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Sum m ary

Polarim etry is not a difficult subject. Unfortunately, as it is a second order effect (typical stellar 

polarisations are of the order of a few percent), in many undergraduate courses on stellar atm o­

spheres and the interstellar medium it is either ignored entirely or mentioned as an aside if there is 

tim e at the end of the course. Through this lack of teaching no standard introductory texts on the 

subject have been adopted and many student’s experience of polarim etry is the intense and rather 

obscure mathem atical formulation of the Stokes parameters presented in Chandrasekhar’s book on 

radiative transfer. As a result most theoreticians and observers embark upon research careers with 

the knowledge that there exist four Stokes parameters, but unaware of their physical significance 

or diagnostic potential. For these reasons I have devoted the first chapter of this thesis to giving a 

brief introduction to the subject of polarimetry and its astronomical applications. The parameters 

required to study polarised radiation -  the Stokes parameters -  are presented mathem atically and 

their physical interpretations in terms of sums and differences of intensity components of the radia­

tion field are outlined. Following on from a summary of sources of polarised radiation in astronomy 

the theoretical analysis predicting the “broad-band” polarisation from the optically thin Thomson 

scattering extended envelopes surrounding hot single stars is presented.

Chapters 2, 3, 4 and 5 extend this theoretical framework to treat the problem of line polarisa­

tion through scattering of unpolarised stellar lines in moving atmospheres. Due to  the complexity 

of polarised radiative transfer this problem has not been treated in a systematic fashion before 

and the few theoretical investigations to date were built around existing radiative transfer codes 

which did not allow the basic physical processes contributing to the line polarisation to be iso­

lated. While the theory presented in these chapters is much simpler than a full blown radiative 

transfer approach it clearly demonstrates the role of scattering and Doppler redistribution, due to 

the scatterer’s motion, in the production of spectropolarimetric line profiles. It is further shown 

th a t adopting this approach allows determination of the inclination, velocity and density structure 

of circumstellar discs from analysis of the scattered spectropolarimetric line profiles -  informa­

tion which cannot be determined from spectrometry alone. At the end of Chapter 5 an outline 

is given as to the future work required to develop a comprehensive theoretical understanding of 

stellar line polarisation, noting at each stage the effects on the resulting line profiles of the various 

ammendments to the theory.

Temporal variations in the continuum polarisation of Be stars have been observed to occur 

over a wide range of timescales and have been attributed to variations in the shape or rate of 

stellar mass loss which changes the number of scattering electrons in the stellar envelope. W ith 

this interpretation of the polarimetric variations Chapter 6 illustrates a method for determining 

these episodic mass loss functions from analysis of polarimetric and absorption line strength data



during the outbursts. The formulation of the equations in this chapter as an inverse problem was 

the initial problem suggested to me by my supervisor, John Brown, and the background reading 

I did on circumstellar polarisation while working on this problem led me to investigate the line 

polarisation variations presented in the previous chapters.

The stellar wind speeds considered in the above chapters were such th a t any relativistic effects 

could be ignored. However, Chapter 7 considers the scattering of radiation off relativistic electrons 

yielding a very simple result for the degree of scattered polarisation involving the aberrational 

angle. This is part of an on-going investigation into polarisation from scattering in relativistic 

jets, which I am conducting in collaboration with John Simmons, of which the initial results are 

presented.

The research presented in the thesis was conducted by myself or in collaboration with other 

members of the Glasgow Astronomy Group. The mass loss inversion, Chapter 6 , and part of 

Chapter 2 have been published in Astronomy & Astrophysics and their references are,

Brown J.C ., Wood K., 1992, Astron. Astrophys., 265, 663 

Wood K., Brown J.C ., Fox G.K., 1993, Astron. Astrophys ., 271, 492
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1. A s tro n o m ic a l p o la r is a tio n

1

S u m m a ry

In this chapter a brief introduction is given to the study of light and the property known as its 

polarisation. Much has been written about the dual nature of light (as a wave or particle) and 

either formulation can be used to describe polarisation. However, for the bulk of this thesis, 

which ignores relativistic effects, the wave representation is more physically intuitive and is what 

is outlined below. When relativistic effects become im portant, for example in the problem of 

scattering off relativistic electrons, a more convenient m athem atical representation for light is in 

terms of photons and their associated polarisation and momentum 4-vectors. This problem is 

studied in Chapter 7 and further discussion is left until then.

1.1 In tro d u c tio n

By the eighteenth century the phenomenon of light had been studied by many experimenters 

resulting in the formulation of the laws of geometric optics which successfully described the observed 

reflection and refraction of a light beam -  Snell’s law. However, when Young investigated the 

diffraction of light by two narrow slits he discovered th a t a pattern similar to that produced by 

the diffraction of water waves was formed which could not be explained by the current theories. 

This discovery led him to propose th a t light was composed of orthogonal vibrations (perpendicular 

to the direction of propagation) of something. W hat this something was remained a mystery 

until the publication of Maxwell’s electromagnetic theory which demonstrated that light was a 

transverse electromagnetic wave and that visible light makes up only a small part of the entire 

electromagnetic spectrum. Much of twentieth century astronomy has been devoted to the subjects 

of spectroscopy, which studies the variations with wavelength of the intensity of electromagnetic 

radiation, and photometry which determines the magnitude (brightness) of astronomical objects. 

For these purposes measurements are made of the radiation flux from which the specific intensity 

of radiation may be inferred. The specific intensity is a quantity which describes everything about 

the radiation (its energy density, wavelength and direction of propagation) except its polarisation 

state.

This proposed wave nature allows a m athem atical description of radiation in terms of two 

orthogonal components of the electric or magnetic fields, each with an am plitude and a phase, 

which are transverse to the direction of propagation. The term polarisation refers to any constant 

or time dependent variations of the amplitudes or phases. In general then, through time the tip of 

the resultant electric or magnetic vector, projected onto the plane which is perpendicular to the 

direction of propagation of the wave, will trace out a polarisation ellipse. To fully describe the
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polarisation state of radiation requires a description of this polarisation ellipse involving amplitudes 

along any tw i orthogonal axes, the orientation of the maximum am plitude with respect to these 

axes and a phase difference.

It is evident from the above that a complete description of a radiation field requires indepen­

dent measurements which will yield four quantities -  two amplitudes an orientation angle and a 

phase difference. A m athem atical description which encompasses these four quantities in parame­

ters of the same dimensions is therefore required to facilitate further theoretical and experimental 

analysis of the radiation field. The most convenient representation was achieved by Sir George 

Stokes who, in 1852, proposed a set of four parameters of the same dimensions which would 

completely specify the polarisation state of the radiation. Stokes’ analysis, which was completed 

after Young’s experiments, but four years before Maxwell published his electromagnetic theory 

of radiation, lay largely unused in astronomy for the best part of a century until Chandrasekhar 

resurrected it for his papers on radiative transfer in the 1940s. Although the terminology of the 

original paper was altered, Stokes’ fundamental analysis remained the same -  his four parame­

ters (originally A , B , C  and D ) were replaced by the now almost universally accepted I ,Q ,U  and 

V.  The mathematical and physical descriptions of these four parameters in terms of orthogonal 

vibrations of the electromagnetic vector are the subject of the next section.

1.2 T h e  S to k e s’ P a ra m e te r s  o f  p o la r ise d  ra d ia t io n

Maxwell’s electromagnetic theory allows the m athem atical formulation of radiation in term s of two 

orthogonal components of the electric (or the associated magnetic) vector, thus,

E  =  x E x cos(27ud — 6X — k z ) +  y  E y cos(2in/t — 6y — kz),  ( 1.1)

where, at position z and time t , the components of the electric vector, E, along directions x and 

y  have amplitudes Ex and E y respectively, u is the frequency, 8X and 8y are angular phases and 

k =  2tt/A is the wave number.

The electric vector is thus described by a wave, travelling in the z direction, which is the 

resultant of the two plane wave components in Eq. 1.1. Polarisation effects arise through differences 

in the amplitudes or phases of the individual components of the electric vector. When these 

differences arise, through time the tip of the electric vector will trace out a  polarisation ellipse as 

described in the previous section and illustrated in Fig. 1.1, the sense of rotation being determined 

by the sign of the difference in phase, 6y — 6X, between the two components. In general the 

radiation field will be ellipiically polarised with the special cases of linear polarisation when the 

phase difference is zero and left or right circular polarisation when the amplitudes are equal and the 

phase difference is ± 7t/2  respectively. Unpolarised (or natural) radiation occurs when the phases 

of the individual components have no fixed temporal differences between them and the amplitudes 

in any two orthogonal directions are equal. A mixture of such radiation and of polarised radiation



3

results in partial polarisation.

The four Stokes Parameters then determine the intensity of the radiation field and its polari­

sation state in terms of the polarisation ellipse, thus (e.g. Chandrasekhar, 1960 p27),

I  = E 2y + E l = I , + IIt

Q = Ey — E% = Iy — h ,
(1.2)

U =  2 E y E x cos {by — 6*) =  (Iy — Ix ) tan 2xp,
I

V = 2 E y E x sin(6y — 6*) =  (Iy — l x ) sec 20 sec 2ip.

The Stokes parameters are measurements of intensity variations and the proportionality constant 

relating the intensity and amplitude of the electric vector has been omitted. In Eq. 1.2 Iy and 

Ix are the intensities of the components of the electric vector (I  =  y c o /n o E 2, where Cq and pLo 

are the permitivity and permeability of free space -  e.g. Jackson, 1960), ip is the angle that the 

m ajor axis of the polarisation ellipse makes with the y direction and 0  is an angle whose tangent 

is the ratio of the principal axes of the ellipse. W ith this definition the eccentricity of the ellipse is 

> /l — tan2 0.

Fig . 1.1 The polarisation ellipse traced out by the projection of the tip of the electric 
vector onto a plane perpendicular to the direction of travel of the electromagnetic 
wave, xp is the angle which the major axis of the polarisation ellipse makes with the 
y direction.

Physically these parameters represent the following; I  is the total intensity of the radiation, Q 

is the difference in intensity between the components of the electric vector in the y and x  directions, 

U is the difference in intensity between components of the electric vector along orthogonal axes 

rotated through 45 degrees from the y and x  axes and V  is the difference in intensity between
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the left and right circularly polarised components of the radiation field. Schematically the Stokes 

parameters may be represented in the following way,

/ = !  +  «- 

<3 =1 -  *->
(1.3)

u = y - \  

v  = Q - 0

where the double-headed arrows represent intensities in the aforementioned directions and the 

circular symbols represent the intensities of left and right circularly polarised radiation.

By combining measurements of the above intensity variations the four parameters specifying 

the polarisation ellipse may be determined, thus,

Ey = ~^= \ / l  + Q, E x — —r- \ J l  — Q, tan 2xjj = sin 2/3 = . —  ---------, (1.4)
v /2 v y/2 Q y jQ 2 + U2 + V 2

where the proportionality constant has again been omitted.

In any radiation field the amplitudes and phases of the components of the electric vector are 

subject to continuous variations. However, in an elliptically polarised beam, these variations are 

such that the ratio of the amplitudes and the phase difference are absolute constants. W hat is 

therefore observed are the time-averaged intensities of the components of the electric vector. The 

Stokes parameters of such a radiation field are then given by combining the mean time averages 

of the intensities illustrated in Eq. 1.3. Furthermore, it may be shown th a t the Stokes parameters 

of a mixture of independent radiation fields is simply given by the sum of the individual Stokes 

parameters of the separate fields, viz,

i

<? =  £ « . ,

' (1.5)
u  = £  v>,

i

v = £ « .
t

This result has an obvious application when studying the net polarisation of an unresolved source 

(see Section 1.4).

This linear additivity of the Stokes parameters requires th a t the i individual parameters be 

referred to the same set of axes. Measurements of the Stokes param eters in different rectangular 

coordinate systems may be transformed to any rectangular coordinate system by a simple rotation 

formula. The Stokes parameters measured as ( / ,  Q, U, V ) in one rectangular coordinate system are
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related to those in a system rotated clockwise through the angle <p by,

/ '  =  / ,

Q' =  Q cos 2(p+ U  sin 2<p,
(1.6)

U' =  — Q sin 2<p + U cos 2y>,

1/' =  V.

In astronomical literature reference is often made to the normalised Stokes q, u, and v param ­

eters which are formed by dividing the parameters defined above by the total intensity, I, of the 

radiation field. The degrees of linear and circular polarisation, P  and Pcirc, and the polarisation 

position angle, ip, are frequently presented instead of the Stokes parameters and are given by,

p = VVTWt p̂ = v_ , = itan-^. ( 1 .7)

This description allows a pictorial representation of linear polarisation in terms of a polarisation 

quasi-vector with magnitude P  and direction given by ip. Such polarisation vectors are frequently 

plotted on high spatial resolution maps and represent the direction of the maximum component of 

the electric vector. These dimensionless vectors are not subject to the usual rules of vector addi­

tion, but their dimensional components, the un-normalised Stokes parameters, may be combined 

following the rules of Eqn. 1.5.

Throughout this thesis the term “polarisation vector” refers to this quasi-vector defined above.

1.3 P ro d u c t io n  o f  p o la rise d  ra d ia t io n  in  a s tro n o m y

In astronomy polarised radiation arises through several mechanisms and analysis of the polarisa­

tion can yield information on the source of the polarisation unobtainable from spectroscopy and 

photometry alone. The information to be gained depends on the polarising mechanism and the 

ability to determine which mechanism is responsible for producing the polarisation in the system 

under observation. Details of the main polarising mechanisms at work in astronomical systems 

and the physical information obtainable from analysis of the polarimetric variations with time and 

wavelength are given below.

1.3.1 S c a t te r in g

Scattering results in polarisation due to anisotropies in the angular redistribution of the scattered 

components of the electric vector. In describing the polarisation of scattered radiation it is conve­

nient to define a scattering plane -  the plane which contains the source of radiation, the scatterer 

and the observer. The intensity and polarisation state of the scattered radiation are then deter­

mined by (Section A .3) the scattering opacity or cross section and the redistribution function which
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determines the frequency and angular distribution of the scattered intensity components parallel 

and perpendicular to the scattering plane. Depending on the physical properties of the scattering 

particle, such as its size, shape, refractive index, etc, this redistribution function can take quite 

complex forms -  cf Van de Hulst (1950).

The discovery th a t when unpolarised radiation is scattered the intensities of scattered radiation 

parallel and perpendicular to the scattering plane are in the ratio cos2 0  : 1 ( 0  being the angle 

between incident and scattered directions) was noted by Malus in 1808. This particular form of 

the angular redistribution function has since come to be known as the Rayleigh phase function 

after Lord Rayleigh who formulated the phase function for scattering off particles whose size was 

small compared to the wavelength of incident radiation. Rayleigh undertook this analysis in 1871 

while investigating the polarisation and blue colour of the sunlit sky -  the angular phase function 

determining the polarisation while the blue colour was attributed to the preferential scattering 

of short wavelength radiation described by the scattered intensity being inversely proportional to 

the fourth power of the incident wavelength. The Rayleigh angular phase function also applies to 

Thomson scattering off free electrons.

Thomson scattering is im portant in the envelopes of hot stars where, due to high ionisation 

levels, the number density of free electrons can be very high. Analysis of the continuum polarisation 

arising from scattering in such envelopes yields constraints on the envelope geometry, (Brown and 

McLean, 1977), and this thesis will show how high resolution observations of the polarisation 

variations with time and wavelength will allow the observer to determine stellar mass loss rate 

variations and the velocity and density distributions in circumstellar envelopes. Since Thomson 

scattering is the main polarising mechanism to be investigated in this thesis a detailed analysis 

of the polarisation produced by single scattering of stellar radiation in axisymmetric circumstellar 

envelopes of single stars is given at the end of this chapter.

Resonance or fluorescence line radiation arises when an atom is raised to an excited state 

by an external radiation field or particle beam. If the exciting field or particles are anisotropic 

this imposes an asymmetry on the system and in the subsequent de-excitation the atom  emits 

line radiation such th a t the parallel and perpendicular components of the em itted electric vector 

depend on the initial, j ,  and final, j  +  A j i ,  angular momentum states of the atom  and also the angle 

between the incident exciting beam and the em itted radiation (Hamilton, 1947), thus giving rise to 

linear polarisation in the line. For j  =  0, A j  =  1 the line radiation is em itted in accordance with the 

Rayleigh angular phase function. Polarisation of the Hydrogen-alpha line in solar flares (Henoux, 

et al, 1990) has been attributed to excitation of the Hydrogen atoms by proton or electron beams 

or flows (Fletcher, 1993), the levels of polarisation attained yielding information on the energy of 

the exciting particles and hence a handle on the source of energy in solar flares.
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1.3.2 S y n c h ro tro n  ra d ia t io n

Electromagnetic theory predicts the emission of radiation from accelerating charged particles. Syn­

chrotron radiation is one such example of this arising through the accelerations experienced by 

relativistic electrons as they spiral around a magnetic field. Detailed analysis (e.g. Rybicki and 

Lightman, 1979) shows that the radiation produced by the electrons is linearly polarised with the 

maximum component of the electric vector being perpendicular to the magnetic field. In general 

the electron distribution is not mono-energetic resulting in a frequency dependence of the emitted 

radiation. When the number of electrons at a given energy can be expressed as a power law, 

N (E )  =  N o E ~ a , the frequency dependence of the resultant synchrotron intensity spectrum also 

follows a power law such th a t I{u) =  Io , where (3 =  (a  — l) /2 . By considering the intensities 

of the em itted electric vector parallel and perpendicular to the magnetic field, the degree of linear 

polarisation turns out to be,

( 1 ' 8 )

which is independent of frequency (when the electron energy distribution is a power law). Typical 

values for the power law index can yield values of P  up to 70%. However, such high values are 

not realised in practice due to subsequent depolarisation of the radiation by other mechanisms 

prior to observation (see below) including variation in the magnetic field direction along the line 

of sight. The signature of synchrotron radiation from a power law distribution of electrons is 

therefore a power law intensity spectrum accompanied by a flat polarisation spectrum. Analysis of 

synchrotron spectra can yield the underlying electron energy distribution and, if the source can be 

resolved, the direction of polarisation determines the alignment of the local magnetic field which 

cannot be inferred from measurements of the spectra alone.

1 .3 .4  In te r s te l la r  p o la r is a t io n

Observations of astronomical objects are all subject to interstellar polarisation which arises due 

to selective attenuation of one component of the radiation field by dust grains in the interstellar 

medium. These dust grains are believed to be elongated in one direction with this long axis 

aligned -  through the Davis-Greenstein mechanism -  perpendicular to the interstellar magnetic 

field. Unpolarised radiation which traverses a region containing aligned grains becomes polarised, 

in a direction parallel to the component of the magnetic field perpendicular to the line of sight, 

because the component of the electric vector parallel to the grain axis is extinguished in preference 

to other components. This mechanism accounts for the polarisation observed in many stars and 

may be used to map the interstellar magnetic field (Matheson & Ford, 1970). The wavelength 

dependence of this polarisation was found, by Serkowski (1973), to follow an empirical law, viz,

=  exp [~I< ln2(A/Amax)] , (1.9)
■*max

where Pmax is the m agnitude of the polarisation a t Amax and K  is a constant determined by 

fitting the above law to many observations. The currently accepted value is, W hittet et al. (1991),
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K  =  0.01 ± 0 .0 5 +  (1.66 ±0.09) Amax. Recent results of the ASTRO-1 space mission, which explored 

polarisation in the ultraviolet, have shown th a t this law fails a t very short wavelengths (Clayton 

et al, 1992) demonstrating the need for a fuller physical understanding of interstellar polarisation.

HD197770
4900A
3.83*

HD25443 _  
5000A 
5.25*

0

A lpha C a i -
5000A
1.60*

0

HD99264 _  
5500A 
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0

HD62542 J 
5900A !
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0

0

0
3000. 4000. 5000.60007000.2 000 .

WAVELENGTH ( A )

F ig . 1.2 W UPPE data from Clayton et al 1992 illustrating the failure of the 
Serkowski law in predicting the wavelength dependence of the interstellar UV contin­
uum polarisation.

A further effect which arises when radiation traverses the interstellar medium is Faraday rota­

tion, which rotates the m ajor axis of the polarisation ellipse and is significant a t radio wavelengths. 

This is a plasm a effect which occurs due to the presence of the interstellar magnetic field and the 

fact th a t the radiation field can be written as the linear superposition of two oppositely polarised 

modes of circular polarisation (Chandrasekhar, 1960, p31). The refractive index for the two modes 

is different in the region containing the magnetic field so one travels faster than the other and an 

additional phase difference is introduced between the modes. As stated earlier this results in a 

rotation of the polarisation ellipse and the magnitude of this effect is determined by the rotation 

measure which is proportional to the line integral along the line of sight from the source to the 

observer of the interstellar electron number density times the component of the magnetic field par­

allel to  the line of sight. Faraday rotation is proportional to the square of the wavelength observed 

(hence the importance at long wavelengths -  e.g. the radio region) so, in principle, measurements 

of Faraday rotation at different wavelengths can yield information on the interstellar magnetic field 

and particle number density.

When investigating any polarisation which is intrinsic to the object under observation the 

observations must be corrected to account for the effects of interstellar polarisation and, at radio 

wavelengths, Faraday rotation.
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1.4 P o la r is a tio n  fro m  o p tica lly  th in  c irc u m ste lla r  en v e lo p es

An accurate determination of the levels of polarisation expected from the propagation of radiation 

through a stellar atmosphere requires a full radiative transfer treatm ent incorporating the effects 

of scattering, absorption, emission (and re-emission) of the radiation field throughout the region 

in question. In general such treatments do not have analytic solutions for the intensity and polar­

isation state of the emergent radiation field, but under certain simplifying assumptions as to the 

geometry and physical m ake-up of the interaction region solutions can be found.

Chandrasekhar presented the problem of radiative transfer in a plane parallel electron scat­

tering atmosphere, the solution of which predicts local polarisation levels of up to 12% due to 

electron scattering at the stellar limb. However, since most stars are unresolvable, the net polari­

sation observed is much less than this theoretical value due to cancellation of the local polarisation 

vectors when summed over the entire star. This cancellation effect is most easily visualised when 

considering the polarisation arising from scattering of radiation from a point source at the centre of 

a spherical envelope. At any point in the envelope the local polarisation vector is perpendicular to 

the radial line from the source. The components of this vector, the Stokes parameters, will cancel 

with the components of the scattered polarisation vector from a point which is exactly one quadrant 

away. Summing the components of the local scattered polarisation vectors over any annulus (and 

hence the entire region) will thus result in zero net polarisation. Any residual polarisation from 

a pure electron scattering atmosphere must therefore be due to the region being non-spherical in 

some way (e.g. geometry, density, opacity distribution, tem perature, etc).

As so often occurs in theoretical modelling, the general formulation of a problem is often 

analytically intractible and the solution must be computed numerically. Once numerical results 

have been found the insight from these may help in establishing reasonable simplifications to the 

original formulation so as to isolate the effects of different physical processes and present the prob­

lem in a more analytic form. This sequence of events has occurred in the study of polarisation 

from stellar atmospheres. Numerical radiative transfer solutions to the stellar scattering problem 

from, among others, Collins (1968) and Cassinelli (1974) predicted the degree of polarisation to 

be expected from non-spherical circumstellar envelopes which included opacity sources as well as 

electron scattering. The chief problem with such approaches is that the basic physical considera­

tions and parameter dependence tend to be lost in the numerical details, thus inhibiting further 

diagnostic use of any polarimetric observations to determine physical properties of the region. 

A m ajor advance in the theoretical modelling of polarisation from electron scattering extended 

circumstellar envelopes occurred in 1977 when Brown & McLean presented their optically thin 

single scattering theory. In their analysis polarisation arose through single Thomson scattering of 

radiation from a point stellar source in any optically thin, axisymmetric circumstellar envelope. 

The resultant degree of polarisation was found to depend linearly on three envelope parameters,
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namely its average optical depth, shape factor and sin2 of the axial inclination, i, to the line of 

sight, while the polarisation direction was parallel to the rotational axis of the envelope. These 

results explained and generalised trends only hinted at by previous numerical results. Subsequent 

analysis has extended this theory to incorporate the effects of a finite source of radiation (Cassinelli 

et al, 1987, Brown et al, 1989) and occultation of the scattering m aterial by the finite source (Fox, 

1991).

Brown &; McLean’s original paper determined the net polarisation by summing over the entire 

scattering region intensity differences of the radiation scattered a t each point. In what follows 

I shall present the analysis in a slightly different way, by considering the equation of radiative 

transfer under the assumption that optically thin electron scattering is the only opacity source -  

the final results determining the degree of polarisation are, of course, the same.

1.4.1 G e n e ra l fo rm a lism

In the single scattering approximation the time independent equation of radiative transfer for 

initially unpolarised light, Thomsen scattered in an optically thin region, without absorption or 

local emission, may be written as (A.24),

k- VI* =  p'}u , ( 1.10)

where k is the unit vector from the scattering element to the observer and I„ is the scattered 

Stokes vector whose intensity-like elements are the un-normalised Stokes parameters, p is the 

mass density of scatterers and is the Stokes emission coefficient due to single scattering of the 

incident radiation which is given by (A.23),

jv = T~ I f  Kv. k* ; v, k) dft*di/* . (1H )
47r Ju* Jn*

KVir is the scatterer opacity per unit mass, I Ut, is the incident Stokes vector a t frequency t/*, ft* 

is the solid angle subtended at the scatterer by the source of radiation and k * ; i/, k) is

the redistribution function which gives the probability of a photon of frequency j/*, incident in 

solid angle dft+, about direction k*, being scattered with frequency u into solid angle dft, about 

direction k.

For Thomson scattering the redistribution function may be written as a frequency term mul­

tiplied by an angular scattering matrix. For scattering radiation of energy mec2 off stationary 

electrons the incident and scattered frequencies are equal, so the frequency part of the redistribu­

tion function is,

=  <f>(i/* -  u) . (112)

The angular part is given by the Rayleigh phase function viz,
/1  -f cos2 0  sin2 0  0

«(k * ,k ) =  5
sin2 0  1 +  cos2 0  0

0 0 2 cos 0
\  0 0 0 2 cos0

(1.13)
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where 0  is the scattering angle given by cos@ =  k * k .  Equation 1.10 now has the solution,

h
p$u d l .  (1.14)

L

T hat is, the observed Stokes vector is the line integral of p j„  along a line of sight, k , through the 

scattering region, see Fig. 1.3 This assumes there is no further scattering or absorption between 

the edge of the scattering region and the observer.

•Scattering region

Fig . 1.3 Intensity scattered from direction k* into the line of sight direction k. The 
specific intensity at earth, E,  is obtained by integrating p j„  through the scattering 
region from /1 to /o. 0» is the angle between the line of sight and the normal to the 
surface at E  and ft is the solid angle subtended by the entire scattering region at the 
earth.

The observed Stokes vector flux, F,/, is given by (A.2),

F„ =  /  I„ cos 0i dft ,
Jn

(1.15)

where 0* is the angle between the incident radiation and the normal to the surface dA  and ft is 

the solid angle subtended by the entire scattering region -  see Fig. 1.3. The components of the 

Stokes vector flux are the related fluxes of the Stokes parameters, thus,

F„ =

This gives,

=  / f*Jn Jh
cos 6{ dl dft .

