dF

d a .

dF

d a x y

9 .1 6

W here F  is the yield criterion function and dX is a proportionality  constant term ed 

the plastic m ultiplier. Using equations 9 .1 , 9.2 and 9.3 the com plete increm ental 

relationship between stress and strain for elasto—plastic deform ation is as follows:

dF
de -  [D ]” ^ d a  + dX ---------  9 .4

d a

By d e f i n i  t io n :

‘ dF  '
„  a T _

dF dF dF

d a a<ry
f

a<rxy

which is called the flow vector.
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de -  [D]"1 da  + dX a 9 .5

T h e yield function in general can be w ritten in term  of stress which governs the 

expression for the yield surface as follows:

F ( a )  -  0 . 0  9 .6

D ifferentiating equation 9.6 we get:

dF dF dF
dF -  ---------  d a x + ---------  d a y  + ---------  d o xy  “  0*0  9 .7

dax  day daXy

dF
We know t h a t  a ^  -  -----  by  d e f i n i t i o n ,  t h u s :

da

a J  d a  -  0 .0  9 .8

By m ultiplying both sides of equation 9.4 by a ^  D and elim inating a ^  d a  using 

equation 9.8 we obtain the following expression:

a ^  D d e  -  a ^  D [D ]“ ^ d a  + a ^  D dX a ^

a ^  D d f  -  a ^  D dX a  9 .1 0

t h u s :

a T D de
d X -------------------  9 .1 1

a ^  D a

T hen  b y  s u b s t i t u t i n g  e q u a t i o n  9 .1 1  i n t o  9 .4  we o b t a i n :

d a  -  Dep  de 9 .1 2

wi t h :
D a  a ^  D

Dep “  D -----------=---------------  9 .1 3
a 1 D a
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9.2.2 Yield Criteria for Reinforced Concrete Plates:

i— Yield functions:

As described in chapter th ree , the yield criteria for reinforced concrete slabs can 

be expressed as:

F I  -  -  ( M*b -  Mx  ) (  M*b -  My  ) +  Mx y 2 -  0 . 0  9 . 1 4

F2 -  -  ( Mjt  +  Mx  ) (  +  My  ) +  Mx y 2 -  0 . 0  9 . 1 5

FI and F2 are the yield functions for bottom  and top steel respectively. They are 

presented graphically in figure 9.1. (M x, M y) are the resistant m om ents developed 

by reinforced m em ber in x and y directions respectively. Superscripts b and * stand 

for bottom  and top steel respectively. M x, M y and M xy are the  m om ents resulting 

from  the applied loads.

ii— Flow  vectors: 

Bottom  steel:

a b

d F l

3MX

d F l

dMy

an
3MXy

T op steel:

My b * My

2. 0  Mxy

dF2

dMx

dF2

3My

3F 2

dMXy

-  + My

-  M£‘ +  Mx

2. 0  Mxy

9 . 1 6

9 .1 7
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0.0F I

xy

F2 =  0.0

FI and F2 are the yield functions for plate bending.

( + )  Bottom steel yield surface and (—) Top steel yield surface.

Fig. 9.1 Yield Surfaces in T he T hree  D im ensional Space of Stresses
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9 .2 .3  Yield C riteria  for R einforced C oncrete Inplane P rob lem s:

i -  Y ie ld  f u n c t i o n s :

In chap ter th ree section 3.2.3.1 the following equilibrium equations were presented:

a x  «= (T i c o s 2 8 +  CT2 s i n 2 # + 0"xs 9 .1 8 a

CTy — a \  s i n 20 + (72 c o s 2 0 + <TyS 9 .1 8 b

r Xy  — (<J2  -  < 7 i)c o s 0 s in 0  9 .1 8 c

W here a x , a y  and t xy are the stresses resulting from  the applied loads. crxs and 

(7yS are stresses carried by steel, with — <xx* ^  a xs £  a x *  and — a y *  £  a y S £  

a y * . ( a x * ,  a y * )  are the resistant stresses developed by reinforcem ent in x and y 

directions respectively. They are taken in this chapter as num erical values 

(positive), a i  and a 2 are principal stresses in concrete, with values limited to — fc 

£ a y — 0 and — fc ^  a 2 £  0. fc is the compressive strength of concrete (positive). 

Table 9.1 shows the possible stresses cases on steel and concrete.

T ab le 9.1 Possible cases o f stresses on  steel and C oncrete

° x s ° y s <*2 C ase

+ + 0 - 1

+ + - 1 ►-*> o 7

+ - 0 - 3

+ - - i •-*» o 5

- + 0 - 4

- + - - f c 6

- - 0 - 8

- - - - f c 2
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From  equilibrium  equations 9.18 the yield criterion for each case can be derived as 

follows:

Case 1: In this case both in x and y direction the steel is under tension. T he 

m axim um  tensile stresses which can be carried  by tensile steel a re  crx* and <7y* in 

x and y direction respectively. T he stresses in the concrete can take this values <7, 

=  0 and — fc ^  <t 2 ^  0. T herefore equations 9.18 can be w ritten as follows:

9 .1 9 a  

9 .1 9 b  

9 .1 9 c

Thus the yield criterion:

<rx  -  (72 s i n 2 6 +  <7X* 

f f y  -  <72 c o s 2 8 + <7y* 

r Xy -  <7£ c o s 0 s in 0

F I -  -  (<7X -  <7X )  (<7y -  <7y )  +  7 Xy 2 -  0 .0  9 .2 0

Case 2: In this case the steel in both x and y direction is u nder compression with 

m axim um  stresses — <rx* and — <7y* respectively and the concrete  is subjected to 

— fc ^  <7, — 0 and <7 2 =  — fc . T he yield criteria can be w ritten as:

F2 — -  ( 0 x + f c + + *̂c + ^ y * )  + Tx y 2 “ 0*0  9 .2 1

Nielsen(74) concluded that, if only small degree of reinforcem ent is used, then the 

yield criteria of equations 9.20 and 9.21 can be used, w ithout considering the cases 

of the mixed stress fields. However in practice the reinforcem ent in the critical 

areas m ight not be small. Thus in the present work the m ixed stress field was 

taken into account as follows.



3 7 0

Case 3: T he steel in x direction is under tension and y direction is under 

com pression with the principal stresses in concrete <7,= 0.0 and — fc ^  <72 ^  0. 

Equations 9.18 can be w ritten as follows:

<7X = <7£ s i n 2 0 + <7X* 9 . 22a

<7y -  <72 c o s 2 0 -  <7y* 9 . 22b

TXy — <̂ 2 c o s 0s i n 0 9 . 22c

Thus the yield function of this case can be w ritten as:

F3 -  -  (<7X -  <7x * ) ( < 7 y  +  < 7y*) + 7 X y 2 -  0 . 0  9 . 2 3

Case 4: In the sam e m anner when steel in y direction under tension and x direct 

is under com pression but with <71 =  0.0 and — fc ^  <r2 ^  0.