(1.16)

(1.17)
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Since dV =  /2 d/ dft, the flux can be written as a volume integral over the scattering region thus,

f  dV
=  J  Piu cos 9i —  . (118)

In the limit where the distances within the scattering region are very much less than the source- 

observer distance, D , then / «  D  and cos0, is constant. Furthermore, if the area dA  is perpendicu­

lar to  the incident radiation (e.g. when a telescope is pointed directly at a source) then cos#* =  1,

giving,

F„ = ± J v pjv d V .  (1.19)

Equation 1.9 yields the Stokes fluxes in the scatterer’s local coordinate system, i.e. with 

respect to the scattering plane. When calculating the Stokes fluxes from the entire scattering 

region it is necessary to refer the Stokes fluxes due to each scatterer to the same set of axes. This 

is achieved by multiplying the angular redistribution m atrix  by the m atrix L (cf Eq. 1.6) which 

rotates the local axes through the angle xjj which is the angle between the normal to the scattering 

plane (the plane containing k* and k), and the chosen Stokes Q -axis for the entire region, thus,

L =

/ I  0 0 0
0 cos 2 xp sin 2 tj) 0
0 — sin 2ip cos 2xp 0 ( 1.20)

\ 0

For initially unpolarised light,

0

I„* =

0 1

( 1.21)

which, using pK„ — no t  (A. 13), with n the electron number density and ctt the Thomson scattering 

cross section, leads to the equation,

3 crx
16 7TD2 f  f

Jv  Jci+
P  dft* d V  ,

where,

P  =

1 +  cos2 0  
sin2 0  cos 2ip 

— sin2 0  sin 2xp 
0

( 1 .22 )

(1.23)

Equation 1.22 is the general equation for determining the Stokes fluxes due to  Thomson scattering 

of initially unpolarised radiation in an optically thin region. The inner integral is over all incident 

light rays, dft* =  sin rj drj d£, the outer integral is over all scattering particles, d V  =  r 2 sin 9 d r d9 d<f> 

and the scattering geometry presented in Fig. 1.4 enables the angles 0  and xp to be expressed in 

term s of i, 77, f , 9 and <p.

The normalised Stokes parameters are now defined in term s of the Stokes fluxes above, thus,

FS> . . F?
«(") = F f  +  FI '

u(i/) =
FP + F?

(1.24)



In the present case of single Thomson scattering in an optically thin region, the scattered flux, F /,  

is much less than the direct flux F„ unless the light source is highly anisotropic (Almalki, 1992), 

giving,
f Q f u

(1.25)*  ~pD > ™ Y d

where the direct flux from the source is,

F? = /
Jn

(1.26)

The degree of linear polarisation, P„, and position angle, for the entire region are given by,

P  =  \ f f  + u2 , ^  ^  tan -1 • (1.27)

F ig . 1.4 A source of radiation is centred at the origin of the cartesian co-ordinate 
system (x ,y , z). An observer at inclination i to the rotational (z) axis of the star is
positioned at infinity along k in the x -z  plane. An electron at position (r, 0, <j>) scatters 
radiation incident in solid angle dfl* =  sin ij dr) d£ through the angle 0  towards the 
observer, with c.os0 =  k*. - k. The Stokes Q-axis for the entire system is shown, being 
the projection on the sky of the stellar rotation axis, Qo =  (— co si,0 ,s in i). The 
direction of vibration of the local polarisation vector, P , at (r, 0,<f>) is perpendicular
to the plane defined by k+ and k, with the polarisation position angle, the angle 
between P  and Qo-

Now that the general single scattering formalism has been set up a sum m ary of the various 

approximations invoked, beginning with those of Brown & McLean, and the subsequent improve­

ments shall be presented.

1.4.2 U n p olar ised  poin t source, axisym m etric en velop e

Brown & McLean’s assumption of an unpolarised point source of radiation and no frequency
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redistribution of the scattered radiation (Eq. 1.12) reduces Eq. 1.11 to,

1 ttR 2
iu = 4x r 2

Ry IP Iy , (1.28)

which is valid for / ? < r .  The scattering geometry for a point source is obtained from Fig. 1.4 by 

setting r) =  0 allowing P  to be expressed in terms of the angles 0 , <f>, i. W ith these assumptions 

Eq. 1.22 becomes,

f !

3<tt R 2 '°°  "  ' 2T
f 9 32 D 2

/  /  /  n ( r ,0, <£)/„,
J R  Jo Jo

X  <

” (3 — cos2 i) — (1 — 3 cos2 i) cos2 9 +  sin2 i sin2 9 cos 2<£ +  sin 2i sin 29 cos <f>' 

sin2 i( 1 — 3 cos2 9) — {1 ■+■ cos2 i ) sin2 9 cos 2<j> + sin 2i sin 29 cos <j)

2 cos i sin2 0 sin 2<f> — 2 sin i sin 29 sin <j>

> sin 9dr d9 d<f> ,

. (1-29)

where the limits on the r-integral are from the stellar surface, r  =  R, to the outer edge of the 

scattering envelope, which has been written here as oo. The further assumption of axisymmetry 

then yields,

’ F l  ' ' (3 — cos2 i) — ( 1 — 3 cos2 *) cos2 9 "

F ? 3 * r  r  , „ ,  . 
, =  16 d 2 J R I n ( r J ) h - '

sin2 i( l — 3 cos2#) > sin # d rd # , (1.30)

F uL V J 0V J

Since Ff/ =  0 the degree of linear polarisation is simply P  =  Q — F $ /F j?  (for F /  Fj?) which, 

in the notation of Brown & McLean, with p =  cos 9 may be written as,

P  =  2 f( l -  3“/) sin" i ,

where t is an average envelope optical depth,

f  ~ J  J  1 ^ d/i dr ’

and the shape factor, 7 , is,

T =

(1.31)

(1.32)

(1.33)

The extreme limits of 7 are 0 for a plane disc and 1 for a “polar line” , while 7 =  1/3 corresponds to a 

spherical electron distribution resulting in zero net polarisation, in accordance with the description 

given above for scattering in a spherical envelope. As was stated earlier the net polarisation arising 

from the above circumstances depends only on three parameters, which means th a t a measurement 

of the polarisation cannot tie down the physical m ake-up of the scattering region since there are 

infinitely many combinations of i, f  and 7 which could give rise to the observed P. However, the 

above considerations allow certain geometric models to be discounted. For example, noting that
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for 0 < 7 < 1/3 and 0 < sin2 i < 1 then P  <  2r ,  so constraints can be placed on the average 

optical depth and hence, if the average electron density can be estim ated (e.g. by measurements 

of Stark broadened spectral lines, Griem, 1960), a typical length scale for the scattering region can 

be inferred.

Brown & McLean’s single scattering analysis leads to an upper limit on the absolute value of 

the net polarisation to be expected from electron scattering envelopes since other considerations, 

presented below, in most cases serve to reduce the scattered polarised flux and hence the net 

polarisation (though the relative variation with i , etc. is comparitively unchanged)

1.4 .3  D ep olarisation  factor for a fin ite  spherical source

Due to the 1 /r2 fall off of stellar flux prior to scattering, most of the polarised flux will arise from 

a scattering region close to the source and for this reason the effect of a finite sized source has been 

investigated by several authors. Cassinelli et al. (1987) found that, for an unpolarised spherical 

source, the integral over all incident rays, dD*, in the Stokes Q and U fluxes, in Eq. 1.22 reduced 

to the specify intensity multiplied by a simple geometric factor, D(r), thus,

= <L34>

while Brown et al. (1989) found that for the scattered Stokes I  flux the geometric correction factor 

was,
8 - O ( r ) [ l  +  0 ( r ) ] [ l - 3 c o s 2 ©]

C(r)  ------ 3[l +  D (r)][l +  co6>©]------  ' (U 5 )
C ( r ) and D(r) are known as the intensity correction and depolarisation factors which may be 

inserted directly into the integrals in Eq. 1.29 (C (r) in the F /  integral and D(r) in the Ff? and 

Fy integrals) to determine the net polarisation from an envelope illuminated by a central spherical 

source. These factors serve to increase the scattered I  flux and decrease the Q and U fluxes, thus 

leading to a reduction in the net polarisation from that determined by Eq. 1.31 above. Brown 

et al. (1989) extended their analysis to account for the effects of limb darkening in a spherical 

source and they also calculated the analagous correction and depolarisation factors for scattering 

of radiation from accretion discs in narrow co-axial jets.

1.4.4 O ccu lta tion  effects

Due to the finite size of the radiation source part of the scattering envelope is occulted and photons 

scattered in this volume are unable to reach the observer. In a series of papers (Brown &; Fox, 

1989, Fox & Brown, 1991, Fox, 1991) this effect was investigated and incorporated into the single 

scattering formalism by replacing the volume integral in Eq. 1.22 by an integral over the entire 

scattering volume minus the volume occulted by the source. The main scattering geometry which 

shall be investigated in this thesis is th a t of a planar disc for which the relevant limits of integration 

shall now be quoted.
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For the case of a planar disc the analysis presented by Fox & Brown (1991), with x — r /R ,  

gives the integral operator as,

f C*D /*2 t  f b

•§ +<p(.x)

where,

h  -  .  ' ^J a  J  i J o  J  l J i + 0 ( x )

6 =  sec i for c*d > sec i ,

8 — cxd for aj) < sec? ,

with the radius of the disc being a o  (in units of stellar radii) and

(1.37)

, ( , )  =  si„-> l i y : 2) 3 . (1.38)
I sin i I

When occultation is included in the analysis various effects occur. For the case of scattering 

in a planar disc Fox & Brown (1991) found, that for low inclinations, occultation serves to enhance 

the polarisation, while for high values of inclination it has the effect of reducing the polarisation. 

The explanation of this is that for low inclinations the net polarisation from the entire disc will be 

near zero with the polarisation vector parallel to the projection on the sky of the stellar rotation 

axis, while the occulted part of the disc is polarised perpendicular to this direction. When the 

latter is subtracted from the polarisation of the disc as a whole the observable polarisation is 

enhanced. At high inclinations the polarisation vector of the occulted region will be parallel to 

th a t of the entire disc, so subtracting this reduces the net polarisation. Similar effects occur when 

scattering in spherical envelopes with axisymmetric, non-spherical density distributions. Also the 

net polarisation depends upon inclination in a more complicated way than the sin2 i dependence 

of Brown & McLean.

1.4.5 O ther continuum  op acity  sources in an op tica lly  th in  en velop e

The presence of opacity sources other than electron scattering will modify the wavelength de­

pendence of the incident (and scattered) radiation in the circumstellar envelope. In the case of 

Hydrogen, its continuum absorptive opacity is proportional to A3 with discontinuities across series 

limits (e.g. Mihalas, 1978). Following on from a radiative transfer treatm ent of Haisch &; Cassinelli 

(1976) the effect of this opacity source in an optically thin disc was investigated by McLean (1979). 

He modified the Brown & McLean treatm ent by including the factor exp[—ra(A)] «  1 —r0(A) which 

allows for attenuation of the stellar flux prior to scattering, where r0(A) is the optical depth for 

absorption. For optically thin absorption this results in a wavelength dependence of the scattered 

continuum polarisation, such th a t the polarisation decreases longward of any series limits with 

a sudden increase on crossing the next limit -  Fig. 1.5. This scenario has been proposed for 

the Balmer jum p in polarisation which is evident in the observations of Be stars by Bjorkman

(1992), but the theory fails to predict the wavelength dependence for the continuum polarisation
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measured in the ultraviolet -  Fig. 1.6. This discrepancy between theory and observation was one 

of the surprising results of the recent UV polarimetry space mission and preliminary modelling 

efforts (Bjorkman, 1993) suggest that the solution to the problem may be found by considering the 

deformation of the central star by rapid rotation. The equatorial bulging induced by rapid rota­

tion results in the equator being cooler than the polar regions such th a t any Thomson scattering 

electrons in an equatorial disc will scatter this cooler radiation. An external observer will then see 

this cooler polarised flux diluted by the hotter direct flux from all (including the polar regions) of 

the star and hence the net polarisation will be less than that expected from a spherical, isothermal 

source.

0*00 8

0-6

B « 0-i
0 4

0-2

0 8
WAVELENGTH (/im)

0-2 0-4 0-6

F ig . 1.5 McLean’s (1979) variation of the relative wavelength dependence of the 
continuum polarisation arising from scattering of stellar radiation in an axisymmetric 
disc with Hydrogen continuum opacity and also the diluting effect of direct envelope 
emission (D  being the ratio of unpolarised envelope emission to direct stellar flux). 
The dashed curve is the results of a radiative transfer model by Haisch & Cassinelli 
(1970).

McLean’s 1979 paper also investigated the addition of optically thin, unpolarised emission from 

the envelope itself and illustrated how the continuum polarisation would be modified depending on 

how strong this diffuse emission was compared to the direct stellar flux. This paper is an example 

of how the effects of different physical processes may be incorporated in a quantitative sem i- 

analytic analysis, without having to revert to numerically intensive radiative transfer codes. These 

numerical codes, however, are required to check the validity of such simplistic approaches and also 

to investigate effects which cannot be explained by analytic approximations. As will be discussed 

in the next section, the single scattering theory, incorporating the above modifications, turns out to 

give the correct variations with wavelength of the polarisation produced in optically thin envelopes, 

but overestimates the degree of polarisation when the envelope optical depth becomes large.
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F ig . 1.6 W U PPE results from Bjorkman et. al (1992) showing the observed contin­
uum polarisation of the Be star Tau and also the predicted polarisation arising from 
Thomson scattering of stellar radiation in an envelope which is a source of Hydrogen 
continuum opacity -  note the failure of the model at UV wavelengths.

1 .4 .6  H ow  valid  is th e  sing le  s c a tte r in g  th e o ry  ?

Since the publication of the Brown & McLean theory several authors have investigated, through 

radiative transfer codes and Monte Carlo simulations, the regimes in which the single scattering 

approximations are valid. The main shortcoming of the single scattering theory is th a t it predicts 

a net polarisation which rises linearly with the envelope optical depth. This cannot be correct 

for large optical depths since multiple scattering will serve to randomise the scattered polarisation 

vectors and lead to a reduction in the polarisation.

Net polarisation 
vector

F ig . 1.7 Polarisation vectors arising from Thomson scattering radiation from a 
point source in an axisymmetric envelope. The net polarisation vector from the entire 
envelope is parallel to the projection of the rotational symmetry axis on the plane of 
the sky.

Monte Carlo simulations of multiple scattering by Daniel (1980) showed that the Brown & 

McLean analysis was very good for envelopes with an equatorial electron scattering optical depth < 

0.1, corresponding to f  < 0.03. Below this value the polarisation rises with f  since the probability of
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multiple scattering is small so the polarisation vectors of the emergent radiation are perpendicular 

to the radial line from the central source giving a net polarisation parallel to the symmetry axis of 

the envelope -  Fig. 1.7. As the optical depth increases and multiple scattering begins to dominate, 

the emergent polarisation vectors become more and more randomly oriented since the radiation 

has encountered many different scattering planes along its path. The resultant polarisation from 

these randomly oriented polarisation vectors is less than the single scattering case. As a function of 

optical depth the polarisation, Fig. 1.8, rises to a maximum value after which it decreases, reaching 

zero a t infinite optical depth where the radiation field has thermalised and is hence unpolarised.

The inclusion of other opacity sources along with envelope emission by McLean (1979) was 

shown to compare well with the radiative transfer code of Haisch k  Cassinelli (1976). Other such 

numerical methods investigating the continuum polarisation have been presented by Poeckert k  

Marlborough (1978), who also investigated line polarisation, W hitney k  Code (1989) and Shepherd

(1993). In all these cases the single scattering approximation appears to be valid so long as the 

envelope is optically thin. There is some doubt, depending on the author, his/her code and the 

geometry investigated, as to the optical depth at which single scattering can no longer be applied, 

but it seems th a t the approximation is excellent for equatorial optical depths <  0.1 and can be 

used as an upper estim ate for depths up to about. 1.

PV« ( o x i o l )

t h e o r e t i c a l
p o l a r i s a t i o n

- PV.

0.2 03  0.4 0.50.0

Fig . 1.8 Polarisation as a function of equatorial optical depth for Thomson scattering 
of stellar radiation in an ellipsoidal envelope -  from Daniel (1980). The dashed curve 
is the result of the Brown k  McLean single scattering theory for the geometrical 
model considered (oblate ellipsoid).
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1.5 C onclusions

This chapter has introduced the subject of polarised radiation and its role as a diagnostic in 

astronomy. A detailed treatm ent of the production of broad band polarisation through Thomson 

scattering in optically thin circumstellar envelopes of single stars and the regimes in which the 

approximation is valid has been presented. The above theory predicts the variations of “broad­

band” polarisation, but has not been applied in a systematic way as a possible explanation of the 

observed “narrow -band” wavelength dependent variations of polarisation and position angle across 

spectral lines. In the following chapters the role of scattering and frequency redistribution, due 

to  the Doppler motions of the scattering electrons, in the production of spectropolarimetric line 

profiles shall be investigated.

This thesis only considers polarisation arising from single stellar systems and no mention is 

made of polarisation produced in binary star systems which was studied theoretically by Brown, 

et al, (1978) and Rudy &; Kemp (1978). These papers showed how the inclinations of binary star 

orbits may be inferred from analysis of the temporal changes of the Stokes q and it parameters 

during an orbital period. Recently the theory presented in these papers has been used extensively 

by Moffat, et al, (1990).
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2. Spectropolarim etric  line profiles from  op tica lly  th in  

T hom son  sca tterin g  circum stellar discs

Sum m ary

The beginning of this chapter presents a summary of polarimetric line profile observations and 

the theoretical explanations which, to date, have been proposed to explain the data. Following 

on from this summary analysis is presented which describes the formation of spectropolarimetric 

line profiles due to the Doppler redistribution of stellar radiation Thomson scattered off electrons 

moving with a bulk velocity in a planar disc. The spectral shape of such spectropolarimetric line 

profiles contains information on the disc inclination, velocity and density distribution. It is shown 

that, under certain param etrisations of these distributions, analysis of spectropolarimetric line data 

yields the disc inclination and most of the other parameters of the system.

2.1 In trod u ction

The previous chapter presented theoretical explanations of observed intrinsic polarisation from 

single stars in terms of Thomson scattering of stellar radiation in an optically thin circumstellar 

envelope. These observations and theory applied to “broad band” continuum polarisation varia­

tions with wavelength and did not consider high wavelength resolution variations which may occur 

across spectral lines. As was stated in Sect. 1.3 resonance lines exhibit intrinsic polarisation, 

but wavelength dependent variations in the polarisation and position angle observed across non­

resonance lines (Sect. 2.2) requires a more detailed theory than that presented in Chapter 1 since 

the Brown Sz McLean single scattering theory does not allow for such “narrow band” variations. 

Several authors have investigated these high resolution variations observationally and theoretically 

and their main findings are presented below.

2.2 O bservations

While the measurement of continuum stellar polarisation has been widely exploited following Chan­

drasekhar’s predictions in 1946 few attem pts were made, until fairly recently, to undertake a sys­

tem atic observational study of polarisation variations within spectral lines. The apparent inactivity 

in this field may be attributed to the small polarisation fluctuations predicted (see next sections) 

and the inability of polarimeters to achieve sufficient accuracy to detect these fluctuations. The first 

such observational work in this field appears to be that of Ohman (1934) who detected polarisation 

in the optical H7 absorption line of /? Lyrae.

The advent of more sensitive photoelectric devices in the 1970s heralded a flurry of spec­

tropolarimetric activity initiated by the observations of Clarke & McLean (1973). They measured
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around half a dozen early-type stars finding significant polarimetric variations between the con­

tinuum and H/j. Poeckert (1975) conducted a survey of the linear polarisation in the Ha line of 12 

Be stars with 2A resolution across the line, providing the impetus behind the theoretical model of 

the Be star j  Cassiopeiae (see Sect. 2.3). To date, the best data  of this type is that of McLean et 

al (1979) who presented Ha spectropolarimetric line profiles (.5A resolution) measured with the 

now defunct DIGICON polarimeter. More recently Schulte-Ladbeck et al (1991) observed similar 

polarimetric variations across the He 4686A line in some Wolf-Rayet stars.

The limitations placed on polarimetric spectral resolution by current technologies and also 

the apparent lack of a simple theoretical explanation of this observed line polarisation seems to 

have limited the amount of observing time dedicated to such projects. However, the success of 

the W U PPE mission which detected line polarisation variations in the UV (though only at low 

spectral resolution) and the advent of high resolution CCD spectropolarimeters has rekindled many 

researchers interests in this subject -  from an observational and theoretical viewpoint.

The following figures give some examples of the high resolution spectropolarimetric data men­

tioned above.
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Fig . 2.1 Position angle, percent polarisation and Ha line profile for C Tau on four 
different days. From Poeckert, 1975.
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2.3 T h e o ry

This section presents an overview of the theoretical interpretations of spectropolarimetric line data.

2.3 .1  P o la r is a tio n  in  ro ta tio n a lly  b ro a d en ed  sp e c tra l  lin es

Chandrasekhar’s (1946) solution of the equation of radiative transfer in a plane parallel electron 

scattering atmosphere predicted local variations in the degree of polarisation of up to 11% at the 

stellar limb. In the theory of line formation in moving stellar atmospheres different regions of the 

stellar atmosphere contribute to different parts of the resulting line profile through the Doppler 

effect -  e.g. the classical P-Cygni profiles are explained by line emission from a radially expanding 

atmosphere. Ohman (1946) noted that polarimetric line profiles could be formed in a similar 

fashion due to Doppler effects isolating locally polarised regions of the stellar atmosphere which 

contribute to different parts of the observed line, thus yielding polarisation variations throughout 

the Doppler broadened line profile. He illustrated that the integrated polarised flux across a 

rotationally broadened absorption line from a rotating spherical star is zero, but the Doppler 

sampling of different regions of the atmosphere breaks the spherical symmetry of the system yielding 

wavelength dependent polarisation variations within the emergent line profile.

Figure 2.4 illustrates how such a polarimetric profile may arise from a spherical rotating stellar 

atmosphere in which line emission is occuring. The line strength observed at different wavelengths 

is proportional to the “size” of the region contributing to the emission at that wavelength due to 

the Doppler sampling described above. Region 1 contributes to the emission at line centre since 

these parts of the star have little or no radial velocity with respect to the observer, while the 

extreme edges of the star (regions 2) have the largest radial velocity due to stellar rotation and so 

this emission is Doppler shifted into the line wings. Region 1 is larger than region 2 resulting in a 

larger contribution to the flux at line centre than in the wings, hence the observed emission line 

profile. Qualitatively following Chandrasekhar’s work, the emergent radiation a t the stellar limb 

will be polarised with the local polarisation vector being perpendicular to a radial line from the 

star centre -  as described in Sect 1.4 -  thus summing these polarisation vectors over regions 2 will 

yield a net polarisation vector parallel to the stellar rotation axis while the net polarisation vector 

from region 1 will be perpendicular to this axis. Adopting the usual convention that directions 

parallel to the stellar rotation axis represent positive polarisation then the wavelength dependence 

of the polarisation in the line will be such that it is negative a t line centre and positive in the wings 

as illustrated.

Collins &; Cranmer (1992) presented a quantitative analysis of this effect for UV absorption 

lines, predicting variations in the level of polarisation up to about .5% across the broadened line 

-  Fig. 2.5. For this case of a pure absorption line the spectral shape of the polarisation is the 

negative to that of the pure emission line -  i.e. positive polarisation at line centre and negative in
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Region 1 -Region 2 
(Red ■wing)

F ig . 2.4 The production of a spectropolarimetric line profile through scattering in 
a rotating stellar atmosphere.

the wings. This arises due to absorption of the negative polarised flux from region 1 in Fig. 2.4 

leaving a net positive polarisation at line centre while the positive polarised flux is absorbed from 

region 2 yielding a net negative polarisation in the line wings.

It is to be noted that this Doppler sampling effect will not give rise to polarisation in lines 

formed in a spherically expanding star since the regions on the projected stellar disc which con­

tribute to  each wavelength in the Doppler broadened line are concentric rings and thus there will 

be total cancellation of the polarisation vectors around each ring yielding zero polarisation at each
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wavelength in the broadened line. However, the combination of rotation and expansion within 

the spherical envelope will break the spherical symmetry of the system yielding a more complex 

polarimetric line profile incorporating position angle changes also due to the non-spherical shape 

of the isovelocity regions in the envelope.
1
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Fig . 2.5 Collins & Cranm er’s spectropolarimetric absorption line profiles formed in 
a rotating star at various inclinations to the line of sight.

2 .3 .2  O p tica l d e p th  effects in  a  m o v in g  c irc u m ste lla r  en v e lo p e

Numerical modelling efforts by Poeckert &: Marlborough (1978) to explain the observed Ha spec­

tropolarim etric line profile in the Be star 7 Cassiopeiae led them to propose th a t the polarisation 

variations across the line were due to Thomson scattering of continuum stellar radiation in a moving 

flattened circumstellar envelope containing Ha line opacity. The Doppler motion of the absorbers, 

through the bulk motion of the envelope, has a wavelength-shifting effect on the line opacity thus 

allowing an observer to “see” deeper into the approaching (or receding) regions of the envelope at a 

given wavelength -  i.e. the physical depth a t which the envelope optical depth is unity (say) varies 

with observed wavelength and also (through the Doppler effect) the radial speed of the envelope 

region. This results in different spatial integrations over the scattered continuum radiation from 

the central star at each wavelength and thus a wavelength dependence of the polarisation (and 

possibly position angle) across the line. These effects were also predicted in a qualitative manner 

by McLean (1979). The results of Poeckert & Marlborough’s model calculations are shown in Fig. 

2 .6 .
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F ig . 2 .7  Lefevre’s spectropolarimetric line profiles arising from scattering stellar line 
radiation in an expanding atmosphere. The curves are for different envelope optical 
depths in electron scattering.

2 .2 .3  L in e  s c a tte r in g  in  an  ex p a n d in g  envelope

Monte Carlo calculations by Van Blerkom and Van Blerkom (1978) and Romanik and Leung (1981) 

showed that the scattering of light in an expanding dust shell has the effect of redshifting the entire
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intensity profile of spectral features. Lefevre (1992) also applied a Monte Carlo simulation to dust 

and Rayleigh scattering in a spherical expanding envelope and obtained similar redshifts. Lefevre’s 

introduction of source anisotropy in the form of a photospheric hot spot broke the spherical sym­

m etry of the model and his simulation was extended to include spectropolarimetric line profiles -  

Fig. 2.7.

The remainder of this chapter considers the problem of Thomson scattering of a stellar line in 

a moving envelope. It is simpler than the earlier work cited above in treating only single scattering 

bu t much more general in so far as this simplification brings out clearly how different regions of a 

moving circumstellar disc contribute to the features in scattered spectropolarimetric line profiles.