F4  -  -  (<7X +  <7x * ) ( < 7 y  -  < 7y*) +  7 x y 2 -  0 . 0  9 . 2 4

Case 5: In this case steel in y direction is under com pression and in x direction is 

under tension. T he principal stresses in concrete are: — fc ^  <r, ^  0 and <r2 =  

— fc , thus equations 9.18 can be presented as:

<7X — <7  ̂ c o s 2 0 -  f c  s i n 20 + <rx * 9 . 25a

<7y -  <7i s i n 2 0 -  f c c o s 2 6 -  <7y* 9 . 25b

7xy = ( f c ~ <7j ) c o s 0s i n 0 9 . 25c

T he corresponding yield function is:

F5 -  -  (<7X + f c + 0-x *)(<7y + f c -  0 y*)  + 7 x y 2 = 0 . 0 9 . 25d
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Case 6: In the same m anner if steel in y direction is under com pression and steel 

in x direction is under tension, with the principal stresses in concrete having the 

following values — fc ^  o', ^  0 and a 2 =  — fc . T he yield function can be written 

as:

F6 -  -  ( c x  + f c -  o-x* )(o -y  + f c  + d y *) + r x y 2 -  0 . 0 9 . 2 6

Case 7: If steel in both x and y direction is under tension and the principal 

stresses in concrete having the following values or, =  0.0 and — fc ^  a 2 £  0. 

T hen  the yield function of this case can be written as:

F7  -  -  ( a x  + f c -  o-x *)(o -y  + f c -  o-y*) + 7Xy 2 -  0 . 0 9 . 2 7

Case 8: If steel in both x and y direction is under com pression and the principal 

stresses in concrete having the following values o', =  0 .0 and — fc ^  cr2 £  0. 

T hen  the yield function of this case can be written as follows:

F8 -  -  ( 0"X + (Tx * )  ((T y + O -y*) + TXy 2 -  0 . 0 9 . 2 8

ii— Flow  vectors: 

Case 1:

3 F1

d(7x

3 F1

dCTy

dFl

dO-Xy

(O-y (Ty)

-  <*x -  *x>

2 . 0  rxy

9 .2 9 a



3 7 2

Case 2:

dF2 - 1

d<rx

(re *-( f fy + f c  + OTy)

3F2

a<ry
(re *-(<TX + f c + <rx )

3F2

d r xy
2 0 r x y

In the sam e m anner the flow vector can be obtained for the rem aining cases.

9 .2 .4  Yielding C ondition and Stress Reduction F a c to r:

If the generated resistance in any one direction x o r y o r bo th  directions are 

exceeded, then  yielding is considered to have occurred. T he stress level must be 

brought on the yield surface allowing plastic flow to occur. A  reduction factor \p 

was adopted to correct the stresses.

i— C om putation of iterative stress reduction factor \p for plate bending:

At the (i— l ) tb iteration , let the state of the stress (M x, My, M Xy) level be 

inside or on the yield surface. By adding the increm ental stress (dM x, dMy, dM ^) 

of the itb increm ental if yielding occurred, the stress m ust be brought on the yield 

surface by multiplying the present iterative stress by the reduction factor \p so that 

the stresses are  on the yield surface figure 9.2, which m eans F I is equal to zero ( 

F l=  0.0). Thus:

F I -  -  [  M*b -  (Mx + rP dMx ) ] [  M*b -  (My + $  dMy ) ]

+ [  (Mxy + 0 dMx y ) ] 2-  0 .0  9 .3 0

Equation 9.30 can be written in the form :
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FI -  A\p2 + B\P + C -  0 .0  9 .3 1

with:

A =  dMx  dMy  +  dMXy 2

B "  " (M*b -  Mx ) dMy -  (Myb -  My) dMx  + 2 .0  (Mx y ) dMx y

C -  (MXb  -  Mx ) (Myb -  My) +  MXy 2

Equation 9.31 is a quadratic equation and \f/ is given by:

-  B + J  B2 -  4AC

* , # 2   9 - 3 2
2A

1.0 ^  xP ±  0 .0 .

T he sam e procedure was adopted for F2 in equation 9.15 to com pute the reduction 

factor if the yielding occurs in top steel. Thus the following expressions for top 

steel were obtained:

A -  -  dMx  dMy + dMx y 2

B -----  (M*1 + Mx ) dMy -  (M** + My) dMx  + 2 . 0  Mx y  dMx y

C -  (M*1 -  Mx ) (M*1 -  My) +  Mx y 2

If both bottom  and top steel yield, then the stresses are reduced so that they are 

brought onto the yield surface. In general the lowest value o f \p obtained from 

bottom  or top yielding is used to govern the reduction. T he rem aining portion of 

the stresses, th a t is (1— (dMx , dMy, dMXy), are applied as iterative stresses.

ii— C om putation of iterative stress reduction factor ^  for inplane problem :

In the sam e m anner as for slabs, when yielding occurs the stresses must be

brought onto the yield surface. If yielding occurs in case 1, the  iterative stresses

are reduced as follows:

" t ^ x *  " (°X+ [ ° y *  " + ^ d 0y)  ]+ (7"Xy + ^ dTx y ) 2 ~  ° * °
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A fter som e rearrangem ents the above equation can be w ritten  in the following 

expression:

F I  -  P 4 2 +  Bi£ +  C -  0 . 0  9 . 3 3

with:

A -  -  ( d(7x d(7y dx Xy )

B -  -  (cxx *  -  o-x )d(7y -  ((Ty* -  (Ty)d<rx  +  2 . 0  x Xy  d r Xy

C  “  -  ( C X “  f f j j )  ( f f y  “  (T y )  +  X X y

T he solution of equation 9.33 is given by the same expression o f equation 9.32.

T he sam e procedure was adopted for the rem aining cases.

9 .2 .5  Yielding and Plastic F low :

At each Gaussian integration point the stress and strain quantities are calculated.

D uring a load increm ent a Gauss point of an elem ent in a structu re  can behave 

partly  elastically and partly plastically. Thus for any load increm en t it is necessary 

to determ ine what portion of the stress increm ent for which the behaviour is elastic 

and the rem aining p art which produces plastic deform ation and  then  adjust the

stress and strain term s until yield criterion is satisfied. In this program  the 

following procedure is adopted:

i— T he applied load a t the ith  iteration are either the increm ental applied load or 

the residual forces resulting from  previous iteration  i— i .  T his forces give rise to 

displacem ent increm ent d6j and strain dej.

ii— By assuming elastic behaviour, the increm ental stress do£ is calculated (dcx| =

D d q )  and then  the total stress a t each Gauss point is <r£ =  cr1— 1 +  d a  I ,  where 

( jl ~  1 is the stress of the iteration i— 1 and supposed to be inside o r on the yield 

surface. T he m aterial properties m atrix D can be variable a t each increm ent as 

will be explained later.
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F = 0

\j/\ Reduction factor

d j j :  Increm ental elastic stress at increm ent i.

<t*— 1: State of the stress a t the previous iteration, 

a*: T he corrected  stress at iteration  i.

Subscript e denotes that we are assuming elastic behaviour.