2 .4  E ffects  o f  e le c tro n  b u lk  velocity  o n  s c a tte re d  lin e  p ro files

In Chapter 1 when calculating the polarisation arising from Thomson scattering in circumstellar 

envelopes the scattering electrons were assumed to be stationary and hence there was no frequency 

redistribution of the scattered radiation. When applying the single scattering theory to the scat­

tering of continuum radiation, as will be shown in Chapter 4, this turns out to be a reasonable 

assumption since the Doppler redistribution due to electron motion in stellar envelopes is small 

compared to the scale on which the continuum varies with wavelength, such that there is little 

effect on the shape of scattered broad-band features. However, when dealing with the scattering 

of line radiation this Doppler redistribution must be included since the width of spectral lines is 

often comparable to or less than the wavelength shifts resulting from the Doppler motions of the 

scattering electrons.

The bulk velocity of the electrons results in a frequency redistribution of scattered radiation 

through the effect of two Doppler shifts which arise due to the electron’s radial velocity with 

respect to the source, for incident photons, and with respect to the observer for scattered photons. 

These two effects manifest themselves in the following way. Radiation emited by the source at 

frequency i/* is seen and subsequently scattered by the electron at frequency i/e which is given by 

ue =  7(1 — /?-lc*.)r/* in the electron’s rest frame. Due to the electron’s motion with respect to the 

observer this scattered frequency appears to the observer as v — rxe/-y( 1 — /?• k), where it is assumed 

th a t the primary source is fixed relative to the observer. The frequency which the observer sees is 

then related to the original emitted frequency, i/*, by,

where k*. and k are as shown in Fig. 1.1, 0  c is the electron velocity (c being the speed of light) 

and 7 =  y / l  — 0 2. The frequency part of the redistribution function is still given by Eq. 1.12, but 

the scattered frequency appearing in the delta function is now given by Eq. 2.1. The scattered 

Stokes fluxes are then determined by Eq. 1.22 noting the relation between the incident and ob­

served frequencies. The above equations apply to both bulk and random (Maxwellian) velocities
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-  cf Chapter 4. As far as the electron bulk velocity is concerned, if this varies throughout the 

circumstellar envelope then scattering from different regions will result in differing Doppler redis­

tributions in accordance with Eq. 2.1, such that the frequency dependence of the scattered fluxes 

could, potentially, take quite complex forms. The total scattered Stokes fluxes are determined at a 

given wavelength shift by summing the locally scattered fluxes, weighted by the scatterer density, 

a t each point on the isowavelength-shift surfaces or contours. Along these surfaces the observed 

relative wavelength shift, with respect to the wavelength em itted by the source, is constant. From 

Eq. 2.1 the isowavelength-shift surfaces are given by the condition,

Now that a frequency redistribution has been introduced care must be taken when calculating 

the normalised Stokes parameters, Eqs. 1.24 and 1.25, since the scattered I  flux may not be small 

compared to F„ a t all frequencies. For the scattering of continuum radiation, as stated in Chapter 

1, Eq. 1.25 is always valid for envelopes of small scattering optical depth, but for the scattering of 

pure line radiation (in the absence of any continuum) this is invalid outside the line core, where 

scattered radiation is the only flux. However, when a continuum is present, as is usually the case, 

the approximation is again valid except for very strong lines whose specific intensity at line centre 

is comparable with or many times the continuum level. In this case any frequency redistribution 

of the scattered flux may result in photons from close to line centre being scattered into the local 

continuum, such th a t even after being reduced by the scattering optical depth their scattered flux 

is comparable to the direct continuum flux at that frequency.

The effect of a finite source exhibiting limb darkening or any source anisotropy, such as a hot 

spot or rotational distortion, may be incorporated in the integral over all incident light rays, dfi*, 

in Eq. 1.22. In general a finite source serves only to reduce the magnitude of the Stokes fluxes Ff? 

and Fjf (Brown et al. 1989). This will reduce the magnitude of the polarisation, but will not affect 

the variations in position angle (nor the relative changes in polarisation) with wavelength (provided 

Doppler shifts arising from stellar rotation, which would vary across the stellar disc, are neglected) 

since this involves the ratio of the Stokes Q and U parameters. For ease of calculation this finite 

source correction is neglected in this analysis. However, in Section 2.6 the effects of occultation 

of the scattering m aterial by the star are included since they have a crucial symmetry-breaking 

effect, as will be shown.

The Stokes fluxes arising from scattering of radiation from a point source in a planar disc are 

obtained from Eq. 1.29 with 9 =  7t/2 thus,

'  F ' M  ' 2(1 -I- sin2 * cos2 0)

F ? (v )
ZaTR 2 

32D 2 J
sin2 i — (1 +  cos2 *) cos 2 0 ► d r d0 , (2.3)

k 2 cos i sin 20
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where E (r) is the electron surface number density on the disc and i/* is given by Eq. 2.1.

In general the specific intensity from the source will consist of a line profile, which varies 

rapidly with wavelength, superposed on a continuum which may be considered to be independent 

of wavelength in the vicinity of the line. This may be represented as,

/ , > * )  = / c  +  , (2.4)

where I c  is the continuum specific intensity, assumed flat, and is the line profile. When this

form is inserted into Eq. 2.3 the equation splits into two parts -  a constant continuum (as derived 

in Chapter 1) plus a wavelength dependent spectropolarimetric line profile. In the subsequent 

analysis it is assumed that the continuum terms (being wavelength independent) and any inter­

stellar component can be removed from any data  and the remaining scattered spectropolarimetric

line profile shall be analysed.

For scattering in a planar disc at inclination i to the observer Eq. 2.1 becomes,

u _  { _______________________ 1 ~  P r ( r ) _______\  ,2 5 .

\  1 — /?r (r) sin i. cos <f> +  /?^(r) sin i sin 4>)  U* ’

where jlr {r)c and (3<p{r)c are the expansion and rotation velocities which are assumed only to be 

a function of the radial distance, r, in the disc. Assuming a form for the frequency dependence of 

the initial radiation and for the velocity field of the disc, the resultant Stokes fluxes may then be 

calculated from Eq. 2.3.

2.5 S catterin g  o f  m onochrom atic rad iation

The simplest form for the incident radiation field, which also illustrates clearly how the velocity 

field of the disc determines the scattered line profile, is that of a monochromatic line, centred at 

frequency uq, given by,

h M * )  =  h  H"* -  vo) • (2.6)

This form also considerably simplifies Eq. 2.3 due to the following property of the delta function,

{ [ / w l  =  W ’ (2J)

which is summed over all values of zq satisfying f (zo)  =  0. Inserting Eq. 2.5 into Eq. 2.6 and 

noting Eq. 2.7, then yields,

= IoH** = ■ (2-8)

where, with x =  r / R  the dimensionless radial distance, the /  function is,

t , ± .\ ( I  — Pr (*) sin i cos 4> -|- sin * sin <f> \
= f{y,  vo, x, 4), *) =  ^ ^ -------   ■_  ̂   J v  -  i/o • (2.9)



Setting f(<j)o) =  0 then gives,

_i / 0 r(x) -  q[1 -  0 r {x)] \  t .
6 o =  cos —.... .. — _ ■-----  — tan

\y/ (3r (x ) 2 + f i ^ x ) 2sini  I
i ( 0 +(x)\U ( X ) J  ’

where the dimensionless wavelength shift from line centre, Ao. is given by,

A -A 0
Q =

32

(2 .10)

(2-11)

Equation 2.3 now becomes, 

' v F l ( a )  ' 

v F ? ( a )

I v F ^ ( a )  J

► = ctq Fql\ffr ( * )

1 - 0 r {x)
sin i sin 0o +  l3^(x) sin i cos 0o

E(x)

2(1 +  sin2 i cos2 0o) 

sin2 i — (1 +  cos2 /) cos 2<̂ o 

k 2 cos i sin 2 <j>o

(2 .12)

where,
3 „ R 2 ,

0 =  32 =  D2 '
(2.13)

The Stokes fluxes are given by the summation of the results of the integral on the right hand side 

of Eq. 2.12 calculated at all values of <j>o given by Eq. 2.10 with the range of or determined from the 

maximum and minimum values allowed by Eq. 2.10. Outwith this a-range there is no scattered 

flux since there are no scattering electrons with a large enough velocity to give the required Doppler 

shifts. The limits of integration are the minimum and maximum x values allowed by Eq. 2.10, 

with x >  1 (stellar surface) in any case. Performing the two-dimensional integral over the disc area 

is equivalent to integrating along the isowavelength-shift contours since, for a given a , each value 

of x  “picks ou t” a <f>o due to the delta function. Integrating over x, and hence <j>, for a given a  is 

then equivalent to summing the scattered Stokes fluxes, weighted by the electron number density, 

along th a t isowavelength-shift contour as described above.

Equation 2.12 is an integral equation which may be inverted to yield information on the 

velocity field and density structure of the disc in terms of the scattered Stokes fluxes, further 

discussion of which is left until Chapter 3. For now the resultant scattered spectropolarimetric line 

profiles arising from particular forms of the disc velocity and density structures and the information 

available from analysis of such data  are investigated.

2.5 .1  P u re d isc rotation

For pure disc rotation f3r( x ) =  0 and Eq. 2.10 reduces to,

0o =  s in "1 (  °  , 1r -  sin-1 (  ( y  .\ /3<p(x)sini  J \0<j>(x) sin i /
(2.14)
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Substituting these forms for <f>o into the integrals on the right hand side of Eq. 2.12 and summing 

over the individual results, as demanded by Eq. 2.7, yields,

/ i (a  ) +  sin2 i / 2(a)

vF ? ( a ) > =  4 <T0 F0 < / i ( a ) - ( l  +  cos2 r) ^ ( a ) (2.15)

. . k 0

where the integral functions I i{a)  and /o(a) are given by,

E(x)
/?«>(x) sin i

1 -

1 -

: ) sin i J 

?) sin i J

- i

(2.16)

where the limits on the x-integral are the maximum and minimum positive x values allowed by 

/?(x) =  a /s in z .

The general inversion procedure to determine /?^(x) and S(x) will be discussed in Chapter

3. For now attention will be focussed on the spectropolarimetric profiles arising when the disc 

velocity and density profiles can be parameterised by the simple power law distributions,

P+(x) =  /30x p S(x) =  En*“ * , (2.17)

where Poc and Eo are the velocity and density values at the star-disc boundary. This parameteri- 

sation includes Keplerian rotation (p =  1/2) and viscous discs (p =  1), while q can be determined 

from the continuity equation for a steady slowly expanding planar disc (q =  1). Assuming this 

parameterisation the integral functions become,

So/l(a)l _

I 2 (a) ) ~  A )sin .

( 4 ^ ) ,
r . P - 9 - I

f

V Po sill 1 J

- i

i
1 ( “  )  x 2p

v Po sin 1 J 4

► dx (2.18)

So

I  h ( a )  ) 2 p P° s in i V/̂ o sin i
(2.19)

On making the substitution y =  {a /p o sin j)2 ®2p these integrals reduce to,

' I" ( tT  ' ( “ ' 0

where the complete and incomplete Beta functions are defined a.s,

B ( a , b ) =  f 1 t a- l ( l - t ) b~ l dt, B c(a, b) =  [ '  -  t )b~ l dt . (2.20)
Jo Jo

From the above it is clear that the spectral shape of the spectropolarimetric line profile is determined 

by the ratio of the indices p and q, while its ividth is determined by a  =  Posini,  since there 

are no electrons moving fast enough to give the Doppler shift required to scatter the incident
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radiation beyond this a  value. If this param etrisation of the disc velocity and density is valid then 

it should be possible to determine most of the physical parameters pertaining to  the disc from 

analysis of spectropolarimetric line data  which has been processed to remove the continuum flux 

and interstellar polarisation, in the following way.

When a  is small (i.e. close to the centre of the scattered line, but outwith the stellar line) 

the integrals in Eq. 2.18 are asymptotically equal so that the ratio of the scattered Q and I  fluxes 

there will yield the disc inclination from the solution of

a fa 0) — cos2 i ,
 n\ =  i r-j-. • (2.21)a  «  0) 1 -f sm t

The negative sign appears on the right hand side of this equation because the scattered Q flux is 

negative along isowavelength-shift contours of small wavelength shift, as will be explained below. 

The fact that i can be determined results from the fact that use of a scattered spectral line profile, 

as opposed to broad-band measurements -  cf Brown & McLean (1977), allows different parts of the 

disc to be picked out. Setting a  «  0 picks out the isowavelength-shift contour elements a t <j> =  0 ,7r 

where the scattering angles are 7t/ 2  +  i and 7r/2 — i , giving different values of the scattered total 

to polarised fluxes -  Section 2.7 and Chapter 3 describe a more robust method for determining i 

from spectropolarimetric line data.

The parameter Po is then obtained from the maximum wavelength shift of the scattered flux 

profiles ( a max =  Posmi)  using the inclination value determined from Eq. 2.21.

The final param eter which may be obtained from this analysis is the q/p  index ratio, which 

governs the spectral shape of the scattered flux profiles, and is determined from a best fit to either 

the scattered F*(a)  or F$(oc) flux data (or in principle by the ratios of these fluxes at two a  

values).

This illustrates the power of spectropolarimetric line profile analysis in determining disc pa­

rameters, in particular the determination of disc inclinations which cannot be derived from con­

tinuum  spectropolarimetry since it is not possible to separate out the scattered I  flux from the 

direct flux (Brown & McLean, 1977). Note, however, th a t if stellar rotation -  neglected in this 

analysis -  is im portant it may not be possible to separate the scattered and direct fluxes since 

any monochromatic stellar line could be broadened by up to  Po sin i. In such cases it should be 

possible to determine the parameters Po sin i and q/p  from analysis of the scattered Q flux.

I llu stra tiv e  exam ple

For illustrative purposes the resultant scattered Stokes fluxes for the case of p — 1/2 (Keplerian 

rotation), q =  1 are presented in Fig. 2.8. These profiles are explained with reference to Fig.

2.9 which shows isowavelength-shift contours for a disc rotating with the above velocity profile,
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at an inclination of 60° and also the projection upon the sky of the direction of vibration of the 

local polarisation vector for different disc regions. The positive Q axis for the entire system is 

also shown, being the projection on the sky of the disc rotational axis. This choice of axis results 

in an inclination dependence on the scattering angle such th a t cos 0  =  sin i cos <j> where <f> is the 

azimuthal angle on the disc. This shows that the observed wavelength will be red-shifted, with 

respect to the wavelength emitted by the source, for 0 < <j> < v  (the right half of the disc) and 

blue-shifted for n <  <fi < 2n (the left half of the disc). At the centre of the scattered line (a  =  0 

contour), where <j> — 0 or 180°, the scattering phase function for the I  flux is at its maximum value, 

due to the 1 +  cos2 0  dependence of the Rayleigh angular phase function. Moving away from line 

centre the phase function along the contours decreases, reaching its minimum value at <f> — 90°. 

For the particular velocity and density distributions chosen the I  flux is maximum at line centre 

and decreases to zero at |oj = /?0 sin i, beyond which value there is no scattered flux. Due to the 

symmetry between the front and rear halves of the disc the U component of the scattered flux 

cancels on summation over each contour, hence the position angle is constant across the line. At 

line centre the Q flux is negative, as is evident from the scattered polarisation direction along this 

contour. Moving away from line centre, more positive Q contributions from the density weighted 

contours raise the Q flux to a maximum positive value, beyond which the shape of the contours 

yield more negative contributions, thus reducing the Q flux to zero at |a | =  /?osini.
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F ig . 2.8 The resulting Stokes fluxes after scattering monochromatic stellar line 
radiation in a Keplerian rotating disc whose velocity at the stellar surface is 450 
km.s-1 .

It should be noted that these profiles will not take the same spectral shape for all velocity and 

density distributions since the scattered fluxes at each a  are proportional to the “length” of the 

a-contour weighted by the density value at each point along it. However, as was described in the
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F ig . 2.9 Isowavelength-shift contours, (A — A*)/A* x 103 =  Constant, on a Keple- 
rian rotating disc viewed by an observer inclined a t 60° to the rotation (z ) axis and 
positioned at infinity in the plane containing <f> =  0. The hatched region is the area of 
the disc occulted by the star (see Section 2.6). The axes are labelled in units of stellar 
radii. The short bars are the projections upon the sky of the direction of vibration of 
the local polarisation vector for different disc regions. The positive Stokes Q and U 
directions chosen for the entire system are also shown, (Q o,U o).

discussion following Eq. 2.20, systems which have the same q/p  ratio u/t7/have the same spectral

shape.

2.5 .2  P u re d isc expansion

In this case of pure expansion Eq. 2.10 reduces to,

* 0 = cos-> ( ,  2* -  c o s -  (  (2 22)
\  /?r (x)sinz J \  jOr ( i ) s in !  J

The Stokes fluxes are then given by Eq. 2.12 as,

' vF l {a )  ' ' I3 (a) + sin2 i74(q;)

v F $ ( a ) ► =  2(Tq Fq < h(<*) ~  (1 +  cos2 i) 1 4 (a)

k ^ ( « )  . 0V /
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where the integrals / 3 (a) and 1 4 (a)  are,

h ( a ) } r

14(a) J ~ J
£(x )[l -  0r{x)]

q [l -  Pr(z)] -  0r(x)  
0r ( x) smi )’j

► dx . (2.24)

The upper and lower limits on these integrals are determined from the maximum and minimum x 

values permitted by Eq. 2.22.
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Fig. 2.10 As for Fig. 2.9 except for an expanding disc with velocity profile v(x) = 
t>oo(l -  \ /x)%.

A monotonic decreasing parametrisation of the disc expansion velocity similar to that in the 

previous section (i.e. decelerating outflow) is not valid since stellar winds generally accelerate 

outward (e.g. Castor et al, 1975). The wind velocity law often adopted for modelling purposes is 

the following,

/ ? ( * ) = / M l - l / x y  , (2.25)

where the size of the effective acceleration region depends on 7 . Adopting this velocity profile allows 

the integration limits for Eq. 2.24 to be determined from Eq. 2.22. Noting th a t 1 — f3r (x ) «  1, 

since typical stellar wind speeds are such that ^  <  1, the integral limits for 0 <  a  < /?oo(l — sin i)



38

are,

^min =  J" i ^max =  '  J" > (2.26)
1 - j3oo(l+sin«') 1 - a

/?oo(l-sin»)

while for a  in the range /?oo(l -  sinz) <  o  < /?oo(l +  sinz) the limits are,

1
Xmin —

1
=  oo . (2.27)

t /?oo( l + s i n  t)_

These two domains for the limits on x  arise because for 0 < a < /?oo(l—sin z) the isowavelength-shift 

contours are “closed” curves on the stellar disc (see Fig. 2.10) with the maximum and minimum 

x  values given by Eq. 2.26. (Note th a t the o  =  /?oo(l — sin i) contour “closes” at infinity.) For 

a  >  /?oo(l — sini) the isowavelength-shift contours “break” and tend to radial lines for,

cos <j>Q — A  , (2.28)
Oco sin i

thus giving the infinite upper limit in Eq. 2.27.

Equation 2.24 can be simplified by noting that in a steady disc wind the continuity equation 

gives,

E M  =  , (2.29)
P r \ X ) X

where Ei is a constant. Now making the change of variable,

* =  ’ (2-3°) 0r( x) sin t

in Eq. 2.24 where (3r (x ) is given by Eq. 2.25 yields,

( u F l( a )  ) f G'i (o,7, t )  +  sin2 t G 2(or,7,0 }
{ > = 2ao Fo - ■ — — \  (2.31)
I z / F ^ o ) !  J 0 &  { G ' i ( o ,7 , z )  -  (1 +  cos-z)G 2( o , 7 ,z) J

=  [ '   d- . J 1 \
Jmax[- 1, (or —/?oo)//?oo sin ?■] \ / 1 — Z2 ( 1 +  Z s in  z) Y 1 \  Z2 J

(2.32)

where the G functions are

{G\(a,  7 , i)

G2(oc,y,i)

Analysis of the scattered Stokes fluxes then yields the parameters 7 , z and Poo in the following 

way.

From Eqs. 2.31 and 2.32 it is clear that for 0 < a  < /?co(l — sinz) the spectral shape of the 

scattered Stokes fluxes is governed by 7 which may be obtained from,

d log F l  (o) _  d log i f f  (or) _  I _  2 ,2 33.
do do 7

Determination of 7 in this way requires analysis of the Stokes fluxes for small o  (i.e. 0 <  o  < 

0oo(l — sinz)) since for o  > Poo(l — sinz) the integration limits in Eq. 2.32 contain o, thus giving 

a more complex o-dependence of the scattered Stokes fluxes.
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Once 7  is determined from Eq. 2.33 the inclination may be obtained, again for 0  < a  < 

/?oo(l — sin i) ,  from,
F $ { q ) _  1 +  g( / ,7)sin2 ?: .
F ? { a )  1 ~ .9(*,7)(1 +  cos2 t) ’

where g( i ,  7 ) = ^ 2(0 , 7 , i) /G i(a , 7 , i) which is independent of a  for 0 < a  <  /?oo(l — sini). The 

inclination is only uniquely determined in this way if the right hand side of Eq. 2.34 is monotonic 

in i for the given 7 . This is only true for 7  > 1 as is illustrated in Fig. 2.11, thus i can ony 

be determined uniquely for these 7  values. It is to be noted that, as in the pure rotation case, 

determination of the inclination requires polarimetry in addition to spectrometry.

0 . 4

0 . 2

0

0 . 2

0 . 4

Fig. 2.11 The function /( i, 7 ) = [1 +  g( i ,  7 ) sin2 i ) / ( l  — g( i ,  7)(1 +  cos2 t)] for various 
7  values.

The terminal velocity, (3̂ ,  is now determined from the maximum or value of the scattered 

Stokes fluxes which is a max = /#oo(l + s in i)  for this particular velocity parameterisation (note 

that Omin = 0  for scattering of radiation at the stellar surface where the wind velocity is zero in 

accordance with Eq. 2.25).

I llu s tra tiv e  exam ple

The analysis presented above allows the Stokes fluxes for any i and 7  to be calculated numerically 

from Eq. 2.31. Returning to Eq. 2.24 an analytic form for the scattered Stokes fluxes arises when 

the expansion velocity is constant throughout the disc (i.e. 7  = 0 in Eq. 2.25). Physically this 

constant velocity law is equivalent to assuming that the acceleration zone is very thin. Assuming
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then that the outflow velocity is given by Pr(r) =  Poo, the resulting Stokes fluxes are then,

[ v F l i a )  1 

< vF?{a)

1 (a )  ,

2(Tq Fo Ei 
s in 0 i | /?oo sin i

1 +  sin2 i cos2 <j>\ 

sin2 i — (1 +  cos2 i) cos 20i 

0

(2.35)

where the limits on the x-integrals, Eq. 2.24, are 1 and oo as is evident from the form of the 

isowavelength-shift contours for this velocity profile (radial lines) shown in Fig. 2.13. The wave­

length dependence enters via 0 i which is given by,

Ot /?oo
cos0 i =

Poo sin i
(2.36)

These profiles are shown in Fig. 2.12 and are explained with reference to the isowavelength- 

shift contours in Fig. 2.13. The maximum and minimum a  values of the scattered spectral profile 

for this case are given by,

Q'min — /^oo(l sin f"), ^max — Poo (1 “I" sin i) . (2.37)

5 0

i  -  GO0------ i =  302-

i =  90'
3 0«/
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o
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pQ o

3

i =  301.
6

Fig . 2.12 The resulting Stokes fluxes after scattering monochromatic stellar line 
radiation in a disc expanding with a constant velocity of 150 km .s-1 .

For pure expansion the two Doppler shifts described by Eq. 2.1 result in light scattered from 

any region of the disc appearing red-shifted with respect to that em itted by the star, except for 

i =  90° when the two shifts exactly cancel along the line 0 =  0. Figure 2.13 shows isowavelength- 

shift contours on a disc expanding at a constant velocity for i = 60° and illustrates that due to 

the two Doppler shifts the greatest total red-shift will occur for the back half of the disc.



41

10

5

0 ?

0-6 0-6

0
0-5

5

10
1 0 5 0 5 1 0

Fig. 2.13 As for Fig. 2.9 except for a disc expanding a t a constant velocity.

The polarisation vectors along each isowavelength-shift contour will combine to give a net Q, 

but no U flux due to the left/right symmetry of the contours. The contours for the extreme a  values 

given by Eq. 2.37 are radial lines parallel to the line of sight to the observer. The scattered I  flux 

for these a  values is maximum since the scattering phase function takes its maximum value along 

these o-contours, as described in the previous section on pure disc rotation. Towards intermediate 

a  values the scattering phase function decreases along the contours resulting in a decrease in F /.  

For the extreme a  values the Q flux is negative as is evident from the scattered polarisation vectors 

along these contours, and swings positive a t intermediate values.

For this param etrisation of the disc outflow velocity the only param eters influencing the scat­

tered fluxes are the disc inclination and the outflow speed which are both determined by Eq. 2.37 

using measurements of a min and a max. The armin and a max contours, being radial lines along 

<f> = 0 and 7r respectively, give different, scattering angles and Doppler shifts of the stellar radiation 

from the front and rear halves of the disc such that the expansion velocity and inclination enter 

the expressions for c*mjn and a max in a separable fashion, thus enabling these parameters to be 

determined from spectroscopy alone -  again providing F 1 can be separated from the direct stellar 

flux.
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2.5.3 R otation  and exp an sion

When the disc velocity is a combination of rotation and expansion Eq. 2.10 gives, for /?r <  1,

- i  I 0 r { x ) - a  _  _____
\  s/  P A x ) 2 +  P A x ) 2 s m i  1 \ p r ( x ) J ’

(2.38)

4> 0 = cos

2x — cos

y/0r(x)2 + M x ) 2 sin i

Pr(x) -  a-1

tan - i  ( M f l )U w ) ’
______________  \  tan - i M V

y J P r ( x ) 2 +  04>(x)2 sin i I \ P r ( x )  J

When these values are inserted into Eq. 2.12 and summed over the individual <f>os the scattered 

Stokes fluxes are,

(2.39)

’ vF'„(a) ' ' / 5(a ) +  sin2 i / 6(a)

v F ? ( a ) ► =  4cr0 Fq < I5(a)  -  (1 +  cos2 i) I6(a )

.  ^ ( « ) , 2 cos i 1 7 (a)

where the integral functions are, again assuming (3r <C 1,

£ (x ) dx
h{ < * ) = [ -  J x y f  {0r  +  £ j )  s in2 * ' - ( < * -  Pr ) 2

J : ( a )  -  f  ~  ^  +  ^  M r  +  Sin2 { ~ ( a ~  P r ) 2 } }  d x
j  X  (/32 +  @1)% sin2 i y j (0? +  /?J) sin2 i -  (a -  pr )2

h{ a) = I
S(x) 0r /?*[(/?? +  Pi)  sin2 i -  2(a -  pr)2] dx

x{f% + 0 f f i  sin2 i y j (P2 +  01) sin2 i -  (a -  0r )2

(2.40)

(2.41)

(2.42)

The complex dependence of the scattered Stokes fluxes on the disc velocity structure does not 

appear to yield a simple param etric inversion of the equations similar to those of Sects. 3.1 and 

3.2. The inversion procedure for this case of the rotational and expansional components of the 

disc velocity being comparable is not considered in this thesis and for now a numerical solution is 

presented for the scattered Stokes fluxes of Eqs. 2.39.

Assuming the rotational component of the velocity to be parameterised by Eq. 2.17 and the 

outflow velocity is constant then the lower limit of the x integral is 1 and the upper limits of the 

integral depend on a in the following way.

For (Pi -  y / p \  +  Pi sin i ) / ( l  -  Pi) < a  < Pi( 1 - s i n i ) / ( l  -  Pi) and Pi( l  +  sin i ) / ( l  -  Pi) <

(Po sin i) p

a  <  (Pi +  \JP\  +  Pi sin *)/(! -  p x) then

jiv — (2.43)
([,3i -  a( 1 — /?i )p  -  0 \  sin“ i) r 

where po and Pi are as before. While for Pi( l  + s in i )/ ( 1 — Pi) < a  < Pi( l  + s in i ) / (  1 — Pi) then

•Em ax — OO (2.44)
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The upper limit of infinity for these particular a  values is explained by considering the 

isowavelength-shift contours for this velocity profile in Fig. 2.15 (with the rotation being Ke- 

plerian). It is seen that for these a  values the contours tend to radial lines at large radial distances 

(producing a similar pattern to the contours in Fig. 2.13) where <f>o becomes independent of x and 

hence the infinite upper limit. This contour shape occurs because the disc velocity for these outer 

regions is dominated by the constant expansion velocity -  rotation dominating the contour shape 

close to disc centre due to its x~ p parametrisation.

The a  range of scattered radiation for this case of disc rotation and expansion is,

(Pi ~ y jp i  + Po sin i ) / (I  -  P \ ) < a < ( P i  +  y/pf+~P$  sin i ) / ( l  -  Pi )  . (2.45)

6
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O

i =  30 ‘
O  .  3

1

O

i =  60'
■1

F ig . 2.14 The resulting Stokes fluxes after scattering monochromatic stellar line 
radiation in a disc rotating with a Iveplerian velocity profile and expanding with a 
constant velocity.



Figure 2.14 shows the computed scattered Stokes fluxes for this case of a rotating, expanding 

disc which are explained with reference to the isowavelength-shift contours in Fig. 2.15. For 

the extreme a values in Eq. 2.45 the scattered I  and Q fluxes resemble those of Fig. 2.8 since 

they arise from scattering close to disc centre where rotation dominates the contour shape. At 

intermediate values of Eq. 2.45 the scattered I  and Q fluxes arise from scattering off contours 

whose shape is dominated by the constant expansion velocity thus yielding results similar to the 

pure disc expansion case in Fig. 2.12. The sym m etry-breaking effect on the contours due to the 

combination of expansion and rotation results in a net U flux on summing over individual contours. 

It is evident that all three Stokes flux profiles of Fig. 2.14 are symmetric about the midpoint of 

Eq. 2.45 due to the a  contours on the disc being symmetric about this value.

The profiles are all red-shifted from line centre due to the red-shifting effect of scattering off 

electrons in an expanding envelope explained in the previous section.
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Fig. 2.15 As for Fig. 2.9 except for a rotating and expanding disc.
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2 .6  N o n -m o n o c h ro m a tic  so u rce

In th is section the scattering of non-monochromatic line radiation superposed on a continuum is 

considered. The stellar spectrum line source is taken to have a gaussian line profile superposed on 

the continuum so that around Ao the intensity is

2'
W  A*) =  Jo 1 -f s exp — A* — Ao

(2.46)

where /o is the continuum specific intensity, A* is the wavelength em itted by the star, Ao is the 

rest wavelength at the line centre and At is the width of the stellar line, s gives the strength of 

the line relative to the continuum with —1 < s < 0 and s > 0 corresponding to absorption and 

emission lines respectively. Equation 2.5 enables the exponent in Eq. 2.46 to be written as,

A* — Ap 
At

=  .4(r, o, A)- ,

where A(r, 0, A) is,

A(r, 0, A)
_  {1 — l3,.(r)}\ — {1 -  3r ( r )s in ic o s6  +  /J^(r)sinisin0}A o

(2.47)

(2.48)
{1 — /?r (r)s in  icos<j> + /^ ( r )  sin zsin 0}Ai ’

Equation 2.48 describes the Doppler redistribution of scattered photons and is the key equation 

governing the scattered spectropolarimetric line profile. It should be noted that although /3r and 

are much less than unity the rapid variation with wavelength of the line profile in Eq. 2.46 requires 

th a t all the terms in Eq. 2.48 should be retained since they will yield significant variation in the 

wavelength shifts from different disc regions and thus also in the scattered spectropolarimetric line 

profile.

The scattered Stokes fluxes are now given by Eqs. 2.3 and 2.13 thus,

' F I  ' 2( 1 -f sin2 z cos 20)

F ? >=<r0 F0 J  (l +  s exp -{ A (r, 0, A)}2) E(r)< sin2 i — (1 +  cos2 i) cos 20

2 cos /sin 20

d A
(2.49)

The Stokes parameters are formed by dividing the Q and U fluxes above fluxes by the direct flux -  

neglecting F* for the reasons given in Sect. 2.3 for the scattering of line radiation in the presence 

of a continuum. Following Fox and Brown (1991), the area. .4, is the area of the disc minus the 

area occulted by the star and the integral operator is given in Eq. 1.34.

A subtlelty to be noted here is that, unlike the case of a monochromatic source, the incident 

Gaussian line profile is non-zero at all frequencies and so there is a non-zero contribution to the 

scattered flux at each scattered frequency from each frequency in the incident spectrum. The effect 

o f this is that at each wavelength there will be a contribution to the scattered flux arising from the 

entire disc and not simply from the discrete isowavelength-shift contours of the previous sections. 

However, most of the scattered flux at a given wavelength will arise from a “smeared” region around
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the particular isowavelength contour with the ‘‘degree of smearing” being proportional to the line 

width, Ab -  e.g. when A*, tends to zero the incident line profile becomes very sharp (i.e. approaches 

monochramaticity) and the regions contributing to the scattered flux at a given wavelength tend 

to the discrete contours of before.

Due to the complexity of the integrals the Stokes Q and U fluxes are computed by a numer­

ical quadrature routine, with and without occultation, for cases when the disc velocity is purely 

rotational, purely expansional and a combination of these. Figs. 2.16-2.18 show the Stokes fluxes, 

the degree of linear polarisation and position angle for the case of an emission line originating at 

the star centre and being single Thomson scattered in the disc. The input profile is given by Eq. 

2.46 with s =  2, the line centre at Ao =  6562 A (Ha ), and a width of Aj =  4 A corresponding to 

a characteristic broadening velocity of about 180 km .s-1 . This line is assumed to be broadened 

in the photosphere prior to Thomson scattering in the disc whose radius is ten times the stellar 

radius (q d  =  10 in Eq. 1.37). A possible broadening mechanism could be Linear Stark Broaden­

ing, Griem (1960), at a photospheric electron number density of about 1016 cm -3 . The rotational 

velocity is assumed to be Keplerian with vo =  450 km .s-1 , while the expansion velocity is given 

by Eq. 2.25 with i>co =  150 km .s-1 and 7 =  1/2. These param eter values are typical of Be star 

discs.

2.6.1 P ure d isc rotation

In this case the surface number density and velocity are given by Eq. 2.17 with p =  1/2 and 9 =  1, 

the expansion velocity being zero.

2.6.1  (a) P o in t source w ith ou t o ccu lta tion

From Fig. 2.16(b) (solid lines) the polarimetric profile, Pq =  <r0 Eo, is seen to be symmetric 

about the line centre, being stronger in the wings and less towards line centre than the continuum 

polarisation due to the depolarising effect of direct line radiation. The position angle is zero at all 

frequencies. These variations are explained in a similar manner as th a t presented in Section 2.4

The scattered Stokes I  and Q fluxes in Fig. 2.16(a), for this case of pure rotation (solid lines -  

neglecting occultation), have similar spectral shapes to those presented in Fig 2.8, but do not go to 

zero at a maximum wavelength-shift. This arises since the initial Gaussian line profile is non-zero 

at all wavelengths thus giving a non-zero contribution to the scattered flux a t all wavelengths 

even if the constant continuum were to be removed. The U flux (and hence the position angle 

also) is zero at all wavelengths due to the front-back symmetrical cancellation described in Section 

2.4.1. The degree of polarisation is then determined by dividing FQ by the direct flux (assuming 

F 1 <C F D) and hence the spectral shape of Fig. 2.16(b).
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i = 30'
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wavelength (nm)

Fig. 2.16 (a ) The resulting Stokes fluxes for scattering stellar radiation with a 
spectral shape given by Eq. 2.46 in a Keplerian rotating disc whose velocity a t the 
stellar surface is 450 km.s-1 . The solid curve is for a point source and the dotted 
curve is for a point source with occultation effects included. The pairs of curves are 
for inclinations of 30°, 60° and 90°.

2 .6.1 (b ) P o in t so u rc e  w ith  o c c u lta tio n

From Fig. 2.16(b) (dashed lines) the degree of polarisation is seen to have the same spectral shape 

as the previous case, but occultation has resulted in an asymmetric position angle variation with 

wavelength which is again explained with reference to Fig. 2.9, as follows.

When occultation is included photons from the occulted area of the disc (the shaded region 

in Fig. 2.9) are unable to reach the observer and are effectively removed, cf Eq. 1.34. From Fig.

2.9 it is seen that this occultation removes the positive U and Q contributions in the blue and 

the negative U and positive Q contributions in the red. Hence U changes sign -  Fig. 2.16(a) -  

and ^  rotates across line centre from negative to positive (where positive and negative position 

angles here mean 0° < ^  < 90° and 90° < 'F < 180° respectively). As the inclination increases 

the scattered I  flux is reduced since a progressively larger area of the disc is being occulted thus 

reducing the total scattered flux.
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Fig. 2.16 (b ) The direct flux (Eq. 2.46) normalised to the continuum, the scattered 
polarisation, Pq =  <to Do, and position angle for the rotating disc.

Another (small) effect of occultation, explained in Sect. 1.4.4, is that, for low inclinations, 

occultation serves to enhance the polarisation, while for high values of inclination it has the effect 

of reducing the polarisation.

2 .6 .2  P u re  d isc ex p a n sio n

For this case the density distribution and velocity field are the same as presented in Eqs. 2.25 and 

2.29. Results are shown in Fig. 2.17 for a point source with and without the effects of occultation. 

These spectral shapes are explained with reference to the isowavelength-shift contours in Fig. 

2 . 1 0 .

The Stokes flux, F ®, has a profile resembling the direct flux, but is red-shifted due to the 

disc expansion velocity and the U flux is zero at all wavelengths due the left-right symmetry of 

the isowavelength-shift contours in Fig. 2.10. Occultation will remove polarised flux from the 

back half of the disc and the remaining polarisation vectors will combine to give a net Q, but no
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U flux because of the left/right symmetry of Fig. 2.10 and hence no change in position angle. 

The spectral shape of the degree of polarisation is then again given by dividing F® by F D. The 

gradual reduction of the I  flux with increasing inclination and the enhancement in polarisation for 

low inclinations and the reduction at high inclinations is evident in Fig. 2.17 as it was for the pure 

rotation case.
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F ig . 2 .1 7 (a ) As for Fig. 2.16(a), but for the disc velocity being purely expansional.

2.6 .3  D isc exp an sion  and rotation

In this case the density distribution and velocity field are given by Eqs. 2.17 (Keplerian rotation), 

2.25 and 2.29. Figures 2.18(a-b) show the polarisation, Pq =  <roEi, and position angle variations 

for a. point source with and without occultation. The polarisation profiles obtained are similar to 

Figs. 2.16(a-b) but are stronger in the red wing due to the red-shifting effect of the disc expansion.

The change in position angle is explained with reference to Fig. 2.19. The isowavelength-shift 

contours in this figure show that the greatest red and blue shifts occur for regions of the disc where 

the UJQ component ratio of the polarisation vector is negative, so in the red and blue wings of
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the line the position angle is negative. Towards the line centre the position angle swings positive. 

This is because the regions of small red and blue shift are where the U/Q  ratio is positive.

Occultation removes the positive U and Q contributions in the blue and the negative U and 

positive Q contributions in the red, so the position angle is less in the blue and greater in the red 

compared to results without occultation. The enhancement in polarisation for low inclinations and 

the reduction at high inclinations is again evident in Fig. 2.18.
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F ig . 2 .1 7 (b ) As for Fig. 2.16(b), but for the disc velocity being purely expansional, 
Po =  <r0 S i.
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F ig . 2 .1 8 (a ) As for Fig. 2.16(a), but for a rotating and expanding disc.
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F ig . 2 .1 8 (b ) As for Fig. 2.16(b), but for a rotating and expanding disc, Pq =  <tq S i-
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F ig . 2.19 As for Fig. 2.9, but for a disc rotating with a Keplerian velocity and 
expanding with the stellar wind law of Eq. 2.25.
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2.7  G eneral d eterm in ation  o f  d isc inc lin ation

A more robust method to determine the disc inclination than that given in the monochromatic 

analysis of Sect. 2.4 is to determine the ratio of the wavelength integrated Stokes fluxes. Performing 

the integral over wavelength (or a  ) for the scattered Stokes fluxes from a monochromatic source 

requires Eqs. 2.16, 2.24, and 2.40-2.42 to be presented in a slightly different form. This is done in 

the next chapter which considers the general inversion technique to determine the disc velocity and 

density structure and the analysis is left until then. However, the wavelength integral can readily 

be performed for the non-monochromatic case of Sect. 2.5 and is presented here.

Integrating Eqs. 2.49 (with the constant continuum polarisation removed) over all scattered 

wavelengths (from 0 to oo) does not yield a simple analytic form due to the normalisation properties 

of the chosen line profile. Any line profile should, strictly, be normalised such that,

y O O

/  0(A) dA =  1 ,
Jo

(2.50)

where 0(A) determines the spectral shape of the line -  e.g. Mihalas (1978). The Gaussian line 

profile in Sect 2.5 instead satisfies the normalisation condition,

I 0(A) dA =  1 . (2.51)

However, the adoption of this particular stellar line profile may be justified by noting that, due 

to its exponential nature, there is a negligible contribution to the line profile a t wavelengths 

which lie further than a few “e-folding” lengths from line centre, Ao- When determining the 

integrated scattered Stokes fluxes it is therefore (m athematically) convenient to allow the scattered 

wavelengths to range from —oo to oo. Performing this wavelength integral in Eq. 2.49 then yields,

' F 1 ' ’ H  '

F q II F ?

, F U . F ut 1 V

dA =
ctq Fo s £(r)

s /T ^  J A ( l - / ? - k * ) ( l - / ? . k )

x <

(2.52)

d A

' 2(1 +  sin2 i cos 20) 

sin2 t — (1 +  cos2 i) cos 20 

2 cos i sin 20

The bracketed term s on the denominator of this equation may be set equal to unity since the disc 

velocity is much less than th a t of light (/J <  1). Ignoring occultation effects the integration over 

the disc area is easily performed yielding,

F q

F 1
sin2 i

(2.53)
2 +  sin2 i ’

Equation 2.52 shows that the scattered U flux averages to zero across the line -  as would be 

expected from the polarimetric cancellation properties of an axisymmetric disc. Since only Doppler
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wavelength redistribution was considered in this scattering analysis the result of Eq. 2.53 is an 

obvious one since it is precisely the ratio of the scattered total to polarised broad-band fluxes for 

any disc as derived by Brown k  McLean. If aberrational effects -  which were ignored due to the 

slow disc speeds -  were im portant then this result would not hold since the angular dependence of 

the scattered radiation would differ from th a t of the Rayleigh phase function (see Chapter 7 for a 

discussion of such relativistic effects).

So, providing the stellar line is narrow so that, apart from the region within the direct line core, 

the direct and scattered fluxes can be separated then Eq. 2.53 provides a means of determining disc 

inclinations irrespective of their velocity profiles (again neglecting stellar rotatianal broadening). 

Note th a t there is no longer an ambiguity in determining i as in Eq. 2.34. It will be shown in 

Chapter 4 th a t Eq. 2.53 holds even when the Doppler redistribution due to scattering off thermal 

electrons is included.
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3. Inversion  o f T hom son  scattered  sp ectrop olarim etric  

lin e  profiles to  y ie ld  th e velocity  stru ctu re o f  

ro ta tin g  or exp an din g circum stellar discs

S um m ary

Using previous analytic expressions for the Stokes fluxes of a narrow line scattered in a moving 

disc, the cases of rotation only and expansion only are formulated as integral equations. These 

equations relate the density and gradient weighted disk bulk velocity distribution to the observed 

Stokes flux line profiles. It is shown how these equations can be solved analytically for the weighted 

velocity distributions and the system inclination, for exact data. In the case of real noisy data 

the analytic forms of the integral equations provide a convenient basis for methods of statistical 

inversion.

3.1 In trod u ction

Inference of the density and velocity structure of rotating/expanding circumstellar discs/winds is 

of considerable interest in the understanding of stellar mass loss. High resolution line spectropo- 

larim etry creates the possibility of diagnosing such envelope structure much more fully than broad 

band polarimetry or high resolution spectrometry alone since each element of the scattered spec­

tropolarim etric profile picks out the element of the envelope with the appropriate Doppler shift 

and provides orientation information on it. This problem has been formulated in detail in the 

previous chapter for scattering of a finite width line in a flattened envelope. It was also shown 

how, in the case of a narrow stellar line scattered in a rotating or expanding flat disc with a sim­

ply parametrised density and velocity structure, it is possible to infer the system inclination and 

structure model parameters from the resulting spectropolarimetric line profile.

In this chapter the diagnostic technique is extended to general density and velocity structure 

functions for the cases of pure rotation and of pure expansion of flat axisymmetric envelopes. These 

will be applicable respectively to the cases of a disc supported by rotation (with expansion speed 

very much less than the rotation speed) and a flat wind with negligible rotation. The general case 

where rotation and expansion speeds are comparable has been analysed numerically in Sect. 2.4.3 

for simple models of the velocity distribution. It appears, however, not to be amenable to any 

obvious inverse solution in the general case and its further consideration is deferred. The other 

simplification made in these papers is that line smearing by scattering off therm al electrons can be 

neglected -  see Chapter 4 for thermal effects. The problems are cast in the form of integral equations 

for a single weighted velocity distribution function with the I  and Q spectropolarimetric profiles as 

d a ta  functions, the equations also containing the system inclination i as an unknown parameter. 

It is shown that these integral equations have analytic solutions for the velocity structure function
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and for i. These analytic solutions show th a t spectropolarimetric data  are capable of yielding the 

envelope structure from exact data  and provide a basis for development of regularised solution 

methods in the case of real noisy data.

3 .2  F o rm u la tio n  o f  th e  in te g ra l  e q u a tio n

Following Chapter 2, Fo denotes the flux of (lie (unscattered) narrow stellar line and F„ the 

flux of the scattered line at frequency u. Defining / ( a )  =  u Fv/ A F q at relative wavelength shift 

or =  (A — Ao)/Ao, where Ao =  cfi/Q is the original line wavelength, the expressions for the scattered 

line Stokes fluxes, measured with respect to the projection of the system axis on the sky, are, for 

the case of pure disc rotation,

(3.1)

' / / ( « ) ' ' I] (a ) +  sin2 i I2(a)

/ ? ( « ) ► =  < h ( a )  — (I + cos2 i) I2(a)

. / ? ( « ) .

with the integral functions I i (a)  and I2{a) given by,

h (a ) !  r
I2( a ) } J

*
[ , - (  « v|

\ /k (x ) s in  i )

-4

o’o E(x)
x f3^(x) sin i

1 (  V\ /? 0(x)sin i ) 4

► dx (3.2)

In the case of pure disc expansion,

’ Si  (a) ' (  h i ® )  + sin2 */4 (a)

/?(<*) ► = < 13( a )  — (1 4 - cos2 i) 1 4 (a)

. / " ( “ ) . lo J
(3.3)

with

| /3(a) \  r  <70£(x)
I  h i a )  J ^  xpr(x )y j sm 2 i — (a/fJr (x) — 1)2 - r - ^ ( a / /? r ( z )  -  1 y

' v sin” i

dx (3.4)

where it assumed assumed /?r <  1. Here /^ (x ), (3r(x) are respectively the rotational and expansion 

speeds, in units of c, at distance r  =  R x  from the star, radius /?, and E(x) is the electron surface 

density (m -2 ) of the flat disc.

In Eqs. 3.1 and 3.2 the integral limits are over all x where /?^(x) is such th a t a Doppler shift 

occurs at some point on that circle shifting the line wavelengt h by a  Ao for the observed a,  namely 

those x where,

& (* )  > 4 2 1 .  (3.5)
SI 11 t

Physically this is because the highest line of sight, speed on the circle of radius x is /3<t,(x) s in i and 

if Eq. 3.5 is not satisfied then the stellar line cannot be shifted by a  from any point on th a t circle.
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In Eqs. 3.3 and 3.4 the integral limits on x are slightly more complicated. This is because in 

the case of expansion all stellar line photons are red-shifted when they encounter a scatterer at x 

by an am ount 0r(x ) and subsequently red or blue shifted in the observers frame after scattering by 

an am ount in the range ± 0 r sin*. The total shift is thus in the range 0r ( 1 ± sin*) and the integral 

lim its on x for a specified a  are such that,

Q-—^ < & (*) < 71— —rr • (3-6)(1 +  sin *) ~ (1 — sin i)

It is at once clear from the forms of Eqs. 3.1-3.4 that E(x) and 04>{x) or 0r(x) cannot be solved 

for individually from f^(oi) since only the combination E (x)/x /?(x ) (where 0 is either the

expansion or the rotation speed) occurs in the integrands, and since only 0 and not x occurs within 

the kernel functions. This is to be expected physically since redistribution of the scatterer function, 

£ (x ) /x , over x, but with the same 0, can lead to the same scattered profile contribution at a. The 

central property of the envelope in determining / 7(o), / ^ ( a  ) is rather the “am ount” of scattering 

in each range of 0$ or 0r . This can be seen by defining the scattering optical depth r = <roE 

through the disc at x, replacing x by 0 as the variable of integration and defining,

=  x (d )d |d /* /d x | ' ^

where \d0/dx\ is assumed to be monotonic. This is certainly true for all likely 0{x) (with |d/?/dx| < 

0 in the case of rotation and \d0/dx\ > 0 in the case of expansion), but this assumption could be 

dropped by generalising the following to include summation of integrals over each element of the 

disc in which 0 is monotonic.

It can thus be seen that what determines the scattered line profiles in the two cases are 

functions g which are a kind of disc optical depth per unit speed (0) range, weighted with respect 

to inverse distance (this is closely analogous to the role of differential emission measure in spectral 

problems -  Craig & Brown (1986)). Denoting by g g r the g functions for the rotation and 

expansion cases, the Stokes profile integrals in Eqs. 3.1-3.4 can now be expressed as,

f l (a) =    +  sin2 i f°° J l  -  (<*//?* sin *)2 d0+ ,
J\a\/sin t s in * \ / l  -  (a/04, sin *)2 J\a\/snM sin * *

/«(<*) =  l°° iiiM   r  iAM. Jl _  (Q/ ^  sin i)2 d ,
J\a\/ sin t s in * \ / l  ~  (oc/ 0 0  sin *)2 V |o|/sin * sin * *

(3.9)

for the rotation problem, and,

/ V ) =  r /(1- ,m 0 »<*>■ »* _  , ( s .10)
Ja/(i+sini) y'sin2 * -  (a/0r -  l )2 J a / ( i + s m i )  y j S \ n 2 i —  {cx/0r — l )2

 ̂ r / ( l -  ini) gr (f)r ) A0r l+ c o s 2 ; /•“ /(l-.m i) „ , .(£ )  [a / / Jp _  1]* ^
(q;) — I    ■ 2 • I-/------------------------Q0r >

Ja/a+Bini) ^ / s i n 2 i  — (a 10,  — 1 ) -  s in  1 J a / { i + s i n i )  ^ s i n 2 i  — ( a / 0 T — l ) 2

(3.11)
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for the expansion problem.

Note th a t in all of these integrals, Eqs. 3.8-3.11, the 0  limits may in practice be replaced 

(for some a)  by maximum or minimum 0 ’s in the envelope itself. This possibility is, however, 

incorporated in Eqs. 3.8-3.11 since it corresponds to having g{0) =  0 for 0  < 0min, 0  > 0ma.x . 

Should such a cut-off feature be present in g{0) then it will autom atically appear in solution of 

the equations for the corresponding f (a ) .

Equations 3.8-3.11 can now be recognised as integral equations to be solved for g<j,(0<i>) or 

gr (0r) from data functions f J (ck) and fQ(a) .  Solution also requires, however, determination of i. 

This can be done because each of the problems is in fact overdetermined providing two functional 

equations for only one unknown function g(0) and one unknown param eter i. Note, however, that 

observation of the scattered spectrometric intensity profile f 1 (a ) alone is not sufficient to allow 

solution for g(0) and i since the problem is underdetermined. Spectropolarimetry is thus the key 

allowing complete solution of the problem.

Once i is found one may thus, in principle, use either of the integral equations (3.8 or 3.9 for 

the rotation case, 3.10 or 3.11 for the expansion case) to find g<j>(04>) ) gr(0r)- (In the practical case 

of noisy data one would, however, utilise both equations to yield the optimal numerical solution.) 

Before considering solution of the integral equations it is first shown how i can be determined.

3.3 D eterm in ation  o f  d isc inc lin ation

3 .3 .1  R o ta tin g  d isc

It is seen from Eqs. 3.8 and 3.9 that, for any particular a , the ratio / f 1 depends only on i and

on the ratio of two integrals over <7<̂(/?<$). If the ratio of the integrals for any particular a  can be 

found then the ratio / f 1 should allow i to be determined. The most obvious choice is to choose 

a  «  0 -  in practice this will mean a  as small as possible while still outwith the profile of the direct 

unscattered stellar line. Then,

1 poo poo
f { 0) = - 7 —: /  g4 0 4 ,) d0.fi +  sin i /  < fy (/^ )d /^ , (3.12)

sin i j o Jo

■j roo i  I ,..-,<,2 j too
/Q (°> =  ^  w *  • (313)sin i J q sin i Jo

so that,

T ^ r .  =  " S  ■ (3 H )1 +  sm * /  (U)

which yields i from the data. This is exactly the same result as found in Chapter 2 for a particular 

param etrisation for 0 4>(x), E(ar) and with the same physical explanation. T hat is, a  =  0 corre­

sponds to scattering on a line in the disc in the plane containing the observer and the disc axis,
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along which the scattering angle is either 7t/2  — i or n/2  +  i and the ratio of the scattered total to 

polarised flux is a function of i only.