For plate bending , a 2 and cr3 stand for Mx , My and MXy 

respectively.

F or inplane cases c r ,, <r2 and a 3 stand for ax , cry and r x y respectively.

Fig. 9.2 E lasto—plastic Stress Changes.
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iii— Check if yielding occurred in one o r both directions in the current iteration.

If no yielding occurred then  continue the same procedure for o ther Gauss points.

If yielding occurred then  com pute the portion of the total stress which satisfies the 

yield criterion as a l~~ 1 ■+■ d a ^  and the rem aining portion o f the stress, that is 

(1— \p) d<r£ must be elim inated by bringing the point A  in figure 9.2 on the yield 

surface by allowing plastic deform ation to  occur. T he total stress <rl  is calculated in 

the sam e m anner as presented by H inton and O w en(5), as follows:

s i n c e  d f p  -  dX a ,  D d fp  -  dX D a

a 1 =  o*~~ 1 +  d a ^  — dX D a. 9.34

9.3 N um erical A pplications and C om parisons:

T he  aim  of this section is to com pare the results of the finite program s 

assuming the m aterial as an elasto—plastic m aterial with the experim ental and the 

layer program  predictions. T he m ain object is to investigate the  ultim ate load 

predictions, so that if on a wide range o f experim ental problem s the present

program s can give an  accurate and econom ical (tim e wise) prediction, then the 

m odel can be used in the prediction of similar problem s in the design offices

w ithout going into detailed nonlinearity param eters of reinforced concrete 

com ponent, such as cracking of concrete and yielding o f steel etc  which are tim e 

consum ing. An attem pt is m ade to get a reasonable prediction o f deflections for 

plate bending, using Branson(31) equation by introducing two reduction factors $1 

and $2 to reduce the stiffness of the plate.

9.3.1 P la te  B ending :

In this program  the thickness of the slab can be taken as constant or variable
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depending on the m om ent applied. F or the variation o f the thickness the so called 

Branson(31) equation was adopted t o  calculate the effective second m om ent ol 

area as follows:

l e f f  "  (Mc r / M ) 3 I g  +  [ l - ( M c r / M) 3 ]  I c r  9 35

where Ieff is the effective second m om ent of area, Ig is the second m om ent of 

area of gross concrete section, Icr is the second m om ent of area o f a cracked 

section, Mcr is the cracking m om ent of concrete section and M the applied 

m om ent in the appropriate direction. M is calculated, for both direction x and y, 

from  the applied m om ents Mx , My and MXy using equations presen ted  in chapter 

th ree  for plate bending problem s, so that the torsional m om ent MXy are directly 

accounted.

T he results obtained using equation 9.35, as will be shown, gives stiff prediction in 

the deflection for all the models analysed. T herefore, two reduction factors $1 and 

$2 were suggested as follows:

i ; f f  -  * 1  (Mc r / M ) 3 Ig  +  $ 2  [ l - ( M c r / M ) 3 ]  I c r  9 . 36

W here 0 ^  $1 ^  1 and 0 ^  $2 £  1

Igff can always be divided into two functions as follows:

i ; f f  -  *1 MM) + $2 f 2(M) 9 37

with :

M M )  -  (Mc r /M)  3 I g  and f 2 (M) -  [ l - ( M c r / M ) 3 ] I c r

T he graphical presentation of these functions are presented in figure 9.3. If $1 =  

<t>2 =  1, Igff will have the sam e value as Ieff. If M <  Mcr, Igff is equal to Ig, 

thus the thickness is equal to  the non cracked thickness of the slab. If M >  Mcr 

then the thickness is calculated as follows:



3 7 8

i e f f  -  f ,  (M) + <t>2 f 2 (M)

I e f f -  f ! (M) + f  2 (M)

_S

- A

c r 4>S

A -  (Mc r /Mu ) 3 I g

B -  [ l - ( M c r /Mu ) 3 ] I c r

S -  A + B

<J)S -  $1 A + $2 B

U f f  -  ( M c r / M ) 3 ! g + [ 1" (Mc r /M) 3 ] I c r  

l i f f  -  $1 (Mc r / M) 3  i g  +  $2  [ l - ( M c r / M ) 3 ] I c r

Fig. 9.3 G raphical R epresentation  o f and
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i ; f f  -  $1 (Mc r /M )3 I g  + $2 [ 1 - (Mc r /M )3] I c r  -  (b  h p 3) / 1 2  9 .3 8

where b is unit width and hp is the pseudo— thickness which will be used for the 

calculation of stiffness D in equation 9.13.

In order to have confidence in the accuracy of the results obtained  from  the finite 

elem ent program s, a sensitivity study was carried out on the finite elem ent mesh 

size and the tolerance. Slab model S .l was chosen to perform  this study. A  3*3 

Gauss integration rule was used over each elem ent. T he elem ent stiffness were 

com puted at the first iteration of the first increm ent and a t second iteration of the 

o ther increm ents if convergence was not obtained in the first iteration . In this

sensitivity study equation 9.38 was used to calculate the pseudo— thickness of the 

slab with $1 =  <t>2 =  1. T he same criterion of equation 4.41 in chapter four, 

which is based on a tolerance value of the residual forces, was used. Using 

different values of tolerance of 5, 4, 3, 2 and \%  gives no difference in the 

results as presented in figure 9.4a in term s of the ultim ate load. Also from  figure

9.4b it can be seen that there is little difference in the ultim ate load using

different mesh sizes. It can be concluded that a tolerance value of 4% can be 

adopted and a 4*4 finite elem ent mesh can be used. In com parison with the layer 

program , this program  gives an economic prediction in term s of tim e costs. W hen 

using 4*4 finite elem ent mesh with layer analysis it is found that the overall

solution is alm ost four times the tim e cost when using the presen t program .

F our slabs, with different support and loading systems, were analysed. Two of the 

slabs have 100mm thickness, another with 150mm and M cNeice(116) slab which has 

44.4m m  thickness. T hree  of the slabs were chosen from the previous experim ental 

program . They are models S .l ,  S .2 and S .6 which were square simply supported at 

the edges, with S .6 having a column support a t the m iddle of the slab. The 

m aterial properties, the dimensions and the support systems can be found in 

chapter six, while the steel reinforcem ent distribution can be found in chapter 

seven. T heir experim ental and num erical results are presented in chapter eight. The
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fifth slab is McNeice corner supported slab(116). T he present result fo r this slab is 

also com pared with the results obtained from  the detailed layer program  in chapter 

five.

In term s of deflection, as m entioned previously, the slabs a re  very stiff when 

B ranson 's equation 9.35 is used. In the first instance the object o f this program  is

to give the designer roughly an idea of the ultim ate load with minimum

com putational effort. But it seems that, when the reduction factors $1 and $2 

were introduced, the predicted deflections are reasonable when com pared with the 

experim ental ones. Figure 9.5 shows the com parison of load deflection curves, of 

the central point, for experim ental and num erical results both o f layer program  and 

the present elasto—plastic program  for m odel S .l .  In the p resen t program  different 

values of 4>1 and <f>2 were used. It can be noticed that th e  variation of the

reduction constants have a little effect on the ultim ate load. However, the

experim ental deflections are considerably affected when the constant $1 and $2 are 

decreased. T he best deflection com parison with the experim ental values is obtained 

when $1 =  0.2 and $2 =  0.2 for both slabs S .l and S .2 in figure 9.5 and 9.6.

In general, $1 governs the stiffness of the slab a t working load while $2 governs

the stiffness of the slab when approaching the ultim ate load. T his can be seen in 

figure 9.5 for the curves corresponding for $1 =  0.2 and $1 =  0.1 when 4)2 was 

held constant to 0.2. Table 9.2 summarizes the results for all the models. The 

num erical ultim ate load of the present elasto—plastic program , for m odel S .l as

shown in figure 9.5 , is of 1.07 of the experim ental ultim ate load, while the layer

prediction was of 1.04 of the experim ental ultim ate load. Figure 9 .6  shows the load 

deflection curves, of the central point for Slab S .2 where the prediction by the 

present program  of the ultim ate load is 0.93 of the experim ental ultim ate load. 

F igure 9.7a shows that the ultim ate load predicted by the p resent program  is 0.80 

of the experim ental ultim ate load for slab S .6. T he ultim ate load prediction, in 

figure 9.7b, using elasto—plastic program  for McNeice(116) slab is 1.07 of the 

experim ental ultim ate load, while layer prediction are 1.10 Pu. From  table 9.2, it 

can be seen that the steel percentage has an effect on the constants 4>1 and 4>2
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which give the best com parison. S .l and S.2 have almost the sam e steel percentage 

in both top and bottom  steel, therefore the same values of the reduction factors $1 

and $2 gives the best com parison with the experim ental results. It is believed that 

the support, loading system and the thickness of the slab m ay have also an  effect 

on the  choice of the reduction constants. It is suggested th a t fu rther investigation 

on a large num ber of slabs with different steel ratios and differen t support, loading 

systems and thicknesses, so th a t an appropriate conclusion on the choice of the 

reduction factors can be achieved. Figures 9.8 and 9.9 show the  com parison of 

yielded points for layer and elastoplastic program s for bottom  and  top steel, a t the 

num erical ultim ate load for S .l ,  respectively. It can be seen th a t the yielded points 

form ed the yield line pattern  known for such shape of the slabs and loading and 

support systems and the yielded regions are alm ost the same.

T able 9 .2  Slabs Results C om parison.

S l a b

R e in fo rc e m e n t  
°/o (A v e ra g e )

B e s t R e s u l t  
wi t h p uN p uL

Bo t  tom Top $1 - <t>2 - p u p u

S . l

t-100m m
0 . 3 2 0 . 1 8 0 . 2 0 . 2 1 . 0 7 1 . 0 4

S . 2

t —100mm
0 . 3 8 0 . 1 8 0 . 2 0 . 2 0 . 9 3 0 . 9 5

S . 6

t-150m m
0 . 1 3 0 . 0 7 0 . 2 0 . 2 0 . 8 0 0 . 9 6

McNe ic e  

t-4 4 .4 5 m m
0 . 6 4 0 . 0 0 0 . 7 0 . 6 1 . 0 7 1 . 1 0

Pu E x p e r i m e n t a l  u l t i m a t e  l o a d .  Pu ĵ  E l a s t o p l a s t i c  p ro g ra m  u l t i m a t e  l o a d  

PUL L a y e r  p r o g r a m  u l t i m a t e  l o a d ,  t T h i c k n e s s  o f  t h e  s l a b .
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Fig. 9 .8  Bottom  Steel Y ielded Points a t U ltim ate Load. 
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Elastoplastic Program .

Fig. 9 .9  T op  Steel Yielded Points a t U ltim ate Load. 

Slab S .l



3 8 9

9.3.2 Inplane Problem:

In  the case of inplane problem , th ree deep beams were chosen to test the 

com parison of the present program  predictions with the experim ent and layer 

program . T he first two beams were the ones tested in the presen t work and had 

different span/depth  ratios. T he third Beam is K haskheli's T ransfer G irder 

TRGRAS1 of two spans, which was analysed in chapter 5 using layer program . 

T he beams were analysed using 8x8 finite elem ent m esh with 3x3 Gauss point 

integration. T he tolerance value was fixed a t 4% throughout the analysis. The 

results show encouraging prediction of the ultim ate load, although the beams show 

high stiffness. Figure 9.10 shows load—deflections com parisons for beams B. l .  As 

can be seen both layer prediction and the present program  gives very stiff 

deflection predictions. T he first yielding is detected a t 0.55 of the experim ental 

ultim ate load for beam  B .l at the same location as in the experim ental results viz. 

a t the mid— span of the beam . T he first experim ental yielding of steel for this 

beam  was a t 0.61 Pu, while in the layer program  prediction the steel was yielded 

a t 0.59 Pu. F or beam  B.2 the first yielding was detected a t 0.52 Pu, 0.58 Pu and 

0.66 Pu in the elastoplastic program , layer program  and the experim ent 

respectively. T he ultim ate load was also well predicted and was 1.01 of the 

experim ental ultim ate load, while layer predictions was alm ost of 1.0 of the 

experim ental ultim ate load. For beam B.2 and K haskheli's TRGRAS1, the 

load—deflection predictions are presented in figures 9.11 and 9.12 respectively. The 

ultim ate load prediction of the present program  for the beam  B .2 is 0.96 of the 

experim ental ultim ate load, while layer program  prediction was 0.98 Pu. The 

ultim ate load of Khaskheli's Beam is better predicted in the present elastoplastic 

program  as shown in figure 9.12. T he deflections are less in the  present prediction 

which is m ainly due to the fact th a t there is no loss of concrete stiffness when the 

stresses in the concrete reach their tensile strength. Thus it is im portant to allow 

cracks in concrete to open, so that stiffness of the structure can be reduced, which 

will result in a reasonable deflections com parison with the experim ent. In term s of



tim e for com putations, when analysing beam  B. l ,  the present program  computing 

tim e cost was 70% of the time used by layer program . Figure 9.13 and 9.14 show 

the points yielded in both present program  analysis and layer analysis for beams 

B .l and B.2 respectively. In layer program  the steel was considered as embedded 

individual bars while in the present elastoplastic program  a sm eared model was 

adopted. In general it can be seen that regions of yielding over the beams are 

alm ost the sam e in both program s results a t different load levels. It should be 

appreciated  th a t the treatm ent of reinforced concrete as an elastoplastic material 

assumes a certain  uniform  distribution of steel in the elem ent. This means that 

structures where it is not reasonable to assume sm eared representation can not be 

handled by the elastoplastic analysis described in this chapter.
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Chapter 10

Conclusions and Suggestions for Further Work

10.1 Conclusions:

From the theoretical analysis and experimental investigation reported in this thesis, 

the following conclusions can be drawn.