A more robust way to find /, minimising the effect of uncertainty of /(or) near a  =  0, is to 

consider the total fluxes under the scattered profiles -  i.e. F  = / ( a )  d a  -  as in Chapter 2. By

Eqs 3.8 and 3.9 these reduce, on reversing the order of integration and changing the inner variable 

from a  to a / 0  sin i, to,

/ oo fo o  t t  o j n ^  i  f ° °
/ 7(a ) d a  =  7T /  d{3<t> + — 5—  /  0*(/fy)d/?*, (3.15)

• oo Jo Jo

/ ° °  f ° °  TT ( \  c o s 2 i )  f ° °
f O ( a )  da  =  w g ^ t ) d/J, -  d/J, , (3.16)

-oo Jo Z Joso that,
sin2 i FQ

■ 2- -  r l  ■ (3 1 7 )2 +  sin t r

from which i can be found. This result should be reliable since the integral quantities F 1, F® are 

better determined than / 7, and will only be slightly in error when a small region near a  =  0 

(containing the direct stellar line) is om itted in the integrals.

3 .3 .4  E x p a n d in g  d iscs

Since all points on an expanding disc produce a redshift of scattered stellar radiation there is no

plane corresponding to a  =  0 as in the case of rotation above. If there exists a finite maximum

or minimum value of 0  the corresponding extremes in a  might be useable to determine i similarly 

to the first method above. However, without any such conditions, i can always be found for an 

expanding disc as in the second method above -  i.e. by considering F 1, F®. Integrating Eqs. 3.10 

and 3.11 over all a  and taking the ratio then yields,

g  =  1 ~ R ( 1 W , - )  i
F 1 1 -f R sin i

where, with the integral order reversed,

1 r°° a (,0 \ rftr(l+sint) (a/ /3r- l f  do 60r
I 4 _  ^ i J 0 P r » r W r > J f l r ( l - s i n  ») ^ / ( / ^ ( 1+ sin  i ) - a )  ( a - / ? r ( l - s i n  t))

~  h ~  [°° ft ff (.? ) f ^ 1+sin*>__________________ dadPr___
Jo 9 r \ P r )  J/3r( 1—sin t) ^ /( /3^1+sin  * ) - « )  ( a - / 3 r( l - s i n  i))

By the change of variable sin0 =  (oc/0r — 1)/ sin i the inner integral in the denominator of Eq. 

3.19 is found to be simply 7r and that in the numerator to be 7r sin2 i'/2, both independent of 0. 

Thus / 0°° 0r gr(0r)d0r  cancels from the ratio R and Eq. 3.18 yields,

sin2 i FQ
7TT • 2 • — p i  » (3.20)2 +  sin i r

exactly as for the rotation case Eq. 3.17.
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3.4 . S o lu tion  o f  th e  in tegral equations

3.4.1 R o ta tin g  d isc

Given i from Sect. 3.1 then in principle either Eq. 3.8 or Eq. 3.9 can be solved to find g<i>(fi<i>) 

or, for real data, perform a joint numerical solution to give the best fit to both f r (a)  and f ^ ( a ) .  

Here the possiblity of solution is demonstrated by considering a single integral equation. The most 

convenient form to consider is for the combination of data,

2 f ( a )  =  (1 + cos2 i) f f (a)  +  sin2 i f®(a )  ,

which, by Eqs. 3.8 and 3.9, satisfies,

/( ,  f°° gd>{fio)dfi0
<*) =  /  -7==t— =  ’

/ sm * y s i n2 i — (a / 3$ )2

(3.21)

(3.22)

Integral equation 3.22 can be solved by a number of methods. Defining £ =  sin2 i / a 2, tj =  fi^ 2, 

tp(£) =  /(s in  ?!/v^)sin */>/£ and <p(rj) =  g^>(r)~^)/2t]^ the equation becomes,

n e \  f  iM O  =  / nr—  d*] .
Jo V t - v

which is Abel’s equation with solution (e.g. Sneddon, 1972).

m o
* > ( * ) = - 4 -  r* cby J  o

or, in terms of the original variables,

g<i>{04>) —
—4 sin i d

7T d/?0 fid L f ( a ) d a

a y j 3- — a 2/ sin2 i

(3.23)

(3.24)

(3.25)

In a real situation differentiation of data  may be impossible because of noise amplification 

(Craig &; Brown, 1986) and a regularised (smoothed) solution will be required. One convenient 

way to achieve this is by singular value decomposition. For kernels which depend only on the ratio 

of the variables, as in the kernel of Eq. 3.22 which contains only a/ f i^ ,  the singular functions can 

be found by taking the Mellin transform,

rO O

= H r ) x ° - ' d x  . (3.26)
Jo

Taking the Mellin transform of Eq. 3.22 yields.
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as solution. This is clearly related to the solution of Eq. 3.22 in terms of integral moments. 

Defining,

{ / } ; =  / ” / ( * )  *><!*. (3.28)
JO

then from Eq. 3.22 the following relation between the moments of / ( a )  and <7(0 ) is obtained,

i )  • ( 3 ’ 2 9 ).>111 /  ̂/

where B  is the beta function.

3 .4 .2  E xpan d ing d isc

Constructing / ( a )  as in Eq. 3.21 gives from Eqs. 3.10 and 3.11 one of the integral equations for 

the expansion problem, viz,

/ M , r ,lnil  , (3.30)J<x/{l+.mi) y/si,r { a / 3 r - l)2

Though this equation is close in form to Abel’s equation, the kernel singularity at both limits 

seems to preclude an explicit solution like Eq. 3.25 in terms of integral and differential operators 

on f ( a ) .  As in Eq. 3.22, however, the kernel of Eq. 30 depends only on ot/0r so that solution is 

again possible via the Mellin transform. After some m anipulation the Mellin solution here is,

g A M  = J M - '  {  ■ • * } ■  <3-31)
Pr U -sin^1 + J/sm*) ' / v i - y - d y  J

Also, similarly to Eq. 29 the integral moments of gr{3r ) niav be related to those of / ( a ) ,  namely,

r i ff1 / f ”  (1 + 1/ sin*)' j  „  oox
{9}j = { f } j - 1/  /  -----7 r = ^ ~ dy -  (3 3 2 )J — sin » v  I —

3.5  In terp reta tion  o f th e  so lu tion s

By Eq. 3.27 can be inferred and from Eq. 3.31 gr{l3r ). but these functions are combinations

of the functions (3Y,(x) and 0^{x)  or /?r (x) as given by Eq. 3.7. W ithout model assumptions these 

are all that can be inferred from spectropolarimetric line profiles. However, rotating discs generally 

have a known velocity structure given either by the Keplerian law,

0+(x) = 0, x - i  , (3.33)

or, for a viscous disc,

/?*(*) = & x 6 (3.34)
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where 6 is a constant and is the value at x  =  1. Substituting Eq. 3.34 in Eq. 3.7 then gives for 

the disc density structure,

Z(x)  = <r0 6 x - 2Sf l gt(l31 x - s) .  (3.35)

In the case of expansion the density structure £(x ) is related to the velocity structure /3r (x), if a 

steady 2-D  continuity equation is assumed, by,

=  7 T m  ' (3 '36>x p r(x)

so that, Eq. 3.7 becomes,

= (337)

where it is assumed that d/?r /d x  > 0. Consequently /?r (x) can be recovered by integrating,

=  <3 '38>

or,
1 f Pr

x{Pr) =  e x p --- -  /  grPl&Pr,  (3.39)

where gr(Pr) is given by Eq. 3.31.

3.6 C onclusions

The theoretical analysis of this chapter has demonstrated the possibility of determining the struc­

ture of rotating or expanding circumstellar discs from analysis of exact data  of scattered spec­

tropolarim etric line profiles. Clearly real d ata  of this type is subject to considerable noise and is 

undersampled in the wavelength domain -  Sect 2.2 -  which may yield large errors in the recovered

solutions. As is discussed in Chapter 6, the procedures for analysing noisy data  can be very com­

plex and are not discussed in detail in this thesis. However, it should be noted th a t the properties 

of the inverse solutions presented in this chapter -  Abel’s Equation and the Mellin Transform -

have been investigated for the effects of noisy data. The Abel equation turns out to be fairly

robust and its application to noisy data can be treated with standard numerical techniques (Craig 

& Brown), but the Mellin transform is not as stable.

As was stated previously the integral equations relating the spectropolarimetric line profiles 

to the disc structure may be solved by numerical techniques alone -  such as m atrix  inversion, but 

the existence of analytic solutions, albeit only for the rotation and expansion cases individually, 

illustrates further the diagnostic potential of spectropolarimetric line data.
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4. Effect o f  electron  therm al m otion s on  T hom son  scattered  

line profiles from  hot circum stellar envelopes

Sum m ary

This chapter presents the theory which describes the Doppler frequency redistribution for the 

scattering of unpolarised radiation off electrons which are in random (Maxwellian) thermal motion. 

The theory is then applied to the scattering of stellar radiation in isothermal circumstellar discs 

which may also have a bulk velocity component.

4.1 In trod u ction

In the single scattering treatm ent presented in Chapter 2, no consideration was given to the 

smearing effect caused by the Doppler redistribution of scattered radiation due to the random 

thermal motions of the scattering electrons. The analysis was applied to scattering in the discs 

of Be stars where typical bulk velocities are a few hundred km.s-1 and typical tem peratures are 

~  104K, at which the average electron therm al velocity is ~  400 km.s-1 . Since, for Be stars, the 

bulk and thermal velocities of electrons are of the same order the analysis should be extended to 

account for this thermal smearing.

In what follows, the effect of thermal smearing on the scattered Stokes fluxes is determined 

using a treatm ent originally formulated by Dirac (1925) and applied by Munch (1947) to illustrate 

the line broadening effect of scattering off electrons in thermal motion in a plane parallel atmo­

sphere. Sen and Lee (1960) applied the same approach to calculate the emergent polarisation of 

initially unpolarised line radiation after multiple Thomson scattering and their analysis predicted 

variations across the line in the degree of polarisation of up to 5%. This variation is not observed 

and the discrepancy of their results with observations may be attributed to the fact that Dirac’s 

analysis is valid only for scattering of unpolarised radiation, i.e. in calculating the emergent po­

larisation this treatm ent should only be applied in the single scattering case, since the incident 

radiation for subsequent scatterings will be polarised.

4.2  T heory

When calculating the polarisation of scattered radiation the scattering “redistribution function” 

is used which determines the degree of polarisation of radiation scattered into a certain direction 

with a certain frequency. The redistribution function is, in general, a function of frequency and 

scattering angle, the angle between the incident and scattered radiation. For Thomson scattering 

off stationary electrons the phase function is frequency independent, i.e. incident and scattered 

radiation have the same frequency. However, when the electron is in motion there is a Doppler
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redistribution in frequency which must be taken into account. In Chapter 2 this redistribution was 

incorporated directly into the frequency dependent expressions for the scattered radiation -  the 

bulk velocity field of the scattering region was specified and the Doppler shifts arising from the bulk 

motion of the electrons with respect to the source and the observer varied only from point to point 

in the scattering region. This approach cannot be applied when the electrons are in thermal motion 

since there is a distribution of velocities at each point and thus a local averaging procedure must 

be employed. This was investigated by Dirac (1925) where he assumed th a t the electron thermal 

velocity could be specified by the classical Maxwellian distribution. Dirac’s analysis, which is 

summarised here, resulted in an expression for the frequency redistribution of scattered radiation, 

which was initially unpolarised, in terms of the electron tem perature, the scattering angle and the 

incident and scattered frequencies.

In Chapter 2 the frequency redistribution for scattering radiation off electrons in bulk motion 

was described by Eq. 2.1. The complete form of this equation, incorporating the quantum  Compton

wavelength shift, for scattering off electrons with momenta p = (px ,py ,pz ) is,

(me c — p.c) — — (me c — p* cos 0  — py s in 0 )  =  —̂ ^(1 — cos 0 )  , (4.1)
u c

where 0  is the scattering angle for radiation incident in the x direction and scattered in the x - y  

plane. The term on the right hand side of Eq. 3.1 is the quantum  mechanical Compton wavelength 

shift.. In a classical approximation this term can be ignored and for p  <C me c this equation reduces 

to,

(1 — cos 0 )  px — py sin 0  =  me c {y*fv — 1) . (4-2)

In Dirac’s treatm ent he considered the frequency redistribution of radiation scattered off elec­

trons whose momenta were specified by the classical Maxwellian distribution function such that in 

a mass dm there are,

d m T-;----^ r - T e - ^ +'' i+ e ) /2 - .« -dptdpj:dpt i (4 3)
(2 7T 777e K T)  2

electrons with momenta in the range (px ,py ,pz) to (px +  dpx ,py +  dpy,p* +  dp*), with N  the 

number of electrons per unit mass. This mass of electrons will scatter radiation incident from 

direction k* with frequency i/*. into direction k with frequency v. However, not all incident and 

scattered frequencies and electron momenta are arbitrary, but must be related in accordance with 

Eq. 4.2 as follows. Suppose radiation has been scattered from solid angle dfi* about direction k* 

and is observed with a frequency in the range u to u +  du in the solid angle dS7 about the direction 

k. W ith these parameters fixed then dp*, dpy, dp* and the incident frequency must be related 

via Eq. 4.2 before integrating over all possible electron momenta. Due to the formulation of the 

problem -  scattering in the x - y  plane -  p* may be integrated over directly since its value does
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not effect the scattered frequency -  cf Eqs. 4.1 and 4.2. Writing dpx as {dpx/dv*)  di/*, then the 

radiant energy scattered by the thermal electrons from (/✓*., k*) to (;/,k) is,

<7T h .  d m < K d u d t u  ^ d t g(k»;k) N  ; r  r e- l * p > : i / . » , 1T | d p „ d P < ,
* ^ (2 7T 772̂  ^ ^ * •/ — oo </ — co

(4.4)

where ^(k*;k) is the Rayleigh phase function. Comparing this with Eq. 3.5 the redistribution 

function R  may be written as the product of the Rayleigh phase function and a therm al frequency 

redistribution function viz,

R(i/*, k*; i/, k) =  </(k*;k) , (4.5)

where

1  [ O O  [ O O  Q

^) = ----------- ——T /  /  exp +  pj +  p :) /2  m e k T  dpy dp, . (4.6)
( 2  7 r m e K i ) 2  J — oo J — oo ou*(2 7r me fc T)

From Eq. 4.2 dpx /d u* and p2 -I- p2 are

dpx me c j  , v
Px  +  P v =dv+ v (1 — cos 0 )  ’ x y (1 — cos 0 )  

which allows Eq. 4.6 to be written as,

Py +
m e c (i/* — is) sin 0

2/^(1 — cos 0 ) + m l  c2 2 ( j / *  — v y  
2 v 2 (1 — cos0)

(4.7)

??le C‘

4 n  k T i / 2 (l  — cos 0 )
exp

me c2 / 1/* — i / \  
4 k T ( \  — cos0 )  \  v  J (4.8)

This then is the frequency redistribution function for scattering radiation off a Maxwellian 

distribution of electrons at tem perature T.  When the tem perature tends to zero the redistribution 

function for Thomson scattering off stationary electrons is retrieved -  ^(i/*,i/) =  <5(i/* — u). Note 

th a t could have been derived by relating py and //* -  i.e. dpy =  (dpy/di/*) di/* and

integrating over pr .

It is to be noted that this does not posess the same symmetries as the Rayleigh phase function 

which is equal for radiation scattered through 0  or n — 0 .  Instead the Maxwellian frequency redis­

tribution for radiation scattered through tt — 0  is greater than that for radiation scattered through 

0  which can be explained by considering the scat tering properties of a volume of thermal electrons. 

In such a volume as many electrons are likely to be approaching the incident photon as there are 

electrons receding from it. Consider now the case of two incident photons, which are undeviated 

from their original direction after scattering (0  = 0°), one scattering off the approaching, the 

other off the receding electron. From Eq. 2.1 it is clear that, these photons will be scattered with 

a frequency equal to the incident frequency since the two Doppler shifts described by this equa­

tion exactly cancel. However, for photons which are backscattered, 0  =  180°, the photon which 

scatters off the receding electron will have a net redshift, 1/(1 — (3), while the other photon will be 

observed with a net blue-shift, 1/(1 +  /?), such that the mean energy, ~  [1/(1 + 0) -f 1/(1 -  /?)]/2,
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of these two photons is greater, by a factor 1/(1 —/?2), than th a t of the undeviated photons. Hence 

radiation which is backscattered from a volume of therm al electrons will be of greater intensity 

than th a t which is forward scattered -  this is incorporated in the m athem atical form for the ther­

mal redistribution function in Eq. 4.8. As will be illustrated in Sect. 4.6 when bulk and thermal 

velocities are considered this asymmetry of the redistribution function can yield position angle 

changes within scattered spectral lines where no changes occur when bulk or thermal motions are 

considered separately.

Following the analysis set out earlier and incorporating Dirac’s local frequency redistribution, 

the Stokes vector flux, F*,, of radiation Thomson scattered off hot electrons may now be written 

as,
3 c t  

16 7tD
r; f  f  f  n P  xl> (*/*, u) d//* dfi* d V  , 
" j  V J(l+ Jo

(4.9)

where P  is the Rayleigh phase vector of Eq. 1.23. The right hand side of this equation may be 

transformed into wavelength space (A* =  c/i/*) to give,

F„(A) =  - | ^ j - /  /  r  n l u, ( A,)PV-(A*,A)dA*dn*dV ' 
16?tD- J v Jo

where the thermal wavelength redistribution function is,

A * - A

(4.10)

V’(A*,A) =
m e c“

A i r k T A2 (1 — cos0)
exp

me c
4 k T  (1 — cos 0 )  \  A

(4.11)

For A* =  5000A and a tem perature of 104Iv this thermal smearing function has a “width” of about

lOA.

Using the same assumptions as Munch it is convenient to replace A* and A by a constant 

wavelength, Ao -  e.g. line “centre” -  except where the difference (A* — A) is involved and extend 

the range of (A* — A) from —oo to oo. On making the substitutions,

me c~ 
4 k T

A — Ao \  _  f  m e c2\  2 ( A* — Ao
i —

Ao 4 k T

Eq. 4.10 becomes,

where,

e x P ( l _ c o s 0 )

(4.12)

F , ( 0  =  J  J  J ° °  n P  /„.({*) -  ( )  d«* dn* d V  , (4.13)

(4.14)
— cos 0 )

Note that the substitutions made in Eq. 4.12 are ony valid if the scattering region is isothermal 

with no bulk velocity component.

Specific forms of the incident stellar radiation field shall now be investigated.
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4.3 C ontinuum  polarisation

When investigating processes such as Doppler redistributions, whose effects are most pronounced 

over bandpasses where the radiation field varies rapidly with wavelength it is convenient to assume 

wavelength independence of a slowly varying continuum radiation field. In the case of thermal 

smearing this is a valid assumption since the width of the thermal smearing function is typically 

tens of angstroms and thus will only have a significant effect on the wavelength redistribution 

of scattered radiation when the incident intensity is a rapidly varying function of wavelength. 

Therefore, IVlr is set equal to a constant, To, and the Stokes fluxes are,

F „ ( 0  =  | | I /o /  /  /  P d f l . d K .  (4.15)
16  7T J V  J f l * J - oo

Due to the normalisation properties of the thermal redistribution function integrating this equation 

over £* yields,

F ' (f) =  ^ r / .  X .  " P d n * d K ' « • « )

This result is the same as the analysis presented in Chapter 1 and shows that, under the assumption 

of a slowly varying incident continuum radiation field, the continuum polarisation of Thomson 

scattered starlight is unaffected by electron thermal motions.

Attention is now focussed on the scattering of line radiation in an isothermal planar disc, 

in which case variations in the incident radiation field occur over wavelength ranges which are 

comparable to, or smaller than, the width of the thermal smearing function. The scattering 

geometry for a planar disc allows the scattering angle 0  to be expressed in terms of the inclination, 

*, and the disc polar coordinate, <j>, thus,

co s0  = sin i cos (j> .

4.4  M onochrom atic p o in t source

Here the case of an infinitely sharp emission line centred at £* is considered, i.e.

Inserting this form for the incident radiation field reduces Eq. 4.13 (for a point source and planar 

disc) to,

(4.17)

' F U o  ' ( (1 +  sin2 i) Is — sin2 i 19

F?(i) 1 =  2 <r0 Fq j f  d r < — cos2 i Ig +  (1 4- cos2 i) I9

. f!?(0  , [ c o s i /10
where the integrals /s, I9 , and 1 10 are,

f f c ( 0

-J .I»(t)  

h o d )  J

2?r exp - L
1 — sin i cos <f>

0 \ A o ~  — sin i cos <f>)

1

sin2 <f> 

sin 26V r  /

► d (j> (4 .18)
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From symmetry considerations 7io is zero for all £, hence the scattered U flux is zero. This 

result is not as obvious as it may appear due to the asymmetry of the thermal redistribution func­

tion and is explained as follows. For scattering stellar radiation in a stationary disc without any 

frequency redistribution the observed polarisation vectors at each point on the disc are perpendic­

ular to radial lines from the star (considered to be a point source). When summed over the entire 

disc the U component of each polarisation vector at polar coordinate (r, <j>) will cancel with the 

U component of the polarisation vector at (r, tt — <f>) or (r, —<j>) yielding a zero net Stokes U flux. 

Due to the symmetry properties of the Rayleigh phase function each polarisation vector may be 

“paired” with either one of the two polarisation vectors of the same magnitude, but opposite U -  

i.e. there is a double antisymmetry. This possible pairing with two other polarisation vectors does 

not occur when frequency redistribution due to electron thermal velocities is considered. Since the 

thermal redistribution function “favours” backscattered radiation the U component of a polarisa­

tion vector from the back half of the disc, (?*, <j>) will not entirely cancel with the U component of 

the polarisation vector which is at (r , 7r — <p) on the front half of the disc, but will cancel with the 

U component of the polarisation vector which is on the back half of the disc at (r, — <f>) -  i.e. there 

is still a single antisymmetry. Pairing off the polarisation vectors in this way will thus yield a net 

zero U component. Note that inclusion of occultation effects will not yield any U component of 

the scattered flux since occultation will remove polarised flux from the rear of the disc where the 

(r, <p)-(r. — (f>) pairings occur and hence the scattered U flux will average to zero over the occulted 

and visible regions of the disc.

Analytic solutions for Ig and Ig can only be found for the following cases. When i =  0 the 

integrals reduce to

r h i t )  ]

h i t )
e

2 >i
v^F 

1

V *  J
while for i = 7t/ 2 ,  on making the substitution y =  (£)2/ ( l  — cos<^), the solutions are,

(4.19)

h i t )  \  _ 1
r H v ^ / < 0 K V 4 ) > e

h i t )  J { 2£ W - i p i t 2/2)
- r / 4 (4.20)

where A'o is a Bessel function and W - \ to is the W hittaker function (Gradshteyn k, Ryhzik, 1963). 

When i =  0 the Stokes Q flux in Eq. 4.18 is zero (as expected for an axisymmetric disc viewed 

pole-on) and the scattered total flux is,

(4.21)

For i =  7r/2 the scattered Stokes fluxes are.

5
.

£3
' - 4 = f f 0« 7 4 ) - « W r- 1,o « 7 2 ) '

V  27T

F ? ( 0 ► =  4  ao Fq e~ * < fW C ,,o («72)

. f f K ) , . 0

(4.22)
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* =  901.

i =  601,

i =  30:

i =  90°

i =  60'

i =  30'

Fig . 4.1 The resultant. Stokes fluxes after scattering monochromatic stellar radiation 
in an isothermal planar disc at various inclinations

Figure 4.1 shows the scattered Stokes fluxes for the above inclination values (Eqs. 4.21 and 

4.22) and also the results of numerical calculations of Eq. 4.17 for inclination values where “ana­

lytic” solutions could not be found. It is seen that the scattered fluxes are broadened symmetrically 

about line centre, illustrating the broadening of line radiation due to (single) Thomson scattering 

off hot electrons.

4.5  G aussian  lin e  source

In this case the source is taken to be a Gaussian emission line, according to Eq. 2.30, viz,

A* — Ao
A*) — Iq 1 +  s exp —

At
(4.23)

For scattering in an isothermal disc this may be expressed as,

=  h (4.24)

where £* is given by Eq. 4.12 and,

a =
4 k T  ( Aq
me c- \A b

(4.25)

The choice of a Gaussian line profile and the Gaussian nature of the therm al redistribution function 

allows the integration over the incident wavelengths (£*) in Eq. 4.13 to be performed explicitly. 

The scattered Stokes fluxes for this case of a point Gaussian emission line source scattering in an
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isothermal planar disc are then determined by, 

(

* ? ({ )  > = » o / o  J

F " ( ( )

1 +
 _____

S e x P l + a ( l —8in*cos<£)

y j \  +  a (1 — sin i cos <f>)
*{r){

2 ( 1 +  sin2 i cos2 <f>) 

sin2 i — (1 +  cos2 i) cos 2 <f> 

w 2 cos ?' sin 2 <f>

dA
r*2

(4.26)

These equations are integrated numerically, neglecting occultation effects, for i =  60°, s — 2, 

Ao =  6562A, At =  4A and compared with the results of Sect. 2.5.1 where the scattering electrons 

were cold, but moving with a Keplerian velocity profile with (3q c =  450 km .s- 1 . Figure 4.2(a) 

shows these comparative results for isothermal discs a t 102, 103 and 104 Kelvin. The scattered U 

flux is zero at all wavelengths as explained previously -  i.e. cancellation of the U component of the 

polarisation vectors at (r, <p) and (r, — <p) for the isothermal disc and cancellation when summing 

over the isowavelength-shift contours on the rotating disc. In Fig. 4.2(b) the initial stellar line 

profile and the scattered degree of polarisation -  P  =  F ^ / F D -  across the line are shown for 

the two cases. These figures show that for typical Be star temperatures thermal smearing results 

in spectropolarimetric profiles which are similar in shape to scattering in a rotating disc -  i.e. 

symmetrically broadened about line centre with a decrease in the polarisation at line centre. High 

tem peratures result in extended line wings, similar to Munch’s results for the emergent intensity 

from a plane parallel electron scattering atmosphere. Note, however, th a t Munch calculated the 

resultant intensity profiles for atmospheres of different optical depths and the work presented above 

only considered the optically thin (single scattering) limit.

:i o

l o

i «>

i o

/—
T  =  104 K

wavelength (am )

Fig . 4 .2 (a ) Resultant Stokes fluxes after scattering stellar radiation with a spectral 
profile given by Eq. 4.23 in an isothermal disc at tem peratures of 102, 103 and 104 
Kelvin with i =  60°. Also shown for comparison are the fluxes arising from scattering 
of stellar radiation in a cold Keplerian rotating disc (solid lines).
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T.= 104 K

F ig . 4 .2 (b ) Direct flux normalised to the continuum and degree of scattered polar­
isation for the case described above.