1— The use of nonelastic stress fields in the direct design of reinforced concrete

slabs and deep beams leads to a satisfactory behaviour both at service and ultimate 

loads.

2— The use of nonelastic stress fields in the design of slabs has great practical

advantage in the distribution of the design moments M x* and M y* over the slab in 

a more uniform way than when pure elastic stress field is used. This means 

congestion of reinforcement is avoided in the critical areas. In  this way, in practice 

a desirable layout of steel is obtained with minimum intervention by the designer.

3— The use of nonelastic stress fields in the design of slabs may result in an

economical design, since the design moments at the critical areas are reduced by 

redistribution of stresses to the neighbouring areas which are less stressed. This 

results in less steel reinforcement because there is saving in steel cut offs and lap 

lengths.

4— Unlike slabs, simply supported deep beams show little stress redistribution as the 

percentage of plasticity increases. It can thus be concluded that the use of elastic 

stress field is sufficient.

5— More stress redistribution take places in simply supported slabs with mid— column



support than in simply supported slabs. Direct design method using stress distribution 

at high level of plasticity can be used for slabs with mid column support provided 

that a separate check for shear strength using BS8110 is performed.

tke
6— Using ydirect design method in the design of deep beams leads to an acceptable 

provision of steel reinforcement at the bearings and under the point loads.

7— Reinforced concrete deep beams are sensitive to the amount of steel provided. 

An increase in the vertical shear reinforcement leads to ductile failure.

8— The numerical model adopted is capable of providing acceptable predictions at 

working and ultimate loads for both reinforced concrete slabs and deep beams failing 

in different modes. From the number of models tested numerically it can be 

concluded that the model gives a very close lower bound solution.

9— Large variation in shear retention factor has almost no influence on the 

deflections and the ultimate load of slabs and deep beams failing in flexure, so that 

for a large number of models analysed a value of B =  0.4 gives acceptable results.

10— The embedded individual bar model for steel finite element representation has 

a significant effect on the ultimate load of deep beams. However for slab models, as 

expected, it seems that there is no difference in the results between the individual 

embedded and the smeared model.

11— Finite element programs, analysing reinforced concrete plate bending and 

inplane concrete as an elastoplastic material were developed. The prediction of the 

ultimate load are satisfactory, while for beams the deflection predictions are very 

stiff. The programs are much cheaper to use than the layer analysis programs.

12— The proposed reduction factors 4>1 and $2 have a significant effect in



improving the deflection predictions. In general $1 =  0.2 and $2 =  0.2 can be 

adopted. An important advantage of these two reduction factors is that they do not 

affect the ultimate load.

13— Mixed stress field yield equation for reinforced concrete inplane structures are 

developed and implemented in a finite element program. The ultimate load of the

beams analysed, are well predicted, whereas the deflection prediction is stiff. A

method needs to be developed for allowing for cracking of concrete.

10.2 Suggestion for future work:

1— The work presented in this thesis was concentrated only on two dimensional

plate bending and inplane problems using nonelastic stress fields. It  is worth while to 

investigate the possibility of using elastic and nonelastic stress fields in the design of

reinforced concrete members of three dimensions under arbitrary stress fields as

presented by Baker(117).

2— Most slabs supported on columns fail either by shear or by combination of 

flexure and shear. The numerical analysis of slabs in this work neglected the steel 

contribution in the vertical shear capacity of the slab. It will be useful to investigate 

the possibility of detecting shear failure of slabs subjected to such complicated

phenomenon using 3— D  analysis.

3— Only orthogonal steel was considered in the present investigation, whereas skew 

reinforcement is encountered in practice and may lead to a more economical

design(43,81). Hence, it would be useful if the work could be extended to skew 

reinforcement cases.

4— Slabs and deep beams are often encountered in practice with openings to allow 

for access. It would be useful to investigate the stress redistributions on such
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structures and their behaviour, when designed using high plasticity stress fields.

5— The predicted stiffness of the deep beams analysed by the elastoplastic program 

is stiff. It is important to allow for cracks to open so that the results in terms of 

deflection are better predicted.

6— More investigation is needed, on a large number of existing data of slabs with

different boundary conditions, loading systems, percentage of steel and thicknesses, so

that the classification of an appropriate reduction factors $1 and $2 can be

suggested.

7— Most ultimate load predictions of the elastoplastic program for plate bending are 

lower than the experimental ultimate loads. It is worth while to allow for the effect 

of hardening of steel on the resistant moment, so that the yield surfaces can expand 

which will result in a numerical ultimate load greater than the present given ones.

8— In practice, many structures are in the state of combined bending and inplane 

forces. Therefore an extension of the present work to account for the effect of

membrane forces will be useful in practice.



4 0 0

1— BS8110 Part 1 and 2,

Structural Use of Concrete,

British Standards Institution, 1985.

2— Zienkiewicz, O .C .

The Finite Element Methods,

McGraw H ill, 4th Edition, 1989, London.

3— Cook, R .D .

Concepts and Applications of Finite Element Analysis.

Willey, 2nc* Edition, 1981, New York.

4— Nath, B.

Fundamental of Finite Elements for Engineers.

The Athone Press of the University of London, 1974.

5— Owen, D .R .J ., and Hinton, E.
I

Finite Element in Plasticity, Theory and Applications.

Pineridge Press Limited, 1980, Swansea, U .K .

6— Bhatt, P.

Programming the Matrix Analysis of Skeletal Structures,

John Willey &  Sons, Chichester 1986.

7— Ngo, D ., and Scordellis, A .C.

Finite Element Analysis of Reinforced Concrete Beams.

J. Amer. Con. Inst., Vol. 64, 1967, pp. 152—163.

8— Buyukozturk, O . and Shareef, S.S.

Constitutive Modelling of Concrete in Finite Element Analysis,

Computers and Structures, Vol. 21,No. 3, pp. 581—610. 1985.

9— Bhatt, P. and Bensalem, A.

Behaviour of Reinforced Concrete Slabs Designed using Nonelastic Stress Fields, 

Computational Methods and Experimental Mesurments, C M EM /91, Edited By 

A. Sousa, C .A . Brebbia and C .M . Carlomagno, Computational Mechanics 

Publications and Elsevier, 1991, pp. 471—480.



4 0 1

10— Popvics, S.A.

A  Review of Stress—Strain Relationships for Concrete,

J. Amer. Con. Inst., Vol. 67, No. 3, 1970, pp. 243—248.

11— Hughes, B.P., and Chapman, G.P.

The Complete Stress—Strain Curve for Concrete in Direct Tension,

R ILE M  Bull. 30, (1966), pp. 9 5 -9 7 .

12— Chen, A .C .T . and Chen, W .F

Constitutive Equations and Punch Indentation of Concrete.

J. Eng. Mech. D iv., ASCE, Vol. 101, No EM 6, Dec. 1975, pp.889—906.

13— Benredouane, M .

Direct Design of Reinforced Concrete Slabs Using Nonelastic Stress Fields,

Msc. Thesis, 1988, Glasgow University.

14— Bhatt, P. and Benredouane, M .

Nonelastic Stress Fields and Direct Design of Reinforced Concrete Slabs, 

Numerical Methods in Engineering: Theory and Application, Ed. Pande and 

Middleton, J ., Vol. 1, pp. 67—77, Elsevier, 1990.

15— Nelissen L .J .M .

Biaxial Testing of Normal Concrete,

Heron (Delft), Vol. 18, No. 1, 1972.

16— Tasuji, M .E ., Slate, F .O ., and Nilson, A .H .

Stress Strain Response and Fracture of Concrete in Biaxial Loading.

J. Amer. Concr. Inst., Vol. 75, No. 7, July 1978, pp. 306— 312.

17— Kupfer, H ., Hilsdorf and Rusch, H .

Behaviour of concrete Biaxial Stresses,

J. Amer. Concr. Inst., Vol. 66 No. 8, August 1969, pp. 656—666.

18— Valinas, K.C.

A  Theory of Viscoplasticity Without a Yield Surface. Theory and Application, 

•Archives of Mechanics' Vol. 23, No. 4, 1991, pp. 517—551.

19— Bazant, Z .P . and Bhat, P.D.

Endochronic Theory of Inelasticity and Failure of Concrete,

J. Eng. Mech. Div. Proc. of the ASCE, Vol. 102, No. 4, 1976, pp. 701—722.



4 0 2

20— Bazant, Z .P . and Bhat, P.D.

Prediction of Hyteresis of Reinforced Concrete Members,

Journal of the Structural Division, ASCE, Vol. 103, No. 1,1977, pp. 153—167.

21— Reddy, D .V . and Gopal, K.R.

Computational Modelling of Reinforced Concrete Structures.

Edited By Hinton and Owen, Pineridge Press Ltd, 1986, pp. 155—186.

22— ASCE Committee on Concrete and Masonry Structure

A  State of the Art Report on Finite Element Analysis of Reinforced Concrete 

Structures, 1981.

23— Chen, W .F .

Plasticity in Reinforced Concrete Structures,

McGraw H ill Book Company, New York, 1982

24— Hinton, E. and Owen, D .R .J .

Computational Modelling of Reinforced Concrete Structures,

Peneridge Press Ltd. 1986.

25— Elfgren, L.

Fracture Mechanics of Concrete Structures, From Theory to Application,

R ILE M  Report—Chapman and Hall Ltd. 1989.

26— Cervenka, V . and Gestle, K .H .

Inelastic Analysis of Reinforced Concrete Panels, Proceedings of International 

Association for Bridge and Structural Engineering, Vol. 31, Part 2, 1971.

27— Suidan, M . and Schnobrich, W .C.

Finite Element Analysis of Reinforced Concrete.

Journal of Structural Division, ASCE, Vol. 99, ST10, 1973, pp. 2109—2122.

28— Buyukozturk, O.

Nonlinear Analysis of Reinforced Concrete Structures,

Computers and Structures, Vol. 7, 1977, pp. 149—156.

29— Vermeer, P.A. and de Borst, R.

Nonassociated Plasticity for Soils, Concrete and Rock,

Heron, Delft University, Vol. 29, No. 3, pp. 1—64, 1984.



4 0 3

30— Han, D .J . and Chen, W .F .

Constitutive Modelling in Analysis of Concrete Structures,

J. Eng. Mech. Div. ASCE, Vol. 112, No. 3, 1986

31— Branson D .E .

Deformation of Concrete Structures,

M c G ra w -H ill, 1977, New York

32— Andenaes, E ., Gerstle, K. and Ko, H .Y .

Response of Mortar and Concrete to Biaxial Compression,

J. Eng. Mech. D iv ., ASCE, Vol. 103(3), pp. 5 1 5 -5 2 5 , 1977.

33— Bazant, Z.P . and Kim, S.S.

Plastic— Fracturing theory of concrete.

J. Eng. Mech. D iv ., ASCE, Vol. 105, No. EM 3, pp. 4 0 7 -4 2 8 , 1979.

34— Hiroshi, Y. and Setsuro, N.

Analysis of Reinforced Concrete Walls by Plastic— fracturing Theory.

US—Japan proceedings, 1985, pp. 204—213.

35— Rashid, Y.R .

Analysis of Prestressed Concrete Presure Vessels, Nuclear Engineering and 

Design, Vol. 7, No. 4, April 1968, pp. 334—344.

36— Al— Manaseer, A .A .

A  Nonlinear Finite Element Study of Reinforced Concrete Beams,

Ph.D. Thesis, 1983, Glasgow University.

37— Al— Mahaidi, R .S.H.

Nonlinear Finite Element Analysis of Concrete Deep Members.

Report No. 79—1, Cornell University, January 1979.

38— Rots, J.G .

Smeared crack approach. Fracture Mechanics of Concrete Structures. Edited by 

L. Elfgren 1989 R ILE M , pp. 138-146 .

39— Crisfield, M .A .

Snap— through and snap— back response in concrete structures and the danger of 

under— integration, Int. J. Num. Meth. Engng, Vol. 22(3), 1986, pp. 751—768.



4 0 4
40— Bazant, Z .P . and Cedolin, L.

Fracture Mechanics of Reinforced Concrete.

J. Eng. Mech. D iv, ASCE, Vol. 106, No. EM 6, 1980, pp. 1287-1306.

41— Collins, M .P ., Vecchio F .J ., and Mehlhorn, G.

An International Competition to Predict the Response of R.C. Panels. 

Canadian Jour, of Civil Engineering Vol. 12, 1985, pp. 624—644.

42— Joharry, T .

Elasto— plastic Analysis of Concrete Structures Using Finite Elements.

Ph.D. Thesis, University of Strathclyde, May 1979.

43— Abdel Hafez, L .M .

Direct Design of Reinforced Concrete Skew Slabs,

Ph.D. Thesis, University of Glasgow, 1986.

44— Marzouk, H . and Hussein, A.

Experimental Investigation on the Behavior of High— Strength Concrete Slabs,

J. Amer. Con. Inst., Nov—Dec 1991, Vol. 88, No. 6, pp.701—713

45— Saenz, I.P .

Discussion of 'Equation of the stress—strain Curve of Concrete' By Desayi, P. 

and Krishnan, S., J. Amer. Con. Inst., Vol. 61, No. 9, Sep. 1964, 

pp. 1129-1235.

46— Liu, T .C .Y , Nilson, A .H . and Slate, F .O .

Stress—Strain Response and Fracture of Concrete in Uniaxial and Biaxial 

Compression, J. Amer. Con. Inst., Vol. 69, No. 5, May 1972, pp. 291—295.

47— Bell, J.C . and Elms, D .G .

Finite Element Approach to Post—Elastic Slab Behaviour,

ACI Special Publications, SP30—15, March 1971, pp. 325—344.

48— Chen, W .F . and Teng, E.C.

Constitutive Models for Concrete, J. Eng. Mech. D iv., Proc. of the ASCE, 

Vol. 106, No. E M I,  Feb. 1979, pp. 1 -1 9 .