4 .6  E ffect o f  e le c tro n  b u lk  a n d  th e rm a l m o tio n s

The above analysis has considered the formation of spectropolarimetric line profiles from the 

Doppler redistribution of scattered radiation arising from either the bulk motion of the disc elec­

trons or their thermal velocity. Clearly the effect of both bulk and thermal motions on the scattered 

radiation should be considered. This may be formulated by assuming th a t the electron velocity

may be specified by a bulk component, (3c, and a random thermal component, f i rc. Transforming

into a frame in which the bulk velocity is zero, the redistribution function for the scattered radia­

tion is given by Eq. 4.8, noting that the incident frequency (seen as vB) m ust be transformed into 

th a t frame via,

vB «  (1 -  , (4.27)

where 7 =  l / \ / l  — ;32 is assumed to be unity due to the small stellar wind speeds under inves­

tigation. The scattered frequency due to this thermal smearing, u t ,  must now be related to the 

frequency, i/, seen by the observer, thus,

vt «  (1 — (3- k )^  . (4-28)

Therefore, radiation from a point source incident at frequency 1/* is redistributed in frequency due 

to bulk and therm al Doppler shifts according to,

h { v )  = J  I„Av*)'P(vB,vT )di 'B , (4.29)

where tp{i'b , v t ) is the thermal smearing function, Eq. 4.8, and vB and vt  are given by Eqs. 4.27 

and 4.28 respectively. The resultant scattered Stokes fluxes are then determined by integrating
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Eq. 4.29 multiplied by the Rayleigh angular redistribution functions and the density factors over 

the entire scattering region.

4.7  T he effect o f  electron  bulk and therm al m otion s on  th e sca tter in g  o f  m onochro­

m atic  rad iation

Following Eq. 4.27 and the properties of the delta function a monochromatic source may be 

represented as,

LA»* )  = lo % *  -  M  =  (1 -  /?• k*) Iq 8[ub - { 1 - 0 -  k*)i/0] , 

which reduces Eq. 4.29 to,

I u { v )  -  I q

(4.30)

me c2 ( l - / ? . k * ) 2
1

exp
me c2 |̂ (1 -  /?-k*)i/0 -  v t \

4 7T k T  ITf ( 1 — COS 0 ) 4 k T ( l  — cos 0 ) K UT J
. (4.31)

For a point source at the centre of a planar disc, with D  =  (1 — /?-k*)/(l — (I- k) and a = 

(A — Ao)/Ao the dimensionless wavelength shift from line centre, the Stokes fluxes are,

' v F l, ( a )

!//?(<*)

^ ( a )  J

► = (T0 Fq
m e c~

4irk.T 7 / D
:(*) exP

— m e c2( l  — ( l + O ' ) / ? ) 3 
4 k T  ( i — sin » cos <f>)

— sin i cos <p)

' 2(1 +  sin2 i cos2 <j>q) 

x sin2 * — (1 -h cos2 i) cos 20o 

2 cos i sin 2</>o

(4.32)

> dxd<j) .

These equations are now integrated numerically for the cases of scattering monochromatic 

stellar line radiation in an isothermal disc which has bulk rotational, expansional and a combination 

of these velocity profiles.

4.7 .1  Isotherm al rotatin g  d isc

Figure 4.3 shows the Stokes fluxes arising from scattering of monochromatic stellar radiation in 

an isothermal disc which is rotating with a Keplerian velocity profile (rotational speed at stellar 

surface is 450 km .s- 1 ) and the number density is inversely proportional to radial distance (q =  1 

in Eq. 2.17).

The scattered I  and Q flux profiles have spectral shapes similar to the “cold” case of Sect. 

2.4.1, but are symmetrically broadened about, line centre with the degree of “smearing” depending
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on the disc tem perature. For low tem peratures the scattered fluxes are, essentially, formed by 

summing over the isowavelength-shift contours as in Chapter 2. However, as the tem perature is 

increased other parts of the disc will contribute to the scattered flux a t a given or since the electron 

therm al motion from these areas will yield a sufficient therm al Doppler shift to “overcome” the 

bulk Doppler shift from th a t area allowing the scattered radiation to appear a t the given a.  Since 

increasing the disc tem perature allows larger regions of the disc to contribute to the scattered flux 

at a given a  the spectral features associated with scattering in a cold disc (which isolated localised 

disc regions at different a  values) tend to be ‘ washed out” . This is evident in the Q flux profile 

of Fig. 4.3 which loses the negative spectral feature at a  % 0 (explained in Sect. 2.4.1 for a cold 

disc) as the tem perature rises.

8

A

O

T =  104 K
2

1

O

O  .  5 •T =  104 A'

O

o . s

F ig . 4 .3 Resulting Stokes fluxes after scattering monochromatic stellar radiation in 
an isothermal disc which also has a bulk Keplerian velocity component

Another effect, of combined bulk and thermal Doppler shifts is th a t the scattered U flux is now 

non-zero possessing an antisymmetric variation about a  =  0. This is explained by a combination 

of the preferential back-scattering of the thermal redistribution function as before and by the disc 

rotation which breaks the antisym metry across the disc.
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4 .7 .2  Isotherm al exp an din g disc

The Stokes fluxes arising from scattering monochromatic stellar radiation in an isothermal disc 

expanding with a constant velocity of 150 km .s-1 are shown in Fig. 4.4. This figure again 

illustrates the “washing out.” of spectral features at high temperatures (e.g. the negative Q flux 

at extreme cv values) caused by the dominance of the thermal over bulk Doppler shifts. In this 

case of pure expansion of the isothermal disc the scattered U flux is zero at all frequencies. For 

an expanding disc the isowavelength-shift contours are symmetric about <f> =  0 (e.g. Fig. 2.13, 

unlike a rotating disc) resulting in cancellation of the U components at (r, <f>) and (r, — (j)). This 

same symmetrical cancellation occurs when the electrons are in random therm al motion (Sect.

4.4 above) so that combining bulk and thermal effects will not yield any U flux throughout the 

scattered polarimetric line profile.

x  a

a

A

O

2

1

O

X

O  .  5

O

O  .  S

■1

Fig . 4 .4 As for Fig. 4.3 except for a constant expansion bulk component of the disc 
velocity.
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4.7 .3  R o ta t in g  a n d  e x p a n d in g  is o th e rm a l d isc

The scattered Stokes fluxes arising when the bulk velocity of the isothermal disc is a combination 

of Keplerian rotation and constant expansion are shown in Fig. 4.5. This again illustrates the 

gradual “washing out” of the spectral features as the disc tem perature rises.

i r>

1 2

IJ

Q

1

O

1

<- T  =  104 KO  .  5

<'F O

O . 5

x 103

Fig . 4 .5  As for Fig. 4.3 except for an isothermal disc with both rotational and 
expansional bulk velocity components.

4 .8  D e te rm in a tio n  o f  d isc  in c lin a tio n

The disc inclination may be determined by taking the ratio of the integrated scattered total to 

polarised fluxes as in Sect. ‘2.6. Due to the normalisation properties of the therm al redistribution 

function and the monochromatic line profile integrating Eq. 4.32 over all a  gives,

' u F \ a )  ' ( u F l (a )  j r 2(1 +  sin2 * cos2 <f>o)

uF q {q ) ,=£ da =  ao F0 J  J  ̂  < sin2 i — (1 +  cos2 i) cos 2</>o

k v F u {a )  ^ i  ^  j 2 cos i sin 2<f>o
(4.33)
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which yields the same result as in Sect. ‘2.6, namely,

pQ -- 2
Sm * (4.34)

F 1 2 -f sin2 i

Thus when the wavelength average across the line is performed the scattered U flux averages to 

zero as before. The beauty of this is that relation 4.34 determines i even with thermal electron 

broadening present.
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5. Spectropolarim etric  scattered  line profiles from  ax isym m etric  

th ree-d im en sion a l circum stellar en velop es

Sum m ary

This chapter considers the Thomson scattering of stellar line radiation in a three dimensional 

axisymmetric circumstellar envelope which is undergoing bulk and therm al motion. Based on 

com putations of spectropolarimetric line profiles for the scattering of stellar line radiation, a dis­

cussion is presented of future theoretical work to be undertaken in the study of such profiles with 

application to current data and instrum entation capabilities.

5.1 T hree d im ensional ax isym m etric  circum stellar envelopes

The polarisation arising from Be stars is generally considered to arise through Thomson scattering 

in an axisymmetric flattened circumstellar envelope (Coyne, 1976) and in Chapters 2, 3 and 4 this 

circumstellar region was modelled as a planar disc. This param etrisation is obviously an extreme 

case, but was shown to give considerable insight into the formation of spectropolarimetric line 

profiles. A more realistic model, which will now be considered, is that of a spherical circumstellar 

envelope which has an axisymmetric electron number density thus,

n(x,0)  =  n o x ~ 9 sinm 6 , (5-1)

where uq is the equatorial electron number density at the stellar surface (x =  1), 6 is the polar 

angle, q and m  are indices which determine the radial and angular density distribution and x = r / R  

as before. This form for the density law can range from a completely spherical distribution (m =  0) 

to a planar disc (?7? =  oo) and is thus very adaptable for modelling purposes. A common model for

a Be star is that of a central star surrounded by a wedge-shaped envelope of a specified opening

angle (e.g. Cassinelli k. Haisch, 1974). Something akin to this may be approximated by Eq. 5.1 

by considering the angle measured from the equator, 0q at which the electron number density is 

one half of its equatorial value, viz,

#o =  cos-1 2_1/,m . (5.2)

W ith this definition the “opening angle” of the envelope is just 2 9q.

The radial dependence of the density may be determined from the continuity equation for a 

three dimensional region -  e.g. a constant expansion velocity has q — 2 while a more complex 

dependence of the velocity with radial distance requires the simple radial power law form of Eq.

5.1 to be replaced by,

” (*) =  2 • (5-3) f3r (x) x 2
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In this chapter the bulk rotational and expansional components of the envelope velocity shall be 

parametrised as,
_ i0 4 (x td ) = / 3 Qx  ̂ s in 9, Pr(x,6) = fa , (5.4)

th a t is, a constant expansion velocity and a Keplerian rotational component which decreases with 

latitude (maximum at the equator, falling to zero at the pole).

For scattering unpolarised radiation from a point source in a three dimensional envelope the 

Rayleigh angular phase function is, from Eq. 1.29,

/  (3 — cos2 *') — (1 — 3 cos2 z) cos2 9 +  sin2 z sin2 9 cos 2<j> +  sin 2z sin 29 cos <f> \

P  = sin2 z (1 — 3 cos2 9) — (1 4- cos2 z) sin2 9 cos 2<j) +  sin 2i sin 29 cos <f> 

\  2 cos i sin2 9 sin 2<f> — 2 sin i sin 29 sin <f>

(5.5)

The above formalism now allows the Stokes fluxes arising from the scattering of stellar line 

radiation in a three dimensional axisymmetric envelope to be calculated.

5.2 S c a t te r in g  o f  s te l la r  lin e  ra d ia t io n

The spectral shape of the central point emission line source is assumed to be Gaussian as before, 

viz,

l » A K )  =  Io 1 +  s exp —
A* — Ao 

A b
(5.6)

For a three dimensional scattering envelope the observed wavelength arising from the Doppler 

redistribution of scattered radiation is, from Eq. 2.1,

1 — l3r ( i \9)  sinf? cos<j) sinz +  (3,p(x,9) sin<£ sinz — 0r (x ,9 ) cos# cosz
A _ ‘ l~/3r(*,tf)

so th a t the exponent in Eq. 5.6 may be written as, 

A, — Aq

) A ., (5.7)

A{x,9,<j>, A) =
Aft

{1 — (3r(x,9)}  A — {1 — 0r (x, 9) sin z sin# cos4> +  /?^(x, 9) sinz s in <f> — 0r (x, 9) cosz cos^}Ao 
{1 — (3r (x,9)  sinz s in 9 cos<j> +  /?^(x*,0) sinz sin$  — fir (x,9)  cosz cos9}Aft

(5.8)

The Stokes fluxes arising from scattering of radiation from a point source in a three dimensional 

envelope (ignoring occultation effects) are determined from solution of,

F ( /=<T0 ir0 ^  (1 +  s exp -{ A (r, 9, <f>, A)}2) n(r, 9) P  , (5.9)

where P , A{i',9.<p,\) and n(r,9)  are given by Eqs. 5.5, 5.7 and 5.3 respectively.

In Chapter 2 the spectral shapes of the scattered Stokes fluxes were explained with reference 

to isowavelength-shift contours on the flat disc (Eq. 2.2). However, in this chapter these contours
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are replaced by surfaces (determined from Eq. '2.2 for a three dimensional envelope) from which 

the scattered radiation has the same relative Doppler shift. These surfaces are not presented in 

graphical form, but their features which determine the scattered spectropolarimetric line profiles 

will be described in the relevant sections below. As in Section 2.5 the isowavelength-shift surfaces 

become smeared when considering the scattering of non-monochromatic radiation with the degree 

of smearing being proportional to A&.

The variations in the Stokes fluxes across the scattered line are now calculated for cases when 

the envelope’s bulk velocity is pure rotation, pure expansion and a combination of these. The 

initial unpolarised stellar line is specified with s = 2, Ao =  6562A and A j =  4A. The effect on 

the scattered spectropolarimetric line profiles of various disc “opening angles” are investigated by 

changing the m value in Eq. 5.1 while the radial density distribution is parametrised by q =  2 

(pure radial expansion) and the inclination is fixed at i = 60°.

m  =  0

m = 1

m  — 50

m  =  ].
7 7 7  -=  50

7 7 1  =  0

F ig . 5.1 The resulting Stokes fluxes for scattering stellar radiation with a spectral 
shape given by Eq. 5.6 in a Keplerian rotating envelope, a t i — 60°. /?o c =  450 
km.s-1 . in Eq. 5.4.

5 .2 .1  P u re en velop e rotation

Figure 5.1 shows the scattered spectropolarimetric line profiles for scattering of stellar line radiation 

in an envelope with polar density indices of m  =  0, 1 and 50 and i = 60°. These m  values represent 

a spherical and progressively more equatorial density distributions -  9q values being 60° and ~  10°. 

It is seen that the symmetry breaking effect of the envelope rotation results in a non-zero Q flux 

within the scattered line even for the spherical, m  =  0, density distribution. This occurs due 

to the shape of the isowavelength-shift surfaces which are such th a t the zero shift occurs along
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the meridional plane containing the observer where the line of sight velocity is zero. Radiation 

scattered from these regions has its polarisation vector oriented perpendicular to the envelope’s 

rotational symmetry axis hence the negative Q flux at the centre of the scattered line. The higher 

wavelength shifts occur towards the regions of the stellar limb. Since there is more solid angle 

toward the equator than the pole the Q flux is positive in the wings falling to zero (the expected 

continuum value for scattering in a spherical envelope) beyond the maximum Doppler shift. As 

the density becomes more equatorial (increasing m) the scattered spectropolarimetric line profiles 

resemble the results for a planar disc -  Fig. 2.16(a), though the spectral features are not as 

distinct due to the increased polarimetric cancellation between the polar and equatorial regions 

which occurs in a non planar electron distribution. The scattered U flux is zero at all wavelengths 

(neglecting occultation) due to the symmetry of the isowavelength-shift surfaces within the rotating 

envelope.

a o

m  =  0

CO
m  =  1

F lA V

A  O

m  =  50

m  =  1

A
m  - 50

p Q
V

1

V,
w avelength (nra)

Fig . 5.2 As for Fig. 5.1, but for the envelope velocity being purely expansional.

5.2 .2  P u re en velop e expansion

When the envelope velocity is pure radial expansion (Eq. 5.4) the scattered spectropolarimetric 

line profiles for m  =  0, 1 and 50 are shown in Fig. 5.2. When the envelope density is spherically 

symmetric the Q and U fluxes are zero across the scattered line due to the polarimetric symmetry of 

the isowavelength-shift surfaces for this case of pure envelope expansion. For a radially expanding 

spherical envelope it is impossible to define any reference plane (or inclination) so there is complete 

polarimetric cancellation across the scattered line. Note that the (single) scattered I  flux exhibits 

red shifts similar to the Monte Carlo results of Lefevre (Fig. 2.7) who used an anisotropic radiation 

source and hence obtained non-zero polarimetric profiles. As the density becomes more equatorial
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the scattered profiles again tend to resemble the spectral shape of the Chapter 2 profiles -  Fig. 

2.17(a). The polarimetric cancellation about the line of sight of the isowavelength-shift surfaces is 

such th a t the scattered U flux is zero for all m values (and all inclinations also).

5 .2 .3  E n v e lo p e  ro ta t io n  a n d  ex p a n s io n

Figure 5.3 shows the scattered spectropolarimetric line profiles when the envelope has bulk rota­

tional and expansional velocity components given by Eq. 5.4. The profiles have similar spectral 

shapes to those of Sect. 2.5.3 (stronger Q flux in the red wing, U flux and hence position angle 

variations across the line, etc), but at lower amplitude and “resolution” due to the polarimetric 

cancellation of the non planar electron distribution as in the above sections.

in =  0
7 7 7  =  1

7 7 1  =  50

7 7 7  =  1

7 7 1  =  50

7 7 7  =  0

wavelength (nm)

Fig . 5.3 As for Fig. 5.1, but for a rotating and expanding envelope.

5 .3 E le c tro n  b u lk  a n d  th e rm a l m o tio n s  in  a  th re e  d im en s io n a l en v e lo p e

This section considers the effect of electron bulk and therm al motions on the Doppler redistribution 

of scattered stellar radiation in the axisymmetric envelope described in Sect. 5.1. The equations 

determining the scattered spectropolarimetric line profiles are derived in the same manner as in
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Sect 4.6 -  assuming the total electron velocity to be the sum of bulk and Maxwellian components, 

transforming the incident frequency to the frame in which the bulk component is zero, applying the 

thermal redistribution in this frame and then transforming the result to the observer’s frame. Pro­

ceeding in this way for incident monochromatic stellar radiation gives the same result as Eq. 4.32, 

except the velocity and direction vectors and the scattering angular phase function are modified 

for scattering in a three dimensional envelope, viz,

F *(a) =  ^ 2 / o  16 7T
777 e  C '

4 7T k T Lexp -m e c3(l —(1+a) D)-1 
4 kT (1 — cos x)

\ / ( l  -  cos*)
D n(r, 9, <fi) P

where is the scattering angle, viz,

cos \- =  cos 6 cos i -f sin 9 cos 4> sin i

(5.10)

(5.11)

P  is given by Eq. 5.5 and D  =  (1 — /?-k*)/(l — /? k). For a point source scattering in a three 

dimensional envelope this becomes,

1 -  (3r {x,9)
D  =

1 — 0r {x,9) sin 9 cos <p sin i — sin<£ sin i — 0r (x,9)  cos9 cos i
(5.12)
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F ig . 5 .4 (a) Resulting Stokes fluxes after scattering monochromatic stellar radiation 
in an isothermal envelope, T  =  103 / \ ,  which also has a bulk Keplerian velocity 
component.
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Equation 5.10 is integrated numerically for i = 60°, tem peratures of 103 and 104 K ehin and 

m values of 0, ] and 50 when the bulk component of the envelope velocity is pure rotation, pure 

radial expansion and a a combination of these (Eq. 5.4). The scattered Stokes fluxes for these 

cases are presented in Figs. 5.4 to 5.6. Comparing these scattered profiles with those of Sect. 4.7 

(planar disc) it is seen that the spectral shapes are similar, but again they are not as defined due 

to the polarimetric cancellation properties of the envelope.

m = 0

m = 1

m  =  50

m =  1

in — 0

777 =  0

177. =  1
in =  50

Fig . 5 .4 (b ) As for Fig. 5.4(a) except for a tem perature of T  = 104 K.
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F ig . 5 .5 (a ) Resulting Stokes fluxes after scattering monochromatic stellar radiation 
in an isothermal envelope, T  =  103 / i ,  which also has a bulk expansion velocity 
component.
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Fig . 5 .5 (b ) As for Fig. 5.5(a) except for a tem perature of T  = 104 I\ .
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F ig . 5 .6 (a ) Resulting Stokes fluxes after scattering monochromatic stellar radiation 
in a rotating and expanding isothermal envelope, T  =  103 K.
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F ig . 5 .6 (b ) As for Fig. 5.6(a) except for a tem perature of T  = 104 /v.
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5 .4  W a v e le n g th  in te g r a te d  S to k es flu x es

The inclination of the axisymmetric envelope considered above cannot be determined by the same 

method as in Chapters 2, 3 and 4 where the scattering region was a planar disc. Performing the 

wavelength integral over the entire scattered spectropolarimetric line profiles of Sects. 5.2 and 5.3 

gives,
F Q _  sin2 i ( 1 - 3  7)
F 1 ~  sin2 i (1 — 3 7 ) +  2(1 +  7 ) ’ 1 '

with Ff/  averaging to zero across the scattered line and 7 is the shape factor defined in Eq. 1.33 

viz,
f - !  n(r,fi)fi2dfidr

7 — — i--------------------  • (5-14)f_ 1 n(r, p)d/z d r

As the distribution of electrons approaches plane, 7 —«• 0, thus enabling i to be determined uniquely. 

In practice 7 is quite small even for moderately flattened envelopes. However, a general axisymmet­

ric, non planar density profile of this chapter introduces this additional shape factor in the analysis 

such th a t the comments made by Brown <Ss McLean (1977) following their theoretical investigation 

of continuum polarisation are valid here. Namely that measurements of the wavelength integrated 

scattered Stokes fluxes cannot tie down separately the geometry or inclination of the axisymmetric 

scattering region unless further assumptions can be made concerning 7 or i. However, in the line 

case the further optical depth ambiguity present in the continuum case -  cf Eqs. 1.31 and 1.32 -  

can be removed.

5 .5  F u tu re  w ork

The work presented above concludes the analysis of spectropolarimetric line profiles formed by 

scattering of unpolarised stellar line radiation in a moving circumstellar envelope. This model 

is obviously a considerable simplification, but it does give a great deal of insight into the role 

of scattering and Doppler wavelength redistribution in the production of spectropolarimetric line 

profiles. In the stellar systems which have so far been analysed using high wavelength resolution 

spectropolarim etry (Be and Wolf Rayet stars -  Section 2.1) the model becomes more complicated 

due to sources of continuum and line opacity and emission from the envelope itself (e.g. Poeckert 

&; Marlborough. 1978). The remainder of this chapter outlines the future theoretical work to be 

undertaken in order to develop a more comprehensive understanding of spectropolarimetric line 

profile variations.

5.5.1 T he general single sca tterin g  equation  for m onochrom atic  rad iation

In the theoretical analysis presented in this thesis the unpolarised line emission was assumed to 

originate from a point stellar source -  an assumption which allowed the effects of stellar rotation 

or expansion to be ignored. When forming the general single scattering equation the velocity and 

physical size of the source should thus be incorporated. Following a similar analysis to Sections
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4.6 and 5.3 the general equation for the scattered Stokes fluxes is,

F „ (a )  =  ^ 2 / o  
16 7T

l [ —m e c2f l  —( l + c r ) D * ) 2 1
r r  1 1 ^  n ( r ) P d t M y , (8.15)

4 x k T \  JVJn . . / ( I - c o s * )

where 7?(r) is the electron number density at vector position r  in the scattering region, fi* is the 

solid angle the source subtends at the scattering electron and V  is the scattering volume (allowing 

for occultation effects also). The elemental solid angle (dfi*) and volume element (dV') are as 

defined in Sect. 1.4.1 and Fig. 1.4. As in previous chapters a  is the dimensionless wavelength shift 

from line centre, Iq is the specific intensity of the monochromatic source at Ao and the scattering 

angle, 0 ,  is given by cos© =  k * k .  The D* param eter is given by,

“ • "  '  ( s  “ '

and determines the Doppler wavelength redistribution due to the bulk motions of the source and 

scattering electrons with /?*-k* the radial velocity of the electron with respect to a point on the 

source (thus allowing for source motion), while /?-k is the radial velocity of the scattering electron 

with respect to the observer.

The integral over Q* in Eq. 5.15 allows for line emission originating from any point and even 

within the scattering region itself -  as occurs in the envelopes of Wolf Rayet stars for example. 

The point source approximation employed in this thesis is clearly an extreme case of Eq. 5.15 

while line emission originating at large radial distances and scattering off electrons close to the 

stellar surface is another extreme. Analysis of the spectropolarimetric line profiles produced by this 

other extreme case (and intermediate cases) will provide further diagnostic techniques for probing 

the envelope velocity and density structure, but may also provide a means of determining where 

different line forming regions occur within the extended stellar atmosphere.

5 .5 .2  L ine o p a c ity  a n d  th e  ex te n s io n  to  o p tic a lly  th ic k  c irc u m s te lla r  en v e lo p es

Poeckert. &; M arlborough’s model for j  Cassiopeiae (1978) and the qualitative work of McLean 

(1979) attributed the polarimetric variations within spectral lines to different spatial integrations 

of scattered stellar radiation in an extended atmosphere containing line opacity sources and under­

going mass motions (Sect. 2.2.3). This may be incorporated into an optically thin single scattering 

approximation by including the attenuation factor exp — n(A ) prior to scattering of the continuum 

stellar radiation and the factor exp — 73(A) which attenuates the scattered radiation as it traverses 

the envelope. The optical depths rj(A) and ro(A) are,

n(A) =  J  nA <rA(A ^)d s, 72(A) =  j  n A (rA( \ A )ds  , (5.17)

where the limits on the s integrals are from the source to the scattering electron for T\ and from 

the scattering electron to the observer (in practice the edge of the scattering envelope) for T2. nA
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is the number density of line absorbing atoms and <rA (XA) is the line absorbing cross section of 

the atom at wavelength XA in the atoms rest frame which is related to the observed wavelength 

by the Doppler equation as before. As a first approximation the absorption cross section may 

be approximated by a delta function such that only stellar continuum wavelengths which are 

Doppler shifted to Ao, say, are absorbed. This delta function approximation should simplify the 

m athem atics in a similar way to the monochromatic approximation of Chapters 2, 3 and 4.

As the optical depth of the envelope increases the above approximation will no longer be 

valid due to the increased import ance of re-emission of absorbed radiation and a radiative transfer 

approach must be adopted. A possible solution lies in the Soboltv-P Method, developed by Jeffrey 

(1989). This technique utilises the conventional Sobolev (1960) escape probability formalism for a 

moving atmosphere and has been extended to include the transfer of polarised radiation -  hence 

the P. Jeffrey’s analysis concentrated on the emergent polarimetric profiles of resonance lines 

from supernovae where the Sobolev approximation of the bulk velocity of the atmosphere being 

much greater than the thermal velocity of the atoms holds. As was outlined in Chapter 4 the 

electron thermal velocity in Be star envelopes is comparable to the bulk component and even in 

the faster and hotter Wolf Rayet winds electron thermal velocities are greater than 10% of the 

terminal velocity of the wind -  t’oo ^  1500 km .s-1 . When applying the Sobolev-P method to the 

extended atmospheres of Be and Wolf Rayet stars the comparitively large thermal component of 

the scattering electron’s velocity must be included in the calculation as in Chapter 4.

Proceeding in this way and noting the effect of the various approximations will lead to a more 

complete theoretical understanding of the formation of spectropolarimetric line profiles.

5.5 .3  T em poral variations o f  sp ectrop olar im etr ic  line profiles

A topic not considered so far on the subject of spectropolarimetric line profiles is that of temporal 

variabilty -  see Chapter 6, though, for analysis of temporal variations in the continuum polarisation. 