49— Vecchio, F. and Collins, M .P.

The Response of Reinforced Concrete to Inplane Shear and Normal Stress. 

Publ. No. 82—03, Dep. Civ. Eng. Toronto University, 1982.



4 0 5

50— Soroushian, P., Obaseki, K. and Choi, K.B.

Analysis of Aggregate Interlock Behaviour at Cracks in Reinforced Concrete. 

Magazine of Concrete Research, Vol. 40, No. 192, March 1988, pp. 43—49.

51— M illar, S.G. and Jonson, R.P.

Shear Transfer in Cracked Reinforced Concrete,

Magazine of Concrete Research, Vol. 37, No, 130, pp.3—15, 1985.

52— Johnston, D .W . and Zia, P.

Analysis of Dowel Action. Journal of the Structural Division Proc. of the 

ASCE , Vol. 97, No. ST5, 1971, pp. 1611-1630.

53— Hand, F .R ., Peckhold, D .A . and Schnobrich, W .C.

Nonlinear Layered Analysis of Reinforced Concrete Plates and Shells. J. the 

Str. D iv ., Proc. of the ASCE, Vol. 99, No. ST7, July 1973, p p .1 4 9 1 -1505.

54— Cedolin, L. and Deipoli, S.

Finite Element Studies of Shear Critical Reinforced Concrete Beams.

J. Eng. Mech. D iv., Proc. of the ASCE, Vol. 103, No. EM 3, June 1972, 

pp. 359 -410 .

55— Scanlon, A. and Murray, D .W .

Time Dependent Reinforced Concrete Slab Deflections, J. of the Str. D iv., 

Proc. of the ASCE, Vol. 100, No. ST9, 1974, pp. 1911-1924.

56— Clark, L .A . and Speirs, D .M .

Tension Stiffening in Reinforced Concrete Beams and Slabs Under Short Term  

loads, Tech. Report 42.521, Cement and Concrete Association, London, 1978.

57— Nielsen, M .P. and Braestrup, M .W .

Shear Strength of Prestressed Concrete Beams without Web— Reinforcement, 

Magazine of Concrete Research, Vol. 30, No. 104, Sept 1978.

58— Braestrup, M .W .

Shear Strength Prediction— Plastic Method, In Reinforced Concrete Deep 

Beams, Ed. by F.K . Kong, Blackie and Son Ltd, 1990, UK.

59— Hillerborg, A.

Strip Method of Design, A  View Point Publication,

Slough, 1975.



4 0 6

60— Bhatt, P.

Discussion on 'An Upper— bound Rigid— plastic Solution for the Shear Failure of 

Concrete Beams without Shear Reinforcement', Magazine of concrete research, 

Vol. 34, No. 119, June 1982.

61— Chen, G .W .

Plastic Analysis of Shear in Beams, Deep Beams and Corbels,

Technical University of Danemark, Dept of Strl Engng, Report R237, 1988.

62— Rogowski, D .M ., MacGregor, J .G . and Ong, S.S.

Tests on reinforced concrete deep beams.

J. Amer. Con. Inst., Vol. 83, No. 4 : 614, 1986.

63— Hughes, B.P.

Limit State Theory for Reinforced Concrete Design,

Pitman Publishing Ltd. London 3rc* Edition 1980.

64— Save, M .

A  Consistent Limit— analysis Theory for Reinforced Concrete Slabs,

Magazine of Concrete Research, Vol.19, No. 58, March 1967, pp 3—12.

65— Hillerborg, A.

Reinforcement of Slabs and Shells Designed According to the Theory of 

Elasticity. Betong, 1953, 38(2), pp. 101—109.

66— Lenschow, R. and Sozen, M .A .

A  Yield Criterion for Reinforced Concrete Slabs,

J. Amer. Con. Inst. Title No. 64—27, May 1967, pp. 266—273.

67— Cardenas, A .E . and Sozen, M .A .

Flexural Yield Capacity of Slabs,

J. Amer. Con. Inst., February 1973, pp. 124—126.

68— Jain, S.C. and Kennedy, J.B.

Yield Criterion For Reinforced Concrete Slabs, Journal of the Structural 

Division, Proc. of the ASCE, Vol. 100, No. St3, March 174, pp. 631—644.

69— Hago A .W . and Bhatt, P.

Direct Design of Reinforced Concrete Slabs,

J. Amer. Con. Inst., Nov—Dec 1986, No. 6, Vol. 83, pp. 916—924.



4 0  7

70— Bhatt, P ., Abdel Hafiz, L .M . and Green, D .R .

Direct Design of Reinforced Concrete Skew Slabs,

Computers and Structures Vol. 30, No. 3, pp. 477—488, 1988.

71— Wood, R .H .

The Reinforcement of Slabs in Accordance with a Pre— determined Field 

of Moments, Concrete Vol. 2, February 1968, pp. 69—75.

72— Armer, G .S.T.

Discussion of Ref. 71,

Concrete Vol. 2, August 1968, pp. 319—320.

73— Nielsen, M .P.

Yield Condition for Reinforced Concrete Shells in the Membrane State, 

Nonclassical Shell Problems, IASS Symposium Warsaw 1963, Editor W . OLSAK, 

Amsterdam, North Holland Publishing Co, 1964, pp.1030—1038.

74— Nielsen, M .P.

Lim it Analysis and Concrete Plasticity,

Prentice Hall, New Jersey, 1984.

75— Morley, C .T .

Optimum Reinforcement of Concrete Slabs Against Combination of Moments 

and Membrane Forces, Magazine of Concrete Research. Vol. 22, N. 72,

Sept. 1970, pp. 155 -1 6 2 .

76— Subedi, N .K .

Design of Reinforced Concrete Sections Subjected to Membrane Forces.

The Structural Engineer, Vol. 53, N. 7. July 1975, pp. 289—292.

77— Jensen, B.J.

Lines of discontinuity for displacements in the theory of plasticity of plain 

concrete. Magazine of Concrete Research, Vol.27, N.92, September 1975, 

pp. 143 -1 5 0 .

78— Clark, L .A .

The Provision of Tension and Compression Reinforcement to Resist Inplane 

Forces, Magazine of Concrete Research, Vol. 28, No. 94, March 1976.



4 0 8

79— Lin, C .K.

Ultimate Strength Design of Deep beams,

Msc. Thesis, University of Glasgow 1979.

80— Memon, G .H .

Ultimate Strength of Perforated Deep Beams,

Msc. Thesis, University of Glasgow 1979.

81— Khaskheli, G.B.

Direct Design of Reinforced Concrete Transfer Girders,

PhD. Thesis, University of Glasgow 1989.

82— Kemp, K .O .

The yield criterion for Orthotropically Reinforced Concrete Slabs,

International Journal of Mechanical Sciences, Vol. 7, 1965, pp 737—746.

83— Morley C .T . and Gulvanessian, H .

Optimum Reinforcement of Concrete Slab Elements.

Proc. Instn. Civ. Engrs. Part 2, 1977, 63, June, pp. 441—454.