Spectrometry of Be stars has revealed that line profiles (e.g the Balmer lines) exhibit spectral 

changes on various time scales (Hanuschik, 1993). Recent models have attributed these changes to 

non axisymmetric density variations within an extended atmosphere -  e.g. non radial oscillations or 

density waves (Papaloizou, et al, 1992). The simplest param etric model which predicts the correct 

qualitative behaviour of the spectrometric line profiles is that of a localised non axisymmetric 

density enhancement within a rotating disc. This may be incorporated in the model presented in 

this thesis by allowing the electron number density to vary with azimuthal angle on the disc -  i.e. 

n(r, 9,(j>). However, the line forming region considered by Hanuschik is the envelope itself and the 

emergent line profiles were computed by a radiative transfer code, so the non axisymmetric density 

should be incorporated in Eq. 5.15 when calculating the spectropolarimetric line profiles.

Due to the limitations placed on line spectropolarimetry, discussed in Chapter 2, there are at
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most a few observations of spectropolarimetric line profiles in any one star and hence temporal 

variations of any polarimetric line profiles have not been detected. The advent of high resolution 

spectropolarimeters (see below) should alleviate these problems and allow a concentrated spec­

tropolarim etric observing program to be implemented in an attem pt to detect variations with time 

of line polarisation.

5 .5 .4  A p p lica tion  to  non ste llar  o b jects

While the single scattering analysis presented was applied to the net (wavelength dependent) 

polarisation arising from scattering in moving circumstellar envelopes the theory of wavelength 

redistribution through light scattering off moving particles (not necessarily electrons) could be 

applied to other situations also. Planetary nebulae, for example, are believed to be illuminated by 

a central source or sources and are seen almost, entirely in scattered (and hence highly polarised) 

light. Spectropolarimetric line profile observations of such objects exhibit similar spectral shapes 

to the scattering of stellar lines in an expanding envelope as studied above. Indeed the observed 

polarimetric line profiles have been attributed to line radiation from a central illuminating source 

scattering off dust grains (which may posess different angular phase functions from the Rayleigh 

phase function) in a radially expanding nebulae (Axon, 1993). One advantage of studying nebulae, 

as opposed to Be and Wolf Rayet stars, is th a t they are often spatially resolvable and the scattered 

polarim etric line profiles from different regions within the nebula may be isolated for subsequent 

analysis. It is therefore anticipated that the density and velocity fields at localised points within 

the nebula may be inferred from such observations -  in a similar fashion to the stellar sytems 

studied in this thesis -  without having to make assumptions about the global structure of the 

nebula. As with stellar observations line spectropolarimetry of nebulae is still in its infancy, but 

will provide a powerful tool for probing the structure of extended scattering regions.

Another obvious system which may involve line scattering off moving particles is the polari­

sation of astrophysical jets. However, the situation is more complicated than any of the aforemen­

tioned systems in that the jets are often thought to be constrained by strong magnetic fields which 

may give rise to synchrotron polarisation in addition to any scattered polarisation. This topic is 

discussed further in Chapter 7.

5 .5 .5  F orthcom ing ob servin g  cam paigns

Prom pted in part by the renewed interest in the theoretical study of line polarisation and by 

the advent of more sensitive polarimeters several spectropolarim etric observational programs are 

currently on going or being planned.

Despite some calibration and mission problems a lot of interesting science has arisen from the 

ASTRO-1 mission which measured polarisation in the ultraviolet. ASTRO-2 is currently scheduled
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for November 1994 and will investigate further UV continuum and line polarisation. Although 

the spectral resolution is rather low to detect the polarimetric variations predicted above a few 

polarimetric data points may be obtained across UV resonance lines thus enabling the general 

trends of polarisation and position angle variations to be studied and compared with theory. W ith 

so many lines occurring in the UV spectra of Be stars higher resolution spectropolarimeters are 

clearly required to exploit the wealth of information these lines contain.

High wavelength resolution observations (anticipated to be better than 0.2A) across Ha in 

bright Be stars and across the Helium 4686A line in the Wolf Rayet star EZ Canis Majoris (to 

complement the observations of Schulte-Ladbeck et al, 1990) are curently being collected by An­

derson (1993) with a modified ECHELLE spectrograph from a 2.5m telescope at Ivitt Peak. Work 

is nearing completion on the W isconsin-Indianapolis-Yale-NOAO (WIYN) telescope, also at Ivitt 

Peak, which will be collecting spectropolarimetric data by 1995.

In addition to the ASTRO-2 mission, two other UV-Polarimetry space missions are planned. 

The W ide-Field Imaging Survey Polarimeter (WISP) will obtain the first wide-field polarimetric 

images in the UV, while the Far-Ultraviolet. Spectropolarimeter (FUSP) will explore the wavelength 

range shortward of that of W UPPE. Although only at low spectral resolution, the polarimetric 

data from these instruments, as with W UPPE, is expected to produce many interesting scientific 

discoveries and provide the impetus for much further theoretical modelling of polarisation in the 

UV.
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6. D erivation  o f ep isod ic  m ass loss fu n ction s for hot stars 

from  polarim etric and ab sorp tion  lin e  data

Sum m ary

Expressions are derived for the time dependent continuum polarisation of starlight after (single) 

Thomson scattering in an axisymmetric envelope, and for the strength of an absorption line, in 

term s of integrals over the angular distribution and previous history of the stellar mass loss rate. 

Under the approximation of constant envelope expansion speed, and parametrising the mass loss 

angular distribution in terms of a time dependent equatorial concentration shape factor, it is 

shown that the resulting pair of integral equations has an explicit Fourier solution for the time 

dependence of the mass loss rate and shape, in terms of the polarisation and line strength ‘light 

curves’. The method is illustrated for the simpler case of no ‘shape’ variations using both simulated 

data  (Heavyside ‘top h a t’ and oscillatory mass loss rates) and for real data. In the latter case, 

polarisation data, on w Orionis were inverted for a series of values of the mass flow time (stellar 

radius/flow speed), which is a free parameter, and it was found that only flow times less than five 

days yield physically acceptable (non-negative) mass loss rates, because of the rapidity of data 

variations.

6.1 In trod u ction

The continuum polarisation of hot single stars (particularly Be stars) is commonly interpreted in 

terms of Thomson scattering of starlight in a flattened rotationally symmetric envelope produced 

by stellar mass loss through rotational, magnetic, pulsational or radiative driving forces. Time 

variability of the polarisation of such stars is well known to occur on a wide range of timescales 

and presumed to be related to variations in the rate and/or angular distribution of stellar mass 

loss. Starting from the observations of Hayes &; Guinan (1984) and of Sonneborn et al (1987), 

Brown &; Henrichs (1987) discussed how insight can be gained into the stellar mass loss variations. 

They emphasised that polarisation “light curves” alone cannot resolve the ambiguity between 

variations due to mass loss rate and those due to angular distribution (envelope shape). However, 

when absorption line variations are also observed (due to variations in optical depth along the 

line of sight to the star) these can be combined with variations in polarisation (due to changes 

in scattering optical depth along other directions from the star) to separate the changes in mass 

loss rate and geometry. The data on which Brown and Henrichs based their discussion were very 

limited, being undersampled relative to the observed timescale of variability (i.e. to either the 

timescale for changes in mass loss rate or for envelope outflow) but the description showed the 

potential value of more complete data of this type.

In this chapter the work of Brown &; Henrichs is generalised, formulating the problem of
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inference of mass loss distributions as an inverse problem (Craig & Brown, 1986) with the mass loss 

distribution in time and polar angle to be inferred from the observed polarimetric and absorption 

line strength variations. In the case of a fixed angular distribution, it is shown how the mass 

loss rate variations can be expressed analytically as an inversion of the continuum polarisation 

“light curve” . When the angular distribution is also allowed to vary, it is shown that (under 

simplifying assumptions concerning the ionisation fraction of the element concerned) simultaneous 

data on absorption line strength variations permit analytic (Fourier) inference of the mass loss rate 

variations in both time and angle. Laplace and Integral Moment representations are also possible.

The numerical application of these analytic inversions to both simulated and real data  is then 

considered. This is done by generating artificial data from input mass loss models and using these 

simulated "data” to see how well the input function can be recovered. Future work on this subject 

is discussed including the effect of noise in the data and the extent to which it is possible to recover 

different frequency components of the mass loss function. It is anticipated that, in common with 

all such inverse problems, the higher frequency components will be the most difficult to extract 

from noisy data since they are filtered by the integral kernel of the problem - in this case set by 

the timescale of mass outflow across a stellar radius.

6.2 A n a ly tic  form ulation  and so lu tion

6.2.1 T he forward problem

For an equatorially and axially symmetric envelope, at inclination i to the observer and of electron 

density n(i\fi, t.) at distance r and polar angle 9 — cos- 1 //, at time t, the net polarisation of light 

from an unpolarised star of radius R  is (according to Brown &; McLean 1977, with Cassinelli et al 

1987 depolarisation factor added) -  cf Chapter 1,

o  r  1 r o o  I  d 2

P(t) = -crT s'nr i j  J  (1 -  3//2) n (r ,/ / , t )  y  1 -  —  d rd /t , (6.1)

where is the Thomson cross-section.

On the other hand the line of sight column density of resonance line absorbers of some ion A,  

which determines the absorption line strength, is (cf Brown &; Henrichs, 1987, Eq. 3)

f O O

NA(t)  =  A I n (r ,cos i , t )qA( r ,cos i , t )d r  , (6.2)
J r

where A  is the elemental abundance and qA(r, f i , t)  is the ionisation fraction at (r, //,<). In Eq. 6.2,

strictly speaking an average should be taken across the face of the stellar disk, taken to be finite

in Eq. 6.1, but this correction is neglected in the present analysis. It is seen th a t in this formalism 

the temporal variations in the polarisation arise through changes in the m agnitude or shape of the 

envelope electron density while the absorption line strength variations are attributed to changes in 

the density and/or the ionisation fraction. As qA changes with time the polarisation will also vary,
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but this will be undetected since the envelopes of the hot stars under consideration are assumed 

to consist almost entirely of ionised Hydrogen so additional free electrons due to q,4 variations of 

other less abundant elements will have little effect on the polarisation.

n(r , f i , t )  can be expressed in terms of the stellar mass loss rate at an earlier (mass flow) 

time via the mass continuity equation provided the velocity field of the flow is known or can be 

assumed. Here all mass outflow is taken to be in the radial direction from the stellar centre, and 

the simplifying assumption is made that the flow speed, v, is everywhere a constant uo- In practice 

v will increase rapidly just above the stellar surface -  cf Sect. 2.4.2 -  so this effectively assumes 

the acceleration zone to be thin enough as to make only a small contribution to P  and N A . Then 

the mass loss rate, per unit // range from the stellar surface, r =  R,  at time t is related to n

by,

2 7r r 2 n(r, //, t) ?7?p v0 =  M» ^//, t -  —— ^ ^  , 

where m p is the proton mass, so that Eqs. 6.1 and 6.2 become,

(6.3)

_ 3 <tt sin2 / [ l , o\ (  v — R \  f  R? drdf i
P  f =  — —   /  /  1 - 3 //-) M j f t . t ------------------ ) \ / 1  j  — T~ > 6-4

16tt mp v0 Jo J r V t'o /  V r2 r2

.NA(t) =  - —  ----- f  (cos i j  -    qA( r , c o s i , t ) ^ r  . (6.5)2 7r m p v0 J R V «'o / r 1

These equations are thus far quite general and the problem is th a t of inferring Af(//,<) from 

P(t)  and N A(t). The problem is evidently underdetermined unless qA(i \ f i , t )  is known or assumed. 

Inclusion of substantial variations in qA will certainly make the problem analytically intractable 

and here the only cases treated are those where qA can be taken to have a near constant value, qA, 

over the spatial and temporal domains which contribute dominantly to P  and N A .

The mass loss rate is now expressed as,

M ^ f i , t )  = S ( ^ t ) M 0( t ) ,  (6.6)

where Mo(t)  is the equatorial mass loss rate per unit // and S  is an envelope shape function.

Anticipating the limited extent to which envelope shape variations are ever likely to be in­

ferrable from real data  - cf Section 6.3 - it is assumed that 5(//, t) can be adequately described by 

the convenient param etric form,

S(/ i ,Z)  =  1 -  a ( 0  | / / | °  . ( 6 -7 )

where the constant index a  measures the rate at which A/,, declines away from the equator and 

a(t) is a time dependent measure of the global envelope oblateness with (1 — a) equal to the ratio 

of polar to equatorial mass loss rates, (a must be less than 1, with a < 0 corresponding to prolate 

envelopes, assuming a  > 0.)
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W ith assumptions 6.6 and 6.7, Eqs. 6.4 and 6.5 become, on integrating over // in Eq. 6.4,

p M = * , + m  ! » » - — / ” "■»<«'> «<0 7 ^ 4 % .  (6.8)8 7r (a  +  1) (a  -f 3) m p v0 J r V r 2 r 2

N A(t) =  AqA r  ,V/0(/') (1 -  «((')cos* >) %  , (6.9)
2 7T ?7).p U0 7/? r 2

where t '  = t  — (r — R)/v .

Inspection of Eqs. 6.8 and 6.9 shows that the problem has now been reduced to inversion 

of two data  sets P ( t )  and N a (1)  to find the two unknown functions Mo(tf) and a ( t ' ) .  Solutions

should therefore be possible for prescribed values of the parameters uo, R , i and a.  If any of

these are unknown, solutions can be sought over plausible param eter ranges and those parameters 

and solutions taken as acceptable when the resulting Mo(t'), a (/') are physically meaningful (i.e. 

Mo > 0 and a  < 1 respectively).

To reduce the problem to its underlying dimensionless m athem atical form, and, to reveal the 

dimensional variables which characterise the physics, Eqs 6.8 and 6.9 are cast into dimensionless 

form by means of the dimensionless variables,

j : =  —  1 , ( 6 . 1 0 )
R 

/
r = l T

I'o
(6 .11)

m () =  m n ^ L , (6,i2)
m p  Vq R-

(613)

G(T) = . \ A( t ) / ^ -  , (6.14)
1 7r c t

in terms of which Eqs. 6.8 and 6.9 become,

F ( t ) =  f  tn(r') o(t ') dx> ’ (6‘15)
Jo ( x + 1 ) 3

dar
G( t ) = /  m (r ')  (1 -  a(r') cosa i) ■■■■■■ ■■■ , (6.16)

J o  I® t  i ;

where the dimensionless retarded time r '  is given by,

T 1 =  i ' / —  =  T - x  . (6.17)
t’o

Alternatively, Eqs. 6.15 and 6.16 can be expressed in terms of integrals of the mass loss history 

over the time r # elapsed till the present r ,  viz,

F ( r )  =  f j m{T‘)air l)  1 ^ T( T - )T*+l)*~ i7 '  1 (6’18)



G(r) = f  {m (r') [1 -  a ( r ')  cos° t]} ------ ^  0
J - o o  ( r  -  T +  1) “
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(6.19)

6 .2 .2  Inverse Fourier so lu tion

Equations 6.15 and 6.16, or equivalently 6.18 and 6.19, are integral equations for the two functions 

contained in the { } terms of the integrands, viz,

f ( r ' )  = m { T ' ) a { r ' )  . (6.20)

<7(r ')  =  ?n(r/ ) [1 — a{T') cosa /] , (6-21)

and it is clear th a t if solutions can be found for / ( r ' ) ,  g{T') from data on F ( t ), G( t ) then m (r'), 

a(r')  are determined for any i value adopted, viz,

m(r' )  =  (/(t ) +  f [Tr) cos° i . (6.22)

a ( - ')  = (cos'* / +  (6.23)

In addition the integral equations for /  and g are of the same generic convolution type, and 

can be written in the form,

<j>{r) = f  0 (r  -  x) A(.r) d r  =  f  i/>(r') A(r -  r ')  d r ' , (6.24)
JO 7 —oo

where the A’s corresponding to the equations for /  and g are defined as,

= - T ^ T S T  • Atf(ar) =  (^ + 1)"2 * > 0 ,  (6 .25a)(X +  1)J

\ j  (x*) =  0 . Atf(x) =  0 x < 0 . (6.256)

Full solution of Eq. 6.24 for V’l^ )  for any time r' < tq would require data  on <f>(r) for all 

r  < To which is in practice impossible and, for solution from data on some finite interval, it is 

necessary to make some assumption on the behaviour of the data <p, or of the unknown function V’, 

formally for all time prior to the start of observations. (Physically this is because the initial data  

value could arise in an infinity of different ways - eg a large mass loss ju st before r  =  0 or a slow 

mass loss over a long period before r  =  0, these two situations influencing the data  evolution at 

r  > 0 in different ways.) In the absence of any prior knowledge of /  at r  <  0, the most reasonable 

assumption seems to be that tpir') (i.e. both M  and a) were constant on r '  <  0 or, equivalently, 

th a t the <£’s (ie both P  and Na)  were constant. Because of the x -2 asymptotic behaviour of the 

A’s, this in practice only requires that M  and a have been constant over a substantial number of
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flow times, 77 =  R / v 0, prior to the time dependent P, N a episodic outburst being analysed. In

the case where P  and N a are actually zero at the start of observation, this assumption will be

exactly true. In cases where this is not the case, the assumption is equivalent to replacing <p(r)  

by <p(r)  — </>(0) (i.e. P(t)  by P(t)  — P(0) and NA{t) by AT^f) — Na(0)  and solving for M(t)  and 

a(f) corresponding to the episodic contributions only). Henceforth it is assumed that the data  has 

been processed to give this meaning for 0 (r)  (i.e. for P(t),  NA{t))-

The first form of Eq. 6.24 is now considered and the unknown functions tp are expressed as 

Inverse Fourier Transforms according to,

/ OO

di/ ,  (6.26)
■OO

which, on substitution in Eq. 6.24 yields,

/ OO

\P(i/) A(i/) e2* iuT dv  , (6.27)
-O O

where A(i/) is the Fourier Transform of A(x) given by,

/ OO

\ { x ) e ~ 2* iv x dx . (6.28)
■OO

Equation 6.27 shows <p{r)  to be the Inverse Fourier Transform of ’FA so that if is the Fourier 

Transform of the data  function <p,

/ OO

^ ( u ) e 2 w i v r d 1/ ,  (6.29)
■OO

then,

tt(i/)A (i/) =  $ ( 1/) . (6.30)

Consequently the Fourier solution of Eq. 6.24 is,

, ,  _, \  r ~ l  (  F i t i ' 1')'' >\ /*0,N
* T )  = r  \ A M '  J = *  \ ^{A (x);  1/} ’ J ’ (631)

where P,  T ~ l denote the direct and inverse Fourier Transforms. Laplace and Integral Moment

solutions are also possible - see Sect. 6.4.
6.3 N u m erica l resu lts

6 .3 .1  D iscretisa tio n  p rocedure

In the inversion of polarisation data only the Fourier Transform of the function A/(ar), defined by 

Eq. 6.25, is required. This cannot be done analytically, so the transform is computed by a Fast 

Fourier Transform (FFT) routine. A(^), the Fourier Transform of A/(x), may be approximated by 

representing A/(x) over a large enough interval to allow the dominant frequency components to be 

obtained and choosing a small enough step size to resolve any features in the curve. By choosing
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the step size to be A and calculating Xj (xj )  for Xj =  j  A (j  in the range 0 to N  — 1), then the 

F FT  algorithm may be applied to these points. Now, if Xj (x)  is represented over the range C  of 

x, A(t/) may be approximated by,

r  N - 1
V 2" " ' ’ 0" ' ' .  (6.32a)

j  = 0 

r  N - 1

Ai‘ * ^ ' ± 2 Xi e~2*ijk/N ’ (6*326)
3=0

where Xj =  Xj ( j  C / N ) ,  A& = A(k /C) ,  C  = ( N  — 1) A, and k is in the range 0 to N  — 1.

A typical F FT  routine calculates,

1 JV" 1
=  (6-33)

v N  j=0

so A(i/) is approximated by,

A(i/) & A k = - ~ Z k . (6.34)

Now, the polarisation data  is given at points p(xpi) where xpi =  I A p  (/ in the range 0 to 

Np  — 1), with Np  the number of data points. The approximation to the Fourier Transform of this 

d a ta  is then given by,
r  Np-1

P{uP) «  - p  Y ,  Pl e~2vivplCp^Np , (6.35)
p  1=0

Np — 1
«  i f  1 2  Pi e~2 , (6.36)

P  1=0

where p/ =  p{xpj), Pm =  P ( m f C p ), Cp  =  ( //p  — 1) A p, and m is in the range 0 to N p  — 1.

In the inversion Pm/ A m is required. Now, P  is calculated at frequencies m / C p  (m  in the 

range 0 to Np — 1), while A is calculated at frequencies k / C  (k in the range 0 to N  — 1). The 

values of A are required at the same frequencies as those at which P  is given to form the ratio 

P /A . Given the values A (k /C)  (k in the range 0 to .V — 1), an interpolation routine is used to give 

A (m /C p) (m in the range 0 to Np  — 1), thus enabling Pm/ Am to be formed.

6 .3 .2  I llu stra tiv e  resu lts

Here the basic method will be illustrated by considering the case of polarisation data  P(t)  only, and 

solving Eq. 6.8 alone. This will yield the product m (r ')  a ( r ')  (Eq. 6.15) which will correspond to 

the relative variations in Mo(t') for constant shape a(t '), for any assumed values of the parameters 

R , R / v o, appearing in Eq. 6.12.
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Figures 6.1(a) and 6.2(a) show the results obtained for simulated F(t)  (i .e .P(t )) data, obtained 

from Eqs. 6.8 and 6.13 for forms of Mo(t) which are, respectively, top hat, and an oscillatory 

function, viz,

M 0(t) = M q , 0 <  i < T  ; 0, t > T  , (6.37)

, 0 < t < T  ; 0, < > T ,  (6.38)

where T  = 10.

These figures show clearly the smoothing action of the flow time kernel function on P(t)  as 

compared to Mo(t).  Figures 6.1(b) and 6.2(b) show the original forms of 6.37 and 6.38 of Mo(t) 

together with the forms recovered using the inversion method. It can be seen th a t the recoveries 

are quite good, but do show the effects of discretisation and truncation since no regularisation has 

been employed here. They also show the effect of ‘ringing’ in the recovery due to the effect of sharp 

edges and the finite interval used.

The same method has been applied to the polarimetric outburst data  of Sonneborn et al 

(1987) on uj Orionis. though their limited data on UV absorption line strength around the same 

period (Fig. 6.3) do indicate that the mass loss distribution does change shape as well as the rate 

(Sonneborn et al, Brown & Henrichs, 1987). Their data has been inverted (after some interpolation

to yield uniform intervals) for several values of the flow time param eter rj  =  R / v o, with the results

shown in Fig. 6.3(b). For very large values of vo, the solution for the shape of Mo(t) becomes 

independent of vq (though the absolute M  values increase as vo increases to m aintain the density, 

n , demanded by the degree of polarisation). This is the continuous high speed ejection limit, 

described by Brown Henrichs, where the flow time is much shorter than the time scale of M  

variations and /or the data  sampling rate, so that P(t)  directly reflects Mo(t). As vo is decreased, 

for a given R , the slower flow time increasingly smears P(t)  compared to Mo(t) and increasingly 

large and rapid changes in Mo(t) are required to produce features in P(t).  For sufficiently small 

vq, it becomes impossible to reproduce some of the changes in P(t)  w ithout obtaining unphysical 

negative values of Mo(t) in the solution. For u> Orionis this occurs a t r /  «  5 days, corresponding 

to a  minimum mass flow speed vo «  14 k m s ~ l for a stellar radius of R  = 8.8 Rq,  (suggested by 

Sonneborn et al). For a value of a =  1, R  =  8.8 Rq,  vq =  140km.s_1, i =  90° and with a  of say 

2, the peak in Fig. 6.3(b) corresponds to an actual mass loss rate, M to t>  ° f  ^  2.5 10“ 7 M q .yr-1 , 

while taking the minimum speed, implied from unphysical solutions, the total mass loss rate is 

«  2.5 10"8 Mq.j/j’- 1 , both values being within the range generally accepted for Be stars.

M o ( t )  =  M q
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F ig . 6.1 (a ) F ( t ) calculated for the mass loss function given by Eq. 6.37. (b )
Input mass loss function of Eq. 6.14 and its Fourier recovery from the finite interval 
simulated polarisation data  presented in (a).



F ,g ‘ 6,2 As for Fig. 6.1, but for mass loss function gigiven by Eq. 6.38.
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F ig . 6 .4  (a)Sonneborn et al polarisation data  for u  Orionis shifted to zero on each 
axis, (b ) Recovered mass loss function from inversion of Sonneborn et al data  for 
flowtimes of 0.5, 1 and 20 days. •
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6.4 O ther an a ly tic  so lu tion s

6.4.1 Laplace so lu tion

If Eq. 6/24 is considered in its second form, with <j>{r) again assumed to mean <j>{r) — <̂ >(0) for r  > 0 

and 0 for r  < 0. then,
p  CO

H r ) =  /  -  t ' )A t ' , (6.39)
Jo

which, on Laplace transformation yields,

<l>(s) =  \&(s)A(s) , (6.40)

where <£ is the Laplace Transform of <j> given by,
p  OO

$ (s) =  /  <j)(T)e~ST dr  , (6.41)
Jo

with solution,

(6-42)

where £ , £ -1 are Laplace and Inverse Laplace Transforms. (Removal of the constant at r  < 0 

has enabled expression of 6.24 in the form 6.39, and thus application of the convolution theorem.)

6 .4 .2  In tegral m om ent so lu tion

Because the kernel of 6.39 is a function of r  — t ' , an Integral Moment Solution is possible (Craig 

and Brown 1986) by means of a logarithmic change of variables r  =  ln£, t ' — ln£ ' so that,

A'({) =  f  Y ^ ) K ( i )  < tf', (6.43)

where,

X (0  =  tf ( ln f ) .  (6.44)

, ib(\n£7)
y (^) =  - (6-45)

and defining,

(X) j  = r  (6.46)
J  — CO

then the similarly defined moments of y (£ ')  can be found in terms of X ,  viz,

(Y)j =  ■ (6-47)
A  j  _  i

where,

/ OO

d7] . (6.48)

These moments of X  and Y  correspond to ‘m oments’ of the physical variables <j>(r), iP(t ) 

on an exponentially scaled time basis, which makes sense because (for example) the polarisation
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changes, as mass ejected moves outward, at a rate which declines ever more slowly in time with 

increasing distance. In practice this solution will yield a ‘m ean’ time, a temporal ‘w idth’ (variance) 

and a skewness in time etc. of those combinations of the mass loss functions m(t),  a(t) defined in 

Eqs. 6.20 and 6.21, and on an exponential time basis.

6.5 T he effects o f  noise in th e  data

The inversion method and the examples presented in this chapter illustrate the possibility of 

determining mass loss rate variations by analysing exact polarimetric and absorption line data. In 

practice the d ata  and hence solution will be subject to noise and account must be taken of this 

also. The errors to be expected in the Fourier inversion may be estim ated from the error analysis 

and discussion presented by Craig & Brown (1986, p48-51).