84— Brpndum— Nielsen, T .

Optimum Design of Reinforced Concrete Shells and Slabs. Technical University 

of Danemark, Structural Research Laboratory, 1974—Report, R44, 190—200.

85— Kong, F .K . and Chemrouk, M .

Reinforced Concrete Deep beams. In Reinforced Concrete Deep Beams,

Ed. by F.K . Kong, Blackie and Son Ltd, 1990.

86— Crisfield, M .A .

A  Fast Incremental/Iterative Solution Procedure that Handles Snap Through. 

Computers and Structures, Vol. 13, pp. 56—62, 1981.

87— Crisfield, M .A .

An Arc— length Method Including Line Searches and Accelerations.

Int. Jour, of Num. Meth. in Eng., Vol. 19, pp. 1269—1289, 1983

88— Bellini, P.X. and Chulya, A.

An Improved Automatic Incremental Algorithm for the Efficient Solution of 

Nonlinear Finite Element Equations. Computers and Structures, Vol. 26, 

N o .1 -2 ,  pp. 9 9 -1 1 0 , 1987.



4 0 9

89— Cheung Y.K . and Chan, H .C .

Finite Element Analysis, In Reinforced Concrete Deep Beams,

Editor Kong, F .K ., Blackie, Glasgow—Lodon, 1990.

90— Timoshenko, S., Woinowsky— Krieger, S.

Theory of Plates and Shells,

M c G ra w -H ill Book Company, 1959.

91— Timoshenko, S., and Goodier, J.N .

Theory of Elasticity,

M c G ra w -H ill Book Company, 3r(* ed. 1970.

92— Cheng, D .H ., and Pei, M .L .

Continuous Deep Beams, Proc. of the ASCE, Vol.80, Separate No. 450,

June 1954, pp. 450—1—450—17

93— Bhatt, P.

Deep Beams on Statically Indeterminate Supports, J. of the Eng. Mec. Div.,

Proc. of the ASCE, Vol. 99, No.EM 4, 1973, p p .793-802.

94— Kaar, D .H .,

Stress in Centrally loaded Deep Beams, Proc. of the Society for Experimental

Stress Analysis (SESA), Vol.15, N o .l, 1975, pp.77—84.

95— CPI 1 0 -  1972

The Structural Use of concrete,

British Standards Institution, London, 1972

96— Kong, F .K ., Garcia R .C ., Paine, J .M ., Wang, H .H .A  and Chemrouk, M . 

Instability and Buckling of Reinforced Concrete Deep Beams,

The Structural Engineer, Vol.66, part2, 1986, pp. 28—37.

97— Kong, F .K ., Robins, P .J ., Singh, A. and Sharp, G .R.

Shear Analysis and Design of Reinforced Concrete Deep Beams,

The Structural Engineer, Vol. 50, No. 10, October 1972, pp. 405—413.

98— C IR IA  Guide 2

The Design of Deep Beams in Reinforced Concrete, Ove Arup &  Partners and 

Construction Industry Research and Information Association, London 1977.



4 10

99— Jones, L .L . and Wood, R .H .

Yield Line Analysis of Slabs,

Thames and Hudson London, 1967.

100— Wegmuller, A .W .

Elasto— plastic Finite Element Analysis of Plates, Technical Notes TN99, Proc. 

of the Inst, of Civ. Engrs, Vol. 57(2), pp. 535—543, Sept. 1974.

102— Cope, R .G . and Rao, P.V.

Nonlinear Finite Element Analysis of Concrete Slabs Structures,

Proc. of the Inst, of Civ. Engrs, Vol. 63, Part 2, pp. 159—179, 1977.

103— Phillips, D .V . and Zienkiewicz, O .C .

Finite Element Nonlinear Analysis of Concrete Structures,

Proc. of the Inst, of Civ. Engrs, Vol. 61, Part 2, March 1976.

104— Chang, T .Y ., Tanigushi, H . and Chen, W .F .

Nonlinear Finite Element Analysis of Reinforced Concrete Panels.

ASCE Journal of Structural Engineering, Vol.113, No. 1, January 1987.

105— Elwi, A .E . and Hrudey, M .T .

Finite Element Model for Curved Embedded Reinforcement,

ASCE Journal of Engineering Mechanics, Vol. 115, No. 4, April 1989.

106— Phillips, D .V . and Wu, Z.P .

An Oriented Embedded Bar Formulation with Bond—Slip, Numerical Methods 

in Engineering: Theory and Application, Ed. Pande and Middleton, J ., Vol. 1, 

pp. 320—328, Elsevier, 1990.

107— Bazant, Z .P . and Cedolin, L.

Blunt Crack Band Propagation in Finite Element Analysis, J. of Eng. Mech.

Div, Proc. of the ASCE, Vol. 105, No. EM 2, Apr. 1979, pp. 2 9 7 -3 1 5 .

108— Regan, P.E. and Yu, C .W .

Limit State Design of Structural Concrete,

Chatto and Windus, London, 1973.

109— Cope, R.J. and Rao, P.V.

Nonlinear Finite Element Analysis of Concrete Slab Structures.

Proc. Inst. Civ. Engrs, Patr 2 ,Mar. 1977, vol. 63, pp. 159—179.



4 11

110— Y'lzugullu, o. and Schnobrich, W .C .,

A Numerical Procedure for the Determination of the Behavior of a Shear

Wall Frame System, J. Amer. Con. Inst., Vol. 70, July 1973.

111— Vicchio, F. and Collins, M .P.

Stress— Strain Characteristics of Reinforce Concrete in Pure Shear, Inter. 

Assoc, for Bridge and Struct. Engng Colloquium, Delft, 1981 pp. 211—225.

112— Gijesbers, F.B .J. and Smit, C .L.

Resultaten van de eeste serie da wars Karachtproeven, Report No. BI77—128, 

Institute TN O  For Building Material and Building Structures, Rijswijk (1977).

113— ACI (318—77) Building Code Requirements for Reinforced Concrete,

ACI Committee 318, American Concrete Institute, Detroit, 1977, pp.113.

114— Rots, J .G ., Nauta, P., Kusters, G .M .A . and Blaauwendraad, J.

Smeared Crack Approach and Fracture Localisation in Concrete.

Heron, Vol.30, N o .l, 1985, Delft, Netherlands.

115— Hago, A .W .

Direct Design of Reinforced Concrete Slabs,

PhD Thesis, Glasgow University, 1982.

116— Jofret J.C. and McNeice, G .M .

Finite Element Analysis of R.C. Slabs, J. of the Str. D iv ., Proc. of the

ASCE, Vol.97, No.ST3, March 1971, pp785-806.

117— Baker, G.

On the Yiled Condition and Optimum Pointwise Reinforcement for Fracturing 

Continua, Research Report No. CE102, Department of Civil Engineering, 

University of Queensland, May 1989.

118—Stewart, E .G . and Watt, D .J.

Shear Failure of Prestressed Concrete Beams.

Bsc Project Report, 1981, Civ. Engng Dept, Glasgow University.