When taking the Fourier Transform of real data  noise contamination manifests itself in high 

frequency components (which are required to reproduce any rapid variations present in the data). 

The “filtering out” of these high frequency components and the optimum  procedure to be imple­

mented is a non trivial problem in numerical analysis and there have been many papers on this 

subject in recent years (e.g. Thompson, et al, 1989). The simplest and most extreme technique 

is to simply neglect the contributions from all frequencies above a prescribed value in the Fourier 

Transform of the data. Other techniques include multiplying the Fourier Transform by a function 

which smoothly reduces the magnitude of the high frequency components to zero (the so called 

cosine or Gaussian “bell” techniques) and adaptive smoothing algorithms in which parameters 

are chosen via an iterative procedure so as to minimise the error in the final solution. Each of 

the aforementioned techniques influence the solution in different ways -  see Craig &; Brown, for 

example, for a discussion of these procedures.

6.6 A n a ltern a tiv e  inversion  strategy

At present there is very limited line strength data  available during the observed polarimetric 

outbursts presented above and so as to enable inversion of polarimetric data  alone simplifying 

assumptions were made as to the shape of the stellar mass loss. However, if an equation for some 

other observable involving the mass loss rate could be determined then this could be combined with 

the equation for the time dependence of the polarisation and solved to yield the tem poral variations 

in the rate and shape of stellar mass loss. A possible handle on the mass loss rate lies in the size of 

the polarisation Balmer “jum p” . Thomson scattering results in a f la t  polarisation spectrum, but 

absorption of stellar radiation due to Hydrogen continuum opacity (~  A3 with discontinuities across 

series limits) modifies this. The resultant polarisation from a Thomson scattering envelope in which 

Hydrogen is the dominant source of opacity decreases with increasing wavelength shortward of any 

series limits with a sudden increase (the jum p) on crossing the limit (see Fig. 1.5). This effect is 

evident in data  collected collected at Pine Bluff Observatory, Wisconsin (Bjorkman, 1993) around
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the Balmer edge (~3600A). If the observed polarimetric outbursts are indeed attributable to the 

injection of ionised Hydrogen into the stellar envelope (with the envelope tem perature effecting 

the ionisation level) then the size of the polarisation Balmer jum p would be expected to vary with 

time during these outbursts as more Hydrogen able to absorb to different levels is ejected into the 

envelope. This problem may not possess an analytic solution as was the case when the polarimetric 

and line strength variations were analysed together, but a numerical solution may be obtained for 

comparison with the Fourier solution.
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7. P olarisation  from  re la tiv istic  e lectron  sca tterin g

Sum m ary

The m athem atical framework required to treat the problem of scattering radiation off relativistic 

electrons in a concise manner -  four-vector calculus -  is briefly outlined. Following on from this 

a preliminary investigation is conducted to determine the polarisation of radiation scattered off 

relativistic electrons for the simplest case of a narrow, constant velocity je t and an unpolarised 

source. It is shown that if scattering is the only source of the je t ’s polarisation then the velocity and 

angle which the je t makes to the line of sight may be determined from analysis of the polarisation 

and Doppler shift of spectral features in the source which are scattered in the jet. A discussion is 

then given as to the effects of contamination of the scattered radiation by synchrotron radiation 

from the jet.

7.1 In trod u ction

Recent models have investigated the role of electron-positron (e± ) plasmas in astrophysical jets 

(Dermer, 1992, Ghislenni et al, 1992). These models have focussed primarily on the intensity 

of radiation (first Stokes param eter) em itted by the jets, produced by either the synchrotron 

mechanism or (inverse) Compton scattering of photons from a central source off the e± pairs in 

the jet. It is well known th a t synchrotron radiation can exhibit high levels of linear polarisation, 

but to date little consideration has been given to the polarisation produced by scattering.

In an plasma both the electrons and the positrons contribute equally to photon scattering, 

and hence to the polarisation of the scattered radiation. In such a plasm a it is possible to accelerate 

the charged particles to highly relativistic speeds, which makes a relativistic treatm ent of the 

scattering imperative.

In this chapter the equations for the scattering cross-sections are formulated using previous 

analysis involving four-vector calculus. The formulation allows one to determine the cross-sections 

in any frame -  e.g. the Klein-Nishina cross-section is calculated in the electron’s rest frame. 

However, in this analysis the observer’s frame is considered and the polarisation is calculated for 

the most relevant example, in the context of relativistic jets, where the electron’s motion is along 

the direction of propagation of the incident radiation (i.e. the photons “catch-up” on the electron).

A relativistic spinor formulation of the Stokes parameters and the application to Compton 

scattering was presented by De Young (1966). While the method employed below may not be as 

elegant as De Young’s analysis it yields the same results and the use of polarisation four-vectors 

in the analysis provides the basis for a pictorial representation of what can be a rather complex
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problem in relativistic scattering theory.

7.2 F o u r -v e c to r  ca lcu lu s

Due to certain properties the calculus of four-vectors (and more generally tensor calculus) provides 

a very elegant framework for the theoretical investigation of relativistic kinematics. This section 

presents a brief introduction to four-vectors and some of their properties.

7 .2 .1  D e fin itio n  o f  a  fo u r -v e c to r

As it name would suggest a four-vector consists of four components -  one “time” and three “spatial” 

components. These components do not necessarily have the dimensions of time and space, but 

they do obey the same Lorentz transformation rules as a displacement vector in spacetime, hence 

the nomenclature. In general a four-vector may be represented as,

of  =  (a°, a 1, a1, a3) =  (n°. a) , (7.1)

where a0 is the time component and the spatial components have been written as the Euclidean 

vector a  =  (a.1, a2, a3) in the second representation of Eq. 7.1. The Greek suffix, p, (or any other 

Greek letter) indicates that a has four components and is standard notation. In this notation the 

displacement vector in spacetime (or the four-radius vector), x**, has as its components x° =  c t, 

where t is the time, and (x 1, x 2, x3) is the three dimensional displacement vector. One of the most 

common four-vectors in relativistic kinematics which shall be used in the formulation below, is the 

m om entum  four-vector, p*\ with components,

p“ = (p0, p i , p \ p 3) = ( E t c, p ) ,  (7.2)

where E  =  j  m 0 c2 is the total energy of the particle, mo is the particle rest mass, y  =  1 /y / l  — 0 2 

and 0c is the particle velocity, p  =  (p1, p2, p3) = ym.QC0 is the particle’s component momentum 

along the directions (x 1, x2, x3). As stated above these components transform as a time ( E / c) 

and a spatial vector (p). For a photon, which has zero mass, the 4-m om entum , is,

*<• =  —  ( l . k ) ,  (7.3)
c

where k is a unit vector in the direction of propagation of the photon. Equation 7.3 arises since 

for a photon E  =  h v and p  =  E / ck , where h is Planck’s constant and v  is the photon frequency.

7 .2 .2  S om e p ro p e r t ie s  o f  fo u r -v e c to rs

Using the metrical tensor, whose components are defined below, it is straightforward to transform 

between the contravariant and covariant forms of any four-vector, viz,

— 9 n v ® i (7.4)
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where a repeated index implies a summation over that index and the metrical tensor has compo­

nents <700 =  1, 0i i =  022 =  <73 3 =  _  1 and all other components are zero. The components of the 

m etrical tensor satisfy the condition,

(7 -5)

Using these properties the scalar (or dot) product of two four-vectors is,

cl  ̂b̂ 1 — a,o b3 ai 6* -f- 0,2 b“ +  (Z3 63 =  do bo — fli 61 — <22 — ®3 ^3 — no bo — a  • b  . (7.6)

For notational convenience the Greek suffices on the four-vectors are often suppressed allowing 

Eq. 7.6 to be written in the form,

d • 6 =  dp b** . (7.7)

A property of great relevance is that the scalar product of two four-vectors, Eq. 7.6, is itself a 

Lorentz invariant (i.e. has the same value in any inertial reference frame).

The classical law for the conservation of momentum has the following analagous four-vector 

form, namely,

x>=e  P i » (? -8)
»=i »=i

where the unprimed and primed four-m om enta refer to the values of the energy and momen­

tum  before and after any interaction of the n particles. Here the Greek suffices have again been 

suppressed for notational convenience.

7.2 .3  P o larisa tion  fo u r-v ecto rs

In quantum  theory particles may be represented by “wave functions” and for a photon the wave 

function is a four-vector of the form,

A ** ~  exp —i k v x v , (7-9)

where is the four-potential, satisfies the condition,

ep e/4 =  - 1  , (710)

and the photon four-m om entum  (cf Eq. 7.3) satisfies

kl tk lt = 0 .  (7.11)

The above may be written more concisely by suppressing the four-dimensional vector indices, viz,

A  ~  e exp —i k  x  e • e =  — 1 , (7.12)

where k • x  =  h v / c  (t — k • x) and eft or more simply, e, is the unit polarisation four-vector. A^  is 

not observable, but the observables are the electric and magnetic fields which are components of 

the antisymmetric electromagnetic field tensor formed thus,

F n v Z z d p A y - d v A n  , (7.13)



where dM is the partial four-derivative d / d x ^ . From Eq. 7.13 it is seen that A^  can undergo the 

transform ation,

A p - A p + d u X  , (7.14)

where x  is an arbitrary function of the coordinates, without changing its physical significance in 

any way. This property is known as Gauge Invariance. The choice of the Lorentz Gauge, dM A ** =  0, 

implies — 0. In this gauge all physical results will be invariant under the transformation,

(7.15)

where a  is an arbitrary constant. From Eq. 7.15 it is clear that it is always possible to choose a 

gauge in which e° =  0 then e • k = 0 -  i.e. the spatial components of the polarisation four-vector 

are perpendicular to the direction of photon propagation. This is known as the transverse gauge 

and is utilised throughout the remainder of this chapter.

The theory outlined above, while by no means complete, is the minimum required for the 

problem of Compton scattered polarisation considered below.

7 .3  C o m p to n  sc a tte r in g  th e o r y

The quantum  theory of scattering cross sections requires the calculation of various m atrix elements 

which can be quite tedious (e.g. Jauch & Rohrlich, 1976). A full theoretical investigation of these 

matrices is beyond the scope of this thesis and only the final results, which may be found in most 

quantum  theory texts, are presented here.

The differential cross section per unit solid angle for Compton scattering a photon from an 

initial to final polarisation state is (Jauch L  Rohrlich, 1976, Chapter 11),

d "  3 f fT  A' f l / ' V  ( 7 .1 6 )
dft 16 7r -)2 (1 — /jc o s a )2 \ u  

with,
V1  = _________t - f l c c s o ____________________ a  17)
v  1 -  / ? COSa'  +  ^ 7 ? ( 1  -  cos0 )

In these equations <tt is the Thomson cross-section and me is the electron rest mass, a  and a'  

are the angles between the incident electron and the incident and outgoing photon, 0  is the angle 

between the incident and outgoing photons (the scattering angle from previous chapters) and u 

and u‘ are the incident and scattered photon frequencies. In what, follows the Thomson limit of 

Compton scattering is assumed to hold (h u <C “,mnc3), so that the third term in the denominator 

of Eq. 7.17 may be ignored.

The quantity X  which specifies the initial and final polarisation states of the photon is defined 

in term s of four-vector products (and is therefore a Lorentz invariant) thus,
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The Lorentz invariant scalars k and k' are,

K = - p k ,  k' =  —p ■ k' , (7.19)

where p and p ' , k and k' are the initial and final four-m om enta of the electron and photon and e 

and e' are the initial and final photon polarisation four-vectors. The scalars k and k' are,

k =  - h ^ 7 me (l — /? cos a ) ,  =  - h  v'  y  me (1 — /? cos a' )  . (7.20)

In the Thomson limit defined above the ratio of these quantities is k/ k' =  1, which considerably 

simplifies the calculations below. When the polarisation state of the scattered photon is not 

observed X  should be replaced by X  which is the average of the initial and sum over the final 

polarisation directions.

X  has now to be calculated for scattering from each initial polarisation state into some final 

state. The Ar for any particular final polarisation state is the average over the X ’s for the scattering 

of all initial states into th a t particular one. Attention is now focussed on the simplest and most 

relevant case in the context of astuphysical jets, where the incident photons are unpolarised and 

incident on the electron from behind, Fig. 7.1.

e i

k '

F ig . 7.1 Unpolarised radiation scattered from direction k  to k '. The spatial com­
ponents of the incident and scattered polarisation four-vectors are also shown

7.4  U n p o la r is e d  p o in t  so u rc e  i l lu m in a tin g  a  re c t i l in e a r  j e t

Incident unpolarised radiation may be represented by the combination of the polarisation four- 

vectors e± and ejj whose spatial components are shown in Fig. 7.1. Since the polarisation vectors 

are transverse to  the direction of propagation the transverse gauge has been chosen such that
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eg = e4 = 0. Four scattered polarisation vectors are also shown e±>, ej|/, e\ and e'2. Calculation of 

the X ’s for these final states will yield the total cross-section along with the cross-sections for the 

Stokes Q and U param eters of the scattered radiation which are defined as,

dcr.N. /  dcri' d<T||/ \  
dfi dfid n

do-Q d<Tl' dcT||/ 3 <tt

dfi dfi dfi 16 T72 (1 — 0COS a )2
d(Tu 

'  dfi /
d<Tj' d(T2'

\  dfi dfi /

( X v  + X \ y \  

X v  -  * |,

V AV — Xy )

(7.21)

where the Ar,s are,
/ X ± ' \  

AV
A i'

\  Ao' /

(7.22)

/  A'i i' + A'n j./ \

A'm/ +  A'n ||*

A i i '  +  A || i/

\  A 12' +  A'n >' /

For the case depicted in Fig. 7.1 the four-m omenta of the incident electron, p, and the incident, 

k, and scattered, k1, photons are,

p =  7m 0c (1 ,0 .0 ,0 ) , it = ~  (1 ,0 ,0 . 1), it' = ^  ( l ,O ,s in 0 ,c o s 0 )  . (7.23)

The polarisation four-vectors depicting the incident unpolarised photon are,

c i  =  (0, 1, 0 , 0 ), ci, =  (0, 0 , 1, 0 ) , (7.24)

while the scattered polarisation four-vectors are,

d '  =  (0, 1, 0 , 0), e||/ =  (0 , 0, cos@, — sin ©),

ei' =  -4= (0 , 1, — cos@, sin 0 ), e2' =  - 7= (0 , 1, cos0 , — sin 0 ) .
v 2 v 2

Using the above in Eq. 7.18 leads to the following results,

(7.25)

A n '  — 2 , Xu i '  =  0 , A 1 ip = 0 , An ||/ =  2

A \l i' =  1, AT 1' =
cos 0  — 3  

1 — 0  cos 0 A l  2' — 1 1 A|| 2' —

COS 0  — 0  
1 — 0  COS 0

cos 0  — 0

thus giving,

dO
do-Q
~dQ
dtru

^ dfi /

3 £7t
16 7T72 (1 — 3 cos o )2

1 +

1 — 0  COS 0  

cos 0  — 0  \  2 ^

(7.26) 

§ ) " ■  <7-27>

1 -

1 — 3 cos 0  

cos 0  — 0  
1 — 3 cos 0

V

(7.28)

The degree of linear polarisation of the scattered photon in this case is simply,

1 _  (  cos e —l  V
1  ̂1 —0 COS ©  J

P  =
1 + f  cosQ — 0 \  

1—/?cos© J
(7.29)
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while, from Eq. 7.17, the relative frequency shift is,

7  = T ^ e  ' (7'30)
The polarisation and relative frequency shift of the scattered radiation are plotted, for various /? 

values, as a function of scattering angle in Figs. 7.2 and 7.3. The simplest model of a relativistic 

je t is th a t of a point source (e.g. a quasar) and a rectilinear stream of particles (e± pairs). Clearly 

this can be modelled by extending the above formalism from one scattering electron to a line of 

electrons moving at the same speed, (3c. W ith this set-up the scattering angle is ju st the angle 

which the “je t” makes to the line of sight and inspection of Eq. 7.29 shows th a t the polarisation 

maximises a t cos 0  =  /?, which is the so-called superluminal direction for relativistic jets (Rees, 

1966). However, unlike superluminal motion, which has a simple geometrical explanation, the 

peaking of the polarisation of scattered radiation in this direction is a relativistic aberrational 

effect arising from the electron’s motion with respect to the observer. Equation 7.29 may also be 

written in the form,

P  =
1 — cos2 0 '
1 +  cos2 0 '

(7.31)

where 0 ' is the angle of aberration.

1

80.

(3 = 0.2P

0 . 6

0 . 4 (3 = 0.6

(3 = 0,
0 . 2

0
160 1801 0 0 1 2 0

0
F ig . 7.2 Degree of polarisation against scattering angle for various (3 values for the 
scattering geometry of Fig. 7.1.
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v ' f v l3 = 0.2

(3 =  0.4

(3 = 0.6

i3 = 0.

160 1801 201 00
0

Fig. 7.3 Ratio of scattered to incident photon frequency as a function of scattering 
angle for various (3 values for the the scattering geometry of Fig. 7.1

7.4 A p p lic a tio n  to  re la t iv is t ic  je t s

The above analysis can clearly be applied to the scattering of unpolarised radiation from a central 

source in an optically thin, narrow jet. In this case the frequency shift of the scattered radiation 

m ust also be considered (Eq. 7.17, Fig. 7.3). For high electron speeds and large scattering angles 

the scattered radiation will appear highly shifted to the red. The combination of the tiny scattering 

cross-section and the steep spectrum synchrotron radiation, frequently observed from such jets, will 

result in the scattered flux going largely undetected above the much stronger continuum present at 

the scattered frequency. All is not lost though, since for sources to  be superluminal requires very 

high je t speeds and small angles to the line of sight (e.g. Cohen k  Unwin, 1984), thus reducing the 

frequency shift of scattered radiation (i.e. superluminal sources will occur in the top left corner of 

Fig. 7.3.

A strong line from the source which is scattered in such a je t will appear (reduced by the 

appropriate scattering optical depth) at the relevant frequency in the intensity spectrum of the jet 

and will be highly polarised. Thus another feature of superluminal sources is th a t spectral features
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of the central source will appear (highly polarised) in the je t ’s spectrum.

Analysis of such scattered features -  their polarisation and frequency shift -  allows the jet 

viewing angle and speed to be determined by solving Eqs. 7.29 and 7.30 for the unknowns © 

and 0. Clearly this a very simple model of a je t and in more realistic situations account must be 

made of synchrotron radiation from the je t itself which may be highly polarised. The theoretical 

framework presented in Sect. 7.3 may be applied to scattering of polarised synchrotron photons 

within the je t -  the synchrotron-self-Com pton effect. Preliminary estimations of the levels of 

polarisation to be expected from this effect (Blandford & Rees, 1978) predicted th a t the polarisation 

of synchrotron-self-Com pton photons would be reduced by ~  50% from their initial polarisation 

value. This effect must be analysed thoroughly with the above relativistic treatm ent to determine 

accurately the levels of polarisation to be expected from such jets in which synchrotron radiation 

and Com pton/Thom son scattering both play a m ajor role. However, the simple analytic treatm ent 

presented above demonstrates the diagnostic potential of je t polarisation in determining speeds and 

orientations -  again information which is not available from spectrometry alone.
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This appendix is included to define various terms and concepts which are used throughout the 

thesis. The definitions presented below have been collated from books on the subject of radiative 

transfer by Chandrasekhar and Mihalas.

A .l  T he specific in ten sity

As was stated in Section 1.1 the specific intensity completely specifies a radiation field except for 

its polarisation state. The specific intensity, is defined by the am ount of radiative energy dE„ 

in a specified frequency interval (from u to v + dis) which is transported across an element of area 

dA  into solid angle dft in a time dt according to,

dE„ = Iu dA cos9 d vd Q d t  , (A .l)

where 9 is the angle between the direction of the incident beam of radiation and the normal to the 

surface dA.

A .2 T he flux

The flux is a quantity which defines the rate of radiant energy flow into all directions across a 

surface per unit area per unit frequency interval and is given by,

Fu = J  I v cos Od d ,  (A.2)

where the integration is over all solid angles.

A .3 O pacity  -  ab sorp tion  and sca tterin g  coefficients

When a beam of radiation traverses a medium its specific intensity will be altered due to interaction 

of the radiation with m atter. The opacity is a measure of the extent to which a m aterial absorbs 

and scatters incident radiation. If the specific intensity, becomes I v +  dl„ after traversing 

a thickness ds in a medium of density p then the mass absorption coefficient or opacity of the 

material, is defined by,

d/j/ — Kv p Iv ds , (A.3)

This change in energy may not be entirely lost by the radiation field since it may reappear in 

other directions as scattered radiation. In general only part of this radiant energy will be scattered 

and the rest will have been transformed into other forms of energy (or even radiation of other 

frequencies) -  i.e. this part of the radiant energy has been truly absorbed. It is therefore necessary 

to distinguish between true absorption and scattering.
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When the medium contains many different species (absorbing or scattering particles) the total 

opacity is just the sum of the individual opacities, viz,

k„ = Y ^  <  • (A.4)
t *

In the case of scattering a m aterial is characterised by a mass scattering coefficient, if when 

a beam of radiation is incident on an element of mass of cross-sectional area dA  and thickness ds 

the am ount of energy scattered from it in a time d< in all directions is,

dE„ =  ku p ds Iu dA  cos 6 du dQ dt . (A.5)

Since the mass of the element is dm =  p cos 9 dA  ds this may also be written as,

d E u — ku I v d m d u  dFldt . (A.6)

To give a full account of scattering the angular redistribution of the scattered radiation must 

also be described. This is achieved through the angular phase function, ^ ( k ,^ ) ,  such that,

dQ'
k„ Iu d m d v  dQdt g ( k , k  ) ----- , (A.7)

47r

is the amount of radiant energy scattered from an element of solid angle dQ about direction k  into 

an element of solid angle dQ' around direction k ' by an element of mass dm in time dtf. The total 

energy lost from the incident beam due to scattering in all directions is then

k u Iv dm du dQ,dt f  <7( k ,k ') ^ p -  . (A.8)
J  47T

When the phase function is normalised to unity thus,

/
then the above analysis represents the case of perfect scattering where all the incident radiant 

energy reappears as scattered energy at the same frequency. When the integral over the angular 

phase function in Eq. A.9 is not unity but is equal to a number, u> say, which is less than one 

then the fraction u  represents the fraction of the incident radiant energy which is scattered while 

(1 — uj) is that fraction which has been transformed into other forms of energy (or radiation of 

other frequencies).

When there are both frequency and angular redistributions of the scattered radiation these 

two effects may be incorporated into a total redistribution function, R(u,  k; i / ,  k ') , such that,

Kv Iv d m d u  dQ dt R(u,  k; i / ,  k ;) du'  , (A. 10)
4tt
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represents the energy incident at frequency u from solid angle dQ around direction k which is 

scattered into solid angle dQ' around direction k ' with frequency v ' . In this case the analagous 

equation to A.9 is

^  J  ^  f t( i/ ,k ;i/ ',k #)d i /d Q '=  1 , (A .ll)

with the physical interpretation that incident radiant energy of frequency v'  is scattered in all 

directions to some frequency v and there is no transformation of radiant energy into other energy 

forms.

Another way of expressing the scattered energy is in terms of the scattering coefficient per 

particle, often referred to as the scattering cross section er„. This is defined such th a t the radiant 

energy scattered per particle is,

(Tv h  d/zdQd/ R(u, k ; i / ,k ')  dv' . (A .12)
47T

From an element of mass dm the amount of scattered radiant energy will then be given by Eq. 

A. 12 multiplied by N  dm where N  is the number of scatterers per unit mass. Comparing this with 

Eq. A. 10 ku may be expressed as,

k„ = N  (Tv =  j (A .13)
P

where n is the number of scattering particles per unit volume (number density) and p is the mass 

density of the scattering volume.

A .4  O ptical d ep th

As a photon traverses a medium it will travel a certain distance before being absorbed or scattered 

and the average distance it travels prior to such an “event” is called its mean free path. This 

average quantity, lu , may defined in terms of the density and opacity of the medium thus,

Iv =  P^v  =  n (Tv ■ (A. 14)

The optical depth, tv , between two points in a medium is the number of photon mean free paths 

between the two points thus,
l>b *b

Tv = p K v d s =  n f f v ds .  (A. 15)
J  a J  a

W hether a medium is optically thick or thin depends on the value of t v and a standard rule 

of thumb is that a medium is considered to be optically thin for t v less than unity. In this thesis 

an optically thin electron scattering atmosphere is taken to be one in which the results of a “single 

scattering” analysis deviate little from those of a full blown radiative transfer or Monte Carlo 

analysis.
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A .5 T he em ission  coefficient

The emission coefficient, j„t, is defined in such a way that an element of mass dm emits into a 

solid angle dfi' in the frequency range u' to v'  +  dv'  in the time dt the am ount of radiant energy 

given by,

j„i dindQ'  dv'  dt . (A .16)

In a medium which scatters radiation there will be a contribution to the emission coefficient due 

to radiation being scattered from all directions, k, and all frequencies, v, into the solid angle df}' 

around k ' with frequency v ' . Thus from Eq. A. 10 the contribution to the emission coefficient due 

to scattering alone is,

i ’A fc') =  ^  J J  / c „ / „ ( £ ) J J ( k ' ,  I/) dD di-, (A.17)

A .6 T he eq u ation  o f  rad iative transfer

In a medium characterised by a mass absorption coefficient and an emission coefficient j v

the difference in radiant energy crossing normally two faces of area dA  separated by ds in a time

dt is given by (cf Eq. A .l),

^ - d s d A d v d Q d t  . (A.18)
ds

This difference arises due to differences between the amounts of emission and absorption in the 

frequency interval and solid angle concerned. The amount absorbed, by Eq. A.5, is

k„ p d s  I„ d A d v d Q d t  . (A .19)

while the amount emitted is,

j„ p ds dA  dv dQ dt . (A.20)

Therefore the difference in A.18 is equal to the energy emitted (A.20) minus the energy absorbed 

(A. 19), thus yielding the equation of radiative transfer,

-jjj- = PJv ~ P Ku I» , (A-21)

The equation of radiative transfer presented above describes the transfer and interaction of 

the total intensity of radiation within a medium. As was illustrated in Chapter 1 any radiation 

field can be split into intensity components (the Stokes parameters) and it is therefore possible to 

write an equation of transfer for each intensity component of the radiation field analagous to Eq. 

A.21. In a scattering/absorbing atmosphere such an equation will require a redistribution function 

for each Stokes parameter and a convenient way of writing this is in vector/m atrix  notation, viz,

- r 1 =  PJv ~  P Kv Iv , (A.22)ds



where I,, is a vector whose four components are the un-normalised Stokes parameters. The vector 

emission coefficient clue to scattering is,

j u = t ~ f  f  ku> R ( i / , k ' ; i/, k )^ *  dQ' d i/  . (A.23)
4jr Jn*

The optically thin single (Thomson) scattering analysis presented in this thesis neglects ab­

sorption within the circumstellar envelope and attributes a//envelope emission to scattering. These 

assumptions reduce the Stokes vector equation of transfer to,


